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1. Introduction

Several researchers have proposed models to study brain injuries due to an external cause
such as those resulting from car accidents. The human head - neck system is very
complicated structure and various geometrical and material behavior approximations have
been used in the modeling studies.

Various approaches are given to the problem both from the engineering and from the
medical point of view [1-4]. Among the most important contributions Landkof and
Goldsmith [5] performed an analytical and experimental study involving non-destructive,
axisymmetric impact on a fluid - filled shell constrained by a viscoelastic artificial neck, and
Hickling and Wenner [6] developed a mathematical model using three - dimensional
equations of linear viscoelasticity for the brain and the skull to predict the response of a
human head to axisymmetric impact.

In previous communications we have presented an extensive investigation of the
dynamic characteristics of the human head - neck system [7-9]. The mathematical analysis
was based on the expansion of the solution in terms of the Navier eigenvectors and
determination of the eigenfrequencies from the frequency equation defined by the existing
boundary conditions. In some cases the solution of the problem required the use of
arguments from complex analysis and complicated numerical schemes.

In this work we present the analysis concerning the mathematical formulation of the
general problem, in which the system under consideration is assumed to constitute a
stratified spherical medium. In particular we study the elastic, isotropic and homogeneous
human skull under an external stimulus. Our results can be extended to other systems as
they are presented in [10]. The methodology we follow includes determination of the
eigenvectors of the homogeneous system and computation of the displacement fields when a
Dirac force in space and time is applied on the external surface of the human skull.

2. Problem Formulation
The system under consideration is shown in Fig. 1. There exist n elastic spherical layers
simulating the several regions of the human skull. Every spherical layer of the model is



assumed to be filled with an isotropic, homogeneous, elastic material. The well - posedness
of the problem requires the satisfaction of suitable boundary conditions on the discontinuity
surfaces of the system.

Our goal is the determination of the response of the system when a Dirac force, in space
and time, is applied on it. More precisely, we suppose that the system is subjected to an
external force F(r,t)= F,0(r —r,)d(t), per unit mass, where F, is an arbitrary vector and
T is an arbitrary point of region V.. It is noticed here that response of the system to more
general external forces can be deduced easily from the response to the Dirac force, which
constitutes the Green function of the stimulus procedure. In addition, the position of r, can

be arbitrary but its selection depends on the nature of the external force. For the case of an
external stimulus, r; is placed very close to the external skull surface.

Figure I: Geomerry of the Human Elastic Skull

In order to study the kinematic behavior of the system, we will determine the

displacement field of every particular region. Since the region V, is an elastic one then the

motion of this region is characterized by the displacement field w,(r.r) satisfying the time -
dependent non - homogeneous equation of elasticity.
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where u., A, are Lamé’s constants, p, is the density of region V. , V is the del operator,

8 =1 only if i = j which means that ry belongs to the V; region, and repetition of a
subscript does not mean addition with respect to it

We apply Fourier transform analysis to the problem defining

Fees

a(r.m) = jur,t)ed. (2)
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We suppress the dependence of previous transformed functions on their argument @
and taking advantage of Fourier transform properties we get equations involving the
transformed functions from the equations governing the initial fields.

For every region V, we obtain

1V (r) + (A + V(Y - (0) + piw’i (r) = -pi 8 F,8(r - rp). (3)
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which characterize completely the
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The differential equations governing materials motion take the dimensionless form

¢V a(r )+ (3 =IOV (Vi (P ) + Qi (r ) = -8 fgﬁa(r' -r's). 4)
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The boundary conditions for equations (4) are: the exterior surface S, is stress free,

(Tu,(r }|r_=a =0, where T is the surface traction operator [7]). Every surface S, separating
two elastic media must support equal displacement and stress fields from the two sides.
Denoting uniformly

u(r'y=ua(r), for reV
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the equation governing the displacement fields can be written through only one equation with
non-constant coefficients

¢, (r YV + [c"p r'yY —c :F]?“ (Var N+ Q% )y=- ‘F:;a S(r'—r,), reV.
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(6)
Equation (6) with the above mentioned boundary conditions is a well -posed non-
homogeneous boundary value problem.
Its solvability reduces to the corresponding homogeneous problem. More precisely, let
us consider the boundary value problem consisting of the equation
¢SV +[c , (F ) - 2|V (Vaer )+ Ri(r) =0, rev 7
and the same set of the boundary conditions satisfied by the solution of the inhomogeneous
problem. But this is exactly the problem studied in [7]. The solution of this problem is
based on the representation of the displacement field of the skull in terms of the Navier
eigenvectors [11]
2
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Where L, M, N stand for the Navier eigenvectors, given in [7].
The frequency equation is constructed by imposing the satisfaction of the boundary
conditions. This, in matrix form, is written as

Dx=0 (9)
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The elements of the above matrix are given in [7]. The existence of a non trivial solution for
(10) imposes that
det(D) =0. (11)



The problem (11) can be solved numerically and this leads to a sequence of eigenvalues
A(Q, n=123,..; k=12,3,.. ) and a sequence of the corresponding eigenvectors

@), reV, n=12,.. Iml<n k=12.3,..

Generalized Sturm - Liouville theory guarantees that the set of functions &'(r')
constitutes a complete orthogonal set of functions in the space of square integrable functions
in V. Orthogonality can be deduced by suitable application of Green's type theorem in
space V using Betti’s formulae and exploiting the boundary conditions satisfied by these
solutions.

Orthogonality is expressed through the equation

Jar @y an (' ydr'=0, n#gn orm#m ork=k . 123

Completeness of &."*(r') permits the following representation of the solution &(r') of

the non-homogeneous problem

ar'y= X &M@ artr') (13)

mom b
where summation extends over all possible values of indices n,m.k, & 'k(r'r} are the

coefficients to be determined in order for @(r') to be found which depend on the location of

the impact.
Introducing (13) in (8), we find that
Pl (S T(S3 Q) = - ‘E;':‘f S(r'—r',). (14)
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Using the orthogonality of &#"*(r') we obtain after projecting (14) on &™*(r') and

integrating over V
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functions, equation (13) can be written as
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Denoting

. 2
uf'* (r }|'aﬁr') , the norm of &#™*(#') in the space of square integrable
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We can now determine u(r',1) by taking the inverse Fourier transform of (16).

Consequently
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Using complex analysis integration arguments, we finally obtain
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The explicit form of @™*(r') in equation (18) is given by the solution of (10). As a matter

of fact
artr)y=a"t @) forreV (19)
with
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The norm lﬁ:"*ﬂ appearing in (18) can be calculated as it is shown in [ 10]
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where

), "M: o ]I” ||N"'”{r )| stand for the I’ - norms of the corresponding

functions in space V,. Details on the expressions in (20) are given in [10].

3.  Numerical Results
The homogeneous problem is solved and the eigenfrequencies Qf and the corresponding

vectors of coefficients x from the frequency equation can be found. Then the eigenvector



can be easily determined from the expansion in terms of Navier eigenvectors. A guicksort
[12] algorithm is used to order € in ascending order. Equation (18) is used to compute the
displacement fields under the state of an external Dirac force F,.

The parameters for the human skull used in our model are

E=1379x10°N/m*, v=025, p=2.132 %107 kg/m’
r=0.082m, r, =0.076m

and the parameters for the external force are

ry =(17.0,0), Fy=(1,0,0).

The results obtained for the displacement fields are shown in Fig. 2 and 3 as a function

£l

of time for =0 and 8=m/2 respectively. The time scale displayed corresponds to
0= 1r=<1000 usec and in the enclosed framed figure this is extended up to 500 usec. The
corresponding displacement fields as function of O0<@ <27 for discrete time steps are
shown in Fig. 4. The number of eigenfrequencies (&) used in (18) strongly influences the
convergence of the computed displacement fields as it is shown in Fig. 5. In our
computations we have used the first 44 eigenfrequencies and we have computed 45

eigenfrequencies for 0 < n <20 and 0.0< Q% <100.

4. Conclusions

We have presented a method for the computation of the response of the human skull to an
external stimulus. The method is based on the fact that the elastic medium is stratified and
can be extended to any morphology of the human head - neck system. However, the
complexity of its geometry and material behavior lead to much more difficult mathematical
and numerical manipulations which are cited in [10].
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Figure 2: Displacements u,,u,,u, as a function of time
(r=r, @=n/2, 8=0).
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Figure 3: Displacements u,, u,,l, as a function of time
(r=n, p=n/2, 0=rx/2).
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Figure 4: Displacements u,,u,,u, for r=r,
(A: @=m, t=0.0004sec, B: 8=x/2, t =0.0003sec)




Figure 5: Convergence of u, as a function of time z for k'=14,24,44.
(r=n, 86=x/2, p=nr/2)
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