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Abstract

In this work the dynamic characteristics of the human skull-brain system is studied. For the
purpose of our analysis we adopted a model consisted of a hollow sphere (skull), an inviscid and
irrotational fluid {cerebrospinal fluid) and a concentrically located inner elastic sphere (brain). The
mathematical analysis is based on the elasticity solution for the elastic spheres and the simplified
description of the motion of the fluid by the wave equation. The roots of the characteristic equation
were found numerically. The results are in good agreement with other researchers analogous
modelling work, however our three dimensional analysis introduces a new pattern of frequencies to
the natural frequencies spectra of the skull-brain system. The results are compared with
experimental ones and the role of the various system parameters on the natural frequencies is
investigated.

1. INTRODUCTION

The knowledge of how and why the natural frequencies change could aid in the development of a
new medical instrument for the early diagnosis of brain diseases [1]. The experimental
investigations of the resonance frequencies of the human skull have been made on living subjects
as well as cadavers and dry skulls. Khalil et al. [2] presented a comprehensive investigation of the
resonance frequencies of the human skull. The resonance frequencies of the human skull in vivo
have been recently investigated by Hakansson et al. [3]. The complexity of the human skull
structure presents an extremely difficult task to one wishing to perform detailed simulation of the
physical processes of the human head by mathematical modelling. For this reason, geometrical
approximations are typically used for analytical investigations. We note that, although finite element
model representations of the head geometry are more desirable, compatible characterisations of the
zonal scalp, skull, dura matter and brain constitutive properties along with engineering definitions of
the associated interface conditions are lacking.

Engin and Liu [4] adopted a model consisting of a thin homogeneous isotropic and spherical shell
containing an inviscid irrotational fluid. Advani and Owings [5] considered a structural modeliing of
the human head consisting of a uniform elastic spherical shell (skull) containing an elastic core
{brain). Talhouni and DiMaggio [6] introduced the modelling of a head as a prolate spherical shell
filled with an inviscid liquid. The model of Ref. 6 was used by Misra et al. [7] to study the dynamic
response of a head-neck system to an impulsive load. Recently, Guarino and Elger [8] adopted the
modelling of the human head by a fluid-filled elastic shell containing a concentrically located elastic
sphere. In Ref. & an analytical modal analysis was used to obtain the characteristic equation for the
natural frequencies of the physical system considered. The major assumptions adopted by Guarino
and Elger are that the fluid is inviscid, the spherical shell is thin and the modes of the physical
system are axisymmetric,
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The effect of viscosity on the free oscillations of fluid-filled spherical shells was studied by Su [9].
From the results cited in Ref. 9 we obtain the information that the natural frequencies of a vibrating
spherical shell will decrease with increase of the viscosity of the contained fluid. The
elastomechanical characterisation of brain tissues was studied by Sahay et al. [10]. The model
used in Ref. 10 consists of an outer shell representing the rigid cranium and an inner sphere
representing the hyperelastic brain. The cranium is supposed to be separated from the brain by a
bed of venous fluid. A model which takes into account the viscoelastic nature of the brain tissue
would be a more accurate representation of the intracranial complax [11].

In this study we adapt a maodel for the human head consisted of a hollow sphere (skull} containing a
concentrically located elastic sphere (brain). The space between the two spheres is supposed to be
filled with a fluid (cerebrospinal fluid). The aim of this work is to investigate the dynamic
characteristics of the human head. The major assumptions of the system considered are that the
fluid is inviscid and irrotational and the skull bones and brain tissue are linear, elastic, isotropic and
homogeneous. The analysis is based on the three dimensional theory of elasticity and the
representation of the displacement field of the skull and brain in terms of the Navier eigenvectors
[12]. The motion of the fluid is supposed to undergo small oscillations governed by the wave
equation. The characteristic (frequency) equation of the problem under discussion was solved
numerically and results for the eigenfrequencies and mode shapes are presented in tables and
graphs. The results obtained are compared with experimental ones. As it is expected the resulis of
Engin and Liu are in better agreement with our results as the shell becomes thinner. The results of
Guarino and Elger are in quantitative disagreement with our results and it is supposed to be due to
the assumptions introduced in Ref. 8.

From the present analysis we see that the three dimensional analysis predicts an extra pattern of
natural frequencies on the frequency spectra of the system considered. We note that the cases of
fluid-filled hollow sphere, of three elastic spheres and that of an elastic sphere are also discussed
and the role of various parameters on the natural frequencies of the system considered are
extensively discussed.

2. PROBLEM FORMULATION
The selected model (Fig. 1) consists of an elastic sphere (2 - skull) containing a concentrically

located elastic sphere (0 - brain). The space between the regions 2 and 0 is considered to be filled
with a fluid (1 - CSF: cerebrospinal fluid)

Figure 1: Problem Geometry

The skull bones and brain tissue are assumed to be linear, elastic, isotropic and homogeneous while
the fluid is considered inviscid and irrotational. The spherical co-ordinate system is shown in Fig. 2.
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Figure 2: Spherical Polar Coordinate System

For motions in homogeneous isotropic, elastic solids the displacement vector field u =u(r,1),
satisfies the equation

Futl(r,1)

”kvguik](r,”_‘_{ik_Fpk }‘F‘F-uiﬂ{r,f}':ﬂt o

(1)

where [1,, A, are Lamé's constants, p, is the mass density, V is the usual del operator, ¢ is the
time and k=0,2 indicates the brain (k=0) and the skull { k=2), respectively. We note that

Ay+u, =K, + %, where K, is the bulk modulus of the k-medium.

For the free vibration problem we assume that
™ (r,0) =Re[u® (r)e ], (2)

where ¢ denotes the angular frequency measured in radians/secand j =+/—1.
Introducing the dimensionless variables

UEA L) (x=r,) (3)

o ch

and (2) into the equation of maotion (1) we obtain
Vi) + (L OV (VP () + QP (r') =0, (4)

where
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The motion of an inviscid and irrotational fluid undergoing small oscillations is governed by the wave
equation,

1 J*d

Vo =—
Lz, ot

or
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Supposing that

@(r',¢ ) =Re[D, (r' )e ™)

we obtain

Vi, (r)=—k" D, (r) (6)
where k', =Q/c' .

The pressure, P, in the fluid is found from the velocity potential as

dd
P=—pI[E). (7)

where p. is the mass density of the fluid.

The previous relation in dimensionless form is given as

P 1
FP=—=iQp —& 8
0 i ,C’;c,i ” (8)

where p' . =p, [p,.

The interaction of the & - media of the system enters the mathematical formulation through the
boundary conditions on the surfaces, S,. k=10,1,2.

We assume that the surface S, is stress free, that is
T,u®(r',)=0 ©)
The boundary conditions on §,,k =1,0 are given as
T.u?@ ) ==P ' F (10a)

Pout ' ) =F-u® @) (10b)



and
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where

P =20 F VA XVt g PV, i=0.2 (12)

stands for the dimensionless surface traction operator in V., F is the unit outward normal vector on
S, and {11““._; ) :{j'jfﬁzs“.i.-’ﬁg}-

From the physical point of view the conditions (10a,11a) say that the radial stress in the regions 2
andQat r=r, and r =r_ is equal and opposite to the fluid pressure at the same surfaces, while

(10b, 11b) represent the continuity condition at 5,k = L.0.

In the course of the present analysis we shall also discuss the cases whare
i) the space 1 is filled with an elastic material,

i) the spaces 0 and 1 are filled with an inviscid and irmotational fluid and

iii) the case of an elastic sphere.

As it is obvious in each case the mathematical problem has to be properly modified. We note that
the problem described by the equations of motion (4), (5) and the boundary conditions (9). (10) and
(11) is a well - posed mathematical problem.

3. FROBLEM SOLUTION - FREQUENCY EQUATION

In the case of the elastic regions 2 and 0 we represent the displacement field in terms of the Navier
eigenvectors [12], that is

uP0)=Y, 3 eI+ BEME O+ NI @), re, (12)

=0 m=—nr I=]

and
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respectively, where
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and g'(z) and g.(z) represent the spherical Bessel functions of the first, j,(z). and second,

¥,(2). kind, respectively. The functions P,'(r'), B)'(r') and C,"(r') defined on the unit sphere,
are the vector spherical harmonics introduced by Hansen and in spherical polar coordinates
(r,1%, ) are given as follows

Pr(F)= 7Y (7)
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where ¥ and @ are the unit vectors in % and ¢ - directions, respectively,

Y™ (F) = P"(cos1})e™® are the spherical harmonics and P (cos®) are the well known
Legendre functions,

The spherical polar coordinates of the real part of the displacement field as well as the expressions
T L), T,M™(#)and T',N™ (F') are given in Appendix A.

In the case of fluid the velocity potential @ is given as

®,(r)=Y, Y {c,.eik,r)+ed, gk ¥ )IPr(cos B)e™ (18)
=l m==-n
where
, r,#0
=0, rp=0"

The velocity of the fluid is expressed as
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and the corresponding displacement field is
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The expression for the pressure is found by replacing the expression (18) for the velocity potential
@ into (8), that is

P=iQp, c.l =iQp' , — > Z 2{ Cnla(K 7 )+ €d, 80K 1 }}P"‘{cuaﬂ}e”"’" (20)
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Since the expressions (13), (14) and (18) satisfy the equations (1) and (5), respectively, it remains
to ask the boundary conditions (9), (11} and (12) to be satisfied.

The application of the boundary conditions (for the case r', = (1) give
At r=r,:
Taur'; y=10

or
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The system of the algebraic equations (21) - (25) can be written as

Dx=10. (26)
Details about the system (26), for each case under discussion, are given in Appendix B.

In order for the system (26) to have a non-trivial solution, the following condition has to be satisfied
det(D)=0. (27)

This condition provides the characteristic (frequency) equation, the roots of which are the
eigenfrequency coefficients €2 of the system under discussion. The mode shape corresponding to
each £ is obtained by solving the system (26).

4. NUMERICAL RESULTS - DISCUSSION

The frequency equation (27) has been solved numerically and for this purpose a matrix determinant

computation routine was used for different frequency coefficients £2, along with a bisection method
to refine steps close to its roots. The root finding algorithm is followed by an LU - decomposition
and back-substitution routine to determine the eigenvectors, whose elements are used for the
computation of the corresponding displacement components.

The main purpose of our analysis is the modelling of the cranial system. The system is composed
from the skull bones, the cerebrospinal fluid and the brain. In the present analysis we assume that
the properties of the cranial components are:
Skull [13]

E =6.5x10° N,.'"mz. v=0.25 p=2.1326x10" Kg_fm’ ;

Cerebrospinal Fluid (CSF)[14]
K =2.1029753x10° N/m*, p =1.0002x10°Kg/m®

Brain [15]
Fluid: K = 2.102975x10° N/m*, p =1.007x10° Kg/m’
Elastic: E =2.52357x10° N/m®, v=0.48, p=1.007x10°Kg/m’,

where E, K and v denote the Young modulus, bulk modulus and Poisson ratio, respectively. The
Ev

elastic material constants are related as I = and A = —m8
2(1+wv) 1+ wvi(1-2v)

and the geometry of the system is defined by

r,=0082m, r,=0.076m, r,=0.070m.

In Ref. 12 the authors of the present work presented the dynamic characteristics of the human
skull which are in good agreement with the existing experimental ones. For the purpose of
comparison, in Table 1 the reproduced frequency coefiicients of Ref. 4 are shown, as well as those
obtained by the present analysis. As it is expected, the results of Engin and Liu are in better
agreement with our results (three dimensional theory of elasticity), as the shell becomes thinner. In

the case of an elastic spherical shell in vacuo (skull) we observe that for i/ R=20 the difference
between the compared results is about 3.1 % while for h/ R=10 the difference becomes 7.5 %.
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Table 1: Eigenfrequency Coefficiecients Q, = @ ¢/, of Engin and Liu [4]
Fluid Filled Shell {v=0.3, 1=9.38, s=0.553, h/R=1/20)
No n=0 n=1 _ n=2 n=3 n=4 n=>5 n=6

Engin & | Present | Engin & | Present | Engin & | Present | Engin & | Present | Engin & Presanl | Engin & | Present | Engin & | Present
Liu Analysis Liu Analysis Liu Analysis Liu Analysis Liu Analysis Liu Analysis Liu Analysis

1 3.1025 3,0901 2.0658 1.9888 0.6042 0.5984 0.7875 0.7780 0.9285 0.9144 1.0684 1.0477 1.2311 1.1856

2 5.8159 5.8046 4.3021 42874 | 4.0321 2.0861 57451 3.2985 | 7.1763 4.4254 B.372 55194 95119 |6.5969

3 8.6877 B.6735 7.1255 7.1138 | 5.4983 38018 | 67777 5.5681 8.2782 7.0218 | 9.9656 8.2648 11.7123 | 9.4014
4 11.6535 | 11.6342 | 10.0745 | 10.0584 | 8.3902 54761 96252 6.7221 10,8399 | B.1276 12.0417 | 2.7052 13.2210 | 11,3657
5 14,6756 | 146502 | 13.0888 | 13.0668 | 11.4167 | B.3779 127261 | 9.6132 14.0009 | 108287 | 15.2734 | 12.0332 | 16.5110 | 13.2360
6 17.7321 | 177004 | 16.1419 | 16.1135 | 14.4820 | 11.3984 | 158424 | 127054 | 17.1765 [ 13.9869 | 18.4890 | 152482 [ 19.7110 | 16.4933
¥ o0.8108 | 207725 | 192194 | 19.1842 | 175603 | 14.4569 | 18,9654 | 158141 | 20.3355 | 17.4448 | 21.6830 | 18.4537 | 23.0010 | 19.7442
8 saan4d | 238502 | 223127 | 222707 | 206707 | 175374 | 220926 | 18.9208 | 23.4894 | 20,2959 | 24.8649 | 21,6403 | 26.2110 | 22.9656
9 s7on81 | 269560 | 25.4168 | 253679 | 227816 | 206319 | 25.2007 | 220400 | 266402 | 23.4427 | 28.0371 | 24.8138 | 294010 | 26.1665
o 10 ant1o2 | 300801 | zas285 | 284728 | 268080 | 237358 | esasse | 251731 | 297880 | 26.5864 | 31.2020 | 27.0788 | 32.5810 | 29.35329

Skull in vacuo (v=0.3, =0, s=0.553, h/R=1/20}
Mo n=0 n=1 n=2 =3 n=4 n=>5 n=6

Engin & | Present | Engin & | Present | Engin & | Present | Engin & | Present | Engin & | Present | Engin & | Present Engin & | Present
Liu Analysis Liu Analysis Liu Analysis Liu Analysis Liu Analysis Liu Analysis Liu | Analysis

’ 29158 2.8428 3.5716 3.4789 1.2707 1.2382 1.5208 1.4796 1.6560 1.6067 1.7871 1.7260 1.95587 1.8766

o 2.0845 3.2069 44219 55151 6.5917
3 4 9238 49727 6.575¢ 6.3986 8.3155 B.08g7 10.0866 | 9.8106 11.8718 | 11.5442

—— ———E —————L
Skull in vacuo (v=0.3, =0, 5=0.553, h/R=1/10}

1 2.9159 277710 3.5727 3.3907 1.2801 1.2131 1.5788 1.4882 1.8331 1.7023 21738 1.9760 2.6438 2.3437

2.0320 32129 4.3105 5.3760 6.4255
4,929 4,6648 56,5850 6.2243 8.3282 7.8651 10.1027 | 9.5324 11.8914 | 11.2087
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Table 2: Eigenfrequency Coeflicients of Guarino and Elger [8]
Fluid Filled Rigid Fuid filled elastic Fluid filled elastic | Elastic shell in vacue | Fluid filled slastic Fluid filled slastic Fluid filled elastic
shall shell with 2 cm rigid ghell with 1em shell shall with 2cm stiff shell with 2em
sphere alastic sphere sphera alastic sphera
Guarino | Present | Guatino | Preseni | Guarino | Present | Guarino | Present | Guarino | Present | Guarino | Present | Guarino | Present
and Analysis and Analysis and Analysis and Analysis and Analysis and Analysis and Analysis
Elger Elger Elger Elger Elger Elger Elger
4.4899 a.7272 3.1563 32771 30616 3.1713 2 8637 2.H66R 30680 3.1682 31272 3.2454 21182
7.7 8.1272 59825 62701 42364 5.4825 57044 5 8486 61145 3.0780 3.1898
9 5852 10,1360 5 5096 57244 8337 86918 09,2549 9 7467 36827
73654 5.1340
8.3877 B.757T1 55004 5.8160
65444
7.8352
8 5486 89300
20858 3.0608 1.7780 2,0253 1.7743 2 0263 3424 35000 1.7744 20254 1.7748 2.0251 1.7737 20247
54971 6.4979 4.1510 4.3031 41317 4 2851 41324 42852 41455 4.2962 3060 3,3060
09,2156 9.8434 9389 7.2415 6. 6006 GH113 6.7628 70402 6.8014 7.1813 41316 4.2851
6.7636 70393 a.7275 10,1584 49652
97285 a.930 63977 £, 3000
6.7908 70747
7.8353
2.2166 92190
98687 10,3273
33184 3.5035 0.7157 0.8261 0.7162 08267 1.1738 13163 0.7162 0.8267 0.7157 08261 0.7156 0.8259
7.2625 7.6568 2.2145 22146 2.1445 22145 22146 1.6141 1.8142
38147 3.8644 3.6252 36255 47695 4 8520 3.8208 3.8914 28134 38829 2.1547
52492 5.4348 3.8226 3.8930 5.2829 54762 5 2331 54126 3.8217 3.8923
78267 81412 43094 80111 8.3525 7.5044 742 46234 4.6240
52840 54774 96624 09,9328 52BAT 54833
8.0125 B3531 6.1476
92494 92514 7.6247 7 G255
B 0303 8.3742
9.0583
4 4882 4.7340 0.9921 1.0434 0.9921 10794 1.5270 1 6064 09921 1.0704 0.9921 1.0794 0.9921 1.0793
85593 9.0188 35014 52165 35014 35014 35013 35014 2.6086 2.7213
54284 5 4066 5.4332 54411 64011 6.5003 54328 55001 54276 54962 3.3294
65789 f.7 083 5.5881 66588 65850 68077 65762 67953 35014
91762 85171 92389 46435 92357 96432 9, 1002 940349 5.4317 5.4990
5.8860 5.8865
65018 68110
7.2753
48105 88142
9.2489 06616
56201 5.7321 1.2638 13265 1.2636 13146 18319 1.8410 1.2638 1.3146 12638 13146 1.2638 13146
98184 10,1416 46975 46975 46975 46974 4 6975 3.5367
6.7827 6.8721 6.7837 68732 B.2231 B.2483 6.7837 6.8732 6.7825 68719 4.3890
B.2158 8.3305 7.0738 7.0735 82167 B.3327 B.2156 83301 4.6975
8.2167 8.3323 67827 .87 16
70018 70024
B.2171 #3329
9960 99610




From the results obtained we see that for n=2 the three dimensional theory predicts an extra pattern
of natural frequencies on the frequency spectra of the system considered (fluid - filled and in vacuo
elastic sphere).

The fluid - filled elastic shell containing an elastic sphere was studied in Ref. 8 where extensive
results for the natural frequencies are cited. The results of Ref. 8 as well as those using the
present analysis are presented in Table 2, with material constants [8]:

E, =138x10" N/m*,v, =0.25,p, =2132.6 Kg/m’,r, = 0.08001m
¢, =1450mfs.p, =1000Kg/m’ ,r, = 0.07239m

E, =3.4x10° N/m*,v, = 0.478,p, = 1070 Kg/m’ (elastic sphere)
E, =1x10" N/m* v, = 0.25,p, = 1000Kg/m’ (stiff sphere).

From the results comparison one can lead to the conclusion that there is a great quantitative
disagreement between our results and those of Ref. 8 even in the case of skull in vacuo, where the
present results are in excellent agreement with the previous ones existing in the literature [2]. The
reason of the disagreement observed, perhaps, is due to the assumptions adopted by Guarino and
Elger.

In Table 3 the first ten eigenfrequency coefficients, Q¥ k=1,2,....,10, are cited for the models
considered (skull - S, fluid - filled skull - FF, fluid-filled skull with an elastic core - FFE, three elastic
spheres - EEE, and elastic sphere - E) by using the present analysis. We observe that for the k-th
eigenfrequency of each model we have the arrangement

Q" (FFE) < Q" (FF) < Q" (EEE) < Q"' (5) < Q" (E)
where k=1,2,....8. This arrangement for k > ¥ ceases to exist.

Table 3: Comparison of Q%' k=1,2,....,10

Fluid Fluid Thrae
Filled with Filled Elastic Skull Elastic
an Elastic Skull Spheres Sphere
Core
(FFE) (FF) (EEE) (5) (E)
1 0.2109 |0.4082 |0.5709 |0.7083 1.0038
{n=2) {n=2} {n=2) {n=2) n=0}
2 0.3252 |[0.5285 |0.7308 |0.8522 1.0211
(n=3) | (n=3) {n=1) {n=3) (n=2)
3 0.4378 | 0.6291 0.8709 |0.9486 1.0847
{n=4) (n=4) (n=2} (n=4) {n=2)
4 0.5649 |0.7437 ]0.9653 |1.0631 1.58174
{n=5) (n=5} {n=3) (n=5) {n=1)
5 0.7006 |0.BB8EG 1.0577 1.1871 1.5778
(n=6) (n=6) (n=2) (n=2) (n=3)
3] 0.8029 1.0601 1.2409 1.2184 1.6220
{n=2) {n=7) {n=3) {n=8) {n=3)
7 0.9514 |1.1971 1.3018 1.4210 1.7452
(n=1) (n=2) (n=4) (n=7) (n=0)
8 0.9677 1.2092 1.3209 1.5479 |2.0799
(n=2} in=1} {n=0) {n=1) {n=4)
2] 1.1065 1.3405 1.3279 1.6695 |2.1481
(n=7) {n=8) {n=1) {n=8) {n=2)
10 1.1871 1.8928 1.5505 1.8928 |2.3529
{n=2) {n=3) {n=4) {n=3) (n=1)
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As it is obvious the eigenfrequencies of the system depend on the geometry of the system as well
as on its physical properties. For the FF - model we parametrized the first eigenfrequency

coefficients £, as

P F—

minQ, =minQ,_(v,2-,2—L), n=0,1,..,4
Pr N
and the results are cited in Table 4. We observe that as By is decreasing min&2, is increasing
P2
and as V is increasing min &2 is decreasing (for the same n).
FF - model : Parametrization of min€2,, n=0,1,....4
variation of o Sl
i
r,—r, n=0 n=1 n=2 n=3 n=4
Fy
Thin Shell 52579 1.0544 1.1548 1.8259 2.4496
0.146 4.3272 1.3516 0.5497 0.7362 0.9470
0.268 3.6428 1.5724 0.7278 1.0725 1.5076
0.380 3.1801 1.7726 0.9014 1.4277 2.0044
0.634 2.7043 1.9955 1.2736 2.0755 2.8057
0.817 2.5827 1.9868 1.4436 2.2312 2.8912
Elastic 2.5634 1.9772 1.4440 2.2313 2.8921
@her&
variation of b
P;
P, n=0 n=1 n=2 n=3 n=4
P2
1.407 3.1327 1.1104 0.2663 (.3534 0.4316
1.0 3.6265 1.13289 0.3074 0.4053 0.4918
0.703 41736 1.1634 0.3531 0.4619 0.5558
0.469 4.8187 1.2082 0.4083 0.5285 0.62391
0.234 7.1520 1.7401 0.6760 0.8204 0.9189
variation of v
v n=0 n=1 n=2 n=3 =4
0.20 4.9898 1.2241 0.4277 0.5517 0.6551
0.25 4.8187 1.2092 0.4083 0.5285 0.6291
0.30 4.5690 1.1737 0.3825 0.4870 0.5832
0.40 3.6584 0.9881 0.2985 0.3908 0.4695
0.48 1.8258 0.5150 01457 0.1920 0.2321
For the model (FFE) we studied the parametrization
minQ_= minﬁn(vrvn, Y ﬁi), n=0,1,...4
R

and the results are presented in Table 5. Itis observed that the effectof v,,i =0,2 on min(2,_ is
DN Do

rs ry

analogous to that we discussed for the (FF) model, while the effect of increment of

is increment of min &2, n=0.1,...4 (for same n).

s



Table 5: FFE - model: parametrization of min€} , n=0,1,....4
variation of -
L

r, n=0 N=1 n=2 n=3 n=4

P
Mo Fluid (.8764 1.2073 0.8782 1.2573 1.5676
0.854 (0.9514 1.2079 0.2109 0.3252 0.4378
0.732 1.1099 1.2083 (0.3232 0.4648 0.5859
0.610 1.3318 1.2085 0.3758 0.5116 0.6212
0.366 2.2199 1.2088 0.4060 0.5281 0.6291
0.183 4.4398 1.2088 0.4082 0.5285 0.6291
Fluid Filled 4 8187 1.2092 0.4083 0.5285 0.6291
Elastic
SEhere

variation of v,

v, n=0 n=1 =7 n=3 n=4
0.20 0.9887 1.2228 0.2204 (0.3380 0.4556
0.25 0.9514 1.2079 0.2109 0.3252 0.4378
0.30 0.8882 1.1724 0.1980 0.3061 0.4130
0.40 0.7119 (.9866 0.1553 0.2413 0.3272
0.48 .3516 0.5138 0.0761 0.1188 0.1538

variation of v,

v, n=0 n=1 n= N= n=da
0.20 4.0920 1.2080 0.2266 0.3406 0.4525
0.25 3.6600 1.2080 0.2264 0.3404 0.4523
0.30 3.2101 1.2080 0.2260 0.3400 0.4520
0.4 2.1873 1.2080 0.2243 0.3384 0.4504
(.48 0.9514 1.2079 0.2109 0.3252 0.4378

F, =7

variation of ——1

Fa
r,=r, n=0 n=1 n==2 n=3 n=4
ry

0.073 0.9514 1.2079 0.2109 0.3252 0.4378
0.146 1.0406 1.3494 0.3126 0.5017 0.7220
0.268 1.2043 1.5695 0.4323 0.7503 1.1438
0.390 1.4446 1.7701 0.5780 1.03086 1.5489
0.634 2.4129 1.9949 1.0528 1.8527 2.6809

In Figure 3 are shown the frequency spectra for the models considered in the present study. From
these results one can see the influence of the cerebrospinal fluid and the brain on the natural
frequencies of the human skull. The inner elastic sphere (brain) introduces a pattern of additional
frequencies to the spectra of eigenfrequencies of the physical system. The same happens with the
EEE - model.

Mode shapes for selected eigenfrequencies are presented in Fig. 4. The total mode of the physical
system corresponding to €2, is the superposition of the displacements components (i, ,u,.u, ).

The general shapes of u,,u,.u, depend upon the order of n while the relative amplitudes of them
corresponding to a particular frequency €2 depend upon the value of €.
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FFE - Model: Mode shapes for (i,,,,4,)
(A:n=1 Q, =2.0247, B: n=2 Q =0.8259, C: n=3 Q =1.0793, D: n=4  =1.3146)
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Finally the results obtained are compared with the experimental ones presented in Ref. 3. Following
the approximation adopted by Engin and Liu [4] and many other researchers about the cranial
system geometry and its physical properties we used the present analysis to calculate the
eigenfrequencies of the FF - and FFE - models. For the purpose of comparison the results obtained
as well as the experimental ones are presented in Table 6 and graphically in Fig. 5.

We observe that:

Wppe < O <O, k=12,...,19
and also that the resonance frequencies are > 483 Hz. The analysis on the basis of the FFE - and

FF - models predicts nineteen and six frequencies < 3650 Hz, respectively, while the measured
onas are only ten.

Table 6&: Eigenfrequencies (Hz) of the human skull - brain system [3].
Ma. Experimental Standard Presant Prasent Mean Valus
Results [3] Deviation Analysis Analysis of FF - and
(mean values) (3 (FF - model) | (FFE - model) | FFE - modsis

1 872 119 1423 483 953

2 1230 148 1843 797 1320

3 1532 159 2191 1121 1656

4 1785 169 2580 1435 2007

5 2076 217 3068 1518 2293

6 2287 203 3636 - 1544 2580

7 2568 308 4125 1889 3007

8 2899 389 4261 2035 3148

9 3253 381 4535 2371 3453
10 3590 377 5775 2386 4080
11 4101 543 6737 2544 4640
12 4793 526 6920 2640 4780
13 5304 860 7987 2826 5406
14 5766 807 8303 3085 5604
118 5841 418 8629 3146 5887
16 6336 533 9040 3333 5186
17 6656 429 11270 3534 7402
18 6883 176 11560 3559 7559
19 7165 11580 3613 7596

It is remarkable to note that the estimation of the resonance frequencies of the human skull in vivo
by the mean value of the corresponding ones to the FF - and FFE - models is in the range of the
measurements presented by Hakansson et al., although we did not take into account the neck
support as well as the viscous damping of the physical system,

=5 b
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5. CONCLUDING REMARKS

In this work we presented a mathematical analysis for the study of the dynamic characteristics of
the human skull-brain system in the framework of the three - dimensional theory of elasticity. The
geometry of the physical system considered has been modelled by the FFE - model where the
outer hollow elastic sphere represents the skull, the inner elastic sphere corresponds to the brain
and the space between them is supposed to be filled with the cerebrospinal fluid. The related FF -,
EEE -, 5 -, and E - madels are also discussed.

The proposed analysis was used to calculate the eigenfrequencies and the corresponding to them
eigenmodes of the simulated physical system. The results obtained are in good agreement with
the existing theoretical ones and further study is needed to simulate the real physical system. The
reason of the disagreement between our results and the experimental ones are supposed to be due
to the approximation of the materials entering the problem as well as the absence of the influence
on the dynamic characteristics of the neck support. We observed that the presence of the inner
sphere changes the natural frequencies spectra of a fluid - filled hollow elastic sphere. This change
increases when the shell theory is extended to the three-dimensional theory of elasticity.

The dynamic analysis of the head-neck system as well as the simulation of the brain matter by a
viscoelastic material are in preparation and will be presented in the future.
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APPENDIX A:

The spherical polar coordinates of the real part of the displacement field for the region 2 are:

o 3! (k',, .r' )cos(m@) P, (cos )+

L2] I g u
mzﬂmgn; ]/"' (n(n +1]l]I {k = )-::Os{m-:‘p}f’"{cosﬁ}

-‘:

m i gu(m )
2 Qr

4D = Ty msm{mrﬂ) & i
U 222 -Brie. (K, Py— 5 Tn(cosd)

rn=lm=-n [=1

= cos(m@) — E; P (cos})

+Yas(gR, 7) w} Ds{mm}aif’”“(c@sﬁ)

o

—a™ gi{ﬂr' ) msin(me)
e O sin 1

2 =i i i hgﬂ(k' f]cus{m@}iaﬂ:(casﬁ} -

rull pim=p [m]

P’ (cos )

. P [ ) _msin(m)
o ¥ i IF y a ]
Vi k) K r’ ) sin ¥

£z

Pl (cosv)

The expressions T", L (F'), T', M™' (') and T'. N™'(¥') are:

T L) = [4;:,, g@r)y+2u ﬂ(l—"g Nel @)+ A, Qgl(Qr }:|P”{r}

=1 ! '
s2yt D) 9 &0 g

Qr’
T M7 (F)= ' ;+n(n+ 1)[16'5_ B, f'}-l,gi(k' A r’?l:lf,?"(?}
. ; =

] ot gn(k 2, rl}_gi(k..f,f} L
T N (F)=2u' n(n+ 1)[ = e }Pw (7

- [ k- i
+p-r.r(n+n[-z#-k',: gk, P+, r)}ﬂ’"(r}
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APPENDIX B: Dx=0,D=[d, ]

Case 1: Elastic Sphere (E - model)

Ar) 0 D)oy

0 Titm) © [B7|=0
By 0 Emly

Case 2: Fluid - Filled Elastic Sphere (FF - model)

- -

FAr) A D 0 Dy, Diry) 0 e
B\(r,) BX(r,) 0 0 By EULy 0 e
0 0 Ty T 0 0 o |
A:(-"‘u} A:{r'u} 0 0 D:{"Jﬁ) D:':rla} d4.'.r .Bm'z ={
B (v, BU) 0 0 Ew) Ew;) o
0 0 ey THe) 0 0 0 |y
| i dz; 0 0 d; 5 g cdeedoe o
where
dys ﬂpfg,?(k Fobudr=iiQro) =g 5y ]ﬂ’”-n{n+l}%
5 £ 0D

r

il i 4 i i
d”~n(n+1}3”£ ry) cd, =gk, 1)
Ik: u cf
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Case 3: Fluid - Filled Elastic Sphere Containing an Elastic Sphere (FFE - model)

In this case the vector x and the non - zero elements of the matrix D are

T
e m,l m,2 m,] m.,2 2,1 2 ] i ]
X = [{xn,z a_rr_ﬂ n,2 n,2 ?-:_2 T:I'T' (xn.l'.l .0l ?’n.f." I:l':lm-rr dﬂm]

15'!I1.1 =A;l|.2(rrzj'-d.2 ='4:;£.1(rlz)-di.i =D31.2(!}2}’d],ﬁ =D:.2{rlz}-
lf'!Iz.l = Enl,E(rI? }1d1,1 = E:,z{-"'z }ndz,s = Er:,z{-"lz )odyg = Ej.z'[rrzj

d; = r;_:{r': ), dy, = r:g{r'g )

dy; = A:_z{r.: ).d,, = A:.E(r‘] ).d, s = Dnl.'l{r.'l ).dyg =Df.2{"":}
§ 1 1 W § i I Y] 1
d4.m =‘Qp fc._ggn(k frl}l'd4.Li =Qp ;'C._ggn(k ,rrl)

ds, = E-:.z(rll ).ds, = f,z(rlj ).dss = Er:,z{rlj ), ds g = Ef_z{r']]l

f"a.s = ri.z{rl1 ]-dﬁ.a = l"i12(r'1 )
1 1 i
; 3 ) k. )
dy, = §HQr ). dyy = §2QF)). dy s =n{n+n%—u,—‘

.'rzrl_

1

c .
d

gk, rh) |
—k.':r._l-d?,m =_f._g.:(kfr]}*d?jl =
5t 1 f

dy s =n(n+1) gk, ')

1 i § 1 ' 5 5 ]- 2 1 ]
dy = A:-_n{r o) dygg = D.:.n{r o)y dyyy =02p fc._zgl'[k o) ds 1 =Qp ngn (K,ry
dyq = Br::.'}{rl'ﬂ')' dyo = E;.u(fn]

dyg s = Tf,lr,{r’j )

1 P i
o (K s Fo) |-
dy, =8k, ry). du.azﬂ(n"'l:'g el -, dyy o = ———&,(k o)
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B oy
dyg=——8kK;ry)
¢y
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Case 4: Three Elastic Spheres (EEE - model)

In this case the vector x and the non - zero elements of the matrix I are

5 - T
_ il m.2 m,l m,2 B T2 .l m,2 .l .2 m,l arfed m m i
X = ['In.Z &,z [ [ 3 T:.! f::z ., &, nl m.l Tﬂ.l {:l &, 0 no  Tno ]
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d, =nn+ g Q.2 +22yr ) | 1 =
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\ :

u,
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