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Abstract

An approach is presented for treating discrete optimization problems mapped on
the architecture of the Hopfield neural network. The method constitutes a modifica-
tion to the local minima escape (LME) algorithm which has been recently proposed
as a method that uses perturbations in the network’s parameter space in order to
escape from local minimum states of the Hofield network. Our approach (LMESA)
adopts this perturbation mechanism but, in addition, introduces randomness in the
selection of the next local minimum state to be visited in a manner analogous with the
case of Simulated Annealing. Experimental results using instances of the Weighted
Maximum Independent Set problem indicate that the proposed method leads to sig-
nificant improvement over the conventional LME approach in terms of quality of the
obtained solutions, while requiring a comparable amount of computational effort.

1 Introduction

A large class of problems arising from real world situations can be formulated as opti-
mization problems and thus qualitatively described as a search for the ‘best” or ‘optimal’
solution among a finite or countably infinite number of alternative solutions. Several in-
teresting combinatorial optimization problems are considered computationally intractable,
that is, exhaustive search algorithms require at least non-deterministic polynomial time to
obtain optimal solutions (class N P) [5, 13]. Nevertheless, often, what is truly desired is a
very good solution, computed in a short time, and not the nominally ‘best’. This explains
why sub-optimal, polynomial time algorithms have attracted interest. The Hopfield neural
network model [7, 8], the Simulated Annealing method [9] and closely related models, such
as the Boltzmann Machine [1], have proved effective in providing near-optimal solutions to
hard optimization problems.

The Hopfield network, both discrete and analog, has been widely used for solving

combinatorial optimization problems. The objective (or cost) function and the problem



constraints are appropriately mapped in an energy function and the network is expected to
find a configuration which minimizes this energy function. An important property of the
Hopfield model is that starting from any initial state, it will always settle to a stable state.
However, the Hopfield model gets easily trapped in local minimum states, something that
decreases its efficiency, especially in problems of large size. The current work is focused
on the diserete Hopfield model, where at each step one neuron is randomly selected and
examined for possible change of its binary state.

A significant amount of research has been reported on improving the performance of the
Hopfield network. The most succesful method has been derived from the integration with
Simulated Annealing [9]. By introducing a probability for the acceptance of a new state,
the network occasionaly accepts transitions to states with higher energv and, thus, it can
escape from local minima. This combination of the Simulated Annealing algorithm with
the discrete Hopfield network is known as the Boltzmann Machine model [1]. Asymptotic
convergence to the global minimum state has been proved for Simulated Annealing and.
thus, for the Boltzmann Machine. The Boltzmann Machine approach is effective but
requires large computational time as the problem size increases. Parallel versions of the
model or closely related methods have succesfully dealt with this limitation [4, 6, 10, 11,
15, 16].

A different consideration is made by Peng et al. in [14]. Instead of using randomness in
the procedure of accepting a new state, they use a sophisticated method for the generation
of a new state. According to this method, the parameters of the Hopfield network, i.e.
the connection weights and the thresholds, are perturbated (through noise injection) and
produce a new network that, when it relaxes, provides the original network with a new
initial state. The original network runs again and reaches a possibly new local minimum
state which is accepted if the corresponding energy value is lower than the starting one.
Then, the whole procedure is repeated from the beginning. This new method, called the
Local Minima Escape (LME) algorithm, provides a mechanism for escaping from high
energy local minima but may be trapped in local minimum states with long basin of
attraction, that are far from the global minimum state. This is not a serious problem
for small problem instances, but it is more clear in the case of large problem instances
where there are many regions of the state space that contain such minima and therefore
the algorithm may be easily trapped in states with high energy values.

In the approach presented in this paper we adopt the parameter perturbation mecha-

nism introduced by the LME algorithm, but provide an integration of this approach with



the Simulated Annealing methodology, which is applied at the new state acceptance part
of the search process. The svnergy of weight perturbation with the probabilistic accep-
tance of new local minimum states leads to a more flexible search procedure that is able to
explore the state space more adequately, due to the capability of easily escaping from flat
shallow local minima. Experimental results with difficult large instances of the Weighted
Maximum Independent Set problem enforce this consideration.

The next section provides a brief summary of the Hopfield-type models that are com-
monly used. The LME algorithm is described in Section 3, while our approach (called
LMESA), which is a modified version of the LME algorithm, is presented in Section 4.
Experimental results obtained from the application of our method to the Weighted Max-
imimum Independent Set problem are discussed in Section 5. Finally, conclusions and

ideas for further research are contained in Section 6.

2 The Hopfield and Related Models

The basic idea in the Hopfield model is to encode the objective function and the problem
constraints in terms of an appropriate energy function which can be minimized by the
network architecture.

The discrete Hopfield network performs local search in the discrete space {0.1}™. The
energy function that corresponds to a discrete Hopfield neural network with m units,

connection weights w;; (with wy; = 0) and threshold values #; has the form:
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where @ = (v1,...,0y,) is the state of the network and v; € {0,1}. The network operates

sequentially, that is, at each time instant one unit is selected randomly and the difference
in the network’s energy, that will result if the selected unit i changes state, is computed.

Assuming symmetrical weights (w;; = wy;) this energy difference can be written:
m
SE(T) = (2v; — D)(D_ wijv; + 6i) (2)
j=1

If §E;(7) < 0, then the change is accepted, otherwise it is rejected. For symmetrical weights
it is ensured that the network will settle into a state corresponding to a local minimum
of the energy function [7), where 4E,(7) > 0 for all 1 = 1,...,m. This final state of the

network, however, rarely happens to coincide with or be near the global minimum state.



due to the locality of the search. Therefore, research effort is turned to the development
of local minima escape techniques.

Simulated Annealing (SA) is a stochastic optimization technique, inspired from con-
densed matter physics. It uses a stochastic hill-climbing algorithm with the added ability
to escape from local minima in the state space [9]. where conventional methods usually
get trapped. At each step a new state is considered randomly and the cost difference,
that the state transition would cause in the objective function, is computed. Let 6C be
the difference of the cost of current state and new state, that is 4C = newcost — oldcost.
The probability that a candidate move is accepted is determined by either the logistic or
the Metropolis criterion. In the logistic case the change is accepted at temperature T
with probability ppew = 1/(1 + exp(dC)/T)), while in the Metropolis case the change is
accepted with the above probability ppe, only if 6C = 0, otherwise it is accepted with
probability 1 [12]. We shall use the term trial to denote the operations of next state gen-
eration and the computation of 4C and ppew. The acceptance of a suggested transition.
will be referred to as an update. Hence, depending on the acceptance probability, a trial
may be eventually followed by an update. The acceptance probability is controlled by a
temperature parameter, T. At the beginning of the process the value of T is high, thus
allowing state transitions that lead to increase of cost. As the algorithm proceeds, T is
decreased according to a cooling schedule, so that the probability for such transitions fi-
nally tends to zero and the algorithm converges to a stable state. Simulated Annealing is
commonly described as a sequence of Markov chains, each corresponding to a temperature
value. Every computational step of a chain starts only after the previous step has been
completed, thus the operation of Simulated Annealing is stictly sequential.

The Boltzmann Machine (BM) is based on an integration of the dynamics of the discrete
Hopfield model with the Simulated Annealing methodology [1]. The objective function to
minimize is the energy E of the discrete Hopfield network. At each step a new state is con-
sidered bv randomly selecting a unit 7 of the discrete Hopfield network and computing the
difference dC = 4E = (2v;—1)(XL, wiv;+0;). An update takes places according to either
the logistic or the Metropolis criterion. Since the Boltzmann Machine optimizer constitutes
a special case of the Simulated Annealing method, the results concerning asymptotic con-
vergence to the global minimum point under certain assumptions, that have been proved
for Simulated Annealing [9], carry over to the Boltzmann Machine case too [1]. The same
holds for the finite time implementations of the algorithm that attempt to approximate
the global minimum. The operation of the Boltzmann Machine is strictly sequential and



may require large computation time as the size of the problem grows. Moreover, in order
for the annealing to be effective, the stationary distribution (or at least a quasi-equilibrium
distribution) must be restored at each temperature, thus, sufficient state transitions must
take place and consequently a large number of trials is required.

3 The Local Minima Escape Method

The Local Minima Escape algorithm (LME) was introduced in [14] as an algorithm for
improving the exploration capability of the Hopfield network and avoiding the problem of
local minima. As described in Section 2, the Hopfield network operates as a local search
algorithm. Given an initial state, it will stabilize at a local minimum state nearby. In order
to locate the global minimum of the energy, an initial state must be found that happens to
be within the basin of attraction of the global minimum state. In the LME approach, the
mechanism for escaping from a local minimum state is based on the search for an initial
state that lies out of the basin of attraction of the current local minimum. Such an initial
state will finally lead to a new local minimum state which may be of lower energy than
the previous one. If this happens, the new state is adopted as current state of the search,
otherwise we search for another promising initial state. The search for appropriate initial
states is performed through suitable perturbations of the parameters of the network, i.e.
weights and thresholds. Therefore the LME algorithm can be considered as a combination
of a network disturbing technique and the Hopfield network’s local search property.

Let us consider a Hopfield network H and assume it has relaxed at some local minimum
state. Through random perturbation of the connection weights and thresholds [14], a new
Hopfield network H' can be obtained:
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(1+a®nf)wij+B°nf, 1<ij<m, i#j (3)
g, = (1+a’n)8;+88, 1<i<m (4)

where o, 3%, of and 3¢ are positive constants which control the strength of disturbance.
while n and -nf are standard Gaussian noises. To ensure the symmetry of connection
weights after disturbance, we consider n¥} = n¥. Since the networks H' and H have the
same architecture, the states of the two networks can be easily mapped to each other, unit
by unit.

At each iteration of the LME algorithm a new disturbed network H' is randomly spec-

ified using the above equations and the current local minimum state of H is set as the



initial state of H'. The network H' converges to a stable state. This stable state of H' is
then used as the new initial state of H, which operates and converges to a possibly new
local minimum state. If the new local minimum of H is of lower energy than the previous
one, it is considered as the new current local minimum state. Otherwise the former local
minimum state of H is kept. Iterations are repeated until a prespecified maximum number
of iterations is exceeded or if no state better than the current one is discovered for a certain
number of consecutive iterations. Moreover, in order for the method to be effective, an
appropriate choice of the parameters a", 3%, o’ and 3° controlling the strength of the
perturbation must be made (experimentally).

4 LME Search Augmented by Simulated Annealing

Both the LME method and the Boltzmann Machine approach suggest ways of escaping
from local minimum states of the Hopfield network. They differ in two basic aspects. The
first is in new state generation from the current state. In the basic BM formulation the
new state is generated by randomly selecting one unit and changing its state. In the LME
case there is sophistication in new state generation resulting from the perturbation in the
network’s parameter space (weights and thresholds). This leads to new states that may be
far from the current one, thus allowing the network to escape from local minima.

The second difference lies in the way of performing the transition from the current
state to the new generated state. In the BM case a transition is accepted according to
the SA methodology, i.e. transitions are allowed that may lead to energy increase. On the
contrary, the acceptance mechanism for the LME method is deterministic, i.e. a new state
is accepted only if the corresponding energy is lower than the energy of the current state.
This may lead to local minimum states that are locally optimal in the sense that, although
the energy of these states may be far from the global energy minimum, the perturbation
mechanism of the LME method fails to locate a new state of lower cost.

The approach proposed here is an extension to the LME method based on an acceptance
mechanism that incorporates randomness and provides greater flexibility in the exploration
of the problem state space, by allowing transitions that lead to energy increase. This
is obtained by augmenting the LME method through the incorporation of a simulated
annealing scheme operating at a higher level.

As already described in Section 3, in each iteration of the LME method, relaxation takes
place twice: first for the perturbated network and then for the original network, which is

initialized at the stable state of the former. Let AE denote the energy difference between
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Map problem on Hopfield network H.

Initialize temperature T,

Initialize oulput vector ¥(0) to random binary values.

Let network H relax and evaluate the stable state Ugpape(0).

=,

Repeat steps 1-7 until terminating criterion is satisfied:

1. Perturbate network H and produce H'.

Set the current stable state of H as initial state of H'
(i.e. v'(t) = Tstabie(t — 1)) and let network H' relaz.

Set the stable state of H ' as initial state of H
(i.e. T(t) = v gpapiel(t)), let network H relaz and
evaluate the new stable stafe Tiemp(t).
Set AE = Energy(Uemp(t)) — Energy(Tsanie(t — 1))
— If AE <0 then
sef Estﬂbieu} = 'i':";emp{”'
— If AE > 0 then
with probability p = r—xg7r set Tstabte(t) = Tremp(?)
or with probability 1 — p set Tgiapte(t) = Ustante(t — 1).

§. Update the best found configuration Tpee.

6. Periodically update control parameter T, according

to cooling schedule.

T.t=1+1

o Output best configuration Thes.

Figure 1: The LMESA Algorithm
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the stable state attained by the original network on the last relaxation and the state of the
original network at the end of the previous iteration (from which started the relaxation of
the last perturbated network). If AE < 0, i.e. the network has settled to a better local
minimum, then this state is accepted and becomes the current state of the network. If
AFE > 0, i.e. a state of lower quality has been obtained, the new state is not rejected,
as is the case in the original LME method, but is accepted with probability p = —z7r
This probability is controlled by the temperature parameter T. As T is initially high, the
probability p may take high values, so many transitions that lead to energy increase are
accepted. This leads to a more effective examination of the state space, since it is possible
to follow many alternative paths in the solution space and discover local minimum states of
better quality. As the algorithm proceeds, T is decreased according to a cooling schedule,
so as to allow the alorithm to settle to a promising region of the solution space.

It is interesting to note that the states considered during the annealing process are all
stable states of the network since they are produced through relaxation of the discrete
Hopfield model. Hence, at the higher level, we move only in the space of local minimum
states, i.e. in a confined state space. This allows us to consider as solution not the
final stable state but the best stable state attained by the network during execution of
the algorithm. The role of the annealing process in our case is to provide a second level
of perturbations and, thus, enhance state space exploration. The proposed Local Minima
Escape algorithm augmented by Simulated Annealing (LMESA) is summarized in Figure 4.

5 Experiments

The effectiveness of the proposed approach has been tested on instances of the Weighted
Maximum Independent Set (MIS) problem. The Weighted Maximum Independent Set
constitutes an imprortant discrete optimization problem and the solution of many other
problems (for example Set Partitioning, Set Packing, Set Covering etc. [20]) can be reduced
to the solution of this one.

The formulation of the MIS problem (weighted case) is the following: Consider an
undirected graph G = (V, E) where V" (with |V'| = m) is the set of vertices and E denotes
the set of edges. Let also 4 denote the adjacency matrix of graph G. ie., a;; = 1 if
(i,7) € E, otherwise a;; = 0. An independent set V' of this graph is a subset of V' that
contains vertices not connected to each other. If ¢: V' — R is a cost function assigning a
cost to each vertex, the Maximum Independent Set problem is to find the independent set

V" of maximum cost, where the cost of the set V"' is defined as f.(V') = X .
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A neural network architecture suitable for the MIS consists of n nodes with the following

specification of weights w;; and threshold values 8; [1. 20]:

g,‘, =

o { —{max{#;,0;} +e}a;; ifis#Fj
M 0 ifi=j
where ¢ is a very small positive value (which is set equal to 0.5 in our experiments). This
specification of weights and thresholds ensures that everv one-change local minimum state
corresponds to an independent set of the graph. Each such set is maximal in the sense that
no other vertex can be added to it without violating the disjointness constraint. Moreover,
the resulting energy function is order preserving [1] in the sense that the lower the final
energy value, the better the cost of the final solution.

For our experiments we considered four graphs with 100, 200, 500 and 1000 vertices
respectively, that were constructed by deciding with probability 0.1 for each pair of vertices
whether there would be an edge connecting the vertices of this pair. The cost of each vertex
was an integer value specified through uniform selection in the range between 20 and 30.

Experiments were conducted for both the LME and LMESA models. We considered
o = a = 0.5 and ¥ = 3% = 0.1 for all tests. These values were empirically found to
give the best results.

The annealing schedule that was used in the tests with the LMESA model has the

following logarithmic form:

G Tt
1+ log f(k)

where f(k) = f(k — 1)(1 +r) (with f(0) = 1) and 4 = 25, r = 0.0001 denote the initial
temperature and the reduction rate respectively. We considered that one trial is performed
at each temperature step and the annealing terminates if no new state has been accepted
for 50 consecutive iterations or if a maximum number of 1000 iterations has been reached.

For the LME algorithm we adopted at first exactly the same termination condition
(algorithm LMEs;). Since the quality of the obtained solutions was not very good, we
tried to increase the exploration time by increasing the number of allowed consecutive
iterations without update to 100 (algorithm LMEq). This has resulted in improvement
of the solution quality. It must also be noted that any futher increase in the number of
allowed iterations did not lead to solutions of significantlv better quality, hence no further
performance improvement of the LME method could be thus expected.

9



Graphs
100 vertices | 200 vertices | 500 vertices | 1000 vertices
| Method | Iter. | Cost | Tter. | Cost | Iter. | Cost | Iter. | Cost
| LMEsq 115 | 1053 | 120 | 1428 | 128 | 1792 | 170 | 2081
"LME,5 | 204 | 1066 | 270 | 1442 | 290 [ 1918 | 298 | 2135
i LMESA | 462 | 1077 | 488 | 1497 | 361 | 1983 | 238 | 2194

Table 1: Average comparative results for the LME and LMESA methods

Grraphs
100 vertices | 200 vertices | 2500 vertices | 1000 vertices
Method | Best | Worst | Best | Worst | Best | Worst | Best | Worst
LMEs, | 1085 | 907 | 1534 | 1248 | 1969 | 1593 | 2221 | 19538
LMEg | 1085 | 926 | 1544 | 1308 | 2036 | 1789 | 2331 | 2016
LMESA | 1085 | 994 | 1544 | 1411 | 2042 | 1894 | 2371 | 2029

Table 2: Best and worst case cost comparative results for the LME and LMESA methods

The results of our experiments are summarized in Tables 5 and 5. Table 5 displays
average values obtained from 20 runs for each problem instance while the results in Table 5
are the best and worst cases obtained in these 20 runs. Table 5 depicts the improvement in
solution quality provided by the proposed method, compared to the basic LME approach
under both termination conditions. Table 5 shows that the LMESA algorithm exhibits
better performance in terms of the worst and the best solutions found for each problem
size. It must be noted that there is significant superiority of the LMESA algorithm in
terms of the quality of the worst solution found, hence the method exhibits considerable
robustness and reliability.

Finally, it is interesting to compare the behaviour of the two methods when they start
from exactly the same state. We carried out experiments for each method and for the
graphs of 500 and 1000 vertices, recording the decrease of the network’s energy. Figures 5
and 5 clearly illustrate that by allowing the acceptance of transitions that lead to energy
increase, solutions of better quality are finally obtained. In these figures LME stands for
the LME 4y variant.

Nevertheless, we have to note that both methods (as any other method treating prob-

lems of this size) require a rather large amount of computational time. Parallel versions
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of both algorithms can remedy this drawback and reduce execution times. For example,
instead of generating only one new state at each iteration, it is possible to simultaneously
generate many new states, each one produced by one of many employed processors, and
select the best of them for possible transition. This parallel search is more useful in low
energy states where many iterations are required in order to escape from a local mini-
mum (especially in the LME case) and therefore it is reasonable to perform the search in
parallel, i.e. to simultaneously test many perturbations for possible escape. Preliminary
experiments on the parallel implementation of this strategy (and some variants of it) sug-
gest that it is possible to obtain solutions of good quality in just a few iterations (less than

150), therefore significant benefits in terms of execution time can be expected.

6 Conclusions

A discrete optimization approach has been presented, which is based on the Hopfield neural
network. The parameter perturbation mechanism introduced by the LME algorithm was
adopted and augmented through the integration with the Simulated Annealing methodol-
ogyv. The new method (LMESA) constitutes a more flexible search procedure and is able
to explore the state space more adequately than the original LME model, as it is shown by
the experimental results on instances of the Weighted Maximum Independent Set problem.
In particular, these results indicate that the proposed method leads to significant improve-
ment over the conventional LME approach in terms of quality of the obtained solutions,
not only on average but also in the best and worst case.

Future research concerning this method can follow various directions. Modified versions
of the method can be implemented on parallel machines and speed up the LME and LMESA
algorithms. Alternative functions could be investigated to allow for a more intelligent
perturbation of the Hopfield network. Of interest is also a theoretical analysis of the method
as far as convergence to the global optimum is concerned. Finally, consideration must be
given to the parameters that control perturbation, which might improve exploration ability
if they are not constant. Work on the above topics is currently in progress.
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