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Abstract

In this paper. we present a solution to the problem of free vibrations of the human head
system taking into account the dissipative behaviour of the brain. The mathematical
model is based on the three - dimensional theory of viscoelasticity and the representation
of the displacement field in terms of the Navier eigenvectors. The frequency equation is
solved numerically and the results for eigenfrequencies and damping coefficients are
presented for various geometrical and physical parameters of the system. The results
obtained are in excellent agreement with the measured eigenfrequencies and the predicted
damping coefficients are within the order of magnitude of the measured ones. From the
proposed analysis we have obtained the information that the role of the viscoelastic neck
as well as the viscoelastic properties of the skull - brain system have to be simultancously
taken into account in the study of the frequency spectrum of the human head. The
analysis of the realistic model is under preparation.

" Author to whom correspondence should be addressed



1. Introduction

One of the most important branches of biomechanics concerns the field of head injuries
because a high percentage of accidents, leading to fatalities, involve harm of the head,
which constitutes the most vulnerable part of the human body. The necessity of
confronting all the consequences of such accidents and recovering totally the brain
functions has augmented rapidly the application field of cranial biomechanics together

with the corresponding theoretical and experimental knowledge.

There are two main approaches towards the study of head properties and characteristics
involving the injury procedure: The physical approach. which is based on experimental
analysis and the mathematical one that exploits the possibility of simulation of the
geometric and physical characteristics of the human head with simplified structures-in
shape and substance. The mathematical modelling of the brain system has drawn the
attention of many researchers in recent years [1-3]. One of the most important topics in
the framework of study of the head system is the determination of the relation between the
dynamical characteristics of the human head with the perturbed physical parameters due to
injury. There exist a lot of models simulating the whole head system and its dynamical
charactenistics, each one of which makes some simplifications as far as geometric and/or
physical properties are concerned. However, almost all these approaches try to identify
how a specific factor, characterizing the head system, is involved into the injury and
recovery procedure, oversimplifying simultaneously the other factors. This approach has
the disadvantage that it cannot deal with the interference of the several parameters

participating in the dynamical behaviour of the human head.

In order to improve this “monoparametric” representation of the problem, we have
developed a hierarchy of models simulating in an increasing rate of accuracy the real
problem [4-8]. In addition, the already existed models present solutions based rather on a

“trial and error” method by matching together pieces of solutions. This approach handles



“easy” boundary conditions but cannot face more general conditions (as the neck
support). Consequently the proposed models have been constructed in the basis of
completeness of the involved solutions. More precisely, we have used the three-
dimensional theory of dynamical elasticity not incorporating necessarily axisymmetric
motions and exploited suitably the complete set of Navier eigenfunctions in order to
represent, in a complete way, the elastic motion of every elastic component of the system.
Every component simulated by fluid was characterized by harmonic motion represented
suitably through potential functions. Considering the functions characterizing the motion
of several materials as solutions of the corresponding partial differential equations and
imposing on these solutions the suitable boundary conditions on discontinuity surfaces,
we had to face the problem of head dynamic characteristics as a complicated boundary

value problem.

Based on this approach, we have created the “sequence” of the increasingly ameliorated
models by examining the dynamic characteristics of the spherical elastic skull, the
spherical skull-brain system, the spherical skull-brain-neck system, the spheroidal elastic
skull as well as of the bispherical elastic skull [4-8]. In all these models. the physical and
geometrical constants characterising the several components of the system entered the
model as parameters giving the opportunity for parametric study of the dependence of the

dynamic characteristics on physical and geometrical properties.

In the sequel. we have incorporated in our study the viscoelastic properties of the skull by
formatting the model of the spherical viscoelastic skull [9]. The solution procedure was
much more complicated since the sought eigenfrequencies are complex numbers (the
imaginary part represents the damping coefficient), fact that renders all the special
functions involved difficult to be handled because of their complex argument
Overcoming this difficulty by numerical techniques of high accuracy we led to reasonable

results.



In the present work we examine the elastic skull-viscoelastic brain under the assumption
of spherical geometry. Matching elastic with viscoelastic solutions is a rather difficult
mathematical problem as far as the numerical treatment is concerned. Focus has been
given to the parametric dependence of eigenvalues and damping coefficients on the
physical and geometrical characteristics of the system. The results are in accordance with
the experimental results of Hakansson et al. [10]. We expect that the consideration of the
viscoelastic neck will be of great importance for the determination of the real
eigenfrequencies and damping coefficients of the system. An analysis based on a model
which takes into account all the information obtained by our previous work on the neck

support [6] is under preparation.
2 Problem Formulation

The selected model (Fig. 1) consists of an elastic sphere (1 - skull) containing a
concentrically located viscoelastic material (0 - brain/cerebrospinal fluid). The skull bones
are assumed to be consisted of a linear, elastic, isotropic and homogeneous material while
the brain and cerebrospinal fluid are considered to be represented by a linear viscoelastic

malterial.

The motion of the skull is described completely by the vector displacement field u'"(r,1)

which satisfies the time - dependent equation of elasticity

2

ﬂlvzﬂllj(r»” 4 {A’ + #l}v(v _u[l){r’”} = %u“]{r?r} (1}

where p,. A, are Lamé's constants, p, is the mass density. V is the usual del operator,

and r is the time.



The motion of the viscoelastic material V, is determined by the displacement field

u'"'(r,1) obeying the following constitutive equation
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where 7(r,r) is the stress tensor, I is the identity operator and G,(§), G,(§) are
independent functions, having zero values for negative argument and defining the
viscoelastic properties of the medium. The kinematic behaviour of the viscoelastic

material is described by the equation
T;; = P, §,j=12,3 (3)

where indices indicate components of the corresponding tensors while indices after the

comma indicate differentiation with respect to the corresponding Cartesian coordinate.

Assuming harmonic motion of the whole system with angular frequency @, and

attenuation (due to viscous properties) @, we apply Fourier transform analysis to the

problem defining

i) = [u®(r e di 4)
a0 (r,@) = Ju® (. 0)e dr (5)
T(r.w) = Ti'{r,:}e'f“dt (6)



and

g,(@) = [G.()e ™ dr, j=1, (7)

with @ =@, +iw,, i =+/-1.

Combining the previous equations and taking advantage of Fourier transform properties
we obtain that the displacement fields &', &' satisfy the following time - independent

equations of dynamic elasticity

w VY + (A +p)VV-a") + poa” =0 (8)
G (@)Va" +(G (@) + AL (V(V-a")+p,0’d" =0 (9)
where

G(w) = %5%@} (10)
Aw) = —%Em[glim}—g, (@)] (11)

are the frequency functions corresponding to Lame’s constants in the case of elastic

materials.

Introducing the dimensionless variables



r=—, Q=0 +iQ, Q=—— Q,=——, (a=r) (12)

equation (8) takes the following dimensionless form
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Equation (9) for the viscoelastic medium in dimensionless form is expressed as:

GV E )+ (A (Q)+ G QV (VA" N+ Qa () =0, reV, (14)

where

G@y=29 7=
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In equations (13,14) we have suppressed the dependence of &'/(r) on @ for simplicity.
The physical characteristics of the system enter the mathematical formulation of the
problem through the boundary conditions that are described on the surfaces §, and §,
(Fig. 1). The necessity of the continuity of the displacement field as well as of the

traction field across S, leads to the conditions:
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T &%) =T 4".) (15b)

where

T.=2u . 0rV'+A , 0 (V' )+ ', oF x V' x (16)

denotes the surface traction operator in the 7_medium, F is the outer unit normal vector

on §,, and
1, i=1 'E- i=1
y'g: G,_,((L?}‘ _=[}7 ll_.= “.I(C:UJ I ; {I?j
Uy ——— il
i,

Since the outer surface of the skull, §,, is stress free, we lead to the condition:

T G, )=0. (18)

We note that the problem described by the equations (13) and (14) and the boundary

conditions (15) and (18) is a well - posed mathematical problem.

3. Problem Solution

Adopting the methodology followed by Charalambopoulos et al. [4], we expand the

displacement fields in the regions 0 and 1 in terms of the Navier eigenfunctions [11],

which constitute a complete set of vector functions in the space of square integrable



functions in the region occupied by the system under investigation. More precisely, the

displacement field in the 1 - region has the full expansion

G0 () = i i i{ QL () + BrIMT () + N (r}} reV

n=0 m=—-n

and for the 0 - region
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(19b)

(20)

(21)

(22)

and g.(z), g.(z) represent the spherical Bessel functions of the first, j,(z) and second

kind y,(z), respectively.



The functions P"(F), B]'(F) and C'(f) defined on the unit sphere, are the vector
spherical harmonics introduced by Hansen [11] and in spherical polar coordinates

(r, 1%, @) are given as follows

F"(7)=FE"(F)

i 1 ~=d . 1 @2 -
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- (1) \,I'n(n+1}{ﬁaﬁ+¢sinﬂ r::?ﬁ:;.'r}:t"!r *) e
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where # and @ are the unit vectors in ¥ and ¢@ - directions, respectively,
Y'(r)=P(cos $)e™ are the spherical harmonics and P (cos}) are the well - known

Legendre functions.

As it is obvious the problem of the determination of ' and u"’ is transferred to the
determination of the coefficients in the expansions (19a) and (19b) in terms of the Navier
eigenfunctions, since the expressions (19a) and (19b) satisfy Navier's equations. We ask

these expressions to obey the boundary conditions (15a) and (15b).
The presence of the surface stress operator in the boundary conditions requires the

knowledge of the way this operator acts on the Navier eigenfunctions. Tedious and

extended manipulations lead to the following relations
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Inserting (19a) and (19b) in the boundary conditions (15a) and (15b). using the

expressions (24a, b, c) and taking the advantage of the independence of the Navier
eigenfunctions we conclude that for every specific pair of integers (n.m) (with |m|<n)
the nine coefficients involved in the expansions (19a) and (19b), satisfy a linear
homogeneous system with nine equations of the form

D’x” =0 (25)
where

el ", ", e ., e, N I
= [a.!r.]‘ -'H . ] L] ﬁ : }’-r,ll * Tm,'l fan,l.'il ® n.ﬁ: ® }’Jr.LiI]

and the elements of matrix D" are given in the Appendix.
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The existence of nontrivial solutions of (25) imposes the condition

det(D'(Q,,Q,)) =0 (26)

which is the characteristic equation from which we obtain the eigenfrequency and

damping coefficients ", ., respectively for m = 1,2,3,......

4, Numerical Solution

The equation (25) is solved numerically in order to obtain the solution Q" = QF +iQ7
using a complex LU - decomposition routine. The computation of spherical Bessel and
Neumann functions along with their derivatives for complex arguments [12] makes the

computation time intensive. The computed terms are shown in the Appendix.

Finally with the use of a matrix determinant computation routine we lead to

Re[det(D] (Q,,Q, )| +ilm[det( D} (Q,,Q,)] = 0 (27)
or
Re[det(D]'(€,,92,))] = 0, and Im[det(D}'(R,,9,)] = 0. (28)

The results obtained correspond to material properties analogous to those proposed

elsewhere.

For the human skull [13]
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E=1379x10° N/m*, v=0.25, p=2.1326x10"Kg/m’.

For the viscoelastic brain we ignore the directional properties and the material is
considered i1sotropic. We note that the properties of the grey matter show directional
preference and differ from those of white matter. However, the differences are quite

small so that average values for white and grey matter in all directions are used [14].

The viscoelastic properties of brain have been measured by Shuck and Advani [14] who
have considered their dependence on eigenfrequency @, . In their analysis the measured
experimental data correspond to a frequency spectrum from 0 to 350 Hz. It is well
known that the experimental resonance frequencies of the human head fall in the region 0

- 7.5 KHz, and the measured properties of brain must be extrapolated.

In our analysis we use the extrapolation presented in Ref. 15 which uses a linear

extrapolation for G,(@,) and G,(@,) is given by

] 2

100 s =
Gyw) = 2/ 1 8@)=00 4, ] 60I-GO
Lo o - 2 ol -t

do + cnnst.], (29)

where the const. term is computed on the basis of the difference

G, (@) -G, (w,),,, for the frequency region 100 - 350 Hz. The properties used

computed &Xp -

are shown in Table 1.

The geometrical parameteres are averages of those used in the experimental work of Ref.

10), that is:

r, = 0.0854m, r, € [0.040 - 0.0794m).

-13 -



The solution of the system of equations (28) is obtained by a bisection grid method on the
(Q,, Q. ) - plane and identification of those squares where are zero - crossings of the real
and imaginary parts of the determinant curves. This is analytically presented in Ref. 9.

The accuracy of our computation is 10 in each direction.

The solution obtained for the system under consideration is presented in Fig. 2 for

n=12,..8 In the figure the crossing of curves indicates complex solution,

Q=0 +iQ,.

The solution £ =, +i€2,, as well as, the dimensional one @ = @, +i®, is presented in
Table 2. In the same table the results of our FF - Model [5], in which the brain is
modelled as an inviscid, irrotational fluid, are given. The comparison shows that the
viscoelastic brain model gives eigengrequencies which are close to the ones predicted by
the FF-Model and for the computation of those characteristics this model is sufficient and
complex arithmetic can be avoided. However, the model under discussion predicts the
damping coefficients of the system.

The same comparison for a smaller inner skull radius is shown (r, = 0.040m ) in Table 3.
Again the eigenfrequency coefficients are close to those predicted by the FF-Model and

the calculated damping coefficients much smaller than those presented in Table 3.

A companson of the results obtained, using the above described method. with
experimental ones [10] is given in Table 4. It is noted that in the comparison the first two
modes are not given since we know that the prediction of the first two eigenfrequencies
can be done only by models which include neck support [6]. The results are in excellent
agreement with the measured eigenfrequency coefficients and most of the predicted
damping coefficients are within the order of magnitude of the measured ones but they do
not fall in the region of experimental ones. However, two of them (7th and 8th) are
predicted within the bounds of the experimental method used. This implies that the
viscoelasticity of the skull, as well as, the viscoelasticity of the neck support [16] must be
included, work which is under preparation.

It is noted that in our computations @, (or £2,) corresponds to 1 - 5 % of @, (or £2))

which compares with 3 - 10 % found in the experimental data. Other researchers [1]
could not predict those small damping coefficients and in their analysis the damping

-14 -



coefficients found, Q,, are much bigger than eigenfrequency coefficients €. This is

due to the inaccurate computation of the special functions involved in the computations.

The effect of inner radius on the eigengrequency and damping spectra is shown in Table 5
and graphically in Fig. 3. The effect of brain density (without change of other
characteristics) is shown in Table 6 and graphically in Fig. 4.

5. Concluding Remarks

In this work we presented a mathematical analysis for the study of the eigenfrequencies of
the human skull - brain system in the framework of the three-dimensional theory of linear
viscoelasticity. The geometry of the physical system considered has been modelled by
the FF - Model where the outer hollow elastic sphere represents the skull and the nner
space 1s supposed to be filled with a viscoelastic material corresponding to the brain /
cerebrospinal fluid.

The proposed analysis was used to calculate the eigenfrequencies of the simulated
system. We note that the results obtained are in excellent agreement with the measured
eigenfrequency coefficients and most of the predicted damping coefficients are within the
order of magnitude of the measured ones but they do not fall in the region of experimental
ones (two of them were found within the bounds of the measured ones). We believe that
the discrepancy between the results obtained and those from the experiment exists
because we have not taken into account the viscoelastic properties of the skull as well as
the neck support. The analysis which avoids the drawbacks of the present work is under
preparation.
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APPENDIX
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Figure 2;

Solution of (2! ) in the complex planc (€2, €, ) Tor 7, = 0.010m, 5 = 0.0854m anu n = 1,....4.
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Table I: Variation of brain properties with @, .

fa G, (N/m*) | G, (N/m*) | A(N/m*) | A, (N/m")
2 W

5 3142 076 x 104 | 0276 x10% | 2.1030x 109 | -0.184 x 104
35 219.91 1.17 x 104 0517 x10* | 2.1030x 10% | -0.345 x 10#
65 40841 1.72 x 104 0.965x 104 | 2.1030x 107 | -0.643 x 104
93 596.90 2.00 x 10% 157x 104 | 2.1030x 10% | -1.047x 104
125 785.40 228 x 104 228x 104 | 21030 x 109 | -1.520x 10%
175 1099.56 2.62 x 10* 345x 10% | 2.1030x 109 | -2.300x 104
255 1602.21 3.04 x 104 538x 104 | 21030x 109 | -3.587 x 104
434 219911 339x10% | 814x10* | 21030x10° | -5427x 104
674 4237.00 4.62 x 10# 840x 10* | 2.1030x 10° | -5.601 x 107
999 6274.89 5.84 x 10% 1210 x 104 | 2.1030x 109 | -8.067 x 104
1323 8312.84 7.06 x 10% 1573 x 104 | 2.1030x 109 | -10.483 x 10%
1647 10350.73 8.28 x 10% 1929 x 104 | 2.1030x 109 | -12.863 x 10%
1972 12388.62 9.50 x 104 2280 x 104 | 2.1030x 109 | -15.199 x 104

.




Table 2:

Eigenfrequency and attenuation spectra for r, = 0.0794m.

FF [5] Viscoelastic Brain
Q [0} Q @, Q. @,

0.3993 1466.504 0.39843 1463.308 0.16872x10 6.196
(n=2)

0.5172 1899513 0.51540 1892.902 0.34851x10° 12.799
(n=3)

0.6146 2257.233 0.61220 2248.419 0.49866x10 18.314
(n=4)

0.7237 2657.923 0.72092 2647.713 0.63062x10~ 23.161
(n=3)

0.8614 3163.652 0.85809 3151.495 0.75336x10~ 27.669
{n=6)

1.0348 IR00.496 1.03137 3787.898 087177210 32.017
(n=T)

1.1575 4251.134 1.13251 4159.354 035611210 130.788
{n=1)

1.1955 4390.696 1.17618 4319.740 0.26437x10°" 97.095
(n=2

1.2467 4578.738 1.24305 4565.333 (98743x10° 36.265
(n=4§)




Table 3:

Eigenfrequency and attenuation spectra for r, = 0.040m.

FF [5] Viscoelastic Brain
Q @ Q @, Q. w,

1.1154 4096.51 1.1153 4096.37 0.16174x10 0.59402
in=2)

1.4147 5195.75 1.41439 5194.61 0.40935x10° 1.50415
(n=2)

1.8301 6721.38 1.83012 721.46 0.31189x10° 1.14547
(n=3)

1.8921 6949.09 1.88872 6939.68 0.51831x10° 19.03590
(n=4)

2.2106 B118.84 2.21032 8117.81 0.31250x107 1.14771
(n=3)

2.5705 9440.64 2.57046 9440.49 0.38208x107 1.40326
(n=4)

2.6818 9849.41 2.68058 984493 0.18622x10° 6.83928
(n=2)

2.9295 10759.13 2.92934 10758.55 0.19531x10° 0.71732
(n=4)

3.1913 11720.64 3.17475 11659 86 0.25924%107 95.21072

(n=1%)

i




Table 4:

Comparison with experimental measurements [10].

Experiment * o, Experiment * o,
w, [10] @, [10]

853 - 1091 406 - 1234

1082 - 1378 492-127.9

1373- 1691 | 1463.308 33.7 - 183.8 6.196
616 - 1954 | 1892.902 51.8-1374 12.799
1859 -2293 | 2248.419 93.4-213.8 18.314
2084-2490 | 2647.713 123.5-201.3 23161
2260 - 2876 | 3151.495 05.0 - 161.8 27.669
2510- 3288 | 3787.898 725 - 130.3 32.017
3213-3967 | 4159.354 878 - 159.4 130.788
3558 - 4644 | 4319.740 89.8 - 226.2 97.095
4197 -5389 | 4565.333 135.3 - 258.4 36.265

®

It is noted that in [10] the neck is included

=25




Table 5:

Vanation of eigenfrequency and damping coefficients spectra with inner

radius.

r.fr =0.117 r,/r. = 0.468 r,fr =0.703 r,fr =0.930

@, w, @, @, @, , @, w,
5303.32 0.000 4096.37 0.594 281298 1.867 1463.308 6.196
5535.56 0.018 5194.61 1.504 423244 3202 1892.902 12.799
727240 0.004 6721.46 1.145 4847 65 11.970 2248.419 18.314
819479 0.000 6939.68 19.036 5505.39 49185 2647.713 23.161
8301.04 0.002 8117.81 1.148 6003.26 4434 3151.495 27.669
10257.89 0.047 9440.49 1.403 T638.65 12.136 3787.898 32.017
10621.74 0.000 9844.93 6.839 9298 98 55.601 4159.354 130.788
1080277 0.000 10758.55 0.717 10261.01 15.144 4319.740 97.095
12227.03 0.518 11659.86 95.211 11206.80 49,185 4565.333 36.265

- 26 -




Figure 3: Variation of eigenfrequency and damping coefficients spectra with inner
radius (A: eigenfrequency coefficients, B: damping coefficients).
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Table 5:

Vanation of eigenfrequency and damping coefficients spectra with brain
density.

p,/p, =0.422 P, /p, = 0.469 p,/p, =0.516
& a, @, o, o, @,
1516.56 6.402 1463.308 6.196 1415.29 &.001
1956.04 13.180 1892.902 12.799 1835.50 12.429
2316.53 18.740 2248.419 18.314 7185.95 17.866
2720.79 23.627 2647.713 23.161 2580.17 22 688
3230.89 28.108 3151.495 27.669 3077.09 27.207
1876.19 32.411 3787.898 32.017 3705.34 31.587
4214 .96 128,085 4159.354 130.788%8 4111.83 133.443
432334 92.104 4319.740 97.095 4316.32 101.836
4663 87 35,595 4565.333 36.265 4472 67 35 884




Figure 4: Variation of eigenfrequency and damping coefficients spectra with brain
density (A: eigenfrequency coefficients, B: damping coefficients).
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