MULTIVALUED PARALLEL RECOMBINATIVE
REINFORCEMENT LEARNING: A MULTIVALUED
GENETIC ALGORITHM

A. LIKAS

16-98

Preprint no. 16-98/1998

Department of Computer Science
University of loannina
451 10 loannina, Greece

Multivalued Parallel Recombinative
Reinforcement Learning: A Multivalued
Genetic Algorithm

Aristidis Likas
Department of Computer Science
University of loannina
45110, Ioannina, Greece
e-mail: arly@cs.uoi.gr

Abstract

Parallel Recombinative Reinforcement Learning (PRRL) [6, 7] constitutes a population
based technique (genetic algorithm) suitable for function optimization in high dimensional
binary domains. We present here an extension to this method that concerns the case of
population strings whose elements may take any value from a finite discrete set. To
achieve this, a new type of stochastic unit (the multivalued discrete stochastic unit) is
defined that can be used in reinforcement learning problems, and a REINFORCE update
scheme for the adaptable parameters of the unit is presented. By considering a population
of optimizers of this kind that are appropriately recombined at each step (in a manner
analogous to PRRL), we obtain the Multivalued Parallel Recombinative Reinforcement
Learning (MPRRL) technique and present experimental results from the application of
the technique to some test problems,

1 Introduction

Optimization techniques can be divided into two main categories. Point based techniques
perform exploration of the problem state space by examining one point at each step and
appropriately moving from one point to another. On the other hand, population based search
techniques consider as current state the locations of many points in the state space and derive
new points by suitably manipulating the current ones. Such techniques have gained much
attention, mainly since they are suitable for parallel implementation.

A degenerate example of population-based search techniques is parallel point-based hill-
climbing, where there is a population of point-based hillelimbers (tabu search, simulated
annealing, etc) operating in parallel and independently, with no information exchange among
them. Their exploration capability is limited by the capabilities of individual optimizers. The
main interest in population based techniques is focused on recombinative techniques which

at each step generate points in the state space by combining information from the current

population. The most widely studied optimization procedures of this kind are based on ge-
netic algorithms [3] and their hybrids that extend the traditional simple genetic approach by
incorporating more sophisticated hillclimbing procedures. The first such hybrid that has been
developed was the SIGH algorithm (Stochastic Iterated Genetic Hillelimbing) [1] and many
other attempts followed, such as Parallel Recombinative Simulated Annealing (PRSA) [8].

In this spirit, the Parallel Recombinative Reinforcement Learning (PRRL) method [6, 7]
has been developed that constitutes a population-based that tackles discrete optimization
problems defined on binary (0orl) domains (i.e. on the unit hypercube). It is based on
the parallel operation and combination of individual reinforcement learning optimizers. The
approach can be considered as an extension of traditional genetic algorithms in the sense that
it considers vectors of probabilities instead of bit vectors as population members. At each
step these members are recombined and, in addition, the components of the resulting vectors
of probabilities are adjusted according to reinforcement learning rules. The latter update
is used as a local search techmique used to enhance the global search capabilities provided
by the genetic algorithms. More specifically, among the possible reinforcement updates, the
REINFORCE family of algorithms is used that have been proved to follow the stochastic
hillclimbing property [10].

A limitation of the PRRL method is that if works with binary population strings and,
consequently, it requires the specification of the discrete optimization problem in a (-1 formu-
lation. This is natural for several problems, but there are also many cases where the problem
variables assume values from finite discrete sets with more than two elements (for example,
in the k-graph coloring problem, each variable may be assigned any of the k colors (k > 3)).
The formulation of multivalued problems as 0-1 problems has two major drawbacks: i) for a
problem with N discrete variables, where each variable i assumes k; discrete values, E;-‘il k;
binary variables are needed and ii) additional constraints must be imposed so that only one
from the k; binary variables corresponding to the same discrete variable i can take the value
one simultaneously.

The above limitation of the PRRL method can be attributed to the fact that there has not
been developed any REINFORCE scheme for effectively treating multivalued discrete opti-
mization problems. All previous REINFORCE approaches to discrete optimization problems
are confined to the exploration of binary domains using a team of binary stochastic units
called Bernoulli units ([9]). In our attempt to maintain the multivalued formulation, we use
in this paper a type of unit, that will be called the multivalued discrete stochastic (MDS)
unit, and present an update scheme for the adaptable parameters of the MDS unit based on
the REINFORCE theorem. Using a team of MDS units (in a manner analogous to the case

of Bernoulli units [9]), a reinforcement learning optimizer is obtained suitable for treating
multivalued problems. Then, following the principles of the PRRL algorithm, we propose the
Multivalued PRRL (MPRRL) algorithm that constitutes a population based technique based
on the parallel operation and genetic recombination of reinforcement optimizers of the above
kind.

The next section describes the MDS unit and a suitable parameter update scheme that
belongs to the class of REINFORCE algorithms. The proposed recombinative approach is
described in Section 3, whereas experimental results from applying MPRRL to test problems
are reported in Section 4. Section 5 summarizes the main conclusions and provides directions

for further research.

2 Multivalued discrete reinforcement learning

In the reinforcement learning approach to function optimization [4, 9, 3] the state of the
learning system is determined through a probability distribution. At each step, a point in
the function space is generated according to the above distribution, and the corresponding
function value which is called reinforcement is provided to the system. Then, the parameters
of the distribution are updated so as to direct the search towards the generated point in
case of a high reinforcement value. In the opposite case, the point is made less probable
to be sampled again in the upcoming trials. In order to judge whether a point is ‘good’ or
not, a standard of comparison must be specified which in most cases is considered as a trace
(weighted average) of past reinforcement values (eq. (3)).

Reinforcement learning schemes have been applied to both continuous [4] and binary [9, 5]
function optimization problems. They are mainly based to the generate-and-test paradigm,
where at each step, first a point is generated and evaluated and then the parameters of search
mechanism are adapted according to the fitness of the generated point. In what concerns the
exploration of binary domains, the simplest reinforcement scheme considers that the point
y = (y1...-.yn) (i € {0,1}) of the problem state space selected at each step is stochastically
generated by a team of n Bernoulli units. Each Bernoulli unit @ (i = 1,...,n) contains
an adaptable parameter (weight) w; and determines the component y; of the output vector
through a Bernoulli selection with probability p; = f(w;), where f is a sigmoid function of

the form
pi = f(w;) = 1/(1 + exp(—wy)) (1)

If r is the evaluation of the generated point y, the parameters w; of the units are updated

using the following REINFORCE update scheme:

Aw; = alr — 7)(yi — pi) (2

In the above equation the parameter o is the learning rate and 7 is the reinforcement com-

parison mentioned previously that is updated at each step as follows:
(t) =7t — 1) + (1 —)r(t) (3)

with + being a decay rate positive and less than 1.
To treat multivalued discrete optimization problems we use here an extension of the
Bernoulli unit, that will call the Multivalued Discrete Stochastic (MDS) unit. This type
of unit provides as output y one-out-of M possible values {ai,...,ax}. An MDS unit is
characterized by a parameter vector w = (wy,...,wys) where each parameter w; corresponds
to the output value a;. The relative values of the weights w; express the favor of the MDS unit
towards the selection of the corresponding output a;. During selection, using the parameter
vector w, a probability vector p = (p1,...,pu) is computed as follows:
exp(wi/T)
%1 exp(w; /T)

It is obvious that Efil p; = 1. By performing selection using the probability vector p, one of
the M wvalues a; is selected as the output y of the MDS unit.

(4)

i=

In order to use the MDS unit for discrete optimization, the update scheme of the param-
eters w; must be specified. In our approach we have selected a reinforcement update scheme
based on the REINFORCE theorem [9, 10]. REINFORCE algorithms constitute an impor-
tant class of reinforcement learning algorithms. When applied to a team of stochastic units
(of any type) a REINFORCE algorithm prescribes that at each step the weights are updated

according to the formula:
dlng

S (%)

where « is the learning rate factor, r is the reinforcement signal delivered by the environment

Aw; = ar —TF)

(ie. the function value) and ¥ the reinforcement comparison defined previously (eq. (3)). In
addition, g{a, w) = Prob{y = aJw} is the probability that the output y of the MDS unit will
be equal to the value a given that the parameter vector is w. The quantity dlng/0w; is called
eligibility of the parameter w;.

An important result proved in [10] is that for any REINFORCE algorithm the average
update in parameter space W lies in a direction for which the expected value of r is increas-
ing, i.e., the algorithm is characterized by the stochastic hillclimbing property. Therefore
REINFORCE algorithms can be used to perform stochastic function maximization [9, 10, 5].

To specify a REINFORCE parameter update scheme for the case of MDS units, the form
of eligibility must be determined. From the definition of the MDS unit we find that if the
probability vector is p = (py.....par). then
(p1 fa=a

py ifa=as

g(a,p) = Prob{y = alp} = { ~ (6)

| pv fa=apn

This naturally leads to the following equation

I S
a]ng[ap] - Pi ﬂ‘ﬂ f{‘! {T}
dp; otherwise
Moreover,
Bing=§5lng§_p& (8)
dw; e Opy Owy
and from eq. (4)
i _ [dmll-p) k=i i
By, — FDiDk if ki

Using the above equations we finally find that the in the case where the selected output is ay

the parameter update equation suggested by the REINFORCE theorem is

1 o ap s
_) palr=F)pi(l-p;) Hi=k

s { ~balr—pipe fi#k o
It must be noted that, due to the stochastic hillclimbing property, pure REINFORCE
update schemes (as the one described above) tend to eventually confine the search to a small
region of the state space, ie. they are trapped to local minima. For this reason a simple
modification has been suggested [9] that incorporates a decay term —dw; (0 < 4 < 1) in the
update equation (10} in order to achieve the sustained ezploration objective. Adding this

term to equation (10) we get the following parameter update equation:

| talr—Ppi(l —pi) —bw; fi=k

= { —ralr — T)pipr — dw; if i # k (11)

The above equation is the reinforcement update equation used in the MPRRL algorithm.
Consider now a multivalued discrete optimization problem with n variables X; (i =

1,...,n), each one assuming values from the discrete set A; = {a;1,...,a:, } (where k; = |D;|).

To tackle this problem, we can employ a team of n MDS units, with each unit ¢ having pa-

rameter vector w; = (wjyy,...,w;,) and set of output values A; = {ai1,...,au, }-

o

The algorithm is simple: at every step, each MDS unit 1 selects the output y; € D; (using
the parameter vector w;) and thus a point y = (y1,....yn) of the problem state space is
obtained. The reinforcement signal r delivered to the learning system is the fitness of the
point i and, in the sequent, all MDS units update their parameter vectors w; using eq. (11).
The above procedure can be repeated until a termination criterion is satisfied (for example,

the maximum number of steps is reached).

3 The MPRRL algorithm

Multivalued Parallel Recombinative Reinforcement Learning (MPRRL) can be considered as
a population-based recombinative extension of the MDS reinforcement learning approach to
multivalued discrete optimization. It is based on the employment of p population members,
where each population member i is an MDS reinforcement learning optimizer and follows the
operation principles of the PRRL algorithm [6, 7].

Consider a discrete optimization problem with n variables X, each one assuming values
from a finite discrete set A; = {Aq1,..., A, } (where k; = |4;]). A point ¥ = (y1,...,yn) of
the problem state space results from the assignment of a value y; € A; to each variable X;
(i = Tiou)

The MPRRL algorithm considers a population of p MDS reinforcement learning optimiz-
ers, where each optimizer i is a team of n MDS units. Let (i, j) denote the j — th MDS unit
of population member é. The weight vector of this unit is w} = (w,... ,w;-kj]l. Let also
Wi = (wi,...,w}) denote the whole parameter vector of optimizer i. In this sense, we can
say that each reinforcement optimizer i is assigned one population slof where its parameter
vector W; is kept. At each step, first a reproduction procedure takes place, during which
the parameter vectors are recombined and a new generation of vectors is created. Then a
sampling procedure follows, where each optimizer selects a point of the state space and, thus,
p points ¥; = (yi1,...,¥in) (i = 1,...,p) (with y;; € A;) are generated using the MDS selec-
tion scheme described in the previous section. The fitness r; (corresponding function value)
of each point ¥; is evaluated and then, a reinforcement update of the parameters W; of each
optimizer is performed (using equation (11)), so that the search is guided towards promising
regions of the space.

At each generation step, the p new population members are created as follows: for each
current member i we decide with probability p. whether crossover will be applied or not. If
the decision is negative, the parameter vector of slot i does not change, otherwise, another
member k is randomly selected and crossover is performed between the probability vectors

corresponding to the two parents. The recombination operator that we have adopted is a

variant of single-point crossover. The new parameter vector W) is created in the following

manner:

e« We randomly select the crossover point ¢ (1 <f<n-—1).

e If t < [n/2], then we set wh, = wh, (m=1,...,k;) for j = 1,...,% and wh, = w},
(m=1,....k)forj=t+1,...,n
e If t > [n/2], then we set w;.m =w;m (m=1;.c05k) for:g = 10058 and wfr'm =w;.‘m

(m=1,....k)forj=t+1,....n

According to the above approach, the new vector W) remains as close as possible to the vector
W;. That child becomes the new parameter vector W; for slot i. In this way, the characteristics
of individual population members are preserved to some extent, thus retarding the decrease
of population diversity. It must be noted that the above reproduction scheme is synchronous,
i.e., all p children can be created simultaneously and independently based on the precedent
generation, thus achieving a high degree of parallelism.

At the beginning, all the components of the parameter vectors are set equal to zero, i.e.,
no initial knowledge is provided to the optimization system. In case no decay term is used in
the reinforcement update rule, the search process converges, in the sense that all probability
vectors tend to be similar to each other and, in addition, their individual components tend to
be 1 or 0. This convergence behavior is justified by the use of both the crossover mechanism
and the reinforcement update rule. The crossover mechanism destroys population diversity
and eventually all optimizers search the same region of the function space. On the other hand,
the local search performed through the use of reinforcement updates eventually converges to a
point of high fitness value. If a decay term is added, the search algorithm does not converge, in
the sense that it does not continuously produce the same points. Thus, sustained exploration
is achieved, but we still have a lack of sustained diversity due to the effects of crossover, since

the parameter vectors of population members are relatively close.

3.1 Sustained Diversity

In analogy with the PRRL case, in order to reduce the effects of crossover and avoid genetic
drift [2], the MPRRL algorithm employs a mechanism based on the notion of apathy [1, 6, 7]
that has been proved very effective in maintaining population diversity.

According to the latter approach, some population members remain apathetic for some
generations in the sense that they cannot be selected for recombination. Apathetic members
cannot change their state through crossover, but can be chosen for crossover by other members

of the population. To effectively apply this principle, a criterion is needed for a member to

become apathetic as a well as a criterion for becoming active again. We have chosen to put a

member into apathy whenever it generates a point of the state space yielding a higher fitness

value r; than the best value r** achieved so far by optimizer . Thus, from the moment the

search attains a high fitness region, the optimizer is allowed to explore that region following

the reinforcement learning rule without being disrupted by the crossover mechanism. If no

better solution is obtained for a specified number of steps, the member is brought back to

the active state and crossover is allowed. Thus, an apathy step counter is necessary for each

population member.

Following the discussion presented above, the MPRRL algorithm has the following final

form.

o Initialize all parameter vectors to zero.

Set the apathy counter of each population member i to zero.

« Repeatedly generate a new population from the current one until a maximum number

of generations is attained. Each new population is created by performing the following

steps for each locationi=1....,m

I
2.

If member i is in apathy proceed to Step 4.

With probability p. decide whether crossover will be performed or not. If the
decision is negative proceed to Step 4.

Randomly choose a member from the rest of the population following a uniform
distribution. Combine the two parents to produce a new parameter vector as

described previously. The new vector replaces the current one in location .

Based on the parameter vector W; generate a point ¥; of the state space using the

MDS approach and evaluate its fitness r;.

Update the parameters W; of location i according to the reinforcement learning
rule.

If rj > r®® set v = r;. If the population member { is not in apathy then put it
into apathy and proceed to Step 8.

If the member is in apathy increase the value of its counter by 1. If the value of

the counter is the maximum allowed put the member back into the active state

and set the counter to zero.

Update the value of reinforcement comparison 7;.

MPRRL MPRL GA
No. of nodes | Suce (%) | Avg. Steps | Suce (%) | Avg. Steps | Suec (%) | Avg. Steps
30 100 329 100 421 40 1892
60 100 a72 100 find 16.7 3512
90 100 1102 100 1467 6.7
120 100 1543 a0 1978 0

Table 1: Comparative results for the 3-graph coloring problem.

In the case where one seeks suboptimal solutions in short execution time, both the sustained
exploration mechanism and the sustained diversity mechanism can become inactive by setting
the value of § (eq. (10)) equal to zero and the maximum number of steps in apathy equal to

zero respectively.

4 Experimental results and Comparisons

Experiments have been conducted on several well-known multivalued discrete optimization
problems to compare the effectiveness of MPRRL against the traditional genetic algorithm
(GA) and the MPRL (multivalued parallel reinforcement learning) approach, which consid-
ers a population of independent multivalued reinforcement learning optimizers. It must be
noted that the MPRL method is a special case of the MPRRL method where the crossover
probability p. is zero. The MPRL method was implemented in order to study the effect of
recombination.

In all experiments the size p of the population was fixed and equal to 100. At first, we
conducted experiments concerning the NP-complete 3-graph coloring problem. The method
was tested on difficult graph instances, concerning sparse graphs with 2n edges, where n is
the the number of vertices (graph size). Such kind of graphs contain a very small number
of solutions, usually only one which was embedded by construction. The 3-graph coloring
problem can be considered as a problem with n discrete variables (each one corresponding
to a vertex). Each variable assumes one of three color values. A point in the state space
results from the assignment of a color value to each vertex variable, and the fitness value of
this point is the negative of the number of graph edges having vertices with the same color.
It is obvious that an acceptable solution has zero fitness (global maximum).

For each graph size, 30 experiments were performed using each technique. The maximum
allowed number of generations was 5000. The values of the parameters of the MPRRL and
MPRL methods were @ = 0.1, § = 0.002 and T = 1.0. Moreover, in the MPRRL case

the maximum number of apathetic steps was 100 and the crossover probability p. = 0.6.

The parameters of the GA were: crossover probability p. = 0.6 and mutation probability
Pm = 0.01. Average values concerning the percentage of runs that provided a problem solution
and the average number of generation steps required to find the solution are displayed Table
1. It is clear that the MPRRL method is much more effective compared with the other
approaches. It must also be noted that the MPRL approach also yielded encouraging results,
although of lower quality than the MPRRL method.

The second problem we have examined was the graph k-partitioning problem specified
as follows: Given a graph G = (V, E) with |V| = n, find if there exists a partitioning of
this graph into k disjoint subgraphs of almost equal size. This problem can be formulated as
a multivalued discrete optimization problem with n variables corresponding to the n graph
vertices where each variable assumes one of & values. The assignment of valuei (i =1,...,k)
to a variable j means that the vertex j is assigned to the corresponding subgraph G;. The
fitness f(Y) of a point ¥ = (w....,yn) of the problem state space is computed by first

counting the number C(Y') of edges with vertices belonging to different subgraphs and then

computing an imbalance measure quantifying the imbalance in the sizes of the k subgraphs:

k-1 k
f¥)=-CE)-x Y T (ml¥) = ny(¥))? (12)
i=1 j=i+1

where n;(¥") is the number of vertices of subgraph ¢ when the candidate solution is ¥'. The
coefficient x determines the relative importance of the two components. In our experiments
the value of & was 0.001.

We have selected to experiment with the 4-graph partitioning problem using difficult graph
instances known as multilevel graphs [1]. Multilevel graphs contain sets of vertices (clumps)
such that vertices of each set are fully connected among themselves but have only a few
connections to the remaining vertices of the graph. Experiments have been conducted with
specific multilevel graphs containing 8 or 16 clumps, each clump consisting of 4 or 6 vertices.
In particular we have used four types of graphs denoted as 8 x 4, 16 x 4, 8 x 6, 16 x 6. Fig. 1
presents the 16 x 4 graph. In all cases, it is possible to produce a partition of the graph into
four disjoint subgraphs of equal size. Therefore the global maximum of the fitness function
is zero. The main difficulty with multilevel graphs arises with the existence of clumps, since
it is difficult to move the clump from one partition to another by transferring one vertex at
a time, ie. transfers must be performed in groups.

In analogy with the graph coloring case, for each graph instance 30 experiments were per-
formed using the MPRRL, MPRL and GA techniques. The parameter values in all methods
were the same as in the graph coloring experiments. Each method was terminated either

when the global maximum was encountered or when the maximum number of generations

10

S
S

L

Figure 1: The 16 x 4 multilevel graph.

S
S

O

O

MPRRL MPRL | GA
Graph | Succ (%) | Avg. Steps | Succ (%) | Avg. Steps | Suec (%) | Auvg. Steps ||
§x4 100 640 100 570 20 1892
8x6 100 832 100 844 16 3512
16 x 4 | 100 1853 85 2732 0
16 x 6 100 3512 70 4210 0

Table 2: Comparative results for the 4-graph partitioning problem.

11

was reached. Table 2 displays average values concerning the percentage of runs that found
the global maximum as well as the average number of generation steps required to find that
solution. As in the graph coloring case, it is clear that the MPRRL method is superior to
the other approaches, especially compared to the pure GA technique that completely fail to
find acceptable solutions. The MPRL approach also provided acceptable results. This fact
suggests that the proposed MDS reinforcement learning optimizer constitutes a interesting
method for multivalued discrete optimization. Moreover, the superiority of the MPRRL tech-
nique indicates that, in the case where a population of optimizers is employed, it is preferable
to recombine them in an appropriate way, instead of having them operate solely and inde-

pendently.

5 Conclusions

We have introduced Multivalued Parallel Recombinative Reinforcement Learning (MPRRL),
which constitutes a genetic technique for tackling multivalued discrete optimization prob-
lems. The MPRRL method is based on the use of MDS units described in this work, whose
parameters are updated using a rule based on the REINFORCE theorem. Using a team of
MDS units we have shown that it is possible to develop a reinforcement learning optimizer
for multivalued discrete optimization problems. Going one step further, we have shown that
the appropriate recombination of MDS optimizers (ie. the MPRRL method) constitutes a
powerful discrete optimization technique.

As experimental results indicate, the MPRRL method is superior to traditional genetic al-
gorithms, and has the ability to effectively treat multivalued problems of high dimensionality.
Therefore we aim at testing the effectiveness of MPRRL in dealing with difficult high di-
mensional real-world problems, where the traditional genetic algorithms have been previously

employed (either successfully or not), and we expect to achieve solutions of better quality.

References

(1] Ackley, D. H., A Connectionist Machine for Genetic Hillclimbing, Kluwer Academic
FPublishers, 1987.

[2] Goldberg, D. E. and Segrest, P., Finite Markov Chain Analysis of Genetic Algorithms,
Genetic Algorithms and their Applications: Proc. of the Second Intern. Conf. on Genetic
Algorithms, pp. 1-8, 1987.

[3] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley, 1989.

12

[4] Gullapalli, V., A Stochastic Reinforcement Learning Algorithm for Learning Real- Valued
Functions, Neural Networks, vol. 3, pp. 671-692, 1990.

[3] Kontoravdis, D., Likas, A. and Stafylopatis, A. A Reinforcement Learning Algorithm for
Networks of Units with Two Stochastic Levels, Journal of Intelligent Systems, vol. 5, no.
1, pp. 50-76, 1995.

[6] Likas, A., Blekas, K. and Stafylopatis, A., Parallel Recombinative Reinforcement Learn-
ing, Proc. Int. Conf. on Machine Learning (ICML'95), Heraklion, Greece, April 1995,
(Lecture Notes in Artificial Intelligence, Vol. 912, pp. 311-314, Springer Verlag, 1995).

[7] Likas, A., Blekas, K. and Stafylopatis, A., Parallel Recombinative Reinforcement Learn-
ing: A Genetic Algorithm. Journal of Intelligent Systems, vol. 6, no. 2, pp. 145-169,
1996.

[8] Mahfoud, S. W. and Goldberg, D. E., Parallel Recombinative Simulated Annealing: A
(renetic Algorithm, Parallel Computing, vol. 21, pp. 1-28, 1995.

[9] Williams, R.J. and Peng, J., Function Optimization Using Connectionist Reinforcement
Learning Networks, Connection Science, vol. 3, pp. 241-268, 1991.

[10] Williams, R.J., Simple Statistical Gradient-Following Algorithms for Connectionist Re-
inforcement Learning, Machine Learning, vol. 8, pp. 229-256, 1992.

13

