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Abstract — We classify the edges of a graph as either free. semi-free or actual and we define the class of
A-free graphs as the class containing all the undirected graphs with no actual edges. We prove that the A-free
graphs satisfy several important structural and algorithmic properties and are characterized by specific forbidden
induced subgraphs. Based on these results, we show the relationship between A-free graphs and the classes of
perfect graphs known as domination perfect, chordal (or triangulated), cographs, comparability, cocomparability,
interval, permutation, ptolemaic, distance-hereditary, (1, ¢, s)-perfect, block, split and threshold. Moreover, we

show structural and algorithmic properties of the normal product of two A-free graphs.

1. Introduction

An undirected graph G = (V, E) is said to be perfecr if it satisfies the following two properties: the
¥-Perfect property: x(Ga)=w(G,) (for all A ¢ V), and the a-Perfect property: a(G,) = #(Gya)
(for all A ¢ V), where x(Ga), (Gy), a{Gy) and #(Gy) are the chromatic, clique, stability and
clique-cover number of G, respectively, and G, is an induced subgraph of G.

Our objective is to study structural and recognition properties for some important classes of
perfect graphs known as domination perfect, chordal (or triangulated), cographs, comparability,
cocomparability, interval, permutation, ptolemaic, distance-hereditary, (1, ¢, s)-perfect, block, split
and threshold graphs. Many researchers have extensively studied these classes of perfect graphs
and proposed algorithms for the recognition problem, as well as for many other problems such as
colouring, minimal code-colouring, maximal matching, clique finding, constructing perfect
elimination schemes, assigning transitive orientations, clustering, assigning transitive orientations,
minimum weight domination, minimal path cover, isomorphism, etc (see, e.g., [9, 19]).

In this paper, we introduce an edge classification and show that it can be used as a
constructive tool in proving recognition properties for the most important classes of perfect
graphs. Based on this classification, we define the class of A-free graphs as the class which
contains all the undirected graphs having no actual edges. We show structural properties and
characterizations of the members of this class, which imply that A-free graphs form a subclass of
chordal, cographs, ptolemaic, distance-hereditary, comparability, cocomparability, interval,



permutation and (z, ¢, s)-perfect graphs. Moreover, we show recognition properties for block
graphs, split graphs and threshold graphs, still using the proposed edge classification [12, 17].

Specifically, given an undirected graph, we partition the edges of the graph into three classes,
called free, semi-free and actual edges, according to the relationship of the closed
neighbourhoods of the endpoints (or end-vertices) of their edges. Moreover, we show that the
vertex set V of an A-free graph, i.e., a graph which contains only free and semi-free edges, can be
partitioned into m = 2 nonempty, disjoint vertex sets Vy, V1, ..., Vi, ..., Vi satisfying important
algorithmic and structural properties. Furthermore, we show a close relationship between the
structure of an A-free graph and the structure of the normal product of two A-free graphs.
Consequently, we prove that any A-free graph possesses, among others, the following important
properties: Chordality or property T; a graph satisfying T is said to be chordal or triangulated;
Transitive orientation or property C; a graph satisfying C is said to be comparability: Transitive
co-orientation or property CC: a graph satisfying C© is said to be cocomparability, i.e., its
complement is a comparability graph; Clique-kernel intersection property or CK property [9, 4].
Moreover, based on the definition of the actual edges of a graph, we show that the A-free graphs
are exactly the graphs not having a P4 or a Cy as an induced subgraph.

It is well-known that several classes of perfect graphs have already been characterized in terms
of these properties, as well as in terms of forbidden induced subgraphs. For example, interval
graphs satisfy properties T and C€ [10], permutation graphs satisfy properties C and C° [18],
cographs satisfy the CK property [4], cographs have no induced subgraphs isomorphic to Py [4],
threshold graphs have no induced subgraph isomorphic to 2K3, Py, or Cy4 [5], r-perfect graphs
have no induced subgraph isomorphic to P4 or C4 [2, 9], etc. Based on these properties and
characterizations, we show that A-free graphs belong to the classes of domination perfect, chordal,
cographs, comparability, cocomparability, interval, permutation, ptolemaic and distance-
hereditary graphs. Moreover, we identify the precise structure possessed by certain subsets of
vertices and/or edges of a graph in the case where it is a block, split or threshold graph.

We should point out that we can easily formulate a constant-time parallel algorithm for
deciding whether or not an undirected graph contains actual edges, which can operate by
examining specific relations of the closed neighbourhoods of the endpoints of each edge of the
graph. This result, in turn, implies than all the above mentioned perfect graphs can be recognized
in constant-time in the case where they contain no actual edges. Obviously, such an algorithm run
on a Concurrent-Read, Concurrent-Write (CRCW) PRAM model of computation and use O(mn)
processors.

Throughout the paper we assume that all graphs are finite and that unless stated otherwise the
term subgraph always refers to the notion of induced subgraph. Moreover, m denotes the number
of edges and n denotes the number of vertices in a graph.

2. The Structure of A-free Graphs

Following the notation and terminology in [11, p.167], the neighbourhood of a vertex u is the
set N(u) consisting of all the vertices v which are adjacent with u. The closed neighbourhood is
N[u] = {u} v N(u). We call a graph trivial if it has only one vertex, and incomplete if it has at least
two non-adjacent vertices. The subgraph of a graph G induced by a subset of vertices § will be
denoted by G(S) or Gg, but sometimes also by § when there is no ambiguity.



Given a graph G = (V, E), we define three classes of edges in G, denoted by AE, FE and SE,
according to relationship of the neighbourhood and closed neighbourhood of the endpoints of
its edges [12, 17]. Let x = (&, v) be an edge of G. Then,

(i, v) € FE if  Nu] = N[v]
(e, v) e SE if  Nu] c N[v]
(e, vie AE if Nu]-N[v]=@and N[v]-Nu]lz&

In words, edge (u, v) is a member of FE if its vertices u and v have the same closed
neighbourhoods; it is a member of SE if the closed neighbourhood of one vertex u is a proper
subset of the closed neighbourhood of the other vertex v; it is a member of AE if the closed
neighbourhoods of vertices « and v, i.e., N[u] and N[v], are not comparable with respect to
inclusion. An edge is said to be a free, semi-free and actual edge if it is a member of class FE, SE
and AE, respectively. Obviously, E = FE + SE + AE. We illustrate with three graphs G, H and |
shown in Figure 1. The edges in classes FE, SE and AE are denoted by f, s and a, respectively.

Figure 1. Three undirected graphs. Free, semi-free and actual edges are

denoted by £, 5 and a, respectively.

Having classified the edges of a graph as either free, semi-free and actual, let us now define the
class of A-free graphs as follows:

Definition 1. A undirected graph G = (V, E) is called A-free if every edge of G is either free or
semi-free edge.

The graph G in Figure 1 is an A-free graph, while the graphs H and I in the same figure are not
A-free graphs. A typical structure of an A-free graph is shown in Figure 2. The following results
provide algorithmic and structural properties for the class of A-free graphs.

Theorem 1 (Nikolopoulos [1995]). The vertex set V of an A-free graph G = (V, E) can be
partitioned into k£ = 2 nonempty, disjoint vertex sets Vi, Vi, .., V¢, ..., Vi, L.,

VaVi+Vo+..+Ve+.. +Vy

satisfying the following properties:



(P1) There exists a vertex set V. suchthat N[V ] =V, 12¢c =k

(P2)  Every vertex set V;induces a complete subgraph G(V;), i.e., Viisaclique, 1 S i<k

(P3)  Every vertex set Vj u V; induces either a complete graph G(V; v Vj) ora
disconnected graph having two complete subgraphs G(V;) and G(V;), 1 <i, j<k.

(P4) Edges with both endpoints in V; are free edges, | Si<k.

(P5)  Edges with one endpoint in V; and the other endpoint in V;j are semi-free edges,
1<ij<kandi#j

Figure 2. The typical structure of an A-free graph. A line between cells Vj and V; indicates that each
vertex in Vj is adjacent to each vertex of Vj. All edges in V; are free edges;

All edges between cells are semi-free edges.

If Vi and V; are disjoint vertex sets of an A-free graph G = (V, E), we say that Vi and V; are
adjacent and denote V; ~ V; if there exists a semi-free edge (x, y) such that x e Vj, y € V; and
Viw Vj is not a clique. If (x, ¥) is a semi-free edge for all x € V; and y € V; then we say that V;
and V; are cligue-adjacent and denote V; = V;. Obviously, if V; and V; are clique-adjacent then
G(V; v Vj) is a complete graph. Throughout the paper x ~ y means that (x, y) is an edge of G.
Moreover, i # j# k means that i #j, i# kand j# k.

Let us now examine the effect of property P3 of Theorem 1 on the structure of an A-free graph.
This property ensures that all the edges with both endpoints in a vertex set V; are free edges,
1 £i<k. A consequence of this property is that the vertex set V;w V, is not always a maximal
clique. We can easily see that V; w V. is not a maximal clique if there exists a vertex set Vj such
that Vi ~ Vj, 1 s j < kand j # c. Actually, the property P3 of Theorem 1 says that V; = V; for
every Vi, Visuchthat V; -V, 1 €4, j<k



Theorem 1 shows how to construct the vertex sets of the partition V=V, + ..+ Vo + ... + V| of
an A-free graph G = (V, E). We consider now the case where the vertex set V of an A-free graph
1s partitioned into & 2 2 nonempty disjoint vertex sets V, ..., V¢, ..., Vi, under the additional
restriction that every vertex set Vi w V. is a maximal clique. In this case, the following results are
obtained.

Theorem 2. Let G = (V, E) be an A-free graphand let V=V, + Vo + ..+ Vo + ... + Viybe a
partition satisfying the following properties:

(i) There exists a vertex set Vg such that N[V ] =V, 1sc<k.

(i) Every vertex set Vjis aclique, 1 £i<k.
(iif) Ewvery vertex set V; w V; is a maximal clique, 1 €i<kandi#c.

The following properties are hold:

(P1) Edges with both endpoints in V. are free edges, 1 < ¢ <k, while edges with both
endpoints in V; are free or semi-free edges, 1 Si<kandi#c.

(P2) Edges with one endpoint in V; and the other endpoint in V; are semi-free edges,
lsijskandi#j.

(P3) Every vertex set V;w V; induces either an incomplete graph G(V; v V;) or a
disconnected graph having two complete subgraphs G(V;) and G(V;), 1 €4, j<k
and (= j#c.

Proof. (P1) Theorem 1 implies that edges with both endpoints in V; are free edges, 1 =i < k; see
property P4. Since any partition of the set V-V does not affect the structure of the vertex set V,
it follows that all the edges with both endpoints in V. are free edges. Let V; be a vertex set,
other than V¢, | =i < k. We distinguish two cases. Case I: There exists no vertex set V; such that
Vi~ Vj j#c Since Vj= V, it implies that all the edges with both endpeints in V; are free
edges. Case II: There exists a vertex set V; such that V; ~ Vj, i# jand j = c. Then, there are
vertices xe Viand v e V; such that (x, y) € E. Since V; = V, there exists vertex z € V; such that
(z, x) € E and (z, ¥) ¢ E. Thus, (z. x) is a semi-free edge. Obviously, every edge (z z') having both
endpoints in Vj is a free edge in the case where N({z, Z'}) n V;=@.

(P2) Let (x, y) be an edge such that x € V; and y € V;. Suppose that (x, y) is a free edge.
Then, (z, ¥) € E for every vertex z € Vj. Thus, V; u V_ is not a maximal cligue which is absurd.
(P3) It follows directly from the property P2 and the fact that V; ~ V; for every i # j, where i # ¢
and j # c. O

Corollary 1. For every pair of vertex sets Vj and Vj there exist vertices x € V; and y € Vj such
that (x, v)e E, where 1 i, j<kandi=j#c.

The properties provided by Theorem 1 and Theorem 2 say that the structure of an A-free graph
G = (V, E) is entirely determined by the structures of the vertex sets of the partition V = V, +
Va4 ...+ Ve + ...+ V. More precisely, we have shown that the properties of Theorem 1 ensure
that all the edges with both endpoints in a vertex set V; are free edges, while the properties of
Theorem 2 ensure that every vertex set Vi w V. is a maximal clique, 1 <i £ k. Thus, we obtain two
deferent structures of an A-free graph. We shall refer to the structure which meets the properties



of Theorem | as A-free-I and the structure which meets the properties of Theorem 2 as A-free-Il.
The structure A-free-II of an A-free graph is shown in Figure 3.

Figure 3. The structure of an A-free graph which is derived from Theorem 2. A line between cells Vj and V¢
indicates that V; = V, while a dashed line between cells Vj and V; indicates that V; ~ V;. All edges in V. are
free edges. while all edges in V; are free or semi-free edges; All edges between cells are semi-free edges.

Let G =(V, E) be an A-free graphand let V=V, + Vo + ... + Vo + ... + Vi be a partition of the
vertex set V of G such that V; U V. is a maximal clique. i.e., the partition which satisfy the
properties of the structure A-free-II, 1 £ < k. Then, it is obvious that the following partition

V=A+A+. +Ap +Ac + ..+ Ay

where A;=Viu V., i=1,2, ..., c-1, c+l, ..., k, is a cligue cover of size k-1. Based on Theorem 2,
we can easily prove that k-1 is the size of a smallest possible clique cover of G. Thus, &-1 equals
the clique-cover number of G, ie., #(G) = k-1. Moreover, it is well-known that a stable
(independent) set is a subset X of vertices no two of which are adjacent. We can find a vertex x; in
Aj such that X = {xy, x3, ..., Xc_1. Xc+1, -, Xk} is a stable set. Since A; is a clique, the stable set X is
of maximum cardinality. Thus, k-1 equals the stability number of G, i.e., @(G) = k-1. Therefore,
we have the following result.

Lemma 1. Let V=V, + Vy + ... + V. + ... + Vi be a partition of the vertex set V of an A-free
graph G = (V, E) such that it determines the structure A-free-II. Then,

(i) k-1 equals the clique-cover number of G, i.e., #(G) = k-1.

(i1} k-1 equals the stability number of G, i.e., a(G) = k-1.

Based on the properties of Theorem 1 and Theorem 2, as well as on the fact that every induced
subgraph of an A-free graph contains no actual edges, we obtain the following result.



Lemma 2. Every induced subgraph H of an A-free graph G is also an A-free graph having a(H)
= %(H).

We should point out that, the structure A-free-II of an A-free graph G also provides algorithmic
properties of major importance since they can be used, among others, for the computation of all
the maximal cliques or maximal independent sets of G.

3. Normal Product of A-free Graphs

Let Gy = (X, E;) and G, = (Y, E;) be two undirected graphs. Their normal product is the graph
G=G;"G:=(V,E), where V=X xYand (x,y) - (' y)ifand only if x~x"and y=y, orx=x'
andy~y,orx~x"and y~y"

From now on and until the end of this section, we reserve the letter G for the normal product
of two A-free graphs G; and G;, and the letters X and Y for the vertex sets of G; and G,;,
respectively. The following theorem provides algorithmic and structural properties for the normal

product of two A-free graphs.

Theorem 3. Let G; = (X, E;) and G; = (Y, E;) be two A-free graphs and let G = (V, E) be their
normal product. Let
N=X)+ X+ +X.+ ...+ X,

and Y=Y +Y:+..+Yo+...+ ¥y

be the vertex partitions of X and Y, respectively, which determine the structures A-free-II. The
vertex set V of the normal product G = (V, E) can be partitioned into kk'= 2 nonempty, disjoint
vertex sets Vi, Viz, oo, Vgt oo Vi L2,

V= \||'.ri1 + "n'ru + ...+ 1"IF1|_| + Vi + ..+ "r‘rc,;' + o+ Vi

satisfying the following properties:

(P1) There exists a vertex set Voo such that N[Veel=V, 1l Scskand 1 =¢'=k"

(P2) Every vertex set Vjjisaclique, 1 siskand 1 <5<k

(P3) Every vertex set V;ju Vo isaclique, 1 i c<kand 1 <j, ¢"Sk"

(P4)  Every vertex set Vij u Vo u Vi U Vj is a maximal clique, 1 €i, c<kand 1€, c'S k"

{(P5) Edges with both endpoints in V. are free edges, | Scskand 1 €c's k"

(P6) Edges with one endpoint in V. and the other endpoint in Vj; are semi-free edges,
l=ic€kand 1 5, 'Sk

(P7) Edges with one endpoint in Vi, and the other endpoint in V; are actual edges,
lsicskl1sje'sk\icandjzc'.

(P8)  Every vertex set Vjj u Vpq induces either an incomplete graph G(Vjjw Vpg) or a
disconnected graph having two complete subgraphs G(Vj;) and G(Vpg), where 1 =i, p<k,
l<jgsk’andeither (i#c,p#candj=g=c)or(j#c,g#c'andi=p=c)or
(itc,p#e j#c' andg#c').
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Figure 4. The adjacency relationship between XY and the other vertex sets of a partition of the normal

product of two A-free graphs. A line between cells indicates that each vertex in one cell is adjacent to each
vertex of the other set. The vertex set X;Yj is the Cartesian product X; x Y.

Before giving the proof of Theorem 3, we need to present some technical lemmas about the
structure of the disjoint vertex sets V1, Vi, ..., Voo, oo Ve of a partition of the normal product
of two A-free graphs.

Let G; = (X, E;) and G; = (Y, E;) be two A-free graphs, and let G = (V, E) be their normal
product. By definition, the vertex set V contains | X || Y | vertices (x, y) such that xe X and v e Y.
We define the set Vij to be the subset of the vertex set V which contains all the vertices (x, v} such
that xe Xjandye Y;, 1 <i<kand 1 <j<k' Hereafter, the vertices of G will be denoted by xy
and the vertex set Vj; by X;Yj.

Lemma 3. Let G; = (X, E;) and G; = (Y, E;) be A-free graphs and let G = (V, E) be their normal
product. Let Vi + V2 + ... + Voo + ... + Vi be a partition of the vertex set V into nonempty
disjoint subsets such that xy e Vj;ifandonly if xe Xjandye Yj, 1siskand 1 5=k’ Then
the following statements hold.

(i) Vi is a clique.

(i) Vi w Ve is a clique.

(i) Vi v Vi is a clique.

(iv)  Vjju Veerw Vie u Vg is a maximal clique.

Proof. (1) By definition, the set Vj; contains all the vertices xy of G such that xe Xjand ye Y,



l=i<kand1<j<k' Since X and Y; are cliques, any two vertices xy and x'y" in V;; are adjacent.
Thus, Vj; is a clique. In this case, it is easy to see that if xy ~ x'y"then either x=x"and y ~ y', or x -
Xandy=y'orx~x"and y -y

(ii) Let xy and x'y" be vertices in V;; and V., respectively. By definition, xe Xj.x'e X;and y e
Yj. y'e Y. Since X; = X and Yj = Y, we have that x ~x"and y ~ y". Thus, Vj; U Vi is a clique.
(111} The proof is similar to (ii).

(iv) It is easy to prove that the vertex sets Vjj w Vio and Vjj . V are cliques. Since Vo w Vjj is
a clique for every i, j, where 1 Si<kand | <j<k', the vertex set Vijec = Vijw Ve v Vi w Vg
is a clique. Suppose that the set Vjje. is not a maximal clique; then there exist a vertex set Vg, p #
g, and a vertex xy € Vpq such that {xy} v Vijjecr is a clique, where p# i cand g#j# ¢’ Then
{xy} w Vjjis a clique, and in consequence the vertex x e X, is adjacent with every vertex x' X; a
contradiction. (Notice that X, u X is not a clique for every p, i such that p 2 i # ¢; see property
P3 of Theorem 2.) |

The properties established so far suffice to prove some of the statements of Theorem 3. For the
proof of Theorem 3, we need some additional results concerning the adjacency relationship
between the vertex sets V¢, Vi and Vj; of the partition of the vertex set of the normal product of
two A-free graphs G and G;, where i # ¢ and j # ¢'. We therefor classify the vertex sets Vy; Vs,

o Ve ooy Vi into four classes, according to the properties provided by Lemma 3. The first
class contains the vertex set V.. and the other three, called A, B and C, contain the following
vertex sets:

A={Vie:1s5iski=c),
B={V;:1<j<k!, j#c'}, and
C={Vjj:1sisk1<jskli2candjc'}).

It 15 not difficult to show that the cardinalities of the sets A, B and C are as follows:

|Al=IBl=k+k'-2and
ICl=(k-1)(k'-1),

where k and k' are the sizes of the partitions of the vertex sets of G; and G, respectively.

Figure 5 depicts the classes of A, B and C, as well as the adjacency relationship between the vertex
sets of the partition of the set V of the graph G = (V, E).

Lemma 4. Let Gy = (X, E;) and G; = (Y, Ez) be A-free graphs and let G = (V, E) be their normal
product. Let Vi; + Via + ... + Vo' + ... + Vi be the partition of the vertex set V of G. Then the
following properties hold.
(i) For any pair of vertex sets ae A and b € B, aw b is a clique.
(ii) Edges with one endpoint in A and the other endpoint in B are actual edges.
(iii) For every pair of vertex sets a, a’e Z, where Z is either the set A, B or C, the
set a v a’ induces either an incomplete graph G(a w a') or a disconnected graph
having two complete subgraphs Gla) and Gla").

Proof. Statement (i) follows directly from the statement (iii) of Lemma 3, while (iii) is implied by
property P3 of Theorem 2; a = X;Y, b = X Y;, and Vi v Vi is a clique. (ii) Let a, a"e A and



b, b'e B, and let (x5v4, xpvp) be an edge with one endpoint in set a and the other endpoint in set
b. Statement (1ii) implies that there exist vertices xyvy € a’ and xpvy € b such that (xyva, xava) €
E and (xp¥p. xpyp’) € E. Since a v b and a' v b' are cliques, it follows that (xgva, xp vy} € E and
(xp¥h. xava) € E. Thus, (x5ya. xp¥p) 15 an actual edge. O

o <

Figure 5. The relationship between the disjoint veriex sets of a partition of the
normal product of two A-free graphs.

The following are immediate results of the preceding Lemma 3 and Lemma 4.

Corollary 2. Let G; be an incomplete A-free graph and let G; be a complete graph. Then their
normal product G = G * G, is an A-free graph.

Corollary 3. For every pair of vertex sets a, a’e Z, where Z is either the set A, or B or C, there
exist vertices xyv € ¢ and x'y' € a’ such that (xy, x'v) ¢ E.

Corollary 4. The normal product of two incomplete A-free graphs is not an A-free graph.

Based on the results presented in Lemmas 3 and 4, we can easily prove the main theorem of this
section.

Proof of Theorem 3. Properties (P1) through (P4) follow from Lemma 3, while (P7) and (P8) are
implied from Lemma 4. Property (P3) tells us that Vjj U V¢ is a clique for every 1 i<k and
1 =j< k" Thus, it directly implies (P3) and (PG). a



Note. Although we have assumed that both the A-free graphs G, and G; are incomplete graphs,
Theorem 3 is also true in the case where one of the A-free graphs is either trivial or complete.
Obviously, we have nothing to prove in the case where both A-free graphs are either trivial or
complete.

4. Relationship between A-free and Perfect Graphs

In this section we prove that the A-free graphs satisfy important properties which are later used as
a base for showing the relationship between the class of A-free graphs and many other classes of
perfect graphs. Moreover, based on the structure A-free-II we show important properties of the
normal product of two A-free graphs.

A graph is a diagonal graph or D-graph if for every path in G with edges (v, v,), (v, v3),
(v3, vy), the graph also contains the edges (v, v3) or (v4, v4). It is important to point out that Wolk
[23] showed that the D-graphs are precisely the comparability graphs of rooted trees. This result
was later quoted incorrectly as "A graph without induced subgraph isomorphic to Pg, 1e., a
cograph, is the comparability graph of rooted trees". The graph C4 is a counter-example to this
statement. By definition, it is easy to see that D-graphs contain no actual edges. Therefore, we are
in a position to state our first result.

Theorem 4. Diagonal graphs (or D-graphs) are precisely the undirected graphs with no actual
edges, i.e., the A-free graphs.

Based on the definition of the actual edges of a graph, we can easily show that the A-free graphs
are exactly the graphs not having a P4 ora C4 as an induced subgraph. Thus, the following
theorem holds.

Theorem 5. A graph G is an A-free graph if and only if it contains no induced subgraph
isomorphic to P4 or Cy.

An immediate consequence of Theorem 5 is that A-free graphs are exactly the chordal cographs
[6, 9, 15]. Moreover, cographs form a subclass of the class of distance-hereditary graphs [13, 14]
{each connected induced subgraph preserves distances), and therefore, they form a subclass of
the class of parity graphs [1, 4, 16]. An important class of perfect graphs, known as ptolemaic
graphs, forms a subclass of the distance-hereditary graphs. Actually, a graph G is a ptolemaic
graph if and only if it is chordal and distance-hereditary graph. Thus, we can present the
following theorem and its corollary.

Theorem 6. Let G be an A-free graph. Then G is a ptolemaic graph.

Corollary 5. A-free graphs form a subclass of distance-hereditary and parity graphs.

We have shown that an A-free graph is a cograph. Since cographs are a subclass of permutation
graphs [9, 18], cographs are comparability and cocomparability graphs [9, 10]. Moreover, it is
well-known that permutation graphs are exactly those graphs which are comparability graphs and
cocomparability graphs. It is also known that a comparability graph is a superperfect graph [9]



and an interval graph is chordal and cocomparability [8, 9, 10]. Therefore, the following theorem
and its corollary hold.

Theorem 7. Let G = (V, E) be an A-free graph. Then G is cograph, comparability graph and
cocomparability graph.

Corollary 6. An A-free graph is a permutation graph, interval graph and superperfect graph.

A sun of order p, or p-sun (p 2 3) is a chordal graph on vertex set {xy, x2, ..., Xp, ¥1, ¥2, ---» ¥p},
where {y}, y2. ..., ¥p} is an independent set, (xy, X3, ..., Xp) is a cycle, and each vertex y; has exactly
two neighbours, x;.; and x;. By definition, every p-sun (p 2 3) contains an actual edge. So, we
obtain the following results.

Theorem 8. Let G be an A-free graph. Then G contains no induced subgraph isomorphic to a
p-sun (p 2 3).

For a graph G the k-th power G of G is the graph with the same vertex set as G where two
vertices are adjacent if and only if their distance is at most k in G. The cligue graph K(G) of G is
the graph whose vertices are the maximal cliques K!, K2, ..., KP of G, in which (K!, KJ) is an edge
if and only if N(K') n KJ # @&, where i # j. The following theorem clarify the relationship between
G? and K(G) of an A-free graph G.

Theorem 9. Let G be an A-free graph. Then both G2 and K(G) are complete graphs.

A graph G is called strongly chordal if G is chordal and G contains no sun, G is called balanced
chordal if G is chordal and G contains no sun of odd order, and G is called compact if G
contains no sun of order 3. We have showed that an A-free graph is a chordal graph (Theorem 6)

and it contains no induced subgraph isomorphic to a p-sun, p 2 3 (Theorem 8). These prove the
following result.

Theorem 10. Let G be an A-free graph. Then G is a strongly chordal graph, a balanced chordal
graph and a compact graph.

We know the following three statements are equivalent for a chordal graph G: (i) G* is chordal;
(ii) K(G) is chordal; (iii) every sun of G of order greater than 3 is suspended [22]. If G is an
A-free graph, then G? and K(G) are complete graphs and, therefore, chordal graphs. Thus, we
have the following result.

Theorem 11. Let G be an A-free graph. Then both G2 and K(G) are chordal graphs and every
sun of G of order greater than 3 is suspended.

Let ¥(G) and ¢(G) be the domination number and independent domination number of a graph G,
respectively. A graph G is called a domination perfect graph if y(H)=«(H), for every induced
subgraph H of G. The domination number ¥(G) is the minimum cardinality taken over all
dominating sets of G, and the independent domination number ((G) is the minimum cardinality



taken over all maximal independent sets of vertices of G. Based on the properties (P1) and (P2)
of Theorem 1, we can prove that y(H) = «(H) = 1 for every induced subgraph H of an A-free
graph G. Thus, we obtain the following theorem.

Theorem 12. Let G be an A-free graph. Then G is a domination perfect graph.

Let G = (V, E) be a graph. We define C(G) to be the set of all maximal cliques of G and similarly,
we define S(G) to be the set of all independent sets of G. Let F = (Vj);[ be a family of subsets of
the set V. Following the definition in [2], we call a transversal of F a subset T of V such that T
intersects the sets V; for all i  I; if all these intersections consist of exactly one vertex, we call T a
perfect transversal. A perfect transversal of C(G) (8(G), respectively) will be called a stable
(complete, respectively) transversal of G, since a transversal of C(G) (8(G), respectively) is perfect
if and only if it is a maximal stable set (maximal clique, respectively) of G.

A graph is called c-perfect (s-perfect, respectively) if all its induced subgraphs have a stable
(complete, respectively) transversal. Based on the structure A-free-II, we can easily show that
every A-free graph G = (V, E) is both c-perfect and s-perfect graph. Let V=V, + .+ Vo + .. +
Vi be a partition of its vertex set V which determines the structure A-free-II. Corollary 1 implies
that there exists a stable set 8 = {vy, ..., Ve, Ve4ls -0 Vi } OF £-1 cardinality such that v; € V;, where
l1<iskandi#k By Lemma 1, § is a maximal stable set. Moreover, the vertex set C = V;u Vis
a maximal clique, 1 =i <k and i # k (Note that k-1 equals the number of maximal cliques in G.)
It can be easily proved that S is a stable transversal and C is a complete transversal of G.
Moreover, a graph is called r-perfect if for every induced subgraph H of G, a(H) equals the
number of maximal cliques contained in H. Lemma 2 tell us that every incudes subgraph H of an
A-free graph G is also an A-free graph having a(H) = #(H). Thus, we obtain the following results.

Theorem 13. 1-perfect graphs are precisely the undirected graphs with no actual edges, that is,
the A-free graphs.

Corollary 7. A graph is r-perfect if and only if it contains no induced subgraph isomorphic to
P4 or Cy4 (see also [9]).

Corollary 8. Every A-free graph is c-perfect and s-perfect graph.

We should point out that it is well-known that r-perfectness implies c-perfectness and s-perfectness
but generally, the converse is false. We also point out that the properties of Theorem 2 show us
the algorithmic way to compute stable and complete transversals of an A-free graph.

Based on the properties and the structure of the normal product of two A-free graphs, we can
prove the main result of [2] with less effort. Specifically, we can prove that the normal product of
two r-perfect graphs is c-perfect. Let G = (V, E) be the normal product of two A-free graphs
and W = V. We shall sketch the construction of a stable transversal for the graph G(W})). Here, for
simplicity, we consider the case where both A-free graphs have no pair of vertex sets V;, V;j such
that Vi ~ Vj, i.e.,, G(V; L V)) is an incomplete graph; see property P3 of Theorem 2. The results
can be easily extended to prove the general case. Let V = V; + ... + Voo + ... + Vi be the
partition of the vertex set V of G which satisfy the properties of Theorem 3. We construct a stable
set 8 ¢ V by selecting one vertex of each of the kk'-2 vertex sets of the class C. Recall that the



class C contains all the vertex sets Vj; of the partition V such that i # ¢ and j # ¢". We can easily
show that S is a maximal stable set. By Theorem 3, all maximal cliques of G have the form Vj; u
Voo W View Vi, where 1 <4, c<k, 1<, c'<k’ Thus, § is a stable transversal. We can show that
if W=V - {xy} for every xy € a, where a = V¢, or a is a member of either the class A or B, then
S is a maximal stable set of G(W). In the case where W =V - Vj;, where Vj; is a member of the
class C, we select a vertex xy from either the set a e A ora € B such that N(a@) n C 2 &, and we
add it in 5. The previous discussion and Theorem 10 imply the following result.

Theorem 14. The normal product of two r-perfect graphs is a c-perfect graph.

5. Other Properties of A-free Graphs

We have shown that many classes of perfect graphs properly contain the class of A-free graphs.
Moreover, we have shown that important vertex sets of the normal product of two A-free graphs
can be easily constructed. Next, we identify the precise structure possessed by certain subsets of
the vertices and/or edges of an A-free graph in the case where it is a block, split or threshold
graph.

5.1. Block Graphs

A graph G is called block graph if it is connected and every block (i.e., maximal 2-connected
subgraph) is complete [3]. Howorka [14] offered the following purely metric characterization: a
connected graph is a block graph if and only if its distance function d satisfies the four-point
condition, i.e., for any four vertices u, v, x, v, the larger two of the distance sum

diw, v) +dix, ¥}, du, x}+d(v, ¥), dlu, y)+d(v, x)
are egual.
Unfortunately, all the A-free graphs do not satisfy the above four-point condition. For
example, the A-free graph K; + 2K, give distance sums 2, 2 and 3. The next theorem provide us
with another type of metric characterization, namely, via forbidden isometric subgraphs.

Theorem 15 (Bandelt and Mulder [1986]). Let G be a connected graph with distance function d.
Then, the following statements are equivalent:

(i} G is a block graph;
(i1) d satisfies the four-point condition;
(iii) neither Ky minus an edge nor Cp, with n 2 4 is an isometric subgraph of G;

We focus on statements (i) and (iii) of Theorem 15. By definition, an A-free graph does not
contain subgraphs isomorphic to Cp with n 2 4, and therefore, it does not contain Cy, (n 2 4) as an
isomorphic subgraph. It is easy to see that a graph is a block graph if and only if it is chordal and
each edge appears only in one clique.

Theorem 16. Let G = (V, E) be an A-free graph and let | V.| = 1, where V. is a cligue satisfying

the properties of Theorem 1 (or 2). Then G is a block graph if and only if there exists no semi-
free edge (x, y) in G such that x, y e Vi.
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Proaof. (=) Let u be the vertex of set V.. Suppose that there exists a semi-free edge (x, ¥) in G
such that such that x, y e V. This implies that x e Vj and y € Vj where i # . Since (x, y) is a
semi-free edge, there exists a vertex z € Vp, where p #i and p # j, having the property (z x) € E
{or {z, ¥) € E). Obviously, (x, u) appears in more than one clique; an absurd. (<) It is easy to see
that N(z) = Vi u {u} for every z e V;jand i # ¢, where u € V. Since u is a cutpoint and G is a
chordal graph, there follows that G is a block graph. O

Theorem 17. Let G = (V, E) be an A-free graph and let | V¢ | > 1, where V_ is a clique satisfying
the properties of Theorem 1 (or 2). Then G is a block graph if and only if G is a complete graph.

Proof. (=) Let (u, v) be an A-free edge such that u, ve V.. Suppose that G is not a complete
graph, and let x, ¥ be two vertices such that (x, ¥) & E. Then, it is easy to see that G contains an
induced subgraph K; + 2K (a K4 minus an edge), i.e.,, G({&, v, x, ¥}). Thus, edge (u, v) appears
in more than one clique, and therefore, G is not a block graph; an absurd. (=) Obviously, G is a
block graph. O

5.2. Split Graphs

An undirected graph G = (V, E) is defined to be split if there is a partition V = K + § of its vertex
set V into a complete set K and a stable set S.

It is well know that split graphs are characterized in terms of the properties T and T¢, ie.,
split graphs = T + T¢ (see Foldes and Hammer [7]). That is, a graph G is a split graph if and only
if G and its complement G* are chordal graphs.

Theorem 18 (Foldes and Hammer [1977]). Let G be a undirected graph. The following
conditions are equivalent:
(i} G is a split graph;
(ii) G and G are chordal graphs;
(iii) G contains no induced subgraph isomorphic to 2K3, C4, or Cs;

Unfortunately, A-free graphs do not satisfy the property T* since the complement of a split graph
is not always a chordal graph. For example, the complement of the graph 2K,, which is the graph
C4. obviously is not a chordal graph. Therefore, in the context of this work, statements (i) and (ii)
seems not to give us any useful information. On the other hand, statements (i) and (iii) provide us
with a characterization of split graphs in terms of forbidden induced subgraphs. It is easy to see
that an A-free graph contains no induced subgraph isomorphic to C4 or Cs: see the structure
A-free-I or A-free-II. Thus, we obtain the following result on split graphs.

Theorem 19. Let G be an A-free graph. Then G is a split graph if and only if G contains no
induced subgraph isomorphic to 2K;.

5.3. Threshold Graphs

The class of threshold graphs, a well-known class of perfect graphs, is defined to contain those
graphs where stable subsets of their vertex sets can be distinguished by using a single linear
inequality. Equivalently, a graph G=(V,E) is threshold if there exists a threshold assignment
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[, 1] consisting of a labelling o of the vertices by non-negative integers and an integer threshold 1
such that: § is a stable set iff a{v|) + a(v) + ... + a(vp)St, where vie S, 1SispandScV.

We have seen that most of the classes of perfect graphs we consider are characterized by
forbidden (isometric in some cases) subgraphs. Chvital and Hammer [5] have characterized the
threshold graphs as the graphs which contain no induced subgraphs isomorphic to 2K, Py or Cy.

Theorem 20 (Chvital and Hammer [1973]). Let G be a undirected graph. Then the following
statements are equivalent:

(i) G is a threshold graph;

(ii) G has no induced subgraph isomorphic to 2K3, P4, or Cy;

We have proved that an A-free graph contains no induced subgraph isomorphic to Py or Cy; see
Theorem 5. By combining these results with the results of Theorem 20, we obtain the following
theorem.

Theorem 21. Let G be an A-free graph. Then G is a threshold graph if and only if G contains no
induced subgraph isomorphic to 2K,

6. Conclusions

In this paper we classified the edges of a graph as either free, semi-free or actual, we defined the
class of A-free graphs, i.e., the class of all the graphs with no actual edges, and we proved that the
members of this class possess several important structural and algorithmic properties. Moreover,
we showed important structural properties for the normal product of two A-free graphs. Based on
the fact that many classes of perfect graphs are characterized in terms of similar properties and
forbidden induced subgraphs, we proved that A-free graphs belong to the class of domination
perfect, chordal (or triangulated), cographs (or complement reducible), ptolemaic, distance-
hereditary, comparability, cocomparability, interval, permutation and (1, ¢, s)-perfect graphs.
Furthermore, recognition properties for block, split and threshold graphs containing no actual
edges have been also shown, leading to a constant-time parallel recognition algorithm. The
recognition of an A-free graph can be easily done in constant-time by using a powerful parallel
model of computation.

We are currently studying other recognition properties and characterizations of A-free graphs
in order to extend classes of perfect and/or non perfect graphs in which they might belong. We
hope our study will also enable us to further extend classes of perfect graphs whose members can
be recognized in parallel constant-time.
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