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Abstract

In this paper we demonstrate that a broad class of higher-order functional programs can
be transformed into semantically equivalent multidimensional intensional programs that
contain only nullary variable definitions. The proposed algorithm systematically eliminates
user-defined functions from the source program. by appropriately introducing context
manipulation (i.e. intensional) operators. The transformation takes place in M steps,
where M is the order of the initial functional program. During each step the order of the
program is reduced by one. and the final outcome of the algorithm is an M-dimensional
intensional program of order zero. As the resulting intensional code can be executed in a
purely tagged-dataflow way, the proposed approach offers a promising new technique for
the implementation of higher-order functional languages.

1 Introduction

This paper is the successor of (Rondogiannis & W.W.Wadge, 1997) in which we
formally established the correctness of a transformation algorithm from first-order
functional programs to intensional programs of nullary variables. In the present
paper we extend our investigation to a broad class of higher-order functional pro-
grams. In particular, we define an algorithm which gradually transforms a given
higher-order program into a semantically equivalent intensional program of nullary
variables. As it was discussed in (Rondogiannis & W.W.Wadge, 1997), there exists
a very close relationship between intensional languages and the tagged-datafiow
model of computation: the notion of context (or tag. or possible world) plays a cru-
cial role in both cases. In fact, tagged-dataflow machines provide the ideal hardware
platform for executing intensional languages. Therefore, the immediate practical
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outcome of the algorithm developed in this paper, is a technique for implementing
higher-order functional languages in a purely datafiow way.

The paper is organized as follows: section 2 outlines the transformation algo-
rithm for first-order programs. The material in this section is a brief presentation
of the ideas in (Rondogiannis & W.W.Wadge, 1997) in order to make the present
paper self-contained. For a complete and formal description of the first-order case,
the interested reader should consult (Rondogiannis & W.W.Wadge, 1997). Section
3 presents an intuitive introduction to the transformation algorithm for higher-
order programs. Section 4 introduces the mathematical notation that will be used
throughout the paper. The simple higher-order functional language FL that will
be the focus of our investigation, is presented in section 5 and its (classical) de-
notational semantics are given. The higher-order intensional language IL and the
final zero-order intensional language NV IL are developed in section 6 and their
synchronic denotational semantics are presented. The transformation from FL to
NVIL is derived in section 7 and the correctness of the transformation is demon-
strated in section 8. The paper concludes with discussion of implementation issues,
related work and future directions in the area of intensional transformations of
functional programs.

2 The First-Order Case

Before considering higher-order programs, we outline the approach we adopt for
the first-order case; this was initially developed in (Yaghi, 1984) and formalized
in (Rondogiannis & W.W.Wadge, 1997). The algorithm transforms a first-order
program into a set of zero-order definitions that contain context manipulation op-
erations. As the semantics of the resulting code is based on Montague’s Intensional
Logic (Thomason, 1974), the resulting definitions are also referred as intensional
definitions.

The transformation algorithm can be outlined as follows (see (Rondogiannis &
W.W.Wadge, 1997) for a more detailed and formal exposition): for each function £
defined in the source functional program,

1. Number the textual occurrences of calls to f in the program, starting at 0
(including calls in the body of the definition of f).

2. Replace the ith call of f in the program by eall;(f). Remove the formal pa-
rameters from the definition of f, so that f is defined as an ordinary individual
variable.

3. Introduce a new definition for each formal parameter of f. The right hand
side of the definition is the operator actuals applied to a list of the actual
parameters corresponding to the formal parameter in question, listed in the
order in which the calls are numbered.

To illustrate the algorithm, consider the following simple first-order functional pro-
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gram:
result = f£(4)+£(5)
£(x) = pgl(x+1)
gly) =y
The translation algorithm produces the following intensional program:
result = cally(f)+call; (f)
i = cally(g)
g = ¥
X = actuals(4,5)
¥ = actuals(x+1)

An execution model is established by defining the call; and actuals in terms of op-
erations on finite lists of natural numbers (referred from now on as tags or contezts).
Execution of the program starts by demanding the value of the variable result of
the intensional program, under the empty tag [ |. The operator call; corresponds
to the operation of augmenting a tag w by prefixing it with i. On the other hand,
actuals corresponds to takeing the head i of a tag, and useing it to select its ith ar-
gument. More formally, given intensions a,aq, ..., 6p-1, and letting “” denote the
consing operation on lists, the semantic equations as introduced in (Yaghi, 1984)
are:

(call;(a))(w) = ai:w)

(actuals(ap, ..., an 1 ))i:w) = (a;)(w)
Following the above semantic rules, the intensional program obtained above can be
interpreted as shown below:

EV AL(callg(f)+call, (£),[])
= EVAL(cally(f),[]) + EVAL(call; (£),[])
EVAL(%,[0]) + EVAL(£,[1))
EV AL(callg(g),[0]) + EVAL(cally(g),[1])
EVAL(g,[0,0]) + EVAL(g, [0,1])
EV AL(y,[0,0]) + EVAL(y,[0,1])
EV AL(actuals(x+1),[0,0]) + EVAL(actuals(x+1),[0,1])
EVAL(x+1,[0]) + EVAL(x+1,[1])
EVAL(x,[0]) + EVAL(1,[0]) + EVAL(x, [1]) + EVAL(1,[1])
EVAL(x,[0]) + 1 + EVAL(x,[1]) + 1
EV AL(actuals(4,5),[0]) + 1+ EVAL(actuals(4,5),[1]) + 1
EVAL(4,[])+ 1+ EVAL(5,[]) +1
= 4+145+1
= 11

Il

I

[l

The technique just described has been extensively used in the implementations of
the Lucid functional-datafiow language (Wadge & Ashcroft, 1985) as well as in
other functional languages and systems (Du & W.W.Wadge, 1990; Du & Wadge,
1990).

In the following, we will use a slight modification of the above technique, which
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will make easier the treatment of higher-order functions. For example, consider the
definition:

x = actuals(4,5)
in the above translated program. We will rewrite the definition as:

x = case(actualsy(4),actuals,(5))

The new case operator we have introduced allows the use of a new family of actuals
operators which correspond more closely to the call operator. The semantics of the
new operators are as follows:

(a:)(i:w)

(a)(w)

The above formalization is equivalent to the previous one, but has an additional
benefit: each actuals; operator is now unary, as is the case with each call; operator.
This will help us formulate in a more elegant way certain of the properties of the
transformation algorithm for higher-order programs.

case(ay, ... an_q )i 1 w)
(actuals;(a))(i : w)

1l

3 The Higher-Order Case
3.1 Imtroduction

The basic idea for the generalization of the technique to higher-order programs
was first presented in (Wadge, 1991) and has since been extended and formalized
in (Rondogiannis, 1994; Rondogiannis & Wadge, 1994a). Intuitively, the technique
can handle higher-order programs in which:

1. Function names can be passed as parameters but not returned as results.
2. Operation symbols are first-order.

In the rest of this section we give an intuitive introduction to the proposed trans-
formation technique. The main idea of the generalized transformation is that an
M-order functional program can first be transformed into an (M — 1)-order inten-
sional program, using a similar technique as the one for the first-order case. The
same procedure can then be repeated for the new program, until we finally get a
zero-order intensional program.

The idea of tags is now more general: for a program of order M, a tag is an
M-tuple of lists, where each list corresponds to a different order of the program.
The operators are also more general as they have to manipulate the new, more
complicated tags. As the transformation for the higher-order case consists of a
number of stages, we use a different set of operators for each stage. For the first
step we use the operators case™, actualsM and call™, where i ranges as in the
first-order case. For the second step, we use case’™ !, a:ctua!sf‘r_l and vl::aull;-JL i
and so on.

The code that results from the transformation can be executed following the same
basic principles as in the first-order case. In the rest of this section, we present at
an intuitive level the transformation algorithm and describe the semantics of the
generalized operators.
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3.2 An Erxample Transformation

Consider the following simple second-order program:

result = apply(inc,8)+apply(dec,5)
apply(f,x) = f£(x)

inc(y) = y+1

dec(a) = a-1

The function apply is second-order because its first argument is first-order. The
generalized transformation, in its first stage eliminates the first argument of apply:

result = call?(apply) (8)+call] (apply) (5)
apply(x) = £(x)

ine(y) = g+l

dec(a) = a-1

f = case’(actualsi(inc),actualsi(dec))

We see that the resulting program contains only first-order funetions. The only
exception is the definition of f. which is an equation between funetion expressions.
We can easily change this by introducing an auxiliary variable z:

result = call}(apply) (8)+call] (apply) (5)

apply(x) = £(x)

inc(y) = y+l

dec(a) = a-1

f(z) = case’(actualsj(inc) (z) ,actualsi(dec)(z))

Notice that in the above program the functions are all first-order (they all have only
zero-order arguments). A non-standard aspect of this new program is the existence
of certain function calls of the form q(f)}(Eg,...,E,_;), where q is an intensional
operator (such as the calls callj (apply) (8), call] (apply) (5), actuals?(inc) (2)
and actualsj(dec) (2)). Such calls will receive a special treatment in the next step
of the transformation.

We can now perform the final step of the transformation that will result in a zero-
order intensional program. We proceed as before, the main difference being that
we use a new dimension and corresponding new operators. Moreover, calls such
as call? (apply) (8) will receive special treatment (this will be further explained
below).

result = call}(call}(apply))+calli(calll(apply) )

apply = calll(#f)

inc = g+l

dec = a-1

. 4 = case’ (actualsi(call}(inc)),actualsi(calll(dec)})

z = case'(actualsj(x))

¥ = case'(actuals}(calli(z)))

a = casel(act ualsg(cal lf (z)))

x = case!({actual sﬁ (actualsg{ﬁ} y &ctualsi (ac tu.alsf {5)))
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The transformation is similar to the one for the first-order case, the main dif-
ference being the treatment of calls of the form q(f}(Eg,...,Ey_;). Consider, for
example, the call call? (apply) (8) and notice the subexpression actuals?(8) that
appears in the final program corresponding to the actual parameter 8. The new
aspect here is the appearance of the operator actuals?, which we will call the
inverse of the operator call? that existed in the initial call. In general, the in-
verse of call™ is actuals]™ and vice-versa. As a second example, consider the call
actuals?(inc) (z). The subexpression that results for the actual parameter z is
calli(z), because call} is the inverse of actuals?. The above notions will be for-
malized in subsequent sections (and will be generalized for the case of function calls
of the form Q(f)(E,,...,En—1), where Q is a sequence of intensional operators).

The (informal) algorithm for the higher-order case consists of repeating the fol-
lowing steps until the program becomes zero-order. For each function f of the current
highest order m:

1. Number the textual occurrences of calls to f starting at 0.

2. Remove from the ith call to f all the actual parameters of order (m - 1).
Prefix the call to f with call™.

3. Remove from the definition of f the formal parameters of order (m — 1).

4. For every formal parameter x of f that was eliminated, introduce a case™
definition. The case™ operator takes as many arguments as are the calls to £
in the program. More specifically, the i’"th argument of case™ corresponds to
the i’th call of f in the program, and is an expression starting with actuals]".
Moreover, if the particular call to fis of the form Q(f){Eg,...,En_1). where
Q) is a sequence of intensional operators, the inverse of Q must be taken into
consideration when creating the subexpressions of case™ (more details on
this will be given in section 7).

In the execution model for a source functional program of order M, tags are M-
tuples of lists of natural numbers, where each list corresponds to a different order of
the initial program {or equivalently, a different stage in the transformation). We will
use the notation {wy, ..., wyr) to denote a tag. The operators call™ and actualsT
can now be thought of as operations on these more complicated tags. The semantics
of eall™ can be described as follows: given a tag, m is used in order to select the
corresponding list from the tag. The list is then prefixed with i and returned to the
tag. On the other hand, actuals]® takes from the tag the list corresponding to m,
checks whether the head of the list is equal to i and returns the tail of the list to
the tag. The new semantic equations are:

(call(a)){wi,. .., W,y .., W) = a{wy,-..,({:0p),--., W)
(actuals™(a)){wy,...,(i : wm), ..., war) = alWwi,...,Wimy-.. War)
(case(ag, ..., 0n—1){W1s .y (8 Wm0 wny) = apwy,...,(i:wm),..., W)

The evaluation of a program starts with an M-tuple of empty lists, one for each
order. Execution proceeds as in the first-order case, the only difference being that
the appropriate list within the tuple is accessed every time.

We can now demonstrate the evaluation of the example program presented above.
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Execution starts by demanding the value of result at the empty tag:

EVAL(result, {([.[1})
= EVAL(call?(call}(apply))+call?(calll (apply) ), ([1,[]))

This can be calculated by computing independently (and then adding) the following
two results:

EV AL(call?(call}(apply)), {{].[1})
and

EV AL(call?(calll(apply)). {[].[ 1)
We start by computing the first of the above:

EV AL(cal13(calll(apply)), {([L.[ 1}
EV AL(callg(apply), ([].[0])

EV AL(apply, {[0],[0]))

EV AL(cal1}(£), ([0].[0]))

EVAL(%, ([0,0],[0]))

EV AL(case® (actuals](callj(inc)),actualsi(calll(dec))), ([0,0].[0]))
EV AL(actuals?(call}(inc)), ([0.0],[0]})

EV AL(cal1}(inc), ([0.0],[]))

EV AL(inc, ([0,0,0],[]))

EVAL(y+1, ([0,0,0L.[]})

EL-'_{L{}!_, I:[[:'1 [],[]]1 ; ]:'} + EVAL“? ([ﬂsﬂ!ﬂ]r[ ]}:'

EV AL(y, ([0,0,0],[]) +1

EV AL(case! (actuals)(call?(z))), ([0,0,0],[])) +1
EV AL(actuals}(calld(z)), ([0,0,0],[])) +1

EV AL(callj(2), ([0,0],[])) +1

EVAL(z, ([0,0],[0])) +1

EV AL(case' (actuals)(x)), ([0,0],[0])) +1

EV AL(actuals}(x), {[0,0],[0])) +1

EVAL(x, ([0],[0])) +1

EV AL(actuals}(actuals(8)), ([0}, [0]) + 1
EV AL(actuals?(8), {[].[0])) +1

EVAL(8, {[].[]H+1

8+4+1

g

I | | | | | O | | | | (O (T [

EV AL(case'(actuals)(actuals?(8)),actuals!(ac tuals}(5))), ([0],[0])) +1
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We can now proceed with the calculation of the second part:

EV AL(call?(calli(apply)), {{].[]})

EV AL(callj (apply). {[].[1]})

EV AL(apply, {[1].[1]})

EV AL(callg(£), ([1],[2])

EVAL(s, {[0,1],[1]})

EV ALI[{:&EEE(actuala%{cﬂlﬂ{mc)} actualsi(calll(dec))), ([0,1],[1]))

EV AL(actuals?(call}(dec))), ([0,1],[1]})
(
(
(
(
(
(
(

wuu

EV AL(call}(dec), ([0,1],[]})
EV AL(dec, ([0,0,1],[]))
EVAL(a-1, {[0,0,1],[]))
EVAL(a, ([0,0,1],[])) + EVAL(1, {[0,0,1],[ ]}
EVAL(a, {[uu 1L,[])) -1
EV AL(case {actmlsufcall?‘(ﬁ}) {[0,0,1],[ ) -1
EV AL(actuals}(calli(z)), ([0,0,1],[]}) -1
EV AL(call}(z), ([0,1),[])) -1
EVAL(z, {[0,1],[1]) =1
EV AL(case! (actuals}(x)), {[0,1],[1]}) —
EV AL(actualsj(x), {[0,1],[1]}) -1
EVAL(x, ([1],[1])) -

mnmnn

i

(|

EV AL(actuals] (actualsi(5)), {[1],[1])) -1
EV AL(actualsi(5), ([ ].[1])) -1

EVALGS, ([},[]) -1

5-1

4

o

Therefore, the final result of the calculation will be the sum of the results of the
two subcomputations which is 9+4=13. Notice that although the above calculation
seems relatively lengthy, each operation that takes place at each step is primitive
and can be performed very efficiently. Moreover, it should be noted that one could
easily devise certain simple intensional transformations-optimizations that would
enchance the performance of the produced code.

3.8 An Example Involving Recursion

Consider the following recursive second-order program which calculates a function
factorial:

result ffac(sq,2)
ffac(h,n) if (n<=1) then 1 else hi{n)*ffac(h,n-1)
sqla) = a=xa

EV AL(case'(actuals}(actuals}(8)),actuals}(ac tualsi(5))). ([1],[1])) —
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We perform the first step of the algorithm as before, getting:

result = calll(ffac)(2)

ffac(n) = if (n<=1) then 1 else h(n)*call}(ffac)(n-1)
h = case’(actualsi(sq),actualsi(h))

sqla) = a=*a

Adding a variable z to both sides of the definition of b, we get the following first-
order intensional program:

result = callg (ffac)(2)

ffac(n) = if (n<=1) then 1 else h(n}*callf(ffac]l (n-1)
h(z) = case’(actualsi(sq) (z),actualsi(h)(z))

sqla) = a*a

We can now continue the transformation, getting the following zerc-order inten-
sional program:

result = call?(call}(ffac))

ffac = if (n<=1) then 1 else calll(h)*calli(call](ffac))

h = case’(actuals;(call}(sg)), actualsi(calll(h)))

sq = a*a

n = case! (actualsa(actualsﬁ (2)), actuals](actualsi(n-1)))
z = case'(actualsj(n), actuals] (c:a_'l.lf {z)))

= case!(actuals}(calli(z)))

The output value of the above program can be easily computed as before (using
the semantic rules of the intensional operators).

4 Mathematical Notation

The set of natural numbers is denoted by N. The set of functions from 4 to B is
denoted by A — B. For simplicity, in certain cases we use the subscript notation
for function application, writing for example f, instead of f(a).

For notational simplicity, we usually denote a sequence (sg, 81,...,8,—1) by &
The following generalization of set products is adopted: if T is any set and 4; is a
set for every i € I then

[TAi={r: 1= JAiIViel i) e A}
el i=l

The composition of two functions f and g is defined as usual and denoted by
f o g. The perturbation of a function with respect to another function, is defined
as follows:

Definition 4.1
Let f:A—> Bandg:S5 — B, where S C A. Then, the perturbation f S g of f
with respect to g is defined as:

_J glz) ifzes
”99:'“:"{ f(z) otherwise
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Given a funetion g = {{xg.ba).....{Tn-1.bn_1}}, we will often use the alternate
notation f[zg/bo,...,Tn—1/bn—1] instead of f = g.

Let L be a given set. We write List(L) for the set of lists of elements of L. The
usual list operations head, tail and cons are adopted. The infix notation 7 will
often be used instead of eona.

In the rest of this paper, we assume familiarity with the basic notions of domain
theory and denotational semantics (Stoy, 1977; Tennent, 1991; Gunter, 1992). Given
a domain D, the partial order and the least element of I} are represented by Cp
and Lp respectively. The subscript D will often be omitted when it is obvious. If
A, B are domains, [A — B] is the set of all continuous functions from A to B.

Finallv, we adopt certain tvpographic conventions which are outlined below. Ele-
ments of the object language, such as for example the code of programs or function
names in such programs, are represented using typewriter font (e.g., £,x,...). El-
ements of the meta-language are divided in two classes: those that are used to
represent usual mathematical objects such as functions, sets, and so on, and for
which we adopt the italics and the calligraphic fonts (eg., f.z.£. A,...), and those
that are used in order to talk about the syntax of the object language, for which
we adopt the boldface font (eg., f.x,P,E,...).

In recent years, a significant progress has been made in enriching programming
languages with a wide range of data types. Types impose a priori syntactic con-
straints on what constructs of a language can be combined, helping in this way
the programmer to avoid writing meaningless or erroneous code. In this section, we
define the syntax and semantics of the types that are adopted for the purposes of
this paper.

Definition 4.2
The set STyp of simple types and the set Typ of types, are ranged over by o and 7
respectively and are recursively defined as follows:

g ow=

| (#0,-.-,0n—1) 21t
T o= g

| g0

Notice that the result component of a member of STyp is always ground, that is ¢
As it will be described shortly, the languages considered in this paper are subject
to this restriction, in the sense that all functions defined in them should have a
type that belongs to STyp. On the other hand, the languages we are considering
will have intensional operators (the operators call and actuals) with types of the
form o — o.

Definition 4.3

The order of a type is recursively defined as follows:

0

1+ maz{{order(o;) |0<i<n—-1})
order(c = o) = 1+ orderio)

order(c)

order((cg,...,0n=1) =+ t)



Higher-Order Functional Languages and Intensional Logic 11

Definition 4.4
The denotation of a type with respect to a given domain D is recursively defined by
the function [ -], (where the subscript D will often be omitted) as follows:

e [lp=D

e [(go.....0n-1) = 5 = [([70l5:- -+ [on-1]p) = [t ]
e [o=alp =llolp = [ol]

A signature ¥ is a set of constant symbols of various types over STyp. Elements
of £ are assigned types by a type assignment function # : & — STyp. Constants
are denoted by ¢. We also assume the existence of a set Var of variable symbols,
whose elements are assigned types by 7 : Var — STyp. Variables are denoted by
f,g.x..... In particular, we use Vary to denote the variable symbaols of type &
Variable (constant) symbols of type ¢ are also called nullary or individual variables
{constants). Non-nullary variables are also termed function variables.

5 The Higher-Order Functional Language FL

In this section, we define the syntax and denotational semantics of the typed, higher-
order functional language FL.

Definition 5.1

The syntar of the functional language FL over ¥ is recursively defined by the fol-
lowing rules, in which E,E; denote expressions, F,F; denote definitions and P
denotes o program:

E = fe&Var

| c(Ep,....Eq1), c€ 5 n>0

| f(Eq,...,Ep_1), T€Var, n >0
F := (f(x0....,xp-1)=E), f,x; € Var
P o= Py Fu=1}

Given a definition f(xg, ..., Xa-1) = E, the variables x; are the formal parameters
or formals of £, and E is the defining expression or the body of £

Definition 5.2
Let P = {Fy,..., Fu_1} be a program. Then the following assumptions are adopted:

1. Ezactly one of the Fy, ..., F,_ defines the individual variable result, which
does not appear in the body of any of the definitions in P.

2. Every variable symbol in P is defined or appears as a formal parameter in a
function definition, at most once in the whole program.

3. The formal parameters of a function definition in P can only appear in the
body of that definition.

4. The only variables that can appear in P are the ones defined in P and their
formal parameters.

The set of variables defined in a program P is denoted by func(P). The type-
checking rules for the language are given as natural deduction rules with sequents
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of the form E : o. The sequent E : ¢ asserts that E is a well-formed expression
of type ¢ provided that the identifiers and constants that are used in E, have the
types assigned to them by 7 and & respectively.

Definition 5.3
The set of well-typed expressions is recursively defined as follows:
alf)=ec
f:o
(#e)=(t....te) =+ )A(Vie {0,....n =1} (E; : 1))
CI:Eu_.,..,En_l} L

(f:(o0s...,0n—1) 2 ) A (Vi€ {0,...,n -1} (Ei: 0u))
f(Eg,....En-1):t

Definition 5.4
A definition f(xg,...,Xn-1) = E with £ : (go,...,0n-1) = ¢ &5 well-typed if E : ¢
and for all i € {0,...,n—1}, x; : 7;.

Definition 5.5
A program {Fy,...,Fn_1} is well-typed if Fy, ..., Fn_; are well-typed definitions.

In the following, we will often talk about zero-order programs, first-order programs,
and so on. The following definition formalizes the above notions:

Definition 5.6
Let P be an FL program. The order of P is defined as:

Order(P) = maz({order(x(f)) | f € func(P)})

Let D be a given domain. The semanties of constant symbols of FL with respect
to D are specified by a given interpretation function (., which assigns to every
constant of type o, a function in [g] ;. Let Exzp, be the set of all expressions E of
FL such that E : . Let Fnv. be the set of =-compatible environments defined by
Env: = [ltcyar [7(£)] - Then, the semantics of FL are defined using valuation
funetions [- ], : Exp, = [Env, = [o]], (where the subscripts D and = will be
omitted when they are obvious from context).

Definition 5.7
The semantics of expressions of FL with respect to u € Env, are recursively defined
as follows:

[f](u) = u(f)
[e(Eq,...,En-1)](u) = Clc}([Eol(u), - . .. [En-1](u))
[f{Eq,... ,E“_l}]{u:l u[f]l{[EnI[u}, R [En—lu’ﬂ”

Theorem 5.1
(Tennent, 1991, page 97) For all expressions E, [E] is continuous and therefore
monotonic.

Definition 5.8
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The semantics of the program P = {Fp,... . F,_,} of FL with respect tou € Env,,
is defined as t(result), where @ is the least environment such that:

1. For every f € Var with f € fune(P), u(f) = u(f).

3. For every f(%Xp....,%Xn_1) = E in P such that f : (og.....0n_1) —+ ¢, and for
all dy € [oolps- . dn-1 € [Fn-1]ps
U(E)(do, - - -+ dnr) = [E](@lx0/do, .-, Xn-1/da-1]).

The above definition does not specifv how the least environment @ can be con-
structed. The following theorem states that @ is the least upper bound of a chain
of environments, which can be thought as successive approximations to .

Theorem 5.2

(Tennent, 1991, page 96) Let P and 4 be as in Definition 5.8. Then, U is the least
upper bound of the environments Uy, k € N, which for every f(xq,....%,—1) = E
inP, with £: (ca....,00_1) = ¢, and for all dg € Iﬂrn]n_....,dﬂ_l £ [cr,,_llﬂ_. are
defined as follows:

uo(f)(do, ..., dn1) = Lp
Ups1(f)(do, ... dn-1) = [E](Ur[x0/do,. ., Xn-1/dn-1])

Moreover, for every k € N, Ug(f) C e+ (F).
The following lemma is a direct consequence of the above theorem:

Lemma 5.1
Let P and i be as in Definition 5.8. Then, for every f(xg,....%Xn-1) = E in P with
f:(o0,....00-1) =1,

ie(f)(do,....dn1) T [E}(tix[x0/do,. .., Xn-1/dn-1])

Notice that the semantics of programs of FL have been defined with respect to
an initial environment u. Recall now that the programs that we are considering do
not contain occurrences of “outside” variables (Definition 5.2, assumption 4). For
this reason, in the following we will assume that the initial environment assigns the
bottom value (of the appropriate type) to every variable in Var, and we can then
talk directly about the least environment that satisfies the definitions in a given
program.

6 The Higher-Order Intensional Languages IL and NVIL

In this section we define the syntax of the intensional languages IL and NVIL
that are used in the transformation algorithm. The language IL is a higher-order
intensional one; programs that appear in intermediate steps of the transformation
belong to IL. On the other hand, the final zero-order programs that result from
the transformation belong to the intensional language NV IL, which is simpler in
structure than I'L (and is introduced independently).

The difference between JL and FL is the presence of intensional operators. Due
to the nature of the transformation, intensional operators in programs of I L appear
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in a specific way. Consider, for example, the following program obtained after the
first step in the transformation algorithm (section 3):

result = call}(apply) (8)+call] (apply) (5)
apply(x) = f£(z)

inc(y) = y+l

sq(a) = a%a

f(z) = case’(actuals](inc)(z),actualsi(sq)(z))

If we examine the function calls in the program, we realize that some of them are of
the form q{f)(Eq,...,E,—_1). In general, function calls that appear in intermediate
programs of the transformation will have the form Q(f)(Eg. ..., E,_;), where Q) iz
a (possibly empty) sequence of intensional operators.

The final (zero-order) programs that constitute the output of the transforma-
tion, have a simpler syntax than the programs that appear in the intermediate
steps of the algorithm. Moreover, these output programs can also have intensional
operators applied to constant symbols, something that does not happen in the
intermediate programs of the transformation (as an example, consider the expres-
sion actualsj(8) in the final program of the first example in section 3). For these
reasons, we independently define below the syntax of the two languages IL and
NVIL.

The following definition formalizes the syntax of sequences of intensional opera-
tors. Notice that in the following, ¢ denotes the empty sequence.

Definition 6.1
The set ISeq of sequences of intensional operafors is ranged over by Q and is
recursively defined as follows:

Q == ¢
| call’ Q. i >0, m >0
| actuals]" Q, i >0, m >0

Taking into consideration the above remarks, we have the following definition
concerning the syntax of the intensional language IL:

Definition 6.2

The syntar of the intensional language I'L is recursively defined by the following
rules, in which E E; denote expressions, B denotes a body expression of a defini-
tion, F,F; denote definitions and P denotes a program:

E := feVar
J ':(Ea,.-”_En-.].j_. ':EE: ﬂ-Eﬂ
| Q(f)Eg,....En-1), T€Var, Qe I5eq, n >0

B = E

| case™(Eo,...,E,1), 720
F = (f{xg,...,Xp1)=B), f,x;€Var,n>0
P oa= {Fn,...._Fn..i}

The notions of well-typed definitions, well-typed programs and order of a pro-
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gram, are identical to the ones introduced in Definitions 5.4, 5.5 and 5.6. Moreover,
the same assumptions as in Definition 5.2 are adopted for IL programs.

The final zero-order programs that result from the transformation, belong to the
language NVIL. The syntax of NVIL is defined below:

Definition 6.3

The syntaz of the intensional language NV IL is recursively defined by the following
rules, in which E, E; denote expressions, B denotes a body expression, F, F; denote
definitions and P denotes a program:

E == felVar
| c(Ey,....,Ep 1), c€E n>0
| Q(Eq), Q€ ISeq

B = E

|  case™(Eg,...,Er—), 120
F uz= (f=B), feVary
P = {Fo,....Fai}

Notice that the language NV IL is similar to the one defined in (Rondogiannis &
W.W.Wadge, 1997), the only difference being that the operators are now multidi-
mensional.

6.1 The Intensional Languages IL and NVIL: Synchronic Semantics

In this section we define the denotational semantics of the intensional languages
IL and NVIL . The set of possible worlds in both languages is the set of infinite
sequences of lists of natural numbers, that 18 N — List(N). Notice that, as we
discussed in Section 3, for the transformation of an M-order functional program,
contexts need only be M-tuples of lists of natural numbers. However, we would
like the semantics to be defined in the most general way, and be applicable to all
programs no matter what their order is. Moreover, there is nothing to be lost by
assuming that contexts are infinite sequences of lists, because in any particular
translation, only a finite number of the lists will be used. Therefore:

Definition 6.4
The set W of possible worlds of IL and NVIL is the set N — List(IV).

Given the above set W of possible worlds, we can define the set of possible
denotations of a type o, as follows:

Definition 6.5
Let D be a domain, The set of possible denotations of o € STyp with respect to W
and I is defined as

el =W = [e]p

In other words, in IL the elements of type ¢ are W-indexed families of “con-
ventional” type ¢ functions over D; they are not conventional type o functions
over W —+ D (a much more complex domain). In defining the semantics of TL
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and NVIL, we follow the approach that has been used by Montague for giving se-
mantics to higher-order intensional logie (Dowty et al., 1981; Gallin, 1975). As this
approach differs from the standard techniques used for assigning denotational se-
mantics to functional languages, we will refer to it as the synchronic interpretation
for reasons to be given shortly.

Let D be a given domain. Then, the semantics of constant symbols of IL (and
NVIL) with respect to D, are given by an interpretation function {*, which assigns
to every constant of type o, a function in [o]};. As the languages IL and NVIL will
be used in the transformation process of FL programs, the function C* is defined
in terms of the interpretation function C for FL. More specifically:

Definition 6.6
For every ¢ € & and for every w € W, C*(c){w) = C(c).

The zemantics of the intensional operators of the languages IL and NVIL are given
by the following definition:

Definition 6.7
Let w € (N — List(N)) and a,aq,...,an—1 € [o]". The semantics of the inten-
sional operators call, actuals and case are defined as follows:

call™(a)(w) = afwm/(i: wm)]) . ,
actuals?(a)(w) = {i{“'[mﬁm‘“wm}]} :ﬂ:ﬂ‘:m:‘:‘
case™(ag, ..., 6n-1)(®) = OGheadfwan) (W)

Given a sequence @) € ISeg, we can define the meaning of Q as the composition
of the meanings of the intensional operators that constitute Q. We will denote by
) the meaning of the sequence Q.

We can now proceed to define the semantics of expressions of IL. Let Ezp,
be the set of all expressions B of IL such that B : ¢. Let Env] be the set of
m-compatible synchronic environments defined by Env: = [[ecy,, [7(f)]p. Then,
the synchronic semantics of the language IL is defined using valuation functions
[-17: Exzp, = [Env; = [o] 5], as follows:

Definition 6.8
The synchronic interpretation of erpressions of IL with respect to u € Envy, is
recursively defined for every w € W, as follows:

17 (u)(w) = u(f)(w)

[e(Eo.. ... En-a)] (u)(w) = C*(c)(w)([Eo]" (u)(w)...., [En-1] (u)(w))
[Q(F)(Eq, - ... Eaa)]" (u)(w) = Q(u(f)) (w)([Eo]” (u)(w),.. ., [En—1]" (u)(w))
[case™(Eo, ..., En_1)] (u)(w) = case™ ([Eo]" (u), ..., [En-1]" (u))(w)

It can be seen from the above definition that the semantic equation for applica-
tion, is non-standard; it involves an individual “sampling” of the meanings of the
subexpressions under the current context w.

The basic principle is that the values of (say) f{E) at world w is the value of f at
world w applied to the value of E at the same world w - application is defined in
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a pointwise way. If we think of w as some (very) general “timepoint”, we see that
the value of f{E) at ‘time’ w depends on the value of E at the same time w. Hence
the name “synchronic” adopted for this interpretation.

In the case of NVIL, we also have the following semantic equation:

[Q(Eo)]" (u)(w) = Q([Eo] (u))(w)

Before we introduce the semantics of programs, the following definition is neces-
sary:

Definition 6.9
Letd € [o] 5. Then, d™ is that function on W whose value at every w € W is equal
to d.

We can now introduce the semantics of IL. Notice that the following definitions
and theorems also apply to NVIL programs (the difference being that NVIL
programs allow only nullary variable definitions).

Definition 6.10

The synchronic semantics of a program P = {Fo,... . Fn_1} of IL (or NVIL) with
respeet to u € Env®, is defined as U(result), where U is the least environment such
that:

1. For every £ € Var with £ € func(P), u(f) = u(f).

2. For every definition f(xXg.....xp1) = B in P with £ : (gg,...,00_1) — ¢,
for all dy € [ao]p, .- dn-1 € [on-1]p, ond all w e W,
ﬁ{f}{u'}{dﬂ1 LR sdn—l:l = [B]‘ {ﬁ[xufdﬁcs by !xﬂ-lf#—l]}{w}'

The above definition does not specify how the least environment @ can be con-
structed. The following theorem states that @ is the least upper bound of a chain
of environments, which can be thought as successive approximations to .

Theorem 6.1

Let P and @ be as in Definition 6.10. Then, @ is the least upper bound of the
environments g, k € N, which for every definition f(xg,...,%Xn—1) =B in P, with
f:(o0,....0n=1) = ¢, for alldy € [oo]p,....,dn-1 € [On-1]p, and all w e W, are
defined as follows:

tp(f)(w)(dy, ... dn-1) ip
Ek-i-l{f:]{w}{dﬂ! sany 'd"l-l?J [B]*{ﬁk[xufdgc ren ,xn_lfdf_l]]{w}
Moreover, for every k € N, i (f) C Gip (£).

i

Proof
Analogous to the proof of Theorem 5.2. O

The following lemma is a direct consequence of the above theorem:

Lemma 6.1
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Let P and © be as in Definition 6.10. Then, for every f(xp.....%q_1) =B in P
with f : (g0....,00-1) = ¢, for all dy € [og]p.....dno1 € [Fn-1]p and for all
we W,

g (f)(w)(do,....dn1) £ [B] (Ga[xo/d5",...  Xn—1/doz ]} (w)
The following theorem will also be used in subsequent sections:

Theorem 6.2
For all expressions B € Ezp,. [B]" is monotonic and continuous. Moreover, when
o # 1, [B] (u)(w) is monotonic and continuous, for all u € Env} and w € W.

6.2 Properties of the Synchronic Interpretation

In this subsection we investigate certain of the properties of the synchronic in-
terpretation. Initially, we consider those programs of /L that do not contain any
of the intensional operators call, actuals and case. Notice that programs of this
subset are actually FL programs, for which we have already defined a standard
denotational interpretation (see Definition 5.8). The following theorem establishes
the relationship between the standard and the synchronic semantics for programs
of the above subset:

Theorem 6.3

Let P be an IL program that does not contain any intensional operators, and
let u and @ be the least environments that satisfy the definitions in P under the
standard and the synchronic interpretations respectively. Then, for every w € W,
[P]" (@) (w) = [P](w).

Proof
(Outline) It suffices to show that for every definition f(xg,....,%Xp—1) = Bf in P,
with %5 : %9, ..., Xn~1 | Fn=1, it is:

u(f)(w)(do. ... dn—1) = u(f)(do, ... .dn_1)

for all dy € [o0lp,---,dn-1 € [oa-1]p, and all w € W. This can be shown by
a double induction: an outer computational induction on the approximations of u
and u, and an inner structural one on the body of . [

Consider now the programs of NVIL. For these programs, a standard denota-
tional interpretation [ - |- p, can easily be defined, as this was done in (Ron-
dogiannis & W.W.Wadge, 1997)[page 83]. The following theorem shows that the
standard and the synchronic interpretations coincide in the case of NVIL.

Theorem 6.4
Let P be an NVIL program and let u and ii be the least environments that satisfy the
definitions in P under the standard and the synchronic inferprefations respectively.

Then, [P]"(@) = [P]w_,p)(u)-
Proof
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(Qutline) It suffices to show that for every function f that has a definition in P,
u(f) = u(f). This follows directly with a proof procedure similar to the one outlined
for Theorem 6.3. [

The above two theorems suggest that in order to show the correctness of the trans-
formation algorithm, one can simply rely on the synchronic interpretation (see also
Theorem 8.5 later on).

7 Formal Definition of the Transformation Algorithm

The purpose of this section is to formally define the transformation algorithm from
higher-order functional programs to intensional programs of nullary variables. The
algorithm consists of a number of steps; at each step, the order of the input program
is reduced by one. The transformation ends when a zero-order intensional program
is obtained. More specifically, the input to the algorithm is an M-order FL program
(M > 0). After the first step of the algorithm, an (M - 1)-order IL program is
obtained. After M steps of the algorithm have taken place, a zerc-order NV IL
program has resulted. This is the output of the transformation.

Therefore, it suffices to just describe a single step of the algorithm, that is, the
procedure required to transform an m-order intensional program (1 < m < M),
into an (m — 1)-order one. Notice that this procedure also applies for the first step
in the transformation, because we can consider the source FL program as an [T
program that happens not to contain any intensional operators.

A step of the algorithm can be intuitively described as follows: given an m- order
input program, we start by considering the m-order functions that are defined in it.
The goal is to lower the order of these functions by eliminating their (m — 1)-order
formal parameters, appropriately processing at the same time all the calls to each
such fin the program.

For each formal removed from the formal parameter list of £, a new definition is
created and added to the program. Each such definition gathers together all the
actual parameters that correspond to the particular formal and that appear in calls
to fin the program. This “gathering” is performed with the use of the operators
case and actuals.

In this way, the input m-order program has been transformed into an (m — 1)-
order one. The procedure that we described above can be used repeatedly, until all
formals have been eliminated from all functions in the program. The final result
will be a program that consists of a set of intensional nullary-variable definitions.

7.1 Preliminary Definitions

In this subsection, we provide certain preliminary definitions that are helpful in
formally defining the transformation algorithm.

Definition 7.1
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Let q be an intensional operator. The inverse operator q ' is defined as follows:

8 call" if @ = actuals"
9 % actuals™ ifq=calll

Definition 7.2

Let Q = qpqy -+ Qr—1 be a sequence of intensional operators. Then, the inverse
1

sequence of Q is Q™' =g}, ---qr gy .

Let P be a m-order program. In the following, we assume an ordering of the
definitions in P (for example, a lexicographic one). This will allow us to talk about
“order of textual appearance” of function calls. Let f be a m-order function de-
fined in P. Let Sub(P) be the set of subexpressions of P. We adopt the following
conventions:

o The set of calls to the function fin P is defined as:

calls(P,f) = {Q(f)(Ey, ..., En—1) € Sub(P)}

o Let Cy,...,Cr_; be the calls to f listed in the order of their textual appear-
ance in P. The function label assigns natural number labels to the calls of £
in P in such a way that different calls receive different labels:

- i, fvj<i,Ci#Cy

inbel{P,E,6) = { label(P,£,C;), if 3j < i such that C; = C;

In this way, function calls are numbered in their order of textual appearance
in P, except for function calls that have more than one cccurrences in P and
which receive the label of their first appearance.

s The list of positions in the formal parameter list of £, of those formals that
have order less than (m — 1), is denoted by low(f, m). The list is sorted in
ascending order. For example, if only the zeroth and third argument of f are
less than (m — 1)-order, then low(f,m) = [0, 3].

# The set of the formal parameters of f that have order equal to (m — 1), is
represented by high(f, m). For example, if only the first and fourth arguments
of f are (m — 1}-order, then high(f,m) = {x;,%}.

o Let x € Vars(P) with x: (#g,...,06—1) = t. Then, Form(P,x) is a list of
k variable symbols, which satisfies the following:

— No variable in the list appears in program P.

— Given ¥ £ x, Form(P, x) and Form(P,y) are disjoint.

Intuitively, these are “fresh” wvariables that will be attached to both sides of
new definitions that result during the execution of the algorithm.

Based on the above definitions, we can now present the transformation algorithm,
on a step-by-step form.

7.2 Processing Expressions

We start by defining the function that processes the expressions of the source pro-
gram. More specifically, the elimination of the (m — 1)-order arguments from func-
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tion calls in program P, is accomplished by the £p_ function defined below:
E=f
Epm(E) =1

BBy
EF".m{E:' = CEEP,m{ED}: cas 1£P:M[Ert—1]}

E = Q(f)(Eq....,En_1), order(f) = m, low(f,m) = [ig,...,ik—1], label(P.f,E) = i

EP.m{E} = Q(call;“ (f}J{EP.m{Eiu)r ) JEP.m[EiL—l}}

E = Q(f)(Eq.....E,_y), order(f) <m
Epm(E) = Qf)(£p,m(Eo), ..., £p.m(En_1))

The first rule is for the case of (possibly higher-order) variables that are encoun-
tered during the transformation. In this case, the expression is not affected by the
transformation algorithm. The second rule applies in the case of constant symbaols;
then, the transformation proceeds with the arguments of the constant. The third
rule iz for the case where a function call is encountered, and the corresponding
function is m-order. The arguments that cause the function to be m-order (that is
the (m — 1)-order ones) are removed, and the call is prefixed by the appropriate
intensional operator. The fourth rule applies when the function under consideration
is not m-order. In this case, the translation proceeds with the actual parameters of
the function call, without eliminating any of them.

7.3 Eliminating the Highest-Order Formals

The function Dy, is used to process the definitions in P, removing their (m — 1)-
order formal parameters. Notice that at the same time, the body of each definition
is processed using the function £p ;. The definition of T, is given below:

D(P) = | Di(F)
FcP

F = (£(xo,....Xn—1) = E), low(f,m) = [ig. ..., ix-1]

F= Ef{,xﬂ- e !xﬂ-—l} = Emm[Eﬂ,_ i !EF"-].:I:I'. Em{f'm} = [ich L rik—]-]

Notice that we have supplied two rules, one for the case where the body starts with
a case operator and one for the case where the body is an ordinary expression.

7.4 Creating New Definitions

In this part of the transformation algorithm, a new definition is created for each
(m — 1)-order formal parameter that existed in program P. Before formally defining
the funetion .4, that performs exactly this task, we need to define the following
auxiliary functions:
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s Let C = Q(f)(Ep,...,E,_;) be acall to fin P and let x be the j'th argument
of £(j € {0,...,n —1}). The expression inv{C,x) is defined as follows:

inv(C,x) = Q7 (Ep,m(E;j))

The above expression will be used by A, for creating the body of the new
definitions.

o Let Cy,...,Cr; be the different function calls to fin P, listed according to
their labels (that is, label(P.f,Cy) =0,...,label(P.f.Cr ) =r—-1). U xis
an argument of £, the function params(P,f,x) is defined as follows:

params(P,f,x) = [inv(Cy,x), . .., inv(C,—1,x)]

In other words, the function params gathers together all the inv expressions
that correspond to the formal parameter x of £

The function .4, creates a new definition for each (m — 1)-order formal parameter
in program P. Let f be a function defined in P. If the formal parameter x of f is
(m — 1)-order, then the function A¢ x m returns a set that contains a new definition
for this formal. The formal definition of A, is given below:

AnP)= |} U Aexm(P)

fefunc(P)xchigh(f,m)

params(P.f,x) = [A.;.,..._, Ar_i], Form{P,x) =&
As x,m(P) = {x(Z) = case™ (actualsgi{ﬁﬂ][f], cees actua.ls:t_lfﬁ,._]}{i'j}}

7.5 The Overall Transformation

The translation of an m-order I'L program into an (m — 1)-order one, is performed
by the function Step, shown below:

Stepm(P) = D (P) U A (P)

Finally, given an M-order FL program P, the overall transformation of P into
an intensional program of nullary variables, is described by the function Transy,
given below:

Transy(P) = Stepy (- (Stepa (P))---)

This completes the formal description of the transformation. It can easily be ver-
ified that the programs that result at each intermediate step of the algorithm are
syntactically valid IL programs, while the final program is a valid NVIL one.

8 Correctness Proof of the Transformation

In this section we present in a rigorous way the correctness proof of the inten-
sionalization technique for higher-order programs. In the following, we first make
an assumption that helps us simplify the notation in the subsequent presentation.
Then, the correctness proof of the transformation algorithm is presented in detail.
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As discussed in the previous sections, let Py, M = 0, be the M-order source
functional program on which the transformation algorithm is applied. The programs
that result at successive stages of the algorithm are Pyr—q,....Po.

To simplifv the notation, in the following we assume that all the functions defined
in Py, have their highest-order arguments first, ie., if f(xg,...,%Xp-1) = Bgisa
function defined in Py, then order(xg) = order(xy) 2 --- 2 order(x,—;). This
helps us avoid notational complexities that would arise if we assumed that the
placement of the formals is arbitrary. Notice that this property is preserved by the
transformation, that is if it holds for Py it will also hold for all P, 0 < m < M.

It can easily be checked that the above assumption does not affect the generality
of the proof. Lifting the assumption does not alter the logic of the proof, but simply
adds a level of notational complexity.

The following definition is used in the following discussion:

Definition 8.1
Let w € W. The function |}: (W, 18eq) = W is recursively defined as follows:

(wle) = 1w
(w | call™) = wm/(i : wn)]
s wlm/tail(wy)]  if head(w,) = §
(w § actuals;") { unde fined otherwise
(wd (@@ Qn-1)) = (wlao) ¥ -qn-1)

In other words, |} performs the context switch corresponding to the composition
of the given sequence of intensional operators.

Consider now the program P, (0 < m < M). The following theorem establishes
a relationship between the meaning of functions defined in Py, and the meaning of
functions in Py,

Theorem 8.1
Let u and G be the least environments that satisfy under the synchronic interpreta-
tion the definitions in P, and Pp,—; respectively. Then:

s For every definition (f(xq,....%Xn—1) =By) in Py, if X0 : do.... . Xn_1 i Oney
and there exists 0 < | < n—1 such that order(op) = (m—1),...,order(o_1) =
(m—1) and order{c;) < (m —1),...,order(on-1) < (m — 1), then for every
function call E = Q(f)(Eq,....En—y) tof in Py, foralld) € [m],...,dnq €
[on-1] and for allw e W,

Q(call®(G(f)))(w)(dr, - .. ,dn-1) T
Q(u(f))(w)([Ep,m(Bo)] (T) (w), ..., [Ep,m(Bi—1)]" (@) (w), di,...,dn1)

where i = label(P,f,E).
o For every definition (f{xg,....%xn—1) = By) in Py, if x5 : 0p,... ., Xp—1 !
gn—1 and order(ga) < (m — 1),...,order(on_1) < (m — 1), then for all

u(f)(w)(do,. .., dn-1) C u(f)(w)(do, ..., dn-1)
Proof



24 P. Rondogiannis and W. W. Wadge

The proof is by a lengthy but in general straightforward computational induction
over the stages in constructing @ (but not u). More specifically, it suffices to show
that the above statements hold for all approxdmations i, k € N, of the environment
ti. In other words, it suffices to show the following two statements:

¢ For every definition (f(xg,...,Xn=1)=Be) in Pry, i X0 : 00y . -, X1 & Oy
and there exists 0 < 1 < n—1 such that order(og) = (m—1),...,order(g)-1) =
(m —1) and order{e;) < (m —1),...,order(gn-1) < (m — 1}, then for every
function call E = Q(f)(Ey, ..., E,- 1]I tofin Py, foralld € [m],....dn-1 €
[en-1] and for all w € W,

Q(calli” (ux(f))) (w)(di, ... ,dn-1) C
Qu(f)(w)([Ep,m(Eo)] (Te)(w), . ., [Ep m(Bi-1)]" (e ) (w), di, . .. ,dn-1)

where i = label(P.f, E).

e For every definition (f(xg,... . %n—1)=Be)in Py, if %9 : 0, - - - s X1 2 Frey
and order(ay) < (m —1),...,order(gqn—1) < (m — 1), then for all d; &
[#ol.---.dn-1 € [on—1] and for all w € W,

Ug(f)(w)(do, . .., dn-1) C u(f)(w)(do, ... dn-1)

We demonstrate the above using induction on k. For k = 0. that is for @, the
above trivially hold because the left hand side of each statement is equal to the
bottom value. Assume that the claim holds for & > 0. We show the claim for &+ 1.
That is, we show that:

» For every definition (f{xg,...,%Xpn-1) = By) in Py, if Xo : ¢, .. s Xn=1 : Tna1
and there exists 0 < [ < n—1 such that order(og) = (m-1),...,order(o_;) =
(m —1) and order{e;) < (m —1),...,0order{on-1) < (m — 1)}, then for every
function call E = Q(f}(Eg, . ,1-1} to fin P, for all :1’4 €lml,... . dp-1 €
[7n-1] and for all w € W,

Q(calli” (k1 (F))) (w)(d:, . n—l} c

Q(u(f))(w)([€p,m(Eo)] {th} oy [Epm (Bi- )] (1) (w), iy . . . Ay
where i = label(P,f,E).

o For every definition (f{xg, ..., Xn1)=Be)in P, if%g:p,...,%Xn_1 1 Fn_1
and order(og) < (m —1),..., corder(op—1) < (m — 1), then for all dy ¢
[oo].-...dn-1 € [on_1] and for all w e W,

Ug+1(£)(w)(do, ..., dn-1) C u(f)(w)(dy,-..,dn-1)

Using the semantics of call™ and Q, the above two statements can be written as
follows:

o For every definition (f(Xp.....Xn—1) =Bg) in Py, if X5 : 60, ... . Xp—1 1 Ot
and there exists 0 < [ < n—1such that order(og) = (m—1),...,order(o_;) =
{m —1) and order(o;) < (m —1),...,order(gq—1) < (m — 1), then for every
function call E = Q(f)(Eq,...,Ea }ltufln Pn.foralld € [o).... . dn-1 €
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[7n-1] and for all w € W,

g1 (E)(w § (Q cally"))(dy,...,dn- 1} =
u(f)(w § Q)([€p.m(Eo)]” {“k+1}{w o[ m(Bra )] (Hesa)(w), i, - .. dna)

where { = label(P.f E).

e For every definition (f{xg,...,%Xn—1) = B¢) in Ppy, if X0 : 00, - . Xn—1 * Ony
and order{au} < (m—1),...,order(ga_1) < (m — 1), then for all dy &
[06], -, dn-1 € [7n1] and for all w € W,

g1 (F)(w)(do, - . ;dn—1) E u(f)(w)(dp, ... ,dn—1)

Recall now that f{xg,....%q—1) = Bg in Py, and also f(x....,%0—1) = Ep m(Be)
in Py—1. The idea is to use Definition 6.10 and Theorem 6.1 in order to get equiv-
alent statements that involve the body of the function f. Therefore, it suffices to
show that:

s For every definition (f(xg,....%Xp-1) = Bf) in Py, if X0 : @0, ... . X1 2 ey
and there exists 0 < [ < n—1such that order(gg) = (m—=1),...,order(g-1) =
(m — 1) and order(o;) < (m —1),...,0order{op—1) < (m — 1), then ft::r every
function call E = Q(f)(Eq,....Ep ) tofin P, foralld) € [oy], ..., dno1 €
[7n-1] and for all w € W,

[Epm(Be)] (i & o)(w 4 (Q calll™)) C [Be]l (u & 0 & Py )(w 4 Q)

where (x;) = d*, | £ j < n—1, and fr+1(x;) = ([€p,m(E;)]" (lg+1)(w))>
0<i<l-1.

s For every definition (f{%g,....%Xn—1) =Byf) in Pp,. if Xo : @0y ... o X1 1 O
and orderl:cra} < (m—1),...,order(op_1) < (m — 1), then for all dy €
[ool.....dn-1 € [on- 1]andfora.]1wEW

[€p.m(Be)]" (G & o) (w) C [Be]” (u & o) (w)
where o(x;) =dj*, 0<j<n-1

In the following, we give the proof for the first of the above statements. The proof for
the second statement is simpler, and can be given in a similar way. Notice that the
proof of each of the above statements, uses at some point the induction hypothesiz
of the other statement.

To prove the first of the statements, we consider any function f in the program
that satisfies the requirements set by the statement. We proceed by distinguishing
two cases, regarding whether the definition of f starts with a case™ operator or
not. We will only show the proof for the latter case (the proof for the former one is
similar).

The proof can be established by structural induction on the body of the function,
that is by showing that for every subexpression 8 of By:

[Ep.m(S)] (G & o)(w § (Q call’)) C[S]" (u & 0 & Frta)(w I Q)

In the following, for simplicity we denote the sequence Q call” by Q
Structural Induction Basis:
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Case 1: S is equal to a variable x; € {xg,...,Xn—1}, and x; is (m—1)-order. Then,
a definition of the form:

x;(Z) = case™ (actuals] (Ag)(Z),...,actuals] (A, _;)(Z))

has been created in Py, where the Ag,..., A,_; are derived as indicated by the
function params(P,f, x;). Using this, it can be easily shown that:

e (x;)(w 4 Q) C [€p,m(E;)]" (T) (w) (1)

This fact is used in the proof given below. The left hand side of the statement we
want to establish can be written as:

[Ep.m(S)] (@ @ 0)(w ¥ Q) =
= [fpm(x)] (@ 20)(w Q)
(Because S = x;)
= [x] (Gkeo)wiQ)
(Definition {:E the transformation algorithm)
= U(x;)(w 4 Q)
(Variable x; is (m — 1)-order)
C [Ep.m(E;)] (Gx)(w)
(Because of relation (1) above)
C [Ep.m(Ej)] (ties1)(w)
(Monotonicity of [£pm(E;)]™ )
= Presr(x)(w Q)
(Definition of Fiyq)
= [KI'(uS o8 hn)(wiQ)
(Variable x; gets a value from gi<;)
= [SI'(uS 0 frsr)w Q)
(Because S = x;)

Case 2: § is equal to a variable x; € {Xg,...,Xn_1}, and x; is less than (m — 1)-
order. We should remind here that d® is a constant intension, and therefore its
value does not vary from context to context. The left hand side of the statement
we want to establish can be written as follows:

[Epm(S)] (i & o) (w § @ =
= [Ep.m(x;)]" (U & 0)(w § Q)

(Because S = x;) _
= K] (Geeo)wiQ)

(Definition Ef Ep.m)
= o(x)(w Q)

(Because x; is less than (m — 1)-order)
= o(x;)w Q)

(Because a(x;) = dj®)
= X1 (ueodf)lw Q)

(Because x; is less than (m — 1)-order)
= [SI'(v@0 & fes1)(w Q)

(Because S = x;)
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Case 3: S is equal to a nullary constant symbol ¢. The proof in this case is straight-
forward, because the denotation of ¢ is a constant intension, and therefore its value
is independent of context.

Case 4: 5 is equal to h, where h is not a formal of f. In this case, the order of h is
strictlv less than m (because m-order functions only have full applications in P, ).
Recall now that the outer induction hypothesis for functions of order less than m,
specifies that fip(h) C u(h). Using this, and the fact that u(h) does not depend on
the m-th dimension, we get the desired result.

Structural Induction Step.

Case 1: S = x;(Sp,...,5,-1) where x; € {Xp,...,Xn-1}. and x; is (m — 1)-order.
The proof uses the following fact which was also used in the induction basis:
i (%;) (w 4 Q) C B (x;) (w 4 Q) (2)

In the following, notice that none of the arguments of x; is eliminated during the
transformation because all of them are less than (m — 1)-order. The proof is as
follows:

[Epm(S)] (G so)(w i Q) =

(Assumption for §) R
= [xj(&p.m(So)s. -, Epm(Sr—1))] Gk B o) (w | Q)
(Definition of &p,m) N
= ir(x;)(w 4 Q)([Ep.m(So)] (Ur & 0)(w 4 Q),...,
Hgl’.m[.:sr—l:']‘{ﬁk & lﬂ'}l::t.[.-' 4 Q”
{Semantics of application) -
Pres1(%5)(w 4 Q)([€p.m(So)] (U & 0)(w 4 Q).
[€p.m(Sr—1)]" (Tik & 0)(w 4 Q))
(Because u (x;)(w 4 Q) C pirs1 (x;)(w 4 Q))
Br+1(x)(w 4 QIS I (u @ o & Frsa)(w 4 Q).
BT (ue o pa)w i Q))
(Using structural induction hypothesis and monotonicity)
= [x;(S0,.-,8r-1)] (v B 0 & Prs1)(w || Q)
(Semantics of application)
= [SI'(v@o&pfu)wiqQ)
{Assumption for §)

I

I

Case 2: S = x;(Sp,...,S,-1) where x; € {Xo,...,Xn-1}, and x; is less than
(m — 1)-order. Then, x; gets its value from o, in both sides of the statement we
want to establish. Notice also that o(x;) = di°, i.e., it is a constant intension, and
therefore its value is independent of context. The proof is then similar in structure
to the one for the above case.

Case 3: S = ¢(S5p,...,5;-1). The proof for this case is simple and uses the fact
that C*{c) is a constant intension.

Case 4: 8§ = ®(g)(8y,...,58,_1) where g is a function defined in P,,,. The proof is
similar as before (we need to consider two cases: one for g being m-order and one
for less than m-order).
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This completes the proof of the theorem. [O

Theorem 8.2

Let u and i be the least environments that satisfy under the synchronic inferpreta-
tion the definitions in P, and P, ,_; respectively. Then:

& For every definition (f(xg,...,Xn-1) = B¢) in P, if %0 : G0, .. . s Xn=1 : Oy
and there exists 0 < | < n—1 such that order(mp) = (m—=1),...,order(m_1) =
(m —1) and order(s) < (m = 1),...,order(gn_1) < (m — 1), then for every
function call E = Q(f)(Eq,...,En_y) tof inPy, foralld; € [a1],....dp_y €
[on-1] and for allw e W,

Q(cally” (u(f)))(w)(dy, . .., dn-1) 3
Q(u(f)) (w){[Ep.m(Eo)]" (@) (w), ..., [€p m(Er-1)]" (@) (w), di, ... . . dn-1)
where i = label(P,f.E).
o For every definition (f(xg.....%xp_1) = Be) in Py, if X5 2 00, ..., %Xn_1
on—1 and order{mp) < (m = 1),...,order{on_y) < (m — 1), then for al
dy € [oo].. .. dn—1 € [on=1] and for allw € W,

u(f)(w)(do, ... dn-1) 2 u(f)(w)(do. ... dn-1)

Proof
Following the same ideas as the proof for Theorem 8.1 (but now using computational
induction on the approximations of v). O

Theorem 8.5
Let u and @ be the least environments that satisfy under the synchronic interpreta-
tion the definitions in Py, and Pn,—; respectively. Then:

s For every definition (f(xq,....%n-1) = B¢) in Py, if %0 : Fo. ..., Xno1 i Ony
and there exists 0 < 1 < n—1 such that order(oy) = (m=1),...,order(ai_1) =
(m—1) and order(c;) < (m —1),...,order(en_1) < (m — 1), then for every
function callE = Q(f}(Eq, ..., Eq_1) tof in Py, for alld; € [oi],....dn1 €
[7n-1] and for allw e W,

Q(calll™ (u(f)))(w)(d:, . .., dn-1) =
Q(u(f))(w)([Ep m(Eo)]™ (@) (w), - - ., [Ep.m(Er—1)] " (E)(w), di, . .. ,dn_y)
where i = label(P, f,E).
s For every definition (f(xg,...,%n-1) = B¢) in Py, if X0 : 0,...,Xn-1 :
gn_y1 and order(mp) < (m = 1),...,order(op-1) < (m — 1), then for all
dy € [ool. ..., dn=1 € [Fn-1] and for all w € W,

Proof
A direct consequence of Theorems 8.1 and 8.2. [

Notice that although in the following we will only use the second of the statements
of the above Theorem, the first one is also essential (the proof of the induction step
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of the second statement uses at some point the induction hypothesis of the first
one).

The following theorem demonstrates that the programs P,, and P, are se-
mantically equivalent under the synchronic interpretation.

Theorem 8.4

Let u and @i be the least environments that satisfy under the synchronic inferpreta-
tion the definitions in P, and P,—; respectively. Then, [Pl (u) = [Pm_1]"(@).
Proaf

Straightforward, by applying the second statement of Theorem 8.3 on the variable
result of the programs P, and P,,_,. O

It remains to show that the initial functional program Py, has the same stan-
dard denotational semantics as the final zero-order intensional program Pg. This is
demonstrated by the following theorem:

Theorem 8.5

Let Pps be an M-order FL program and let Pps—q, ..., Py be the intensional pro-
grams that result at the successive stages of the transformation algorithm. Let upy
and ug be the least environments that satisfy the definitions of Ppy and Py under
the standard interpretations. Then, for every w € W,

[Parlplunm) = [Pﬁl{wﬁp}{"«*ﬂ”w}

Let fips. ..., g be the least environments that satisfy the definitions in the programs
Py, ..., Py under the synchronic interpretation. Then, for every w € W

[Par]plun) =

= [Palp(in)(w)
{Theorem 6.3)

= [Pu-1lp(@ar-1)(w)
{Theorem 8.4)

= [Po]p(to)(w)
{Theorem 8.4)

= [Pol{w_p)luo)(w)
{Theorem 6.4)

D

The correctness proof given above concludes the formal presentation of the trans-
formation algorithm from higher-order functional programs to intensional programs
of nullary variables. It should be mentioned here that the proof did not just serve
the purpose of validating the correctness of the algorithm;: it also suggested changes
that had to be performed to the initially proposed algorithm {Wadge, 1991). No-
tice that the transformation for higher-order programs is much more sophisticated
than the one for the first-order case (Rondogiannis & W.W.Wadge, 1997), and it
is imperative that any informal intuitions one might have be supported by formal
reasoning.
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9 Implementation Issues

The transformation algorithm developed in this paper generalizes the one for first-
order programs that was formalized in (Rondogiannis & W.W.Wadge, 1997). As
we have seen in the previous sections, the algorithm transforms a significant class
of higher-order programs into multidimensional zero-order intensional programs.
The resulting intensional code can be executed using the same basic principles as
deseribed in (Rondogiannis & W.W.Wadge, 1997)[section 12], the only difference
being that the contexts are now multidimensional.

In (Rondogiannis & W.W.Wadge, 1997) we saw that the lists of natural numbers
that are created during execution can be coded as small natural numbers, using
the well-known hash-consing technique. The same technique applies here as well:
given an M-order functional program, the contexts required for its execution are
M-tuples of lists of natural numbers; using hash-consing, contexts become M-tuples
of natural numbers, which are much more convenient to handle. The structure of
the warehouse is similar to the one before, the only difference being that tags are
now multidimensional.

The transformation algorithm proposed in this paper has been implemented and
given promising efficiency results (Rondogiannis, 1994: Rondogiannis & Wadge,
1994a: Rondogiannis & Wadge, 1994b). However, the ideal environment for the
evaluation of the potential of the new technique would be a tagged-dataflow archi-
tecture.

It should also be noted here that the intensional approach for implementing fune-
tional languages, poses a new set of interesting problems that in our opinion deserve
further investigation. One such problem is the characterization of the dimension-
ality of variables that appear in the target intensional code. More specifically, it is
possible that a variable in the zero-order program that results from the transfor-
mation, does not depend on all the dimensions but only on just a few of them. The
knowledge of the dimensionality of particular variables is crucial. For example, if a
variable does not depend on any dimension (i.e. it is constant in every context) we
simply need to have one entry for it in the warehouse together with an indication
that the variable does not depend on any dimension. In this way, both space and
time savings are ensured, which in turn result in more efficient implementations. A
promising approach for dimensionality analysis is outlined in (Dodd, 1996) (which
however applies to a different class of multidimensional languages).

10 Related Work

Our work is connected to the recent research on higher-order removal (Chin &
Darlington, 1996) and firstification (Nelan, 1991), whose purpose is to reduce a
given higher-order functional program into a first-order one. The practical outcome
of both techniques is that the resulting first-order programs can be executed in
a more efficient way than the source higher-order ones. Chin’s and Darlington’s
transformation is formulated using unfold/fold rules while Nelan takes a more direct
approach in his firstification algorithm.



Higher-Order Functional Languages and Intensional Logic 3l

Our work differs from both approaches in that the result of our transformation
is a multidimensional intensional program of nullary variables. Moreover, our goal
is to transform the source program into a form which can be educed (executed in a
dataflow style using context manipulation), while the goal of both firstification and
higher-order removal is to serve as a forms of optimization for the source higher-
order programs.

Reducing the order of the source program is also the goal of a technique originally
proposed by Reynolds (Reynolds, 1972). However, in order for this to be achieved,
data-structures have to be introduced in the program. Moreover, the resulting code
actually simulates the runtime behavior of the source program. Therefore, although
elegant, Revnolds technique does not serve the same goals as the technique we
propose in this paper.

11 Conclusions and Future Work

In this paper we have presented and formalized a technique for transforming a sig-
nificant class of higher-order functional programs into zero-order multidimensional
intensional programs. The transformation we propose is of practical interest, since
it can be used in order to implement functional languages in a tagged dataflow way.

The syntax of the functional languages considered in this paper imposes some
restrictions on the use of higher-order functions. More specifically, the only partially
applied objects that can appear in a program, are function names. Consider for
example the following program:

result = g(8)

glx) = twice(add(x),x)
twice(f,y) = £(£(y))
add(a)(b) = a+b

This is clearly not a valid program of the language F L: the call to the function twice
has as an actual parameter the partially applied call add(x). In the following, we
demonstrate the problems that we face when we attempt to apply the technique
developed in this paper on programs such as the above. The highest order formal
parameter in this program, is the formal £ of the twice function. If we attempt to
eliminate this parameter as usual, we get the following result:

result = g8

g(x) = calll(twice) (x)
twice(y) = £(f(y))

add(a)(b) = atb

£ = case’(actuals?(add(x)))

Notice now that the variable x appears free in the definition of £, while it is bound
in the definition of g. The resulting program can not be semantically equivalent
to the initial one. Therefore, the transformation has to be performed in a different
way. We conjecture that the extended transformation will first have to take care of
those variables that cause problems (like the formal parameter x of g above). The
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authors are currently investigating techniques for applving the transformation to
general higher-order programs.

Another interesting problem for further research is to consider the target mul-
tidimensional intensional languages as programming languages (and not just as
transformation-related ones) and investigate other potential applications they may
have. An approach in this direction is reported in (Rondogiannis ef al., 1997) for the
case of intensional logic programming languages. We believe that a similar potential
exists in the area of intensional functional programming.
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