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SUMMARY

The dynamic behaviour of a dry long bone that has been modeled as a piezoelectric hollow
cylinder of crystal class 6 is investigated. The solution for the wave propagation problem is
expressed in terms of a potential function which satisfies an eight - order partial differential
equation, whose solutions lead to the derivation of the explicit solution of the wave eguation.
The mechanical boundary conditions correspond to those of stress free lateral surfaces. while
the electrical boundary conditions correspond to those of short circuit. The satisfaction of
the boundary conditions lead to the dispersion relation which is solved numerically. The
eigenfrequencies obtained are presented as a function of various parameters and they are

compared well with other researchers’ theoretical results.



1. INTRODUCTION

The discovery of the piezoelectric property in bone has opened a new field in biomedical
engineering. The study of vibrations in piezoelectric materials will provide vital information

which can be used in the monitoring of the rate of bone fracture healing.

The wave propagation in piezoelectric rods of hexagonal crystal symmetry was studied by
Wilson and Morrison [1]. They presented an exact description for the vibration modes using
an extension of Mirsky’s technique [2]. Ambardar and Ferris [3] proposed a model for the
wave propagation characteristics in long bones consisted of a two-layered cylindrical shell of
crystal class 6mm. The bone behaves like crystal class 6. In the case of crystal class 6mm,
there are three independent piezoelectric constants since ejq | is zero, but this constant for
bone has the largest value [4]. However, neither Wilson and Morrison [1] nor Ambardar and

Ferris [3] have presented numerical results for the characteristic frequency equation.

Giizelsu and Saha [5] studied electromagnetic wave propagation in the hexagonal crystal
class piezoelectric hollow cylinder for dry bone shaft. In their work, a comparison was made
between theoretical predictions and experimental data which were obtained for flexural
waves by non-contacting device. However, they have not included the influence of the

electnic field in stresses.,

The wave propagation in a piezoelectric bone of arbitrary cross section with a circular
cylindrical cavity and in a piezoelectric bone with cylindrical cavity of arbitrary shape was

studied by Paul and Vankatesan [6-7].

Ding and Chenbuo [8] obtained three general solutions for the coupled dynamic equations for

a piezoelectric medium of crystal class 6 mm. These solutions are expressed in terms of two



functions v and F, where v satisfies a second-degree partial differential equation and F a

sixth-degree partial differential equation.

In this work, we study the wave propagation in an infinite piezoelectric hollow cylinder of
crystal class 6. First, following the formalism of Ref. 8 for piezoelectric medium of crystal
class 6 mm, we express the solutions for wave propagation problems in piezoelectric medium
of crystal class 6 in terms of one function F which satisfies a quadruple-Helmholtz equation.
Solving this equation for F, we derive explicit expressions for four solutions of the wave
equation. The frequency equation for the system considered is obtained when the lateral
surface is stress-free and coated with electrodes that are shorted. The dynamic characteristics
are calculated in the case of a hollow cylinder which represents the cortical bone for various
values of wave number as well as other parameters entering the system. We present also
solutions for the simplified cases of non-piezoelectric and isotropic bones. Our results are

presented for various parameters of the system.

2. PROBLEM FORMULATION

The system under consideration is shown in Fig. 1 and consists of a hollow piezoelectric
circular cylinder of crystal class 6 with inner radius r, and the outer one ry. The cylindrical
polar system (r,6,z') is introduced and the z-axis of the cylinder is assumed to be

perpendicular to the isotropic plane of the medium.



Cortical Bone

ok
o

Figure 1: Problem Geometry.

For a piezoelectric material of crystal class 6 the equations of motion and the equation of
Gauss in cylindrical coordinates are given as
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where u), up and u. are the elastic displacement components, V’ is the electrostatic

potential, c;j are the elastic constants. e are the piezoelectric constants, e; are the

dielectric permittivities, p, is the mass density and u; ; = :

o
The boundary conditions are:
T, =Tg=T.=0, V=0, at r=ry r, (3)

where T;,, T,g and T,, are components of the stress tensor which satisfy the constitutive

relations:

T =it Clzi’_l(uélg + u:-]'+ Cralz o + €3V, ©

Tig = ﬁ'ﬁﬁ[“ﬁ.r +r iy g - ‘"-1“3]’ 2
¥ r r g B i

T, = Cdd[uﬁ.z' +u:.r]+elﬁv.-z’ —ewr Vi, v

The boundary conditions (5) correspond to the situation where the inner and the outer surface

of the cylinder are free of traction and coated with electrodes which are shorted.

3. PROBLEM SOLUTION

We introduce the following dimensionless variables
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where R=r —ry.
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To study the propagation of harmonic waves in the z' direction, we assume a solution of the

form:

(Rw)’p,
Ca4

where G, v, w and ¢ are functions of x and @, Q=

frequency, A = Ry, and ¥ is the wave number.

Using (9) the system (1)-(4) can be simplified as follows:
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where
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Following Ref. [8], we introduce a function F=F(x.8) such that {detD}F=0 or

equivalently
[aV® +bVC +cV* +dV? +e]F =0, (11)

where the coefficients a, b, ¢, d and e are given in Appendix A. Calculating the

algebraic components D, of the matrix 2 we can find four solutions of the system (10)

given by

G=D,F, w=Dy,F, w=DuF, 0=D,F, p=12.3,4 (12)
where

Dy = df Ve + a0V + dfIV? 4 df, (13)

and d”, p.q.s =1,2,3,4 are given in Appendix B.

Using (12) the proposed solution (9) takes the following form:

W, = [;%[@FIF) p %%(BPZF)}J“‘Z‘“},
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u, =i(DpaF)e ), (14)
V=i(D,,F)e ),

where the function F satisfies equation (11).

In order to solve equation (11) we recognize that it can be factored as
(V2 +k2)(V2 +43 (V2 + 43 (V2 + &3 )F =0, (15)
where the kf ’s, j=1,2,3,4 are the roots of the equation:

ak® —bk® +ck* —dk* +e=0. (16)

There are four roots .ﬁ:j?- for equation (16). Since the coefficients of (16) are real, the roots

k} are either real or occur in conjugate pairs. The case of the repeated roots require

different consideration and is not considered here because for the properties of bone used

this case does not appear.

In the case of distinguished roots. if F J,-{x, 8), j=12,3,4 are four functions which satisfy



(V2+K)F; =0,  j=1234, (17)

respectively, then the function

F:if?j (18)

i=1

is a solution of equation (11) since the order of the operators in (15) can be interchanged.

But for each j, equation (17) is a Helmholtz equation which admits a solution of the form:

2
F;= 2 "”cm{mﬁ +B"”51n{mﬁ}}{m‘l(ij], meN (19
i=]

where a7 and BT are arbitrary constants,

' J"kx),  1=1,  (Bessel of st kind)
; if k?>0,
.f( ) Ym(ij), =2, (Bessel of 2nd kind)
Ii"n"“. kx o
2 g [
fm[k-x)], =1, (mod. Bessel of 1nd kind) =
/ if k3 <0,
K’"(kj-x), [ =2, (mod Bessel of 2nd kind)

and k; = |Lf |’L;; when kf is real and £™(k ;%) is the Bessel function with complex argument

when .E:J% is complex.

Using (14), (18) and (19)we find that the elastic displacements and the electric potential can

be written as
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8P% = —dPiks + dfU —dfUZ +df9,  p.g.j=1234.

The stresses given by the constitutive equations (6-8) are expressed as:
4 2

Tio= Z Z {[a}“‘f PJ,T; [k J,-x) + ﬁ}”‘IQ;f:f (k J,-x)] cos(m@)
j=1 I=1

+[~a’?"1Q;f;[ J+ﬁ“" ;P'“ {(.{ ,x)]sm{mﬂj} s

Tip= "'5'522{[ ’”"R”‘f +,8ff5”‘!(k x]]ms(mﬂ]

=1 I=1
4—{—&}"'{51‘:}} (ﬂ: J,-.x;'l + ,8;-““! R;If(.ll jx]]sin{mﬂ']}ei{‘;'z_m} ;

Ty —IZZ{[ % me! k;x +ﬁm {Um‘![ )]t,us{mﬁ'}

j=1 I=l1
+[ m‘EU’"i(Ic x]+,3"“T'“f[k x)]sm{mﬂ']} sl

s of i

(20)

21)

(22)

(23)

(24)

(25)

(26)



where the quantities P’ f, R;’ j S;;‘_f, s 4 and Fjey ”‘" are given in Appendix C.

4. NUMERICAL SOLUTION

Replacing the expressions (23)-(26) into the boundary conditions (35) and using orthogonality

arguments we infer that for every specific pair (m, p) we obtain an algebraic system with 16
unknowns, which can be writien as

Ax=0, (27)

b [aml ﬁ’."t',gxmz ,B ] . j=1,2,34,

In order for the system (27) to have a nontrivial solution, the determinant of matrix A must

vanish, that is

det(4,,) =0, r,s=12,...16. (28)

This condition provides the frequency equation, the roots of which are the eigenfrequency
coefficients €, (A), m=12,..; p=1,2,3,4 of the system under discussion. The elements

of the matrix A are

Ay =Pri(kie)  Aura=Pilkie) A =0pi(kie) Ao =057 (ko)

Ay i =—A .8 Ay jra =—Ayj1125 Ay jss = Ay Ag je1z = Ay jias
2(1 7

Ay =R (ki) Asjua=RHKfo)  Asjus=STi(kiFo) A junz = SoF(kio):
*‘14.1 = ‘33.j+3= Ay, j+4 = —Ay 12 A4,_,l'+3 = AEI-._.H Ay, 12 =T Az, Jade
A =Tpilkfo)  Asjua=Tpi(kio)  Asps=Upi(kifo)  Asjuz =Upi(kio)
A'E'-.f' = _‘4'5~j+3= Aﬁ.j+4 =i 12 Aﬁ,jﬂs = As ;. A(:.j+l1 = Aﬁ,j+4e-
Aq ;= Wii(k;F Ag jes = Wi (k7 A7 jeg =0 A 412 =0

7. p.j\kifo ) 7, j+d o s 7, j+8 ' 7,.j+12 :
Ag j =0, Ag j+4 =0, Ag ji3 = Ay, Ag j+12 = A7 jras
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for j=1,2,3,4. The remaining eight rows can be obtained from the above relations by

replacing = % by 7, = %

As we have mentioned previously the roots of the equation (16) are real, occur in complex
conjugate pairs or both. In order to simplify our numerical calculations we consider the

following cases:

15t case: All the roots kf are real.

In this case all terms A, are real and the frequency equation is given by equation (28).
2nd cage: kS = E ki = E where the bar denotes the complex conjugate.

In this case the terms A, satisfy the relations:

ARy ol dh PR 06

Using elementary determinant properties the frequency equation (28) can be simplified as

follows:
det(B,) =0, r.s=12,..16 (29)
where

B, =RejA,]

=1315,..,13 r=L2.,.16
Br.£+] =Im[Arf]1

37d case: k7, ki are realand k2 =E.
In this case the frequency equation (28) becomes:
dﬂI{C‘m}=(}. rs=12...16, (31)

where

sl



C,=Re[A,], s#4. 8 12, 16,
C.=Im[A,, 1] t=4,8 12, 16.

For the system under discussion the stiffness matrix at constant electric fields is

ep 2 3 0O 0 0
¢ ¢ ¢3 0 0 0
s €3 ¢z 0 0 0
““lo 0 0 ¢ 0 0

0 0 0 0 0 cg
g 1
wﬂh I::'m":E{f]] _C12)

The piezoelectric stress matrix is

e3 €3 e 00 0

The dielectric matrix at constant strain for hexagonal crystal is

e=]| 0 €11 1]

The values used in our computations for the above quantities are given in Table 1.

e e 8



Table 1: Material Coefficients in S.1. Units.

Elastic Coetficients [9] Piezoelectric Coefficients [4] | Dielectric Coefficients [10]
(N/m?) (c/m?) (F/m)
¢y =2.12x101° ey, =1.50765x107 €= 88.54 %1077
¢pp = 0.95x 101 es3 = 1.87209 %107 €33=106.248 x 107"
&5=1.0210™ €4 =17.88215x107
¢33 =3.76 x10'° ers =3.57643x 1073
Caq =0.75x1017

The frequency equation is solved numerically and for this purpose a matrix determinant
computation routine was used for different Q and A, along with a root finding method to
refine steps close to its roots. For each pair {Q,A) the equation (16) is solved first using

Laguerre’s method. The roots obtained indicate the case which must be treated in order to

obtain the roots of the frequency equation.

Results for the non-piezoelectric and isotropic cylinder can be obtained following the

procedure shown in Appendix D.
The frequency spectra obtained for the case of isotropic bone are shown in Table 2 for

various wavelengths. It is obvious that the first frequency decreases as wavelength

increases.

o I




Table 2:

Frequency Spectra for Isotropic Hollow Bone as a Function of Wavelength.

No | a=00lm | @=0.03m | a=005m | @=0.08n | @=0.10m | a=0.15m | ox=0.20m
1 3.7700 0.9094 05174 0.2918 02162 0.1190 0.0746
2 (0.9290 (.5586 0.4022 (0.3194 02514 0.1574
3 1.0618 (.6540 0.4104 0.3770 0.2522 ().1886
- 1.1034 0.6796 0.4540 0.3780 0.2552 (0.1894
5 1.1150 (0.7534 0.4664 (.5864 (.2888 0.1912
6 L1728 (.7540 04714 0.6206 (0.4472 0.2544
) 1.2566 (.7554 0.4722 (0.6358 (0.4480 (0.2964

The same behavior is observed for the case of non-piezoelectric bone as it is shown in

Table 3 for the first seven eigenfrequencies.

Table 3: Frequency Spectra for non-piezoelectric Hollow Bone as a Function of
Wavelength.
No | ¢=00lm | a=003m | a=0.05m | =0.08m | &=0.10m | ¢=0.15m | a=0.20m
1 3.7016 (0.8008 (0.6454 0.3562 0.2606 0.1362 0.0764
2 3.7694 (0.9248 0.6820 0.4096 (.3216 (0.2084 0.1542
3 3.7700 0.9726 (0.7540 0.4714 0.3772 02514 (.1886
4 1.0750 (.7836 (0.5930 0.5344 0.3674 0.2778
5 1.1606 0.8204 0.6402 0.6818 0.4526 (0.3678
6 1.1806 0.9798 0.6990 (0.7008 04770 0.4220
¥ 1.2564 (.9882 (0.7656 0.7490 0.5630 (0.5538

The results for a Crystal class 6 bone are shown in Table 4.

It is observed that the same

behaviour occurs for the variation of the first eigenfrequency with respect to the

<15




wavelength. However, the computed eigenfrequencies are smaller than the observed in

the case of non-piezoelectric cylinder.

obtained for each of those cases is shown in Figure 2.

The comparison of the first eigenfrequency

Table 4: Frequency Spectra for Crystal Class 6 Hollow Bone as a Function of
Wavelength.
No | a=00lm | @=0.03m | @=0.05m | @=008m | a=0.10m | e¢=0.15m | az=0.20m
1 3.2260 1.1640 0.7540 0.4712 0.2502 0.1208 0.0584
2 3.7700 1.2566 1.0472 0.6544 0.3770 02514 (0.1886
3 5.0766 1.5278 1.1688 0.7308 0.5236 (0.3490 0.2618
4 1.7452 1.3300 0.7372 0.5896 0.3898 0.2924
3 1.6752 0.8312 0.6650 0.3930 0.2948
6 1.8150 0.9730 0.8376 0.4434 0.3326
7 1.0552 0.5585 (0.4188

The eigenfrequecies of the system decrease with increasing ratio of inner to outer radius as

it is shown in Table 5. This behavior has been observed to appear in the same manner in

the treatment of the isotropic hollow cylinder of finite length in Ref. [11].

Table 5: Frequency Spectra for Crystal Class 6 Hollow Bone as a Function of the
Ratio ry/n, for ¢ =0.10m.
No Solid ro/n =021 ry/r, =043 ry/n =0.57 ry/r =071 ry/ri = 0.86
Cylinder
1 0.4736 0.3906 0.3130 0.2502 0.1760 0.0920
2 0.8790 0.6912 0.5026 0.3770 0.2514 0.1256
3 1.2208 0.9598 0.6982 0.5236 0.3490 0.1746
4 1.3644 1.0810 0.7796 0.5896 (.3898 0.1950
5 1.3750 1.2192 0.8866 0.6650 0.3930 0.2216
b 1.5506 1.5356 1.1168 0.8376 0.4434 0.2676
7 1.9530 1.8532 1.8448 0.5584 0.2792

-16 -




Figure 2: Comparison of the First Eigenfrequency for the Different Models of Hollow

Cylinder (First Flexural Mode).

—+&— Isotropic Cylinder

- - &- - Non-Piezoelectric Cylinder

+++0-- Crystal Class 6 Cylinder

0.00 0.05 0.10 15 0.20 235
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5. CONCLUDING REMARKS

In this work, we have studied the wave propagation in an infinite piezoelectric hollow
cylinder of crystal class 6. We adopted the analysis of Ref. 8 and the solution of the problem
was expressed in terms of a potential function. The resulting dispersion relation has been
solved numerically. We considered also two simpler cases, the case of the isotropic cylinder

and the non-piezoelectric cylinder which are simplifications of the general problem but

S



require special treatment. The analysis focused on the eigenfrequencies of the system and
we have shown that the first eigenfrequency of the system varies in a similar qualitative
manner for the three models. This can be further used to obtain qualitative characteristics for
cases which are difficult to be modeled (e.g. osteogenesis, bone healing, etc.). The obtained
results compare well with analogous of other researchers as it is shown in Figures 3 and 4 for

the cases of non-piezoelectric and crystal class 6 cylinder, respectively.

0.8 —*— Mirsky [2] 1

== &-- Our Analysis

0.67 T
/0 |

=01
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Figure 3: Comparison of normalized eigenfrequencies of our analysis for the non-

piezoelectric hollow cylinder with the results obtained by Mirsky [2].
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Figure 4: Comparison of normalized eigenfrequencies of our analysis for crystal class 6-

hollow cylinder with the results obtained by Giizelsu and Saha [5].
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APPENDIX B
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ds -{Cm"‘zflﬁ"'ﬁ'as + E33(8fy + e + et )}ﬂv

—{(5124 + 2515) + €53 (1+833) + £33 (1 + g6 }}3292 +e7Q%,

di' = {1+ eesf JA° + {1+ &5 (1+ 253 }}.?L“'!Q2 - e534°Q°,

dy? = —&4{83) — &385}A7,
di* = —514{[{1 +813) = E3(@1s + 23 ) |1 + (815 + 85 }Azgz},
dyt =]

di’ =g {515{515 +a)+ e (1+ E”)}ﬂ"

R o o



dy’ = {{1 + Eii)(élzél +e0 + 55633_’52]“" (Cos + &15)(E1s + &1 }}13

'{EHS{EIS +é3) e (l+ 613}}),92,
di = {s;%(l +&3) + (85 + &3y }}(L‘zl - »12].13,
d* =0,
di* =—Zgs(13815 — 31 A,

dy* = {6 (14 E13) + (G13815 — 831) — Gsgl3 (@15 +E31)}A°

~{(E13815 — 31) = Ges (815 + 83, )}AQ7,

di* = ={(1+&13) = 3385 + &) }A°

{1+ 3)+ (1433 )(E)5 + 1 ) JA7Q7 + (615 + 83, )AQ%,
d* =0,
d121={}

o fim 5 Z
dy —‘E-’M[Eai‘”fufli]ﬂ* :

d3' = -y {[(1+213) - B3(B15 + 83 )1* + (@15 + 83, )A°Q7),



42 =0,

d%z {—(Elﬁ + 531}2 +2{l + 513}{é]5 + Ealjglﬁ - E]S{EE] 1 + élﬁ)

+eiiE3(2+83) - '511(5’41513 + £33 ]}32 {=‘3|'i +£p3 {1‘“11]}“2!

e {—HHE;;}(EH+é3.}+enu+a~zsz;§)+f33tas+éalf +}f
3 o

2 gy ey =
28,5 +E33€13 —C13€33 (24 613)

{—‘{Efls -+ E:;]} = 2&?15 ‘EH {1+ C33) 533 'U + L] 1}}249 + Ej3 zﬂd
22 _ = a=2]46 = o=2]4402 _ 24204
di” = —{14“ C33€33 }-1 "‘{1"'{1 +C33)€33 };1- Q- g3HQ
d = &,8148157
dP =—2,,1[2, — &5, —E3(E5 + &5, )|A* - 5402
= 514{[f311 & — C3(8s + E’f'31}] © T €5 }*
P = -z, {-A + 1},
d; =10

ot 8
di” = —&46114.
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d3* = &4 {[~E3(2+ &3) + &4 ] —(1+8,)A0%},
a3 = oy~ +(1+8)A°Q7 - 2Q2%},

43t =0,

d’ =0,

&' =gs{es(ers +231) + €3 (14 813) A,

43l = {—5124{1 + 513} - {Eﬁ + €3 }{E‘ﬁﬁ + E15} - {1 T E13}(‘91_32 + 5665532 ]}13

"'{515{515 +é31) + €3 (1+ 513}}’1ﬂ2+
dy' = {{EIS +85) + £33 (1 "‘513}}(;1*5 E ,13512),
di* =0,
dy? = —&48185%,
di* = —3'14[{—511 +E13(85 + &31) + &) JA” +815AQ° |,

di? =-2,{¥ - #Q?},

L)



R
di” = €} 1Ce6€13 »

= S PO R o S Y P
d3? = {80y + Bos(B1s5 + €31)” + €13 (@11 + Eg6) + E11866E53 }5'-

2 - 2
+E]3(C|1 +cﬁﬁ}ﬂ

33 _ =2 | = e ~2(= = 4
ds —{314""['1’?'15"‘33;} + &3 +E33{¢”+¢55}}l

=2 = = 2 -2, =2 - 202 4 o2yt
—{3144'[*?15 +&y) + 263 +&33 (4 +Lf-f-}}j~ Q" +e7Q°,

4P =-£57{2° -22°Q% + 2°Q*},

3 _ - = =

di’”" = C11Ces€15,

B = {7,185 +Erifis —EsPar — Frsles(Bus + By )WAZ +8y5(61, + o5 )27
g = {Lilﬁﬁﬁ C11€15 — Cas€31 — C13Casl €15 T €3 €151C11 T Cpg )32 »

d3* = _{_E'n —&gg + C13éis + &3 (1+ E”?}}’;L4

~{e11 + 66 + 15 (1-813) = &34 (1+ 613 JAQ? +85Q°,
di =-{A° -24*'Q* + A°Q*},
d‘]-ql =ﬂ,

ff;] - _Eﬁﬁ{’ElSElS — &y }Fl.*

=27 -



dy' = ~{~ss(1+&13) = &15(E13 — E338e6 ) + &31(1 + E33Css ]'}’lj

—{&15(E13 — 66) — 831(1+ Eg6)}AQ%,
di' =—{(1+83) = &s3(21s + &1 )}A° + {(1 4 &3) = (15 + 831 )(1+ &) }A°Q% + (615 + &5, )AQ%,
d? =0,
d3? = =248 A
di? = &4 {[E13(2+ &3) - &85 ]4° +(1+611}1ﬂ2},
df? =&y {~6330° +(1+63)2°Q% - 207},
A = ¢, 186y,
di® = {es[B1s + 11 = (1+&13)(1s + &30 )] + &5 JA% — &5, + s )92,

di* = {25 + &5+~ (1+83)(815 + 831 )JA°

+H{g + 2615 + &y — (14 13) (35 + &y )JA2Q% - £,5Q°,
Vil I el T g

T
dy” = &g,

SO



di* ={=611(1+ Exaées ) + E1afes (2 + &3)JA% +{E1) + s + 186 92,

df* ={~83(2+ &)+ Eas (6 + T )}A° +

{14302 +3) — (1433 )(Es + 1) QAT + (14 Cos +&p)Q%

d¥ = A% + (1428008 - 2+ 83042 + 0°

el



APPENDIX C

32 m.d k- ) m.l E. 9
P (ki) = 5,51{51 1 “Q.Tgf"] e Eu[i% = %;m-‘(ij]}}

—A[61380° + 6,67 (k)

mlify
opn) =22 L) L)

-,
dx X !

aigmi(k_x) 1 ai-m,f{k_x} ml
m'{ & = - Pz d FE i J m.f k
Ry (k) = =6 1: 2 5y & (k) |-

ag‘m.f(ij] 5 1

i _ epl2m il
Sprj (kjx) =87 T[ = ;é’ {ij)],

i, o 15,&] 5P3 - 5,!::4 a':mj(k!'-r}
Tp-j(kf""}"( j tO; +e€50; ) Fom

Upj (kjx) = %(35}12 e 5145?){”‘1 (k;x),

Wit (k) = 874C™ (kjx).
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APPENDIX D

The case of non - piezoelectric cylinder.

The simplifications of the proposed model include that e; =0 and &; =0and the system of

equations (1) - (4) is simplified as

E.‘]]"c’2 +0% - 22 0 —Al+6p3) G
0 EsgV2 + 0 - 22 0 v|=0 0
Al +3)V° 0 V2+Q? - | w
or equivalently
(66sV2 + Q2 - 22)y =0, D%
S g 2 _ a2 _ = (¢ (G
V-2 Alvay) } ,ﬂ[ ]= i (D.2b)
A +E5)V Vo+0 =AW W

Following the methodology proposed in section 2 of this work we introduce a function

F = F(x,8) such that {detD}F =0 or equivalently

[c?d+¢ﬁ“’2+e]F=[} = i
(V2 +K2)(V2 +K3)F=0 '

where k7 are the roots of the equation ck;—dk}+e=0, where ¢=qy,
d=(1+&)Q% = (1+&,633)22 + (1+3)° 2% and e = Q* — (14 E3)A2Q% +E334°,

The solution of (D.3) is given by the relation (19) and the solution of (D.2b) can be expressed

a8
G=D,F, w=D',F, p=1.2, (D.4)

where



D ,.=dfIV+dl?, p=12; q=13,

and

di' =1 di' = Q% -3 A°
d? =0 d3' = Al +&)
d_l3 =_J'(1+E|.3) dia =ﬂ

d> =& d¥? =0 -2,

Finally from (D.3) and (D.4) we obtain

{87 cos(m) + B} 87" sin(m) } ™ (k ).

L=y
il

i b
g L]

P
1]

=

Il
P
[lea

Il
—
.

Ul

l{a;‘-fﬁf3 cos(m) + B}'87° sin(mO) ™ (k;x),

j
where ﬁfq=-df@kf+dfq, p=L2% g=13,

The solution of (D.2a) is given by

2 ! ! !
W= E{a“g’" cos(m@) + By sin{mﬁ}}j"" (kax),
=1

where kI = I/E,ﬁ,i[fl2 —3.2},
The proposed solution takes the form

‘= [EJ,H_W];H:—:M

dv  x do
" i&_f?_‘#fj i(7z-)
o _[x 96 n)
i, = iwe' )

Following the same methodology with the described in section 2 we obtain an algebraic

equation with 12 unknowns, which can be written as

=37 -



Ax=0, (D.6)

where x:[a] R L ol o R B AT B B ,8;"2] and the

elements of A are:

Ay =Pl i), Ap = PRl(laig), A =0, Ayg =Bt (liTo), A s = B5 (kfo), Ag =0,
2
A7=0, Ag=0, Ag =03 (k). Arjo=0, Ay =0, Apyp =053 (ki)

A1 =0, Ay =0, Ayz=— ;}na«l':k/s ), Ags =0, Ay5=0, Ayg=- mz(k%-"u

Ay q =B i), Agg = P (Rafy), Agg =0, Ayjo = Ppi*(kifp), Agyy = Py (kafy), Ag1a =0,
Ay1 =0, A, =0, Ay3=RI5(kaRy), A4 =0, Ay5=0, Az5= R;Tf“’-’zf'u)-

Ay g =5;f'11(kl?n}~ A3y = ng;;(szﬂ}, A30=0, A0 = S;fiz{kﬁu}ﬁ Ay = Sm (kzru} A3 13 =0,
Agy = =S (ko). Agp =—Si3(kap), Agz =0, Agq==SpilkaRp), Ags=—Sp> P ko), Agg =0,

Ay7=0, Ayg=0, Ayo=RM(kai), Agro=0. Agyy =0, Aysz =Ry5 Unsfy)s
Asy =TT (kify), Asy =T (kaiy), As3 =0, Asy =T (kiiy). Ass =Ty (kafp), Asg =0,

As7=0, As5 =0, AﬁB—Umz'[ksn As10=0, A5;; =0, ""512"r-"rmz’('fiztrr:ﬁJ
A1 =0, Ay =0, Agy=-Upi(kahy), Aga=0, Ags =0, Ags==Ups (kshy),

As7 =T (i), Agg=Trs (kyit), Asg =0, Ag o =T (kifo) Agyy = 5 (o), Agu2 =0.

The remaining six rows can be obtained from the above relations replacing F, with 7.

The quantities P, :{ﬁ. %), Sp {(L x), l[k x), U ’”gf( ks x), Q!,3{k3x} R d (k3x) are

32 J'J'I.I(;:_x a m ! k.x) 2 ;
Pm“‘ x) = ']{E’u%"‘&lz[l%‘%gm'j{hx} —3.4’:",33f3§' “t(ij}f

™ (k;
S (k;x) = 5*‘”2;1[% ;;"”"{ij)}

Tyij (kyx)=(207" + 67°) =



Up3 () = A= (ky).
o _ m.f 1 i
Qp,f;{k?,x]' = 20gs E[M ==L * (-‘-’3-‘)}
x o X

aigm,! (k«.;x} _la‘:m.!(kix}
e? x ok

2
Ry's (k) = ‘{ +%<§""'{{hx}],

For the system (D.6) different cases, which depend on the nature of roots .k, can be

treated as it is explained in section 4 of our work.

The case of a piezoelectric cylinder can be further reduced to isotropic hollow cylinder if we

sel
E]E =EH-’ £-"151-4- =Eﬁ.ﬁ. —l, EE] =533,
Gy =2 L@ - 1) =
02 = —ifn Gz )= H,
u 2

where A, u are the Lamé’s constants, A= Ev/((1+Vv)(1-2v)), u=E/(2(1+V)), E, v are

the Young's modulus and Poisson’s ratio, respectively.

-4 -



