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ArsTrAacT. Efficient combinations of implicit and explicit multistep methods for nonlinear
parabalic equations were recently studied in [1]. In this note we present a refined analysis to
allow more general nonlinearities. The abstract theory is applied to a quasilinear parabolic
equation.
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1. INTRODUCTION

In this paper we extend our study of implicit-explicit multistep finite element schemes
for parabolic problems to quasilinear equations. In particular, we establish abstract
convergence results for our methods under weaker stability and consistency conditions.
Thus the abstract theory can be applied to various nonlinear parabolic problems yielding
convergence under mild meshconditions. We consider problems of the form: GivenT > 0
and u° € H, find u : [0,T] = D(A) such that

u'(t) + Au(t) = B(t,u(t)), 0<t<T,

1.1
(4 u(0) = u’,

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (-, -)) with
domain D(A) dense in H, and B(t,-) : D(A) — H, t € [0,T], a (possibly) nonlinear
operator. To motivate the construction of the fully discrete schemes we first consider

the semidiscrete problem approximating (1.1): For a given finite dimensional subspace
Vi, of V, V = D(AY?), we seek a function wuy, up(t) € Vi, defined by

uL(t] + ﬂhﬂ-h{t}l = B;;,l.ft, uh{t}:l-_ 0<t<T,

(1.2) un(0) = up;

here ug € V4 is a given approximation to u”, and 4. By, are appropriate operators on
V3, with A a positive definite, selfadjoint, linear operator.

* The work of these authors was supported in part by the Greek Secretariat for Research and
Technology through the PENED Program, # 1747.
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Following [1] and [4], we let («, 3) be a strongly A(0)—stable g—step scheme and
(ar,v) be an explicit g—step scheme, characterized by three polynomials a. 3 and ~,

q g—1
a(¢) = Zm ;B =8¢ Q=) %
i=0

i=0

Letting N e N, k = he the time step, and t* = nk,n = 0,..., N, we combine the
(a, 3) and (cv, ) eehemee to obtain an (e, 3,7) scheme for d.lSCI‘EtlZ]H‘-" (1.2) in time,
and define a sequence of approximations U™, U™ € V}, to u™ := u(t"), by

(L.3) E“=U“+" - kZﬁ; AU = ez i B (87, U™ ).

=0

Gisen, 02 .o U9-1 in V4. U9,...,UY are well defined by the (a, 3,7) scheme, see
[1]. The scheme (1.3) is efficient, its implementation to advance in time requires solving
a linear system with the same matrix for all time levels.

Stability and consistency assumptions. Let | - | denote the norm of H, and introduce
in V the norm ||-|| by ||v|| := |AY/2v|. We identify H with its dual, and denote by V' the
dual of V, again by (-,-) the duality pairing on V' and V. and by | - ||, the dual norm
on V'. Let T, be a tube around the solution u, Ty, := {v € V : min, ||u(t) — v| < 1},
say. For stability purposes, we assume that B(t,-) can be extended to an operator from
V into V', and an estimate of the form

(1.4) |B(t,v) — B(t,w)||+ < Allv — w|| + plv — w| Yo, w € T,

holds, uniformly in ¢, with two constants A and p, A < 1. Indeed, depending on the
particular (a. 3, v) scheme, we shall need to assume that A be appropriately small. The
smallness of A is essential for our analysis, while the tube T, is defined in terms of the
norm of V for concreteness. Under these conditions we will show convergence, provided
that a mild meshcondition is satisfied, see Theorem 2.1. The proof can be easily modified
to yield convergence under conditions analogous to (1.4) for v and w belonging to tubes
defined in terms of other norms, not necessarily the same for both arguments; milder
or stronger meshconditions, respectively, are required if the tubes are defined in terms
of weaker or stronger norms, cf. Remark 2.2 and Section 3.

We will assume in the sequel that (1.1) possesses a solution which is sufficiently
regular for our results to hold. Local uniqueness of smooth solutions follows easily in
view of (1.4).

For the space discretization we use a family V,, 0 < h < 1, of finite dimensional
siibspaces of V. In the sequel the following discrete operators will play an essential role:
Define P, : V' = Vy, Ap: V = Vj, and Bylt,): V = VW by

(FPov,x) =(v,x) ¥xeW
(Anp,x) =(Ap,x) VX EW
(Bu(t, ). x) =(B(t.¢),x) ¥x € V.
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Let B(t.-) : V — V' be differentiable, and assume that the linear operator M(t),
M(t) :== A— B'(t,u(t)) + ol is uniformly positive definite, for an appropriate constant
o. We introduce the ‘elliptic’ projection Rp(t) : V — Vi, t € [0.T]. by

(1.5 P, M (t)Ry(t)v = P,M(t)v.
We will show consistency of the (a, 3,+) scheme for Rp(t}u(t); to this end we shall

use approximation properties of the elliptic projection operator Ry (t). We assume that
Ry (t) satisfies the estimates

(1.6) u(t) — R (Du(t)] + hY?||ult) — Ru(t)ul(t)| < CA",
and
(1.7 2 lult) = Ra(t)u(t)] < CW,

with two integers r and d, 2 < d < r. We further assume that

(1.8) | RO SO G=1,.p+1,

p being the order of both multistep schemes.
For consistency purposes, we assume for the nonlinear part the estimate

(1.9) |B(t. u(t)) — B(t, Ra(t)u(t)) — B'(t, u(t))(u(t) — Rat)u(t))ll. < Ch".

Then, under some mild meshconditions and for appropriately small A and appropriate
starting values U°, ..., U%" !, we shall derive optimal order error estimates in |- |.

Implicit-explicit multistep methods for linear parabolic equations with time depen-
dent coefficients were first introduced and analyzed in [4]. Recently, [1], we analyzed
implicit-explicit multistep finite element methods for nonlinear parabolic problems, un-
der stronger conditions on the nonlinearity. More precisely, we took B independent of
t, and assumed for stability purposes the global condition

(1.4) (B (w)w,w)| < Mwlllwll + p@)w| o] Vo,w,weV
with a functional p(v) bounded for v bounded in V, and for consistency purposes that
(1.9') |B(u(t)) — B(Rau(t))|~ < CHT
with elliptic projection operator Ry defined, in terms of the linear operator A only, by
(AR, X) = (Av,X) Vx € Va.

It is easily seen that (1.4) follows from (1.4'). Besides the fact that (1.4) is local, in

contrast to the global condition (1.4"), the major difference between the two conditions
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consists in the norm of w used in their last term: in (1.4") the H—norm while in (1.4),
implicitly, the V—norm is used.

Condition (1.9") restricts essentially the order of the derivatives contained in B to
d/2, if A is a differential operator of order d. It was already mentioned in [1] that, for
some concrete differential equations, one can get by with a less stringent condition by
taking into account in the definition of the elliptic projection operator the terms of B
of order higher than d/2; an attempt in this direction is the definition of the elliptic
projection considered in this note. Condition (1.9) may be satisfied even if 4 and B are
differential operators of the same order.

To emphasize that the new stability and consistency conditions do indeed allow more
general nonlinearities than the corresponding conditions used in [1], we mention two
simple examples of initial and boundary value problems in one space variable in a
bounded interval. It is easily seen that condition (1.4') iz satisfied for the equation

Up — g = (f(t))z,

provided that f' is uniformly bounded by a small constant; condition (1.4) on the other
hand is satisfied with A = 0 for any smooth function f. Next we consider the equation

Ug — Uzz = (0(2, T, Wtiz) 2.

It is easily seen in this case that condition (1.9') is not satisfied whereas condition (1.9)
is satisfied, c¢f. Section 3. These two examples are particular cases of the quasilinear
equation

w = divic{z, t, u)Vu+ gz, t,u)) + flz,t, u)

which will be considered in Section 3.

The crucial tool for proving stability of the (e, 8.+) scheme in [4] and [1] is Lemme
3.1 of [4]. Here we modify it, see Lemma 2.1 below, and give a proof which may be
used to derive explicit bounds for the stability constant A of (1.4), which, as already
mentioned, depends on the particular (o, 3,v) scheme; c¢f. Remark 2.4 for an example
concerning a second order scheme.

An outline of the paper is as follows: Section 2 is devoted to the abstract analysis
of the implicit-explicit multistep schemes. In the last section, we apply our abstract
results to a quasilinear parabolic partial differential equation.

2. MULTISTEP SCHEMES

In this section we shall analyze implicit-explicit multistep schemes for the abstract
parabolic initial value problem (1.1).

Let (. ) be an implicit strongly A(0)—stable g—step scheme, and (o,~) be an
explicit g—step scheme. We assume that both methods (a, 3) and (o, ) are of order p,

ie.,
q

q q—1
Zifﬂ’,‘ = EZ ?;E_lﬁf = FZ E"E_l'";'z;= L=l ey
i=( i=0

i=10)
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For examples of (o, 3.v) schemes satisfying these stability and consistency properties
we refer to [1] and the references therein.

Our main concern in this section is to analyze the approximation properties of the
sequence {U/"}. As an intermediate step, we shall show consistency of the scheme (1.3)
for the elliptic projection W of the solution u of (1.1), W(t) = Rx(t)u(t).

Consistency. The consistency error E™ of the scheme (1.3) for W is given by

q g g=1
{21] LE™ = Zaiuﬂl-’_i e kz.ﬁiﬂhwu-bi - kz,ﬁgh[tﬂ-l-ir [.{.i'n-.*i] :
i=0 i=0 =0

n=0,...,N—g. Using (1.5), the definition of Ay and By, and (1.1), and letting v, := 0,
we split E™ as E™ = ET + E + E} + E}, with

q
(2.21) EEP =3 ay[Ra(t™+) — PJu™,
i=0
q 3 4
{E.Eiij kEﬂ — Pa Z[ﬂq;"iﬂ*-i _ k'_:rlau!l:tﬂ--;jl] .
i=0
q
2205 Ef =Y (8 — m)AW™,
i=(}
and

q
(2211’} _E_;L = Z'}-E{Ahﬁfﬂ‘H — P.:.Aﬂn_H iz PﬂB{th+i‘uri-+i} _ Bh{tn-i-f._ -ng-n-—q:]} )
i=0

First, we will estimate ET. Using (1.7) and the fact that a; +--- +a; =0, it is easily
seen that

(2.31) max |ET| < Ch .
0<n<N—q

Further, in view of the consistency properties of (a. ),
q -
‘ Y leu™ — kyaed (bus)]| < CRPFL,
i=0 :
ile.,

o | P
(2.3i1) o255 [F3| < Ch



Now, using (1.8) and the consistency properties of (a, 3) and (e, ), we have

. ||ED||. < CkP.
(2.3iii) ngiﬁ?ﬁ-‘_q” sl £C

Finally, we will estimate E7. First, from (1.5) we deduce that
[An — Bh(t, u(t)) + o IRy (t)u(t) = Po[A — By (t, u(t)) + allu(t)

and rewrite (2.2iv) as

q
E;l :-Pa Z ¥ {B{tn-l-i,_ uﬂ-—_'i] _ B[fn-i_i, Wn+:'] _ Bllifn-i_if Hn+qi] [un-l-:' _ H_rn+i}}
=0

q
toP, Z ,}.i{un+i . Wﬂ+t’} :
i=0

Then, in view of (1.9) and (1.6), we obtain

(2.3iv) max ||Ef|l« < Ch".
NEn<N—g

Thus, we have the following estimate for the consistency error E™,

(2.4) max ||E®||. £ C(EP + R").

DLnEN—gq
Convergence. In the sequel assume that we are given initial approximations ot o,
v gl e el o u9~1 such that

g—1
(2.5) % (|WJ’ _ U+ KM W - U?"i|) < e(kP + hT),

=0

ef. Remark 2.5. Let U™ € V. n = g,..., N, be recursively defined by the (o, 3,7)
scheme (1.3). Let 9" = W" — U™ n =0,...,N. Then (2.1) and (1.3) yield the error
equation for 9"

q q g—1
S @t kS BAw™ = B Y % Ba(t™H, W) — Ba(e", UmH)} + kBT,
i=0 i=0

i=0
J8,
q . L) ) q—1 | | | |
{2 ﬁ] Z Cti?_ﬁ'ﬂ+t + k Z.ﬁif{hﬂ“'ﬂ ZkZT“"{Bh(f”"'*! H_rn+'a} _ Bh{tn"'i. L‘rﬂ-'-;]}
: =0} $—0 o

+kE® n=0,...,N—q.
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In the sequel we shall use the notation

ﬁﬂ—i—q—l -E"]ﬂ E.' | ?
Bﬂ = . EH = . 5 £ 1= “ % 5{_{.’1:?] e —ﬂ:i £ .
i . . aq + Bz
0 0
l i g - .
S / LR T Pl e
Jo

Agor Agn o Ao 1 A .

0 0 1 T

Nit= H:k.’q-h} o .. . ) rrr = : :

0 I 0 0 ... 0

(0rg + kB, Ap)On+a-1
(g + kB, Ap) O™ = :
(0g + KBy AR)0"

Equation (2.6) can then be written in the form
(2.7) (0g + kB AR)O" ! = (ag + kB An) AO™ + k T,0" +k £".
The following result concerning strongly A(0)—stable multistep schemes will play a

crucial role in our stability analysis, cf. also Crouzeix, [4].

Lerr{ma 2.1. There exist three constants 1, K, and Kz, with 0 < 5 < 1, and a map
H : Bt — RI*Y such that, for all x € BF, |H(z)||2 = 1, the matriz H(x) is invertible,
|H(z) Y2 < Ky, ||(H(x)"1)Te1lls € K. and the matriz L(z) defined by

g + 3,1 2
iz} = 12 q 1__. T
(z) Bt ﬂ.ﬁq-’ﬂH(x} Az)H(x)
satisfies  ||C(x)||2 < 1, - ||z denoting both the Euclidean norm of a vector and the

spectral norm of a matriz.

Proof. Let p(x) be the spectral radius of A(z): p is clearly a continuous function on
[0, +0o¢]. From the Dahlquist O—stability condition, i.e., “p(0) = 1 and the eigenvalues
of modulus 1 of A(0) are simple”, we deduce that the right-derivative of p at 0, p'(04),
exists. By definition, the strong A(0)—stability of the method means that “p(x) < 1 for
all x € (0.2¢] and p'(0,) < 0”. Therefore, we can select 5 € (0,1) such that

ag+ B4z

for all z € (0, +oc], Gy + nBeT
q e

plz) < 1.



Let n be as above. We consider the set

*I'-'BG

E(x) = {N e R?*9 . N is invertible and
Og + N8y

—4 97 \N=IA(2) N2 < 1}

and introduce
m(z) = min{||N||2IN"Yz : Ne&(z)} = min{|N ]2 : Ne€&(z)and [N]:=1}.

It is clear that, for x € [0, o], the set £(z) is not empty, and there exists H(z) € £(x)
which realizes m(x) and satisfies |H(z)||]z = 1. Then the lemma follows if we prove that

Ki= sup mir)= sup [H(z) |z <+oc.
e[l +2c] wE[0,4o0c]

For this, it suffices (in view of the compactness of [0, +oc]) to prove that, for all
@ € [0, +00], there exists a neighborhood v(x) of # such that sup, ¢, m(y) < +oo. We
shall distinguish four cases:
1*tcage =z € (0, 00]

Then, there exists N € R?*? such that a—(:"‘f—ig—:;||}\.-'—1ﬂ(ﬂ:}f\r||2 < 1. Thus, there exists

a neighborhood v(z) of z such that N € &(y) for ally € v(z): therefore, sup, o,y m(y) <
N2V =12

2" case =0 and the eigenvalues of A(0) are real and distinct.  In this case we can
find an interval v(0) = [0, b], with b > 0, ¢ analytic functions Ay,..., A, (eigenvalues)
from v(0) into R, and ¢ analytic functions h,...,h, (eigenvectors) from v(0) into R?,
such that

Alhi(y) = M(yhily), i=1,....q, Vyev(0).
We consider now the matrix N(y) = (h1(y),.... flq[yj}; then we have
N(y) 'Aly)N(y) = diag {A1(y), .-, A ()}

Therefore, for y € v(0), we have |[N(y)"'A(y)N(y)|l2 = p(y), so that N(y) € £(y) and
thus Sup, c,.o) m(y) < maxyejo s || N (y)]l2 N(y) 12 < +oo.

379 case x = 0 and the eigenvalues of A(0) are distinct.  If A(0) admits some
nonreal eigenvalues, the _pI‘EViDLlS construction provides a complex matrix N. But in each
occurrence where Ay = Aps1 = ap +iby is a nonreal eigenvalue, if hy, = my +iny denotes
the corresponding eigenvector, we replace in the columns of NV the pair (h,;;, hk+1] by
(mg,ng). In this way we obtain a matrix N e R?%?, and in the matrix N-IAN the

block (}”‘ { ) of N='AN is replaced by ( e bl‘).

0 Apsr —br  ag
We still have ||P?|[y}'lﬁ(y]£"{y}||g = p(y) and N(y) € E(y).
4" case = = 0 and A(0) has multiple eigenvalues. From the Dahlquist 0—stability
condition we know that the eigenvalues A;(0),..., A4(0) of A(0) of modulus 1 are simple.
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There exists a real 0 < p; < 1 such that the remaining eigenvalues satisfy [Ax(0)] <
pi, k=s+1,...,q.

Now we denote by C,, the circle (positive oriented) with center 0 and radius p;. We
choose a positive real b such that, for all y € v(0) = [0. b]. we have

del@)| > o1 fork=1,...,8 and |M(y)|<p,m fork=s+1,....0q

For all y € v(0), the linear operator P(y),
1
Ply)= — I— A(y)~lde,
W =55 [, CT-A)a

is well defined and depends analytically on y; P(y) is a projector. The set Range(I —
P(y)) (respectively Range(P(y))) is the invariant subspace of A(y) associated to the
eigenvalues Ai(y),...,As(y) (resp. Asqr(y)....Ag(y)). We have R? = Range(l —
P(y)) @ Range(P(y)) and we can choose a matrix M(y) = (ma(y), ma(y), . ... mg(y))
which depends analytically on y such that the columns {mq(y),...,ms(y)} constitute
a basis of Range(I — P(y)) and {m.+1(y),....mg(y)} a basis of Range(P(y)). Then,
the matrix M(y) tA(y)M(y) = (méy] ﬁjy}) is block diagonal. the eigenvalues
A1(y)s ... As(y) of Ai(y) are simple, and the eigenvalues of Aa(y) satisfy |Ax(y)| < p1.
Arguing as in the previous case, we can find a matrix Ni(y) € R**¢, depending
analytically on y, such that |[Ni(y) *A1(y)Ni(y)llz = p(Ar(y)) = ply). Similarly
to the first case, and reducing b if necessary, we can find a matrix N3 such that
N5 A2(y)Nal2 < py for all y € [0,B).

Finally, we choose N(y) = M(y) ( 1&14'} h{; ) and obtain
Na

vy €[0,8), [IN(y) " ANl < ply).

The proof is now complete.

Now let
H="H{kAx); L=~C(kA),

and
Y = ?_{—leu! fn gy H-lrn_- gﬂ — ?_{—lf:n;
then, we can rewrite (2.7) as
(2.8) (ag + kBgAR) Y™ ! = (g + knB,A4s) LY™ + k[,0" + kE™.

In view of the boundedness of the functions ||H(z)| 2. | H(z) |2, it suffices to estimate
Y™, We assume without loss of generality that both o, and 3, are positive, and in-
troduce in V' an appropriate to the scheme under consideration norm | - || by [lv|| :=
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I:a:q|v|2 +,3qki|vi|2]”"", v € V. Further, for V = (vy,..., ] and W = [wl._...,wg]T in
HY or in V? we shall use the notation

q

q /2
VW)= ). V= (X hil?)
i=1

i=1

1 1/2 2 1/2 . I U
V=3 twl?) s VE= (k) T IVIe= (D lhl?)

and, for a linear operator M : HY — HY, we set |M|:= supycge vzo Lﬁi
The main result in this paper is given in the following theorem:
Theorem 2.1. Assume that the constant A in (1.4) is appropriately small {depending

on the particular scheme) and that k and h2¥ k=1 are sufficiently small. Then, we have
the local stability estimate

gDy = e
(29)  [on+ K2 < ce TLST (199 + KV20)) + Y 1B}
j=0 3=0
n=qg—1,....N, and the error estimate
(2.10) max |u(t") — U™ < C(kP + A").

N<n<N

Proof. Let p" = u™ — W™, n=0,...,N. Then, according to (1.6),

: i | { T
(2511 UE:HM "] £ Ch

and, for sufficientlvy small A,

4 F: TE {
(2.12) B o™ < 1/2.

Now, if we assume that (2.9) holds, using (2.5) and (2.4), we obtain

(2.13) Jmax [97] < C(k + "),

and (2.10) follows immediately from (2.11) and (2.13). Thus, it remains to prove (2.9).
According to (2.5) and (2.4), there exists a constant C, such that the right-hand side
of (2.9) can be estimated by C, (kP + h"),

-1 N=g

1) e T{ Y (1] +k/20))” -I—.I;Z B2 }1 <ok +h7).

=0 =0
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We will estimate 9" by estimating ¥'™. In fact, we shall show that for some positive ¢
and ¢, £ + ¢ < (1 —n?)B,; with  as in Lemma 2.1, and a constant ¢ depending on &,

n=1
[2.15) |||Yn!| ':_: Ecpﬂgn {|"YD|H2 + % Z | Ej”E}HE.
=0

From Lemma 2.1 we deduce [|@"] < Y™, Y] < K1]|€°] and [|€7]], < K2l E9|,.

Then, (2.9} follows, and the proof will be complete. We shall use induction: The
estimate (2.15) is valid for n = 0. Assume that it holds for 0,...,n, 0 < n < N — ¢q.
Then, according to (2.14) and (2.9), which is then valid for 0,...,n + g — 1, we have,
for k and k~1h®" small enough,

max _||#]| € C.(k*~ 12 + k~1/2A7) < 1/2,
0<j<n+g-1

i.e., using also (2.12),

(2.16) Wi.UieT,, j=0,....n—q+1.

Taking in (2.8) the inner product with Y™+ we have

217) Y = ((ag + knB Ap) LY, YY) + k(T,07, Y™+) + k(E", Y1),

First, we shall estimate the second term on the right-hand side of (2.17). Setting
2L o ({1 YL e haye

g—1
{'Fn@n1 Yﬂ—:l] - (Fnen1 anlj - ZTﬁ{Bh(tn-l_is H;HJ.-'EZ} s Bh{tﬂ+i1 Lrn-_-i]? 2{a+1} )
=0

Using here the induction hypothesis, which ensures (2.16), and the assumption (1.4),

we see that
g—1

(Ta0™, Y™ ) < 3 il M™ ]| + w27+,
Jj=0

and thus, with My = ||y||2 K2, in view of ||[(H(zx)"1)Te1|2 < K3, of. Lemma 2.1,
(2.18) (F00", Y™1)] < My Y™ + Y] [ Y™

Further, Lemma 2.1 implies |£| < 1, and we have the following estimate for the first
term on the right-hand side of (2.17)

(2.19) Ii'[ﬂ:g — kmﬁth}EYfl_ Yﬂ+l}| o ﬂq|yn| i},’n+l| < ?}ﬁqk”};ﬂ | ||}’:|-7L+1||1
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ef. [1]. From (2.17), (2.18) and (2.19), we obtain

Y™ <o Y™ [Y™ + (AMa + )k [V || Y™+

2.20
. + Myhk[Y | [[Y™H + KIE™. Y™

Therefore, with A = 5 {[84(8; — £ — {)]"/? = 18, } for some positive & and ¢, ¢ +({ <

¥ 4 1 i+
JY"H SSEIYTR 4+ SEHY™R 4 [By(8 — € = QI 2RIV Y™

[ﬂf‘ﬁ u)?

nj2 n+1 Fn ‘Z;E yomtl)2
A jyn 2 KV - SokIEE + SRV

(M:)?
200 *

Thus, with ¢ =
n+41 1 2 n2 1 n+12 i 7|2
JY™ I <11+ 20k)aglY "2 + Sag V™ + 3 6klY™|
1 ﬂ+1‘2-_i5"n2
ie.,
n r k=
(2.21) JY™ 2 < (1+ 2e0®B)IY ™) + E||3”||3-

From (2.21) and the induction hypothesis, it easily follows that (2.15) holds for n + 1
as well, and the proof is complete. O

Remark 2.1. Let 7 € R be such that A+ 71 is positive semidefinite. It is then easily
seen that the results of Theorem 2.1 hold also for the scheme

q q g—1
z &iUTHﬂ?" oE kz ﬂi{Aerﬂ_H s TUn+:':] = kafiEBh{tn+i1 L;rn.+'r'}I 4 TUn+e’.]_
i=0 i=0 3=()

Remark 2.2, The weak meshcondition “k~1h2" small” is used in the proof of Theorem
2.1 only to show that ||#™]] < 1/2 which implies (2.16). If the estimate (1.4) holds in
tubes around u defined in terms of weaker norms, not necessarily the same for both
arguments v and w, one may get by with an even weaker meshcondition. Assume, for
instance, that (1.4) holds for v,w € T} := {w € V : min; ||u(t) — w|* < 1} —or for
v € Ty, cf. (2.12), and w € T;— and the norm || - ||* satisfies an inequality of the form

loll* < ol + [o""*lwll®, veV,
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for some constant a,0 < a < 1. Then, a condition of the form “k and E=2h? sufficiently
small” suffices for (2.9) and (2.10) to hold.

Similarly, when the relation (1.4) is satisfied in tubes around u defined in terms of
stronger norms, not necessarily the same for both arguments, the convergence result of
Theorem 2.1 may still be valid but under stronger meshconditions, cf. [1]; this fact will
be used in the next section.

Remark 2.3. If we combine the implicit and explicit Euler methods, then it is easily
seen that the result of Theorem 2.1 holds for any A < 1, cf. [1].

Remark 2.4. If the two constants n and K3 of Lemma 2.1 are known, then a bound
of the constant A in (1.4) which guarantees that the results of Theorem 2.1 are valid is
given by %{1 — 1) 3y with My = ||v||2K3, cf. the proof of Theorem 2.1. As an example,
we consider the second order scheme characterized by the polynomials

a{x}=g:ﬁ2—2$+%f B(z) =2, &)=122-1

In this case we have verified that we can choose

(2.22) n=0.3, K;=2+v5, Ki=3.65.

Therefore, if (1.4) is valid with

(2.23) A< } = 0.7 = 0.0857669,
3.69v'5
then the results of Theorem 2.1 hold.
Remark 2.5. Initial approrimations. Assume that the data of the problem are
smooth enough such that one can compute the time derivatives w0}, j=1,...,p, of

the exact solution at ¢t = 0. Then, it is easily seen that U’ = W and U™ = R, T2 u(0),
m=1,...,9—1, with

mk )P
TP u(0) = u® + mkuV (0) 4+ --- + {—EEJ—H{F}{U‘L m=1,....¢-1

satisfy (2.5).

3. APPLICATION TO A QUASILINEAR EQUATION

In this section we shall apply our results to a class of quasilinear equations: Let
QC R, v < 3, be a bounded domain with smooth boundary 91). For T' > 0 we seek a
real-valued function u, defined on @ x [0, T, satisfying

u; — div(a(z)Vu) = div(b(z, t,u)Vu+ gz, t,u)) + f(z, t,u) in @ x[0,T],
(3.1)u=0 on 890 x [0,T],
u(-,0) = u’ in £2,

13



witha:ﬁ—&-{ﬂ,:ﬂ},b,f:ﬁx ['D._T]X]R——-}]R,g:f!x {ﬂ,T]xR%R”,andun QR
given smooth functions. We are interested in approximating smooth solutions of this
problem. and assume therefore that the data are smooth and compatible such that (3.1)
gives rise to a sufficiently regular solution. We assume that —div([a(z) + b(x. t, u)]V-)
is an elliptic operator.

Let H® = H*(Q) be the usual Sobolev space of order s, and || - ||g- be the norm of
H*s. The inner product in H := L?*(2) is denoted by (-,-), and the induced norm by

| - |; the norm of L*(f2), 1 < s < o0, is denoted by || - ||e. Let Av := —div(aVv) and
B(t,v) := div(b(-,t,v)Vu) + divg(-, t,v) + f(-,¢,v). Obviously, V = Hj = H}(Q) and
the norm || - || in V, ||v|| = |\/aVu|, is equivalent to the H'—norm.

Let

L= {ueEvnl®™: mtin |lu(t) — v|p= <1},
T, ={veVnWL: min [[u(t) - vlwz <1},

and
A= sup{|b(z,t,y)|fa(z) : 2 € Q,t € [0,T],y € U}

with I := [—1 + ming ; u, 1 + max,  u.
Now, for v.w.p € V,

(B(t,v) — B(t,w), @) =— (b(-.t,w)V(v — w), Vi) = ([b(-,t,v) — b(-, t. w)|Vv, Vi)
—(g(-,t,v) — g t,w), Vo) + ([f (-, 8, v) = Ft )], 9),

and we easily see that
(3.2) |B(t,v) — B{t, w)|. < Allv—w||+ plv—w] veTl,,weT,.

Thus, a stability condition of the form (1.4) is satisfied for v € fu and w e T, b

Further,

B'(t, viw =div(b(-, t, v)Vw) + div(dzd(-, t, v)wVv)
+ div(Dsg (- t, v)w) + Baf (-, 8, v)w.

and, therefore, A — B'(t,u(t)) + o/ is, for an appropriate constant 7, uniformly positive
definite in H}.

Let V, be the subspace of V defined on a finite element partition 7 of {2, and
consisting of piecewise polynomial functions of degree at most r — 1, r = 2. Let hg

denote the diameter of an element K € Ty, and h := maxgeT, hx. We define the
elliptic projection operator Ry(t), Rp(t): V — Vi, t € [0,T], by

(la(-) + b(-, 2, u(, 1))V (v — Ra(t)v), V)
i (J%b{‘ t, u[' t]}"’ff'u[, ﬂ -+ 53_?{" t, u{'1 ﬁ}]]{'ﬁ = Rh[ﬂUJr ?X}
— ([Baf (-t u(- 1)) — o](v — Ra(t)v),x) =0 Vx € Vi

14



It is well known from the error analysis for elliptic problems that

(3.3) |v — Ru(t)v| + hllv — Ru(t)v|| £ CR"||v||g-, vEH™N He,
i.e., the estimate (1.6) is satisfied with d = 2. Further,
g3 d ; .
(3.4) | Zlul-+) = Ra(®)u()]| < CH",
and

d d? -
(3.5) Eﬂh(f]ﬂ + h“ERh{t}ﬂ < Ch'||lv||g-, veH NHL, j=1,....p+1,

cf., e.g., [3]; thus (1.7) and (1.8) are valid. We further assume, cf. [7], [10], that
(3.6) sup ||u(-.t) — Ry(t)u(-,t)|lws < %
t

Next, we will verify (1.9). We have
B(t,u(t)) — B(t, Ra(t)u(t)) — B'(t, u(t)) (Ra(t)u(t) — u(t)) =

(3.71) to 2
= — ]0 TB"(t, Rp()u(t) — 7[Bp(t)u(t) — u(t)]|dr[Rp(t)u(t) — u(t)]
and
i B (t,v)w? =div(83b(- £, v)wVv) + 2div(dgb(-, t, v)w V)
(3.74)

+ div(B3g(-, t, v)w?) + 83 f (- ¢, v)w?.
It easily follows from (3.7) and (3.3), in view of (3.6), that
(3.8)  [IB(t,u(t)) — B(t, Rua(t)u(t)) — B'(t, u(t))(u(t) — Ru(t)u(t))||z-+ < CR",

i.e., (1.9) is satisfied.
Now, let W(t) := Ry(t)u(t), and assume that we are given approximations UY, ...,
Ue-1 e Vi, to w9, ..., u?"! such that

g—1

(3.9) 1 (|w:f — UF| + k2w — UJ';|) < e(kP + 7).
j=0
Then, we define U™ € V3, n =gq...., N, recursively by the (o, 3, ) scheme

q q
Y a(U™ ) + kY fila()VU™, Vx) =
i=0 i=0

[y (- n+i prati n+i ndi praudi
=EZT-;{—UJ{'J LTI UT £ g T U7 ), V)
i=0
£ (FC 8", U, %)}, Yx€Vh, n=0,...,N—gq,
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with (o, 3) and (a,~) multistep schemes of order p, and (a, 3) strongly A(0)—stable.
Then, Theorem 2.1 yields, in view of (3.6), for sufficiently small k and provided that

the approximate solutions U™ are in T),, the error estimate

(31 max ju™ = U"| < (kP +AT).

To ensure that U™ € Ty,n = 0,..., N, we define h := mingeT, hx and will distin-

guish three cases: v =1, v =2 and v =3.

i, »=1. First, since the H'—norm dominates the L™ —norm in one space dimension,
we have

max ¥z~ <C __max [,
0gjsntg—1 0=j<n+g-1

and thus, according to (2.14),

max _|[0¥]|z= < C(kP~ V2 + k7207).
O<j<n+g—1

Therefore, for k and k~1h?" sufficiently small, in view of (3.6), U7 € T,,,j = 0,...,n +
g — 1. We easily conclude that the convergence result holds.

ii. »=2.  First, we note that

Ixllz= < Cllog@Y?Ixll:  ¥x € Va,

cf. [8; p. 67). It is then easily seen that the convergence result holds, if k£ and h are
chosen such that |log(k)|k**~! and |log(h)|k~*h?®" are sufficiently small.

=3 In this case,
Ixllze < CR Y2 x|l Yx € Va,

and the result (3.11) holds, provided that A~ k?P~! and k~'h™'h2" are sufficiently
small.

Remark 3.1. Let the quasilinear equation be given in the form
wy = div(e(z, t, u)Vu+ gz, t,u)) + f(z,t, u).

It can then be written in the form used in (3.1) by letting, say, a(z) := ¢(r, 0,u?) and
b{z, t,u) = ez, t, u) — alz),

Different splittings might be used on a finite number of subintervals of [0, T']. Assume,
for instance, that an approximation U7 to u(-, ;) has been computed. Then. the splitting
a(z) = c(z,ty, U) and b(x, t, u) := c(z,t, u)—a(r) may be used on a time interval [t,, tp).
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