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Abstract

We present a replication schema appropriate for distributed environments where connectivity
is partial, weak, and variant such as in mobile information systems. The schema is based on
augmenting the database interface with operations with weaker consistency guarantees. A imple-
mentation of the schema is presented by distinguishing copies into quasi and core and protocols
for enforcing the schema are introduced. Then, some practical examples of its applicability are
described. The performance of the weak consistency schema is evaluated for various networking

conditions by using an analytical model developed for this purpose.

1 Introduction

Advances in telecommunications and in the development of portable computers have provided for
wireless communications that permit users to actively participate in distributed computing even while
moving. The resulting distributed environment is subject to restrictions imposed by the nature of the
wireless medium [8, 10, 19, 20].

Mobile computing is susceptible to frequent network disconnections. Besides an increased number
of disconnections resulting from site or communication failures, certain other disconnections such as
those caused by battery limitations or handoffs are considered predictable. Frequently, predictable
disconnections are voluntary since users deliberately avoid use of the wireless links to reduce cost
and power consumption and to overcome availability and latency barriers. Thus, most mobile clients
are only occastonally connected, switching between connected and disconnected modes of operation.
Similar considerations are applicable to portable computing. Disconnections have been discussed

extensively in the context of network partition [6]. The frequency of their occurrence in portable
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computing, however, forces making them part of normal operation and considering a new mode of
operation called disconnected operation [10, 11, 25, 23]. Another characteristic of mobile distributed
computing is weak connectivity. Wireless networks deliver much lower bandwidth than wired networks
and have higher error rates [8]. Finally. mobile systems are characterized by high variation in network
bandwidth, that can shift one to four orders of magnitude, depending on whether the host is plugged
in or using wireless access and on the type of its current connection [8, 10].

Mobile users will desire access to private or corporate databases that will be stored at mohile as
well as static hosts and queried and updated over the wired and the wireless network. For instance,
insurance agents may interact through their mobile station with a database storing consumer records,
while traveling salespersons may access inventory databases. Requirements for database use through
wireless communications stem also from personal computing applications. Accessing databases is
necessary for instance for consumers to purchase goods, get traffic information, or make travel plans
while using their notebooks. These databases, for reasons of reliability, performance, and cost will be
distributed and replicated over many sites.

In this paper, we propose a replication schema appropriate for environments where connectivity
is partial, weak and variant such as in mobile computing. Instead of requiring mutual consistency of
all copies of a data item we allow bounded inconsistencies. Specifically, all data located at strongly
connected hosts are grouped together to form a cluster. While all data inside a cluster are consis-
tent, degrees of inconsistency are defined for replicas at different clusters. The proposed mechanism
enchances the interface offered by database systems with operations with weaker consistency guar-
antees which allow access to data that exhibit bounded inconsistency. It is the responsibility of the
individual application to decide between weak and strict operations so that bandwidth is utilized. In
addition, users can still operate even when disconnected by accessing local data. Finally, the degree
of inconsistency can be tuned based on the networking conditions.

The weak consistency replication schema was first introduced in [21], where its theoretical for-
mulation was presented. In this paper, we focus on practical aspects of the model. First, we refine
and clarify the model and present an implementation based on distinguishing copies into core and
quasi. Then, protocols are introduced for realizing the proposed schema. We also describe some
practical examples of its use. An analytical model is developed to evaluate the performance of the
schema. The model is used to study the effect of weakening consistency on the system performance.
The performance parameters considered are the system throughput, the number of messages, and
the response time. The study is performed for a range of networking conditions, that is for different

values of bandwidth and for varying disconnection intervals.



d-bound. The degree may vary based on the availability of network bandwidth by allowing little devi-
ation in instances of higher bandwidth availability and high deviation in instances of low bandwidth
availability. Thus, bounded inconsistency makes applications able to adjust to the limitations of the
communication environment by providing users with data of variable level of detail or quality. The
cluster configuration is dynamic. By taking advantage of the predictable nature of disconnections,
clusters of data may be explicitly created or merged upon a forthcoming disconnection or connection
of the associated mobile host. To accommodate migrating locality, a mobile host can also move to a

different cluster when it enters a new environment.

2.2 Weak and Strict Transactions

To maximize local processing and reduce network access, we allow direct access to locally, e.g., in a
cluster, available d-consistent data by introducing two types of operation, weak reads and weak writes.
These operations allow users to operate on d-consistent data when the lack of strict consistency can
be tolerated by the semantics of their applications. We call the standard read and write operations
strict read and strict write operations. In particular, a weak read operation on a data item = (W R[z])
reads a locally available value of . A weak write operation (WW(z]) writes locally available copies
and becomes permanent after reconciliation. A strict read operation (SR[z]) reads the value written
by the last strict write operation. Finally, a strict write operation (SW(x]) writes one or more copies

of r and is permanent upon the end of the issuing transaction.

Definition 2 (transaction) A transaction (T) is a partial order (OP, <), where OP is the set of
weak or striet read, weak or strict write, abort and commit operations erecuted by the transection.
and < represents their ezecution order. The partial order must specify the order of conflicting data
operations and contains ezactly one abori or commit operation which is the last in the order. Tweo
weak (strict) data operations conflict if they access the same copy of a dala ifem and at least one of

them is a weak {strict) write operation,

Two types of transactions are supported, weak and strict. A weak transaction (WT) is a trans-
action where OP does not include strict operations. A strict transaction (ST) is a transaction where
OP does not include weak operations. Weak transactions access data copies that belong to the same
cluster and thus are local at that cluster. User transactions are decomposed into a number of weak
and strict subtransactions units according to the degree of consistency required by the application.
There are two commit events associated with each weak transaction, a local commit in its associated

cluster and an implicit global commit at reconciliation. The local commit point is expressed by an



explicit commit operation. Updates made by locally committed weak transactions are visible only
by weak transactions in the same cluster. These updates become permanent and visible by strict

transactions only after reconciliation when local transactions become globally committed.

Implementation. To implement this schema we distinguish the copies of a data item into two broad
categories: core and quasi copies. Core coples are copies whose values are up-to-date and permanent,
while guasi copies are copies whose values may be obsolete and are only conditionally committed. To
process the operations of a transaction, the database management system translates operations on
data items into operations on the copies of those data items. In general, strict transactions, except
of occasional updates of quasi copies, access only core copies and weak transactions operate on local,
quasi or core, copies. We formalize this procedure by a translation function h. Function h maps each
SR[z] operation into a number of read operations on core copies of  and each WW[z] operation
into a number of write operations of local quasi copies of x. Depending on the translation of a weak
read operation we define two types of translation functions: a best-effort translation function maps
each W R(z) operation into a number of read operations on the most up-to-date locally available core
or quasi copies of z, and a conservative translation function maps each weak read into a number of
read operations only on locally available quasi copies. In addition, based on the time of propagation
of updates of core copies to quasi copies, we define two types of translation function: an eventual
translation function maps a SW(z] into writes of only core copies, while an immediate translation
function also updates the quasi copies of the corresponding cluster. For an immediate h, conservative
and best-effart have the same result. How many and which core or quasi copies are actually read or
written when a database operation is issued on a data item depends on the coherency algorithm used,
e.g, quorum consensus, ROWA. Without loss of generality, we assume that there is only one quasi
copy per cluster. This assumption can be easily lifted but with significant complication in notation.
Since all quasi copies in a cluster have the same value, this single copy can be considered to be their

representative,

2.3 Weak Connectivity Operation

A complete intracluster schedule, TAS, is an observation of an interleaved execution of transactions
in a given cluster configuration that includes locally committed weak transactions and (globally)
committed strict transactions. For a formal definition, see [21]. Given a schedule 5, the projection
of 5 on strict transactions is the schedule obtained from S by deleting all weak operations, and the

projection of § on a cluster Clg is the schedule obtained from 5 by deleting all operations of 5 that



do not access Cli. A correct concurrent execution of weak and strict transactions must maintain
d-consistency among clusters and strict consistency inside each cluster. Specifically, an intracluster
schedule is weakly correct iff (1) all transactions have a consistent view, i.e., all constraints that can
be evaluated using the data read are valid, (2) replication is hidden from strict transactions, and (3)
the d-degree relation is maintained. Weak correctness ensures that each transaction gets a consistent
view, but it does not ensure that weak transactions at different clusters get the same view. The

following theorem provides a serializability-based criteria that also provides for this condition.

Theorem 1 Given that d—degree is maintained, an intracluster schedule 5 is correct if its projection
on striet transactions is equivalent to an one-copy (1C) schedule 510, and each of its projections on
a cluster Cl; ts conflict-equivalent to a serial schedule Ss. such that the order of transactions in Sg,

is consistent with the order of transactions in Si¢.

Protocols for maintaining the d-degree relation are given in Section 3. The proposed schema is
flexible, in the sense that any coherency control method that guarantees one-copy serializability can
be used for synchronizing core coples. The schema reduces to one-copy serializability when only strict

transactions are employed.

Graph characterization. To determine whether an TAS schedule is correct we use a modified
serialization graph, that we call the intracluster serialization graph (IASG) of the TAS schedule. To
represent conflicts between strict transactions, we construct a replicated data Serialization Graph
(5G). An SG [3] is a serialization graph augmented with additional edges to take into account the
fact that operations on different copies of the same data item may also cause conflicts. Acyclicity
of the SG implies one-copy serializability of the corresponding schedule. We augment the 5G with
additional edges to represent conflicts between weak transactions in the same cluster and conflicts
between weak and strict transactions. We add an edge T; — T; between two transactions T; and T;
in TAS, if some operation op; € T; conflicts with an operation op; € T;. A dependency edge is an
edge that represents the fact that a transaction reads a value produced by another transaction. A
precedence edge is an edge that represent the fact that a transaction reads a value that is later changed
by another transaction. It can be shown, that if an intracluster schedule has an acyclic IASG then it

is strongly correct.

2.4 Reconciliation of Core and Quasi Copies

Approaches to reconciling core and quasi copies vary from purely syntactic to purely semantic ones

[6]. We adopt a purely syntactic application-independent approach. Qur correctness criterion is



based on the following principle: if a core copy is written, and a strict transaction has read it, the
value of the core copy must be the value selected. Otherwise, the value of any quasi copy can be
selected. A (complete) intercluster schedule, IES, models execution after reconciliation, when global
transaction should become aware of local writes, i.e., local transaction become globally committed.
To capture this, in the TAS, we add conflicts between weak and strict operations, specifically we ask
that in addition to maintaining the same order as in the [AS, each pair of weak write and strict read
operations on the same itemn and each pair of weak write and strict write on the same item are also
ordered. In an [ES schedule, a strict transaction reads-z-from the last transaction in the schedule that
wrote any copy (core or quasi) of z. We accept as many weak writes as possible without violating
the one-copy serializability of strict transactions. Specifically, an intercluster schedule is correct iff
(1) it is based on a correct IAS schedule S;45, and (2) strict transactions have the same reads-from

relation as in the Spas.

Graph characterization To determine correct TES schedules, we construct an intercluster serial-
ization graph (IESG) by augmenting the serialization graph of the underlying intracluster schedule.
In the IASG graph. transactions that access different copies of the same item do not conflict. To force

such conflicts, we induce

e first, a write order as follows: if T; weak writes and T} strict writes any copy of an item z then

either T; = T or T) = T; ; and

e then, a strict read order as follows: if a strict transaction ST} reads-x-from ST; in 5745 and a

weak transaction WT follows ST; then we add an edge 5T; — WT.

It can be shown that if an intercluster schedule based on an IAS has an acvclic IESG, then it is

correct.

3 Weak Consistency in Practice

3.1 Protocols

Serializability. We distinguish between protocols for coherency and protocols for concurrency con-
trol. Coherency control refers to ensuring that all copies of a data item have the same value, here
we must maintain this property globally for core and locally for quasi copies. Concurrency control
refers to maintaining consistency of the other integrity constraints, here the intracluster constraints.

For coherency control, we adopt a quorum-based schema [3]. Each strict transaction reads g, core



copies to d. This is accomplished by allowing weak reads and writes only on d data items. (e) Finally,
if the degree d is defined as the number of data copies that are allowed to diverge, we bound the
number of quasi copies that are allowed to diverge at each cluster so that the total number of quasi
copies that differ from core copies in all clusters iz d. This is achieved by bounding appropriately the

number of weak writes at each cluster.

Reconciliation. To get a correct schedule we need to break potential cyvcles in the IES graph.
Since to construct the IES we start from an acyclic graph and add edges between a weak and a
strict transaction, there is alwayvs at least one weak transaction in each cycle. We rollback such
weak transactions. Undoing a transaction normally results in cascading aborts, that is, in aborting
transactions which have read the values written by that transaction; that is, transactions that are
related with a dependency edge to the transaction undone. Since weak transactions write only quasi
copies in a cluster, and since only weak transactions in the same cluster can read these quasi copies

we get the following lemma:

Lemma 1 Only weak transactions in the same cluster read values written by weak transactions in

that cluster.

The above lemma ensures that only weak transactions in the same cluster may need to be aborted
when a weak transaction is aborted to resolve conflicts in an intercluster schedule. In practice, fewer
transactions ever need to be aborted. In particular, we need to abort only transactions whose output
depends on the exact values of the data items theyv read. We call these transactions eract. Many
weak transactions do not naturally fall in this category. since by definition, weak transactions are
transactions that read local d-consistent data. Thus even if the value they read was produced by a
transaction that was later aborted, this value was inside an acceptable range of inconsistency and this
may be sufficient to guarantee their correctness.

Detecting cvcles in the IEG can be hard. The difficulties raise from the fact that between trans-
actions that wrote a data item an edge can have any direction, thus resulting in polygraphs [17].
Polynomial tests for acyclicity are possible, if we made the assumption that transactions read a data

item before writing it. Then, to get the IES graph from the [AS we need only:

s induce a read order as follows: if a strict transaction ST reads an item that was written by a

weak transaction WT we add a precedence edge SR =+ WT

Table 2 outlines the reconciliation steps.



sites to reduce the overhead of searching. Most of the location copies should be considered quasi.

Only a few core copies are always updated to reflect changes in location.

4  Performance Model

To evaluate the proposed schema and quantify the improvement in performance attained by sacrificing
strict consistency in weakly connected environments, we have developed an analytical model. The
analysis follows an iteration-based methodology for coupling standard hardware resource and data
contention as in [30]. Data contention is the result of concurrency and coherency control. Resources
include the network and the processing units. We generalize previous results to take into account
(a) nonuniform access of data, that takes into consideration hotspots and changing locality, (b) two
different transaction types, weak and strict, and (c) various types of data access. as indicated by the
compatibility matrix of Table 1. An innovative feature of the analysis is the employment of a vacation
system to model disconnections of the wireless medium.

We assume a cluster configuration with n clusters and a Poisson arrival rate for both queries
and updates. Let A, and A, be respectively the average arrival rate of queries and updates on data
items initiated at each cluster. We assume fixed length transactions with N operations on data
items, Ny = [A;/(Ag + Au)]N of which are queries and N, = [A./(A; + Au)]N are updates. Thus the
transaction rate, i.e., the rate of transactions initiated at each cluster, is Ay = A, /N,

Let ¢ be the consistency factor of the application under consideration, that is ¢ is the fraction
of the arrived operations that are strict. To maodel hotspots, we divide data at each cluster into
hot and cold data sets. To capture localify we assume that a fraction o of the transactions exhibit
locality, that is they access data from the hot set with probability h and data from the cold set with
probability 1 — k. The remaining transactions access hot and cold data uniformly. Due to mohility o
may diminish with time. Locality is taken into consideration by the replication schema, by assuming
that the probability that a hot data has a core copy at a cluster is [, and that a cold data has a core
copy is I, where normally, I < .

For simplicity, we assume that there is one quasi copy of each data item at each cluster. Let g,
be the read and ¢, the write quorum, then the mean number of operations on data copies per strict
transaction, Ng, is equal to Nyqy + Nygp. In the following let x be the probability that an operation
at a cluster access data for which a core copy exists at that cluster. The transaction model consists of
ng + 2 states, where np is the random variable of items accessed by the transaction and N its mean.

Without loss of generality, we assume that N, is equal to the number of operations. The transaction

11



has an initial setup phase, state 0. Then, it progress to states 1,2, ..., ng in that order. If successful,
at the end of state n; the transaction enters into the commit phase at state ny.;. The transaction

response time rygns can be expressed as
= Ny
Tirans = TINPL +TE T Ej;:[ Ty + L commit

where n,, is the number of lock waits during the run of the transaction, ry, is the waiting time for the
jth lock contention, rg is the sum of the execution times in states 1.2, ..., ny excluding lock waiting
times, ryyvoe is the execution time in state 0, and f.gmmie 15 the commit time to reflect the updates
in the database. We use lower case letters to represent random variables and upper case letters to

represent their corresponding means.

4.1 Resource contention analysis

We model clusters as M/G/1 systems. The average service time for the various types of requests, all
exponentially distributed, can be determined from the following parameters: ¢, processing time for a
query on a data copy, t,, time to install an update on a data copy. {; overhead time to propagate an
update or query to another cluster. In each M/G/1 server, all requests are processed with the same
priority on a first-come, first-served basis. Clusters are connected and later reconnected. To capture
disconnections, we model each connection among two clusters as an M/M/1 system with vacations. A
vacation system is a system in which the server becomes unavailable for occasional intervals of time. If
W is the available bandwidth between two clusters and if we assume exponentially distributed packet

lengths for messages with average size m then the service rate s, is equal to W/m. Let {, be the

network transmission time.

Number of messages. The total number of messages transmitted per second is:
M = 2nc[Ag(gr — ) + Au(gu — 7))

The first term corresponds to query traffic; the second to update traffic.

Execution time. For simplicity, we ignore the overhead of communications inside a cluster hy
assuming either that each cluster consists of a single node or that the communication among the
nodes inside a cluster is fast. Without taking into account data contention, the average response time
for a weak read on a data item is R;" = w + {4 and for a weak update RY = w + t,,, where w is the

average walit time at each cluster. Similar formulas hold for the response time R; and R; of the strict
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Figure 2: Maximum allowable input rate for updates for various values of the consistency factor.
Limits imposed by disconnections and their duration (A, < E[V]).

System throughput. Figures 1(left), 1(right), and 2 show how the maximum transaction input, or
svstem throughput, is bounded by the processing time, the available bandwidth, and the disconnection
intervals respectively. We assume that queries are four times more common than updates A, =4 A,.
As shown in Figure 1{left), the allowable input rate when all transactions are weak (¢ = 0) is almost
double the rate when all transactions are strict (strict consistency, ¢ = 1). This is the result of
the increase in the workload with ¢ caused by the fact that strict operations on data items may be
translated into more than one operation on data copies. The percentage of weak transactions can
be effectively tuned to attain the desired throughput based on the networking conditions such as the
duration of disconnections and the available bandwidth. As indicated in Figure 1(right), to get for
instance, the same throughput with 100bps as with 500bps and ¢ = 1 we must lower the consistency
factor below 0.1. The duration of disconnections may vary from seconds when they are caused by
handoffs ([15]) to minutes for instance when they are voluntary. Figure 2 depicts the effect of the
duration of a disconnection on the system throughput for both short durations (Figure 2(left)) and
longer ones (Figure 2(right)). For long disconnections (Figure 2({right)), only a very small percentage
of strict transactions can be processed. To keep the throughput comparable to that for shorter

disconnections (Figure 2(left)) the consistency factor must drop at around three orders of magnitude.

Communication cost. We estimate the communication cost by the number of messages sent. The
number of messages depends on the following parameters of the replication schema: (1) the consistency
factor ¢, (2) the data distribution [ for hot and I' for cold data, (3) the locality factor o and (4) the
quorums, ¢, and gy, of the coherency schema. We assume a ROWA schema (g, = 1, g = nyg) if
not otherwise stated. As shown in Figure 3{left) the number of messages increases linearly with the

consistency factor. As expected the number of messages decreases with the percentage of transactions
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that access hot data, since then local copies are more frequently available (Figure 3(middle)). Thus the
communication overhead in mobile computing is increased due to the frequently changing locality. The
number of messages decreases when the replication factor of hot core copies increases (Figure 3{right)).
The decrease is more dramatic since most operations are queries and the coherency schema is ROWA,
thus for most operations no messages are sent. On the contrary, the number of messages increases
with the replication factor of cold core copies because of additional writes caused by coherency control
(Figure 4(left)). Finally, since most operations are queries keeping the read quorum smaller than the

write quorum decreases the number of messages (Figure 4(right)).

Transaction response time. The response time for weak and strict transactions for various values
of ¢ is depicted in Figure 5. The larger values of response times are for 200bps bandwidth, while
faster response times are the result of higher network availability set at 2Mbps. The values for the
other input parameters are as indicated in Table 3. The additional parameters are set as follows.
The locality parameters are ¢ = 0.9 and h = 0.9. The data replication parameters are I' = 0.2

and | = 0.8. The disconnection parameters are p = 0.1 and the vacation intervals are exponentially
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Figure 5: Comparison of the response times for weak and strict transactions for various values of the
consistency factor.

distributed with E[V'] = 1/5 sec, to model disconnection intervals that correspond to short involuntary
disconnections such as those caused by handoffs [15]. The coherency control schema is ROWA. The
latency of weak transactions is about 50 times greater than that of strict transactions. However,
there is a trade-off involved in using weak transactions, since weak updates may be aborted later.
The time to propagate updates during reconciliation is not counted. As ¢ increases the response time
for both weak and strict transactions increase since more conflicts oceur. Figure 6(left) and Figure
6i(right) show the response time distribution for strict and weak transactions respectively for 2Mbps
bandwidth. For strict transactions. the most important overhead is network transmission. All times
increase as ¢ increases. For weak transactions, the increase in the response time is the result of longer
waits for acquiring locks, since weak transactions that want to read up-to-date data conflict with

strict transactions that write them.

6 Related Work

General weak consistency schemas. The partitioning of a database into clusters resembles the
network partition problem [6], where site or link failures fragment a network of database sites into
isolated subnetworks called partitions. Clustering is conceptually different than partitioning in that
it is electively done to increase performance. Furthermore, whereas all partitions are isolated, clusters
may be partly connected. Strategies for network partition range from eptimistic, where any trans-
action is allowed to be executed in any partition, to pessimistic, where transactions in a partition

are restricted by making worst-case assumptions about what transactions at other partitions are do-
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Figure 6: (left) Response time distribution for strict transactions. (right) Response time distribution
for weak transactions.

ing. Our model offers a hybrid approach. Strict transactions may be performed only if one-copy
serializability is ensured in a pessimistic manner. Weak transactions may be performed locally in an
optimistic manner.

Read-only transactions [9] do not modify the database state, thus their execution cannot lead to
inconsistent database states. In the proposed schema read-only transactions with weaker consistency
requirements are considered a special case of weak transactions. Epsilon-serializability (ESR) [22]
allows temporary and bounded inconsistencies in copies to be seen by queries during the period
among the asynchronous updates of the various copies of a data item. Read-only transactions in
this framework are similar to weak read-only transactions with no consistency requirements. ESR
bounds inconsistency directly by bounding the number of updates. In [29] a generalization of ESR
was proposed for high-level type specific operations on abstract data types. In contrast, our approach

deals with low-level read and write operations.

Mobile information Systems. The effect of mobility on replication schemas is discussed in [2]. The
need for the management of cached copies to be tuned according to the available bandwidth and the
currency requirements of the applications is stressed. In this respect, d-degree consistency and weak
transactions realize both of the above requirements. The restrictive nature of one-copy serializability
for mobile applications is also pointed out in [12] and a more relaxed criterion is proposed. This
criterion although sufficient for a specific kind of data typical of sales applications is not appropriate
for general application and distinguishable data. Furthermore, the criterion does not support any
form of adaptability to the current network conditions.

The Bayou system [T, 28] is a platform of replicated highly available, variable-consistency, mo-
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bile databases on which to build collaborative applications. A read-any/write-any weakly-consistent
replication schema is employed. Each Bavou database has one distinguished server, the primary,
which is responsible for committing writes. The other secondary servers tentatively accept writes and
propagate them towards the primary. Each server maintains two views of the database: a copy that
only reflects committed data and another full copy that also reflects tentative writes currently known
to the server. Applications may choose between committed and tentative data. Tentative data are
similar to our quasi data, and committed data similar to core data. Correctness is defined in terms
of session, rather than on serializability as in our model. A session is an abstraction for the sequence
of read and writes of an application.

The Coda file system [11] treats disconnections as network partitions and follows an optimistic
strategy. An elaborate reconciliation algorithm is used for merging file updates after the sites are
connected to the fixed network. No degrees of consistency are defined and no transaction support
is provided. [13, 14] extend Coda with a new transaction service called isolation-only transactions
(IOT). IO0Ts are sequences of file accesses that unlike traditional transactions have only the isolation
property. I0Ts do not guarantee failure atomicity and only conditionally guarantee permanence.
[0Ts are similar to weak transactions.

The idea of using different kinds of operations to access data is also adopted in [5, 26], where a
weak read operation was added to a file service tnterface. The semantics of operations are different
in that no weak write is provided and since there is no transaction support, the correctness criterion

is not based on one-copy serializability.

7 Conclusions

To overcome bandwidth, cost, and latency barriers, clients of mobile information systems switch be-
tween connected and disconnected modes of operation. In this paper, we propose a replication schema
appropriate for such operation. The schema is based on extending the database interface with weak
operations. Mobile clients can operate even when disconnected using weak operations. Bandwidth
can by utilized by deliberately using weak transactions. In addition, the degree of consistency can be
appropriately tuned to achieve the desired system performance. An implementation of the schema
was presented based on distinguishing copies into core and quasi and then protocols were presented
for enforcing it. The performance of the schema was evaluated for various connectivity conditions
using an analytical model.

Weak operations offer what is termed application-aware adaptation [16]. Application-aware adap-
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Appendix

Computation of waiting times.

Processor waiting time. At each cluster there are the following types of requests. Queries are initiated
at a rate of A;. From the locally initiated queries, A; = (1 — ¢)A; are weak and are serviced locally
with an average service time #; = {;. Then, from the remaining cA; strict queries Ay = xedy have
service time 2 = (g, — 1)ty + {,; and the rest dy = (1 — x)ch,; have service time 03 = g.t;. Queries
are also propagated from other clusters at a rate Ay = [z(g- — 1) + (1 — z)g;]cA; and have service
time Ay = {,. The formulas the corresponding arrival rates and service times for updates queries are
anologous. The combined flow of request forms a Poisson process with arrival rate, A = qu=1 Ai. The
service time of the combined flow, X . is no longer exponentially distributed but its means and second
moments are:

BIY]=x8,(306  BIXY = 5,350

AE[X?
2(1 — AE[X])
Note, that the above analysis as well as the following analysis on network links are worst cases. In
practice, when a locking method is used for concurrency contral, a number of transactions is waiting
to acquire locks and not competing for system resources. Thus the rate of arrival of operations at
the resource queues and the waiting time at each queue may be less than the value assumed in this
section.

Then, the wait time by using the Pollaczek-Khinchin (P-K formula) [4] is: w =

Transmission waiting time. We consider a nonexhaustive vacation system where after the end of each
service the server takes a vacation with probability 1 — p or continues service with probability p. This
is called a queue system with Bernoulli scheduling [27]. In this case:

] }Lr{-‘igﬁﬁ + (1 —pj(ﬂ{lfsrjE[V] s E[Vzl:l}
2E[V] 2{1 —p—(1-p)AE[V]}

2y . .
where 35- ) is the second moment of the service rate.

Coupling resource and data contention.

From the resource contention analysis,

weak

Rg, i = NgRy+ N,R}, and BRg = N,R¥ + N, RY

We divide the state i of each weak transaction into two substates, a lock state ¢;, and an execution
state ip. In substate i) the transaction holds i — 1 locks and is waiting for the ith lock. In substate is it
holds i locks and is executing. Similarly, we divide each state of a strict transaction in three substates
ig, #1 and 3. Let g = (Ny/N)g. + (N, /N)gy. In substate ig, a transaction is at its initiating
cluster, holds (i — 1)g; locks and sends messages to other clusters. In substate ¢; the transaction
holds (¢ — 1)q, locks and is waiting for the ith set of locks. In substate i it holds (i = 1)g, + g,
{((# — 1)gz + qu) locks and is executing. The probability that a transaction enters substate i; upon
leaving state ¢ — 1 or iy is Pwp, Pww, Py, and P, respectively, for WR, WIW, SR and SW lock
requests. The mean time a,, spent at substate i is computed from the resource contention analysis,
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for instance awgr = w + ty. Let ¢,y for a strict op be the mean time spent at state 7 for instance,
esg = w+ (1 — z){grly + ) + 2((gr — 1}p + bet;). The time spent at state i) is Rgp, and the
unconditional mean time spent in substate i) is by, for instance byw = Pww Ruww -

Let df,‘p (dg,) be the mean number of hot (cold) copies written by an op operation and I, the
mean number of op operations per copy. Given a mean lock holding time of Ty (Ts) for weak
(strict} transactions and assuming that the lock request times are a poisson process, the probability
of contention on a lock request for a copy equals the lock utilization. Let Fopyjopy stand for the
probability that an op;-lock request conflicts with an ops-lock request, then for example

Pwr pww = dfh, Ty LS T.,;- +db g It Tw  and
Pwr = diy g TswTs + TypwTw) + diy g Ty Ts + Iy T )

Let Gw (G ) be the sum of the mean lock holding times over all N copies accessed by a weak (strict)
transaction,

Gw = S, [SEGawn + (= Down) + X2(aww + (i = Doww)] + NL,

Then Ty = G;.i Similar formulas hold for Gg and Ty,

Let f,;} IIN;-”:I be the mean number of weak (strict) transactions per cluster in substate i, and
CP;;I Jona be the conditional probability that an op;-lock request contents with a transaction in
substate i, that holds an incompatible ops-type lock given that lock contention occurs. Now we can

approximate R,,. for instance

N i Ry r
RWR = Ezll[cp¥£"RfWW{ T;IH' — w—l—SW ]I+CFW R/W Hri f4 +354. :|+CFL{:' i‘i’,."‘;'W[ ?ZV +
1 i r N
R.?i1"+a$‘1-1r'+3.i}‘+‘cjﬁl ;R SW (RS“ +ﬂ-51r'[r'+5_'§‘:-:|+CFE,.1?'RII.ISI,.1I{GS_H+ ]']"' LC': ¢
f1 f2 Gw ' fa

where the factors f; express the mean remaining times at the corresponding substate and depend on
the distribution of times at each substate. Finally, s; is the mean time from acquiring the ith lock till

Ny N
(awr +bwr) + =Z(aww +bww)]+¢ ss, = (N —i)[=L(csr +

the end of commit, sy, = {N—ﬂ}[ N N N

"'.".

agp + bsp) + —{csg + asw + bsw )] + ¢ and ¢ the mean time to commit.
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