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Abstract

A three-dimensional model of human skull - brain system has been extended to include neck
support. The model is based on the assumption of having a hollow sphere (skull), the behaviour of
which is described by the elasticity solution, filled with an inviscid, irrotational fluid (cerebrospinal
fluid), whose motion is described by the wave equation. The neck is approximated by an elastic
support which reacts in three-dimensions. The problem is solved numerically for the eigenfrequency
spectra and the results obtained are compared with the existing experimental ones showing good

agreement. The role of the various systam parameters is also investigated.
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1. INTRODUCTION

The knowledge of how and why the natural frequencies of the human head change is very
important and could aid in the development of a new medical instrument for the early diagnosis of
the brain diseases (Guarino, 1982). Numerous mathematical and numerical techniques have been
developed to study the dynamic characteristics as well as various response characteristics of the
human head. The complexity of the cranial system presents an extremely difficult task to one
wishing to perform detailed simulation of the physical processes of the human head by
mathematical modelling. For this reason geometrical approximations are typically used for analytical
investigations (Huston and Seras, 1981, Kabo and Goldsmith, 1983, Merill et al., 1984, Misra and
Chakravarty, 1985, Charalambopoulos et al., 1996a,b).

In most of the studies related to the response of the human head made so far by previous
investigators through the consideration of mathematical or experimental models, the head was
considered to be free-floating system. But in reality, the motion of the head is controlled by the
neck as well as its muscles and ligaments. The role of the neck on the response of the cranial
system has been first discussed by Landkof et al. {1976) and followed by Reber and Goldsmith
(1979).

Landkof €1 al. (1976) studied a non-destructive axisymmetric impact problem .y using mathematical
and experimental models. In the models considered by Landkof et al. (19786) the shell representing
the skull was assumed to be elastic, isotropic, homogeneous and perfectly spherical in shape; the
fluid contained in the shell, representing the brain material was considered to be inviscid and
compressible with its motion irrotational. The effect of the neck was included through the
consideration of a linear viscoelastic cantilever beam rigidly connected to the shell. Lubock and
Goldsmith (1980) studied experimentally the response of two ditferent fluid - filled head-neck models
to impact and provided information conceming the validity of the widely prevalent cavitation
hypothesis of brain damage. The potential deleterious effects of the helmet mass and inertia
through increased head rotations during high acceleration periods were studied by Huston and
Sears (1981). Kabo and Goldsmith (1983) constructed a reproducible, synthetic replica of the
human head and neck system utilising a water - filled cadaver skull mounted on fibreglass -
reinforced and supported by passive silicone rubber muscle and ligament elements in order to study
the response of a human head-neck model to transient saggital plane loading. Mermill et al. (1984)
presented a three - dimensional model of the head - neck system and developed a numerical
method that permits the evaluation of the local kinematic and load distribution response of the model
to any head impact or base impulsive loading. Mirsa and Chakravarty (1985) adopted a
mathematical model of the human head consisting of an elastic prolate spheroidal shell
(representing the skull) filled with a viscoelastic (Kelvin) material representing the brain tissue; the
shell was supposed to be connected to a linear viscoelastic cantilever beam (representing the neck).
Based on the above mentioned modeal they studied the dynamic response of a head-neck system {o
an impulsive load. Deng and Goldsmith {1987) developed a three-dimensional lumped - parameter
model of a human head/neck/upper forso to predict its motion for any specified initial conditions.

The experimental investigations of the resonance frequencies of the human skull have been made
on living subjects as well as cadavers and dry skulls. Khalil et al. {19739) presented a
comprehensive investigation of the resonance frequencies of the human dry skull. The resonance
frequencies of the human skull in vivo have been recently investigated by Hakansson et al. (1894).

In this study the cranial bone (skull) is approximated by a linear elastic homogeneous sphere and
the brain material by an inviscid irrotational fluid. The neck support is approximated by an elastic
support which reacts in three-dimensions. The main purpose of the present work is to investigate
the eigenfrequencies of the head-neck system: the analysis is based on the three-dimensional
theory of elasticity and the representation of the displacement field of the skull in terms of Navier
gigenvectors (Hansen, 1935). The motion of the fluid is supposed to undergo small oscillations
governed by the wave equation. The frequency equation is constructed by imposing the satisfaction
of the boundary conditions and it is solved numerically. The results obtained are compared with the
existing experimental ones. From the present analysis we lead to the conclusions that the neck
support plays an important role on the eigenfrequencies of the human head, the neck model
considered has to be improved by taking into account its viscoelastic behaviour and the skull -brain
model has to be modelled as skull-fluid model with viscoelastic properties.




2 PROBLEM FORMULATION

The geometry chosen for the examination of the dynamical characteristics of the human head-neck
system is shown in Figure 1;
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Figure 1: Human head-neck system

The cranial bone (skull) is approximated by a linear elastic homogeneous sphere (region 1) and the
brain material by an inviscid, irrotational fluid (region 0). The neck support is identified as a region

defined by the angle 6, and mathematically by different conditions than those on §, \ §;.
For the region 1 (elastic sphere) the displacement vector field u = u(r,t) satisfies the equation:

Fu (r.1)
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where i, and A, are Lamé's constants, p, is the mass density of the skull, V is the del operator
and 1 is the time.

Far the free vibration problem we assume that

H[l](r,ri=u;l1{r)e'£“, KE]

where @ is the angular frequency measured in radians/sec and i = J-1.

Introducing the following dimensionless parameters
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and replacing (2) into the equation of mation (1) we obtain
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The motion of an inviscid and irrotational fluid undergoing small oscillations is governed by the wave
equation,
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where @ is the velocity potential, ¢ + is the speed of sound in the fluid and

Supposing that

D(r' .0 )=D (r e

we obtain

VIO, (F)==k3d,(r) (6)
where k', =Q/c' ..

The pressure, P, in the fluid is found from the velocity potential as
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where p . is the mass density of the fluid.

In nondimensionalised form the previous relation takes the form
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The boundary condition satisfied by the elastic field on the exterior surface §, is of mixed type.
More precisely, the surface section shown in Fig. 1 in the region 0 < ¥ < m — 6, is stress free,

while the surface section 7 — 68, < ©# < 7 represents the neck support and the boundary condition
satisfied there must incorporate the physical character of the interaction between human head and




neck. We assume that a Robin type boundary condition is satisfied, which simulates appropriately
the dynamic character of the motion of the contact region.

The boundary condition on the surface S, is described by

Tu:;”={ !{,1 f=d=<x-6 )
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where £ is a constant depending on the physical characteristics of the human neck.

The dimensionless surface traction operator T" is given as follows

T=2u'rf-V+1' rfV.-+u' rixVv, (10)
whereF is the unit outward normal vector on the outer surface

The boundary conditions on §, are given as

Tul'(r'))=-P (', )F (11a)
Pl () =Fala ), (11b)

From the physical point of view the condition (11a) says that the radial stress in the regions 1 and
0 at r=r, is equal and opposite to the fluid pressure, while (11b) represents the continuity
condition on .

In what follows we will discuss the systems:
(a) skull - neck system (SN - model).
{b) skull - brain - neck system (BSN - madel)

In the second system the only boundary condition that has to be satisfied on the surface S, is:
Fullr,)=0. (12)

We note that the problem described by the equations of motion (4) and (5) and the boundary
conditions (9), (11) (or (12)) is a well-posed mathematical problem.

3. PROBLEM SOLUTION

Adopting the methodology followed by Charalambopoulos et al. (1996a), we expand the
displacement fields in the regions 0 and 1 in terms of the Navier eigenfunctions (Hansen, 1935),
which constitute a complete set of vector functions in the space of square integrable functions in
the region occupied by the system under investigation. More precisely, the displacement field in the
elastic skull (region 1) has the full expansion
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and g,(z) and gf(z} represent the spherical Bessel functions of the first, j (z), and second,

¥,(2). kind, respectively. The functions P, (r'), B, (r') and C, (r') defined on the unit sphere,
are the vector spherical harmonics introduced by Hansen (1935) and in spherical polar coordinates
(r, 1, @) are given as follows
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wherse t} and qﬁ are the unit vectors in ¥ and @ - directions respectively,
Y7 (r)= P (cos1})e™ are the spherical harmonics and P (cos®) are the well known
Legendre functions.

The spherical polar coordinates of the real part of the displacement field as well as the expressions
TL?'(F'), TM™(F') and TNT'(F') are given by Charalambopoulos et al. (1996b).

The fields in the fluid region (0) are generated by the scalar potential ®(r',f') only. This fact
imposes the fields in region 0 to be expanded only in terms of the functions L’:'I (r'). In addition to

that the necessity to keep the regularity close to the origin requires the parameter [ to be equal to
1, that is

D,(r)= i i{fu&t (K, r }}P;" (cos D)™ e . (17)

r=0 m=—n
The velocity of the fluid is expressed as

V(' )=V o=y Y ()™ (18)
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and the comesponding displacement field is
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The expression for the pressure is found by replacing the expression (18) for the velocity potential
® into (8), that is
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The Mavier eigenvectors L’,’,"i (r, M,’,""' (r') and N Ty (Hansen, 1935) as well as the result
on them of the stress operator T" are expressed in terms of the spherical harmonics P (F),

B (r) and CJ(r), which constitute an orthonormal set of vector functions on the unit sphere.
Finally, the orthogonality and independence of the vector spherical harmonics are used for the
satisfaction of the boundary conditions on S by following the steps presented by Charalambopoulos
et al,, (1996b).

In the case under discussion we have:
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where n'=0,1,2,...., |m|<n.

The functions A,,B.,C.,D. and E. are given in Appendix C. The continuity of the radial
displacements on S, gives
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The satisfaction of the boundary conditions on S, requires complicated manipulations of the initial
form of equation (9).

The boundary condition (3) can be written as
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with S, being the portion of. S, definedby 71— ¥, < ¥ < 7.

The function f(7) can be expanded in terms of the complete set of spherical harmonics
Y (F) = P (cos 1)e™ as follows,

f(F)=2 ikw Y™ (F).

(24)
It can be proved that the coefficients &, are given by the relation
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Consequently, the boundary condition (23) takes the form
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We take the inner product of the equation (26) with the vector harmonic functions P\, B, CI
and successively we integrate over the unit sphere. In the right hand side, there emerge the
integrals jY"‘Y”'Y”dS JB“ BTY!dS, jC"‘ CrY)dS, J'B“ C7 ¥'dS whose calculation

requires extended and elam::rate use of the pmpemas of sphencal harmonics. Finally, we obtain the
following relations,
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with
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The algebraic equations (21), (22) and (27) consist of a linear system of the following form:

Dx=10 (28)
whare
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is a 7(n'+1) matrix for the BSN - Model and 6(n'+1) for the SN - Model, where n' ensures
convergence and

. : T
o= st el e O (30)

Details about the matrix D, for each case under discussion, are given in Appendices A and B.

In order for the system (28) to have a non-trivial solution, the following condition has to be satisfied
det(D)=10. (31)

This condition provides the characteristic (frequency) equation, the roots of which are the
gigenfrequency coefficients {2 of the system under investigation. The mode shape corresponding
to each £2 can be obtained by solving the system (28).

4. NUMERICAL RESULTS - DISCUSSION - CONCLUSIONS

The frequency equation (31) has been solved numerically by using a matrix determinant computation
routine along with a bisection method. The dimension of the matrix I depends on the value of n

which ensures convergence of ,, k=12,...,20. The computation of Q, =Q,(&,8,,n') has
been done by using an iterative procedure and the results obtained are cited in Table 1. We observe
that the value of n' for convergence is strongly dependent on the values of £ and 8,,
N m =1 (€,8,). Inthe case under discussion, for fixed values of £ and 8,, the computational

procedure was repeated until Q" - Q" *| = O(10™), k=1,2,...,20. It s noted that the

accuracy of the bisection method used is of the order of O(10™*) and the computing time needed
is an increasing function of n' .

The elements of D are functions of £ (see Appendices A and B) and therefore they have to be
computed for every different value of it. This fact requires the computation of Spherical Bessel
functions of the first and second kind as well as their derivatives. In our computations we have
used Seed's method (Press et al., 1992) for the computation of Bessel functions of fractional order

and their derivatives by using the definitions of spherical Bessel functions for integer ' . We note
that recursive relations, although they offer flexibility and fast computations, are not valid for high

values of n' and values of the argument close to zero.

|
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Table 1: BSN - Model: Convargance of H,., k=12,...20
E, =6.5x10" Nfm®, v, =0.25, p, =2.1326x10" Kg/m", K =2.1029753x10° N / m*,p, = 1.0002x10° Kg/m’ ,r, = 0.0854m,r, = 0.0794m,€ = —0,12,8, = n/8

Mo, n'=0 n'=1 n'=2 n'=3 n'sd n'=5 n'=6 n'=7 n'=8 n'=9 n'=10 n'=11 n'=12 n'=13 n'=14 n'=15

1 0.1609) 0.1686| 0.1663) 0.16¥2| 0.1668| 0.1670| 0.1669| 0.1670| 0.1669] 0.1670| 0.1669] 0.1670| 0.1669| 0.1669| 0.1669
2 0.3793| 0.4033| 0.3955| 0.3987| 0.3973| o0.3gr9| 0.3977| 0.3977| 0.3977| 0.3978| 0.3977| 0.3978| 0.3977| 0.3977| 0.3977
3 0.4191] 0.4259] 04234) 04242 04240| 04241 04240 04241 0.4240| 04241 04241| 0.4240] 04240| 0.4240
4 0.5176] 0.5183] 05175| 05182 0.5177| 0.5180] 0.5178] 0.5179| 0.5179| 0.5179] 05178 0.5178| 0.5178
5 0.6283| 0.6306| 0.6300( 06302| 06301| 06301 06301 06301| 0.6301| 0.6300| 0.6300] 0.6300
6 0.7362| 0.7388| 0.7376| 0.7382]| 0.7379] 0.738B1| 0.7380| 0.7380| 0.7373] 07380 0.7380
I 0.8655] 0.86589| 0.B656| 0.8658| 0.8857| 0.8658) 0.8657| 0.8657| 0.B656| 0.8656
a 1.0473] 1.0484) 1.0480] 1.0482| 1.0481| 1.0481| 1.0480| 1.0480| 1.0480
| 1.1787] 1.1787 1.1787) 1.1788| 11787 1.1788] 14787 11787 11787 1.1A787) 1787 114787 11787 1.1787
10 1.2071) 1.2087] 1.2081| 1.2084| 1.2082| 1.2083| 1.2083] 1.2083| 1.2083]| 1.2083] 1.2083| 1.2083) 1.2064| 1.2064]| 1.2064
11 1.2534] 1.2538] 1.2536] 1.2537] 1.2536] 1.2535] 1.2535] 1.2535
12 1.5022] 1.5024] 1.5023| 1.5024| 1.5021| 1.5022| 1.5022
13 1.7864| 1.78B67) 1.7B66| 1.7864| 1.7B64| 1.7864
14 1.9119] 1.9127] 1.9124] 1.9125] 1.9125] 1.9125] 1.9125] 1.9125] 1.9125] 1.9125] 1.9125] 1.9125] 1.8125
15 2.0980] 2.0981]| 2.0978] 2.0878| 2.0978
16 2.2356| 2.2356| 2.2356| 2.,2356| 2.2356| 2.2356| 2.2356| 2.2356| 2.2356| 2.2356| 2.2356| 2.2356| 2.2356| 2.2356
17 23691 2.3691| 2.3691] 2.3691| 2.3691) 2.3691] 2.3691| 2.3691] 2.3691| 2.3691) 2.3691| 2.3691] 2.3690) 2.3347| 2.3347] 2.2347
18 2.4412] 2.4410] 2.4409] 2.4409
19 2.5415]| 25417 2.5415] 2.5416] 2.5415| 2.5416| 2.5416] 2.5416| 2.5416| 2.5416] 2.5416] 2.5416
20 28081 2.8082| 2.8082
21 3.16Y7| 3.1678| 3.1678B| 3.1678| 3.1678| 3.1678]| 3.1678| 3.1678| 3.1678| 3.1678B| 3.1678
20 3.1976| 3.1977
23 3.2411] 3.2411] 3.2411
24 3.2919) 3.2919| 3.2639| 3.2641| 3.2640] 3.2640) 3.2640| 3.2640] 3.2640| 3.2640| 3.2640) 3.2640| 3.2615| 3.2615] 3.2615




The numerical computations for the systems under discussion have been performed by using the
following material properties:
Dry skull (McElhaney, 1970)

E=1.379x10° N/m*, v=0.25, p=2.1326x10°Kg/m’,

Skull (Khalil and Hubbard, 1977)
E=6.5x10° N/m*, v=0.25, p=2.1326x10°Kg/m’,

Cerebrospinal fluid (Khalil and Hubbard, 1977)
K =2.1029753x10° N/m*, p=1.0002x10°Kg/m’,

where E. K and v denote the Young's modulus, bulk modulus and Poisson s ratio, respectively.
(1+v)(1-2v) 2(1+v)

are the Lame s constants.

MNeck:
In the present analysis the neck is simulated by a system of springs which reacts in an
isotropic way in three dimensions.

Taking into account the analysis by Landkof et al. (1976), we assumed that the values of the
parameter £ vary as follows

£ [-0.3,0.0] for the SN - Model
and

£ &[—0.15,0.0] for the BSN - Model.
The geometry of the skull - brain system is defined by:

r, =0.0854m, r, =0.0794m.

The determination of the support area is given by the angle 6, as

T
8, | —,— |, for the SN - Model
: [5{] 15} o ¢

and

T

6, e [—,—] for the BSN - Model.
" LS50 8

Since the analysis by Charalambopoulos et al. (1996a) gave very satisfactory resuits for the

frequency spectrum of the dry skull, we adopted the SN - Model, although not realistic, to be

studied in order to have an estimation of the influence of the neck support on the dynamic
characteristics of the skull - neck system.

The effect of the neck - support on the sigenfreque  =s of the SN - Model is presented in Tables 2
and 3 and graphically is shown in Figure 2. We serve that the neck introduces a pattern of
additional frequencies to the spectrum of eigenirequencies of the skull and also that the
eigenfrequencies @,, k > 2 suffer a shift as shown by the arrow in Figure 2.

-12 -



Table 2: SN - Model: Variation of Q,, k =1,2,...,20 with £&[=0.3,0.0]
E =1379x10° N/m?, v, =0.25, p, =2.1326x10° Kg/m’,
r, =0.0854m,r, = 0.0794m, 6, = n/15

No. £=0.0 g=-.1 e=-0.2 | g=-0.3

! 0.1416 0.2020 0.2497

2 0.1909 0.2733 0.3391

3 0.7070 0.7180 0.7301 0.7439

4 0.8492 0.84862 0.8411 0.8332

5 0.9418 0.9538 0.9697 0.9974

& 1.0500 1.0478 1.0415 1.0223

7 1.1954 1.1902 1.1840 1.1765

8 1.1963 1.2030 1.2106 1.2190

8 1.3883 1.3900 1.3921 1.3950
10 1.5456 1.5506 1.5528 1.5518

11 1.6255 1.6285 1.6360 1.6456
12 1.8897 1.8919 1.8937 1.8954
13 1.8901 1.8980

14 1.9044 1.8068

15 2.2201 2.2215 2.2230 2.2245
16 2.5359 2.5344 2.5327 2.5307
17 2.5683 2.5707 2.5732 2.5762
18 2.6218 2.6212 2.6203 2.6190
19 2.9451 2.9460 2.9470 2.9479 |
20 3.1627 3.1664 3.1701 3.1740

Table 3: SN - Model: Variation of Q,, k=1,2,...,20 with 6, € [D.ﬂ,%I

E =1379x10° N/m*, v, =0.25, p, =2.1326x10°Kg/m’,
r, =0.0854m,r, =0.0794m,£ = 0.3

Ma. 8,=0 T T T T
% 100 O 60 % 30 15
1 0.0366 0.0610 0.1225 0.2497
2 0.0495 0.0826 0.1650 0.3391
3 0.7070 0.7077 0.7091 0.7157 0.7439
4 0.8492 0.8489 0.8484 0.8457 0.8332
5 0.9419 0.9428 0.9448 0.9532 0.9874
5] 1.0500 1.0498 1.0488 1.0451 1.0233
Fi 1.1954 1.1950 1.1843 1.1909 1.1765
g 1.1063 1.1972 1.1987 1.2050 1.2190
2] 1.3883 1.3879 1.3874 1.3858 1.3950
10 1.5456 1.5460 1_54§§ 1.5491 1.5518
11 1.6255 1.6262 16273 1.6322 1.6456
12 1.8897 1.8899 1.8902 18914 1.8954
13 1.8901 1.8907 1.8918 1.8969
14 1.9044 1.9041 1.9037 1.9029
15 2.2201 2.2208 2.2213 2.0237 5.0045
16 2.5350 2.5356 D.5353 2.5337 2.5307
17 2 5683 2.5682 2.5679 2.5681 2.5762
18 26218 2.6218 2.6217 56212 5 6190
5.9451 2.9455 2.9460 2.9474 59479
3.1627 3.1631 3.1638 3.1667 3.1740
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Figure 2: Comparison of @, for skull (Charalambopoulos et al., 1996) and skull - neck systems
with experimental results for skull (Khalil et al., 1879).
E =1379x10° N/m®, v,=0.25, p,=2.1326x10°Kg/m’,

r, =0.07735m,r, = 0.0691m,e = -0.3,6, = %

From the results cited in Tables 4 and 5, we observe that the influence of the neck - support on the
gigenfrequencies of the BSN - Model is analogous to that on the SN - Model. The present model
improves the results of the FF - Model (Charalambopoulos et al., 1998b). The first six
eigenfreguencies predicted by the present analysis are very close to those measured experimentally,
as it can be seen from the results presented in Table 6 and in Figure 3.
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Table 4: BSN - Model: Variation of Q,, k=1,2,...,20 with 6, e[{lﬂ,gl
E =6.5x10° N/m*, v,=0.25, p, =2.1326x10° Kg/m’
K =2.1029753x10° N / m* ,p, = 1.0002x10° Kg/m’
r, =0.0854m,r, =0.0794m,£ = —0.12

z
(=]
5o
]
=

,=— | =X | g,==]| g==1]9== a

" 100 50 30 e 10

=
20

0.0135 0.0271 0.0450 0.0897 0.1339 0.1669
0.0313 0.0626 0.1044 0.2086 0.3164 0.3977
0.3993 0.3995 0.4000 0.4013 0.4073 0.4183 0.4240
0.5172 0.5171 0.5169 0.5164 0.5149 0.5146 0.5178
0.6147 0.6148 0.6156 0.6173 0.6238 0.6293 0.6300
0.7239 0.7237 0.7234 0.7227 0.7223 0.7277 0.7380

0.8613 0.8B615 0.8622 0.8636 0.8672 0.8669 0.8656

1.0350 1.0348 1.0345 1.0342 1.0360 1.0431 1.0480)
1.1554 1.1578 1.1588 1.1611 11737 1.1747 1.1787
1.1953 1.1948 1.1937 1.1890 1.1901 1.2064

1.2459 1.2470 1.2475 1.2485 1.2498 1.2495 1.2535
1.4958 1.4956 1.4954 1.4953 1.4981 1.5017 1.5022

1.7790 1.7789 1.7793] 1.7799 1.7803 1.7823 1.7864
1.8901 1.8904 1.8911 1.8928 1.8996 1.0077 1.9125
2.0934] 2.0931 2.0930] 2.09301 2.0956] 2.09651 2.0078

2.2435 2.2409 2.2407 2.2402 2.2406 2.2361 2.2356
2.3641 2.3297 2.3298 2.3301 2.3655 2.3329 2.3347
2.4380 2.4357 2.43860 2.4363 2.4369 2.4393 2.4409
2.5359 2.5358 2.5355 2.5350 2.5341 2.5364 2.5416

e ok ek | ik | i [ ok [ ek [ ek | o [k ey
wlo]~|m]|onle e lra| == @< - =2

Table 5: BSN - Model: Variation of £,, k=1,2,...,20 with £e[-0.15,0.0]
E =6.5x10° N/m*, v,=0.25, p, =2.1326x10° Kg/m’
K =2.1029753x10° N / m*,p, = 1.0002x10° Kg/m’

r, =0.0854m,r, = 0.0794m,6, = %

No. €=00 1 e=-003] e=-0.06] e=-009| e=-0.12 | e=-0.15
1 0.0839 0.1184 0.1448 0.1663 0.1864
2 0.1918 0.2743 0.3400 0.3877 0.4317
3 0.3993 0.4048 0.4107 0.4171 0.4240 0.4510]
4 0.5172 0.5183 0.5188 0.518% 0.5178 0.5157
5 0.6147 0.6180 0.6216 0.6257 0.6300 0.6350
& 0.723%8 0.7273 0.7309 0.7345 0.7380 0.7414
7 0.8613 0.8627 0.8640 0.8650 0.8656 0.8660
8 1.0350 1.03789 1.0411 1.0446 1.0480 1.0518
g8 1.1594 1.1695 1.1816 1.1846 1.1787 1.1715
10 1.1928 1.1892 1.1959 1.2064 1.2180
11 1.2459 1.2486 1.2504 1.2522 1.2535 1.2548
12 1.4958 1.4972 1.4989 1.5007 1.5022 1.5038
13 1.7790 1.7807 1.7826 1.7847 1.7864 1.7882
14 1.8801 1.8953 1.8008 1.9065 1.8125 1.9188
15 2.0934 2.0943 2.0955 2.0970 2.0978 2.0990
16 2.2435 2.2399 2.2386 2.2387 2.2356 2.2338
17 2.3641 2.3309 2.3322 2.3678 2.3347 2.3358
18 2.4360 2.4369 2.4382 2.4399 2.4409 2.4421
19 2.5359 2.5375 2.5389 2.5403 2.5416 2.5427
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Table 6:

Eigenfrequencies @, of the human head (Hakansson et al., 1994).

Figure 3: Comparison of @, for FF - Model and BSN - Model with experimental results (Hakansson

et al. 1994).

B

MNo. ~ Experimental Standard Deviation FF - model Prasent Analysis
Results (Hakansson et al,, | (Charalambopoulos (BSN - Modal)
(Hakansson st al,, 1994) at al., 1996b)
1994)
{ma&an _:raluas']
1 a7z 119 1423 585
2 1230 148 1843 1417
3 1532 158 2191 1511
4 1785 169 2580 1845
5 2076 217 3068 2245
5] 2287 203 3636 2630
7 2568 308 4125 3085
8 2899 383 4261 3735
g 3253 381 4535 4201
10 3590 7 5775 4468
11 4101 543 G137 5354
12 4793 536 8220 6367
13 5304 560 7987 6816
14 5766 807 8303 7477
15 5841 419 8629 7968
16 6336 538 2040 831
17 5656 429 11270 8700
18 6883 176 11560 9058
19 7165 o 11580 10008
12104 f : - =
[ n
101047 AT
< [ | z & = I
8.0 103+ e¥i%00 +
& [
= a"a
6.0 10°T a
o q'\
FF - Madal - Experiment
4010%T M ™ T
BSN - Model
. u E ﬂ o o
2010°T = : s’ : 2
:® |
0 } : -
0 5 10 15 20
Mode #




E, =6.5x10° N/m?, v, =0.25, p, =2.1326x10° Kg/m’
K =2.1029753x10° N/ m*,p, = 1.0002x10° Kg/m’

(4
r, =0.0854m,r, =0.0794m.e =-0.12,6, = 3
The variation of £2,, k = 1,2 with the inner skull radius r, and the fluid density p; are shown in
Figures 4 and 5, respectively. We observe that the increase of p, entails decrease of
Q,, k=12, while increase of r, results increase of Q,, k=12.

0.8
|
05T T
04T & =
o)
03T A Eigen. Coef. #2 -
0.27 }
. ™
| B -. Eigen. Coel. #1
= v .- n
0.1 ¢ t
0.00 0.20 0.40 0.60 0.80 1.00
(r,=ry)fr
Figure 4: BSN - Model: Variation of Q,, k=1,2 with the inner skull radius r;.

E =6.5x10° N/m*, v,=0.25, p, =2.1326x10° Kg/m’
K =2.1029753x10° N / m*,p, = 1.0002x10° Kg/m’
T

r,=0.0854m,e = ~0.12.6, = 2

= 1F=



0.5 i 1
1
i
04T k----a T
A Eigen. Coef. #2
'Y
037 m
A
0
02T ™ "
ik Eigen. Cost #1
EL
..
A ‘m
0.1 i
a f
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Figure 5: BSN - Model: Variation of Q,, k =1,2 with the fluid density p,.
E =6.5x10° N/m*, v, =0.25, p, =2.1326x10° Kg/m’
K =2.1029753x10° N / m’

7, =0.0854m,r, =0.0794, =—0.12,8, = g

From the results presented we lead to the conclusions:

i. the neck support plays an important role on the dynamic characteristics of the human
head

ii. the neck - model has to be improved by taking into account its viscoelastic behaviour

iii. the skull - brain system has to be modelled as skull - fluid model with viscoelastic
properties

The improved model based on the above observations is under preparation and is scheduled to
appear in a future communication.
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APPENDIX A: SN - Model

The matrix D can be described by a matrix of block elements having dimension 6 X 6, i.e.,

DL] D, .. Dm'-:
D,

D=
D,.; D, . xa

The diagonal elements D, , are given as

d, dy . . . dy]
d,
'Dk.t=
hdﬁ-l KR OCEE ke Ges ds.a_
where

d, =A(ry), d,=Alr,). ds=D/(ry), dg=Di(ry)

d,,=B,(r,). d,; =B{(ry). ds = E,(ry), dys = E[(r;)

dy, = A(r ) - Ar DERK D, m), dy, = AN ) - AL (P )E(k.K, D,,m),

d,, = Di(r,)=Di(r )E(k,k. B,,m), dy, = D} ,) = Di(r )E(k.k, B,,m),
d,, =Di(r,) - Di(r,)E(k.k.B,,m), d,, = D}(r )= D}(r ) )E(k,k, D,.m'),
d, = E\(r)-E\(r Sk, m), d,,=ENF)=ENF Bk, V,.m),
dis=Ci(7y): ds o = CL(y)

dg,=Ci(r )= Ci(r B, (kk, B,,m'), ds, = CE(r' )= C2(r ) )E, (k. k, B, m')
and the corresponding elements of the block submatrices D, ; are

d,, ==Al(r))E(k.},8,m), d;, =~Al(r)E(k.},8,,m),

dys = =D'(r)E(k, j,68,,m'), dy, = =D (r)E(k.j,6,,m),

d,, =-B\(r)Z,(k.j.8,,m), d,, =B} (r)E (k. },8,,m),

dyg==E\(r)E,(k,j,0,,m), dyo ==E}(r)E,(k,j,8,,m),
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dﬁ.a o —&;{I‘l }E!(k,j, Eu:m. } ' ds.4 - ‘é?{rl}zl (k’j’ Eﬂ‘m.}

APPENDIX B: BSN - Model

The matrix D can be described by a matrix of block elements having dimension 7 X 7, i.e.,

DI.: ‘DLZ D:.n +1
D:l
D= ;
D1'+|..|. Dﬂ'-l-l..!r' =1

The diagonal elements D, , are given as

gy thi we omm ss oum By
dy,
D, =
T TR —— dm_
where the only different elements from D, , corresponding to SN - Model are the following
3
dl.?z'Tgk{kjrn}-
. . ' k
dy =8QF). d =@, d, —k(k+n—i—k*;-—) d”-k{hnLr”
50 0
A | f |
(K ;r.)
d”——-gt r,r’ i
by

and the non-diagonal blocks have the same elements as in the case of the SN-Model (Appendix A)
and the elements on the 7th row and column are zero.
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APPENDIX C:

The functions A, B.,,C.,D. E. and A.,B.,C. D, mgwnasﬁ:ﬂhws

AL {r}‘—[—gﬂ(k' P+ 2Uk (1= ’;F“;’:fjg,{k' PY+AK g (k)

B (F)=2p \n(n+ D) [ g,,(k'wr')—g“{krrr}}

m

L. (F)=u' nn+ 1)[;;": gk r)- %g:{k'ﬂ- r ]}

« f i f ! i ;
D,,(r') =21’ ;n(n + 1)[&?&_"] AP, }}

rl kl . rl 2

E,.i,;(-rj)=#li"1.|'n(n+”‘ 2%{[_2 kngn(kr }+2?I{L:f11.gi(knrj}

A =gk, 7)
B =y kel
k,r

C, =n (" +Dg. (k,r)

Bl = -4y SeEar)
K. ¥

- e - ! ;
B =\ (n’+1)[£i- (kgfﬂ%}
. r

.90



