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Abstract

In this paper we compute the number of spanning trees of a specific family of
graphs using techniques from linear algebra and matrix theory. More specifically, we
consider the graphs that result from a complete graph K, after removing a set of
edges that spans a multi-star graph K.(a1,a2,...,a04,). We derive closed formulas
for the number of spanning trees in the cases of double-star (m = 2), triple-star
{(m = 3), and quadtruple-star {m = 4). Moreover for each case we prove that the
graphs with the maximum number of spanning trees are exactly those that result

when all the a;'s are equal.
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1 Introduction

Let K, be the complete graph on n vertices and let 5 be a set of edges that join pairs of
vertices in K. The problem of calculating the number of spanning trees on K, that do not
contain any edge of S, is a well-known one in graph theory. Many cases have been examined
depending on the choice of S. For example, there exist closed formulas for the cases where
S is a pairwise disjoint set of edges [9], when it is a star [7], when it is a complete graph
[1], when it is a chain of edges [5], and so on (see Berge [1] for an exposition of the main

results).



The purpose of this paper is to study the above problem in the cases where S forms
multi-star graphs (see definition in Section 2). In particular, we derive closed formulas
for the cases of double, triple and quadruple stars. Our proofs are based on the Comple-
ment Spanning- Tree Matriz theorem (CSTM theorem) [8] and use standard linear algebra
techniques. Moreover, for each of the three cases, we identify the graphs that possess the
maximum number of spanning trees.

The paper is organized as follows. In section 2 we establish the notation and related
terminology. In section 3 we present the results obtained for the case of double-stars and
the techniques we use for this purpose. In section 4 we show the results for triple and

quadruple stars, while section 3 concludes the paper.

2 Preliminaries

The multi-star graph K,,(ay,as,..., iy ) 18 formed by joining aq, as, ..., a,, end-edges to
the m nodes of K,,. For example, Ks(a,,as) is the double-star graph [3] and is shown in
Figure 1, while the triple Kj(a;,as, a3) and quadruple Ky(a,.02,a;,a4) star graphs, are

shown in Figures 2 and 3 respectively.

Figure 1: The double-star graph As(a;, as).

Given a graph G = (V, E), a subset S C E of edges spans a subgraph H = (Vs, 5)
where Vs = {v € V | v is an endpoint of some edge of S}. We consider the family of
graphs that results from a complete graph K, after removing a set of edges that span a
multi-star K, (a;,ag, ..., ay). Throughout the paper, we refer to this family of graphs as

Kre. = K.ll'll:a]' 0300y 'u'i'n}~
Let G = (V. E) be a graph with n vertices and e edges. The complement G of G also has
V' as its vertex set, but two vertices are adjacent in G if and only if they are not adjacent

in (.
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Figure 2: The triple-star graph Kj(ai, as, as).

The Complement Spanning-Tree Matriz A of a graph G is defined as follows:

1—% iffi=yj
A, j)=1 & if i #j, (i,5) € G
0 otherwise

where d; is the number of edges incident to vertex v; in G. It has been shown [8], that the

number of spanning trees N(&) of G is given by:
N(G) = n"%. Det(A)

Given the above definitions, we can now state in a formal way the problem under
consideration. We consider the computation of the number of spanning trees of K, —
K..(a;,az,....a,). In particular. we derive closed formulas for the number of spanning
trees for the graphs K, — K,;,(a;1, aa.. . ., an), m = 2,3,4. Moreover, in each of these cases,

we prove that the number of spanning trees is maximized when all a;'s are equal.

3 The Double-Star Case

We use the complement spanning tree matrix theorem in order to compute the number

of spanning trees of the graph K, — Ks(ay,a2). We first label the vertices of the graph
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Figure 3: The quadruple-star graph K;(a;. as, a3, 04).

so as that the vertices with degree n — 1 obtain the smallest labels. We then form the
complement spanning tree matrix A of the graph, which has the following form:

[ 1

where the submatrix B concerns those vertices of K, that have degree less than n — 1
(notice that throughout the paper, empty entries in matrices or determinants represent
the 0’s). Consequently, Det(A) = Det(B), where B is an (a1 + az + 2) x (a1 + az + 2)



matrix having the following structure:

i

b
]
a b
bp] b
c b
i b
a b
b b b
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where (according to the definition of the Complement Spanning-Tree Matrix) a =1 —-1/n,

b=1/n.p1=1-(a;+1)/n and p; =1 — (ay + 1)/n. Starting from the upper left part of

the matrix. the diagonal has a; a’s followed by p,, followed by as a’s and ending with p,.

In order to compute the determinant of the above matrix we start by subtracting row

1 from rows 2, ...,a;, and then adding columns 2,...,a; to column 1, getting:
a b f b
—-a a i
| =d i a
bb b b b b b
Dei(B) = by s f |
a )
a
: !
a b
b b b b py | b b

o

b

b
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We multiply the first column by —(b/a) and add it to the (a; + 1) column:

£
i1
i}

Glbb"'bm il
) b
a1 ]

a b
L b b oo b opg

where g = py — a,(b*/a). We now expand, getting :

41 b

i ]

a™t a b
b b b - pa

Bv expanding again along row 1, we get:

E a b 0 a
| a b
a® g | I o e ha ]
B
I | h b

The second determinant is easily shown to be equal to (—=1)*ba®, and therefore the de-

terminant of matrix B becomes:

a b

Det(B) = a“ [g; h " | - b0 (1)
a b
b -+ b pe

It now suffices to compute the remaining determinant. We follow a procedure similar

to the one we applied for the initial matrix. We start by subtracting row 1 from rows
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a b a

—a a a

—a a a
bbb - b ash b - b

We multiply the first column by —(b/a) and add it to the {as + 1) column:

a

a
ﬂgb b - b {2

where g; = p; — az(b*/a). As the above matrix is a lower triangular, the value of the
determinant is equal to a®¢gy. Substituting this into equation (1), we get the value of the

determinant Det(A) of the initial matrix:
Det(A) = o™ [g16™ gy — bga“f] = a™ " g1qp — h?]

Based on the formula that gives the number N(G) of spanning trees of a graph . we have

the following Theorem:

Theorem 3.1 The number of spanning trees of the graph G = K, — Ks(a;.a5) is
N(G) = n" 2" "% [q1q, — b7]

wherea=1=1/n.b=1/n,p;=1-(a; +1)/n, and ¢ = p; — a;(V*/a). i = 1,2.

It is clear from the above theorem that the number of spanning trees of the graph
v, — Walaq. a2) depends on the values of a, and a,. We are interested in determining the
K,-K lepend the val fa; and a;. W terested in det g th
particular graph which has the maximum number of spanning trees. Therefore, we simply

need to find the values of a; and @, that maximize the formula of Theorem 3.1.

Theorem 3.2 The number of spanning trees of the graph K, — Ka(a;.a;) is maximized

when a; = as.



Proof: It is clear that in order to maximize the value of the formula in Theorem 3.1 we
must maximize the quantity q,g;. It is straightforward to see that g, + ¢ is constant, and
therefore the value of gqs is maximized when q; = 2. This easily leads to the fact that

@7 = a2 must hold in order for the maximization to be obtained. E

4 The Triple and Quadruple-Star Cases

In this section we consider the cases of the triple and quadruple star graphs. We omit
the details of the calculations as they are based on the same principles as the ones for the
double-star case.

We consider first the case of the K, — K3(ay, as. a3) graph. The matrix B that results

for this graph (based on the Complement Spanning-Tree Matrix theorem) has the following

form: i
i b
a b
b b m b b
i b
EBE =
a b
B b - b b
i ]
a b
b b b - b pg |

wherea=1-1/n.b=1/n,py =1-(a1+1)/n,po =1—(az+1)/nand p; = 1—(az+1)/n.

Although the structure of the above matrix is similar to the matrix of the double-star
case, it is not obvious how to reduce the determinant of the triple-star case to a form that
will be immediately calculable with a procedure identical to the one of the double-star.
In other words. the calculation for the triple-star case has to be performed from scratch
(using however similar techniques).

It can be shown (we avoid the technical details) that the following theorem holds.



Theorem 4.1 The number of spanning trees of the graph G = K, — Ki(a1. a2, a3) is
N(G) = n""2a™ 77 [g goq3 — b*(q1 + g2 + g3) + 2b°]
wherea=1-1/n,b=1/n,p;=1— (a; +1)/n, and g = p; — a;(V*/a), i =1,2,3.

We consider now the case of the K, — K,(a;, a2, a3, a4) graph. Again. there is a close
relationship between the matrices of the quadtruple and triple star cases, but still this
relationship is not strong enough so as to ensure a straightforward calculation. It can be

shown (using similar techniques) that the following theorem holds.

Theorem 4.2 The number of spanning trees of the graph G = K,, — Ky(a;.az. a3, a4) is

n—2_ ny+azt+az+og

N(G) = n""a (91929391 —
V(g2 + q1g3 + @1¢s + G203 + Goqs + @3qs) + 263 (q1 + @2 + g3 + q4) — 3b]

wherea=1—-1/n.b=1/n.p;=1— (a; +1)/n, and q; = p; — a;(¥*/a), i =1,2,3,4.

A similar maximization theorem as in the double-star case can be proved for the triple

and quadtruple cases. Thus, we can state the following result.

Theorem 4.3 The number of spanning trees of the graphs K, — Ks(a;, as.03) and K, —

Kilay,as.a;.ay) is maximized when the a;'s are equal.

Proof: Using a similar (but slightly more involved) technique than the case of double-star

graphs. m

5 Discussion

In this paper, a number of closed formulas regarding the number of spanning trees of multi-
star related graphs have been derived. For this purpose we have used the Complement
Spanning Tree Matrix Theorem as well as standard techniques from linear algebra and
matrix theorv. For each case, we have determined the particular multi-star graphs that
maximize the number of spanning trees.

Calculating the determinant of the Complement Spanning Tree Matrix seems to be a

promising approach for computing the number of spanning trees of families of graphs of



Graph iy | as | a3 | ay | Known Results Reference
B=talayros) a, | 0| T R O"Neil [7]

K, — Ks(a;, a) 0|0 K,— P Temperley [8] (also [3])
K, — Ks(a;. az) 01 K,-P Moon [5] (also [7])
K, — Ka(ay,as) 1)1 | K,- P Moon [5]

K, — Kj(a;. as.a3) 0|0 K, - K, ONeil [7]

K, — Kila,.as,a3,a4) | 0 | 0 0 K, - K; O'Neil [7]

Table 1: Results obtained as special cases of multi-star graphs.

the form K, — (&. where G possess an inherent symmetry. In particular. many of the well-
known results in Berge [1] which are derived using combinatorial arguments, can easily be
proved using similar techniques to the ones we have used in this paper. More specifically,
many graphs can be derived as special cases from the multi-star graphs, depending on the
values of the a;'s. For example, given a double-star K;(a,, a;) and setting a; = 0, we get
the star on a; + 1 vertices, and when setting a; = a; = (0 we get the path graph on two
vertices F». A listing of such results is presented in Table 1.

Deriving closed formulas for different types of graphs can prove to be helpful in identi-
fving those graphs that contain the maximum number of spanning trees. Such an investi-

gation has practical consequences related to network reliability (see for example [2, 4, 6]).

Akcnowledgment: The second author would like to thank Wendy Myrvold for introduc-
ing him to the problem of identifving those graphs containing the maximum number of

spanning trees.
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