A Novel Neural Network Training Technique based
on a Multi-Algorithm Constrained Optimization
Strategy

D.A. Karras and L.LE. Lagaris

14-96

Preprint no. 14-96/1996

Department of Computer Science
University of loannina
45 110 Ioannina, Greece

A Novel Neural Network Training Technique based
on a Multi-Algorithm Constrained Optimization

Strategy

D.A. Karras and [LE. Lagaris

Indexing term: Multilayer Perceptron Training.

A novel methodology for efficient offline training of multilayer perceptrons (MLPs)
is presented. The training is formulated as an optimization problem subject to box-
constraints for the weights, so as to enhance the network’s generalization capability.
An optimization strategy is used combining variable metric, conjugate gradient and
no-derivative pattern search methods that renders the training process robust and
efficient. The superiority of this approach is demonstrated by direct application to

twao real world benchmarks and the parity-4 problem.

Introduction: Minimizing the MLP error function in realistic problems is a
difficult task since the many layers, the multitude of training patterns and the
varietv of categories cast a very complex landscape with wide plateaus and
narrow valleys [1]. There is no single algorithm that can be used as a panacea
to solve such optimization problems. Algorithms that use gradient informa-
tion perform well only at regions of the parameter space where the function is

smooth, while algorithms using only function values may be effective at regions

where the derivatives are not well defined. The other competitive objective is
to train the MLPs so as to obtain high quality generalization. Unconstrained
optimization algorithms often permit some weights to become arbitrarily large,
which results in a deterioration of the network’s generalization since the other
weights don’t play any role to it. From this point of view, the main weak
points of the existing MLP training procedures are the use of a single opti-
mization algorithm and the lack of control on the weight growth. To address
these issues we propose a novel multi-algorithm box-constrained optimization
procedure governed by a strategy that exploits the virtues and strengths of
the participating algorithms. This renders the procedure efficient and robust
and although it is an established approach in the field of optimization [2], it
has never been emploved in MLP training before. To control weight growth
and thus to ensure a high level of generalization we suggest box constraints,
so that the weights assume values inside a desired reasonable range. Previous
attempts to improve generalization ability relied on regularization schemes,
like "weight decay/ elimination” [1], that merely add a penalty term to the
error function to discourage large weight values. This is an indirect and rather
inefficient way to treat constraints and moreover, it does not provide explicit
weight-control. To implement our method we used the MERLIN /MCL package
[2,3] that offers an environment with several powerful optimization algorithms,

the ability to impose box constraints and a language to create strategies.

Constrained Optimization Strategy for the Training Problem: The suggested
procedure uses three different algorithms, specifically the quasi-Newton BFGS
[1]. the Polak-Ribiere (PR) conjugate gradient algorithm [1] and a pattern
search method (ROLL [2]) that uses only function values. Pattern search
methods have not been used in MLP training so far. Since the above algorithm
emplovs no derivatives it is expected to be effective at the regions with plateaus
of the weight space where the BFGS and PR techniques that use gradient
information fail to perform. Since the ROLL method is not widely known
we provide a brief description for it. Let E(W;,W5,...., 1) be the error
function in MLPs with W corresponding to the weight variables. Let, also,
We = (Wr, Wi, ..., WWF) be the current point in the optimization process of E

and E, = E(W*¢). Finally, let 5; be a step associated with each free variable

Wi
1. Pick a trial point: W} = W} for all j # i and W} = Wf + 5;
2. Calculate B, = E(W?).
3 ME, < E.set We=W"'E,= E. and 5; = a$5;. Then, go to step 8.

4. if £, >= E, pick another trial point as : I-I-‘j = W; for all 7 # ¢ and

Wt=Wwe-5;

i

5. Calculate E_ = E(W?*).

6. if E_ < E.set We=W*! E, = E_ and 5; = —aS5;. Then, go to step 3.

3

7. if E_ »>= E, calculate an appropriate step by: 5; = —%ﬁﬁﬂ

8. Proceed with step 1 for the next value of i.

In the above, a > 1, is a user set factor (in our experiments a = 3.0). If after
looping over all variables there is no progress. a line search is performed in the
direction & = (8, 8oy s S,). The above procedure is repeated until a preset
number of calls to the objective function is reached.

Box constraints: Let [a;, b;] be the desired range for the weight 1. Then in the
ROLL method the 1 is forced inside this range via the following statements.
IFW! <a; set Wi=2220

if WE> b set Wi =220

The BFGS and the PR methods proceed via line searches. The feasible segment
along the direction of search S is determined first, by simply calculating with
analytical geometry the sections of S with the hvper-box defined by the given
box-constraints. and then it is used to bracket the line search.

In what follows we give a rather detailed account of the proposed strategy that
was coded in MCL [3]. (It is worth mentioning that the actual code is less
than 70 statements).

Initialization: Pick at random an initial set of weights all in [=1,1].

Set the initial range for the weights to be [—b, b] (with b = 1).

Set the maximum allowed number of calls to the error function.

Set the range enhancement a.(We used a = 1.1).

4

Set the maximum allowed range to be [—d, d] (We used d =6).

Set the target value (a satisfactory value for the error function) Ej.

Set the value for the rate of progress r. (We used r = 1z).

Step (1): Test the number of calls to decide whether to stop or not.

Step (2): Determine and fix the non-influential weights. These weights w
have the property |%| < €, where € > 0 a small preset value, i.e the error
function is not verv sensitive to changes in these weights. This step adds
efficiency since at this point these weights are not important.

Step (3): Apply in succession the BFGS and the ROLL algorithms (this adds
efficiency and robustness since these two methods are succesful for different
tvpes of landscapes).

Step (4): Redetermine the non-influential weights and fix them (temporarily
fixing non-influential weights is beneficial since, due to dimensionality redue-
tion, the optimization problem becomes easier).

Step (5): Test if Ej; has been reached to decide whether to stop or not
Step (6): If the relative rate of progress per call ﬁ""TE < 7 enhance the
weight range as b = min(d, b a) (Noc = Number of calls).

Step (7): Apply the PR method (Usually it is less efficient than BFGS, but

performs less bookkeeping operations).

Step (8): Repeat from step (1).

Experimental results: To demonstrate the efficiency of our approach in MLP

training we considered two real problems and the parity-4 benchmark. since the
increasing demand for high performance neural networks in real world appli-
cations renders obsolete any research based only on artificial benchmarks like
NOR etc. Both real problems were selected from the Probenl real world bench-
mark collection [4], since they are considered especially difficult and hence suit-
able for testing. In the first problem the approval of a credit card to a customer
should be predicted, while in the second the diabetes of Pima Indians should
be diagnosed. There are 51 (8) inputs, 2 outputs and 690 (768) examples
divided randomly three times in 345 (384), 173 (192) and 172 (192) patterns
for training, validating and testing respectively, hence forming cardl, card2
and card3 [diabetes]. diabetes? and diabetes3) tasks. In Table 1 we compare
the results obtained in these six tasks by our Multi-Algorithm Constrained
Optimization (MACO) methodology against to those obtained by the offline
Backpropagation (Off-BP) (learning — rate = 0.01, momentum = (.05) and
the Polak-Ribiere Conjugate gradient method (PR-BP). according to Probenl
specifications [4] concerning architectures, error measures and number of runs,
MACO clearly outperforms the other methods as well as the RPROP algo-
rithm used in Probenl in terms of training and generalization average error
reduction (notice an improvement of 16-90% for the former and 4-16% for
the latter regarding the best results obtained in Probenl [4] with no-shorteut

architectures). The significant reduction in average training error obtained

by MACO is worth noting despite the stringent maximum bounds set to the
weights (W; € [—6.6] for all {). Fig.1 clearly illustrates the superiority of the
multi-algorithm training strategy in the notoriously difficult parity-4 bench-
mark. It is shown that a 4-4-1 MLP trained via a strategv (the same as
MACO but with PR substituting BFGS) using first the PR method and sub-
sequently, when a slow progress is encountered, the ROLL method achieves
a mean square error of only 1.6 107'*. On the other hand the same network
trained with either PR or BFGS alone, achieves the significantly higher mean

square error values of 0.5 and 2.5 respectively.

Conclusions: A novel multi-algorithm constrained optimization training strat-
egv for MLPs using box constraints was presented, exhibiting superior perfor-
mance in both the generalization ability and in the reduction of the training

error in several diffieult real and artificial benchmarks.

D.A. Karras and 1.E. Lagaris (Department of Computer Science, University of
Inannina, GR-45 110, Ioannina, Greece)
One of us (I. E. L.) acknowledges partial support from the Greek General

Secretariat of Research and Technology under contract PENED 91 ED 959,

References

1

HAykIN, S.: ‘Neural Networks A comprehensive introduction’,
Macmillan Publishing Company, 1994

EvANGELAKIS, G.A. AND Rizos, J.P. AND LaGaRis, LLE. AND
DEmETROPOULOS, I.N.: ‘MERLIN - A portable system for multi-
dimensional minimization’, Computer Physics Communications, 1987,
46. pp. 401-415

CHASSAPIS, C.S. AND PAPAGEORGIOU, D.G. AND LaAGARIs, LE.:
‘MCL - Optimization Oriented Programming Language’. Computer
Physics Communications, 1989, 52, pp. 223-239

PRrRECHELT. L: ‘PROBENTI - A set of Neural Network Benchmark Prob-
lems and Benchmarking Rules’, Technical Report 21,/94, September 30,

1994, Fakultat fur Informatik, Universitat Karlsruhe, (Germanyv

Table 1:

Problem Average (60 runs) training,/validation/test error

MACO Probenl PR-BFP Off-BP

card]l 1.06/8.24/9.83 8.86,/8.69/10.35 8.83/8.75/10.40 9.10/8.88/10.55

card2 0.82/10.39/14.25 | 7.18/10.87/14.94 | 8.47/10.95/15.10 | 8.12/11.10/15.22

card3 0.85/8.15/12.73 | 7.13/8.62/13.47 | 7.50/8.58/13.40 | 7.96/9.12/13.75

12.12/13.98/14.25 | 14.36/15.93/16.99 | 14.10/15.80/16.81 | 14.98/16.40/16.97

13.32/17.05/18.40 | 12.88/17.20/18.60

| diabetesl

diabetes? | 10.45/15.10,/16.04 | 13.04/16.94/18.43
13.52/17.89/16.48 | 13.79/17.95/16.35 | 14.01/18.43/16.60

diabetes3 | 10.19/15.97/14.18

TRAINING ERROR IN "PARITY-I1V"

n

TRAINING "TIME"

.| £ 2r =

gL - 5§

(PRI]

P 1

oL i

[PR + ROLL]

1__ 1
L - i} & T

0 - \0 n TP . o S

q—
Q 10 20 30 40 50 &0

Figure captions:

Figure 1: The impressive training error reduction in a 4-4-1 MLP emploving
PR+ROLL, compared to the one obtained by using either PR or BFGS, in

the parity-4 benchmark.

Table captions:

Table 1: The significant improvements obtained in the training/ validation/
generalization average (60 runs) error per pattern and output node (multiplied

by 100) in the MLPs when using MACO.

10

