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Abstract - We present an efficient parallel algorithm for detecting chordless cycles of length k2 5 in
undirected graphs, which runs in O(logn) time using @(n*376) processors on a CRCW PRAM model of
computation. Our results directly imply that weakly triangulated graphs can be recognized in O(logn) time
using O(n*37%) processors and, thus, improve in performance upon the best-known parallel algorithm for
recognizing weakly triangulated graphs [5], which runs in O(logn) time using O(n”) processors on a CRCW
PRAM. Moreover, we present an efficient parallel algorithm for recognizing triangulated graphs, runing in

(logn) time using @(n*-37) processors on a CRCW PRAM model of computation.
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1. Introduction

A cycle C = (vg, v, V3, ..., V], ¥g) in an undirected graph G = (V, E) is called simple cycle if
vi # vj for i #j. A simple cycle is chordless if (vi, vj) € E for i and j differing by more than
1 mod I+1. An undirected graph Gis said to be rriangulated (chordal) if it has no chordless
cycle of length greater than or equal to 4 (see Golumbic [10]), while Gis said to be weakly
triangulated if both G and the complement of G have no chordless cycle of length greater than
or equal to 5 (see Hayward [11]). Triangulated graphs arise in the study of Gaussian
elimination on sparse symmetric matrices [16, 17, 18, 22], in the study of acyclic relational
schemes [3], and are related to and useful for many location problems [10, 12].

Our objective is to design efficient parallel algorithms for detecting chordless cycles of
length greater than or equal to 4 and 5, which in turn lead to efficient parallel algorithms for
recognizing triangulated and weakly triangulated graphs.

Many recognition algorithms have been developed for triangulated graphs, operating in a
sequential and/or parallel process environment. Fulkerson and Gross [9] suggested an iterative
procedure to recognize triangulated graphs and pointed out properties for some other objects

of such graphs. Edenbrandt [7] proposed a parallel recognition algorithm which is running in



O(logn) time with O(n?) processors on a CRCW PRAM or in O(log2n) time with O(n?)
processors on a CREW PRAM. Chandrasekharan and Iyvengar [4] proposed a parallel algorithm
for recognizing triangulated graphs which can be executed in O(logn) time with O(n*)
processors on a CRCW PRAM. Naor, Naor and Schaffer [15] proposed a parallel recognition
algorithm which runs in time @{logZn) by using O(n*) processors on a CREW PRAM. They also
proposed parallel algorithms for some other problems (e.g. maximal cliques ) on triangulated
graphs which runs in O(log3n) time using O(n*) processors or in O(log2n) time using O(n?)
processors on the same type of computational model. Klein [14] has announced efficient
parallel algorithms for several problems on triangulated graphs, among which algorithms for
the recognition problem, which run in time O(log?n) using O(m+n) processors on a CRCW
PRAM, where m is the number of edges in the graph. After the Klein's publication, Ho and Lee
[12] formulated an algorithm which computes a clique tree in O(logn) time with O(n?)
processors on a CRCW PRAM. Subsequently these authors [13] formulated an algorithm which,
given a clique tree of a graph, computes a perfect elimination scheme in O(logn) time with
((n?) processors in the same type of computational model. This implies that a triangulated
graph can be recognized in O(logn) time with Q(n?) processors on a CRCW PRAM. Moreover,
these authors [12] proposed an algorithm which computes some other objects of a chordal
graph in O(logn) time on a CRCW PRAM or in O(log®n) time on a CREW PRAM using O(n?)
processors. Table 2 shows existing results of parallel solutions to the triangulated graph
recognition problem,.

Table 1. Paralle] algorithms for recognizing triangulated graphs.

Authors Time Processors Model
Edenbrandt [7] Ologn) m n3 CRCW
Chandrasekharan and Iyengar [4]  O(logn) n4 CRCW
Naor, Naor and Schiiffer [15] O(log2n) m n? CRCW
Klein [14] O(log2n) m+n CRCW
Ho and Lee [13] O(logn) n3 CRCW

The problem of recognizing weakly triangulated graphs have been extensively studied, mainly
in the context of finding chordless cycles of length k= 5 [20]. Hayward [11] proposed an
O(mn3)-time sequential algorithm for detecting a chordless cycle of length greater than or
equal to 5, which leads to a recognition algorithm for weakly triangulated graphs in O(n?) time.
Hayward's results imply a parallel recognition algorithm for weakly triangulated graphs running
in O(logn) time with O(n?) processors on a CRCW PRAM. The work of Sritharan and Spinrad

[21] provides a sequential algorithm for recognizing weakly triangulated graphs in O(mn?)



time. Unfortunately, this algorithm does not seem to be amenable to parallelization. Recently,
Chandrasekharan er. al. [5] presented a parallel algorithm for obtaining a chordless cycle of
length greater than or equal to k = 4 in a graph in O(m2n¥-%) time sequentially and in O(logn)
time using O(m2nk-4) processors in parallel on a CRCW PRAM, whenever such a cycle exists.
By setting k = 4 we see that a chordless cycle of length greater than or equal to 4 can be found
in O(logn) time using O(m?) processors, while by setting k = 5 a chordless cycle of length
greater than or equal to 5 can be found in O(logn) time using O(m2n) processors. These results
lead to parallel algorithms for recognizing triangulated and weakly triangulated graphs running
in O(logn) time on a CRCW PRAM using O(n*) and O(n>) processors, respectively. Table 2

shows some existing results on recognizing weakly triangulated graphs in parallel.

Table 2. Parallel algorithms for recognizing weakly triangulated graphs.

Authors Time Processors Model
Hayward [11] O(logn) n? CRCW
Chandrasekharan et. al. [5] O(logn) n3 CRCW

In this paper we present efficient parallel algorithms for recognising weakly triangulated
graphs. Our technique is based on the notion of partitioning the vertex set V of a graph G, with
respect to a vertex v, into a set of (mutually disjoint) adjacency-level sets Ng(v), N1(v), ..., NL(v),
0= L <n. Specifically, we proposed a parallel algorithm for detecting a chordless cycle of
length k = 5, in O(logn) time using O(n*376) processors on a CRCW PRAM computational
model, if such a cycle exists. These results directly imply that weakly triangulated graphs can be
recognized in O(logn) time using O(n*376) processors on a CRCW PRAM. Moreover, based on
the same technique we can easily show that triangulated graphs are recognized in O(logn) time
using O(n3-37%) processors on a CRCW PRAM.

The main result of this paper for recognizing weakly triangulated graphs improves in
performance upon the best-known parallel algorithm which recognizes weakly triangulated
graphs in O(logn) time using O(n3) processors on a CRCW PRAM model of computation [5].

2. Graph Partition

Given a graph G=(V,E) and a vertex ve V, we define a partition L(G,v) of the vertex set V (we

shall frequently use the term partition of the graph G), with respect to the vertex v as follows:
L(G,v)= {Ni(v) |veV,0isL,1<L, <IVI}

where Nj(v), 0 si< L, are the adjacency-level sets, or simply the adjacency-levels, and L, is the



length of the partition L(G,v) [16]. The adjacency-level sets of the partition L(G,v) of the
graph G, are defined as follows:

Nivi={uldv, wy=i, 0<i<n)

where d(v, u) denotes the distance between vertices vand u in Gand n = [v]. we point out that
d(v, u) 2 0, and d(v, u)=0 when v=w, for every v, we V. In the case where G is a disconnected
graph, d(v, u)=+ when vandw do not belong to the same connected component. Obviously,
L,=max {d(v, u) | ue V}, No(v) = {v} and N;(v) = {u | (v, w) € E}.

We can extend the notion of the adjacency-level sets so that for any set SV we define
No(S) =S and Ni(S) ={ue S|d(v, uy=iandve S, 1<i<n}. In fig. 1 we illustrate the
adjacency-level sets Ny(x, ¥), Ni(x, ¥), .... N (x. ¥) of a graph, where Ng(x, ¥) = {x, ¥}, Ni(x, y) =
{x1, x3, x3, ¥1, ¥2} and so on. Throughout the paper, we shall use the notation Nj(x, ¥) instead of
Nil{x, 1), 0<i<n.

The adjacency-level sets Nj(v), 0 i< L, of partition L(G, v), can easily be computed
recursively as follows: Nj(v) = {u| (x, u) € E and x € Nj.1(v)} - {Ni-1(v) w Ni.a(w)}, 2€i L <n.
Using a CRCW PRAM, the adjacency-level sets can be computed in O(n) time with O(n?)
processors. Moreover, these sets can also be computed by considering first the distance matrix
of the graph G and then extracting all set information that is necessary. This computation can be
done in O(logn) time by using O(nP+Dg) processors, where §=2.376 and Dg; is the output size
of the partitions of the graph, see [6]. On the other hand, it might well be possible to get nearly

optimal complexity, i.e., @ Dg) processors, with the techniques given, e.g., in [1].

3. The Main Results

In this section we present a parallel algorithm for detecting a chordless cycle of length k = 5 in
an undirected graph G=(V,E) whenever such a cycle exists. Towards this algorithmic process,

for each pair of vertices x, y € V such that (x, ¥) € E we define two vertex sets as follows:

FV|y, y: it contains all the vertices z that are adjacent to both vertices x and y, i.e.,

FVixyy={zeV|(x 2)eEand (y 2)c E}

AV, o (resp. AV¥ 4): it contains all the vertices z that are adjacent to x (resp. y) and are not

adjacent to y (resp. x), Le.,
AV¥ .y ={ze V|(x eEand(y, 2)eE}
Thus, for the pair of vertices x, y of the graph of Fig. 1, the above defined vertex sets are

FVio yy=1{x2}, AV¥; vy ={x1, x3} and AW, yy={¥1, ¥2}. Note that, all the elements of both sets
AV¥, yyand AVY(, , belong to the set Ny(x, y).



No(x, ¥) Ny (x, ) Na(x ¥) N (x, ¥)

Fig. 1: The adjacency-level sets Ng(x, ¥), Ni(x, ¥), ..., Np(x, ¥) of a graph G = (V, E),

with respect to the vertex set {x, y}. Here, (x, y)e E.

No (x. ¥) Ny (x y) Na(x y) N, (x ¥)
Fig. 2: The undirected graph G'xy = (V'xy, E'xy) of the graph G = (V, E) of the fig. 1.
Given an edge (x, y)e E and the adjacency-level sets Ng(x, ¥), Ni(x ¥). ... Np(x, ¥) of the

partition £(G, S). where S = {x, v}, we define an undirected graph G 1y as follows:

V'x}- =V- Ix, _}-] - FV[:&. ¥l and
Ew=E- {(w, w)eE[w w'e Ni(x, y)}

where FV|, ), is the vertex set containing all the vertices that are adjacent to both vertices x and
y (see fig. 2).



Having defined the undirected graph G'xy = (V'xy, E'xy) of a graph G = (V, E), where (x, ¥)e E,
let us now define a directed graph G"xy = (V"xy, E"xy) which will be the key graph in our
recognition algorithm. So, G"xy = (V"xy, E"xy) is a directed graph such that:
1) xeV'opiffxe Vig; that is V'o = V',
(ii) <x, u> e E"xif (x, u) € E'xy and x € AVY, ),
<u, y>e E'xyif (4, y) e Eyand y € AWy, ;.
<y, urzeE'nvand<u’, iz E'nif (h u)eExvandu u'e AV, WAV

The directed graph G"xy = (V'"xy, E'xy) of the graph G'sy = (V'xy, E'xy) of fig. 2, is presented in
fig. 3.

e -

==

No(x ) N (x ¥) Na(x, y) “es Ny (x, ¥)

Fig. 3: The directed graph G"xy = (V"xy, E"xy) of the graph G'xy = (V'zy, E'xy) of the fig. 2.

The following results provide some characterizations of the adjacency-level sets and the
structure of a chordless cycle of an undirected graph, leading to an efficient parallel algorithms

for detecting Cy, k = 5. We state the following lemma which is the basis of the algorithm.

Lemma 1. A graph G = (V, E) contains a chordless cycle C, k= 5, if and only if there exists an
edge (x, v) € E and vertices x;, v; € V, such that:

(1) x1e AViy yyand yr e AV g,

(i) (x;, y1) € E and,

(iii) there exists a directed path from x; to y; in G"xy = (V'xy, E"w).

Proof. (Sufficiency) Consider an edge (x, y) € E and suppose there exist vertices x; € AV¥,
and y; € AVY, ,, satisfying the required conditions (see fig. 1: note that any pair of vertices in
Ni(x, ¥), except for {x;, ¥;}, may be adjacent). Since (x;, ¥;) ¢ E and x; — v in graph G"xy,
there is a chordless path of length at least equal to 2 in G'xy starting at x; and ending at yy, i.e.,

Py =(x1, ..., #, ..., ¥1), k' 2 3. Moreover, the path (xq, x, y, y;) in G is a chordless path of length

_B-



3; by definition, (x, y) € E whereas (x1, ¥y) € E, (y). x) & E. This implies that there exists a cycle
of length at least equal to 5in G, ie., Cx =(x, X1, e ¥, ..oy ¥1. ¥ X), k 2 5. Since G'(N(x, ¥)) is a
mK; graph, m z 2, all the vertices (except x] and yy) of the chordless path Py = (xy, ..., 4, ..., ¥1)
belong to the set Na(x, ¥) w ... w Np(x, ¥). Obviously then, (x, ) ¢ E and (v, u) ¢ E. Thus, the
cycle Cy = (x, x1, .o U, ooy ¥1, ¥ X) 15 & chordless cycle of length k = 5.

(Necessity) Suppose there exists a chordless cycle Cg = (vy, v, v3y ooy Vo1, Vi v1) in G of length
kz 5 We set vi =x and vy =y and we consider the vertex pair {x, ¥} and the partition
Nolx, ¥), Ni(x, v), .... No(x, ¥). Obviously, vertices va = x; and w; = ¥, satisfy the required
condition, since the vertices vi, vg, .... vz belong to Na(x, v) v Nalx, yv) v ... w Np(x ¥) and
X} = V3, V3, .., V.1 =¥ i a chordless path in G' (actually, x; = va, v3, ..., vk.1 = ¥ is a directed
path in G"). O

We are now in a position to formulate an algorithm for the parallel detection of a chordless
cycle of length greater than or equal to 5 in an undirected graph. The algorithm is based on the
results provided by Lemma 1. The algorithm has input the adjacency matrix of the given graph

G and operates as follows:

Algorithm 5_Chordless_Cycle
begin
1. for every pair x, y € V, do in parallel
if (x, v) € E then
1.1 compute the vertex sets FV, ,;, AV¥,  and AVY, 1
1.2 compute the adjacency-level set Ni(x, y);
1.3 compute the graph G'sy = (V'xy, E'ny), having the following vertex and edge sets:
Va=V-{x y}-FViy
E'g=E- {(w, w)eE|w, w'e Ni(x v)};
and then the directed graph G"o = (V"o, E"s):
1.4 compute the distance matrix of the graph G"x = (V'xy, E"n):
1.5 for every {xj, y1}, such that x; e AV*; ;) and y; € AVY(; ,; do in parallel
if there exists a directed path from x; to ¥; in G"xy = (V"0 E'wy)
and (xy, y1) € E, then Found,, ,, « true;

2. if there is a vertex pair {x, y} such that Found,, ,, = true, then

G contains a Cy, k2 5;
end.

The correctness of the parallel algorithm 5_Chordless_Cycle is established through the
Lemma 1. Next, we analyze the computational complexity of the algorithm. We shall obtain its
overall complexity by computing the complexity of each step separately. As a model of parallel
computation, we use a Concurrent-Read, Concurrent-Write Parallel RAM (CRCW PRAM) [2, 8].

B



The complexity of the parallel algorithm is analyzed as follows: Step I. This step consists of
five substeps. Substep I. The computation of the vertex sets FV, ,,, AV¥, , and AVY, ,; can
be completed in O(1) time using Q(n?) processors or in O(logn) time using Q(n?/ logn)
processors. Substep 2: The adjacency-level set N;(x, ¥) can be computed O(1) time with O(n)
processors. Substep 3. Given the adjacency matrix of the graph G and the vertex sets FVy,
and Ni(x ¥), the adjacency matrix of the graph G' can be computed O(1) time using O(n2)
processors. Moreover, the adjacency matrix of the graph G" can be computed within the same
time-processor bounds. Substep 4: The distance matrix of a graph can be found in O(logn) time
using n%-376 processors on a CRCW PRAM by Coppersmith and Winogrand's technique [6].
Substep 5: It is well-known that once the distance matrix of a graph are computed, we can
answer quires of the form "is there a directed path from u to v?" in O(1) sequential time. Here,
n? pair of vertices {x;, y;} are tested for x; = y;. Thus, this substep can be executed in O(1) time
when O(n?) processors are available. In total, step 1 is executed in O(logn) time with O(mn?)
processors. Step 2. It is easy to see that this step is executed in O(1) time using O(m) processors.

Taking into consideration the time-processor complexity of each step of the algorithm, we
can obtain the overall computational complexity of the algorithm. Thus, we present the

following result.

Lemma 2. Given an undirected graph G=(V,E), algorithm 5_Chordless_Cycle correctly detects
a chordless cycle of length k 2 5, in O(logn) time using O(mn2-376) processors on a CRCW
PRAM model of computation, if such a cycle exists.

The complement co-G of a graph G can be computed in O(logn) time using O(n?/logn)

processors on a CRCW PRAM computational model. Thus, we obtain the following Theorem.

Theorem 1. Weakly triangulated graphs can be recognized in O(logn) time using O(n*-376)
processors on a CRCW PRAM model of computation.

4. Recognizing Triangulated Graphs

In this section we present a parallel algorithm for recognizing triangulated graphs. Specifically,
we present a parallel algorithm for detecting chordless cycles of length k = 4 in an undirected
graph. The result of this section can be immediately derived from Lemma 1, if we consider the
partition L(G,v) instead of L(G, {x, v}), where G = (V, E) is an undirected graph and v, x, vy e

V. Thus, we state the following lemma which is the basis of the algorithm.

Lemma 3. A graph G = (V, E) contains a chordless cycle Ck, k 2 4, if and only if there exists a
vertex v € V and vertices x, y; € V, such that:
(i) =x,y1e Ni(v),
(i)  (xy, y1) ¢ E and,
(iif) there exists a directed path from x; to y; in G"xy = (V"xy, E"xy).

S8-



Proof. Immediately from Lemma 1by partitioning the graph G with respect to v and setting
FVix gy =9. O

Based on the above results, we obtain the following parallel algorithm for detecting a chordless

cycle Ci in an undirected graph, where k 2 4.

Algorithm 4_Chordless_Cycle
begin
1. for every vertex v e V, do in parallel
1.1 compute the adjacency-level set N;(v);
1.2 compute the graph G'xy = (V'xy, E'y), having the following vertex and edge sets:
Via=V-{x y}-FVix g5
Exy=E-{(w, w)eE|w we Nix y)}
and then the directed graph G"w = (V' E"x);
1.3 compute the distance matrix of the graph G"x = (V'xy, E"xy);
1.4 for every pair {x;. ¥}, such that x|, y; € Ni(v) do in parallel
if there exists a directed path from x; to y; in G"x = (V"xy, E"n)
and (x, y1) € E, then Found,,, « true;
2. if there is a vertex v such that Found,,, = true, then
G contains a Cy, k = 4,

end.

Having proved the correctness of the algorithm 5_Chordless_Cycle (see Lemma 2), it is
easy to show that the algorithm 4_Chordless_Cyclelet correctly detects a chordless cycle of
length & = 4. As far as its computational complexity is concerned, it is also easy to show that the
step 1 is executed in O(logn) time using O(nn2-379) processors, while step 2 is executed in O(1)
time using O(n) processors. Again, we use a CRCW PRAM as a model of parallel computation.

Thus, we have the following result.

Theorem 2. Triangulated graphs can be recognized in O(logn) time using O(n3-376) processors
on a CRCW PRAM model of computation.

5. Concluding Remarks

We have presented efficient CRCW O(logn)-time parallel algorithms for detecting chordless
cycles of length k = 5, in an undirected graph, using O(n*-376) processors, respectively. These
results directly imply that weakly triangulated graphs can be recognised in O(logn) time using
O(n*376) processors on a CRCW PRAM. Moreover, we have shown that triangulated graphs can

be recognised in O(logn) time using O(n3-376) processors on a CRCW PRAM.



The results of this paper improve in performance upon the best-known parallel algorithm
for recognizing weakly triangulated graph [5], which runs in O(logn) time using O(n3)
processors on a CRCW PRAM meodel of computation. Moreover, the efficiency of the proposed
weakly triangulated parallel recognition algorithm is approximately 1/logn, since the best bound
for the sequential case is O(n*) due to work of Sritharan and Spinrad [21].
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