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Abstract

Wireless communications support a new form of data delivery in which servers broad-
cast data to a number of clients that listen to the broadeast channel and retrieve data of
interest as they arrive on the channel. In this paper, we address the problem of ensur-
ing the consistency and eurrency of read-only transactions when the values of broadcast
data change. We identify a set of criteria that methods for ensuring consistency in
wireless mobile computing must satisfy. We then present a number of such methods
and evaluate the degree at which they fulfill the criteria set. Consistency is ensured

without contacting the server.
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1 Introduction

In traditional client/server systems, data are delivered on demand. A client explicitly
requests data items from the server. Upon receipt of a data request, the server locates
the information of interest and returns it to the client. This form of data delivery is
called pull-based. In wireless computing, the stationary server machines are provided with
a relative high-bandwidth channel which supports broadcast delivery to all mobile clients
located inside the geographical region it covers. This facility provides the infrastructure for
a new form of data delivery called push-based delivery. In push-based data delivery, the

server repetitively broadcasts data to a client population without a specific request. Clients

“University of leannina, Computer Science Department, Technical Report No: 98-013



monitor the broadcast and retrieve the data items they need as they arrive on the broadcast
channel.

Push-based delivery is important for a wide range of applications that involve dissemi-
nation of information to a large number of clients. Dissemination-based applications include
information feeds such as stock quotes and sport tickets, electronic newsletters, mailing lists,
road traffic management systems, and cable TV. Important are also electronic commerce
applications such as auctions or electronic tendering. Finally, information dissemination
on the Internet has gained significant attention (e.g., [8, 24]). Many commercial products
have been developed that provide wireless dissemination of Internet-available information.
For instance, the AirMedia’s Live Internet broadcast network [2] wirelessly broadcasts cus-
tomized news and information to subscribers equipped with a receiver antenna connected
to their personal computer. Similarly, Hughes Network Systems’ DirectPC [22] network
downloads content directly from web servers on the Internet to a satellite network and then
to the subsecribers’ personal computer.

The concept of broadcast data delivery is not new. Early work has been contacted in the
area of Teletext and Videotex systems [4. 23]. Previous work also includes the Datacycle
project [9] at Bellcore and the Boston Community Information System (BCIS) [12]. In
Datacycle, a database circulates on a high bandwidth network (140 Mbps). Users query the
database by filtering relevant information via a special massively parallel transceiver. BCIS
broadcast news and information over an FM channel to clients with personal computers
equipped with radio receivers.

Recently, broadeast has received considerable attention in the area of mobile comput-
ing because of the physical support for broadeast in both satellite and cellular networks.
Broadcast delivery in mobile wireless computing poses a number of difficulties. Mobile
clients are resource-poor in comparison to stationary servers. Energy conservation is a ma-
jor concern. The communication environment is asymmetric, in that there is typically more
commmunication capacity from servers to clients than in the opposite direction.

In this paper, we address the problem of preserving the consistency of client’s read-only
transactions when the values of data broadcast are updated at the server. A set of desired
properties is identified that must be satisfied by transaction processing techniques in wire-

less mobile computing. Then, we present two different approaches to the problem. One
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Figure 1: Broadcast-based data delivery

approach is based on broadcasting multiple versions of data items. The other approach
uses a conflict serialization graph in conjunction with invalidation reports to ensure serial-
izable executions. We evaluate both methods based on the criteria set. In all the methods
presented, consistency is ensured without contacting the server.

The remainder of this paper is organized as follows. In Section 2, we introduce th prob-
lem of supporting consistent read-only transactions in the presence of updates. In Section
3, we identify a set of properties according to which schemes for supporting consistency
should be evaluated. A method for supporting consistent reads that is based on broadcast-
ing multiple versions of data items is presented in Section 4, while a method that utilizes
a serializability graph testing technique is introduced in Section 5. In Section 6, we dis-
cuss related work. Finally, in Section 7. we conclude the paper with a comparison of the

proposed techniques.

2 Read-Only Transactions and Broadcast Delivery

The server periodically broadcasts all data items to a large client population. Each period
of broadcast is called a broadcast cycle. Each client listens to the broadcast and fetches
data as they arrive; clients cannot make any direct requests for data (Figure 1). This
way data can be accessed concurrently by any number of clients without any performance
degradation. However, access to data is strictly sequential, since clients need to wait for
the data of interest to appear on the channel,

We assume that all updates are performed at the server. Clients access data from the
broadcast in a read-only manner. Any updates are applied at the server and disseminated

from there. Providing transaction support tailored to read-only transactions is important for



many reasons. First, a large number of transactions in dissemination systems are read-only.
Then, even if we allow update transactions at the client, it is more efficient to process read-
only transactions with special algorithms. First, consistency is ensured without contacting
the server. This is important because even if a backchannel exists from the client to the
server, this channel typically has small communication capacity. Furthermore, since the
number of clients supported is large, there is a great chance of overwhelming the server
with clients’ requests. In addition, avoiding contacting the server decreases the latency of
client transactions.

For clarity of presentation, we assume that the data content of the broadcast remains
the same, that is no items are deleted or added to the broadcast. However, the methods

can be easily extended to handle such cases.

2.1 Organization of the Broadcast

Clients do not need to continuously listen to the broadcast. They tune-in to read specific
items. To do so, clients must have some prior knowledge of the structure of the broadcast
that they can utilize to determine when the item of interest appears on the channel. Alter-
natively, the broadcast can be self-descriptive, in that, some form of directory information
is broadeast along with data. In this case, the client first gets this information from the
broadcast and use it in subsequent reads. Techniques for broadecasting index information
along with data are given in [13, 14, 13].

The smallest logical unit of a broadcast is called bucket. Buckets are the analog to
blocks for disks. Each bucket has a header that includes useful information. The exact
content of the bucket header depends on the specific broadeast organization. Information
in the header usually includes the position of the bucket in the broadcast cycle as an offset
from the beginning of the broadcast cycle as well as the offset to the beginning of the next
broadcast cycle. The offset to the beginning of the next broadeast cycle can be used by the
client to determine the beginning of the next broadcast cycle when the size of the broadcast
is not fixed. Data items correspond to database records (tuples). We assume that users
access data by specifying the value of one attribute of the record, the search key. Each
bucket contains several items.

In order for the clients to tune in at the right time, there is a need for synchronization.



To take care of small discrepancies in distributed clocks, the client may tune in epsilon
buckets in advance, where epsilon depends on the accuracy of the clock synchronization.
Furthermore, it takes some time for the client to tune in and out of the broadcast. If this
set-up time is not negligible compared to the time it takes to broadcast a bucket, it must
be taken into consideration in accessing data by modifying the access protocol, for instance

by tuning in ahead of time to account for the set-up time [15].

2.2 Read-Only Transactions and Updates

A database state is typically defined as a mapping of every data to a value of its domain.
In a database. data are related by a number of restrictions called integrity constraints
that express relationships of values of data that a database state must satisfy. A state is
consistent if the integrity constraints are satisfied [7]. While data items are being broadcast,
transactions are executed at the server that may cause updates of data. We assume that
the values of data items that are broadcast during a broadcast cycle correspond to the state
of the database at the beginning of the broadcast cycle, ie., the values produced by all
transactions that have been committed by the beginning of the cycle.

Since the set of items read by a transaction is not known at static time and access to
data is sequential, transactions may have to read data items from different broadcast cycles,
that is data values from different database states. As a very simple example, say T be a

transaction that corresponds to the following program:
if a > 0 then read b else read ¢

and that b and ¢ precede a in the broadcast. Then, a client’s transaction has to read a first
and wait for the next cycle to read the value of b or ¢

We define the span of a transaction T, span(T’), to be the maximum number of different
broadcast cycles from which T reads data. The above example shows that the order in
which transactions read data affects the response time of queries. A form of transaction
optimization that orders requests for data based on the order by which they are broadcast
can be emploved to keep the transaction’s span small.

Since client transactions read data from different cycles, there is no guarantee that the

values they read are consistent. Our correctness criterion for read-only transactions is that



each transaction reads consistent data. In particular, the values read by each read-only
transaction must form a subset of a consistent database state [20]. We assume that each
server transaction preserves database consistency. Thus, a state produced by a serializable
execution (i.e., an execution equivalent to a serial execution [7]) of a number of transactions
produces a consistent database state. The goal of the methods presented in this paper is to

ensure that the values read by each read-only transaction correspond to such a state.

3 Parameters of Concern

In this section. we identify some of the desired properties that processing techniques for

read-only transactions in wireless broadcast must posses.

3.1 Type of Read-Only Transactions

One important characterization of a processing schema for read-only transactions is the
type of read-only transactions it supports. Read-only transactions can be classified based
on their consistency and currency requirements [11]. The consistency requirements specify
the degree of consistency required by read-only transactions. Ensuring that the values of a
transaction form a consistent state is a form of weak consistency. A stronger requirement is
that each read-only transaction is serializable along with all update transactions. Currency
requirements specify what update transactions are reflected by the data read by read-only
transactions.

Updates at the server may invalidate data values read by read-only transactions and
cause read-only transactions to be aborted and reissued. Another important characteriza-
tion of transaction processing techniques is the degree of concurrency they provide, that is

how many read-only transactions can proceed along with updates at the server.

3.2 Volume of Control Information

To guarantee correctness, additional control information must be broadcast along with data.
Processing of control information is required at both the client and the server. The server
must compute and broadcast this information during broadcast cycle. The client must read

this information from the broadcast channel and interpret it appropriately.



The size of this control information is an important measure of the efficiency of a trans-
action processing scheme, since transmitting control information consumes bandwidth. An-
other requirement is minimizing the overhead of processing this information both at the
server and at the clients. Finally, the volume of the broadcast data affects the response
time of client transactions. Since access to data is sequential, the larger the volume of
the broadcast, the longer the clients need to wait until the data of interest appear on the
channel.

3.3 Tuning Time

Listening to the broadcast consumes energy. Energy consumption is a major concern in
the case of portable mobile computers, since they most often rely for their operation on
the finite energy provided by batteries. Even with advances in battery technology, this
concern will not cease to exist. Thus an additional requirement posed in mobile systems
is minimizing the amount of time that clients spent listening to the channel. This time is
called funing time.

To minimize tuning time, techniques have been proposed to provide index or hashing
based access to broadcast data [15]. Schemes to support consistent reads must adhere to the
requirement of minimizing tuning time. Issues include appropriate organization of control
information, for example whether control information should precede or be interleaved with
data, and support for indexing and hashing. When the location of each data item in the
broadcast remains fixed, another approach is to maintain of an index for the data of interest
locally at each client. This approach assumes that clients have enough storage capacity to

maintain such copies.

3.4 Tolerance to Disconnections

Listening to the broadecast consumes energy. In addition, access to the broadcast data may
hbe monetarily expensive. Thus, mobile clients may voluntary skip listening for a number
of broadcast cycles. Besides this voluntary form of disconnection, client disconnections
are very common when broadcast data are delivered wirelessly. Wireless communications
face many obstacles because the surrounding environment interacts heavily with the signal,

thus in general wireless communications are less reliable and deliver less bandwidth than



wireline communications. Thus, a desirable requirement from a broadcasting scheme is to
allow clients continue their operation after periods during which the clients miss listening

to the broadcast signal.

4 Multiversion Broadcast

One way to support read-only transactions is for the server to maintain and broadcast
multiple versions for each data item. Instead of broadcasting the last committed value for
each data item, the values that the item had at the beginning of the last x broadcast cycles
are transmitted along with a version number that indicates the broadcast cycle to which the
version corresponds. The value of  is equal to 5, the maximum transaction span among
all read-only transactions.

The read-only transactions supported by this scheme are strongly correct. To see that,
let g be the cycle at which a transaction T performs its first read operation. T is serialized
after all transactions that committed prior to ¢g and before all transactions that committed
after broadcast cycle ¢g. In terms of currency, the data items read by T correspond to the
database state at the beginning of the broadcast cycle ¢.

There are a number of variations of this schema depending on how versions are broadcast.

We consider two of them.

4.1 Broadcast with Fixed Periodicity

The last S values of each data item are always broadcast even when the data item is not
updated during any of the § ecycles. Thus, for some data items, the same value may be
repeated on the broadcast. Since, the size of each broadcast cycle does not change, each
data item can be broadcast at the same position in every broadcast cycle. Thus, clients can
locally cache a copy of the directory.

For each data item, versions are transmitted in reverse chronological order, e.g., the
most recent first. At each broadcast cycle, the server shifts the data values for each data
item to the right and appends the new value at the front (Figure 2(a)). During its i-th
read cycle (1 <14 < §), the client reads the data version at position S + 1 — ¢ for each data

item. There is no need to broadcast version numbers, since the position of the value on the
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Figure 2: Multiversion broadcast with § = 3: (a) fixed-sized, (b) variable-sized, {¢) variable-

sized with overflow buckets

broadcast implies its version.

Let D be the number of data items in the database, i the size of the search key and
d the size of the remaining attributes. Then the size of each broadcast is D(i + Sd) and
is fixed for all cycles. There is no need to broadcast index information. The client can
use its locally stored directory to tune in when the data item of interest is broadcast. The
access protocol remains the same as in the single version case, except that if not all versions
of an item fit in one bucket, the client mmst read additional buckets. However, latency is

increased due to the increase of the overall size of the broadcast data.

4.2 Broadcast with Variable Periodicity

Another approach is to broadcast a new value for a data item only if the item was updated
during the previous broadcast cycle. In this case, there is a need to broadceast a version
number along with each data value. At each cycle, the server discards the k — 5 version,
where k is the current broadcast cycle. At least one value (the current one) is broadcast for
each data item. A new value is added to the broadcast, only for the data items that were
updated during the previous broadcast cycle (Figure 2(b)). At the client, during the first
broadeast cycle, a transaction reads the most up-to-date value for each data item, that is,
the version with the largest version number. Let ¢y be the broadcast number of the first

broadcast cycle for T. In later cycles, T reads the version with the largest version number



¢, such that ¢, < ¢p.

Let v be the size of the version number. The size of the broadcast is D(i +v+d) + (d +
v)u(S — 1), where u is the number of data items updated during the broadcast. To allocate
less space for version numbers, instead of broadcasting the number of the broadcast cycle
at which the data item was created, we can broadcast the difference between the current
broadecast cycle and the cycle in which the value was created, i.e., how old the value is.
For example, if the current broadecast cycle is cycle 30, and a version was created during
cycle 27, we broadcast 3 as the version of the data value instead of 27. Since the location
of each data item in the broadecast is not fixed, clients can not anymore utilize a locally
cached directory to determine the position of items in the broadcast. Thus, prior to each
cycle, the server must reconstruct an index structure and broadeast it along with data, thus
further increasing the overall size of the broadcast. The client must first tune in to get
index information. Again, there is an additional increase in latency and tuning time analog
to the increase in the broadcast size.

To keep the position of each data item in the broadcast fixed, instead of broadcasting
with each data item all its versions. we may broadcast just a single version: the most recent
one. A pointer associated with each data item points to older versions that are broadcast in
reverse chronological order at the end of the cycle in overflow buckets (Figure 2(c)). Thus,
the server needs not recompute and broadcast an index in each broadeast cycle. Instead,
the client uses its locally stored directory to locate the first appearance of the data item
in the broadcast. After reading the item. if it needs an older version, it uses the pointer
to locate older versions of the item in the overflow bucket. The size of data buckets is
D(i +d+ v+ P), where P is the size of the pointer, while the total size of the overflow
buckets is B = u(S5 — 1)(d +v) + ui. The pointer can be kept as the offset of the beginning
of the overfiow bucket from the end of the broadcast, and thus be analog to the number of
overflow buckets, in particular P = Iog(%), where b is the size of a bucket in bytes.

Regarding disconnections, a transaction aborts, if all version numbers of all available
data values for a data item are larger than cg. In general, a transaction T with span(T') = st
can tolerate missing up to S — st broadcast cycles. In addition, if a value does not change
during the next k cycles, a transaction can tolerate to miss up to k — 1 broadcast cycles in

a row. Tolerance to disconnections can be improved if additional versions of data items are
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broadcast.

5 Invalidation-Based Consistency

The multiversion method ensures that transactions read consistent values, Le., values pro-
duced by a serializable execution, by enforcing transactions to read values that correspond
to a state at the end of some broadeast cycle. However, it suffices for transactions to read
values that correspond to any consistent database state not necessarily one at the end of
some broadeast cycle. In other words, it suffices to ensure that the values read by a transac-
tion are that produced by a serializable execution of a subset of the committed transactions.
To this end, we use a conflict serialization graph.

The serialization graph for a history H. denoted SG(H), is a directed graph whose nodes
are the committed transactions in H and whose edges are all T; — T} (i # j) such that
one of T;'s operations precedes and conflicts with one of T; operations in H [7]. According
to the serialization theorem, a history H is acyclic iff SG(H) is acyclic. We assume that
each transaction reads a data item before it writes it, that is, the readset of a transaction
includes its writeset. Then, there can be two types of edges T; — T from any transaction
T; to any transaction T} in the serialization graph: dependency edges that express the fact
that T; read the value written by T; and precedence edges that express the fact that T
wrote an item that was previously read by T;.

Each client maintains a copy of the serialization graph locally. At each cycle, the server
broadeasts any updates of the serialization graph. Upon receipt of the graph updates, the
client integrates the updates into its local copy of the graph. The serialization graph at
the server includes all transactions committed at the server. The local copy at the client in
addition includes any alive read-only transactions. A transaction is alive if it has performed

some operation but has not vet been committed.

5.1 Conflict Serializability
The content of the broadcast is augmented with the following control information:
* an invalidation report

The report includes all data written during the previous broadcast cycle along with
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an identifier of the transaction that first wrote each data item and an identifier of the

transaction that last wrote each data item.

e the difference from the previous serialization graph
In particular, the server broadcasts for each transaction T; that was committed during
the previous cycle, a list of transactions with which it conflicts, i.e., it is connected
through a direct edge plus a one-bit indication of the type of edge (e.g, dependency

or precedence).

The server maintains this control information and broadcasts it at the beginning of
each broadcast cycle. Each client tunes in at the beginning of the broadcast to obtain the
information. Upon receipt of the graph, the client updates its local copy of the serialization
graph to include any additional edges and nodes. It also uses the invalidation report to add
new precedence edges for all alive read transactions as follows. Let R be an alive transaction
and RS(R) be its readset, that is the set of data items it has read so far. For each item
¢ in the invalidation report, let Ty be the transaction that first wrote z. The client upon
receipt of the invalidation report of «, if © € RS(R), it adds a precedence edge from R to
Lk

When R reads an item y, the client adds a dependency edge from the last transaction Tj
that wrote i to R. The read operation is accepted, only if no cycle is formed. In particular,
a cycle is formed if there exists a transaction T that overwrote some item y in R5(R) that
precedes T} in the graph, i.e., there is a path from T to Tj.

It can be proved by an application of the serialization theorem that read transactions
are strongly correct since they are serializable along with the update transactions at the
server. Regarding the currency of the read-only transactions, each read-only transaction R
that performs its first read at ¢y reads values that correspond to a database state between
the state at the beginning of broadcast cycle ¢y and the current database state.

Let tid be the size of a transaction identifier, ¢ be the maximum number of transactions
committed during a broadcast cycle, and N be the maximum number of operations per
transaction at the server. We assume that transaction identifiers are unique within each
broadcast cycle, thus it suffices to allocate log(c) bits per transaction identifier. When there
is a need to distinguish between transactions at different cycles, we also broadeast a version

number indicating the broadcast cycle at which the transaction was committed. Then, the
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size of the invalidation report is: u(i + 2log(c)) Since, there are at most N operations per
transaction, each transaction may participate in at most NV conflicts with other transactions.
Thus. the difference from the previous graph has at most ¢ N edges. The total size of the
difference is: eN(2log(c) +2v), assuming that along with each transaction we also broadcast
the broadeast cycle at which it was committed.

If we broadecast the control information at the end of the cycle, then the position of
each item in the broadcast remains fixed and a local directory can be used (Figure 3(a)).
Besides the increase in latency due to the increase of the broadcast size, there is an additional
increase in latency and tuning time for getting and reading control information.

Besides strong correctness, weak correctness can also be enforced. The method for en-
suring weak correctness is based on the assumption that the values written by a transaction
depend solely on the data values it reads. Then, we can strengthen our requirement so that
the path from 7 to Ty includes only dependency edges, since precedence edges do not affect
the values written by a transaction. This reduces slightly the size of control information,
because only dependency edges are relevant and need to be broadcast. However, the main
benefit of weak correctness is increased concurrency, since additional read-only transactions
may be accepted.

The method does not tolerate any disconnections from the server. If a client misses a
broadeast cycle, it cannot anymore guarantee serializability. Thus, any alive read trans-

actions must be reissued anew. An enhancement of the scheme to increase tolerance to
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disconnections is to broadcast along with items version numbers. Then, a read operation is
accepted if its version number is less than the version of the last broadcast that the transac-
tion has listen to. Another approach to tolerate disconnections is to broadcast periodically

summary information, such as the whole serialization graph.

5.2 Invalidation-Only Broadcast

A simpler approach is to broadcast only an invalidation report that includes all data items
that were updated during the previous broadcast cycle. In this case, the increase in the size
of the broadcast is just equal to ud (Figure 3(b)). Then, a read transaction R is aborted if
an item x € RS(R) was updated, that is if © appears in the invalidation report.

Clearly the method supports strongly correct transactions, since the values of all data
read by each transaction R correspond to the current database state. This is the case, since
all items read were not updated during any of the subsequent cycles. This method poses
minimum overhead. It is adequate when only a few data items are updated and/or the

readset of transactions is small.

5.3 Bounded-Inconsistency

Another approach to increase concurrency and reduce the overhead of transmitting and
processing control information is to provide read-only transactions that can tolerate im-
ported inconsistency. One formal characterization of inconsistency is provided by epsilon-
serializability (ESR) [19, 18]. In epsilon-serializability, each read-only transaction has an
import-limit that specifies the maximum amount of inconsistency that it can accept. ESR
associates an amount of inconsistency with each inconsistent state, defined by its distance
from a consistent state. It has meaning for any state that processes a distance function.
Let R be a read-only transaction and cg be the cycle at which R starts. The import limit
for R can be quantified on a per data item basis. Let € RS(S5), then the inconsistency
associated with z can be defined as the distance of the current value of x and the value
of & at ¢y say xy. R can tolerate reading zp, and thus import inconsistency equal to this
distance, if the distance is within the specified import limit. The inconsistency imported
by R depends on the number of concurrent updates, i.e., the number of server transactions

that commit while the read-only transaction R is in progress. One way to support this form
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of imported inconsistency is to extend the validation report for a data item z to include the
number of transactions that have updated r during the previous broadeast cycle.

There are other ways to quantify import inconsistency [3]. For example, for a data item
z that takes numerical values, instead of transmitting an invalidation report each time it is
updated, we may transmit an invalidation report only when the difference of its new value

from its old one falls outside a specified range of values.

6 Related Work

Recently, there has been considerable interest on broadcast delivery (for a review, see for
example Chapter 4 of [17] and [10]). Updates have been mainly treated in the context of
caching. In this case, clients maintain a local cache of the data of interest. Invalidating
cache entries by broadcast is the focus of much current research including [6], [1], and
[16]. Updates are considered in terms of local cache consistency; there are no transaction
semantics.

A weaker alternative to serializability for transactions in broadcast systems is proposed
in [21]. In this work, read only transactions have similar semantics with weak transactions
in the conflict-serializability approach. However, the emphasis is on developing and formal-
izing a weaker serializability criterion rather than on protocols for enforcing them. Finally,
broadcast in transaction management is also used in the certification-report method [5].
Read-only transactions in the certification-report method are similar to read-only transac-
tions in the invalidation-only method. However, in the certification-report method, data
delivery is on demand, the broadcast medium is mainly used by the server to broadcast

concurrency control information to its clients.

7 Conclusions

We have presented a variety of methods that provide support for consistent read-only trans-
actions. The methods guarantee correctness of read-only transactions by ensuring that
transactions read values that correspond to a consistent database state. In multiversion
broadcast, this state corresponds to that at the beginning of the read-only transaction,

while in the invalidation-only approach, the state corresponds to the current database state.
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In the serializability method, the state is one in between these two states, in particular a
state produced by a serializable execution of the transactions committed so far. Thus, the
invalidation-only method provides the most current view of the database, the serialization
method a less current one, and the multiversion method the oldest one.

In terms of concurrency, in multiversion broadcast, all read-only transactions are ac-
cepted as long as the corresponding version exists in the broadcast. However, this method
increases considerably the size of the broadcast and accordingly latency. In the invalidation-
only method, a read-only transaction is accepted only if its previous read operations are
still valid, that is the values read have not been updated. This method has the least
overhead among the ones proposed but also provides the least concurrency. Finally. the
conflict-serializability method accepts the read-only transactions that do not conflict with

the committed at the server transactions.
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