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ABSTRACT 

Skyvalidas, Panagiotis. MSc, Computer Science Department, University of Ioannina, 
Greece. April, 2007. Replication of XML Documents in Unstructured P2P Systems.  
Thesis Supervisor:  Pitoura Evaggelia. 
 
 
Peer-to-peer (p2p) systems have attracted considerable attention as a means of sharing 

content among large and dynamic communities of nodes. A central issue in p2p 

systems is locating the nodes that hold data of interest. There have been various 

proposals towards building overlays to support efficient content location. Such 

proposals vary from building rigid topologies and placing data on specific nodes in 

the overlay to unstructured networks with no correlation between the node content 

and its position in the overlay.  In all types of overlays, content replication results in 

reducing the latency of lookups.  

 

Motivated by the fact that XML is increasingly being used in data intensive 

applications, in this work, we study replication in unstructured p2p systems where 

participating nodes share content stored in XML. We consider XML replication for 

both passive and proactive protocols. XML documents have a hierarchical structure 

and thus, different fragments of an XML document can have different access 

frequencies. We show that replicating items at the fragment level is preferable to 

replicating whole documents.  

 

For proactive replication, we introduce a new data structure that we call replication 

routing index. For a peer p, a Replication Routing Index (RepRI) has one entry for 

each file that p has processed queries for. Each entry keeps statistics about the 

requests that p has received for the specific file through its adjacent edges. Our 

replication strategy uses these indexes to decide whether to maintain a copy locally or 

forward it along a path. A Replication Routing Index for XML, termed RepRIX, 
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maintains statistics for fragments. RepRIX allows us to fine-tune the unit of 

replication, so that fragments of the same document can have different numbers of 

replicas. Further, it allows us to push fragments closer to their requesters. RepRIX 

entries are also used as hints during lookup to direct nodes towards paths that most 

probably hold replicas of the requested items. We also present experimental results of 

the deployment of our indexes in a dynamic unstructured peer-to-peer system. 
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Παναγιώτης Σκυβαλίδας του Γεωργίου και της Ευαγγελίας. MSc, Τμήμα 
Πληροφορικής, Πανεπιστήμιο Ιωαννίνων, Απρίλιος, 2007. Δημιουργία Αντιγράφων 
XML Αρχείων σε Αδόμητα Συστήματα Ομότιμων Κόμβων. Επιβλέπουσα: Ευαγγελία 
Πιτουρά. 
 
 
Τα τελευταία χρόνια, στο χώρο του διαδικτύου, έχει παρατηρηθεί αυξημένο 

ενδιαφέρον, γύρω από τα Συστήματα Ομότιμων Κόμβων (p2p). Τα p2p συστήματα, 

αποτελούν εφαρμογές που επιτρέπουν και διευκολύνουν το διαμοιρασμό δεδομένων 

μεταξύ μεγάλων και δυναμικών κοινοτήτων από συμμετέχοντες κόμβους. Το βασικό 

πρόβλημα γύρω από τα p2p συστήματα είναι ο αποδοτικός εντοπισμός των 

δεδομένων για τα οποία ένας κόμβος ενδιαφέρεται. Οι λύσεις που έχουν προταθεί 

περιλαμβάνουν τη δημιουργία δομημένων συστημάτων, στα οποία τα δεδομένα 

τοποθετούνται σε συγκεκριμένους κόμβους, καθώς επίσης και αδόμητων συστημάτων 

στα οποία δεν υπάρχει συσχετισμός ανάμεσα στα δεδομένα ενός κόμβου και στη 

θέση του στο δίκτυο. Ανεξαρτήτως της τοπολογίας του δικτύου, αυτό που έχει 

αποδειχθεί είναι ότι η δημιουργία αντιγράφων των δεδομένων και η διανομή τους στο 

δίκτυο συμβάλει σημαντικά στη βελτίωση της απόδοσης του συστήματος.  

 

Στην παρούσα εργασία και έχοντας ως κίνητρο την σταδιακή καθιέρωση της XML ως 

πρότυπο για την αναπαράσταση και διακίνηση των δεδομένων στο διαδίκτυο, 

μελετούμε την δημιουργία αντιγράφων σε αδόμητα p2p συστήματα στα οποία οι 

συμμετέχοντες κόμβοι διαμοιράζονται XML αρχεία. Τα XML αρχεία ακολουθούν 

μία ιεραρχική δομή με συνέπεια διαφορετικά τμήματα ενός αρχείου να έχουν 

διαφορετικές συχνότητες προσπέλασης. Αυτό που ισχυριζόμαστε είναι ότι η 

δημιουργία αντιγράφων τμημάτων ενός αρχείου είναι προτιμότερη από την 

αντιγραφή ολόκληρου του αρχείου στις περιπτώσεις κατά τις οποίες κάποια από τα 
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τμήματά του δεν ενδιαφέρουν τους συμμετέχοντες κόμβους. Στην παρούσα εργασία 

παρουσιάζουμε μία νέα δομή δεδομένων την οποία ονομάζουμε Replication Routing 

Index (RepRI). Ένα Replication Routing Index ενός κόμβου έχει μία είσοδο για κάθε 

αρχείο για το οποίο έχει επεξεργαστεί ερώτηση με στατιστικά σχετικά με τις αιτήσεις 

που έχει δεχθεί γι αυτό από κάθε προσκείμενη ακμή του. Ένας κόμβος χρησιμοποιεί 

αυτή τη δομή για να αποφασίσει αν θα πρέπει να δημιουργήσει αντίγραφο κάποιου 

αρχείου του και προς σε ποια κατεύθυνση να το προωθήσει. Ένα Replication Routing 

Index για XML αρχεία καλείται RepRIX και διατηρεί στατιστικά για τμήματα 

αρχείων. Το RepRIX μας επιτρέπει να ρυθμίσουμε τη μονάδα αντιγραφής, έτσι ώστε 

διαφορετικά τμήματα ενός αρχείου να μπορούν να έχουν διαφορετικό αριθμό 

αντιγράφων. Επίσης, μας επιτρέπει να προωθήσουμε τα αντίγραφα πιο κοντά στις 

πηγές ενδιαφέροντος. Το RepRIX μπορεί επιπλέον να συμβάλει στον αποδοτικότερο 

εντοπισμό ενός αρχείου, καθώς μπορεί να οδηγήσει ένα κόμβο στο να προωθήσει μία 

ερώτηση προς μία κατεύθυνση η οποία έχει πολλές πιθανότητες να οδηγήσει σε 

επιτυχημένη αναζήτηση. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

1.2 Scope of Thesis 

1.3 Thesis Outline 

 

1.1. Introduction 

Peer-to-peer (p2p) systems have attracted a lot of attention as a means of data sharing 

among a large and dynamic population of nodes. P2p overlay networks are distributed 

systems in nature, without any hierarchical organization or centralized control. Peers 

form self-organizing networks that are overlaid on the Internet Protocol (IP) networks, 

offering a mix of various features such as robust wide-area routing architecture, 

efficient search of data items, selection of nearby peers, redundant storage, 

permanence, trust and authentication, anonymity, massive scalability and fault 

tolerance. P2p overlay systems go beyond services offered by client-server systems by 

having symmetry in roles where a client may also be a server. It allows access to its 

resources by other systems and supports resource-sharing, which requires fault-

tolerance, self-organization and massive scalability properties. Here, we focus on 

unstructured p2p systems. These are systems in which there is neither a centralized 

directory nor any precise control over the network topology or data placement. The 

network is formed by nodes joining the network following some loose rules. The 

resultant topology has certain properties, but the placement of data is not based on any 

knowledge of the topology (as it is in structured designs). To find an item, a node 

queries its neighbors. The most typical query method is flooding, where the query is 

propagated to all neighbors within a certain radius. These unstructured designs are 

extremely resilient to nodes entering and leaving the system. 
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A central issue in p2p systems is locating the nodes that hold data of interest. Since 

knowing all other peers and their content is not feasible, each peer connects (knows 

about) a small number of other peers, thus forming an overlay network. There have 

been various proposals towards building overlays that support efficient content 

location. Such proposals vary from building rigid topologies and placing data on 

specific nodes in the overlay to unstructured networks with no correlation between the 

nodes content and its position in the overlay.   

 

In all types of overlays, content replication results in reducing the latency of search. 

Various replication techniques have been proposed that can be roughly categorized as 

passive or proactive. With passive replication, items are replicated after they are 

successfully located after a request. A commonly used passive replication scheme, 

path replication, has been proven to produce the optimal number of copies under 

specific conditions [1, 2]. With path replication, data items are cached along the 

search path after an item is located. With proactive replication, holders of data items 

initiate the creation of replicas not necessarily after a request. Many issues regarding 

replication in p2p systems remain open. One such issue is where to place copies, since 

path replication tends to cluster copies on search paths.  

 

We focus on p2p systems where participating nodes share content stored in XML 

documents. XML [3] has evolved as the new standard for the representation and 

exchange of semistructured data on the Internet. Several application domains for 

XML already show that XML is inherently distributed on the Web, for example, Web 

services that use XML-based descriptions in WSDL and exchange XML messages 

with SOAP, e-commerce and e-business, collaborative authoring of large electronic 

documents and management of large-scale network directories. All these applications 

demonstrate that much of the traffic and data available in the Internet are already 

represented in XML format. Thus, it is natural to assume that much of the data in a 

p2p system is already represented in XML format. XML documents have a 

hierarchical structure. Query languages on XML documents, such as XQuery [4] and 

XPath, exploit this structure through path-based expressions. Thus different fragments 

of an XML document may have different access frequencies.  
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1.2. Scope of Thesis 

In this work, we show that replicating items at the fragment level is preferable than 

replicating whole XML documents. To achieve this and still maintain good response 

time for queries at different fragments of a document, we replicate the content of 

popular fragments and maintain links to the original document for the rest. We 

consider fragment replication for both passive and proactive protocols. For proactive 

replication, we introduce a new data structure that we call replication routing index. 

For a peer p, a replication routing index (RepRI) has one entry for each file that p has 

processed queries for. Each entry keeps statistics about the requests that p has 

received for the specific file through its adjacent edges. Our replication strategy uses 

these indexes to decide whether to maintain a copy locally or forward it along a path. 

For XML documents, the replication routing indexes, termed REpRIX, maintain 

statistics for fragments. REpRIX allows us to fine-tune the unit of replication, so that 

fragments of the same document may have different number of replicas. Further, it 

allows us to push fragments closer to their requesters. REpRIX entries are also used 

as hints during search to direct nodes towards paths that most probably hold replicas 

of the requested items. 

 

We experimentally compare both proactive and passive variations of fragment 

replication. Both types of fragment replication outperform whole document 

replication resulting in increasing the percentage of items located and reducing the 

required steps for doing so. Proactive replication with hints is shown to work better 

than passive replication. We also present experimental results of the deployment of 

our indexes in a dynamic unstructured peer-to-peer system. 

1.3. Thesis Outline 

The remainder of this work is structured as follows. Chapter 2 summarizes in brief the 

main issues about content replication in p2p systems and introduces proactive 

replication using replication indexes. Chapter 3 extends replication indexes for XML 

documents. It presents our approach for fragment replication and describes the two 

implemented techniques Skeleton replication and Subtree replication. In chapter 4 we 

present our experimental results from the evaluation of our approach and its 

 



4 

 

comparison with existing replication strategies. Chapter 5 presents related research on 

content replication in p2p systems and fragmentation of XML documents. At last, 

chapter 6 concludes this work and presents the open issues for future work. 
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CHAPTER 2. PROACTIVE REPLICATION 

2.1 Replication in Unstructured p2p Systems 

2.2 Replication Routing Indexes (REpRI) 

2.3 REpRI-Based Replacement and Routing 

2.4 Discussion 

 

2.1. Replication in Unstructured p2p Systems 

P2p content distribution systems rely on the replication of content on more than one 

peer for improving the availability of content, enhancing performance, and resisting 

censorship attempts. Replication is traditionally understood as a static configuration 

for the placement of copies of data items, for the purpose of increased reliability and 

availability as well as better load sharing. In large-scale distributed systems that rely 

more on self-organization rather than carefully planned administration, such as p2p 

systems, replication is seen as a dynamic mechanism. A new copy may be created 

when an existing copy fails (transiently or permanently) or when some peer becomes 

overloaded, copies may be migrated, or replicas may simply be the result of cached 

copies being kept at peers for a longer time period. The critical issues in dynamic 

replication are: 

 Determining the number of replicas that we want to have for a given data item, 

based on goals for reliability, availability, and performance. 

 Determining on which peers we should place these replicas. 

 Designing a strategy for adjusting the replica placement upon certain events 

such as peer failures or load bursts. 

 Designing a mechanism and a strategy for keeping replicas updated and 

consistent. 
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Various replication techniques have been proposed that can be roughly categorized as 

passive or proactive. Passive replication occurs naturally in p2p systems as peers 

request and copy content from one another. Two easily implementable, passive 

replication strategies are owner and path replication. With owner replication, when a 

search is successful, the requested data is stored at the requester peer only. When path 

replication is used, information is kept along the paths that a query traverses. After a 

successful search, the requested data is replicated and stored at all peers on the path 

from the provider peer to the requester peer. On the other hand, with proactive 

replication, peers can create replicas of their data items without an explicit request for 

them. The reasons for disseminating data in a proactive manner are the following: 

 To improve the response time of search requests, by means of additional 

replicas. In blind search situations with limited request flooding in 

unstructured networks, the additional replicas may even be needed to improve 

the probability of a successful search. 

 To improve the load balance in the network and thus increase the overall 

throughput of the entire system. This assumes that additional replicas can 

effectively be considered in the request routing. 

 To improve the availability of data items, in the presence of frequent peer 

outages and churn. 

 To improve the reliability of the system, in the sense that it guarantees higher 

probability of data durability, i.e., not losing a data item regardless what 

permanent peer failures may occur. 

2.2. Replication Routing Indexes (REpRI) 

Here, we propose a new replication strategy that creates and places replicas on the 

network, in a proactive manner. We consider first the case where peers store simple 

data files without any specified structure. Searching is done using keyword-based 

queries that refer to the file names. We introduce a new data structure that we call 

Replication Routing Index (RepRI). The RepRI(p) of a peer p has one entry for each 

file for which peer p has processed requests. Our replication strategy uses these 

indexes to decide whether a peer should replicate some of its files and forward them  
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Table 2.1 RepRI  for Simple Data Files 

Filename LReq Req1 Hop1 … … Reqk Hopk Ownership 

 

to certain directions. With RepRI the decision about creation and placement of 

replicas on the network is based on the use of distributed information. Each peer in 

the system keeps some statistics on the queries it processes. Using this information it 

dynamically decides if replicas of its local files should be created and sent to another 

peer in the network. Our approach tends to create and move replicas towards the 

direction that are actually “needed”. 

 

 

Figure 2.1 Instance of RepRI for Peer 1 

For a peer p with k neighbors, each entry is of the form (Filename, LReq, Req1, Hop1, 

…, Reqk, Hopk, Ownership), shown in table 2.1, where Filename is the name of the 

file, LReq is the number of queries for this file initiated by peer p, Reqi and Hopi with 

i = 1,…, k, are respectively the number of queries that were forwarded to peer p by its 

neighbor i and the corresponding average number of hops required for the queries to 

reach p. At last, the field Ownership takes the values 1 and 0 depending on whether 

the file is stored locally at p or not. In Figure 2.1, we show the RepRI maintained by 

peer with id 1, which has three neighbors, 2, 3 and 4. Peer 1 has processed queries for 

two local files, “Talk.mp3” and “Sun.jpg” and for one file “Precious.mp3” stored at 

some other peer. When p receives a query, forwarded by its neighbor i, RepRI(p) is 

scanned and when the relative entry is found (p has processed queries for that file 

before), the value of the field Reqi is incremented by 1 and the field Hopi is updated. 

If there is not an entry for the file, a new one is inserted. Reqi takes the value 1, Hopi 

the number of hops required for the query to reach p, the field Ownership takes the 
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value 1 or 0 depending on whether the file is stored locally at p or not, while the other 

fields are set to 0.  

 

The decision which file to replicate and towards which direction is based on both the 

popularity of the file and the cost for locating it. In particular, each peer p with k 

neighbors calculates the replication utility, ru(f) of a file f as follows: 

 

ru(f) = α * popularity_factor + (1 – α) * distance_factor 

 

where popularity_factor is defined as: 

 

popularity_factor = ∑i=1,…,k Reqi / Max(∑i=1,…,k Reqi) 

 

and distance_factor is defined as: 

 

distance_factor = Avg(Hopi) / TTL, with i = 1,…,k 

 

Max(∑i=1,…,k Reqi) corresponds to the total number of requests that p received from its 

neighbors for the most popular file in RepRI(p) and Avg(Hopi) = ∑i=1,…,k Hopi / k. 

The weight α, 0 ≤ α ≤ 1, is a tuning parameter that determines how much each of 

these two factors affects the replication decision. When all files have similar query 

probabilities, a small value for α favors the files with high average search size. On the 

contrary, when we have different query probabilities, some files become popular. In 

order to favor these files, we increase the value of α. This way popular files are 

replicated more easily speeding up the search process. The larger the value of α, the 

more efficient the search for popular files.  

 

Periodically, a peer p decides to create replicas of all files f stored locally (field 

Ownership has value 1) that have replication utility greater than or equal to the 

average replication utility (aru). For each such file, peer p sends a replication message 

to its neighbor m having the maximum corresponding Reqm. After completing this 

replication phase, the entries for all files f in the RepRI are reset to 0. Before resetting 

them to 0 though, the values of the entries are copied in an auxiliary structure. The 

 



9 

 

reason for doing this is because we don’t want to lose information about files, for the 

last period of time, since this information is used in the replacement policy, as we will 

describe below. 

 

The duration of the period of the replication procedure depends on the query 

workload. A large value leads to making more informed decisions based on 

sufficiently large samples of requests and ignores popularity fluctuations that may be 

caused by random variations in the query workload.  Furthermore, it reduces the 

associated network overhead. On the other hand, the system adapts to workload 

changes less promptly. Also, note that resetting the RepRI entries of the peer that 

initiated the replication procedure provides a simple yet effective aging scheme. 

 

When p receives a replication message for a file f, it executes the following tasks. It 

scans RepRI(p) and locates the entry that corresponds to the file the name of which is 

included in the replication message. If the value of the field LReq is greater than 0, 

then the peer decides to store the replica. If LReq is equal to 0, then p calculates ru(f) 

and compares it with aru. If ru(f) is greater than or equal to aru then the replica is 

stored. After storing a replica, the corresponding field Ownership is set to 1. We see 

that a peer decides to store a replica in two cases. When it has initiated queries for it 

and when the file is considered hot based on our replication criterion. Finally, the peer 

checks if it should further forward the replication message to any of its neighbors, by 

checking the fields Reqi. The neighbor m having the maximum corresponding Reqm 

receives the replication message. If all fields Reqi have values equal to 0 then the 

forwarding procedure is terminated. In this point we have to mention that the values 

that are checked are the values acquired during the last period. 

2.3. RepRI-Based Replacement and Routing 

Besides replication decisions, RepRI affects the replacement policy we use for 

replicas, when we consider the case of limited storage capacity. When a peer p that 

has used all its available space decides to store a new replica, it has to replace it with 

an older one. Common replacement policies that can be used in this case include 

randomly choosing an entry for replacement or following a fifo (first in first out) 
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strategy. In our approach, we use RepRI to decide which item gathers the 

prerequisites to be replaced. More specifically, p scans RepRI(p) and calculates for 

each existing replica r the replication utility ru(r). The replica with the smallest 

replication utility is the one that is replaced. The statistics for each replica refer to the 

previous and not the current period, so the values that we use to calculate each ru(r) 

are the ones kept at the auxiliary structure. The reason for keeping these values is to 

avoid evicting a replica which was considered hot during the previous period, after 

resetting RepRI. 

 

RepRI can also be used to further improve the routing process by maintaining the 

direction of the source of a file. When a peer forwards a replication message to one of 

its neighbors, without storing the replica, it can set the corresponding field Reqi to a 

hint value that indicates that the replica has been copied along this direction. Thus, the 

next time the peer receives a query for that file it knows where to forward it. 

Networks that use random walkers or flooding as their search mechanism can 

significantly benefit from this approach. 

2.4. Discussion 

Previous work on replication [1, 2] has shown that square-root replication is the 

optimal way to allocate replicas so that the average search size is minimized. If a p2p 

system uses the k-walker random walk as the search algorithm, then on average, the 

number of peers between the requester peer and the provider peer is 1/k of the total 

peers visited. Path replication in this system should result in square-root distribution. 

However, path replication tends to replicate files to peers that are topologically along 

the same path. In p2p networks with random topologies, where peers are randomly 

chosen to initiate queries, we would like to avoid the topological impact of path 

replication. Proactive replication using RepRI allow us for a more random distribution 

of replicas. 
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CHAPTER 3. XML MODEL 

3.1 Motivation 

3.2 Data and Query Model 

3.3 Fragmentation of XML Documents 

3.4 Fragment Replication 

3.5 Replication Using REpRIX 

3.6 Replacement Policy 

3.7 Use of External Links 

 

In this chapter we extend Replication Routing Indexes for XML documents. We 

present our approach for fragment replication and describe the two implemented 

techniques Skeleton replication and Subtree replication. 

3.1. Motivation 

In most p2p systems, different users and applications employ various formats and 

schemas to describe their data. A user is usually unaware of the schemas remote peers 

use. Moreover, some application domains use sensitive data that are required not to be 

exposed to all users for privacy reasons. Therefore, there is a need for a query 

language that can work with incomplete or no-schema knowledge but also capture 

whatever semantic knowledge is available. The flexibility of XML in representing 

heterogeneous data that follow different schemas makes it suitable for distributed 

applications where the data are either native XML documents or XML descriptions of 

data or services that are represented in various formats in the underlying sources.  

 

With regards to the query language, in most p2p systems, users specify the data they 

are interested in through simple keyword-based queries. These keywords are matched 
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against the names of the shared files and results are returned to the user. Often, most 

results returned are not relevant to what the user is interested in. Thus, new more 

expressive languages are needed to describe and query the shared data. XML seems to 

be a promising candidate in this direction, since it enables more precise search based 

on context. 

3.2. Data and Query Model 

In our data model, an XML document is represented by a rooted labeled tree. Labels 

correspond to XML tags, tree nodes correspond to document elements, while edges 

represent direct element-subelement relationships. Figure 3.1 shows an XML 

description of a library catalog provided by a node and the corresponding XML tree. 

 

 

Figure 3.1 (a) Example of an XML Document (b) The Corresponding Tree 

In our distribution scheme, we assume that a query can be issued at any peer and 

query results are delivered to that peer. Since we are interested in querying the 

structure of documents, we do not use simple keyword queries but path patterns, 

called path queries, to be matched against XML documents. Path queries are simple 

path expressions in an XPath-like query language. 

 

Definition 1. (path query) A path query of length n has the form “p1 e1 p2 e2 … pn 

en” where each ei is an element name or the wildcard operator * and each pi is either / 

or // denoting respectively parent-child and ancestor-descendant traversal. 
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A path query q is evaluated at a node u in an XML tree T and its result is the set of 

nodes of T reachable via q from u. 

 

/ (child operator): When used at the beginning of the path expression it refers to the 

root of the XML document. The child operator is used to specify the next child to 

select. For example, the evaluation of the path query /library_catolg/book (Figure 3.1) 

starts at the root of the XML document, selects the library_catalog node and then the 

book node. This will return all the book child nodes of the library_catalog node, 

which is just one in our example. 

// (descendant operator): The descendant operator indicates to include all descendant 

nodes in the search. Using the operator at the beginning of the path expression means 

you start from the root of the XML document. The path query /library_catalog//title 

(Figure 3.1) returns all the title nodes. 

* (wildcard operator): The wildcard operator finds any node. The expression "/*" 

finds any node under the root. The path query /library_catalog/* (Figure 3.1) returns 

all nodes under the library_catalog node, which in our example are the book node and 

the magazine node. 

 

Definition 2. (path subsumption) A path query q1 = p1 a1 p2 a2 … pn an is subsumed 

by the path query q2 = p1 b1 p2 b2 … pm bm if for each path expression /a1 /a2 /…/ak, 

extracted from q1 exists path expression /b1 /b2 /…/bl, extracted by q2 such that l≤k it 

holds ai = bi for each i, i = 1,…,l. 

 

For a query q and a document d, we say that q is satisfied by d if the path expression 

forming the query exists in the document. Peers that store documents that match the 

query are called the matching peers.  

3.3. Fragmentation of XML Documents 

We allow an XML tree T to be decomposed into a collection of trees, called 

fragments, which can be distributed and stored at several peers. An XML fragment Fi 

is a subtree of T rooted at some node f of T. Each fragment is represented by a simple 
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path expression starting from the root node r of T and leading to f. In Figure 3.2, we 

see an example of an XML fragment that is represented by the path “/A/C”. 

 

Figure 3.2 An XML Fragment Represented by the Path "/A/C" 

Using path queries, peers can query a subset of the information included in an XML 

document. Thus, different fragments of a document may have different access 

frequencies. In our approach, we try to exploit the fragmentation of XML documents 

and replicate only the minimum required information from them. In particular, there 

are cases where peers are only interested in a specific fragment of a document. Thus, 

it is better for these peers to receive a replica of that fragment instead of the whole 

document. This approach is also useful when the storage space of peers is limited. A 

specific fragment of a document corresponds to a specific amount of data. If we 

traverse the tree of an XML document following the path that represents a fragment of 

it, we reach at the fragment-root node. The leaf nodes of the subtree rooted at that 

node contain all the data we are interested in.  

3.4. Fragment Replication 

In order to support data replication, we allow peers to replicate their documents or just 

fragments of them depending on the queries they have processed. We assume that the 

documents stored initially at peers are not fragmented. Fragmentation of documents is 

the result of the replication strategy. In order to be able to discern the origin of a 

replicated fragment, all elements of the initial documents have unique identifiers. This 

is done especially for handling possible updates. When part of the data, in the original 

document, is updated, having these ids help us distinguish the fragments originated 

from that specific document and update them as well. For brevity in our examples we 
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have omitted most of these ids. The replicas that are created correspond to fragments 

defined by path queries. We have implemented two techniques for replica creation, 

called skeleton replication and subtree replication that are described below.  

3.4.1. Skeleton Replication 

In skeleton replication, replicas have similar structure with the original documents. 

The only difference is that only part of the data of the original document is replicated. 

The approach we follow when we create a replica is the following. For a path 

expression, /a1 /a2 /… /an, we copy the skeleton (element hierarchy) of the original 

document from the root node a1 to the fragment-root node an. For each element node 

ai of the original document that has siblings, then the corresponding replica contains 

along with the sibling elements an external link to the original document. Finally, we 

copy the data contained at the subtree defined by the path query. Data that 

corresponds to elements that are not included in the related path is not replicated. 

 

 

Figure 3.3 (a) Example of an XML Document (b) Skeleton Replica Corresponding to 
the Fragment Defined by the Path Expression "/song_collection/rock/*" 
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External links are special elements identified by the tag name externalLink. External 

links indicate where the data of the element, to which they belong, is located. They 

can actually be viewed as an intentional description of this missing data and give the 

means to obtain it if needed. From the XML tree perspective, external links play the 

role of some kind of external nodes. In Figure 3.3, we see an example of an XML 

document and a replica corresponding to the path query “/song_collection/rock/*”. As 

we see, only the data contained at the rock element is replicated. Data contained at the 

sibling elements pop and house is not replicated. In its position instead, an external 

link is placed, pointing to the original document. 

 

 

Figure 3.4 Query Processing Algorithm for Skeleton Replication 

When a peer receives a path query it checks if it can answer it, in order to complete 

the lookup. More precisely, for each document it possesses, the path query is matched 

against the corresponding XML tree. If there is not any match the query is forwarded 
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further to some neighbouring peer. If there is a match, then the peer executes the 

following steps.  

 If the fragment-root node defined by the path query, is a leaf node then the 

query is satisfied by this node, the data residing at this node is returned to the 

requester peer and the processing is stopped. 

 Else if the fragment-root node defines a subtree, then its child nodes are 

checked. 

o If none of them contains an external link, it means that all the requested 

data is present at the current document. The data is collected, returned to 

the requester peer and the processing is stopped. 

o In the case where one or more child nodes contain an external link a 

different approach is followed. The presence of an external link indicates 

that the current document is a fragment of another document and that the 

data defined by the corresponding external node was not replicated. Thus, 

the current fragment cannot completely satisfy the query. For this reason, 

the peer uses the link to forward the query to the peer that stores the 

document which contains all the requested data. 

 

The query processing algorithm is shown at Figure 3.4. Consider the XML tree shown 

in Figure 3.2. If the peer that stores the corresponding document decides to create a 

replica for the fragment defined by the path “/A/B/D”, then the replica will also 

contain the element E, due to the constraint we pose. The data residing at node E is 

not replicated. In its position instead, an external link is placed to the location of the 

original document (ip address of the peer that stores the document). Consider the case 

that the peer that stores the replica has to evaluate the path query “/A/B”. The 

requested data consist of the nodes D and E. If the replica didn’t contain the external 

link for the element E the peer would answer the query returning to the requester peer 

only the data residing at node D. With our approach, the peer uses the link to forward 

the query “/A/B” to the peer that stores the original document ensuring the 

correctness and the completeness of the query evaluation process. 
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3.4.2. Subtree Replication 

In subtree replication, a different approach is followed. The replicas that are created 

contain only the fragment defined by a path query and not the whole skeleton of the 

original document. Viewing it from the XML tree perspective, a replica consists of 

the subtree (of the original document) rooted at the fragment-root node.  

 

 

Figure 3.5 Subtree Replica Corresponding to the Fragment Defined by the Path 
Expression "/song_collection/rock/*" 

In order to be able to evaluate a path query over a replica, three attributes are added to 

the root element, the path attribute, the parent node attribute and the hasSiblings 

attribute. The path attribute contains the sequence of element names from the original 

document’s root node to the replica’s root node. As we mentioned before all elements 

have a unique id. Thus, the parent node attribute contains the parent node’s id in order 

to achieve cohesion between the original document and the replica. Finally, the 

hasSiblings attribute takes the values yes or no and indicates whether the replica’s 

root node has any sibling nodes or not, which have not been replicated, respectively. 

As an example consider the XML document shown in Figure 3.3. The replica 

corresponding to the path query “/song_collection/rock/*” has now the form shown in 

Figure 3.5. 

 

The query processing procedure for a path query q is described below. When a peer 

receives the query it tries to match it against the documents it possesses. If none of the 

documents matches the path expression, the query is further forwarded to a 

neighbouring peer. In the case of a match: 
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 If the current document is not a replica (meaning that the root element does 

not contain the path attribute) then all the requested data is gathered and sent 

back to the requester peer and the processing procedure is terminated. 

 Else if the current document is a replica then: 

o If the path query q is subsumed by the value of the path attribute then the 

replica contains all the requested data which are gathered and sent back to 

the requester peer. 

o Else if the value of the path attribute is subsumed by the path query q then 

the value of the hasSiblings attribute is checked. If it is no, then the replica 

satisfies the query since all the requested data is present. If it is yes, then 

part of the requested data is missing, the replica cannot satisfy the query, 

so the next document is parsed. 

3.5. Replication Using REpRIX 

For XML documents, the replication routing indexes, termed REpRIX, can be 

modified to find the best unit for replication. The basic modification that takes place, 

when dealing with XML documents, is on the information that is maintained by peers. 

Instead of maintaining statistics for whole documents, the entries of a REpRIX now 

correspond to paths, representing fragments that the peer has processed queries for. 

The field Ownership takes the value 1 if the path, representing the fragment, is 

contained in a local file.  

 

In skeleton replication, the presence of external links, in the replicated fragments, 

requires an addition in the way requests are handled. As mentioned before, during a 

lookup, a query might follow a number of external links until it reaches the peer 

holding the requested data. Since the peer that uses an external link to forward a query 

might not be a neighbor of the peer that receives it, current structure of RepRIX is not 

sufficient to handle these kinds of situations. For this reason, whenever a peer 

receives a query from a direction outside its neighbouring list, it adds the necessary 

extra fields to keep track of these requests. Following this approach peers cache the 

location of peers holding data that a part of the network is interested in but is not able 
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to reach it unless an external link is used. Thus, during replication process the extra 

fields are also taken into account in order to create and send replicas via external links 

towards the direction they are considered hot. 

 

As peers process queries, they use RepRIX to keep all the necessary information that 

would help them take the right replication decisions. Peers decide to replicate 

fragments of their documents based on the replication criterion we defined in chapter 

2. When processing a query, before trying to match it against their documents, a peer 

p executes the following check: 

 If there is an entry in RepRIX(p) for the related path, (peer has processed 

queries for that fragment in the past) then p just updates the appropriate fileds. 

 Else if the path is not contained in RepRIX(p), a new entry is inserted. The 

corresponding fields take their initial values, while the rest of them are set to 

0. 

 

When updating the access frequency of fragments, path subsumption is not taken into 

account. The entries of the index are updated separately. Path dependencies have to be 

checked during the replication procedure. Entries in the RepRIX that correspond to 

paths that one subsumes the other are handled as one. In other words, if a peer has 

processed queries for paths pi i=1,…,k, which are subsumed by path p, then the 

replication utility for the path p is calculated as follows:  

 

ru(p) = ∑i=1,…,k ru(pi), for each pi that is subsumed by p 

 

The replication message that is sent refers to the fragment that contains the others. 

The fragment that is created and replicated is represented by the path that corresponds 

to the larger subtree. For example consider the case that a peer has processed queries 

for paths “/a/b/c” and “/a/b”. Since the path “/a/b/c” is subsumed by the path “/a/b” 

the fragment that is finally replicated is that defined by the path “/a/b”.  
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Figure 3.6 Document “music_catalog.xml” 

3.6. Replacement Policy 

Throughout this work, we assume that peers have limited storage capacity. For this 

reason, a replacement policy for replicas has to be used. Each time a peer decides to 

store a new replica the following check takes place, in order to avoid data redundancy. 

If the fragment that is going to be stored contains a fragment that is already stored, 

then the older one is discarded and the new one takes its place. We say that a fragment 

f1 is contained in a fragment f2, if the path expression representing f1 is subsumed by 

the path expression representing f2. For example, if a peer that already has a replica of 

a fragment represented by the path expression “/a/b/c”, decides to store a fragment 

represented by the path expression “/a/b”, then the replica represented by “/a/b/c” is 

replaced.  

 

Replacement also takes place when the storage limit is reached. In this case the peer 

uses RepRIX to find the fragment which gathers the prerequisites to be replaced. As 

in the case of simple data files, replication utility is used to find the replica that is 

going to be replaced. The path with the smallest replication utility is matched against 

the replicas stored by the peer. The replica that matches the path is found and the 

fragment defined by the path is evicted. In fact, the data corresponding to that 

fragment are discarded and in its position instead, an external link is placed pointing 

to the document, the replica was originated from. This is done in order to maintain 

consistency among external links and ensure the correctness of the search process. 
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When a peer follows an external link, during a lookup operation, it may reach a 

replica that won’t contain the requested data, as a result of the replacement strategy. 

However, another external link will be present to direct the lookup towards a 

document that might contain it. In the worst case scenario, the requested fragment 

would be evicted form all replicas. In this case, the lookup operation will end when 

we follow all the possible external links and finally reach at the original document. 

 

However, since replicas have different sizes, their size has to be taken into account 

when the storage limit is reached. More specifically, when the new replica that is 

going to be stored is quite large, then evicting a replica with smaller size is not an 

adequate solution. In such a case, the peer replaces more than one fragment in order to 

make sufficient space for the new one. The fragments that are discarded are the ones 

with the lowest replication utilities. In general, it is preferable to replace two or three 

small fragments that are not considered hot than replacing a large hot one.  

 

 

Figure 3.7 Skeleton Replica Corresponding to Path “/music_catalog/rock/*” 

3.7. Use of External Links 

Consider the following example that shows another use of external links. Assume that 

a peer p stores among others the document “music_catalog.xml” shown in Figure 3.6. 

Assume as well that RepRI(p) has an entry for the path “/music_catalog/rock/*” and 

that the field ownership is set to 1. If the replication utility of this path allows for a 

replica to be created, the peer sends a replication message for the relative path to one 
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of its neighbors. The replica that is created contains only the information about rock 

cds, while information about pop cds is not replicated. This information is replaced by 

an external link that points to the source of the document “music_catalog.xml”. The 

replica is shown in Figure 3.7. After receiving the replication message, the peer first 

decides whether it should store the replica and then it continues forwarding the 

message. Now consider the case that a peer that has stored the replica shown in Figure 

3.7 receives a query for path: “/music_catalog/pop/*”. After receiving the query, the 

peer checks its local documents to see if it has the requested data. While traversing the 

XML tree of the replica, to match the query, the peer will reach the external node, 

which refers to pop cds. The peer will use the external link, stored at that node of the 

tree to send the query directly to the peer storing the original document 

“music_catalog.xml”. Thus, external links can act as “jumps” at the search process, 

resulting to the reduction of the average number of hops required to answer a query 

and the reduction of the total number of messages exchanged among peers. 
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CHAPTER 4. EXPERIMENTAL EVALUATION 

4.1 Simulation Environment 

4.2 Experimental Results 

 

In order to evaluate our approach and prove its efficiency we performed a series of 

experiments under a simulation environment. In this chapter we present our 

experimental results. 

4.1. Simulation Environment  

All replication techniques were implemented in Java as components of the Peersim[5] 

simulator. Peersim is a simulator for unstructured p2p systems composed of many 

simple extendable and pluggable components, with a flexible configuration 

mechanism. All components of the simulator are completely interchangeable and 

specified by object-oriented programmatic interfaces, whose methods describe the 

expected behavior of a component. For our experiments we used the cycle-driven 

simulation engine of Peersim, meaning that simulation proceeds through time steps 

called cycles, in which all nodes get a chance to execute. Every simulation starts with 

an initialization phase. During the initialization phase, the topology of the network is 

formed and the documents are distributed randomly along the network. The 

documents used for the experiments were generated by the ToXgene[6] XML 

generator. ToXgene is a template-based tool for generating large, consistent synthetic 

collections of complex XML documents.  

 

The queries we use are simple path queries extracted by the data set and the query 

load follows a Zipfian distribution. The search mechanism that is used is random 

walkers with a TTL parameter. The networks have random and power-law topologies, 
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with sizes ranging from 1000 to 10000 peers and average peer degree 8. Except for 

static networks, we also consider dynamic networks where peers can go offline for a 

certain time period. In all experiments, we consider that the system poses a constraint 

on the number of replicas that can be stored. Each peer has a limited storage capacity 

given as a system parameter. 

Table 4.1 Simulation Parameters 

Parameters Default value Range 
Network size 5000 1000-10000 

Random walkers 16  

File distribution Random  

Query distribution Zipf (alpha = 1.0) alpha = [0.0, 2.0] 

TTL 7  

Avg file size 4KB 3.5KB-4.5KB 

Avg fragment size 1.3KB 0.6KB-3KB 

Storage limit 16KB 8KB-64KB 

Weight α 0.6 0.2-0.8 

4.2. Experimental Results 

The metrics that we are most interested in are the number of replicas created by each 

technique, the percentage of the successful queries, the average search size, that is, the 

average number of hops a query must travel to reach an answer and the amount of 

hard disk space occupied by replicas. All the reported values were averaged over 

multiple runs. 

 

Network characteristics play an important role on the performance of the system. First 

of all, the network topology. In our experiments we used two different topologies, 

random graphs and power-law graphs. Power-law graphs seem to achieve better 

results, especially when they are combined with a random walk search strategy. 

However, in the case of failures and high churn rates, power-law graphs appear a 

certain disadvantage. A power-law network consists of a few peers with a high degree 

and a large number of peers with a low degree. In the case of path replication, the peer 
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with a high degree forwards much more data than a peer with a low degree, so that a 

large number of replications will occur at the peers with a high degree. Therefore, the 

storage load can be concentrated on a few high-degree peers, which thus play an 

important role in the system. When these peers fail or go offline for some period of 

time, the system requires a large amount of time to recover the previous performance 

standards. 

 

Another factor that can affect in a high degree the performance of the system is the 

query distribution. When a uniform query distribution is used, the search cost 

becomes almost the same for all items. With zipf distribution the behavior of the 

system is different. As the parameter a of the zipf distribution increases, the search 

cost for hot items decreases significantly. Popular items are easier to be found and the 

percentage of successful queries is high. However, the search cost for cold items 

becomes bigger. Another characteristic of zipf distribution is that as a increases, the 

time required to adapt to a change in the query pattern increases, compared to the time 

required by a uniform query distribution. By shifting the query distribution we change 

the popularity of items. Items that were popular until that point are made unpopular 

and reversely, unpopular items become popular. 

 

When fragment replication is performed, the storage capacity of peers and the access 

frequencies of fragments play an important role to the results of the replication 

strategies. When the storage capacity of peers is quite small then in order to achieve 

good performance, with respect to the average search cost and the percentage of 

successful queries, the size of popular fragments is required to be small. In other 

words, when most queries refer to relatively small fragments the system shows better 

performance. The reason for this is that increasing the access frequency of small 

fragments results in a greater number of replicas stored by each peer making them 

easier to be found. 

4.2.1. Performance of RepRI for Simple Documents 

In our first set of experiments we evaluated the performance of proactive replication 

using RepRI for the case of simple documents. We compared our approach with the 
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two most widely used strategies for passive replication, path replication and owner 

replication. 

0

1

2

3

4

5

6

7

8

1000 3000 5000 10000#nodes

Av
g 

se
ar

ch
 s

iz
e

RepRI Path Owner

 

Figure 4.1 Average Search Size for Different Sizes of Netorks 
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Figure 4.2 Percentage of Successful Queries for Different Sizes of Networks 

Figures 4.1 and 4.2 show that proactive replication using RepRI outperforms both 

path and owner replication. RepRI replication achieves a lower average search size 

and increases the percentage of the successful queries. The gain in the performance is 

explained by the following two factors. The statistics maintained by each peer allow 

us to find a path with many requests for a document and push replicas towards that 
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direction. In addition, during the search process, hints are used to forward queries 

towards peers that are more likely to have an answer. 
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Figure 4.3 Average Search Size for Different Values of a of the Zipfian Query 
Distribution 
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Figure 4.4 Percentage of Successful Queries for Different Values of a of the Zipfian 
Query Distribution 

In Figures 4.3 and 4.4 we show how the skewness of the query distribution affects the 

performance of the system. In the experiment we set the value of α in the replication 

utility to 1. As the value of the parameter a (of the zipfian query distribution) 

increases, all strategies achieve higher standards of performance. For values greater 

than 1.0, the gain acquired by RepRI replication is bigger, since the number of 
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replicas for popular documents increases significantly. Favoring replication of popular 

documents help us improve the overall performance, with respect to the average 

search size and the percentage of successful queries. 

4.2.2. Proactive vs Path Replication for XML Documents 

In the next set of experiments we performed a comparison between skeleton 

replication using RepRIX and path replication. Both techniques were tested under the 

same query distribution (zipfian a=1.0). They occupied all the available space for 

replica storage, creating approximately the same number of replicas. In RepRIX 

replication, RepRIX was used for replicas’ replacement and for assisting the routing 

process, while in path replication we used a first in first out replacement policy. 
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Figure 4.5 Average Search Size for RepRIX, Path and No Replication for Different 
Sizes of Network  
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Figure 4.6 Percentage of Successful Queries for RepRIX, Path and No Replication for 
Different Sizes of Network 

In Figures 4.5 and 4.6 we show how the two replication strategies perform for 

different sizes of networks. The value of α is set to 0.6. Our results show that for all 

sizes, RepRIX replication outperforms path replication with respect to the average 

search size and the percentage of successful queries. The reason for this is that with 

RepRIX we manage to distribute replicas along the network in a more efficient 

manner than path replication. Replicas are pushed towards the part of the network that 

actually needs them. Moreover, replacement of replicas based on the replication 

utility has a positive impact on the performance of the system, since peers manage to 

keep replicas that are considered hot based on our replication criterion. We also show 

the case where no replication is taken place at the system. 
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Figure 4.7 Average Search Size for Various Values of the Weight α  
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Figure 4.8 Percentage of Successful Queries for Various Values of the Weight α 

Next we show the impact of the weight α in the performance of the system. We fixed 

the size of the network to 5000 nodes and measured the average search size and the 

percentage of successful queries for the 20% most popular and the 20% most 

unpopular fragments. As mentioned in chapter 2, the replication utility is defined as: 

ru = α * popularity_factor + (1-α) * distance_factor. Figures 4.7 and 4.8 show that as 

the value of α increases, RepRIX shows better performance than path replication for 

popular fragments. As α increases, the replication utility depends more on the number 

of requests. Popular fragments have many requests so they are replicated more easily, 
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resulting in high percentage of query hits and low average search size. However, as α 

increases, path replication achieves better results for unpopular fragments. For the 

average popularity, we see that RepRIX replication performs best when α is set 0.6.  
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Figure 4.9 Average Search Size for Different Storage Limits 

0

20

40

60

80

100

120

8 16 32

Storage availability (KB)

Su
cc

es
sf

ul
 q

ue
rie

s 
(%

)

64

RepRIX
Path

 

Figure 4.10 Percentage of Successful Queries for Different Storage Limits 

Regarding storage availability, RepRIX and path replication show similar behavior as 

expected. For a fixed size of network and fixed value of α (0.6) for RepRIX, Figures 

4.9 and 4.10 show that as the storage capacity of peers increases from 8KB to 64KB, 

both strategies achieve better performance with respect to the average search size and 

the query hits. When the storage availability of a peer increases, the number of 
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replicas stored at the peer also increases. The bigger number of replicas along the 

network explains the gain we have in performance. 
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Figure 4.11 Average Search Size for Different Churn Rates 
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Figure 4.12 Percentage of Successful Queries for Different Churn Rates 

In the next experiment, we evaluate the performance of the two techniques under a 

dynamic network of 5000 peers. The network is dynamic in the sense that we allow a 

percentage of peers to leave the network and stay offline for some period of time. In 

Figures 4.11 and 4.12 we see that as the churn rate increases, the performance 

standards decrease. However, our results show that for all churn rates, our approach 
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continues to work better compared to path. Figures also show how the system behaves 

when no replication is taken place. 
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Figure 4.13 Behavior of Average Search Size to Changes in the Query Distribution 
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Figure 4.14 Behavior of the Percentage of Successful Queries to Changes in the 
Query Distribution 

In Figures 4.13 and 4.14, we show how RepRIX and path adapt when the pattern of 

the query load is changed. When we reach at the middle of the simulation, we shift the 

query distribution, meaning that we change the popularity of fragments. Fragments 

that were popular till that time become unpopular while unpopular fragments become 
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popular. As we see, after the change the average search size increases and the 

percentage of successful queries drops. However, RepRIX replication manages to 

reach its standards quicker than path. This is due to the replacement policy we use. 

Changes in the popularity of replicas are mapped to their replication utility. Thus, 

peers manage to keep those replicas that are considered hot. 

4.2.3. Fragment Replication vs Whole Document Replication 

In the next set of experiments, we show a comparison between fragment replication 

and whole document replication, with respect to the average search size and the 

percentage of successful queries. We used path and RepRIX in two different ways. In 

the first case, we follow our approach creating replicas consisting of fragments of the 

original documents, while in the second case we replicate whole documents. When 

using RepRIX for whole document replication, we keep the same statistics as 

mentioned except that the paths are not matched with fragments but with the original 

documents. 
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Figure 4.15 Fragment Replication vs Whole Document Replication with Respect to 
the Average Search Size 
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Figure 4.16 Fragment Replication vs Whole Document Replication with Respect to 
the Percentage of Successful Queries 

In the first experiment, we tested the scalability of both fragment and whole document 

replication. Figures 4.15 and 4.16 show that for all sizes of networks replicating at the 

fragment level is much more preferable than replicating at the whole document level. 

The average search size, for RepRIX replication, is reduced by almost 2 hops, while 

the difference in the percentage of successful queries is close to 20% for a network 

with 5000 peers. The reason for this behavior is that when peers store fragments of 

documents, they store much more data that they are interested in than when they store 

whole documents. Thus, the available storage is used more wisely. 
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Figure 4.17 Fragment vs Whole Document Replication. Dependence of Average 
Search Size on Storage Availability 
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Figure 4.18 Fragment vs Whole Document Replication. Dependence of Query Hits on 
Storage Availability 

Regarding storage availability, Figures 4.17 and 4.18 show that as the storage 

capacity increases from 8KB to 64KB, both fragment and whole document replication 

achieve better results but still the first outperforms the second. As the storage 

availability increases, the number of replicas that a peer can store also increases. This 

increase is much bigger in the case of fragment replication. Thus, the fact that the 

total number of replicas along the network is proportional to the storage availability 

explains the behavior shown in Figures 4.17 and 4.18. 
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Figure 4.19 Fragment vs Whole Document. Average Search Size for Different Churn 
Rates 
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Figure 4.20 Fragment vs Whole Document Replication. Percentage of Successful 
Queries for Different Churn Rates 

Figures 4.19 and 4.20 show how the two approaches behave in a network where peers 

can join and leave dynamically. As expected, the performance of both approaches 

drops as the number of peers that can go offline increases. Peers require more hops to 

locate an item, while the number of queries that are answered is reduced. However, 

since the churn rate is the same for both cases, the number of replicas maintained at 

the network by fragment replication remains bigger than that of whole document 

replication. 

4.2.4. Characteristics of RepRIX Replication 

In this set of experiments, we perform a comparison between skeleton and subtree 

replication and we investigate other parameters that affect the performance of 

RepRIX Replication. 

 

In Figure 4.21 we see a comparison between skeleton and subtree replication with 

respect to the percentage of successful queries. As we see, skeleton outperforms 

subtree, since it manages to answer about 6% more queries. Skeleton replication 

achieves better results than subtree replication due to the presence of external links. 

External links have a positive impact in the search process, since they assist a peer to 

locate a fragment that is out of its search range. However, with subtree replication we 
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can reduce the size of the messages created by our replication technique. In particular, 

as Figure 4.22 shows, when the average size of fragments is kept small, the messages 

created by subtree replication can be 25% smaller than those created by skeleton 

replication 
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Figure 4.21 Skeleton vs Subtree Replication. Percentage of Successful Queries 
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Figure 4.22 Skeleton vs Subtree Replication. Difference in Message Size 

Next, we show how the various values for the size of fragments affect the 

performance of the system. Our results in Figures 4.23 and 4.24 show that when most 

queries refer to relatively small fragments, both RepRIX and path replication show 
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better performance, since the percentage of successful queries is higher, while the 

average search size is also reduced. Taking the two extremes, average file size 0.6KB 

and 3KB, we see that for RepRIX replication, the difference in performance is 1.7 

hops with respect to the average search size and 16% with respect to the percentage of 

successful queries. As the access frequency of small fragments increases, peers store 

more replicas. The increase in the number of replicas along the network explains the 

gain we have in performance. 
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Figure 4.23 Average Search Size for Various Sizes of Fragments 
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Figure 4.24 Percentage of Successful Queries for Various Sizes of Fragments 

 



41 

 

0

1

2

3

4

5

6

1000 3000 5000 10000
#nodes

Av
g 

se
ar

ch
 s

iz
e

Routing hints

No hints

 

Figure 4.25 Impact of Routing Hints on Average Search Size 
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Figure 4.26 Impact of Routing Hints on the Percentage of Successful Queries 

Finally we present the impact of routing hints on the performance of RepRIX 

replication. As we mentioned in chapter 2, RepRIX can also be used to further 

improve the routing process by maintaining the direction of the provider of a 

fragment. When a peer forwards a replication message to one of its neighbors, without 

storing the replica, it can set the corresponding counter to a hint value (instead of 

resetting it to 0) indicating that the file has been copied along this direction. Thus, the 

next time the peer receives a query for that file, the peer knows towards which of its 

neighbors to forward the request, thus reducing the search cost. Figures 4.25 and 4.26 
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show that the use of routing hints can drop the average search size by almost 0.5 hops 

and increase the percentage of successful queries by 5%, for networks consisting of 

10000 peers. 

4.2.5. Cost of RepRIX Replication 

In our final set of experiments we measured the cost of RepRIX replication with 

respect to the number of replication messages and the size of RepRIX. 

 

In Figure 4.27 we show a comparison between RepRIX and path replication with 

respect to the number of messages they create for placing replicas along the network. 

As it was expected, path replication creates slightly more messages than RepRIX, 

since it performs an aggressive replication after each successful query. In RepRIX 

replication only fragments that satisfy the replication criterion are replicated. 
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Figure 4.27 Cost of Replication with Respect to the Number of Replication Messages 

In Figure 4.28 we show the cost, in storage space, that RepRIX replication pays for 

maintaining the statistics. The size of RepRIX depends on the peer’s degree (number 

of neighbors). We categorized the peers based on their degree and measured the size 

of RepRIX for each case. The minimum degree in our network is 4, the average 

degree is 8 and the maximum degree is 20. The values that are reported refer to the 

size of RepRIX at the end of a period. We see that in the average case, RepRIX 

occupies 4KB of the available storage space, which corresponds to around 4 replicas.  
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Figure 4.28 Size of RepRIX 
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CHAPTER 5. RELATED WORK 

5.1 Replication in Unstructured p2p Systems 

5.2 XML Replication and Fragmentation 

5.3 XML Processing in Unstructured and Structured p2p Systems 

 

5.1. Replication in Unstructured p2p Systems 

As mentioned before, in unstructured p2p systems there is neither a centralized 

directory nor any precise control over the network topology or data placement. The 

network is formed by nodes joining the network following some loose rules. The 

resultant topology has certain properties, but the placement of data is not based on any 

knowledge of the topology. The main issue in such systems is locating peers that hold 

data of interest. One way to improve the search performance is data replication. In this 

section we present the related work on data replication in unstructured p2p systems. 

 

The authors of [1] consider the general problem of what is the best way to replicate 

data in unstructured p2p systems given that the total amount of storage in the network 

is fixed. Two natural ways to perform replication is uniform and proportional 

replication. With uniform replication, the same number of copies is created for all 

items, while with proportional replication, the number of copies created for each item 

is proportional to the item’s popularity, i.e., its query rate. It is shown that both 

replication strategies have the same expected search size for successful queries. 

However, they differ in other aspects. Uniform replication distributes the load evenly 

to all copies, whereas in the case of proportional replication, copies receive load 

proportional to their query rates. Proportional replication also makes popular items 

easier to find, at the expense of making less popular ones harder to find. Thus, with 

proportional replication, a much higher limit (TTL value) is required for locating 

them. On the other hand, uniform replication minimizes this limit. It is also shown 
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that in terms of search size, uniform and proportional replication lie at two extremes 

where the ratio of allocation of two items is between 1 and the ratio of their query 

rates. All replication strategies that lie between these extremes yield better search 

sizes for successful queries with square-root replication achieving the optimal such 

size. Square-root replication allocates replicas to items proportional to the square root 

of their query rate. The gain attained with square root replication grows with the 

query skew. 

 

In [2], an evaluation of two easily implementable replication strategies, namely owner 

and path replication, is provided, under a realistic setting. Under owner replication, 

when a search is successful, the object is stored at the requester peer only. Path 

replication is implemented by storing the object at all peers on the path from the 

requester peer to the provider peer. The evaluation of the two strategies is done in 

conjunction with a k random walkers search strategy. In this case, the numbers of 

peers between the requester peer and the provider peer is 1/k of the total number of 

peers visited. Since path replication tends to replicate objects to peers that are 

topologically along the same path, the authors also consider a third replication 

strategy called random replication. Random replication counts the number of peers on 

the path between the requester and the provider, say p, then, randomly picks p of the 

peers that the k walkers visited and stores the object at them. The evaluation is done 

on a random graph network topology. The replica allocation achieved by both path 

and random replication are quite close to the square-root. They also reduce the overall 

traffic by a factor of three to four mainly by reducing the search size. Random 

replication improves over path replication for the cost of a more involved 

implementation.  

 

Path replication distributes query load for popular items across multiple peers, reduces 

latency and alleviates hot spots. However, path replication tends to replicate files to 

peers that are topologically along the same path. Moreover, the number of replicas 

created can become very large, which eventually may be more than necessary to 

achieve the required search performance. In p2p networks with random topologies, 

where peers are randomly chosen to initiate queries, we would like to avoid the 

topological impact of path replication. Our approach manages to overcome this 
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problem, since the use of Replication Routing Indexes allows us to distribute replicas 

in a more efficient manner, based on the statistics we keep. 

 

In most p2p networks, the number of neighbors (degree) of each peer follows the 

power law; there exist a few high degree peers and a large number of low-degree 

peers. Therefore, a huge number of requests can go through these few high-degree 

peers, and the storage loads due to reading and writing requested data is concentrated 

on them. The authors of [7] consider the problem of how to mitigate the load 

concentration on the high-degree peers over a p2p network without deteriorating the 

search performance too much. They introduce the replication ratio, which is the ratio 

of the created replicas to all the intermediate peers on the path for each requested data. 

The replication ratio is determined in advance. Two replication methods are proposed, 

called Path Random Replication and Path Adaptive Replication, which make replicas 

on some chosen peers, through which the data passes. In Path Random Replication, 

each intermediate peer randomly determines whether or not the replica is created and 

placed there based on the probability of the pre-determined replication ratio. In Path 

Adaptive Replication, the procedure in the decision to make a replica on a peer 

depends on how much storage is still available on it as well as the predetermined 

replication ratio.  

 

Path Random Replication and Path Adaptive Replication suffer in the cases where 

peers are highly different in their degrees. Constant replication probability may still 

cause much load imbalance, because high-degree peers are frequently located in the 

data transmission path. Path Random Replication and Path Adaptive Replication 

manage to reduce the large number of replicas created by path replication but in 

comparison with our approach, they don’t avoid the topological impact of path 

replication.  

 

A dynamic data replication algorithm that is used in distributed systems with tree 

networks is the Adaptive Data Replication algorithm (ADR) [8]. ADR is a distributed 

algorithm, in the sense that each peer makes decisions to locally change the 

replication scheme, evaluating statistics collected locally. ADR changes the 

replication scheme of an object dynamically, as the read-write pattern of the object 
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changes in the network. The changes in the read-write pattern may not be known a 

priori. The changes at the replication scheme result in the decrease of its 

communication cost. The communication cost of a replication scheme is the average 

number of messages required for a read or a write of the object. The replication 

scheme expands as the read activity increases, and it contracts as the write activity 

increases. The ADR algorithm works in a read-one-write-all manner. A read of the 

object is performed from the closest replica in the network, while a write updates all 

the replicas and is propagated along the edges of a subtree that contains the writer and 

the peers of the replication scheme. In the ADR algorithm the initial replication 

scheme consists of a connected set of peers and at any time, the peers of the 

replication scheme, denoted R, are connected. A peer is considered to be an R-

neighbor if it belongs to R but it has a neighbor that does not belong to R. An R-fringe 

peer is defined to be a leaf of the subgraph induced by R. The need for changes at the 

replication scheme is determined using three tests, namely, the expansion test, which 

is executed by each peer that is an R-neighbor, the contraction test, which is executed 

by each peer that is an R-fringe and the switch test. A peer can be both an R-neighbor 

and R-fringe. In this case, it first executes the expansion test and if it fails, then it 

executes the contraction test. A peer in R that does not have any neighbors that are 

also in R executes first the expansion test and if it fails, then it executes the switch 

test. Each peer i that is an R-neighbor performs the expansion test. For each neighbor 

j that is not in R, let x denote the number of reads that i received from j during the last 

time period and y the total number of writes that i received in the last time period 

from i itself, or from a neighbor other than j. If x>y, then i sends to j a copy of the 

object with an indication to save the copy in its local database. Thus j joins R. Except 

for i and j, no other peers are informed of the expansion of R. The expansion test is 

performed by comparing the counters (one for the reads and the other for the writes). 

The counters are initialized to zero at the end of each time period and incremented 

during the following time period. The expansion test succeeds if the if condition is 

satisfied for at least one neighbor. The expansion test fails if it does not succeed. The 

contraction test is performed by an R-fridge peer. A peer i is called an R-fridge peer if 

it is in R and has exactly one neighbor j that is in R. Let x denote the number of writes 

that i received from j during the last time period and y the number of reads that i 

received in the last time period (the read requests received by i are made by i itself or 
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received from a neighbor of i different from j). If x>y, then i requests permission from 

j to exit R, that is, to discard its copy. Peer i does not exit unconditionally, since i and 

j may be the only peers of the current replication scheme, and they may both 

announce their exit to each other, leaving an empty replication scheme. Therefore, if 

the contraction test succeeds, then i keeps its replica until it receives the next message 

from j. If this message is j’s request to leave R, then only one leaves R. Except for i 

and j, no other processor is informed of the contraction. When a peer i constitutes the 

only peer in the replication scheme, then i is an R-neighbor, thus it executes the 

expansion test. If the expansion test fails, then i executes the switch test. For each 

neighbor j, let x denote the number of requests received by i from j during the last 

time period and y the number of all other requests received by i during the last time 

period. If x>y, then i sends a copy of the object to j with an indication that j becomes 

the new singleton peer in the replication scheme, and i discards its own copy. When 

the if condition of the contraction or switch test is satisfied, then the test succeeds. 

Otherwise, it fails.  

 

ADR is similar to our approach in the sense that replication decisions are made 

periodically based on statistics. However, in ADR, the only criterion for replicating a 

file is its popularity. In our approach we also take into account the cost, measured in 

number of hops, for locating it. 

 

Although data replication significantly improves the performance of the system, it 

raises the problem of replicas’ consistency, in the case of updates. The most popular 

algorithms for update propagation are the epidemic algorithms, presented in [9]. 

Typical examples of epidemic algorithms are direct mail, anti-entropy and rumor 

mongering. In direct mail, when an update occurs, it is immediately mailed from its 

originating peer to all other peers. The main advantage of this algorithm is that 

updates are propagated very quickly. In anti-entropy, periodically, each peer selects 

randomly another peer and resolves any differences between them, by exchanging 

content. The anti-entropy strategy is reliable, but quite slow. In rumor mongering, 

when a peer receives a new update, it periodically selects another peer and checks if 

this peer has seen the update, in order to send it to it. A peer stops sending the update 

to other peers, when many other peers have seen it. 
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The update strategy that is proposed in [10] is based on a hybrid push/pull rumor 

spreading algorithm and provides a fully decentralized, efficient and robust 

communication scheme which offers probabilistic guarantees rather than ensuring 

strict consistency. During the first phase of the algorithm, called the push phase, the 

peer where the update occurred, pushes the update to a set of peers that have a replica 

of the updated object. These peers, in turn propagate the update to another set of peers 

and this procedure continues in a manner similar to flooding. The second phase is the 

pull phase, where peers coming online or peers that received no update for some time, 

contact other peers and ask for newly updated objects. 

5.2. XML Replication and Fragmentation  

The problem of replicating XML data or indexes in p2p systems has not received 

much attention yet. An important issue that arises is the granularity of replication and 

distribution for XML. In this section, we present related work on replication in p2p 

systems where peers store XML documents. Similar approaches to ours for document 

fragmentation are also described. 

 

In [11], an approach for replicating XML documents, in unstructured p2p systems, is 

presented. The authors consider a new class of documents called dynamic XML 

documents. Dynamic XML documents are XML documents that contain materialized 

XML data that are part of the document and intentional data that can be produced by 

service calls. Since dynamic documents may contain calls to services on other peers, 

some form of distribution is inherently part of the model. Fragments of the 

documents, including services, can be replicated or distributed along the network. 

External edges are added to the replicated documents to point to peers that store other 

parts of the documents to allow for a higher form of distribution. The approach is 

similar to ours. The focus there is making decisions on whether to materialize the 

result of a call or not based on a cost model. The cost model intends to reflect the 

observable performance of a given peer: the costs and performance metrics perceived 

by this particular peer. This observable performance is influenced by some objective 

parameters (e.g. size of data transfers, from/to a given peer, incurred by the 
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execution), and some subjective parameters (e.g. the relative impact of 

communication, space, and computation costs on the overall cost afforded by the 

peer.) 

 

The authors in [12] address the problem of replicating XML indexes for load 

balancing. A distributed catalog framework based on a structured p2p system is 

proposed. The system uses Chord [13] as the overlay network. The distributed catalog 

stores sets of key-summaries information for all the peers. The keys for XML data are 

either element or attribute names. The summaries that correspond to each key are 

either structural or value summaries. The structural summaries of a key are all 

possible paths leading to that key. The type of the value summary depends on the 

domain of the key, i.e. histograms are used for arithmetic keys. For each new peer that 

enters the system, each key-summary pair is inserted in the system by the Chord 

protocol according to the hash values of the keys. Two methods are proposed for 

splitting the load among peers, namely the split-replicate and the split-toss methods 

that split catalog information among peers. A peer increases the level of a popular 

index key, where level is the number of XML-tree path steps contained in the key 

(initially set to 1), and either replicates the new keys at the corresponding peers 

(according to the hash function) in the Chord ring (split-replicate), or only sends them 

there and then discards them (split-toss).  

 

The work reported in [14] addresses the XML allocation problem, that is given a 

collection of XML documents how to fragment them and allocate the resulting 

fragments among the nodes of a distributed system to improve performance. There, a 

global conceptual schema is used by a simplified structure called RepositoryGuide, 

which is a tree-structured index. The system supports XML-path and tree pattern 

queries. The fragmentation scheme decomposes the RepositoryGuide into a disjoint 

and complete set of tree-structured fragments that preserve data semantics. A 

sublanguage of XPath is used for data fragmentation that supports vertical 

fragmentation, which is solely based on the selection of node types through path 

properties. The allocation phase consists of three steps: determining which fragments 

to allocate at which system nodes, placing schema structures at local nodes and 

suitable instances of fragments at each node. For the first step, existing methods from 
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distributed databases are used. For the second step, the RepositoryGuide is fully 

distributed among the nodes. Finally, for the third step, the global context of each 

fragment is kept by storing the data path from the global root node to the root of the 

local fragment. To this end, three indexes are used: a path index that encodes the 

global context of local fragments, a term index that allows processing of queries that 

include conditions on terms and an address index that stores the physical addresses of 

the fragments. Space efficient path indexes are constructed with the use of a path 

identification scheme. Because of their small size, path indexes are replicated at all 

system nodes, while term and address indexes are distributed among them.  

 

The problem we address in our work is different in that we do not consider partition 

and allocation but dynamic replication of fragments. Moreover, in our systmem peers 

have no global knowledge about the location of other fragments. 

 

In [15] an approach for vectorizing and querying large XML repositories is presented. 

The idea is based on the decomposition of an XML document into a set of vectors that 

contain the data values and a compressed skeleton that describes the structure. In 

order to query this representation and produce results in the same vectorized format, 

they consider a practical fragment of XQuery and introduce the notion of query 

graphs and a novel graph reduction algorithm that allows to leverage relational 

optimization techniques as well as to reduce the unnecessary loading of data vectors 

and decompression of skeletons. This is similar to our approach of representing 

replicas. Again, in this work, we address a different problem, that of dynamically 

creating replicated fragments. 

5.3. XML Processing in Structured and Unstructured p2p Systems 

The use of XML as the format for data representation introduces additional problems 

in p2p systems. In unstructured p2p systems, research efforts focus on building space 

efficient routing indexes for XML documents. Most approaches build path indexes 

with the use of aggregation and suitable encoding schemes for the paths. In structured 

p2p systems, recent research focuses on exploiting the content of documents for 

determining the keys. In particular, a vector describing each document is extracted 
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and used as the key to map the documents to the virtual multi-dimensional space of 

the network. In this section we describe proposed techniques for processing XML 

documents in both structured and unstructured p2p systems. This research is 

complementary to ours since it does not address replication but deals only with query 

processing techniques. 

 

Processing of containment queries in p2p systems is presented in [16]. Containment 

queries exploit the structure of XML data (i.e. book contains author contains name = 

“John Smith”). XML elements and text words are treated uniformly as index keys. 

Local indexes at each peer consist of inverted lists, which map keywords to XML 

documents stored at the peer. In addition to its local inverted lists, each peer also 

maintains routing indexes, called peer inverted indexes that map keywords to the 

identifiers of remote peers. A query is forwarded to remote peers by using the peer 

inverted index and set operations are used to minimize the number of relevant 

destinations. Indexes are built when a peer joins the system by exchanging 

information with other peers. These indexes are smaller than local indexes, since a 

peer only exchanges a small subset of its keywords, such as words that are often 

found in queries or that are representative of its local data. The result is a p2p system 

in which each peer has a summary of important data of all other peers. Horizons are 

used to limit the number of peers for which a peer has summarized information. A 

peer maps keywords outside of its horizon to peers on the boundary of the horizon 

that are closer to them. 

 

In [17], each peer maintains a local index, summarizing its local content and one or 

more merged indexes summarizing the contents of its neighbors. The peers form 

hierarchies in which each peer stores summarized data for the peers belonging to its 

subtree. The roots are interconnected and store additional summaries for all other 

roots. Each peer that receives a query first checks its local index for any matches. 

Then, if it is an internal peer, it checks its merged index and if there is a match it 

forwards the query to its subtree. Furthermore, it sends the query to its parent or if it is 

a root peer to the other matching roots. The indexes used are based on Bloom filters 

that are compact data structures for the representation of a set of elements. To support 

the evaluation of regular XPath expressions, multi-level Bloom filters are introduced 
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that preserve hierarchical relationships between the inserted elements. These 

relationships are preserved by inserting the elements of the XML tree to a different 

level of the filter according to their depth in the tree (Breadth Bloom filters), or by 

using paths of different lengths as keys and inserting them to the corresponding level 

of the filter according to their length (Depth Bloom filters). 

 

A similar fragmentation model with ours is described in [18] and [19]. However, the 

fragments that they create do not have any links to the original document and they 

focus more on query processing rather than replication. The authors of [18] deal with 

the problem of parallel query processing. They develop their idea for the evaluation of 

boolean XPath queries over a tree that is fragmented, both horizontally and vertically 

over a number of sites. The key idea is to send the whole query to each site which 

partially evaluates, in parallel, the query and sends the results as compact boolean 

functions to a coordinator which combines these to obtain the result.   

 

XP2P [19] also extends Chord to support XML data. The system assumes that each 

peer stores a set of XML fragments (subtrees of XML data). In addition, each peer 

stores the local content of the user's fragments and their related path expressions that 

are the lists of each fragment's child fragments (path expressions stored as PCDATA 

within subtags in the fragment) and their super fragment (a path expression of the 

fragment which is the ancestor of the current fragment). These expressions are hashed 

into the Chord virtual space. The hashing technique used is different from that used in 

Chord. In particular, a fingerprinting technique is proposed. The produced fingerprints 

are shorter than the hash keys used in Chord and support a concatenation property that 

allows the computation of the tokens associated with path expressions to proceed 

incrementally. Partial and full match lookups are supported, where in the first case, a 

match to a fragment is returned without unfolding its child fragments, while in the 

latter case, all the sub tags of the fragment are unfolded and the corresponding child 

fragments are retrieved. The queries are fingerprinted as well and when the fingerprint 

of a query (either in full or partial lookup) matches the fingerprint of a data fragment, 

the results are located by the lookup functionality of Chord. If the system cannot find 

a match, for instance if some peers are temporarily unavailable, additional techniques 
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based on gradually pruning the query path are deployed to provide the user with at 

least a partial match. 
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CHAPTER 6. CONCLUSIONS 

6.1 Summary 

6.2 Future Work 

6.1. Summary 

Peer-to-peer (p2p) systems have attracted considerable attention as a means of sharing 

content among large and dynamic communities of nodes. A central issue in p2p 

systems is locating the nodes that hold data of interest. There have been various 

proposals towards building overlays to support efficient content location. Such 

proposals vary from building rigid topologies and placing data on specific nodes in 

the overlay to unstructured networks with no correlation between the node content 

and its position in the overlay.  In all types of overlays, content replication results in 

reducing the latency of lookups. Motivated by the fact that XML is increasingly being 

used in data intensive applications, in this work, we studied replication in unstructured 

p2p systems where participating nodes share content stored in XML. We considered 

XML replication for both passive and proactive protocols.  

 

XML documents have a hierarchical structure and thus, different fragments of an 

XML document can have different access frequencies. We showed that replicating 

items at the fragment level is preferable to replicating whole documents. For proactive 

replication, we introduced a new data structure that we call replication routing index. 

For a peer p, a Replication Routing Index (RepRI) has one entry for each file that p 

has processed queries for. Each entry keeps statistics about the requests that p has 

received for the specific file through its adjacent edges. Our replication strategy uses 

these indexes to decide whether to maintain a copy locally or forward it along a path. 

A Replication Routing Index for XML, termed RepRIX, maintains statistics for 
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fragments. RepRIX allows us to fine-tune the unit of replication, so that fragments of 

the same document can have different numbers of replicas. Further, it allows us to 

push fragments closer to their requesters. RepRIX entries are also used as hints during 

lookup to direct nodes towards paths that most probably hold replicas of the requested 

items. 

6.2. Future Work 

One way to improve the efficiency of RepRIX replication in realistic p2p 

environments would be the ability to dynamically tune the value of the weight α. In 

order to exploit the ability to enhance the system performance for popular fragments 

each peer p could use the statistics maintained at RepRIX(p) to estimate the query 

distribution. Based on these estimations peers would be able to adjust the value of α to 

the actual requirements of the network. 

 

As mentioned before, the duration of the period of the replication procedure depends 

on the query workload. A large value leads to making more informed decisions based 

on sufficiently large samples of requests and ignores popularity fluctuations that may 

be caused by random variations in the query workload.  Furthermore, it reduces the 

associated network overhead. On the other hand, the system adapts to workload 

changes less promptly. An efficient way to dynamically adjust the duration of the 

period, based on the changes of the average replication utility, would improve the 

overall performance of RepRI replication. 

 

Additional work could be done in the way path queries are processed. Instead of 

searching for the peer that holds all the requested data, partial evaluation could be 

executed by peers that hold some part of it. 
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