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Abstract: In this paper, we consider the recognition problem on a class of homogeneously
orderable graphs, namely, the HHDS-free graphs. In particular, we prove properties and
show that the recognition problem on this class of graphs has polynomial time complexity.
We propose a simple O(n?m)-time algorithm which determines whether a graph G on n
vertices and m edges is HHDS-free. To the best of our knowledge, this is the first algorithm
for recognizing this class of graphs.
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1 Introduction

In the late 1990s, Brandstddt, Dragan, and Nicolai [2] defined the class of graphs that admit a
homogeneous elimination order and called them homogeneously orderable graphs (see also [3]). They
show that the class of homogeneously orderable graphs contains the class of homogeneous graphs
introduced by D’Atri, Moscarini, and Sassano [6]. The larger class of homogeneously orderable
graphs seems to be more interesting for several reasons, among which algorithmic reasons—thus, e.g.,
the (cardinality) Steiner tree problem is solvable in polynomial time on homogeneously orderable
graphs [6].

In this paper, we consider a class of homogeneously orderable graphs, namely, the HHDS-free
graphs. A graph is HHDS-free if it contains no hole (i.e., a chordless cycle on > 5 vertices), no house,
no domino (D), and no sun Sy, (k > 3) as induced subgraphs. In [2], Brandstidt, Dragan, and Nicolai
proved that a graph G is HHDS-free if and only if every induced subgraph of G is homogeneously
orderable. This result characterizes the hereditary homogeneously orderable graphs and shows that
these graphs are the HHDS-free graphs; note that the class of homogeneously orderable graphs is
not hereditary.

The definition of the homogeneously orderable graphs introduces this class of graphs as a common
generalization of the classes of dually chordal and distance-hereditary graphs [2, 3]. Bandelt and
Mulder [1] showed that a graph G is distance-hereditary if and only if it contains no house, no hole,
no domino, and no gem as induced subgraphs, i.e., G is HHDG-free. Thus, distance-hereditary
graphs are HHDS-free since every sun Sy (k > 3) contains a gem [2, 3]. It is important to note that
the HHD-free graphs properly generalize the class of chordal (or triangulated) graphs [8]. In [11],
Hoang and Khouzam proved that the HHD-free graphs admit a perfect order, and thus are perfectly
orderable [4, 13, 15]; the HHDS-free graphs are also perfectly orderable. A superclass of HHD-free
graphs, which also properly generalizes the class of chordal graphs, is the class of HH-free graphs; a
graph is HH-free if it contains no hole and no house as induced subgraphs. Chvétal conjectured and
later Hayward [9] proved that the complement G of an HH-free graph G is also perfectly orderable.



In [2], the recognition complexity of HHDS-free graphs is posed as an open problem. Nevertheless,
many recognition algorithms have been proposed for graph classes that are defined or characterized
by forbidden induced holes, houses, or dominos (see [3, 8]). Indeed, Hoang and Khouzam [11], while
studying the class of brittle graphs (a well-known class of perfectly orderable graphs which contains
the HHD-free graphs), showed that the HHD-free graphs can be recognized in O(n*) time, where n
denotes the number of vertices of the input graph. An improved result was obtained by Hoang and
Sritharan [12] who presented an O(n?®)-time algorithm for recognizing HH-free graphs and showed
that HHD-free graphs can be recognized in O(n?) time as well. One of the key ingredients in
their algorithms is the reduction of a subproblem to the recognition of chordal graphs. Recently,
Nikolopoulos and Palios [14] presented an O(min{nma(n), nm+n?logn})-time and O(n+m)-space
algorithm for recognizing HHD-free graphs.

The main result of this paper is that a graph G which is HHD-free is also HHDS-free if and only
if there is no vertex v of G such that v belongs to a hole or is the top of a “building” in a graph which
is a modification of G. This result enables us to describe an O(n?m)-time algorithm for recognizing
HHDS-free graphs, where n and m are the numbers of vertices and of edges of the input graph.

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be such a graph; then,
V(@) and E(G) denote the set of vertices and of edges of G respectively. The neighborhood N (z) of
a vertex x € V(@) is the set of all the vertices of G which are adjacent to z. The closed neighborhood
of z is defined as N[z] := N(z)U{z}. We use M(z) to denote the set V(G) — N[z]. The subgraph of
a graph G induced by a subset S of G’s vertices is denoted by G[S]. A subset A C V(G) of vertices
is a clique, if G[A] is a complete subgraph of G. An independent set is a set of vertices no two of
which are adjacent; it is also called a stable set.

A path vovy ... v of a graph G is called simple if none of its vertices occurs more than once; it
is called a cycle (simple cycle) if vov, € E(G). A simple path (cycle) is chordless if v;v; ¢ E(G)
for any two non-consecutive vertices v;, v; in the path (cycle). A chordless path (chordless cycle,
respectively) on n vertices is commonly denoted by P,, (C,,, respectively). In particular, a chordless
path on 4 vertices is denoted by Py. If abed is a Py of a graph, then the vertices b and ¢ are called
midpoints and the vertices a and d endpoints of the Py abcd.

A graph G has a perfect elimination ordering if its vertices can be linearly ordered (vy,ve,...,vy,)
so that each vertex v; is simplicial in the graph G; = G[{vi,vit1,...,v,}], for 1 < i < n; a vertex
of a graph is simplicial if its neighborhood induces a complete subgraph. It is well-known that a
graph is chordal (or triangulated), if and only if it has a perfect elimination ordering; equivalently, a
graph G is chordal if every cycle of length strictly greater than 3 possesses a chord, that is, an edge
joining two nonconsecutive vertices of the cycle [3, 8, 16].

Definition 2.1 [5, 7]: A sun (or trampoline) is a chordal graph G on 2n vertices for some n > 3 whose
vertex set can be partitioned into two sets, U = {ug,u1,...,up—1} and W = {wo,wy,..., wp—1},
such that W is independent and for each ¢ and j, w; is adjacent to u; if and only if i = jori = j+1
mod n.

We prove the following two lemmas.

Lemma 2.1. Let H be a graph whose vertices can be partitioned into two sets U = {ug,u1,...,ur_1}
and W = {wo,w1,...,wi_1} of k > 3 vertices each, such that W is independent and for each i and
J, wj is adjacent to u; if and only if i = j ori =34+ 1 mod k. Then, H is a sun with partition
sets U and W if and only if the subgraph H[U] is chordal and the vertices ug,u1,...,ur—1 form a
cycle upuy + - Up—1-

Proof: (=) Since H is a sun, then H is chordal and thus the subgraph H[U] is chordal as well.
Moreover, for all i = 0,1,...,k — 1, ©j%i+1 moa x € E(H) since a chordless path shortcuting the
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path ©;+1 mod kWit1 mod k * * - Ui—1W;—1u; has to be of length 1; otherwise, the vertices of the path
along with vertex w; would induce a chordless cycle on 4 or more vertices, a contradiction to the
chordality of H.

(«<=) Since H[U] is chordal, the lemma follows easily from the fact that no w; (0 < < k) participates

in a chordless cycle on 4 or more vertices since w;’s only neighbors, u; and %;4+1 mod &, are adjacent
in H. [ |

Lemma 2.2. Let H be a graph that does not contain holes, vi,vs,...,v; be vertices of H, and
suppose that, for all i = 1,2,...,k — 1, the adjacency of v; to v;, where ¢ < j < k, implies the
adjacency of v; to all the vertices viy1,vit2,...,v;. Then, the subgraph of H induced by the vertices
V1,02, ...,V 1S chordal.

Proof: Since the graph H does not contain holes, we only need to show that the subgraph induced
by the vertices vy, vs, ..., v does not contain a Cy. Suppose for contradiction that it contained a Cy,
say, U, Upvv4, and suppose without loss of generality that a = min{a, b, ¢, d}. Then, we distinguish
the following cases:

(i) b = max{a,b,c,d}: then, v, is adjacent to vy but is not adjacent to v, and yet ¢ < b (see
Figure 1(a)), a contradiction;

(ii) ¢ = max{a,b,c,d}: then, if i = min{b,d} and j = max{b,d}, v; is adjacent to v, but is not
adjacent to v; and yet i < j < ¢ (see Figure 1(b)), a contradiction;

(ili) d = max{a,b,c,d}: the case is similar to case (i) and leads to a contradiction.

In all cases, we reached a contradiction, which implies that the subgraph H[{vi,va,...,v}] is
chordal. 1

Let G be a graph and let v be an arbitrary vertex of G. Let us define the following set of edges
E, = {2z |z,z€ M(v) and Jy € M(v) such that zyz is a P; of G }

which we call shortcuting edges. Then, we construct the graph @v from G as follows:

o V(G,) = V(G)

o E(G,) = E(G) U E,.
It is important to note that the definition of shortcuting edges implies that F(G) N E, = §. If the
graph G has n vertices and m edges, then the graph G, has n vertices and O(n?) edges.

Definition 2.2.

> We collectively call a house or a building a generalized building or g-building for short.
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> If v is the top of the house or the building, then v is the top of the g-building. If the vertex v
at the top is adjacent to vertices u, w in the g-building, we say that the roof of the g-building
is (v;u,w). The vertices of the g-building that do not belong to its roof form a chordless path
which we call the g-building’s base.

> A g-building is shorter than an other g-building if it involves fewer vertices.

Our HHDS-free graph recognition algorithm relies on the following theorem.

Theorem 2.1. Let G be an HHD-free graph. The graph G' contains a sun if and only if there exists
a vertex v such that the graph G, defined above with respect to v contains a house or a building with
v at its top.

Proof: (=) Suppose that the graph G contains a sun induced by the sets of vertices U =
{ug,u1,...,up—1} and W = {wg,wy,...,wr_1}, where k > 3 (see Definition 2.1). Then, in the
graph G’wo, the vertices wg, ug, u1,ws,ws, ..., wg—1 induce a house or a building with vertex wp at
its top (see Figure 2 for an example where k = 5; dashed edges indicate shortcuting edges); note that
uou1 € E(G) (see Lemma 2.1), that the vertices up and u; are not adjacent to any of the vertices
Wy, W, ..., Wk 2, and ws, ws, ..., wg_1 respectively, and that, for all i = 1,2,...,k — 2, the vertices
w; and w;41 induce a shortcuting edge.

(«<=) Suppose that there exists a vertex v which is the top of a house or a building in @v, i.e., vis
the top of a g-building. Then, the following holds:

Fact 1. If the vertex v is the top of a g-building in the graph @v, with roof (v;u,w),
then every edge in the base of the shortest g-building with roof (v;u,w) is a shortcuting
edge.

Fact 1 is established in Lemma 2.3. Thus, if the shortest g-building with roof (v;u,w) has base
p1p2 - pr, then each p;p;y1 (1 <1 < k — 1) is a shortcuting edge; let us replace each such edge
with the corresponding Ps p;q;p;+1 in G. Then, as in the proof of Lemma 2.3, we can show that, for
i=1,2,...,k—1, the vertex g; is not adjacent to any of the vertices in {p1,p2,...,Pi—1,Di+2,-- -, Dk},
which implies that the ¢;s are all distinct (note that the ¢;s may be arbitrarily adjacent to one other);
the situation is depicted in Figure 3 where dashed lines indicate potential edges.

Additionally, vertex u is adjacent to at least one of the vertices ¢1,¢o,...,qr_1. If u were not
adjacent to any of them, then if z is the leftmost neighbor of w among q1,q2,...,qk—1,pr and if p
is a chordless path shortcuting the path piqip2¢s - - -z, the vertices v, u,w, and the vertices of the
path p induce a house or a building in G (with v at its top), which contradicts the fact that the
graph G is HHD-free. Thus, u is adjacent to at least one ¢;. In fact, we can show the following;:

Fact 2. There exists an integer r, where 1 < r < k — 1, such that the vertex u is
adjacent to precisely ¢1, g2, ..., g, among the ¢;s, otherwise the graph G contains a sun.



Figure 3

Fact 2 is established in Lemma 2.6 (case (b)) with the aid of Lemma 2.5: since u is adjacent to both
p1 and a vertex ¢;, then Lemma 2.5 implies that it is also adjacent to ¢;; then, Lemma 2.6 (case (b))
implies that if r = max{ j | ug; € E(G) } and if there exists a vertex ¢; (2 < i < r — 1) which is not
adjacent to u, then the graph G contains a sun, as desired.

So, let us consider the case where the vertex u is adjacent to all the vertices ¢, g, . . ., ., where
1 <r < k—1. Similarly, we assume that there exists an integer ¢/, where 1 < ¢ < k — 1, such that
the vertex w is adjacent to all the vertices g, qe41,- .., qr—1. Then, it has to be that r > ¢; if r < £,
then the vertices v, u,w, and the vertices of a chordless path shortcuting the path ¢, py+1¢r41 - peqe
induce a house or a building in G, a contradiction. In fact, r = k — 1 and £ = 1, i.e., the vertices
u,w are adjacent to all the vertices ¢i,qo,...,qr_1. Suppose for contradiction that r < k — 2;
then, because r > /, the vertex w is adjacent to both ¢;_» and ¢;_1. If & = 2, then the vertices
u,p1,q1, P2, w induce a house in G (with vertex p, at its top), a contradiction. If k& > 3, then
qr—2qk—1 ¢ E(G); otherwise, the vertices py—_o,qr—2,qr—1 would induce a P; in G whose vertices
are non-neighbors of v, that is, pg_2gr—1 would be a shortcuting edge in @U, which would imply
that the vertices v,u,p1,p2,...,Pr—2,qr—1,w would induce a g-building in CAJU with roof (v, u,w),
a contradiction to the minimality of the g-building induced by v, u, p1, ps, ..., pr,w. But then, the
vertices w, qx—2,Pk—1,qk—1, Pk induce a house in G (with vertex p; at its top), a contradiction.
Therefore, the assumption that r < k — 2 led us to a contradiction no matter whether £k = 2 or
k > 3. Hence, r = k£ — 1, i.e., vertex u is adjacent to all the vertices qi1,q2,...,qr—1; similarly,
vertex w is adjacent to all these vertices as well.

If there exists a vertex ¢; which is adjacent to a vertex g; but is not adjacent to a vertex g;, where
i <j <j<k-—1,then clearly k¥ > 4 and Lemma 2.6 along with Lemma 2.5 imply that the graph G
contains a sun: since g; is adjacent to both p;;; and g;, then Lemma 2.5 implies that it is also adjacent
to ¢iy1 (note that the graph G is HHD-free and contains the path pit1,¢it1,Pit2, Git2, - -, Pjs
with chords only between g¢;s, and the vertex g¢; is not adjacent to any of p;yo,pits,.-.,p;); then,
Lemma 2.6 (case (b)) implies that if there exists a vertex ¢; (i+1 < j' < 7—1) which is not adjacent
to ¢;, where j = max{t | ¢iq: € E(G) }, then the graph G contains a sun.

Now, if for all i = 1,2, ...,k — 2, the adjacency of g; to a vertex g;, where ¢ < j < k — 1, implies
the adjacency of g; to each of gjt+1,¢it+2,...,q;j, then Lemma 2.2 implies that the subgraph of G
induced by the vertices w,u,q1,q2,...,qr—1 is chordal; recall that uw € E(G) and both u and w
are adjacent to all the vertices q1,q2,...,qr—1. Additionally, we take advantage of the fact that u
is adjacent to all the vertices ¢, g2, - -.,qr—1 in order to show by induction on i that ¢;¢;+1 € E(G)
for all i = 1,2,...,k — 2. For the basis step, we observe that if g1g» ¢ FE(G) then the vertices
u,P1,q1,P2,q2 induce a house in G (with vertex p; at its top), a contradiction. For the inductive
step, we assume that ¢;_1¢; € E(G) where j > 2, and suppose for contradiction that g;¢;+1 ¢ E(G);
if ¢j_19j41 ¢ E(G), then the vertices u, q; 1,¢j,Pjt1,¢j+1 induce a house in G with vertex g; 1 at
its top (Figure 4(a)), which leads to a contradiction, whereas if g;_1¢j+1 € E(G), then the vertices
4j—1,Pj,qj, Pj+1,qj+1 induce a house in G with vertex p; at its top (Figure 4(b)), a contradiction
again. Therefore, ¢;gj+1 € E(G), and from the induction, ¢;q;+1 € E(G) for alli =1,2,...,k —2.
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This result, the chordality of the subgraph G[{w,u,qi,q2,...,qx—1}], the fact that uw € E(G),
ug1 € E(G), and wgg—1 € E(G), and Lemma 2.1 imply that the subgraph of G induced by the
vertices v, u, P1,q1; P2, G2, - - - » Pk—1, Qk—1, Dk, W is a sun with partition sets U = {u,q1,¢2,...,qx—1,w}
al’ldW:{’U,pl,pQ,...,pk}. ]

Lemma 2.3. Let G be an HHD-free graph, v a vertex of G, and CA?U be the auziliary graph defined
above with respect to v. If the vertex v is the top of a g-building in the graph G, and if u and w
are the neighbors of v in the g-building, then every edge in the base of the shortest g-building with
roof (v;u,w) is a shortcuting edge.

Proof: Let the shortest g-building with roof (v; u, w) have base p1ps - - - p,, where k > 2 (Figure 5(a)).
Since G does not contain a house or a hole, the path p; - - - p contains shortcuting edges; let us replace
each shortcuting edge p;p;+1 (1 < i < k) by the corresponding Ps p;g;pi+1 of G. Then, each such
vertex ¢; is not adjacent to any vertex in {pi1,...,pi—1,Pit2, ..., P} if ¢; were adjacent to p;, for
some j € {1,2,...,7— 1} then the vertices p;,q;, pi+1 would induce a P; in G, and thus p;pit1
would be a shortcuting edge, which would imply that the vertices v,w,p1,...,pj, Pit1,---, Dk, W
would induce a g-building with roof (v;u,w) in @U, in contradiction to the minimality of the g-
building induced by v, u, p1,ps, - .., pr,w; a similar argument leads to a contradiction if we assume
that ¢; were adjacent to p;, for some j € {i+2,i+3,...,k}. The fact that ¢; is not adjacent to
any vertex in {p1,...,Pi—1,Dit2,---, Pk} also implies that the vertices ¢; are all different.

We will show next that every edge p;p;+1 is a shortcuting edge. Suppose for contradiction that
piPi+1 is not a shortcuting edge; hence, it is an edge of G instead. Consider a chordless path p in
G shortcuting the path pi,...,p; (possibly containing ¢;s) and a chordless path p’ shortcuting the
path pit1,...,pr (again possibly containing ¢;s). We show that the concatenation of the path p,
the edge p;p;+1, and the path p' forms a chordless path in G. If there were a chord, this would have
been an edge q¢q,, where £ < i and r > i+ 1. Let us consider the edge q¢q, that minimizes the

Dp1 D2 D3 Pk—1 Dk

Figure 5



Figure 6: The C; abed and the path p'.

difference 7 — ¢; then, the vertices of the path p from ¢, to p;, and the vertices of the path p’ from
Pi+1 to g, induce a cycle in G. In fact, they induce a chordless cycle due to the minimality of g¢q,
and the chordlessness of p and p’, and since p; sees none of the vertices of p’ except for p;11 and p;11
sees none of the vertices of p except for p;. Additionally, because GG contains no hole, it must be the
case that £ =4 —1 and r =i + 1, i.e., the vertices g, p;, pi+1,qr form a Cy. Then, since the vertices
qe, qr,Pr+1 induce a P3 in G and thus the edge g¢p-+1 is a shortcuting edge in éﬂ, if neither u nor
w see ¢ then the vertices v, w,p1,p2,.-.,Pe,qe; Pr+1,Pr42, - - - 5 Pk, w would form a g-building in @v
with roof (v; u, w) which is shorter than the g-building induced by v, u,p1, ..., pr,w, in contradiction
to the minimality of the latter g-building. Hence, at least one of u, w sees ¢, and similarly at least
one of u,w sees ¢.. On the other hand, neither u nor w see both ¢, and ¢, since G does not contain
a house. Therefore, either u sees gy and w sees ¢, or u sees ¢, and w sees q¢; in either case, the
vertices v, u, ¢, ¢, w induce a house (recall that uw € E(G)); a contradiction. Thus, no chord exists,
and the concatenation of the path p, the edge p;p;11, and the path p’ forms a chordless path 7 in G
(Figure 5(b)).

The vertex u is not adjacent to any vertex in the path p'. If it were, let ¢’ be the leftmost such
vertex; clearly, t' # p;11. Moreover, let ¢ be the rightmost vertex of p which is adjacent to u; ¢ is
well defined since up; € E(G) and t # p;. But then, the vertex u and the vertices in the part of
the path 7 from ¢ to ¢’ induce a hole in G, which leads to a contradiction; thus, u is not adjacent to
any vertex in p’. Similarly, w is not adjacent to any vertex in p. But then G contains a hole: it is
induced by the vertices u, w, and the vertices of the path 7 from the rightmost neighbor of u in p
(which is to the left of p;) to the leftmost neighbor of w in p' (which is to the right of p;y;). This
however contradicts the fact that G is HHD-free, and therefore we conclude that the path pyps - - - pg
of the shortest g-building consists entirely of shortcuting edges. 1

Lemma 2.4. Let G be a graph which contains a Cy abed and a path p from ¢ to d (different from
the path cd) whose vertices other than its endpoints ¢ and d are adjacent neither to a nor to b. Then,
the graph G contains a hole, a house, or a domino.

Proof: Since we are dealing with simple graphs, the length of a chordless path p' shortcuting the
path p, where we ignore the chord cd, would be at least equal to 2. Then, if the length of p’ is 2 or
3, the vertices of p’ along with the vertices a and b induce a house or a domino in G respectively,
whereas if the length of p' is greater than or equal to 4, then the vertices of p' induce a hole in G
because of the edge cd (see Figure 6). 1

Lemma 2.5. Let G be an HHD-free graph which contains a path ps, s, Ps+1,qs+15-- -, Pts Gt, where
t > s+ 1, with chords only between q;s, and let x be a vertex of G which is adjacent to ps and is not
adjacent to any of Ps4+1,Pst2,--.,Pt. If the vertex x is adjacent to g, then it is also adjacent to qs.

Proof: Suppose for contradiction that zq, ¢ E(G). Let gy be the leftmost among the vertices
Qs+1,qs+2; - - - » @¢ Which is adjacent to z; the vertex gy is well defined since z is adjacent to ¢;. Then,
qsqr € E(G), otherwise the length of a chordless path in G shortcuting the path gsps+1gs+1 - - Prar
would be of length at least 2 and the vertices of the path along with z and ps; would induce a
hole in GG, a contradiction. But then, the vertices x, ps, ¢s, g» induce a C4 in G and G contains the
path gsPs+1qs+1 - - prqr whose vertices other than its endpoints are adjacent neither to z nor to



ps- Thus, Lemma 2.4 applies implying that the graph G contains a hole, a house, or a domino; this
however leads to a contradiction since G is HHD-free. Therefore, the vertex z is adjacent to ¢;. 11

Lemma 2.6. Let G be an HHD-free graph which contains a path qs,Pst1;Qs+1s---,Pt,qe, where
t > s+ 2, with chords only between q;s, and let x be a vertex of G which is adjacent to qs and g,
and is not adjacent to any of psi1,Ps+2,-- -, Pt-

(a) Suppose that the vertex x is not adjacent to the vertices qsii1,qs+2,---,qi—1, and that for
i=s,s+1,...,t—1, if the vertezx q; is adjacent to q; (where i < j <t) then it is adjacent to
all the vertices qit1,Git2,--.,qj. Then, the vertices ,qs,Ps+1,0qs+1, - - -, Pt, Gt induce a sun in
G.

(b) If there exists a vertex q; (s +1 < i <t — 1) which is not adjacent to x, then the graph G
contains a sun.

Proof: (a) First, the set {gs,qs+1,-..,q:} contains at least 3 vertices. Next, due to the property
of the ¢;s, Lemma 2.2 implies that the subgraph of G induced by the vertices gs, gst1,.-.,q: is
chordal. In light of Lemma 2.1 and of the fact that the vertex z is adjacent to ¢; and g; only, and
each vertex p; (s +1 < i < t) is adjacent to ¢;—1; and g; only, we need only prove that the vertices
sy Qs+1; - - -, q¢ induce a cycle gsqs41--- g in G.

We begin by showing that the vertex g5 is adjacent to at least one vertex in {qs,qs41,-.-,¢t};
if it were not, then the vertices z,qs,ps+1, and the vertices of a chordless path shortcuting the
path ¢s41,Ps+2,qs+25---,Pt,q¢ would induce a hole in G, a contradiction. If ¢, is that vertex, i.e.,
qsq¢ € E(G), then gsq¢ € E(G): this is trivially true if ¢4 = q; if ¢ # q:, then because the
graph G contains the path z,q;,pt,qt—1,--.,Pe+1,qe, where £ < t — 1, with chords only between
q;s, and the vertex ¢, is adjacent to = and g, but is not adjacent to any of ps,pr—1,...,Det1,
Lemma 2.5 applies implying that ¢, is adjacent to ¢; in G. From this fact and from the property
of the vertices ¢; (s < i < t) that the adjacency of ¢; to a ¢;, where i < j < t, implies the
adjacency of ¢; to all the vertices g;y1, gi+2, ..., q;, we conclude that g, is adjacent to all the vertices
Qs+15Gs+2, - - - 5 ¢¢; this in turn enables us to additionally show (by induction on i) that ¢;q;+1 € E(G)
foralli = s+1,s+2,...,t—1. For the basis step, we note that if gs11¢s12 ¢ E(G), then the vertices
Qs,Ps+1,qs+15 Ps+2, ¢s+2 induce a house in G with vertex ps41 at its top, a contradiction. For the
inductive step, assume that gj_1¢; € E(G) where j > s+1. We show that g;¢j+1 € E(G); if not, then
the vertices ¢s, ¢j—1,qj,Pj+1,¢j+1 induce a house in G with vertex gj_; at its top, a contradiction.
Our inductive proof is complete implying that g;gi+1 € E(G) for all i = s+ 1,s+2,...,t — 1; then,
because gsqs+1 € E(G) and gsq; € E(G), we have that the vertices gs, ¢s+1,- - ., g indeed induce a
cycle gsqst1--- g in G.

(b) Since the vertex x is adjacent to ¢s and ¢, and is not adjacent to a vertex in {qst1, gs+1; .-, qt—1},
we can find vertices gy, ¢, where s < £ < r < t, such that z is adjacent to ¢; and g, but is not
adjacent to any of go+1,qet2,--.,q-—1. Then, if for each vertex ¢; (¢ <1i < r — 1), the adjacency of
g; to a vertex g;, where ¢ < j < r, implies the adjacency of ¢; to all the vertices g;+1, giy2,--.,q;,
Lemma 2.6 (case (a)) applies implying that the vertices x, q¢, Prr1,qe+1,- - -, Pr, ¢r induce a sun in
G. Suppose now that there exists a vertex ¢; (¢ < i <r — 1) which is adjacent to a vertex ¢; and is
not adjacent to a vertex ¢;, where i < j' < j <. Let us collect all such vertices in a (non-empty)
set S. Then, for each vertex ¢; in S, we can find indices ¢; and r; where i < ¢; < r; < r, such that
q; is adjacent to ¢, and ¢,, but is not adjacent to any of the vertices gy, +1,q¢;+2,- - - Gr;—1, and the
difference r; — ¢; is minimized. Let ¢; be a vertex in S such that r; — ¢; = ming,cg{r; — ¢;}; the
minimality of ¢; implies that for i = ¢;,¢; + 1,...,7r; — 1, if the vertex ¢; is adjacent to ¢; (where
i < j < r;) then it is adjacent to all the vertices ¢; 11, ¢i+2,...,¢;. This, the fact that the graph G
contains the path qz.,pr. 41,9641, -, Prss Qr,, where 7; > £; + 2, with chords only between ¢;s, and

the fact that vertex ¢; is adjacent to ¢, and ¢, but is not adjacent to any of qs,4+1,q6,+2, -+, @r,—1
imply that Lemma 2.6 (case (a)) applies and therefore the vertices gi, qe,, Pe; 41,6415+« - »Drss Qs
induce asunin G. I



3 The Algorithm

The recognition algorithm takes advantage of Theorem 2.1. We start by checking whether the input
graph G is HHD-free. If it is not, then clearly G is not HHDS-free. Otherwise, for each vertex v of
G, we construct the auxiliary graph G, and check whether v is the top of a house or a building in
G ; if this is so for any vertex v, then G is not HHDS-free. We note that in order to check whether v
is the top of a house or a building in G, we use the Algorithm Not-in-HHB [14] which for a graph H
and a vertex x returns true if and only if the vertex x belongs to a hole or is the top of a house or

a building in H; Lemma 3.1 proves that v does not belong to a hole in @U if G is HHD-free.

Lemma 3.1. Let G be an HHD-free graph, v a vertezx of G, and CA?U be the auziliary graph defined
in Section 2 with respect to v. Then, the vertex v does not belong to a hole in the graph G,.

Proof: Suppose that v belongs to a hole vup; - - - prw in év, where k > 2. As the graph G does
not contain holes, the path pyps -- - pr definitely contains shortcuting edges. If we replace each of
these shortcuting edges by the corresponding P3; in G, we obtain a path in G from p; to pg; let
aias - - a; be a chordless such path, where a; = p; and a; = p;. Let as be the leftmost vertex in the
path which is adjacent to w in G; the vertex a; is well defined since w is adjacent to a;, and s > 2
since w is not adjacent to a;. Then, u must be adjacent to as; if not, then if a, is the rightmost
vertex in ajas - -+ as—1 which is adjacent to u, then the vertices v,u, a,,ary1,-. ., as,w induce a hole
in G, a contradiction. Moreover, s > 3 and u cannot be adjacent to as_1, otherwise the vertices
v, U, as—1,as,w would induce a house in G (with vertex as_; at its top), a contradiction. Then, if u
is adjacent to as_o, the graph G contains a domino (induced by the vertices v, u, as_2,as_1, as, w),
otherwise it contains a hole since u is adjacent to ap; in all cases, we get a contradiction, which
implies that v cannot belong to a hole in G,. 1§

In detail, the recognition algorithm works as follows:

Algorithm Rec-HHDS-free
Input: an undirected graph G.
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Output:  “true,” if G is an HHDS-free graph; otherwise, “false.”

1. if G is not HHD-free
then return “false;”

2. for each vertex v of G do R
2.1 construct the auxiliary graph Gy; R
2.2 if v is the top of a house or a building in G,
then return “false;” {G contains a sun}

3. return “true.”

The correctness of the algorithm follows from Theorem 2.1.

Time and Space Complezity. Let n and m be the number of vertices and edges of the input
graph G. Step 1 can be executed in O(min{nma(n), nm + n?logn}) time and O(n + m) space
[14]. In Step 2, the construction of the auxiliary graph G, can be done in O(nm) time and requires
O(n?) space. Then, checking whether vertex v is the top of a house or a building is done by
means of the Algorithm Not-in-HHB [14], which for a graph on N vertices and M edges takes
O(N +min{M«a(N), M + Nlog N}) time and O(N + M) space; since G, has n vertices and O(n?)
edges, Substep 2.2 takes O(n?) time and space. Thus, the entire execution of Step 2 for all the
vertices of G takes O(n?m) time and O(n?) space. Step 3 takes constant time and space.

Therefore, we obtain the following theorem.

Theorem 3.1. Let G be an undirected graph on n vertices and m edges. Then, it can be determined
whether G is an HHDS-free graph in O(n*m) time and O(n?) space.



4 Concluding Remarks

We have presented a recognition algorithm for the class of HHDS-free graphs running in O(n?m)
time with O(n?) space. To the best of our knowledge, it is the first algorithm for recognizing the
class of HHDS-free graphs. The proposed recognition algorithm can be augmented to provide a
certificate (an induced house, hole, domino, or sun) whenever it decides that the input graph is not
HHDS-free; the proof of Theorem 2.1 is constructive and helps find a sun in linear additional time
and space whenever a vertex v is found to be the top of a house or a building in the graph G,.
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