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Abstract: In this work an attempt is made to study the dynamic characteristics of human dry
skull. The analysis is based on the three-dimensional theory of elasticity and the representation of
the displacement field in terms of the Navier eigenvectors. The frequency equation was solved
numerically and the resuits obtained are fairty good compared to the experimental ones.

1. INTRODUCTION

Cranial biomechanics has drawn the attention of many researchers as a consequence of the
observation that fatalities resuiting from accidents invoive injury 1o the head. The information about
the physical processes and material response involved is of enormous importance to neurosurgeons
and also in the design and construction of protective environments. For the analysis of human body
processes there are two types of models in use: physical ones based on experimental analysis and
mathematical ones based on theoretical analysis.

The mathematical modelling of the cranial system has received considerable attention in recent
years and this is evidenced by the number of publications [1-2....]. The human skull is a complex
structure made up of several bones each with its own unique internal and external geometry. In
analytical investigations geometrical approximations and mainly the geometry of spherical and
prolate spheroidal shells have been used [2,3,4]. A parametric study of head models by utilising
an analyticaily based numerical technigue was presented in Ref. 10. The mechanical properties of
cranial bone were studied in Ref. 11. As it is obvious for the coliision and head injury analyses we
need accurate dynamic responsa characteristics of the cranial system. In Ref. 12 an experimental
investigation was presented to identify the dynamic characteristics of freely vibrating human skulls.
In the present investigation, adopting the approximation of the human skull by hollow sphere, an
attempt is made to present an analysis for the vibrational characteristics of the human skull. The
mathematical analysis is based on the three-dimensional theory of elasticity and the reprasentation
of the displacement field in terms of the Mavier eigenvectors [13]. Itis noted that an exact study of
the dynamic characteristics of a ciosed spherical shell for arbitrary values of its thickness is
desirable not only from the theoretical point of view as well as for the purpose of the human skull
dynamic characteristics but also to estimate the range of applicability of the various shell theories
[14.15,16]. In the framework of the present analysis the frequency equation was solved
numerically and results for the eigenfrequencies and mode shapes of the system considered are
presented in tables and graphs. It is important to note that the resuits obtained are in agreement
with the analogous ones by using shell thearies [17], in the range of their validity, as well as, with
experimental resuits cited in Ref. 12,

2. PROBLEM FORMULATION

For maotions in homogeneous isotropic, elastic solids, the displacement vector field u satisfies the
equation;
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where A, U are Lamé's constants, p is the mass density, V is the usual del operator, and ¢ is
the time.

In what follows we shall discuss the fres vibrations problem of a hollow sphere in the framework of
three-dimensional theory of elasticity (Fig. 1).
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Figure 1: Problem Geometry

For the problem under discussion we assume that:

u(r,t) = Refu, (r)e™] (2)

where @ denotes the angular frequency measured in radiang/sec and i = N'I——l

Replacing (2) into the equation of motion we obtain the well-known Navier frequency equation:
uVu, (r)+ (A +p)VV u (r)+po’u,r)=0, reV,. (3)
Introducing the dimensionless variables

o wr,
r=—0=—2"

r] L‘P
into (3) we lead to

IV (r)+(1=cHV Vi, (r')+Q%u,(r) =0, (4)
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The interaction of the system considered with its own environment enters the mathematical
formulation through the boundary conditions on the surfaces S, and S1(Fig. 1).

We assume that the surfaces S; i=0,1 are stress free, that is

Tu,(r')=0, r'=r',

and (5)
Tu,(r')=0, r'=r',

where

T=2u'r-rV+A V. -+ ' rxrV (6)

stands for the dimensionless surface traction operator in V, r is the unit outward normal vector on
S; i=0,1and (A',u")=(A/u,1).

We note that the problem described by the equation of motion, (4), and the boundary conditions (5)
is a well-posed mathematical problem.

3. FREQUENCY EQUATION

For the solution of the problem under discussion we adopted a method based on the representation
of the displacement field u,(r) in terms of the Navier eigenvectors. As it is well known, Navier

eigenvectors are a result of the Helmholtz decomposition and constitute a complete set of vector
functions in the space of solutions of time-independent Navier equation.

The Navier eigenvectors have the following form:
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and g (z) and g (z)represent the spherical Bessel functions of the first, j(z), and second kind,
ynl2), respectively.

The functions PT(r), B (F) and CT(F) defined on the unit sphere, are the vector spherical
harmonics introduced by Hansen in spherical polar coordinates ( 7, ¥, @), and are given as follows
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where ¥ and @ are the unit vectors in ¥ and ¢ - directions respectively,

Y7(F)= Pl (cos¥)e™ are the spherical harmonics and P7(cos1}) are the well known
Legendre functions.

We assume that the displacement vector field u,(r) has the representation
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The sphaical polar coordinates of the real part of u,(r) are given as
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The problem now is reduced to the determination of the coetficients o™, 87 and 7. Since
the expression (12) satisfies the equation of motion, (4), it remains to ask the boundary conditions
(S) to be satisfied. We note that the presence of the surface traction operator T in the boundary
conditions (5) requires to know how this operator acts on the Navier eigenvectors. After tedious
and extended manipulations we obtained the following relations
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Inserting (12} into the expression for the boundary conditions (5), and taking into account the
relations {13-15) as well as the advantage of the orthogonality arguments for the vector spherical
harmonic functions we conclude that for every specific pair of integers (n,m) (with |m|<n) the &-
coefficients involved in the expression (12) satisfy a linear algebraic homogeneous system with six
equations.

TN™(F)=2u' n(n+ 1}[

This system in matrix form is given as
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In order for the system (17) to have a non-trivial solution the following condition has to be satisfied
det(D) =0. (18)

This condition provides the characteristic (frequency) equation, the roots of which are the
eigenfrequency coefficients Q of the system under discussion.

4. NUMERICAL RESULTS - DISCUSSION

The frequency equation (18) has been solved numerically and for this purpose a matrix determinant
computation routine was used for different frequency coefficients 0, along with a bisection method
to refine steps ciose to its roots. The root finding algorithm is followed by an LU decomposition and

back-substitution routine to determine the eigenvector x whose elements are used for the

computation of the corresponding displacement components. Given that for every particular n we
get independent systems, we deduce that finally the eigenvectors are obtained by (12a) without the
external summation over n.

The computations were made for material properties analogous to those of human skull [11]:

E= 1.379 x 10% (N'm2), v=0.20-0.35, p = 2.0 X 103 (kg/m3),
r1=0.040-0.082 m, ry=0.036-0.08199 m.

In Table 1 are cited the first three roots of (18) for different n (n order of Bessel function). From
these results we observe that we have degeneracy, that is the frequency @ =1.8924¢, /r,

corresponds to two different mode shapes which are shown in Figure 1 for n=1 and n=3,
respectively.

Table 1 : Eigenfrequency coefficients Oy, for r1=0.082 m, ry=0.076 m and n=0,1, ....8

n=0 n=1 n=2 n=3 n=4 n=5 n=56 n=7 n=
4] 0

0.7083
0.8522
0.9486 ,
1.063
1.1971

1.2184
1.4210

0o ~) O b QR —

1.5479
10 1.6695
11 1.8924 1.8924
12 2.5324
13 2.6253
14 3.1672
15 3.5229
16 3.7855
17 4.3983
18 44651
19 5.0077
20 54218
21 6.3843
22 7.3490
23 8.3143




Figure 1: u, and u, for Q=1.8924, ¥ =m/2 and n=13
As it is obvious the dynamic characteristics of the human skull are influenced by its geometry as

well as from its own material properties. The variation of f = @/2x (in Hz) with (r, —r,)/r, =
const. is given as

f=8, [
where the first nine values of &_ are cited in Table 2.

Table 2: Values of §_ for E=1.379x10°N/m2, v=0.25,
p=2.0X10% Kg/m?: (r, —r,)/r,= 0.0732.

1 2 3 4 5 5] 7 8 g

T]
) 102.56 | 121.46 | 134.80| 153.92 | 173.32 | 173.88 | 204.88 | 224.08 | 240.48

The variations of min Q,, n=1,23 with hf{r,, h=r, —r,, and Poisson's Ratio v are shown in
Figures 2 and 3 respectively.
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From the literature [15] it is known that for #/r, < 0.10 the improved theory for spherical shells
[18] is quite satisfactory for thin shells. Beyond this the coupling effects with thickness stretch
mode become important and any shell theory should include this effect for better results. For the
sake of comparison we present in Table 3 the results of our analysis which testify the previous
conclusions.

Table 3: Eigenfrequency coefficients Q, for n=0,1....,.8
h{r, =0.10, v=0.30
Presant Analysis Shell Theory

n Improved [17] Classical Theory
0 0 0 0

1 0 0 0

2 0.7072 0.707 0.708
3 0.8683 0.870 0.873
4 0.9992 1.004 1.014
5 1.1687 1.174 1.202
8 1.3953 1.399 1.462
7 1.6781 1.682 1.798
8 2.0134 2.014 2.208

The authors of Bef. 12 introduced an experimental method to identify the dynamic characteristics
(resanant frequencies and mode shapes) of the human dry skull. For the purpose of comparison
with the results of the present analysis we selected two cases of Ref. 12 which are referred to as
skull | and skull 1. Skull | and its characteristics correspond to those of a 50th percentile adult
male, while those of skull Il correspond to a 5th percentile adult female. The equivalence of
geometry usad in our computations is as follows: '

Skull I: ro=0,0691m, ry=0.07735m

Skull ll:  rg=0.0802 m, r1=0.06845 m

The results obtained as well as the analogous experimental anes of Ref. 12 are presented in Table
4 and graphically in Figure 4.

Table 4: Comparison with Experimental Results

Skull | Skull I
Experiment{12] | Present Analysis | Experiment{12] | Present Analysis
1 1385 1331 (n=2) 1641 1525 (n=2}
2 1786 1649 (n=3) 2344 1206 (n=3)
3 1803 1911 (n=4) 2989 2265 (n=4)
4 2449 2248 (n=2.5) 3477 2561 (n=2)
S5 2857 2772 (n=6} 4453 2752 (n=5}
5] 3386 2922 (n=0} 5000 3323 (n=0}
7 3523 3371 (n=8) 3386 (n=8)
8 3845 3577 (n=1,3) 4063 (n=1.3)
g 4069 4063 (n=8) 4157 (n=7)
10 4245 4812 (n=4) 5015 {n=8)
11 4636 4862 (n=2} 5459 (n=4)
12 5911 (n=5) 5628 (n=2)
13 6655 (n=3) 6812 (n=5)

14 7170 (n=8}

sl
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Figure 4: Skull I: Comparison with Experimental Results

For the case of skull | the results obtained are in good agreement with the experimental ones. The
first eigenfrequency predicted by our analysis, f1=1.331 Hz a shifting about 4 3% with respect to
the experimental one f1gxp=1.385 Hz appears, while in f11=4962 Hz a shifting about 6.5 % in the
opposite direction from the experimental one, f11sxp=4636 Hz. In the case of skull Il the
measured frequencies are predicted by the present analysis. However, in the interval [1525, 5015]
more eigenfrequencies exist than the presented in Ref. 12. This fact needs more study from
experimental and theoretical point of view. v

In Figure 5 mode shapes (u,,u,.u,) are presented corresponding to the first five eigenfrequencies

given in Table 1 (1: n=2, Q= 0.7083, 2: n=3, 0= 0.8522, 3: n=4, 0=0.9486, 4: n=5, Q=1.063,
5: n=2, Q= 1.1971).
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5. CONCLUDING REMARKS

In the analysis presented we dealt with the dynamic characteristics of the human dry skull. The
results obtained are favourable compared with the experimental ones and this fact leads us to the
conclusion that the geometry considered as well as the analysis adopted (three-dimensional theory
of elasticity) could be applied to the study of the cranial system. The results of the dynamic
analysis of the human skull-brain system, as well as those of head-neck system are in preparation
and will be presented in the future.
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