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SUMMARY
In this work we deal with the free vibrations of a viscoelastic skull. The analysis is
based on the three-dimensional theory of viscoelasticity and the representation of the
displacement field in terms of the Navier eigenvectors. The frequency equation was
solved numerically and results are presented for the eigenfrequency and the attenuation

spectra.

1. INTRODUCTION

Several investigators have studied the frequency spectrum of the human skull both
theoretically and experimentally. Itis well known that the knowledge of the frequency
spectrum can be applied for better understanding of head injuries and in the diagnosis of
head diseases. One subject which attracted the attention of many researchers is the free

vibration analysis of the human skull. From the experimental point of view, Khalil et



al. [1] have presented experimental measurements for the resonance frequencies of the
human skull for two kinds of dry skulls and extrapolated their results to living skulls
taking into account known and estimated differences in mechanical properties.
Hékansson et al. [2] investigated the free damped natural frequencies of the human
skull in vivo and they are the only ones to our knowledge who reported damping

coefficients.

In previous communications we have studied the dynamic characteristics of the human
dry skull [3], as well as the effect of various geometrical parameters on them [4,5]. We
restricted our study to the sensitivity of the frequency spectrum from the various
parameters assuming that the skull is a linear isotropic elastic material. Several other
researchers have paid attention to the dissipative material behaviour of the human head
system. Misra [6] studied the steady - state response of a prolate spheroidal shell made
of a linear viscoelastic solid containing a viscoelastic fluid due to an axisymmetric load
varying harmonically with time. Misra and Chakravarty [7] have shown that the
dissipative material of the skull as well as the brain have a significant effect on the
frequency spectrum of the freely vibrating cranial system. The three - dimensional
equations of linear viscoelasticity have been used by Hickling et al. [8] to describe the
behaviour of both the brain and the skull to an axisymmetric impact. However, in the
above works no clear statement has been done about the cause of dissipative behaviour
of the human head system which matches qualitatively the results of Hikansson et al.
[2]-

In the present work we deal with the role of material behaviour on the frequency
spectrum of the human skull. The mathematical modelling is based on the three-
dimensional theory of elasticity and the approximation of the skull by a linear
viscoelastic material occupying the region bounded by two concentric spheres. We
assume steady vibrations with angular frequency @, and atienuation @, and taking

advantage of the Founer transform properties we obtain the vanables which replace



Lamé’s constants of the elastic material case. The mathematical analysis is based on the
representation of the displacement field in terms of the Navier eigenvectors. The
frequency equation is constructed by imposing the satisfaction of the boundary
conditions and it is solved numerically. Due to the existence of complex terms this

leads to zero-crossing finding of two functions in the complex plane. From the analysis
adopted we obtained @" and @7, m=123,.. for real and complex v (Poisson’s

ratio) and we also performed a sensitivity analysis of our results for various parameters

entering the problem.

2 PROBLEM FORMULATION -
We consider two concentric spheres with center 0, radii r,,  and surfaces §,,5
respectively (Fig. 1).

Figure 1: Problem Geometry

The region V' between the two spheres is assumed to be filled with a viscoelastic
material obeying to the following constitutive equation
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where u stands for the displacement vector of the viscoelastic medium, T(r,t) the

stress tensor, I the identity tensor and G,(&),G,(S) are independent functions, having
zero values for negative argument and defining the viscoelastic properties of the

medium.
The kinematic behaviour of the system is described by the equation

T, = P, i,j=123 (2)

where indices indicate components of the corresponding tensors while indices after the

comma indicate differentiation with respect to the corresponding cartesian coordinate.

Assuming steady vibrations of the system under consideration, with angular frequency
@, and attenuation (due to viscous properties) @, we apply Fourier transform analysis
to the problem defining

i(r.0) = ju(r,eds 3)

Hrw) = | T(r,m)e " d (4)

and

g,(@) = |G (e dt, j=1, s)
0

with @ =@, +i,.

Combining (1), (2), (3), (4), (5) and taking advantage of Fourier transform properties
we obtain
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l e
310(8:(@) - g (@]V(V -i(r. @) + pa’i(r,w) = 0
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G (0)Vi +[G (@) + X (@)|V(V &)+ pw’ii = 0 (6)

where

Glw) = %r‘mg] (w) (7)
. 1

Alw) = gim[gz{m} - g ()] (8)

are the frequency functions replacing Lameé’s constan® u, A, respectively, in the case
of elastic materials.

It is convenient to express G (@), A (@) in terms of the generalised Young's modulus

- 3g, T ; & () - g ()
Ew =i and the Poisson’s ratio V(@)= through the
T+, 8,(@)+2g, (@)
relations G (@) =—2 9 _ ind X' (@) = ——ONV@)
2(1+v(w)) (1+v(w))1l-2viw))

So, in the frequency domain, the wiscoelastic properties of the medium under
consideration are completely described by the functions E(@), v(w).

Inserting dimensionless variables the equation of elasticity (6) takes the form
G @V ) +[G (@) + X @)V (Va(r' )+ Qe ) = 0 9)
where

r=rja(a=r), V=aV, G(o)=G(@)/G ) =1,

2(w) = A(@)/G (@) =2v(@) /(1 -2v()), Q = wa,[2p(1+ v(w))/E(w).

In equation (9) the indication of the dependence of #&(r,@) with respect to @ has been
for simplicity suppressed.



The physical characteristics of the system enter the mathematical formulation of the
problem through the boundary conditions that are described on surfaces S, §,. More

precisely these two surfaces are stress free, that is

Tu(r')=0, r'e§,, § (10)
where
T =2G" (0)F V' +A (@F(V )+ G (@)F x V' x (11)

stands for the dimensionless surface stress operator in the medium V, F is the unit

normal vector on surfaces §;, §,, and -

_ G (@)

S (12)
& G (w)

i 20 W) (13)
G(w) 1-2vimw)

We note that, the system of equations (6) - (10) constitutes a well - posed

“corresponding” problem. With this term is meant the identical problem except that the

body concemned is viscoelastic instead of elastic.

The method adopted for the solution of this problem is based on the representation of
the displacement field u(r) in terms of the Navier eigenvectors [9]. As it is well
known, Navier eigenvectors are created through Helmholtz decomposition and
constitute of a complete set of vector functions in the space of solutions of the time-
independent Navier equation.

The Navier eigenvectors have the following form

L) = §(QF )PP () + Jnn u%ﬂf—’.&:m (14)
M™(r') = [nn+Dgl(k', rIC™(F) (15)



N™(@r) un(n+1}‘5’"(k : ) pr(7)+
‘ (16)
Jnn+ 1)[ (K.r)+ gﬂ”‘ ]Bm{ 7)
E.r

n=0,1.2,..; m=-n-n+1,...n-1n (=12
where

) Q
k.= o (17

e J,(x) I=1 (spherical Bessel function of order n) i
Lt Y (x) =2 (spherical Neumann function of order n)

where g'(x) stands for the derivative of gf,{x} with respect to its argument. Finally,
the functions P"(F), BT (F), C(f) defined on the unit sphere, are the vector spherical

harmonics, introduced by Hansen [9] and are given by the relations

P™(F) = FY"(7) (19)
: I F=d @ 9 e

B"(f) = ———| 00—+ — ¥ 20

- () Jn(n+1)| 29 sinddp " ™) %)

)= | 22 _52 |y @

\n(n+1) | sind do ° dv

where ¥"(F)= P"(cos®)e™ are the spherical harmonics and P (cos?) the well
known Legendre functions.

Consequently the displacement field u(r) has the representation

ur =3 3 S{ar L)+ B MM )+ YN ). (22)

a=0 m=—-n =]



Now, the problem of the determination of u(r) is transferred to the determination of the

coefficients of the expansion (22) in Navier eigenfunctions. The expression (22)

satisfies Navier equation. What remains to do is to force this expansion to satisfy the

boundary conditions (10). Consequently applying the stress operator T on the

expansion (22), expressing the functions TLT', TM™, TN™ in terms of the

orthogonal set of vector harmonics P, B, C] and taking advantage of the

independence of the last functions we conclude that for every specific pair of integers

(n,m), with |m| < n the six coefficients involved in expansion (22) satisfy a linear

homogeneous system of six equations of the form
DPx; =0
where

1

x:' = [a‘:‘-l,a:!.l‘ gD :,2?},:.1‘?:1.1]7.
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In order for the system (23) to have a nontrivial solution the following condition must
be satisfied

det(D](Q))=0. (24)

This condition provides the characteristic (frequency) equation from the roots of which
we obtain the eigenfrequencies @ and the attenuation coefficients @7, m=1,2,3,...,
of the system under discussion.

3. SOLUTION - NUMERICAL RESULTS

The frequency equation (24) is treated numerically in order its solution Q" = QT +iQ7
to be obtained. The spherical Bessel functions and their derivatives for complex
arguments are computed using backward recurrence. The spherical Neumann functions
and their derivatives are computed using a mixed recurrence because its value decreases
first and increases as its order increases [10]. A complex LU - decomposition routine is
used along with a determinant computation routine which results in the following

Re|det(D] (Q))| +iIm[det( D7 (Q))]| =0 (25)
or

Re[det(D] (©,,Q,))] +iIm[det( D] (2,.9,))] = 0 (26)
which is equivalent to

Re[det(D]'(Q,,9,))] =0 (27a)



Im|det(D7(2,.9,))] =0. (27b)

The solution of the system of equations (27) is obtained by a bisection grid method. A
rectangular grid is established in the (£,,Q,) plane and bisection searches for zero
crossings are done along each of the equally spaced grid lines. The spacing chosen for
the present solution is 107, is the same in both axes, and each grid line involves a
separate one dimensional bisection search with accuracy 10°. Such a solution, obtained
for v = (.25, is graphically shown in Fig. 2 and the crossing of zero - crossing curves
are shown to be on the real axis (£2, =0). Similar zero crossing curves for complex
Poisson’s ratio (0.01 £ v, £0.2) are given in Fig. 3. The crossing of curves gives the
complex solution (£ = Q, + i€, ) of the system of equations (27).

To find the solution a refined grid search method along with refinement of search in

those squares where are zero crossings of the real and imaginary part of the determinant
on their boundaries is used with computation accuracy 10 [11].

Numerical results were obtained for material properties analogous to those proposed in
the literature [8] for the viscoelastic human skull, that is

E =6.895x 10" +i0.092 x10* N/m*
v=0.25, and v =0.25+iv,, v, : variable
p=2.132x10°(Kg/m’)

r, = 0.082m, r, €[0.040,0.076m]

The soluton of (27) for real v corresponds to that of the elastic case which has been
presented in Ref. 3 and the results are cited in Table 1. In the case of complex v,
v =0.25+i0.1 and different n (n is the order of Bessel functions) the roots of (27a:b)
are given in Table 2. From the results obtained we observe that the ordering of the
roots is similar to that of the elastic case and the degeneracy for n =1 disappears. In
Table 3 the results for v =0.25 and v =0.25+i0.1 are presented. It is observed that
the increase in the imaginary part (@, ) of the first @ for each n follows the decrement
of the real part (@, ).

The dependence of @, and @, on v,(v, is constant), is shown in Table 4 and

graphically, for the first four eigenfrequencies, in Fig. 4. The variations of @, are
small but those of @, are substantially large.

-10 -



The variations of @, @7, m=1,2,3,4 with hfr, (h =r, —r,) are shown in Fig. 5. It
is observed that @, @7 increase with the increment of the skull thickness (for

0 < hfr, = 0.040), while for higher values of h/r, a decrement is observed for @;'.
4. CONCLUSIONS

In the previous analysis we presented the influence of the viscoelastic nature of the
human skull material on its frequency spectrum. From the results obtained we led
the conclusion that for ve R and E=(.) + i (.) the frequency spectrum of the
skull remains almost that of the elastic case and the attenuation is immaterial. For v and
E complex the ordering of the eigenfrequencies remaips but there is a decrement of m,
and a significant increment of @,. We also observed that @ increases with the
increment of the thickness of the skull while there is a critical A beyond of which the

attenuation @7 decreases.
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Table 1: Frequency spectrum forv =0.25andr, = 0.082m, r, =0.076m.

Elastic Skull Viscoelastic Skull
Q [3] W @, @,
~0.7083 2709.282 2709.291 18.159
0.8522 3259.638 3259.711 21.849
0.9486 2628.364 3628.446 24.320
1.063 ~4065.941 4066.033 27.253
1.1971 4578.870 4578.972 30.691
1.2184 4660.341 4660.446 31.237
1.4210 5435.280 5435.402 36.431
1.5479 5920.660 5920.802 390.685
1.6695 6385.785 63852028 42.802
1.8024 7238.370 | 7238.533 48517
— 2.5324 06%6.350 0686.567 64.925
2.6253 10041.689 10041.915 67.307 |

Figure 2: Solution of (27) in the complex plane (£, Q,) for v =0.25,
r=0082m, r,=0.076m and n=2.

(1: Re[det(D](Q,,Q,))|=0, 2: Im[det(D](Q,,Q,))|=0).

e



Table 2:

Eigenfrequency coefficients Q' = Q" +i€Q", for v =0.25+i0.1,r, = 0.082m, r, =0.076m and n =0,1,...,8.
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Solution of (27) for v = v, +iv, (v, = const.) in the complex plane (£, €,) for 1, = 0.082m, r, =0.076m

(A: v, =0001,B: v,=001, C: v,=0.1, D: v, =02)

and n=2.

1 T T T r]y T B 1 T T T T T
08 |- Mt |
06 } ; ‘ 06 | i i|
04} : § 04 _
Y 1
02} | \ 0.2
Q gb= g e | Q, o '
- e Tl 7 02|
- v | ¥
04 | - l 04 | L
06 | 08 I |
08 - 08"
K 3 i i 1 1 1 4 i 1 g | i 1
5 1.5 2 25
0 0.5 1 Q, 1.5 2 25 ] Q,
1 T T n T T D 1 T T T T
08 | 1 08 |
!
06 | 0s | i
o4l | 04 |
02} 3 oz}’ - '
LN £
ﬂ; 0} k Q, o
02 k" ,.! 02 ) o
0.4 ;,. [ -0.4 \
08 |+ I: o8| - | '
08 | | 08|
-1 i i ' i i -1 1 i L i
0 05 1 15 2 25 : 1.5 2 25
Q, o Q,




Table 3: Eigenfrequency and attenuation spectra for v = 0.25+i0.1 and
r, =0.082m, r, =0.076m.

“Elastic Skall [3] Viscoelastic Skull

Q @ Q @, Q, @,

0.7083 2184.727 0.7243 2711.926 -0.0792 60.662
(n=2)

0.8522 3355.030 0.8776 3262.434 -0.0853 110.256
(n=3)

(.9486 3735.108 0.9770 3628.634 -0.0879 148.535
(n=4)

1.0631 4184.679 1.09464 4062345 -0.0922 189,571
(n=5)

1.1971 4692.286 1.2274 4579.019 -0.1530 30.675
(n=2)

[.2184 4793.594 1.2339 4650.4%3 -0.0995 230.700 |
(n=6) -

1.4210 5588.646 1.4619 5419.097 -0.0110 300.132
(n=T7)

1.3479 6096.023 1.5946 3866.431 -0.027% 667.104
(n=0)

1.6695 6563.997 1.7175 6364.619 -0.1252 369 188
(n=8)

1.8023 7452.738 1.9495 7172.260 -0.0345 813.068
(n=1)

1.8924 T419.119 1.9407 7240.025 0.2418 48.526
(n=3) )
25324 0953.767 2.6037 0713.487 -0.3245 65.107
(n=4)

2.6253 10323.005 2.7003 0055.172 -0.0904 070.888
(n=2)

o L



Table 4: Eigenfrequency and attenuation spectra for v, € [0.0, 0.2] and r, = 0.082m, 5, = 0.076m.
v = 0.25+i0.01 v =0.25+i0.05 v =0.25+i0.1 v =0.25+i0.15 v =0.25+i0.2
a, a, @, a, @, a, a, a, a, a,
2709384 22.430 128,932 39.479 2711.926 60.662 2715.282 81.527 2719.995 [01.955

3259.797 30.720 3284.036 66.158 3262.434 110.256 3266.196 153.956 3271.605 197.043
3628.370 36.791 3655.601 86.613 3628.634 148.535 3629.611 209.747 3631.354 269.933
4066.343 43579 4096.624 108.755 4062.345 189,571 4058.324 269.002 4053.349 346.764
4579.010 30.693 4607.786 30.692 4579.019 30.675 4579.010 30.691 4579.011 30.695
4660.153 52.241 4694 414 136.072 4650.483 239.799 4639.610 341.427 4625411 440.300
5435.448 63.018 5474.888 169.073 5419.097 300.132 5400.230 428.193 5375.302 552.007 |
5019.867 103.033 5906.034 355.641 5866.431 667.104 5803.003 069.904 5726.791 [244.055
6388.110 75.736 6434.002 207.038 6364.619 369.188 6337.188 527.415 6300.660 680.074
7237.320 125.798 7293.849 433976 7172.260 813.068 7005.609 183.607 | 7001.674 1499.185
7240.027 48528 7295.524 48529 | 7240.025 48.526 7240.025 48528 7240.027 48.527
9713.626 57.460 9774.518 65.099 0713.487 65.107 0713.469 65.105 9713.488 65.110
10040.479 158.562 10114.546 | 522.437 9955.172 970.888 0854.097 1406.711 9718.613 1824.672
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Figure 4:

Variation of @], @3, n=1,2,3,4 withv, for r, =0.082m, r, = 0.076m.
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Figure 5:

1.4 104

Variation of @ and ] with h/r,
r = 0.082m.
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