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Abstract

Gaussian Mixture Models (GMMs) constitute a well-known type of probabilistic neural
networks. One of their many successful applications is in image segmentation, where spa-
tially constrained mixture models have been trained using the Expectation-Maximization
(EM) framework. In this paper, we elaborate on this method and propose a new methodol-
ogy for the M-step of the EM algorithm that is based on a novel constrained optimization
formulation. Numerical experiments using simulated images illustrate the superior perfor-
mance of our method in terms of the attained maximum value of the objective function and
segmentation accuracy compared to previous implementations of this approach.

1 Introduction

Image segmentation is the process that groups image pixels together based on attributes such as
their intensity and spatial location. A variety of different methods have been proposed for image
segmentation such as edge-based segmentation, region-based segmentation, pixel labeling and
hybrid techniques [1, 2, 3]. In this work, we elaborate on a pixel labeling (clustering) technique
based on Gaussian Mixture Models (GMM) which constitute a well-known probabilistic neural
network model [4, 5]. The Expectation-Maximization framework constitutes an efficient method
for GMM training based on likelihood maximization.

The application of clustering methods to image segmentation has the particular characteristic
that spatial information should be taken into account. That is, apart from the intensity values,
the pixel location must also be used to determine the cluster to which each pixel is assigned.
Intuitively speaking, in most cases it is desirable to assign the same cluster label to spatially
adjacent pixels. The Bayesian framework provides a natural approach to implement these ideas.
Following this formulation, a likelihood term which is based exclusively on the data captures
the pixel intensity information, while a prior biasing term that uses a Markov Random Field
(MRF) captures the spatial location information. Thus, it is no surprise that most recent image
segmentation algorithms follow this paradigm; see for example [6, 7].

Nevertheless, an inherent difficulty with this formulation is that, due to the introduction of
the prior, the M-step of the EM algorithm cannot be implemented using closed form expressions.
For this reason, in [6], a Gradient Projection (GP) algorithm was proposed to implement the
M-step.
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In this paper we propose a novel method to implement the M-step based on a closed form
update equation followed by an efficient projection method. We demonstrate with numerical
experiments using the synthetic image data in [7] that the proposed M-step provides a better
maximum of the objective function than the GP approach proposed in [6]. In addition, it also
yields better segmentation results.

The rest of this paper is organized as follows: In section 2 we describe the probabilistic model
for image segmentation. In section 3 we present our improvements to this model. In section 4
we provide comparative experimental results and finally in section 5 our conclusions and future
work.

2 The spatially variant finite mixture model

Let xi denote the observation at the ith pixel of an image (i = 1, . . . , N) modeled as i.i.d.
The spatially variant finite mixture model (SVFMM) [6] provides a modification of the classical
mixture model approach for pixel labeling. The SVFMM assumes a mixture model with K

components each one having its own vector of density parameters θj .
According to the SVFMM approach, the probabilities πi

j = P (j|xi) of the ith pixel belonging
to the jth cluster (class label) are considered as additional model parameters that should satisfy
the following constraints: 0 ≤ πi

j ≤ 1 and
∑K

j=1 πi
j = 1. Let πi denotes the probability vector

for pixel i, Π = {π1, . . . , πN} the set of probability vectors and Θ = {θ1, . . . , θK} the set of
component parameters. Then the SVFMM model assumes that the density function f(xi|Π, Θ)
at an observation xi is given by

f(xi|Π, Θ) =
K∑

j=1

πi
jφ(xi|θj) , (1)

where φ(xi|θj) is a Gaussian distribution with parameters θj = {µj, σj}.
Based on the above formulation the parameters of the model can be estimated through like-

lihood maximization (ML) using the EM algorithm. Since the pixel observations are considered
to be independent samples, a significant drawback of the ML approach is that the spatial pixel
information is not taken into account [8, 7]. To overcome this difficulty the SVFMM method
considers a maximum a posteriori (MAP) approach by introducing a prior distribution for the
parameter set Π that takes into account spatial information based on the following Gibbs func-
tion [8, 6, 7]

p(Π) =
1
Z

exp(−U(Π)) , where U(Π) = β

N∑
i=1

VNi(Π) . (2)

The Z is a normalizing constant, while β is oftenly called regularization parameter. The func-
tion VNi(Π) denotes the clique potential function of the pixel label vectors {πm} within the
neighborhood Ni of the ith-pixel and can be computed as follows

VNi(Π) =
∑

m∈Ni

g(ui,m) , (3)
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where the ui,m specifies the distance between the two label vectors πi and πm, i.e, ui,m =
|πi − πm|2 =

∑K
j=1(π

i
j − πm

j )2. The neighborhood Ni is the set containing pixels that are
horizontally or vertically adjacent to pixel i. Finally, the function g(u) must be nonnegative and
monotonically increasing [8]. We have selected g(u) = (1+u−1)−1 adopted from [8], while in [6]
the identity function h(u) = u was used. The function g(u) penalizes less large values of u and
thus is more robust to outliers.

Given the above prior density, a posteriori log-density function can be as follows

p(Π, Θ|X) =
N∑

i=1

log f(xi|Π, Θ) + log p(Π) . (4)

The use of the EM algorithm for MAP estimation of the parameters {πi
j} and {θj} [6] requires

that the conditional expectation values zi
j of the hidden variables are computed at the E-step

zi(t)

j =
πi(t)

j φ(xi|θ(t)
j )

K∑
l=1

πi(t)

l φ(xi|θ(t)
l )

, (5)

while in the M-step the maximization of the following log-likelihood corresponding to the com-
plete data set is performed

QMAP (Π, Θ|Π(t)Θ(t)) =
N∑

i=1

K∑
j=1

zi(t)

j {log(πi
j) + log(φ(xi|θj))} − β

N∑
i=1

∑
m∈Ni

g(ui,m) , (6)

where t indicates the iteration step. The function QMAP can be maximized independently for
each parameter. This gives the following update equations for parameters of the component
densities

µ
(t+1)
j =

N∑
i=1

zi(t)

j xi

N∑
i=1

zi(t)

j

and [σ2
j ]

(t+1) =

N∑
i=1

zi(t)

j [xi − µ
(t+1)
j ]2

N∑
i=1

zi(t)

j

. (7)

However, the maximization of the function QMAP with respect to the label parameters {πi
j}

does not provide closed form update equations. In addition, the maximization procedure must
also take into account the constraints 0 ≤ πi

j ≤ 1 and
∑K

j=1 πi
j = 1. Due to this difficulty a

Generalized EM scheme for estimating the label parameters {πi
j} was adopted in [6] following

the iterative Gradient Projection method. According to this method the gradient of the MAP
function is first projected onto the hyperplane of the constraints. Then a line search is performed
along the direction of the projected gradient to find the label parameters {πi

j} that maximizes
the QMAP function.

3 The proposed technique

In this section we present the new M-step which we demonstrate experimentally in section 4
that improves the performance of the segmentation algorithm. In order to maximize QMAP
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(Eq. (6)) with respect πi
j we set its derivative equal to zero and obtain the following quadratic

expression

4β

[ ∑
m∈Ni

ġ(ui,m)
]
(πi(t+1)

j )2 − 4β

[ ∑
m∈Ni

ġ(ui,m)πm
j

]
(πi(t+1)

j ) − zi(t)

j = 0 , (8)

where ġ(u) indicates the derivative of g. It must be noted that in the above equation the
neighborhood Ni can include pixels with updated label parameter vectors (t + 1 step), as well
as pixels whose label vectors πm have not yet been updated (t step).

The two roots of the above equation are

πi(t+1)

j =

[ ∑
m∈Ni

ġ(ui,m)πm
j

]
±

√√√√
[ ∑

m∈Ni

ġ(ui,m)πm
j

]2

+
1
β

zi(t)
j

[ ∑
m∈Ni

ġ(ui,m)
]

2
[ ∑

m∈Ni

ġ(ui,m)
] , (9)

and select only the root with the positive sign + since it yields πi
j ≥ 0. The above equation

provides a straightforward update for the values of label parameters πi
j of each pixel i at the

M-step of every EM iteration. However, we also have to ensure that these values satisfy the
constraints 0 ≤ πi

j ≤ 1 and
∑K

j=1 πi
j = 1. In the following we present an efficient novel projection

algorithm to achieve this goal.
For convenience, let us now denote with aj (j = 1, . . . , K) the label parameter values

(πi(t+1)

j ≥ 0) computed from Eq. (9). The problem we address here is the following: ”Given a
vector a ∈ RK with aj ≥ 0 and the hyperplane

∑K
j=1 yj = 1, find the point y on the hyper-

plane with non-negative components that is closest to a”. This can be formulated as a linear
constrained convex quadratic programming (QP) problem:

min
y

K∑
j=1

(yj − aj)2

subject to
K∑

j=1

yj = 1 and yj ≥ 0 , ∀j = 1, 2, . . . , K .

(10)

In order to solve the above QP problem, several approaches may be employed [9], such
as active-set methods that use Lagrange multiplies, as well as penalty-barrier methods that
formulate an objective function with penalty terms for equality and barrier terms for inequality
constraints. We use here an active-set type of method where we exploit the fact that the Hessian
is the identity matrix which in turn leads to the derivation of closed form analytical expressions
for the Lagrange multipliers. This is of great value for both the efficiency and the robustness
of the method, since it avoids the burden of numerical instabilities that occur frequently in the
solution of large linear systems when the associated matrices are nearly singular.

One may proceed using the following Lagrange function:

L(y, λ0, λ) =
1
2

K∑
j=1

(yj − aj)2 − λ0(
K∑

j=1

yj − 1) −
K∑

j=1

λjyj , (11)
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where λ0 is the multiplier for the equality and λj , j = 1, · · · , K the multipliers for the inequality
constraints. First order necessary conditions imply:

yj = aj + λ0 + λj . (12)

Combining the above with the equality constraint yields:

λ0 =
1
K

− < a > − < λ > , (13)

where < v >≡ 1
K

∑K
j=1 vj . Hence substituting λ0 in Eq. (12) we have that:

yj =
1
K

+ aj− < a > +λj− < λ >, j = 1, · · · , K . (14)

Note that the vector b with components bj = 1
K + aj− < a > is the projection of a on the

hyperplane
∑K

j=1 yj = 1. The λ’s must be chosen so as to satisfy the inequality constraints.
Khun-Tucker conditions [9] state that at the minimizer y∗:

λj ≥ 0 , λj > 0 if y∗j = 0 (Active constraint) , λjy
∗
j = 0 . (15)

We present a very efficient iterative strategy for calculating the λ’s for the problem above.
Let y denote the vector at the current iteration. Initially we set yj = bj , ∀j = 1, · · · , K.

In the general case there exist m negative components yj . The corresponding set of indices
S = {j, with yj < 0} constitutes the active set of constraints for the current vector y.

• For all j /∈ S we set λj = 0.

• For all j ∈ S we set yj = y�
j = 0 and we compute the corresponding λj by solving

an m × m linear system that force the inequalities to be satisfied as equalities, namely
yj + λj− < λ >= 0, leading to

λj =
1

m − K

∑
k∈S

yk − yj . (16)

• We compute the updated yj values for j /∈ S using the new vector λ via Eq. (14).

The above procedure is repeated until a feasible point is obtained, i.e. yj ≥ 0, ∀j. This is the
desired minimizer (y� = y).

Note that Eq. (16) produces positive values for λj , hence no constraint is to be dropped ever
from the active set, ie. if once some yj becomes zero then it retains this value for ever. This
is a very important point as far as efficiency is concerned and in addition guarantees the finite
termination property of the algorithm. When all constraints are satisfied we have reached the
sought solution.

Finally, it must be noted that apart from problems of low dimensionality as in the case of
image segmentation (where K is equal to the number of pixel labels), we have also applied the
above projection technique to problems of large dimensions (eg. K = 65536) arising in other
image processing problems and we have verified its efficiency and robustness.
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Figure 1: Six noisy test images with 3 and 5 classes using three levels of noise.
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Figure 2: Plot of the MAP function (a) and the classification error (b) for various β values in
the case of the three noisy images with K = 3 and K = 5 classes.

4 Experimental results

A series of image segmentation experiments have been conducted to evaluate and compare the
effectiveness of the proposed technique. Since the main contribution of our work is on improving
the M-step of the SVFMM model that estimates the label parameters πi

j , we compared our
approach with the Generalized EM scheme proposed in the original SVFMM model description
that employs the Gradient Projection technique (termed as SVFMM-GP) as described in [6].

In this paper we present results using two simulated test images being sampled from MRF
model using a Gibbs sampler [7], with K = 3 and K = 5 classes, where we have added three
levels of Gaussian noise with standard deviation of 18, 25 and 52, respectively (Fig. 1). Figure 2
illustrates the comparative results from the application of the two methods to each noisy image.
Two evaluation criteria have been used for the comparison study: a) the maximum attained value
of the MAP objective function (Eq. (4)) and b) the classification (segmentation) error defined
as the percentage of mis-classified pixels. Therefore, for each image segmentation problem we
provide two diagrams that illustrate the performance of the models according to the above two
criteria for several values of the β parameter. These results, demonstrate that our approach
provides a better maximum of the MAP function. Moreover, it provides significantly better
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Figure 3: (a) Execution time versus MAP function values for 50 runs of the proposed and the
SVFMM-GP methods. (b) A typical run example of MAP function versus number of steps is
also presented.

segmentation accuracy, since the mis-classification ratio is considerably lower in our approach,
especially for high levels of noise.

In order to gain insight on the reason why our method yields consistently better results, the
following additional experiments were conducted For each method and test image (Fig. 1), we
performed 50 runs starting from different initial points πi

j while keeping the same initial values
for the mixture component parameters (µj , σj). The regularization parameter β was kept equal
to β = 1 throughout. In Fig. 3a we plot the execution time for each of the 50 runs, versus the
obtained MAP function value using both methods on the fifth test image. Note that the results
for all images were similar.

In Fig. 3 we observe that our method returns in all cases the same result, whereas the
SVFMM-GP technique depends on the initialization, hence returning not one, but a number of
different maxima. This behaviour can be explained noting that our method locates the global
maximum of the QMAP function (Eq. (6)) in every M-step, since it only projects the unique
unconstrained maximum (Eq. (9)) onto the constraint boundary. On the contrary, SVFMM-GP
is trapped to the first local maximum encountered. There is a small variation in the execution
times (≈ 1 sec) of our method that cannot be shown in Fig. 3a since the value of function
is the same in all runs. This is expected since the projections onto the constraint boundary
may require different times, depending on the initial conditions. However, in our exeriments
the dimension of the constraint polyedron is small (K = 3 or 5), thus, these differences are
negligible.

In Fig. 3b we plot the MAP function values versus the number of EM-steps. From that
plot we see that our method requires more EM iterations to converge and it is slower as it can
be deduced from Fig. 3a. However, our method reaches higher maximum values which implies
better segmentation performance.
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5 Conclusions

We have presented a new method to maximize the label parameter values at the M-step of
the EM algorithm for training GMMs with MRF priors for image segmentation. Experimental
results on simulated images demonstrate that the proposed modification improves, in some
cases significantly, the segmentation performance of this method. It must be noted that we
have also tested the proposed algorithm with real images, where in all tested cases the proposed
M-step provides a better maximum of the objective function. However, due to space constraints,
we do not present these results here. Future work will focus on applying the method to real
world segmentation problems arising in medical imaging and bioinformatics and also to consider
segmentation of color and texture images. We also plan to design more sophisticated prior
functions that will take into account not only pixel adjacency, but also image information, such
as for example the existence of edges.
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