DYNAMIC RESPONSE OF THE HUMAN HEAD
TO AN EXTERNAL STIMULUS

A. CHARALAMBOPQULQS, D.I. FOTIADIS
AND C.V. MASSALAS

12-98

Preprint no. 12-98/1998

Department of Computer Science
University of loannina
451 10 loannina, Greece



DYNAMIC RESPONSE OF THE HUMAN HEAD
TO AN EXTERNAL STIMULUS

A. CHARALAMBOPOULOS
Polytechnic School, Mathematics Division, Aristotle University of Thessaloniki,
GR 540 06 Thessaloniki, Greece

D.I. FOTIADIS
Dept. of Computer Science, University of loannina, GR 451 10 loannina Greece

and
C.V. MASSALAS®
Dept. of Mathematics, University of Ioannina, GR 451 10 loannina, Greece

SUMMARY

In this work we present an analysis concerning the mathematical formulation of the
general problem of the dynamic loading of the human head. In the proposed analysis
the system is assumed to constitute of a stratified spherical medium and a methodology
is developed for the study of the dynamic behaviour of the human head. The response
of the human head (displacement field and pressure) is investigated when a Dirac force
in space and time is applied on it. The role of various parameters entering the dynamic
charactenistics of the system is extensively discussed.
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I. INTRODUCTION

Several researchers have proposed models to study brain injuries due to external causes
such as those resulting from car accidents. The human head - neck system is a very
complicated structure and various geometrical and material approximations have been
used in the modeling studies.

Among the earliest studies Goldsmith [1] provides an extensive review from the
engineering and medical point of view. Liu [2] and King and Chou [3] presented
survey articles on the mathematical modeling of head injuries. Advani and Owings [4]
investigated the response of the a fluid - filled spherical shell. Shugar and Katona [5]
have used finite element techniques to investigate the responses of spherical and plane
strain head models giving particular emphasis on the determination of fluid pressure
distribution and skull deflections. Akkas [6] analysed the dynamic response of a fluid -
filled spherical shell using finite differences. Khalil and Hubbard [7] have studied the
human head response to impact loading on three axisymmetric head model
configurations using finite elements. Misra and Chakravarty [8] presented a model of
the dynamic response of the human head - neck system, represented by a fluid - filled
prolate spheroidal shell constrained by a viscoelastic beam.

Landkof and Goldsmith [9] performed an analytical and experimental study involving
non-destructive, axisymmetric impact on a fluid - filled shell constrained by a
viscoelastic artificial neck. Hickling and Wenner [10)] developed a mathematical model
using three - dimensional equations of linear viscoelasticity for the brain and the skull to
predict the response of a human head to axisymmetric impact.

In previous communications we have extensively discussed the dynamic characteristics
of the human head - neck system. We have studied simple systems [11-12] and more
complicated ones which combine both geometry aspects [13-14] and material behavior
of the brain and skull matter [15-16]. In Refs. 17 and 18 we have investigated the
effect of the human neck support. In the above mentioned papers the role of the
various parameters of the system on the dynamic characteristics (eigenfrequency and
damping coefficients spectra, eigenfuctions) was investigated. The mathematical
analysis was based on the expansion of the solution in terms of the Navier eigenvectors

and the use of arguments from complex analysis and complicated numerical schemes.
In this work the system under consideration is assumed to constitule a stratified

spherical medium. A number of models can be deduced from the general case. afier

making assumptions for the number of the spherical layers as well as their substance.
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Consequently all the models simulating human brain system that have been adopted in
previous works, can be studied under a stimulus state, in a uniform and deducible

manner. More specifically, three models are described under stimulus state.
¢ the single elastic isotropic and homogeneous elastic skull
e the elastic skull filled with inviscid and irrotational fluid

s the two elastic spheres model

The methodology followed in the present work includes determination of the dynamic
charactenstcs (eigenfrequencies and eigenvectors) for all the systems [11-18] and use
of the proposed method to compute the displacement fields when a Dirac force in space
and time is applied on it.

2. PROBLEM FORMULATION

The system under consideration is shown in Fig. 1 and consists of n spherical layers
simulating the several regions of the human - brain system. According to the
assumptions adopted in previous works concerning the physical characteristics of the
several components of the system, every spherical layer of the model is assumed to be
filled with an isotropic elastic material or with an inviscid and irrotational fluid of
specific properties resembling the real situation. The exterior layer stands for the skull
of the system and is considered, naturally, to be an elastic region. The well -
posedness of the problem requires the satisfaction of suitable boundary conditions on
the discontinuity surfaces of the system. As mentioned above the number and nature of
the several components vary with the particular model under consideration and depend,
of course, on the physical parameters whose involvement to the dynamic characteristics
of the system, is studied in priority.

The main purpose of our analysis is the determination of the response of the system
when a Dirac force, in space and time, is applied on it. More precisely, we suppose

that the system is subjected to the external force F(r.t)= F,8(r —r,)8(r), per unit
mass, where F, is an arbitrary vector,r, is an arbitrary point of the region V, and 6()

is the Dirac’s & - function. It is noticed here that response of the system to more
general external forces can be deduced easily from the response to the Dirac force,
which constitutes the Green function of the stimulus problem. In addition, the position

vector r, can be arbitrarily chosen, but its selection depends on the nature of the

external force. Consequently, if we study the influence of the blood pressure due to

cardiac pulses, r, has to be selected near the central spherical region, but if we are



interested in responses to external stimuli, r, must be placed very near the external

surface §, .
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Figure I: Problem Geometry and Coordinate System

In order to study the kinematic behavior of the system, we are going to determine the
displacement field of every particular region.

More precisely, if the region V. is an elastic one then the motion of this region is

characterised by the displacement field ' (r.1) satisfying the time - dependent non -

homogeneous equation of elasticity,

*u(r,n

Jui-'ifzu“}'{r,z‘)" + (A + g )VV i (r ) + pir‘i“‘ﬂFoS(r =y 18(8) = p; 32

(1)
where 1, A, are Lamé&’s constants, p; is the density of the region V, and V is the del
operator. In addition 8/ is equal to 1 only if i = j which means that r, belongs to

the region V], otherwise is equal to zero and repetition of a subscript does not mean

summation with respect to it.

If the region V, is occupied by an inviscid and irrotational fluid of density p. and sound

speed c;, then the displacement field is obtained through the velocity potential
satisfying
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More precisely, the pressure and displacement fields are connected to the velocity
potential through the equations

- A (r,1)
Pi(r.n)= R (3)
pii (r,t) = p8“VF,8(r - rp)8(t) - VPO(r.2). (4)
We apply Fourier transform analysis to the problem defining

: +os ;
" (r.o)= Ju(r,ne'”ar (5)
. +e .
O (r,m)= OV (r,ne'dr (6)
A e .
P (r,w)= [PO(r,ne'®dr. (M

—

We suppress, for simplicity, the dependence of previously transformed functions on
their argument @ and taking advantage of Fourier transform properties we gel
equations involving the transformed functions from the equations governing the initial
fields.

For every elastic region V) we obtain
VA () + (A + ) V(Y-8 (r) + p,?d D (r) = ~p, 8 F,8(r - ry). (8)

while in any region V. filled with fluid we obtain

3 2 e
V26 0(r)+ 2D (r) =0 )



PO(ry = ip,awd (r) (10)
u(r) = —;Vd){fj{r]~—~1—25“”"}'F:,5{r—rf}. (11)
1 w

Uniform handling of the several components of the system requires the introduction of
dimensionless variables.

In this framework, the velocities ¢, A +2” L which characterise
[ i
completely the elastic properties of the elastic medium V, give place to ¢',,=—",
¢
p.m
¢',,=—=. Similarly, sound speed ¢, in every fluid region V; gives place to ¢',= S
cp.u Cp,n

In addition, the density p; in every region V. is replaced by the dimensionless density

S

e

B,

Finally, we define the dimensionless quantities

r=_, Q=22 v=qav, (a=r),

('Pm

and the equations (8) - (11) in nondimensionalised form become

3V () + (3= (V0P ) + Q4O () = =500 T 5 —r ) (12)

('_J'?.?J
V'zd}f‘}{r}+ m“}(rj— (13)
S, B
PO =iQp ;—— 0 (r) (14)
)0y = o &) 5% ¢ i
8 (r)=§ ®Or')-" cp,nflﬁif—rf} (15)



where @ (r) " 1" (r') is a dimensionless quantity and "1" has measure unity.
Applying V'* on equation (15) and using equation (13) we obtain

2V () + Q) = 500 T2 5 ), (18]
e

Comparing (12) and (16), we see that it is possible to express in an uniform way the

equations governing the displacement fields (') after defining in a trivial manner,

¢,;=c,;=c, incase where V, is a region occupied by fluid.

Then

¢ VA + (¢ -2V (VA (P )+ QMO () = -6 E;L.'«;e?(r' -r'1),(17)
pn

YV oi=0L2:0nm

Equations (17) must be accompanied by the suitable boundary conditions. More

precisely, the exterior surface S, is stress free, fact which is reflected in the condition

Tu,(r }L-:« =0, where T is the surface traction operator [11].

Every surface S, separating two elastic media must support equal displacement and
stress fields from the two sides. In addition, every surface separating an elastic
medium from a fluid filled one, must support equal displacement fields while the elastic
stress field must be normal to the surface and compensate the fluid pressure. Finally
two consecutive fluid regions apply to their discontinuity surface equal displacements

and pressures.

Denoting uniformly

u(r') =fl“3'{r' ), for r'eV
¢ (F)=c,;, forrey

i (18)
kP = n IotP el



the equation governing the displacement field can be written through only one equation

with non-constant coefficients, that is

¢, YVEE )+, () =, V]V (Vi )+ Q) = “-‘F%Eé{r' -r',), r'eV

Pl
(19}

Equation (19) accompanied with the above mentioned boundary conditions is a well -

posed non-homogeneous boundary value problem.

Its solvability reduces to the corresponding homogeneous problem. More precisely, let
us consider the boundary value problem consisting of the eguation

¢, YVERE )+, (') =, V]V (VB N+ AP ) =0, FeV (20)

and the same set of the boundary conditions satisfied by the solution of the non-
homogeneous problem. But this is exactly the problem studied in previous works [11-
18], which were referred to specific selections of geometrical and physical structures

but all of them concerned the homogeneous boundary problem. Every model is
provided with a sequence QY of eigenvalues and a sequence of the corresponding
eigenvectors #™(r), reV, n=12,..; Im|<n; k=1,2,3,... where the pair (n,m)

identifies the specific polar and azimuthal dependence of the eigenstate, while &
enumerates the possible eigenstates belonging to the same state (n,m).

Generalised Sturm - Liouville theory guarantees that the set of functions &’ (r')
constitutes a complete orthogonal set of functions in the space of square integrable
functions in V. Orthogonality can be deduced by suitable application of Green's type
theorem in space V, after using original Green's formulae for the fluid filled regions,

Betti’s formulae for the elastic ones and exploiting the boundary conditions satisfied by
these solutions.

Orthogonality is expressed through the equation

[ar ey al ™ (" ydr =0, n#n orm#Em ork#k . 21



Completeness of @ (r') permits the following representation of the solution &(r') of

the non-homogeneous problem

W)= 3 5T ), (22)

where summation extends over all possible values of indices n,m.k, 8™

"

(r' J,) are the
coefficients to be determined in order for &(r') to be found and of course these

coefficients depend on the location of the impact.

Introducing (22) in (19), we find that

S 87 @ - @ ) = - S2 50 ). )
Wk l‘r.-..lr

Using the orthogonality of @#*(r') we obtain after projecting (23) on @™*(r') and
integrating over V

_oF, @t ) 1

ﬁr-k(rlf}z - ] i
T G@ -0 e f ar

(24)

Denoting "ﬁ:"l'

: y2
=(J|u:'*{r' }|'dr'J . the norm of @™ (r') in the space of square
¥

integrable functions, we infer that equation (22) is written as

. aF B™E W)
ﬂ.(.r )= = < ; Pmi‘“z :

(25)

=
&

o i (%= Qﬁzj

We are now in position to determine u(r',f) by taking the inverse Fourier transform of
(25)-

Consequently



1. ;
ulr ,f)= 5 ja(r e *dw =
| 4= iox (26)

1 dw

R e (I ﬁm,k* r A ko
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where @} =220,
o

Using complex analysis integration arguments, we finally obtain

ik

[

=
iz o

u(r’,r}:-%F z u’"" (r e (27)

The explicit forms of & (r') in equation (27) are cited in the previous works [11-18],

which refer to the determination of the dynamic characteristics of the corresponding
systems,

As a matter of fact

e =) for eV, (28)

ALl

with

"\rr .Q{r :I_ 2{ ::_l'LmI :|+ ﬁm.llum (r -] +?mENm {r }} ) {29)
I=1 (1=01;

for V! elastic, or

ik }—CLE LM ) (30)

B fi=1%

for V. filled with fluid.
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In equations (29) and (30) the summation over / degenerates to only one term when

the origin 0 belongs to ¥, since in this case the spherical Bessel functions of second

order must disappear [12].

We note that L, M, N stand for the Navier eigenvectors given by the relations

Li(r)=g,k , ./ )P (F)+-nn+1 —L-EB sl
M (#) = n(n+Dgh(k, . rICI(F) 31)

L o I kl . i R
N:;r(r'}=n(n+l}%ﬂ“{ﬂ+¢n{n+1}{£i{k',,. r'}+g—"i%]’ﬂf (r)

.f,fr 5,1
where g'(z) stands for the derivative of the spherical Bessel 2.(2) (j(z) for I=1 and
y,(z) for I=2) with respect to its argument and the functions P,"(F).B) (F).C; (F)

constitute the vector spherical harmonics given by

P (F)=FY" ()

. 1 o @ . I 8 .
B"(F) = —rme | 9 lym
- () Jn(n+1) {ﬂé‘ﬂ TP sine H:p} ()
2 | ~ 1 d .d
m -_— I L i Ym -
& @ Jnrn+1) {ﬁ sint} do % E‘ﬁ} ()

where F,@*,ff! are the unit vectors in the r,1%,@ - directions respectively and ¥ (r) the

spherical harmonics. Finally &' stands for the dimensionless wave numbers, i.e.,

The coefficients «,f,7,6 are determined modulo a multplicative constant - as

coefficients of eigenvectors - but this does not alter the expression (27) because as
casily can be proved the homogeneous way & enters (27) cancels this multiplicative

constant.

What remains

appearing in (27).

8 T



Clearly,

| = Jaroy-art o = 3 Jazt e izt o ar (32)

|='l.-

We have then to determine every particular term &) ') i k' (r')dr'.
v,

First Case: 'V, - elastic region

Inserting expression (29) in the integral and using orthogonality arguments for the
Navier eigenvectors, we find that

m.,J

+hyzfInetef

[l
Ju:j"f{r V@ (e =3 ;
[l +2Rb{amf,},nl -[me N:j (r1:|'£fl"}>

where |

W [Mzia) [Nz )| stand for the I - norms of the corresponding
functions in space V.. Expression (33) is obtained after determining the above

mentioned norms and the last integral expressing the inner product of L/ and N7
The explicit form of the Navier eigenvectors given in equation (31) indicate that the
determination of these norms is a rather difficult task. As a matter of fact, the polar and
azimuthal integrations are handled in a straightforward manner, by exploiting
orthogonality of spherical harmonic functions. In contrast, the radial integrals have
complicated form and was needed tedious and elaborate techniques based on properties
of spherical Bessel functions in order to avoid numerical integration and to express all
the results in a closed analytical form. We considered this effort necessary in order not
to aggravate the problem with numerical error which is controlled with difficulty when
someone has to deal with spherical Bessel functions of second order. The expressions
for the above quantities are given in Appendix A.

Second Case: V. - fluid region

In this case, equation (30) leads immediately to the result

25



m I

[ ”‘*(r}u"'*(r}a’ra— H (34)

and clearly suffices only knowledge of the norm L}

l to determine the investigated

integral.
3. NUMERICAL RESULTS

For each model the following algorithm is followed:

. Solve the corresponding homogeneous problem and find € and the

corresponding vector of coefficients x from the frequency equation shown in
Appendix C for each model.

2 Use of a quicksort [19] algorithm to order € in ascending order.

3. Use equation (27) to compute the displacement fields under the state of an

external Dirac force F.

The frequency equation for each model is solved numerically using a bisection method
for QF, n=123..; k=1,23,... A singular value decomposition is used for the
determination of each corresponding eigenvector. Those eigenfrequencies are ordered
in ascending order using a quicksort algorithm. Equation (27) is used for the
computation of the displacement field. An iterative procedure is followed and the
number k' of the eigenfrequencies (and eigenvectors) used and this procedure

terminates when ||u(r‘,3f]{k'] —u{r',r}{klﬂ}'uz{}(lﬂ_s]. An example of the numencal

results obtained for the FF - Model is shown in Fig. 1 for &'=21,41,51 for u,. Itis
noted that in our computation the accuracy of the bisection method used is of the order

of {)[1!]'3) and that the value of &' for convergence is strongly dependent on the model

under discussion.

In what follows we present numerical results for the models considered under the
influence of the external stimulus

FU = {F[J,!F{:Ia'-ﬁf]w} = {11{)1[}}

applied on

- 13-



re :{rf; ,rfe,rﬁp) =(1.0,0,0.
Dy Skull (§ - Model)

The material properties used are analogous to those of Ref. 21:

E=1379x10°N/m?, v=0.25, p=2.132x10°kg/m’
rn=0.082m, r, =0.076m

The frequency equation matrix is given in Appendix C.1 and its size is 6 X 6 [11]. The
value of &' used in our computations is 35 and we have computed 45 eigenfrequencies
for 0<n<20 and 0.0<QF <10.0. The results obtained for the displacement fields
are shown in Figs. 3 and 4 as a function of time for =0 and 6 =x/2, respectively.
The time scale displayed corresponds to 0 < <1000 usec and in the enclosed framed
figure this is extended up to 500 psec. The corresponding displacement fields as

function of 0 < ¢ < 2x for discrete time steps are shown in Fig. 5.
Two Elastic Spheres (EE - Model)

The material properties used are similar to those used in Ref. 12:
E, =6.5x10°N/m?, v; =025, p; =2.132x10% kg/m®

Ey=...NIm?®, v =048, py =1.0002 x10° kg/m’
1 =0.082m, r, =0.076m

The frequency equation matrix is given in Appendix C.2 and its size is 9 X 9 [12]. The
value of &' used in our computations is 85 and we have computed 660 eigenfrequencies

for 0<n<25 and 0.0 Q% <10.0. The results obtained for the displacement fields
are shown in Figs. 6 and 7 as a function of time for 6 =0 and 8 = /2, respectively.
The time scale displayed corresponds to 0 < ¢ <1000 psec and in the enclosed framed
figure this is extended up to 500 psec. The corresponding displacement fields as

function of < @ <27 for discrete time steps are shown in Fig. 8.

7



Elastic Skull Filled with Fluid (FF - Model)

The material properties used are similar to those used in Ref, 12:
E =65x10°N/m?, v, =025, p, =2.132x10° kg/m®

K =2.1029753%10° N/m”, p; =1.0002 x10° kg/m’
n =0.082m, 1, = 0.076m

The frequency equation matrix is given in Appendix C.3 and its size is 7 X 7 [12]. The
value of k' used in our computations is 51 and we have computed 88 eigenfrequencies
for 0<n<25and 0.0<Qf <10.0. The results obtained for the displacement fields
are shown in Figs. 9 and 10 as a function of time for =0 and @ = /2, respectively.
The ume scale displayed corresponds to 0<¢ <100 usec and in the enclosed framed
figure this is extended up to 500 psec. The corresponding displacement fields as

function of 0 < @ <27 for discrete time steps are shown in Fig. 11.

The determination of pressure distribution in the fluid requires special treatment as it is
shown below.

From equation (15) follows that
Vat ) -——é‘?z &Y (r), for r# v, (35)
and combining equations (13), (14) and (35) we obtain

S 1 £5cma NG
P(g‘] =_1ﬂplj ~ %?-z{b{ﬂj :_prér-—'l%cl?(?"‘u(ﬁ}‘ {3‘6‘}

.0 ¥,

However according to (25)

o o Fy-ayte ) Vantor)
Valiry=-—— 3 [ |2 )

n
c 2 k2 VL~ ke
on 1k Q _ﬂn )ﬂ"ﬂ

(37)

Given that the 7 region is a fluid

2 19



ﬁ:.lk(r.}=+z nHLm'!(r]}t - E ”r'i?'t]-fm;{r).i {38)

C ;= ¢ j i=l =0,
where W' =gl (k' P )L (F).

Combining (38) with (37) we obtain

: . F : '-m.k i k. i 2 .
?I Iﬁ[l]{r--j o “:Irz E 0 {rzf} S [ch‘fgi(k|p,l rl }},;:‘?‘E(r)}
€iCpnnmk (ﬂz Qk ) "“"*| I=1
Or
F _ﬂm.k ' Eo 2 s
PO = -l 3 2 QB 3 onel (S g
cpncsnﬂm-k (ﬂz ﬂk J |lAl,T'k|| [=1 € p,i

and taking the inverse transform we finally obtain that

L m.i iwts k

(i) _ Picy Fﬂ (l‘ Jer krp.i ml I Qn s

Pr.n)= S 2 | Xcni 8n( n (L)
2&{: 5h nmk ﬂ)‘n P:lﬂ.}t" i=1 [ P:i

The pressure variation is shown in Figs. 12 and 13 as a functon of tme and space

respectively,
4. CONCLUSIONS

We have presented a general approach to the dynamic loading of the human head. The
method is based on the solution of the corresponding homogeneous system for its
eigenfrequencies and eigenvectors and computation of the displacement fields when a
Dirac force in space and time is applied on it. The methodology has been developed for
the spherical geometry and the various components of the human head are represented
as spherical layers. The exterior layer stands for the skull and the other ones for brain
and cerebrospinal fluid. We have used three models to investigate the response of the
human head and those include the simple human skull, the fluid filled human skull and
the elastic filled human skull. The method can easily be extended to other geometries
and to other material properties. The displacement fields presented in this work can be
used for the observation of the human head response in various conditions which

-16 -



involve external cause, such as car accidents or blows in boxing. This can also be used

for the computation of intracranial pressure and its variations to estimate sudden

increase which becomes very critical and sometimes cause of death.
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APPENDIX B

All systems above result to the following set of equations
Dx=0, D=[d,].

Case 1:Elastic Sphere Model (Only Skull)
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Case 3: Two Elastic Spheres
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Figure 2: Convergence of u, as a function of time # for the FF - Model for &' =21,41,51.
(r=n, 8=mn/2, p=n/2)
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Figure 3: Displacements u,,u,,u, as a function of time for the S - Model
(r=r, p=xf2; 8=0).
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Figure 4: Displacements u,,u,,u, as a function of time for the S- Model
(r=r, o=mn/2, 6=m/2).
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Figure 5: Displacements u,,u,,u, for the S - Model for r=p

(A: @=m, t=0.0sec, B: 8=, t=0.0004s5ec, C: 8=mx, t=0.0008sec,
D: @=mx/2, t=00sec, E: 0=n/2, t=0.0003sec, F: 8=x/2, t=0.0008sec).




Figure 6: Displacements u,,u,,u, as a function of time for the EE - Model
(r=n, p=mrf2, 8=0).
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Figure 7: Displacements u,_,u,.u, as a function of time for the EE - Model
(r=n, 0=m/2, 6=m/2).
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Figure 8: Displacements u,,u,,u, for the EE - Model for r =7

(A: @=m, t =0.0002sec, B: 8=m, t=0.0004s¢ec, C: 8=, + =0.0006sec,
D: 8= /2, t =0.0002sec, E: 8 =mx/2, t =0.0004sec, F: 8 =x/2, t =0.0006sec).
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Figure 9: Displacements u,,u,,u, as a function of time for the FF - Model
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Figure 10: Displacements u,,4,,u, as a function of time for the FF - Model
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Figure 11: Displacements u,,u,,4, for the FF - Model for r =15

(A: @=m, t=0.00002sec, B: 8 =m, t=0.00004sec, C: 8=m, t=0.00008sec,
D: 8=m/2, t=0.00002sec, E: 8 =mx/2, t =0.00004sec, F: 8=mx/2, t=0.00008sec).
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Figure 12: Pressure P as a function of time for the FF - Model
{r=%ru, p=mnf2, 8=0).
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Figure 13: Pressure distribution for the FF - Model
(0€r<n, o=x/2, 8=n/2, t =0.0001sec).
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