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SUMMARY

In this work we propose an approach to study the dynamic characteristics of cylindrical
rods. The description of the problem is based on the three-dimensional theory of
elasticity and the mathematical analysis on the representation of the displacement fields in
terms of the constructed Navier eigenvectors in cylindical coordinates. Finally, for a
special case, the proposed analysis is presented in details and the results obtained are in

excellent agreement with the existing ones.



& INTRODUCTION

The problem of free vibrations of a circular cylinder of an isotropic material was first
studied in terms of the general theory of elasticity by Pochhammer 1876 and
independently by Chree in 1889. An account of this treatment is given in the book by
Kolsky [1]. The Pochhammer - Chree solutions are exact for infinitely long isotropic
rods that are stress - free at the lateral (cylindrical) surface. However, these solutions
cannot completely satisfy the boundary conditions for a finite rod since they do not permit
stress - free ends. A complete solution for the axisymmetric free vibrations of a finite
length isotropic cylindrical rod was given by Hutchinson [2]. His series solution can be
made as accurate as required by including enough terms in the series. Tables of natural
frequencies and mode shapes of infinitely long solid circular cylinders have been

compiled by Armenakas et al. [3].

If the cylinder is constructed of a material with anisotropic constitutive relations, the
solution of the free vibrations problem significantly increases in complexity. Morse [4]
extended the Pochhammer - Chree solutions to investigate the case of an infinitely long
cylinder composed of a material with hexagonal symmetry. Lusher and Hardy [5] used
the approach of Morse to extend the solution technique of Hutchinson for isotropic
cylinders to study the axisymmetric vibrations of a finite cylindrical rod which is
transversely 1sotropic and compared the results with the experimental results for sapphire
material . Heyliger [6] and Heyliger and Jilani [7] studied the axisymmetric vibrations of
anisotropic cylinders of finite length and the free vibrations of inhomogeneous elastic
cylinders, respectively by using the Ritz method. Paul and Natarajan [8] extended the
Hutchinson technique to investigate the flexural vibrations of a piezoelectric finite circular

cylinder of crystal class 6 mm.

The elastic wave propagation problems of long bones were investigated by Voya and

Ghista [9] by assuming that the bone is made of two layered concentric hollow cylinders,



where the inner part was taken as the spongy layer and the outer part was taken as the
compact layer. Nowicki and Davis [10] were also analysed wave propagation in bone,
treating bone as a solid poroelastic cylinder. The propagation of flexural waves in an
infinite cylindrical bone element which is porous in nature was considered by Paul and
Murali [11]. The electromechanical wave propagation in the diaphysis of a dry femur
(long bone) due to mechanical stress waves was studied by Giizelsu and Saha [12]
considering the long bone as hollow cylinder of infinite extent and using the mathematical

analysis proposed by Mirsky [13].

In the present work an attempt is made to study the free vibrations problem of a double
layered elastic isotropic cylindrical rod. For the purpose of our analysis we constructed
the Navier vector eigenfunctions in cylindrical coordinates, for the three-dimensional
theory of linear elasticity, and the solution of the problem was represented in terms of
them. The selection of the specific solution from the general representation is imposed by
the boundary conditions on the discontinuity surfaces. For the case of stress - free lateral
surface, continuity of displacements and stress fields on the contact surface of the layers
and the most simple boundary conditions on the plane boundaries, the mathematical
analysis is presented in details and numerical results for the dynamic characteristics of the
system considered are presented by simulating the outer layer with the space of cortical
bone and the inner one with the medullary space. The cases of more realistic boundary

conditions and material behaviour are in preparation.

2 PROBLEM FORMULATION

The system under consideration as well as the coordinate system are shown in Fig. 1.
The inner region and the outer one of the system is supposed to be constructed of a

material with isotropic constitutive relations.



Region 0

Region 1

Figure 1: Problem geometry

The main purpose of the present analysis is the determination of the dynamic

characteristics of the system shown in Fig. 1 under prescribed boundary conditions on

the discontinuity surfaces, S,,k =0,1,2,3.

The displacement fields u,(r).u,(r) in the regions 0 and 1 satisfy, after suppressing the

ume-harmonic dependence, the time independent equation of elasticity

e V) +(c} - )V(V-u(r)+@'u(r)=0, reV, i=01 (1)
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where @ is the eigenfrequency (rads/sec) and ¢, = {—'“] . € | Eil are the
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velocities of the longitudinal and transverse waves, respectively, A,, U are the Lamé

constants and p, is the density of the i - medium.

Introducing the dimensionless quantilies
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equation (1) can be written as
¢ Vi (r)+(c) =3 W (Va,(r')+Q%u,(r')=0,reV, i=0,1 (2)
where V'=rV.

The displacement field u,(r') can be decomposed into the longitudinal irrotational field
u;*'(r') and the transverse solenoidal field u!”(r'), which satisfy the vector Helmholtz
equation with wave number k', =Q/c', and k', =Q/c’, , respectively (see Appendix

D).

The mathematical problem described by equation (1) and the appropriate boundary

conditions on 5, i=0,1,2,3 consists of a well - posed mathematical problem (see

section 3).
3. PROBLEM SOLUTION

Following separation variables techniques and taking advantage of irrotational and
solenoidal properties of the longitudinal and transverse fields, respectively, we construct
all the possible vector solutions of equation (2) (Their derivation is presented in Appendix
D). These functions, which remind us the Navier vector eigenfunctions of the spherical
geometry [14], are the following:

m.l ] £ | i - ., ':Djrln(‘ri r.:I s z O T -
L (r':A)=® (x; r' )P} (.2 :f.]l+}—j[1mﬂ";“{&?.:':ﬂ.}+r Cr(p,.z ;M] (3)
; - g '
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M (i) = wz‘mﬁfup.;‘ :A) =@ (x,r B (0,234) (4)

X, r
L. . @ (x'r i
N A) =(=1Y A (xr WP (p,2 )+ {—-lj"fm.l*[n}Lx(:rir—}Bf{gﬂ?:' -1) -

+xi @ (x] P ICT (9.2 3A)
where

[g02 e 1A
W={ i R (6)

K2 -A* ifj=13
x;_:{w-_ﬂ = e

P/(p.2:4)=€"Z(z:A)
B! (@.2:4)=¢e"Z,(z;A)@p j=12.3.4 (8)
Crlp.did)=e""Z Az A)Z

£

Z(Z:;A)=sin(Az), Z,(z;A)=sinh(Az)

(9)
ZAZ Ay =cos(Az),.. Z (2 :Ay=cosh(Az)

and

& (x) =! J,.(x), [=1 (Bessel function)

|
L

Y (x), [=2 (Neumann function)
while ﬂﬁ‘,ﬂ (x) denotes the derivative of @L{x} with respect to its argument.
We mention here that for the solutions with solenoidal dependence on z' - coordinate

(case j=1,3), the parameter A, as increases, may render the quantities x; or (and) x;

imaginary. Then the Bessel functions having in their arguments these quantities are



transformed suitably to the modified Bessel functions /_(x) and K, (x). We mention
here that whenever _ré'l, x;; become imaginary, give rise to the real quantities :Jr.5 /f,

Xp /f which we rename to xj, xj , respectively, for simplicity.

Consequently, the most general representation for the displacement fields &, (r' )i = 0.1 is

given by the expressions

4 o

u,(r')=3 T [ [ar, (AL A + B (AME () + 7o QN (A, reV,

nil
Jalmel

(10)
u(r')= E g_l‘;"[(x[’_';i{l}lq"ff{r' A+ B AIMT (A + 7 (AN (0 :ﬂ.]}dﬂ., reV,
(11)

where, as it is obvious, the regularity of the solution near the z'-axis excludes the

Neumann function ¥, from the expansion of &, (r').

The previous expression is the more general representation for the solution of the time-
independent equation of elasticity for the specific system shown in Fig. 1. Every
particular solution can be obtained from this representation by selecting the coefficients of

the expansion and choosing suitable integration over the parameter A .

The specific way of selecting the solution from the general set of functions defined by the
representations (10) - (11) is imposed by the concrete boundary conditions the solution
has to satisfy on the discontinuity surfaces. Every set of boundary conditions determines
the particular way of mixing the several structural simple solutions participating in the

integrand of the representation.

It is interesting to notice that there are "bad" boundary conditions which require the
presence of every partial solution with suitable weight in the expansion, as well as "good”
boundary conditions which are satisfied by a finite combination of the basic simple

solutons.



In this work we consider stress - free lateral surface S, continuity of displacement and

stress fields on S, and the following two sets of boundary conditions at S, and S,:

The choice of these two sets is based on the necessity to examine the most general case of
"good" boundary conditions, in the sense presented above, which in addition reflect real
situation occurring in medical applications where the system under investigation simulates

suitably long bones.

We note that the infinite rod solution can be considerad as a finite rod solution with the

boundary conditions (1) or (ii).

Especially the first chosen set of boundary conditions at S, and S, is adapted perfectly o

the physical properties of long bones as well as to the immobilisation procedures imposed

in medical treatment of long bones diseases.

Examining further the considered boundary conditions we remark that they refer both to
the lateral as well as to the transverse discontinuity surfaces. However, it is interesting to
notice that the particular way the "lateral” and "transverse” boundary conditions are
involved in the representations (10) - (11) of the solutions is completely different. This
different "nature” of the conditions reflects the incorporated properties of the cylindrical

geometry that has been adopted.

More precisely, determining the stress field on the surfaces S, and S, and considering the

displacement fields given by the expressions (10) - (11), it can be shown that the

necessity of satisfaction of the boundary conditions on the surfaces S, and S, discretizes



the initially continuous variable A and defines exactly one accepted value of j from the
four aprion possible values. Furthermore, the transverse boundary conditions dot not

provide information for the coefficients of the expansions (10) - (11).

In contrast. as it will be presented later, the "lateral” boundary conditions determine the
coefficients of the expansions modulo a multiplicative constant. The physical meaning of
this difference is that in cylindrical geometry, transverse conditions control the
“structural" pieces of the solution, i.e., determine which terms of the representation are
allowed to participate in order to construct the solution, while lateral conditions determine

which 1s the necessary mixture of these pieces in order to build the solution.

The boundary conditions (i) and (ii) at 5, and S, are satisfied if the parameter 4 is

chosen as

A=fn)= ’1—” n=12,..

(12a)
i=1, Z.l{z':i}:ZJz‘):sin(i—?f], n=12,.
and
A =f{n}=’1—?f+ n=012,..
(12b)

3=% Ziz:Ay=Z(#)= ms(i—{rf} n=012,..

respectively.

In both cases the representation (10) - (11), renaming some of the quantities after the

imposed discretization, takes the following form

o o

H__)I:r' } = Z E [a:aL:li {rl }+ ﬁ:u‘w:.il.]:{rl j+ ]'r:.d "v:'l.ll [?". }]* rE ilrILI {ljj

m=imail]
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5(r)=33 s L )+ BEIMI (P ) + N (), reV. (14)

a=lm=0 el

where
{15}

Ly (r)y=L7(r':f(n)

M) = M f(m)
Nrir Y= NI f(n)).

The values of j and f(n) are given in (12) and depend on the set of the boundary

conditions we choose.
The stress field on every surface 1S given as
(16)

Tu,(r')y=[2u 7 -V +A AV )+ 1 A x V xu,(r')

where n is the outer normal unit vector on the surface under consideration.

Using the expressions (14) and (15) in equation (2), for every lateral surface (r

consL.), we have:
(@7 AT (x, P )+ Bru DI (6, 1) + V0GP )PP (9,2) }
moEma (7' Y+ YaoHyo (x, r' DB (0,2 )J‘

Tu,(r)=3 3 |+omBr(x, ) +BrED
Bl G e )k BT P o VR ma (X, P NCY (9.2)

(17

where ' is constant in region V,,, and
(e A (x, )+ B DI (2,7 )+ 1os G (x,r DR (9.2)
i B (e, P )+ Vo HYL (x, )BT (9.2)

Tu()=3 3 3| +a B, )+ B E™
a=0 m=0 [=sl
+oryi Cri (e, )+ B i, 1) + VK (3, DCT (9.2 |

=11 -



(18)

where r' is constant in region V.

The functions A";),B;,C,..... appearing in equations (17) and (18) are given in

Appendix A.

For every vertical surface ( z' = constant), we find that:

(a:\} :I.Jl{‘xpnr']_rﬁm R‘:E{I r}‘l'f'muSML )w
L
Ty )= § 5 |00, (e )+ BV e, )+ 72 W o ) )

He o075 (6, 7' )+ BroXTs (x, 1) + 170075 (x,, 7 Ne™Z, (22

(19)

where z' is constant in region V,, and

P (p.2)
a7
Tu()=3 5 3 +{rx:ﬁr:“|:x,,f1+ :ﬁv:‘:(xs,r'wy:;fW:;’txJ,r'ﬁ}M

aml) me=l =] a:

(0 O (x, )+ B R (x, 1) + 77 ST (%, 7))

+Ha [x ¥ ‘“'!X"'l (x, r+ f’“‘E}“ . (x rNe™Z ()

n.l -'1‘

L -

where ' is constant in region V. (20)

The functions Q™R .5™'..... are given in Appendix A.

As it is easily verified the set of boundary conditions at S, and S, is automatically

satsfied.

The remaining boundary conditions to be satisfied are the following:

i



u,(r'y=u,(r') |

' 21
Tu,(r)=Tur)f ~ =™ (=0
and
Ta (r')=0, r'ed. (22)

Replacing the expressions (13) - (14), (17) - (18} into the boundary conditions (21) - (22)

and using orthogonality arguments for the functions P, B, ,C; we infer that for every

specific pair (m,n) we get 9 X 9 homogeneous system of linear equations,

Dx

1]
-
-

—_—
-3
el

e

where

= s T
m.l ml sl :aml m.l m, 2 moo
=2 [{xn.l *an.i. ‘Iﬁml . "Tn.l : Yﬂ.l ’aa.'}’iﬁn.u’}r:l.l]

I

and the elements of matrix D are given in Appendix C.

The system of equations (23) has a non trivial solution iff

det(D)=0. (24)

The equation (24) will determine the eigenfrequencies corresponding to the pair (m,n).
We notice here that for n 21, the two sets of the boundary conditions lead to the same
eigenvalues, corresponding though to different eigenmodes, and for n =0 the second set
of boundary conditions lead to eigenfrequencies corresponding to independence with

respectto £ - coordinate.

<



As far as the eigenvectors are concerned there exists a plethora of them describing
displacements or stresses on several surfaces. All of them can be determined but we
choose to give the most representative eigenmodes to indicate completely the behaviour of
the system in every eigenstate. First, we consider the displacement fields on the lateral

surtace r'=r':

[ MAM{IP" ¥t _illﬁ:[I(xs,"Jl _
W) =34 e™Z (7) (25)
B sy

5 R'"I{x P 4B e )
= Z P ﬁ TR EJWZ,!{E‘:' {2"5]'
=1 "”H“’”{xs P

T (8 ;.A_z{ TCioarF R ™2, ). @7

In the sequel, we consider the displacement and the stress fields on the surfaces S, and
=

For the first set of boundary conditions we have:

5 (2 = 0) = [, C ey, )+ 72, R Ot P )] £ ) (28)
for0=srsr,,
622 =0) = S[anCrt e )+ 72 R (e 2 £ ) (29)
forryS sy,

W (@=L)=(="u'"(=0), i=0,1, (30)

s



P Tup™ (2 = 0) = [af, 075 (x,, 1 )+ BILRT (x5, 7' )+ V0oSes (xs, )™ F () (3D)
for0srs/r,,
P Tu™ (2 = 0) = o (e P )+ BT R Geg ) + VST (g )™ f ) (32)

for rysrsry,

Q- Tu!"(7=0)= [a;’fuT:',g: (xp, 7 )+ B Via (x5, P ) + Voo Wi (x5, 7 }] "o fn)  (33)
for0=srsr,,
@ Tu™ (= E[ET.‘T;"l‘(xP__r' )+ BrV G )+ VW (e )™ (), (34)
FoTul™(Z=L)=(-1)'¢F-Tu'"(Z=0), i=0,1 (35)
@ Tul"(Z=L)=(-1)"¢-Tu!"(z =0), i=0,l. (36)
For the second set of boundary conditions we have:
U7 (2= 0) =[ e Ar (xp, P )+ B, DI (x5, 7 )+ 7o Gl (x 1) ]e™ (37)
for0srs=sr,,
w M (Z=0)= 2 A B e PRI LT }}.«"”“’ (38)

Iorr S rsr;

B



Uy, (2 =0)= ["I:.u E:; (xp,, r) +JB::>EA'~:6!':I5¢."J Y¥ ?:u‘f“':; [xsnr' )]EIW (39)

forQsrsr;,

Wi =)= Zl [ e B e B P (40)

Al ~nl
I=

11 g R 5 5

wHZ=0)==0)"u""(Z=0), i=0,1 (41)
ulp(Z=Ly=(-1ur(Z=0) i=0,1, (42)
and

£ Tu]™(2 = 0) = [ 1,00 kg, P )+ Bro X (g PV + VO ey ™ fm) (43)
forQ=resy.,

2T [Iz' =0)= é[affﬂff (xep P )+ B X (v P ) + 70T (s 0 () (44)
for ¥, <F<F,,

2T g =) =A{=1y-Tu "™ (2=0), i =01 (45)

4. RESULTS

The frequency equation (24) has been solved numerically and for this purpose a matrix

determinant computation routine was used for different frequency coetficients €2, along

-16 -



with a bisection method to refine steps close to its roots. The root finding algorithm 1s
followed by an LU-decomposition and back-substitution routine to determine the
eigenvector x whose elements are used for the computation of the corresponding
displacement components. Given that for every particular pair (m,n) we get independent
linear systems. we deduce that finally the eigenvectors are obtained by (23) without the

external summation over n.

The elements of D are functions of € (see Appendices A and B) and therefore they have
to be computed for every different value of it. This fact requires the computatuon of
Bessel and modified Bessel functions of the first and second kind as well as their
derivatives. In our computations we have used Seed's method [15] for the computation
of Bessel functions of fractional order and their derivatives and a method proposed in
Ref. [15] for the computation of the modified Bessel functions. We note that recursive
relations, although they offer flexibility and fast computations, are not valid for high

order of Bessel functions and values of the argument close to zero

Since the computations were made by a bisection method, some of the roots of the

frequency equation might correspond to values of Q where L; -f*(n) or k'3 —f (n)

changes sign (the Bessel functions have to be substituted by modified ones). These roots
are excluded since they do not correspond to eigenfrequencies of the system but they

represent discontnuities of computations.

The numerical computations for the systems under discussion have been performed by

assuming isotropic bone properties:

Region 1 (Cortical Bone) [16]

E=10.155x10° N/m®, v=0.27, p=2.1326x10° Kg/m’,

217 -



Region 0 (Medullary Space) [17]
K =2.1029753x10° N/m*, p =1.0002x10° Kg/m’,

where E, K and v denote the Young's modulus, bulk modulus and Poisson’s ratio,

respectively. and A =Ev/((1+v)(1-2v)} and u=E/(2(1+v)) are the Lame’s

constants,

The basic geometry used in the computations is representative of long bones [12], that is:

r, =0.008m, r,=0.014m, L=0.16m.

For the purpose of comparison in Table 1 we present the results of our analysis and those

cited in Ref. [3].

Table 1: Comparison of @ = n"qil 11 _;v with those of Ref. [3].

Present Analysis™ Armenakas et al. [3]
Ist | 2nd | 3rd Ist | 2nd | 3dd

[.06233 2.37451 396341 L1.06226 237443 3.96340
0.88251 2.71589 4.48757 0.88233 2.71586 4.48741
0.80946 3.15324 5.23671 (.80925 3.15325 5.23646
0.89804 366211 6.12246 0.89877 3.66194 6.12235
1.18889 2.37571 3.95288 1.18889 237566 3.95272
1.10093 2.71821 4.46603 1.10092 271819 4.46586
1.19755 3.15670 5.19500 1.19755 3.15658 5.19492
1.48937 3.66644 6.05046 148933 3.66639 6.05026
1.33732 2.37760 3.93351 1.33727 2.37754 3.93340
1.32335 2.72152 4.42453 1.32335 2.72149 4.42440
1.52768 3.16101 5.11174 1.52764 3.16095 5.11162
1.92667 3.67056 S5.90185 1.92660 3.67046 5.90169

WR |
0.1

2

0.3

P b0 = e U0 b e s D — 3

We note that our results coincide almost to those of Ref. [3] when a single precision

arithmetic is used in the computatuons.

B



‘The vanation of the frequency coefficient £2 as a function of the wave numbers m and n

is given in Table 2, while the variation of Q as a function of L/r, and r,/r, for
(m.n)=1(1,1) 1s shown in Table 3. From the results cited in Table 3 we observe that for

Lir, <4 and r,/r, <0.571 the frequency coefficient Q decreases as L/r, and r,/r, are

increasing, and also that the frequency spectrum of the rod is significantly changed with

the increment of L/r, and r,/r,.

Table 2: Eigenfrequency Coefficients Q(m,n) for long isotropic bone.

Li n=1 n=2 n=3 | n=4 | n=5 |
m=0  (.14982 0.29831 0.42461 0.47610 0.52817
0.21558 0.36238 0.44120 0.54992 0.58311

0.41387 0.51854 0.60828 0.65352 0.77389

0.59382 0.59774 0.69736 0.80371 0.83405

0.85554 0.86390 0.89220 0.99658 1.08518

1.07383 1.07498 1.07700 1.08016 1.13629

m= 0.03301 0.11526 0.22014 0.33108 0.43838
0.56109 0.57003 0.57440 0.57622 0.57963

0.75718 0.76384 0.76893 0.77498 0.78187

0.77716 0.84842 0.94343 1.02357 1.04875

1.08360 1.07956 1.07826 1.26716 1.15153

1.17421 1.19882 1.23253 1.44452 1.30012

=2 0.43964 0.45088 0.47550 0.51736 0.37677
0.77701 0.77783 0.77894 0.78024 (.78191

0.96350 0.96468 0.96672 0.96964 (.97342

1.25830 1.26294 1.26782 1.27166 1.27440

1.45797 1.46231 1.46550 1.46904 1.47312

1.47372 1.50168 1.54943 1.61006 1.67521

m= 0.96937 0.96935 0.96954 097011 0.97108
1.04501 1.05498 1.07231 1.15802 1.12988

1.15186 1.15295 1.15489 1.48379 1.16435

1.48139 1.48192 1.48274 1.67745 1.48503

1.67403 1.67469 1.67583 197033 1.67959

m=4 1.15486 1.15522 1.15582 1.15669 1.15813
1.33006 1.33089 1.33227 1.33419 1.33664

1.68310 1.68306 1.68319 1.68360 1.68431]

1.73165 1.74025 1.75463 1.77494 1.80124

1.87363 1.87437 1.87559 1.87748 1.88034

2.18455 2.18494 2.18555 2.18637 2.18737

-19 -



Table 3: Eigenfrequency coefficients Q(m =1,n=1) as a function of % and %-. :

Lir,=1

Cylindrical
Rod

0.014

0.071

0.214

0.571

0.714

1.53746

1.53719

2.21839

2.75757

1.53079

2.20975

2.76526

1.47466
1.52418

2.07456
2.15244

2.71039
2.88201

0.90133

1.27776

0.56946
0.83500

1.02553
1.14166
1.31031
1.53135
1.75899
1.92782
1.98355

aal10
2.30746
2.55776
2.76274
2.99473

0.46916
0.68981
0.81632
0.93615
1.06412
1.24252
1.43477
1.61031
1.76753
1.92040
1.96299
2.17206
2.23211
2.42818
2.60274
2.77767
2.97734

Lir=4

0.014

0.22257

0.214

0.571

0.714

05

0.20431

0.18740

1.25826

1.64262

2.98640

1.25794

1.64270

2.98508

1.24773

1.64511

2.94154

1.16994

1.54563
1.65242

2.05114

2.71909
295614

091141
1.08913
1.23131

1.59268
1.71168
2.00679

2.37094
2.47769

2.87293

0.57401
0.76815
(0.92978
1.07803
1.22747
1.39866

1.56831
1.78589
1.95664
2.04076
2.27336

2.51229
2.74640

0.46105
0.61397
0.79920
0.89674
1.01706
1.18657
1.29521
1.46056
1.64317
1.82261
1.83253

i I




The variations of Q=Q(v,), Q(E,) where the subscript "y" indicates material or

geometric properties of the inner cylinder, is shown in Tables 4 and 5. From the results

shown in Table 4 it is clear that the variation of v, does not influence the pattern of the

frequency spectrum of the system while that of E, does.

In Fig. 2 and 3 mode shapes, even and odd, (u,,u,,u,) are presented corresponding, to a
certain eigenfrequency for each pair (n,m). We note that m indicates the order of the

Bessel functions and n the wave number in the z - direction.
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Table 4:  Eigenfrequency coefficients Q(m =1,n=1) as a function of v,.

v, =02 | v, =015 v, =03 | v, =035 v, =04 | v, =045] v, =048 | v, =049
0.03303 | 0.03303 | 0.03302 | 0.03302 | 0.03302 | 0.03302 | 0.03301 | 0.03301
057815 | 058816 | 059131 | 058261 | 057414 | 0.56591 | 0.56109 | 0.55951
0.60939 | 0.60027 | 0.60568 | 0.63469 | 0.68080 | 0.73663 | 0.75718 | 0.76090
079561 | 0.79076 | 0.78656 | 0.78294 | 0.77993 | 0.77776 | 0.77716 | 0.77709
091813 | 090375 | 0.89268 | 0.88801 | 0.90201 | 0.99867 | 1.08360 | 1.08178
120369 | 118015 | 1.15802 | 1.13722 | L11776 | 1.10109 | 1.17421 | 1.22148
138864 | 139201 | 138006 | 136183 | 134387 | 1.33468 | 136352 | 1.39605
147729 | 147854 | 150375 | 153795 | 157448 | 157384 | 155819 | 1.55309
165879 | 168530 | 166112 | 163049 | 160168 | 164696 | 177763 | 1.77632
172816 | 169390 | 1.73937 | 183852 | 183424 | 180638 | 192908 | 2.02660
1.98242 | 194364 | 100800 | 188976 | 208933 | 2.05449 | 203430 | 2.22689
225604 | 221105 | 216861 | 2.12854 | 2.11048 | 228701 | 2.27208 | 2.42043
2.38032 | 244639 | 241427 | 237155 | 233258 | 253546 | 2.51013 | 2.50307
251754 | 249212 | 261928 | 262665 | 257998 | 273560 | 2.74552 | 2.74036

Table 5: Eigenfrequency coefficients Q(m =Ln=1) as a function of E,.

E=ExI0" |E=ExI0? |E=Exl0" |E=ExI0" |E=Exl0' E=E x10°
0.01726 0.03193 0.03290 0.03303 0.03350 0.03653
0.05346 0.09077 0.18860 0.58816 0.08252 0.26096
0.06170 0.11636 0.20155 0.60027 0.79466 1.21249
0.07000 0.14110 0.28630 0.79076 1.40977 [.73331
0.08633 0.15576 0.36751 0.903735 1.99838 3.85041
0.09372 0.16901 0.44508 [.18015 2.09676 4.55741
0.12775 0.19492 0.49158 [.39201 2.76427
0.14431 0.22131 0.53210 147854 3.46935
0.15260 0.29949 0.61617 1.68539
0.16911 0.32580 0.69133 [.69390
0.17733 0.33723 0.76378 1.94364
0.18562 0.35198 0.77343 2.21104
0.20213 0.37801 0.78893
0.23514 0.40398 0.87137
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Figure 2. Mode Shapes (u,,u,.u,)

(A:n=1, m=1, Q=0.56109, B: n=1, m=2, L=0.96350,
C:n=1, m=3, Q=148139,D: n=1, m=4, Q=168310)
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Figure 3: Mode Shpaes (u,.u,,u,)
(A: n=2, m=1, Q=0.76384, B: n=3, m=1, Q=107826,

Con=d; m=1 0D=144452)
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5. CONCLUSIONS

In the present work, following separation of variables techniques and taking advantage of
irrotational and solenoidal properties of the longitudinal and transverse fields,
respectively, we constructed the Navier vector eigenfunctions of equation (2). The
general representation for the solution of the time-independent equation of elasticity for
the system under discussion (Fig. 1) was given in terms of the constructed Navier
eigenfunctions. The selection, in each case, of the solution of the problem from the
general function defined by the representation proposed is imposed by the boundary
conditions. The case of stress-free lateral (cylindrical) surface, continuity of displacement
and stress fields on the interface of the cylindrical surfaces and simply supported
boundary conditions on the plane boundaries was presented in detail from the analytical

and numerical point of view.

Especially results were presented for the eigenfrequencies and mode shapes of the system
considered that are in excellent agreement with the existing ones. The proposed analysis
can be used to establish limits of the validity of the shell theories. The more realistic
cases with respect to the boundary conditions and material properties will be presented in

a future communication.
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AFPENDIX A:

For real argument we have:
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APPENDIX B:

For real argument we have:
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where @ are the modified Bessel functions.

APPENDIX C:
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In the case of imaginary argument, division by i"™ of the elements of the matrix results

to a real matrix.
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APPENDIX D: Navier Eigenvectors in Cylindrical Coordinates

It can be proved that the displacement field u(r') is decomposed as follows

ur)=u"(r)+u’(r) ()
where
Vi (ry+k Fulr)=0 (ii)
Vil (r' )+ k' u(r')=0 (i)
and
i =Lk k‘5=£_

Cs

The transverse field «’(r') is proved to be solenoidal while the longitudinal u”(r') is
irrotational. Thus, there exists a scalar function ¥#(r') such that u”(r") =V ¥(r").
Introducing this expression in equation (ii) and using that the operators V' and V'*
commute with each other, we conclude that the function W*(r') is obliged to satisfy the

scalar Helmholtz equation with the same wave number &' ,.

The solenoidal character of the transverse field imposes that two possible forms of the
displacement field &’ (r') exist: V'W¥° x4 and V' x(V' ¥ x ) where ¥’ satisfies again
the scalar Helmholtz equation with wave number k';. The vector 4 is in general an

arbitrary constant unit vector [18].

We must determine the most general functions ¥* and ¥* introduced previously and

replace them in the already mentioned expressions of #” and «’ in order to get all
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possible forms of the displacement fields and to construct a complete set of vector

eigenfunctions for the equation of elasticity.

The functions ¥", r = p,s, having oscillatory behaviour towards z' - axis, have the form

-._F?..I'.i{rr .;L} - "I‘L{I'] r }Ehwzj{f :}_} {i‘l.-‘:'

where t = P.§ for the longitudinal and the transverse field, respectively, m=0,1,2,...,
J (x), forxeR 1
I.(x), forxeZ S

Y (x), forxeR
. ifl=2
K _(x), forxeZ

d (x)=

j=12,3,4, AeR" with

Z(z:A) =sin(Az), Z,(z;A) =sinh(AZ), Z;(z';A) = cos(AZ),
Z,(Z ;A)=cosh(Az),

i =0,1 (the two elastic regions under consideration)

|k =27, ifj=13

and M T .
L WKL HA, ifj=24

Applying the procedure described previously, after selecting @ = Z as it is induced by the

cylindrical geometry of the problem, we get the expressions (3), (4), (5).

For the specific problem, we discuss, the boundary conditions discretize the parameter
A = f(n), select j=1 and restrict the family of allowed scalar functions presented

previously, denoted now as W7 (r').
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The above functions are derived after application of separation of variables to the scalar

Helmholtz equation in cylindrical coordinates.

The application of the operator LT’" on ¥7? produces the first set of vector

%5
eigenfunctons:
m. ! . Ii):(xf’ rl] - i ' ' mm '
Er Y= {xpr VP (0.2 }+—'_[1.rm!§-'rl (@.2)+r C (@.2 }]. (v)
' Xpl

The functions P7,B7,CT, given by the expression (8) and appearing in the equation (5),
constitute a symbolism reminding us the corresponding perpendicular functions of

spherical geometry.

To obtain the remaining vector Navier eigenfunctions we use the scalar functions ‘¥, that

1s:

MIHr) = ivLP;*j-S XZ=

Xs
| (vi)
@ (x 1) s T o :
———imP; (9.2 )- D, (x;r' B, (0.2)
.xs_r !
and
N Ao T T G’ 4 B (vii)

Xg,

- N I S o
Instead of using N7’ we construct a new vector function a—I—NR; which satisfies also
. o,
; d : B e :
the vector Helmholiz equation (the operator ey commutes with V'*) and constitutes a
2

i : J o :
vector function independent of M. We prefer FN:‘I:‘ to N™' because the former
i R

BT, o



leads to an expression dependent on the vector functions P, B ,C, instead of the latter

which does not so. Renaming %i "™ 1o N™', we finally have:
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