TEMPORAL DISJUNCTIVE LOGIC PROGRAMMING

M Gergatsoulis. P. Rondogiannis, T. Panayiotopoulos

15-97

Preprint no. 15-97/1997

Department of Computer Science
University of loannina
451 10 loannina, Greece

Temporal Disjunctive Logic Programming

M. Gergatsoulis'. P. Rondogiannis®, T. Panayiotopoulos®

I Inst. of Informatics & Telecom.. N.C.S.R. ‘Demokritos’.
153 10 A. Paraskevi Attikis. Greece
e_mail: manolis@iit.nrcps.ariadne-t.gr

? Dept. of Computer Science. University of loannina.
P.O. BOX 1186, 45110 Ioannina, Greece,
e_mail: prondoQzeus.cs.uoi.gr

3 Dept. of Informatics, University of Piraeus
80 Karaoli & Dimitriou Str.. 18534 Piraeus, Greece
e-mail : themisp@unipi.gr

Abstract

In this paper we introduce temporal disjunctive logic programming in order to
combine the programming paradigms of temporal and disjunctive logic program-
ming. For this, we define a simple temporal disjunctive logic programming lan-
guage, called Disjunctive Chronolog. Disjunctive Chronolog is capable of expressing
dvnamic behaviour as well as uncertainty, two notions that are verv common in a
variety of real systems. We present the minimal temporal model semantics, tem-
poral model state semantics and fixpoint semantics for the new programming lan-
guage and demonstrate their equivalence. We also show how the proof procedures
developed for disjunctive logic programs, can be easily extended to also apply to
Disjunctive Chronolog programs.

Keywords: Logic Programming, Temporal Logic Programming, Disjunctive
Logic Programming, Semantics, Proof Procedures.

1 Introduction

Temporal logic programming [OM94, FO95. Org91. Brz91, Hry93, Bau93, RGP97b, RGPI7a]
has been widely used as a means for describing systems that are inherently dynamic. For
example, consider the following Chronolog [Wad88] program simulating the operation of
the traffic lights:

first light(green).

next light(amber) + light(green).

next light(red) +« light(amber).

next light(green) + light(red).

On the other hand. disjunctive logic programming [MRL91, LR91, LMR92] was intro-

duced as a formalism for expressing uncertainty:

plays(john,soccer) V plays(john,basketball).
sportsman(X) + plays(X,Y), sport(Y).
sport(soccer).

sport(basketball).

, From this progr.am. 1t can be easil}-‘ extracted as a conclusion that johnisa sportsman
even though there is no exact knowledge about the kind of sports he is pal‘ticipating in
i I h'E iL'=:re are many %}’St&mﬁ however in which dynamic behaviour and uncertainty coewcier:
-time and reactive svstems, expert system : el
X . \ 8, tem f 1d] I
R taa s e poral or genera,il} mult1d1mensmna.l
It is therefore natural t h ogramming paradigem
: o ask whether there exist 1 1 prog gp g
s Xists a single]o 1 i
. g giC pr
hich amalgamates the above two notions in a semanticallv lu-::id 1 -
5 \ way,

In this paper we introd

_ : uce temporal disiunctive Jon:

IEmE hthe idEE.lS of both temporal logic] fflfiﬁ fogzc pmgmmmmg In ﬂFdEI‘ [

J'ufcif s g; Introduce the tempora] diﬁrﬂgm-mr?mg A ':Hﬂj unctive | Y tom.

v€ Lhronolog [GRPgg Junctive logic pro i

Proposed by W. ., -‘.-‘.'adgeﬁ_!i;‘fagggf o theg::nnnlpném? e, called D

'- | v110S€ semantics haye 1, "% language Chropojog
e 4

by M Or F
- 0 VIgun [Org9], OWwags :
of expressing 1 : 92b, D“'DQEJ T Ll systemat;
g time re - The new forma;s VStematically deye]
m that We ; Oped
Propose, jg

ogic Programming.

lated Uncertainty of di

Event Uncertainty, (o ' o o e
Y. Con
partme -Onsider fq
reniste:n:. s requires frop, Studr e s pe tie Curriculum of
m;!d be z\{ﬂther of the Dagg Sl:rm:temS ‘0 have tajen Dis::ret:\a o er science de
& o u .
£ pressed in Dig) unctive Chrr:;;;r - Algorithmg cﬂursefa%?m&tms before they
irst O as: -
next CDurse(dlscrete_mathJ g as: © above restrictiop
course(algor;
rit
Cours th_} Y next Course(q
The eveng Efdlscfﬂte_math} a’ca_structuresj L
u ; '
‘-,f[athem&trcs het:;mnt}r Tesults from the f.
iy o he fact
1S, OF in bogh, Ty 20 0 enrol] iy ¢p . rﬁf?‘t after 5 g
pﬂfffcufar event th : gﬂnfbms c i as il D'
that wij] o1 Urse, in the S Screte
i
S Dot kngy, d fmﬂfures
Vanee

Time uncertainty. Consider for example the following program:

first visit(george,greece) V first next visit(george,greece).
have good time(X) « visit(X,greece).

The time uncertainty is expressed by the first clause which says that “George is either
going to visit Greece this or next vear (or both)”.

The semantics of Disjunctive Chronolog extend the semantics of both Chronolog [Org91.
OW92a] and Disjunctive Logic programming [LR91, LMR92]. More specifically. we define
minimal model semantics, model state semantics and fixpoint semantics for Disjunctive
Chronolog programs and show their equivalence. Moreover, we investigate proof proce-
dures for Disjunctive Chronolog programs, and show that proof procedures developed for
disjunctive logic programs [LMR89, MRLI1, LR91, LMR92], can be easily extended to
apply also to Disjunctive Chronolog programs. For the development of both the seman-
tics and the proof procedures for Disjunctive Chronolog, we are based on the notion of
canonical program elauses [Orgd1, OW92a).

The rest of this paper i1s organized as follows. Section 2, describes the underlying tem-
poral logic (TL) of Disjunctive Chronolog. Section 3 introduces the syntax of Disjunctive
Chronolog. In section 4. we present the declarative semantics of Disjunctive Chronolog
programs. More specifically. after giving some background definitions in subsection 4.1,
we present the minimal temporal Herbrand model semantics in subsection 4.2, the tem-
poral model state semantics in subsection 4.3, and the fixpoint semantics in subsection
4.4. In section 5, we investigate proof procedures for Disjunctive Chronolog programs.
Finally. in section 6, we conclude the paper and suggest some topics for future work.

2 Background

The temporal logic (TL) of Disjunctive Chronolog is that of the logic programming lan-
guage Chronolog(Z) developed by W. W. Wadge and M. Orgun [Wad88. OW92a. OWD93.
OW93, OW92b]. In this section we give some useful background definitions regarding
temporal logic which are adopted from [Orgdl, OW92a, OWD93].

2.1 The temporal logic of Disjunctive Chronolog

The temporal logic (TL) of Disjunctive Chronolog is based on linear time with unbounded
past and future. The set of moments in time is represented by the set Z of integers. TL
has three temporal operators first, next, and prev. The operator first is used to
express the first moment in time, while next refers to the next moment in time, and
prev to the previous moment in time. The syntax of the formulas of temporal logic is an
extension of the syntax of first-order logic with three formation rules: if A is a formula.
then so are first A, next A and, prev A.
The semantics of formulas of TL are given through temporal interpretations.

Definition 2.1 (Temporal interpretation). A temporal interpretation I of the temporal
logic T'L comprises a non-empty set D, called the domain of the interpretation, over which

the variables range, together with an element of D for each variable; for each n-ary func-

tion symbol, an element of [D® — D]; and for each n-ary predicate symbol, an element
of [— 2P7).

Interpretations are extended to all elements of the language by a satisfaction relation
= which is defined in terms of temporal interpretations. In the following definition &=;; A
denotes that a formula A is true at a moment t in some temporal interpretation [.

Definition 2.2 (Semantics of TL). The semantics of the elements of the temporal logic
T L are given inductively as follows:

1. If £f(eg,....en-1) is & term, then I(f(eq,..., en—1)) = {(£)(1{ep),- .., I{en1))-

2. For any n-ary predicate symbol p and terms €p,...,€n_1,

=it Pleo, .- seno1) 1ff < I(eg),....I{ea1) > € I(p)(t)
E=r:—A iff it is not the case that =1, A

Fre ANBiff FieAand =14 B
EFit AVBiff ErqsAorkEn B

e L8

on

6. =12 (Vr)Aiff Eidjn. A for all d € D where the interpretation I[d/z] is the same
as [ercept that the variable x is assigned the value d.

e first Aiff =10 A
Freprev Aiff Ere-1 A
9. Ersnext Aiff i A

=1

(w4}

If a formula A is true in a temporal interpretation [at all moments in time, it is said
to be true in [(we write =7 4) and [is called a model of A. If a formula A is true in all
temporal interpretations at all moments in time, we say that A is valid {we write = A).

2.2 Tautologies

In this section we present some useful tautologies that are valid formulas of the logic TL.
The symbol V stands for any of first. next, and prev.

1. Temporal operator cancellation rules:

(a) V(first A) « (first A)
(b) next prev A <« A

(c) prev next A & A

2. Temporal operator distribution rules:

(a) V(=A4) & =(VA)
(b) V(AAB) < (VA)A(VB)
(¢) V(AV B) & (VA) Vv (VB)

3. Rigidness of variables:
(a) V(VX)(A) « (VX)(VA)

The proof of correctness of the above tautologies is straightforward [Org91].

3 Syntax of Disjunctive Chronolog programs

The syntax of Disjunctive Chronolog extends the syntax of disjunctive logic programs
[LMR92] by permitting temporal operators to be applied to the atomic formulas (atoms)
of the clause. A temporal atom is an atomic formula with a number (possibly 0} of
applications of temporal operators. The sequence of temporal operators applied to an
atom is called the temporal reference of that atom. A temporal literal is a temporal atom
or the negation of a temporal atom. A temporal disjunctive clause is a clause of the form:

HvHv..VH, —«By,...,B,

where Hy..... H,. B....,B, are temporal atoms. n >> 1 and m > 0. The left hand side
is called the head of the clause while the right hand side is called the body of the clause.
In the body, the comma stands for the conjunction operator ‘A’. If n = 1 then, the clause
is said to be a definite temporal clause. If m = 0 then the clause is said to be a positive
temporal disjunctive clause. A Disjunctive Chronolog program is a finite set of temporal
disjunctive clauses.

(Clearly. Chronolog is a subset of Disjunctive Chronolog, obtained when all clauses are
definite temporal clauses.

4 Declarative Semantics

4.1 Canonical Atom/Clause/Program

In order to define the model theoretic semantics of Disjunctive Chronolog programs, we
will use the notion of canonical temporal atoms/clauses/programs [Org91]. A canonical
temporal atom is a formula of the form' first next™ A or first prev® A for some
n = 0. where A is an atomic formula. A canonical temporal disjunctive clause is a
temporal disjunctive clause whose temporal atoms are canonical temporal atoms. Finally.
a canonical temporal disjunctive program is a set of canonical temporal disjunctive clauses.

‘By next” and prev" we mean n applications of the operator next and prev respectively.

As in Chronolog [Orgdl. OWD93|, every temporal disjunctive clause can be trans-
formed into a (possibly infinite) set of canonical temporal disjunctive clauses. This can
be done by applying first next™ where n > 0, as well as first prev” wheren > 0. to
the clause, and then using the tautologies of T'L to distribute the temporal reference so
as to be applied to each individual temporal atom of the clause: finally any superfluous
operator is eliminated by applving cancellation rules of T'L.

Intuitively, a canonical temporal disjunctive clause is an instance in time of the cor-
responding temporal disjunctive clause.

The value of a given clause in a temporal interpretation can be expressed in terms of
the values of its canonical instances as the following lemma, taken from [OW93], shows:

Lemma 4.1. Let C be a clause and [a temporal interpretation of TL. =1 C if and only
if 1 C: for all canonical instances Cy of C.

Example 4.1. Consider the following (propositional) Disjunctive Chronolog program:
first rains V first snows.
next wet < rains.
next wet < snows.
The set of canonical temporal disjunctive clauses corresponding to the program clauses
is as follows:
The clause:
first rains V first snows.
is the onlv canonical temporal clause corresponding to the first program clause (because
of tautology la).
The sets of canonical clauses:
{ first next™! wet + first next" rains | n>0 }
and

{ first prev*!

wet + first prev” rains | n>1 }
correspond to the second program clause. Finally the sets of canonical clauses:
{ first next"! wet « first next” snows | n >0 }
and
{ first prev*™! wet « first prev" snows | n>1 }
correspond to the third program clause. O

Let P be a Disjunctive Chronolog program. The set of all canonical instances of the
program clauses is itself a (possibly infinite) Disjunctive Chronolog program P. which we
call the canonical instance of the program P. In the following sections we show that the
minimal model semantics, the model state semantics and the fixpoint semantics devel-
oped for disjunctive logic programs [LR91, LMR92], can be easily extended to apply to
Disjunctive Chronolog programs. For the development of these semantics, we will use an
interesting property of the canonical instance P, of a Disjunctive Chronolog program P.
That is. the clauses in F. can be put into a one-to-one correspondence with the clauses
of a classical disjunctive logic program. This idea was first used by M. Baudinet [Bau93]

in order to develop semantics for the temporal logic programming language TEMPLOG.
by extending the semantics of Horn clause logic programs [Llo87].

The correspondence between P, and the classical program FP7 (which we will call the
classical counterpart of F., following the terminology used by M. Baudinet) is established
if we consider each first next™ p as well as each first prev" p, i.e. each predicate
symbol along with the temporal reference applied to it, as a single predicate svmbol in a
first-order language. More formally, the classical counterpart P of a canonical temporal
program F. is defined as follows: Let L be the language that contains the constant and
function symbols of the language L of P. and the predicates first next™ p and first
prev’ p. for each predicate symbol p in L and each n > 0. Then P7 is the classical
program obtained from P. by replacing each predicate in P. along with the temporal
reference applied to it, by the classical predicate in L™ corresponding to it. It is easy to
see that there is a one-to-one correspondence between the temporal interpretations for P.
(for L) and the classical interpretations of P= (of L*). Thus a temporal interpretation [
satisfies P. if and only if the corresponding classical interpretation I” satisfies P;. In this
way, the results on the semantics of {possibly infinite) disjunctive logic programs apply to
the classical counterpart of the canonical instance of the Disjunctive Chronolog program
and then we can easily extend them to Disjunctive Chronolog programs.

4.2 Minimal Temporal Model Semantics

The minimal temporal model semantics of Disjunctive Chronolog are based on the notion
of Temporal Herbrand Models.

The Herbrand universe Up of a program P is the set of all ground terms that can be
formed by the constant and function symbols that appear in P. The temporal Herbrand
base TH Bp is the set of all canonical ground temporal atoms whose predicate symbols
appear in P and their arguments are in Up. A temporal Herbrand interpretation I is a
subset of T HBp. A temporal Herbrand interpretation which satisfies all clauses in F at
all moments in time, is a temporal Herbrand model of P.

As in the case of the clausal form of first-order logic [CL73]. in order to prove unsatisfi-
ability of a set of T L clauses it suffices to consider only temporal Herbrand interpretations.

Example 4.2 (Continued from erample {.1). The temporal Herbrand base of the pro-
gram P in example 4.1 is:
Bp = {first rains, first next rains, first next? rainms.....
first prev rains, first prev® raims.....
first snows, first next snows, first next? snows.....
first prev snows, first prev2 SNOWS. ...,
first wet, first next wet, first next? wet.....

first prev wet, first prev’ wet,... }. O

Because of the correspondence between the canonical instance P. of a program P
and its classical counterpart FPJ. the results concerning the minimal model semantics
of disjunctive logic programs [LMR92], can be also applied to Disjunctive Chronolog

programs. Thus, a Disjunctive Chronolog program does not have in general a unique
minimal temporal Herbrand model. Instead. its meaning can be captured by the set of
its minimal temporal Herbrand models.

Theorem 4.1. Let P be a Disjunctive Chronolog program. A canonical ground positive
temporal clause C is a logical consequence of P if and only if C is true in all minimal
temporal Herbrand models of P.

The proof of this theorem as well as the proofs of the theorems and lemmas in the
following sections, are trivial extensions of the proofs of the corresponding theorems and
lemmas in the theory of disjunctive logic programs [LMR92] if we take into account the
correspondence between the canonical instance of a Disjunctive Chronolog program and
its classical counterpart.

Example 4.3 (Continued from erample 4{.2). It is easy to see that the program in
example 4.1 has two minimal temporal Herbrand models:

MM1(P) = { first rains, first next wet }
and

MM?2(P) = { first snows, first next wet}.

The positive ground clause first next wet is true in both minimal temporal Her-
brand models and thus it is a logical consequence of the program. O

4.3 Temporal model state semantics

An alternative way which gives a least model characterization of the semantics of Dis-
junctive Chronolog programs. is obtained by extending the model state approach used in
disjunctive logic programming [LMR92].

Definition 4.1 (Temporal disjunctive Herbrand base). Let P be a Disjunctive Chronolog
program. Then, the temporal disjunctive Herbrand base (TDHBp) of P is the set of all
canonical ground positive temporal clauses formed using distinct elements from the tem-
poral Herbrand Base of P.

Definition 4.2 (Erpansion). Let P be a Disjunctive Chronolog program and 5 a set
of canonical ground positive temporal clauses. The erpansion exp(S) of S is defined as
follows:

exp(S) = {C e TDHBp|C € S or 3C’ € S such that C' is a subclause of C}

10

Definition 4.3 (Temporal disjunctive Herbrand state). Let P be a Disjunctive Chronolog
program. A temporal disjunctive Herbrand state of P is a subset of the temporal disjunc-
tive Herbrand base TDHBp of P. An erpanded temporal disjunctive Herbrand state TS
of P is a temporal disjunctive Herbrand state of P such that TS = exp(TS5).

Definition 4.4 (Temporal model state). Let P be a Disjunctive Chronolog program. An
expanded temporal disjunctive Herbrand state TS of P is said to be a temporal model
state of P iff every minimal temporal Herbrand model of TS is a temporal Herbrand
model of P. A temporal model state MS is minimal if no proper subset of MS is a
temporal model state of P.

Lemma 4.2 (Temporal model state intersection property). Let P be a Disjunctive
Chronolog program and {M;}.en a non-empty set of temporal model states of P. Then.
Miea M; is also a temporal model state of P.

The intersection of all model states of a Disjunctive Chronolog program P. denoted
by TMSp. is called the least model state of P. The least model state of a Disjunctive
Chronolog program characterizes the logical consequences of that program:

Theorem 4.2. Let P be a Disjunctive Chronolog program. Then

TMSp = {C € TDHBp|C is a logical consequence of P}.

The connection between minimal temporal model semantics and temporal model state
semantics is shown in the theorem 4.4 in the next section.

4.4 Fixpoint semantics

The fixpoint semantics developed for disjunctive logic programs by J. Lobo. A. Ra-
jasekar and J. Minker [LMR92. MR90, MRL91]| can also be easily extended to Disjunctive
Chronolog programs. The definition of the mapping Tp for Chronolog programs is given
as follows.

Definition 4.5 (Immediate consequence operator Tp). Let P be a Disjunctive Chronolog
program. and T DH Bp be the temporal disjunctive Herbrand base of P. The immediate
consequence operator Tp : 2TPHBr _, 9aTDHBr i5 defined as follows:

Tp(l)={C | C"+ By.....B, is a canonical ground instance of a clause in P,
and {ByVCy,...,BaVCo} CI whereV¥i,1<i<n C;can be null
and C is C'"VCL V...V C, after eliminating the multiple occurrences

of temporal atoms}.

The power set of TDH Bp of a program P is a complete lattice under the partial order
of set inclusion (C). The bottom element of the lattice is the empty set (). end the top
element is the temporal disjunctive Herbrand base TDH Bp of P.

11

of a disjunction of canonical temporal atoms. We call this form of goal clauses simple
goal clauses. In general. a goal clause may be a conjunction of simple goal clauses (i.e.
a conjunction of disjunction of canonical temporal atoms). Thus in general, Disjunctive
Chronolog goal clauses are of the form:

— G[,...,Gn

where each G; is a canonical positive temporal clause. Comma stands for the conjunction
operator ‘A’

Now, suppose that X,,..., X, are the free variables of the goal. Then. an answer to
the goal might be a simple substitution or a set of substitutions. In the first case, we say
that an answer substitution # is a correct answer to the goal clause if

Y(GiA...ANG,)0

is a logical consequence of the program. Nevertheless, there are cases in which an answer
is not a single substitution but a set of substitutions. For example, consider the program:

first course(data structures) V first course(algorithms).
Then. there is not a single substitution # to answer the goal clause

— first course(X).

although 3(first course(X)) is a logical consequence of the program. Thus, in general a
correct answer is considered to be a set of substitutions {#;,6,,..., fi } such that ¥({Gy A
D ANGROWNY (GL AL NGBV LV (G A L. A GR)BL) is a logical consequence of P.

5.2 Open-ended goal clauses

When not all temporal atoms included in a goal clause are canonical. we say that the
goal clause is open-ended. An open-ended goal clause & represents the infinite set of all
canonical goal clauses corresponding to . An implementation strategy for executing
open-ended goal clauses is by enumerating and evaluating (one by one) the set of all
possible canonical instances of the goal clause. As in Chronolog [OW93] open-ended goal
clauses are used to imitate non-terminating computations. In the following sections all
goal clauses are considered to be canonical.

5.3 TSLO-resolution

SLO-resolution is a resolution-based proof procedure developed by J. Lobo. J. Minker and
A. Rajasekar [LMR89, MRL91, LR91] so as to extract answers (logical consequences} from
disjunctive logic programs. In this section we show how SLO-resolution can be directly
extended to provide answers to Disjunctive Chronolog goal clauses. The new procedure is
called TS5LO-resolution. TSLO-resolution applies to canonical program and goal clauses.

13

Definition 5.1. Given a canonical positive temporal clause C, where C' = 4,V ...V A,
and another canonical positive temporal clause D, we say that (' f-subsumes D iff
8 = mgu((As,...,A).(BL...., B.)), where B,...., B, are (not necessarily distinct)
atoms in [).

Definition 5.2. Let P be a Disjunctive Chronoclog program and G be a canonical tem-
poral goal. A TSLO-derivation from P with top goal G consists of a (possibly infinite
sequence) of canonical temporal goals Go = G.G,.....G,,... such that for all i the goal
;11 is obtained from the goal:

ry =4 Dy insis Krimeitis Gy a3 Ui

as follows:

1. ', is a canonical positive temporal clause in G; (called the selected clause),
2. CB « Bi....,B. is a canonical instance of a program clause.
3. CB #-subsumes C,,,

4. (G4 is the goal:
(Fiyy = =0y e Oy (B O lyves (3, VCs 1 Cisdgaes C,)8
if r > 0, otherwise (if »r = 0) the goal G4, is:
Gy =4 (G0 O Capgery oy C.)8.

Definition 5.3. Let P be a Disjunctive Chronolog program and (¢ be a canonical tem-
poral goal. A TSLO-refutation from P with top goal G is a finite TSLO-derivation of the
null clause O from P with top goal G.

Example 5.1. Let P the program:

(1) first light(green) V first light(red).
(2) next light(amber) « light(green).
(3) next light(red) « light(amber).

(4) next light(green) « light(red).

A TSLO-refutation of the canonical temporal goal:
+ first next light(X) V first next next light(X)

is given below (the underlined atoms of the goal clause are those which unify with the
head of the canonical instance of the corresponding program clause i.e. those taking part

14

in the #-subsumption):

+ first next light(X) V first next next light(X)
6, = {X/amber} using clause (2)
+ first light(green) V first next light(amber)

V first next next light(amber)

using clause (2)
+ first next light(green) V first light(green)
V first next light(amber) V first next next light (amber)
using clause (4)

+ first light(red) V first next light(green)
V first light(green) V first next light(amber)
V first next next light(amber)

using clause (1)
O

Thus by applying f; to the initial goal we conclude that

first next light(amber)V first next next light(amber)

is a logical consequence of the program. O

By taking into account the one to one correspondence between the canonical instance
E. of a program P and its classical counterpart P, we can easily prove the following
soundness and completeness theorems for TSLO-resolution which have been adapted from
the corresponding theorems for the soundness and completeness of SLO-resolution for
disjunctive logic programs [LR91].

Theorem 5.1. (Soundness) Let P be a Disjunctive Chronolog program and G =
— Cy Ao A Cy be a goal. Suppose that there is a TSLO-refutation from P with top
level goal G, and let 8,,....8, be the substitutions obtained from this refutation. Then.
Y(CI A ... ACE)0,....0,) is a logical consequence of P.

Theorem 5.2. (Completeness) Let P be a Disjunctive Chronolog program and G a
ground canonical positive temporal clause which is a logical consequence of P. Then.
there is a TSLO-refutation from P with top level goal G.

5.4 TSLI-Resolution

Another resolution-based proof procedure for disjunctive logic programs, developed in [MR30,
LMR92]. is the so-called SLI-resolution. In this section, we show how SLI-resolution can
be directly extended to apply to Disjunctive Chronolog programs. We call the resulting
procedure TSLI-resolution.

Following the formulation of SLI-resolution, TSLI-resolution uses trees to represent
program clauses. Each node of the tree is a temporal literal either marked or unmarked.

A nonterminal literal is always marked, while a terminal literal may be either marked or
unmarked.

15

Definition 5.4 (Temporal t-clause). A temporal t-clause is an ordered pair < T,m >
where:

1. T is a labeled tree whose root is labeled with the symbol ¢ and whose nodes are
labeled with temporal literals, and;

2. m is a marking (unarv) relation on the nodes such that every non-terminal node in
T is marked.

When all temporal literals of a temporal t-clause are canonical. the temporal t-clause
is said to be a canonical temporal t-clause.

Program clauses as well as (simple®) goal clauses are represented as temporal t-clauses.
A temporal t-clause can also be represented as a well parenthesized pre-order expression.

A TSLI-derivation starts with a canonical temporal t-clause (a canonical temporal
goal t-clause) and successively derives further canonical temporal goal t-clauses by resolv-
ing with canonical instances of program t-clauses. During the derivation. an unmarked
canonical temporal literal (either positive or negative) of the goal t-clause is selected and
unified with a complementary canonical temporal literal of a canonical instance of a pro-
gram t-clause {we say that this is a t-derivation step). The resolvent is attached as a
subtree to the temporal literal in the goal clause. Besides t-derivation. also t-factoring,
t-ancestry and t-truncation are used in TSLI-resolution. For the needs of the ancestry
resolution and the factoring, we will use two sets -, and é;, defined as follows:

Definition 5.5. Let L be an unmarked temporal literal in a temporal t-clause.
dr = {N : N is a marked temporal literal and an ancestor of L}
v = {M : M is an unmarked temporal literal and a sibling of an ancestor of L}.

The set v is used in order to perform factoring as well as to detect the derivation of a
tautology. The set 4y, is used in ancestry resolution as well as to detect infinite derivations.

Definition 5.6 (Admissibility condition). A canonical temporal t-clause is said to satisfy
the admissibility condition if for everv occurrence of every unmarked canonical temporal
literal L. the following conditions hold:

1. No two canonical temporal literals in ~p and L have identical temporal atoms {mod-
ulo variable renaming).

(A

No two canonical temporal literals in é; and L have identical temporal atoms (mod-
ulo variable renaming).

The satisfaction of the admissibility condition prevents tautologies and infinite loops
from arising.

*If the goal clause is not simple. then it is transformed into a set of t-clauses.

16

Definition 5.7 (Minimality condition). A canonical temporal t-clause is said to satisfv
the minimality condition if there is no marked temporal literal which is a terminal node.

The satisfaction of the minimality condition ensures that truncation is performed as
soon as possible.

Definition 5.8. Let Cy be a canonical temporal t-clause. The temporal t-clause C, is a
trunfac-derivation (truncation, ancestry and factoring) of Cy when there is a sequence of
canonical temporal t-clauses Cy., (', and a sequence of substitutions 8, 8;,....6,_;
such that for all 1,0 <{ < n, C;4, is obtained from C; by t-factoring iff:

1. L is an unmarked terminal literal in C;;

Inak

. M is an unmarked literal in +; and there is a substitution 8; such that M8; = L§;:

it

Ci41 is Cl8; where C! is the t-clause obtained by deleting the terminal node L from
Ci.

C'i+1 15 obtained from C; by t-ancestry iff
1. L is an unmarked terminal literal in C;

2. M~ is a marked literal in 47 such that L#; = —M#; where #; is a substitution (most
general):

3. Cisy is C!8; where C! is the tree obtained by deleting the terminal node L from C;.

(';+1 1s obtained from (; by t-truncation with #; equal to the identity substitution iff
(’;+1 is a t-clause obtained from C; by deleting a marked terminal node. (If C; is (¢”) then
C|'+]_ 15 EJ.

Definition 5.9. Let S be an input set of temporal t-clauses and C' a canonical temporal
t-clause in §. A TSLI-derivation of a t-clause E from S with top temporal t-clause C is
a sequence of canonical temporal t-clauses (.. ... (", such that:

1. (; 1s either C or a tranfac-derivation of C'. and C, is E.

2. Foralli.l <i<n-—1,Ci, is t-derived from C; and a t-clause B;;; in 5. We say
that C;4, is t-derived from C; and B,;4;. if there is an unmarked literal L in C; and
an unmarked literal M in B, such that L# = —M#! where # is a most general
unifier and if C},, is the clause obtained by marking L in C; and putting all siblings
of M in Bi4, as child nodes of L™ and applving #, then Ciy, is either C],, or a
tranfac derivation of C|_,, such that (', satisfy the admissibility and minimality
conditions.

17

computed answer s.t. the correct answer is an instance of this computed answer) of TSLI-
resolution are directly obtained from the soundness and completeness of SLI-resolution
for disjunctive logic programs [LMR92]. The independence of the computation rule can
also be proved.

6 Conclusions

Definition 5.10. Let S be an input set of temporal t-clauses and C a canonical temporal
t-clause in 5. A TSLI-refutation from S with top temporal t-clause C is a TSLI-derivation
of the null clause O.

Example 5.2 (Continued from example §.1). We will apply TSLI-resolution to answer
the query:
7?7 {first next wet.

The proof is as follows:

(", = first next wet)

t-derivation
(e7, (- first next wet”, — first rains))
t-derivation
(e, (= first next wet™, (- first rains®, first snows)))
t-derivation
(", (— first next wet”, (- first rains®, (first snows",
first next wet))))
t-ancestry
(e, (= first next wet™, (- first rains”, (first snows™))})
t-truncation

(e, (- first next wet®, (-~ first rains")))

t-truncation
(e*, (= first next wet"))

t-truncation
t-truncation
g

Again by taking into account the one to one correspondence between the canonical
instance P. of a program P and its classical counterpart P7, we can directly extend the
soundness and completeness results of SLI-resolution [LR91] to TSLI-resolution.

Definition 5.11. Let P be a Disjunctive Chronolog program and (¢ a temporal goal in
temporal t-clause form. Suppose that G is the top level clause in a TSLI-refutation. in
which (¢ has been used n times with the corresponding renaming substitutions a,,. ... s
Let # be the composition of the substitutions computed for the variables in G' during the
refutation. and #,,...,8, be the substitutions such that each #; is obtained by restricting
to the variables of ;. Then a TSLI-computed answer is given as {#101,....0,0.}.

As it is the case for TSLO-resolution. the soundness (i.e. that every computed an-
SWer is a correct answer) and completeness (i.e. that for every correct answer there is a

18

