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Abstract
The present study is concerned with the determination of the dynamic charactenistics of
the human head - neck system which is described by a flud filled sphencal cavity
supported by a viscoelastic neck which reacts in three dimensions. The matenal of the
skull is assumed to be a homogeneous, isotropic, elastic material and that of the brain -
cercbrospinal fluid an inviscid irrotational fluid. The neck is approximated by a three
element elastic model the constants of which are computed by using experimental data.
The results obtained show that the viscoclastic properties of the neck affect only the
first two eigenfrequencies and the corresponding damping coefficients while the

remaining spectrum remains unchanged.



1. Introduction

In a previous communication [ 1] we have presented a model of the human head - neck
system in which the neck is approximated by elastic strings acting in three dimensions.
We have understood that the neck support plays an important role on the
eigenfrequency spectrum of the system. It introduces a shifting of the spectrum and

two new eigefrequencies which are the smallest ones for the system. Hzkansson et al.

[2] have presented a comprehensive investigation of the resonance frequencies of the
human skull in vivo. Their findings include measurements of the system frequencies as
well as damping coefficients. We have recently developed models which take into
account the viscoelastic behavior of the human skull and brain [3-4] using properties
which have been reported previously by other researchers [5-6]. We obtained good
agreement with the experimentally reported eigenfrequencies but discrepancies
observed between our results and those reported in Ref. 2 for the damping coefficients.

One of the reasons might be the ignorance of the neck viscoelastic behavior.

Landkof et al. [7] presented an analytical and experimental study involving non -
destructive, axisymmetric impact on a fluid - filled constrained by a viscoelastic,
artificial neck. The constants of the viscoelastic model proposed were determined by
fitting data using least squares. Misra et al. [8] included in the study of the head - neck
system a viscoelastic neck support. They considered elastic, homogeneous and
1sotropic skull, while the brain was regarded as inviscid and compressible fluid with its
motion irrotational. The artificial neck was represented analytically by a linear

viscoelastic cantilever beam that was rigidly connected to the skull.

Because of the importance of the system motion in head injury other researchers have
proposed models for the same system. Reber and Goldsmith [9] have developed a two

dimensional model to predict the motion under impact loadings and upper torso
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accelerations. Later Menill et al. [10] extended the model to a three dimensional one.
However, to our knowledge no other attempt has been reported on the predictions of
the frequency characteristics of the human head - neck system. Those dynamic
characteristics are useful in determining brain diseases through a semi - interference
method which is based on the shifting of eigenfrequencies spectrum. The process is
related to the intracranial pressure - volume relationship attributed to Langfittet al. [11].
Such a method can be proved operative if according to experimental observations
sudden changes in intracranial pressure have a measurable relative effect on the
frequencies spectrum with or without the use of a protective helmet, the later have

discussed by other researchers [12].

In this work we perform an analysis of the frequency spectrum of the human head -
neck system. The human skull i1s simulated by a linear, isotropic, homogeneous,
elastic material. The brain is supposed to be an inviscid irrotational incompressible
fluid undergoing small oscillations, since we have observed that the effect of
viscoelasticity is small for resonance frequencies [4]. The cerebrospinal fluid is treated
in the same way. Finally, the neck support is approximated by a three - element model
which reacts in three dimensions. The mathematical model i1s based on the three -
dimensional theory of elasticity and the representation of the displacement fields in
terms of the Navier eigenvectors [13]. The coefficients involved in the three element
clastic model for the neck support are determined by the existing experimental data.
Those coefficients are used for the computations of the eigenfrequency spectrum. In
addition, a model for the neck is described. The spectrum is computed for several
parameters involved in the model which correspond to real human head cases. The
results obtained show good agreement with experimental data both for the
eigenfrequency and damping coefficients. However, it is not possible to predict the
first eigenfrequency. Further study which includes other characteristics not described

by our model might give a better insight of the first eigenfrequency behavior.



2 Problem Formulation

The system under consideration is presented in Figure 1. It consists of an elastic
sphere (1 - skull) containing an inviscid and irrotational fluid matenal (0 -
brain/cerebrospinal fluid) while the whole structure is supported by the viscoelastic
neck whose simulation in the model is realised through a particular type of boundary
conditions imposed on §,. The boundary conditions have to involve the geometric as

well as the physical characteristics of the neck support mechanism.

Figure I: Problem Geometry.

The aim of this work is the determination of the dynamic characteristics of the above
system, that is its natural frequencies and the corresponding attenuation coefficients due

to the viscoelastic character of the neck.



The material of the region 1 is characterised completely by Lamé’s constants A and u
and the mass density p,. Its motion is fully described by the displacement field

u'"(r,t), which satisfies the elasticity equation

du(r,1)

uVu(r, 0+ A+ VV -1 = p, >

4 (1)

where V is the del - operator and r is the time.
The motion of region - 0 is studied after making the assumption that the inviscid and
irrotational fluid occupying this region undergoes small oscillations. Then its motion is

governed by the wave equation

v@mn:im . (2)
c; o

where @(r.r) is the velocity potential and ¢, 1s the speed of sound in the fluid.

The pressure P of the fluid can be determined from the velocity potential through the

relation

where p, stands for the mass density of the fluid.

As it is already mentioned, the neck support mechanism creates attenuation due to its

viscous properties. Consequently, postponing the introduction of viscosity until the



boundary conditions are described, we assume harmonic motion of the whole system

with angular frequency @, and attenuation @,.

We apply then Fourier transform analysis to the problem defining

W r.w) = [u (e dr @
b(r,0) = O, nedr ®)
Pr.0) = | P(r.t)e" ™ dt (6)

with @ =@, +iw, (i=~-1).

For simplicity, we suppress the dependence of previous transformed functions on their

argument @.

Taking advantage of the Fourier transform properties the equations (1), (2), (3) lead to

the following equations concerning now the functions u"'(r), d(r), P(r).

LUV ar)+(A+wV(V-a" (r)+pe’a"(r) =0 (7)
V:O(r)+ kid(r) = 0 (8)
P(r) = iwp B(r) (9)



()]
where .fcJr =—,
= §

In order to study the dynamic properties of the system in a uniform manner we

introduce dimensionless variables.

More precisely, evoking the velocities ¢, = JA+2W/p, . ¢, =AJi/p, . which
describe completely the elastic medium - 1 alternatively to Lamé’s constants, we define

the following dimensionless quantities

The differential equations (1) and (2) in dimensionless form are written as

VIaATE )+ (G =DV (VA N+ QA () =0 (10)

VD) +k5 D) =0. (1
The pressure P in dimensionless form is given by
" 1
P(r')=iQp ,— (). (12)
Cs

As we have already mentioned, the velocity potential d(r') is the fundamental quantity
in terms of which all the useful quantities characterising the motion of the fluid

occupying region - () can be expressed.



So. we introduce here the fluid velocity #(r') and the displacement field & (r') in
dimensionless form as follows

Pr) =V ) (13)

i =éﬁ(r' ). (14)

The displacement fields &', @' and the pressure P, in addition to equations (10),
(11), (12), (14) satisfy the boundary conditions expressing the interaction of the partial

components of the system.

As far as the surface S, is concerned, we have the continuity of the displacement fields,
while the stress field due to the elastic medium must be compensated by the pressure of

the fluid, that is

il y=ad%r'), res, (15)
Tﬁ““[r'}=f—ﬁ(r'}f, rrES,._., {1&}
where

T=247-V+AFx(V)+ ' Fx(V'x) (17)

stands for the dimensionless surface stress operator on S,, 7 is the unit outward

normal vectoron §, and (', ') = [E,EJ - [—J}
H ol

The boundary conditions satisfied by the elastic field on the exterior surface S, is of

mixed type. More precisely, the surface section shown in Fig. 1 in the region



0 €0 <7 -6, is stress free, while the surface section 7 -8, <9 < & represents the
neck support and the boundary condition satisfied there must incorporate the physical
character of the interaction between human head and neck. We assume that a Robin
type boundary condition is satisfied, which simulates appropriately the dynamic

character of the motion of the contact region.

The boundary condition on surface S, is described by

0, 0sd<a-6, re(§\s,)

18)
ai’(r'), ;-6,<v¥=<nm res, ¢

T'u””{r'}:'

where £ = g, + g, is the crucial parameter incorporating the physical characteristics of
the human neck. In contrast to our previous work [1], the parameter £ has a non-zero
imaginary part due to the viscous properties of the neck. This term is responsible for
the damping of the system. Although only this term carries on the viscoelastic behavior
of the system, the treatment of the problem is affected drastically because of the
assumption of complex eigenfrequencies, fact leading, as it will be explained in what

follows, to much more difficult approach.

We note that the problem described by the equations (10), (11), (12) and the boundary

conditions (15), (16) and (18) constitutes a well - posed boundary value problem.
3 Problem Solution - Frequency Equation

Adopung the methodology followed in Ref. 1 we expand the elastic displacement field
@V (r') in terms of the Navier eigenvectors [13], the velocity potential ®(r') in terms
of the Helmholtz equation basis solutions and then, we find expansions for 2'(r') and

P(r') via their definition relations. The above mentioned procedure leads to



i) =3 3 S{arLr o)+ BUME ) 7N ) (19)

ne) g==a =]

dr)=3 5 {crg (K, r B (cosd)e™) (20)
m= m=-n

@O0 =3 SL ) @n

P(r }hrﬂpjc, zu S {crgik )" (cosd)e™?}, (22)

]

where g!(z) and g’(z) represent the spherical Bessel functions of the first, j,(z), and
second kind, v, (z), respectively. The functions P"(cos?) are the Legendre functions

and the product P"(cos®¥)e™ constitutes the spherical harmonic Y™ (r').

The Navier eigenvectors are given as

: — - Y
B = £r)+w1{ﬁ+l}%3“(} (23)
P
MM ()= nn+ gl (&, rCT (') (24)

vy Prpgsr o
N™(r }“n(n+1]g"£k - P”‘(ﬂ+4m;n+n{g;(k'sr‘}+ %}Bﬂ?} (25)

¥ I

where g.(z) stands for the derivative of gf,{:] with respect to its argument and the

functions P"(r), B, (r), CI'(F) constitute the vector spherical harmonics given by

=i



F'(F)=FY ()
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where r, ¥, @ are the unit vectors in r, ¥, @ - directions respectively, &' ,=

(26)
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(28)
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/
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Forcing the expansions (19), (21), (22) to satisfy the boundary conditions (15), (16)

and (18) and following the procedure presented in [1], we find that the involved

coefficients must satisfy the following relations

i[ﬂ.’: JB: (rl o }+ Y:IIE; Erl a }] = D

I=]

MI‘J
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I=1
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(30)
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where n'=0,1,2,...; |m|sn

and
N2+ [%] (=1)"5*1(2i = 2k)!
n+m i = =K1 — !
S8 m)= el 2" eokl(i—-K)(i—-2k+1)!  lae
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st s e s N 1 ¥
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All the quantities A, B,C,... are given in Appendix A.
The algebraic equations (29) - (35) consist of a linear system of the following form
Dx=10 (38)



where

mtim] Dipgartat Dimpymyen
D|m'|-v-l.|m'[ D|m'|+].|n:'|+| D|m'|4-l.|m'|+2
D=|D, a1 Diwpsrgmins Diwpergmisz (39)

1sa 7(n'+1) matrix (where n' ensures convergence)

and

il

y " y T
. Wb m 2 m 2 e m e
'r_[alm'l ?almi "“’}(Inr'l , rc:_ﬂ.l,..., n:lm I+l"“] iy
Details about the matrix D are given in Appendix B.

In order for the system (38) to have non - trivial solutions, the frequency equation must

be satisfied, that is
det(D) = 0. (40)

Thus the equation (40) is going to provide with the complex eigenfrequencies
Q=10 +if),. At this point we note that matrix D is a complex matrix having as
elements very complicated quantities constituted by combinations of Bessel functions
having as argument the complex eigenfrequency £2 as well as the complicated complex
quantities = and =,. The numerical treatment of the matrix, as will be presented in

section 3, requires the determination of the real and imaginary part of the matrix. To
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fulfill this requirement we introduce the real quantities Z and Z,, which are defined by

the equations

=(n',n,6,,m' ) = £E(n' ,n,0,,m ) +ie,E(n' ,n,0,,m) (41)
2,01 ,0,8,,m) = £E,(1 .n.8,,m ) +ig,E,(n' ,n,6,,m). (42)

The determination, now, of the real and imaginary part of the matrix is realised as
follows: let us consider, for example, the (3,1) element of matrix D, ,, which has the

following form:
dy, = AP )= AL(F E(k, k. 6,,m' ).

By using the definition (41) we get

e {Reéi(r‘, )-[eReAlr)) — &, Im AL )[Ek k.6, m }}
(43)
+iflm A7) = [ Im AL ) + & Re AL JEK K.,

However, we have separated real from imaginary part just formally. The determination
of ReA,(r',) and ImA;(F ) requires some analytical manipulations as well as use of
suitable numerical schemes for the determination of the real and imaginary part of
Spherical Bessel functions with complex argument.  This procedure is repeated for

every element of the truncated matnix D.
4. Description of the Neck Support

The treatment of the neck support in the analysis described above is based on a complex

variable € = g, +ig, which depends on the mechanical properties of the neck. There is

o 1 o



no previous attempt in the literature to use such a model representing the neck with
three - dimensional support elements. Landkof et al. [7] have used one support
element which acts in one direction. In order to determine the most suitable model
simulating neck support, we have considered many cases constituting combinations of
Maxwell, Voight and Jeffrey elements [16]. Most of these models lead to non
acceptable physically situations (negative parameters or values beyond the physically
imposed constraints). Some complicated models having an extremely high degree of
complexity do not provide with more information than simpler ones. All this analysis
confined our choices to the selection of several, continuously and uniformly distributed
model elements on the outer surface §, in three dimensions, each one of which has the

structure shown in Fig. 2.

Figure 2: The Three Element Elastic Model.

It can easily be shown [14,15] for such a model that

o TIQEN+ E’
-iQn+2E

or

E
E = — =
L QE+nQ) +10Q;

((E+nQ,)(2E+nQ,)+n°Q])

and

sy



E
E, == 7] P Q'E*
TRy

where E,n  dimensionless parameters (E=E [u, n=ne,/pe) and E, 1, the

constants of the model of Fig. 2.

The determination of the parameters E,n is based on the agreement of (Q,, Q,)
obtained by using our model and those of the experimental measurements of
eigenfrequencies and damping coefficients. One particular set of data is of interest,
whose parameters are given in Table 1 and concem the second fundamental
eigenfrequency of the human head - neck system. The results obtained are shown in
Table 1 and graphically in Figure 3. It is noticeable that the estimated parameters E,n
of our model adapting the experimental data concemning the second basic
eigenfrequency lead to a model reconstructing higher eigefrequencies in good
agreement with experiment. This is the first necessary test for the acceptance of the

specific parameler estimation.

Table I: Parameters for the Three - Element Elastic Model Obtained from the
second Eigenfrequency Experimental Data (2],
Experiment [2] Constants fitted to Data
@,* (Hz) @, (Hz) E n

1082 49.2 0.071 2.76

1378 49.2 0.077 0.95

1378 127.9 0.116 4.55

1082 127.9 0.121 1.66

Average 0.100 2.48

by



Figure 3: Model constants €,,e, as a function of Q,.Q, for average pairs E.n shown in Table 1.
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5. Numerical Results
The properties used for skull, brain and cerebrospinal fluid are given in Ref. 1. The

geometry of the system is described by the following
3 (4
r,=0.0854m, r,=0.0794m, 6, = 3

that reflects average geometrical characteristics of the experiments in Ref. 2.

The numerical method used is similar to the one described in Ref. 4. The dimension of

the truncated matnix depends on the appropriate selection of the value of »n' which
ensures convergence of Q% =Q" +iQ¥, k=1,2,3,..,20. The computation of Q"
and ﬂk__k' are listed in Tables 2 and 3, respectively. The results obtained are shown as a
funcion of »n' and in what follows we repeat the procedure untl
1% (£,0,.n') - Q¥ (£.,6,.5 +1}] = 0(10™"), k=1,2,..,20. As it is shown we obtain

convergence of the first 11 eigenfrequencies for n'=1. Using higher values of n' does
not contribute to better predictions, although more eigenfrequencies can be computed,

and makes the computations very intensive.

In Table 4 are cited experimental results [2] and the corresponding numerical results of
our analysis. It is obvious that the results obtained using the constants computed above
show very good agreement for the real part of the eigefrequencies. However, the first
eigenfrequency cannot be predicted and this might be due to the complicated nature of
the neck support of the human head. The first two computed damping coefficients fall
within the region of the measured ones, and the viscoelastic behavior of the human
neck does contribute significantly to higher damping coefficients. This shows that the
viscoelastic behavior shown in the experimental results of Ref. 2 is mainly due to the

viscoelastic properties of the human cavity.

The damping coefficients obtained by our analysis, the experimental ones and those

obtained from a model for the viscoelastic brain [4] are shown in Table 5. The results
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show that the first two of them are predicted by the present model and are not affected
by the viscoelasticity of the human head a{]d higher ones (9th and 10th) are predicted by
the viscoelastic brain model. This indicates that the dynamic characteristics of the
human head - system can only be predicted by a detailed model which incorporates both

origins of viscous properties.

Another parameter which affects the obtained results is the support angle 6,. The

computed results for eigenfrequencies and damping coefficients is shown in Table 6.

6. Conclusions

In this work we have introduced a model for the simulation of the human head neck
support which describes its viscoelastic properties. The parameters involved in the
model have been computed using fitting 1o experimental dynamic characteristics. We
assumed also that we can describe the human head using a simplified spherical cavity.
Our results show that we can predict the real part of the eigefrequencies and the
damping coefficients of the first two eigenfrequencies, being the only ones which are
affected by the neck viscoelastic properties. However, the real part of the first
eigenfrequency, which is important in certain clinical methods for the early diagnosis of
brain discases cannot be predicted by the proposed model and further investigation is

needed.
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Table 2: Model convergence of QY', k=1,2,...,19.

No. =0 =1l n=2]| =3 n=4]n=5]| W=6] n=7]| n=8 | n=9
1 0.14174 | 0.14730 | 0.14551 | 0.14626 | 0.14592 | 0.14508 | 0.14601 | 0.14604 | 0.14602
2 034332 | 0.36101 | 0.35504 | 0.35756 | 0.35648 | 0.35691 | 0.35677 | 0.35680 | 0.35s80
3 0.41568 | 0.42013 | 0.41834 | 0.41899 | 041881 | 0.41884 | 041884 | 0.41804
4 0.51837 | 0.51896 | 0.51837 | 0.51885 | 0.51852 | 0.51871 | 0.51861
3 0.62570 | 0.62722 | 062677 | 0.62604 | 0.62688 | 0.62690
f 0.73425 | 073611 | 0.73525 | 0.7356%8 | 0.73548
T 0.56501 | 0.86532 | 0.86513 | 0.86525

B 1.04509 | 1.08379 | 1.0454%
Y 1.18281 | 1.18281 | 18278 | 118283 | 18278 | 118283 | 118279 | 1.18281
10 119711 [ 19823 | 109780 | 1.19soz | 1.e7er | 1a979s | 119795 | 119797 | 1.19797
11 1.25233 | 1.25267
12 1.50691
|3 1.90808 1.908&87 1.90839 1.90846 1.90843 1.00844 1. 90844
14 213668 | 223668 | 2.23667 | 2.23668 | 2.23667 | 2.23660 | 2.23668 | 2.13668
15 233386 | 2.33389 | 2.33389 | 233387 | 2.33300 | 2.33388 | 2.33380 | 2.33388 | 2.33380 | 2333890
16 2.54067 | 2.54081 | 2.54071 | 2.5407% | 2.54074 | 2.5407%
17 3.16680 | 3.16604 | 3.16691 | 3.16693 | 3.16692
18 3.24163 | 224162 | 324131 | 324130 | 324121 | azein | 32413 | aazeis) [ oaaaaag
I 3,25036 | 3.25046 | 3.25942 | 3.25044 | 3.23043 3.25043 | 3.25042

Table 3: Model convergence of Q;’“. [ 3 R |

No. =01 n=1}| =21l =3 | =4 | n=S5 ] B=6] W=7 | =8 ] =9
1 0.01724 | o.01874 | ooig3g | 001851 | o.01846 | 001848 | 0.01847 | 0.0i847 | 0.01847

2 0.01987 | o.o2zos | ooziaz | o.02is7 | 002157 | oo2e1 | oo2160 | o.02160 | 0.02160
3 0.00145 000231 0.00204 0.00210 0.00210 0.00209 000209 000210
4 000021 0.00017 0.00023 0.00017 0.00021 0.000149 Q00020
5 0.00075 | 0.00095 | 0.00001 | 0.00092 | 000092 | 0.00092
6 0.00050 | 0.0006% | 0.00061 | 0.00065 | 0.00063
7 o.00010 | 000012 | oooorn | o.o0012
] 0.00041 0.00047 | 0.00044
g 000063 | 000063 | 0.00064 | 0.00063 | 0.00064 | 000063 | 0.00064 | 0.00063
10 0.00133 | 0.00141 | 0.00138 | 0.00139 | 0.00139 | 0.00139 | 0.00139 | 0.00139 | 0.00139
11 0.00150 | 0.00017
12 0.00014
13 0.00040 000042 000041 0.00042 000042 0.00042 000042
1 4 000009 Q.00 0, 00009 0.00009 0, 00009 O OO0 0, 00009 0, 00009
],:‘ 0.00007 000007 0.00007 0.00007 000007 000007 0, 00007 0, 00007 G, 00007 000007
16 0.00007 | 0.00007 | 0.00007 | 0.00007 | 0.00007 | 0.00007
17 o.00005 | 0.00006 | 0.00006 | 0.00006 | 0.00008
IH 0.00000 0000040 0.00001 0.00001 0.000401 000001 000001 0, 00001 O 0001
[y o0.00012 | c.o0012 | o.ooo12 | o.00012 | o.00012 | o.00012 | 0.00012

S|




Table 4:

Comparison with Experimental Data [2].

Results from the Viscoelastic Brain Model [4].

No. | Expenment Present Viscoelastc
[2] Analysis Brain
Analysis [4]
1 49.6-123 .4 65.83
2 49.2-127.9 76.99
3 33.7-183.8 748 6.196
- 51.8-137.4 0.71 12.799
3 93.4-213.8 3.28 18.314
6 123.5-201.3 2.23 23.161
i 95.0-161.8 0.43 27.669
8 72.5-136.3 1.57 32.017
Y 87.8-159.4 230 130.788
10 89.8-226.2 4.95 97.095
11 135.3-258.4 0.61 36.265

Experiment [2] Present Analysis

No. First Set of Constants Second Set of Constants
E=0.36, n="7.98 E=0.10, n=2.48

@, (Hz) @,"Hz) | o Hz) | @,"" Hz) | 0" Hz) | o" Hz)
I 853-1091 | 49.6-123.4 1008.15 76.95 520.43 65.83
2 1082-1378 | 49.2-127.9 2468.17 39.81 1271.69 76.99
B 1373-1691 | 33.7-183.8 3693.02 104.36 1489.95 7.48
El 1616-1954 | 51.8-137.4 38?_12.5& 12.01 1848.40 0.71
5 1859-2293 | 93.4-213.8 4478.31 1.20 2234.36 3.28
K 2084-2490 | 123.5-201.3 7024.64 8.42 2621.35 2.25
T 2260-2876 | 95.0-161.8 7899 56 2.82 3083.91 0.43
8 2510-3288 | 72.5-136.3 8357.55 1.07 3726.24 1.57
9 3213-3967 | B7.8-159.4 9073.48 1.85 4215.70 215
10 3558-4644 | BY.B-126.2 11332.40 (.99 4269.73 4.95
1 4197-5380 | 135.3-258.4| 11543.18 0.19 4464.69 0.61
12 4644-53964 | 127.3-392.5] 11717.36 2.04 5370.84 (.50

Table 5: Comparison of Damping Coefficients with Experimental Data [2] and




6, == 9, =— o
8 15 20
a”, i=1,..12 | &, i=1.,12 ] o i=1..12 | @f.i=1..12 | &, i=L..12 | 0, i=1..12
520.43 65.83 252.75 51.08 176.44 36.87
1271.69 76.99 660.81 70.09 18441 66.59
1489.95 7.48% 1445.94 735 1436.08 131
[84%.40 0.71 1836.68 0.65 [838.70 0.39
2234 36 3.28 2216.89 1.86 2206.97 {12
2621.35 725 3575.46 0.38 7574.80 0.33
3083.01 0.43 30806.75 0.86 3082.38 0.62
3726.24 1.57 3691.74 0.09 368696 0.08
4215.70 L 316763 147 4149 .27 .83
4269.73 1.05 424212 0.69 4219 61 0.39
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APPENDIX A

CR Rl W e g £ R VR

The functions A B, ..C. .D. .E.  and A! B, A",”. £! are given as follows:

Al (F)= {i-‘g;(k'n Py+2u K, (1 - T”" ”]g &, P)+AK, gk, r)
¥ r - '

Py

P

. . K,
BL(r) =24 i+ 1‘1[;%@:@'& 1#]

Colt)= 8 NG D K, €406, 1) =81k, )
2 ' r

. 5 S (S
D (¥)=2p' n(n+1) &K, ) _& rl}
E kls. K-

E3
r K. r

i

B s f kl i e
E )= raD| 2585 e e gy t0ED=L r'n]

Ay =gL(k,r)

- — gk
B:,. —wﬂ{ﬂ"‘l}_'LL‘L—}
r

C.=n i +Dg (k' r')

Do=nn+ 1}“—“‘_"—}
”

E

I 1 ]
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APPENDIX B
The matrix D can be described by a matrix of block elements having dimension 7 X 7,
1.e.

D, D, .. D

L=l
D,,
D=
Dn +L1 Dﬂ'+].n'+1

The diagonal elements are given as

Fﬂ';,: d;.: dl ?_'

dy

D=

_d"| E'I'l?.-l‘
where
“r!.; = Ai“-l )5 r51'1.: = Ai;::{.rru dl.ﬁ = D;{rl:.j- ﬂr:..n = f'}:“-ln ),

Qp',

di; = -_.:'-3:{';3;' Fy)
i

dip= B Y din =B ) dig=Er): dy=Bry )

d,, = AL(F ) = AL(F E(kK,6,.m'). dy, = AL(F) = AX(F )E(k.k.6,.m ),
dy = Di(r )= Di(r VE(kK.6,.m). d., = D}(r )= Di(r)E(k.k.6,.m),
d,, = B\(r,)- B\(r | )E(k,k,08,,m'), d,,=B(r)=-B()E(kk0,.m),

ds-.s = 'E; l::rl‘. -J =1 'E‘Ii(r.] ]E{kfkfﬂ_-rnf }11 HJ-.1.,1‘. = "Ek:{rl'l )_ 'é'k:{rll ]E[":sk¢8||"nr ]I

dsy = C(ry). dy,=Ci(r,),
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d,, = Ci(r)=C\(r )E,(k.k.8,m), d,,=C ()= C(r))E, (k.k.6,,m')

n'] ! 3

dy, =3::].~{ﬂ"'r::}.- d,, = g:‘tﬂfn]" d, =H'{:+”M}T !.rtI '
:rU
2 K] N =1 kr i

dys =k{k+l}——-—-—-——g"g e, et ),

sTo C_f

and the corresponding elements of the block submatrices D, ; are
dy, = =AN(F )EK, j.8yam' ), dyy =—AL(F, )k, .6, m),

dys ==D\(r )E(k,j.6,,m ), dy, ==D*(r)E (K, j.0,m),

d-t.: = _‘é,-l(rr'. }E,[k,j,ﬂg,mr}, d:..z = -E',iz':fl }E:{L_f-&mm‘ )

ds ==E\(r )2k, j,60.m' ), dys=-E (¥ )Z (k. j.8,,m),

dy; ==C(r'))Z,(k.j.8,m), dy, =~CH(F,)Z (k. j.68,,m ).



