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1 Introduction

The initial value problem for the Nonlinear Schridinger equation with cubic
nonlinearity (NLS), i.e. the problem of determining a complex-valued function
u = ulz,t), x € R4t = 0, such that

ue = iAu+ijuPu, reRY t20, u(z,0)=ulz), zeRY (L1

where 1 < d < 3 and wuy is given, occurs frequently in Mathematical Physics,
e.g. in the theory of water waves for d = 1, in nonlinear optics for d = 2, and
in plasma waves for d = 3. For d = 1 (1.1) is globally well-posed. If, however, d
is greater or equal to the critical value 2, it is generally only locally well-posed,
[2]. 4], and possesses singular solutions that blow up in L™ in finite time: cf.
Ch. 7 of [2] and its references.

The details of this blow-up have been intensely studied in the last twenty
vears or so, by analvtic. asymptotie, and numerical means. Many advances
have been made by Zakharov and his co-workers, cf., e.g., [5], and by a group
including Papanicolaou, C. Sulem, P.L. Sulem, and their collaborators, ef..
e.g.. [7]. [6]. As a result of the work of these groups (especially of their asymp-
totic and numerieal computations by means of change-of-variables, or ‘dynamic
rescaling” techniques). detailed characteristics of the blow-up of radially sym-
metric solutions of (1.1) are by now well understood. As an alternative to
dynamic rescaling and asvmptotic techniques, one could try to approximate
singular solutions of the NLS by direct numerical integration of the p.d.e.. In
[1] we tracked the blow-up of radial solutions of (1.1) for ¢ = 3 and 2 using
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a simple fullv discrete Galerkin finite element method. equipped with suit-
able adaptive spatial and temporal mesh refinement mechanisms. In Section 2
below we briefly describe the numerical technique and the main results of [1].

A natural question in blow-up problems is whether the development of
singularities can be prevented by the addition of dissipative terms in the equa-
tion. In Section 3 we test numerically the stability of the blow-up of radial
singular solutions of the NLS for d = 3 and 2, when the damping term —du
(6 small and positive) is added to the right-hand side of the p.d.e. in (1.1).
We conclude that damping of a small size does not prevent the formation of
singularities, even in the critical case, thus verifyving and complementing the
theory of M. Tsutsumi, [9], which is valid for d = 3. We also present numerical
results on the decay of solutions, for large values of 4, as ¢ grows.

2 Numerical approximation of blow-up

Let r = (] +-+- + xﬁ}é. For d = 3 and 2 we shall approximate radially
symmetric solutions u = u(r.t) of (1.1) that blow up at r = 0 as ¢t T ¢*
while decaying exponentially for all ¢ > 0 as r — oc. For this purpose we
shall solve numerically the NLS on a finite interval 0 < r < R, with R large
enough, assuming w( R, ) = 0. To normalize matters we scale the radial variable
r +— r/R. and thus consider the problem

d—1
U = it + ——uy) + iluffu, 0<r<1, t=0, (2.1)
ur(0,8) =0, u(l,t) =0, t >0, (2.2)
u(r,0) =v(r):==u(rR), 0<r <1, (2.3)
where = = 1/R*. If v is sufficiently smooth, this problem has a unique smooth

solution u, at least in a finite temporal interval. where u conserves its L? norm
and the Hamiltonian, i.e. where

1
||u|[!Jii3=f fu(r, £)r?=1dr = ||v|?, (2.4)
o

. 1
H{u(t)) :=j; (g]ur(r, )% - E|m:r, t)| i 1dr = H(v). (2.5)

If H{v) < 0,u blows up in L™ in finite time.

To approximate (2.1)-(2.3) we use a simple fully discrete finite element
scheme. Let S, denote the continuous, complex-valued functions on [0.1] that
vanish at r = 1 and are piecewise linear relative to the arbitrary partition
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O=ry <r <--- < ry=1, where h := max;(rj;; — r;).- Then, given a
constant —for the time being— time step k, we compute, for n =0,1,2, ...
functions ['™ € S, that approximate the solution of (2.1)-(2.3) at t" = nk and
satisfv for all x € 5. with v = (vt 4 0" /2,

(U™ - U7 ) + ike@RHE x) = R (UHPUH ), (@26)

where (g, x) := fﬂl o(r)x(r)r®='dr, and U? is taken as the L? projection of v
on Sy. It may be shown that (2.6) yields L?—norm conserving approximations
U™, which, if u is smooth, are accurate to O(k* + h*) in L%, A simple explicit-
implicit iterative scheme is used for solving the nonlinear system in (2.6) for
each n. and vields accurate and stable approximations to the solution of (2.1)-
(2.3). For details and error estimates, cf. [1] and its references.

Anticipating that u blows up at v = (t we implemented this scheme in an
adaptive code using spatial and temporal meshes that can change with n. As
t T t* the spatial mesh is refined drastically in the vicinity of r = 0 by halving
the meshlength in a variable length interval Iy = [0.5] that always contains
200 meshpoints. The meshlength is gradually increased as r increases. The
spatial mesh is refined depending on a local L™= — L? inverse inequality that
allows the solution to grow in L* on Ij. The time step is halved at some t",
when a suitably scaled version of the invariant H changes too much between
t" and t"*'. For details of this refinement scheme we refer to [1]; therein we
computed rates of blow-up of the amplitude and the phase of u at r = 0, and
of several norms of u as ¢t T #* for various examples for d = 3 and 2. In the
rest of this section we shall report our results for two examples from [1] to give
the reader some idea about the quality of the data and set the stage for the
computations of Section 3.

In the three-dimensional case, it is shown in [7] and [5] that radial solutions
of (1.1} emanating from various types of initial profiles evolve into self-similar
solutions that blow up as ¢t T ¢ as u(r,t) ~ = 1:-'3 ([Lf’;%) i
where @ : (0,2¢) — C is a bounded, smooth function and x = 0.545. To test
the direct code we computed with initial profile

v(r) =6v2e~5, 0<r<i, (2.7)

(R = 5) for which H{v) = —0.878 (Test problem ‘G3'). We took initially
h=107%, %k = 1074, By the final ‘blow-up’ time t* = 0.03429946 the amplitude
at r = 0 had risen to about .661 x 10'?, the code having refined in space 35
times with last time step about .847 x 10~2%. In the first four columns of Table
1 we record, at the times t™ of the i*! spatial refinement, the computed rates g,
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Table 1: Blow-up rates, Test problem G3.
T I T = 1 5 [ I | =
10 | 12385 | 50041 | 24827 | 100052 | 534028
15 | (12495 | 49996 | 24992 09956 | 54518
20 | 12500 | 530019 | 25000 09962 | 54496
25 | 12500 | 49965 | 25000 | 1.0006T7 | 54509
T ] 12498 | 49994 | 24950 B993T | (54485

Table 2: Blow-up rates, Test problem G2.

i L3 3 = i, L=

16 | 16677 | 25047 | 50133 | 50093 | 1.00303
16 | 16671 | .25029 | .50080 | 50059 | 1.00173
20 | 16667 | 25023 | .30060 | .50036 | 1.00161
22 | 16664 | 25010 | 50039 | 50021 | 1.00144
24 | 16662 | 25005 | 50026 | (50009 | 1.00073
26 | (16660 | 24993 | 50013 | 49999 | L.00032
28 | (16651 | .24986 | 49982 | 49971 99977

of blow-up of various functionals of the solution which are assumed to behave
like (t* —t)~® as t T t*. Specifically, we show the blow-up rates of the L and
L™ norms of u and of the L? and L™ norms of u, (columns L}, L%). The
last column contains the computed values of the phase constant « at ¢™.

We observe that the blow-up rates stabilize quite early in the computation
and are very good approximations to the expected values 1/8,1/2.1/4 and
1. In particular, the blow-up rate p = 1,/2 for the amplitude and the phase
constant & == (1.545 are recovered clearly.

In the harder to approximate critical case d = 2, computing again with
the same initial value (2.7), for which now H(v) = —11.52 (Test problem
‘G2'), taking initially h = 1/1600, k = 0.8 x 109, we observed that the code
performed 34 spatial mesh refinements before stopping at a final, ‘blow-up’
time #* = 0.04208920 reaching an amplitude at r = 0 of about .258 x 10'?
with last temporal step equal to 0.108 x 10~?*. The data of this run produced
the blow-up rates of Table 2, which should be interpreted as follows: In the
two-dimensional case, it is well known, [6]. [5]. that the amplitude at r = 0
behaves basically like (t* — t]"} but is perturbed by a factor that tends slowly
to infinity as ¢ T £*. As £ gets extremely close to 7, it is by now well known

that the rate is (Inln =i /(t* —£)) %, [6]. In [1] we verified this result assuming
that various functionals of the solution behave like [F(t* — t)/(t* — t)]'/? as
t 71", and comparing the data produced by the code for several choices of F

proposed in the literature. We found that with F(s) = lnln1/s the rates for
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Table 3: Blow-up rates. Test problem G3, d = 2.
S I= m
16 | 12485 | 49943 | .24975 00090 | 54369
18 | .12516 | 30005 | 25032 | 1.00255 | .54439
2486 | 49940 | 24977 89084 | 54383
12494 | 49993 | 24990 | 1.00049 | 54482
12518 | 30070 | (25027 | 1.00182 | .54332
2481 | 50005 | 24979 | 1.00089 | 54308
12513 | 50087 | (25028 | 1.00289 | 54452
12500 | 50003 | 25002 | 1.00085 | 54526

EERERE

the amplitude at r = 0 (L.e. the L™ norm of u) stabilize closer to 1/2 than
with any other law that we tried. In Table 2 we list the values of p that we
obtained for the L?, L* and L™ norms of u and the L? and L norms of u, at
the i*" spatial mesh refinement instance. Not shown here are the computations
of the rate of blow-up of the phase at r = 0, which are much more delicate in
d=2,cf [1].

3 The effect of dissipation
We consider the damped analog of (1.1) given by

ur = iAu + ilu|*u — du, (3.1)

where § > 0 is constant, in d = 3 and 2 dimensions. It is known, cf., e.g.,
[4], that the Cauchy problem of (3.1) has, at least, a unique local solution: its
L? norm decreases exponentially with t. In addition, H now varies with ¢ and
might change sign. It is of interest then to ask. for example, whether initial
data with H < 0 can lead to a globally well-posed problem. If 4 is sufficiently
small, the answer seems to be negative. On the other hand, if 4 is large enough,
solutions exist globally and decay as t — =c.

As in Section 2, we shall compute, with an analogous numerical method
to the one outlined therein, solutions of the radial p.d.e.

-1
Uy = i(ttpr + ue) +ijulfu—du, 0<r<1, £20, (3.2)
supplemented by the boundary and initial conditions (2.2) and (2.3). Note
that, for temporal intervals for which a, say, H'! solution of (3.2) exists, the
L? norm of u decays exponentially with ¢, i.e. that ||u(t)]| = e~%|lv|, while
the Hamiltonian H{t) = H{u(t)) (given by (2.5)) is no longer constant but

satisfies the equation % 4 94H = 5||u{t}'_|i,,, t>0.

-
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For d = 3 the Cauchy problem for (3.1) with suitable up € H' has been
studied by M. Tsutsumi, [9], who proves that if [L.([Vuo|* — lug|V)dx <0,
and Im [., = - Vugiidz > 0. then, if § is small enough. u blows up in L™ as
t 1 t=. for some t* = t*(ug) < oo. For real-valued wug this theory is not properly
applicable; in [8] an analogous result is announced (for the initial-boundary
value problem on a bounded domain, with zero Dirichlet boundary condition)
which is valid for real uy as well.

In our numerical experiments in 3d we tested various initial profiles, and,
as expected, we observed that, for small enough 4, the solutions blew up in
finite time. For example, for the initial data (2.7) (Test problem G3), the value
§ = 2 leads to blow-up at the origin at ¢* = 0.03588262. (Although ||ul| and H
now changed with ¢, we still used them in the mesh refinement criteria. This
did not seem to present any problems; with initial values h = 1073 k = 1073,
the code was able to refine 38 times in space and quit at a maximum amplitude
of about .538 x 10'? with a final time step of .169 x 107%°.) In Table 3 we list
the blow-up rates and & (¢f. Table 1) that we obtained.

Comparing tables 1 and 3 one may observe that although the blow-up
rate data for the dissipative problem is slightly less robust, nevertheless the
rates are identical to three digits. This is not surprising of course as a simple
scaling argument shows: changing variablesto v’ = u/Uy, ' = r/Ry, t' = t/ RS
transforms (3.2) to uf, = iz (ul.. + Stul) + iR3US |u'|*u’ — 6RZu’ . Close to
blow-up, tvpical values (cf. graphs in [1]) are By = 107, Uy = 10)*. Hence, the
coefficient of the damping term is smaller by at least a factor of 10'* than the
coefficient of the Laplacian and the nonlinear term in the p.d.e. We conclude
that, if blow-up occurs, the dissipative term does not contribute much to the
asvmptotics of the blow-up. except in delaying t* a bit.

In the critical case d = 2 we are not aware of any rizorous results concerning
the blow-up of solutions in the presence of small damping. The argument in
3] is heuristie, while the theory in [9] does not cover the 2 dim. case.

As in the undamped case, the 2 dim. equation is much harder to integrate
numerically. In addition to the difficulties associated with the slow-down and
the t—dependence of the L? norm and H(¢), we observed in all the examples
we ran that much smaller values of § were needed to lead to ‘definite’ blow-
up. For example, for v as in Test problem G2. taking § = 0.05 (with initial
h = 1/1200,k = 1.5 x 10~%) led to blow-up at about t* = 0.04034782 (note
again the delay caused by damping). By that time, the code had achieved a
maximum amplitude of .241 x 10** with 31 spatial refinements and a final time
step of .416 x 10™%', The computed blow-up rates (with the log log correction
factor as in section 2) are given in Table 4. Thev are slightly higher than
the analogous values of Table 2. One might be tempted to conclude that
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Table 4: Blow-up rates. Test problem G2, 6 = 0.05
7 i i L= % =

12 | 16737 | 25214 | 50510 | 50420 | 1.01080
14 | 16758 | 25197 | .50459 | 50395 | 1.004908
16 | 16772 | (25199 | 50450 | 50399 | L.00913
18 | 16795 | (25225 | 50496 | .50453 | 1.01009
20 | 16825 | (25266 | 505671 | 50533 | 1.01148

Table 5: Exponential decay rates. Test problem G3, 4 = 40.

[ 12 T 7 = I3, e
D02 | —40.00 | —39.21 | —38.33 | —30.74 | —a8.12 | —23.23 |
0.06 | —40.00 | —39.62 | —39.33 | —40.89 | —39.56 | —35.37
0.10 | —40.00 | —40.44 | —40.90 | —43.86 | —40.00 | —45.03
0.14 | —40.00 | —40.89 | —41.55 | =44.11 | =40.00 | —45.06
018 | —40.00 | —41.10 | —41.77 | —43.82 | —40.00 | —44.47

dissipation changes shightly the blow-up rates in the critical case. However, it
is most likely that with the rates already modified by a log log factor, the effect
of damping persists for longer times. Hence, to compute the correct third digit
in the rates one should venture further in the asymptotic regime, closer to t*
than our code allowed.

We turn now to a brief report of our computations on the decay of solutions
of the damped (radial) NLS. We performed a number of numerical experiments
to investigate the deecay of radial solutions with large initial data for various
values of 4. In one example for d = 3 we let the initial profile (2.7) (Problem
G3) evolve under (3.2) with § = 40, computing with h = 1073,k = 10~% up
to t = 0.2, The solution started to decay immediately and its maximum am-
plitude at ¢ = 0.2 was about 0.242 x 1072, In Table 5 we record computed
exponential decay rates of various norms of u and u, vs. t. The rates approx-
imate well the expected value —40 even for small . The harder to compute
(pointwise) L and LE norms probably require longer time spans to stabilize.
The analogous test for d = 2 vielded similar, albeit more robust, decay rates.

Finally, in Figure 1 we plot the amplitude of the solution at the origin vs. ¢
for Test problem G3 for various values of 4. For § = 0, 2, 16 we observed definite
blow-up, while for 4 = 18,20, and 40 the solution decayed. As expected, the
rate of decay is clearly exponential from the beginning for 4 = 40 but requires
longer times to be established for § = 18 and 20. It is hard to narrow further
the interval 16 < § < 18 where the transition from blow-up to global existence
and decay apparently occurs.
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Figure 1: |u(0,t)| as a function of . Test problem G3, § =0, 2, 16, 18, 20, 40.
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