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Abstract

We consider the initiz'- -alue problem for the radially symmetric nonlinear Schridinger
equation with cubic nonlinzarity (NLS) in d = 2 and 3 space dimensions. To approximate
smooth solutions of this problem, we construct and analyze a class of numerical methods
based on a standard Galerkin finite element spatial discretization and on suitable implicit
Runge-Kutta time-stepping procedures. We then equip one of these schemes with an
adaptive, spatial and temporal mesh refinement mechanism that enables the numerical
technique to approximate well singular solutions of the NLS that blow up at the origin
as the temporal variable f tends from below to a finite value t*. For the blow-up of
the amplitude of the solution we recover the well-known rates (t* — t)~% for d = 3 and
[Inln == /(t* — £)]"/? for d = 2. The scheme also approximates well the details of the
blow-up of the phase of the solution at the origin as ¢ — ¢*.

Keywords. Nonlinear Schri dinger equation, point blow-up, finite element methods, adaptive
mesh refinement.
AMS subject classifications: 65M60, 656050, 350)55.

1. INTRODUCTION

The nonlinear Schridinger equation with cubic nonlinearity (henceforth referred to as
“NLS equation™) is given by

up = iAu+iju’u, reR?, t>0, (1.1a)
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wherein u is a complex-valued function of the ‘spatial’ variable z € R%. d = 1,2, 3, and of the
‘temporal’ variable ¢t = 0. The equation occurs frequently in various areas of Mathematical
Physics, posed as an initial-value problem with given initial condition

u(z,0) = u%(z), =zeR% (1.1b)

For example, for d = 1 it arises as an envelope equation in water wave theory. [Ne|. In two space
dimensions it occurs in nonlinear optics, where it describes in certain regimes the propagation
of electromagnetic beams in media whose index or refraction depends on the amplitude of the
field in a simple nonlinear way, [CGT], [Ta]. For d = 3 it is obtained as a limiting case of
Zakharov's model of Langmuir waves, [Za]. For a review of various mathematical and physical
aspects of the problem (1.1a-b) see [CH], [Str], [RR] and the references therein.

It is not hard to see that for d = 1 the initial-value problem (1.1a-b) is globally well-posed
for smooth enough initial data that decays sufficiently fast at infinity. It is also well known
that in this case it can be solved by the inverse scattering transform, [Ne]. For d = 2, 3 we have
local existence, cf. e.g. [GV], [Ka]. and global existence for suitably restricted initial data,
[CH], [We]. It is also well known that for d > 2 there exist singular solutions which blow up
in L* in finite time, [Gl]. The blow-up in the critical, two-dimensional case is usually referred
to as “self-trapping” or “self-‘ocusing”, [CGT], [Ta|, whereas the blow-up in the supercritical,
three-dimensional case is sometimes referred to as “collapse”, [Za).

In this paper we shall be interested in the numerical approximation of radially symmetric
solutions of the initial-valued problem for the NLS in d = 2 and 3 dimensions. We make
therefore the hypothesis that the function u? in the initial condition (1.1b) and, consequently,
the solution of (1.1a) are radially symmetric, i.e., that u = u(r,t) for = 0, where r = |2| =
(z} +--- + z2)2. Hence our problem becomes

d-1
Up = iUpr + ue) +iful’u, r>0, t>0, (1.2a)
ur(0,8) =0, t=0, (1.2b)
u(r,0) = u’(r), r=0. (1.2¢)

It is straightforward to check that the L? norm and the Hamiltonian of the solution of (1.1a-b)

are conserved. In the presence of radial svmmetry, i.e. for problem (1.2a-c), these invariants
are

f lu(r, t)*r®tdr = const. for ¢ > 0, (1.3)
0

= =]
f (|u,,[r,t)|2 - %|u{r._ t}|“") r4~1dr = const. for t > 0. (1.4)
0

In recent vears there has appeared a considerable amount of work aimed at describing in
detail, by numerical and asymptotic means, the characteristics of the blow-up of solutions of
(1.2 a-c) for d = 3 and 2. We refer the reader to a series of publications, [SSP], [McPSS],
[LePSS1], [LePSS2], [LPSS], [LePSS3]. [LPSSW] of a group including Papanicolaou, C. Sulem,
P.L. Sulem and their co-workers. We also refer to the work of the group of Zakharov and his
co-workers, which went on for many vears and was conveniently summarized in [KSZ]; this
paper also contains references to earlier Russian work on the subject. For more recent work
in the critical case cf. [Ma], [Fi], [FP].

The main characteristics of the blow-up singularity in the presence of radial symmetry
for d = 3 are by now well understood. The problem was studied in [McPSS| by use of a



numerical technique that employs “dynamic rescaling”. a time-dependent change of scales of
the solution and the independent variables of (1.2a). The scaling factors are chosen so that
suitable functionals of the solution are preserved. It turns out that the transformed dependent
variable satisfies a p.d.e. with global solution. This equation is integrated numerically and the
details of the blow-up are inferred from the long-time asymptotics of the numerical solution and
the scale factors. In this manner, it was concluded in [McPSS] that singular radial solutions in
d = 3 dimensions blow up at the origin with an amplitude peak that grows like (t* — t]‘% ast
approaches the blow-up time #* < oo. The computations also provided additional information
on the basis of which further conclusions were drawn in [McPSS] on the details of the self-
similar structure and the singularity of the phase of the solution as ¢t T t*. Some of these
features of the blow-up had been predicted by Zakharov [Za]: see [KSZ] for an account of the
largely parallel and analogous work of the Russian school on three-dimensional collapse.

In the two-dimensional case, still for radially symmetric solutions, earlier conclusions in
the literature on the blow-up rate of the amplitude, based on numerical and asymptotic
computations, varied substantially. This is not surprising: d = 2 is the critical dimension
case for the cubic nonlinearity, and the blow-up slows down somewhat, making the numerical
integration of the equation harder. Thus, a (t* — )%/ law for the blow-up of the amplitude

was conjectured in [ZS] and [SSP], while |In vaz (t* — tjl]i was put forward in [VPT) and

[Wo]. It soon became apparcnt that the amplitude behaved grosso modo like (t* — f}'i but
that this behavior was perturbed by a slower varving factor. Using computational (dynamic
rescaling) evidence and asymptotic techniques LeMesurier ef al, [LePSS1], suggested the form
F(tr—t)/(t" - r]i wherein, as s | 0, F(s) tends to infinity more slowly than (In %}‘-“ for any
v > 0. Finally, in [LPSS] and [LePSS3] it was concluded that the rate is [Inln 1= /(t* —)]1/2.
This rate had been predicted by Fraiman, [Fr], [SF], on the basis of asymptotic estimates. The
Zakharov group favored rates of the form [(In 7z5)7 /(t*—t)]*/? for 0.35 < v < 0.65, depending
on the initial conditions, [KSZ], but estimated that the loglog rate probably obtains for ¢
extremely close to *. The latter conclusion is still maintained in the recent papers [Ma), [Fi],
[FP], where new, ‘adiabatic’ rates, which describe accurately the blow-up in its earlier stages
and agree asvmptotically with the loglog law, are proposed.

As an alternative to change of variables and asymptotic techniques one could trv to ap-
proximate singular solutions of (1.2) by direct numerical integration of the p.d.e. in the r.f,u
variables. In the past such direct numerical simulations were used e.g. in [VPT] (see also the
references in [KSZ]), [Wol, [SSP], [TSs]. As the solution blows up, its accurate approximation
requires using extremely fine adaptive grids in the spatial variable around the blow-up point,
and radically decreasing the time step sizes as t approaches *. Avoiding the deterioration of
the numerical results due to roundoff errors in computing the solution and various quantities of
interest derived therefrom (such as blow-up rates), becomes then an overarching consideration,
as pointed out by the authors of [KSZ] in their critique of direct integration techniques.

In this paper we shall approximate the solution of (1.2a-b-c) for d = 2 and 3 by an adaptive
version of a member of a class of fully discrete numerical schemes based on a Galerkin finite
element discretization in the radial variable on a finite interval, coupled with implicit Runge-
Kutta time-stepping procedures. In section 2 we address issues of existence, stability and order
of convergence of these methods and outline briefly the proofs of the relevant error estimates,
which are extensions to the radial case of results that may be found in [ADK1], [KAD],
[ADK2]. All our theoretical error estimates hold under the hypotheses that the solution of
(1.2) is smooth and the spatial and temporal mesh sizes are fixed. However this will not
deter us from proposing suitably adaptive versions of these methods and trying our hand in



approximating with them zolutions of the radial problem that blow up at the origin in finite
time.

The spatial adaptive technique, described in detail in section 3, consists of a mechanism of
reducing automatically the spatial mesh size in the neighborhood of the origin, as the solution
steepens, by means of a check on a local L>= — L? inverse inequality satisfied by members of
the finite element subspace. The criterion for cutting the time step is based on controlling
a suitably normalized version of the second invariant (Hamiltonian) of the problem. We
found that the adaptive mechanism worked well in three as well as two dimensions, allowing
numerical solutions to reach maximum values of the ratio [u(0,t)|/|u®(0)| of “final” to initial
amplitude at the origin of up to O(10'®) for ¢ extremely close to the blow-up time *.

In section 4 we consider tl:¢ three-dimensional case and report on our numerical computa-
tions of rates of blow-up of the amplitude, of various norms of the solution, and of its phase
as t — t*. Payving particular attention to the numerical stability of these rate computations,
we verify, using several types of initial profiles. the amplitude blow-up law (" — t}‘lz and
reproduce accurately the value of the constant x, cf. [McPSS], [KSZ], that occurs, e.g., in the
formula for the singularity of the phase of the solution. i.e. in the expression exp (t'h: In t—l_t)
as t — £*.

In section 5 we turn to the two-dimensional case. We test several laws for the blow-up rate
of the amplitude against the results of our numerical simulations for ¢ extremely close to t*.
Our conclusion is that the log log rate of [LPSS], [LePSS3], [Fr], provides a highly accurate
fit to our data. The descript’on of the phase singularity turns out to be quite a challenging
problem in two dimensions, cf. [LPSS]. We were able to confirm that the approximate value
of the constant A occurring e.g. in the expression of the phase of the singular solution at r = 0

(which, to first-order terms, is exp (ﬁlﬂt—j‘_t Inln t.—l_t) according to [LPSS]) is equal to ,
something that was predicted on the basis of a “descent” argument from higher dimensions
in [LPSS| but not actually seen in numerical simulations of the evolution equation in that
work. (That the constant is equal to 7 can also be predicted by more ‘physical’, asymptotic
arguments, cf., e.g., [Ma).)

We close with a section of conclusions and comments on other related research directions.
A preliminary report of some of the results of this paper appeared in [ADKMc].

2. FULLY DISCRETE GALERKIN METHODS FOR THE
RADIAL PROBLEM

In this section we consider the radial problem (1.2) posed on a finite interval 0 < r < R
with zero Dirichlet boundary condition at r = R, i.e. the initial- and boundary-value problem

e = i(itpr + up) +ilul’y, 0<r<R, 0<t<T, (2.1a)
u(0,8) =0, 0<t<T, (2.1b)
u(R,t)=0, 0<t<T, (2.1¢)

u(r,0) =u’(r), 0<r<R (2.1d)

where d = 2 or 3. In the sequel we shall denote L” norms, 1 < p < oo, of radial functions

defined on [0, R] by
. :
I ( / |u{r}|Pr**-1dr)
[i]
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and put |lu| = [|ullz2, [lullt= = ess supg<,<glu(r)|. The L? inner product fﬂR u(ryo(rirt—ldr
of two complex-valued radial functions will be denoted by (u, v). The solution of the problem
(2.1) also conserves the analogs of (1.3) and (1.4) which, in the present context. become for
0<t<T:

()l = I, (2.2

2 1 a 1
H(u(t)) := [lur(t)]* - §![H!I1« = H(u’) := [[ul]]? - Ellﬂﬂllie- (2.3)

We shall approximate the solution of (2.1) by fully discrete Galerkin-finite element meth-
ods that use continuous piecewise polynomial functions in the radial variable; the temporal
discretization will be effected by a class of implicit Runge-Kutta schemes. The stability and
convergence of such methods have been analyzed in detail in [ADK1] and [KAD] for the NLS
in Cartesian coordinates. Although there are several instances where the techniques of the
convergence proof in the racial case depart from their counterparts in [KAD], the overall
scheme of proof remains basically the same with that of the latter reference. In this section we
shall therefore establish notation and state our results without proof, providing where needed
some commentary and pointing out differences between the radial and the Cartesian cases.
Qur theoretical results on the rate of convergence of the methods require that the solution
of (2.1) is sufficiently smooth in [0, B] x [0, T], that the radial mesh is quasiuniform and the
time step is constant. However, in subsequent sections we shall use adaptive versions of our
bhase scheme to approximate the singular solutions as they blow up. This will require drastic
local refinement of the radial mesh and fast reduction of the temporal step to extremely small
values. There is as yvet no satisfactory convergence theory available for such adaptive schemes.

Let 0 =rg <r; <---<ry = R be a quasiuniform partition of [0, R] with h = max;(r; —
ri—1). For integer s > 2 let 57 be the space of complex-valued continuous functions on [0, R]
that vanish at r = R and are polynomials of degree at most s — 1 on each interval (ri—1,7;),
1 <i < N. We seek first a semidiscrete approximation uy(r.t) € S§ to u(r.t) for each
t € [0,T]. This is defined in the customary way as a map up : [0,T] — S} satisfying the
equations

(uhes X) + ia(up, x) = i(Jun/*up,x) ¥x €85, 0<t<T, (2.4a)

ur(0) = uj, (2.4b)

where a(u,v) = fﬁR rd—Lly,T.dr. and uﬂ is chosen so that
[u® —uR]| < ek’ (2.5)

For example, u}, could be the L? projection of u° onto S;. In (2.5) and in the sequel the generic
¢ will denote positive constants independent of the discretization parameters but possibly
depending on the solution of (2.1). Note that the condition u.(0,t) = 0 is not imposed on
the subspace and disappears from the variational formulation. It is not hard to see that the
solution wup(f) of the system of ordinary differential equations represented by (2.4) exists at
least locally and satisfies the discrete analogs of the conservation laws (2.2) and (2.3).

To estimate the error uy — u we define the elliptic projection Ppw of a function w of the
space H!, the set of continuous radial functions on (0, R] that vanish at = R and satisfy
|lwe|| < oc, as the map Pg : H' — S§§ satisfying

a{Ppw,x) = alw,x) Yx €S;.
It may be seen, cf. [ETh], [SE], that Prw exists uniquely and satisfies

|lw — Pewl|| < ch®[w'®]), (2.6)



where w'®) denotes the s*® (radial) derivative of w. It should be noted that for Lagrangian finite
element spaces an interpolant is constructed in [TSsM] that permits proving (2.6) for general,
i.e. not necessarily quasiuniform. meshes. However the quasiuniformity assumption expedites
the error estimation (especiallv in the convergence theory of the fully discrete approximations
to follow) in that it implies the inverse inequality

|vhllze < ch~|[vy]| for vy € S, (2.7)

that will be used in the error estimates to follow.

Arguing now along the lines of the proof of Theorem 2.1 of [ADK1], we compare the
semidiscrete approximation wuy to the solution of a perturbed semidiscretization of (2.1) that
is defined by replacing the nonlinear term in the right-hand side of (2.4a) by a suitably cut-
off globally Lipschitz approximation thereof. Using (2.7) and the properties of the elliptic

projection operator, we may then prove the following L? optimal rate of convergence error
estimate.

Theorem 2.1 Suppose u, the solution of (2.1), is sufficiently smooth on [0, R] %[0, T]. Then, if
uﬁ satisfies (2.5) the solution uy(t) of (2.4a.b) exists unigquely in Sf for 0 <t < T. Moreover,
there erists a constant ¢ such that

max_[[u(t) — un(t)]| < ch®. (2.8)

0<t<T

O

(It should be noted that in [TSsM], an error estimate like (2.8) is established for Lagrange-
type finite element spaces under the assumption that h < C(min;(r; — ri—1))?, where 0 is any
number in (0.1).)

We turn now to temporal discretizations of (2.4). For this purpose we shall use implicit
Runge-Kutta methods because of their favorable stability properties and high order of accu-
racy. Let k be the (constant in this section) time step and let t" = nk, n = 0,1,2,...,J,
Jk = T. For q > 1, a g-stage Implicit Runge-Kutta (IRK) method is defined by a set of
g° + 2q real constants, [Bu], arranged as elements of a g x g matrix A = (a;;) and two vectors
(b1,....bg)T and (71,...,74)7. Given the initial-value problem dy/dt = f(t,y), 0 <t < T,
»(0) = 3°, the IRK methods generate approximations 3" to y(t") by the formulas

g
y Y=yt kY am fEV YY), 1< <,

m=1

S=Pank 1<j<yg, (2.9)

4
yl‘:ii =y + kzbj_f(t”.y”]l
=1

We shall assume that these methods satisfy certain stability and accuracy conditions. In
particular, we require that the methods be algebraically stable, [Bu), i.e. thatb; = 0,1 <i < g,
and that the g x ¢ matrix with elements m;; := a;;b; + a;;b; — bib; is positive semidefinite. The
accuracy conditions that we shall assume to hold are known as simplifying assumptions, [Bu],
and state that there exist integers v, p.p > 1 withv < p+p+1, v < 2p+ 2 such that

g

1
Y birt=—0 0<f<v-1,
! £+1
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£+1

q
Y ayrh = = 1sise 0sisp-1

=

=

j=1
q b
D eyt = - (1-7f"),1<j <02 4<p-1.

i=1 )

We shall refer to p and v as the stage order, and the classical order, respectively, of the IRK
method. The simplifving assumptions imply that for smooth f, we have y(t") — y"™ = O(k"),
i.e. that the error decreases at a rate equal to the classical order. Finally, eristence of solutions
of the g x ¢ nonlinear system defining the intermediate stages y™/ will follow for our problem
if we assume a positivity property [DV], [CHS], namely that the matrix A = (a;;) is invertible
and there exists a g x g positive diagonal matrix D such that DA~ D~ is positive definite. The
class of IRK schemes that satisfy the above properties includes the Gauss-Legendre methods,
for which » = 2g, p = p = ¢, the Radau ITA methods (with v =2¢—-1, p=¢g, p=¢g—-1),
ete. For other examples and further remarks ¢f. [KAD|. It should be added that the Gauss-
Legendre schemes are conservative in the sense that they satisfy m;; = 0. where m;; are the
entries of the matrix intervening in the definition of algebraic stability. This property will
imply that our fully discrete approximations, to be defined presently, are conservative in the
L? sense.

Applying now the IRK method (2.9) to the semidiscrete system (2.4) yields our base time-
stepping scheme as follows: Let U™ € 5} be the fully discrete approximation to ux (") (or
u(z,t")). Then, an approximation U™ to w,(t""!) is computed in terms of g functions
U™ g 585, 1< j < g, the intermediate stages of the scheme, according to

u? =, (2.10a)

forn=0,1,2....0J=-1:

q
Lrn.,j ="+ k Z ﬂrjmfh{Lm‘m)n 1<j<g, I:il{]b}
ma=]
q .
Ut = U 4 ke Z b; fr(U™). (2.10¢)
i=1

In these formulas we have put f, = i(Ap + gx), where Ay, g : S — S} are, respectively,
the approximation of the Laplacian in radial coordinates and the nonlinear map. defined for
v € 8} by (A, x) = alp, X3, (gn(9).x) = (lele.x) ¥x € Sh.

Existence of solutions of the nonlinear system represented by (2.10b) can be proved (en-
tirely analogously to the argument in Proposition 3.1 of [KAD]) using the Brouwer fixed point
theorem and the ‘positivity’ property of the IRK method. In addition, as a consequence of
the algebraic stability of the scheme, we may prove, essentially as in Proposition 3.2 of [KAD],
that the solutions of (2.10) satisfy

ot < jut, n=0.1,....J-1, (2.11)

in the radial case as well. Indeed, for conservative methods such as the Gauss-Legendre, (2.11)
is an equality.

We turn now to estimating the error u(t") — U™ in the L? norm. It is well known that
approximating smooth solutions of initial- and boundary-value problems of some p.d.e.’s by
high order Runge-Kutta methods results sometimes in observed temporal rates of convergence



lower than the classical order v, cf. e.g. [Cr], [DV], [CBT]. It was shown in [KAD] that if 0 is
a bounded domain with smooth boundary in B? and we consider the initial- and boundary-
value problem for the NLS in {2 with Dirichlet boundary conditions on 8¢ assuming that u is
smooth on {I x [0,7] and certain weak conditions on the discretization parameters, then the
L?(€)) norm of u(t") — U™ can be bounded by a quantity of O(k® + h®), where

o =min(p+3.v). (2.12)

In particular, no reduction of the classical order v occurs if v < p+ 3, as is the case with the
practically important g-stage Gauss-Legendre methods of up to three stages. In the special
case of a polyhedral domain in B¢ (interval for d = 1) (2.12) is replaced by ¢ = v, i.e. the
classical order is recovered. In the study of the temporal order of accuracy of these methods,
a key role is plaved by the degree of compatibility of the solution with the homogeneous
boundary condition on 89, cf. [KAD].

In the radial case, although the problem is univariate in space, we can onlyv prove that
the temporal component of the error decreases at the rate o given by (2.12). As in section 4
of [KAD], the proof requires the introduction of certain smooth functions a;(r), 1 <j <gq,
0 < £ < v, defined on [0, R] b the radial analogs of formulas (4.1) of [KAD]. The key idea is
then to show that aj(R)=0Ufor 1 £ j <gq,0<{ < o, with o as high as possible. We can
prove that in general ¢ = min(p + 3,v). A long series of computations following the general
scheme of proof of [KAD] finally vields the following result.

Theorem 2.2 Suppose that the solution u of (2.1) is sufficiently smooth on [0, R] x [0,T].
Then, if U% = ul satisfies (2.5) there exists a unique solution {U™}J_, of the fully discrete
scheme (2.10) satisfying
ny _ T 8
s [[u(t") = U] < o(k” + R*), (2.13)
with & given by (2.12), provided k is sufficiently small, that s > d/2 and that k = o(h%/27) as
h—0 0O

Of course, whenever an IRK method is used to generate approximations to nonlinear
evolution equations, there arises the issue of solving, at each time step, the nonlinear system
that defines the intermediate stages. In our case this is the ¢ dimS} x ¢ dimS; nonlinear
system represented by (2.10b), whose solution is {U™}, 1 < j < ¢. This system must be
solved efficiently since almost all the computational work in each time step is concentrated
there.

The numerical solution of (2.10b) involves approximating U™ for each 0 < n < J R
and 1 € j < g by a sequence of iterates U;7, £ = 1,..., bn, £y > 1. Starting values U for
the iteration may be obtained by extrapolation from previously computed steps. To generate
the U;"/ one may use Newton's method or modified versions thereof; cf. [ADK1]. [ADK2] for
the relevant analysis. Here we adopt a much simpler iterative scheme, a so-called “explicit-
implicit” method in which the terms f(I'™™) in (2.10b) are split into their linear iA,U™™
and nonlinear part igy (U™™), that are evaluated at the iteration levels £+1 and ¢, respectively.
The iterative scheme for the approximation of the U™ then becomes: Given U™, Ug” for
1<j<gq,solve for UE“J forl<j<gqby

g g
Ut —ik Y amBaUpT =U+ik > aimgn(Up™), £=0,1,....4,—1.  (2.14)

m=1 m=1

The approximation U1 is finally defined by (2.10¢) by replacing The approximation "1
is finally defined by (2.10c) by replacing U™ by their final approximations U;'”. Implementing
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(2.14) requires, at each time step t", solving systems with the linear operator I — ikAAy on
(8;)9. This system, if k is constant, has a matrix independent of n and £. Moreover, in many
cases it may decouple into ¢ independent subsystems of size dimSy, x dimSs, [ADK2]. In the
Cartesian variable case (we expect the proof to be entirely analogous in the radial case) the
following were shown in [ADK2]: Let o be given by (2.12) and put = min(p.c — 1). For
0 < j < P choose initial values U7 that approximate u(t!) in L? to O(k® + h®) accuracy.
This may be done in a variety of ways, cf. [ADK2]. At each time step n > P. compute
starting values Ué*'-f for the iteration (2.14) by a p*" degree polynomial extrapolation from
previous values U™ 7,0 € j < . Then, provided 5 > g and that kP1h~9/2 is sufficiently
small, performing £, = ¢ — p+ 1 iterations in (2.14) will vield an overall stable scheme and
produce approximations U™ to u(t") for which the L? error estimate (2.13) continues to hold.
For example, in the case of the 1—stage Gauss-Legendre scheme (the midpoint method) for
which p = 1, = 2, we see that taking § = 1 and £, = 2 will vield an overall stable fully
discrete scheme with an Q(k® + h®) L? error bound provided s > d/2 and k = o(h%/?). In the
case of the 2—stage Gauss-Legendre scheme (the (2, 2) Padé method) we have p= 2, = 4.
Here § = 2. and taking £, = 3.k = o(h%/%),s > d/2 will give a stable scheme of O(k* + h*)
accuracy in L2,

3. ADAPTIVE MESH REFINEMENT FOR THE
APPROXIMATION OF BLOW-UP

In this section we shall describe the adaptive mechanism that we used to follow the de-
velopment of a point blow-up singularity of a radially symmetric solution of the initial-value
problem of the NLS in d = 2 and 3 dimensions. We shall choose a simple base scheme among
those analyzed in the previous section. To normalize matters, we shall scale the radial variable
in the initial- and boundary-value problem (2.1) so that it takes values between zero and one.
To that effect, scaling r «— r/R, we see that (2.1a, b, ¢, d) become

ue = ie(urr + 2= 2u,) + dfuly, () € (0,1] x [0,7], (3.1a)
u(0,8) =0, 0<t<T, (3.16)
u(l,8)=0, 0 <t < T, (3.1¢)
u(r,0)=v(r), 0<r <1, (3.1d)
where £ = 1/R? and v(z) = u’(zR), 0 < z < 1. The invariants for this problem are
1 1
f lu(r, t)|?rd=tdr = f lv(r)|*ré=tdr, (3.2)
g 0
and i
H@®) = [ (a0 - Flutroré-tar
0 2 :
1 . (3.3)
= f (lor(r)? = 3le(r)[*)r?=1dr =: H(v),
0
for0<t<T.

As we will be mainly interested in describing the evolution of profiles that focus (collapse)
fast at r = 0, (3.1) will furnish a reasonable approximation to (1.2) for large R and initial
data u” that decay exponentially, say, with r.



As our base scheme for approximating the solution of (3.1) we shall use the simplest
member of the IRK Gauss-Legendre family, namely the 1-stage midpoint rule corresponding
to the parameters p=¢g=p=lL r=2, a1 =71 = %._ by = 1. Sy := S} will consist of the
continuous, complex-valued functions on [0,1] that vanish at r = 1 and are piecewise linear
relative to an arbitrary partition 0 = rp < vy < --- < ry = 1. The fully discrete scheme
amounts then to computing {U'™} € 5 satisfving for n =0,1,...,J—1and all y € 53

1 1 L_'n+] +Um
/ (U™ — U™ xrd~ldr + iks f (——-) X, ri-Ldr
0 0 T
L.-n+1 + [ 2 (Uﬂ+1 + [m

2
1
= f}:[ﬂ 5 : )f-rd'ld"r. (3.4)

where U? is taken to be the L? projection of v on Sy. In (3.4) we solve for U* = L(U"1+U™)
from the equation

1 1
f Uxr®tdr + ike f UrX,r~"dr
0 0

1 1
= ik f |U*2U*xrddr + f Unxr?—ldr ¥y € Sh, (3.4')
0 1]

and then compute U™! = 207 —U'™. On each interval Gauss numerical quadrature of sufficient
high accuracy is used so that radial polynomials of degree d + 3 are integrated exactly. The
nonlinear system implied by (3.4') is solved by explicit-implicit iteration as outlined in the
previous section with Uy = %U” - %U”‘" as starting value for n > 1. Two iterations are
performed at each time step except at the first one where three are needed to compensate
for the less accurate starting value U7 = UY. The tridiagonal complex systems attendant are
solved by the appropriate Linpack subroutine.

The resulting fully discrete scheme is no longer conservative since the nonlinear system is
not solved exactly. However, we found that the L? norm of U™ was conserved to a high degree
of accuracy in all our examples, even when t got very close to the instance of blow-up.

Anticipating that the solution blows up at r = 0 as ¢ approaches a finite value t*, we im-
plemented (3.4) in an adaptive code using a spatial and temporal mesh that can change with
n. (In constructing these adaptive schemes we were aided by experience gained in approxi-
mating singular solutions of the generalized Korteweg—de Vries equation, [BDKMc].) As the
blow-up time is approached and the solution grows in amplitude near the origin. the adaptive
mechanism refines drastically the spatial mesh in a neighborhood of » = 0 and cuts the time
step by enforcing two refinement criteria that appeared to be successful for the problem at
hand and will be described presently.

If the spatial mesh must be refined, then the number of nodes r; is increased as follows:
Suppose that the spatial grid has already been refined NsPLIT times. Then, [0,1] is parti-
tioned in NSPLIT + 2 adjacent successive intervals Iy, I1... .. IxspLiT+1 such that the left-hand
boundary of Iy is 0, the right-hand boundary of InspriT+: is 1, and, on each [; the mesh is
uniform. Specifically, if N and M < 2N are given integers and h = 1/ is the initial spatial
meshlength, then:

Iy consists of M subintervals of constant meshlength h/2~FPLIT+1,
I; consists of "—é subintervals of constant meshlength h/2%5FLIT,

I consists of 5 subintervals of constant meshlength h;’EKSPLIT_l.
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InspLiT consists of -";f— subintervals of constant meshlength h/2.

InspriTe1 consists of N — % subintervals of constant meshlength h.

As an example, starting with N = 1600 subintervals, i.e. an initial meshlength h = 1/1600 =
0.625 x 10—, supposing that the finest mesh region always has M = 200 subintervals and
assuming that the spatial grid has been refined NspLIT = 34 times, we end up with a grid
consisting of N + %{ESPLIT + 1) = 5100 subintervals. The coarsest mesh region I35 has 1500
subintervals of width i = 0.625 x 10~3, whilst the finest mesh region Iy = (0,r;) consists of
200 subintervals of width h/23® = 0.182 x 10~!3. Each time the grid is refined Iy is cut in half
into two new intervals that z-e labeled Iy and Ij, and all other regions are redefined so that
I becomes Is, I; becomes Iy, ete.. U™ is imbedded in the new mesh by linear interpolation.

The signal to perform this spatial grid refinement (i.e. to increase NSPLIT by 1) at a certain
time step n is given whenever

— 2

1 “lleUu}-’l:.fm
) 3

(Ui, lUm2ar)

Here TOL}, is an empirically determined tolerance, usually taken to be equal to 0.12 for d = 2
and from 0.12 to 0.14 for d = 3, and hp;y, is the gridsize on Iy, which is the interval of finest
mesh. The criterion (3.5) is rotivated by a local L — L? inverse property that elements of
the finite element subspace satisfy on Iy. The inverse property shows that the growth of the
L* norm is limited by the size of hyi, and the L? norm of the solution on Iy which, close to
blow-up, is not changing rapidly. Hence, refining the mesh in the vicinity of r = 0 to satisfy
(3.5), allows the amplitude of the solution to grow there.

The time step reduction is motivated by a need to control, to a certain degree, changes
in a scaled version of the second invariant of the problem from one time step to the next.
Specifically, the time step size k is halved and the time step computation is repeated whenever

= TOLy. (3.5)

H(U™Y) - H(U™)
Jo [URTY2rd-1gy

In (3.6) H(-) is the Hamiltonian defined by (3.3) and TOLy is an empirically chosen parameter
with values that range from 10~° to 10~%. These values for TOL, and TOL}, proved successful
in causing the adaptive mechanism to reduce the time step size and refine the spatial grid as
needed to simulate accurately the development of the blow-up.

In the three sections that follow we report on the numerical results that we obtained
approximating various quantities of interest associated with the singular solutions of the NLS
equation in 2 and 3 dimensions. These quantities include rates of growth of the amplitude
and of various norms of the solution and its radial derivative, as well as rates of blow-up of
the phase of the solution as £ — t*. With this purpose in mind and with the forethought that
exceedingly large quantities will develop and their rapid evolution will have to be followed over
extremely small temporal increments, we have coded our methods carefully so as to minimize
the effect of roundoff errors and maintain stability in the floating point arithmetic. Evidence
of that is the ‘stability’ and robustness of most of the blow-up rate output to be presented
in the sequel. It should be pointed out that, as a rule, the approximate values of the various
rates appear quite early in the computations, before the solution has risen to great heights and
before the mesh has been cut to extremely small sizes. But one needs to integrate extremely
close to t*, if one wishes to really attain the extra few digits, which is only possible when the

> TOL/2. (3.6)
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computations are well into the asvmptotic regime. This is definitely needed in the eritical,
two-dimensional case, where one wishes to differentiate between several possible proposed
formulas for the blow-up as will be seen in section 5.

An example of a typical post-processing operation that is repeatedly performed is the
evaluation of quantities of the form F(t* —t) for ¢ extremely close but less than t*. In the
experiments, t* is taken to be the largest value of ¢ that a particular run can reach bevond
which the adaptive mechanism is no longer able to refine the spatial mesh. F is then evaluated
at temporal differences t* —t;, i = 1,2,..., where #; is the time when the i*" spatial grid
refinement takes place. Since t* —t; can become e.g. of O(10~2%), it is computed as Zf__‘l king
where k; is the size of a temporal step, n; is the number of temporal steps of size k;, and
N; is the total number of temporal steps of different size taken between ¢; and {*; the sum is
computed from smallest to largest terms. More details on computing particular blow-up rates
will be given at the appropriate places in the sequel.

The computations to be reported in the next three sections were performed by a double
precision Fortran 77 code that was compiled using the SC1.0 Fortran V1.4 compiler with full
optimization on a SparcClassic Sun workstation with 24 MB of RAM running under SunQS
4.1.3. A run (the results of which are reported in Section 5) for the approximation of blow-up
in 2 dimensions that started with 1600 spatial mesh intervals initially, and reached a record-
high amplitude of .985 x 10'® after the spatial mesh was refined 50 times, took 9850 total cpu
seconds.

4. BLOW-UP: THE THREE-DIMENSIONAL CASE

As was stated in the Introduction, the dynamics of blow-up (collapse) of radially symmetric
solutions of the NLS in three dimensions are by now rather well-understood; the reader is
referred to the papers [McPSS| and [KSZ] for detailed expositions and further references. In
[McPSS] it was concluded that solutions emanating from several initial profiles evolve into a
self-similar form which blows up as t T ¢* according to the law

u(r,t) ~ - @( ﬁfﬁ)ﬁmn =, (4.1)

(- —t)7  \ (t*—1t

that had been predicted earlier by Zakharov. The complex-valued function Q(£€), £ € (0, oa),
and the real number & solve an ‘eigenvalue’ problem for a nonlinear ordinary differential
equation. The number & is independent of the initial profile that produced (4.1), and its value
is approximately equal to 0.545. The conclusions of [KSZ] are in good agreement with those
of [McPSS].

Since the three-dimensional case is under good control, at least as far as the self-similarity
of the blow-up and the other features of (4.1) are concerned, it is a good benchmark for a
direct integration code such as the one described in this paper. As a test of the code we
approximated the blow-up of solutions emanating from a Gaussian (G3) and a ‘ring’ type
(R3) initial profile.

Our first example, labelled G3, corresponds to an initial value u%(r) = 6v/2e~"" on [0, o),
restricted to the interval [0, R] with R = 5, and scaled to [0,1] as

v(r) =6v2e 2 0<r<l, (4.2)

in the notation of (3.1). Hence £ = 1/25 and the Hamiltonian (3.3) is equal to about —0.87783.
(This example has been considered in [McPSS] and elsewhere. The actual value of the initial
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amplitude that we used was 8.485281374.) We approximated the solution using at the begin-
ning a spatial meshlength h = 1072 (i.e. N = 10%) and a time step equal to k = 107%. The
number of intervals in the finest mesh region in this and all other experiments in the sequel
was taken to be 200. The parameters in the mesh refinement criteria were TOLy = 0.14 and
TOLy = 5 x 10~%. The evolution of the magnitude of the solution is shown in Figures 1a and
1b. The early stages of the development showing the fast collapse at r = 0 appear in Figure
1a, while Figure 1b shows snapshots of later stages. Note that the radial axis, labelled z in the
figure, and the |u|-axis, labelled u, are being suitably rescaled in the successive plots of Fig.
1b; the self-similar nature of the singular profile is clearly suggested. By the final, ‘blow-up’
time t* = 0.03429946, the amplitude at r = 0 had risen to approximately .661 x 10'? (thus
exceeding its initial value by a factor of .779 x 10'!), and the code had refined NspLIT = 35
times the spatial mesh; the final time step used was about .847 x 10~2,

We also tried exponentially decaving ‘ring’-tvpe initial profiles that were scaled on [0, 1]
(¢=1/251n (3.1a)) as

2.2
or 0<r<l, (4.3)

(Y = ae "1+ ikt
v(r) = ae [l.h'+2_bs},_ <r=

having a single maximum at r = s equal to ae~"(2 + bs)/(2 — bs). We experimented with
several values of a.b and s and found that the code worked better when s was small, of
course, since in that case enough of the peak is captured in the region of fine grid when the
mesh cutting starts. The parameters s = (.06, a = 4, b = 13 (giving an initial maximum of
4.178 and H(v) = —.15081) correspond to the run that will be referred to henceforth as R3.
This ‘ring’ collapsed relatively fast at zero. Using initially h = 1/1600, k = 10™%, and with
TOL, = .12 and TOLy = .5 x 1079, the code was able to cut the spatial mesh 32 times before
stopping at an approximate ¢* = .10145695, at which point the amplitude at zero had reached
a peak of .926 x 10! while the final time step used was about .108 x 10722,

We shall now report on the various blow-up rates that were computed from the output
of the runs G3 and R3. The amplitude magnification factors achieved in these examples
are considerably larger than the ones previously reported in the literature, and this gives us
confidence that the information to be tabulated below is quite accurate. One group of data
concerns observed blow-up rates as t — ¢, for several spatial norms of the solution (and the
first radial derivative thereof) of (3.1). Let A(t) be the value at time f of such a norm of u(-, )
or u(-,t). With output generated by the code we calculated A(t) for ¢ very close to t* and
estimated the numbers p such that

Alt) ~ (" =t)Past ]t (4.4)

Specifically, as explained in section 3, we evaluate A(t) at the instances t = f;, i =
1,2,3,..., when the jth spatial refinement takes place. Then, approximations p; to the blow-up
rate p of A(t) are computed in terms of the data at ¢; and t;+; by the formula

Alty) e
n n :
v’i{?fz':—l:"rlr *—tin

pi=—1

(4.5)

In Table 1 we show the blow-up rates of the L* and L norm (i.e. of the amplitude) of the

solution of (3.1), as well as of the L? and L™ of its radial derivative (in the columns labelled

L% and L%) for the example G3. (Here and in the sequel the LP, 2 < p < oc, norms refer
D D >

to the quantities ( j;]l lu(r,t) |Prd‘1a‘r) . The max norms were caleulated over all quadrature

points.) The rates are shown at the times t; (of the i refinement) for i = 10,11...., 27. The
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Blow-up of the modulus of the solution with Gaussian initial profile G3. Early stages.
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actual values of t; are not shown, being extremely close to #*. For i = 28, norm blow-up rate
computations are not reliable in this example due to the extreme proximity of #; to £*.

1] IF ] I® | L% | L% K

10 | 12385 | .50041 | .24827 | 1.00052 | -54528
11 | .12438 | .49972 | .24904 | .99966 | .54532
12 | .12467 | .50010 | .24948 | 1.00049 | .54525
13 | .12482 | .50035 | .24972 | .99983 | .54473 |
14 | .12490 | .49990 | .24984 | 1.00072 | .54518 |
15 | .12495 | .49996 | .24992 | .99956 | 54518
16 | .12497 | .49976 | 24996 | .99959 | .54516
17 | .12499 | .50007 | .24998 | 1.00024 | .54510
18 | .12499 | .50036 | .24099 | 99981 | .54478
19 | .12500 | .49964 | .24999 | 1.00079 | .54535
20 | 12500 | .50019 | .25000 | .99962 | 54496
21 | .12500 | .49986 | .25000 | .99927 | .54495
22 | .12500 | .50032 | .25000 | 1.00083 | .54515
23 | .12500 | .49985 | .25000 | 1.00009 | .54502
24 | .12500 | .50021 | .25000 | .99954 | .54519
25 | .12500 | .49965 | .25000 | 1.00067 | .54509
26 | 12500 | .50009 | 24999 | .99960 | .54506
27 | .12498 | .49994 | .24999 | .99937 | .54485

Table 1
Blow-up rates, G3

The blow-up rates appear to stabilize quite early in the computation and are quite robust.
The law (t* —t)~% for the amplitude is clearly verified. The L* norm of u and the L? and L*
norms of u, are shown to blow up at the rates p = 1/8,1/4 and 1, respectively, which are of
course consistent with the respective rates that may be computed using formula (4.1).

The last column of Table 1, labelled x, lists approximations obtained from the data at
t = t; of the constant s appearing in the exponential term & = of (4.1). We assumed
that the phase of the solution at r = 0 is of the form ﬁ].n't".i_'i and computed values of & at
t = t; by forming the quotient o; = U(0,%;+1)/U(0.%;). where U(0,;) is the fully discrete
approximation produced by the code and evaluated at (r,t) = (0,¢;), then computing »; =
arctan(Im(o;)/Re(o;)) (or as @; + 7 if ; is negative) and finally letting

=t
=t

The numbers x; of the last column of Table 1 show that the phase constant has stabilized and
that its value agrees well with the number obtained in [McPSS] and [KSZ].

Table 2 shows the results of the analogous norm blow-up rate calculations as well as the
values of £ obtained from the output of the run R3 that corresponds to the ring-type initial
profile mentioned previously.

ki =if/ln

(4.6)
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i T ] = ] I, | L% K

10 | -12469 | -50008 | -24946 | 1.00012 | 54509
11 | .12483 | .50007 | .24970 | 1.00007 | .54511
12 | .12491 | .49996 | 24983 | 1.00004 | .54503
13 | .12495 | .50004 | 24991 | .99999 | 54503
14 | 12407 | .49996 | .24995 | 1.00033 | .54500
15 | 12499 | 50004 | .24997 | 99962 | .54500
16 | 12499 | 49999 | .24999 | 1.00036 | .54507
17 | .12500 | 49999 | 24999 | .99970 | .54501
18 | 12300 | .50007 | .25000 | 1.00003 | .54499
19 | 12500 | .49995 | .25000 | 1.00023 | .54500
20 | .12500 | .50001 | .25000 | 1.00005 | .54506
21 | .12500 | .50001 | .25000 | 1.00018 | .54502
22 | 12500 | .49995 | 25000 | .99994 | 54506
23 | 12500 | 50005 | 25000 | 99952 | 54498
24 | 12499 | .49996 | .24999 | 1.00034 | 54503

Table 2
Blow-up rates, R3

The rates, that appear to be slightly more robust than those of Table 1,corroborate fully the
computational evidence gleaned from the Gaussian initial profile run G3.

5. BLOW-UP: THE CRITICAL CASE

In this section we report the results of numerical experiments that we performed with
our adaptive code in the critical, two-dimensional case. We focused on computing blow-up
rates for the amplitude of the solution of (1.2) at r = 0, as well as of several of its norms
and norms of its radial derivative. As stated in the introduction, we also computed a certain
constant occurring in the expression of the phase of the solution at r = 0, assuming a certain
dependence of the phase as & function of £ when ¢ is close to ¢, [LPSS]. As in section 4, we
experimented with radially exponentially decreasing (Gaussians, rings) initial profiles.

Our first family of examples are Gaussians of various amplitudes. We took, in the notation
of (3.1) with d = 2,

u(r) = A~ B, 0<r<l, (5.1)

using the scaling factor £ = 1/25 and several values of Ag. We shall label these examples as
(G2, Ap) in the sequel.

In the case Ag = 62 (actually Ay = 8.485281374), the Hamiltonian (3.3) being equal
to about —11.520, we started with initial mesh sizes h = 1/1600, k = 0.8 x 10~%. With
refinement criteria parameters TOL, = 0.12 and TOL, = 3 x 1078, the code was able to
perform 34 spatial grid refinements; at the final (*blow-up’) time ¢* = 0.04208980 it had
achieved an amplitude at r = 0 equal to about .258 x 10'2, the last time step being equal
to about 0.108 x 10723, The early and later stages of the evolution of the modulus of the
solution appear in Figures 2a and b. Qutput from this run as well as from other similar runs
with different initial amplitudes Ag served to determine the various blow-up rates mentioned
above. First, we describe our results on the blow-up rates of the amplitude A(t) of the solution
at r=0.
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It is by now clearly understood (see the discussion and the references quoted in the In-
1
troduction), that the amplitude at r = 0 behaves basically like (t* —t)”2 as ¢ T t* but is

perturbed (slowed down) by a factor that tends slowly to infinity as ¢ T t*. One may write
then that )
A(t) ~ (E;Ei:ti}) ast 1t

where the function F(s), defined for s > 0, tends to infinity as s | 0 slower than any power of
5. As it has been already mentioned in the Introduction, several choices of F have been made
in the literature, e.g.

F(s)=In-, [VPT], [Wo,

&
~

F(s) = (i.n %) L 035<+ <065 [KSZ,
F(s)=lnln<,  [LPSS], [LePSS3], [Fr]

We shall compare these amplitude blow-up laws against numerical results nt}tained from our
adaptive code, including in the comparison the pure power law (i — )72, i.e. the case
F(s) = 1. Specifically, we shall compute approximations to the power p > 0 assuming that
the amplitude at r = 0 (i.e. |u(t)|l) behaves like

A(t) ~ [F(t" —8)/(t* —t)]P as t T ¢, (5.2)

where F(3), s > 0. is one of the six following laws

F(s)=1, (5.3a)
F(s)=In % (5.3h)
1) 06
F(s) = (111 -5—) (5.3c)
105
F(s) = (111 ;) . (5.3d)
1) 04
F(s)= (111 ;) 4 (5.3e)
F(s) = ].nlné. (5.3f)
As in the experiments presented in the previous section, for { = 1,2,3,.... we computed

A; = A(t;), the value of A at the time #; of the i*"* spatial refinement, and then calculated
approximations p; of p by the formula

A ) ( Fi/(t* —t:) )
i=In|{ —|/In : 5.4
i (44141 / Fir1/(t* = tit1) L
where F; = F(t* — t;). Table 3 shows p; for 14 < i < 28 (the quality of the computed p;'s

degenerated for i > 28 due to the extreme proximity of ¢; to t*) with the results for the choices
(5.3a-f) for F(s) appearing in the corresponding columns a-f.
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Figure 2a.

Blow-up of the modulus of the solution with Gaussian initial profile (G2, 6+/2).Early stages.
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Blow-up of the modulus of the solution with Gaussian initial profile (G2, 6+/2).Later stages.
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i a b ¥ d e f
14 50804 | 48828 | 49634 | .49830 | .50047 | .50222
15 50756 | .48804 | 49566 | .49761 | .49957 | .50133
16 50714 | .48860 | .49585 | .49770 | .49956 | .50133
17 50651 | .48888 | .49579 | .49754 | .49931 | .50108
18 50600 | .48019 | 49578 | .49746 | .49914 | .50090
19 50553 | .48047 | 49577 | 49737 | .49898 | .50072
20 50514 | .48076 | .49580 | .49733 | .49888 | .50060
21 50479 | .49004 | .49583 | .49730 | .49878 | .50049
22 50448 | .49030 | .49587 | .49729 | .49871 | .50039
| 23 50422 | 49057 | 49594 | .49730 | .49867 | .50033
| 24 50396 | 49081 | .49599 | 49730 | .49862 | .50026
25 50372 | 49103 | 49603 | .49729 | .49856 | .50018
26 50351 | .49126 | .49609 | .49731 | .49854 | .50013
27 50323 | .49138 | .49605 | .49723 | .49842 | .49999
28 50202 | 49145 | 49598 | 49712 | .49827 | .49082
Mean
[19-28] | .50415 | .49061 | .49593 | .49720 | .49864 | .50029
Std. dev. |
[19-28] | .844(-3) | .698(-3) | .110(-3) | .672(-4) | .211(-3) | .276(-3)
Table 3

Blow-up rates of the amplitude A(t) at r = 0 corresponding to laws (5.3a) -
(5.3f). Run with initial profile (G2, 6v/2).

The last two rows of each column of the table show the mean and standard deviation of
the rates of that column computed using the values of the data in the window i = 19 to
i = 28 closer to the asymptotic regime. (We use the notation .844(—3) = .844 x 102 etc.).
As expected, all laws (5.3a) - (5.3f) substituted in (5.2) yield rates close to 0.5. The laws a
and b are not as stable as the rest. The rates of column f, corresponding to the loglog rate
(5.3f) clearly stabilize closer to 0.5 than any other law. The laws ¢, d, and e, corresponding
to the powers v = 0.6,0.5 and 0.4 give very robust rates which however cluster with small
deviation around values that differ from 0.5 by a larger amount as compared to those of the
log log case. It is our conclusion that F(s) given by (5.3f) gives the best fit to the amplitude
data generated by the code as t gets extremely close to t”.

This conclusion is reinforced by examining data from other runs corresponding to Gaussian
initial profiles of different amplitudes. For example, consider the output from a run labelled
(G2, 8) that corresponds to 2 profile of the form (5.1) with 4y = 8 (Hamiltonian = —8.96).
With initial mesh sizes h = 1/2400, k = 0.75x 107% and TOL; = 0.12, TOL; = 3.4 x 107% the
code was able to perform 45 refinements of the spatial grid at which point it reached the final
(*blow-up’) time t* = .043706879 achieving a maximum amplitude of about .793 x 10'%; the
last time step was approximately of size .303 x 10~3!, With data from this run we generated
Table 4, analogous to Table 3.
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i a b C d 0 f
18 0566 A8029 49571 49734 49898 B0073
19 0524 AR058 49572 49728 49885 50059
20 50487 AR086 A9576 A9726 9876 50047
21 50458 49017 49583 A9727 A98T1 50041
22 50427 49041 49586 | 49724 49863 50031
23 50403 A9068 49593 49726 49860 50025
24 50380 49093 A9600 A9728 49857 50020
25 50360 49116 49606 49730 49855 50015
26 50342 49140 49614 49734 40854 50012
27 50326 49162 49621 49737 49854 20010
28 50309 49182 49627 49739 49852 20006
29 50294 49201 49633 497432 A9851 50003
30 o0282 49221 49640 49746 49853 .20001
31 20269 49238 | 49645 49748 49852 49998
32 50256 .49254 A9650 49750 AB851 .49995

Mean

[23-32] 50322 49168 A9623 49738 49854 S0009

Std. dev.
[23-32] | .488(-3) | .630(-3) | .196(-3) | .848(-4) | .297(-4) | .971(-4)
Table 4

Blow-up rates of amplitude A(t) at r = 0 corresponding to laws (5.3a) -
(5.3f). Run with initial profile (G2, 8).

Since the final amplitude reached in this run was higher, we expect rates from data well in
the asymptotic regime. The rates of columns a and b improve slightly, while those of columns
¢, d, e remain basically the same with their counterparts of Table 3. The loglog rates f
stabilize further, and are closer to the expected value 0.5, strongly indicating that the correct
asymptotic law for the amplitude blow-up is (5.2) with F given by (5.3f).

As in the three-dimensional case, the code also generates approximations to the blow-up
rates of several other norms of the solution and its radial derivative. As an example, in Table
5 we show the temporal blow-up rates of the L3 and L* spatial norms of the solution of
(3.1) with initial data (G2, 8) as well as those of the L? and L™ norms of its first radial
derivatives; the latter appear in the columns labeled L}, and L%. All rates were computed
with a loglog correction factor: the rates shown are approximations at t = t; of positive
constants p (computed from values of M(t) of the corresponding norm produced by the code)

assuming that M(£) ~ [{lnln =Ly/(t - t}]"
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i | L3 | it IZ

18 | .16668 | .25023 | .50045 | 1.00123
19 | 16666 | .25017 | .50035 | 1.00150
20 | .16664 | .25013 | .50026 | 1.00113
| 21 | .16663 | .25010 | .50019 | 1.00048
22 | 16662 | .25007 | .50014 | 1.00119
23 | .16661 | .25004 | 50009 | 1.00039
24 | 16661 | .25002 | 50005 | 1.00032
25 | .16660 | .25001 | 50002 | 1.00081
26 | .16660 | .24999 | .49999 | 1.00036
27 | .16660 | .24998 | .49997 | 1.00025
28 | .16659 | .24997 | .49995 | 1.00017
29 | .16659 | .24996 | .49993 | .99990
30 | 16659 | .24995 | 49991 | .99981
31 | .16659 | .24995 | .49989 | 1.00024
32 | .16658 | .24993 | .49986 | .99975

Table 5
Blew-up rates of various norms, (G2, 8).

Hence, we may conclude with confidence from the results of Table 5 (and similarly robust
evidence from the other Gaussian initial profile runs) that the blow-up rates are equal to 1/6
for the L? and 1/4 for the L* norm of the solution and equal to 1/2 for the L* and 1 for the
L™ norm of the radial derivative. These rates are consistent with the rates expected from the
following asymptotic expression for u, put forth by Landman et al. in [LaPS5], and valid for
small r as ¢ approaches t*

u(r, ) L—%R (ﬁ) D [i'r{t} = Sl:;ri r)] : (5.5)

where L(t) ~ [Inln ﬁ;"{t* - tj]_%. For characterizations of the function R(£). € > 0, cf.
[LaPSS], [KSZ]. In (5.5) the phase 7 of the solution at r = 0 blows up as ¢ — t*. It was argued
in [LaPSS] by means of asymptotic techniques that the first-order term in the asymptotic
expression of 7(t) for ¢ near t* is given by
1 1 1
Tt = — . 3.

() Qilnf*—tlnlnt'—t (5.6)
where A is a constant whose value is predicted to be A = 3.14 in [LaPSS] by means of a limiting
argument of descent from the supercritical cases d > 2 that uses asymptotic techniques and
the numerical solution of a singularly perturbed nonlinear eigenvalue problem.

In the dynamic rescaling framework of [LaPSS] (and also of other cited papers of the same
group), (5.6) is the first-order term in the asymptotic expansion as ¢ T * of the transformed
new temporal variable 7(t), which tends to oc as £ T £*. The exact formula for () is

tods
= | e bt 5.7
(It should be noted that the amplitude of the solution u(r,t) at » = 0 is proportional to
1/L(t).) In turn, L is related to a quantity called a(7) and given by
1dL

a(t) = e (5.8)

7(t)
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with L considered as a function of v. In [LaPS8S] it is argued that a(7) solves an ordinary
differential equation and satisfies, to first-order terms in 7,

alt) = s a8 T — o0, (5.9)
(Using (5.9) in (5.8) an asymptotic expression may be found for L(7) valid for large 7. Sub-
stitution in (5.7) then gives (5.6) to first-order terms.)
To verify computationally (bv dynamie rescaling, a bvproduct of which are approximations
of the values of a(7) for increasing 7) the predicted value A = 3.14, it was deemed necessary
in [LaPSS] to compute a(7) o the next-order term. This expression found was

A

alry = InT+3lnlnt

(5.10)
Plotting a(7) vs. 1/(lnT + 3Inln7) Landman et al. found that the dependence was indeed
linear but that the slope was not equal to A = 3.14 presumably because r was not large enough
and the asymptotic regime in which (5.10) is valid had not been reached vet. (See also the
relevant comments in [Ma].)

When we tested the form (5.6) versus phase output from our adaptive direct integration
code for values of t close to ", we found that the ratio 7(t)/In 71 Inln 7= did not quite
stabilize and took values tha: were near (.36, still far from the predicted value Eﬂl_m = 159,
At the suggestion of Prof. C. Sulem we tried to compare the computed values of 7(t) with an
expression that includes the next term in the asymptotic expansion of 7(t) as t T £*, corre-
sponding to the level of (5.10). A long computation gave us the next term in the expansion;
the corresponding two-term expression for 7(t) is

(5.11)

TAN T Pt

i B B 1,
T(t) = —In [lnhl = _t+41nlnln T

This formula was used in our calculations with the objective of recovering the constant
L =: x. Defining, as in the three-dimensional case, p; = arctan(Im(o;)/Re(a;)), with
a; = U(0,1;21) /U0, 1;), we computed approximations of & at #; by

Ki = i/ In y;, (5.12)

where p; 1= (" — #; )™ /(¥ — t;)™+1, gy :=Inln ?"l—'ﬂ +4lnlnln ﬁ:

In Table 6 we show the results of three computations of the constant  (at times t; of
the i spatial refinement of each run as usual) from three runs, with initial data (G2, 6+/2),
(G2, 8) and (G2, 4), respectively. The parameters of the first two runs have been already
specified. The third, corresponding to initial data of the form (5.1) with 45 = 4 (Hamiltonian
= —0.32), started with h = 1/1600, k& = 10~%, and after performing 50 spatial refinements
using TOLy, = 0.12, TOL; = 3.2 x 107® stopped at t* = .14544513 achieving a maximum
amplitude at r = 0 of .985 x 10'® with a final temporal stepsize of .631 x 10~32. In all three
examples the phase constant was between .15 and .16 increasing slowly with i until accuracy
was lost when the values of t; became extremely close to t*. The numbers of the last run seem
to be more stable and robust indicating that the asymptotic regime was reached. It is safe
then to conclude that our computations verify quite accurately the predicted rate ﬁ = 0.159
of Landman et al.
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| (G2, 6v?2) (G2,8) | (G2,4)

| ¢ ¥4 i K |1 ki

16 | .14701 || 20 | .15146 || 20 | .15574
17 | .14807 || 21 | .15215 || 21 | .15619
18 | .14903 || 22 | .15279 || 22 | .15662
19 | .14990 || 23 | .15338 || 23 | .15702
20 | .15070 || 24 | .15394 || 24 | .15740
21 | .15144 || 25 | .15445 || 25 | .15776
22 | 15212 || 26 | .15494 || 26 | .15810
23 | 15275 || 27 | .15540 || 27 | .15842
24 | .15333 || 28 | .15584 || 28 | .15874
25 | .15388 || 29 | .15624 || 29 | .15904
26 | .15438 || 30 | .15664 | 30 | .15932
27 | .15483 | 31 | .15700 || 31 | .15960
28 | .15522 || 32 | .15735 || 32 | .15986
15538 || 33 | .15766 | 33 | .16012
34 | 15794 || 34 | .16037
| 35 | .15815 || 35 | .16061
| 36 | 15824 | 36 | .16085

Table &
Constant x = 1/2) in phase formula (5.11), d = 2. Results from runs (G2,
6v2). (G2, 8), (G2, 4).

We now turn to reporting the blow-up rates that we obtained by approximating singular
radial solutions of the two-dimensional NLS equation that emanate from other types of initial
conditions. As in section 4 we tried ring-type initial profiles. In what follows we present the
results of a run, henceforth called (R2), corresponding to an initial profile of the type (4.3)
(d = 2) with parameters a = 4, b = 10, s = 0.1, yielding a ring with a peak of initial height
4,41 at r = 0.1 and a Hamiltonian equal to about —4.367.

The peak of the ring rises as it moves towards r = 0 and then self-focuses fast. With initial
h = 1/1600, k = 10~%, the adaptive mechanism was able to cut the spatial mesh 48 times
(TOLy = 0.12, TOLy = 5% 1077) before the code quit at t* = 0.18623359, at which point the
maximum amplitude had risen to about .420 x 10'® (Last time step = .505 x 107%2). Table
7 gives the observed blow-up rates of the L, L® and L* norms of the solution and the L2
and L™ norms of the radial derivative (all were computed with the log log correction) and the
approximations &; to the constant flx in the phase formula (5.11).



i [ &= | I° ' T 1 1§ Ki

20 | .50171 | .16699 | .25071 | .50142 | 1.00365 | .14845
21 | .50155 | .16696 | .25064 | .50128 | 1.00324 | .14957
22 | .50142 | .16693 | .25059 | .50117 | 1.00272 | .15062
23 | .50129 | .16691 | .25054 | .50108 | 1.00277 | .15161
24 | 50121 | .16690 | .25050 | .50099 | 1.00229 | .15255
25 | .50112 | .16689 | .25047 | .50094 | 1.00247 | .15343
26 | .50109 | .16688 | .25045 | .50091 | 1.00221 | .15430
27 | .50104 | .16688 | .25044 | .50088 | 1.00247 | .15514
28 | .50100 | .16688 | .25043 | .50085 | 1.00187 | .15595
29 | .50098 | .16688 | .25042 | .50083 | 1.00206 | .15674
30 | .50096 | .16688 | .25042 | .50083 | 1.00222 | .15751
31 | .50095 | .16688 | .25041 | .50082 | 1.00176 | .15827
32 | .50094 | .16688 | .25041 | .50082 | 1.00205 | .15903
33 | .50095 | .16689 | .25042 | .50083 | 1.00206 | .15977
34 | .50095 | .16690 | .25042 | .50085 | 1.00190 | .16050

Table 7
Blow-up rates of various norms and phase constant x = 1/2A, R2.

All rates agree to about three digits with their Gaussian initial profile counterparts of
Tables 3-6.

6. CONCLUSIONS

In this paper we presented a direct, fully discrete, adaptive Galerkin finite element method
for approximating, in two and three space dimensions, singular solutions of the radial NLS
that blow up at the origin as the temporal variable t approaches some finite t*. The spatial and
temporal mesh refinement adaptive techniques used allowed the numerical solutions to reach
record amplitude magnifications at the origin, for ¢ extremely close to the blow-up time t*. On
the other hand, the several computed blow-up rates were quite robust, lending support to the
conclusion that the method describes accurately the characteristics of the singular solution as
it blows up. Specifically, in the three-dimensional case, the numerical results clearly indicaiic
that the amplitude of the sclution at the origin blows up at the well-known rate (t* — )7z,
while in the critical, two-dimensional case they confirm that the amplitude blows up according
to the loglog law [Inln ﬁ St = f}]’ET of [LPSS], [LePSS3], [Fr]. In addition, the blow-up of
the phase of the singular solution is accurately described in two and three dimensions. (The
relevant computational problem in the critical case is quite challenging.)

A natural question in blow-up problems is whether the development of singularities can be
prevented by the addition of some suitable dissipative term in the equation. In a companion
paper to the one in hand we test the ‘stability’ of the blow-up and the blow-up rates of the
singular radial solutions of the NLS in two and three dimensions, when the linear, zeroth-
order damping term —du, where § is a small positive number, is added to the right-hand side
of (1.2a). Our conclusion is that damping of small size does not prevent the formation of
singularities, even in the critical case. and that, predictably, the blow-up rates are close to
their counterparts of the undamped equation. These computational results complement the
theory of [Ts|, which is valid in the three-dimensional case.

Another problem of major interest is to describe how non-radial solutions of the NLS blow
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up, say in two space dimensions. In [LPSSW] the cited dynamic rescaling techniques of the
previous papers of that group were extended to the general case of the non-radially symmetric
equation. It was demonstrated numerically in [LPSSW] that initial data with a single peak
evolves into locally radially svmmetric solutions that proceed to blow up, presumably at the
critical radial case rates. In this direction, an adaptive code capable of simulating 2-D non-
radially symmetric solutions has been recently developed, [KP]. In particular, the code is
capable of following multi-peak blow-up. This new code follows spatial and temporal mesh
refinement strategies similar to those used in the present work. A more radical departure
consists in the use of nonconforming elements in space following a formulation pioneered in
[B] and subsequently extended in [BJK] and [KJ]. Experiments conducted so far show that
several peaks may blow up simultaneously and confirm the results of [LPSSW] in that the
peaks evolve into locally radially svmmetric solutions. The outcome of these and other related
experiments will be reported shortly.

The computational results reported in this paper and its companions to appear, taken
together with similar blow-up computations for the generalized Korteweg-de Vries equation
(cf., e.g., [BDKMc]), indicate that suitably adaptive finite element techniques can describe
accurately the development of point blow-up singularities of solutions of nonlinear dispersive
wave equations. A very interesting but hard problem lies ahead: to understand how such
adaptive mesh refinement mechanisms really work. and prove rigorously that they permit
discrete solutions to blow up, provided the solution of the p.d.e. does.
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