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Abstract

Ioannis Kyriazis, Ph.D., Department of Computer Science and Engineering, University
of Ioannina, Greece, September 2017.
Algorithms and Tools for Deriving Editable Models from Cross-Sectional Data Sets.
Advisor: Ioannis Fudos, Professor.

In this thesis, we present a novel method for reconstructing the surface of a 3D object
using as input only a point cloud of its surface scan. The objective is to obtain an
editable CAD model that is manufacturable and describes accurately the structure and
topology of the point cloud. This model will provide a high level representation of
the actual object, which can also be modified with the use of a set of editing operators
we have defined. The entire method is performed in three phases: the segmentation
of the point cloud, the reconstruction of the model and the editing process.

In the segmentation phase, the point cloud is sliced into cross sections, which are
later on treated as 2D point sets. Several parameters of the slicing procedure influence
the resulting model, and have to be set properly to ensure high quality output. One
essential parameter is the slicing direction. It has to correspond to the principal axis
of the point cloud, either locally or globally, so that the basic features of the point
cloud are properly distributed across the cross sections. Another key parameter in the
segmentation process is the thickness of the cross sections. The cross sections should
contain sufficient information about the features of the point cloud, so their thickness
cannot be very slim. But it should not be very thick either, as we do not want to have
many features tangled together in the same cross section.

The reconstruction phase includes several procedures that take as input the cloud
points of the cross sections and provide as output a model of the 3D object, with
high level features and properties that can be used for further processing. First, the
boundary of each cross section is represented as a set of line segments called the
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feature poly-line. This poly-line is computed with the use of computational geometry
methods, i.e. the convex hull and the Voronoi diagram. The feature poly-line of
each cross section is then recomputed as an interpolating B-Spline curve, providing a
smooth continuous representation of the model. The curves of the neighboring cross
sections are combined with each other to form the surface of the final 3D model.
To reconstruct the surface between two adjacent cross sections, a new set of feature
points is computed on the B-Spline curves, using arc length parameterization, and a
contour triangulation method provides the surface of the model. The resulting model
can be subject to high level modifications that provide variations of the initial object
with additional user specified properties.

For the editing process, we have implemented a set of editing operators, which
can be applied either to the entire model, or on a part of it, to deform its surface in
various ways. As a point of reference for these editing operators, a given point may
be used on the interpolating curve computed from the centroids of the cross sections.
We call it the curve of centroids and it is a form of skeleton curve for the model. The
editing operators vary from general purpose transformations to high level editing
operators addressed to cross sectional data sets used in medical research. The general
purpose transformations can be used to modify free form models arbitrarily, and can
be applied to parts of the model according to user specified parameters. The high
level editing operators allow modifications such as bending or stretching the model
of an artery, allowing medical experts to study and control the behavior of tissues
during a simulation of a surgical operation such as angioplasty or stent insertion.

The novelty of this study includes:

• the introduction of an efficient method for computing a boundary representa-
tions of cross-sectional point sets, using the convex hull and the Voronoi diagram
of the points,

• the use of a technique for inserting artificial cross sections between existing slices,
to improve the rendering quality of the model, and

• the definition of a set of editing operators that may be used in everyday exam-
ples, varying from purely aesthetic purposes to simulation of surgical operations
in medical data sets.
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Ιωάννης Κυριαζής, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο
Ιωαννίνων, Σεπτέμβριος 2017.
Αλγόριθμοι και Εργαλεία για την Παραγωγή Επεξεργάσιμων Μοντέλων από Σύνολα
Δεδομένων Οργανωμένων σε Εγκάρσιες Τομές.
Επιβλέπων: Ιωάννης Φούντος, Καθηγητής.

Στη διατριβή αυτή παρουσιάζουμε μια καινοτόμα προσέγγιση για την ανακατα-
σκευή της επιφάνειας ενός 3-διάστατου αντικειμένου, χρησιμοποιώντας ως είσοδο
ένα νέφος σημείων της σαρωμένης επιφάνειάς του. Στόχος είναι να αποκτήσουμε
ένα μοντέλο CAD με δυνατότητα επεξεργασίας, που να μπορεί να κατασκευαστεί
και το οποίο θα περιγράφει με ακρίβεια τη δομή και την τοπολογία του νέφους
σημείων. Το μοντέλο αυτό θα παρέχει μια υψηλού επιπέδου αναπαράσταση του
αντικειμένου, που θα μπορεί να τροποποιηθεί με τη χρήση ενός συνόλου από τελε-
στές τους οποίους έχουμε σχεδιάσει. Η όλη μέθοδος διενεργείται σε τρεις φάσεις:
την κατάτμηση του νέφους σημείων, την ανακατασκευή της επιφάνειας του μοντέλου
και την επεξεργασία/τροποποίηση του μοντέλου.

Κατά την φάση της κατάτμησης, το νέφος σημείων χωρίζεται σε εγκάρσιες το-
μές, οι οποίες κατά την μετέπειτα επεξεργασία αντιμετωπίζονται ως 2-διάστατα
σύνολα σημείων. Σε αυτή τη φάση υπάρχουν κάποιες παράμετροι που επηρεάζουν
το τελικό μοντέλο, και θα πρέπει να καθοριστούν κατάλληλα ώστε να εξασφαλιστεί
το καλύτερο δυνατό αποτέλεσμα. Μια βασική παράμετρος είναι η κατεύθυνση της
κατάτμησης, που θα πρέπει να συμφωνεί με τον κύριο άξονα του νέφους σημείων,
είτε σε καθολικό επίπεδο είτε τοπικά, ώστε τα βασικά χαρακτηριστικά του νέφους
σημείων να αποτυπωθούν επαρκώς στις εγκάρσιες τομές. Μια άλλη βασική παρά-
μετρος στη φάση της κατάτμησης είναι το πάχος που θα έχουν οι τομές. Οι τομές
θα πρέπει να περιέχουν επαρκή πληροφορία για τα χαρακτηριστικά του νέφους
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σημείων, οπότε δεν θα πρέπει να είναι υπερβολικά λεπτές. Όμως δεν θα πρέπει να
είναι ούτε και πολύ παχιές, για να μην εμπλέκονται στην ίδια τομή πολλά χαρα-
κτηριστικά μεταξύ τους ιδιαίτερα όταν αυτά εντοπίζονται σε γειτονικές περιοχές.

Η φάση της ανακατασκευής του μοντέλου περιλαμβάνει αρκετές διαδικασίες, οι
οποίες παίρνουν ως είσοδο τα σημεία των εγκάρσιων τομών και παράγουν ως έξοδο
ένα μοντέλο του 3-διάστατου αντικειμένου, που διαθέτει υψηλού επιπέδου ιδιότητες
και χαρακτηριστικά, και μπορεί να χρησιμοποιηθεί για περαιτέρω επεξεργασία.
Αρχικά τα όρια της κάθε τομής αναπαρίστανται με μια κλειστή πολυγωνική γραμμή,
η οποία υπολογίζεται με τη βοήθεια μεθόδων υπολογιστικής γεωμετρίας, όπως το
κυρτό περίβλημα και το διάγραμμα Voronoi. Στη συνέχεια, η πολυγωνική γραμμή
κάθε τομής επαναπροσδιορίζεται ως μια καμπύλη B-Spline που θα παρέχει μια
συνεχή και ομαλή αναπαράσταση του μοντέλου. Οι καμπύλες των γειτονικών τομών
συνδυάζονται για να συνθέσουν την επιφάνεια του τελικού 3-διάστατου μοντέλου.
Για την ανακατασκευή της επιφάνειας μεταξύ δυο γειτονικών τομών, υπολογίζουμε
ένα νέο σύνολο σημείων επάνω στις καμπύλες, χρησιμοποιώντας παραμετροποίηση
μήκους τόξου, και η επιφάνεια του μοντέλου προκύπτει από την τριγωνοποίηση
των περιγραμμάτων. Το μοντέλο που προκύπτει μπορεί να υπόκειται σε υψηλού
επιπέδου μετασχηματισμούς που παρέχουν παραλλαγές του αρχικού αντικειμένου
με επιπλέον ιδιότητες καθορισμένες από το χρήστη.

Στη φάση της επεξεργασίας, υλοποιήσαμε μια σειρά από τελεστές που μπορούν
να εφαρμοστούν στο μοντέλο είτε καθολικά είτε τμηματικά, για να μετασχηματίσουν
την επιφάνειά του με διάφορους τρόπους. Το σημείο αναφοράς για τους μετασχη-
ματισμούς αυτούς τοποθετείται πάνω στην καμπύλη που ορίζεται από τα κέντρα
βάρους των τομών και η οποία αποτελεί ένα είδος σκελετού του αντικειμένου. Οι
τελεστές ποικίλουν από μετασχηματισμούς γενικού ενδιαφέροντος μέχρι υψηλού
επιπέδου μετασχηματισμούς ειδικά σχεδιασμένους για δεδομένα προερχόμενα από
τομογραφίες που χρησιμοποιούνται στην ιατρική έρευνα. Οι απλοί μετασχηματι-
σμοί χρησιμοποιούνται για την ελεύθερη τροποποίηση ενός μοντέλου, και μπορούν
να εφαρμοστούν σε τμήματα του μοντέλου σύμφωνα με τις παραμέτρους που ορί-
ζει ο χρήστης. Οι τελεστές υψηλού επιπέδου αφορούν τροποποιήσεις όπως πχ το
τέντωμα ή το λύγισμα του μοντέλου μιας αρτηρίας, επιτρέποντας στους ειδικούς
να μελετήσουν και να ελέγξουν τη συμπεριφορά των ιστών κατά τη διάρκεια μιας
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εγχείρησης, όπως πχ στην αγγειοπλαστική ή στην τοποθέτηση stent.

H συνεισφορά της έρευνας αυτής περιλαμβάνει:

• τη σύσταση μιας μεθόδου για τον αποτελεσματικό υπολογισμό της αναπαρά-
στασης των ορίων ενός συνόλου σημείων οργανωμένων σε τομές,

• τη χρήση μιας καινοτόμου τεχνικής για την εισαγωγή τεχνητών τομών ανάμεσα
σε υπάρχουσες τομές για τη βελτίωση αναπαράστασης του μοντέλου, και

• τον ορισμό ενός συνόλου από τελεστές μετασχηματισμού που μπορούν να
εφαρμοστούν σε γενικά παραδείγματα, που ποικίλουν από αισθητικές παρεμ-
βάσεις μέχρι την προσομοίωση χειρουργικών επεμβάσεων σε ιατρικές εφαρ-
μογές.
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Chapter 1

Reverse Engineering - Digital
Reconstruction

1.1 Introduction

1.2 Aim of the study

1.3 Overview

1.4 Contributions

1.5 Thesis Structure

1.1 Introduction

Many applications in manufacturing, medicine, geography, design, and entertainment
require the scanning of rather complex three-dimensional objects for the purposes of
incorporating them into a computer-based or computer-aided processing system, a
technique commonly known as Reverse Engineering or Digital Reconstruction [4, 5,
6, 7]. The process is brought down to obtaining a point cloud, i.e. a set of points that
lie on the boundary of a 3D object, using one of several 3D point acquisition methods
available, e.g. laser scanning, photogrammetry or CT scan [8], and then process this
point cloud to extract a CAD model of the object surface. For example, the point cloud
may be acquired with the use of a 3D laser scanner [9], or by identifying feature points
on multi-camera images [10, 11], or even computerized tomography when it comes
to medical applications [12, 13]. For processing the point cloud, various methods
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have been proposed, which include slicing the point cloud into cross-sections [12], or
patches [14], or treating the point cloud as a whole [15].
Editing such models can apply to many situations and for various purposes, such

as CAD, where the designer may create models of tools, parts or free-form objects for
industrial use. In this case, the designer creates the model from scratch and defines
all the features and properties of the object they are intended to create.
Another application is Reverse Engineering, where the tool or part is already avail-

able to the designer. In this case the aim is to identify the properties or features of the
object and to create CAD models that satisfy the requirements for reproducing these
properties or features. The next step in this process is to define additional features
and design another part or tool that has additional properties than the original object.
Another interesting example of 3D model editing is for medical purposes [12, 13,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], where the 3D representation of human
tissues is used for simulating medical procedures, such as needle insertions in soft
tissues, or stent insertion inside arteries. The deformation of the tissues in these cases
is considered as editing the model of the 3D object.
Other examples of editing 3D models include educational applications [28], where

the students learn the principles of programming with the help of a 3D object that
reacts according to their commands, and also in gaming [29], where the player con-
trols a 3D character for recreation. These cases may include 3D object editing in the
form of deformations [30], morphing [31], free-form animations etc.
Editing of 3D models may as well be used for aesthetic purposes, i.e. to produce

art works using CAD [32, 33, 34].

1.2 Aim of the study

Depending on their purpose and the means they use to achieve their goal, some works
are primarily oriented towards reverse engineering, others in surface reconstruction,
others in editing, etc. However, for someone who would be interested in using a tool
that is capable of both

a) extracting a model from an unstructured input, and

b) to perform editing,

2



the available tools are extremely complex, as they require expert skills to use them.
For this reason, we have developed a method that complies to the afforementioned
user requirements and offers both model extraction and editing.
The aim of this work is to introduce a framework for reverse engineering objects

of mechanical or free form design to obtain fully editable 3D CAD models that can be
reproduced or modified before production. More specifically, our approach aims to
partition a 3D point cloud into cross-sectional slices, so as to create an editable and
parameterized CAD model described as a set of slices. This type of model provides the
user-designer with the capability of editing, redesigning and reproducing the original
object, depending on his preferences and needs, by editing either the entire set of
slices, or a selected part of the model.

1.3 Overview

The framework of our approach is summarized in Figure 1.1. We begin by importing
a 3D point cloud which may or may not be structured. In some cases, eg. when the
point cloud is the result of a CT scan, the input is already structured, meaning that
the points are ordered and grouped into cross-sectional slices. In such cases we do not
have to slice the cloud, and proceed directly on the next step. Other times the point
cloud will not be structured, meaning that the points are not ordered and grouped
into slices. In such cases, we divide the point cloud into cross sectional slices, and
process each slice as if it were a 2D point set. For this point set, we compute a linear
feature poly-line, using the convex hull and the Voronoi diagram of the points. Then
we construct a smooth continuous B-Spline curve that interpolates the points of the
feature poly-line in each slice. After the construction of our model, in terms of a set
of parallel smooth curves, we define a set of editing operators that can be applied
on selected slices, to apply modifications on the model. The editing operators vary
from low level free form transformations, to high level editing operators that make
use of a feature called the curve of centroids, and perform modification on the model
according to high level user specified parameters controlled by the user.
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Figure 1.1: Overview of our method.

1.4 Contributions

The method presented in this thesis can be applied to point clouds of objects of me-
chanical or free form design. This thesis makes the following technical contributions:

• It presents a slicing method that partitions a point cloud into parallel slices that
will be refined to represent the boundary of each cross-section using a subset
of the points, i.e. some feature points of a slice.

• It introduces an efficient method for computing a boundary representation of
the cross sectional point sets, using the convex hull and the Voronoi diagram of
the points.

• It presents a method for surface reconstruction that is used for visualization
purposes.
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• It introduces a technique for inserting artificial cross sections between existing
slices, to improve the rendering quality of the model.

• It describes a methodology for performing free form editing on the model.

• It introduces a set of editing operators that may be used in everyday examples,
varying from purely aesthetic purposes to simulation of surgical operations in
medical data sets.

• It validates our approach by comparing the results of our tool-set with several
commonly used commercial applications.

1.5 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 presents some Related
Work. Chapter 3 discusses the details on segmenting the point cloud, the interactive
slicing technique and how the slicing parameters affect the subsequent processing
steps. In chapter 4 we provide details on how to compute a feature poly-line for
each cross section of the sliced point cloud, using methods based on the convex
hull and the Voronoi-diagram of the point sets. In chapter 5 we offer details on
computing planar B-Spline curves fitting the poly-line data with G1 continuity. We
also introduce a method for reconstructing the surface of the object based on the cross
section B-splines. Chapter 6 presents a novel paradigm for applying local or global
editing operations to the derived model. We provide implementation considerations
and some examples of applying our free form editing tool. In chapter 7 we offer a set
of high level editing operators addressed to cross sectional data sets used in medical
research. Finally, in chapter 8 we make our conclusions, we compare the results of our
method to other tools commonly used, and deploy some thoughts for future research
directions. An Appendix is also available, in which we describe some approaches that
have been studied, fully implemented, but eventually rejected, as they did not provide
the quality results we have been expecting.
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Chapter 2

Related Work

2.1 Introduction

2.2 Slicing and Segmentation

2.3 Feature Poly-lines

2.4 Surface Reconstruction

2.5 Editing

2.6 Centerlines

2.7 Comparison with our approach

2.1 Introduction

Several methods have been developed that extract features from a point cloud. Some
of these methods are applied on mechanical objects, and others on free-form objects.
While mechanical objects are easy to describe with a standard set of features, repre-
senting free-form objects necessitates the expansion of the usual repertoire of features
and operation with innovative constraint-based features.
Yano and Harada [35] proposed a method to reconstruct B-Spline surfaces from

generalized cylindrical meshes by skinning. They automated the construction of sec-
tional curves on a triangle mesh in order to convert the mesh into a skinning surface.
Their method generates a smooth scalar field on mesh by solving a Laplacian equa-
tion, then create a set of gradient flows by tracing the field from a selected point on
the mesh. The gradient flows are used for quadrilateral remeshing.
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Yuwen et al [36] addressed the B-spline surfaces fitting and direct slicing problem
from 3D measured data. Firstly, a method of extracting cross-sectional contours from
a point cloud is used, then a cross-sectional design technique with the possibility of
the direct integration between reverse engineering and rapid prototyping. For a good
initial parameterization, a method of constructing the base surface is provided. Based
on the parameter correction strategy, an iterative B-spline surface fitting algorithm
with tight tolerance is accomplished.
Wang et al [37] introduced a method for surface reconstruction from sectional

contours, which is based on the consistent utilization of the two-dimensional con-
strained Delaunay triangulation. The triangulation is used to extract the parametric
domain and to solve the problems associated with correspondence, tiling and branch-
ing in a general framework. Natural distance interpolations are performed in order
to complete the mapping of the added intermediate points. Surface smoothing and
remeshing are conducted to optimize the initial surface triangulations.
Daniels and Cohen [38] presented an algorithm for generating a smooth surface

between two closed spatial spline curves that generates a temporal deformation be-
tween the input curves, which can be thought of as sweeping a surface. Their method
generates intermediate curves that behave like wavefronts as they evolve from the
shape of one boundary curve to a medial type curve, and then gradually take on the
characteristics of the second boundary curve.
Chai et al [39] used a gradient controlled partial differential equation surface to

express terrain surfaces, in which the surface shapes can be globally determined by
the contours, their locations, height and gradient values. The surface generated by
this method is accurate in the sense of exactly coinciding with the original contours
and is smooth with C1 continuity everywhere. The method can reveal smooth saddle
shapes caused by surface branching of one to more and can make rational interpolated
sub-contours between two or more neighboring contours.
DeToledo et al [40] proposed a numerical and a topological approach for re-

constructing implicit information, recovering original data using reverse-engineering
algorithms. They achieve high effectiveness, reconstructing 90% of information from
massive models with millions of triangles after few minutes of processing.
Yang and Yonghua [41] presented a reverse engineering methodology that is based

on haptic volume removing. In their method, a physical object which is to be digitized
is buried in a piece of virtual clay that is generated with the help of a fixture. Digitizing
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the physical object is performed by simply chipping away the virtual clay with a
position tracker that is attached to a haptic device. This method has eliminated the
need to merge point clouds that are digitized from different views using current
digitizers.
Jun [42] proposed a method that can automatically fill complex polygonal holes

on triangular meshes with missing data with a piecewise manner, providing robust
results even in regions of high curvature, where other techniques would fail to fill the
holes smoothly.
Fayolle et. al. [43] propose a method which helps to fit existing parameterized

function representation (FRep) models to a given dataset of 3D surface points. Best
fitted parameters of the model are obtained by using a hybrid algorithm combining
simulated annealing and Levenberg-Marquardt methods.
Ohtake et. al. [44] construct surface models using piecewise quadratic functions

that capture the local shape of the surface, and weighting functions that blend together
the local shape functions. These works process the entire 3D cloud to detect the
object’s constructive logic.
Sithole and Vosselman [45] have developed a method for detecting urban struc-

tures in an irregularly spaced point-cloud of an urban landscape. Their method is
designed for detecting structures that are extensions to the bare-earth (e.g., bridges,
ramps), and it involves a segmentation of a point-cloud followed by a classification.
Jeong et al. [46] use an automated procedure to fit a hand-designed generic control

mesh to a point cloud of a human head scan. A hierarchical structure of displaced
subdivision surfaces is constructed, which approximates the input geometry with
increasing precision, up to the sampling resolution of the input data.
Attene and Spagnuolo [47] use properties of geometric graphs. The Euclidean

minimum spanning tree is used as a constraint during the sculpturing of the Delaunay
tetrahedralization of the data set, and in addition another constraint is used, the so-
called Extended Gabriel Hypergraph.
Au and Yuen [48] use a method that fits a generic feature model of a human torso

to a point cloud of a human torso scan. The features are recognized within the point
cloud by comparison with the generic feature model. This is achieved by optimizing
the distance between the point cloud and the feature surface, subject to continuity
requirements. This is a powerful approach when we have a priori knowledge of the
set of features.
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Ma and Kruth [49] employed a two-step linear approach to fit NURBS curves and
surfaces using the measured points of a physical part. The weights of the control
points are first identified from a homogeneous system using symmetric eigenvalue
decomposition, and the control points are further processed in a way similar to B-
Spline curve and surface fitting.
Amenta et al. [15] proposed the crust algorithm, which combines the point cloud

with the vertices of the Voronoi diagram, and computes the Delaunay tetrahedral-
ization of the combined point set. The triangles where all vertices are sample points
(not Voronoi vertices) are considered to form the object surface.
These approaches are very interesting and with many application in computer

graphics. The main objective of these methods is to provide a triangular mesh or
another smooth surface representation, mainly for rendering purposes. Some of them
allow the extraction of characteristics in the context of identifying features on the
model [44, 45, 46, 48]. However, they do not provide any means of editing, other
than interactively altering the positioning of triangle vertices.
On the other hand, a feature that came to our attention concerned the physical

primitives which control the behavior of a model during a deformation caused by
a force applied upon the model, as discussed in methods using deformable models
[50, 51, 52, 53, 54]. These methods consider the behavior of a model in a motion
estimation, or the recognition of features in various states of the model, but do not
offer a context of editing given a tool set of editing operators.
Based on these two considerations, we were motivated to extend the line of re-

search by making use of digitally reconstructed models, such as described in the
above-mentioned methods, which would also have properties as described in the
methods of deformable models, by including the option for editing and re-manufacturing
in the context of computer aided design. The contribution of our work is the introduc-
tion of an editing toolset, which will allow the CAD end user to perform meaningful
modifications on the model.
A discussion on related work is also available in the following sections, where we

cite on research concerning the scope of each of the remaining chapters exclusively.

9



2.2 Slicing and Segmentation

Dolenc and Makela [55] studied several methods of slicing models for layered man-
ufacturing, with the objective to minimize the number of layers while preserving the
accuracy of the model. They also handle flat areas and restrict the staircase effect to
a user-specified tolerance.
Jamieson and Hacker [56] compared the approach of slicing CAD models with

tessellation techniques for use in the rapid prototyping industry.
Kulkarni and Dutta [57] describe two factors associated with the slicing procedures

used in layered manufacturing processes that introduce geometric inaccuracy, and
suggest solutions for their redressal.
Sabourin et al [58] propose a method for refining the slicing thickness adaptively

through interpolation rather than extrapolation, which is well suited for execution in
a parallel processing computer.
Hope et al [59] developed an adaptive slicing procedure, which uses layers with

sloping boundary surfaces that closely match the shape of the required surface. This
greatly reduces the stair case effect which is characteristic of layered components with
square edges.
Tata et al [60] proposed an adaptive slicing method, in which the layer thickness is

adjusted such that one of the four criteria is met, i.e. cusp height, maximum deviation,
chord length and volumetric error per unit length.
Tyberg and Bohn [61] presented an approach for reducing the fabrication times

by eliminating most of the unnecessary layers that do not effectively enhance the
overall quality of the part surfaces.
Mani et al [62] describe a slicing technique that permits the fastest layer manufac-

ture of an object that has different surface finish requirements on different surfaces.
The user can select surfaces of the model and for each impose a distinct cusp height
requirement.
Other works that handle the slicing of a model include [63, 64, 65, 66, 67].

Our approach follows the main concepts of [68, 69, 70], where the importance of
parameters like the slicing direction or the slice thickness is addressed. These works
also discuss the adaptive computation of the ideal slicing thickness. Since this is not
in the scope of our work, to avoid exhaustive re-computations, we chose the option of
user-specified thickness, which however does not limit the generality of our method.
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2.3 Feature Poly-lines

Several methods have been proposed that include the representation of an ordered
or unordered point set with smooth continuous curves, both in 2D as well as in 3D.
Renner [3] developed a curve fitting method to represent curves occurring mainly

in mechanical engineering practice by connecting sections that retain tangent vector
continuity. The interpolation is local in the sense that the shape of the curve at a
certain data point is influenced by four other data points in its vicinity.
Dyn et al [71] suggested a simple interpolation scheme based on a 4-point recursive

subdivision for curve and surface design, that provides C1 continuous curves for a
certain range of a given tension parameter.
Fang and Gossard [72] presented a method for generating a piecewise continuous

parametric curve from a set of unordered and error-filled data points. The resulting
curve not only provides a good fit to the original data but also possesses good fairness.
Pigounakis and Kaklis [73] developed a two-stage automatic algorithm for fairing

C2-continuous cubic parametric B-splines under convexity, tolerance and end con-
straints, which preserves the convexity and end properties of the output of the first
stage and, moreover, it embodies a global tolerance constraint.
Lee [74] presented an algorithm to approximate a set of unorganized points with

a simple smooth curve without self-intersections, in which a moving least-squares
technique is suggested using Euclidean minimum spanning tree, region expansion
and refining iteration.
Liang et al [75] developed a free form shape representation technique using Non-

Uniform Rational B-Spline (NURBS) modeling, and the accuracy of the representation
is evaluated by using a centroid-radii error function, which computes the cumulative
distance between the intersection points by radii lines on the boundary of the original
image and the reconstructed image.
Said [76] introduced the concept of the alternating convex hull, which is used

to develop a new method that generate poly-line approximation for single-valued
digital curves. The suggested method has the ability to deal with closed curves if they
decomposed to two single-valued curves. The method is hierarchical in nature, that is,
the approximation varies from coarser to finer, using nested alternating upper/lower
hulls, to comply with error tolerance specified.
Wang et al [77] presented a simple and efficient technique to generate approxi-
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mately arc-length parameterized spline curves that closely match spline curves typi-
cally used to model roads in high-fidelity driving simulators.
Chen et al [78] presented a method for automatically generating an interpolation

closed G1 arc spline on a given closed point set, in which the point set is treated
otherwise for an even number of points than an odd number of points. For odd
point sets one of the exactly two different closed interpolating G1 arc splines is chosen,
while for even point sets the explicit interpolation condition for generating closed G1

arc splines is generated, and a weight function for each given point is defined. The
points are automatically chosen and moved based on weight functions such that the
interpolation condition is fulfilled, and the G1 arc splines are constructed such that
the radii of the arcs in the spline are close to each other.
Sabin and Dodgson [79] improved the four-point subdivision scheme, which had

rather large longitudinal artifacts and points interpolated around a curve of almost
constant curvature were fitted by a curve with significant variations of curvature.
They describe a geometry-sensitive variant of this scheme which does not have this
problem. In fact circles are reproduced exactly with any spacing of the initial data.
Azariadis and Sapidis [80] focused on drawing curves on a cloud of points by

constructing a rough design composed of poly-lines which only look like they lie
onto the cloud surface. Their system replaces these poly-lines by smooth curves lying
exactly onto the cloud surface, while the intermediate side effects like the line wrinkles
that appear in the process are eliminated.
Dyn et al [81] constructed another four-point subdivision scheme, which generates

C2 curves and reproduces cubic polynomials. The refinement rule of this scheme
is obtained by constructing, for each interval (or edge) in the coarser level, a cubic
polynomial that interpolates the four points closest to the interval, and then evaluating
this polynomial at 1/4 and 3/4 of the interval. The collection of the pairs of points,
corresponding to each edge in the coarser level, constitute the refined set of points.
Huang et al [82] developed a simple algorithm for simultaneous degree elevation

and knot insertion for B-spline curves, which can handle unclamped B-spline curves.
Their method is based on the simple approach of computing derivatives using the
control points, re-sampling the knot vector, and then computing the new control
points from the derivatives.
Sanchez-Reyes and Fernandez-Jambrina [83] analyzed the chord-length parametriza-

tion using bipolar coordinates and compared their technique with the arc-length

12



parametrization for curve fitting.
Dyn et al [84] replaced the uniform parameter values of a four-point subdivision

scheme by chordal and centripetal parameter values, to provide two new non-linear
schemes that are convergent and bound the distance between the smooth limit curve
and the initial control polygon.
Li et al [85] proposed the arterial snake, a deformable primitive, to decompose

a detail surface into a multi-layer collection of 1D generative curves. They offer a
purely geometric approach to extract the arterial patterns and define their layering
relationship leading to an enhanced reconstruction of the input scans, and a simple,
intuitive, yet powerful shape manipulation framework that allows easy and natural
editing and creation of plausible and realistic variants of the original geometry.
Our work has been influenced by the methods described in [76, 3, 86, 87, 88], so

there are several elements that have been implemented according to their suggestions
as a whole, or as variations that serve our own intends. For example, [76] discusses
an iterative method that uses the convex hull in all iterations, but we only use it in
our first iteration, and proceed with the Voronoi diagram for the remaining iterations.
The reason for switching methods is discussed in section A.3 of the Appendix.

2.4 Surface Reconstruction

Several methods have been developed that reconstruct the surface of a model from a
point cloud or a set of images. Some of these methods are appropriate for mechanical
objects, and others for free-form objects. While mechanical objects can be represented
via a standard set of features, representing free-form objects necessitates the expansion
of the usual repertoire of features and operations with constraint-based features that
are computationally expensive to solve.
Kels and Dyn [89] developed a multi-resolution method based on iterative refine-

ment of the sets representing the cross-sections, with a geometric weighted average
of two sets, defined for positive weights (corresponding to interpolation) and when
one weight is negative (corresponding to extrapolation). To obtain a smoother recon-
struction of the 3D object, they adapt to sets the 4-point interpolatory subdivision
scheme.
Pal [90] used geometric subdivision and NURBS interpolation to achieve accurate
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shape building using scanned data, manufacturing ability of complex shapes, faster
and accurate shape representation with high quality surfaces, model portability, and
a better control on object shape and better patch-planning.
Liu et al [91] consider the more general problem where input data may lie on non-

parallel cross-sections and consist of curve networks that represent the segmentation
of the underlying object by different material or tissue types (e.g., skin, muscle, bone,
etc.) on each cross-section. The desired output is a surface network that models both
the exterior surface and the internal partitioning of the object. They introduced an
algorithm that is capable of handling curve networks of arbitrary shape and topology
on cross-section planes with arbitrary orientations.
Sangveraphunsiri and Sritrakulchai [92] proposed a two-level adaptive hierarchi-

cal clustering algorithm to manage unorganized points, so that the triangular mesh
models can be correctly obtained by applying a triangular mesh creation algorithm.
Pal and Ballav [93] developed a method for fitting NURBS surfaces on point cloud

data with extreme through-point accuracy, minimum shape and geometry loss, and
quicker reconstruction. They prepare a logical rarefied data set out of a dense data
set in which data points are sequenced for reconstruction. The logical selection sets
are constructed in such a way that these strictly entertain only negligibly small shape
losses and ensure a fastest reconstruction process with an optimum number of data
points.
Boissonnat and Memary [94] consider the problem of reconstructing a shape

from unorganized cross-sections from medical imaging such as free hand ultrasound
apparatus. The position and orientation of the cutting planes may be freely chosen,
and the input data consist of the cutting planes and their intersection with the object.
They compute the arrangement of the cutting planes, and then, in each cell of the
arrangement, they reconstruct an approximation of the object from its intersection
with the boundary of the cell. Lastly, they glue the various pieces together.
Yang [95] used two nonlinear subdivision schemes, face based subdivision scheme

and normal based subdivision scheme, for surface interpolation of triangular meshes.
With a given coarse mesh more and more details are added to the surface when the
triangles have been split and refined. Because every intermediate mesh is a piece-
wise linear approximation to the final surface, the first type of subdivision scheme
computes each new vertex as the solution to a least square fitting problem of selected
old vertices and their neighboring triangles. Consequently, sharp features as well as
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smooth regions are generated automatically. For the second type of subdivision, the
displacement for every new vertex is computed as a combination of normals at old
vertices. By computing the vertex normals adaptively, the limit surface is G1 smooth.
The fairness of the interpolating surface can be improved further by using the neigh-
boring faces. Because the new vertices by either of these two schemes depend on
the local geometry, but not the vertex valences, the interpolating surface inherits the
shape of the initial control mesh more fairly and naturally.
Ohtake et al [96] proposed a method for approximating an unorganized set of

points scattered over a piecewise smooth surface by a triangle mesh, by generating an
adaptive spherical cover and auxiliary points corresponding to the cover elements.
The intersections between the spheres of the cover are analyzed and the auxiliary
points are connected, while the resulting mesh is cleaned from non-manifold parts.
The method allows to control the approximation accuracy, process noisy data, and
reconstruct sharp edges and corners.
Lee [97] worked with generalized cylinders defined by contours of discrete curves,

and proposed two algorithms to generate generalized cylinders surfaces in polygonal
meshes and in developable surface patches of the cylindrical type. To solve the contour
blending problem of generalized cylinder, he adopted the algorithms and properties
of linear interpolation by direction map that interpolate geometric shapes based on
direction map merging and group scaling operations.
Kuo and Yau [98] presented a Delaunay-based region-growing surface reconstruc-

tion algorithm that holds the advantages of both Delaunay-based and region-growing
approaches. The proposed algorithm takes a set of unorganized sample points from
the boundary surface of a three-dimensional object and produces an orientable man-
ifold triangulated model with a correct geometry and topology that is faithful to the
original object. Their algorithm requires only one-pass Delaunay computation and
needs no Voronoi information because it improves the non-trivial triangle extraction
by using a region-growing technique. It also makes the surface reconstruction more
systematic and robust because it inherits the structural characteristics of the Delaunay
triangulation, which nicely complements the absence of geometric information in a
set of unorganized points.
Karniel et al [99] presented a practical solution for surface fitting problems with

prioritized geometry constraints in reverse engineering. Their approach allows prior-
itizing constraints and uses them for decomposing the problem into a set of sequen-
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tially solved, manageable sub-problems. The result of each solution step is trade-off
between satisfying the set of constraints and fitting of the surfaces to the measured
points. The overall solution process trades off solution quality with complexity of the
problem.
Tam et al [100] developed a method for computing offsets of profiles on three-

dimensional surfaces based on processing the intersections of the offset segments.
Their method does not assume a particular curve representation of the profiles, and
it covers both closed and open profiles. A two stage approach of first constructing
the local and then the global offset of the progenitor profile is adopted. Conditions
governing the construction of those offsets are used for the construction.
Svitak and Skala [101] studied the problem of surface reconstruction from sets

of planar parallel slices representing cross sections through 3D objects, based on the
correct estimation of the structure of the original object. They focus on the structure
determination of the 3D object, and their approach is based on considering mutually
orthogonal sets of slices.
Peternell and Steiner [102] used as main geometric features of their modeling

system the detection of planar faces for the generation of a CAD model of buildings
from airborne laser scanner data.
Lin et al [103] presented an algorithm for reconstructing a triangle mesh surface

from a given point cloud. Starting with a seed triangle, the algorithm grows a partially
reconstructed triangle mesh by selecting a new point based on an intrinsic property
of the point cloud, namely, the sampling uniformity degree. The reconstructed mesh
is essentially an approximate minimum-weight triangulation to the point cloud con-
strained to be on a two-dimensional manifold.
Kolluri et al [104] introduced a noise-resistant algorithm for reconstructing a

watertight surface from point cloud data, which forms a Delaunay tetrahedralization,
then uses a variant of spectral graph partitioning to decide whether each tetrahedron
is inside or outside the original object. The reconstructed surface triangulation, which
is the set of triangular faces where inside and outside tetrahedra meet, can produce
manifold surfaces.
Geng et al [10] have developed a method for rapid and accurate face recognition

purposes, which uses a unique 3D camera (the 3D FaceCam) that combines multiple
imaging sensors within a single compact device to provide instantaneous, ear-to-ear
coverage of a human face. Thus, multiple 3D views are used to provide detailed and
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complete 3D coverage of the entire face.
Fayolle et al [43] used an approach, where standard shapes and relations are in-

terpreted as primitives and operations of a constructive model. The input information
provided by the user is a sketch model, where the construction tree contains only
specified operations and types of primitives while the parameter values of operations
and primitives are not defined and recovered by fitting.
Azariadis [105] used dynamic base surfaces that are dynamically adapted to the

three-dimensional shape implied by the clouds of points. The only assumption re-
garding the cloud of points is the existence of a boundary defined by a closed path
of four curves. The proposed method is based on an iterative procedure where a dy-
namic base surface is gradually improved approximating more faithfully the funda-
mental geometry of the cloud of points. Parameterization is achieved by orthogonally
projecting the cloud of points onto the dynamic base surface.
Ivrissimtzis et al [106] studied the use of neural network algorithms in surface

reconstruction from an unorganized point cloud, and meshing of an implicit surface.
Their algorithm works by sampling randomly a target space, usually a point cloud or
an implicit surface, and adjusting accordingly the connectivity of the neural network.
This solution gives satisfactory results in sharp features and concavities, and its speed
is virtually independent from the size of the input data, making it particularly suitable
for the reconstruction of a surface from a very large point set.
Ohtake et. al. [44] offered a shape representation called the multi-level partition of

unity implicit surface, which uses piecewise quadratic functions that capture the local
shape of the surface, weighting functions that blend together these local shape func-
tions, and an octree subdivision method that adapts to variations in the complexity
of the local shape.
Dey and Goswami [107] described a simple algorithm called Tight Cocone, which

works on an initial mesh generated by a popular surface reconstruction algorithm
and fills up all holes to output a water-tight surface. Their method does not introduce
any extra points and produces a triangulated surface interpolating the input sample
points.
Piegl and Tiller [108] studied and analyzed several problems on skinning tech-

niques and proposed a solution that avoids all the anomalies at the expense of in-
creasing the number of control points and the compute time.
Jeong et al. [46] use an automated process to fit a hand-designed generic control
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mesh to a point cloud of a human head scan. A hierarchical structure of displaced
subdivision surfaces is constructed, which approximates the input geometry with
increasing precision, up to the sampling resolution of the input data.
Au and Yuen [48] use a method to fit a generic feature model of a human torso

to a point cloud of a human torso scan. The features are recognized within the point
cloud by comparison with the generic feature model. This is achieved by minimizing
the distance between the point cloud and the feature surface, subject to continuity
requirements. This is a powerful approach when we have a priori knowledge of the
set of features.
Amenta et al. [15] proposed the crust algorithm, which combines the point cloud

with the vertices of the Voronoi diagram, and computes the Delaunay tetrahedral-
ization of the combined point set. The triangles where all vertices are sample points
(not Voronoi vertices) are considered to form the object surface.
Weng et al [13] propose a surface rendering method using optical flow, an apparent

motion in the image plane produced by the projection of real 3D motion on a 2D
image. They obtain an accurate 3D model of the object, by extracting the surface
information from 3D motion. Their method is suitable for the reconstruction of 3D
models from ultrasound medical images as well as other computed tomograms.
A survey on methods for reconstructing surfaces from unorganized point sets is

also available in [109] where several known methods are evaluated.
These approaches are very interesting and have found several applications in

computer graphics. When it comes to reconstructing the surface of a 3D model from
its cross sections, many approaches use contour triangulation methods to obtain the
3D model:
Kels et al [110] applied tools of computational geometry, segment Voronoi di-

agrams and planar arrangements to the computation of the metric average of 2D
sets with piecewise linear boundaries. Such sets are collections of simple polygons
and of simple polygons with holes. Since a compact 2D set with boundary consist-
ing of closed curves can be linearly approximated by a 2D set with piecewise linear
boundaries, their algorithm provides a computational method for approximation of
set-valued functions with 2D images from a finite number of samples.
Whited and Rossignac [111] defined the b-compatibility for planar curves and pro-

posed new ball morphing techniques (called B-morphs) between pairs of b-compatible
curves. B-morphs use the automatic ball-map correspondence from which they derive
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vertex trajectories (Linear, Circular, Parabolic). They also provided simple construc-
tions for these b-morphs using the maximal disks in the finite region bounded by the
two curves.
Peiro et al [12] reconstruct the shape of geometries derived from a set of medical

images representing planar cross sections of the object. The reconstruction is based
on the interpolation of an implicit function through a set of points obtained from the
segmentation of the images. This approach allows for smooth interpolation between
sections of different topology. The boundary of the object is an iso-surface of the
implicit function that is approximated by a triangulation extracted by the method of
marching cubes.
Braude et al [112] presented a technique for creating a smooth, closed surface from

a set of 2D contours, which interprets the pixels that make up the contours as points
in R3 and employs Multi-level Partition of Unity (MPU) implicit models to create
a surface that approximately fits to the 3D points. MPU implicit models provide a
superior approach to the problem of contour-based surface reconstruction, especially
in the presence of noise, because they are based on adaptive implicit functions that
locally approximate the points within a controllable error bound.
Barequet and Vaxman [113] offered a method to incorporate the influence of more

than two slices at each point in the reconstructed surface. They investigated the flow of
the surface from one slice to the next by matching vertices and extracting differential
geometric quantities from that matching. Interpolating these quantities with surface
patches then allows a nonlinear reconstruction which produces a free-form, non-
intersecting surface.
Ju et al [114] presented a method that automatically constructs a 3D surface net-

work from 2D curve networks with arbitrary topology and partitions an arbitrary
number of materials. The surface network exactly interpolates the curve network on
each plane and is guaranteed to be free of gaps or self-intersections. Their method
also provides a flexible framework for user interaction so that the surface topology
can be modified conveniently when necessary.
Huang et al [115] developed a fast triangulation algorithm from planar contours

(FTA), in which the judgment of the similarity of contours is carried out, followed
by a traditional global optimization method that is applied to triangulating dissimilar
contours. A local optimization method is also applied on areas enveloped by line
sections of similar contours.
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Barequet et al [116] presented a method for interpolating a piecewise-linear surface
between two parallel slices, each consisting of an arbitrary number of polygons that
define ’material’ and ’non-material’ regions. Their method is based on computing
cells in the overlay of the slices that form the symmetric difference between them.
Then, the straight skeletons of the selected cells guide the triangulation of each face
of the skeletons. The resulting triangles are lifted up in space to form an interpolating
surface.
Akkouche and Galin [117] addressed the problem of reconstructing of a three-

dimensional object from cross-sectional contours. Their technique based on a strat-
ification of polygons and anisotropic distance functions that fully exploit the partial
structure of the data. A potential field function is created for each cross-section and
they are combined to create an implicit surface that contains the contours.
Cong and Parvin [118] proposed an approach for surface recovery from planar

sectional contours, based on the so called ’equal importance criterion’, which sug-
gests that every point in the region contributes equally to the reconstruction process.
The problem is formulated in terms of a partial differential equation, and the solu-
tion is calculated from distance transformation. The proposed technique allows for
surface recovery at any desired resolution, thus avoiding the inherent problems of
correspondence, tiling, and branching.
Barequet et al [119] use the slopes of the previously computed triangles created in

the interpolation of neighboring layers to guide the interpolation of the current layer,
to achieve smoothly connected consecutive layers.
Earlier works on contour triangulations have been published in [120, 121, 122,

123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138], with
the methods of Keppel [138] and Fuchs [137] being the most designating works.

2.5 Editing

Several methods have been developed that deal with editing 3D objects in various
ways. Depending on the issue they are addressed to, each method uses another
approach to deal with the corresponding problem.
Andrews et al. [139] have developed a user-guided method to capture the shape

of a boundary mesh representation as a well-structured, parameterized, procedural
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geometry description that can be fine-tuned to meet the current specifications and
design requirements. Their framework consists of an integrated system of geometrical
extraction and fitting routines, which are applied to user-designated portions of a
given input, combined with a set of traditional ’forward’ 3D modeling tools that
allow the extracted geometry to be edited and fine-tuned.
Chen et al. [140] presented a fast and precise method for extracting bas-reliefs

based on differential coordinates, and also provide an editing tool specifically designed
for relief editing. They estimate the base surface using normal smoothing and Poisson
reconstruction, and extract the relief by height thresholding. The editing tools they
provide allow for global transformations (translation, rotation, and scaling) of the
whole relief, as well as local modifications to the relief.
Gingold and Zorin [141] describe a sketch based modeling technique based on

changing shaded images of three dimensional models directly, using free form strokes
for two dimensional image editing. The shape is automatically adjusted to match
desired changes of appearance by minimizing a quadratic functional with tangent
and positional constraints deduced from user image modifications.
Wand et al. [142] thought of a multi-resolution data structure for real-time visual-

ization and interactive editing of large point clouds. They provide interactive editing
tools for large scanner data sets. Their data structure provides efficient rendering and
allows for handling very large data sets using out-of-core storage. It also provides dy-
namic operations for on-line insertion, deletion and modification of points with time
mostly independent of scene complexity. This permits local editing of huge models
in real time while maintaining a full multi-resolution representation for visualization.
Zimmerman et al. [143] introduced an over-sketching interface for feature-preserving

surface mesh editing, where the user sketches a stroke that is the suggested position
of part of a silhouette of the displayed surface. The system then segments all images-
pace silhouettes of the projected surface, identifies among all silhouette segments the
best matching part, derives vertices in the surface mesh, selects a sub-region of the
mesh to be modified, and feeds appropriately modified vertex positions together with
the sub-mesh into a mesh deformation tool.
Kara et al. [144] have developed a system which takes as input a 2D concept

sketch of an object, and a generic 3D wireframe template. The template is aligned
with the input sketch and the user traces feature edges of the sketch on the computer
screen. User’s 2D strokes are processed and interpreted in 3D to modify the sketch,
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which is refined using physically-based deformation techniques.
Yoon and Kim [145] proposed a sweep-based approach to the free-form defor-

mation of three-dimensional objects. Instead of using a volume enclosing the whole
object, they approximate only its deformable parts using sweep surfaces. The vertices
on the object boundary are bound to the sweep surfaces and follow their deformation.
Several sweep surfaces can be organized into a hierarchy so that they interact with
each other in a controlled manner.
Botsch and Kobbelt [146] presented a free-form modeling framework for unstruc-

tured triangle meshes based on constraint shape optimization. Their method includes
setting various boundary constraints to define a basis function, and moving a 9-dof
manipulator object to control the modification. Their technique can handle arbitrary
support regions and piecewise boundary conditions with smoothness ranging con-
tinuously from C0 to C2.
Sorkine et al. [147] have described a set of editing operations, such as interactive

free-form deformations in regions of interest based on the transformation of a handle,
transfer and mixing of geometric details between two surfaces, and transplanting of
a partial surface mesh onto another surface. The main computations involve solving
sparse linear systems, which can be done at interactive rates.
These works process the entire 3D cloud as a whole or in parts, to detect the ob-

ject’s constructive logic. They provide a triangular representation with the capability
of only local editing by altering interactively the positioning of triangle vertices. The
main goal of these works is to reconstruct the surface for visualization purposes only.
But there are cases where the user intends to manipulate their model using high level
editing methods. The main concept of the method described in this chapter is that it
allows editing and re-manufacturing of the model in the context of computer aided
design.

2.6 Centerlines

A variety of methods have been proposed that deal with editing 3D objects using
several approaches. While editing free-form objects can be done with arbitrary op-
erations, when editing for special cases may require some specific restrictions to be
satisfied, such as in the case of medical applications, where the simulation needs to
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comply with the behavior of real tissue when a surgery is actually performed.
Chi and Zhang [21] presented an approach for optimizing the raw CT data ac-

quired by a scanner. Their approach transforms the raw area samples to accurate
point samples to improve the CT data precision by (a) establishing the mapping re-
lationship between area samples and point samples, (b) segmenting the raw CT slice
into different regions based on the human tissue feature, and (c) in each segmented
region, constructing quadric spline fitting equations with the mapping relationship,
to transform the area samples to more accurate point samples.
Mondy et al. [22] deal with large amounts of image data extracted by Micro-

CT datasets using supercomputer imaging technology. Their method investigates the
architecture and shared memory requirement of supercomputers needed to generate
large models using various intensity levels for accurate data visualization, which is
prohibited by desktop computers.
Albu et al. [20] propose a morphology-based approach for inter-slice interpolation

of CT and MRI datasets composed of parallel slices. Their method handles explicitly
inter-slice topology changes by decomposing a many-to-many correspondence into
three fundamental cases: one-to-one, one-to-many, and zero-to-one correspondences.
The proposed iterative interpolation process computes a transition sequence between
a pair of corresponding input slices, and selects the element located at equal distance
from the input slices. The main contribution of their approach is the ability to inter-
polate between anatomic shapes by creating a smooth, gradual change of shape, and
without generating over-smoothed interpolated shapes.
Pekkan et al. [148] developed a surgical planning tool to study the anatomi-

cal complexity and patient-specific computational fluid dynamics (CFD) of vascular
anatomies. Their method includes two-hand free-form manipulation of a model. The
idea is to let the user grab a portion of the shape and then pull, push, twist and bend
it. Only the portion of the shape in the vicinity of the grabbed point is affected, and
the effect is lessened with distance through a specific decay profile.
Peiro et al. [12] presented a set of procedures for shape reconstruction and tri-

angulation of geometries derived from a set of medical images representing planar
cross sections of an object. Their method is based on the interpolation of an implicit
function through a set of points obtained from the segmentation of an image set. They
also use mesh enhancement techniques to maximize the quality of the triangulation
together with curvature adaption to optimize mesh resolution.

23



Ju et al. [19] presented a method for producing a smooth 3D volume from dis-
torted 2D sections in the absence of undistorted references. Their method is based
on pairwise elastic image warps between successive tissue sections, where an aver-
age warp is computed for each section from the pairwise warps in a group of its
neighboring sections. The average warps deform each section to match its neighbor-
ing sections, creating a smooth volume where corresponding features on successive
sections lie close to each other.
Sturgeon [17] described a method for building CAD models of bones utilizing

medical imaging data. Volumetric data sets obtained from a CT scan provided cross-
sectional closed curves, which were combined to form surface patches that described
detailed anatomical CAD models with the use of commercial applications.
Sun et al. [18] presented advances of bio-CADmodeling and application in computer-

aided tissue engineering, including biomimetic design, analysis, simulation and free-
form fabrication of tissue engineered substitutes, and described a methodology for
generating bio-CAD models from high resolution non-invasive imaging, the medical
imaging process and the 3D reconstruction technique.
Bors et al. [16] proposed an interpolation algorithm for reconstructing an n-

dimensional object from a group of (n − 1) − dimensional sets representing sections
of that object using a mathematical morphology morphing approach. The morph-
ing transformation modifies pairs of consecutive sets such that they approach in
shape and size. The interpolated set is achieved when the two consecutive sets are
made idempotent by the morphing transformation. The entire object is modeled by
successively interpolating a certain number of intermediary sets between each two
consecutive given sets.
Weng et al. [13] proposed a surface rendering method using optical flow, the

apparent motion in the image plane produced by the projection of real 3D motion
onto the 2D images of a medical CT scan. The 3D motion of an object is recovered
from the optical-flow field using additional constraints, and is used to extract an
accurate surface representation of the 3D model.
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2.7 Comparison with our approach

The above-mentioned methods mainly address the issue of reconstructing the surface
of the 3D object, but do not provide any tools for editing the model. The editing
methods mentioned in section 2.5 provide tools for editing 3D models in various
ways, but require as input a model that has previously been structured in a specific
format, either in triangle meshes with specified topology [146, 140], or in higher level
representations, such as curves or surfaces [144, 145, 143, 141, 139]. Our method
provides tools for editing the input model and also can handle unstructured data-
sets (i.e. point clouds). We also have the means of extracting the required topology
information with the use of the tool-set we describe later on.
In this thesis, we present a method for dividing the point cloud into a set of cross-

sections, which we process separately to extract local structural information. This
information is used to detect local features of the object. Such features may describe
holes, extrusions or protrusions on the object, symmetrical or similar parts, or flipped
and arbitrarily transformed versions of already known features. More specifically,
our method uses a subset of the point cloud each time, which is subsequently used
to extract a feature locally [149]. This is accomplished by slicing the point cloud
into cross sections, and treating each cross section as an individual point set in 2D.
Processing each cross section as a 2D set of points allows us to develop very efficient
and accurate local feature extraction techniques. These cross sections contain the same
information as the initial point cloud - the (x, y, z) coordinates of the points - with
the additional information that the points of a slice are located near a planar surface
that intersects the object at a specific direction. In other words, the points of each slice
can be considered to be co-planar, so we can process each slice as a 2D set of points
instead of a 3D object. This provides the means for more efficient and accurate local
feature extraction.
The set of points of each slice are processed with efficient algorithms and are

represented with a sequence of feature points derived with advanced computational
geometry based techniques. We call this sequence of feature points feature poly-line,
as it is a closed curve of continuity G0. Afterwards, a closed cubic B-Spline curve
is constructed, with continuity G1, which interpolates the poly-line and provides a
smooth boundary representation.
The local per slice feature representation is then combined with information pro-
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vided from several adjacent slices, to reconstruct the global structure and morphology
of the object. The contours of all cross sections are combined and a number of points
are selected (depending on the level of detail that is requested) on the B-Splines
which are subsequently used for creating a mesh that represents the reconstructed
surface with an editable model.
A series of editing operations may be performed on the model, to produce several

variations of the original model, while maintaining certain attributes that capture user
intent. After a set of editing operation is applied, a re-computation of the B-splines
and the mesh is carried out.
The objective of this work is to provide a framework for creating an editable

model based on B-spline contours without the use of parametric surface patches that
is capable of supporting arbitrary tessellations.
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Chapter 3

Segmentation of the Point Cloud

3.1 About Point Clouds

3.2 Segmentation of the Point Cloud into Cross Sectional Slices

3.2.1 The Slicing Direction

3.2.2 Thickness of the Cross Sections

3.2.3 Empty Space between Cross Sections

3.2.4 Other Cross Sectional Options

3.3 Treating Cross Sections as 2D Point Sets

3.4 Examples

3.1 About Point Clouds

The first step of our method is to import a data-set, which will be used to build a
model of a 3D object. Then we proceed with the segmentation of the data-set, so as
to provide a series of point sets that may be processed individually and/or in parallel.
The input format for our method is relatively simple. No assumptions are made

about the geometry or the topology of the object. The simple unstructured form of
data-set we use is the point cloud of its surface scan. The only information a point
cloud carries is the [x, y, z] coordinates of a set of points that lie on the surface of the
model, as illustrated in figure 3.1. Depending on the acquisition method used and
the density of the scan, a point cloud may describe the topology of the boundary
accurately at all parts of the model (e.g. 3D laser scanners) [9, 8], or describe only
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feature points of the object that lie on specific parts of the model (e.g. medical CT
scans) [150, 21]. The case of medical CT scans is considered delicate, as the direction
and the density of of the scan are predefined, and cannot be refined after the data-set
has been acquired. To begin processing the input we have acquired, we proceed to
the segmentation of the point cloud into several cross sectional slices. In this chapter
we discuss the details of this segmentation process.

Figure 3.1: The point cloud of a female figure. The only information provided are
the [x, y, z] coordinates of points on the surface of the model.

For simplicity of the computations, all point clouds used in this study have a
common characteristic, i.e. they are all some type of generalized cylinders. In other
words, our models do not have parts that form branches, and they also there are no
holes present (all objects are of genus 0). For this type of objects, the complexity of
constructing a skeleton for our model is minimal. However, the user requirements
usually demand the processing of complex objects, which may have holes in their
surface (genus > 0), or have a complex geometry with branches and parts that cannot
be described with generalized cylinders. In such cases, the method we propose will
not work as it is. But we do have the option to split such objects into smaller parts
(that form generalized cylinders) and treat each part as a discrete object. For example,
we could adopt a method such as the one proposed by [151], which is also discussed
in [152] that uses a Reeb Graph to determine the regions where a model could be
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segmented, to acquire perceptually meaningful components that suit our needs. This,
however, may be done as a pre-processing step before we apply our method, and
therefore is not discussed in this study.

3.2 Segmentation of the Point Cloud into Cross Sectional Slices

Initially, the point cloud carries no information concerning the topology or the ge-
ometry of the object. It consists only of the 3D coordinates of the vertices. Little can
be done for editing the object in this form, as the points are unorganized. At first, to
obtain an organized point set for the object, we divide the point cloud into a number
of cross sections. The idea is to traverse the point cloud from one side to the other,
using a moving planar surface that intersects the point cloud. Each of these cross
sections is defined as a thin slice of the point cloud, which consists of several points
of the cloud that are located near the current plane, as illustrated in figure 3.2. The
points that belong to this slice are treated later on as an individual 2D point set. The
points are actually projected on the 2D plane of the slice.
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Figure 3.2: (a) The point cloud of a salt dome with one cross section highlighted.
(b) The point cloud is divided into several cross sections. (c) Top view of the cross
sections.

To slice the point cloud into cross sections, we need to consider a number of
parameters that affect the overall computations as well as the quality of the resulting
model. Such parameters are the direction of the cross sections, the thickness of each
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cross section, and the distance between cross sections. They can be either specified
by the user, or calculated automatically.

3.2.1 The Slicing Direction

The first parameter we discuss for the point cloud segmentation is the slicing direction.
The direction along which we choose to divide the object in slices may influence the
process of feature extraction. To illustrate this, consider an object that contains a
cylindrical feature, e.g. a hole in the shape of a cylinder, such as the one in figure
3.3. If the slicing direction matches the cylinder axis, the points of the slice located
near the hole would form a circular region (figure 3.3a). If the slicing direction is
different than the cylinder axis, the points of the slice would form an elliptical region
(figure 3.3b), a rectangle (figure 3.3c) or even a single line segment (figure 3.3d).

Figure 3.3: The slicing direction is an essential parameter for the modeling process.
(a) The slicing direction matches the cylinder axis. The points of a cross section form
a circle. (b) The slicing direction is different than the cylinder axis. The points of a
cross section form an ellipse.
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Figure 3.3: The slicing direction is an essential parameter for the modeling process.
(c) The slicing direction is vertical to the cylinder axis. The points of a cross section
form a rectangle. (d) The slicing direction is vertical to the cylinder axis. The points
of the last cross section form a line.

The proper slicing direction is related to the medial axis of the object. For simple
objects which have no branches, joints or protrusions of any type, the medial axis
consists of a simple curve. A direction following the average path of this curve usually
satisfies the user requirements. For complex objects that have branches, the medial
axis consists of a set of curves that form a kind skeleton of the object. Such point
clouds can be divided into simpler parts, which are treated as independent point
clouds, and each part is sliced according to its proper direction. In our tests we
have only experimented with point clouds that have no branches, whereas treating
objects with branches is not at the scope of this thesis. To align the point cloud
to the proper direction, we perform principal component analysis [153] using the
ALGLIB numerical analysis library [154]. For simplicity of the computations, the
entire point cloud is then realigned so that the principal axis matches the z-axis of
the environment.

3.2.2 Thickness of the Cross Sections

The thickness of each cross section also affects the quality of the resulting model. The
segmentation of the point cloud into cross sectional slices inevitably results in loss
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or distortion of information locally. However, if a proper slicing thickness is carefully
chosen, the information corruption is negligible. In other words, having very thick
slices will result in cross sections where the projected 2D point set differs significantly
from the initial 3D point set. Moreover, the points of a very thick slice may not provide
useful information, as we might get many features tangled together (see figure 3.4b).
To avoid this issue we should use thinner slices (figure 3.4a). On the other hand, a
set of very thin slices may contain too few points and may be inadequate to describe
a feature (figure 3.4d), or there may be adjacent slices that carry almost the same
information.

Figure 3.4: The thickness of the slices is another essential parameter. (a) Each slice
is required to provide the proper information about the boundary of the model in
its context. (b) Very thick slices may result in having features tangled together. (c)
A proper slice thickness may eliminate problems caused by an inappropriate slicing
direction. (d) Very thin slices may fail to describe a feature due to lack of information.

Since we cannot be certain if the thickness we have chosen is satisfactory for the
following computations, we have included an option in our demo implementation
that allows the user to split a cross section into two new cross sections with reduced
thickness, or to merge two or more cross sections into one cross section with increased
thickness.
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Objects in which the surface has an increased level of detail, such as rough terrains,
should be sliced into very slim cross sections, so as not to loose the details when
projecting the points of the cross section. For objects with a smooth surface the cross
sections should be thicker, because if we take thin cross sections, we may end up
with several adjacent cross sections that provide the same information. Of course, the
thickness of the cross sections may vary from slice to slice, as some parts of the point
cloud may have detailed surface and require thinner cross sections than other parts
with smoother surface.
As described in [70, 63, 155, 65], the ideal slice thickness may be determined

adaptively. However, to avoid performing a morphological analysis of the 3D point
cloud in the preprocessing phase, the user is also allowed to manually set the thickness
of the cross sections and segment the point cloud into slices of equal thickness.

3.2.3 Empty Space between Cross Sections

Another option for the user is to have some empty space between two adjacent cross
sections. There may be cases where some empty space is required between some cross
sections, e.g. to intentionally omit parts of the point cloud from being processed. For
example, a part of the object may contain a local feature we do not intend to include
in our model. We have the option to leave this feature out of our computations
by considering this part as empty space. However, if we choose to have non-zero
distance between two cross sections, we should have in mind that any points located
within the empty space will also be omitted from computations, resulting in the loss
of potentially significant information.
The projection of the cross section on its corresponding 2D plane produces some

space between the cross sections that is empty. The information of this part, however,
is not omitted from the computations, as it has also been projected on the 2D plane, so
this space does not count as empty space between the cross sections. In our examples,
we set each slice to start exactly where the previous slice ends, as we do not want to
omit any information from points located between two slices (i.e. there is no empty
space between adjacent slices).
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3.2.4 Other Cross Sectional Options

As we mentioned earlier, the user is allowed to slice the point cloud into cross sections
of variable thickness, so we may have thick slices on one part of the model and thin
slices on another. This means that the thickness is a parameter built in the data
structure of each cross section.
There is also the option to merge two or more cross sections into one cross section

with increased thickness, or to split a cross section into two cross sections with half
thickness. To perform such operations, one or more cross sections have to be selected.
For this feature, an option is included in the data structure of the cross section, which
allows the cross section to be selected. One or more cross sections can be selected at
once, even if they are not adjacent. This feature will be useful later on, when we
perform modifications on our model. Another option is the ability to define a new
cross section between two existing cross sections. This feature is discussed in detail
in section 5.2.

3.3 Treating Cross Sections as 2D Point Sets

Once we have segmented the point cloud into cross sections, the points that belong to
each cross section are projected on a plane that is vertical to the slicing direction. This
will allow us to use 2D techniques for processing the points of the slice. Since we have
aligned the principal axis of the point cloud to match the z-axis of the environment,
the projection is easily achieved by setting the z coordinate of all points equal to z0 of
the corresponding plane. If this is not the case, i.e. the principal axis does not match
the z-axis of the environment, the projection is calculated according the position and
the direction of the 2D plane.
A known methodology for achieving this is to align the points of a cross section

e.g. to the z − axis, set zi = z0 for all points and then re-align the points to their
previous position:

i. Translate points so that the projection plane passes through the origin (any
point of reference on the target plane, e.g. the point with x = 0, y = 0).

ii. Rotate points about the z axis so that the rotation axis lies in the xz plane.

iii. Rotate points about the y axis so that the rotation axis lies along the z axis.
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iv. Set z = 0 for all points of the cross section.

v. Apply the inverse of step iii.

vi. Apply the inverse of step ii.

vii. Apply the inverse of step i.

At the end of this process all points of a cross section will be projected to the their
corresponding 2D plane.
An example of projecting the cross sections is shown in figure 3.7, in which the

points on part (b) of the cross section are projected to the corresponding plane, while
the points on part (a) of the cross section remain unprojected. The projection of the
points to their 2D plane makes the point set of the cross section co-planar. This allows
us to perform operations in the 2D space instead of 3D, making the computations
simpler.

3.4 Examples

Figures 3.5, 3.6 and 3.7 illustrate some examples of a sliced point cloud of a Screw-
driver with 63690 points from Cyberware [1]. In this example, the slicing direction
is obvious, as the principal axis corresponds to the direction of the screwdriver shaft.
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Figure 3.5: The Cyberware Screwdriver. The point cloud may be sliced into cross
sections of variable thickness. The principal axis of the point cloud usually matches
the ideal direction for slicing the cloud.

Although the slicing direction seems obvious in this example, it may be difficult
to determine the proper thickness of each slice. This has to do with the level of
detail on the surface of the model. Some parts of the model may have simple features
with no details, such as the shaft of the screwdriver, which forms a cylinder with
no details. Other parts may have features with more details, such as the handle of
the screwdriver, which has a more complex shape. On the area of the shaft it is
considered safe to take cross sections of increased thickness. The area of the handle
requires thinner cross sections, to avoid having many points on each slice, which
implies increased loss of information. Figure 3.6 shows various instances of the slices
screwdriver and a single slice on the handle with different amounts of thickness. The
quality of the model decreases and the loss of information is greater as we increase
the thickness of the cross sections.
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Figure 3.6: Instances of the sliced screwdriver with different values of thickness.
When the highlighted cross section from (a) is projected on its 2D plane, we get the
slice in (b). Having cross sections with half its thickness will project to slice (c).

Figure 3.6: Instances of the sliced screwdriver with different values of thickness. A
cross section with 1/4 thickness projects to slice (d). The entire screwdriver sliced
with a specific thickness (e), and half its thickness (f).
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Figure 3.7: Detail of the Cyberware Screwdriver. (a) One cross section is highlighted,
and (b) the points of the cross section are projected to its corresponding 2D plane.

In some cases, defining the principal axis may prove to be a complex procedure,
like the one in figure 3.8, which illustrates a hip bone point cloud with 132538 points
also from Cyberware [1]. The process of identifying the features of the model may
prove to be a difficult task.
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Figure 3.8: The Cyberware hip bone. The proper slicing direction is not obvious in
this model, as the medial axis of the cloud is not a simple curve.

Figure 3.9 shows an example of a point cloud that represents a Cycladic idol, and
the acquired point cloud, which consists of 131517 points and was acquired using
a base Scanny 3d color laser scanner [156]. The Cycladic idol is one of the most
recognizable specimens of ancient Greek sculpture. For visualization purposes, the
point cloud in figure 3.9(d) has been sliced in 25 cross sections only. For the actual
computations, which have produced the models of chapter 6, the point cloud was
sliced into 100 cross sections.
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Figure 3.9: The Cycladic Idol. (a) The actual object, (b) the point cloud of its surface
scan, with one cross section highlighted, (c) the cross section is projected to the 2D
plane, (d) the entire point cloud is sliced into cross sections, and the points of each
cross section are projected to its corresponding 2D plane.
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Another example is the one of figure 3.10 which illustrates the scan of a twist
drill bit. This point cloud consists of 1436231 points, and was also acquired using
a base Scanny 3d color laser scanner [156]. Again for visualization purposes the
point cloud in figure 3.10 (right) was sliced into 40 cross sections, while in the actual
computations it was sliced into 200 cross sections.

Figure 3.10: A twist drill bit. (Up) The actual model, (Down) The point cloud sliced
into cross sections.
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Chapter 4

Computation of the Feature Poly-Line

4.1 Introduction

4.2 Computation of the Feature Poly-Line

4.3 Computation of the Convex Hull

4.4 Ensuring proper region assignments

4.5 Computation of the Voronoi Diagram

4.6 Examples

4.7 Performance Analysis

4.1 Introduction

In reverse engineering, a point cloud usually consists of a very large amount of points,
depending on the size and shape of the prototype object, and also on the accuracy
that was used to scan the object. The large amount of points makes it difficult to
process this raw information. Thus, we need to reduce the number of points in the
cloud while retaining most of the topology implied by the points.
Having computed the cross sections of the point cloud, we managed to provide

some kind of organization to the point set, but we are still unable to perform editing
of any form, as there is no information available concerning the connectivity between
the points. What we need to do is to extract information about the boundary of the
point set in each cross section. This boundary needs to be expressed in the form of
an ordered point list that later on will be represented as a smooth continuous curve.
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The ordered point list is referred to as the Feature Poly-Line, as the feature points
form a polygon that is regarded as a sequence of parametric curves of degree one.
When all cross sections are represented with parametric curves of higher degree, the
user will have a smooth and flexible editable model at their disposal.

4.2 Computation of the Feature Poly-Line

To extract the information about the geometry of the model from the unstructured
point cloud, we first have to represent the boundary of the cross sections as closed
curves. At first we begin by computing a linear curve, i.e. an ordered point list
called the feature poly-line. In the next step of our method, this feature poly-line
will be replaced by a curve of higher degree, which will provide a smooth continuous
representation of the model. But for the moment, we just need to identify some points
of the cross section that describe the boundary accurately.
Initially, each cross section may consist of many points located close to each other,

as provided by the point cloud. The information provided by so many points is
unnecessary, so we only need to keep some representative points on the boundary of
the cross section, i.e. an ordered point list consisting usually of much fewer vertices
than the points of the cross section. This boundary representation, called the feature
poly-line, is extracted with the use of computational geometry methods as described
below.

4.3 Computation of the Convex Hull

In the beginning we compute the convex hull [157] of a cross section. The points of
the convex hull are boundary points and are immediately identified as feature points,
as illustrated in figure 4.2. The computations are performed using the Qhull library
which is available in [157].
In most cases the shape implied by the points in a cross section is not convex,

and the feature poly-line formed by the convex hull will not describe the cross sec-
tion accurately in all regions. In such cases, fitting a poly-line to these points needs
additional information beyond the convex hull. But there is a special case where
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the shape implied by the points in a cross section is convex, and the feature points
from the convex hull will form the feature poly-line, as it will accurately describe the
boundary of the entire cross section.
For example, if the points of a cross section form a rectangular shape, the convex

hull will consist of only four vertices and four edges, while the cross section may
consist of thousands of points. Such an example is illustrated in figure 4.1.

Figure 4.1: A point set with the shape of a rectangle is convex. The feature poly-line
matches the ordered point list defined by the convex hull, as it describes the boundary
sufficiently at all regions.

In this case, no more computations are required for this cross section. But in the
general case of a free form model, there may be other concave regions, which are not
properly described by the convex hull. In such cases, like the one illustrated in figure
4.2, computing the convex hull is only the first step of the process.
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Figure 4.2: A cross section of the cycladean idol point cloud. The vertices of the
convex hull are identified as feature points for this cross section. Some regions are
not yet described by the feature poly-line.

For the general case in which we have regions not properly described by the
convex hull, we define a set of regions on the cross section, one region for each line
segment of the convex hull. Then we assign the points of the cross section to their
corresponding regions, according to their euclidean distance from the convex hull.
After we assign each point of the cross section to a region of the convex hull, we
determine which regions need to be described more accurately. The average distance
of the region points from the feature poly-line is a good estimator for determining
whether the region is properly described. Now there are points that are located near
the convex hull (up to a threshold), while other points are still located far from the
convex hull. Some of these regions may consist exclusively of points very close to the
convex hull (convex regions), while other regions contain points located far from it
(concave regions), and need further processing.
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4.4 Ensuring proper region assignments

Before computing the feature points for the concave regions, we need to ensure that
all points of the cross section have been assigned to the proper region. There are some
cases that might compromise the next computations and threaten the effectiveness of
the interpolating poly-line. The problem arises when one or more points are assigned
to the wrong region of the curve. One would expect that each point belongs to the
region of the curve which is closest. But there may be cases in which a point is closest
to one region, but belongs to another region, for example the one that is located on
the opposite side of the feature poly-line (e.g. see figure 4.3).

Figure 4.3: A cross section of the point cloud of the Cyberware boat [1]. The points
in the highlighted area (small circle) are located closer to a region other than they
should be assigned to (d2 < d1). We need to use the information of their neighboring
points to assign them to the correct region.

To avoid having such erroneous assignments, we keep track of the previous point
assignments, and if one point is found to be closer to one region, while its neighbors
are closer to another, we ignore the distance to the closest region and assign the point
to the region we assigned the neighboring points. When the distance is close to zero
we can change region. To ensure each point of the cross section is assigned to its
proper region, we declare the following definitions:

Definition 4.1. A point pN is a neighbor point of a point p if it lies within distance
smaller or equal to some characteristic constant ϵ.
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ϵ is called the neighborhood radius which is a characteristic of the point cloud
and is derived from statistically processing the topology of the slice.

Definition 4.2. We call separability tolerance d > ϵ of the point cloud, the minimum
number with the property that for any pair of points p1, p2 that belong to different
non-adjacent regions it holds ∥p1, p2∥ < d.

d is a characteristic of the point cloud derived from statistically processing the
topology of the cross-section. Then we have,

Definition 4.3. The shortest neighbor path between two points s1 and sn of the point
cloud slice is a sequence of points [s1, s2, ..., sn] such that each point is neighbor to

the next and
n−1∑
i=1

∥si − si+1∥ is minimized.

Then, given a point sequence P = [p1, p2, ...pk] that segments the slice into regions
[r1, r2, ...rk] we calculate the shortest neighbor paths between each adjacent pair of
points (pi, p((i+1) mod n)+1).

Definition 4.4. The initial seed of a region ri is the shortest path between pi and
p((i+1) mod n)+1.
Finally, we assign each point q of the point cloud to a region ri such that the initial

seed of ri contains a point sj that minimizes the shortest neighbor path length from
q.

Definition 4.5. For a point cloud point q the region of q is defined as the region ri

such that the initial seed of ri contains a point sj that minimizes the shortest neighbor
path length from q.
If we have the above definitions in mind while assigning the points of a cross

section to their corresponding regions, all points will be assigned to the proper region,
even if it is not the closest.

4.5 Computation of the Voronoi Diagram

In the previous step, in which we started identifying feature points using the convex
hull, all feature points have a common characteristic, i.e. all the feature points lie on
the outer boundary of the projected points in the cross section. Since we are extracting
a boundary representation of the the 3D object, the idea is to construct a feature poly-
line which consists of external points only. Using points that are not on the external
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boundary of the cross section would cause problems on the resulting model. These
problems are discussed in section A.3 of the Appendix.
The convex hull may have described the boundary of the model in some regions,

but there may be other concave regions where the convex hull does not capture the
topology of the points accurately. In other words, in some regions the points lie very
close to the convex hull and in some other regions the points lie far from it. Obviously
the convex hull is not efficient in describing these regions and another approach has
to be used.
To identify more feature points in regions where the curve is not close enough

to the points of the slice, we use the Voronoi diagram, which has a property called
the largest empty circle [158, 159]. The idea is to have a circle of variable radius and
throw it towards the point cloud from a given direction (the general idea includes
a sphere on the three-dimensional space). When it touches a point of the region,
this point is fixed and the circle continues to move around it, until a second point is
touched. When the circle touches the second point, it is also fixed, and the only free
variable is the radius, which now starts decreasing, until the circle touches a third
point. The third point is also fixed and the circle cannot move any more. The center
of this circle is one of the Voronoi vertices of the region. Therefore, if we compute
the Voronoi diagram for a specific region, each Voronoi vertex is a center for a largest
empty circle that is touching three or more slice points. The case of more than three
points touching a circle appears when we have many points (more than three) with
the same radius from the center, i.e. the Voronoi vertex. In this special case all points
share the same Voronoi center.
We can use this property on a region that consists of points which are located

far from the curve, to identify external points of the region that would qualify as
additional feature points in the poly-line. The three (or more) points of contact can
be added to the set of candidate points for the feature poly-line, as they are external
points of the region, which could be used to update the curve to describe the region
more properly than the convex hull. We can ensure that these points are external
points, by using largest empty circles thrown towards the point cloud from the outside
of the model. An example is illustrated in figure 4.4.
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Figure 4.4: Detail of a cross section of the handle of the screwdriver point cloud. The
largest empty circle of a Voronoi vertex is used to identify additional feature points
and update the curve.

The use of the Voronoi diagram and the largest empty circle for identifying feature
points has also been used in the rotating ball technique [86]. The identified feature
points also form the so called alpha shape of the point set, as described in [87].
The computation of the Voronoi diagram is performed using the Qhull library

[157], as was the Convex hull in the previous step of the method. In this step, we
compute the Voronoi diagram for those regions only, which need further processing,
i.e. the regions that have points far from the poly-line. Each Voronoi vertex located
outside the region is a candidate center for a largest empty circle that is touching
three or more region points. Of course the Voronoi diagram consists of other vertices
that lie between the points of the region, or in the inner side of the model.
We are interested in these centers only, which are associated to points of the cross

section that lie on the external boundary of the model. So we have to choose those
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vertices that will provide suitable feature points.
We do not look for Voronoi vertices located very close to the point cloud, because

they would provide feature points located very close to each other, which can be useful
only in cases where we need increased detail. We do not look for Voronoi vertices
located very far from the points of the cloud either, because they would provide
feature points located far from each other, leading to lower detail results. Also, we do
not look for Voronoi vertices located close to each other, because they would provide
the same feature points, or feature points very close to each other as in the first case.
Furthermore, Voronoi vertices on the inner side of the point cloud are also being
excluded, because we are interested in feature points on the external boundary of the
point cloud. What we need is to choose several Voronoi vertices evenly distributed
along the region points, at an intermediate distance from the region points.
In practice, after we have eliminated all unsuitable Voronoi vertices, we end up

with a subset of centers, which can be used to identify external points on the region.
The user may then request to use as many of these centers as they need, according
to shortest distance from a set of reference points which are evenly dispersed on
the outside of the region. This will ensure that we will not use centers very close
to the region, very far from the region, very close to each other, or on the inside of
the region. The number of centers may even be chosen arbitrarily. If the number
of centers is small, an additional iteration may be required to refine a part of the
region. A large number of centers will just identify more feature points, which can be
discarded later if they cause problems, such as the over fitting effect we will discuss
in section 5.3. Figure 4.5 illustrates an example of the centers which are chosen for
a region.
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Figure 4.5: The user requests the number of centers to be used for identifying ad-
ditional feature points. The centers closest to the reference points defined at equal
intervals on the outside of the feature poly-line are used.

After choosing a fair number of Voronoi vertices, we locate the three (or more)
points that are associated to each of them, i.e. they lie on the largest empty circle
for each o these centers. This is equivalent to choosing the points of the unique
Delaunay triangle, considering that there aren’t more than three co-circular points
for this Voronoi vertex (if there are more, the triangle is not unique, but still we can
choose any of the points, or even all of them). We identify these new points as feature
points and update the curve accordingly. We repeat the process for all regions that
consist of points which are far from the feature poly-line, until all points are located
near the curve. The idea is similar to the iterative multigrid methods in numerical
analysis, which are based on a sequence of meshes obtained by successive refinement.
Such algorithms have a recursive structure, i.e. in each multigrid iteration the error is
smoothed at a certain grid, the residual is transfered to the next coarser grid, and in
the next iteration the grid with the coarser residual is corrected (recursively) [160].
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Multigrid methods are typically used for accelerated convergence in adaptive mesh
refinement.
As we discuss in section A.4 of the Appendix, there are many candidate Voronoi

centers that may be used for identifying additional feature points. But there are some
issues that make some of these centers inappropriate, as they would result in models
of lower quality. For example, by choosing the farthest Voronoi vertex every time, the
feature points are expected to be relatively close to each other, as the curve closes in
to the region points slowly. We can ignore some Voronoi vertices that are too far from
the region, and choose a Voronoi vertex that is the farthest within a bounded area.
We can choose e.g. a Voronoi vertex that is farther from the region, but not farther
than the maximum distance of the region points from the curve. This condition is
indicative for the speed of the curve convergence. If we do not restrict the Voronoi
vertices it will take many steps to fully update the curve on this region. The curve will
consist of more feature points, and it will describe the region points with increased
detail.
On the other hand, if we restrict the Voronoi vertices within a radius, it will

take fewer steps to update the curve, the feature points will be fewer, but the curve
would describe the region points less accurately. We use this parameter to adapt the
curve fitting according to user specifications requirement or quality of approximation
guaranties. Figure 4.4 illustrates the resulting curve in case we choose the farthest
Voronoi vertex within a restricted area each time. If we had chosen the farthest
Voronoi vertex in each step, the resulting curve would consist of more feature points,
the curve would describe the slice points more accurately, but more iterations would
be required to fully update the curve.
By combining the initial convex hull with the feature points provided by the

selected Voronoi vertices of each region, we get a feature poly-line that interpolates
the points of the slice adequately in most regions. We can perform this operation
repeatedly for the rest of the regions until all regions consist of points that are located
near the fitting poly-line. After each iteration, the feature poly-line is updated with
the newly identified feature points, and the regions are recalculated, so that each
region of the feature poly-line has its own set of slice points (In the beginning we
had regions for the convex hull, but now the feature poly-line is used for calculating
the regions). The final result of the fitting feature poly-line is illustrated in figure 4.8.
The method is summarized in Algorithm 4.1. Note that L is a plane vertical to
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the slicing axis.

Algorithm 4.1 The algorithm for the feature point extraction using the Voronoi
diagram.
Voronoi_feature_poly-line()
Input: a set P of points, Slice i

Output: an ordered set Fi of feature points

(P (3D)
i , L)← slice(i, P )

Pi ← project(P
(3D)
i , S)

Fi ← qconvex(Pi)

Fij ← ∅
repeat

for each region Pij of Fi do
if avg_dist(Pij, Fij) > ϵ then then

Vi ← qvoronoi(Pij)

Vcandidate ← Vi − excludedV oronoivertices

Fij ← largest_empty_circle(Vcandidate, Pij)

Fi ← Fi ∪ Fij

end if
end for

until Fij ̸= ∅
return Fi

In the implementation of our method, we have defined a maximum number of
allowed regions, and automatically process the larger regions, as they are most likely
the regions which need further processing. The iterations go on until we have reached
the maximum number of regions. However, the user is also allowed to specify which
regions should be processed further, and may also manually select or remove Voronoi
vertices, region points or feature points in case the results are erroneous (e.g. because
of noisy data).
Of course, each time the feature poly-line is updated with additional points, the

regions are recalculated accordingly, so that the points are once again assigned to their
corresponding regions. The entire process is repeated as long as there are points that
are not close to their regions.
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4.6 Examples

Figure 4.6 illustrates an example of a region, in which the topology was not properly
described by the feature poly-line after computing the convex hull. The Voronoi dia-
gram is computed for this region, and the feature poly-line is updated with additional
feature points, according to the property of the Voronoi diagram, the largest empty
circle.

Figure 4.6: Detail of a cross section of the cycladean idol point cloud. (a) The convex
hull provides the initial feature poly-line. (b) Some regions are not properly described.
(c) The Voronoi diagram is computed for those regions. (d) Additional feature points
are identified. (e) The feature poly-line is updated.

The next example (figure 4.7) shows an entire cross section, in which we can see
which regions need further processing. After processing the large region on the first
image, a small region is still not properly described. We process this small region
again, and repeat until all regions are properly described.
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Figure 4.7: A cross section of the cycladean idol point cloud. For the feature poly-
line to fully describe a region, several iterations may be required. (Top) The first
iteration of our method applied on a region. (Bottom) The second iteration for the
small region.
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Figure 4.8: A cross section of the cycladean idol point cloud (cont.). After the sec-
ond iteration the region is described as expected. All other regions have also been
processed.

Figure 4.9 shows one cross section of the twist drill bit in figure 3.10. The feature
poly-line in the first step is formed from the convex hull of the point set. After
updating all regions of the cross section with the Voronoi method the feature poly-
line describes the entire cross section accurately.

57



Figure 4.9: A cross section of the twist drill bit point cloud. The points of a cross
section are processed as an individual 2D point set. (Top) The convex hull of the
point set (blue points) provides the initial feature poly-line. (Bottom) The feature
poly-line is updated as new feature points are added in regions where the point set
is not accurately described (red points).
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4.7 Performance Analysis

It is not possible to derive an exact evaluation of the complexity of our approach since
this depends on the shape of the object. In this section we provide an estimation of
the expected complexity as a function of the number of points in the point cloud.
The complexity is measured in point operation as we have a large number of points
in the point cloud and most of the processing is performed point-wise.
Before we apply our method to a point cloud, three standard steps are required,

which require O(n) point operations each (where n is the number of points in the
cloud). These are (a) loading the cloud into memory, (b) slicing the cloud, and (c)
projecting the slice points on their slice. Slicing the cloud requires O(n) because each
point has to be assigned to a slice, so the whole cloud has to be processed, regardless
of the number of slices. The same applies for projecting the points to a slice. The
convex hull of each slice requires O(ni logni) operations (ni being the number of
points in slice i). But since we compute the convex hull for all slices, it sums up to
O(
∑s

i=1 ni logni) where s is the number of slices, which is bounded by O(n logn),
since

∑s
i=1 ni = n.

At this point, we have to isolate the regions of the slice points according to the
convex hull, and compute the Voronoi diagram only for those regions, which are not
adequately described by the feature poly-line. This step depends on the shape of the
slice points, and may require computation for up to all regions (or for no region at
all, if the points of the slice form a convex polygon).
Considering the case where we have to repeat the process for all regions, it would

take O(nj lognj) point operations for the nj points of region j. This means that we
need O(

∑r
j=1 nj lognj) operations for slice i, where r is the number of regions, and

O(
∑s

i=1

∑r
j=1 nij lognij) for all slices. This is also bounded by O(n logn), since∑s

i=1

∑r
j=1 nij = n.

The number of iterations required to fully fit the feature poly-line to the slice
points also depends on the shape of the points. In the worst case it may require up to
O(logni) steps to process the ni points of slice i, i.e. O(logn) for all slices. In practice,
it usually takes only a constant number of steps. In the example of the screwdriver
handle cross section in figure A.7, the resulting curve is satisfactory after the second
step. In the cross section of the Cycladean Idol in figure 4.7, the resulting curve is also
satisfactory after the second step. However, the twist drill bit cross section in figure
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4.9 requires at least five steps for all the large regions to be properly described by
the feature poly-line.
To select the Voronoi vertices in all regions and all slices, it requires O(n), and to

identify the next feature points and update the feature poly-line it requires a constant
number of point operations.
To fully update the feature poly-line in all slices and to identify all feature points

we need O(logn) iterations of either O(1), O(n), or O(n logn) point operations. This is
bounded by O(logn) ·O(n logn) = O(n log2 n). So, in conclusion, to derive descriptive
feature point sets for all slices of the point cloud takes O(n log2 n) time.
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Chapter 5

Reconstruction of the Surface

5.1 Introduction

5.2 Inserting new Cross-Sections

5.3 Representing Cross-Section Contours by G1 Splines

5.4 Reconstructing the Surface

5.1 Introduction

Up to this point, we have computed a feature poly-line for each cross section of the
point cloud, which represents the boundary of the cross section accurately. However,
this is not the best we can do, as the set of poly-lines is linear and the representation
will not be smooth. We need to provide a smooth continuous representation of these
feature poly-lines, and use it to reconstruct the surface of the model.
But before we proceed in constructing this smooth continuous representation,

there is another issue we should discuss, which should be addressed at this point,
where we still have our model in the form of a set of feature poly-lines.
Among the cross sections we have computed, there may be some parts where the

representation is accurate in each 2D cross section, but the combination of the cross
sections that will form the 3D surface may be erroneous. In other words, the cross
sections we have computed so far may describe the point cloud accurately within a
specific area, but there may be some areas between the existing cross sections where
the point cloud is not properly described. Or there might be some cases where the
shape of the feature poly-lines differs significantly between two adjacent cross sections.
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Such an example is illustrated in figure 5.4, in which we can see two cross sections
from the cycladean idol, at the part where the chin begins. The cross section on the top
contains a protrusion at the area of the chin, while the bottom cross section is located
under the chin, and therefore has no such protrusion. When we attempt to reconstruct
the surface of the model, such major differences may be difficult to represent. For
example if we construct a triangle mesh we will have very long triangles which
may not connect to their neighboring triangles properly (the normals are abruptly
influenced by the long triangles). Or if we use smooth patches for the reconstruction,
the smoothness or the continuity between adjacent patches may not be preserved as
we intend.
What we need is to reduce the differences between the feature poly-lines of ad-

jacent cross sections. To achieve this, the first thought would be to divide the point
cloud into more cross sections initially, so as to increase the level of detail among
the cross sections. But this would mean we have to start the whole process from the
beginning. Instead of discarding all the work we have done so far, we have included
an option in our system that allows the user to artificially define a new intermediate
cross section between two already processed cross sections, using only the existing
feature poly-lines of the two cross sections.

5.2 Inserting new Cross-Sections

Again, we make use of the Voronoi diagram and the property of the largest empty
circle. We compute the Voronoi diagram for all the feature points of both cross
sections, and use the Voronoi vertices as feature points of a new intermediate cross
section. To be precise, not all Voronoi vertices would qualify as feature points for
the intermediate cross section, so we do not need to compute the entire Voronoi
diagram of the two feature poly-lines. We only need the Voronoi vertices given from
neighboring feature points, two from the one cross section, and one from the other.
The center of the circle that is defined from these three feature points is the Voronoi
vertex we identify as feature point for the intermediate cross section. Such points are
illustrated in figure 5.1.

62



Figure 5.1: In case a new intermediate cross section is required, it is constructed from
the Voronoi centers of the points of two adjacent feature poly-lines.

The process of matching the feature points of the two cross sections requires the
triangulation of the contours defined by the two feature poly-lines. The correspon-
dence between vertices of the two feature poly-lines is represented in a graph like
the one illustrated in figure 5.2, which was discussed by Sederberg et. al. in [161].
A minimum cost path is computed along the graph, for which the vertices of the
two cross sections satisfy the cost function. In our experiments, we used the short-
est distance between the points of the two cross sections as the cost function. Other
popular approaches use different cost functions, e.g. to maximize the volume of the
polyhedron that is formed by the triangle strip, as suggested by Keppel [138], or to
minimize the surface area, as proposed by Fuchs [137].
All these works share a concept similar to dynamic time warping (DTW), a

well-known technique used to find an optimal alignment between two given (time-
dependent) sequences under certain restrictions. Originally, DTW has been used to
compare different speech patterns in automatic speech recognition, and also in fields
such as data mining and information retrieval, where it has been successfully applied
to automatically cope with time deformations and different speeds associated with
time-dependent data [162].
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Figure 5.2: For the contour triangulation, the connectivity of the points is expressed
as a monotonically decreasing path in a tabular scheme that specifies which points
participate in each triangle or quad.

In our approach, we compute the Voronoi vertex defined from the first two feature
points on the one cross section and the first feature point on the other cross section.
Then we compute the Voronoi vertex defined from the last feature points on both
cross sections. In the next step we compute the Voronoi vertex from the feature points
in the middle of the cross sections, and carry on with the left and right part using a
divide and conquer technique. As a criterion for finding the proper correspondence
between the points of the two cross sections, we have used the shortest Euclidean
distance between the points of the cross sections. At the end, all Voronoi vertices for
all feature points on both cross sections have been computed. Algorithm 5.1 describes
the process of triangulating the contours of two adjacent cross sections to compute
the feature points of the new intermediate cross section.
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Algorithm 5.1 The algorithm for the contour triangulation.
contour_triangulation()
Input: point set P (n points), point set Q (m points)
Output: point set V of centers (max(n,m) points)

p0 ← first_point_of_P , q0 ← find_closest(Q, p0)

compute_path(0, n− 1, 0,m− 1) // compute path recursively

// compute triangulation according to path
for each pi, qj of P , Q, with path_tableij = 1 do

if path_table(i+1)j = 1 then
triangle← (pi, qj, pi+1)

else if path_tablei(j+1) = 1 then
triangle← (pi, qj, qj+1)

else if path_table(i+1)(j+1) = 1 then
triangle1← (pi, qj, qj+1), triangle2← (pi, qj, pi+1)

// choose triangle with larger angles
if min_angle(triangle1) > min_angle(triangle2) then

triangle← triangle1 else triangle← triangle2

end if
end if
center ← circumcenter(triangle)

add_point(V, center)
end for
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Algorithm 5.1 The algorithm for the contour triangulation.

compute_path(start1, end1, start2, end2)
if end1 < start1 then

return

end if
if end2 < start2 then

return

end if
if end1 − start1 > end2 − start2 then

middle← (start1 + end1)/2

nearest← find_closest(Q,middle)

path_tablemiddle,nearest ← 1

compute_path(start1,middle− 1, start2, nearest− 1)

compute_path(middle+ 1, end1, nearest+ 1, end2)

else
// end1 − start1 < end2 − start2

middle← (start2 + end2)/2

nearest← find_closest(P,middle)

path_tablenearest,middle ← 1

compute_path(start1, nearest− 1, start2,middle− 1)

compute_path(nearest+ 1, end1,middle+ 1, end2)

end if

Figure 5.3 illustrates the steps of the procedure described in algorithm 5.1, in a
visual representation. It follows a similar notation as the graph on figure 5.2. In the
example of figure 5.3, a given point set P which consists of 20 points, and another
point set Q of 17 points are used to compute the contour triangulation between the
two cross sections P and Q.
The ordered point list P is shown in the bottom of the grid, and forms the

horizontal axis of the tabular scheme. The point list Q is shown on the left side of
the grid and forms the vertical axis of the tabular scheme. The cells [i, j] of the grid
designate the correspondence of the points pi and pi+1 to the points qj and qj+1. In
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practice, there are triangles in the contour triangulation which consist of these points.
In the beginning, the points p0 and q0 are assumed to be adjacent, since the two

point sets are ordered and the starting points are the closest point in a given point
of reference. Since the two point sets form closed poly-lines, the same applies for the
last two points p20 and q17, as they are the points just before the first points on both
point sets.
First the middle point is chosen in the point set P , i.e. p10, as P has more points

than Q. The point that satisfies the given criteria (here being the shortest distance)
is identified on the point set Q. As shown in the example of figure 5.3 (c), the point
q11 is the closest to p10.
The process is recursive, and the grids highlighted in gray on the top right and

bottom left of the initial grid are used for the next iterations, until all points are
combined to form the proper contour triangulation.

Figure 5.3: The recursive process of the contour triangulation. (a) The points pi of
the one cross section are positioned as a point list on axis x, while the points qi of
the other cross section are arranged as an ordered point list on axis y. The process
includes: (b) choosing the middle point on the cross section with the greater number
of points, ...
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Figure 5.3: ... (c) finding its closest neighbor on the other cross section, (d) defining
a correspondence between the two points, and (e, f, ...) repeating for the point lists
on the left and right side recursively. 68



Figure 5.3: The recursive process of the contour triangulation (cont.).
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Figure 5.3: The recursive process of the contour triangulation (cont.).
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The output of this method is a set of Voronoi vertices which will form the feature
poly-line of the new intermediate cross section. These vertices are not positioned on
a 2D plane, but in 3D space, so we need to project them to the corresponding plane
of the new cross section, as we did with the cross sections of the point cloud.
It should be noted at this point that the feature points of the new cross section

are not points of the initial point cloud. They have been artificially computed to
fix possible faults in the description of the point cloud from the existing cross sec-
tions. Other information, such as cloud points or the convex hull is not available for
this intermediate cross section, as the feature poly-line is computed by other means.
However, there is no problem with that, since we only use the feature poly-line for
further processing. Figure 5.4 shows a new cross section defined by two adjacent
cross sections.

Figure 5.4: Cross sections in the area under the chin of the cycladean idol point cloud.
(Left) A triangulation is computed between the contours of the two cross sections.
The three vertices of each triangle correspond to a Voronoi region and define a circle
(the largest empty circle), the center of which is identified as feature point for the
new intermediate cross section. (Right) A detail from the area under the chin of the
cycladean idol. The newly computed feature points are positioned in 3D space and
have to be projected to the corresponding 2D plane between the two existing cross
sections, to form the feature poly-line of the intermediate cross section.

5.3 Representing Cross-Section Contours by G1 Splines

The feature poly-lines we have computed for the cross sections of the point cloud
provide useful information concerning the topology of the 2D point set, as they are
organized point lists and may be used to reconstruct the surface of the model. But
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this surface does not meet the requirements concerning the desired smoothness for
the resulting model. The feature poly-lines consist of line segments and there may
be parts where the gradient of neighboring line segments differs considerably. Such
behavior of the method may be caused when the number of cross sections is small.
If the user has chosen increased thickness for each cross section in the beginning of
the processing, the parts of the point cloud will be described with lower detail and
the resulting model will be of lower quality. Apart from that, any possible errors that
were present on the initial point cloud will also be present on the feature poly-lines
and on the final model.
We need to represent each cross section with a smooth curve instead of a poly-

line. As discussed in [163], it is a common practice to use B-Spline curves of degree
3, because they are easy to compute and capable of representing adequately most
3D objects. So we compute a closed cubic B-Spline that interpolates the points of the
feature poly-line. The use of a cubic B-Spline ensures that we have G1 continuity
(instead of G0 with the poly-line). We employ curves of degree 3, because it is the
lowest degree satisfying G1 continuity.
The knot vector, the parameter values and the control points of the interpolating

curve are calculated according to the method described in [88] as follows.
Let the (n + 1) feature points of a cross section define a set of data points Q =

Q0, Q1, ..., Qn. Then a B-Spline curve of (n + 1) control points can be derived that
passes through all the data points. The order of the B-spline curve will be k = 4 so
that we derive a curve of degree 3. The (n+ k + 1) knot values are defined as:

ti = 0 (i = 0, 1, ..., k−1)

ti = ti−1 +

i−2∑
j=i−k

dj

n+1∑
m=k

m−2∑
j=m−k

dj

(i = k, k + 1, ..., n)

ti = 1 (i = n+ 1, n+ 2, ..., n+ k)

(eq 5.1)

where

dj =
√
|Qj+1 −Qj| (eq 5.2)

and Qj are the data points already specified. The (n + 1) control points P =

P0, P, ..., Pn have to satisfy the relation
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Qj =
n∑

i=0

PiNi,k(uj) (j = 0, 1, ..., n) (eq 5.3)

where uj are the parameter values to be assigned to data points Qj , and Ni,k(uj)

are the piecewise polynomial B-spline basis functions of order k (or degree k − 1).
Any set of uj between tk−1 and tn+1 will give a B-spline curve passing through the
data points. We chose

uj =
tj+1 + tj+2 + ...+ tj+k−1

k−1
(j = 0, 1, ..., n) (eq 5.4)

as recommended in [88] for obtaining a smooth resulting curve. The numerical
values of uj obtained from equation eq 5.4 are substituted in equation eq 5.3, and
the following simultaneous equations for Pi are derived:

· Ni,k(u0) · ·
· Ni,k(u1) · ·
· · · · · ·
· Ni,k(un) · ·




P0

P1

·
Pn

 =


Q0

Q1

·
Qn

 (eq 5.5)

We can solve for Pi from equation eq 5.5 to obtain the control points of the B-
spline curve that interpolates the data points Qi. However, there is one detail we
need to consider regarding the smoothness of the curve. The process described above
works for any curve, given the set of feature points for interpolation. But when it
comes to constructing a closed curve, i.e. a curve where the end point coincides with
the start point, it does not ensure a smooth connection at the end points. Since the
boundary of the cross section forms a closed point set and the feature poly-line form
a closed polygon, we need to keep in mind that the curve should be smooth at all
points, including the beginning and the end.
To ensure that the start/end point satisfy G1 continuity as the rest of the curve,

we enforce a restriction that the tangent is the same in the start point and at the end
point. Of course we are discussing about the same point, so what we need is to have
the same tangent on both directions near this point, i.e. in the beginning of the curve
and at the end of it.
A simple technique to achieve this is to artificially include two points in the feature

poly-line, one before the start/end point and one after that, in such a position, so that
we have three collinear points, with the middle point (being here the start/end point)
having the same tangent in both directions.
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Figure 5.5 illustrates an example curve, where the n points P0, P1, P2, ..., Pn−2, Pn−1

are interpolated by a B-Spline. On the left, no restriction is enforced at the start/end
point, so the G1 continuity is lost. On the right, the points Q0 and Q1 are added in
the list of feature points and the interpolating curve becomes G1 continuous at all
points, including the start/end point.

Figure 5.5: To ensure G1 continuity on the end points we insert two more points that
enforce collinearity of the three points near the start/end point of the curve.

The calculation of the points Q0 and Q1 depends on the position of the points P1

and Pn−1. The direction of the line P (t) = (1− t)P1+ tPn−1 defines the direction of the
line [Q0, P0, Q1]. We chose the points Q0, Q1 to be the points for which the projection
Q

′
0, Q

′
1 to the line P (t) is in the middle of [P1, P

′
0] and [P

′
0, Pn−1] respectively, so for

the euclidean distance d we have:

d(Q
′

0, P1) = d(Q
′

0, P
′

0) and d(Q
′

1, P
′

0) = d(Q
′

1, Pn−1)

and this ensures a G1 continuous connection at the start/end point of the closed curve.
Of course, this process has to be performed before the interpolation of the B-Spline.
The points Q0 and Q1 are considered as feature points, and the number n of points
in the feature poly-line includes these two points (which, however, are not points of
the initial point cloud).
After the interpolation of the B-Spline on the feature poly-line, another problem

may arise, which may require the re-calculation of the continuous curve. There may
be cases where some points of a feature poly-line are positioned very close to each
other. When a B-spline is attempted to interpolate many data points in a limited
area, it sometimes passes through the data points in an unpredictable path, such as
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illustrated in figure 5.6 (Up). This effect is called over fitting of the curve, and a
simple way to avoid it is to use fewer knots for the interpolating curve. Of course,
this means that we should use fewer data points for interpolation. For this reason,
our method allows the user to thin out the feature poly-line by retaining several
representatives of the feature points and discard the rest of the feature points within
a specific area. After thinning the feature poly-line, the interpolating B-spline should
be properly computed. The user is also allowed to manually omit a specific feature
point from the calculations if it would corrupt the resulting curve. Figure 5.6 (Down)
shows the correctly computed part of the curve.

Figure 5.6: A detail of a smooth curve. (Up) If the feature points are very close to
each other, the resulting curve may have irregular or even self intersecting sections
due to over-fitting. (Down) Discarding selected points to thin out the feature poly-line
will correct the problem of over fitting and produce accurate curves.

Once we have acquired the B-Spline curve that describes the cross-section, we
proceed to the next cross-section and repeat the same process, until all cross-sections
have been processed, and the point cloud is described by a sequence of B-Spline
contours. A sequence of the resulting curves is illustrated on figure 5.7.
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Figure 5.7: The sequence of curves of the entire cycladean idol point cloud (100 cross
sections).

5.4 Reconstructing the Surface

Each cross section has now been described with the use of complex structures which
allow for high level processing. But the information extracted so far represents indi-
vidual parts of the point cloud and there is no correlation between the cross sections.
To reconstruct the surface of the object we need to combine the curves we have com-
puted in the previous step, i.e. to define the way each cross section is associated with
the previous and the next cross section.
A common way to construct a surface is to combine curves that follow different

directions. In our case what we need is to select one point at a specific position on
each (horizontal) curve (i.e. for all cross sections) and to define a new (vertical) curve

76



that passes through these points. That is, if we consider the cross section to be aligned
horizontally, we form vertical curves that begin in the first cross section and end at
the last cross section, passing through all cross sections at a specific point. The issue
now is to select the proper point in each cross section to form the vertical curves.
A first thought would be to use the feature points, which are already available,

and construct an interpolating curve that would pass through a feature point on all
cross sections. This approach seems like a good idea, and it would have no additional
cost concerning the computations, as the required methods are already available from
the previous steps. The process would just include the construction of the vertical
curves using the method described in section 5.3.
But the result of this method is not as expected, as illustrated in figure 5.8.

Figure 5.8: Interpolating a curve on the existing feature points does not produce
good results, when the points are not properly aligned. (Left) The correspondence
between the feature points. (Right) The surface of the resulting model.
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The problem arises when the feature points on one cross section are not properly
aligned with the corresponding feature points on the previous and next cross section.
While the initial point cloud consisted of points with a uniform dispersion, the process
of projecting the points on their 2D planes and the computation of the feature poly-
line, have provided us with points that may be very close to each other at some
regions and far from each other at other regions. Furthermore, the number of feature
points may be different from one cross section to another, so there may not be a
one-to-one correspondence between the feature points.
The solution to this problem is to use points other than the existing feature points

of the cross sections for constructing the vertical curves and eventually to reconstruct
the surface of the model. As we have already a G1 smooth and continuous B-Spline
curve available for each cross section, we may re-sample the curves and take an equal
number of points with an even dispersion from each other on all cross sections.
Additionally, the start/end points of each curve also may have not been properly

aligned with each other, although the initial feature points may have been ordered
according to their coordinates. In the model of figure 5.9 (left), the feature points
chosen for starting the feature poly-lines are the points pi with px = min(x) and
py = min(|y|), which means that the most left point on the x − axis and the point
nearest to zero on the y− axis is used as start/end point for the feature poly-line on
each cross section.
By re-sampling the B-Spline curves, the start/end points are also updated, to be

properly aligned to each other. Figure 5.9 (right) shows the aligned start/end points,
for which we have py = 0 instead of py = min(|y|). this means that all curves start at
the most left point on the x− axis and the point exactly at zero on the y − axis.
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Figure 5.9: (Left) The start/end point pi on each cross section is set to the feature
point with px = min(x) and py = min(|y|). The points are not aligned and the surface
reconstruction will suffer from irregularities. (Right) By re-sampling the curves we
are able to set the start/end points pi to the points with px = min(x) and py = 0. The
points are now aligned and the surface reconstruction becomes robust.

So far so good, but we haven’t explained yet, how are the B-Splines re-sampled
to acquire the aligned points?
As we divided the point cloud into cross sections in the first step of our method,

we now divide the curves of each cross section into curve segments. The points that
define these segments will be used to form the structural elements of the surface. For
example, if we want to use quads for the representation of the surface, we can use
two points from one cross section and another two points from the next cross section
to form a quad. If we want to use triangles, we may use the same four points and
form two triangles instead of one quad.
The detail level of the resulting surface depends on the number of segments in

which the user has divided the curves of the cross sections. Similar to the step where
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we sliced the point cloud into cross sections, if the surface of the object is smooth, the
segments do not need to be very small, whereas for objects with a rough surface the
segments should be small, i.e. the curves should be divided into more segments of
decreased length. To increase the detail level in the resulting model we may increase
the number of curve segments. The curve segments of a cross section must be of
equal arc length. To calculate curve segments of equal arc length, we use the arc
length parameterization [77], and choose points at proportional intervals of equal arc
length on the curve. When calculating curve segments on curves with increased arc
length, the curve segments will also have increased arc length compared to curve
segments from smaller curves. This is normal, as we want to describe all parts of the
point cloud with these curves. At the end of this step, the curves of all cross sections
are divided into the same number of curve segments, and the points of these segments
form a mesh that describes the surface according to the detail level specified by the
user.
As described in [77], for the arc length parameterization we begin with the para-

metric representation of a cubic spline curve

Q(t) = (x(t), y(t), z(t)),

where t is from t0 to tn, n is the number of spline segments, and t0, t1, t2, ..., tn are
the break points. The arc-length parameterization of a curve can be constructed from
any other differentiable parameterization by the following two-step process:

• Compute arc length s as a function of parameter t: s = A(t). Since s is a strictly
increasing function of t, there is a one-to-one correspondence between s and t.

• Compute t = A−1(s), the inverse of the arc length function. This function is
well defined and monotonically increasing for cubic splines. By substituting
t = A−1(s) into Q(t), we get a curve parameterized by arc length s, P (s) =

(x(A−1(s)), y(A−1(s)), z(A−1(s))), where s ∈ [0, L] and L is the total length of the
curve.

The arc length is a geometric integration,

A(t) =

∫ t

t0

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt, (eq 5.6)

where for a cubic spline,
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x(t) = ax,i(t− ti)

3 + bx,i(t− ti)
2 + cx,i(t− ti) + dx,i

y(t) = ay,i(t− ti)
3 + by,i(t− ti)

2 + cy,i(t− ti) + dy,i

z(t) = az,i(t− ti)
3 + bz,i(t− ti)

2 + cz,i(t− ti) + dz,i,

where t ∈ [ti, ti+1], i = 0, 1, 2, ..., n − 1, the values for x, y, and z are of class C2

on [0, L]. In general, the integral of equation eq 5.6 cannot be computed analytically.
Therefore, the arc-length parameterization for cubic spline curves cannot be expressed
as a combination of elementary functions and must be evaluated numerically.
This method computes the approximation curve in three steps. First, the arc

lengths of all the cubic segments in the input spline curve, Q(t), are computed and
summed to determine the arc length L of Q(t). The second step is to find m+1 points
equally spaced along Q(t). The third step is to compute a new spline curve using the
equally spaced points as knots.
The result is an approximately arc-length parameterized piecewise spline curve

divided into m cubic segments. The arc length of each spline segment on the input
curve is

li =

∫ ti+1

ti

√
(x′(t))2 + (y′(t))2 + (z′(t))2dt,

where i varies from 0 to n − 1 and n is the number of spline segments in the
original curve. Thus, the arc length of the whole curve is L =

∑n−1
i=0 li.

Using the bisection method, we compute m + 1 equally spaced points on Q(t)

located at distances 0, l̃, 2 · l̃, · · · ,m · l̃ from the start of the curve, where l̃ = L/m

is the length of each segment in the output curve. These points are defined by the
parameter values t̃0, t̃1, ..., t̃m, which satisfy the following integration,

∫ t̃i

t0

ds

dt
dt = i · l̃, (eq 5.7)

where i = 0, 1, ...,m, s is arc length, and t is the parameter of the spline functions.
The value of t̃i can be computed in two steps. The first step is to find a spline

segment indexed by j which satisfies
∑j−1

p=0 lp ≤ i · l̃ <
∑j

p=0 lp. This condition ensures
that tj ≤ t̃i < tj+1.
Equation eq 5.7 is written as,
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∫ t̃i

t0

ds

dt
dt =

∫ tj

t0

ds

dt
dt+

∫ t̃i

tj

ds

dt
dt =

j−1∑
p=0

lp +

∫ t̃i

tj

ds

dt
dt = i · l̃

The second step is to compute ti such that

∫ t̃i

tj

ds

dt
dt = i · l̃ −

j−1∑
p=0

lp

where ti is on the cubic spline segment starting with parameter value tj. The
second step is accomplished with the bisection method. We suppose tleft = tj and
tright = tj+1. The interval [tleft, tright] contains the solution t̃i. This interval is bisected
into two subintervals [tleft, tmiddle] and [tmiddle, tright], where tmiddle = (tleft + tright)/2.
We can calculate the arc length between [tj, tmiddle] as ∆s =

∫ tmiddle

tj

ds
dt
dt. The solution

lies in the upper subinterval [tmiddle, tright] if ∆s < i· l̃−
∑j−1

p=0 lp. Otherwise, the solution
lies in the lower subinterval [tleft, tmiddle]. This bisection process is repeated until a
required error tolerance for arc length is achieved.
With the above bisection method, we get t̃0, t̃1, · · · , t̃m that divide the original

curve into equal arc-length segments. Using the original cubic spline function, we then
compute the evenly spaced points (x̃0, ỹ0, z̃0), (x̃1, ỹ1, z̃1), · · · , (x̃m, ỹm, z̃m) at arc-lengths
s0 = 0, s1 = l̃, s2 = 2 · l̃, · · · , sm = m · l̃. We re-parameterize the spline curve by interpo-
lating [(s0, x̃0), (s1, x̃1), · · · , (sm, x̃m)], [(s0, ỹ0), · · · , (sm, ỹm)] and [(s0, z̃0), · · · , (sm, z̃m)].
In this interpolation, we interpolate x, y and z to arc length s and get the cubic spline
functions in equation eq 5.8. Our goal is to have the following result for s ∈ [0, L]:

√
(x̃′(s))2 + (ỹ′(s))2 + (z̃′(s))2 = 1.0

Therefore, the magnitude of the beginning tangent vector and the magnitude of
the ending tangent vector should be 1.0. The new curve is

x̃(s) = ãx,i(s− si)
3 + b̃x,i(s− si)

2 + c̃x,i(s− si) + d̃x,i

ỹ(s) = ãy,i(s− si)
3 + b̃y,i(s− si)

2 + c̃y,i(s− si) + d̃y,i

z̃(s) = ãz,i(s− si)
3 + b̃z,i(s− si)

2 + c̃z,i(s− si) + d̃z,i,

(eq 5.8)

where s ∈ [si, si+1], i = 0, 1, 2, ...,m − 1, and the values for x̃, ỹ, and z̃ are of class
C2 on [0, L]. The tangent vectors of the derived curve at the beginning point and the
ending point are set to be equal to the normalized tangent vectors of the original
curve at the beginning point and the ending point, respectively.
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This method provides an arc-length parameterized spline curve with m equal-
length spline segments. When we apply it to the B-Splines of all cross sections on
our model, we get a new set of sample points, which are evenly dispersed on the
curves according to their arc-length.
Unlike the contour triangulation method described in section 5.2, the new sam-

ple points do not have to be combined across the cross sections, to find a proper
correspondence between the points according to shortest distance. In this case the
arc-length method has provided an ordered point list on each cross section, with
equal number of points for all cross sections, which are positioned at equal arc-length
intervals that ensure a one-to-one correspondence without any more computations.
This means that the new points are aligned to each other across the cross sections,
and we have the same number of points on all cross sections.
Furthermore, we know that for the n sample points we have acquired on each

cross section, we can construct n vertical curves that use the same point on each cross
section. That is, the vertical curve vi will pass through point pi on all cross sections.
The vertical curves are also B-Spline curves, which are acquired with the use of the
interpolation method described in section 5.3. Unlike the B-Splines that represent the
cross sections, these curves are not closed on their end points, and no restriction is
required concerning the continuity and smoothness in the beginning and at the end
of the curves. Figure 5.10 shows a detail of a model where the cross sections P and
Q have been re-sampled and the vertical curves have been constructed. The vertical
curve on the left passes through all cross sections on point 0(p0, q0, ...), the vertical
curve on the middle passes through all cross sections on point 1(p1, q1, ...), the vertical
curve on the right passes through all cross sections on point 2(p2, q2, ...), and so on.
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Figure 5.10: Interpolating vertical B-Splines on the newly re-sampled feature points
according to the arc-length method ensures a proper representation of the model
surface with a one-to-one correspondence between the points across all cross sections.

For simplicity of the computations, since the arc length parameterization uses
the bisection method on the curve segments, we have chosen the number of the
sample points to be 2n (n the number of iterations), which means that the arc-length
method will make n bisections on the initial curve. In other words, the number of
vertical curves we request, which also represents the level of detail on the surface
reconstruction, will be 2, 4, 8, 16, 32, 64, 128, ... and so on.
At the end, for representing the surface of the model as a simple triangle mesh,

we may use the four neighboring points defined by two adjacent cross sections and
two adjacent vertical curves, to form a pair of triangles (or one quad) for rendering
purposes, as illustrated in figure 5.10.
Figure 5.11 summarizes the final steps of the reconstruction method. Figure 5.11

(a) shows the B-Spline curves that describe the cross sections of the point cloud. In
this example, the point cloud was divided in 100 cross sections, so 100 B-Splines
describe the object. Figure 5.11 (b) shows the vertical curves, as calculated for the
100 cross sections of the first image. 128 vertical curves have been computed for
this example. Figure 5.11 (c) shows the B-Splines and the vertical curves combined
together. For visualization purposes only a 20% of the actual curves are rendered.
Figure 5.11 (d) shows the reconstructed surface of the model.
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Figure 5.11: The resulting model: (a) the B-Spline curves of the cross sections, (b)
the vertical curves, (c) a thinned visualization of the cross sections combined with the
vertical curves, and (d) the reconstructed surface.
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Chapter 6

Editing Free Form Models

6.1 Introduction

6.2 Applying Free Form Transformations

6.3 Implementation and Examples

6.1 Introduction

We now have an editable representation of the point cloud at our disposal and we
may perform high level modifications on the model. The nature of the model itself is
crucial for the computations we are about to apply. Mechanical parts will be treated
with a different approach than free form objects.
When dealing with mechanical parts, editing is usually constrained to the features

of the object. Such point clouds usually represent objects with geometric primitives
(e.g. spherical or cylindrical holes or extrusions). In this case the modifications could
be directed according to the properties of these primitives (e.g. modify radius, height
or width of a feature). For example, in a part with a cylindrical shape it would be
reasonable to modify the radius or the height of the cylinder.
On the other hand, when dealing with free-form objects, no geometric primitives

are present on the model. Free form objects usually require free form modifications,
i.e. modifications that apply to the entire model or certain parts of it, but there are no
properties of geometric primitives that could be used for our modifications. The user
may perform arbitrary modifications to the model, limited only by their imagination
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and of course the correctness of the resulting model. In this case, however, the editing
procedure can become difficult due to complex, highly variable morphologies.

6.2 Applying Free Form Transformations

In our implementation, we deal with free form transformations, which are applied to
a specified number of selected cross sections. The user has the option to select one or
more cross sections and apply a transformation in the form of a homogeneous trans-
formation matrix. Rotations, translations, scaling are simply performed by multiplying
each vertex of the cross section with the corresponding transformation matrix. That
is, all points that are associated with a given cross section, including cloud points,
feature points, control points of the interpolating B-Spline, Voronoi vertices etc. This
transformation matrix is built into the data structure of the cross section, so each cross
section has its own transformation matrix and all elements of the cross section (cloud
points, feature points, control points of the curve, Voronoi vertices etc) are subject to
it.
Since the transformation matrix is a property of a cross section, we can perform

modifications to one or more cross sections at once. As we mentioned in section 3.2.4,
many cross sections may be selected by the user. When applying modifications, we
may apply a given transformation either on the current cross section (i.e. the cross
section we are currently working on), or all the selected cross sections. The user may
select as many cross sections as they desire, and the selected cross sections do not
even have to be adjacent. For example, on a point cloud with 30 cross sections, we
may select cross sections from 10 to 30, and then deselect the cross sections from 15
to 25. We will then have cross sections from 10 to 15 and from 25 to 30 selected.
The transformation will be applied to those cross sections only. Of course, if all cross
sections are selected, the transformation will be applied to the entire point cloud, and
if no cross sections are selected the transformation will not be applied (or will be
applied to the current cross section if the user has this option enabled).
We have included another option, which allows the user either to apply a transfor-

mation on all selected cross sections evenly, or to apply a transformation proportional
to the selected cross sections. With this option enabled, given a list of selected cross
sections, the transformation will be partially applied to the cross sections, depending
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on their index in the list of selected cross sections. For example, if we have 10 cross
sections selected, and apply a scaling transformation of a factor 2x on them, we may
choose to double the size of the 10 cross sections, or we may choose to scale the first
cross section at 1/10 of the applied transformation, the second cross section at 2/10
and so on, until we reach the 10th cross section in which we apply the 10/10 of the
transformation.
In our implementation we have even included an option to evaluate a mapping

function that provides a function of the proportional transformation to each cross
section according to its index in the list of cross sections. This mapping function
f(h) is evaluated for each selected cross section separately. The index i of the cross
section in the list of n selected cross sections defines the parameter of the function,
in the form of h = (i − 1)/(n − 1), where i is the current cross section and n is the
number of selected cross sections. The value of h lies in the interval [0..1], so for the
first cross section we have i = 1 → h = 0. For the second cross section we have
i = 2 → h = 1/(n − 1), and so on, until i = n − 1 → h = (n − 2)/(n − 1) for
the cross section before the last, and i = n → h = 1, which corresponds to the last
selected cross section.
As an example, we may set a mapping function f(h) = sin (hπ), to apply a trans-

formation using the sine function and produce some kind of a wave effect on the
cross sections. This technique produces remarkable results, as the final model takes
an impressive form, with just a few modifications. It is efficient especially when work-
ing on free from objects where there are no geometric primitive features present. It
is up to the imagination and creativity of the user to apply certain transformations
and create a model that meets their requirements.

6.3 Implementation and Examples

Our method has been implemented and tested under the Microsoft Visual C++ pro-
gramming environment [164] using the Qt UI framework [165]. The computational
geometry calculations were performed using the Qhull library [157]. Evaluations of
the mapping function were made with the simple arithmetic expression evaluator
developed by Robert B. Stout [166].
Figure 6.1 illustrates parts of the UI that have been implemented for testing our
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method. Some examples of complex transformations applied to the entire point cloud
of the Cycladic idol are illustrated in figure 6.2. Figure 6.3 shows transformations
applied to certain parts of the same model. Figure 6.5 shows a realistic example of
transformations applied to the drill bit model, which result in some variants of the
original object that could potentially be applied in practical applications.

Figure 6.1: The User Interface of our implementation. From left to right: (a) The
entire window, with save-load options, (b) Cross section operations, (c) Feature poly-
line properties, (d) B-spline curve operations, (e) Transformation properties, and (f)
Surface reconstruction properties.

The following examples show how the free form transformations are applied to
the models of the cycladean idol and the twist drill bit. In the examples that represent
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variations of the cycladean idol, the point cloud was sliced into 100 cross sections,
numbered from 0 to 99 (cross section 0 at the bottom, cross section 99 at the top). In
the example of the twist drill bit, the point cloud was sliced into 200 cross sections,
numbered from 0 to 199 (cross section 0 at the bottom, cross section 199 at the top).
The mapping function f(h) is applied to each of the selected cross sections ac-

cording to their index in the list of selected cross sections. For example, in the trans-
formations of figure 6.1 we have all cross sections selected and h = 0/99 = 0 for cross
section 0, h = 1/99 for cross section 1, h = 2/99 for cross section 2, ... , h = 98/99

for cross section 98 and h = 99/99 = 1 for the last cross section. The transformation
is applied to each cross section by multiplying the elements of the cross section with
the appropriate transformation matrix.
In the following examples we have used the transformation matrices Sxy, Sz and

Tx that scale and translate the cross sections in the corresponding directions:

Sxy =


f(h) 0 0 0

0 f(h) 0 0

0 0 1 0

0 0 0 1

, Sz =


1 0 0 0

0 1 0 0

0 0 f(h) 0

0 0 0 1

, Tx =


1 0 0 f(h)

0 1 0 0

0 0 1 0

0 0 0 1

.

Of course, any other transformation matrix may be used for modifying the model.
The function f(h) doesn’t even have to be the same at all matrix elements. We could
e.g. set a scaling matrix S

′
xy that performs scaling on the x − axis with a different

factor than the y − axis. Furthermore, a complex mathematical expression could be
evaluated for each element, similar to the evaluation we performed in f(h).
In the examples of the following transformation matrices, S ′

xy performs scaling
on x with a factor f(h) and scaling on y with a factor 2 ∗ f(h), while STxy performs
scaling on x with a factor f(h) and translation on y with a factor sin(f(h)):

S
′
xy =


f(h) 0 0 0

0 2 ∗ f(h) 0 0

0 0 1 0

0 0 0 1

, STxy =


f(h) 0 0 0

0 1 0 sin(f(h)π)

0 0 1 0

0 0 0 1


Any combination is possible and will produce a variation of the model. However,

the resulting model may or may not make sense, as the transformation matrix may
perform modifications that could cause the model to deform in unnatural manner.
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Whether the model makes sense or not, it is up to the proper definition of the trans-
formation matrix. For this reason, it is essential for the user to have some knowledge
on homogeneous transformations.

Example 1: Transformations applied to the entire point cloud of the cycladean
idol.

Figure 6.2: Transformations applied to the entire object, (a) plain object, without
any transformation, (b) large wave scaling, (c) small wave scaling, (d) large wave
translation, and (e) small wave translation.
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The following table describes the mapping function f(h) used for the transforma-
tions applied to the models of figure 6.2.

Figure
Selected Cross

Sections
Mapping Function

Applied
Transformation

Fig. 6.2 (a) - - None (Original Model)

Fig. 6.2 (b) [0..99] f(h) = 5+sin (10h)
6

Scale Sxy

Fig. 6.2 (c) [0..99] f(h) = 50+sin (100h)
51

Scale Sxy

Fig. 6.2 (d) [0..99] f(h) = 10 sin (3hπ) Translate Tx

Fig. 6.2 (e) [0..99] f(h) = 1.5 sin (30hπ) Translate Tx

Table 6.1: Details for transformations on Fig. 6.2.
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Example 2: Transformations applied to selected cross sections of the cycladean
idol.

Figure 6.3: Transformations applied to parts of the object, (a) ’Chinese hat’, (b)
’Chinese hat’ + ’growing neck’, (c) ’Chinese hat’ + ’wavy neck’, and (d) ’Chinese
hat’ + ’growing neck’ + ’wavy neck’.
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The next table describes the mapping function f(h) used for the transformations
applied to the models of figure 6.3.

Figure
Selected Cross

Sections
Mapping Function

Applied
Transformation

Fig. 6.3 (a) [85..99] f(h) = 2− 2h Scale Sxy

[85..99] f(h) = 2− 2h Scale Sxy

Fig. 6.3 (b)
[0..25] f(h) = 1, 5− 0.5h Scale Sxy

Fig. 6.3 (c)
[85..99] f(h) = 2− 2h Scale Sxy

[0..25] f(h) = 20+sin (50h)
21

Scale Sxy

[85..99] f(h) = 2− 2h Scale Sxy

Fig. 6.3 (d) [0..25] f(h) = 1, 5− 0.5h Scale Sxy

[0..25] f(h) = 20+sin (50h)
21

Scale Sxy

Table 6.2: Details for transformations on Fig. 6.3.
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Example 2 (cont.): Transformations applied to selected cross sections of the cy-
cladean idol.

Figure 6.4: Transformations applied to parts of the object, (e) ’Asian Monk hat’, (f)
’Gandalf the grey’.
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The mapping function f(h) used for the transformations applied to the models of
figure 6.4.

Figure
Selected Cross

Sections
Mapping Function

Applied
Transformation

Fig. 6.4 (e)

[85..99] f(h) = 2− 2h Scale Sxy

[85..99] f(h) = 2h Scale Sz

[0..25] f(h) = 1, 5− 0.5h Scale Sz

[0..25] f(h) = 20+sin (50h)
21

Scale Sxy

[85..99] f(h) = 2− 2h Scale Sxy

[85..99] f(h) = 1 + h Scale Sz

Fig. 6.4 (f) [85..99] f(h) = 20+sin (50h)
21

Scale Sxy

[0..25] f(h) = 1, 5− 0.5h Scale Sxy

[0..25] f(h) = 20+sin (50h)
21

Scale Sxy

Table 6.3: Details for transformations on Fig. 6.4.

96



Example 3: Transformations applied to selected cross sections of the twist drill
bit.

Figure 6.5: Transformations applied on the twist drill bit point cloud.

The following table describes the mapping function f(h) used for the transforma-
tions applied to the models of figure 6.5. Note that when f(h) is a constant function,
the implied transformation is applied to all selected cross sections evenly.
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Figure
Selected Cross

Sections
Mapping Function

Applied
Transformation

Fig. 6.5 (a) - - None (Original Model)

Fig. 6.5 (b) [175..199] f(h) = 1.5 Scale Sxy

Fig. 6.5 (c) [175..199] f(h) = 1.5 Scale Sz

[178..184] f(h) = 1− 0.5h Scale Sxy

Fig. 6.5 (d) [185..190] f(h) = 1.5 Scale Sxy

[191..196] f(h) = 0.5− 0.5h Scale Sxy

Fig. 6.5 (e) [0..50] f(h) = −50 Translate Sz

Fig. 6.5 (f) [0..25] f(h) = h Scale Sxy

Fig. 6.5 (g) [0..100] f(h) = h Scale Sxy

Table 6.4: Details for transformations on Fig. 6.5.

All the examples presented above use the transformation matrices Sxy, Sz, Tz men-
tioned earlier. However, the use of any other transformation is allowed, as the trans-
formation matrix is a user defined parameter which can be set arbitrarily. It is up to
the creativity of the user to provide a proper transformation matrix that will produce
impressive yet reasonable models.
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Chapter 7

Editing Operators for Cross-Sectional
Data-Sets

7.1 Introduction

7.2 Properties of the Input Model

7.3 Editing Operators

7.3.1 The Curve of Centroids

7.3.2 Alignment Operator

7.3.3 Displacement Operator

7.3.4 Elastic Operator

7.3.5 Inflation Operator

7.3.6 Placing the curve of centroids on a parametric function

7.3.7 Cross-Sectional Free-Form Editing

7.3.8 Limitations

7.4 Implementation and Examples

7.1 Introduction

In this Chapter, we report on the development of a cross-sectional 3D model editor.
The models we work with have properties often encountered in medical data-sets
(e.g. CT scans of arteries or internal organs). However, our tool-set can be applied to
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both engineered objects (e.g. mechanical parts) or free-form objects (e.g. human or
animal figures) for various purposes.
When dealing with mechanical parts, editing is usually restricted to adjusting

the features of the object. For example, in a part with a cylindrical shape it is of-
ten required to modify the radius or the height of the cylinder. In such cases the
modification of the model is facilitated by the object features.
When dealing with free-form objects, the user may perform arbitrary modifications

to the model, limited only by the creativity of the user and the robustness of the
resulting model. In this case, however, the editing process can become difficult due
to complex, highly variable topology. Vascular anatomies, for example, are patient-
specific and cannot be easily built as combinations of a given number of mathematical
primitives or created by a sequence of manufacturing operations [167].

7.2 Properties of the Input Model

The input for our tool suite should be generic enough, so that it would be easily
used and to be applied to several applications. As we discussed in chapter 3, the
simplest unstructured form of data-set is the point cloud of its surface scan. The only
information a point cloud carries is the [x, y, z] coordinates of a set of points that
lie on the boundary of the model. Depending on the acquisition method used and
the density of the scan, a point cloud may describe the topology of the boundary
accurately at all parts of the model (e.g. 3D laser scanners) [9, 8], or describe only
feature points of the object that lie on specific parts of the model (e.g. medical CT
scans) [150, 21]. The case of medical CT scans is considered sensitive, as the direction
and the density of of the scan are predefined, and cannot be refined after the data-set
has been acquired.
In chapters 3, 4 and 5, we described the details on how to extract an editable

CAD model from an unstructured point cloud. To briefly recap, we divide the 3D
point cloud in cross-sectional slices, and treat each slice as an individual 2D point
set. Using properties of the convex hull and the Voronoi diagram of the slice points,
we define a set of representative feature points that describe the boundary of the
slice points accurately. These feature points form a closed curve of continuity G0,
which is called a feature poly-line. Subsequently, a G1 B-Spline curve is constructed,
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which interpolates the poly-line and provides a smooth boundary representation. The
contours of all cross sections are combined, and a number of points (depending on
the required level of detail) are selected on each B-Spline, which are subsequently
used for creating a mesh that represents the reconstructed surface with an editable
model.
If the input point cloud was acquired from a medical CT scan, like the example

shown in figure 7.1, it will probably be already sliced into cross sections, and the slice
points will already form a feature poly-line. In this case we can omit all computations
up to this point and define G1 B-Splines from these point-sets.

Figure 7.1: The model of an artery, and the points that came as input. Input: A 3D
point set of an artery, organized in 2D slices of 80 points, provided from a CT Scan.
Output: A collection of closed NURBS curves that interpolate the points of each slice
accurately. These curves are used for reconstructing the surface of the model (red
surface on the top left).

On the other hand, there might be some cases where the existing slices do not
provide the proper information for the model. In such cases, we have the option to
treat the model as an unstructured point cloud, and redefine the slices entirely. For
example, we can use a different slicing direction, to align the model properly according
to a specified axis, or even use variable thickness on the slices, to provide higher
level of detail to some parts of the model than the rest. The model itself, however,
may have some irregularities, as illustrated in the top right region of the model in
figure 7.2 (back). These irregularities are not the result of defective processing, but
they correspond to irregularities present on the real tissue. We need to retain these
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features on the reconstructed model, as they may be essential to the final model.

7.3 Editing Operators

Editing 3D models has been addressed in several ways, following several different
approaches. Editing based on features, cross-sections and geometric constraints are
common in traditional CAD systems such as AutoCAD and ProEngineer. They pro-
vide robustness and accuracy but are often difficult to solve and require advanced
knowledge of geometry and feature-based editing.
Free form editing usually employs mesh processing, morphing, deformations, free-

form editing techniques. It also includes the trivial case of modifying individual
points, but this type of editing is considered low level editing and does not provide
the user with an adequate editing tool-set.
Our method offers high level free-form editing tools, and also a set of operators

that perform deformations on the model. To facilitate editing we derive a skeleton
of the model by means of a NURBS curve that interpolates all slice centroids. This
enables the application for local or global transformations using this skeleton as a
reference. These transformations may be applied as a whole, or change as we move
along the skeleton. We call this skeleton the curve of centroids.

7.3.1 The Curve of Centroids

The curve of centroids is defined as a cubic B-Spline curve that interpolates the
centroids of each cross section. To derive this curve, we compute the centroid of
each cross section, i.e. the mean point of the slice points for each slice. We compute
all the centroids and then we compute a cubic B-Spline which interpolates these
centroids. We use a cubic B-Spline curve because it is easy to compute and capable of
representing adequately most 3D shapes. This curve is shown in Figure 7.2 (Front).
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Figure 7.2: (Front) The curve that interpolates the centroids of the slices can be
edited to give the model new features (Red: initial curve - Blue: edited curve). (Back)
The surface of the model is adjusted according to the modification of the curve of
centroids.

The curve of centroids as a concept is similar to the centerline described in [168,
169, 170, 85]. However, the two representations should not be considered as the same
feature, as the point sets used for the computation of each curve are different: The
centerline is extracted directly from all points of the CT scan, while our curve of
centroids is computed from the final filtered point cloud of the model. So, the curve
of centroids is indirectly evaluated from the CT scan, which means that it might have
some differences from the centerline.
The newly acquired curve of centroids can be used to apply modifications to the

model. Instead of applying transformations on the surface of the model, we may
easily deform the curve of centroids. Then, the surface of the model, which is derived
from the slice points, will follow the modification of the curve of centroids, as the
slice points will constantly maintain their relative positioning around their centroid.
This means that if e.g. a centroid is translated to another position, the corresponding
slice points will follow the same transformation, to maintain their relative position to
their centroid.
The motivation for implementing such an operator, i.e. one that is applied to

the curve of centroids, was the fact that for medical data sets such as arteries and
veins, the skeleton is an essential feature, which could be used for editing the model.
Several medical applications, such as bypass surgery or stent insertion, make use of
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this feature and depend on its behavior. Since the curve of centroids defines a skeleton
of such models, it can be used for redefining and modifying the path of the skeleton
and the shape of the model.
Various transformations can be applied to the curve of centroids. For example,

parts of the curve may be displaced with a transformation that would translate the
selected centroids to a new position. Or a part of the curve may be scaled according
to a given point of reference. Parts of the curve could also be rotated around a
specified axis. The slice points will always preserve their relative positioning around
their corresponding centroids, and the surface of the model would follow the same
transformation as the curve of centroids.
The curve of centroids is a high level feature we have extracted from the unstruc-

tured point cloud. However, this feature cannot be used by itself to perform editing on
the model, as the applicability of the modifications is still limited and their complexity
makes them unfit for CAD end-users. A set of high level parameters is required to
describe specific properties of the model, which will be used for the editing opera-
tions. The operators we describe in the next sections make use of such parameters to
perform modifications using the curve of centroids.
The general idea is that a transformation is applied on the centroids of the selected

cross sections. As we described in chapter 6, the transformations have the form of a
homogeneous transformation matrix. Rotations, translations, scaling are simply per-
formed by multiplying each selected centroid with the corresponding transformation
matrix. The transformation matrix is built into the data structure of the cross sections,
so each cross section has its own transformation matrix and all elements of the cross
section (cloud points, feature points, control points, etc) are subject to it.
The form of the transformation matrix can be either very simple, or very complex,

with several variations and combinations of other simple transformations. Simple
transformations may include rotations, translations or scaling. For example, a rota-
tion around the x axis, a scaling, or a translation, would require us to apply the
transformations Rx, S and T respectively. For other types of transformations the
reader may refer to several Computer Graphics Handbooks, e.g. [171].

Rx(θ) =


1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

, S =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

, T =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1
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7.3.2 Alignment Operator

First of all, we define the alignment operator, which reorganizes the slices according
to the direction of the curve of centroids. The operator is applied to one or more
selected cross sections, and its function is to rotate the selected slices around their
corresponding centroids, so that the normal of the plane defined by the slice points
coincides with the gradient direction of the curve of centroids at each centroid. This
operator is performed by applying an affine transformation matrix RL(θ) that rotates
the slice points around their centroid towards the gradient direction L of the curve
of centroids:

RL(θ) = T (C⃗i) · A(v⃗)−1 ·Rz(θ) · A(v⃗) · T (−C⃗i) where A(v⃗) = Ry(−θ2) ·Rx(θ1).

The transformation includes a translation T (−C⃗i) of the centroid Ci to the axis
origin, followed by an alignment A(v⃗) of the gradient vector v⃗ at Ci with the identity
vector k⃗ on the z-axis, then a rotation Rz(θ) of angle θ around the z-axis to align
it to the desired direction L, followed by an alignment A(v⃗)−1 of the identity vector
k⃗ on the z-axis back to the gradient vector v⃗, and a translation T (C⃗i) of the axis
origin back to the centroid Ci. Such a transformation is standard for aligning an
object to a specified direction, and is typically encountered in Graphics handbooks
(e.g. examples 3.13, 3.14 in [171]).

Figure 7.3: Alignment of the selected cross sections to the curve of centroids.

This operator is essential when editing the model, as it can improve the quality
of the modifications or correct possible errors that occur during the editing process.
It could even be used in cases where the slicing direction of the input model has
not been satisfactory for the entire model. As one may notice in Figure 7.3(left), the
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initial positioning of the slices does not comply with the direction of the curve of
centroids as required. We can restore their positioning by aligning them to the curve
as illustrated in Figure 7.3(right).
However, with a close observation on the resulting model, one would notice that

the volume is not preserved with this deformation. This is a violation to the user
requirements in most cases. However, the parameter we are interested in is the con-
nectivity among the slices. For this reason, we did not concern about volume preser-
vation in our demo implementation. Of course, in case someone would like to release
an application with a full implementation, obviously the volume preservation of the
model would be an essential requirement.
The editing operators described in the following section can be applied either in

conjunction with the alignment operator, or without it. In case they are applied exclu-
sively, the slices of the modified region will remain parallel after the transformations.

7.3.3 Displacement Operator

The displacement operator, as its name states, performs a displacement on a selected
part of the model, and the connection between the modified part and the rest of the
model is updated properly, to preserve connectivity and smoothness to all parts of
the model. First of all, one or more cross sections have to be selected. Then, a series
of transformations are applied to the selected centroids, causing the selected region
to change in shape. As the curve of centroids changes in shape, the surface of the
model also changes, to preserve its relative position to the curve of centroids. The
modification may be an arbitrary user-specified transformation.
As illustrated in Figure 7.4 the user has selected some centroids (from C1 to C2)

and translates them upwards on the z-axis. To maintain a smooth connectivity at
the endpoints, a number of centroids outside the selected region is also modified (i.e.
C0 to C1 and C2 to C3), applying a proportional transformation which brings these
centroids closer to the modified endpoints. The number of centroids affected by a
transformation on a selected region is specified by the user as a parameter during the
editing process.
The alignment operator has also been applied to the slices with centroids from

C0 to C1 and from C2 to C3. Algorithm 7.1 describes the details of the displacement
operator.
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Figure 7.4: Translation using the displacement operator. (a) The initial model in red,
(b) the edited model in blue, (c) details of the operator.
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Algorithm 7.1 The algorithm for the Displacement Operator.

Input: Centroids C1, C2

Translation vector v ← [tx, ty, tz]

Parameter n (number of centroids affected outside selected region)

for each centroid Ci from C0 to C1 do
n← |C1 − C0|
h← i

n

C ′
i ← Cihv

T (proportional translation)
end for
for each centroid Ci from C1 to C2 do

C ′
i ← Civ

T (translation)
end for
for each centroid Ci from C2 to C3 do

n← |C3 − C2|
h← 1− i

n

C ′
i ← Cihv

T (inverse proportional translation)
end for

The displacement operator does not only work for translation, but also for rotation
and scaling, and any arbitrary transformation. All that is needed is to replace the
translation vector v by another transformation matrix R or S. For example, a rotation
of angle θ around the z-axis with a point of reference Cr would be

R = T (C⃗r) ·Rz(θ) · T (−C⃗r)

In the examples of Figure 7.5 we have three rotations around the axis defined
by the gradient of the curve of centroids at the reference point, i.e. the center of the
rotation. In Figure 7.5(a) the point of reference is Cr = (C1 +C2)/2, while in Figures
7.5(b) and 7.5(c) it is Cr = C1 and Cr = C2 respectively. The point of reference is
not affected by the rotation, so in the cases where one of the endpoints is the point
of reference, there is no need to modify any cross sections outside the region at the
fixed endpoint.
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(a) The selected region is rotated around Cr = (C1+C2)/2, on the axis defined by the gradient

of the curve of centroids at Cr.

(b) The selected region is rotated around C1, on the axis defined by the gradient of the curve

of centroids at C1. The cross sections left of C1 are not affected by the transformation.

(c) The selected region is rotated around C2, on the axis defined by the gradient of the curve

of centroids at C2. The cross sections right of C2 are not affected by the transformation.

Figure 7.5: Rotations using the displacement operator.

7.3.4 Elastic Operator

This operator modifies the selected part of the model like an elastic rubber-band that
is being stretched. This operation is applied to a selected part of the model, from
centroid C1 to C2, causing the selected region to become tight and approximate the
line segment defined by the endpoints to a certain extent. The selected centroids are
translated by a parameter α that represents the amount of force being applied to the
selected region, causing it to stretch. This parameter is corresponds to the tension on
the curve, and is expressed as a percentage that defines how much closer the curve of
centroids will get to the segment of endpoints. Tension 0% means the curve remains
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unaffected, while 100% tension means that the curve of centroids degenerates to the
line segment defined by the two endpoints. Figure 7.6 offers a visual explanation of
the parameter α and algorithm 7.2 shows the formula which brings the centroids to
their final positions. Figure 7.7 shows a region being stretched at 25%, 50%, 75% and
100%.

Figure 7.6: The centroid Ci is getting closer to the line segment [C1, C2], as the
parameter α increases. For α = 0 we have C ′

i = Ci, and for α = 100% the centroid Ci

is projected on the line segment [C1, C2].

Algorithm 7.2 The algorithm for the Elastic Operator.

Input: Centroids C1, C2

Parameter α (tension %)

for each centroid Ci from C1 to C2 do
C ′

i ← (1− α)Ci + αC1 + α(C2 − C1)
(C2 − C1) · (Ci − C1)

||C2 − C1||
end for
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Figure 7.7: (Left) The initial model (a), the edited model (b) and the transformation
(c). (Right) Applying 25%, 50%, 75% and 100% tension to the selected centroids.

7.3.5 Inflation Operator

This operator modifies the selected part of the model like a balloon being inflated. In
this case the selected centroids are not affected by the transformation, but the slice
points of each cross section are subjected to a scaling transformation around their
centroids. Again, to preserve a smooth transition between the cross sections inside
and outside the selected region, we set a number of cross sections outside the end
points to follow the transformation proportionally.
Except for the percentage of scaling, we define two more parameters, i.e. the

number of cross sections affected outside C1 and C2. This time we have two parameters
with different values, as the number of cross sections affected by the proportional
transformation may be different in the two sides of the selected region. Figure 7.8
shows an example of the inflation operator and algorithm 7.3 describes the process
of applying the operator to the selected centroids. Centroids C0, C1, C2 and C3 are
specified as parameters by the user, along with the scaling factor.
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Figure 7.8: The curve of centroids remains unaffected by the transformation, but the
points of the selected cross sections are scaled around their centroids. (a) The initial
model, with the selected cross sections inflated. (b) The inflated model. (c) For s < 1

the operator causes deflation. (d) The transformation. From centroid C0 to C1 and
from C2 to C3 , scaling is applied proportionally. From C1 to C2 the cross sections are
completely scaled.
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Algorithm 7.3 The algorithm for the Inflation Operator.

Input: Centroids C1, C2

Scaling factor s
Parameters: Centroids C0, C3 (centroids affected outside selected region)

for each centroid Ci from C0 to C1 do
n1 ← |C1 − C0|, h1 ← i

n1

for each point Pj in cross section i do
P ′
j ← Pjh1s (proportional scaling)

end for
end for
for each centroid Ci from C1 to C2 do

for each point Pj in cross section i do
P ′
j ← Pjs (full scaling)

end for
end for
for each centroid Ci from C2 to C3 do

n2 ← |C3 − C2|, h2 ← 1− i
n2

for each point Pj in cross section i do
P ′
j ← Pjh2s (inverse proportional scaling)

end for
end for

where the scaling factor s around the centroid Cr could be expressed as a transfor-
mation matrix

s = T (C⃗r) · S · T (−C⃗r)

7.3.6 Placing the curve of centroids on a parametric function

Another type of operator, which is based on a parametric function, a feature previously
described in section 6.2, applies a transformation that causes the cross sections to
follow the path of a function or a user specified mathematical expression. This option
produces impressive results with a little effort, as a single transformation may provide
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different modifications to the cross sections, depending on their index in the selected
region. Figure 7.9 shows such a modification, where the model of the artery has been
placed on a sine function f(h) = sinh. Algorithm 7.4 demonstrates how to use the
parametric function for the operator.

Figure 7.9: Editing the cross sections with a parametric function. Each cross section
is positioned on a path defined by a mathematical expression according to its index
in the selected region. Here the curve of centroids is placed on a sine function. (a)
Initial model, (b) edited model, (c) the transformation.

Algorithm 7.4 The algorithm for the Parametric Function Operator.

Input: Centroids C1, C2

Parameter: Function f(h)

for each centroid Ci from C1 to C2 do
n← |C2 − C1|, h← (i−1)

(n−1)

C ′
i ← Cif(h) (parametric function)

end for

The user has also the option to define his own curve of centroids, by choosing a
set of feature points on a 3D space, and then interpolate a curve to these points. The
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existing curve of centroids is placed on top of the user defined curve and the cross
sections are positioned accordingly, causing the model to deform in the shape the user
has sketched. The relative positions of the centroids on the new curve are calculated
using the arc length [77, 78, 172], which places the first centroid on the beginning
of the curve, the last centroid on the end of the curve, and all centroids in between,
according to their relative length from the old curve to the new. In the example of
Figure 7.10, the user has defined a set of feature points on R3, and computed a curve
that interpolates these points in the form of a helix. The artery model was then placed
on this helix curve of centroids, causing the entire model to stretch in the shape of
the helix.

Figure 7.10: (Up) The user defines a set of feature points to form a helix in R3 and
interpolates a NURBS curve on these points. (Down) The curve of centroids of the
model is placed on this curve, causing the model to deform in the shape of the helix.

7.3.7 Cross-Sectional Free-Form Editing

A more generalized and unrestricted variation of the editing operator is the one
that applies modifications to the model without any consideration about the curve
of centroids. So far, when a transformation was applied, the reference points for the
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transformation would always be the centroids of the selected cross sections, or one
point calculated from the selected centroids when many cross sections are selected.
But the user is also allowed to choose an arbitrary point of reference to apply a
transformation, to obtain different results. One simple idea would be to apply a
transformation around the axis origin, or around a specified point on a particular
axis. The surface points of the selected cross sections would then be modified in
a different shape, providing another resulting model. This operator can be used to
refine local details or correct any flaws on the surface of the resulting model. An
operator like that was described in chapter 6, where the models where not from
medical datasets, but free form objects. The variation we discuss here includes the
option to use any point of reference as center for the transformation, and not only
the axis origin, or the centroid of a cross section.

7.3.8 Limitations

The editing operators we described in this chapter may be used in free-form editing
of medical datasets, such as arteries, producing models of any possible shape and
properties. The curve of centroids is an important feature that is computed from the
surface points of the initial model, and when it is modified, it defines the shape of
the resulting model. The displacement, elastic and inflation operators make use of
this feature, and when applied to a model, they produce models that simulate the
behavior of real arteries in a surgical operation. The cross sectional free form editing
operator can be used for arbitrary modifications without any consideration for the
curve of centroids, or for local refinements when the modifications applied previously
have caused connectivity or smoothness issues on the model.
In all cases in which we applied our editing operators, there was one specific pa-

rameter that remained fixed, i.e. the slicing direction. If we were to apply the exact
same transformations on the exact same model, but with a different slicing direction,
obviously the results would be also different. For example, a scaling transformation
around the centroid of a cross section would result in scaling on the x − axis if the
slicing direction is horizontal, whereas if the slicing direction is vertical, the same
transformation would result in a scaling on the y − axis. However, for every trans-
formation on a given direction, there is an equivalent transformation that will offer
the same result on any other direction.
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The restrictions when applying these operators concern the resulting models rather
than the actual modifications. In case of modeling human tissues, the physical prop-
erties of these tissues have to be preserved during the editing process. This means
that a model cannot be modified in such a way that would deform a tissue beyond
its limits. In other words, even if an arbitrary transformation can be applied on the
model, the resulting model has to satisfy the user intentions, and generally have a
useful meaning. In this work, however, we do not make any suggestions to com-
ply with such restrictions. Additional research is required for this issue, which also
includes the collaboration with medical experts.

7.4 Implementation and Examples

The editing operators we described in this chapter have also been implemented and
tested under the Microsoft Visual C++ programming environment [164] using the Qt
UI framework [165]. Figure 7.11 illustrates parts of the user interface that were not
described in chapter 6. The following description concerns the current values and
parameters of the textboxes and other components of the UI in figure 7.11.
The pop-up window in the center of the screen-shot (a) shows the options for

slicing the point cloud, in case the initial point cloud did not come from a tomography
scan. If the input was already in the form of cross sectional slices, we only use this
menu for selecting or deselecting the regions of interest, to apply our modifications.
In the example of figure 7.11, the artery model consists of 110 slices of 80 feature
points each, and the cross sections from slice 58 to slice 74 have been selected.
The menu on the right side of the screen-shot (b) shows the options for applying

the editing operators on the selected centroids or cross sections. The transformation
matrix visible on top of the menu corresponds to a rotation matrix Rz(θ) that would
rotate the selected region around the z-axis for θ = 30o (cos(θ) = 0.867, sin(θ) = 0.5).
This rotation is performed in respect to the selected reference point, which is the

centroid of slice 66, as shown bellow the slider at the displacement operator. On the
left of the ”Apply” button at the displacement operator, the [C0..C1] option is the
parameter of the cross sections that are affected by the transformation, on both sides
of the selected region ([C0..C1] and [C2..C3]). In this example 5 more cross sections
are affected by the transformation on each side.
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Figure 7.11: The user interface.

The elastic operator shown bellow has only one parameter, the amount of tension
applied to the selected region. This value is expressed as a percentage (here 90%)
that will bring the selected centroids 90% closer to the line segment [C1, C2]. Next is
the inflation operator, where the parameters are the amount of cross sections inflated
proportionally and the inflation factor. The numbers mean that if the entire region
(from C0 to C3) is 100% in length, the centroid C1 will be the one closest to 10% of
length, and the centroid C2 will be the one closest to 75% length. The cross sections
corresponding to centroids from C1 to C2 will inflate 110%.
The free-form operator can be applied either on the currently selected slice, or

the entire region of interest. The transformation matrix is applied to the surface
points, but this time the reference point is not the centroid of each slice, but a user
specified point in the 3-dimensional space. Also, if the option for the mapping function
bellow the transformation matrix is enabled, the transformation will be different for
each slice in the selected region, according the evaluation of the mapping function
for the respective slice. The remaining options are for resetting previously applied
transformations, and to show or hide the elements of the model.
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An example of a medical application in which our editing operators could be used
is the bypass surgery [173], where a segment from an artery or vein from elsewhere
in the patient’s body is grafted to the coronary arteries to bypass atherosclerotic
narrowings and improve the blood supply to the coronary circulation supplying the
heart muscle. When a doctor performs such a surgery, they need to calculate the path
of the artery in advance, before the segment is placed. With our editing operators, a
possible path can be calculated by modifying the curve of centroids according to the
doctors instructions.

Figure 7.12: The path of an artery can be redefined by editing the curve of centroids.
This is a key feature for medical applications such as the bypass surgery.

Another example of medical application in which our editing operators could be
used is the angioplasty [174], a technique of mechanically widening narrowed or
obstructed arteries, the latter typically being a result of atherosclerosis. An empty
and collapsed balloon on a guide wire, known as a balloon catheter, is passed into
the narrowed locations and then inflated to a fixed size. The balloon crushes the
fatty deposits, opening up the blood vessel for improved flow, and the balloon is then
deflated and withdrawn. A stent may or may not be inserted at the time of ballooning
to ensure the vessel remains open. An example is shown in Figure 7.13. If a stent is
inserted, it would follow the same path inside the artery, as the curve of centroids, as
it is a flexible object, and will bend as the walls of the artery apply pressure on it. But
as the walls of the artery apply pressure on the stent, so will the stent apply pressure
on the artery walls. Furthermore, as the stent is deployed, it pushes the artery walls
outwards, widening the opening of the artery.
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Figure 7.13: The surgical operation of angioplasty often includes a stent insertion.
When a stent is inserted, the tissue of the artery is both stretched, as described with
the Elastic Operator, and also inflated, as described with the Inflation operator.

The first of these two actions will modify the curve of centroids at the region
where the stent is inserted, causing it to stretch to some extent (as we described with
the elastic operator), as long as the flexibility of the tissue allows for stretching. The
second action has no effect on the curve of centroids, but it causes the artery walls
to inflate (as we described with the inflation operator). The artery will behave as the
model in Figures 7.6 and 7.8.
The operators we described here could be used in medical data sets. However, this

doesn’t mean that they are addressed exclusively to such applications. They could
be applied to other domains as well. For example, we could apply the displacement
operator or the inflation operator on the drill bit model of Figure 3.10, to obtain
the results illustrated in Figure 7.14. Perhaps these models have no real use for
mechanical objects like a drill bit, but they are still impressive, even from a purely
artistic point of view.
A video with a visual demonstration of the editing operators we described in this

chapter is also available in [175].
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Figure 7.14: (a) The drill bit model without any modifications, (b) Using the dis-
placement operator to translate parts of the model, (c) Using the inflation operator to
deflate parts of the model, and (d) Using the displacement operator to rotate a part
of the model around its center.
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Chapter 8

Conclusions - Future Research
Directions

8.1 Validation - Comparison to Commercial Tools

8.2 Conclusions

8.3 Future Research Directions

8.1 Validation - Comparison to Commercial Tools

To test the effectiveness of our surface reconstruction method, we have exported the
resulting model from our implementation, and then imported it on several commercial
solutions to compare the quality of the results. The model we used was the drill bit
model of Figure 7.14, edited with a simple translation using the displacement operator
as illustrated in Figure 8.1.

Figure 8.1: The initial drill bit point cloud consists of 1436231 points, but after
applying our method, the resulting model consists of only 25600 points, which are
ordered, in 200 slices x 128 points per slice.
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This model was imported as a point cloud (without any structural information)
to the Pointools editing solution for point clouds [176], which offers basic point cloud
editing, such as point selection, organizing points in layers and RGB painting of
points. Figure 8.2 shows the drill bit model, with parts of the cloud painted with
different colors. This tool, however, does not offer any high level editing operators,
similar to our method and does not provide surface reconstruction.

Figure 8.2: The drill bit model edited with Pointools. Parts of the point cloud have
been painted to show the different parts of the model: Screw threads (orange), body
(blue), proportionally displaced cross sections (pink), displaced region (purple), drill
(green).

The same model was imported to the Geomagic Studio [177], which offers a variety
of features, such as basic point editing (delete, sample, reduce noise), advanced point
editing (add points, fill point holes, offset), basic mesh editing (delete, fill holes, trim,
mesh doc), advanced polygon editing (sandpaper, patch, sculpt, shell), etc. This so-
lution is mainly used for local editing of 3D models that come in the form of NURBS
surfaces.
Unlike Geomagic, our method does not require the input to come in the form of

a mesh or a CAD model. We offer editing that is applied on the points of the cloud
directly, or indirectly if we use the curve of centroids for editing. The process of
reconstructing the surface is independent of the editing operation, and is performed
for visualization purposes only.
Moreover, the reconstruction of the model surface seems to be erroneous at some

parts of the model, highlighted with arrows in Figure 8.3. Geomagic offers the proper
tools for correcting such problems locally, but it requires additional processing. In our
method, we utilize the structural information we have extracted, and the reconstructed
surface is robust at the entire model.
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Figure 8.3: The drill bit model edited with Geomagic Studio. Some triangles at the
screw threads and the drill seem to have been incorrectly computed.

To verify the quality of our surface reconstruction method, we have also imported
our test model to the open source processing system MeshLab [178], where we have
tried out several available methods. Our conclusion is that our method reconstructs
the model surface satisfactorily, and in some cases it produces more robust results
compared to other methods. For example, as illustrated in Figure 8.4, where we have
reconstructed the model surface with the ball pivoting algorithm [86], the resulting
model seems to have flaws in some triangles, although we have provided an ordered
input.

Figure 8.4: The surface of the drill bit model, reconstructed with the ball pivoting
algorithm in MeshLab.

Table 8.1 sums up the comparison we made with the above-mentioned tools.
As we can see in MeshLab and Geomagic studio, the offered surface reconstruction
methods, do not take into account that the input may be ordered, and in some cases
fail to form all triangles, leaving small holes in regions with changing curvature. On
the other hand, our tool has produced a model in which the points are ordered
and therefore it reconstructs the surface on the entire model, producing a watertight
model.
Both MeshLab and Geomagic Studio have other options that allow for filling the

holes, such as the healing tool, which correct the problems on the reconstruction step.
But this requires additional effort and expert skills, and again does not consider we
have an ordered input. Pointools does not offer any type of surface reconstruction,
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as it only allows for grouping and coloring regions of points.

Feature \ Tool Meshlab
Geomagic
Studio

Pointools Our Tool

Select points
Group in regions

Yes
(plugins)

Yes Yes
Yes

Cross-Sections
Boundary

representation
(feature points)

Yes
(plugins)

Yes No
Yes

Convex hull

Voronoi diagram

Surface
reconstruction

Yes
Not watertight

Yes
Not watertight

No
Yes

Watertight

Insert additional
feature points

Yes
(plugins)

Yes
(healing tool)

No
Yes

Convex hull

Voronoi diagram

Free form
editing

Yes
(plugins)

Yes No
Yes

Transformation

Matrix

Complex
editing operators

No
(manually)

No
(manually)

No
Yes

Curve of

Centroids

Table 8.1: Comparison with other commercial tools (surface reconstruction).

Our method automates the process of selecting the points of one or more cross sec-
tions to perform modifications on these points, while it respects the initial information
of the input model, which is preserved during the entire editing and reconstruction
process. The [x, y, z] coordinates of the point cloud are always available, as the modi-
fications and the parameters are embedded inside the tree-form data structure of the
model. This may be essential in some cases, as in medical examples, where the initial
information is essential and has to be preserved during the entire process.

To validate the quality of the results of our editing tool set, we tried to apply
similar modifications on our model, using 3ds Max [179]. Figure 8.5 illustrates such
an example, in which we tried to apply a sin(θ) function similar to the one in Figure
6.2(d), a translation that creates the effect of a large wave. The problem in 3ds Max is
that the translation is actually performed by dragging the selected control points with
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the mouse. This may seem a user friendly solution, but it lacks in accuracy of the
results. There is an option for setting specific transformations on the selected control
points, but this option requires the individual point manipulation. In any case, 3ds
Max does not offer a direct tool for applying a proportional transformation, such
as the one we have developed. Therefore, our editing tool offers a powerful feature,
which allows for applying parametric transformations with a single deformation.

Figure 8.5: Editing with 3ds Max. Editing is performed by manually deforming
individual control points on the bounding box.

Table 8.2 shows the comparison of our tool with the 3ds Max. 3ds Max is a very
powerful tool, which offers several editing tools, targeted in a variety of applications.
But most of the tools require editing by hand, meaning that the modifications are
made by selecting a part of the model, or a set of control points (eg. on its bounding
box), and by dragging the selection with the mouse. Although there is an option to
set specific values on the parameters, this type of editing is considered as editing by
hand, and requires additional effort and expert skills.
Moreover, 3ds Max does not directly offer complex editing operators, such as

126



those described in chapter 7, and certainly does not allow for editing according to a
parametric function, such as we described in chapter 6.

Feature \ Tool 3ds Max Our Tool

Requires a specific
type of input

No
An unstructured

point cloud will do

No
An unstructured

point cloud will do

Selecting points
Grouping in regions

Yes
Manual selection with

the mouse

Yes
Cross-sectional slices

Use feature points
Yes

Control points of

bounding box

Yes
B-Splines interpolating

cross-sectional feature

poly-lines

Allows for free
form editing

Yes
Manually dragging

with the mouse

Yes
Using a

transformation matrix

Offers complex
editing operators

No
Editing is done by

hand

Yes
The curve of centroids is a

powerful feature

Editing with
parametric
functions

No

Yes
With a single operation we

get impressive results

Table 8.2: Comparison with other commercial tools (editing).

8.2 Conclusions

We have introduced a framework for reconstructing the surface of an object from
its point cloud, using cross sections and computational geometry algorithms. We
have provided an editable representation of the object using closed cubic B-Spline
curves to obtain smooth results with G1 continuity. We have computed a point set on
these curves and combined them to form vertical contours that describe the relation
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between cross sections for reconstructing the surface of the model. The editability of
the resulting model is achieved in the form of global or partial transformations on
the slices that make up our model. The properties of these transformations allow the
user to produce impressive results from free-form objects.
We also have introduced a tool-set of editing operators for modifying free-form

models of cross sectional datasets addressed to various applications, such as medical
simulations. The modifications performed on the model resemble the deformation
of the arterial tissue in a bypass or angioplastic surgery. Our editing operators are
suitable for such applications, because they make use of a high level property we
extracted from the sliced point cloud, i.e. the interpolating curve of centroids. This
curve is a key feature on models such as arteries, which are used as input datasets
in the respective medical applications.

8.3 Future Research Directions

Our current work allows the user to perform any modifications they desire arbitrarily,
without any further robustness checks. In this context, a future extension is to allow
imposing geometric constraints that have to be respected when applying modifications
on a model.
Another issue that could be addressed more extensively is to perform a surface

reconstruction benchmark [180], to acquire a quantitative comparisson of our final
models to other known reconstruction methods, to determine the most appropriate
method given the input we provided.
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Appendix A

Rejected Approaches

A.1 Introduction

A.2 The Correlation Coefficient

A.2.1 Reason for Rejecting this Approach

A.3 The Alternating Convex Hull

A.3.1 The Internal - External Point switching effect

A.4 The Voronoi diagram based approach - Variations

A.4.1 Using the farthest Voronoi Vertex

A.4.2 Using a single Voronoi Vertex from a bounded area

A.4.3 Using multiple Voronoi Vertices

A.5 The Rational Bezier Curve Fitting Approach

A.5.1 Reason for Rejecting this Approach

A.1 Introduction

During the study and the implementation of this research, there have been several
cases where an approach had been adopted, but was eventually rejected due to the
insufficient quality of the results. Most of these approaches are not worth mentioning,
as they were rejected on an early stage of development. But there are some approaches
which were studied and developed to a significant extent, and were rejected after
being fully implemented, for the reason of providing low quality results. In the next
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sections we provide a brief description of these approaches, and explain the reasons
for rejecting them.

A.2 The Correlation Coefficient

After slicing the point cloud and projecting the points of each cross section onto
its corresponding 2D plane, we attempted a different approach for extracting the
feature poly-line from the 2D points. Our first thought was not to extract a boundary
representation from the points of a cross section, but to use a thinning technique
to construct a closed polygon curve that accurately represents the shape implied by
these points. Such a polygon curve is illustrated in figure A.1.

Figure A.1: A thinning technique can be applied to the 2D point set, to construct a
closed polygon curve that accurately represents the shape implied by these points.

According to this approach, which was discussed in [70], to approximate the point
set accurately, the polygonal curve must keep the feature points of original shape
defined by points set. To compute the feature poly-line, we employ the correlation
concept to determine the radius of neighborhood adaptively in the process of curve
construction. Correlation refers to the degree of association between two or more
quantities. In a two-dimensional plot, the correlation coefficient is used to measure
the strength of the linear relationship between two variables on the two axes. Let X
and Y be two variables, then the correlation coefficient of X and Y can be defined as

ρ(X,Y ) =
Cov(X, Y )

S(X)S(Y )
(eq 1.1)

where Cov(X, Y ) = E[(X − E(X))(Y − E(Y )] = E(XY ) − E(X)E(Y ) and E(ζ)
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denotes an expectation of a random variable ζ. S(ζ) represents a standard deviation of
a random variable ζ. Let (X, Y ) stand for a set of N data points Pi = (xi, yi)|i = 1, .., N ,
then eq. eq 1.1 can be re-written as

ρ(X, Y ) =

∣∣∣∣ ∑N
i=1(xi−x̄)(yi−ȳ)√∑N

i=1(yi−ȳ)2
√∑N

i=1(xi−x̄)2

∣∣∣∣ (eq 1.2)

where x̄ and ȳ are the average values of xi and yi respectively. ρ(X, Y ) has a value
between 0 and 1 representing the degree of linear dependence between X and Y .
This idea is used to check the linearity of the points with a neighborhood. In the

problem of planar curve construction, we need to find the maximal neighborhood
for each segment, in which a line segment can accurately fit the points (fig. A.2.
Using this idea of correlation coefficient, we can determine the neighborhood radius
adaptively.

Figure A.2: Values of the correlation coefficient ρ for data sets of variable point dis-
persion (ρ is represented as r in the source of this figure [2]).

The initial point IP is a reference point to start the construction of the first seg-
ment of the polygonal curve from planar data points. As the points are unorganized
and error-filled, the initial point selection is very important. First a start point is
randomly selected, and then a fixed radius is used to find its neighborhood points.
The correlation coefficient ρ of this neighborhood is then calculated. If ρ is larger
than a pre-set bound, this neighborhood is used to find the initial point IP , i.e. the
point that is nearest to the center of this neighborhood. Otherwise, we will re-select
a point and repeat this checking process. For the case in figure A.3, point Q will be
dropped due to its poor linearity, while point P can be used as the start point to find
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the initial point IP . The initial point IP can then be used as a reference point for
the first segment construction.

Figure A.3: Initial point IP determination and first, second segment construction.

After the initial point is identified, its neighborhood (for the first line segment,
S1) is obtained such that the ρ satisfies the user requirement. At the same time, it is
necessary to make the neighborhood radius R as large as possible so that the resulted
polygon has the minimum number of line segments. Hence, R needs to be determined
adaptively. In our approach, we start with a conservatively small value of R and search
for the close-to-optimal neighborhood radius based on the correlation coefficient. A
small ρ means poor linearity and thus we need reduce the neighborhood radius; a
large one means good linearity and we can increase the neighborhood radius. This
iterative process for the initial point IP determination is described as follows:
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Algorithm A.1 The algorithm for finding the initial point in the thinning approach
using the correlation coefficient.
find_neighborhood_S1(data set C , initial point IP , initial radius R,

radius increment ∆R, correlation coefficient bounds ρlow, ρhigh)
Step 1. Select all the points Pi from C , such that ∥Pi− IP∥ ≤ R,Pi ∈ C ,

to form a data set C1.
Step 2. Compute the correlation coefficient ρ of data set C1 using eq. eq 1.2.
Step 3.

if ρ > ρhigh then
R = R + 2∆R, go to step (1).

else if ρ < ρlow then
R = R−∆R, go to step (1).

else
Return R and points from C1, stop.

end if

With these neighborhood points having good linearity, we can construct a straight
line segment that locally fits these points. Here, we use a least-square method to
compute a regression line, which passes the initial point (xIP , yIP ) and best fits the
points within the neighborhood. Let C1 = Pi = (xi, yi)|i = 1, ..., N be the neighborhood
points, a straight line, L1 : y = α(x − xIP ) + yIP , can be computed by minimizing a
quadratic function:

ε =
N∑
i=1

(α(xi − xIP ) + yIP − yi)
2 (eq 1.3)

As shown in figure A.3, line L1 has two intersection points, P 1∗
start and P 1∗

end, with
the neighborhood circle (centered at the initial point with a radius R). In theory, P 1∗

start

and P 1∗
end can be considered as the start and end points of the first segment. However,

they may not be among the points within the neighborhood. Thus, we select two
points, which are the closest to P 1∗

start and P 1∗
end respectively, within the neighborhood,

as the start and end points, i.e. the closest to P 1∗
start as P 1

start and the closest to P 1∗
end as

P 1
end. S1 is therefore obtained. P 1

startP
1
end also defines the unit oriented vector of this

neighborhood (ŝ1 = P 1
end − P 1

start)/∥P 1
end − P 1

start∥). Using P 1
startP

1
end as the diameter, a

new neighborhood circle is obtained, we then delete all the other points within this
circle. The remaining planar data set C is also updated.
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The method for constructing the remaining segments is slightly different from that
of the first segment. We begin with P 1

end as the start point for the second segment,
i.e. P 2

start. We then adaptively determine the neighborhood for S2. Since the same
algorithm is used for constructing the remaining segments, we denote the start point
as P i

start(i ≥ 2). The algorithm to find the radius of the neighborhood of Si is described
as follows:

Algorithm A.2 The algorithm for finding the radius of the neighborhood of Si.
find_neighborhood_Si(data set C , P i

start, initial radius R, radius increment ∆R,
correlation coefficient bounds ρlow, ρhigh)

Step 1. Construct a neighborhood circle C centered at P i
start with radius R.

Select all points Pk from C , such that ∥Pk − P i
start∥ ≤ R,

to form a data set Ci(k = 1, 2, .., n).

Compute the correlation coefficient ρ of data set Ci.
if ρ < ρlow then

R = R−∆R, go to step (1).
else

regression_line← least_square(P i
start)

// regression_line has two intersection points
// with the neighborhood circle, O1 and O2.
Pave =

∑n
k=1 Pk/n.

if ∥Pave −O1∥ > ∥Pave −O2∥ then
ŝ∗i = (O2 −O1)/∥O2 −O1∥

else
ŝ∗i = (O1 −O2)/∥O2 −O1∥

end if
end if

Step 2. Construct neighborhood circle C centered at Pc = P i
start +Rŝ∗i

with radius R.

Select all points Pk from C , such that ∥Pk − Pc∥ ≤ R, to form a data set Ci.
Compute ρ pf data set Ci.
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Algorithm A.2 The algorithm for finding the radius of the neighborhood of Si.
Step 3.

if ρ > ρhigh then
R = R + 2∆R, go to step (4).

else if ρ < ρlow then
R = R−∆R, go to step (4).

else
Return P i

start, P i∗
end and all points from Ci. Stop.

end if
Step 4.

regression_line← least_square(P i
start)

// regression_line has two intersection points
// with the neighborhood circle C , P i

start and P i∗
end.

Set ŝ∗i = (P i∗
end − P i

start)/∥P i∗
end − P i

start∥
Repeat step (2).

Since we do not have any prior knowledge about the neighborhood of Si, i.e. the
unit oriented vector ŝi, we need to find a reasonable estimate to start the iterative
process. This is achieved in step (1) of Algorithm A.2. We start by choosing a small
R to create a neighborhood circle (centered at P i

start as shown in figure A.3) such that
the points within this circle have a good linearity. We then compute a regression line
that passes through P i

start which help determine a good estimate of ŝ∗i . From step (2),
we start with a neighborhood circle (centered at Pc = P i

start + Rŝ∗i ) and adaptively
find the maximal allowable neighborhood radius. The example shown in figure A.3
shows this process for the construction of S2. From the final neighborhood circle of
S2, P 2∗

end is obtained. The closest point to P 2∗
end within this neighborhood, is then found

and used as P 2
end.

The outputs from the above procedure are P i
start and P i

end and all the points from
Ci. Using P i

startP
i
end as the diameter, a new neighborhood circle is obtained, we then

delete all the other points within this circle. The remaining planar data set C is also
updated. The above algorithm is then applied to construct Si+1, until the remaining
planar data set C is null. At the end, all points P i

start and P i
end, (i = 1, .., n) form a

feature poly-line consisting of n feature points.
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A.2.1 Reason for Rejecting this Approach

This method seems to have nice results on 2D data sets like those illustrated in
figures A.1 and A.3, but when it is applied to our own clouds, the results were not as
expected. In the example of figure A.4, the line segment of a region shows a significant
deviation from the line defined by the data points of this region. The deviation of
the resulting line and the data set is caused by the non-uniform dispersion of the
points of the cross section. The problem has been caused by the projection of 3D the
points onto the 2D plane. While the scanning process has provided a point cloud
with points evenly sparsed on the 3D space, according to the resolution of the 3D
scanner, the process of projecting the slice points onto their 2D plane has brought
some points very close to each other, while some regions between the points have
been left empty. The number of points and their positioning affects the least-square
fitting method, causing the line segment to deviate from its desired path.

Figure A.4: When applied to parts of a cross section of the screwdriver point cloud,
the thinning method using the correlation coefficient does not give satisfying results.
For this reason, this approach has been rejected.

For this reason we chose to abandon the approach of using a thinning method
for constructing the feature poly-line. Instead, we decided to use the computational
geometry method described in chapter 4.
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A.3 The Alternating Convex Hull

Another method we studied, developed, implemented, and eventually rejected, was
the alternating convex hull method, which was applied immediately after the compu-
tation of the convex hull (section 4.3). According to this approach, when the convex
hull is computed, each line segment of the convex hull defines a region, and the
points of this neighborhood are assigned to their corresponding region, according to
the definitions described in section 4.4.
Some of the regions are not properly described by the feature poly-line, as there are

some points that belong to these regions but are not close to the curve. We treat further
these remote regions by computing the convex hull of their points separately, and then
we repeat the same process as for the initial object, i.e. we add the vertices of their
convex hull to the closed curve and update the feature poly-line. This is illustrated
in figure A.5, where we can see a cross section of the handle of the screwdriver being
processed. The convex hull forms the initial feature poly-line and the points of the
cross section form regions, some of which are close to the poly-line, whereas other
regions consist of points that need further processing. One such region is highlighted.
There are other regions that also have points positioned far from the poly-line at other
parts of the cross-section. When these regions are processed one by one, the vertices of
their convex hull are added to the feature poly-line, and the regions are re-computed.

Figure A.5: Detail of a cross section of the handle of the screwdriver point cloud.
The points in the highlighted region are isolated and the convex hull of these points
is computed to identify the next set of feature points for the curve.
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By combining the initial convex hull with the convex hull of each region, we get a
curve that interpolates the points of the slice adequately in most regions. We repeat
computing the convex hull for the rest of the regions until all regions consist of points
that are located near the curve. As stated in algorithm A.3, the average distance is
used for determining whether the points of a region are close to the curve or not,
and the process is repeated as long as there have been any changes to the curve in
the previous step. A similar technique is described in [76].
An example is illustrated in figure A.6. In this example, all concave regions of

figure A.5 have been processed and the feature poly-line has been updated with the
new points. The regions have been recomputed, and now in figure A.6(a) there are
two regions that obviously need one more iteration. The second iteration is performed
and the regions are updated with their new feature points, as illustrated in figure
A.6(b).

Figure A.6: A cross section of the handle of the screwdriver point cloud. (a) Second
iteration of the Alternating Convex Hull Method. There are still some regions where
the curve doesn’t fit the points accurately. (b) Third iteration of the Alternating Convex
Hull Method. The curve now describes the slice points more accurately.

156



The method, as applied to a specific slice, is summarized as follows:

Algorithm A.3 The algorithm for the Alternating convex hull.
alternating_convex_hull()
Input: a set P of points, Slice i

Output: an ordered set Fi of feature points

step 1: (P 3D
i , L) = slice(i, P )

step 2: Pi = project(P 3D
i , S)

step 3: Fi = qconvex(Pi)

step 4:
for each region Pij of Fi do
if avg dist(Pij, Fij) > e then

Fij = qconvex(Pij - Fij)
end if

end for
Fi = Fi ∪ Fij

if changes_made = true then
repeat step 4

end if

step 5: return Fi

where L is a plane parallel to the slice where we project the 3D slice.

A.3.1 The Internal - External Point switching effect

This approach has also been abandoned - after being fully implemented - for the
reason that the feature poly-line presented some irregularities at the points where the
initial convex hull and the regional convex hulls were linked together. The problem
arises due to fact that the points of a cross section are usually arranged on a wider
area rather than a mere curve. Considering that the points of the 3D cloud lie on the
surface of the object, we would expect the points of a 2D slice to lie on a curve with
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no thickness. But since we allow for slices of certain adaptable thickness, projecting
the points on a plane produces point regions that form a thickened curve. If the
dispersion of the points is insignificant, the resulting curve would be sufficient. If not,
computing the convex hull on each region would result in selecting external points
on some parts of the slice, and internal points on other parts (see figure A.7). We call
this the internal-external point switching effect.

Figure A.7: A detail of a cross section of the handle of the screwdriver point cloud.
The convex hull method identifies internal and external slice points alternatively as
feature points. If this affects the curve significantly, the feature poly-line will have
irregularities when switching between regions.

To overcome this effect we used the alternative approach described in the section
4.5, which identifies external feature points only using the Voronoi diagram of the
regions.
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A.4 The Voronoi diagram based approach - Variations

While developing the method of section 4.5, which uses the Voronoi diagram of a
region to identify additional (external) points for the feature poly-line, we studied
and implemented several variations before concluding to the algorithm 4.1. They are
discussed below, with purpose to highlight the details that render the final method
satisfactory, while the previous variations contain faults. In the discussion of the next
section, we assume we have already constructed the initial curve with the convex hull
of the cross section. We also have computed the regions, and for those regions not
properly described by the curve, we have already computed their Voronoi diagram.

A.4.1 Using the farthest Voronoi Vertex

In a first attempt we may choose the farthest Voronoi vertex located on the outer side
of the point cloud, and locate the three (or more) points that are on the largest empty
circle for this vertex (see Figure A.8). Since we choose the farthest Voronoi vertex, two
of these points are expected to be the extreme feature points of this region, which are
already known from the previous step. So we expect one or more remaining points
to be identified as new feature points.
This is equivalent to choosing the third point of the unique Delaunay triangle

that the two already known feature points participate in, considering that there are
not more than three co-circular points for this Voronoi vertex (if there are more,
the triangle is not unique, but still we can choose any of the points, or even all of
them). We identify these new points as feature points and update the feature poly-
line accordingly. We continue to the next farthest Voronoi vertex at the new region
and repeat the process, until all points are located near the fitting feature poly-line.
Every time we update the feature poly-line, we re-compute the point distances from
the regions. This also ensures that we do not reuse points already near the poly-line.
The method is summarized in algorithm A.4.
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Figure A.8: A cross section of the handle of the screwdriver point cloud. The largest
empty circle of the farthest Voronoi vertex is used to identify the next group of feature
points.

By choosing the farthest Voronoi vertex every time, the feature points selected are
expected to be relatively close to each other. If we do not restrict the Voronoi vertices
it will take many steps to fully update the fitting feature poly-line for this region. The
final poly-line will consist of more feature points, and will describe the point cloud
slice more accurately. The problem is that the feature poly-line approaches the point
cloud area quite slowly. To speed up the process we apply the variation described in
the following section.
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Algorithm A.4 The algorithm for the Voronoi method, using the farthest Voronoi
vertex.
Voronoi_farthest_vertex()
Input: a set P of points, Slice i

Output: an ordered set Fi of feature points

step 1: (P 3D
i , L)← slice(i, P )

step 2: Pi ← project(P 3D
i , S)

step 3: Fi ← qconvex(Pi)

step 4: Fij ← ∅

step 5: repeat
for each region Pij of Fi do

if avg dist(Pij, Fij) > ε then
Vi ← qvoronoi(Pij)
Vmax ← farthest_vertex(Vi, Pij)
Fij ← largest_circle(Vmax, Pij)

end if
end for
Fi ← Fi ∪ Fij

until Fij ̸= ∅

step 6: return Fi

A.4.2 Using a single Voronoi Vertex from a bounded area

What we do here is to restrict the candidate Voronoi vertices within a bounded area.
With this restriction, the process will take fewer steps to update the feature poly-line.
It is usually safe to ignore some Voronoi vertices, which are located too far from the
region, and choose a Voronoi vertex that is the farthest within a bounded area. In
the example of figure A.9 the bounded area is defined as the mirror of the convex
hull of the region being processed. All Voronoi vertices located outside this region
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are ignored during the calculations.

Figure A.9: A cross section of the handle of the screwdriver point cloud. By choosing
a Voronoi vertex that is the farthest inside a bounded region we can identify feature
points that are not too close to each other, and update the fitting poly-line faster.

Using this variation, the feature points will be fewer, with a possible compromise
in terms of fitting accuracy. We use this parameter to adapt the feature poly-line fitting
according to application specific requirement or quality of approximation guaranties.
The algorithm for this variation is as follows.
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Algorithm A.5 The algorithm for the Voronoi method, using the farthest Voronoi
vertex within a bounded area.
Voronoi_farthest_vertex_bounded_area()
Input: a set P of points, Slice i

Output: an ordered set Fi of feature points

step 1: (P 3D
i , L)← slice(i, P )

step 2: Pi ← project(P 3D
i , S)

step 3: Fi ← qconvex(Pi)
step 4: Fij ← ∅
step 5: repeat

for each region Pij of Fi do
if avg dist(Pij, Fij) > ε then
Vi ← qvoronoi(Pij)
while Vi is not inside bounded area do

Vmax ← farthest_vertex(Vi, Pij)
remove_Vmax_from_Vi

end while
Fij ← largest_circle(Vmax, Pij)

end if
end for
Fi ← Fi ∪ Fij

until Fij ̸= ∅
step 6: return Fi

The only difference from the algorithm A.4 is that whenever we look for the
farthest Voronoi vertex Vmax, we ignore the Voronoi vertices that are located outside
the bounded area.
With this variation we managed to speed up our method significantly. But during

our tests, we found another way to make things go faster.

A.4.3 Using multiple Voronoi Vertices

Another variation that speeds up the method significantly is to choose more than one
Voronoi vertices in each step, and process many slice points simultaneously. Instead
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of choosing one Voronoi vertex and locate the contact points of the largest empty
circle for this vertex, we select many Voronoi vertices and locate all the contact points
for all such largest empty circles. Then we update the feature poly-line with all the
point cloud feature points we have located. An example is illustrated in figure figure
A.10.

Figure A.10: A cross section of the hip bone point cloud. By choosing several Voronoi
vertices at once we can update the fitting poly-line even faster.

This alternative differs from the methods described previously as we perform the
work of many steps in just one step, and the feature poly-line is extracted much faster.
Voronoi vertices that are close to the point cloud do not contribute any information
to the feature point set so they are being left out. Furthermore, Voronoi vertices on
the wrong side of the point cloud are also being excluded.
The algorithm for this variation is the same as described in algorithm A.5, but

this time Vmax is not a single vertex, but a set of Voronoi vertices. This is actually
the algorithm described in section 4.5, which is the final approach we used in our
method. In algorithm 4.1 the set of vertices Vcandidate ← Vi−excluded_V oronoi_vertices
is equivalent to the while statement (step 5 in algorithm A.5).
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A.5 The Rational Bezier Curve Fitting Approach

Before adopting and implementing the method described in section 5.3 for represent-
ing the cross-sectional contours by G1 B-Spline curves, we tried another approach,
which used rational Bezier curves for interpolating the feature poly-line. According
to this method, which was proposed by Stamati and Fudos in [14], the purpose is to
find the curve that best approximates the feature poly-line set to represent the general
morphology of the border. An optimization process is used, in which cubic rational
Bezier curves are fit to the feature boundaries, while ensuring that the curves created
conform to the conditions required for G1 continuity. They used an equivalent in-
stance of the general NURB, namely piecewise rational cubic Bezier curves because
the constraints they applied decrease the degrees of freedom of our problem and our
requirements are well met with this low degree simpler representation resulting in
fast converging optimization algorithm. Using piecewise rational Bezier curves they
basically follow an optimization approach which can inherently rule out noisy data
without affecting the shape of the boundary as a whole.
Curve approximation is carried out with a least squares optimization procedure.

Suppose Q = {Q1, Q2, ...Qm} is a set of ordered border points and C is an approxi-
mating rational Bezier curve given by the equation

C(ui) =

∑n
j=1wjPjBj(u)∑n
j=1wjBj(u)

(eq 1.4)

where n = 4 for a cubic rational Bezier curve, ui is the parameter value associated
with border point Qi, Pj are the control points, wj is the weight of each control point
and Bj is the corresponding Bernstein polynomial.
Assuming that all points of Q should be approximated by the curve, we would

like to minimize the error:

ei = Qi − C(ui), i = 1..m. (eq 1.5)

We need to assign parameter values ui to each point Qi. We use chordal parame-
terization [181] in which we express the parameter value of each point Qi in reference
to its position in the point sequence:

ui =

∑i
j=2 ∆Qj∑m
j=2 ∆Qj

(eq 1.6)

165



The least squares problem is then to minimize the error:

E =
m∑
i=1

ϵi
2 (eq 1.7)

which by its turn, when combined with equations eq 1.4 and eq 1.5 becomes:

E =
m∑
i=1

(Qi − C(ui))
2 (eq 1.8)

We consider the product wjPj as one variable and partially differentiate equation
eq 1.8 by factor wkPk, k = 1..4. This leads to equations:

∂E

∂wkPk

= 0⇒
m∑
i=1

[
2(

4∑
j=1

wjPjBj(ui)−Qi

4∑
j=1

wjBj(ui))Bk(ui)
]
= 0, k = 1..4 (eq 1.9)

from which we obtain the following linear system of equations:

[B]T [B][wPx] = [B]T [QxB][w]

[B]T [B][wPy] = [B]T [QyB][w]

[B]T [B][wPz] = [B]T [QzB][w]

(eq 1.10)

where (i.e. for coordinate x):

B =


B1(u1) B2(u1) B3(u1) B4(u1)
... ...

B1(u1) B2(u1) B3(u1) B4(u1)

 , wPx =


w1Px1

w2Px2

w3Px3

w4Px4

 ,

QxB =


Q1B1(u1) Q1B2(u1) Q1B3(u1) Q1B4(u1)

Q2B1(u1) Q2B2(u1) Q2B3(u1) Q2B4(u1)
... ...

QmB1(u1) QmB2(u1) QmB3(u1) QmB4(u1)


Without affecting the shape of the curve or the parametrization we can assume

that one of the weights is 1. Therefore we assume that weight w2 = 1. We could
eliminate one more weight by re-parametrizing u, but we need re-parametrization to
be a parameter in the optimization process. Also to ensure G1 continuity between
Bezier curves we make sure the starting point of one curve coincides with the end
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point of the previous curve and that the inner control points are located accordingly
on the tangents of the end points.

Figure A.11: The unit vectors of the tangents at the end control points are estimated
by expressing each tangent of each point as a linear combination of its 4 closest
neighbors [3].

Vectors wPx, wPy, wPz are modified by expressing the coordinates of inner control
points P2 and P3 in relation to the end points. In equation eq 1.10 we now have:

[BT ][B]


w1(x1 + 0)

w2(x1 + nxk)

w3(x4 + rxt)

w4(x4 + 0)

 = [BT ][QxB][w] (eq 1.11)

Since we assume that w2 = 1, the system is transformed so that its final form is
(e.g. for direction x):

[BT ][B]


w1x1

nxk

w3rxt

w4x4

 = [BT ][QxB][w]− [BT ][B][Ax where[Ax] =


0

x1

w3x4

0

 (eq 1.12)

These systems of linear equation (for directions x, y and z) can be used to derive
values for variables w1, k, t, and w4 (all weights in vector [w] are initialized to 1),
therefore essentially determining the inner control points coordinates and approxi-
mate values for two of the three weights. To achieve better curve approximation, we
proceed to a second step using the control points calculated above to compute more
appropriate weight values. However, for each system solution we obtain a different
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set of variable values. Therefore the following weight optimization procedure is car-
ried out once for every solution set and we accordingly keep the solution that best
minimizes the least squares error.
Specifically, we express equation eq 1.7 as follows:

ϵi =
m∑
i=1

(ϵ2xi
+ ϵ2yi + ϵ2zi) (eq 1.13)

We partially differentiate by weights wk (k = 1, 3, 4) and obtain a system of equa-
tions from which we can substitute the control points and the weights found in the
previous step and optimize the weight vector. Specifically, for ∂E/∂wk = 0, k = 1, 3, 4,
the equations obtained are of the form:

m∑
i=1

(
Bk(ui)

(
Qxi

Qxi

4∑
j=1

wjBj(ui) +QyiQyi

4∑
j=1

wjBj(ui) +QziQzi

4∑
j=1

wjBj(ui)

))
=

m∑
i=1

(
Bk(ui)

(
Qxi

4∑
j=1

wjPxi
Bj(ui) +Qyi

4∑
j=1

wjPyiBj(ui) +Qzi

4∑
j=1

wjPziBj(ui)

))
(eq 1.14)

Eventually we end up with the linear system:

(
[Q

′

xB]T [Q
′

xB] + [Q
′

yB]T [Q
′

yB] + [Q
′

zB]T [Q
′

zB]
)
[w

′
] =

[Q
′

xB]T [B][w
′
P

′

x] + [Q
′

yB]T [B][w
′
P

′

y] + [Q
′

zB]T [B][w
′
P

′

z]+

(−1)
(
[Q

′

xB]T [Cx] + [Q
′

yB]T [Cy] + [Q
′

zB]T [Cz]
) (eq 1.15)

where (e.g. for x coordinate):

Q
′

xB =


Q1B1(u1) · · · Q1B4(u1)

... . . . ...
QmB1(um) · · · QmB4(um)

 and Cx = [Q
′

xB]


PX2B2(ui)

...
PX2B2(um)


This procedure is carried out iteratively until the error function is minimized.
Generally this is a fast curve approximation approach that produces smooth con-

tinuous curves that interpolate or pass close by the data points. A good approximation
is reached within a few iterations. In some cases, the minimal error is reached after
the first iteration, if the point cloud data is not noisy and the tangent estimations are
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good. The accuracy of the approximating curve basically depends on how well the
tangents are estimated at the end points, since we restrict the inner control points
to be located on them. The weights are used not only to determine the shape of the
curve but also to adjust the parameterization of the curve. Chordal parameterization
works well, assuming that the points are given as a sequence in 3D space. For this
reason we transform all points that we want to approximate by translating P1 to the
origin, and then aligning vector (P4 − P1) to the positive z − axis. Then we simply
sort the points Qi according to their z coordinate by:

Q
′

i = A(v)T (−Px1 ,−Py1 ,−Pz1)Qi (eq 1.16)

where

v = [P4 − P1] =


a

b

c

 , A =


l
|⃗v|

−ab
l|⃗v|

−ac
l|⃗v| 0

0 c
l

−b
l

0

a
|⃗v|

b
|⃗v|

c
|⃗v| 0

0 0 0 1

 , and l =
√
b2 + c2

This curve fitting method was implemented using Maple 11 [182]. The data sets
used in the examples are ordered point sets corresponding to the feature points of our
cross sections, i.e. the feature poly-lines. For each point in the border point cloud we
have previously computed its corresponding surface normal vector estimate, according
to [3]. The boundary point set is divided into subsets (curve segments) based on the
progressive change in the surface normal of the points. The point cloud is divided
into as many sets needed, so that the angle formed by the surface normals of the
start and end point of each section is below a threshold and allows for alignment of
the section’s point data and sorting as described in equation eq 1.16.
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The following figures illustrate details of the procedure, when applied to a cross
section of the cycladean idol model. Figure A.12 shows the tangent vectors of the
feature points as evaluated using the method described in [3]. This method calculates
an estimation of the normal vector using the neighborhood of the point in discussion.
The tangent vector is then easily calculated, as it is vertical to the normal vector.

Figure A.12: A new rational Bezier curve is inserted each time the tangent vectors
switch sides in respect to the direction of the feature poly-line.

Using this criterion, we divide the feature poly-line in a number of segments,
which will be represented as individual rational Bezier curves. Of course these curves
have to be smooth and continuous at their joints, so we set the corresponding control
points to be collinear. In other words, the control point where two curves meet, the
previous control point on the one curve, and the next point on the other curve, have
to be collinear, to ensure a smooth continuous transition from one curve to another.
Figure A.13 shows how the feature poly-line is segmented into regions for fitting the
individual rational Bezier curves.
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Figure A.13: The feature poly-line is segmented into regions for fitting the individual
rational Bezier curves. Continuity and smoothness on the edges is ensured by setting
the control points on the edges to be collinear.

A.5.1 Reason for Rejecting this Approach

The process described above should work well, but the results when applied to our
models where rather disappointing. As illustrated in figure A.14, the over-fitting effect
we discussed in section 5.3 is present in many parts of the model. The reason for
this is that our input point list, i.e. the feature poly-line of a cross section, as a result
of the computations, may contain points that are positioned very close to each other.
The fitting curves are forced to interpolate all points in the feature poly-line, and
consequently they fail to describe the model accurately due to over fitting. In their
method, Stamati and Fudos [14] have used as input a ”thinned out” point set, by
representing groups of neighboring points with the border point that is closest to
their center of mass. For such point sets, the method obviously produces accurate
results.

171



Figure A.14: The over fitting effect is present in many parts of the model. Removing
feature points that are close to each other will solve the problem. However, the number
of rational Bezier fitting curves that have to be calculated again is large.

The problem of over-fitting may be present regardless of the type of curve we
choose to interpolate on our point set. But when it comes to removing some points
(which are close to each other), this means we have to recalculate the curves, trying
to achieve smooth continuous results that describe the model accurately. With the
approach described here we would need to recalculate many curves, increasing the
computations significantly.
The solution we chose was to calculate a single B-Spline and not many rational

Bezier curves. In case a curve has to be recalculated, only one curve has to be con-
structed for each cross section, and for this reason we chose the approach described
in section 5.3 which uses one B-Spline curve instead of rational Bezier curves.
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