
Reducing Bandwidth Waste in Reliable Multistream Storage

Andromachi Hatzieleftheriou Stergios V. Anastasiadis
Department of Computer Science
University of Ioannina, Greece

Technical Report DCS 2011-02
January 31, 2011

Abstract
Synchronous small writes play a critical role in the reli-
ability and availability of current systems because they
are used to safely log recent state modifications and al-
low fast recovery after failures at the application and sys-
tem level. In highly demanding environments, it is typ-
ical to dedicate separate devices for the logging activ-
ity alone. Thus, systems provide adequate performance
during normal operation and extra redundancy for state
reconstruction after a failure. However, storage stacks
usually enforce page-sized granularity in their data trans-
fers from memory to disk. Under various conditions,
we experimentally show that subpage writes may lead
to storage bandwidth waste and high disk latencies. To
address the issue in a journaled file system, we pro-
pose wasteless journaling as a mount mode that coa-
lesces synchronous concurrent small writes of data into
full page-sized blocks before transferring them to the
journal. Additionally, we propose the selective journal-
ing mode that automatically applies wasteless journaling
on data writes whose size lies below a fixed preconfig-
ured threshold. Depending on the request size, written
data is either first coalesced to the journal of the file
system, or directly transferred to its final location on
disk. We developed a prototype implementation of our
design based on a widely-used file system. Then, we ap-
ply microbenchmarks and application-level workloads to
standalone servers and a multi-tier networked configura-
tion to show substantial improvements in handling small
write traffic over write latency, transaction throughput,
recovery time and storage bandwidth requirements.

1 Introduction
Synchronous small writes lie in the critical path of sev-
eral contemporary systems that target fast recovery from
failures with low performance loss during normal oper-
ation [6, 12, 21, 23, 26, 31, 32]. Typically, synchronous
small writes are applied to a sequential file (write-ahead
log) in order to record updates before the actual mod-

ification of the system state. In addition, the system
periodically copies its entire state (checkpoint) to per-
manent storage. After a transient failure, recent state
can be reconstructed by replaying the logged updates
against the latest checkpoint [47]. Write-ahead logging
improves system reliability by preserving recent updates
from failures; it also increases system availability by sub-
stantially reducing the subsequent recovery time. Write-
ahead logging is widely applied in general-purpose file
systems [2, 22, 26, 40, 44], relational databases [21], dis-
tributed key-value stores [12, 32], event processing en-
gines [9, 31], and other mission-critical systems [35].
Furthermore, logging is applied during the checkpoint-
ing of parallel applications to avoid losing the processing
of multiple hours or days after an application or system
crash [6, 37].

Thus, it becomes evident that logging is interposi-
tioned through state modifications and plays a critical
role during crash recovery across a broad range of sys-
tems. In fact, it is typically suggested to overprovision
the logging bandwidth by placing the log file on a de-
vice that is different from the device that stores the state
data [33]. Thus, the often substantial logging I/O ac-
tivity will not affect state updates; additionally, the log
file shall survive a potential failure of the device that
hosts the state data and potentially allow its subsequent
reconstruction [21]. Nevertheless, synchronous small
writes can create performance bottlenecks due to their
relatively high disk-positioning overhead [3, 35, 49]. In
more general workload conditions, an I/O-intensive ap-
plication that writes pages at the rate of flushing makes
asynchronous writes appear as synchronous [5].

Furthermore, a reliable distributed service may main-
tain numerous independent log files [12, 41]. For ex-
ample, this is the approach used by a structured storage
system to facilitate the balanced load distribution in case
of failures. However, concurrent sequential accesses of
multiple independent files on the same device effectively
create a random-access workload that reduces the disk

1



throughput by an order of magnitude or more. In order
to address this issue, it was proposed to store multiple
logs in a single file [12]. During recovery, the individ-
ual logs can be separated from each other at the cost of
extra software complexity –and delay– to sort the cor-
responding log records. Similarly, for the storage needs
of parallel applications in high-performance computing,
specialized file formats have been developed to manage
as a single file the data streams generated by multiple
processes [6, 18, 24, 37].

Today, several file systems use a log file (journal) in
order to temporarily move data or metadata from mem-
ory to disk at sequential throughput [43]. Thus, they
postpone the more costly writes to the file system with-
out penalizing the write latency perceived by the applica-
tions. A basic component across current operating sys-
tems is the page cache that temporarily stores recently
accessed data and metadata for the case they are reused
soon [8]. It receives byte-range requests from the appli-
cations, and communicates with the disk through page-
sized blocks. The page-sized block granularity of disk
accesses is prevalent across all data transfers, including
data and metadata updates or the corresponding jour-
naling whenever it is used. If multiple consecutive re-
quests are batched into page-sized blocks before they are
flushed to disk, asynchronous small writes can actually
improve their efficiency. However, in the case of syn-
chronous small writes, each write is flushed to disk indi-
vidually causing data and metadata traffic of multiple full
pages, even if the bytes actually modified occupy collec-
tively much less space.

For periodic synchronous writes of varying request
sizes, Figure 1 shows the amount of data written to the
journal across different mount modes. We include the
ordered, writeback and journal (we call it data journal-
ing for clarity) modes typically supported by ext3. As
the request size increases up to 4KB, the traffic of the
data journaling mode remains almost unchanged at a rel-
atively high value. As we explain in Section 3, at each
write call the data journaling mode writes to the journal
the entire modified data and metadata blocks rather than
only the corresponding block modifications. Instead, the
ordered and writeback modes incur lower traffic, because
they only write to the journal the (entire) blocks of mod-
ified metadata.

The problem with the wasteful journal traffic of data
journaling is not simply resolved by reducing the granu-
larity of disk writes, e.g., to the size of a single disk sec-
tor. In fact, such an approach would have the adverse ef-
fect of increasing the relative cost of I/O overhead. How-
ever, one promising approach is to accumulate the mod-
ifications from multiple writes into a single page-sized
block, then pay the I/O overhead for multiple writes only
once. This approach cannot be directly applied to writes

0 1 10 100

Request Size (KB)

1

10

100

1000

T
ot

al
 J

ou
rn

al
 V

ol
um

e 
(M

B
)

Write Traffic

Data Jrn
Wasteless Jrn
Writeback
Selective Jrn
Ordered

Figure 1: For a duration of 5min, we use the Linux
ext3 file system to do periodic (per second) synchronous
writes of different request sizes. We measure the total
write traffic to the journal across different mount modes
(fully explained in Sections 2 and 3). Data journaling
(or journal mode of ext3) incurs disproportionately high
journal traffic for request sizes below 4KB.

that modify the system state because generally each write
corresponds to a different block on disk. However, it is
applicable when we journal the updates into a log.

We set as objective to reduce the journal traffic so that
we improve the performance of reliable storage at low
cost. Thus, we introduce wasteless and selective jour-
naling as two new mount modes, that we propose, de-
sign and fully implement over the Linux ext3 file system.
We are specifically concerned about highly concurrent
multithreaded workloads that synchronously apply small
writes over common storage devices [6, 12, 31, 35]. We
target to save the disk bandwidth that is currently wasted
due to unnecessary writes of unmodified data, or writes
with high positioning overhead. The writes in both these
cases occupy valuable disk access time that should be
used for useful data transfers instead. To achieve our
goal we transform multiple random small writes into
few sequential large ones. We use microbenchmarks
and application-level workloads to show that the modes
that we introduce can considerably reduce journal traffic
when applied to multiple concurrent synchronous small
writes. Moreover, they substantially reduce response
time across several cases in comparison to alternative
mount options and file systems.

The general idea of subpage logging is not new. Two
decades ago, researchers at the DEC Systems Research
Center prototyped and used the Echo distributed file sys-
tem [7]. They logged subpage updates for improved per-
formance and availability, but bypassed logging for page-
sized or larger writes [25]. Unfortunately, the develop-
ment of Echo was discontinued in early 1992, partly be-
cause the hardware it relied on lacked fast enough com-

2



putation relative to communication. Recent research in-
troduced semantic trace playback (STP) to rapidly eval-
uate alternative file system designs without the cost of
real system implementation or detailed file system simu-
lation [38]. The authors used STP to emulate a file sys-
tem that writes modifications of blocks to the journal in-
stead of entire modified blocks. They report dramatic re-
duction in the amount of data written to the journal, but
don’t examine the general performance and recovery im-
plications. Due to the obsolete hardware characteristics
or the high emulation level at which the above studies
were applied, they leave vague the general architectural
fit and actual performance benefit of journal bandwidth
reduction over current systems.

Today, the journaling of data updates is still considered
a costly operation whose use is discouraged or not sup-
ported by production-level file systems [3]. After con-
sideration of the benefits that can emerge from reduced
journal traffic, we introduce wasteless and selective jour-
naling as two fully-functional mount modes and evaluate
their performance in comparison to current representa-
tive mount modes and file systems. We summarize our
contributions as follows:

1. Consider the reduction of journal bandwidth in cur-
rent systems as a means to improve the performance
of reliable storage at low cost.

2. Design and fully implement wasteless and selective
journaling as optional mount modes in a widely-
used file system.

3. Discuss the implications of alternative journaling
optimizations to the consistency semantics.

4. Apply micro-benchmarks, storage workloads and
database logging traces over a single journal spin-
dle to demonstrate performance improvements up to
an order of magnitude across several metrics.

5. Use a parallel file system to show that wasteless
journaling doubles, at reasonable cost, the through-
put of parallel application checkpointing over small
writes.

In the remaining paper, we first present architectural
aspects of our design in Section 2. Then, in Section 3 we
describe the implementation of wasteless and selective
journaling. In Section 4, we explain our experimentation
environment, in Section 5 we present detailed measure-
ments across different workloads, and in Section 6 we
summarize previous related work. In Sections 7 and 8,
we discuss our results and present our conclusions.

2 System Design
In the present section, we describe the basic assumptions
and objectives of our architecture.

2.1 Data updates
Previous research has already recognized the role of syn-
chronous small writes for the reliable operation of cur-
rent systems in the context of general storage-based ser-
vices [2, 35, 44, 49], parallel computations [6, 18, 24, 37],
key-value stores [12,32] and event processing engines [9,
31]. Therefore, we aim to safely store recent state up-
dates on disk and ensure their fast recovery in case of
failure. We also strive to serve the synchronous small
writes and subsequent reads at sequential disk through-
put with low bandwidth requirements. In the present
work, we choose to do subpage journaling of data up-
dates, meaning that we store to the journal only the mod-
ified part of each data page. We are motivated by the
important role that small writes play for reliable stor-
age and the lack of comprehensive studies on subpage
data logging in current systems. The related problem of
durable consistency in the metadata updates of a file sys-
tem has been previously studied extensively [20, 23, 44].
Also, subpage journaling of metadata updates is already
widely available to the end users through popular com-
mercial file systems, such as the IBM JFS and MS
NTFS [38]. To the best of our knowledge, the present
work is the first to comprehensively investigate the ben-
efits of subpage data journaling using a prototype imple-
mentation in a fully operational file system.

2.2 Wasteless Journaling
Historically, journaling was applied to the metadata of a
file system with goal to ensure fast structural recovery af-
ter a system failure [23,46]. Today, there are file systems
(e.g. ext3, ReiserFS) that optionally support journaling
of both data and metadata. Related research reported that
data journaling may improve the throughput of random
I/O operations. However, it does not recommend data
journaling for sequential writes due to the high journal-
ing cost that it incurs in terms of consumed disk band-
width [3, 38]. In order to reduce journal bandwidth, we
designed and implemented a new mount mode that we
call wasteless journaling. During synchronous writes,
we transform partially modified data blocks into descrip-
tor records that we subsequently accumulate into special
journal blocks. As expected, we treat normally those
data blocks that have been fully modified by write oper-
ations. We synchronously transfer all the data modifica-
tions from memory to the journal device. After timeout
expiration or due to shortage of journal space, we move
the partially or fully modified data blocks from memory
to their final location in the file system.

2.3 Selective Journaling
With goal to reduce the journal I/O activity during se-
quential writes, we further evolved wasteless journaling
into an alternative mount mode that we call selective

3



(a) (b)

Figure 2: (a). In the original design of data journaling, the system sends to the journal the entire blocks modified by
write operations. (b) In wasteless journaling, we use multiwrite journal blocks to accumulate the data modifications
from multiple writes.

journaling. In selective journaling the system automat-
ically differentiates the write requests based on a fixed
size threshold that we call write threshold. Depending
on whether the write size is below the write threshold
or not, we respectively transfer the synchronous writes
to either the journal or directly the final disk location.
The rationale of this approach is to apply data journal-
ing in only those cases that either multiple small writes
can be coalesced into a single journal block according to
wasteless journaling, or different data blocks that have
been fully modified are scattered across multiple loca-
tions in the file system. In these cases, we anticipate that
journaling of the modified blocks will reduce the latency
of synchronous writes through the sequential throughput
offered by the journal device.

2.4 Consistency

In order to keep the structure of the file system consistent
across system failures, in each write operation we delay
metadata updates on disk until the completion of the cor-
responding data updates. In the case of wasteless jour-
naling, we log both data and metadata into the journal
device before we consider effectively completed a write
operation. Synchronous writes from the same thread are
added to the journal sequentially. In case of failure, a
prefix of the operation sequence is recovered through the
replay of the data modifications that have been success-
fully logged into the journal.

Instead, selective journaling allows a synchronous
write sequence to have a subset of the modified data
added to the journal, and the rest of the modified data di-
rectly transferred to the final location in the file system.
During a recovery after a failure, it is possible that the

last operation in a write sequence is fully aborted if the
corresponding journal appends were interrupted halfway.
However, if the last write operation is large enough to
be selected for transfer to the final location, it is possi-
ble that it was only partially completed at the instance
of the failure. Therefore, the consistency semantics of
selective journaling is at least as strict as that of mount
modes that journal the metadata after storing the respec-
tive data to disk. As the percentage of writes with size
below the write threshold increases, selective journaling
approaches wasteless journaling in terms of consistency.

We provide additional explanations about the system
consistency, when we present our implementation in Sec-
tion 3. Given that a synchronous write from a single
thread must be transferred to disk immediately, it only
makes sense to accumulate into a journal block the writes
from different concurrent threads. Therefore, we ex-
pect wasteless journaling and selective journaling to be
mostly beneficial in concurrent environments with mul-
tiple writing streams that include frequent small writes.

3 Prototype Implementation

Ext3 implements journaling by performing high-level
operations of the file system in two steps. First it copies
the modified blocks into the journal; then it transfers the
modified blocks into their final disk location and discards
the journal blocks. If the file system is mounted in jour-
nal mode, then both data and metadata blocks are copied
to the journal, before they update the file system (we re-
fer to this mode as data journaling.). The ordered mode
only copies the metadata blocks to the journal, after the
associated data blocks have updated the file system. This
reduces the risk of data corruption inside a file. In write-

4



back mode only metadata blocks are copied to the jour-
nal, but there are no requirements in the relative order at
which data and metadata blocks update the file system.
It is considered the fastest, but also the weakest mode in
terms of consistency.

3.1 Buffers

The Linux kernel uses the page cache to keep in memory
data and metadata of recently accessed disk files [8]. For
every disk block cached in memory, a block buffer stores
its data and a buffer head maintains the related book-
keeping information. In Linux terms, the page cache
manages disk blocks in page-sized groups called buffer
pages. Typically, block and page have the same size.
Therefore, we use the two terms interchangeably in the
rest of our presentation. A number of pdflush kernel
threads flush dirty pages to their final location on disk;
they systematically scan the page cache every writeback
period and implement on each page a timeout mecha-
nism of a configurable expiration period. Additionally, a
user can synchronously flush to disk the data and meta-
data dirty buffers of an open file, e.g., through the fsync
call.

Ext3 uses a special kernel layer called journaling
block device to implement the journal as either a hidden
file in the file system or a separate disk partition. Each
log record in the journal corresponds to an update of one
disk block. The log record contains the entire modified
block instead of the byte range actually affected. Thus,
journaling in Linux is wasteful in disk bandwidth and
space, but straightforward to restore the modified blocks
after a crash. In small writes, the wasted journal band-
width depends on the fraction of the block buffer that is
left unmodified by each write operation.

In practice, the system only needs to log the updated
part of each modified block and merge it into the original
block to get its latest version during a recovery. To this
end, we introduce a new type of journal block that we
call multiwrite block (Figure 2(b)). We only use multi-
write blocks to accumulate the updates from data writes
that partially modify block buffers. When a block buffer
contains metadata or is fully modified by a write oper-
ation, we can send it directly to the journal without the
need to create an extra copy first in the page cache. We
call regular block such a journal block.

When a write request of arbitrary size enters the ker-
nel, the request is broken into variable-sized updates of
individual block buffers. In wasteless journaling, if the
size of a buffer update is less than the block size, we
copy the corresponding data modification into a multi-
write block. Otherwise, we point to the entire modified
block in the page cache. For selective journaling, we
have the write threshold fixed to the page size of 4KB.
When a buffer update has size smaller than the write

threshold, then we mark the corresponding page as jour-
naled. We do that by setting a special flag that we added
in the page descriptor of the buffer page. Correspond-
ingly, we copy the modification to the multiwrite block.
If the update modifies the entire block, then we prepare
the corresponding modified buffer for transfer to the final
location without prior journaling. We clear the journaled
flag, after we transfer the corresponding block to its fi-
nal location on disk. Our current prototype also supports
write thresholds below the page size in a straightforward
way. However, handling write thresholds above the page
size would require additional implementation interven-
tion at the Linux path of write requests in order to iden-
tify the buffers that correspond to writes of size below
threshold.

3.2 Transactions

An atomic operation handle (or handle) consists of mul-
tiple low-level operations that manipulate disk data struc-
tures of the file system. When the system recovers from
a crash, it ensures atomicity of a handle by having it fully
completed or discarding all its low-level operations. For
improved efficiency, the system groups the records of
multiple handles into one transaction. A transaction ac-
cepts log records of new handles for a fixed period of
time and stores them consecutively on the journal. A
transaction is finished if all its log records are fully re-
siding in the journal including the commit block, and in-
complete if at least one log record of the transaction is
not in the journal. When recovering from a failure, the
system skips all incomplete transactions and transfers the
blocks of the finished transactions to the file system.

Each invocation of the write system call creates a new
handle that is added to the current active transaction. Be-
fore the transaction moves to the commit state, the kernel
allocates a journal descriptor block; this block contains
a list of descriptors, called tags, that map block buffers
to their final disk location. When a journal descriptor
block fills up with tags, the kernel moves it to the jour-
nal together with the associated block buffers. For each
block buffer that will be written to the journal, the kernel
allocates an extra buffer head specifically for the needs
of journaling I/O. Additionally, it creates a journal head
structure to associate the block buffer with the respective
transaction. After all the log records of a transaction have
been safely moved to the journal, the system appends to
the journal a final commit block.

For writes that only modify part of a block, we ex-
panded the journal head with two extra fields that contain
the offset and the length of the multiwrite block pointed
to by the buffer head (Figure 2(b)). When we start a new
transaction, we allocate a buffer for the journal descrip-
tor block. The journal descriptor block contains a list
of fixed-length tags, where each tag corresponds to one

5



Figure 3: Alternative execution paths of a write request
in the selective journaling mode.

write. Originally, each tag contained the final disk lo-
cation of the modified block, and one flag for journal-
specific properties of the block. In our design, we intro-
duce three new fields in each tag: (i) a flag to indicate
the use of a multiwrite block, (ii) the length of the write
in the multiwrite block, and (iii) the starting offset of the
modification in the final data block.

3.3 Recovery

We consider a transaction committed, if it has flushed all
its records to the journal and has been marked as finished.
This is done for each running transaction within a spec-
ified time period by the kjournald kernel thread. Subse-
quently, we regard the transaction as checkpointed, if all
the blocks of a committed transaction have been moved
to their final location on disk and the corresponding log
records are removed from the journal. If the journal con-
tains log records after a crash, the system assumes that
the unmount was unsuccessful and initiates a recovery
procedure in three phases. In the scan phase, it looks
for the last record in the journal that corresponds to a
committed transaction. During the revoke phase, the ker-
nel marks as revoked those blocks that have been obso-
leted by later operations. In the replay phase, the system
writes to their final disk locations the remaining (unre-
voked) blocks that occur in committed transactions.

During the recovery process, we retrieve the modified
blocks from the journal. In the case of multiwrite blocks,
we apply the updates to blocks that we read from the
corresponding final disk locations. Since the data of con-
secutive writes are placed next to each other in the multi-
write block, we can deduce their corresponding starting
offsets from the length field in the tags. As soon as the
length field of a tag exceeds the end of the current multi-
write block, we read the next block from the journal and
treat it as another multiwrite block from the same trans-
action. We read into memory and update the appropriate

block, as specified by the final disk location and the start-
ing offset in the tag. However, if the multiwrite flag is not
set, then we read the next block of the journal and treat
it as a regular block. We write every regular block di-
rectly to the final disk location without need to read first
its older version from the disk.

3.4 Update sequences

In selective journaling, we call update sequence of a disk
block a series of multiple incoming updates applied to
the same block buffer. The updates don’t have to be
back-to-back, but there should be no in-between transfer
of the respective buffer to the final disk location. If the
first update in such a sequence has subpage size, we mark
the corresponding buffer as journaled. Then, we log to
the journal the entire update sequence of this buffer. This
approach seems somewhat wasteful in terms of journal
bandwidth, if the sequence includes page-sized updates.
Thus, however, we handle consistency in a relatively
clean way, because we eliminate the case that we turn
off the journaling of a particular buffer halfway through
a transaction. Consequently, we reduce the possibility of
partial block recovery, after journal replay. On the other
hand, if the first update of the buffer is page-sized, we
decide to skip journaling for the entire update sequence
of the corresponding block. If we prepare a block for
transfer to the final disk location without prior journal-
ing, we keep no journal head to associate the block with a
transaction. Adding such an association afterward would
complicate considerably our code. In our experience, the
above two transitions in update sizes along a sequence
occur infrequently. Therefore, we anticipate low impact
to the journaling activity of selective journaling. In Fig-
ure 3, we use a flowchart to summarize the possible exe-
cution paths of a write request through selective journal-
ing.

Both data and wasteless journaling guarantee the
atomicity of updates, because they can replay the mod-
ifications of the committed transactions until they fully
reach the file system. Instead, selective journaling makes
a decision whether to journal or not an update sequence
based on the size of the first write. Journaling of an
update sequence implies atomicity of the modification
for the corresponding block, while direct transfer of the
block to the file system implies consistency similar to
that of ordered mode. Depending on the percentage
of updates that satisfy the journaling criterion, selective
journaling follows either the semantics of ordered or data
journaling, respectively.

4 Experimentation Environment

We implemented wasteless and selective journaling in
the Linux kernel version 2.6.18. Several newer Linux
releases have been made available recently, but they still

6



0 2000 4000 6000 8000

Number of Streams

0.01

0.1

1

10

Jo
ur

na
l T

hr
ou

gh
pu

t 
(M

B
/s

)

1 Kbps/stream

Data Jrn
Wasteless Jrn
Selective Jrn
Ordered
Writeback

(a)

0 20 40 60 80 100

Number of Streams

0.01

0.1

1

10

Jo
ur

na
l T

hr
ou

gh
pu

t 
(M

B
/s

)

1 Mbps/stream

Data Jrn
Wasteless
Writeback
Selective
Ordered

(b)

0 2000 4000 6000 8000

Number of Streams

0

1

2

3

4

5

F
ile

 S
ys

te
m

 T
hr

ou
gh

pu
t 

(M
B

/s
)

1 Kbps/stream
Ordered
Writeback
Data Jrn
Wasteless Jrn
Selective Jrn

(c)

Figure 4: (a) At 1Kbps, the journal throughput (lower is better) of both selective and wasteless journaling approaches
that of ordered and writeback modes, unlike data journaling which is several factors higher. (b) At 1Mbps, wasteless
and data journaling have the same journal throughput, while selective journaling lies between writeback and ordered.
(c) In comparison to ordered and writeback at 1Kbps, the other three modes incur lower file system throughput (lower
is better), because they batch multiple writes into fewer page flushes.

do not provide the functionality that we propose. In order
to add the proposed functions into ext3, we modified 684
lines of code across 19 files of the original Linux ker-
nel. The design and implementation took us more than
two person-years to complete, while members of our
team used the modified system as working environment
for several months. We evaluated our prototype over a
sixteen-node cluster using x86-based servers running the
Debian Linux distribution and connected through gigabit
ethernet.

In most experiments we use nodes with one quad-core
2.66GHz processor, 3GB RAM, and two Seagate Chee-
tah SAS 15KRPM disks. Each disk has 300GB stor-
age capacity, 16MB cache, 3.4/3.9ms average read/write
seek time and 122-204MB/s sustained transfer rate. We
have the journal and the data partition on two separate
disks, unless we mention otherwise. In few experiments,
we use two SATA 7.2KRPM disks of 250GB and 16
MB cache. We kept the page and block sizes equal to
4KB, while we left the journal size at the default value
128MB. In our measurements, we assume synchronous
write operations, unless we specify differently. We keep
the default parameters of periodic page flushing: write-
back period equal to 5s and expiration period 30s. Be-
tween successive repetitions, we flushed the page cache
by unmounting the journal device and writing the value 3
to the /proc/sys/vm/drop caches. With up to fifteen rep-
etitions of our experiments on otherwise idle machines,
we ensure that our results have half-length of 90% confi-
dence interval within 10% of the reported average.

The default disk settings increase speed by allowing a
synchronous write to return when the data reaches the

on-disk cache rather than the storage surface. How-
ever this behavior makes the system less reliable, unless
somebody disables the on-disk cache or uses controllers
with battery-backed cache [35]. In most of our experi-
ments we kept enabled the on-disk write caches, but in
Section 5.6 we also report similar comparative results
from experiments with the write caches disabled.

5 Performance Evaluation

In this section, we study the performance of microbench-
marks, mailserver benchmarks and traces from database
logs directly running on the modified file system. We
also evaluate a stable Linux port of the log-structured
file system, where the entire file system is structured as a
log [40]. Additionally, we use a multi-tier configuration
based on the PVFS2 distributed file system to examine
the impact of the server file system to the parallel work-
load running across multiple clients. We also measure
the recovery time after a crash and examine the sensitiv-
ity of our numbers to alternative disk configuration set-
tings.

5.1 Microbenchmarks

First, we put a number of threads running directly on the
file server. Each thread appends data to a separate file
by calling one synchronous write per second; as a re-
sult, they produce random aggregate traffic. With 1Kbps
streams in Figure 4(a), we observe that as the load grows
from one hundred to several thousand streams, the jour-
nal throughput of data journaling remains an order of
magnitude higher with respect to the other modes (up
to 27MB/s). On the contrary, selective and wasteless

7



0 2000 4000 6000 8000

Number of Streams

0.01

0.1

1

10

100

1000

W
ri

te
 L

at
en

cy
 (

s)

1 Kbps/stream
Writeback
Ordered
NILFS
Selective
Data Jrn
Wasteless

(a)

0 20 40 60 80 100

Number of Streams

0.01

0.1

1

10

W
ri

te
 L

at
en

cy
 (

s)

1 Mbps/stream

Selective Jrn
Ordered
Wasteless Jrn
Data Jrn
NILFS
Writeback

(b)

0 20 40 60 80 100

Number of Files

0.1

1

10

100

1000

R
ea

d 
L

at
en

cy
 (

m
ic

ro
se

co
nd

)

1 Mbps/stream

NILFS
Selective Jrn
Ordered
Writeback
Data Jrn
Wasteless Jrn

(c)

Figure 5: (a) With low rates, the write latency (lower is better) of ordered and writeback appears orders of magnitude
higher than the other modes. (b) At higher rates, the selective and ordered modes experience much higher latency.
(c) As we read sequentially multiple files that we previously wrote concurrently, read requests of 4KB with NILFS
complete in order of magnitude longer time with respect to the different modes of ext3 that we evaluate.

journaling keep the traffic up to about 4MB/s. If we in-
crease the stream rate to 1Mbps, wasteless and data jour-
naling appear identical, while selective generates about
twenty times lower journal throughput (Figure 4(b)). We
also examined (not shown) mixed workloads consisting
of streams with different rates. In that case, the journal
throughput of wasteless journaling varies depending on
the fraction of requests that are below the write thresh-
old.

In Figure 4(c), we measure the write throughput of the
file system device. The ordered mode sends each write
to the final location in units of 4KB, thus wasting disk
bandwidth with low-rate streams. Instead, wasteless, se-
lective and data journaling leave dirty pages in memory
for the expiration period before flushing them to the file
system (Section 3.1). Thus, multiple writes to the same
data block are automatically coalesced into fewer page
flushes leading to lower traffic at the file system. In our
microbenchmarks, we also measured the processor uti-
lization and found it higher with low-rate streams over
wasteless, selective and data journaling. Nevertheless,
processor utilization always remained low, since it only
reached 5%.

The benefits of journaling the data is also visible, if we
consider the average latency of synchronous writes. In
Figure 5(a), we see the ordered and writeback modes to
incur orders of magnitude higher latency with respect to
the other modes, as they serve multiple streams of 1Kbps.
For instance, data journaling completes a write operation
in tens of milliseconds, while ordered mode takes several
seconds. We repeated the above experiments with asyn-
chronous writes (not shown). Especially at low rates, we
found that selective and wasteless journaling reduce the
latency of ordered and data journaling up to two orders of

magnitude. Thus we validate previous reports that asyn-
chronous workloads may behave as synchronous in sev-
eral cases [5].

In Figure 5, we also include measurements from a
stable port of the log-structured file system (NILFS) to
the Linux kernel 2.6 [50]. We find that the write la-
tency of NILFS is comparable to that of wasteless and
data journaling at both 1Kbps and 1Mbps streams. As
expected, selective follows wasteless journaling at low
rates, but ordered mode at high rates. Overall, the se-
quential throughput of the journal improves significantly
the ability of the system to store fast the incoming data.

In Figure 5(c), we use a thread to read sequentially one
after the other different numbers of files that were previ-
ously written concurrently at 1Mbps each, using NILFS
or ext3. In this experiment we measure the average time
to read a 4KB block. We observe that NILFS is an order
of magnitude slower with respect to ext3. We attribute
this behavior to the fact that NILFS interleaves the writes
from different files on disk, which may lead to poor stor-
age locality during sequential reads. In supplementary
experiments that we did with 1Kbps streams, NILFS
along with ordered and writeback also incur much higher
read latencies than the other three modes.

5.2 Postmark and Varmail
We use the Postmark benchmark to examine the perfor-
mance of small writes as seen in electronic mail, net-
news and web-based commerce [30]. We apply version
1.5 with the option of synchronous writes added by FSL
of Stony Brook Univ. The experiment duration varies
depending on the efficiency of the requested operations
In order to keep the runtime reasonable, we assume an
initial set of 500 files and use 100 threads to apply a

8



0 1 10 100

Request Size (KByte)

0

200

400

600

800

T
ra

ns
ac

ti
on

s/
s

Postmark

Wasteless Jrn
Data Jrn
Selective Jrn
Ordered

(a)

1 10 100

Number of Instances

0

100

200

300

W
ri

te
 L

at
en

cy
 (m

s)

Jetstress (Transaction Log)

Ordered/O_SYNC
Ordered/O_DIRECT
Data Jrn/O_SYNC
Wasteless/O_SYNC
Selective/O_SYNC

(b)

1 10 100

Number of Instances

0

200

400

600

L
og

 F
lu

sh
 L

at
en

cy
 (s

)

TPC-C (Transaction Log)

Cmt/Cache-Ordered
Cmt/Disk-Ordered
Prd/Disk-Ordered
Cmt/Cache-Wasteless
Cmt/Disk-Wasteless
Prd/Disk-Wasteless

(c)

Figure 6: (a) With the Postmark benchmark, wasteless journaling consistently achieves the highest transaction rate.
(b) At increasing number of concurrent Jetstress instances, selective journaling maintains the average latency of log
writes up to orders of magnitude lower in comparison to the other modes. (c) Across the three different methods of
flushing in MySQL/InnoDB, wasteless journaling requires lower latency to flush the transaction log to the disk.

total workload of 10,000 mixed transactions with file
read, append, create and delete. We draw the file sizes
from the default range between 500 bytes and 97.66KB,
while I/O request sizes lie in the range between 128
bytes and 128KB. In Figure 6(a), we observe that the
transaction rate of wasteless journaling gets as high as
738tps. Across different request sizes, wasteless jour-
naling consistently remains faster than the other modes,
including data journaling. Instead, selective journaling
lies between data journaling and ordered mode, which
are slower than wasteless.

We also used the varmail benchmark as another
multithreaded application workload with small I/O re-
quests. This is a mailserver benchmark provided by the
Filebench suite [19] (Linux port by A. Gulati at Rice
Univ.). For a duration of 500s, we run 80 threads over
20,000 initial files with 8KB average I/O request size,
and 2KB average file size. In Table 1, we see the mea-
sured performance of ordered, selective and wasteless
modes. We notice that wasteless and selective journal-
ing, respectively, improve both the operation and data
throughput of the ordered mode by 53% and 75%. We
made similar observations with other small file sizes and
request sizes that we tried. Thus, coalescing the small
writes into the journal raises the transaction performance
of the file system, while keeping at reasonable levels the
journal traffic as we confirmed previously.

5.3 Groupware and Database Logging
System administrators prefer to devote a separate de-
vice for the logs of an I/O intensive application to avoid
performance bottlenecks [33]. Also, in distributed sys-
tems they are likely to place the log files locally at each
machine for improved performance and autonomy [21].

Varmail (Filebench)
Mount Operations Ops Rate Data Rate Lat
Mode (Total Count) (Ops/s) (MB/s) (ms)
Ordered 1,201,255 2388.0 5.5 108.7
Selective 1,857,699 3693.1 8.4 70.3
Wasteless 2,114,382 4203.7 9.6 62.0

Table 1: We evaluate the performance of the Varmail
benchmark from the Filebench suite. With respect to or-
dered mode, wasteless journaling increases the transac-
tion and data rate (higher is better) by 75%, and reduces
the average operation latency by 43%.

Given the high cost of adding extra spindles to a sys-
tem, we investigate the possibility of serving multiple log
files from the same local device with appropriate file sys-
tem support. For that purpose, we measure the latency to
serve the I/O traffic of log traces that we gathered from
groupware and database workloads.

Jetstress We consider the Jetstress Tool that emulates
the disk I/O load of the Microsoft Exchange messaging
and collaboration server [29]. We run Jetstress for two
hours in a Windows Server 2003 system with 1GB RAM
and two SATA disks in mirrored mode. We used 50
mailboxes with 100MB each and 1 operation per second
for each mailbox. We choose these parameters so that
we stress the hardware but also keep the reported mea-
surements within acceptable levels to successfully pass
the Jetstress test. The tool fixes the database cache to
256MB. Using the MS Process Monitor, we recorded a
system-call trace of the Jetstress I/O activity. The I/O
traffic of the database log contains appends of size from
512 bytes to tens of KB. The writes are uncached, i.e.,

9



10 20 30 40

Threads per Client

0.0

0.2

0.4

0.6

0.8

1.0

M
B

/s

MPI-IO Throughput

Wasteless
Data Jrn
Selective
Ordered

(Write size 1024B)

(a)

10 20 30 40

Threads per Client

0

5

10

M
B

/s

MPI-IO Throughput

Ordered
Data Journaling
Wasteless Journaling
Selective Journaling

(Write size 47001B)

(b)

Figure 7: We measure the data throughput (higher is
better) of MPI-IO over PVFS2 installed on a networked
cluster with different mount modes at the data server. (a)
At write size of 1KB, wasteless journaling almost dou-
bles the performance of the default ordered mode. (b)
At request size of 47001 bytes, the prevalence of writes
above the write threshold keeps similar the behavior of
the mount modes.

configured to bypass the buffer cache and directly reach
the disk.

Over Linux, we use the original interarrival times to
replay a 15min extract from the middle of the log trace.
We consider different ext3 modes with the O DIRECT
option (at file open) to bypass the page cache, or the
O SYNC option for synchronous access. In order to
study different loads and serve multiple logs from the
same device, we varied the number of concurrent replays
from 1 to 128. In Figure 6(b), both selective and waste-
less journaling keep write latency up to tens of millisec-
onds even at high load. More specifically, selective is
substantially better than wasteless. However, selective
journaling is the only mode that distributes across both
spindles the incoming appends to the log files. At high
load, data journaling and ordered mode incur write la-
tency that reaches hundreds of milliseconds, an order of
magnitude longer than our two modes. These results in-
dicate that the default uncached writes of Jetstress can
be outperformed with appropriate file system support at
comparable consistency.

TPC-C We also examine the OLTP performance
benchmark TPC-C [45] as implemented in Test 2 of the
Database Test Suite [15]. We used the MySQL open-
source database system with the default InnoDB storage
engine [34]. After consideration of our hardware capac-
ity, we tested a configuration with 20 warehouses and 20
connections, 10 terminals per warehouse and 500s dura-
tion. Running the benchmark over Linux lead to insignif-
icant differences of the transaction throughput among or-
dered mode, wasteless and selective journaling, mainly
because most writes are above the threshold.

0

100

200

300

400

500

W
ri

te
 V

ol
um

e 
(M

B
)

MPI-IO Traffic/1024B

Ordered

Data Jrn

W
asteless

Selective

BDB Journal Final

(a)

0

2000

4000

6000

W
ri

te
 V

ol
um

e 
(M

B
)

MPI-IO Traffic/47001B

Ordered

Data Jrn

W
asteless

Selective

BDB Journal Final

(b)

Figure 8: On the data server of PVFS2, we measure the
write traffic (lower is better) to BerkeleyDB (BDB), the
journal (Journal) and the file system (Final). (a) At write
size 1KB, selective and wasteless journaling consume
less bandwidth as they cut the journal volume of data
journaling and the final volume of ordered mode. (b)
At write size 47001 bytes, wasteless is similar to data
journaling and selective comparable to ordered mode in
terms of disk bandwidth consumption.

The InnoDB storage engine supports three different
methods for flushing the database transaction log to
disk. In the default method 1 (Cmt/Disk), the log is
flushed directly to disk at each transaction commit. It
is considered the safest to avoid transaction loss in case
of database, operating system or hardware failure. In
method 0 (Prd/Disk), a performance improvement is
expected by having the transaction log written to the
page cache and flushed to disk periodically. Finally, in
method 2 (Cmt/Cache), the transaction log is written to
the page cache at each transaction commit and periodi-
cally flushed to disk. A transaction loss is probable in
case of operating system or hardware failure.

During an execution of TPC-C, we collect a system-
call trace of the MySQL transaction log. Subsequently,
we replay a varied number of concurrent instances of the
log trace over the ordered and wasteless journaling. We
measure the average latency to flush the transaction log
to disk. In Figure 6(c), we see that wasteless journaling
takes up to tens of seconds to complete each log flush
across the three methods of InnoDB at high load. Instead,
ordered mode takes hundreds of seconds, as the number
of instances approaches or exceeds 64. We also exper-
imented with selective journaling (not shown to avoid
clutter) and found it to lie close to wasteless journal-
ing and well below ordered. The illustrated behavior is
reasonable because wasteless (and selective) journaling
stores the small appends of the database log into the file
system journal at sequential disk throughput.

10



100

200

300

400

500

T
im

e 
(m

s)

Recovery

Ordered

W
riteback

Data Jrn

W
asteless

Selective

Replay
Revoke
Scan

Figure 9: We examine the recovery time across different
mount modes for a multithreaded workload. In compari-
son to data journaling, wasteless and selective journaling
reduce scan time by an order of magnitude but increase
the replay time by about 40%. Overall, they reduce by
20-22% the recovery time of data journaling.

5.4 MPI-IO over PVFS2

Workload characterization of parallel applications shows
the need for improved performance in small I/O requests
over small and large files that arise due to normal execu-
tion and checkpointing activity [10,24]. Especially small
requests of 1KB are known to be problematic because
they incur high rotational overhead even after they are
transformed into sequential [37]. Also, writes of 47001
bytes appear often in parallel applications and lead to
poor performance due to alignment misfit [6]. In the
present section we examine the performance gain of a
parallel multi-tier configuration, where the storage server
runs our mount modes. We chose the PVFS2 as an open-
source scalable parallel file system [39]. We config-
ured a networked cluster of fifteen quad-core machines
with thirteen clients, one PVFS2 data server and one
PVFS2 metadata server. By default, each server uses
a local BerkeleyDB database to maintain local metadata.
Through system-call tracing, we observed that the data
server uses a single thread for local metadata updates and
multiple threads for data updates. To focus our study on
multistream workloads, at the data server we placed the
BerkeleyDB on one partition of the root disk, and dedi-
cated the entire second disk to the user data (file system
and journal). We fixed the BerkeleyDB partition to or-
dered mode and tried alternative mount modes at the data
disk. We used the default thread-based asynchronous I/O
of PVFS2. Also, we enabled data and metadata synchro-
nization, as suggested to avoid write losses at server fail-
ures.

We used the LANL MPI-IO Test to generate a syn-
thetic parallel I/O workload on top of PVFS2 [1]. In our

1 10 100 1000

Request Size (KB)

0

50

100

150

T
ra

ns
ac

ti
on

s/
s

Postmark

Wasteless
Ordered

(Disabled SATA cache)

(a)

1 10 100 1000

Request Size (KB)

0

200

400

600

T
ra

ns
ac

ti
on

s/
s

Postmark

Wasteless
Ordered

(Enabled SATA cache)

(b)

Figure 10: (a) We disable the on-disk caches to ensure
that the writes only return after they touch the storage
media. The relative advantage of wasteless journaling
reaches several factors especially at small requests. (b)
The comparative advantage is similar with the on-disk
caches enabled.

configuration each process writes to a separate unique
file (”N processors to N files”). According to other stud-
ies, this is the write pattern suggested to application de-
velopers for best performance [6]. We varied between 4
and 40 the number of processes on each of the thirteen
quad-core clients leading to total processes between 52
and 520. We tried 65000 writes with alternative write
sizes of 1024 and 47001 bytes. In Figure 7, we com-
pare the data throughput of MPI-IO across different write
sizes and loads. With 1KB writes, wasteless journaling
almost doubles the throughput of ordered mode, while
data journaling and selective lie between the previous
two. With writes of 47001 bytes, the write throughput re-
mains about the same across the different modes. In Fig-
ure 8, we depict the total volume of write traffic across
the BerkeleyDB, the journal and the file system. We ob-
serve that wasteless journaling reduces by 42% the jour-
nal traffic of data journaling, while selective journaling
closely tracks ordered mode in terms of write volume
(Figure 8(b)).

In summary, wasteless and selective journaling im-
prove substantially the performance of ordered mode at
small writes while they avoid the excessive journal traffic
of data journaling. At larger write sizes, performance re-
mains similar across the mount modes, while the volume
of journal traffic varies up to several factors.

5.5 Recovery Time
In a different experiment, we evaluate the ability of the
system to recover quickly after a system crash that leaves
log records in the journal. It was reported that when the
free jounal space lies between 1

4 and 1
2 of the journal

size, the original ext3 system automatically checkpoints
the updates to the final location [38]. In order to do a
fair comparison across the different modes, we use writes

11



that are small enough to prevent checkpointing before the
crash, but also useful for some application classes, e.g.,
event stream processing [9]. Thus, we start 100 threads
each doing 100 writes of request size 8 bytes. Then we
cut the power to the system. At the subsequent reboot,
we measure within the kernel the duration of file system
recovery. In Figure 9, we breakdown the total recovery
across the three passes that scan the transactions, revoke
blocks, and replay the committed transactions. In com-
parison to data journaling, the scan pass of selective and
wasteless journaling is an order of magnitude shorter.
Respectively, the replay pass of selective and wasteless
journaling takes about 40% more time due to the extra
block reads involved. Overall, selective and wasteless
journaling reduce by 20-22% the recovery time of data
journaling.

5.6 Device Issues

We examine the performance effects from disabling the
on-disk caches on a server with two 7.2KRPM SATA
disks. First, we consider the workloads of Figures 5(a)
and 5(b) with streams of rates 1Kbps and 1Mbps, respec-
tively. Based on the average write latency across differ-
ent loads, we find that the disabled on-disk caches do not
make any performance difference in comparison to the
enabled. This result makes sense because the streaming
writes continuously append new data to the caches and
don’t reuse the blocks that they wrote in the past. Addi-
tionally, the number of streams (at least 10) also limits
the potential caching benefits. Then, we also measure
the transaction rate achieved by the Postmark workload
of Figure 6(a). As shown in Figures 10(a) and (b), the
disabled write caches across the two mount modes re-
duce the transaction rate four times in comparison to the
enabled caches. Nevertheless, wasteless journaling con-
sistently maintains up to several factors higher transac-
tion rate with respect to the ordered mode across both
caching settings.

Arguably, wasteless journaling can take advantage of
the two spindles that store the journal and the file system,
while the ordered mode uses mostly the spindle of the file
system and less the spindle of the journal. To study this
asymmetry, we also run our stream microbenchmarks
over two SAS disks in RAID0 configuration with hard-
ware controller support. We examine the two modes with
the journal instantiated as a hidden file rather than a sep-
arate partition. With 1Kbps streams over RAID0, the
write latency of ordered mode drops to half, while the
write latency of wasteless does not change. Nevertheless,
wasteless journaling remains one to two orders of mag-
nitude faster than ordered mode across different numbers
of streams. Also, wasteless journaling is up to an or-
der of magnitude faster than ordered mode with 1Mbps
streams.

6 Related Work
The log-structured file system addresses the synchronous
metadata update problem and the small-write problem
by coalescing data writes sequentially to a segmented
log [40]. We experimentally observe (Section 5.1) that
the log-structured approach may adversely affect the read
performance, while previous research reported cleaning
overheads and performance limitations under particular
workloads [43]. The virtual log is another effort to min-
imize the latency of small synchronous writes [49]. A
modified version of the log-structured file system called
StreamFS has been recently used for the storage of high-
volume streams [16]. StreamFS writes incoming streams
of high rates in a circular fashion along the disk space
selectively overwriting older data. Instead, we also han-
dle the storage traffic of multiple streams with low-rate
requirements. The hFS file system stores metadata and
small files in a separate partition from large files. It treats
writes according to the size of the written file rather than
the size of the writes themselves that we do [51]. DualFS
is a journaled file system that manages the data blocks in
groups similarly to other systems, but it stores the meta-
data separately in a log-structured file system [36].

In real-time processing of huge amounts of data, many
applications use multiple operators and require recovery
from failures [31]. Recovery is possible through syn-
chronous logging but incurs prohibitive latency cost. Re-
cent research combines software transactional memory
with asynchronous logging to optimistically parallelize
stream operators [9]. However, such speculative execu-
tion is limited to processing operators that do not perform
external actions such as I/O [11]. Journaling remains
standard recovery feature in the file system of a virtu-
alization product vendor [48]. If we run multiple virtual
machines on the same system, the block-based interface
of the file system makes small writes from guests appear
as full-block updates to the underlying host [4]. In ongo-
ing work, we investigate the applicability of our methods
to virtualization environments by relaxing the file system
interface between the guest and the host.

Given the importance of small write efficiency, several
approaches improve the internal organization of the file
system, the storage device, and their in-between commu-
nication. High-performance synchronous writes can be
supported through specialized hardware, such as battery-
backed main memory (NVRAM) [14]. However, previ-
ous research also reported that NVRAM creates a sin-
gle point of failure over disk arrays, while dual-copy
NVRAM cache can be costly [27]. Alternatively, disk-
specific knowledge can be exploited to align the data
accesses on track boundaries, and avoid rotational la-
tency and track-crossing overhead [42]. Knowledge of
disk geometry could also be beneficial in our journaling
policies, if we transfer recent updates to their final disk

12



location in the file system. Moreover, our target to re-
duce storage traffic and prefer sequential writes makes
our work compatible with the lifetime and performance
limitations of novel devices such as solid state disks [13].

Anand et al. introduce range writes in the disk in-
terface to remove the need for file system microman-
agement of block placement [2]. The authors applied
range writes to the journal update of Linux ext3 in or-
der to avoid the rotations and improve the response time
of synchronous writes. This approach operates at the
disk level and could complement our methods, as well.
Xsyncfs introduces externally synchronous I/O that guar-
antees durability to an external observer of application
output rather than the application itself [35]; if an ap-
plication does not produce output, xsyncfs commits data
periodically in the way of an asynchronously mounted
ext3. WAFL improves write performance by writing file
system blocks to any location on disk and in any order,
while deferring disk space allocation with the help of
non-volatile RAM [26]. Instead, we safely delay file sys-
tem updates at low cost through batching of small writes
into the journal.

In early work, Hagmann described metadata update
logging in the Cedar File System to improve perfor-
mance and achieve consistency [23]. Soft updates track
and enforce metadata update dependencies so that the
file system can safely delay writes for most file opera-
tions [20,44]. Both the above systems focus on metadata
rather than data updates that we instead investigate. Sub-
page updates have been previously handled efficiently in
the context of distributed shared memory by the Milli-
page system [28]. In transaction processing, group com-
mit is a known database logging optimization that pe-
riodically flushes to the log multiple outstanding com-
mit requests in groups rather than individually [17]. In-
stead, we introduce wasteless and selective journaling as
a general file-system service to support applications with
small writes.

7 Discussion

Over a range of operating conditions that are vital for
system reliability, existing file systems can be either
wasteful or underperforming. We propose and imple-
ment several improvements that address these weak-
nesses without penalizing the general behavior of the
file system beyond a reasonable increase in disk traffic.
The main theme in our proposed design is to improve
performance and reliability at low cost. Thus, adding
extra spindles to improve I/O parallelism or a properly-
sized NVRAM to absorb small writes, are alternative ap-
proaches likely to reduce latency and raise throughput.
However, such solutions carry some notable drawbacks
that primarily have to do with increased cost and main-
tenance concerns about additional faulty parts in the sys-
tem.

8 Conclusions
Journaling is a technique commonly used in current file
systems to ensure their fast recovery in case of system
failures. In the present work, we rely on journaling of
data updates in order to ensure their safe transfer to disk
at low latency and high throughput without storage band-
width waste. We design and implement a method that we
call wasteless journaling to merge concurrent subpage
writes to the journal into page-size blocks. Additionally,
we develop the selective journaling method that only logs
updates below a write threshold and transfers the rest di-
rectly to the file system. Our experimental results in-
clude measurements from streaming microbenchmarks,
application-level workloads, database logging traces and
multistream I/O over a parallel file system in the lo-
cal network. Across different cases, we demonstrate re-
duced write latency and recovery time, improved trans-
action throughput with low journal bandwidth require-
ments. Our plans for future work include extension of
the above methods for virtualization environments.

9 Acknowledgments
In part supported by project INTERSAFE with ap-
proval number 303090/YD7631 of the INTERREG IIIA
Greece-Albania neighboring program.

References
[1] The los alamos national lab mpi-io test.

http://public.lanl.gov/jnunez/benchmarks/mpiiotest.htm.

[2] ANAND, A., SEN, S., KRIOUKOV, A., POPOVICI, F. I.,
AKELLA, A., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU,
R. H., AND BANERJEE, S. Avoiding file system microman-
agement with range writes. In USENIX OSDI (San Diego, CA,
2008), pp. 161–176.

[3] APPUSWAMY, R., VAN MOOLENBROEK, D. C., AND TANEN-
BAUM, A. S. Block-level raid is dead. In Workshop on Hot Topics
in Storage in File Systems (Boston, MA, 2010).

[4] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In ACM SOSP
(2003), pp. 164–177.

[5] BATSAKIS, A., BURNS, R. C., KANEVSKY, A., LENTINI, J.,
AND TALPEY, T. Awol: An adaptive write optimizations layer.
In USENIX FAST (Feb. 2008), pp. 67–80.

[6] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B.,
NOWOCZYNSKI, P., NUNEZ, J., POLTE, M., AND WINGATE,
M. Plfs: a checkpoint filesystem for parallel applications. In SC
(2009), pp. 1–12.

[7] BIRRELL, A. D., HISGEN, A., JERIAN, C., MANN, T., AND

SWART, G. The echo distributed file system. Tech. Rep. TR-111,
DEC Systems Research Center, Palo Alto, CA, Sept. 1993.

[8] BOVET, D. P., AND CESATI, M. Understanding the Linux Ker-
nel, third ed. O’Reilly Media, Sebastopol, CA, Nov. 2005.

[9] BRITO, A., FETZER, C., AND FELBER, P. Minimizing latency
in fault-tolerant distributed stream processing systems. In Intl
Conference on Distributed Computing Systems (Montreal, QC,
2009), pp. 173–182.

[10] CARNS, P., LANG, S., ROSS, R., VILAYANNUR, M., KUNKEL,
J., AND LUDWIG, T. Small-file access in parallel file systems. In
IEEE IPDPS (May 2009), pp. 1–11.

13



[11] CHANDRASEKARAN, S., AND FRANKLIN, M. Remembrance
of streams past: Overload-sensitive management of archived
streams. In VLDB Conference (Toronto, Canada, Aug. 2004),
pp. 348–359.

[12] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. E. Bigtable: A distributed storage system for struc-
tured data. In USENIX OSDI (2006), pp. 205–218.

[13] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understanding
intrinsic characteristics and system implications of flash memory
based solid state drives. In SIGMETRICS/Performance (Seattle,
WA, 2009), pp. 181–192.

[14] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C., RA-
JAMANI, G., AND LOWELL, D. The rio file cache: Surviving
operating system crashes. In ACM ASPLOS (Cambridge, MA,
1996), pp. 74–83.

[15] Database test suite. http://osdldbt.sourceforge.net/.

[16] DESNOYERS, P. J., AND SHENOY, P. Hyperion: High vol-
ume stream archival for retrospective querying. In USENIX ATC
(Santa Clara, CA, June 2007), pp. 45–58.

[17] DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D.,
STONEBRAKER, M. R., AND WOOD, D. A. Implementation
techniques for main memory database systems. In ACM SIG-
MOD (Boston, MA, 1984), pp. 1–8.

[18] ELNOZAHY, E. N., AND PLANK, J. S. Checkpointing for
peta-scale systems: A look into the future of practical rollback-
recovery. IEEE Transactions on Dependable and Secure Com-
puting 1, 2 (2004), 97–108.

[19] http://www.solarisinternals.com/wiki/index.php/FileBench.

[20] GANGER, G. R., MCKUSICK, M. K., SOULES, C. A. N., AND

PATT, Y. N. Soft updates: a solution to the metadata update
problem in file systems. ACM Transactions on Computer Systems
18, 1 (Feb. 2000), 127–153.

[21] GRAY, J., AND REUTER, A. Transaction Processing: concepts
and techniques. Morgan Kaufmann Publishers, 1993, ch. 9. Log
Manager.

[22] GUNAWI, H. S., PRABHAKARAN, V., KRISHNAN, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Improv-
ing file system reliability with i/o shepherding. In ACM SOSP
(Stevenson, WA, Oct. 2007), pp. 293–306.

[23] HAGMANN, R. Reimplementing the cedar file system using log-
ging and group commit. In ACM SOSP (Austin, TX, 1987),
pp. 155–162.

[24] HILDEBRAND, D., WARD, L., AND HONEYMAN, P. Large files,
small writes, and pnfs. In ACM Intl Conf. on Supercomputing
(Cairns, Australia, June 2006), pp. 116–124.

[25] HISGEN, A., BIRRELL, A., JERIAN, C., MANN, T., AND

SWART, G. New-value logging in the echo replicated file sys-
tem. Tech. rep., Digital Equipment Corporation, Palo Alto, CA,
1993. SRC Research Report 104.

[26] HITZ, D., LAU, J., AND MALCOLM, M. File system design
for an nfs file server appliance. In USENIX Winter Technical
Conference (San Francisco, CA, Jan. 1994), pp. 235–246.

[27] HU, Y., NIGHTINGALE, T., AND YANG, Q. Rapid-cache–a re-
liable and inexpensive write cache for high performance storage
systems. IEEE Transactions on Parallel and Distributed Systems
13, 3 (Mar. 2002), 290–307.

[28] ITZKOVITZ, A., AND SCHUSTER, A. Multiview and millipage
- fine-grain sharing in page-based dsms. In USENIX OSDI (New
Orleans, LA, Feb. 1999), pp. 215–228.

[29] Microsoft exchange server jetstress tool, 2007.
http://technet.microsoft.com/en-us/library/bb643093.aspx.

[30] KATCHER, J. Postmark: A new file system benchmark. Tech.
Rep. TR-3022, NetApp, 1997.

[31] KWON, Y., BALAZINSKA, M., AND GREENSBERG, A. Fault-
tolerant stream processing using a distributed, replicated file sys-
tem. In VLDB Conference (Auckland, New Zeland, Aug. 2008),
pp. 574–585.

[32] MAMMARELLA, M., HOVSEPIAN, S., AND KOHLER, E. Mod-
ular data storage with anvil. In ACM SOSP (Oct. 2009), pp. 147–
160.

[33] MULLINS, C. S. Database Administration: The Complete Guide
to Practices and Procedures. Addison Wesley, 2002, ch. 11.
Database Performance (Database Log Placement), p. 308.

[34] http://www.mysql.com/.

[35] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,
AND FLINN, J. Rethink the sync. In USENIX OSDI (Seattle,
WA, 2006), pp. 1–14.

[36] PIERNAS, J., CORTES, T., AND GARCIA, J. M. The design of
new journaling file systems: The dualfs case. IEEE Transactions
on Computers 56, 2 (Feb. 2007), 267–281.

[37] POLTE, M., SIMSA, J., TANTISIRIROJ, W., GIBSON, G.,
DAYAL, S., CHAINANI, M., AND UPPUGANDLA, D. K. Fast
log-based concurrent writing of checkpoints. In Petascale Data
Storage Workshop (Nov. 2008).

[38] PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and evolution of journaling file sys-
tems. In USENIX ATC (Anaheim, CA, 2005), pp. 105–120.

[39] Parallel virtual file system, version 2. http://www.pvfs.org.

[40] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Transac-
tions on Computer Systems 10, 1 (Feb. 1992), 26–52.

[41] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P.,
STEERE, D. C., AND KISTLER, J. J. Lightweight recoverable
virtual memory. In ACM SIGOPS (Asheville, NC, Dec. 1993),
pp. 146–160.

[42] SCHINDLER, J., GRIFFIN, J. L., LUMB, C. R., AND GANGER,
G. R. Track-aligned extents: Matching access patterns to disk
drive characteristics. In USENIX FAST (Monterey, CA, Jan.
2002), pp. 259–274.

[43] SELTZER, M., SMITH, K. A., BALAKRISHNAN, H., CHANG,
J., MCMAINS, S., AND PADMANABHAN, V. File system log-
ging versus clustering: a performance comparison. In USENIX
ATC (1995), pp. 21–21.

[44] SELTZER, M. I., GANGER, G. R., MCKUSICK, M. K., SMITH,
K. A., SOULES, C. A. N., AND STEIN, C. A. Journaling versus
soft updates: Asynchronous meta-data protection in file systems.
In USENIX ATC (San Diego, CA, 2000), pp. 71–84.

[45] Tpc benchmark c standard specification. Tech. rep., Transaction
Processing Council, 1992. Technical Report.

[46] TWEEDIE, S. C. Journaling the linux ext2fs filesystem. In Lin-
uxExpo (Durham, NC, 1998), pp. 25–29.

[47] VERISSIMO, P., AND RODRIGUES, L. Distributed Systems for
System Architects. Kluwer Academic Publishers, Norwell, MA,
USA, 2001.

[48] Vmware virtual machine file system: Technical overview and
best practices. Tech. rep., VMware, Inc, Palo Alto, CA, 2007.
White Paper.

[49] WANG, R. Y., ANDERSON, T. E., AND PATTERSON, D. A. Vir-
tual log based file systems for a programmable disk. In USENIX
OSDI (New Orleans, LA, 1999), pp. 29–43.

[50] YOSHIJI, A., KONISHI, R., SATO, K., HIFUMI, H., TAMURA,
Y., KIHARA, S., AND MORIAI, S. Nilfs - continuous snapshot-
ting filesystem for linux, 2009. Nippon Telegraph and Telephone
Corporation, http://www.nilfs.org/en/.

[51] ZHANG, Z., AND GHOSE, K. hfs: a hybrid file system proto-
type for improving small file and metadata performance. In ACM
EuroSys Conference (Lisboa, Portugal, Mar. 2007), pp. 175–187.

14


