Efficient EREW-PRAM Parallel Colouring
of Permutation Graphs

M. Andreou and S.D. Nikolopoulos

16-96

Technical Report No. 16-96/1996

Department of Computer Science
University of Ioannina
45 110 Ioannina, Greece

Efficient EREW-PRAM Parallel Colouring
of Permutation Graphs

Maria Andreou

Department of Computer Engineering and Informatics,
University of Patras, GR-26500 Patras, Greece
mandreou@ ceid.upatras.gr

Stavros D. Nikolopoulos

Department of Computer Science, University of loannina
GR-45110 loannina, Greece
stavros@cs.uoi. gr

Abstract — We show that the problem of colouring a permutation graph can be solved in
O(logn logd) time using max{n? / logn, & n / logd } processors on the EREW PRAM model of
computation, where & is the degree of the graph. Given a permutation T or ils corresponding
permutation graph, we construct a directed acyclic graph using certain combinatorial properties
of 7 and, then, we compute longest paths in the directed acyclic graph. We show that the problem
of colouring a permutation graph is equivalent to finding longest paths in its acyclic digraph. Our
results improve in performance upon the parallel algorithm recently proposed by C-W Yu and
G-H Chen [25], which solves the colouring problem in O(logn) time using n [logn processors
on a CREW PRAM model of computation.

Keywords: Paralle] algorithms, Perfect graphs, Permutation graphs, Colouring problem, Directed
acyclic graphs, Longest paths.

1. Introduction

A undirected graph is a pair G=(V,E), where V is a finite set of n elements called vertices and Eis a
set of m unordered vertex pairs called edges. An undirected graph G = (V, E). with vertices
numbered from 1 to n, ie., V = {1, 2, .., n}, is called a permutation graph if there exists a
permutation T = [, T, ..., Tyl on N = {1, 2, ..., n} such that,

(i,)e E & (i-) @l@)-x1{ <0

for all ;, je N, where 7t;-!, denoted here as mw-1{i), is the index of the element {in 1 [4, 6]. Given a
permutation 7, we shall denote, hereafter, its corresponding permutation graph as G[x].

Many researchers have been devoted to the study of permutation graphs. They have proposed
sequential andfor parallel algorithms for recognizing permutations graphs and solving combinatorial
and optimization problems on them. For a sequential environment, Pnueli er. al. [16] gave an 0O(n?)

el =

time algorithm for recognizing permutation graphs using the transitive orientable graph test. Later,
Spinrad [19] improved their results by designing an Q(n?) time algorithm for the same problem. In
the same paper, Spinrad also proposed an algorithm that determines whether or not two permutation
graphs are isomorphic in O(n?) time. In [20], Spinrad et. al. proved that a bipartite permutation
graph can be recognized in linear time by using some good algorithmic properties of such a graph.
They also studied other combinatorial and optimization problems on permutation graphs. Supowit
[21] solved the colouring problem, the maximum clique problem, the cliques cover problem and the
maximum independent set problem, all in O(nlogn) sequential time. Moreover, Farber and Keil [5]
solved the weighted domination problem and the weighted independent domination problem in
O(n?) time, using dynamic programming techniques. Later, Brandstadt and Kratsch [3] published an
0(n?) time algorithm for the weighted independent domination problem. Atallah er. al. [1] solved
the independent domination set problem in O(nlog2n) time, while Tsai and Hsu [22] solved the
domination problem and the weighted domination problem in O(nlogZn) time and O(n?log?n) time,
respectively. Tsukiyama et. al. [23] proposed an algorithm that generates all maximal independent
sets of a general graph in O(nma) time, where a is the number of the generated maximal
independent sets of the graph. Leung [12] gave algorithms for generating all maximal independent
sets of interval, circular-arc and triangulated (or chordal) graphs. His algorithm takes O(n2+k) time
for interval and circular-arc graphs, and O((n+m)a) time for triangulated graphs, where k is the
number of vertices generated. In [26], Yu and Chen showed that the generation of all the maximal
independent sets can be completed in O(nlogn+k) time using O(nlogn) space.

Although many sequential algorithms have been proposed for permutations graphs, few parallel
algorithm have been appeared in the literature. Due to work of Helmbold and Mayr [7] and Kozen
et. al. [10], the problem of recognizing permutation graphs was shown to be in the NC class.
Helmbold and Mayr presented a parallel algorithm that recognizes a permutation graph in O(log3n)
time using O(n*) processors on a CRCW PRAM model of computation. They also solved the
weighted clique problem and the colouring problem in O(log?n) time using O(n#) processors on
same model of computation. Moreover, given a permutation graph, their algorithm can construct the
permutation that represents the permutation graph.

Our objective is to study the colouring problem of permutation graphs. Recently, Yu and Chen
[25] proposed a technique that transfer the colouring problem into the largest-weight path problem.
Specifically, their technique, first, transforms a permutation graph (combinatorial object) into a set
of planar points (geometrical object), then constructs an acyclic directed graph by exploiting the
domination relation within the geometric object, and finally, solves the largest-weight path problem
on the acyclic directed graph. The parallel algorithm they proposed can solve the colouring
problem in O(log2n) time with O(n?/logn) processors on a CREW PRAM, or in O(logn) time with
O(n3) processors on a CRCW PRAM model of computation. Moreover, they proposed parallel
algorithms that solve the weighted clique problem, the weighted independent set problem, the cliques
cover problem, and the maximal layers problem with the same time and processor complexities.

In this paper, we present a parallel algorithm for solving the problem of colouring a
permutation graph in O(logn logd) time with max{n2 / logn, 8 n / logd} processors on the EREW
PRAM model of computation, where & is the degree of the permutation graph. Our algorithm
transform the colouring problem into the longest path problem on acyclic directed graphs.
Specifically, given a permutation @ on N = {1, 2, ..., n}, the algorithm directly constructs an acyclic

directed graph G*[m] =(V~, E*) having V" =V u {s}, and then, computes the length of the longest
paths from a specific vertex s € V™ to every vertex v e V°. We prove that there is an one-to-one
correspondence between the length of the longest path from s to a vertex v e V' and the colour of v
in G[m].

The paper is organised as follows. In Section 2, we establish the notation and terminology we
shall use throughout the paper. In Section 3, we describe the method that transform a given
permutation 7 into an acyclic directed graph, and we prove that colouring the permutation graph
G[n] is equivalent to finding the length of longest paths on its acyclic directed graph. In Section 4,
we propose an EREW PRAM nparallel algorithm for solving the longest path problem on acyclic
directed graphs. In Section 5, we address some comparison issues of both our algorithm and Yu and
Chen's algorithm.

2. Definitions

A colouring of a graph is an assignment of colours to its vertices so that no two adjacent vertices
have the same colour. The set of all vertices with any one colour is independent and is called a
colour class. The colouring problem is to colour a graph with as less as possible colours (minimum
number of colours).

Permutations may be represented in many ways. The most straightforward is simply a
rearrangement of the numbers 1 through n, as in the following example where n = 9.

index 1 2 3 4 5 6 7 &8 9

permutation 3 3 2 4. 9 & % 4

Suppose T is a permutation on N = {1, 2, ..., n}. Let us think of 7 as the sequence [T}, T2, ..., 4], 50,
for example, the permutation m =8, 3,2, 7, 1,9, 6, 5, 4] has my = 8, 3z = 3, etc. Notice that (7t-1);,
denoted here as 7-!(i), is the position of element iin the sequence 7. In our example a1(8) =1,
1-1(3) = 2, etc.

Let 7T be a permutation on N = {1, 2, ..., n}. An element { is said to be dominated by the element
i (or j dominates i) if i <j and 7w 1(i) > W 1(j). An element i is said to be direcily dominated by the
element j (or j directly dominates i) if i is dominated by j and there exists no element k in 7 such that
i is dominated by k and k is dominated by j. In the permutation given above, 1, 6, 5, 4 are dominated
by 7 and 1, 6 are directly dominated by 7. We shall use, hereafter, the notation D-dominates and
D-dominated for the terms directly dominates and directly dominated, respectively. The domination
set (D-domination set) of an element i of the permutation 7 is the set which contains all the elements
of m that dominate (D-dominate) {.

Given a permutation 7t on N = {1, 2, ..., n}, its corresponding permutation graph G[x] = (V, E) can
be constructed as follows: G[7t] has vertices numbered from 1 to n; two vertices are jointed by an
edge if the larger of their corresponding numbers is to the left of the smaller in permutation 7, ie.,
G[m] has n vertices vy, v2, ..., vy, and m edges such that (i, j) e Eiff (i - j) (i@ -a g < 0.

Let G[nt] = (V, E) be a permutation graph. A vertex v; e V is said to be a neighbour (D-neighbour)
of vertex v; if j dominates (D-dominates) i in the permutation 7. For example, in the graph G[7]
vertices vg, V1, Vo, vg are neighbours of vs, while vertex vg is D-neighbour of vs.

We conclude this section with some graph-theoretic notation employed in this paper. A path Pina
graph G = (V, E) is a sequence of vertices [vy, vy, ..., vi] such that (v, v)eE, i=1,2, .,k Pisa
path from vg to vy of length k; P is directed or undirected on whether G is directed or undirected
graph. The path P is a simple path if vy, ..., vj_; are distinct and vy, ..., vy are distinct, and all edges
on P are distinct. A simple path [vg, vy, ..., V] is a evele if vg=vy; otherwise it is noncyclic. A
directed acyclic graph (dag or DAG) is a digraph with no cycles.

3. Problem Transformation and Solution

We have referred to the problem of colouring a graph as one of trying to assign particular colours to
its vertices so that no two adjacent vertices have the same colour. Moreover, the number of colours
used must be as less as possible. The key to the solution is to find the colour classes of the graph,
i.e., the classes of vertices that can be coloured with the same colour. To this end, one can think of
transforming the graph into another combinatorial object (e.g., tree, directed graph, etc.) and, then,
solving a particular problem on this object (e.g., vertices lying in the same level of the tree, vertices
having the same distance from a particular vertex, etc.) which gives the solution to the colouring
problem.

In this work, we use a strategy, similar to that used in [25], to transform a permutation graph
G[n] into an acyclic directed graph G*[n]. Then, we solve the colouring problem on G[7] by
solving the longest path problem on G*[m]. In particular, given a permutation 7 (or its
corresponding graph), we construct the acyclic directed graph G*[7] by exploiting the
D-domination relation, as follows:

(i) for every element i in permutation 7, add the vertex v to G"[7], i.e., vje V™,
(ii} compute the D-domination set of each element /¢ in permutation T,
(ili) if k is D-dominated by i then add the edge <v;, vi> to G*[], i.e., <vj, vi> € E¥;
(iv) add a dummy vertex s in V" and set < 5, v; > e E* for every v; with indegree(v;) = 0;

Figure 1 shows a permutation m=[8, 3, 2, 7, 1, 9, 6, 5, 4] and its corresponding permutation graph
G[x), while Figure 2 shows the results of the transformation of the permutation graph G[n] into a
directed acyclic digraph using the transformation strategy described above. Obviously, the resulting
graph is the directed acyclic digraph G"[x].

index 1 2 3 4 5 6 T 8 9

permutation g 3 2 7 1 9 6 5 4

Fig. 2: The acyclic directed graph G*[n] obtained from permutation .

We prove that there is an one-to-one correspondence between the length of the longest path from s
to a vertex v in G"[] and the colour of vertex v in G[t]. To this end, we include here the results of
Yu and Chen [25].

Lemma 3.1. There exist a path from vj to vj in G*[n] iff i dominates j (j is dominated by i; or (vj, vj)
is an edge in G[x]).

Lemma 3.2. There exist a path [vj, vj, ..., vg] in G*[n] iff [i, j, ..., k] is a decreasing subsequence in
the permutation 7 (the subgraph of G[m] induced by {vj, vj, ..., vk} is a clique),

Lemma 3.3. Let [p(v;) and Ip{vj] be the lengths of the longest paths [s, ..., v;] and [s, ..., vj] in G*[x].
If (v, v;) is an edge in G[m], then Ip(v;) # Ip(v;).

Having shown the relation between the colouring problem on a permutation graph G[mn] and the
longest path problem on G*[7], we are in a position to formulate a parallel algorithm for solving the
colouring problem on permutation graphs. The idea of the algorithm is motivated by the work
performed by Yu and Chen [25] and the combinatorial properties of permutations. It consists of

three steps:

Algorithm Colouring:

Input @ A permutation 7 and its corresponding graph G[x]=(V,E).

QOutput : The colour of each vertex v;e V, i=1,2, .., n.

begin

1. Transform the permutation graph G[7t]=(V,E) into a dag graph G*[]=(V", E") as follows:
1.1. Vi e V;
1.2. Edge < vy.v;>e E* iff v, is a D-neighbour of v; (k D-dominates i or i is D-dominated

by k).

1.3. Add a dummy vertex s in V" and set: < s, v; > e E” for every v; with indegree(v;) = 0;

2. For each vertex v;e V* - {s} compute the length Ip(v;) of the longest path from s to v;;

3. Set colour(v;) « Ip(v;), i=1,2, ... n.

end;

In step 3, the algorithm colours the vertices of graph G with k colours, where k is the maximum of
the lengths of all the longest paths in digraph G"[x], k<n. Vertices v; and v; are coloured with the
same colour if the longest paths from s to v; and v;, respectively, have the same length. The
correctness of the algorithm is established through the Theorem 3.1. Its proof relies on the results of
[25] and Lemmas 3.1 through 3.3.

Theorem 3.1. Given a permutation T, the algorithm Colouring correctly solves the colouring

problem on its corresponding permutation graph.

4. The Main Results

Having defined the directed acyclic graph G*[n] = (V*, E®) of a given permutation 7, and showed
the one-to-one correspondence between the colouring problem on G[mn] and the longest path

-6 -

problem on G*[m], we are in a position to formulate a parallel algorithm for computing the lengths
of the longest paths from vertex s € V¥ to every vertex ve V*.

4.1 Construction of the directed acyclic digraph G*[x]

As we saw previously, the directed acyclic graph G"[n] is constructed by exploiting the
D-domination relation on permutation m. Therefore, there is a need of computing the D-domination
set for every element in 1. Obviously, the D-domination set of an element is subset of its domination
set. So, we first compute the domination set for every element i in permutation 7, and then select
from it the elements that constitute the D-domination set.

We can easily show that, the domination set of an element, say i, in a permutation 1, is simply the
set which contains all the elements that are greater than { and laying on the left of the element i in 7
(see the definition of the domination set in Section 2). Towards the computation of the domination
set of the element i, we define two arrays of length n and &, respectively, where & is the degree of the
permutation graph G[x].

D' array of length n; it contains the elements of that dominate i;
That is, j is an element of D if { <j and 7-1(i) > 7w1(j). It is obvious that the elements that
dominate i are at most d.

D; array of length &; it contains the elements of D', in consecutive positions;

Notice that the degree O of the permutation graph G[n] can be computed as follows:

5= max D, Dilj]

1<i<€n J'=]

there D" [1=1if D;[[]>0,i=1,2,...n.

The computation of each D;, 1<i<n, can be done independently, and therefore in parallel. The
following parallel algorithm describes this computation.

Algorithm Domination:
Input : A permutation 7 on {1, 2, ..., n}:
Qutput : The set D; of all the elements which dominate i, 1 £i<n;
begin
1. Forevery i, 1 i< n, do in parallel
for every j, 1 <£j < n, do in parallel
if {<jand -1(i) > 1) then DY [n-1(j)] « j;
2. Forevery i, 1 £i<n, do in parallel
Store all the non-zero elements from array D; into consecutive memory
locations in D, such that element x is on the left of y in D iff x is on the
left of y in D'}, for every pair of elements x, v in D;.
end;

Having computed the domination set of each element i of m, let us now describe the computation of
the D-domination set of the element i, 1 €i<n.

o

Based on the definition of the D-domination relation of two elements of a permutation 7T, we can
easily show that, the last element of the array D;, say j, directly dominates the elements {. Therefore,
the D-domination set contains the element j and every other element z of the array D;, such that z<j
and there is no element z' smaller than both z and j, i.e. z' <z, and 2" <, and 1-l(z) < w1z < W L(j).

Next, we list an algorithm that computes the array DD of length 8, which contains all the elements
of Dj that directly dominate i, 1 =i < n.

Algorithm D-domination:
Input . The set D; of all the elements which dominate i, 1 S { < n;
Output : The set DD; of all the elements which D)-dominate i, | i =n;
begin
l. SetY; e D;, 1=isnm;
2. If Y; is in increasing order, then go to step &;
3. Compute the maximal increasing contiguous subsequences Y; 1, Yj 2, ..., Y,k In Yj.
That is, Yj, 1, Yi, 2, -... Yj, have the following properties:
(a) Y, jis in increasing order, j =1, Lok
(b) The last element lasi(i, j) of Y; j is greater than the first element first(i, j+1) of Y je1:
4. Forevery Y; j,j=1,2, ..., k-1, do in parallel
for every element y of Y; ; do in parallel
if w3 first(i, j+1) then v« first(i, j+1);
5. Repeat steps 2, 3 and 4;
6. Set DDy« Y, 1 2i=n;
7. For every i, 1 =i = n, do in parallel
for every j, 1 £j < &-1, do in parallel
if Y;[j1=Y,;[j+1] then DD;[j] < O;
end;

Let us now show step-by-step the computation of the D-domination set of the element 1 of the
permutation w=[8, 3, 2, 7, 1, 9, 6, 5, 4], using the algorithm D-domination. This computation
goes as follows;

* Yy« Dy=[8327]; Step 2. goto step 3;
Step 3. Y,1=[8] Yi2=[3]. Y13=[2,7];
Step4. Yi1=[3] Y12=[2]. Y13=[2,7];

e Yi«[322T; Step 2. goto step 3;
Step3. Yp11=[3], Y12=[2.2,7];
Stepd. Yy11=[2]. Y12=[2,2,7];

* Y11[2,227; Step 2. goto step 6;
Step6. DDy =[2,2,2, 7]
Step 7. DDy =[0,0,2,7];

The correctness of the algorithm is based on the previous discussion and is established through the
following Lemma.

Lemma 4.1. Algorithm D-domination correctly computes the D-domination set for each element
of a permutation 7w on {1, 2, ..., n}.

Each of the algorithms Domination and D-domination actually computes an n X O6+1 matrix.
We shall refer to theses matrices as dominartion matrix D and D-domination matrix DD, respectively.
Figure 3 shows the matrices D and DD computed by the algorithms Domination and
D-domination, respectively, for the permutation . We denote by s the element n+1; we have seen
that 5 D-dominates the elements that have zero entries in the inversion table (see Section 2).

1 2 3 4 5 6 7 1 2 3 4 5 6 7
118 217 1 217
218 21 |3
3|8 318
4 |8 9l 6] 5 4 5

D: 5|8 9| 6 DD: 5 6
6|87 9 f 719
718 718
8 8
9 9

Fig. 3: The matrices D and DD of m=[8, 3,2,7, 1,9, 6, 5, 4].

We have already shown the way that we can construct the directed acyclic graph G*[n] from a
permutation 7 through the D-domination relation. Next, we list the parallel algorithm for
constructing the directed graph G*[7].

Algorithm D-domination-to-dag:
Input : The set DD; of all the points which D-dominates i, 1 S i< n;
Output : The directed acyclic graph G[x];
begin
1. Construct the dag G*[rt] = (V*, E*), with vertex set V" = {v], v2, ..., v}, as follows:
For every i = 1, 2, ..., n, do in parallel
for every j =1, 2, ..., 8, do in parallel
if DD; [j] = k > O then add an arc from vertex vk to vertex vj, i.e., <vg, vi> € E*;

2. Add a vertex 5 in G* = (V*, E*) and arcs <s, v;> e E" for every vertex v; with indegree(v;) = 0;

That is, vertex s is now the only vertex in G* with indegree equals 0;
end;

1

4.2 Computation of the longest paths in G¥[x]

In this section, we developed a parallel algorithm that computes longest paths in an acyclic directed

gy

graph. In particular, given an acyclic directed graph having only one node, say s, with indegree zero,
the algorithm computes the longest paths from s to every other node of the graph.

We first give the definition of the k-th neighbour of a vertex v; of the acyclic directed graph
G*[m] = (V*, E*), and then we define two arrays containing important information for the process of
computation longest paths in G*[7].

Definition 4.2.1. Let v;, vj be two vertices of G*[n]. Vertex vj is the k-th neighbour of the vertex v;
if there are k-1 elements z in 7 such that z > i, m-1(z) < -1(i) and 7 1(z) < 7w 1(j).

It is easy to see that if vj is the k-th neighbour of the vertex v; then D[i, k] = vj. Figure 4 depicts the
relation between the vertex v; € V" and all the other vertices of G*[n]. Area A contains all the
neighbours of v, i.e., all the vertices v; for which there exist a path from v; to vj and z dominates i,
area D contains all the vertices v, for which there exist a path from v; to v,, while areas B and C
contain all the vertices v; for which there exist no path from v; to v;. Vertex vp is the j-th neighbour
of vertex v;, while vy is the k-th neighbour of vertex v;.

d-th

O
@

Fig. 4: The relation between the vertex vj V* and all the other vertices of G™[m].

Now, for each node v e V we define two arrays of length 6+1 and & x 8+1, respectively, where & is
the degree of the permutation graph G[m].

L; array of length d+1; it contains for each neighbour v; of vertex v; (j dominates f) the length of
a path (not always the longest) from vj to vy Obviously, the elements that dominate i are at
most &+1 (at most & elements plus the element s);

LL; array of length & x 8+1; it contains the information of all the L; where v; is a neighbour of
vertex v;. Specifically, LL; [j, k] contains the length of a path (if such a path exists) from the
j-th neighbour of vj to the k-th neighbours of v;, if j <k and D; [j] = D; [£]:

- 10 -

We are now in a position to formulate a parallel algorithm for solving the longest path problem on
the acyclic digraph G™[x]. It consists of four steps:

Algorithm Longest-Paths:
Input : The directed acyclic graph G'[7];
QOutput : The lengths of the longest paths from s to every veriex v in G'[n], 1 i< n;
begin
1. For every vertex v; of G*, 1 i £ n, do in parallel
(a) initialise the array L; [1..6+1] as follows:
Set L; [f] = 1 if the j-th neighbour of v; is a D-neighbour of vj,
i.e., L [j] & 1if <vj, vpyi, jj> € E” or equivalently if vpy;, jj € DD;;
(b) initialise the matrix LL;[8..5+1] as follows:
Set LL; [, £] = 1 if the j-th neighbour of v; is a D-neighbour of v; and the k-th
neighbour of vj is a D-neighbour of vj,
e, LL; [, k] « 1, if <vp(i, k), vD[i, > € E"or equivalently if vpii, k] € DDpyj, i
2. For every vertex vj of G* do in parallel
2.1 Let x, v be the j-th and the k-th neighbours of v, respectively,
ie., x=D[i j] and y = D[i, k];
If ¥ is a neighbour of x, i.e., if ¥y & Dy, then returns the column clm of Dy to
which y belongs, i.e., if D[x, z] = y then clm « z;
Set LL; [, k] « Lj [clm] + L; [k];
2.2 Compute the maximum element max; [k] of each column of LL;[1..6, k], k=1, 2, .., &+1;
2.3 If max; [k] = L; [k] then L; [k] «— max; [k];
3. Repeat log n time the steps 2;
4. Set Ip(v;) = L;[s],i=1,2, ..., n.

end:

Theorem 4.1. Given a permutation 7 and the directed acyclic graph G"[n], the algorithm
Longest-Paths correctly computes the length of the longest paths from vertex s to every other
vertex of the graph G*[x].

In order to illustrate the workings of algorithm Longest-Paths, we present with a help of an
example the processes of two consecutive steps. Bellow each array Lj, 1 £ i £ n, we have written the
i-th row of the array D; (see Fig. 3).

Figure 5 shows the arrays L; of all the vertices v; which are neighbours of vertex v4 and the
matrix LLy after the execution of the (logn-1)-th step of the algorithm, while Figure 6 shows the
arrays L and LL of vertex vy after the execution of the logn-th step of the algorithm. Since the
logn-th step is the last step of the algorithm, the position s of array Ly obviously contains the
solution, i.e., it contains the length of the longest path from s to v4 and, thus, the colour of vertex va4.
In the permutation graph G[xt], where m1=[8,3,2,7, 1,9, 6, 5, 4], the colour of vertex v4is 5.

=-§1 =

1 2 3 4 3 6 7 s
Lg: (o] ol o] o] ofofo]1]
5

1 2 .3 4 5 & 7 &
L.:[1To] o] o] oo fof2]
] H

1 2 3 4 5 6 7 &
Lg: [0] o[o] o] 0Jo]o]1]
H]

L. 2 3 4. 5 b 8

Lee [872] 2] 1] m o [R e
8 7 9 6 s Lg: [2[1] 1] ofofoJof3]
9 &8 7 9 §
1 2 3 4 5 6 7T 5
@ - [f[3[3[2] 1 Jo]o[4]
8 7 9 6 5 5
1 2 3 4 3 6 F 8
i[oToJ o oJoJoJo]1]s
2[1Jofof o] ofoJofz2]7
slofofolololofo]1]e
t,: 4[4]3[3[ojofofo]4]s
s[1]3[3]2]o0]ofof1]s
s[ol ol ofo]o]o]ofo
7{o] o[o] ol ofo]o]o
8 7 9% 6 3 8

Fig. 5: The results after execution of the step logn - 1 of algorithm Longest-Paths.

5. Complexity of the Algorithms

The model of parallel computation used in this paper is the well-known Exclusive-Read, Exclusive-
Write PRAM model (EREW PRAM) [9, 17]. In this model, the operations of union (), intersection
(~) and subtraction (-) are executed in O(logn) time by O(n / logn) processors. The maximum
and/or the minimum of n elements can also be computed within the same time and processor
complexity. Moreover, in this model, an element can be copied n times in the shared-memory in
O(logn) time using O(n / logn) processors (see [9]).

Let us now analyse the computational complexity of all the parallel algorithms we developed
using the EREW PRAM model. For all cases, we shall obtain the overall complexity by computing
the complexity of each step separately.

e [

1 2 3 4 5 6 7 s

(@ 1,:[a[3]3] 2] 1]o]0]5]

8 7T 9 6 5]

1 2 3 4 5 6 7 5
1|0]0]0OlOjOjO]O|5]|8
21410l 0]l Q] OjO]O]|5]7
s|olojojolO|O|OD]|4]9
LL444330’JU(]56
s14(3]312]0)10]0|5]3

elojlololOjOjO|O]O

710] 0| O] O O|JO(OD]O

8 7 9 6 5 5

Fig. 6: The results after execution of the step logn of algorithm Longest-Paths.

5.1 The Domination algorithm

In order to execute algorithm Domination on the EWER PRAM model, there is a need of copying in
the shared-memory n times the n elements of 7. This computation can be done in O(logn) using n® /
logn processors on the EREW model of computation. Therefore, the complexity of each step of the
algorithm can be computed as follows:

Step 1. Obviously, this step can be executed in O(logn) time using n®/ logn processors. Step 2. The
problem of storing all the non-zero elements of an array of length n into consecutive memory
locations is equivalent to the problem of computing the prefix-sums of its n elements. It is well-
known that the prefix-sums of n elements can be computed in O(logn) time using n/ logn
processors. Thus, the following theorem holds.

Theorem 5.1. Given a permutation 7, the dominated set of each element of T can be computed in
O(logn) time using n? / logn processors on the EREW PRAM model of computation.

5.2 The D-domination algorithm

In order to use the EREW PRAM model, we have to produce o copies of the nxd domination matrix
D, where & is the maximum decreasing sequence in permutation 7 (n arrays D; of length &). This
operation can be executed in O(logd) with 62n / logd processors. Let us now analyse the
computational complexity of the algorithm D-domination.

- 13 -

The algorithm consists of 7 steps: Step 1. The assignment operation on & n elements takes O(1)
time by using & n processors or O(logd) time by using & n / logd processors. Step 2. The operation
of testing whether a sequence of & elements is in increasing order or not can be executed in
O(logd) time with 8/ logd processors. Therefore, this steps is executed in O(logd) time with dn/
logd processors. Step 3. This step computes the maximal increasing contiguous subsequences of a
sequence of length 8. This operation is executed in O(logd) time using &/ logd processors (here, we
have again the problem of storing all the non-zero elements of an array of length & into consecutive
memory locations; see step 2 of algorithm Domination). Thus, step 3 can be executed in O(logd)
time with & n / logd processors. Step 4. In this step some comparison and assignment operations are
done in each subsequence computed in the previous step. There are at most & n such subsequences,
and thus, this step can be executed in O(logd) time with & n / logd processors. Step 5. Here, the steps
2, 3 and 4 are repeated O(logd) time. That is, the time complexities of the steps 2, 3 and 4 are
increased by the factor O(logd), and thus, each of them has time complexity O(log2d). Step 6. This
step has the same time and processor complexity as step 1. Step 7. Obviously, this step can be
executed in O(logd) time with & n / logd processors.

Take into consideration the time and processor complexity of each step of the algorithm, and the
complexity of copying the domination matrix D, we conclude that it can be executed in O(log2d)
time using &2 n / logd processors, and, thus, we have the following lemma.

Lemma 5.1. Given the domination matrix D of a permutation T, the algorithm D-domination
computes the direct dominated set of each element of 7 in O(log2d) time using 62 n/ logd
processors on the EREW PRAM meodel of computation.

The algorithm D-domination takes as input the domination matrix D, which computed by
algorithm Domination in O(logn) time using n/ logn processors (see Theorem 5.1). Thus, we
obtain the following theorem.

Theorem 5.2. Given a permutation 7 and the dominated set of each element of m, the direct
dominated set of each element of T can be computed in O(logn logd) time using max{n? / logn,
n / logd} processors on the EREW PRAM model of computation.

5.3 The D-domination-to-DAG algorithm

We can easily compute the time and processor complexity of the algorithm D-domination-to-
DA&G on the EREW PRAM model.

The algorithm consists of two steps. Step 1. It can be executed in O(logd) time using & n / logd
processors. Step 2. To find a vertex with indegree zero in graph G*(] is equivalent to find a row Dj
of the n x & matrix D having all its entries 0. Therefore, this step can be executed in O(logd) time
using & n/ logd processors.

From the above step-by-step analysis, we obtain that the algorithm D-domination-to-DAG is
executed in O(logd) time using & n / logd processors on the EREW PRAM model. So, the following
lemma is hold.

- 14 -

Lemma 5.2. Given the D-domination matrix DD of a permutation 7, the algorithm
D-domination-to-DAG constructs the directed acyclic graph G*[n] in O(logd) time using & n/
logd processors on the EREW PRAM model of computation.

The algorithm D-domination-to-DAG takes as input the D-domination matrix DD, which is
computed by algorithm D-domination in O(logn logd) time using max{n? / logn, & n / logd)
processors, when the permutation T is given. Therefore, we have the following result.

Theorem 5.3. Given a permutation T, the directed acyclic graph G"[rt] is constructed in O(logn
logd) time using max{nZ / logn, & n / logd} processors on the EREW PRAM model of computation.

5.4 The Longest-Paths algorithm

Let us now compute the complexity of algorithm Longest-Paths, which obviously is the main
algorithm of this work. For EREW execution of this algorithm, we have to produce & copies of the
nxd domination matrix D, and & copies of each L;, i = 1, 2, ..., n, i.e., & copies of & n elements. We
have shown that both operations can be executed in O(logd) with 82 n /logd processors on the
EREW PRAM model.

Using the EREW parallel model of computation, the time and processor complexity of the
algorithm is analyzed as follows:

Step 1. The first step of the algorithm initializes the array L; of length d+1 and the matrix LL; of
length & x &+1, for 1 i < n. These operations are executed in O(logd) time by using 82 n / logd
processors. Step 2. This step consists of substeps 2.1, 2.2 and 2.3, which are executed for every
vertex v; of G"[nt], 1<i<n.Substep 2.1. All the operations in this substep can be done in O(logd)
time with &2 / logd processors, by using the domination matrix D. Substep 2.2. Here, the maximum
element of each column of the & x d+1 matrix LL; are computed. This operation can be executed in
O(logd) time with & (8+1) / logd processors. Substep 2.3. In this substep, O(8) comparisons are
made, which, obviously, can be done in O(logd) time with &/ logd processors. Take in to
consideration the complexity of substeps 2.1, 2.2 and 2.3, we conclude that the overall time
complexity of step 2 and number of processors used in this step, are O(logd) and 62 n / logd
respectively. Step 3. This step causes the execution logn times of the step 2. Thus, step 3 are
executed in O(logn logd) time using &% n / logd processors. Step 4. In the step of the algorithm, n
assignments are made. We can easily see that, this step is executed in O(logn) time with n / logd
ProCessors.

Take into consideration the time and processor of each step of the algorithm, we can formulate
the following theorem.

Theorem 5.4. Given the directed acyclic graph G*[7] having vertex s with indegree(s) = 0, the

length of the longest paths from s to every other vertex of the graph can be computed in O(logn
logd) time using & n/ logd processors on the EREW PRAM model of computation.

- 15 -

5.5 The Colouring algorithm

By design, the algorithm Colouring incorporate all the operation described in the previous
algorithms. In particular, all the operations of step 1 are executed in O(logn logd) time with max{n?
{ logn, Fnl logd} processors using the algorithm D-domination-to-DAG (see Theorem 5.2),
while all the operations of step 2 are executed in O(logn logd) time with & n / logd processors using
the algorithm Longest-Paths (see Theorem 5.4). Obviously, step 3 is executed in O(logn) time
using n / logn processors on the EREW PRAM model.

Take inte consideration the time and processor of the algorithms D-domination-to-DAG and
Longest-Faths, and the time and processor of the step 3, we present the following result.

Theorem 5.5. The problem of colouring permutation graphs can be solved in O(logn logd) time
using max{n? / logn, & n / logd} processors on the EREW PRAM model of computation.

6. Conclusions

In this paper we study the problem of colouring permutations graphs. We propose an efficient
parallel algorithm which colours a permutation graph in O(logn logd) time using max{n® / logn, &2
n f logd} processors on the EREW PRAM model, where n and 6 are the number of vertices and the
degree of the permutation graph, respectively.

The idea of our algorithm is motivated by the work performed by C-W Yu and G-H Chen [25].
They presented an algorithm which takes as input a permutation graph and transforms it into a set of
planar points, constructs an acyclic directed graph, and finally solves the largest-weight path
problem on this acyclic digraph. Using this strategy, they solve the colouring problem on
permutation graph in O(log2n) time using n? / logn processors on a CREW PRAM model of
computation or in O(logn) time using n® processors on a CRCW PRAM [2, 11, 24]. On the other
hand, we designed an algorithm which takes as input a permutation 7, and directly constructs an
acyclic directed graph using combinatorial properties on 7. Then, it solves the colouring problem
on the permutation graph G[m] by solving the longest path problem on the constructed acyclic
digraph.

Let us now comment on the most important design issues of both algorithms. First, we focus on
an important figure of the algorithms which is the computational model they uses. Specifically, our
algorithm can be executed on the EREW PRAM model, while Yu and Chen's algorithm is executed
on a CREW PRAM. Therefor, our algorithm is more efficient since, as it is well-known, the former
model is less powerful than the later one. The second comment concerns the time and processor
complexity of the colouring algorithms. In all the cases, exempt that the permutation graph is
complete, our algorithm outperforms the algorithm proposed by Yu and Chen. Moreover, in the
case where 6 < Vn, our algorithm can be executed using only n2/ logn processors on the EREW
PRAM. Another point we should stress concerns the transformation strategy. Our algorithm avoids
to transform the given permutation or its corresponding permutation graph into a set of planar
points. Instead, it constructs the acyclic directed graph using certain combinatorial properties of
permutation 7. This construction process has the following effect: the two acyclic directed graphs
constructed by the two algorithms are not the same. Specifically, in our case the edge set of the

o

acyclic digraph has much less elements than the edge set of the permutation graph has. (Notice that,
the number of edges in the Yo and Chen's acyclic digraph is equal to the number of edges of
permutation graph.) That is, the parameter & which affects the performance of our algorithms is not
actually the degree of the permutation graph; it takes less values than the degree of the permutation
graph.

In closing, we point out that we are now looking into the colouring problem using the Lattice
representation of a permutation [18] and the relationship between permutations and binary search

trees. Moreover, we are studving the colouring problem for some other classes of perfect graphs [6,
8, 13, 14, 15] using CREW or CRCW PRAM's.

References

(1]

[2]

[3]

(4]

6]
(7]

(8]

(]

(10]

[11]

[12]

[13]

[14]

[15]

M.I. Atallah, G.K. Manacher and I. Urrutia, Finding a minimum independent dominating set in a
permutation graph, Discrete Applied Mathematics, vol. 21, pp. 177-183, 1988.

P. Beame and J. Hastad, Optimal bounds for decision problems on the CRCW PRAM, J. Assoc. Comput.
Mach.. vol. 36. pp. 643-670, 1989,

A. Brandstadt and D. Kratsch, On domination problems for permutation and other graphs, Theoretical
Computer Science, vol, 54, pp. 181-198, 1987.

L. Chen, Logarithmic time NC algorithms for comparability graphs and circle graphs, Lecrure Notes in
Computer Science: Advances in Computing and Informarion, vol. 497, pp. 383-304, 1991.

M. Farber and .M. Keil, Domination in permutation graphs, Journal of Algorithms, vol. 6, pp. 309-321,
1985,

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New York, 1980,

D. Helmbold and E.W. Mayr, Applications of parallel algorithms to families of perfect graphs, Computing,
vol. 7, pp. 93-107, 1990.

W.L. Hsu, Maximum weight clique algorithms for circular-arc graphs and circle graphs, SIAM Jowmnal on
Computing, vol. 14, pp. 224-231, 1985,

I JAJ4, An Introduction 1o Parallel Algorithms, Addison-Wesley, 1992,

D. Kozen, U.V. Vazirani and V.V. Vazirani, NC algorithms for comparability graphs, interval graphs, and
testing for unique perfect matching, Proc. of the Sth Conference on Foundation of Software Technology and
Theoretical Computer Science, New Delhi, pp. 498-503, 1985.

L. Kucera, Parallel computation and conflicts in memory access, Inform. Process. Lett., vol. 14, pp. 93-96,
1932,

I.Y.-T. Leung, Fast algorithms for generating all maximal independent sets of interval, circular-arc and
chordal graphs, Journal of Algorithms, vol. 5, pp. 22-35, 1984,

5.D. Nikelopoulos, "Constant-time parallel recognition of split graphs”, Inform. Process. Lett., vol. 54,
pp. 1-8, 1995

S5.D. Nikelopoulos and 8.D. Danielopoulos, "Parallel computation of perfect elimination schemes using
partition techniques on triangulated graphs”, Compurers and Mathematics with Applications, vol. 29, pp.
47-57, 19935,

5.D. Nikolopoulos, "Cographs and treshold graphs can be recognized in O(1) time by a CRCW-PRAM",
TR-96-6, Department of Computer Science, University of Cyprus, 1996,

Y, [o

[16]

[17]

[18]
[19]

(20

(21]

[22]

(23]

[24]

(23]
[26]

A Pnueli, A, Lempel and 8. Even, Transitive orientation of graphs and identification of permutation
graphs, Canadian J. Math., vol. 23, pp. 160-175, 1971.

I. Reif (editor), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo,
California, 1993.

R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, 1996.

J. Spinrad, On comparability and permutation graphs, SIAM Journal en Computing. vol. 14, pp. 658-670,
1985.

J. Spinrad, A. Brandstadt and L. Stewart, Bipartite permutation graphs, Discrete Applied Mathematics, vol,
18, pp. 279-292, 1987,

K.JI. Supowit, Decomposing a set of points into chains. with applications to permutation and circle graphs,
Inform. Process. Lent., vol. 21, pp. 249-252, 1985.

K.H. Tsai and W.L. Hsu, Fast algorithms for the dominating set problem on permutation graphs, Lecture
Notes in Computer Science: Algorithms, vol. 450, pp. 108-117, 1990.

8. Tsukiyama, M. Ide, H. Ariyoshi and 1. Shirakawa, A new algorithm for generating all the maximal
independent sets, SIAM Journal on Computing, vol. 6, pp. 503-517, 1977.

U. Vishkin, Implementation of simultaneous memory address access in model that forbid it, Journal of
Algorithms, vol. 4, pp. 45-50, 1983,

C-W. Yu and G-H. Chen, Parallel algorithms for permutation graphs, BIT, vol. 33, pp. 413-419, 1993,

C-W. Yu and G-H. Chen, Generate all maximal independent sets in permutation graphs, Inrern. J. Computer
Math., vol. 47, pp. 1-8, 1993,

o

