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1. SUMMARY

A detailed study of micromagnetic models of the nucleation mechanism in permanent
magnets i1s presented. All approaches are based on the minimization of the linearized free
energy equation for a hard magnetic medium with a soft spherical inclusion. A companson
between the nucleation fields calculated by the various expressions is carried out. The
material parameters used are typical of SmFeN. The different expressions for the nucleation
field obtained by the two approaches are presented. The limitations of the existing models are
discussed and a new approach is suggested.

2. INTRODUCTION

The reversal of magnetization in ferromagnetic materials 1s a highly non-linear process due to
the hysteresis of the magnetization response (output) to the applied magnetic field (input). It
involves both rotation (a reversible process) and switching (an irreversible process) of the
magnetization of the particles or grains in the medium. Both processes depend on the
microstructure of the material, its intrinsic properties as well as the complex network of
interactions developed within the material. The mechanism controlling the magnetization
reversal is either due to domain nucleation or to pinning of domain walls. Modeling of either
process 1s not a simple task and, for that, a topic which attracts the attention of many
researchers.

The models attempting to describe the magnetization process fall under two general
categories. The most popular category, the so-called micromagnetic approach, includes the
models which attempt to describe the (de)magnetization process in terms of thermomagnetic
equilibrium. The starting point is the free (Gibbs) energy equation of the system (magnet), the
minimization of which, with respect to the magnetization direction, yields the stable states
(field, magnetization) of the system. Because of the structure and “nature” of the energy
equation, this approach allows for a detailed description of the microstructure of the materials
and the nature of interactions that develop. The trade-off for this convenience 1s the high
complexity of the minimized energy equation, worthy of the high complexity of the magnetic
materials.



In the quest for solutions of the minimized energy equation, the researchers have either
obtained analytical solutions for convenient geometries and microstructures [1,2] or have used
finite element methods to obtain solutions for more complicated systems [3,4]. In both cases,
the goal is to obtain a realistic expression or value for the coercive field, 7.e., the field at which
the bulk magnetization of the material reverses.

The other category. involves models that view the material as a black-box with known inputs
(applied fields) and outputs (macroscopic properties such as the bulk magnetization). This
systemic approach is based on the Preisach formalism [5] and has been quite successful,
especially with media that allow one-dimensional treatment of the process. The fast algorithms
led themselves to be efficient tools for media design but they are still quite “primitive” for the
more “sophisticated” modern materials where some of the simplifying assumptions of these
models collapse since the ‘black-box’ approach does not easily allow for a detailed description
of the material microstructure.

In this work, we present a comparison between analytical solutions to the micromagnetic
equation obtained by two different research groups. The solutions discussed and compared are
all implicit or explicit expressions of the nucleation field in permanent magnets when
nucleation is assumed to be the governing mechanism of the magnetization reversal.

When a magnetic material is assumed to be homogeneous, perfectly aligned, made of single
domain particles, the magnetizations of which rotate coherently, the expression obtained for
the nucleation field, H,, is the well-known H,=2K,/M, - NM,, where K; and M, are the
anisotropy constant and saturation magnetization of the material, respectively, and the second
term describes the effect of self-demagnetizing fields[6]. This expression is usually referred to
as the ideal nucleation field because first, the actual coercive fields measured in the laboratory
are lower by orders of magnitude and second, no real magnet has a microstructure allowing
for the assumptions underlying the expression.

The models presented in this work are based on rare-earth intermetallics (RE-3d alloys) taking
over the traditional hard ferrites because of their high coercivity which is due to the exchange
coupling between the RE and 3d atoms. Obviously these are inhomogeneous, two-phase
materials. The material used for testing the models in this work is Sm;Fe;;N,, a relatively new
permanent magnet with an unusually high energy product, (BH)u.

In the following, we give an overview of the micromagnetic equation and the solutions
obtained by Skomski and Coey [2,7], on the one hand, and Kronmiiller and coworkers [1,8-
11], on the other. Then, all models are tested for the material parameters of SmyFe;;N;, as
described in Table 1, and their results are compared. Finally, we suggest that a Preisach-type
model for inhomogeneous magnetic materials be constructed in an attempt to waive the
weaknesses or inadequacies of the existing models.

3. THE MODELS
Both the model of Skomski and Coey and the model of Kronmiiller are based on the
minimization of the free energy equation, E:

E=[{Ex (r) + Ex ()* E, () En (1)} dr (1



where E., is the exchange energy density, Ej is the anisotropy energy density, E, is the energy
density of interaction with the applied field (Zeeman energy density), and E. is the self-
magnetostatic energy density; all are implicit functions of position, r:

Ew: (r) = A(r) [V m(r)]*

Ei (r)=— (Ky(r) (nem(r))* + Ko(r) (n em(r))* + ...)

E,(r)=-m(r) -H

En (r) = - 1/2 M(r)Hy(r),

where A(r ) is the exchange constant, m(r) is the normalized magnetization vector, K; and K;
are the first and second order anisotropy constants, n is the unit outward vector normal to the
surface, H is the applied field vector, Hy is the demagnetization field vector and M(r) is the
magnetization vector.

The model of Skomski and Coey

Skomski and Coey [7] have treated the problem of a soft spherical inclusion of diameter D in a
hard magnetic matrix. Under the assumption of perfect alignment the energy equation reads:
E=[{ A(N[Vm]’ + Ki(r) m* + 1/2 uoMy(r) H m*} dr (2)
where H is the field combining the effect of both the applied and demagnetizing fields and
M(r) is the saturation magnetic moment.

For small perturbations, the linearized form of the above equation is minimized and the
following Schrodinger-type equation of state is obtained:

~[2A(1) LoMo(r)] V¥4 [2K (1) eMo()]¥ = Ho¥ (3)
where ¥ =my «e; + my. e

The interface boundary condition is:

Ade +V) Fi=Aule - V) ¥y,

where e is the unit vector normal to the interface and A, A; refer to the exchange constants of
the soft and hard phases, respectively.

For an ideally soft inclusion (K, =0) of radius R, the following implicit equation for H, is
obtained:

AJARMH,/2A,)"? cot[R (M;Hy/2A,)"] = 1] + 1 + R{[(2Ki—M3H,)/2A,] ?}=0 (4)
where A;, M,, K,, and A;, M;, K; are the material parameters of the soft and the hard phase,
respectively.

The model of Kronmiiller et. al.
Kronmiller and his group have studied for years the properties of sinter magnets like
Nd,Fe,sB and have offered solutions for a variety of configurations. More recently, Kou er.
al. [8,9] have studied SmFeN-type magnets and modeled their experimental results using
Kronmiiller’s nucleation model.

The basic model introduced by Kronmiiller assumes a two-phase sinter magnet with grains
perfectly aligned along the z-axis which also coincide with their crystalline easy axis, as in the
Skomski and Coey model. The long-range magnetostatic interactions are treated separately:
they consist of the vector sum of two fields, Hs, an external field to the nucleus due to
misoriented and nonmagnetic grains and the surface charges of the magnet and H,.., due to
rotation inside the nucleus. Then, the energy equation per unit length of the nucleus writes:

E = [{A(z)[ (d8/dx)* + (d6/dy)*] + Ki(2) sin’® + Ky(z) sin'6 +

+ (H, — Hy)M,(2) cos 8 — 1/2 Hy(r)My(r) }dx dz (5)



where 6 1s the angle of the magnetization with respect to the z-axis. The nucleus is assumed to
be infinite in the y-direction, this way reducing the dimensionality of the problem. For small
deviations of 8, the energy equation can be linearized:
2A(z) {-d0/dx” + d°0/dz’} — {2Ki(2) - (H. — Ha)M,}6 -
1/2 {[Huuez = OHeue 2/00 ] 60} M8 =0 (6)
Notice the analogy of the above equation to the equation of state obtained by Skomski and
Coey.

The general form of the solution of equation (6) is:

Ho= a(AK, 10 ) [2 Ki/Mi] — NesM, (7)
where o and Ny are the parameters describing the microstructure of the material being
modeled. a(AK, r; ) is the factor by which the ideal nucleation field 1s reduced to
inhomogeneities of anisotropy AK and width 2r,.

In the following section, we present the expressions obtained by Kronmiller and his
coworkers [3,8,10-11] for a(AK, r, ) for one-, and two- dimensional rotation of the
magnetization of the nucleated region, and for both harmonic and quasiharmonic diffusion
profiles of anisotropy.

{One-dimensional rotation
The linearized energy equation for one-dimensional rotation writes:
2A(z) {d°0/d2*} — {2Ki(z) - Mu(H, — Hy + 21M,)}6 = 0 ®)

The exchange stiffness A(z) is assumed to be constant throughout the sample, A(z)=A,
but the diffusion profile of Ki(z) can be adjusted in two ways:

¢ the harmonic case :

Ki(z) = K, + AK(1-exp(~z"/r))

Where K, is the anisotropy constant at the center of the inhomogeneity and K;(x) = K, + AK
1s the anisotropy constant of the “homogeneous’ material.

The expression for a is:

o =dg/(mro) + (1-AK/K,) (9)
where &z = nV(A AK) corresponds to the Bloch-type wall width of the material assuming that
K, << Ky(=x).

* the quasiharmonic case, i.e., the inhomogeneity has finite boundary values:

Ki(z) = K, + AK/[ch’(Z/1)]

For this case,

a = 1 - (AK/K,)[8s/2mre] ’[ -1+(1+4AK >/ A) "2 (10)
Notice that:

For ry — 0, i.e., the material is homogeneous and the ideal nucleation field is obtained because
H.=2K ()M, + Hy -2nM,; a=1

For 2 ry>> [A/AK]'? | i.e., the inhomogeneity is larger than the domain wall, 8z,

H.=2K/M, + Hs -27M, ; o =1-AK/K,

For 2mr; = &, i.e., average thickness inhomogeneities,



H.= (2K (e)/M,)(Bg /mry ) +2K/M, + Hy -27M, ; o = (1-AK/K,) + (bg /1)

The reader can easily see the first differences in the assumptions made by the group of
Kronmiiller and that of Skomski and Coey. The former assume constant exchange stiffness
throughout the material and an anisotropy profile which is a function of z in contrast with the
latter who assumes zero anmisotropy throughout the soft inclusion and constant anisotropy
throughout the hard phase but different exchange constants for the two phases.

Two-dimensional rotation

In the case of two-dimensional rotation (the inhomogeneity is again infinite in the y-direction
but of length L in the x-direction), the stray field due to the nucleus, H,..=27M,, may be
neglected in the first approximation, and the two-dimensional energy equation becomes:
2A(z){d*0/dx’ + d°0/dz*} - {2Ky(z) - (H, — Ha)M,}8 = 0

Then, for the harmonic K,-profile

o = (8g /mry) +(8g /L) + (1-AK/K,) (11)
and for the guasiharmonic case:
o = 1- (AK/K;)[8p/27ro]’[ —1+(1+4AKr,"/A) *]* + (8g /LY’ (12)

A solution for three-dimensional rotation has also been presented but it has been criticized as
rather unrealistic [11] and it 1s not being shown here.

4. THE MATERIAL

The material parameters of SmFeN alloys reported in the literature are summarized in Table 1.
SmsFe7N: can be i1sotropic or amsotropic. The second column of the table contains the
material parameters used by Skomski and Coey [2] in their model. The third column contains
the material parameters reported by Kou er. al [8.,9] for both isotropic and Zn-bonded
anisotropic  Sm;Fe;;N: samples. As expected, the anisotropic sample exhibits higher
remanence but lower coercivity due to the strong exchange coupling between the two phases.
Overall, the anisotropic SmyFe;;N: has superior magnetic properties but is expensive to
prepare. Tests have been run for both sets of parameters. Notice that no value is being
reported by Skomski and Coey for the second anisotropy constant K; since it is not being used
in the model

Table 1: Material Properiies

f Properties SmsFeysN; [1] Sm,Fe;-N; [2]
(BH)max 880 KJ/m’
1M, 1.55T 1.52T
HoM; - 0.90T (anisotropic)
0.65T (isotropic)
H, - 1.20 MA/m (anis.)
2.40 MA/m (1sot.)
K, 12 MJ/m’ 453 MJ/m’
Ky - 1.79 M)/m°
A 10.7x107"? J/m .
H, - 11 MA/m
By 3x107 m 43x10° m




4. DISCUSSION

As we have already pointed out, there are differences between the models which do not allow

for a direct comparison and the parameters need be adjusted appropriately in order for the

comparison to be meaningful:

¢ In the Skomski and Coey model, A, can be different than Ay (m=16_TxlD']2 J/m and
A=10.7x10"" J/m) while Kronmiiller's model can accept only a constant A which is set
equal to A;. The ratio AJ/A;, in the Skomski and Coey model, is therefore set to 1.0 for the
sake of comparison with Kronmiiller’s results.

¢ In Kronmiller’s model, two types of anisotropy profiles (harmonic and quasitharmonic) are
used while in the Skomski and Coey model K 1s assumed to be constant. This suggests that
the value of AK in Kronmiiller’s equations must be set equal to 1.0K; in order to compare
them to the Skomski and Coey solution.

The results using the parameters suggested by Skomski and Coey are presented in Figures 1-6
In all of the figures, we plot the percentage of the ideal nucleation field versus the diameter of
the inhomogeneity.

The material parameters used in Figs. 1-6 are those used by Skomski and Coey and can be
found in the second column of Table 1. In Fig. 1, we plot the nucleation field, as calculated
from the solution of Skomski and Coey for one spherical inclusion of diameter D, versus D.
The ratio AJ/A; 1s vanied: 1.0, 1.5, 2.0, According to the Skomski and Coey model, the Bloch
wall width of the hard phase, &z =nVAY/K; = 3nm, is responsible for the “plateau™ region: for
soft inclusions of diameter less than &g , the nucleation field is equal to the ideal field [7]
because of the exchange interactions. For an inclusion of diameter twice the wall width, the
nucleation field decreases down to 40% of the ideal one. When we vary the exchange constant
of the hard phase while keeping that of the soft phase constant we notice that a higher ratio of
A Ay vields slightly higher nucleation fields.

Plotting Kronmiiller's solutions for one- and two-dimensional rotation with a harmonic
anisotropy profile (figure 2) we notice that the “plateau” region breaks down at diameters
smaller than the wall width of the hard phase. For the case of one-dimensional rotation, the
“break-down” value of the diameter is equal to 1.5nm and for the case of two-dimensional
rotation it 1s 2 nm. In this latter case, the size of the “wall-width” is given as approximately
2VAJK, [1]. We also notice that one-dimensional rotation predicts lower nucleation fields by
10-15%. The nucleation fields predicted by the 2-D rotation are higher for lower L (length of
inhomogeneity in the x-direction) which is consistent with the results about 1-D rotation, i.e.,
as L tends to infinity, (&g J-“L]2 tends to 0, and the nucleation field decreases down to the value
predicted for 1-D rotation.

Fig. 3 shows the decrease of the nucleation field as predicted by Kronmiiller's model using a
quasiharmonic anisotropy profile. Again, 1-D rotation yields lower nucleation fields than 2-D
and so does a higher value of L for 2-D rotation. The quasiharmonic profile also predicts
slightly lower nucleation fields than the harmonic one. The big difference however between the
two anmisotropy profiles is that in the quasiharmonic case there is no “plateau” region, i.e., the
nucleation field predicted by this model is lower than the ideal nucleation field even for very
small inhomogeneities, e.g. g /2r, < 1. However, when the inhomogeneity's width is smaller
than the domain wall width the exchange energy is big enough to prevent deterioration of the



nucleation field. According to our calculations, this model predicts that more than 40% of the
ideal nucleation field is lost for diameters up to dg.

In Fig. 4 we compare the Skomski and Coey solution against Kronmiiller's solutions for 1-D
rotation and both types of anisotropy profiles. We should point out once more that AK=1.0K,
(we accept Skomski and Coey’s assumption for zero anisotropy in the soft inclusion) and
AJA=10 (we accept Kronmiiller's assumption for constant exchange throughout the
material). For diameters of inclusions higher than 36z = 9nm all three solutions predict a
decrease in the nucleation field down to approximately 10-15% of the ideal one. The
discrepancy is big for smaller diameters with the Skomski and Coey model yielding the highest
nucleation fields and Kronmiiller’s quasiharmonic case the lowest ones.

Given that the diameters of inhomogeneities are more likely to be quite larger than the wall-
width parameter and the experimental evidence that the coercivity can be up to 10 times less
than the ideal nucleation field, we can assume that the solution for 1-D rotation is more likely.

We have mentioned time and again that in the above figures we have set AK=1.0 K, in order
to make the comparison between the two models more meaningful. However, Kronmiuller's
model allows for a nonzero anisotropy constant (K. = K;-AK) in the soft (or inhomogeneous)
region which is a more realistic approach. So, in figs 5-6, AK is varied (AK/K; =1.0, 0.9, 0.8,
0.7) in Kronmiiller’s solutions and the results are compared against the Skomski and Coey
model. As AK decreases, the nucleation fields, predicted by Kronmiiller's model, increase. The
best agreement with the Skomski and Coey model is in the case of AK/K; =1.0, as expected.
We also notice that the “plateau” region in Kronmiiller's solution (fig.5) has now increased,
this 1s because the “wall-width” parameter in Kronmiller's model is now given by &g =
2VA/AK and as AK decreases the wall width increases. In the case of a quasiharmonic
anisotropy profile (fig. 6) the nucleation field predicted by Kronmiiller's model deteriorates
fast but follows the Skomski and Coey model for diameters greater than 385 .

Kou et al. [9] prepared and studied a sample of Zn-bonded anisotropic SmFeN, the magnetic
properties of which are shown in the third column of Table 1. The magnetization reversal in
the sample is assumed to follow the nucleation mechanism which is modeled according to
Kronmiiller’s model for 1-D rotation. The assumption of perfect grain alignment is relaxed in
the modeling of this sample. Martinek and Kronmiiller [10] have obtained a solution for the
nucleation field when the grains are not perfectly aligned. In this case, nucleation starts in
misaligned grains and on the grain surface where the demagnetizing field N.#M, is bigger and
the second anisotropy constant, K;, must be taken into account. For imperfectly oriented
materials, parameter o in Kronmiller’s model can be viewed as the product o, where o,
corresponds to the effect of the crystallographic defects on the grain surfaces and o,
corresponds to the effect of misaligned grains. Then, o, is given by the model described in
equation 10:

ot = 1 - (AK/K)[8s/2mro ][ —1+(1+4AKr/A) Y2

We used this expression to compare Kronmiiller's model with the Skomski and Coey
approach using the material parameters reported by Kou ef a/.[9]. Taking into account the
effect of K, the wall width is now &g = :rerf(Kl + K3) = 4.3 nm. AK is set equal to 0.9K,
(Fig.7) and 1.0K, (Fig. 8). In Figs. 7-8, we have plotted the Skomski and Coey solution and
Kronmiller’s solution for 1-D rotation for both anisotropy profiles. As expected from the



previous results, the agreement is better for diameters larger than 38g. Notice that the model
suggested in Ref. [9] for this sample is that of 1-D rotation with a quasiharmonic anisotropy
profile and AK = 0.9K, (Fig.7).

We have been unable to reproduce some of the results concerning the identification of the
model for the particular sample of Ref. [9]. The parameters o, and N are determined from
temperature measurements of the coercive field, and reported as: o, =0.91 and Ng=2.01.

Using equation (10), the nucleus diameter is found: 2r;=1.58nm. According to the authors,
this value lies within one unit cell (lattice constants: a=0.87nm, ¢=1.27nm) which 1s interpreted
as an indication that the grain surfaces are free from crystallographic effects (an assumption
which needs to be verified in the laboratory). This diameter is three times smaller than the wall
width &g. For diameters of that size, the Skomski and Coey model predicts that the coercive
field is equal to the ideal nucleation field.

Kou and coworkers use the Martinek and Kronmiiller nucleation model for imperfectly aligned
grains in order to determine the effect of @y on the nucleation field, taking into account the
second anisotropy constant, K, as well:

Ha = [1/2V2ueM,][K; + (K2/4)(W - Ki/Ka + 3)] x{[W(K,/Ka + 1) - (K/K2) - 2K1/K; + 3]3(13)
where W=[(1 + K,/K2)* + 8]'*.

Kou ef al. report that fitting this model to temperature measurements of coercivity the
following parameters are obtained: o, = 0.71 and Neg= 1.50.

These values are obtained through plotting H./M, vs. H,/M, for temperatures from 5 to 494 K,
which is a linear relationship. However, the slope of the line is then o = o0t and not o, The
other pomnt which is unclear in this analysis is the value obtained for the nucleus diameter.
Using equation 10, for 1D rotation, a diameter of 2r;=1.58nm is reported. Substituting this
value into equation 10, we obtain o, = 0.88, which is quite different than the value obtained
from the plot (ct,. = 0.71). Finally, if we actually use o, = 0.71 in equation (10) we get a
nucleus diameter of 2ry=4.18 nm which compares with the wall width.

5. ANEW MODEL: THE PREISACH APPROACH

So far the two approaches in the modeling of magnetization reversal mechanisms have been
the finite element method and the analytical solution of the micromagnetic equation. An
approach that hasn’t been tried so far in inhomogeneous materials is the Preisach modeling.
Preisach models are phenomenological hysteresis models inherently one-dimensional.
However, vector Preisach models have already been applied successfully [12] to homogeneous
magnetic materials. The Preisach models use distributions of anisotropies and interparticle
interaction fields in order to predict the levels of magnetization for any sequence of applied
fields. They can therefore reproduce the major loop parameters with the appropriate tuning in
of the parameters of the distributions. These parameters depend on the microstructure but it is
not clear how they can be mapped onto microstructural parameters: for example, the
distribution of interactions doesn’t distinguish between exchange and magnetostatic
interactions. One possible approach to tackling this problem is the distinction between the
reversible and irreversible component of the magnetization [13] after having determined how
these are affected by the presence of inhomogeneities.
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Figure I The reduced nucleation field vs. the diameter of the inhomogeneity. The Skomski and Coey model
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Figure 7: The reduced nucleation field vs. the diameter of the inhomogeneity. Comparison between the
Skomski and Coey mode! and Eronmiiller model for 1-D rotation (harmonic and quasiharmonic anisotropy
profile): AK=0.9 0K, ; Zn — bonded anisotrapic SmFeN parameters are used.
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Figure 8: The reduced nucleation field vs. the diameter of the inhomogeneity. Comparison between the
Skomski and Coey model and Eronmiiller model for 1-0 rotation (harmonic and quasiharmonic anisatropy
profile); AK=1.00K; Zn - bonded anisotropic SmFeN paramefers are used,
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