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Abstract

Mobile computing introduces a new form of distributed computation in which communication
is most often intermittent, low-bandwidth, or expensive, thus providing only weak connectivity.
In this paper, we present a replication schema tailored for such environments, that seeks to adapt
consistency guarantees to networking conditions. Bounded inconsistency is defined by allowing
controlled deviation among copies located at weakly connected sites. The database interface
is extended with weak operations that permit access to local, potentially inconsistent copies and
make conditional updates. The usual operations, called strict in this framework, are also supported
and offer access to consistent data and perform permanent updates. The proposed model provides
for disconnected operation, since mobile clients can operate even when disconnected by using weak
operations. A balanced use of weak and strict transactions can efficiently reduce network usage
and latency. Adjusting the degree of divergence among coples provides additional support for
adaptabilitv. We present correctness criteria for the schema, prove corresponding serializability-
based theorems, and outline protocols for its implementation. Then, some practical examples of its
applicability are provided. The performance of the schema is evaluated for a range of networking
conditions and varying percentages of weak transactions by using an analytical model developed
for this purpose.

Keywords: mobile computing, consistency, concurrency control, disconnected operation. transac-
tion management,

1 Introduction

Advances in telecommunications and in the development of portable computers have provided for
wireless communications that permit users to actively participate in distributed computing even while
relocating from one support environment to another. The resulting distributed environment is subject
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to restrictions imposed by the nature of the networking environment that provides varying, intermit-
tent and weak connectivity.

In particular. mobile clients encounter wide variations in connectivity ranging from high-bandwidth.
low latency communications through wired networks to total lack of connectivity [9, 13, 26]. Between
these two extremes, connectivity is frequently provided by wireless networks characterized by low
bandwidth, high latency or high cost. To overcome availability and latency barriers, and reduce
cost and power consumption mobile clients most often deliberately avoid use of the network and
thus operate switching between connected and disconnected modes of operation. To support such
behavior, disconnected operation, that is the ability to operate disconnected, is essential for mobile
clients [13, 15, 29]. Besides disconnected operation, operation that exploits weak connectivity, that is
connectivity provided by intermittent, low-bandwidth, or expensive networks, is also desirable [21, 11].

Mobile users will access private or corporate databases stored at mobile as well as static hosts and
queried and updated over wired and wireless networks. For instance, insurance agents may interact
through their mobile station with a database storing consumer records, while traveling salespersons
may access inventory databases. Requirements for database use through wireless communications
stem also from personal computing applications. Accessing databases is necessary for instance for
ronsumers to purchase goods, get traffic information, or make travel plans while using their notebooks.
These databases, for reasons of reliability, performance, and cost will be distributed and replicated
over many sites. In this paper, we propose a replication schema that supports weak connectivity and
disconnected operation by balancing network availability against consistency guarantees,

In the proposed schema, data located at strongly connected sites are grouped together to form
clusters. Mutual consistency is required for copies located at the same cluster while degrees of inconsis-
tency are tolerated for copies at different clusters. The interface offered by the database management
systemn is enchanced with operations providing weaker consistency guarantees. Such weak operations
allow access to local, i.e., in a cluster, bounded inconsistent copies and make conditional updates.
The usual operations, here called strict, are also supported and offer access to consistent data and
perform permanent updates. The schema supports disconnected operation since users can operate
even when disconnected by using only weak operations. In cases of weak connectivity, a balanced use
of both weak and strict operations provides for better bandwidth utilization, latency and cost. In
cases of strong connectivity, using only strict operations makes the schema reduce to the usual one-
copy semantics. Additional support for adaptability is offered be tuning the degree of inconsistency
among copies based on the networking conditions.

We introduce formal criteria to characterize the correct concurrent execution of weak and strict
operations as well as a syntactically-based schema for reconciling bounded inconsistent copies. Then,
we prove corresponding serializability-based theorems and outline protocols for an implementation
of both the consistency and the rveconciliation schemas. The presented implementation is based
on distinguishing data copies into core and quasi. Examples of how the schema can be used are
outlined. Then. an analytical model is developed to evaluate the performance of the schema and
the interplay among its various parameters. The model is used to demonstrate how the percentage



of weak transactions can be effectively tuned to attain the desired performance. The performance
parameters considered are the syvstem throughput, the number of messages, and the response time.
The study is performed for a range of networking conditions, that is for different values of bandwidth
and for varyving disconnection intervals. We provide also an estimation of the reconciliation cost that
ran be used to determine an appropriate frequency for the reconciliation events.

The remainder of this paper is organized as follows. In Section 2, the model is introduced along
with an outline of its implementation. In Section 3 and 4, we define correctness criteria, prove
serializability-based theorems, and present corresponding protocols for respectively maintaining weak
consistency and for reconciliation. In Section 5, we present an analytical model for the schema and
use it to estimate its performance. In Section 6, we evaluate the cost of reconciliation. Various issues
regarding the schema along with examples of its use are presented in Section 7. In Section 8, we

compare our work with related research and conclude in Section 9 by summarizing.

2 The Consistency Model

To support autonomaous operation during disconnections and to improve performance, data are dis-
tributed over mobile and stationary cites. Transactions are inititiated at both mobile and stationary

hosts,

2.1 Data Correctness

As usunally, a database stafe is defined as a mapping of every data to a value of its domain. Data are
related by a number of restrictions called integrify constraints that express relationships of values of
data that a database state must satisfv. A state is consistent if the integrity constraints are satisfied
[23]. In contrast to traditional distributed databases where sites are normally connected, in mobile
environments sites are only intermittently connected. Thus. instead of requiring maintenance of all
integrity constraints we define units of consistency, called clusters, by partitioning the items of a
database into clusters Cl; based on their location, so that data in strongly connected sites belong to

the same cluster. Then, we provide a weaker form of consistency as follows:

Definition 1 A cluster stafe is consistent iff all intracluster integrity constraints hold. A database
state is d-consistent iff all cluster states are consistent and all intercluster integrity constraints are
d-degree consistent.

The definition of d-degree consistency for an integrity constraint depends on its type. In this
paper, we focus on replication constraints, where copies x; of the same data item r are expected
to have the same value. For replicated data, d-consistency means mutual consistency of all copies
in the same cluster and bounded divergence among copies at different clusters. This divergence
may be expressed in terms of the time lag or fuzziness of values of the copies in deviating from
mutual consistency [30, 1]. The values of the data copies are occasionally reconciled to obtain a



mutual consistent value. The degree can be tuned based on the availability of network bandwidih by
allowing little deviation in instances of higher bandwidth availability and high deviation in instances
of low bandwidth availability. Thus. bounded inconsistency makes applications able to adjust to the
limitations of the communication environment by providing users with data of variable level of detail
or quality. For example, in the instance of a cooperative editing environment where multiple users are
coediting a book, the application can display only one chapter or old versions of chapters in cases of
weak network connectivity and up-to-date copies of all chapters in cases of strong network connectivity,
The cluster configuration is dynamic. Clusters of data may be explicitly created or merged upon a
fortheoming disconnection or connection of the associated mobile client. To accommeodate migrating

locality, a mobile host may move to a different cluster upon entering a new support environment,

2.2 The Extended Database Operation Interface

To increase availability and reduce network usage we allow divect access to locally, eg., in a cluster,
available d-consistent data by introducing weak reads and weak writes. These weak operations allow
clients to operate on d-consistent data when the lack of strict consistency can be tolerated by the
semantics of their applications. We call the standard read and write operations strict read and strict
write operations. In particular, a week read operation on a data item r (WR[z]) reads a locally
available value of . A weak write operation (WW{z]) writes locally available copies and becomes
permanent after reconciliation. A strict read operation (SR[z]) reads the value written by the last
strict write operation. Finally, a strict write operation (SW([r]) writes one or more copies of r and is

permanent upon the end of the issuing transaction.

Definition 2 (transaction) A transaction (T) is a partial order (OP, <), where OFP is the set
of weak (WR) or strict read (SR) , weak (WW ) or strict write (SW), abort {A) and commit (C)
operations executed by the transaction, and < represents their execution order. The partial order must
spectfy the order of conflicting date operations and contains exactly one abort or commit operation
which is the last in the order. Two weak (strict) data operations conflict if they access the same copy

of a data item and at least one of them is a weak (strict) write operation.

Two types of transactions are supported, weak and strict. A weak transaction (W7T') is a transac-
tion where OF does not include strict operations. A strict transaction {S7') is a transaction where OP
does not include weak operations. Weak transactions access data copies that belong to the same clus-
ter and thus are local at that cluster. Upon their submission, user transactions are decomposed into a
number of weak and strict subtransactions units according to the degree of consistency required by the
application. There are two commit events associated with each weak transaction, a local commit in
its associated cluster and an implicit global cornmit at reconciliation. Local commitment is expressed
by an explicit commit operation, C. Updates made by locally committed weak transactions are visible
only by weak transactions in the same cluster. These updates become permanent and visible by strict
transactions only after reconciliation when local transactions become globally committed.



2.3 Implementation

We divide copies into core and quasi. Core copies are copies that have up-to-date and permanent
values, while guast copies are copies that have potentially obsolete values that are only conditionally
committed. All quasi copies at a cluster are mutually consistent and show bounded inconsistency
with respect to core copies. Core copies are mutually consistent. Efficient distribution of core and
quasi copies may be accomplished using appropriate algorithms for replica placement such as those
proposed in [12]. To process the operations of a transaction, the database management svstem
translates operations on data itetns into operations on the copies of these data items. In general,
strict transactions, except of occasional updates of quasi copies. access only core copies and weak
transactions operate on local, quasi or core, copies. We formalize this procedure by a franslation
function h.

Function h maps each SR[x] operation into a number of read operations on core copies of x and
returns one value (e.g.. the most up to date) as the value actually read by the operation. Each
WW/z] operation is translated by h into a number of write operations of local quasi copies of r.
Depending on the translation of a weak read operation we define two types of translation functions:
a best-effort translation function that maps each W R[r] operation into a number of read operations
on locally available core or quasi copies of x and returns the most up-to-date such value, and a
conservative translation function that maps each weak read into a number of read operations only
on locally available quasi copies and returns the most up-to-date such value. In addition, based
on the time of propagation of updates of core copies to quasi, we define two types of translation
functions: an eventual translation function that maps a SW[z| into writes of only core copies and
an fmmediafe translation function that updates as well the quasi copies at the corresponding cluster.
For an immediate b, conservative and best-effort have the same result. How many and which core or
quasi coples are actually read or written when a database operation is issued on a data item depends
on the coherency algorithm used, e.g. quorum consensus, ROWA, [3]. Without loss of generality, we
assume that there is only one quasi copy per cluster. This assumption can be easily lifted but with
significant complication in notation. Since all quasi copies in a cluster have the same value, this single

copy can be considered to be their representative.

Immediate translation and consistency. In the case of integrity constraints other than replication
comstraints between data items. and for immediate translation functions, h should be defined such
that integrity constraints between quasi copies in the same cluster are not violated. The following
example is illustrative,

Example 1 For simplicity consider only one cluster. Assume fwo data ttems b and ¢, related by the
integrity constraint b > 0 = ¢ > 0. and a consistent database stafe b* = —1 W = —1, ¢ = 2 gnd
e = —4, where superscripts ¢, and ¢ denote core and quasi copies respectively.

Consider the transaction program:

b =10

3



if el
then ¢ = 10

If the above program is executed as a strict transaction SW(b) SR(c) C, we get the database state
B =10, 0 =10, ¢ =2 and 7 = —4, where the integrity constraint between the gquasi copies of b and

e 15 molofed. O

The problem arises from the fact that quasi copies are updated to the current value of the core
copy without taking into consideration integrity constraints among quasi copies. Similar problems
oceur when refreshing individual copies of a cache [1]. Possible solutions include: (1) Each time a
quasi copy is updated as a result of a strict write, the quasi copies of all data related to it by some
integrity constraint are also updated either after or prior to the execution of the transaction. This
update is done following a reconciliation procedure for merging core and quasi copies (as in Section
4}). In the above example, the core and quasi copies of b and e should have been reconciled prior
to the execution of the transaction, producing for instance the database state b = —1, 7 = —1
" = 2 and ¥ = 2. Then, the execution of the transaction would result in the database state b° = 10,
B =10, ¢° = 2 and 7 = 2, which is consistent. (2) If a strict transaction updates a quasi copy at
a cluster, its read operations are also mapped into reads of quasi copies at this cluster. In cases of
incompatibilities, a reconciliation procedure is again initiated having a similar result as above. (3)
Updating quasi copies is postponed by deferring any updates of quasi copies that result from writes
of the corresponding core copies. A log of weak writes resulting from strict writes is kept. In this
scenario, the execution of the transaction results in the database state 8 = 10, 0¥ = =1, ¢* = 2 and

e = —4 which is consistent.

3 Weak Connectivity Operation

In this section, we provide serializability-based criteria, graph-based tests and a locking protocol for
correct executions that exploit weak connectivity. We use the terms read and write to refer to the
operations on data copies. The subscript j of an operation denotes that it belongs to transaction j
and the subscript on a data copy identifies the cluster. A complete intracluster schedule, IAS, is an
observation of an interleaved execution of transactions in a given cluster configuration, that includes

(locally) committed weak transactions and (globally) committed strict transactions. Formally,

Definition 3 (intracluster schedule) Let T = {T;, Ty, ....T,,} be a set of transactions. A (com-
plete) intracluster schedule, 1AS. over T is a pair (OF, <, in which <, is a partial ordering relation
such that

I. OP = hilJi=y T;) for some translation function h.

2. For each T; and all operations opy, opy in T, if ope <; opy, then every operation in hiopy) is
related by <, to every operation in hiop).



3. All pairs of conflicting operations are relaled by <,. where two operations conflict if they access

the same copy and one of them is a write operation.
4. For all read operations, read;[z;] there is at least one write ;] such that writeg[r;] <, read;[z;].

If SWj[z] <. SR;[z] and read;(x;) = h(SR;[z]), then write;(x;) € SWjz].

o

6. If writej[z;] € h(SW[z]) for some sirict transaction T; then write;[y;] € h(SWjly]) for all y
written by T; for which there is a y; € Cly, where x; is a quasi copy when h is conservative and

any, quast or core, copy when h is best effort.

Condition 1 states that the transaction managers translate each operation on a data item into ap-
propriate operations on data copies. Condition 2 states that the intracluster schedule preserves the
ordering stipulated by each transaction and Condition 3 that it also records the execution order of
conflicting operations. Condition 4 states that a transaction cannot read a copy unless it has been
previously initialized. Condition 5 states that if a transaction writes a data item x before it reads .
then it must write to the same copyv of r that it subsequently reads. Finally, Condition ¢ indicates
that for a strict transaction. if a write is translated to a write on a data copy at a cluster Cl; then all
other writes of this transaction that may be possibly read by a weak transaction must also write the
corresponding copies at cluster Cl;. This condition is necessary for ensuring that weak transactions
do not see partial results of a strict transaction. A read operation on a data item r reads-z-from
a transaction T; if it reads a copy of = written by T; and no other transaction writes this copy in
between, Given a schedule S, the projection of S on strict transactions is the schedule obtained from
5 by deleting all weak operations, and the projection of S on a cluster Cl is the schedule obtained
from 5 by deleting all operations of § that do not access Clg. A schedule is one-copy serializable if

it is (view) equivalent to a serial one-copy schedule [3].

3.1 Correctness Criterion

A correct concurrent execution of weak and strict transactions must maintain d-consistency among

clusters and strict consistency inside each cluster.

Definition 4 (IAS Weak Correctness) An intracluster schedule is weakly corvect iff

1. all transactions have a consistent view, i.e., all constraints that can be evaluated using the data

read are valid,

2. {a) strict transactions have the same reads-from relationship, and {b) the sef of final writes on

core copies 15 the same as in an one copy serial schedule,
4. it maintains the d-degree relationship among copies.

Next, we discuss how to enforee the first two conditions. Protocols for bounding the divergence among
copies are outlined at the end of this section. The following theorem, defines correctness in terms of

equivalence to serial executions,



Theorem 1 Given that d-consistency is maintained, an intracluster schedule 5 is weakly correct if
its projection on strict fransactions is one-copy serializable and each of its projections on a cluster is

conflict-equivalent to a serial schedule.

Proof: The first condition of the definition of correctness is guaranteed for strict transactions from
the requirement of one-copy serializability, since striet transaction get the same view as in an one-copy
serial schedule and read only core copies. For weak transactions at a cluster, the condition is provided
from the requirement of serializability of the projection of the schedule on this cluster given that
the projection of each transaction at the cluster maintains consistency when executed alone. Thus it
suffices to prove that such projections maintain consistency. This trivially holds for weak transactions
since they are local at each cluster. The condition also holds for strict transactions, since if a strict
transaction maintains d-consistency. then its projection on any cluster also maintains d-consistency,
as a consequence of condition (6) of the definition of an IAS schedule. Finally, one copy serializability
of the projection of strict transactions suffices to guarantee 2({a) and 2(b) since strict transactions

—

read only core copies and weak transactions do not write core copies respectively. o

Note, that intercluster constraints other than replication constraints among quasi copies of data items
at different sites may be violated. Weak transactions however are unaffected of such violations, since
they read only local data. Although, the above correctness eriterion suffices to ensure that each weak
transaction gets a consistent view, it does not suffice to ensure that weak transactions at different
clusters get the same view, even in the absence of intercluster constraints. The following example is
illustrative.

Example 2 Assume two clusters Cly = {x, y} and Cly = {w, 2,1} that have both guasi and core copies
of the corresponding data items, and the following two strict transactions ST, = SWi[z] SW;[w]C,
and 8T = SW5 [y|SWy[z]SRy[z]|Cy. In addition, at cluster Cl; we have the weak transaction WT; =
W R3[z] WR;3[y] Cs, and at cluster Cl, the weak transactions WTy = WRy[z] WW,[l] Cy. and
WTs = WR5[w] WR;[l] C5. For simplicity, we do not show the transaction that initializes all data

copies. We consider an immediate and best effort h.

The erecution of the above transactions produces the weakly correct schedule
S= H-R", [w] S”'] ['-!] H'R:; [.'E.']SH'] [f..[] C[SI-I-Q[‘y]SI-i'-g [Z]SRQ [J]CQHR'; [y]C3 H'Rt[:]H'H;[Fj C.1 i'I-‘FR;, [f] C3

The projection of S on strict transactions is: SWi[x] SW1w] C; SWaly] SWalz] Co which is equivalent
to the 1SR schedule: SWi[z] SWilw] C; SWaly] SWylz] Cy

The projection of 5 on Cly: SW[z] WR;s[z] C, SWaly] SRy[z] WR3[y] Cs is serializable as ST, —
g1 —+ Wy

The projection on Cly: W Rs[w] SWi[w] C7 SWy[z] C; WRy[z] WW{[l] Cy W R3[l] C5 is serializable
as STy — WT, = WT; = 5T O



Thus, weak correctness does not guarantee that there is a serial schedule equivalent to the in-
tracluster schedule as a whole, that is including all weak and strict transactions. The following is
a stronger correctness criterion that ensures that weak transactions get the same consistent view.

Obviously, strong correctness implies weak correctness.

Definition 5 (IAS Strong Correctness) An intracluster schedule S over T is strongly correct iff

there is o serial schedule Sg over T such that
1. S5 is conflict-equivalent with 5, and

2. In Ss. {a) strict transactions have the same reads-from relationship, and (b) the set of final

writes on core copies is the same as in an one copy serial schedule.

Theorem 2 An intracluster schedule S over T is correct if it is conflict-equivalent to a serial schedule
Sg and its projection on strict transactions is equivalent to an one-copy serial schedule Sio such that

the order of transactions in Ss s consistent with the order of transactions in S)c.

Proof: We need to prove that in 5S¢ strict transactions have the same read-from and final writes as
in S5 which is straightforward since strict transaction only read data produced by strict transactions

and core copies are written only by strict transactions. O

Since weak transactions do not directly conflict with weak transactions at other clusters, the
following is an equivalent statement of Theorem 2,

Theorem 3 An intracluster schedule 5 is corvect if its projection on strict transactions is equivalent
to an one-copy serial schedule 51, and each of its projections on a cluster Cl; is conflict-equivalent
to a sertal schedule Ss. such that the order of transactions in Ss, is consistent with the order of
transactions in Sy,

If weak I.4S correctness is used as the correctness criterion, then the transaction managers at each
cluster must only synchronize projections on that cluster. Global control is required only for synchro-
nizing strict transactions. Therefore, no control messages are necessary between transaction managers
at different clusters for synchronizing weak transactions. The proposed schema is flexible, in that any
coherency control method that guarantees one-copy serializability (e.g., quorum consensus, primary
copy) can be used for synchronizing core copies. The schema reduces to one-copy serializability when

only strict transactions are nsed.

3.2 The Serialization Graph

To determine whether an I AS schedule is correct, a modified serialization graph is used, that we call
the intracluster serialization graph (IASG) of the T AS schedule. To construct the [ ASG, a replicated
data serialization graph (SG) is built to represent conflicts between strict transactions. An SG [3] is

a serialization graph augmented with additional edges to take into account the fact that operations
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on different copies of the same data item may also cause conflicts. Acyclicity of the SG implies one-
copy serializability of the corresponding schedule. Then, the SG is augmented with additional edges
to represent conflicts between weak transactions in the same cluster and conflicts between weak and
strict transactions. We add an edge T; — T between two transactions T; and T in TAS. if op; <, op;.
An edge is called a dependency edge if it represents the fact that a transaction reads a value produced
by another transaction, and a precedence edge if it represents the fact that a transaction reads a value
that was later changed by another transaction.

It is easy to see that in the TASG there are no edges between weak transactions at different clusters,

since weak transactions at different clusters read different copies of a data item. In addition:

Property 1 Let WT; be a weak fransaction at cluster Cl; and ST a strict transaction. The JASG

graph induced by an TAS may include only the following edges between them:
o 1 dependency edge from ST to WT;

o a precedence edge from WT; ta 5T

Proof: Straightforward from the conflict relation, since the only conflicts between weak and strict

transactions are due to strict writes and weak reads of the same copy of a data item. |

Theorem 4 Let S;as be an intracluster schedule. If S;as has an acyclic IASG then S is strongly

correct.

Proof: When a graph is acyclic then each of its subgraphs is acyclic thus SG is acvclic. Acyelicity
of the SG implies one-copy serializability of the strict fransactions since strict transactions read only
values written by strict transactions. Let Ty, Ts, ... , T, be all transactions in 5;45. Thus Ty, Ts,

, Ty are the nodes of the TASG. Since IASG is acvclic it can be topologically sorted. Let T;,.
Tiss -+ T;, be a topological sort of the edges in IASG, then by a straightforward application of the
serializability theorem [3] S;4¢ is conflict equivalent to the serial schedule Ss = T}, Ti,, ... . Tg,.
This order is consistent with the partial order induced by a topological sorting of the SG, let S be
the corresponding serial schedule. Thus the order of transactions in Sg is consistent with the order

of transactions in Sy, O

3.3 Protocols

Serializability. We distinguish between coherency and concurrency control protocols. Coherency
control refers to ensuring that all copies of a data item have the same value, here we must maintain
this property globally for core and loecally for quasi copies, Concurrency control refers to maintaining
consistency of the other integrity constraints, here the intracluster constraints. For coherency control,
we assume a generic quorum-based schema [3]. Each strict transaction reads g, core copies and writes
¢y COre copies per strict read and write operation. The values of g, and g, for a data item r are

such that g, + g, > ng. where ng is the number of available core copies of r. For concurrency

10
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Figure 1: Lock compatibility matrices. A X entry indicates that the lock modes are compatible. (a)
Eventual and conservative fi. (b) Eventual and best effort. (c¢) Immediate and conservative. (d)
Immediate and best effort h.

control we use strict two phase locking where each transaction releases its locks upon commitment
[3]. Weak transactions release their locks upon local commitment and strict transactions upon global
commitment. There are four lock modes (WR, WW, SR, 5W) corresponding to the four data
operations. Before the execution of each operation, the corresponding lock is requested. A lock
is granted only if the data copy is not locked in an incompatible lock mode. Figure 1 depicts the
compatibility of locks for various types of translation functions and is presented to demonstrate the
interference between operations on items. The differences in compatibility stem from the fact the

operations access different kinds of copies.

Bounded inconsistency among copies. The degree for each data item at a cluster expresses the
divergence of the local quasi copy from the value of the core copy. This difference may result either
from globally uncommitted weak writes or from updates of core copies that have not yvet been reported
at the cluster. As a consequence, the degree may be bounded either by limiting the number of weak
writes pending commitment or by controlling the h function. In Table 1, we outline ways of defining

the bound on divergence along with methods of implementing them.

4 A Consistency Restoration Schema

For each data item. after the execution of a number of weak and strict transactions all its core copies
have the same value while its quasi copies may have as many different values as the number of clusters.
In this section, first, we provide criteria for characterizing the correctness of protocols for reconciling
the different values of copies and then describe such a protocol.

The exact point of reconciliation depends on the application requirements and the distributed
system characteristics. Reconciliation may be forced to keep the inconsistency inside the required
limits. Alternatively, it may be initiated periodically or on demand upon the occurrence of specific
events. For example, values may be reconciled when the network connection is reestablished, for
instance when a palmtop is plugged-back to the stationary network or a mobile host enters a cell that
provides good connectivity.

11



Definition of the degree of divergence (o) I Method

Up to d transactions can operate The number of weak transactions at each cluster
on inconsistent data., is bounded appropriately.

. The function h is defined such as a strict write maodifies
d is the maximum of divergent versions per | quasi copies at a cluster at least after every d updates.
item, that is a transaction reads at most This definition cannot be ensured for involuntary disconnected
up to d-version old data. clusters since there iz no way of notifving them for
remote updates of core copies.

(for data items with arithmetic values)

Each copy can take a value only inside Only weak writes whose values are in the
a range d of acceptable values allowable bounds are accepted.

The number of quasi copies that are allowed to diverge
Up to d data items are allowed to is bounded to d by allowing weak writes only on
diverge. a set of d data items.

The number of quasi copies that are allowed to diverge

at each cluster is bounded =0 that the total number

Up to d data copies per item are allowed of quasi copies that differ from core copies in all

| to diverge. clusters is d. This is achieved by bounding appropriately the

mumber of weak writes at each cluster.

Tahle 1: Possible definitions for bounded inconsistency.

4,1 Correctness Criterion

Approaches to reconciling copies vary from purely syntactic to purely semantic ones [7]. We adopt a
purely syntactic application-independent approach. Our correctness criterion is based on the following
principle: if a core copy is written, and a strict transaction has read it, the value of the core copy is the
value selected. Otherwise, the value of anv quasi copy may be chosen. Some weak transactions that
wrote a value that was not selected may need to be undone/compensated or redone. This may lead
to roll-back of other weak transactions that have read values written by this transaction. However,
transaction roll-back is limited and never crosses the boundaries of a cluster,

A (complete) intercluster schedule, IES, models execution after reconciliation, where global trans-
action should become aware of local writes, i.e., local transaction become globally committed. In the

schedule, we must add additional conflicts between weak and strict operations.

Definition 6 (intercluster schedule) An intercluster schedule (IES) Sips based on an intraclus-
ter schedule Syas = (OP, <) is a pair (OP', <.) where

1. OF = 0P,
2. for any op; and op; € OF', if op; <, op; in Sras then op; <. op; in Sres, and in addition:

3. for each pair of weak write WW;[z] and strict read SR;[x] operations either WWi[x] <, SR;[x]
or SR;[z] <. WW;[z]
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4. for each pair of weak write WW;[z] and strict write SW;[x] operations either WWj[z] <. SW;[x]
or SW;[z] <. WW;[z].

We redefine the reads-from relationship for strict transactions as follows. A strict read operation
on a data item x reads-r-from a transaction T; if it reads a copy of = and T; has written this copy or
a quasi copy of r and no other transaction wrote this or the quasi copy in between.

We accept as many weak writes as possible without violating the one-copy serializability of strict
transactions. Specifically, a weak write is accepted only when it does not violate the read-from

relationship for strict transactions.

Definition 7 (IES Correctness) An intercluster schedule is correct iff
1. it is based on a correct IAS schedule Spa5. and

2. strict transactions have the same reads-from relation as in the Spas.

4.2 The Serialization Graph

To determine correct [ES schedules we define a modified serialization graph that we call the inter-
cluster serialization graph (IESG). To construct the IESG, we augment the serialization graph IASG
of the underlying intracluster schedule. To force conflicts among weak and strict transactions that

read different copies of the same data item, we induce

e first, a write order as follows: if T; weak writes and T} strict writes any copy of an item @ then
gither T; — T or T —+ T} ; and

e then. a strict read order as follows: if a strict transaction §T; reads-x-from ST; in 5j45 and a

weak transaction WT follows ST; then we add an edge 57; — WT.

Theorem 5 Let S;ps be an IES schedule based on an IAS schedule S;pag. If Sips has an acyclic
TESG then Srpg is correct.

Proof: Clearly, if the IESG graph is acyelic, the corresponding graph for the IAS is acvelic (since
to get the IESG we only add edges to the IASG). We will show that if the graph is acyclic then
the read-from relation for striet transactions in the intercluster schedule 5pgpg is the same as in the
underlying intracluster schedule S;45. Assume that ST} reads-x-from ST; in S;45. Then ST; — 5T;.
Assume for the purposes of contradiction, that 5T; reads-x-from a weak transaction WT. Then WT
writes x in Sygs and since ST; also writes x either (a) ST; — WT or (b) WT — 5T7;. In case (a),
from the definition of the JESG, we get ST; — WT, which is a contradiction since 57} reads-x-from
WT. In case (b) WT — ST;, that is WT precedes ST; which precedes ST}, which again contradicts
the assumption that ST reads-x-from WT. m|
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Table 2: The reconciliation steps.

4.3 Protocol

To get a correct schedule we need to break potential cycles in the IES graph. Since to construct the
[ESG we start from an acyelic graph and add edges between a weak and a strict transaction, there
is always at least one weak transaction in each cycle. We rollback such weak transactions. Undoing
a transaction may result in cescading aborts, that is, in aborting transactions that have read the
values written by the transaction; that is, transactions that are related with a dependency edge to
the transaction undone. Since weak transactions write only quasi copies in a cluster, and since only

weak transactions in the same cluster can read these quasi copies we get the following lemma:

Lemma 1 Only weak transactions in the same cluster read values written by weak transactions in

that cluster.

The above lemma ensures that only weak transactions in the same cluster are affected when a weak
transaction is aborted to resolve conflicts in an intercluster schedule. In practice, fewer transactions
ever need to be aborted. In particular, we need to abort only weak transactions whose output
depends on the exact values of the data items they read. We call these transactions eract. Most weak
transactions are not exact, since by definition, weak transactions are transactions that read local
d-consistent data. Thus, even if the value they read was produced by a transaction that was later
aborted, this value was inside an acceptable range of inconsistency and this is probably sufficient to
guarantee their correctness.

Detecting cyeles in the IEG can be hard. The difficulties raise from the fact that between trans-
actions that wrote a data item an edge can have any direction, thus resulting in polygraphs [23].
Polynomial tests for acyelicity are possible, if we made the assumption that transactions read a data
item before writing it. Then, to get the IES graph from the IAS we need only:

e induce a read order as follows: if a strict transaction ST reads an item that was written by a

weak transaction WT we add a precedence edge SE — WT

Table 2 outlines the reconciliation steps.
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5 Discussion

5.1 Issues

Weak Operations. The proposed hybrid schema allows for the coexistence of weak and strict trans-
actions. Weak transactions let users process local data thus avoiding the overhead of long network
accesses. Strict transactions need access to the network to guarantee consistency of their updates.
Weak reads provide users with the choice of reading an approximately accurate value of a datum
in particular in cases of total or partial disconnections. This value is appropriate for a variety of
applications that do not require exact values. Such applications include gathering information for
statistical purposes or making high-level decisions and reasoning in expert systems that can tolerate
hounded uncertainty in input data. Consider for instance the case of a customer who takes a look
at the available credit before making a purchase, or that of a traveling salesperson who wants an
estimation of the available stock before setting prices. In another context, getting the approximate
location of a mobile user may suffice to determine what type of location-based services, e.g., traffic
information, is applicable. Weak writes allow users to update local data without confirming these
updates immediately. Update validation is delayed till clusters are connected. Delayed updates can
be performed during periods of low network activity to reduce demand on the peaks. Furthermore.
grouping together weak updates and transmitting them as a block rather than one at a time can
improve bandwidth usage. For example, a salesperson can locally update many data items, till these
updates are finally confirmed, when the machine is plugged back to the network at the end of the day.
However, since weak writes may not be finally accepted, they must be used only when compensating
transactions are available. or when the likelihood of conflicts is very low. For example, users can
employ weak transactions to update mostly private data and strict transactions to update frequently

used, heavily shared data.

Communication and Consistency. Users can choose to be logically disconnected even when physically
comnected. Disconnected operation is supported by using only weak operations. To accommodate
weak connectivity, a mobile client can select an appropriate combination of weak and strict trans-
actions based on the consistency requirements of its applications and on the prevailing networking
conditions. Adjusting the degree of divergence provides an additional support for adaptability. In
a sense, weak operations offer some form of application-aware adaptation [22]. Application-aware
adaptation characterizes the design space between two extremes. At one extreme, adaptivity is en-
tirely the responsibility of the application, that is there is no system support or any standard way of
providing adaptivity. At the other extreme, adaptivity is subsumed by the system, here the database
management system. In general, the svstem is not aware of the application semantics and cannot
provide a single adequate form of adaptation. Weak and strict operations lie in an intermediate point

between these two extremes, serving as middleware between a database system and an application,

Clusters. Clusters are defined based on the physical location of data. Data located at the same,
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neighbor, or strongly connected sites are considered to belong to the same cluster, while data residing
at remote or weakly connected sites are regarded as belonging to separate clusters. Other definitions
of clusters are also feasible. Clusters may be defined based on the semantics of data or applications.
Information about access patterns, for instance in the form of a wser’s profile that includes data
describing the user’s typical behavior, may be utilized in determining clusters. Under this definition,
data that are most often accessed by a user or data that are in a great extent private to a user can
be considered to belong to the same cluster independent of their location or semantics.

Weak Consistency. The idea of providing weak operations can be applied to other type of constraints
besides replication. Such constraints can be vertical and horizontal partitions or arithmetic constraints
[30]. Another way of defining the semantics of weak operations is by exploiting the semantics of data.
In [36], data are fragmented and later merged based on their object semantics.

5.2 Examples

Cooperative Environments. Consider the case of users working on a common project using mobhile
hosts. Groups are formed that consist of users who work on similar topics of the project. Clusters
correspond to data used by people in the same group who need to maintain consistency among their
interactions. We consider data that are most frequently accessed by a group as data belonging to this
group. At each group, the copies of data items belonging to the group are core copies, while the copies
of data items belonging to other groups are quasi. A data item may belong to more than one group
if more than one group frequently accesses it. In this case, core copies of that data item exist in all
such clusters. In each cluster, operations on items that do not belong to the group are weak. while
operations on data that belong to the group are strict. Weak updates on a data item are accepted

only when thev do not conflict with updates by the owners of that data item.

Caching. Clustering can be used to model caching in a client/server architecture. In such a setting.
a mobile host acts as a client interacting with a server at a fixed host. Data are cached at the client
for performance and availability. The cached data are considered quasi copies. The data at the fixed
host are core copies. Transactions initiated by the server are always strict. Transactions initiated
by the client that invoke updates are always weak while read-only client transactions can be strict if
strict consistency is required. At reconciliation, weak writes are accepted only if they do not confiict
with strict transactions at the server. The frequency of reconciliation depends on the user consistency

requiremnents and on networking conditions.

Location Data. In mobile computing, data representing the location of a mobile user are fast-changing.
Such data are frequently accessed to locate a host. Thus, location data must be replicated at many
sites to reduce the overhead of searching. Most of the location copies should be considered quasi.
Only a few core copies are always updated to reflect changes in location.
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5.3 Applications Beyond Weak Connectivity

Multidatobase Systems. Multidatabase systems are confederations of autonomous pre-existing database
systems. In this environment. transaction management is performed at two levels: at a local level
by the pre-existing fransaction managers of the local databases (LTMs), and at a global level by the
global transaction manager (GTM) [5]. Local transaction managers are responsible for the correct
execution of transactions executed at their local sites. The global transaction manager retains no
control over global transactions after their submission to the LTMs and can make no assumptions
about their execution. Local sites mayv be viewed as clusters. local transactions as weak transac-
tions, and global transactions as strict transactions. Replication constraints express the fact that
data items representing the same real-word entity may exist in more than one local database, We
can consider two tvpes of copies per data, quasi copies that correspond to pre-existing local data and
may be independently updated and core copies that correspond to global data that are created during
integration. Weak correctness of intra-cluster schedules respects the autonomy of local sites, since
serializability of the projections at each cluster is gnaranteed by the LTMs and one-copy serializability
of strict transactions can be ensured by the GTM. Global transactions can read both core and quasi
copies and thus can ensure bounded inconsistencies between them. To reconcile quasi and core copies,
polytransactions [31] can be used. This schema can be augmented to support local transactions with

strict semantics using protocols along the lines of [14].

Very Lampe Datoabases. As distributed databases grow in size and cover large geographical areas.
new challenging problems regarding the availability and consistency of data are raised. Communica-
tion delays and packet losses are a major concern in environments where communication is achieved
through wide area networks [39]. Clustering data which reside in sites located in the same geograph-
ical area seems to be a reasonable approach. Then, communication inside a cluster will be relatively
inexpensive and reliable. Clustering is as well appropriate for databases that scale in the number of
sites (as oppose to scale in geographical distribution). In that case, maintaining consistency of data
residing in numerous sites is unrealistic. Clustering semantically related data seems an appropriate

way to overcome this problem.

6 Quantitative Evaluation of Weak Consistency

To quantify the improvement in performance attained by sacrificing strict consistency in weakly
connected environments and the interplay among the various parameters, we have developed an
analytical model. The analvsis follows an iteration-based methodology for coupling standard hardware
resource and data contention as in [38]. Data contention is the result of concurrency and coherency
control. Resources include the network and the processing units, We generalize previous results to take
into acconnt (a) nonuniform access of data, that takes into consideration hotspots and the changing
locality, (b) weak and strict transaction types, and (c) various forms of data access, as indicated hy

the compatibility matrix of Table 1. An innovative feature of the analysis is the employment of a
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vacation system to model disconnections of the wireless medium. The performance parameters under
consideration are the system throughput, the number of messages sent, and the response time of
weak and strict transactions. The study is performed for a range of networking conditions, that is for

different values of bandwidth and for varving disconnection intervals.

6.1 Performance Model

We assume a cluster configuration with n clusters and a Poisson arrival rate for both gueries and
updates. Let A, and A, respectively be the average arrival rate of queries and updates on data
items initiated at each cluster. We assume fixed length transactions with N operations on data
items, N, = [A/(A; + Ay)]V of which are queries and Ny = [Ay/(Ag + Ay)]V are updates. Thus the
transaction rate, i.e., the rate of transactions initiated at each cluster, is Ay = A, /N,

Let ¢ be the consistency factor of the application under consideration, that is ¢ is the fraction of the
arrived operations that are strict. To model hotspots, we divide data at each cluster into hot and cold
data sets. To capture locality we assume that a fraction o of the transactions exhibit locality, that is
they access data from the hot set with probability A and data from the cold set with probability 1—h.
The remaining transactions access hot and cold data uniformly. Due to mobility o may diminish with
time. Locality is taken into consideration by the replication schema, by assuming that the probability
that a hot data has a core copy at a cluster is I, and that a cold data has a core copy is I', where
normally, [' < [ Let p; be the probability that an operation at a cluster accesses a data item for
which there is a core copy at the cluster, p; = o[kl + (1 — A)'] + (1 — o}[(!'D.)/ D + (IDy)/ D).

For simplicity, we assume that there is one quasi copyv of each data item at each cluster. Let g,
be the read and g, the write quorum, and Ns the mean number of operations on data copies per
strict transaction. The transaction model consists of ny + 2 states, where n; is the random variable
of items accessed by the transaction and Ny its mean. Without loss of generality, we assume that
Ny, is equal to the number of operations. The transaction has an initial setup phase, state (0. Then,
it progress to states 1.2, ..., np in that order. If successful, at the end of state ny the transaction

enters into the commit phase at state ny ;. The transaction response time riqq. can be expressed as
Ty
FPirans = TinpL +TE + Ej;i Pay + teommit '{A:I

where ny, is the number of lock waits during the run of the transaction, ry, is the waiting time for the
jth lock contention, rg is the sum of the execution times in states 1,2, ..., np excluding lock waiting
times, vy p is the execution time in state 0, and f.gmmi 15 the commit time to reflect the updates
in the database.

Resource contention analysis

We model clusters as M/G/1 systems. The average service time for the various tvpes of requests, all
exponentially distributed, can be determined from the following parameters: t, processing time for a

query on a data copy, {, time to install an update on a data copy, t, overhead time to propagate an
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update or query to another cluster. In each M/G/1 server, all requests are processed with the same
priority on a first-come, first-served basis. Clusters are connected and later reconnected. To capture
disconnections, we model each connection among two clusters as an M/M/1 system with vacations. A
vacation system is a system in which the server becomes unavailable for occasional intervals of time. If
W is the available bandwidth between two clusters and if we assume exponentially distributed packet
lengths for messages with average size m then the service rate s, is equal to W/m. Let f, be the

network transmission time.

Number of Messages. The total number of messages transmitted per second is:

M = 2nc[Ag(gr — pi) + Mulgw — 21)]
The first term corresponds to query traffic: the second to update traffic.

Erecution Time. For simplicity, we ignore the communication overhead inside a cluster, assuming
either that each cluster consists of a single node or that the communication among the nodes inside a
cluster is relatively fast. Without taking into account data contention, the average response time for a
weak read on a data item is Ry = w+t, and for a weak update R = w+t,, where w is the average wait
time at each cluster. Let b, be 0if g, = 1 and 1 otherwise, and b, be 0 if g, = 1 and 1 otherwise. Then
for a strict read on a data item R§ = pi[w+t,4+(gr — L)ty +b, (2t +tg+w)]+ (1 —pi)(gety + 28, +1,+w),
and for a strict write RS = pyfw + t, + (quw — D)t + by (28, + tu + w)] + (1 — o) (quts + 2t + 8, +w).

The computation of w is given in the Appendix.

Average Transmission Time. The average transmission time f, equals the service time plus the wait
time w, at each network link, ¢, = 1/s, + w,. The arrival rate A, at each link is Poisson with mean
M/(n{n —1)). The computation of w, is given in the Appendix.

Throughput. The transaction throughput, ie., input rate, is bounded by: (a) the processing time at
each cluster, (since A < E[z], where X is the arrival rate of all requests at each cluster and E[z] is the
mean service time) (b) the available bandwidth, (since A, < t.), and (c) the disconnection intervals.
(since A, < E[v], where E[v] is the mean duration of a disconnection).

Data contention analysis

We assume an eventual and best effort k. In the following, op stands for one of WR, WIW, SR, 51"

Using formula (A) the response time for strict and weak transaction is:
Rsr.r:'r!—.rraﬂ.mﬂfﬂn = HJ‘ NEPL + Rf-:_‘:,5¢; + *"I"rthJ'RSR o j"'-uPu RSW + T-rurrnni!
Rueak-transaction = Rh"ﬂ'PL T Rfu-mk na ‘NrQPH'RRH'R + NuPww Bww + Teommit

where Py, is the probability that a transaction contents for an op operation on a data copy, and R,
is the average time spent waiting to get an op lock given that lock contention occurs. Py and P,
are respectively the probability that at least one operation on a data copy per strict read or write
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conflicts. Specifically, P; =1 — (1 — Psg)® and P, =1 — (1 — Psw)™. An outline of the estimation
of Poy and R,y is given in the Appendix. For a detailed description of the model see [24].

6.2 Performance Evaluation

The following performance results show how the percentage of weak and strict transactions can be
effectively tuned based on the prevailing networking conditions such as the available bandwidth and
the duration of disconnections to attain the desired throughput and latency. Table 3 depicts some
realistic values for the input parameters. The bandwidth depends on the type of technology used, for

infrared a typical value is 1 Mbps, for packet radio 2 Mbps, and for cellular phone 9-14 Kbps [9].

| Parameter | Description | Value |
n number of clusters 5
Ag query arrival rate 12 gueries/sec
X update arrival rate 3 updates/sec
e consistency factor ranges from 0 to 1
g read quornm ranges from 1 to n
T Write quorum ranges from 1 ton
o local transactions accessing hot data ranges from 0 to 1
h probability that a loeal transaction access hot dara ranges from 0 to 1
! probability a hot data has a core copy at a given cluster | ranges from 0 to 1
I probability a cold data has a core copy at a given cluster | ranges from 0 to 1
fo processing time for an update 0.02 sec
£ processing time for a query 0.0035 sec
ty propagation overhead 0.00007 sec
Vv vacation interval ranges
W available bandwidth | ranges
m average size of a message 16 bits
D, number of cold data items per cluster A0
oy, number of cold data items per cluster 200
N average number of operations per transaction 10

Table 3: Input parameters.

System throughput

Figures 2{left), 2(right). and 3 show how the maximum transaction input, or system throughput, is
bounded by the processing time, the available bandwidth, and the disconnection intervals respectively.
We assume that queries are four times more common than updates A, = 4 A,. As shown in Figure
2(left), the allowable input rate when all transactions are weak (¢ = 0) is almost double the rate
1).

¢ caused by the fact that strict operations on data items may be translated into more than one

when all transactions are strict (e This is the result of the increase in the workload with
operation on data copies. The percentage of weak transactions can be effectively tuned to attain the
desired throughput based on the networking conditions such as the duration of disconnections and

the available bandwidth. As indicated in Figure 2(right). to get for instance. the same throughput

20



i |
il I
5| [
g | N
2 i}
& | ELbY wn e
g | ET N {
= | H l. ! U owomasn
| 30N [
M- {' I Il'u.n._-Tn
i 3 Fy
LR I I oW men
z e i
E | | |
= £ | | W bge
L I 2. ! | /
] j —_ i
= o e e
S
| - [ T
(] - i o 0
Uimsishany Tt Cumpdancy facier

Figure 2: Maximum allowable input rate of updates for various values of the consistency factor.
(left) Limits imposed by the processing rate at each cluster (A < E[z]). (right) Limits imposed by
bandwidth restrictions (A, < f,.).
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Figure 3: Maximum allowable input rate for updates for various values of the consistency factor.
Limits imposed by disconnections and their duration (A, < Ev]).

21



mumber of messages

Consiageney facioric) Lescality (o) Redicarion of et copees (1)

Figure 4: (left) Number of messages for various values of c. ({middle) Number of messages with locality
(right) Number of messages for different replication of hot core copies. Unless otherwise stated o = 0.6,
=09 .F=04, =09 and c=10.7.

with 100bps as with 500bps and ¢ = 1 we must lower the consistency factor below 0.1, The duration
of disconnections may vary from seconds when they are caused by hand offs ([20]) to minutes for
instance when theyv are voluntary. Figure 3 depicts the effect of the duration of a disconnection on
the system throughput for both short durations (Figure 3(left)) and longer ones (Figure 3(right)).
For long disconnections (Figure 3(right)}, only a very small percentage of strict transactions can be
processed. To keep the throughput comparable to that for shorter disconnections (Figure 3(left)) the
consistency factor must drop at around three orders of magnitude.

Communication cost

We estimate the communication cost by the mumber of messages sent. The number of messages
depends on the following parameters of the replication schema: (1) the consistency factor ¢, (2) the
data distribution I for hot and I' for cold data, (3) the locality factor o and (4) the quorums, g, and
g, Of the coherency schema., We assume a ROWA schema (g, = 1, g, = ng) if not otherwise stated.
As shown in Figure 4(left) the number of messages increases linearly with the consistency factor. As
expected the number of messages decreases with the percentage of transactions that access hot data.
since then local copies are more frequently available. To balance the increase in the communication
cost caused by diminishing locality there may be a need to appropriately decrease the consistency
factor (Figure 4(middle)). The number of messages decreases when the replication factor of hot core
copies increases (Figure 4(right)). The decrease is more evident since most operations are queries
and the coherency schema is ROWA | thus for most operations no messages are sent. The decrease is
more rapid when transactions exhibit locality, that is when thev access hot data more frequently. On
the contrary, the number of messages increases with the replication factor of cold core copies because
of additional writes caused by coherency control (Figure 5(left)). Finally, the relationship between
the read quorum and the number of messages depends on the relative number of queries and updates
(Figure 5(right)).
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Figure 5: (left) Number of messages for different replication of cold core copies. (right) Number of
messages for different values of the read quorum. Unless otherwise stated o = 0.6, I =09 | I' = 0.4,
h=09 and e=07.

Transaction response time

The response time for weak and strict transactions for various values of ¢ is depicted in Figure 6.
The larger values of response times are for 200bps bandwidth. while faster response times are the
result of higher network availability set at 2Mbps. The values for the other input parameters are
as indicated in Table 3. The additional parameters are set as follows: (1) the locality parameters
are o0 = 0.9 and h = 0.9, (2) the data replication parameters are I’ = 0.2 and [ = 0.8, (3) the
disconnection parameters are p = (.1 and the vacation intervals are exponentially distributed with
Ev] = 1/5 sec, to model disconnection intervals that correspond to short inveluntary disconnections
such as those caused by hand offs [20], (4) the coherency control schema is ROWA. The latency of
weak transactions is about 50 times greater than that of strict transactions. However, there is a
trade-off involved in using weak transactions, since weak updates may be aborted later. The time to
propagate updates during reconeciliation is not counted. As ¢ increases the response time for both weak
and strict transactions increase since more conflicts oceur. The inerease is more dramatic for smaller
values of bandwidth. Figure 7(left} and (right) show the response time distribution for strict and weak
transactions respectively for 2Mbps bandwidth, For strict transactions, the most important overhead
is network transmission. All times increase as ¢ increases. For weak transactions, the increase in the
response time is the result of longer waits for acquiring locks, since weak transactions that want to

read up-to-date data conflict with strict transactions that write them.

7 Reconciliation cost

We provide an estimation of the cost of restoring consistency in terms of the number of weak transac-
tions that need to be rolled back. We focus on conflicts among strict and weak transactions for which
we have outlined a reconciliation protocol and do not consider conflicts among weak transactions at

different clusters. A similar analysis is applicable to this case also.
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7.1 Estimation

A weak fransaction is rolled back if its writes conflict with a read of a strict transaction that follows
it in the IASG. Let F; be the probability that a weak transaction WT writes a data item read by
a strict transaction ST and P, be the probability that ST follows WT in the serialization graph.
Then the probahbility P = P, P, is the probability that a weak transaction is rolled back. Assume
that reconciliation occurs after N, transactions & = ¢ N, of which are strict and £ = (1 — ¢)N; are
weak. For simplicity we assume uniform access distribution. Although it is reasonable to assume that
granule access requests from different transactions are independent, independence cannot hold within
a transaction if a transaction’s granule accesses are distinct. However, if the probability of accessing
any particular granule is small, e.g., when the number of granules is large and the access distribution
is uniform, this approximation should be very accurate. Then Py =1 — (1 = N,,/D)™s.

Let prr be the probability that in the IASG there is an edge from a given transaction of type K
to a given transaction of type L. Let pi; (m,m') be the probability that in the IASG with m strict
and m' weak transactions there is an edge from a given transaction of type K to any transaction of
type L. The formulas for pg, and pj., (m,m’) are given in the Appendix. Let p(m,m’ i) be the
probability that there is an acyclic path of length 4, i.e., a path with i + 1 distinct nodes, from a given
weak transaction to a given strict transaction in a IASG with m strict and m' weak transactions.
Then

Py=1-[1F 11 - plk, &, 9)]

i=1
The values of p(k. %', i) can be computed from the following recursive relations:

pim.m’. 1) = py-g. forallm >0, m' >0
plm,m’.0) =0, forallm > 0, m" > 0, plm,0,i) = 0, forall m > 0, i > 0, and
pl0,m',i)=0forallm' >0,7>0
plk KL i+ 1) =1 = [(1 = phyy (k. K )p(k, K = 1,4))
(TTEk 1= (Bl s, B TTEd ™ g (b=, K= V)plsyy (ki K —Dplk—i+i—1, K =2, 7))
(1= plys(k, k) ITiZ] Pss(k — LK — 1)pss)]

where the first term is the probability of a path whose first edge is between weak transactions, the
second of a path whose first edge is between a weak and a strict transaction and includes at least one
more weak transaction and the last of a path whose first edge is between a weak and a strict transaction
and does not include any other weak transactions. Thus the actual number of weak transaction that
need to be undone or compensated because their writes cannot become permanent is Nypoe = PE'. We
also need to roll back all exact weak transactions that read a value written by a transaction aborted.

Let e be the percentage of weak transactions that are exact, then Ny = e[l —(1- N,/ D}""!'?]k'Nﬂbo,.,_.

7.2 Estimated Data

Figure 8(left) depicts the probability that a weak transaction cannot be accepted because of a conflict
with a strict transaction for reconciliation events occurring after varving number of transactions and
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Figure 9: Probability of abort for 60 transactions

for different values of the consistency factor. Figure 9(left) shows the same probability for varying

database sizes. More accurate estimations can be achieved for specific applications for which the

access patterns of the transactions are known. These results can be used to determine an appropriate

reconciliation point, to balance the frequency of reconciliations and the number of weak transactions

that may be aborted. For instance, for a given ¢ = (.5, to keep the probability below a threshold of

say 0.00003, reconciliation events must take place as often as every 85 transactions (Figure 8{right)).

8

Related Work

One-copy serializability [3] hides from the user the fact that there can be multiple copies of a data

item and ensures strict consistency, Whereas one-copy serializability may be an acceptable criterion

for strict transactions, it is too restrictive for applications that tolerate bounded inconsistency and



causes unbearable overheads in cases of weak connectivity. The weak transaction model described in

this paper was first introduced in [27] while preliminary performance results were presented in [23].

MNetwork partitioning

The partitioning of a database into clusters resembles the network partition problem [7]. where site or
link failures fragment a network of database sites into isolated subnetworks called partitions. Clus-
tering is conceptually different than partitioning in that it is electively done to increase performance.
Whereas all partitions are isolated, clusters may he weakly connected. Clients may operate as phys-
ically disconnected even while remaining physically connected. Strategies for network partition face
similar competing goals of availability and correctness. These strategies range from optimistic, where
any transaction is allowed to be executed in any partition, to pessimistic, where transactions in a
partition are restricted by making worst-case assumptions about what transactions at other parti-
tions are doing. Our model offers a hybrid approach. Strict transactions may be performed only if
one-copy serializability is ensured (in a pessimistic manner). Weak transactions may be performed
locally (in an optimistic manner). To merge updates performed by weak transactions we adopt a

purely svntactic approach.

Read-only transactions

Read-only transactions do not modify the database state, thus their execution cannot lead to inconsis-
tent database states. In our framework read-only transactions with weaker consistency requirements
are considered a special case of weak transactions.

In [10] two requirements for read-only transactions were introduced: consistency and currency
requirements, Consistency requirements specify the degree of consistency needed by a read-only
transaction. In this framework, a read-only transaction may have: (a) no consistency requirements: (b)
weak consistency requirements if it requires a consistent view (that is, if all consistency constraints thar
can be fully evaluated with the data read by the transaction must be true); or (c) strong consistency
requirements if the schedule of all update transactions together with all other strong consistency
queries must be consistent. While in our model strict read-only transactions always have strong
consistency requirements, weak read-only transactions can be tailored to have any of the above degrees
based on the criterion used for IAS correctness. Weak read-only transactions may have no consistency
requirement if thev are ignored from the IAS schedule, weak consistency if they are part of a weakly
correct TAS schedule, and strong consistency if they are part of a strongly correct schedule. The
currency requirements specify what update transactions should be reflected by the data read. In
terms of currency requirements, strict read-only transactions read the most-up-to-date data item
available (1.e. committed). Weak read-only transactions may read older versions of data, depending
on the definition of the d-degree.

Epsilon-serializability (ESR) [28] allows temporary and bounded inconsistencies in copies to be
seen by queries during the period among the asynchronous updates of the various copies of a data
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item. Read-only transactions in this framework are similar to weak read-only transactions with no
consistency requirements. ESR bounds inconsistency directly by bounding the number of updates.
In [37] a generalization of ESR was proposed for high-level type specific operations on abstract data
types. In contrast, our approach deals with low-level read and write operations.

In an N-ignorant system, a transaction need not see the results of at most N prior transactions that
it would have seen if the execution had been serial [16]. Strict transactions are O-ignorant and weak
transactions are O-ignorant of other weak transactions at the same cluster. Weak transactions are
ignorant of strict and weak transactions at other clusters. The techniques of supporting N-ignorance
can be incorporating in the proposed model to define d as the ignorance factor N of weak transactions.

Mobile database systems

The effect of mobility on replication schemas is discussed in [2]. The need for the management of
cached copies to be tuned according to the available bandwidth and the currency requirements of the
applications is stressed. In this respect, d-degree consistency and weak transactions realize both of
the above requirements. The restrictive nature of one-copy serializability for mobile applications is
also pointed out in [17] and a more relaxed criterion is proposed. This criterion although sufficient
for apgregate data is not appropriate for general applications and distinguishable data. Furthermore,
the eriterion does not support any form of adaptability to the current network conditions.

The Bayou system [8, 34] is a platform of replicated highly awvailable, variable-consistency, mo-
bile databases on which to build collaborative applications. A read-any/write-any weakly-consistent
replication schema is emploved. Each Bavou database has one distinguished server, the primary,
which is responsible for committing writes. The other secondary servers tentatively accept writes and
propagate them towards the primary. Each server maintains two views of the database: a copy that
only reflects committed data and another full copy that also reflects tentative writes currently known
to the server. Applications may choose between committed and tentative data. Tentative data are
similar to our quasi data, and committed data similar to core data. Correctness is defined in terms
of session, rather than on serializability as in the proposed model. A session is an abstraction for the
sequence of read and writes of an application. Four types of guarantees can be requested per session:
(a) read vour writes, (b) monotonic reads (successive reads reflect a non-decreasing set of writes).
{c) writes follow read (writes are propagated after reads on which they depend). and (d) monotonic
writes (writes are propagated after writes that logically precede them). To reconcile copies, Bayvou
adopts an application based approach as opposed to the syntactic based procedure nsed here. The
detection mechanism is based on dependency checks. and the per-write conflict resolution method is
based on client-provided merge procedures [33].

Mobile file systems

Coda [15] treats disconnections as network partitions and follows an optimistic strategy. An elaborate

reconciliation algorithm is used for merging file updates after the sites are connected to the fixed
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network. No degrees of consistency are defined and no transaction support is provided. [18, 19] extend
Coda with a new transaction service called isolation-only transactions (10T). IO Ts are sequences of file
accesses that unlike traditional transactions have only the isolation property. I0Ts do not guarantee
failure atomicity and only conditionally guarantee permanence. I0Ts are similar to weak transactions.
Methods for refining consistency semantics of cached files to allow a mobile client to select a mode
appropriate for the current networking conditions are discussed in [11], The proposed techniques are
delayed writes, optimistic replication and failing instead of fetching data in cases of cache misses.
The idea of using different kinds of operations to access data is also adopted in [6. 32], where a
weak read operation was added to a file service interface. The semantics of operations are different
in that no weak write is provided and since there is no transaction support, the correctness criterion

15 not based on one-copy serializability.

9 Summary

To overcome bandwidth, cost, and latency barriers, clients of mobile information svstems switch
between connected and disconnected modes of operation. In this paper, we propose a replication
schema appropriate for such operation. Data located at strongly connected sites are grouped in
clusters. Bounded inconsistency is defined by requiring mutual consistency among copies located at
the same cluster and controlled deviation among copies at different clusters. The database interface
is extended with weak operations that allow access to local, potentially inconsistent copies and make
conditional updates. The usual operations, called strict in this framework in contradistinction to
weak, are also supported and offer access to consistent data and permanent updates.

The proposed model provides for disconnected operation, since mobile clients can operate even
when disconnected using weak operations. Bandwidth can by utilized by deliberately using weak
transactions. In addition, the degree of consistency can be appropriately tuned to achieve the desired
svstem performance. Weak operations offer a form of application-aware adaptation [22]. Thev can be
viewed as a tool offered by a database system to an application. The application. can at its discretion
use weak or strict transaction based on its semantics. The implementation, consistency control, and
the underlving support of the transactions is the job of the database system.

We have defined correctness criteria for the schema. proved corresponding serializability-based
theorems and outline protocols for its implementation. The presented implementation is based on
distinguishing copies into core and quasi. An analytical model was developed and used to make
predictions of the performance of the schema under various networking conditions and for different
percentages of weak and strict transactions.
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Appendix

Computation of resource waiting times.

Processor waiting time, At each cluster there are the following tvpes of requests. QQueries are initiated
at arate of A;. From the locally initiated queries, Ay = (1—c)A; are weak and are serviced locally with
an average service time #; = {,;. Then, from the remaining cA; strict queries A; = red, have service
time #3 = (g, — 1)}ty + ty and the rest Az = (1 — x)ed,; have service time f3 = g.t;. Queries are also
propagated from other clusters at a rate Ay = [2(g, — 1} 4 (1 — z)g,]eA; and have service time fy = t,.
Analogous formulas hold for the arrival rates and service times of updates. The combined flow of
request forms a Poisson process with arrival rate, A = E‘?:l A;. The service time of the combined flow,
. is no longer exponentially distributed but its means and second moments are:

Ai

Bl =S80 Ble?) = £, (3

A2)233

1=1
AE[z?

2(1 — AE[z])

Note, that the above analysis as well as the following analvsis on network links are worst cases. In
practice, when a locking method is used for concurrency control, a number of transactions is waiting
to acquire locks and not competing for system resources. Thus the rate of arrival of operations at
the resource queues and the waiting time at each queue may be less than the value assumed in this
section.

Then, the wait time by using the Pollaczek-Khinchin (P-K formula) [4] is: w =

Transmission waiting time, We consider a nonexhaustive vacation svstem where after the end of each
service the server takes a vacation with probability 1 —p or continues service with probability p. This
is called a quene system with Bernoulli scheduling [33]. In this case:

_ B[] | Ads? + (1 p)(201/50) B[] + B[]}
T 2E[v] 2{1-p—(1-p)\E]}

y

[2) . . . , . .
where s; ) is the second moment of the service rate, and v the vacation interval, that is the duration

of a disconnection.

Data contention analysis.

From the resource contention analysis,

Bg = NyRg + N, R}, and Rg

“weak

= NyRY + N,RY

strict

We divide the state ¢ of each weak transaction into two substates, a lock state i, and an execution
state ip. In substate 4; the transaction holds i — 1 locks and is waiting for the ith lock. In substate is it
holds ¢ locks and is executing. Similarly, we divide each state of a strict transaction in three substates
ig, 41 and ia. Let g, = (Ng/N)g, + (Ny/N)gy. In substate iy, a transaction is at its initiating
cluster, holds (i — 1)g, locks and sends messages to other clusters. In substate i; the transaction
holds (i = 1)g; locks and is waiting for the ith set of locks. In substate ¢ it holds (i — 1)g; + g,
({i = 1)gr + qu) locks and is executing. The probability that a transaction enters substate #; upon
leaving state i — 1 or iy is Pwgr. Pyww. Py, and P, respectively, for WR, W, SR and SW lock
requests. The mean time agp spent at substate iz is computed from the resource contention analyvsis,
for instance awy g = w + te. Let cop for a strict op be the mean time spent at state iy for instance,
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csp = w+ (1 — gty + 1) + pi((g. — 1)ty + bef,). The time spent at state i; is R,,, and the
unconditional mean time spent in substate i; is by, for instance byw = Pyyw Ry
Let df, (d5,) be the mean number of hot (cold) copies written by an op operation and I5, the mean
i ; : : 1—olD
number of ep operations per copy. For instance, for eop = WR and hot copies, dﬁ- g =oh+ {%

1—c)rgdlvg — . :
and T = %ﬁﬁ Given a mean lock holding time of Ty (Ts) for weak (strict) transactions
' h
and assuming that the lock request times are a Poisson process, the probability of contention on a lock
request for a copy equals the lock utilization. Let Py, /., stand for the probability that an op;-lock

request conflicts with an ops-lock request, then for example

Py pww = &5y g IGwTw + diy p Iy Tw  and
P g = diy g8 Ts + LywTw) + diy (155 Ts + Iy Tw)

Let Gy (G 5) be the sum of the mean lock holding times over all N copies accessed by a weak (strict)
transaction,

o W | N, | ,
Gw = Z;ﬁ[%(f awRr + (i = 1)bwr) + “J;\I':*[!ﬂu'u' + (i = 1)bww )| + NT,

where T, is the mean time to commit. Then Ty = Gy /N. Similar formulas hold for G and Ts.

Let_;‘h’fﬁ- (;"'-.-';‘:‘} be the mean number of weak (strict] transactions per cluster in substate 4, and
CP;;l i be the conditional probability that an ep;-lock request contents with a transaction in
substate i, that holds an incompatible ops-lock given that lock contention occurs. Now we can

approximate R,y,. for instance

N ' Rww i aww ' CSW
RH.-'R = E'i:=![CPH'-IEI."H-"H-'l::—+au-ur+3[‘l"ri::I+CF'|?-R."“-“-|'{ +$”-.g:I+C"n:'|l-:l'ff-".‘1"|-‘|.'[ +
hi ' fa ' f2
3 Rew ; agw vy Ve, €
Rsw +asw +45. ) +CPL (=S +asw+as,)+CPR oo (= +35, )]+ 5=2( )
. WR/SW ¢ f WRISW g, Gw  fe

where the factors f; express the mean remaining times at the corresponding substate and depend on
the distribution of times at each substate. Finally, sy, ( 55} is the mean time for a weak (strict)

- - - : . . . N,
transaction from acquiring the ith lock till the end of commit, for instance sy, = (N — :}[f(f:-u' nt

N
bw i) + T‘_f‘{ﬂn'n' + byww )] + T

Reconciliation

The probabilities of edges in the serialization graphs are given below:

P..:' T {
pww =[1-(1- Eu}h]ﬁc Phw(mom’) =1 — (1 = pyryy ) -1

_ —N‘E_'J{-"-'ﬂu']
7
n{lDy +1'D,)

psw =pws  Pewlm,m’) =1—(1—psw)™

pws =1-—{(1 Pwsim,m’) =1—(1-pws)™

pﬁ.‘;‘ = ]. — I:']_ — _.EH}J"I"
j".iﬁ.‘,'l::ﬂlf mlr]' =1- |:]_ .-.}r‘;SH'J"iT?E-—i.]

where p. = 1/n? is the probability that two given transactions are initiated at the same cluster.
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