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ABSTRACT

Thanasis Georgiadis, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of Ioannina, Greece, 2025.
Scalable Management of Complex Spatial Data Types.
Advisor: Nikos Mamoulis, Professor.

Scalable spatial data management is crucial in both scientific and commercial
domains, particularly in Geographic Information Systems (GIS), which handle massive
volumes of geographic data. As spatial data continues to grow rapidly, the demand
for efficient spatial data analytics tools has become increasingly pressing. A core
functionality of such tools is the computation of spatial and topological joins over large
collections of objects. These operations aim to identify intersecting object pairs (i.e.,
objects that share at least one common point), a fundamental task with applications
in geospatial interlinking, spatial databases, and beyond. However, intersection testing
is computationally intensive, especially for polygonal objects, which often contain a
large number of vertices and require costly geometric processing.

This dissertation investigates approximation techniques for handling high-complexity
polygons, with the aim of making processing faster and more efficient. The central
objective is to minimize reliance on original geometries, using them for computations
only as a last resort. Our proposed solutions introduce efficient polygon approxi-
mation methods with a low memory footprint, along with filtering techniques that
enable spatial joins to be evaluated without directly accessing the original geometries.
The work addresses both scalability and accuracy challenges while striving to deliver
solutions that are directly applicable to modern in-memory spatial databases.

Scalable spatial data management has two key aspects. First, query processing
algorithms must be highly parallelizable and independent, enabling them to fully
leverage distributed and parallel spatial databases for both vertical and horizontal
scalability. Second, they must maintain efficiency as geometric complexity increases,
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since complex shapes often become a major bottleneck in spatial query processing. In
the second part of this dissertation, we design and implement a prototype distributed
spatial data management framework that operates independently of underlying en-
gines, focusing specifically on the performance and scalability of spatial query eval-
uation in tightly coupled clusters. The prototype integrates state-of-the-art indexing,
approximation, and filtering techniques while carefully minimizing both communica-
tion overhead and memory usage.

With the rapid advancement of Large Language Models (LLMs) and their ex-
panding use across diverse domains, questions arise regarding their ability to handle
complex tasks, particularly spatial reasoning over text. While LLMs excel at infer-
ring and extracting information from large text collections, spatial knowledge is often
domain-specific and not inherently intuitive for them. The first limitation is commonly
mitigated through Retrieval-Augmented Generation (RAG), where external databases
provide context at inference time, enhancing factual accuracy in responses. However,
without fine-tuning or re-training, which can be costly and counterproductive to the
goal of broad generalization, LLMs have consistently demonstrated weak performance
on spatial reasoning tasks.

In the final part of this dissertation, we investigate how topological relations can
help LLMs generate correct responses to spatial reasoning questions expressed in
text. We first employ our efficient spatial topology algorithms to scalably compute
key inter-dataset spatial relations and represent them as RDF (text) triplets. These are
then leveraged through RAG-based mechanisms and indexing techniques to enable
fast and accurate spatial context retrieval at inference time, with the dual objective of
(i) supplying the LLM with domain-specific spatial knowledge and (ii) supporting it
in producing factually correct responses.

In summary, this dissertation presents a comprehensive study of scalable spatial
data management. It introduces in-memory solutions that are both efficient and ac-
curate, addressing key challenges across a broad spectrum of use cases. The proposed
approaches are directly applicable to modern spatial databases and well-suited for
data-intensive geospatial applications.



ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Θανάσης Γεωργιάδης, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική
Σχολή, Πανεπιστήμιο Ιωαννίνων, 2025.
Τίτλος στα Ελληνικά.
Επιβλέπων: Νίκος Μαμουλής, Καθηγητής.

Η κλιμακώσιμη διαχείριση χωρικών δεδομένων είναι κρίσιμη τόσο στον επιστη-
μονικό όσο και στον εμπορικό τομέα, ιδιαίτερα στα Γεωγραφικά Συστήματα Πλη-
ροφοριών (GIS), τα οποία διαχειρίζονται τεράστιους όγκους γεωγραφικών δεδομέ-
νων. Καθώς τα χωρικά δεδομένα συνεχίζουν να αυξάνονται ραγδαία, η ανάγκη για
αποδοτικά εργαλεία χωρικής ανάλυσης γίνεται ολοένα και πιο επιτακτική. Βασική
λειτουργικότητα τέτοιων εργαλείων αποτελεί ο υπολογισμός χωρικών και τοπολογι-
κών συνενώσεων (joins) σε μεγάλες συλλογές οντωτήτων. Οι πράξεις αυτές αποσκο-
πούν στον εντοπισμό ζευγών που τέμνονται (δηλαδή αντικείμενα που μοιράζονται
τουλάχιστον ένα κοινό σημείο), μια θεμελιώδης διαδικασία με εφαρμογές στη γε-
ωχωρική διασύνδεση, στις χωρικές βάσεις δεδομένων και πέραν αυτών. Ωστόσο, ο
έλεγχος τομής είναι υπολογιστικά δαπανηρός, ιδιαίτερα για πολυγωνικά αντικεί-
μενα, τα οποία συχνά περιέχουν μεγάλο αριθμό κορυφών και απαιτούν κοστοβόρα
γεωμετρική επεξεργασία.

Η παρούσα διατριβή διερευνά τεχνικές προσεγγιστικής αναπαράστασης για την
αποδοτική διαχείριση πολύπλοκων πολυγώνων, με στόχο την ταχύτερη και πιο απο-
τελεσματική επεξεργασία. Ο κεντρικός στόχος είναι η ελαχιστοποίηση της εξάρτησης
από τις αρχικές γεωμετρίες, χρησιμοποιώντας τις μόνο ως έσχατη λύση για υπο-
λογισμούς. Οι προτεινόμενες λύσεις εισάγουν αποδοτικές μεθόδους προσεγγιστι-
κής αναπαράστασης πολυγώνων με μικρό αποτύπωμα μνήμης, καθώς και τεχνικές
φιλτραρίσματος που επιτρέπουν την εκτέλεση χωρικών συνενώσεων χωρίς άμεση
πρόσβαση στις αρχικές γεωμετρίες. Η εργασία αντιμετωπίζει τόσο ζητήματα επε-
κτασιμότητας όσο και ακρίβειας, ενώ παράλληλα επιδιώκει την ανάπτυξη λύσεων
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άμεσα εφαρμόσιμων σε σύγχρονες χωρικές βάσεις δεδομένων στη μνήμη.
Η κλιμακώσιμη διαχείριση χωρικών δεδομένων έχει δύο βασικές διαστάσεις.

Πρώτον, οι αλγόριθμοι επεξεργασίας ερωτημάτων πρέπει να είναι υψηλά παραλ-
ληλοποιήσιμοι και ανεξάρτητοι, ώστε να αξιοποιούν πλήρως τις κατανεμημένες και
παράλληλες χωρικές βάσεις δεδομένων τόσο για κάθετη όσο και για οριζόντια κλι-
μάκωση. Δεύτερον, πρέπει να διατηρούν την αποδοτικότητά τους καθώς αυξάνεται
η γεωμετρική πολυπλοκότητα, δεδομένου ότι τα πολύπλοκα σχήματα αποτελούν
συχνά σημαντικό σημείο συμφόρησης στην επεξεργασία χωρικών ερωτημάτων. Στο
δεύτερο μέρος της διατριβής, σχεδιάζουμε και υλοποιούμε ένα πρωτότυπο κατανε-
μημένο πλαίσιο διαχείρισης χωρικών δεδομένων, το οποίο λειτουργεί χωρίς εξάρ-
τηση σε υποκείμενα συστήματα, εστιάζοντας ειδικά στην απόδοση και την κλιμακω-
σιμότητα της εκτέλεσης χωρικών ερωτημάτων σε στενά συνδεδεμένα, κατανεμημένα
υπολογιστικά συστήματα. Το πρωτότυπο ενσωματώνει σύγχρονες τεχνικές δεικτο-
δότησης, προσεγγιστικής αναπαράστασης και φιλτραρίσματος, ελαχιστοποιώντας
παράλληλα την επικοινωνιακή επιβάρυνση και τη χρήση μνήμης.

Με τη ραγδαία πρόοδο των Μεγάλων Γλωσσικών Μοντέλων (LLMs) και την
αυξανόμενη χρήση τους σε ποικίλους τομείς, προκύπτουν ερωτήματα σχετικά με
την ικανότητά τους να χειρίζονται πολύπλοκες εργασίες, και ειδικότερα τη χω-
ρική συλλογιστική μέσω κειμένου. Αν και τα LLMs διαπρέπουν στην εξαγωγή και
επεξεργασία πληροφορίας από μεγάλες συλλογές κειμένων, η χωρική γνώση είναι
συχνά εξειδικευμένη και όχι εγγενώς διαισθητική για αυτά. Ένας βασικός περιορι-
σμός μετριάζεται μέσω της μεθόδου Retrieval-Augmented Generation (RAG), όπου
εξωτερικές βάσεις δεδομένων παρέχουν συμφραζόμενα κατά το χρόνο εκτέλεσης,
βελτιώνοντας την πραγματολογική ακρίβεια των απαντήσεων. Ωστόσο, χωρίς προ-
σαρμοστική εκπαίδευση ή επανεκπαίδευση, διαδικασίες που είναι δαπανηρές και
αντίθετες προς τον στόχο της γενικής χρήσης, τα LLMs εμφανίζουν σταθερά αδύ-
ναμες επιδόσεις σε χωρικές συλλογιστικές εργασίες.

Στο τελικό μέρος της διατριβής, διερευνούμε πώς οι τοπολογικές σχέσεις μπο-
ρούν να βοηθήσουν τα LLMs να παράγουν ορθές απαντήσεις σε ερωτήσεις χωρικής
συλλογιστικής που εκφράζονται σε κείμενο. Αρχικά, εφαρμόζουμε τους αποδοτικούς
αλγόριθμους χωρικής τοπολογίας που αναπτύξαμε για να υπολογίσουμε με κλιμα-
κώσιμο τρόπο βασικές δια-συνόλου χωρικές σχέσεις και να τις αναπαραστήσουμε
ως RDF τριάδες (κειμενικές). Στη συνέχεια, αυτές αξιοποιούνται μέσω μηχανισμών
RAG και τεχνικών δεικτοδότησης, ώστε να καταστεί δυνατή η ταχεία και ακριβής



ανάκτηση χωρικών συμφραζομένων κατά την εκτέλεση, με διττό στόχο: (i) τον εφο-
διασμό του LLM με εξειδικευμένη χωρική γνώση και (ii) την υποστήριξή του στην
παραγωγή πραγματολογικά ορθών απαντήσεων.

Συνοψίζοντας, η διατριβή αυτή παρουσιάζει μία ολοκληρωμένη μελέτη για την
κλιμακώσιμη διαχείριση χωρικών δεδομένων. Εισάγει λύσεις στη μνήμη που εί-
ναι ταυτόχρονα αποδοτικές και ακριβείς, αντιμετωπίζοντας κρίσιμες προκλήσεις
σε ευρύ φάσμα περιπτώσεων χρήσης. Οι προτεινόμενες προσεγγίσεις είναι άμεσα
εφαρμόσιμες σε σύγχρονες χωρικές βάσεις δεδομένων και κατάλληλες για εφαρμο-
γές εντατικής γεωχωρικής επεξεργασίας δεδομένων.



CHAPTER 1

INTRODUCTION

1.1 Efficient In‐Memory Spatial Joins with Complex Geometries

1.2 Hecatoncheir: Scaling Up and Out Spatial Data Management

1.3 Spatial Reasoning using Retrieval‐Augmented Generation

1.4 Dissertation Outline

Database management systems (DBMSs) [3, 4] are the cornerstone of modern data
organization. Across all domains and applications, efficient data management and
analysis are essential for driving innovation and improving people’s lives. From social
networks and healthcare to scientific research and industrial manufacturing, database
systems empower users to interact with data in a reliable, robust, and efficient way.

Data can vary not only in volume but also in modality. Additionally, access pat-
terns and usage requirements often differ across application domains. As a result,
databases are categorized into different types based on how they organize and pro-
cess data. The most common and widely used are relational databases, which struc-
ture data in tables composed of rows and columns. These tables represent entities or
relationships within the data, offering a structured and efficient way to store and man-
age records, particularly suited for transaction processing, where entire records are
typically inserted, retrieved, or deleted. Spatial databases are designed for managing
geographic and spatial data, typically organizing information based on geographic
coordinates or shapes. They process data using topological relationships, such as
containment and intersection, alongside associated relational attributes, making them
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a powerful tool for spatial analytics. Graph databases represent data as nodes and
edges within a graph structure, while temporal databases specialize in storing time-
associated data, enabling the tracking of history and changes over time, and support-
ing time-based queries. Another prominent type is column-store databases, which
organize data by attributes (columns) rather than by records (rows). This layout en-
ables faster retrieval and processing, making it ideal for analytical workloads where
queries typically target specific attributes rather than entire records.

With the rise of cloud computing services, distributed database management sys-
tems (DDBMSs) have become increasingly available and popular, enabling broader
and more scalable data organization approaches. Data warehouses [5] consolidate
and store data from multiple sources into a unified repository, supporting analysis
and insight extraction over both current and historical data. In contrast, data lakes
store data in its original, raw format, serving as a flexible repository that integrates
data across all modalities that is useful for visualization, machine learning, and other
advanced analytics.
Spatial Databases are primarily used in applications such as geographic information
systems (GIS), location-based services (e.g., Uber, GPS), and mapping applications
(e.g., Google Maps). Spatial data is organized based on geographic coordinates or
other location-based 2D or 3D positioning, often using geometric shapes to represent
real-world regional entities. As geometries increase in both complexity and quan-
tity, spatial databases face significant challenges in storing all data in memory and
processing it efficiently. To address these issues, advanced indexing techniques are
essential for fast data retrieval, along with specialized algorithms to ensure effective
data processing.
In‐Memory Management of data is closely tied to proper organization, which is
essential for both efficient retrieval and processing. Indexing plays a critical role in
structuring how data is stored, enabling fast access based on its attributes. These
attributes vary depending on the data modality. For instance, relational data is stored
in tables, where entities or relationships group related attributes together. Temporal
data, on the other hand, is typically organized around timestamps, which may be
associated with other non-temporal attributes. Consequently, such data is indexed
based on its temporal characteristics to support time-based retrieval.

Spatial data, on the other hand, is almost always indexed based on its coordinate
properties using specialized indexes [6, 7], enabling spatial pruning. This means that



when specific retrieval parameters are provided, the database can avoid scanning all
objects in the data space. Instead, it can quickly and efficiently exclude entire regions
that are guaranteed not to contain any candidate objects (i.e., potential retrieval re-
sults). However, complete spatial datasets containing large and complex geometries
(e.g., polygons) may not fit entirely in memory. As a result, non-point data is often
stored on disk, while approximations of the geometries, such as the minimum bound-
ing rectangle (MBR), are kept in memory. This approach enables selective loading of
geometries from disk during query evaluation, which is especially important when
memory is limited. However, it comes at the cost of increased I/O overhead.
Parallel Processing is increasingly important in modern databases due to significant
advancements in hardware, such as multi-core processors, faster intra-process com-
munication and specialized processing units, as well as the growing accessibility of
these resources. Additionally, cloud services enable the scale-out of workloads across
multiple machines in disaggregated environments. However, databases do not scale
automatically, as both the indexing methods and the data processing algorithms they
support have to be parallelizable.

Depending on the database environment, parallelism can be achieved at different
levels. In shared-memory architectures, multiple processors (or threads) have access
to a common memory space. This setup enables fast data retrieval and low-latency
communication between processors. However, it also requires careful concurrency
control to ensure data consistency. While parallel reads are generally safe and efficient,
simultaneous reads and writes (or concurrent writes) can lead to race conditions and
data corruption. To prevent such conflicts, locking mechanisms or synchronization
primitives (e.g., mutexes, semaphores) are employed. However, these mechanisms
can introduce significant overhead and reduce the degree of parallelism, as processors
may be forced to wait for access to shared memory regions.

In contrast, distributed-memory architectures allocate private memory to each
processor, meaning a processor can access only its local memory directly. When a
processor requires data stored in another processor’s memory, communication must
occur explicitly. This is typically handled through remote memory access (RMA), as seen
in paradigms like the Message Passing Interface (MPI) [8, 9], or through Remote Direct
Memory Access (RDMA) techniques, which allow one processor to read or write directly
to another processor’s memory without involving the remote processor’s CPU.

The choice between shared-memory and distributed-memory models and the



mechanisms used for data access, depends on the system’s architecture, the capabil-
ities of the interconnect network (e.g., bandwidth, latency), and the workload char-
acteristics. Modern high-performance systems often adopt hybrid architectures, com-
bining shared memory within nodes and message-passing between nodes, to balance
speed, scalability, and resource isolation.

1.1 Efficient In‐Memory Spatial Joins with Complex Geometries

Spatial data are ubiquitous in scientific and commercial applications, such as Ge-
ographic Information Systems (GIS), which manage huge volumes of geographic
data. For instance, Natural Earth (www.naturalearthdata.com) includes public-domain
global geographic data at various scales in both vector and raster format. Numer-
ous free sources of GIS data can be found at www.freegisdata.rtwilson.com. With the
growing spatial data availability, there is an increasing need for efficient spatial data
analysis tools.

We study the problem of computing the spatial intersection join [10] between two
spatial object collections R and S, which identifies all pairs of objects (r, s), r ∈ R, s ∈
S such that r shares at least one common point with s. Besides being a common
operation in GIS, the spatial intersection join finds a wide range of applications in
geo-spatial interlinking [11], GeoSPARQL queries on RDF data stores [12], interference
detection between objects in computer graphics [13], and suggesting synapses between
neurons in neuroscience models [14]. In computer graphics (e.g., solid modeling,
molecular modeling) they are used for detecting the interference between geometric
models [15]. Recently, there has been a growing interest in spatial query evaluation
over complex object geometries, such as polygons [16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

A naive way to evaluate the join is to run an intersection test algorithm from com-
putational geometry for each pair (r, s) in R→ S. However, this method is extremely
expensive, since (i) the number |R → S| of pairs to be tested can be huge and (ii)
for each pair the test takes O(n logn) time [1]. To mitigate (i), the join is evaluated
in two steps. Provided that the minimum bounding rectangles (MBRs) of the objects
are available (and possibly indexed), in the filter step, an efficient MBR-join algorithm
[26, 27] is used to find the pairs of objects (r, s) ∈ R → S such that MBR(r) inter-
sects with MBR(s). In the refinement step, for each pair that passes the filter step,
the expensive intersection test on the exact object geometries is applied. To further
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reduce the number of pairs needing refinement, intermediate filters can be added to
the pipeline [1, 28]. The main idea is to use object approximations, in addition to the
MBR, that can help to quickly determine whether a candidate pair (r, s) that passes
the MBR filter is (i) a sure result, (ii) a sure non-result, or (iii) an indecisive pair, for
which we still have to apply the geometry intersection test. Brinkhoff et al. [1] inves-
tigated the use of different object approximations (e.g., the convex hull) to be used
as subsequent filters after MBR-intersection. Zimbrao and de Souza [28] proposed
a more effective raster object approximation, where each object MBR is partitioned
using a grid and the object is approximated by the percentages of grid cell areas that
the object overlaps. This approach has several limitations. First, the raster object rep-
resentations may occupy a lot of space. Second, the approximations of two candidate
objects may be based on grids of different scales; their re-scaling and subsequent
comparison can be quite expensive. Third, the cost of comparing two rasters in order
to filter a candidate pair is linear to the number of cells in the rasters.

1.1.1 Raster Intervals: An Approximation Technique for Polygon

Intersection Joins

We propose Raster Intervals (RI); a raster approximation technique for polygonal
objects, which does not share the drawbacks of [28] and reduces the end-to-end
spatial join cost up to 10 times, when we use it as a pre-refinement, intermediate
filter. Our technique uses a global fine grid to approximate all objects, hence, no re-
scaling issues arise. In addition, RI encodes each cell by a 3-bit sequence; whether
two objects overlap in a cell can be determined by bit-wise ANDing the corresponding
sequences. Finally, RI models the set of cells that approximate an object o by a sorted
list of raster intervals, determined by the Hilbert curve order of continuous cells in o’s
representation. For each such interval, we unify in a bitstring all 3-bit sequences of
the included cells. Object pair filtering is then implemented as a merge join between
the corresponding raster interval lists. For each pair of intersecting intervals, the sub-
bitstrings corresponding to the common cells are ANDed to find whether there is at
least one cell wherein the polygons overlap.

RI is space-economic and very efficient to use as a post-MBR filter for spatial
joins. Our experiments on 7 pairs of real geographic datasets show that not only
does it filter consistently more pairs compared to the state-of-the-art approaches,



but also it is much more efficient compared to the rasterization approach of [28].
Another advantage of our RI approximations is that they occupy considerably less
space compared to the sizes of the exact data, rendering their storage in main memory
feasible.
Contributions. We propose a novel representation of raster object approximations as
sets of intervals paired with binary codes which model the level of overlap of each
object with each cell. Additionally, we propose an efficient algorithm for joining the
raster intervals of two objects that pass the filter step of the spatial join. The algorithm
is an easy-to-implement merge-join paired with bitshifting and bitwise XOR and AND
operations. We evaluate our approach on a wide range of real datasets of varying sizes
and complexities and demonstrate that our approach is significantly more effective
and space/time-efficient compared to alternative filters and reduces the overall join
cost by up to one order of magnitude.

1.1.2 Advancing Raster Interval Approximations for Spatial Joins

Despite its effectiveness and efficiency compared to previous filters, RI has a relatively
high preprocessing cost and occupies significant space. In this extended version of [29]
we propose APRIL (Approximating Polygons as Raster Interval Lists), a significant
improvement over RI. Unlike [28, 29] that divide the raster cells intersecting a polygon
into three classes, APRIL uses only two cell classes, which improves storage efficiency
and accelerates the intermediate filter. Second, the main novelty of APRIL lies in the
way it represents objects using two lists of intervals: the first (A-list) includes all cells,
regardless of their class, and the second (F-list) includes only cells that are fully
covered by the object. The intermediate filter is then implemented as a sequence of
three simple merge joins between the sorted interval lists of a given object pair. The
first join, performed between the two A-lists, effectively identifies all true negatives.
The last two joins, performed between one object’s A-list and the other object’s F-
list, identify true positives. Since APRIL does not explicitly store or encode cell-
class information and does not perform cell-specific comparisons, it is significantly
faster than previous raster approximations. Finally, APRIL applies a compression
technique based on delta encoding to greatly reduce the space required to store the
interval lists. As a result, APRIL approximations may require even less space than
object MBRs, allowing them to be stored and processed in main memory. Moreover,



APRIL’s compression scheme allows partial, on-demand decompression of interval
lists during interval join evaluation.
Contributions. In addition to improving RI, we show the generality of APRIL in sup-
porting spatial selection queries, spatial within joins, and joins between polygons and
linestrings. Furthermore, we present a space partitioning approach, which increases
the resolution of the raster grid and achieves more refined object approximations
as necessary, leading to fewer inconclusive cases and, therefore, faster query eval-
uation. We also investigate options for defining and joining APRIL approximations
of different polygons at different granularities based on their geometries. Finally, a
significant contribution of this work is a novel, one-step “intervalization” algorithm
that computes the APRIL approximation of a polygon without having to rasterize it
in full. We show that this method is orders of magnitude faster compared to other
rasterization approaches on CPU [28, 23].

1.1.3 Scalable Spatial Topology Joins

Topological relations between geometrical objects, illustrated in Figure 1.1(a) capture
semantics that are unaffected by transformations of the data space, such as transla-
tion, rotation, and scaling. In GIS [30], they can be used in urban and transporta-
tion planning [31]. In environmental studies, detecting topological relations on climate,
sustainability, and energy data (such as data offered by the European Environment
Agency (EEA) [32]), can help understanding factors contributing to urban and global
heating, pollution, and biodiversity decline. In spatial databases [33], topological rela-
tions are often used as predicates in selection queries and spatial joins [1]; besides,
they have also been used in spatial query optimization [34]. In geo-spatial interlinking
[35, 11], they are used to enrich and integrate knowledge graph databases with links
between spatial entities.

In image and multimedia databases, relations between detected objects are valuable
features, e.g., in medical image analysis [36]. Besides, content-based image retrieval
based on topological queries [37, 38] finds interesting arrangements of objects in
images. Proteins in large biological databases are also topologically related [39].

The Dimensionally Extended 9-intersection model (DE-9IM) [40, 41] is the de-
facto standard for capturing the possible spatial relations between shapes. DE-9IM
has been widely used in GIS (ArcGIS [42], QGIS [2]) and spatial DBMS (PostGIS [43],
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Oracle Spatial [44]), while it has been implemented in popular geometry libraries (JTS
[45], GEOS [46], boost [47]).

Our proposed APRIL approximation and filtering can detect intersecting pairs in
the broad sense, without distinguishing more precise topological relations such as
those illustrated in Figure 1.1(a). A naive workaround would be to forward the pairs
identified as true hits by the APRIL filter to refinement, in order to compute their
DE-9IM matrix and determine their exact topological relation. However, this process
requires O(n logn) time (the same complexity as a polygon–polygon intersection test)
where n is the number of vertices of the two shapes [48]. This approach is sub-
optimal, since an effective intermediate filter should ideally detect both true hits and
true negatives to minimize refinement costs. In this case, however, the filter would
only detect true negatives, thereby undermining its purpose.

The workflow of our proposed approach is illustrated in Figure 1.1(b). For each
pair of objects whose MBRs intersect (i.e., pairs produced by an algorithm handling
the filter step [49, 27]), we perform merge-join operations on their APRIL approxima-
tions, modeled as interval lists, to potentially determine their topological relationship.
If the raster approximations are insufficient, we compute the DE-9IM matrix as a fall-
back. A key advantage of our method is its scalability, i.e. its effectiveness improves
with increasing object complexity, enabling the detection of hundreds of thousands of



topological relations per second for complex object pairs. Additionally, for most com-
parisons, our approach avoids loading full object geometries, significantly reducing
data access costs.
Contributions. We propose an intermediate step in the pipeline of topology detec-
tion, after the MBR filter step, which takes advantage of precomputed spatial ob-
ject approximations as lists of raster intervals [50]. We define a set of relations (e.g.,
overlap) between lists of raster intervals, which can be evaluated in linear time by
merge-joining the lists. Then, depending on how the MBRs of two objects intersect,
we propose specialized filters, which verify a sequence of list relations to potentially
confirm the topological relation between the objects, without having to access and
process their exact geometries. Hence, compared to previous work which uses raster
object approximations [28, 29, 50] to detect spatial intersection only (including RI and
APRIL), we exploit such approximations in full for the detection of the most specific
topological relation between two objects. When applied on benchmarking datasets
(Tiger, OSM [51]), our approach boosts the overall throughput of spatial topology
joins up to one order of magnitude compared to state-of-the-art geo-spatial interlink-
ing methods [35, 11] and up to several times compared to using raster approximations
for intersection detection [50].

1.2 Hecatoncheir: Scaling Up and Out Spatial Data Management

Existing distributed spatial libraries such as Apache Sedona [52], SpatialHadoop [53],
SIMBA [54], LocationSpark [55] and more, require Spark and Hadoop to be setup a
priori in the cluster in order to be deployed upon them. Additionally, the architectures
of these frameworks were specifically designed to integrate seamlessly with their
underlying engines. As a result, they not only inherit the benefits of those engines but
also their limitations. Moreover, spatial libraries like JTS [45], GEOS [46] and Google
S2 are limited to providing APIs for geometry operations, but they do not constitute
standalone systems for distributed indexing, data partitioning, and query evaluation.
Several distributed spatial analytics frameworks have been compared against each
other [21], with Apache Sedona being considered the most prominent and popular
one. All these frameworks share the following drawbacks:
Resource cost The spatial indexes provided by existing frameworks are becoming
outdated, with high construction and usage costs. Their memory usage for large



datasets often reaches tens of gigabytes, while query throughput hovers around a few
hundred per minute [21]. In today’s era of cloud services and pay-as-you-go pricing
models, these limitations can significantly inflate operational costs for both users and
enterprises.
Setup Complexity They are based on an underlying engine (e.g., Spark) which needs
to be installed beforehand. The engines come with their own dependencies; for ex-
ample, cluster managers such as YARN or Kubernetes. On top of that, the frameworks
have their own installation process as well and need to be configured to work along
with their underlying engine. Hence, they cannot be considered as ”plug-and-play”
tools to the casual user.
No C/C++ support Currently, no distributed spatial data management framework of-
fers C/C++ support for their API, hence they require tedious low-level porting. C/C++
are usually the go-to language option for performance-focused implementations and,
thus, there has been a huge gap in distributed spatial data management in C/C++
until now.
Contributions. We introduce Hecatoncheir, the first plug-and-play C/C++ library for
in-memory distributed and parallel spatial data management. Hecatoncheir’s under-
lying layer is implemented using MPICH [9], a Message Passing Interface (MPI) [8]
standard. Hecatoncheir offers optimized spatial partitioning and indexing techniques
to support scalable distributed spatial query processing, without depending on ex-
ternal process and resource managers or engines. It functions like any other C/C++
library, compiled and linked using CMake, seamlessly integrating into the user’s
projects while encapsulating all distribution-related complexities within a black-box
logic for a plug-and-play experience. Currently, Hecatoncheir uses Boost Geometry
[56] for the geometric operations, as we have found that it outperforms GEOS. To
scale CPU-intensive tasks, such as data partitioning, spatial approximation generation
[29, 50], and spatial query evaluation [57, 50], Hecatoncheir leverages intra-node
parallelism with OpenMP, utilizing available threads to parallelize computationally
intensive yet independent tasks on the CPU. By distributing and maintaining data
in the main memory of each node, the system fully utilizes available resources for
efficient, scalable query execution, where each machine operates independently, mini-
mizing computation and communication overhead. We evaluate Hecatoncheir’s scala-
bility, performance, and memory efficiency, via a comparison against Apache Sedona.
An overview of both frameworks’ features can be seen in Table 1.1.



Table 1.1: Hecatoncheir and Apache Sedona features list.

Feature Apache Sedona Hecatoncheir
Language Java/Scala C/C++

Index RTree, QuadTree Two-level Grid

Queries Range, (Distance) Join, kNN Range, (Distance) Join, kNN

1.3 Spatial Reasoning using Retrieval‐Augmented Generation

Recently, generative models such as large language models (LLMs), begun to be ex-
plored as AI assistants in GIS applications, where spatial reasoning plays a central
role in interpreting and analyzing geographic data. Retrieval augmented generation
(RAG) [58] improves the performance of LLMs by retrieving relevant information
from external sources and providing it as context to improve the response quality of
the models. RAG has been especially useful when we need to generate responses based
on large and complex sources of knowledge that have not been used in the model
training process. The success of RAG has brought opportunities for new research
in data management and information retrieval toward improving LLM effectiveness
[59].

Spatial data collections are typically in structured format and stored in database
systems such as PostgreSQL1 and Oracle Spatial2, or GIS like QGIS3. The relations
between all pairs of spatial data entities on a map are not explicitly stored or used
in the training process of a foundation model, so existing models are not trained
with such knowledge. Only a limited number of spatial relations are typically found
in training sources of LLMs such as Wikipedia articles or public-domain books. For
instance, the introductory paragraph of the Wikipedia entry on Greece states: ”Greece,
officially the Hellenic Republic, is a country in Southeast Europe. Located on the southern
tip of the Balkan Peninsula, Greece shares land borders with Albania to the northwest, North
Macedonia and Bulgaria to the north, and Turkey to the east. The Aegean Sea lies to the east
of the mainland, the Ionian Sea to the west, and the Sea of Crete and the Mediterranean Sea to
the south.” This passage conveys a significant amount of spatial information in natural
language about Greece’s relative topology and location to its neighboring geographic

1https://www.postgresql.org/
2https://www.oracle.com/database/spatial/
3https://www.qgis.org/

https://www.postgresql.org/
https://www.oracle.com/database/spatial/
https://www.qgis.org/


entities (e.g., countries and seas). In contrast, spatial databases may include precise
coordinate data and geometrical representations spatial entities, but often lack such
relational descriptions, especially in terms of natural, human-interpretable spatial
context. However, when a spatial relation involves two entities that are not direct
neighbors, such information is more than likely to not be explicitly stated in any
pre-training data. In such cases, the relative spatial relation must be computed at
inference time. This introduces additional complexity and latency, as it requires a
dedicated spatial database system to be integrated with the LLM with a supporting
toolchain, capable of categorizing the user’s question, translating it into a database
query, executing the query on the spatial dataset, and returning the result. Only
then can the LLM compose a meaningful and accurate natural language response
grounded in factual spatial data. Moreover, when the spatial entities involved are
less well-known, such as ZIP codes or parks, or belong to more specialized domains,
like soil quality maps or mineral deposit distributions, it is far less likely that their
spatial relations are explicitly described in any text used during pre-training, posing
a significant challenge for LLMs to infer accurate spatial knowledge solely from prior
textual data.

These observations motivate the central research question explored in this work:
To what extent can LLMs infer spatial knowledge over text, and how can this capabil-
ity be enhanced? To address this question, we introduce SpaRAGraph, a framework
that enhances language model generation through RAG by supplying spatially en-
riched context. This enables the inference of spatial knowledge from text without
requiring model re-training or fine-tuning. The first major challenge lies in the na-
ture of spatial data: it is typically stored in structured, non-linguistic formats (e.g.,
records or geometries), making it inherently incomprehensible to LLMs in its raw
form. Therefore, a spatial-to-text pre-processing step is required to translate this data
into natural language descriptions that can both test and improve LLMs’ spatial rea-
soning abilities. The second challenge is ensuring that the system remains efficient
and lightweight at inference time, avoiding computationally intensive operations that
could slow down response generation. Additionally, we propose the Spatial Reason-
ing Benchmark (SRB), a novel benchmark designed to evaluate models on binary,
multiclass, and multilabel classification tasks involving real-world geographic divi-
sions within the United States and their actual topological relationships. We leverage
SRB to evaluate SpaRAGraph, highlighting its effectiveness in enhancing the spatial



reasoning capabilities of small, open models across these tasks.
Compared to other Q&A frameworks employed on spatial data [60, 61, 62],

SpaRAGraph differentiates in three dimensions; the first is that it generates per-
question context at inference time for guiding the model’s response using factual
information. Second, it leverages a relational RDF graph to efficiently retrieve and
combine spatial relations, minimizing additional latency in the overall process. Third,
the graph-based spatial context generation is non-stochastic and follows a pre-defined
spatial relation composition matrix, enabling both faster and more accurate spatial
reasoning than pure, LLM-based approaches.
Contributions We introduce SpaRAGraph, a novel end-to-end framework for spatial
reasoning through inference over spatial text, which leverages graph indexing on spa-
tial RDF data. SpaRAGraph comes with the SpaTex module, a scalable, specialized
tool for spatial-to-RDF data generation that captures spatial relations between neigh-
boring entities in a dataset. SpaRAGraph applies a graph traversal approach assisted
by a spatial relation composition matrix on the RDF graph generated by the SpaTex

module to conduct spatial reasoning and deterministically generate the appropriate
context for the LLM. For the evaluation of SpaRAGraph, we introduce SRB, a bench-
mark that challenges LLMs on binary, multiclass and multilabel classification tasks
on real-world, spatial entities. Our evaluation demonstrates that SpaRAGraph signifi-
cantly boosts model performance across all tasks in the SRB datasets, with impressive
improvements on the F1 score in different LLMs (an average improvement of 36

percentage points). All tested models benefit from SpaRAGraph to varying degrees,
with minimal impact on response time.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we provide the nec-
essary background and discuss related work, highlighting any room for improvement
and our motivation.

In Chapter 3, we present our raster-based polygon approximation techniques and
their application on spatial joins with various topological predicates. Our approaches
introduce filters that perform fast and accurate spatial join evaluation over the raster-
based approximations, improving the overall query execution time that can be inte-
grated in all modern, real-world spatial databases. All our proposed approaches are



evaluated through a long series of experiments over real-world datasets.
In Chapter 4 we present Hecatoncheir, a prototype distributed spatial data manage-

ment framework designed for performance and scalability. Hecatoncheir uses state-
of-the-art indexing and query processing techniques, optimized for distributed envi-
ronments, minimizing inter- and intra-process communications and focusing on load
balancing, parallel query execution and low memory footprint. We validate Heca-
toncheir’s performance and scalability through a wide range of experiments, com-
paring it to other modern distributed spatial data management frameworks.

In Chapter 5, we propose SpaRAGraph, a RAG technique that utilizes topologi-
cal relations between entities to enhance the spatial reasoning capabilities of LLMs
and facilitate domain-specific response generation to spatial questions. Our approach
implements the RAG paradigm through a combination of named entity recognition,
graph and vector indexing and rule-based context generation techniques. We exper-
imentally evaluate SpaRAGraph employed over several small, open models.

In Chapter 6 we summarize the contributions of this dissertation and discuss
future work.



CHAPTER 2

BACKGROUND & RELATED WORK

2.1 Complex Geometries & Approximations

2.2 Spatial Joins

2.3 Scalable Spatial Data Management

2.4 Spatial Reasoning in LLMs through Retrieval‐Augmented Generation

In this chapter, we will present and discuss the related work and necessary back-
ground for this dissertation. Specifically, we will first discuss complex geometries and
their approximations (Section 2.1), highlighting their key challenges and benefits. Sec-
tion 2.2 will provide the necessary background and related work on the multi-step
evaluation of spatial joins. In Section 2.3 we will discuss scalable solutions to spatial
data management problems. Finally, in Section 2.4 we will discuss related work on
RAG techniques for spatial reasoning tasks in LLMs.

2.1 Complex Geometries & Approximations

Real-world geographic entities such as user location, lakes, roads etc. are the most
common types of spatial data stored in spatial database systems. Entities are as
geometry representations, based on the type of geometry that best represents their
shape. However, as shapes increase in both complexity and quantity, they may need
to be approximated in memory, with their full geometries stored on disk. In such

15



cases, the spatial database can evaluate queries using these approximations instead of
the full geometries, retrieving the actual geometries from disk only when necessary.
This eliminates the need to keep all geometries in memory at all times and reduces
overall I/O costs, as fewer objects need to be loaded.

However, most polygon approximations such as the MBR, are unable to detect
true hits, leaving it still for the refinement phase to do so. These types of polygon
approximations are referred to as conservative approximations, since they cover a larger
area than the original geometry and thus can only be used to detect true negatives.
Some of the most common conservative approximations [1] are the following:

• Rotated Minimum Bounding Rectangle (RMBR), which rotates the traditional
MBR.

• Minimum Bounding Circle (MBC), that uses the minimum circle instead of the
minimum rectangle to approximate a polygon.

• Minimum Bounding Ellipse (MBE), which similar to MBC, uses an ellipse to
enclose a polygon.

• m-Corner (mC), which uses m points to enclose the object in a new m-point
polygon. Usually m = 5 and it is referred to as 5C.

• Convex Hull (CH), a popular approximation that is well-studied by computa-
tional geometry.

Figure 2.1 illustrates these conservative approximations.
On the other hand, progressive approximations are those capable of detecting true

positives. If two progressive approximations intersect, it is assumed that the original
geometries of the objects also intersect. However, if the approximations do not inter-
sect, the original geometries must still be evaluated to avoid potential false negatives.

Progressive approximations are more expensive to produce, especially if their opti-
mized (or maximum) case is needed. For example, the Maximum Enclosed Rectangle
(MER) and Maximum Enclosed Circle (MEC) [1] can both be used for identifying
true positives, but their calculation is significantly more expensive than their conser-
vative counterparts MBR and MBC, respectively. MER and MEC are illustrated in
Figure 2.2. They usually detect around 1/3 of the total true hits [1] by themselves,
so they need to be combined with a conservative approximation in order to perform



Figure 2.1: Examples of conservative polygon approximations. (Image from [1])

Figure 2.2: Examples of progressive polygon approximations. (Image from [1])

well. This further increases memory requirements and computational cost, raising the
question of whether such filters are truly worth the trade-off.

Raster images of polygons [24, 28] have also been studied as an approximation tool
in spatial data management. The process of rasterization can be either progressive,
conservative or both and transforms a polygonal geometry into a set of raster cells. The
raster image of the polygon in Figure 2.3 is based on the Raster Approximation [28].
Since it covers more area than the actual geometry, it is considered a conservative
approximation, meaning that it can detect true negatives. However, it is specially
constructed to identify some true positives as well. It calculates the percentage of
each cell’s area covered by the original polygon and then labels it as Full, Strong,
Weak or Empty, for 100%, > 50%,≤ 50% or 0% coverage respectively.

Thus, checking for intersection using the raster approximations of two polygons



Empty Weak Strong Full

Figure 2.3: Raster image of a polygon.

empty weak strong full

empty no no no no

weak no inconclusive inconclusive yes

strong no inconclusive yes yes

full no yes yes yes

Table 2.1: Do two objects intersect in a cell, based on the cell’s types in the two raster
approximations?

instead of their geometries, enables detecting true positives based on their shared
cells and their respective classes. This is seen in Figure 2.4, where the two raster
approximations each intersect some common cells. However, in cells 8 and 13, both
raster approximations cover more than 50% of the cells’ area and are thus classified
as Strong. Based on Table 2.1, this guarantees that the geometries intersect each other
and is trivial to prove [28]. If two polygons share only cells that fall in the inconclusive
cases, then they still need to be geometrically refined.

2.2 Spatial Joins

2.2.1 Join Predicates

Spatial joins query two collections of objects based on a join predicate that defines a
topological relation. As mentioned in Section 1.1.3, DE-9IM [40] is used to define



13 8

Empty Weak Strong Full

Empty Weak Strong Full

cell 8 - Strong
cell 13 - Strong

cell 8 - Strong
cell 13 - Strong

Figure 2.4: An intersection example between 2 raster approximations.

some of the most common topological relations that two objects may share. DE-9IM
breaks down each of the input geometries r and s into three parts: the interior, the
boundary and the exterior. The intersection between each pair of parts is computed to
fill in a 3 → 3 matrix, where each row corresponds to a part of r and each column
to a part of s. Each element of the matrix is a boolean value (T, F) that indicates
intersection between the corresponding parts. A DE-9IM matrix can be flattened to
a 9-element string code, where the first 3 values are the first row, the next 3 values
the second row, etc. For example, the string code for the two objects r and s in the
disjoint relation shown in Figure 1.1(a) is FFTFFTTTT. To compute the DE-9IM
matrix, plane sweep [64] or overlay of trapezoidal decompositions [48] can be used.

As shown in Table 2.2, each topological relation can be detected by applying one
or more DE-9IM masks, (i.e., strings) having T, F, or * at each position, where * denotes
any of {T, F}. If the DE-9IM string code matches a mask, then the object pair satisfies
the corresponding topological relation. Figure 2.5 shows a Venn diagram of the 8
topological relations and their relationships. The generalization hierarchy of relations
is reflected by the relationships between their masks. For example, the covers masks
are all included in the intersects masks.



Table 2.2: DE-9IM masks of topological relations.

DE‐9IM mask
disjoint FF*FF****

intersects T******** *T******* ***T***** ****T****

covers T*****FF* *T****FF* ***T**FF* ****T*FF*

covered by T*F**F*** *TF**F*** **FT*F*** **F*TF***

equals T*F**FFF*

contains T*****FF*

inside T*F**F***

meets FT******* F**T***** F***T****

equals

intersects

meets

disjoint

inside

covered by

covers

contains

Figure 2.5: Venn diagram of the 8 most common topological relations.
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Figure 2.6: Example of MBR intersection tests. The first pair of polygons do not
intersect, however their MBRs do.

2.2.2 Multi‐step Evaluation

The detection of spatial relations between objects (or the evaluation of spatial joins) is
typically conducted in two steps [33]. At the filter step [10], the MBRs of the objects
are compared in O(1) time, to possibly filter the pair from further consideration. As
MBRs are conservative approximations (Section 2.1), they can only be used to detect
disjointness. When a massive number of relations need to be detected, as in geo-
spatial interlinking [35], the filter step can be evaluated efficiently as a spatial join
between MBRs [27]. This problem has been well-studied with scalable solutions to the
number of objects for in-memory data [27, 57] and disk-based [26, 49] or distributed
data [51, 65]. Still, for the verification of the exact relation between two objects whose
MBRs intersect, the current practice is to compute their DE-9IM matrix. In view of the
high cost of DE-9IM matrix computations, Papadakis et al. [11] suggested to examine
the intersecting MBRs pairs in an order that would maximize the chances of detecting
non-disjoint relations. Learning techniques have also been developed to improve the
efficiency of link completion in spatial knowledge graphs [66], some through link
prediction [67, 68, 69]. These methods are approximate while having a high training
cost.

In spatial intersection joins, the check between two MBRs can be performed using
only their projections on the x and y axes. If at least one of the objects’ projection
ends before or starts after the other’s in an axis, then the MBRs are disjoint. This can
be calculated with 4 simple inequality tests, meaning it has a O(1) time complexity
instead of the plane sweep’s O(k log k) for a pair of objects.

Figure 2.6 shows how the MBRs are used to detect intersections. Even though we
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Figure 2.7: Common intersection query pipeline with a Filter and a Refinement stage.

can guarantee that when two MBRs do not intersect (right example, true negative),
then their enclosed polygonal geometries also do not intersect, we cannot assume
that the reverse stands. This can be seen in the example, where the left pair of MBRs
intersect, even though the polygons do not.

Consequently, the pairs that pass the MBR filter are forwarded to the refinement
stage, where their original geometries are checked with each other. As mentioned
before, this step includes expensive tests (even using the plane sweep algorithm),
which considerably increase the pipeline’s total runtime. It has been found that the
refinement stage usually takes up to 99% of the total time [70] and most recent work
has been focusing on improving the filter step, in order to reduce the amount of
objects forwarded to the refinement phase. The spatial query processing pipeline is
illustrated in Figure 2.7. The pipeline in this example is used to evaluate intersection
join queries for two objects r and s of different data sets R and S respectively.

The majority of previous work on spatial joins focuses on the filter step [10].
Divide-and-conquer join evaluation techniques partition the data space explicitly [49,
14, 27] or implicitly [26, 71] with the help of pre-existing spatial indexes [72], and
assign the object MBRs to the partitions. For each pair of (explicit or index) partitions
that spatially overlap, the intersecting MBR-pairs in the partitions are found using
plane-sweep [73].

2.2.2.1 Intermediate Filtering

To further reduce the candidate pairs that reach the refinement step, conservative
and/or progressive object approximations can be used for identifying false hits and/or
true hits, respectively. Brinkhoff et al. [1] suggested the use of the convex hull and
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the minimum bounding 5-corner convex polygon (5C) as conservative approxima-
tions and the maximum enclosing rectangle (MER) as a progressive approximation.
MER is hard to compute and of questionable effectiveness [28], hence, we did not
include it in our comparison. In follow-up work [28], the object geometries are ras-
terized and modeled as grids, where each cell is colored based on its percentage of
its coverage by the object. By re-scaling and aligning the grids of two candidate join
objects, we can infer, in most cases, whether the objects are a join pair or a false
hit. Indecisive pairs are forwarded to the refinement step. Hierarchical (quad-tree
based) raster approximations based on a hierarchical grid have been used in the past
[74] for window and distance queries. In addition, Teng et al. [23] propose a hy-
brid vector-raster polygonal approximation, targeting point-in-polygon queries and
point-to-polygon distance queries. This approach has significant storage overhead as
it keeps both the raster representations and the intersections of each polygon with its
raster cells.

2.2.2.2 Speeding up the Refinement Step

When querying for a specific spatial predicate, the DE-9IM matrix can be omitted,
as it carries additional computational overhead that is not necessary for determining
a specific topological relation. For example, an LSI check combined with a PiP test
is sufficient to determine whether the areas of two objects intersect (i.e., the general
intersection relation), without the need to exhaustively compare all parts of their
interiors, boundaries, and exteriors.

Identifying whether two polygons overlap requires point-in-polygon tests and



finding an intersection in the union of line segments that form both polygons [1]. A
point-in-polygon test bears a O(n) cost, while the second problem can be solved in
O(n logn) time [75], where n is the total number of edges in both polygons. Given a
pair of candidate objects, Aghajarian et al. [76] prune all line segments from the object
geometries that do not intersect their common MBR (CMBR) (i.e., the intersection
area of their MBRs), before applying the refinement step. This reduces the complexity
of refinement, as a smaller number of segments need to be checked for intersection.
In addition, if one object MBR is contained in the other, then the point-in-polygon
test is applied before the segment intersection test. Polysketch [77] decomposes each
object to a set of tiles, i.e., small MBRs which include consecutive line segments of the
object’s geometry. Given two candidate objects, the refinement step is then applied
only for the tile-pairs that overlap. A similar idea (trapezoidal decomposition) was
suggested by Brinkhoff et al. [1] and alternative polygon decomposition approaches
where suggested in [78]. PSCMBR [79] combines Polysketch with the CMBR approach.
Specifically, for the two candidate objects, the overlapping pairs of Polysketch tiles are
found; for each such pair, the segments in the two tiles that do not overlap with the
CMBR of the tiles are pruned before refining the contents of the tiles. Polysketch and
PSCMBR focus on finding the intersection points of two objects, hence, unlike our
approach, they do not identify true hits. The CMBR approach [76] is fully integrated
in our implementation; still the refinement cost remains high. Finally, the Clipped
Bounding Box (CBB) [22] is an enriched representation of the MBR that captures
the dead (unused) space at MBR corners with a few auxiliary points, providing the
opportunity of refinement step avoidance in the case where object CBBs intersect only
at their common dead-space areas. CBBs can also be used by R-tree nodes to avoid
their traversal if the query range overlaps only with their dead space.

2.2.3 Raster‐based approaches for other queries

Fast evaluation of spatial joins and other operations based on raster (and other)
approximations has been explored recently as an alternative to exact, but expensive
spatial query evaluation [18, 25]. The approximation of spatial objects using space-
filling curves (and approximate evaluation of spatial queries) was first suggested by
Orenstein [80], however, we are the first to suggest the binary encoding of cells and
merging the codes to bitstrings for identifying true hits in spatial intersection joins



(Section 3.1, extended in Section 3.2) and its applicability on topological joins (Section
3.3).

Hierarchical (quad-tree based) raster approximations based on a hierarchical grid
have been used in the past [74] for window and distance queries. In addition, Teng
et al. [23] propose IDEAL, a hybrid vector-raster polygonal approximation, targeting
point-in-polygon queries and point-to-polygon distance queries.

The approximations in IDEAL are similar to those of APRIL (Section 3.2.1) in
that they capture information about Full or Partial coverage of each cell, but they
also have important differences that render IDEAL approximations not appropriate
for spatial intersection joins. Specifically, in IDEAL, each polygon is approximated
by its own (local) grid, defined by splitting the object’s MBR. Hence, the IDEAL
grids of two different objects are not necessarily aligned to each other and may have
different resolutions, as shown in Figure 2.9(a). Hence, IDEAL approximations are
not appropriate for intersection (or distance) joins because aligning the two different
grids of two polygons (having different positions, cell size, and resolution) is hard
and inference of polygon intersection from the cell types if the cells are not perfectly
aligned is not trivial. Another difference between IDEAL and our work is that cells in
IDEAL are not grouped into intervals and interval joins are not used as operations.

RAPTOR [81, 82, 83] joins a raster dataset (map of pixels, where each pixel is
associated with values such as temperature) with a vector dataset (e.g., set of polygons,
linestrings, or points). The objective of Raptor-Join is to identify, for each vector
object o, the pixels that are relevant to o and associate with o the values of these
pixels to the object (e.g., aggregate them). For example, if the vector object o is a
polygon, the relevant pixels to o are those whose centroids are included in o. Hence,
in Figure 2.9(b), the dashed polygon is relevant to the cells in light-gray and the
solid-border polygon is relevant to the cells in dark-gray. To compute the Raptor-
Join, in a pre-processing step, all relevant cells to each object are identified and stored
in a tabular representation (called Flash Index), with intervals of contiguous cells per
row of the raster matrix. For example, the solid-border polygon is represented by
three tuples: {(5, [1, 2]), (6, [1, 2]), (7, [0, 3])}, implying that the polygon spans columns
1-2 in rows 5 and 6, and columns 0-3 in row 7. This is reminiscent to our APRIL
approximations, where each object is represented by intervals of cells. However, raster
representations of vector objects used by RAPTOR have several important differences
to APRIL. First, for a cell to be included in a Raptor approximation, the center of
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Figure 2.9: Examples of IDEAL and Raptor object approximations.

the cell should lie inside the polygon, whereas in APRIL the cell should overlap with
the polygon. This means, for example, that cell (4,1) is not part of the solid-border
polygon approximation in Raptor, whereas it is part of its APRIL approximation.
Second, APRIL differentiates between Full and Partial cells, whereas Raptor only has
one type of cells. The most important difference is that Raptor-join cannot be used for
the problem of spatial intersection joins that we study in this thesis, as it is possible
that two polygons intersect but their Raptor approximations share no common cell(s).
In the example of Figure 2.9(b), the two polygons intersect each other in cells (4,1),
(4,2), and (6,4). Cells (4,1), (4,2) are included in the approximation of the dashed-
border polygon but not in the other one, whereas cell (6,4) is included in neither of
the two Raptor approximations. Hence, Raptor-join, if applied for spatial intersection
joins, would mistakenly prune this pair of objects as false positive.

2.3 Scalable Spatial Data Management

With the advent of cloud computing, there have been many efforts in scaling out
spatial data management with a series of distributed spatial analytics frameworks and
engines being proposed. Additionally, there is a trend in implementing spatial joins
for GPUs [76, 84, 77, 79], with a focus on the refinement step. Polygon decomposition



and rasterization techniques for point-polygon joins using GPUs and CPUs have been
explored in [24, 18].

2.3.1 Distributed Spatial Analytics Frameworks

The growing demand for efficient management of large-scale spatial data has driven
the research community to develop a variety of modern spatial data analytics systems.
Each system offers distinct features, making them valuable tools for research and
development in both academia and industry. Most of these systems are built on top
of large-scale data processing and distributed computing frameworks such as Apache
Spark [85] and Hadoop [86], with Spark standing out in terms of performance and
therefore being the preferred choice within the community. Regarding spatial joins,
all the following systems focus on the filter step only.
Apache Sedona (formerly GeoSpark) [65] uses SJMP, an adaptation of the PBSM
spatial join algorithm [49], which evaluates the join using the mapreduce framework.
Using a virtual grid, each object is mapped to one or more partitions, based on the
cells it intersects; for each partition, a reducer evaluates the join. It supports spatial
range queries, kNN queries, and spatial joins, though not kNN joins. Implemented
in Java/Scala, it accommodates diverse spatial data types, including points, polygons,
rectangles, and linestrings. The system provides several spatial proximity partitioning
strategies, such as KDB-Tree, R-Tree, Quad-Tree, and others, with indexing available
through either R-Tree or Quad-Tree. According to benchmarks, Sedona currently
outperforms other spatial data analytics systems in terms of efficiency [21]. By com-
bining broad query support with rich data type compatibility, it consistently leads
query evaluation benchmarks and is regarded as the state-of-the-art system today.
Magellan is another distributed spatial analytics framework built on Spark. It sup-
ports a wide range of spatial data types, including points, rectangles, polygons,
linestrings, multipoints, and multipolygons. The system enables range queries and
spatial joins but lacks support for kNN queries, distance joins, and kNN joins. A dis-
tinctive feature is its integration of geometric predicates such as intersects, within, and
contains. Data is indexed using a Z-curve, though it can also take advantage of pre-
existing indices if available. The Z-curve is employed not only for indexing but also
as a spatial partitioning strategy, achieved through inner joins followed by dataset
filtering. Compared to Sedona, Magellan operates with a smaller memory footprint.



However, its indexing overhead (particularly for linestring data) can be substantial.
While it scales effectively, its query performance generally falls short of Sedona’s [21].
Moreover, due to the absence of query optimization mechanisms, Magellan resorts to
scanning all partitions across datasets, which further limits its efficiency.
SIMBA (Spatial In-Memory Big Data Analytics) [6] is a distributed spatial analyt-
ics engine built on Apache Spark. It extends Spark SQL across the system stack to
support expressive spatial queries and analytics through both SQL and DataFrame
interfaces. To improve performance, SIMBA introduces native indexing over RDDs for
efficient spatial operators and enhances Spark SQL’s query optimizer with spatial-
aware, cost-based optimizations that leverage available indexes and statistics. For
data partitioning, SIMBA constructs an R-tree by sampling the input dataset and
applying the STR algorithm [87] to form the first tree level, which defines partition
boundaries. Users also have the flexibility to define custom partitioning schemes. By
default, SIMBA employs R-tree indexing. It supports range queries (both rectangu-
lar and circular), kNN queries (for points), distance joins (points), and kNN joins
(points), though it does not support spatial joins. A key strength of SIMBA is its
ability to optimize indexes for parallel query execution, significantly improving an-
alytical throughput. In terms of indexing efficiency, SIMBA is among the strongest
frameworks for point datasets. However, when it comes to range query evaluation,
Sedona continues to outperform it.
SpatialSpark [88] is another distributed spatial data processing framework built on
Apache Spark, designed to support large-scale geospatial analytics. It implements core
spatial operations such as range queries, kNN queries, and spatial joins, and relies
on spatial partitioning techniques to minimize data shuffling across the cluster. By
integrating directly with Spark’s RDD abstraction, it offers a lightweight and scalable
solution for spatial workloads. However, SpatialSpark does not provide advanced in-
dexing structures or cost-based optimizations, which limits its efficiency compared to
more recent systems like Sedona and Simba. Although competitive in terms of per-
formance, it requires significantly more memory and is no longer actively maintained,
which has ultimately rendered it an outdated framework [21].
Hadoop‐based implementations (Hadoop-GIS [89], SpatialHadoop [51]) employ ad-
vanced partitioning, indexing, and spatial query processing techniques. However, they
have been shown to underperform compared to Spark-based frameworks, primarily
due to the in-memory processing advantages that Spark provides.



2.3.2 MPI

The Message Passing Interface (MPI) [8] is a standardized framework for message-
passing, designed to operate across a wide range of parallel and distributed computing
architectures. It enables communication between processes running on the same or
different machines and supports multiple high-speed network technologies. MPI pro-
vides both point-to-point and collective communication mechanisms, making it the
de facto standard for inter-process communication among parallel programmers and
developers of shared-memory systems. Two leading MPI implementations, along with
their respective compilers, dominate the field: OpenMPI [90] and MPICH [9]. Both
projects are maintained by international collaborations that include contributors from
academic institutions as well as industry.

MPI has been employed for parallelizing databases [91, 92], but it remains pri-
marily popular within the High-Performance Computing (HPC) community. In data-
intensive workloads and modern data management scenarios, however, MPI is in-
creasingly viewed as unsuitable. Compared to higher-level abstractions like Spark,
MPI is less flexible for several reasons. First, it relies on communication groups,
which are costly to create and manage in dynamic environments such as the cloud,
and its implementation is complex. Second, collective operations like Broadcast or
Gather require synchronous method calls, which can hinder parallelization. Third,
MPI offers limited elasticity, availability, and fault tolerance, making it poorly suited
for service-oriented applications such as cloud-based database systems [93].

In tightly-coupled, cluster-based environments, MPI is a highly effective tool for
improving database performance. Its low-latency communication and fine-grained
control over process interactions allow parallel workloads to be executed efficiently,
making it well-suited for scenarios where performance and precise coordination are
critical. By enabling direct, high-speed message passing between nodes, MPI can
significantly accelerate computationally intensive database operations, such as com-
plex joins or large-scale query processing, in environments where the overhead of
higher-level frameworks may be prohibitive.

2.3.3 Spatial joins on GPUs

The widespread availability of programmable GPUs has inspired several research
efforts that leverage GPUs for spatial joins [94, 76, 84, 77, 79]. Sun et al. [94] accelerated



the join refinement step by incorporating GPU rasterization as an intermediate filter.
This filter identifies only true negatives using a low resolution, and has thus limited
pruning effectiveness. Aghajarian et al. [76, 84] proposed a GPU approach to process
point-polygon and polygon-polygon joins for datasets that can be accommodated in
GPU memory. Liu et al. [77, 79] also proposed GPU-accelerated filters to reduce the
number of refinements. These filters [76, 84, 77, 79], in contrast to APRIL (Section
3.2.1), do not identify true hits, but rather focus on finding the intersection points
between a candidate pair. Furthermore, the above approaches [76, 84, 77, 79] do
not involve rasterization and rely on CUDA, which is exclusive to NVIDIA GPUs. A
recent line of work [24, 16, 25, 17] proposes to use the GPU rasterization pipeline
as an integral component of spatial query processing. Doraiswamy et al. [16, 17]
introduced a spatial data model and algebra that is designed to exploit modern GPUs.
Their approach leverages a data representation called canvas, which stores polygons
as collections of pixels. The canvas includes a flag that differentiates between pixels
that lie on the boundary of the polygon and those that are entirely covered by it.
Although current-generation GPUs can handle millions of polygons at fast frame rates,
the evaluation of spatial queries is still dominated by other costs, such as triangulating
polygons and performing I/Os [17].

2.4 Spatial Reasoning in LLMs through Retrieval‐Augmented Gen‐

eration

2.4.1 Retrieval‐Augmented Generation

Concerning how well an LLM exploits information beyond its pre-trained knowl-
edge base, several RAG benchmarks exist to serve for evaluation. Most of them study
the efficiency of the retrieval and the response generation by means of question-
answering instances. Specifically, the main aspects studied are: context relevance, i.e.,
how pertinent the retrieved context to the query is; context utilization, i.e., the extent
of the context that is used by the generator to produce the response; error han-
dling, i.e., the ability to handle errors that exist in documents; and completeness,
i.e., how well the response incorporates all the relevant information in the context.
RGB [95] focuses on data that pertain to news while RAGBench [96] covers differ-
ent domains. CRAG [97] is a comprehensive factual question-answering benchmark



that aims to define types of questions from different domains given their diverse and
dynamic nature. BERGEN [98] emphasizes on the LLM-based semantic evaluation
of answers, highlighting the importance of using efficient retrievers as they can affect
the RAG response generation. MIRAGE [99] measures the accuracy of the predicted
correct answer choices on multi-choice questions for the medical domain. Similarly,
LegalBench-RAG [100] emphasizes in the legal domain measuring the effectiveness
of the retrieval phase and the legal reasoning capacity of LLMs. UDA [101] focuses on
the RAG assessment on lengthy and highly unstructured external data such as those
found in PDFs and HTML tables. MultiHop-RAG [102] assesses multi-hop queries,
i.e. queries that require retrieving information from multiple documents to reason
and arrive at an answer. It evaluates the quality of the retrieved set for the query and
the reasoning capability of the LLM.

Graphs have gained significant attention in RAG research [103, 104, 105], being
applied to a variety of tasks such as summarization, question answering, and knowl-
edge graph reasoning. However, to the best of our knowledge, no prior work has
leveraged graph-based indexing and retrieval for spatial data, nor has it systemati-
cally evaluated graph-enhanced (or just plain) RAG in the context of spatial reasoning,
an emerging and distinct research challenge for LLMs.

2.4.2 Spatial Reasoning and GeoAI

LLMs have demonstrated strong reasoning capabilities through chain-of-thought
(CoT) prompting [106, 107]. This raises the possibility that LLMs could infer the
spatial relation between two entities (even when it is not explicitly stored) by reason-
ing over known spatial relations involving intermediate entities. Li et al. [108] follow
this approach, introducing the “Advancing Spatial Reasoning” (ASR) method, which
enhances spatial reasoning on large GPT models using CoT and Tree-of-Thoughts
(ToT) prompting on the StepGame benchmark [109]. Both ASR and the StepGame
benchmark investigate and test directional relations (similar to cardinal directions
but not for geographic entities) in a multi-hop reasoning setting that challenges the
model’s capacity for spatial inference. Additionally, the StepGame benchmark empha-
sizes understanding various phrasings of positional directions (such as “6 o’clock” or
“to the left”) which are inherently egocentric and context-dependent. While effective
for evaluating spatial reasoning in local or embodied environments, these expressions



are not compatible with geospatial data, which relies on an absolute, coordinate-based
reference system (e.g., latitude and longitude) tied to the Earth’s surface. As such,
StepGame is ill-suited for assessing models’ understanding of global spatial relations
like cardinal directions and topological relationships.

A more theoritical but preliminary analysis of various spatial relations between
entities and the limitations of LLMs in comprehending them, is presented in [110].
However, this work does not examine geographic spatial relations, such as cardinal
directions. Related work that leverages external spatial information to assist LLMs
includes GeoLLM [60], GeoLLM-Engine [61] and GeoGPT [62]. GeoLLM focuses
on regression tasks such as the prediction of population density; it uses auxiliary
map data from OpenStreetMap from which the nearby locations of the given (query)
location are fetched and passed to the LLM as a fine-tuned prompt. GeoLLM-Engine
is an environment of tool agents for earth observation applications. It capitalizes a
LLM in order to convert natural language instructions into a set of tasks over satellite
images. For this, it performs function calls to geospatial APIs, dynamic maps/UIs and
external multimodal knowledge bases. GeoGPT employs an LLM for interpreting
the users’ demands from the input and calls an external GIS tool from a pool of
available ones to solve the task. Some of these tools serve processes that pertain to
data collection, data loading and data analysis.

Another line of research fine-tunes an LLM to enhance its understanding of spatial
context. MaaSDB [111] is a vision paper that envisions a spatial database system for
enhanced user accessibility by training LLMs on data retained in a spatial database. In
this way, the machine learning models can be utilized as a spatial database, enabling
a new generation-based query paradigm that replaces the traditional retrieval-based
one. LLM-Geo [112] is a prototype that operates as an autonomous GIS that can
produce and execute Python code for spatial data loading and visualization. By ex-
ploiting the capabilities of the LLM natural language understanding, reasoning and
code generation, it manages to generate at first a step-by-step workflow that is formed
as a directed acyclic graph given users’ data and spatial question. The graph consists
of a series of connected operations and nodes. The LLM is reused, as the graph is
passed to it in order to generate code in each operation node. Then, the generated
code is collected and submitted to the LLM along with the graph and the users’ input
to create the final program. The program is executed producing the results that can
be static maps, charts, new datasets, etc.



GS-SQL [113] is a graph-based text-to-SQL model that defines an abstract syntax
for text-to-query translation, focusing on accurately transforming spatial queries from
natural language into SQL. This approach relies on an existing external database with
a known schema to generate precise SQL queries, which are then used to query the
database either during inference or when required by the user.

2.4.3 Motivation

In contrast to our non-stochastic, rule-based approach, techniques such as CoT and
ToT often introduce errors and are significantly slower at inference time, whilst
SpaRAGraph is built upon the RAG paradigm, automatically retrieving and gen-
erating relevant context to support and enhance spatial reasoning through factual
data.

Table 2.3 provides an overview of related work and their respective features when
compared with our proposed framework, SpaRAGraph. Notably, none of the existing
approaches employ RAG to dynamically generate context during response genera-
tion. Moreover, nearly all related work is evaluated on large, closed-source models
(e.g., GPT models), overlooking smaller, open-source models that are more accessi-
ble to typical users due to their lower cost and ability to run on commodity GPUs.
Furthermore, with the exception of ASR, all methods rely on post-processing spatial
data after inference. This necessitates the use of external toolchains that must be both
highly accurate and capable of fast spatial computation. ASR differs in that it utilizes
CoT reasoning to infer spatial relations between entities at inference time, based on
the StepGame benchmark. We elaborate on the specific distinctions between these
approaches and SpaRAGraph below:
GeoLLM is a fine-tuning and prompt engineering approach tailored for geospatial
tasks, leveraging contextual information extracted from OpenStreetMap [114] along
with external toolchains. In contrast to SpaRAGraph, GeoLLM relies on including
spatial data in the prompt, assuming that the model can interpret spatial formats,
although such representations are not native to language models. Consequently, Ge-
oLLM does not operate solely on text at inference time, unlike SpaRAGraph.
GeoLLM‐Engine is a geospatial copilot application, allowing live interaction with
the user through natural language. Its end-to-end pipeline translates and executes
a user’s queries using geospatial API tools, maps and multimodal databases. Unlike



SpaRAGraph, the generation/LLM component of GeoLLM-Engine is used mostly to
translate and breakdown the user’s query into a series of operations, rather than use
it directly to generate a response.
GeoGPT employs CoT reasoning to decompose user queries, subsequently executing
them by selecting appropriate tools from a pool of external GIS services that operate
on spatial data stored in a dedicated spatial database. In contrast to SpaRAGraph,
the language model in GeoGPT functions primarily as a translator between the user
and the database, rather than playing an active role in generating the final response.
LLM‐Geo generates and executes geospatial analysis workflows by translating user
queries into a sequence of operations and generating Python code to perform these
tasks after inference. Unlike SpaRAGraph, LLM-Geo uses the LLM primarily as a
scheduler and planner to identify and organize the necessary operations, rather than
relying on it as the main component to directly generate the final response.
ASR is similar to SpaRAGraph in that both rely on the model as a central component
for spatial reasoning and response inference. However, ASR performs each reasoning
step internally within the LLM, whereas SpaRAGraph employs non-stochastic transi-
tional algebra to accurately combine reasoning steps into a coherent overall summary.
Additionally, ASR does not utilize dynamic retrieval or augmentation, focusing ex-
clusively on the StepGame benchmark, which provides explicit context per question
using synthetic data.
GS‐SQL focuses exclusively on improving text-to-SQL translation accuracy for geospa-
tial queries, a task that is fundamentally different from what SpaRAGraph accom-
plishes.
StepGame operates with per-story, randomly generated entities that exist solely within
a localized, relative scope (without persistence across any broader topology). Our pro-
posed Spatial Reasoning Benchmark (SRB) fundamentally differs from StepGame, as
it focuses on real-world entities embedded in a shared global data space. This design
allows SRB to be applied in specialized GIS scenarios that evaluate not only a model’s
spatial reasoning capabilities but also its integration with RAG mechanisms. Lever-
aging our scalable topology detection techniques, SRB can be adapted to additional
datasets, enabling the assessment of models on domain-specific knowledge for more
specialized GIS applications.

Furthermore, StepGame evaluates model responses using multilabel classification,
whereas SRB assesses models through binary, multiclass, and multilabel classification



Table 2.3: An overview of related work on Spatial Reasoning and Geospatial LLM
approaches and their features.

Text‐to‐Query CoT Prompt Engineering Data
Post‐Processing

RAG

GeoLLM ! !
GeoLLM-Engine ! !

GeoGPT ! ! !
LLM-Geo ! !

ASR !
GS-SQL ! !

SpaRAGraph !

tasks. Additionally, StepGame relies on a variety of relative directional relations that
are not applicable in geospatial contexts, whereas SRB employs cardinal directions
and topological relations, which are standard in geospatial reasoning. Inspired by
StepGame, in Chapter 5 we propose and utilize SRB to evaluate SpaRAGraph, as it
better aligns with approaches aiming to enhance geospatial reasoning capabilities.



CHAPTER 3

EFFICIENT IN-MEMORY SPATIAL JOINS WITH
COMPLEX GEOMETRIES

3.1 An Approximation Technique for Polygon Intersection Joins

3.2 Advancing Raster Interval Approximations for Spatial Joins

3.3 Scalable Spatial Topology Joins

3.4 Conclusions

Complex geometries encapsulate all non-point shapes such as linestrings and polygons
with varying degree of vertices and regional characteristics. In real-world datasets,
objects often have curvilinear shapes (e.g. water bodies or national parks), that are
discretized during data curation and ultimately represented as polygons. This dis-
cretization process can result in polygons with hundreds, thousands, or even hun-
dreds of thousands of vertices, creating highly complex geometries that closely ap-
proximate the original curved shapes. Hence, it is prohibitive to operate directly on
such geometries during spatial join processing, unless it is absolutely necessary.

Multi-step spatial join processing [1] is the standard approach, as it leverages
shape approximations before resorting to exact geometry calculations. However, as
mentioned in Section 2.1, most spatial approximations cannot efficiently detect both
result and non-result pairs. Thus, multiple approximations often need to be stored in
memory for each object, along with a series of pipelined filters, ultimately increasing
the overall cost of spatial join evaluation in terms of both time and memory.
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In light of this, Section 3.1 introduces a novel polygon approximation technique
that enables efficient identification of both result and non-result pairs in spatial in-
tersection joins using a single intermediate filter. This approach significantly reduces
the number of candidate pairs requiring geometric refinement, thereby improving
the overall efficiency of spatial intersection join evaluation. Moreover, in Section 3.2,
we extend our approach to be more flexible, more efficient to construct and store,
and capable of supporting linestrings and multi-geometries, while maintaining high
performance in spatial intersection joins. Finally, in Section 3.3, we explore how our
method can be applied to spatial joins with arbitrary predicates that capture more
specific topological relationships, such as adjacency and containment.
Outline In Section 3.1 we introduce Raster Intervals, an approximation technique
for polygons that can be used in spatial joins to filter out non-candidate pairs and
detect candidate pairs early, before resorting to accessing the original geometries. In
Section 3.2, we enhance Raster Intervals (APRIL) to facilitate faster construction and
filtering times, more flexible handling, smaller memory footprint and overall better
performance. In Section 3.3, we discuss how can raster-based approximations be used
to detect topological relations between polygons. We introduce a novel technique that
uses our proposed APRIL approximations that surpasses all other alternatives. Finally,
Section 3.4 summarizes our conclusions.

3.1 An Approximation Technique for Polygon Intersection Joins

3.1.1 Raster Intervals

We propose a new framework for the intermediate step of spatial joins, which builds
upon but is significantly more effective than, the raster approximation technique of
previous work [28]. Our approach has three important differences: (i) we use the
same global (and fine-grained) grid to rasterize all objects; (ii) we use bitstring repre-
sentations for the cell types of object approximations; and (iii) we represent the set of
all non-empty cells of each object as a sorted list of intervals paired with binary codes.
In this section, we present in detail the steps that we follow in order to generate the
raster intervals approximation for each object.



3.1.1.1 Object rasterization and raster encoding

We superimpose over the entire data space (e.g., the map) a 2N → 2N grid. For each
data object o, we identify the set of cells Co that the object intersects and use this set
to approximate o. Each cell in Co may belong to three types: full, strong, or weak; as
opposed to [28], we do not include empty cells in Co. To compute Co for each object
and the type of each cell, we apply the algorithm of [28]. In a nutshell, the algorithm
first identifies the grid columns (stripes) that overlap with o. It clips the object in each
stripe and then runs a plane-sweep algorithm along the stripe to identify the cells
and the type of each cell.

Furthermore, we encode the three types of cells that we are using, as shown in
Table 3.1. Note that we use a different encoding for the cell types depending on
whether the object comes from join input R or S. This encoding has two important
properties. First, if for two objects r ∈ R and s ∈ S and for a cell c, the bitwise AND
of the codes of r and s in cell c is non-zero, then we are sure that r and s intersect
in cell c. Indeed, this corresponds to the case where at least one type is full or both
are strong. If the logical AND is 0, we cannot be sure whether r intersects s in c.

The second property of the encoding is that it allows us to swap the roles of R

and S in the join, if necessary. Specifically, the code for a cell c of an object in one
join input (e.g., R) can be converted to the code for c if the object belonged to the
other join input (e.g., S) by XORing the code with the mask m = 110. For example,
011, the R-encoding of full cells, after bitwise XORing with m, becomes 101, i.e., the
S-encoding of full cells. This is important for the case where the rasterization of a
dataset has been precomputed before the join, according to the R-encoding and we
want to use the dataset as the right join input S. XORing can be done on-the-fly
when we apply our filter, as we explain in Section 3.1.1.3, with insignificant cost.

Table 3.1: 3-bit type codes for each input dataset

input R input S

full 011 101

strong 101 011

weak 100 010



3.1.1.2 Intervalization

We use the Hilbert curve [115] to order the cells in the 2N → 2N grid. Hilbert curve
is a well-known space-filling curve that preserves spatial proximity. Hence, each cell
is mapped to a value in [0, 22N − 1]. By this, the set of cells Co that intersect an
object o can be represented as a list of intervals Lo formed by consecutive cells in Co

according to the Hilbert order. Figure 3.1 exemplifies the intervalization for a polygonal
object o in a 23 → 23 space. The cells are marked according to their Hilbert order and
shaded based on their type. There are in total 36 cells in Co, which are represented
by 7 intervals. To intervalize Co, we sort the cells there in Hilbert order and scan the
sorted array, merging cells of consecutive cells into the current interval. The cost for
this is O(|Co| log |Co|).
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Figure 3.1: The Hilbert curve cell enumeration and interval generation for a polygon
in a 8→ 8 space.

For each interval in Lo, during the interval construction, we concatenate the bitwise
representations of the cells in their Hilbert order, to form a single code for the entire
interval. This allows us to replace the set Co of cells that intersect an object o by Lo.
For example, assume that the polygon of Figure 3.1 belongs to the left join input
R. We replace cells 9, 10 and 11 in Co with codes 100, 101 and 100, respectively,
by interval [9, 12) with binary code 100101100, as shown in the figure. This helps



us to greatly reduce the space requirements for the rasterized objects. In addition,
as we will show next, we save many computations while verifying a pair of objects,
because we can apply the bitwise AND for multiple cells simultaneously. The resulting
raster intervals (RI) approximation of each object is a sequence of 〈st, end, code〉 triples
(ordered by st), where [st, end] is an interval in the Hilbert curve space and code is a
bitstring that encodes the cell types in the interval.
Practical considerations A larger value for N results in a finer-grained grid and thus
more accurate approximations. Moreover, a polygon rasterized with higher granu-
larity has an increased probability to have completely covered cells (i.e., type full),
which increases the chances of the intermediate spatial join filter to identify a true
hit. At the same time, a large N requires more space for storing the endpoints of the
intervals in Lo. We choose N = 16, which results in a grid with a fine granularity; in
addition, the Hilbert order of cells (i.e., the interval endpoints) can be stored as 32-bit
unsigned integers. As each cell in an interval contributes three bits to the interval’s
concatenated binary code, for a [st, end) interval, we need ((end − st) ∗ 3/8* bytes to
encode its cells. We may opt to compress binary codes consisting of many bytes and
the RI approximation of an object, overall.

3.1.1.3 Intermediate filter

For a join candidate pair (r, s), r ∈ R, s ∈ S which is produced by the MBR-join
algorithm, our objective is to use the raster intervals approximations RI(r) and RI(s)

of r and s to verify fast whether r and s definitely intersect, (ii) r and s definitely do
not intersect, or (iii) we cannot conclude about the intersection of r and s, based on
their RIs. This is done via our RI-join procedure (Algorithm 3.1).

RI-join merge-joins the sorted interval lists RI(r) and RI(s), denoted by X and Y

in the pseudocode, respectively, and identifies pairs (Xi, Yj) of intervals that overlap;
i.e., Xi and Yj include at least one common cell. For each such pair, it is possible to
determine whether (r, s) is a true hit (i.e., a spatial join result) and avoid sending the
pair to the refinement step. Specifically, if in at least one of the common cells of Xi and
Yj the logical AND of the cell codes is non-zero, we have a sure true hit and we do not
need to continue the RI-join. Having the codes of the cells in Xi and Yj concatenated
in two single bitstrings Xi.code and Yj.code allows us to perform this check (abstracted
by Function ALIGNEDAND) efficiently. We first select from each bitstring the fragment
that includes the codes of all cells in [max{Xi.st, Yj.st},min{Xi.end, Yj.end}], i.e., the



Algorithm 3.1 RI-join algorithm
Require: RI(r) as X , RI(s) as Y

1: ovl ← False; ! no overlapping interval pair found yet

2: i← 0; j ← 0

3: while i < |X| and j < |Y | do

4: if Xi overlaps with Yj then

5: if ALIGNEDAND(Xi.code, Yj .code) then

6: return true hit ! bitwise AND is non-zero

7: end if

8: ovl ← True; ! found an overlapping interval pair

9: end if

10: if Xi.end ≤ Yj .end then i← i+ 1 else j ← j + 1

11: end while

12: if ovl then ! at least one overlapping interval pair

13: return indecisive

14: else

15: return false hit ! no common cells in X and Y

16: end if

intersection interval of Xi and Yj. Then, we bitwise AND the fragments. If the frag-
ments have the same encoding (i.e., both have R or S encoding as shown in Table
3.1), ANDing is preceded by XORing one of the two codes. If there is at least one
pair (Xi, Yj) of overlapping intervals (variable ovl of Algorithm 3.1 is True at the end
of the while-loop), but the object pair is not found to be a true hit, then the object
pair is indecisive, meaning that we will have to apply the refinement step for it. In
contrast, if there are no overlapping intervals in the two RIs (ovl remains False), there
are no common cells in the raster representations of the objects, and we can conclude
that the two objects definitely do not intersect (false hit). As an example, Figure 3.2
shows two rasterized polygons and the pairs (Xi, Yj) of intervals from the two raster
intervals that overlap.

In general, the codes (bitstings) of two intersecting intervals may occupy multiple
bytes and the common subinterval may be of arbitrary length. Before bit-shifting,
Function ALIGNEDAND truncates all unmatched bytes from the two bitstrings. Ad-
ditionally, bit-shifting is done at the bytes of one interval only (the one that starts
earlier), ensuring that the necessary bits are carried over from the subsequent byte to



prevent any loss of information. This continuous shifting and matching (binary AND
between aligned bitstrings) is performed byte-by-byte, hence, once two ANDed bytes
give a non-zero, we immediately report the true hit. XORing, (if both join inputs have
the same encoding), is done on-demand on the shifted byte, after any potential bit
carryover. A byte-wide XOR mask mbyte is used, created by concatenating our mask
m = 110 a few times to fill a byte; mbyte is shifted, if necessary. The whole process
can easily be parallelized, as shifting and bitwise operations are independent for each
byte.

For each pair of intervals, the last bytes to be matched is a special case and has
to be treated cautiously, since the remaining bits that need checking may be less
than 8 and the rest of the bits in that byte should not be included in the bitwise
operations. In other words, the XOR and AND operations applied on the last bytes
should consider bits only in the positions relevant to the compared intervals, otherwise
we may mistake a false positive as a true hit. Hence, we apply one last bit mask with
1s at the positions of the bits that need to partake in the operation, setting the rest to
zero.

Figure 3.3 shows how the codes for the first pair (X0, Y1) of intersecting intervals
from the example of Figure 3.2 are matched, where X0 = 〈[9, 13), 100101101101〉 and
Y1 = 〈[11, 15), 100100101100〉 (i.e., assume that both datasets are R-coded). Each code
occupies 2 bytes. Since the interval of Y1 starts 2 cells after the interval of X0, the code
of X0 is shifted by 2→3 = 6 bits in the first step. This aligns the common cells (11 and
12) in the two codes. The common fragment (6 bits) occupies 1 byte, so there will be
one byte-by-byte match. As both intervals are R-coded, we first XOR the X0-byte with
the (shifted) byte-wise XOR mask mbyte. Before ANDing the two bytes, we AND the
shifted byte with a mask that clears the bits that are outside the common fragment of
the intervals, as we are at the last byte. Finally, the bytes are ANDed with a 0 result,
so the intersection of the two objects remains indecisive with respect to (X0, Y1). As a
result, Algorithm 3.1 continues to find the next pair of overlapping intervals (X5, Y2)

and performs the corresponding code matching.
Analysis RI-join requires a single scan of interval lists X and Y , since no two in-
tervals in the same list (i.e., in the same polygon) overlap. Assuming that bitstrings
are relatively short so that their matching (a call to Function ALIGNEDAND) takes
constant time, the time complexity of Algorithm 3.1 is O(|X|+ |Y |) since the number
of overlapping interval pairs is at most |X|+ |Y |.
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Figure 3.2: Two rasterized polygons, the overlaps between their raster intervals, and
their common cells.

3.1.1.4 “Within” spatial joins

Although we focus on polygon-polygon intersection joins, RI can also be used as an
intermediate filter for within joins. The objective of a spatial within join is to find pairs
(r, s) of objects, r ∈ R, s ∈ S, such that r is within s, i.e. the space occupied by r

is a subset of the space occupied by s. For each pair (r, s) of polygons that passes
the filter step of the within join (i.e., the MBR of r is within the MBR of s), we can
apply Algorithm 3.1 with the following changes in order to identify whether (r, s) is
a true negative (false hit), a true positive (i.e., true hit), or an indecisive pair w.r.t.
the within predicate: As soon as we find an interval Xi ∈ RI(r) which is not a subset
of any interval Yj ∈ RI(r), we can terminate with the assertion that r is not within
s, since there is at least one non-empty cell of r which is empty in s. In addition,
for an identified pair of (Xi, Yj), such that Xi ⊆ Yj , if there is a cell in Xi that is (i)
full in Xi but not full in Yj or (ii) strong in Xi and weak in YJ , then (r, s) should be
a true negative and the algorithm terminates. For (x, y) to be characterized as a true
hit without refinement, for all identified (Xi, Yj) such that Xi ⊆ Yj , all cells in the
subinterval Xi where Xi and Yj overlap should be full in Yj; if at least one such cell
is not full, then we cannot guarantee a true hit and the pair (x, y) must be passed to
the refinement step unless it is found to be a true negative.
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Figure 3.3: Intervals [9, 13) and [11, 15) of our two example polygons overlap but are
not aligned. Byte truncation and bit shifting (if necessary) align their bitstrings before
performing the bitwise operation(s).

3.1.2 Experimental Analysis

We experimentally assess the effectiveness of our raster interval (RI) approximation
approach, comparing it with previously proposed intermediate filters for spatial inter-
section joins, in a single-machine setting without thread parallelism. The competitors
include the 5-corner approximations comparison followed by a comparison of convex
hulls (5C-CH) (i.e., the approach of [1]) and the raster approximation (RA) approach
of [28]. The RA of each polygon is represented in memory by the minimum coor-
dinates of its MBR, the number of cells (partitions) in each dimension and the scale
(k) of the rasterization. We also keep in an array the types of all cells in the RA. We
do not use our bit encoding and we do not perform intervalization in RA. We also
included a baseline approach that conducts the refinement step directly for each pair
of MBRs that passes the filter step without using any intermediate filter. The filter
step of the join was implemented using the algorithm of Tsitsigkos et al. [27]. The re-
finement step was implemented using the approach of [76], where point-in-polygon
tests and line segment intersections are avoided as much as possible. All methods
were implemented in C++ and compiled with the -O3 flag. The experiments were
run on a machine with a 3.6GHz Intel i9-10850k and 32GB RAM.



Table 3.2: Statistics of the datasets and space requirements of the data and the ap-
proximations.

T1 T2 O5NA O6NA O5SA O6SA O5OC O6OC O5EU O6EU O5AS O6AS O5AF O6AF

# of Polygons 125K 2.25M 4.02M 1M 124K 228K 107K 223K 1.97M 7.18M 448K 623K 72K 192K

Avg # of vertices 32.17 31.92 37.73 47.68 48.90 41.81 49.36 42.74 35.14 32.24 46.14 42.75 59.99 36.53

Avg obj MBR
world MBR 2.5E-07 2.8E-08 3.4E-08 1.3E-07 3.9E-07 6.7E-07 3.0E-08 6.0E-08 6.2E-08 5.9E-08 1.6E-07 1.3E-07 4.1E-07 2.5E-07

Geometries (MB) 65.67 1.17K 2.5K 771.50 163.90 208.30 84.20 151.30 1.1K 3.8K 334.30 431.30 70.20 113.60

MBRs (MB) 4.52 81.08 144.84 36.03 4.46 8.22 3.90 8.10 70.90 258.48 16.13 22.44 2.61 6.90

RI size (MB) 33.20 128.29 231.73 220.64 32.01 143.67 14.20 39.30 173.82 920.28 63.01 122.71 18.51 55.43

RA size (MB) 1.2K 19.9K 6.2K* 1.5K* 1.1K 2.1K 898.7 2.0K 3.1K* 11.4K* 3.7K 5.6K 621.80 1.7K

5C-CH size (MB) 20.70 705.40 1.17K 257.70 50.40 80.50 28.8 57.70 515.40 1.7K 117.80 159.40 18.50 46.60

Table 3.3: Preprocessing costs (in sec) of intermediate filter approximations

T1 T2 O5NA O6NA O5SA O6SA O5OC O6OC O5EU O6EU O5AS O6AS O5AF O6AF

RI 42.109 93.161 243.30 230.630 43.472 201.617 123.960 373.544 164.22 761.78 73.96 168.83 29.56 70.27

RA 38.211 623.256 269.25* 67.455* 38.552 68.257 76.456 121.875 116.66* 408.76* 127.21 195.99 21.71 55.55

5C-CH 1.228 30.780 52.69 11.799 1.619 2.226 2.748 7.678 22.08 65.12 5.54 7.25 1.04 1.89

3.1.2.1 Datasets

We used datasets from SpatialHadoop’s [51] collection. The first two datasets (T1
and T2) contain landmark and water areas, respectively, from the United States (con-
terminous states only). We also used two OpenStreetMap (OSM) datasets (O5 and
O6), containing lakes and parks, respectively, from all over the world. We grouped
the polygons of each of the two OSM datasets by continent and created 6 pairs of
OSM datasets: North America (O5NA and O6NA), South America (O5SA and O6SA),
Oceania (O5OC and O6OC), Europe (O5EU and O6EU), Asia (O5AS and O6AS), and
Africa (O5AF and O6AF). Spatial joins were conducted only between datasets that
refer to the same geographic regions (i.e., T1 ✶ T2, O5NA ✶ O6NA, O5SA ✶ O6SA,
etc.). Table 3.2 summarizes the statistics of all 14 datasets used in the joins. Pairs of
joined datasets vary in size, relative size between inputs R and S, and average MBR
area ratio of objects to the MBR of all data in both inputs (third row of Table 3.2).

3.1.2.2 The effect of N in RI

Recall that our RI approach superimposes a 2N → 2N grid over the data space and
approximates each object o with the set Co of cells that overlap with o. Co is then
modeled by a set of intervals and a bitstring for each interval, which encodes the
types of the cells that it contains. As discussed in Section 3.1.1.2, we set the value of
N to 16, in order to have a fine granularity and be able to store the interval endpoints



in 4-byte unsigned integers. In the first experiment, we confirm the appropriateness
of this choice, by evaluating the effectiveness of RI in spatial joins for various values
of N .

Table 3.4 analyzes the performance of RI for different values of N in spatial join
T1 ✶ T2. The number of candidate join pairs (whose MBRs intersect) is 94813 and
the number of join results is 35365 (i.e., about 38% of the pairs that pass the filter
step indeed intersect). The first three columns of the table show the percentage of
candidate pairs identified by RI as true hits, false hits, or inconclusive (i.e., should be
sent to the refinement step). The last four columns show the cost of the filter step of the
spatial join (MBR-join), the total cost of applying our RI-filter to all candidate pairs,
the total cost of the refinement step, and the overall join cost. The MBR-join cost is N-
invariant, as this operation is independent of the subsequent steps (intermediate filter,
refinement). Observe that the number of inconclusive pairs shrinks as N increases;
the refinement cost decreases proportionally. On the other hand, the cost of RI-filter
increases with N as the intervals become more and longer. Eventually, for the largest
value of N , the overall join cost converges to about 1 second.

In Table 3.5, we show the total time required to compute the RI object approxi-
mations of all objects in T1 and T2 and the corresponding storage requirements for
them, as a function of N . For small values of N , where RI is not very effective, the
computation cost and the space requirements are low because, for each object, only
a small number of intervals, each approximating a small number of cells are con-
structed. On the other hand, for large values of N , where our RI-filter is effective, the
approximations are very fine and require more time for computation and more space.
We performed the same analysis for all other pairs of joined datasets (results are not
shown, due to space constraints) and drew the same conclusions. Overall, due to the
high effectiveness of RI for N = 16, which brings the best possible performance to the
overall spatial join, we choose this value of N in the rest of the experiments. Although
we use a fixed grid for all objects (independently of their sizes), the intervalization
and compression of the raster representations does not incur an unbearable space
overhead and at the same time we achieve a very good filtering performance even for
small objects, while avoiding re-scaling at runtime (as opposed to [28]).



Table 3.4: Effect of N on the performance of RI in T1✶T2

True hits False hits Indecisive MBR-join (s) RI-filter (s) Refinement (s) Total time(s)

N = 10 7.93% 23.71% 68.36% 0.044 0.040 3.649 3.733
N = 13 17.54% 45.07% 37.40% 0.044 0.046 1.526 1.616
N = 14 22.46% 49.65% 27.89% 0.044 0.147 1.142 1.333
N = 15 27.40% 53.23% 19.37% 0.044 0.263 0.784 1.091
N = 16 30.87% 55.87% 13.26% 0.044 0.501 0.531 1.076

Table 3.5: Effect of N on the cost and space of RI for T1 and T2

T1 RI constr. cost (s) Intervals/Polygon Cells/Interval Size (MB)

N = 10 2.75 1.11 1.24 2.30
N = 13 3.08 2.55 4.25 3.50
N = 14 5.33 2.90 13.56 5.70
N = 15 13.09 4.92 29.36 12.10
N = 16 41.42 9.04 61.20 33.20

T2 RI constr. cost (s) Intervals/Polygon Cells/Interval Size (MB)

N = 10 44.21 1.04 1.05 39.19
N = 13 35.98 1.39 1.56 46.19
N = 14 39.56 1.74 2.39 55.19
N = 15 51.12 2.52 4.17 76.09
N = 16 93.88 4.13 7.88 128.29



3.1.2.3 Data preprocessing

The approximations used by intermediate filters (i.e., RI, RA, 5C-CH) need not be
computed on-the-fly, but can be generated in a data preprocessing phase. Like object
MBRs, these approximations can be useful in other operations besides joins (e.g.,
range queries [26]), so it is reasonable to pre-compute them and store them in ded-
icated data structures (or together with the object geometries). This way, we can
generate the approximations once per dataset and then use them indefinitely.

Table 3.3 shows the costs for precomputing the three intermediate filter approx-
imations for all real datasets. The corresponding space requirements are shown in
Table 3.2 together with the space requirements of all geometries and their MBRs. As
discussed, for our RI approach, we set N = 16. For the RA approach, we set K = 750,
as suggested in [28], in all cases, except for the OSM North America and Europe
datasets, where we set K = 100 (for K = 750 the RAs occupy too much space and
they cannot be loaded in memory and used for the join). Experimental results for RA
with K = 100 are marked with an asterisc (*). As expected, the 5C-CH approxima-
tions have the lowest computation cost, because they do not involve a rasterization
process. RI has similar precomputation cost compared to RA. The difference between
RI and 5C-CH pays off as we will see later. When comparing the space requirements
of all methods in Table 3.2, we observe that RI approximations are space-economic,
being of similar scale as 5C-CH approximations, sometimes much cheaper, especially
in cases of complex polygons with small areas (e.g., T2 and O5NA), where the space
requirements of RI are close to the (minimal) space requirements of the object MBRs.
On the other hand, RA is very space-consuming, typically occupying 1-2 orders of
magnitude more space than RI and 5C-CH.

For the RI approximations, Table 3.6 shows the average number of intervals per
polygon and the average number of cells per interval for each OSM dataset. Observe
that the number of intervals per object is quite small, but the number of cells per
interval is much larger, signifying that RI can achieve a quite good compression of
the object approximations and explaining the low space requirements of RI compared
to RA, as shown in Table 3.2.

To justify the use of Hilbert curves for intervalization, we measured, for N = 16,
the average number of intervals per intervalized polygon, the average number of cells
per interval, and the space requirements if we replace Hilbert order by the popular



Table 3.6: Statistics of RI approximations for OSM data

Intervals/Polygon Cells/Interval

O5NA 4.37 9.53
O6NA 10.28 41.40
O5SA 14.69 31.84
O6SA 12.48 159.81
O5OC 7.90 17.82
O6OC 7.61 34.73
O5EU 6.30 15.60
O5EU 8.81 18.16
O5AS 9.38 18.74
O6AS 7.15 66.99
O5AF 13.81 31.34
O6AF 8.46 101.32

Z-order [116]. Indicatively, Table 3.8 shows these statistics for some of our datasets
(see Tables 3.5, 3.6, and 3.2, for the corresponding numbers for RI). Intervalization
based on Z-order curves results in more and shorter intervals and, as a result in
larger space requirements for RI.

We also observed that replacing Hibert-order by Z-order increases the runtime
cost of using the RI filter by up to 50%, as more intervals need to be accessed and
joined.

3.1.2.4 Performance in end‐to‐end spatial joins

We evaluate RI, RA, and 5C-CH on all join pairs, in terms of filtering effectiveness and
spatial join cost that we can achieve using them. Table 3.7 compares the performances
of all three methods in an end-to-end spatial join pipeline on the 7 join pairs of real
datasets. As a point of reference, we also included None, the baseline method that
does not apply an intermediate filter, but directly passes the candidate pairs to the
refinement step. The first three columns of the table show the percentage of MBR-join
results (i.e., candidate pairs) which are identified by each intermediate filter as true
hits, as false hits, or as indecisive (these are passed to the refinement step). The next
two columns show the average number of vertices in the candidates from each input



Table 3.7: Performance of intermediate filters in spatial intersection joins

True hits False hits Indecisive Avg #nodes R Avg #nodes S MBR‐join (s) Int. Filter (s) Refine (s) Total (s)

T1 ✶ T2 (Tiger landmark and water areas)
RI 30.87% 55.87% 13.26% 630.70 300.34 0.04 0.50 0.53 1.07
RA (K = 750) 22.72% 46.13% 31.15% 1568.91 367.30 0.04 1.70 3.58 5.32
5C‐CH 0.00% 39.86% 60.14% 1450.08 279.29 0.04 0.07 4.34 4.45
None 0.00% 0.00% 100.00% 1337.64 375.68 0.04 - 7.15 7.19

O5NA ✶ O6NA (OSM lakes and parks in North America)
RI 47.15% 34.30% 18.55% 533.64 358.49 0.69 9.57 20.14 30.40
RA (K = 100) 24.51% 20.27% 55.22% 1993.36 831.70 0.69 11.29 254.72 266.70
5C‐CH 0.00% 27.28% 72.72% 1180.19 814.88 0.69 2.16 172.52 175.38
None 0.00% 0.00% 100.00% 395.01 789.53 0.69 - 325.34 326.03

O5SA ✶ O6SA (OSM lakes and parks in South America)

RI 13.75% 62.29% 23.97% 827.93 160.34 0.05 0.58 1.26 1.88
RA (K = 750) 11.89% 51.56% 36.55% 3691.81 384.24 0.05 2.37 9.63 12.04
5C‐CH 0.00% 46.97% 53.03% 3112.23 611.08 0.05 0.09 9.77 9.91
None 0.00% 0.00% 100.00% 2534.90 480.83 0.05 - 15.27 15.32

O5OC ✶ O6OC (OSM lakes and parks in Oceania)

RI 17.06% 58.56% 24.37% 581.59 1155.79 0.04 0.44 1.62 2.09
RA (K = 750) 17.43% 49.51% 33.05% 1195.86 3349.01 0.05 2.13 9.08 11.26
5C‐CH 0.00% 41.97% 58.03% 1088.95 2925.64 0.05 0.09 10.27 10.42
None 0.00% 0.00% 100.00% 1395.56 2254.00 0.04 - 13.27 13.32

O5EU ✶ O6EU (OSM lakes and parks in Europe)
RI 12.64% 54.99% 32.37% 174.48 107.20 1.50 14.71 27.08 43.29
RA (K = 100) 6.81% 36.85% 56.33% 712.82 491.03 1.50 26.97 216.62 245.09
5C‐CH 0.00% 50.13% 49.87% 688.37 552.29 1.50 3.89 146.02 151.42
None 0.00% 0.00% 100.00% 838.13 440.23 1.50 - 303.97 305.48

O5AS ✶ O6AS (OSM lakes and parks in Asia)

RI 8.73% 62.95% 28.32% 381.42 2013.75 0.12 1.25 10.37 11.74
RA (K = 750) 8.59% 55.18% 36.23% 2009.54 5621.89 0.12 7.92 58.07 66.12
5C‐CH 0.00% 53.84% 46.16% 1293.49 4354.51 0.12 0.30 37.52 37.95
None 0.00% 0.00% 100.00% 1618.71 3620.09 0.12 - 76.61 76.73

O5AF ✶ O6AF (OSM lakes and parks in Africa)

RI 16.13% 58.41% 25.46% 439.73 214.42 0.02 0.19 0.44 0.65
RA (K = 750) 14.48% 49.06% 36.47% 1298.53 300.31 0.02 1.07 1.76 2.85
5C‐CH 0.00% 44.90% 55.10% 941.46 329.29 0.02 0.05 1.70 1.77
None 0.00% 0.00% 100.00% 1310.28 273.77 0.02 - 3.86 3.88

Table 3.8: Statistics using Z-order curve

Intervals/Polygon Cells/Interval Size (MB)

T1 16.60 36.06 43.2
T2 6.18 5.23 172.6
O5NA 6.06 6.67 297.5
O6NA 15.91 26.52 268.8
O5AF 19.74 21.69 22.4
O6AF 12.19 68.59 62.1



dataset (R or S) which are indecisive. The last four columns show the total cost of the
filter step (MBR-join [27]), intermediate filter step (RI, RA, or 5C-CH), and refinement
step [76] in the end-to-end join process. For RI, we preprocessed all datasets using
N = 16 and R-encoding (hence, the RI-join involves XORing besides ANDing). For
RA, we used K = 750 for all datasets, except for OSM North America and Europe
datasets, as explained in Section 3.1.2.3.
Filter effectiveness Observe that RI has consistently the best filtering performance
among the three intermediate filters, since it results in the smallest percentage of
indecisive pairs. The only exception is in O5OC ✶ O6OC, where RI comes second to
RA, by just 1%. In all joins, the true hit and false hit ratio of RI is higher compared to
the corresponding ratios of the other filters (except for the true hits in O5OC ✶ O6OC).
This shows that the global grid used by RI is more effective in finding true and false
hits compared to the local grid used by RA for each object. 5C-CH can only identify
false hits; still, it finds fewer false hits than RI (in all cases) and RA (in most cases).
Intermediate filter cost 5C-CH operates on simpler approximations to rasters and
applies fast computational geometry techniques for convex polygons; hence, it is faster
than RI and RA in all cases. RI is consistently better than RA because it uses our fast
RI-join algorithm and bitwise operations to conduct its checks. In addition, RI avoids
the re-scaling cost that RA bears for the spatial alignment of the raster approximations
of the two objects. Especially when the candidate pair includes objects of very different
sizes, the re-scaling cost is high and at the same time the approximation quality of
RA decreases a lot. The cost of re-scaling in RA is between 25.2% (in T1 ✶ T2) to
59.4% (in O5OC ✶ O6OC) of the total RA filter cost.
Refinement cost The refinement cost of the indecisive pairs that pass the RI-filter is
much lower compared to the corresponding refinement costs for the pairs that pass
the other filters. The relative cost difference is much higher compared to the corre-
sponding difference in the percentages of indecisive pairs. For example, in T1 ✶ T2,
the refinement cost of RI is about 7 times lower compared to that of RA, although the
difference in the number of indecisive pairs is less than 3. In order to understand
the reason behind this difference, we measured the average number of vertices in the
polygon pairs that pass the intermediate filters from both inputs (shown in the 4th
and 5th columns of Table 3.7). A first observation is that the number of vertices of
the polygons that pass the MBR-join is very large compared to the average number of
vertices of the polygons in the corresponding datasets (see Table 3.2). By looking into



the results, we found out that the join pairs mainly include large polygons with mul-
tiple edges, whereas small polygons rarely participate in join results. The second and
most important observation is that the polygons that survive our RI-filter have much
lower complexity compared to the ones that survive the other filters. This happens
because our global fine grid, which is the same for all objects, is more appropriate for
finding intersections between large polygons compared to the object-size parametric
grid of RA. These measurements unveil an additional and not that obvious advantage
of our approach.
Overall cost The total cost of RI-based end-to-end spatial join is consistently lower
compared to end-to-end joins that use alternative intermediate filters. The relative
speedup compared to the runner up (5C-CH) is 2.73x-5.77x. The improvement over
the baseline approach (None) that does not apply any intermediate filter is between 6
and 10.7 times. The fact that the space requirements of RI approximations are much
smaller than the space required for the object geometries (see Table 3.2) makes them
a very attractive approximation approach.
Spatial within joins Table 3.9 shows the performance of all intermediate filters for
spatial within joins. Section 3.1.1.4 explains how the RI-join is adapted for within
joins. Similar changes are applied to RA, where the types of common cells of RA(x)

and RA(y) are used to identify true positives and true negatives. Regarding 5C-CH,
a pair is a false hit, if the 5C approximation of x does not intersect the 5C of y or
if the CH of x is not within the CH or y. In all pairs of datasets, we used water
areas as the left join input, since land areas are rarely contained in water areas. Due
to space limitation, we only show the results of O5NA ✶⊆ O6NA from the OSM
datasets; the results for other pairs are similar. As the table shows, RI is significantly
better compared to RA and 5C-CH also for within joins. Note that the refinement step
for x within y is more expensive than the refinement step for x intersects y, as the
former performs a point-in-polygon test for every vertex of x; all x-vertices should
be included in y if x is within y. Hence, although the number of candidate pairs for
within are fewer compared to the corresponding candidates for intersection, the join
cost may be increased in some cases (e.g., T2 ✶⊆ T1 is more expensive than T2 ✶ T1).



Table 3.9: Filter performance in spatial within joins

True hits False hits Indecisive Total time (s)
T2 ✶⊆ T1 (Tiger water and landmark areas)

RI 27.72% 59.74% 12.54% 1.67
RA (K = 750) 20.88% 46.67% 32.45% 7.09
5C‐CH 0.00% 42.10% 57.90% 9.62
None 0.00% 0.00% 100.00% 11.43

O5NA ✶⊆ O6NA (OSM lakes and parks in North America)
RI 50.52% 30.23% 19.24% 21.19
RA (K = 100) 25.00% 13.25% 61.75% 91.23
5C‐CH 0.00% 20.48% 79.52% 124.41
None 0.00% 0.00% 100.00% 134.07

3.2 Advancing Raster Interval Approximations for Spatial Joins

3.2.1 APRIL

We now propose APRIL (Approximating Polygons as Raster Interval Lists), a sig-
nificant enhancement of Raster Intervals (RI), which can be used as an intermediate
filtering method for spatial query processing and is more efficient and less space
consuming compared to RI.

3.2.1.1 A‐ and F‐Interval Lists

APRIL is a succinct polygon approximation for intermediate filtering, which catego-
rizes raster cells into Full, Partial, and Empty, based on their coverage percentage with
the object’s geometry (100%, less than 100%, and 0%, respectively). In other words,
APRIL unifies the Strong and Weak cell classes used by RI and [28] to a single Partial
class. Under this, APRIL approximates a polygon with two sorted interval lists: the
A-list and the F-list. The A-list contains intervals that concisely capture all cells that
overlap with the polygon, regardless of their type (Full or Partial), whereas the F-list
includes only Full cells. An interval list having n intervals is stored as a simple sorted
integer sequence in which the i-th interval’s start, end are located at positions 2i and
2i+ 1 respectively, for i ∈ [0, n).

The A-list and F-list for the example polygon of Figure 3.1 are shown in Figure
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Figure 3.4: The interval generation for a polygon in a 8→ 8 space, without bit-coding
and using interval lists.

Table 3.10: APRIL: Do two objects intersect in a common cell?

Partial Full
Partial Inconclusive yes

Full yes yes

3.4. Strong and Weak cell types become Partial, which results in a simpler represen-
tation than RI. Note that the set of intervals in each of the A- and F- lists are disjoint.
The new relationship identification table for a cell shared by two polygons is shown
in Table 3.10. Removing the Strong cell type renders the approximation unable to
detect true hits for cells of the Strong-Strong case, as common cells that are both
Partial cannot decide definite intersection between the two polygons.1

Construction To construct an APRIL approximation, we first need to identify the cells
intersected by the polygon’s area in the grid and label each one as either Partial or
Full. Then, Intervalization derives the F-list by sorting the set of Full cells by ID (i.e.,

1As we have found experimentally (Sec. 3.2.4.4.2), this has minimal effect on the amount of true
hits and true negatives that the intermediate filter manages to detect. This is due to the fact that the
only cases of true hits missed are pairs of polygons that intersect with each other exclusively in cells
typed Strong for both polygons and nowhere else.



Hilbert order) and merging consecutive cell IDs into intervals. To derive the A-list,
we repeat this for the union of Full and Partial cells. In Section 3.2.3.2, we propose
an efficient algorithm that derives the F- and A-list of a polygon without having to
label each individual cell that intersects it.

3.2.1.2 APRIL Intermediate Spatial Join Filter

APRIL is used as an intermediate filter (Figure 2.8) between the MBR filter and
the refinement phase. Given a pair (r, s) of objects coming as a result of an MBR-join
algorithm [26, 49, 27], APRIL uses the A- and F-lists of r and s to detect fast whether
the polygons (i) are disjoint (true negative), (ii) are guaranteed to intersect (true hit),
or (iii) are inconclusive, and thus need to be forwarded to the refinement stage to
verify their intersection.

Whether r and s are disjoint (i.e., do not intersect) can be determined by checking
whether their A-lists have any pair of overlapping intervals. If they have no overlap-
ping intervals, then r and s do not have any common cell in the grid and thus they
cannot intersect. We check this condition by performing a merge join over the A-lists
and stopping as soon as we detect two overlapping intervals.

Pairs of polygons that have at least one pair of overlapping intervals in their A-lists
are then checked using their F-lists. We perform two more merge-joins: A(r) "# F(s)
and F(r) "# A(s); detecting an overlapping intervals pair in one of these two joins
means that there is a Full cell in one object that is common to a Full or Partial cell
of the other object. This guarantees that the two objects intersect and the pair (r, s)

is immediately reported as a spatial join result. If A(r) "# F(s) fails to detect (r, s)

as a true hit, then F(r) "# A(s) is conducted; if the latter also fails, then (r, s) is an
inconclusive candidate join pair, which is forwarded to the refinement step.

In summary, APRIL’s intermediate filter sequence consists of three steps: the AA-
join, AF-join, and FA-join, as illustrated in Figure 3.5 and described by Algorithm
3.2. Each step is a simple merge-join between two sorted interval lists. Since each list
contains disjoint intervals, each of the three interval joins takes O(n+m) time, where
n and m are the lengths of the two interval join input lists. Hence, the total cost of
the APRIL filter (i.e., Algorithm 3.2) is linear to the total number of intervals in the
A- and F-lists of r and s.
Join Order Optimization The AA-join, AF-join, and FA-join could be applied in any
order in Algorithm 3.2. For example, if (r, s) is a true hit, it would be more beneficial
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to perform the AF-join and the FA-join before the AA-join, as this would identify the
hit earlier. On the other hand, if (r, s) is a true negative, conducting the AA-join first
avoids the futile AF- and FA-joins. However, it is impossible to determine a priori
whether (r, s) is a true hit or a true negative. In addition, we experimentally found
that changing the join order does not have a high impact on the intermediate filter
cost and the overall cost. For a typical candidate pair (r, s), the common cells are
expected to be few compared to the total number of cells covered by either r or s,
making AA-join the most reasonable join to start with. Our experiments confirm that
the number of candidate pairs identified as true negatives is typically much larger
than the number of true hits.

Algorithm 3.2 APRIL join algorithm.
Require: (r, s) such that MBR(r) intersects MBR(s)

1: function INTERVALJOIN(X,Y )
2: i← 0; j ← 0

3: while i < |X| and j < |Y | do
4: if Xi overlaps with Yj then return true ! overlap exists
5: end if
6: if Xi.end ≤ Yj .end then i← i+ 1 else j ← j + 1

7: end whilereturn false ! no overlaps detected
8: end function
9:
10: if not IntervalJoin(A(r), A(s)) then return false ! true negative
11: end if
12: if IntervalJoin(A(r), F (s)) then return true ! true hit
13: end if
14: if IntervalJoin(F (r), A(s)) then return true ! true hit
15: end if
16: return REFINEMENT(r, s) ! forward pair to refinement
17: end function



3.2.1.3 Generality

In this section, we demonstrate the generality of APRIL in supporting other queries
besides spatial intersection joins between polygon-sets. We first show how we can
use it as an intermediate filter in selection (range) queries. Then, we discuss its
application in spatial within joins. Finally, we discuss the potential of using APRIL
approximations of polygons and raster approximation of linestrings to filter pairs in
polygon-linestring intersection joins.

3.2.1.4 Selection Queries

Similarly to joins, APRIL can be used in an intermediate filter to reduce the cost
of selection queries. Consider a spatial database system that manages polygons and
where the user can draw a selection query as arbitrary polygon QP ; the objective is
to retrieve the data polygons that intersect with the query polygon QP . Assuming
that we have pre-processed all data polygons and computed and stored their APRIL
representations, we can process polygonal selection queries as follows. We first pre-
process QP to create its APRIL approximation. Then, we use the MBR of QP to find
fast the data polygons whose MBR intersects with the MBR of the query (potentially
with the help of an index [6, 7]). For each such data polygon r, we apply the APRIL
intermediate filter for the (r,QP ) pair to find fast whether r is a true negative or a
true hit. If r cannot be pruned or confirmed as a query result, we eventually apply
the refinement step.

3.2.1.5 Spatial Within Joins

APRIL can also applied for spatial joins having a within predicate, where the objective
is to find the pairs (r, s), where r ∈ R and s ∈ S and r is within s (i.e., r is completely
covered by s). In this case, the intermediate filter performs only two of its three steps.
The AA-join is applied first to detect whether r and s are disjoint, in which case the
pair should be eliminated. Then, we perform a variant of the AF-join, where the
objective is to find if every interval in the A-list of r is contained in one interval in the
F-list of s; if this is true, then (r, s) is guaranteed to be a within join result and it is
reported as a true hit. In the opposite case, (r, s) is forwarded to the refinement step.
We do not apply an FA-join, because this may only detect whether s is within r.



3.2.1.6 Linestring to Polygon Joins

Another interesting question is whether APRIL can be useful for intersection joins
between other spatial data types, besides polygons. The direct answer is no, since
APRIL is designed for spatially-extended objects. Still, our method can be useful
in the case of joins between polygons and linestrings. A linestring is a sequence of
line segments used to approximate geographic objects such as roads and rivers. The
rasterization of a linestring results in only Partial cells, as linestrings have zero area
and cannot cover a cell entirely. In addition, as exemplified in Figure 3.6, linestrings
do not really benefit from merging consecutive cells into intervals, as linestrings that
follow the Hilbert order (or any other fixed space-filling curve) are rare. Hence, it
is more space-efficient to approximate a linestring as a sorted sequence of cell-IDs
(which are guaranteed to be Partial). Having the linestring approximations, we can
evaluate spatial intersection joins between a collection of polygons and a collection of
linestrings by applying two of the three steps in the APRIL intermediate filter; namely,
(i) a merge-join between the A-list of the polygon and the cell-ID list of the linestring
to determine whether the pair is a true negative and (ii) a merge-join between the
F-list of the polygon and the cell-ID list of the linestring to determine whether the
pair is a true hit. Algorithm 3.2 can easily be adapted for polygon-linestring filtering
by changing IntervalJoin(X,Y ) to take a sequence of cell-IDs Y and treat them as
intervals of duration 1.

3.2.2 Customization

We have explored a series of optimization and customization options that can po-
tentially reduce APRIL’s space complexity and improve its performance in terms of
filter effectiveness and speed.

3.2.2.1 Compression

Recall that the only information that APRIL stores for each polygon is two interval
lists: the A-list and the F-list. The interval lists are essentially sorted integer arrays, so
we can exploit delta encoding and more specialized lossless compression schemes to
reduce their space requirements. Since any of the AA- AF- and FA-join that we may
apply on the lists may terminate early (as soon as an interval overlap is detected),
we should go for a compression scheme that does not require the decompression
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a list entirely before starting processing it. In other words, we should be able to
perform joins while decompressing the lists. This way, we may avoid uncompressing
the lists in their entirety and still be able to perform the joins. Given this, we use
delta encoding, where we store the first value of the list precisely and, from thereon
store the differences (gaps) between consecutive numbers.

There are dozens of different compression schemes for gaps between ordered in-
tegers, each with its pros and cons. We chose the Variable Byte (VByte) method
[117, 118], a popular technique that, even though it rarely achieves optimal compres-
sion, is adequately efficient and really fast [119]. We use the libvbyte [120] library
that has an option for sorted integer list compression, which matches our case and
boosts performance by utilizing delta encoding. Compression hardly affects APRIL’s
construction time, which is dominated by the rasterization/intervalization cost.

At the same time, we adapt our interval join algorithm to apply decompression
and join at the same time, i.e., each time it needs to get the next integer from the list,
it decompresses its value and adds it to the previous value in the list.



3.2.2.2 Partitioning

The accuracy of APRIL as a filter is intertwined with the grid granularity we choose.
A more fine-grained grid results in more Full cells, increasing the chance of detecting
true hits; similarly, empty cells increase, enhancing true negative detection. However,
simply raising the order N is not enough to improve performance. Increasing N

beyond 16 means that a single unsigned integer is not enough to store a Hilbert
curve’s identifier, which range from [0, 22N−1]. For N = 17 or higher, we would need
8 bytes (i.e., an unsigned long) to store each interval endpoint, exploding the space
requirements and the access/processing cost.

Given this, we introduce a partitioning mechanism for APRIL that divides the data
space into disjoint partitions and defines a dedicated rasterization grid and Hilbert
curve of order N = 16 to each partition. This increases the global granularity of
the approximation without using long integers while giving us the opportunity to
define smaller partitions for denser areas of the map for which a finer granularity
is more beneficial. Partitioning is done considering all datasets (i.e., layers) of the
map. That is, the same space partitioning is used for all datasets that are joined
together. The contents of each partition are all objects that intersect it; hence, the
raster area of the partition is defined by the MBR of these objects and may be larger
than the partition, as shown in the example of Figure 3.7. APRIL approximations are
defined based on the raster area of the partition. The spatial join is then decomposed
into multiple joins, one for each spatial partition. Duplicate join results are avoided
at the filter step of the join (MBR-join), as shown in [121, 27]. This partitioning
approach is particularly beneficial for big data management systems, such as Apache
Sedona, where spatial queries are evaluated in a distributed manner after space and
data partitioning. Partitioning allows (i) more accurate approximations through fine-
grained partitions and (ii) parallel evaluation per partition that further reduces the
end-to-end join time.

3.2.2.3 Different Granularity

If we use the same (fine) grid to rasterize all polygons, the APRIL approximations
of large polygons may contain too many intervals, slowing down the intermediate
filter. We can create approximations using a different order N of the Hilbert curve
for different datasets based on the average sizes of their contents. There is a trade-off
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between memory and performance since an order lower than 16 means fewer intervals
and thus lower memory requirements and complexity, but also means reduced APRIL
accuracy.

When joining two APRIL approximations of different order, we need to adjust
one of the two interval lists so that it can be joined with the other. For this, we
scale down the list with the highest order. Specifically, before comparing two intervals
a = [astart, aend) and b = [bstart, bend) at orders N and L respectively, where N > L, the
highest order interval a should be right shifted by n = |N − L| → 2 bits, to form a
transformed interval a′, as follows:

a′ = [astart >> n, (aend − 1) >> n] (3.1)

Right shifting creates intervals in a more coarse-grained grid, and thus, they may
represent larger areas than the original. Therefore, this formula works only for A-
intervals since there is no guarantee that a Full interval at order N will also be Full
at order L. For this reason, in Algorithm 3.2, we perform only one of the AF- and
FA- joins, using the F-list of the coarse approximation (which is not scaled down).
This hurts the filter’s effectiveness as a trade-off for the coarser (and smaller) APRIL



approximations that we may use for large polygons.

3.2.3 APRIL Construction

In this section, we present two methods for the construction of a polygon’s APRIL ap-
proximation. In Section 3.2.3.1 we present a rasterization approach that efficiently finds
the cells that intersect an input polygon and their types, based on previous research
on polygon rasterization, and then sorts them to construct the A- and F-interval lists.
In Section 3.2.3.2, we propose a more efficient approach tailored for APRIL, which
avoids classifying all cells but directly identifies the intervals and constructs the A-
and F-interval lists.

3.2.3.1 Efficient Graphics‐Inspired Rasterization

RI and the previous raster-based filter of [28] require the classification of each cell
as Full, Strong, Weak, or Empty, based on the percentage of the cell covered by the
original polygonal geometry. For this, they apply an algorithm that involves numerous
polygon clippings and polygonal area computations at a high cost. On the other hand,
to define an APRIL approximation, we only need to identify the cells that are partially
or fully covered by the input polygon’s area. Inspired by rasterization techniques in
the graphics community [122, 123], we propose a polygon rasterization technique
that involves two stages. Firstly, we compute the Partial cells, which essentially form
the boundary of the polygon in the grid. Next, we compute the Full cells using the
previously computed boundary cells.

Identifying the Partial cells is closely related to the pixel drawing problem in
graphics, which involves detecting which cells to “turn on” to draw a target line.
While Bresenham’s algorithm [124] is a popular and fast pixel drawing algorithm, it
approximates a line segment by turning on a minimal amount of cells and may thus
not detect all intersected cells. In contrast, the Digital Differential Analyzer (DDA)
method [125] is slower but identifies correctly and completely all intersected cells.
To detect the Partial cells, we use an efficient variant of DDA [122] that uses grid
traversal. We execute the grid traversal for each edge of the polygon and store the
IDs of the identified Partial cells in a list. The leftmost grid in Figure 3.9 shows the
Partial cells detected by the grid traversal algorithm for the polygon drawn in the
figure.



Next, to identify the Full cells, we have to detect all cells that reside in the poly-
gon’s enclosed areas. This is closely related to the shape-filling problem in computer
graphics, a very old and thoroughly studied problem. Most approaches are variants
of two paradigms: sweep-line (scanline) rendering [48] or shape (flood) filling [123].
Both approaches have their pros and cons in terms of performance and accuracy.
Scanline Sweep-line algorithms use horizontal lines to find all intersections between
them and the polygon per row in the grid and sort the intersections based on their
x-values. These are called event points and are used to loop through all internal cells
without performing any point-in-polygon (PiP) tests. All cells in-between consecutive
pairs of the sorted event points are simply looped through and are labeled as Full.
Note that this approach can be used as a standalone method without the grid traversal
algorithm to detect all cells that overlap with a polygon regardless of type. However,
to accurately classify each cell as Partial or Full and without performing a PiP test
for every single one, we use it only for the Full cells right after the DDA algorithm
has generated the set of Partial cells.
Flood Fill The classic flood fill algorithm first selects an unlabeled cell that is guar-
anteed to be within the polygon, called seed. Then, it traverses all neighboring cells of
the seed until it finds the boundaries of the enclosed area, classifying the encountered
cells as fully covered. We implemented a variant of this algorithm that minimizes the
number of PiP tests required to identify whether a cell is inside or outside the poly-
gon. Specifically, we iterate through the cells of the polygon’s MBR area. If a cell c
has not been labeled yet (e.g., as Partial), we perform a PiP check from c’s center.
If the cell c is found to be inside the polygon, c is marked as Full, and we perform
a flood fill using c as the seed, stopping at labeled cells and labeling all encountered
unchecked cells as Full. If the cell c is found to be outside the polygon, c is marked as
Empty, and we perform flood fill to mark Empty cells. The algorithm repeats as long
as there are unchecked cells to flood fill from. This reduces the number of PiP tests
that need to be performed, as it suffices to perform a single test for each contiguous
region in the grid with Full or Empty cells.

Figure 3.8 shows an example of our sweep-line rendering variant method. After
all Partial cells have been identified, the event points between the scanlines and the
polygon’s edges are calculated and sorted by their x-values. Then, for each two
consecutive pairs of event points, their in-between unlabeled cells are labeled as Full.
Figure 3.9 illustrates our Flood Fill process for an example polygon. The unchecked
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Figure 3.8: The Scanline rendering algorithm we implemented, filling the Full cells
without performing any PiP tests.

cells form three contiguous regions bounded by Partial cells, two of them being outside
the polygon and one inside. Instead of looking for cells within the polygon to flood
fill starting from them, it is faster to fill both the inside and outside of the polygon
(marking cells as Full and Empty, respectively), as the number of point-in-polygon
tests is minimized.

Regardless of which rasterization approach was chosen and after all Partial and
Full cells have been identified, the algorithm merges consecutive cell identifiers into
intervals to create the A- and F-lists that form the APRIL approximation.

Grid Traversal

c

Flood Fill from c 
(empty)

c

Flood Fill from c 
(empty)

c

Flood Fill from c 
(full)

partially covered empty uncheckedfully covered

Figure 3.9: The flood fill algorithm, performing three iterations with different seeds
c to completely fill all unchecked cells.



3.2.3.2 One‐Step Intervalization

The approach described in the previous section identifies the types (Partial, Full,
Empty) of all cells that intersect the MBR of the input polygon. For polygons that
are relatively large and their MBRs define a large raster area this can be quite expen-
sive. We propose an alternative approach that identifies the F-intervals of the APRIL
approximation efficiently and directly uses them to identify the A-intervals that in-
clude them in one step, without the need to identify the types of all individual cells
in them.

As in Sec. 3.2.3.1, we first apply DDA [122] to detect the Partial cells and sort them
in Hilbert order. An important observation is that “gaps” between nonconsecutive
identifiers in the sorted Partial cells list indicate candidate Full intervals on the Hilbert
curve. Fig. 3.10 shows how these gaps are formed for an example polygon. Identifying
the first cell c of each candidate interval as Full or Empty through a point-in-polygon
(PiP) test is enough to label the whole interval as Full or Empty, respectively. The
first “gap” interval is [7, 8) containing just cell 7, which can be marked empty after
a PiP test. From all “gap” intervals, those marked in bold (i.e., 32-34 = [32, 35) and
52-54 = [52, 55)) are Full intervals and can be identified as such by a PiP test at their
first cell (i.e., 32 and 52, respectively).

Additionally, we can skip some of these PiP tests by checking all adjacent cells
(north, south, west, east) of the first cell c with smaller identifiers than c; if any of
them is Full or Empty, we can also give the same label to the candidate interval, as it
should exist in the same inner/outer area of the raster image. For example, in Figure
3.10, when the algorithm moves to identify the interval [52, 55), it can detect that its
first cell 52 is adjacent to another Full cell with smaller order (cell 33), that has been
previously identified. Thus, the interval [52, 55) exists in the same inner area as cell
33, and it inherits its label (Full) without performing another PiP test for it. In this
example, a total of 5 PiP tests will be performed for the intervals that start with the
cells 7, 13, 30, 32 and 42, instead of 11 PiP tests that would be performed otherwise if
we did not take into consideration the neighboring cells.

Algorithm 3.3 is a pseudocode for the one-step intervalization process, which takes
as input the sorted Partial cells list P computed by DDA. The algorithm creates the A-
list, F-list of the polygon in a single loop through P . In a nutshell, the algorithm keeps
track of the starting point of every A-interval, and when an empty gap is identified,
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Figure 3.10: Example of the intervals/gaps for a set of Partial cells. Whether a gap
will be labeled as Full or Empty depends on the outcome of the PiP test.

the algorithm “closes” the current A-interval and starts the next one from the next
Partial cell in the list. On the other hand, Full intervals start with the identifier of the
cell that is right after the last Partial cell of a consecutive sequence and end before
the next Partial cell in order.

In detail, Algorithm 3.3, starting from the first cell p in P , keeps track of the
starting cell-ID Astart of the current A-interval, while the next cell p + 1 in Hilbert
order is also in P (Lines 3–9) the current A-interval is expanded. If the next cell
c = p+ 1 is not partial, it is the starting cell of a candidate F-interval. We first apply
function CheckNeighbors(c) to find whether there exists an adjacent cell of c which is
part of a FULL or EMPTY interval. Specifically, for cell c and a neighbor n, we first
check whether n < c (if not, n is either Partial or unchecked); if yes, we binary-search
P to check whether n is a P -cell. If not, we apply a special binary search method
on the current F-list to find out whether n is part of an interval in it. If we find n

as part of an F-interval, then c is definitely a Full cell. If we do not find n, then c is
definitely an Empty cell because n < c and n is not Partial. If for all neighbors n of
c, either n > c or n is Partial, then we cannot determine the type of c based on the
current data, so we perform a PiP test to determine c’s type (i.e., Full or Empty). If
c is Full, then we know that the entire interval [c, p) is FULL and append it to the



F-list (Line 16). Otherwise (c is Empty), c is the end of the current A-interval, so the
interval is added to the A-list, and the start of the next A-interval is set to the next
Partial cell p. The algorithm continues until the list P of partial cells is exhausted and
commits the last A-interval (Line 23).

Algorithm 3.3 The One-Step Intervalization algorithm.
Require: Sorted Partial cell array P

1: function ONESTEPINTERVALIZATION(P )
2: i← 0 ! current position in array P

3: Astart← Pi; p← Pi ! cell-IDs of current A-interval and partial cell
4: while i < |P | and p+ 1 = Pi+1 do ! while next cell is partial
5: i← i+ 1

6: p← Pi

7: end while
8: c← p+ 1 ! next uncertain cell
9: i← i+ 1; p← Pi ! next partial cell
10: while i < |P | do
11: type← CheckNeighbors(c)

12: if type -= FULL and type -= EMPTY then ! type is still uncertain
13: type← PointInPolygon(c) ! PiP test gives FULL or EMPTY

14: end if
15: if type = FULL then
16: AppendFullInterval([c, p))

17: else ! type is EMPTY

18: AppendAllInterval([Astart, c)) ! current A-interval finalized
19: Astart← p ! start new A-interval
20: end if
21: Execute Lines 3–9 ! go through partial cells until next gap
22: end while
23: AppendAllInterval([Astart, Pi−1 + 1)) ! save last ALL interval
24: end function

Our one-step intervalization approach performs |P | − 1 PiP tests in the worst
case, which dominate its cost. Compared to the FloodFill-based approach of Section
3.2.3.1, which explicitly marks and then sorts all Full and Partial cells, Algorithm 3.3
is expected to be much faster for polygons that are large compared to the cell size
and include a huge number of Full cells. On the other hand, flood filling may be a
better fit for small polygons with a small MBR and relatively few Full cells.



Table 3.11: Statistics of the datasets and space requirements of the data and the
approximations

T1 T2 T3 O5AF O6AF O5AS O6AS O5EU O6EU O5NA O6NA O5SA O6SA O5OC O6OC
# of Polygons 123K 2.25M 3.1K 72K 191K 447K 622K 1.9M 7.1M 4.0M 999K 123K 228K 107K 223K
Avg # of vertices 25.4 31.9 2285.0 58.9 36.3 45.3 41.9 35.1 32.1 37.6 47.5 47.5 41.6 48.4 42.7
Avg obj MBR area 1.77E-04 4.03E-05 3.95E-01 2.03E-03 1.23E-03 1.03E-03 9.98E-04 1.25E-04 1.19E-04 1.11E-04 4.40E-04 1.34E-03 2.37E-03 5.00E-04 5.27E-04

Geometries size (MB) 51.1 1168.1 115.3 68.9 112.7 327.9 422.1 1120.7 3746.2 2453.4 767.4 94.9 153.7 84.2 151.3
MBR size (MB) 4.4 81.1 0.1 2.6 6.9 16.1 22.4 70.9 258.4 144.8 36.0 4.5 8.2 3.9 8.1
APRIL size (MB) 14.4 134.0 57.2 14.2 25.4 55.2 64.5 180.3 968.0 251.0 155.0 25.4 44.4 7.3 15.0
APRIL-C size (MB) 6.6 75.3 16.0 5.1 10.6 23.3 28.6 84.8 406.5 138.0 62.4 9.2 16.7 3.8 7.8
RI size (MB) 19.5 138.2 968.7 18.6 55.7 57.5 109.8 180.9 942.9 238.1 213.5 31.2 143.4 14.2 39.3
RA size (MB) 1100.0 20000.0 26.9 617.2 1700.0 3700.0 5700.0 342.2 11400.0 6200.0 1500.0 1100.0 2100.0 898.7 2000.0
5C-CH size (MB) 28.7 705.4 1.6 18.5 46.6 117.8 159.4 515.4 1700.0 1200.0 257.7 30.4 52.9 28.8 57.7

3.2.4 Experimental Analysis

We assess the performance of our proposed methods (i.e., RI and APRIL) by ex-
perimentally comparing them with previously proposed polygon approximations for
intermediate filtering of spatial joins in a single machine without any thread paral-
lelism. These include the 5-corner approximations comparison followed by a com-
parison of convex hulls (5C+CH) (as proposed in [1]), and Raster Approximation
(RA) of [28]. We also included a baseline approach (None), which does not apply an
intermediate filter between the MBR-join and the refinement step. For RA, we set the
grid resolution to K = 750 cells, except for a few datasets where we use K = 100, due
to memory constraints. For our methods (RI and APRIL), unless otherwise stated,
we use a granularity order N = 16 for the rasterization grid, meaning that the Hilbert
order of each cell can be represented by a 32-bit unsigned integer. The MBR filter
of the spatial join pipeline was implemented using the algorithm of [27]. The refine-
ment step was implemented using the Boost Geometry library (www.boost.org) and
its functions regarding shape intersection. All code was written in C++ and compiled
with the -O3 flag on a machine with a 3.6GHz Intel i9-10850k and 32GB RAM,
running Linux.

3.2.4.1 Datasets

We used datasets from SpatialHadoop’s [51] collection. T1, T2, and T3 represent
landmark, water, and county areas in the United States (conterminous states only).
We also used two Open Street Maps (OSM) datasets (O5 and O6) that contain lakes
and parks, respectively, from all around the globe. We grouped objects into conti-
nents and created six smaller datasets representing each one: Africa (O5AF, O6AF),



Asia (O5AS, O6AS), Europe (O5EU, O6EU), North America (O5NA, O6NA), Oceania
(O5OC, O6OC) and South America (O5SA, O6SA). From all datasets, we removed non-
polygonal objects as well as multi-polygons, self-intersecting polygons, and polygons
with holes because they need special handling by the refinement algorithms and the
Boost Geometry library that we are using does not support some of these data types.
The construction algorithms for APRIL approximations, presented in Section 6 can
easily be adapted to handle these special polygon classes with minor modifications;
our raster approximations for such polygons can be used directly as intermediate
filters. The first three rows of Table 3.11 show statistics about the datasets. The car-
dinalities of the datasets vary from 3.1K to 7.1M. The smallest dataset (T3) includes
complex polygons (thousands of edges), each having a relatively large area (see the
third row of Table 3.11). The other datasets are larger and include medium (e.g., T1,
OSM data) to small and relatively simple polygons (e.g., T2). We conducted spatial
joins only between pairs of datasets that cover the same area (i.e., T1 "# T2, T1 "# T3,
O5AF "# O6AF, etc.).

3.2.4.2 Optimizations and Customizations

In this set of experiments, we showcase how the added features of APRIL perform
both independently and compared to RI. Additionally, we compare APRIL with RI
in terms of space complexity, filter effectiveness, filter cost, and creation time.

3.2.4.2.1 The effect of N in RI

Recall that our RI approach superimposes a 2N → 2N grid over the data space and
approximates each object o with the set Co of cells that overlap with o. Co is then
modeled by a set of intervals and a bitstring for each interval, which encodes the
types of the cells that it contains. As discussed in Section 3.1.1.2, we set the value
of N to 16, to have a fine granularity and be able to store the interval endpoints in
4-byte unsigned integers. We confirm the appropriateness of this choice by evaluating
the effectiveness of both RI and APRIL in spatial joins for various values of N .

Table 3.12 analyzes the performances of RI and APRIL for different values of N
in spatial join T1 "# T2. The first three columns of the table show the percentage
of candidate pairs identified by the intermediate filters as true hits, false hits, or
inconclusive (i.e., should be sent to the refinement step). The last four columns show



the cost of the filter step of the spatial join (MBR-join), the total cost of applying our
intermediate filters that use RI and APRIL to all candidate pairs, the total cost of
the refinement step, and the overall join cost. The MBR-join cost is N-invariant, as
this operation is independent of the subsequent steps (intermediate filter, refinement).
Observe that the number of inconclusive pairs shrinks as N increases; the refinement
cost decreases proportionally. On the other hand, the cost of the RI filter increases
with N as the number and length of intervals increase. Eventually, for the largest
value of N , the overall join cost converges to less than 1 second.

In Table 3.13, we show the total time required to compute the RI and APRIL object
approximations of all objects in T1 and T2 and the corresponding storage require-
ments for them as a function of N . For small values of N , where the intermediate
filters are not very effective, the computation cost and the space requirements are
low because, for each object, only a small number of intervals, each approximating
a small number of cells are constructed. On the other hand, for large values of N ,
where the intermediate filters are most effective, the approximations are very fine and
require more time for computation and more space. We performed the same analysis
for all other pairs of joined datasets (results are not shown due to space constraints)
and drew the same conclusions. Overall, due to the high effectiveness for N = 16,
which brings the best possible performance to the overall spatial join, we choose this
value of N in the rest of the experiments. Although we use a fixed grid for all ob-
jects (independently of their sizes), the intervalization and compression of the raster
representations do not incur an unbearable space overhead and , at the same time,
we achieve a very good filtering performance even for small objects while avoiding
re-scaling at runtime (as opposed to [28]).

3.2.4.2.2 Join Order

So far, the interval joins in APRIL are assumed to be applied in a fixed order: AA,
AF, and FA. As discussed in Section 3.2.1.2, the joins can be performed in any
order. Table 3.14 tests different join orders for T1 "# T2 and T1 "# T3. T1 "# T2 (like
the majority of tested joins) has a high percentage of true negatives, so the original
order is the most efficient one (changing the order of AF and FA does not make a
difference). On the other hand, for T1 "# T3, where the true hits are more, pushing
the AA-join at the end is more beneficial. Since knowing the number (or probability)
of true negatives and true hits a priori is impossible, and because the join order does



Table 3.12: Effect of N on the performance of RI and APRIL in T1"#T2

True hits False hits Indecisive MBR-join (s) RI-filter (s) Refinement (s) Total time(s)

T1 "# T2 (RI)
N = 10 5.68% 24.96% 69.36% 0.03 0.03 1.44 1.50
N = 13 13.34% 46.88% 39.79% 0.03 0.06 0.63 0.72
N = 14 17.74% 52.20% 30.06% 0.03 0.09 0.48 0.60
N = 15 21.65% 56.07% 22.28% 0.03 0.15 0.37 0.54
N = 16 24.50% 59.42% 16.08% 0.03 0.28 0.27 0.59

T1 "# T2 (APRIL)

N = 10 5.67% 24.96% 69.37% 0.03 0.03 1.45 1.52
N = 13 13.46% 46.88% 39.66% 0.03 0.04 0.61 0.68
N = 14 17.99% 52.20% 29.81% 0.03 0.04 0.45 0.52
N = 15 21.85% 56.07% 22.08% 0.03 0.04 0.34 0.41
N = 16 24.29% 59.42% 16.29% 0.03 0.05 0.26 0.34

Table 3.13: Effect of N on the cost and space of RI and APRIL for T1 and T2

T1 RI constr. cost (s) APRIL constr. cost (s) RI Size (MB) APRIL Size (MB)

N = 10 0.98 0.29 2.6 3.0
N = 13 5.32 0.55 3.5 3.6
N = 14 13.90 0.85 4.7 4.4
N = 15 43.17 1.37 8.2 7.7
N = 16 148.72 2.37 19.0 13.8

T2 RI constr. cost (s) APRIL constr. cost (s) RI Size (MB) APRIL Size (MB)

N = 10 15.29 5.68 46.0 53.0
N = 13 43.95 8.08 53.0 58.4
N = 14 87.35 11.23 62.0 66.7
N = 15 214.04 16.57 82.0 84.1
N = 16 620.57 26.76 132.0 128.0



Table 3.14: Join order effect on APRIL filter cost.

Join Order True hits True negatives Indecisive Int. Filter (s)
T1 "# T2

AA‐AF‐FA 24.29% 59.42% 16.29% 0.0505
AA‐FA‐AF 24.29% 59.42% 16.29% 0.0501
AF‐FA‐AA 24.29% 59.42% 16.29% 0.0585
FA‐AF‐AA 24.29% 59.42% 16.29% 0.0601

T1 "# T3
AA‐AF‐FA 69.84% 28.13% 2.03% 0.1872
AA‐FA‐AF 69.84% 28.13% 2.03% 0.1891
AF‐FA‐AA 69.84% 28.13% 2.03% 0.1737
FA‐AF‐AA 69.84% 28.13% 2.03% 0.1773

not make a big difference in the efficiency of the filter (especially in the end-to-end
join time), we suggest using the fixed order, which is the best one in most tested
cases. In the future, we will investigate the use of data statistics and/or object MBRs
to fast guess a good join order on an object pair basis.

3.2.4.2.3 Partitioning

Tables 3.15 and 3.16 illustrate the effect of data partitioning (Section 3.2.2.2 on the
effectiveness, query evaluation time, and space requirements of APRIL approxima-
tions. A higher number of partitions means finer-grained grids per partition and thus,
more intervals per polygon (i.e., more space is required). Even though this reduces
the number of inconclusive cases, it can slow down the intermediate filter since more
intervals need to be traversed per candidate pair. For example, T1 "# T3 has already
a small percentage of inconclusive pairs, so partitioning may not bring a significant
reduction in the total join time. On the other hand, for joins with a high inconclusive
percentage, such as O5AS "# O6AS, partitioning can greatly reduce the total cost. In
summary, partitioning comes with a time/space tradeoff.

3.2.4.2.4 Different Granularity

As discussed in Section 3.2.2.3, we can define and use APRIL at lower granularity
than N = 16 for one or both datasets, trading filter effectiveness for space savings.



Table 3.15: # partitions per dimension effect on join time.

# Indecisive Int. Filter (s) Refinement (s) Total time (s)
T1 !" T2

1 16.29% 0.08 0.27 0.39
2 12.81% 0.06 0.22 0.32
3 11.36% 0.08 0.20 0.30
4 10.50% 0.09 0.20 0.32

T1 !" T3
1 2.03% 0.47 0.34 0.86
2 1.77% 0.29 0.29 0.62
3 1.67% 0.37 0.27 0.69
4 1.64% 0.49 0.26 0.80

O5AF !" O6AF
1 26.92% 0.06 0.36 0.45
2 21.24% 0.06 0.29 0.37
3 18.26% 0.07 0.25 0.34
4 16.63% 0.08 0.24 0.35

O5AS !" O6AS
1 30.76% 0.43 7.48 8.04
2 24.07% 0.41 5.30 5.83
3 20.52% 0.46 4.34 4.93
4 18.39% 0.55 3.61 4.29

O5EU !" O6EU
1 34.32% 5.83 30.55 38.01
2 27.97% 5.35 24.24 31.22
3 24.84% 6.06 21.55 29.24
4 22.60% 6.61 19.99 28.23

O5NA !" O6NA
1 22.26% 3.56 24.08 28.49
2 17.58% 3.14 18.81 22.81
3 15.68% 3.65 17.13 21.64
4 14.45% 4.52 16.02 21.40

O5SA !" O6SA
1 25.80% 0.17 1.44 1.66
2 20.74% 0.14 1.21 1.39
3 18.39% 0.17 1.12 1.33
4 17.03% 0.20 1.07 1.30

O5OC !" O6OC
1 24.42% 0.10 1.51 1.65
2 18.89% 0.12 1.09 1.25
3 16.17% 0.14 0.95 1.13
4 14.65% 0.16 0.88 1.08



Table 3.16: # of partitions per dimension, effect on APRIL size (MB).

# T1 T2 T3 O5AF O6AF O5AS O6AS O5EU O6EU O5NA O6NA O5SA O6SA O5OC O6OC
1 14.4 134.0 57.2 14.2 25.4 55.2 64.5 180.3 968.0 251.0 155.0 25.4 44.4 7.3 15.0
2 26.1 236.3 112.0 29.2 49.2 106.9 124.2 336.9 1900.0 453.4 311.8 51.5 86 14.3 49.2
3 37.1 352.6 166.7 44.7 74.2 164.0 188.3 492.5 2800.0 654.2 459.6 76.9 129.8 35.2 76.3
4 47.2 465.9 224.9 61.4 99.5 219.1 255.1 653.0 3700.0 875.1 619.0 104.2 172.3 49.1 107.7

Table 3.17: Join between T1 (order 16) and T3 (order N).

N True hits True negs. Indecisive Int. Filter (s) Refinement (s) Total (s) T3 size (MB)
16 69.84% 28.13% 2.03% 0.19 0.33 0.57 57.2
15 69.63% 27.85% 2.52% 0.13 0.41 0.59 28.3
14 69.18% 27.46% 3.36% 0.11 0.54 0.70 14.0
13 68.39% 26.86% 4.75% 0.09 0.78 0.92 6.9
12 66.63% 25.70% 7.67% 0.09 1.23 1.37 3.4

In Table 3.17, we study the effect of reducing N for T3 in T1 "# T3. The size of
T3’s APRIL approximations halves every time we decrease N by one. The filter time
also decreases due to the reduced amount of intervals from T3 in the interval joins.
However, the percentage of indecisive pairs increases, raising the refinement cost.
N = 15 is the best value for T3 because it achieves the same performance as N = 16

while cutting the space requirements in half.

3.2.4.3 APRIL Construction Cost

We now evaluate the APRIL construction techniques that we have proposed in Section
3.2.3, comparing them with the rasterization method used in previous work [28] (and
for RI). Note that RA [28] and RI essentially apply polygon clipping and polygon-cell
intersection area computations, because they need to classify the cells that intersect
the polygon to Weak, Strong, and Full. On the other hand, APRIL uses two classes:
Partial and Full, which enables the application of the techniques that we proposed in
Section 3.2.3. Table 3.18 shows the time taken to compute the APRIL approximations
of all polygons in each dataset (for N = 16), using (i) the rasterization+intervalization
approach of RI, after unifying Strong and Weak cells, (ii) the Scanline and FloodFill
approaches tailored for APRIL, and (iii) two versions of our novel OneStep interval-
ization approach (Section 3.2.3.2): one that performs a point-in-polygon (PiP) test
for each first cell c of a candidate Full interval and one that checks the Neighbors of c



Table 3.18: Total construction cost (sec) for all datasets.

Dataset RI Flood Fill Scanline IDEAL OneStep (PiPs) OneStep (Neighbors)

T1 143.62 3.90 3.63 9.76 3.74 2.19

T2 601.67 28.05 23.06 37.40 33.76 23.43

T3 9919.06 265.72 278.50 666.19 75.40 28.33

O5AF 264.45 4.25 3.98 13.02 11.00 4.72

O6AF 468.47 13.06 12.62 32.45 5.66 4.17

O5AS 486.86 11.69 10.07 27.42 21.28 11.78

O6AS 994.93 28.98 24.76 56.14 65.01 25.07

O5EU 1193.71 36.08 30.30 58.18 55.79 33.71

O6EU 5493.15 172.20 147.29 244.95 243.17 156.94

O5NA 1530.92 53.33 45.26 72.34 133.39 66.60

O6NA 1630.29 43.40 40.89 76.62 51.79 30.71
O5SA 361.87 6.67 5.79 20.69 14.74 6.77

O6SA 1478.05 34.56 34.15 98.20 22.86 10.52
O5OC 39.99 2.88 2.48 6.17 3.82 2.49

O6OC 113.99 9.32 8.49 18.29 20.75 8.56

before attempting the PiP test. All costs in Table 3.18 include the intervalization cost
as well to generate the final interval lists needed for APRIL. The intervalization for
the rasterization techniques is performed by merging cells with consecutive Hilbert
order identifiers into intervals, while our methods from Section 3.2.3.2 generate the
intervals straight away.

We also included in the comparison the rasterization technique proposed for
IDEAL [23], which also detects Full and Partial cells, as implemented in [126].
We modified IDEAL’s granularity definition formula accordingly to match APRIL’s
Hilbert space grid of order N = 16.

Observe that our OneStep intervalization algorithm employing the Neighbors check
(Section 3.2.3.2) and our Scanline rendering (Section 3.2.3.1) are the fastest ap-
proaches in most cases. Scanline and Flood Fill show little to no difference in per-
formance between them, with Scanline being overall faster for small polygons and
Flood Fill being faster for large and more complex shapes. This is because Flood Fill
performs some PiP tests while Scanline does not, as well as Flood Fill filling some
unnecessary (Empty) pixels outside of the polygon, while Scanline focuses entirely
on the interior of the shape specified by the event points. OneStep (Neighbors) ap-



plies 40% − 70% fewer PiP tests compared to OneStep (PiPs) that does not apply
the Neighbors check. Only in datasets containing relatively small polygons OneStep
(Neighbors) is up to 32% slower than the Scanline method, however, in most such
cases, their difference is negligible. On the other hand, in some datasets containing
large polygons (e.g., T3, O6AF, O6SA) OneStep is up to one order of magnitude faster
than Scanline (T3) and 33% to 224% faster than the rest of the methods. All methods
proposed in Section 3.2.3 are orders of magnitude faster compared to rasterization
for RI because the latter has to perform expensive detection for Strong and Weak
cells.
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Figure 3.11: Filter effectiveness and spatial join cost for T1 dataset joins.
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Figure 3.12: Filter effectiveness and spatial join cost for O5O6 AF and AS dataset
joins.

3.2.4.4 Comparative Study

Finally, we compare RI and APRIL with other intermediate filters in terms of space
complexity, filter effectiveness, and filter cost. For all experiments, we created RI and
APRIL using a single partition (i.e., the map of the two datasets that are joined in
each case), rasterized on a 216→ 216 grid, which is the best-performing granularity for
both methods. We used a fixed order (AA-, AF-, FA-) for the interval joins of APRIL,
as shown in Algorithm 3.2.
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Figure 3.13: Filter effectiveness and spatial join cost for O5O6 EU and NA dataset
joins.

3.2.4.4.1 Space Complexity

Table 3.11 shows the total space requirements of the object approximations required
by each intermediate filter for each of the datasets used in our experiments. APRIL
and APRIL-C refer to the uncompressed and compressed version of APRIL, respec-
tively. As a basis of comparison, we also show the total space required to store the
exact geometries of the objects and their MBRs. Note that, in most cases, our methods
(RI, APRIL and APRIL-C) are significantly more space efficient compared to RA and
have similar or lower space requirements to the 5C-CH. The only exception is T3,
which includes huge polygons that are relatively expensive to approximate even by
APRIL-C. Notably, for most datasets, the compressed APRIL approximations have
similar space requirements as the object MBRs, meaning that we can keep them in



True hits True negatives
Inconclusive

MBR-Join Intermediate Filter
Refinement

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

%

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e 
(s

ec
)

(a) O5SA "# O6SA

 0

 20

 40

 60

 80

 100

None

5C-C
H RA RI

APRIL

APRIL
-C

%

 0

 2

 4

 6

 8

 10

 12

 14

None

5C-C
H RA RI

APRIL

APRIL
-C

T
im

e 
(s

ec
)

(b) O5OC "# O6OC

Figure 3.14: Filter effectiveness and spatial join cost for O5O6 SA and OC dataset
joins.

memory and use them in main-memory spatial joins [20] directly after the MBR-join
step without incurring any I/O.

3.2.4.4.2 Comparison in Spatial Intersection Joins

We evaluate APRIL (both compressed and uncompressed versions), 5C+CH, RA, and
RI, on all join pairs, in Figures 3.11, 3.12, 3.13 and 3.14. We compare their ability
to detect true hits and true negatives, their computational costs as filters, and their
impact on the end-to-end cost of the spatial join.
Filter Effectiveness APRIL and RI have the highest filter effectiveness among all
approximations across the board. APRIL’s true hit ratio is slightly smaller compared
to that of RI because APRIL fails to detect the (rare) pairs of polygons which only



have Strong-Strong common cells. However, this only brings a marginal increase in
the refinement step’s cost, with the benefit of having a faster and more space-efficient
filter. In O5AS "# O6AS and O5OC "# O6OC, APRIL and RI have marginally lower
true hit ratio compared to RA; however, in these cases, their true negative ratio is
much higher than that of RA. The least effective filter is 5C+CH, mainly due to its
inability to detect true hits.
Intermediate Filter cost 5C+CH are simple approximations (a few points each) thus,
the corresponding filter is very fast to apply. Notably, APRIL has a filtering cost very
close to that of 5C+CH and sometimes even lower. This is due to APRIL’s ability to
model a raster approximation as two sequences of integers, which are processed by
a sequence of efficient merge-join algorithms. 5C+CH has poor filtering performance,
which negatively affects the total join cost (last column), whereas APRIL is very fast
and very effective at the same time. The state-of-the-art filter RI is more expensive
than APRIL, because it requires the alignment and bitwise ANDing of the interval bit-
codes. As a result, APRIL is 3.5-8.5 times faster as an intermediate filter compared
to RI (note the “Intermediate Filter” part of the cost in the bars). A comparison
between the filter costs of APRIL and APRIL-C reveals that decompressing the interval
lists while performing the joins in APRIL-C only brings a small overhead, making
compression well worthy, considering the space savings it offers (see Table 3.11). The
decompression cost is significant only in T1 "# T3, because T3’s A-lists and F-lists
are quite long. Still, even in this case, APRIL-C is much faster than RI. Refinement
cost The refinement cost is intertwined with the percentage of indecisive pairs. The
detection of fewer candidate pairs as true hits or true negatives leads to a higher
refinement workload; this is why APRIL and RI result in the lowest refinement cost
compared to the rest of the approximations.
Overall join cost APRIL (Section 3.2.1) reduces the overall cost of end-to-end spatial
joins up to 3.5 times compared to using our RI intermediate filter (Section 3.1.1),
while also achieving a speedup of 3.23x-25x against the rest of the approximations.
Adding the APRIL intermediate filter between the MBR filter and the refinement
step reduces the spatial join cost by 7x-28x. APRIL’s high filtering effectiveness, low
application cost, and low memory requirements render it a superior approximation
for filtering pairs in spatial intersection join pipelines.
APRIL vs. RI In summary, APRIL prevails over RI on all aspects including space
complexity, construction time, filtering efficiency, and overall spatial intersection join



Table 3.19: Improvement of APRIL over RI on all join pairs

APRIL vs. RI range average

APRIL size (times smaller) 0.95x–16.94x 2.59x

APRIL-C size (times smaller) 1.73x–60.54x 7.39x

Construction (times faster) 13.32x–350.13x 70.71x

Intermediate Filter (times faster) 3.45x–8.56x 4.86x

End-to-end Join (times faster) 1.10x–3.51x 1.58x

time. Table 3.19, summarizes the improvement that APRIL achieves over RI on all
join pairs.

3.2.4.4.3 Effect of variance in object sizes

We now test the effect that the variance between the sizes of joined objects has on the
performance of APRIL compared to previous work. For this, besides T1, T2, and T3,
we used two more Tiger datasets, i.e., T9 (States) and T10 (Zip codes). Table 3.21
lists statistics of all the Tiger datasets that we used in this experiment ordered by
average area of the objects in them.

To demonstrate APRIL’s performance on dataset pairs of varying object sizes, we
joined the Water Areas dataset (T2), which has polygons with the smallest areas on
average compared to other Tiger datasets, in increasing order of average area per
object. Note that as the objects which are joined with T2-objects grow larger (T1,
T10, T3 and then T9) the indecisive cases reduce drastically. This can be explained
by the fact that as a polygon grows larger, it generates more Full intervals, and
thus, the probability of detecting a true hit between it and another polygon using
APRIL increases. Table 3.20 shows a detailed performance comparison for the spatial
intersection join between the TIGER datasets. In all cases, APRIL retains the best
filtering effectiveness and total execution time. The performance gap between APRIL
and the other methods grows with the difference in sizes between the objects in the
candidate pairs, due to APRIL’s effectiveness in detecting true hits, avoiding their
costly refinement.



Table 3.20: End-to-end join performance between T2 and datasets with varying av-
erage object area.

Method Accepted Rejected Inconclusive Int. Filter (s) Refinement (s) Total time (s)
T2 "# T1

None 0.00% 0.00% 100.00% 0.00 2.94 2.98
RA (K=750) 21.98% 50.76% 27.26% 1.16 1.20 2.40

5C+CH 0.00% 43.15% 56.85% 0.05 1.65 1.74
APRIL 24.29% 59.42% 16.29% 0.05 0.27 0.35

T2 "# T10

None 0.00% 0.00% 100.00% 0.00 296.01 297.51
RA (K=750, K=150) 27.49% 25.15% 47.36% 27.61 228.51 257.55

5C+CH 0.00% 29.11% 70.89% 2.28 204.66 208.68
APRIL 51.92% 45.59% 2.50% 2.32 6.46 9.51

T2 "# T3
None 0.00% 0.00% 100.00% 0.00 310.81 312.38

RA (K=750, K=150) 58.27% 23.15% 18.58% 31.82 102.67 135.79
5C+CH 0.00% 22.03% 77.97% 2.32 224.14 228.40
APRIL 68.47% 29.88% 1.64% 3.22 5.29 9.32

T2 "# T9

None 0.00% 0.00% 100.00% 0.00 2595.44 2596.96
RA (K=750, K=150) 49.34% 20.26% 30.40% 24.55 1352.44 1378.21

5C+CH 0.00% 21.70% 78.30% 2.36 2003.41 2007.63
APRIL 68.04% 31.80% 0.16% 20.52 3.03 24.46

Table 3.21: TIGER dataset statistics, sorted by ascending average object MBR area.

Dataset # objects avg # vertices avg MBR area
T2 (Water areas) 2252316 31.9 4.03E-05

T1 (Landmarks) 123045 25.4 1.77E-04

T10 (Zip codes) 26091 1404.8 4.14E-02

T3 (Counties) 3043 2316.2 3.95E-01

T9 (States) 43 18140.4 2.59E+01



Table 3.22: APRIL vs. RI (polygonal range queries).

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

x1000 T3 queries against T1
RI 69.28% 28.60% 2.12% 0.52 0.10 0.64
APRIL 69.27% 28.60% 2.13% 0.06 0.10 0.18

x1000 T3 queries against T2
RI 68.46% 29.87% 1.67% 9.26 1.58 11.07
APRIL 68.46% 29.87% 1.67% 1.02 1.58 2.84

3.2.4.4.4 Performance in other queries

We now evaluate the performance of APRIL in other queries, besides spatial intersec-
tion joins. We start with selection queries of arbitrary shape (see Section 3.2.1.4). For
this experiment, we sampled 1000 polygons from T3 and applied them as selection
queries on T1 and T2, simulating queries of the form: find all landmark areas (T1)
or water areas (T2) that intersect with a given US county (T3). As Table 3.22 shows,
compared to RI, APRIL achieves a 3.5x-4x speedup in the total query cost.

Next, we compare all methods in spatial within joins, where the objective is to find
pairs (r, s) such that r is within s (see Section 3.2.1.5). As Table 3.23 shows, APRIL
again achieves the best performance due to its extremely low filtering cost. APRIL
is even faster than 5C+CH, because 5C+CH performs two polygon-in-polygon tests,
which are slower compared to a polygon intersection test.

Finally, we test the effectiveness of APRIL in polygon-linestring joins, as described
in Section 3.2.1.6. For this experiment, we join the polygon sets T1, T2, and T3 with
dataset T8 (from the same collection), which contains 16.9M linestrings (roads in the
United States), each having 20.4 vertices on average. In this comparison, we do not
include RI and RA because Strong cell types cannot be used to detect true hits. Table
3.24 compares APRIL with 5C+CH and the skipping of an intermediate filter (None).
5C+CH only detects true negatives (in the case where the 5C+CH approximations do
not intersect). APRIL outperforms 5C+CH by at least three times in total join time
and by orders of magnitude in T3 "# T8, where it can identify the great majority of
join results as true hits.



Table 3.23: Performance of filters (spatial within joins)

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)

T2 "# T1 (Tiger water in landmark areas)
None 0.00% 0.00% 100.00% 0.00 3.61 3.64
5C+CH 0.00% 34.71% 65.29% 0.10 1.33 1.46
RA 13.48% 29.18% 57.34% 0.14 1.11 1.28
RI 18.48% 59.46% 22.06% 0.20 0.48 0.71
APRIL 18.48% 59.42% 22.11% 0.05 0.49 0.58

T1 "# T3 (Tiger landmark in county areas)

None 0.00% 0.00% 100.00% 0.00 20.14 20.19
5C+CH 0.00% 20.72% 79.28% 0.37 14.02 14.44
RA 44.35% 14.29% 41.36% 0.51 8.26 8.82
RI 68.05% 28.13% 3.82% 1.56 0.80 2.41
APRIL 68.05% 28.13% 3.82% 0.21 0.80 1.06

T2 "# T3 (Tiger water in county areas)
None 0.00% 0.00% 100.00% 0.00 383.49 384.23
5C+CH 0.00% 22.17% 77.83% 7.70 274.54 282.98
RA 42.50% 15.25% 42.25% 9.53 165.50 175.77
RI 67.36% 29.88% 2.75% 27.08 12.22 40.04
APRIL 67.36% 29.88% 2.75% 3.47 12.22 16.43

Table 3.24: Polygon-linestring spatial intersection joins.

True hits True negatives Indecisive Int. Filter (s) Refinement (s) Total (s)
T1 "# T8 (Tiger landmarks and roads)

None 0.00% 0.00% 100.00% 0.00 27.82 28.25
5C+CH 0.00% 45.24% 54.76% 1.07 15.99 17.49
APRIL 12.70% 55.01% 32.29% 0.93 3.82 5.18

T2 "# T8 (Tiger water areas and roads)
None 0.00% 0.00% 100.00% 0.00 238.91 241.59
5C+CH 0.00% 68.13% 31.87% 6.24 90.60 99.52
APRIL 0.08% 90.22% 9.71% 5.58 19.92 28.17

T3 "# T8 (Tiger county areas and roads)
None 0.00% 0.00% 100.00% 0.00 2546.48 2543.37
5C+CH 0.00% 22.79% 77.21% 16.21 1855.63 1878.73
APRIL 66.25% 30.77% 2.98% 25.64 58.23 90.77



3.3 Scalable Spatial Topology Joins

This section describes our methodology for efficiently determining topological rela-
tions. Formally, given two objects r and s whose MBRs intersect (i.e, r and s pass
the filter step of spatial join), the find relation problem aims to identify their most
specific topological relationship. We use the notation C and P to denote APRIL’s A-
and F -lists [50], corresponding to Conservative and Progressive, respectively, in order
to more clearly reflect the spatial approximation category of each list. We assume that
the P and C approximations of r and s have been precomputed. Depending on how
the MBRs of r and s intersect, we apply a tailored sequence of binary merge-join
operations on P and C interval lists to solve the find relation problem without having
to compute the DE-9M matrix.

3.3.1 MBR Filter

The possible topological relations between a pair of shapes, r and s, can be constrained
based on how their MBRs intersect. For example, consider Figure 3.15(a), where the
MBR of r is fully contained within the MBR of s. From this, we can infer that r

and s cannot be equal, because if they were equal, their MBRs would also be equal.
Additionally, r cannot contain or cover s, eliminating 3 out of the 8 possible relations.
Figure 3.15 illustrates, for each type of MBR intersection, the possible topological
relations between the corresponding objects. Relations marked in bold font are certain
to hold. A notable case is Figure 3.15(d), where the only valid relation is intersects,
and no refinement step is necessary to specialize it.

3.3.2 Intermediate Filter

Our enhanced MBR filter (Sec. 3.3.1) allows for more specialized handling in the in-
termediate filter and refinement. A pair of objects with intersecting MBRs is forwarded
to the appropriate intermediate filter that focuses only on the possible relations, mini-
mizing the computations that need to be performed. The intermediate filters perform
merge-join operations on the objects’ sorted C- and/or P -lists based on the candidate
relations. We present the workflows of the intermediate filters using the following
relations between two interval lists X and Y taken from {rP , rC , sP , sC}.
‘X,Y overlap’ At least one pair of intervals x ∈ X , y ∈ Y intersect; i.e. x and y include
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Figure 3.15: The candidate and definite (bold) topological relations of two polygons,
based on how their MBRs intersect.

at least one common cell identifier.
‘X,Y match’ The two interval lists X and Y are identical; i.e., for each x ∈ X there is
a y ∈ Y , such that x = y and vice versa.
‘X inside Y’ Every interval in X is contained in one interval of Y ; i.e., for each
x = [xstart, xend) ∈ X , there exists an interval y = [ystart, yend) ∈ Y , such that xstart ≥
ystart ∧ xend ≤ yend.
‘X contains Y’ is defined inversely to ‘X inside Y’; every interval in Y is contained in
one interval of X.

Note that each of the above relations takes linear time to evaluate, as the intervals
within each list are disjoint. Moreover, the number of intervals per list is expected
to be low (in the order of square root of the number of cells that intersect with the
object) [50].

Algorithm 3.4 describes our proposed approach for solving find relation problems
using MBRs and C/P raster approximations. The algorithm only handles candidates
whose MBRs intersect (line 2). Depending on how the MBRs of r and s intersect,
one of the individual intermediate filters (IF), shown as flow diagrams in Figures 3.16
and 3.17 is applied. Each IF returns either the most specific relation, in which case
a refinement step that would compute the DE-9IM matrix is unnecessary, or a set
of possible relations. In the latter case, the DE-9IM matrix is computed and then
compared against the masks of possible relations in a specific-to-general order, to
find the most specific topological relation between r and s. We now elaborate on each
MBR intersection case.



Algorithm 3.4 Evaluation of find relation.
Require: r,s
1: function MBRFILTER(r,s)
2: if MBR(r),MBR(s) are disjoint then
3: return disjoint
4: else if MBR(r) = MBR(s) then
5: result← IFEQUALS(r,s)
6: if result = coveredby, covers then
7: return result

8: else
9: return Refine(covers, coveredby, intersects)
10: end if
11: else if MBR(r) inside MBR(s) then
12: result← IFINSIDE(r,s)
13: if result = disjoint, inside, intersects then
14: return result

15: else if result = refinside then
16: return Refine(inside, coveredby, intersects)
17: else
18: return Refine(disjoint, inside, coveredby,meets, intersects)

19: end if
20: else if MBR(r) contains MBR(s) then
21: result← IFCONTAINS(r,s)
22: if result = disjoint, contains, intersects then
23: return result

24: else if result = refcontains then
25: return Refine(contains, covers, intersects)
26: else
27: return Refine(disjoint, contains, covers,meets, intersects)

28: end if
29: else if MBR(r),MBR(s) cross then
30: return intersects
31: else
32: result← IFINTERSECT(r,s)
33: if result = disjoint, intersects] then
34: return result

35: else
36: return Refine(disjoint,meets, intersects)

37: end if
38: end if
39: end function



rC,sC match rC inside sC

rC contains sC
intersects

false false

false

true

equals
covered by

covers

true

rC inside sP

covered by

true

covered by
intersects

false

rP contains sC coverstruecovers
intersects

false
true

meets
intersects

IFEquals
rC inside sC
true

false rC,sC overlap disjointfalse

true

|sP| > 0
true

rC inside sP

rC,sP overlap
false

intersects

inside
covered by

inside
true

disjoint
inside

covered by
meets

intersects

false

true

false

false

intersects
true

true

false rC,sP overlap

rP,sC overlap

IFInside
MBR 
Filter

MBR 
Filter

relation relationrefine relation definite relation
condition check condition

Figure 3.16: The intermediate filters for different cases of intersections between the
MBRs of r and s (Part 1).

Equal MBRs If the MBRs are equal (Figure 3.15(c)), then the pair is forwarded
to the IFEquals intermediate filter, shown first in Figure 3.16. This filter is able to
detect exactly, i.e., without refinement, the covers and covered by relations. If the C

lists of the two objects are identical, then the pair is forwarded to refinement for the
most specific of equals, covered by, covers, and intersects. Although the objects definitely
intersect, this might not be their most specific relation. If the C lists do not match,
the algorithm proceeds to check all possible relations. In general, if the most specific
relation cannot be detected from the C and P lists of the two objects, the pair if
forwarded to selective refinement, where the not definite relations are verified after the
DE-9IM matrix computation.
One MBR inside the other When one of the MBRs is contained inside the other
(Figure 3.15(a) or 3.15(b)), Algorithm 3.4 forwards the candidate pair to IFInside or
IFContains intermediate filters, respectively, based on which MBR is inside the other.
The two filters work in the same way, with the difference being that the first one looks
for r inside s or r covered by s, whereas the second looks for r contains s or r covers s,
besides disjoint, meets, and intersect. The check to determine whether an interval list
rC is completely contained in a list sP has O(|rC |+ |sP |) time complexity.
Other cases If the two MBRs cross each other, as in Figure 3.15(d), we definitely know
that the most specific relation is intersects and no intermediate filter or refinement is
necessary. All other cases, shown in Figure 3.15(e) are handled by the IFIntersect
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Figure 3.17: The intermediate filters for different cases of intersections between the
MBRs of r and s (Part 2).

intermediate filter, which detects disjoint, meets and intersects relations.
Complexity of Algorithm 3.4 Up to four relations between the P and C interval lists
of r and s are evaluated in each of the flow diagrams of Figure 3.15, until we can
conclude about the topological relation(s) between r and s. For each relation, the cost
is linear to the lengths of the two merge-joined lists, because the intervals in a list
are disjoint to each other. Hence, the overall cost of the IF applied on a given pair of
objects r and s is O(|rP |+ |rC |+ |sP |+ |sC |).

3.3.3 Relate

In certain scenarios, instead of looking for the most specific topological relation be-
tween two objects, we need to quickly check if a given relation is satisfied. For ex-
ample, spatial joins may take a topological relation as a predicate. Formally, given a
pair (r, s) of objects such that MBR(r) intersects MBR(s) and a topological relation p

(e.g., p=meets), the relatep problem finds whether r and s satisfy p. Figure 3.18 (left)
shows the intermediate filter’s flow diagrams for relate predicates that are specializa-
tions of intersects. The figure is self-explanatory; for a given predicate a sequence of
merge-join operations are applied on the C and/or P lists to potentially verify if the
corresponding relation definitely holds or not. For instance, for a pair (r, s) of objects,
if not rC inside sC , then definitely r is not inside s; if rC inside sP , then definitely r is
inside s. In all other cases, (r, s) is sent to the refinement step.



rC inside sC

rC inside sP

true

inside
covered by

false

true inside
covered by

not inside
not covered by

false

rC,sC overlap

rC,sP overlap

true

meets
false

true
not meets

false

rP,sC overlap

false
true

rC,sC match

rP,sP match

true

equals

false
not equals

false

true

impossible relation

relation

relation

refine relation

definite relation

not relation

condition check condition

MBR 
Filter

MBR 
Filter

MBR 
Filter

<latexit sha1_base64="AwZH0MJwMRnwMGUJWulWVMfPalk=">AAACJnicbVDLSsNAFJ3UV62vqEs3wSK4qolIdSMU3bisYB/QljKZ3LZDJw9mbsQS8jVu/BU3Lioi7vwUp2kW2nphmMM5996Zc9xIcIW2/WUUVlbX1jeKm6Wt7Z3dPXP/oKnCWDJosFCEsu1SBYIH0ECOAtqRBOq7Alru+Hamtx5BKh4GDziJoOfTYcAHnFHUVN+87iI8ofST7OaYSBAUIU37yaLCA8U9OGOh3geeO0l1k1m2K3ZW1jJwclAmedX75rTrhSz2IUAmqFIdx46wl1CJnAlIS91YQUTZmA6ho2FAfVC9JLOZWiea8axBKPUJ0MrY3xMJ9ZWa+K7u9CmO1KI2I//TOjEOrnraXxQjBGz+0CAWFobWLDPL4xIYiokGlEmu/2qxEZWUoU62pENwFi0vg+Z5xalWqvcX5dpNHkeRHJFjckoccklq5I7USYMw8kxeyZS8Gy/Gm/FhfM5bC0Y+c0j+lPH9Aw9OqTY=</latexit>

relateinside/coveredby

<latexit sha1_base64="XTUVqMva5jI2WphkX+lJCXwS5tE=">AAACG3icbVBNS8NAEN34WetX1aOXYBE8laRI9Vj04rGC/YA2lM120i7dTcLuRCwh/8OLf8WLB0U8CR78N27THrT1wTCP92bYnefHgmt0nG9rZXVtfWOzsFXc3tnd2y8dHLZ0lCgGTRaJSHV8qkHwEJrIUUAnVkClL6Dtj6+nfvselOZReIeTGDxJhyEPOKNopH6p2kN4QCXTvHNMFQiKkGX9dNGRAKgz45TKTsXJYS8Td07KZI5Gv/TZG0QskRAiE1TrruvE6KVUIWcCsmIv0RBTNqZD6BoaUgnaS/PbMvvUKAM7iJSpEO1c/b2RUqn1RPpmUlIc6UVvKv7ndRMMLr2Uh3GCELLZQ0EibIzsaVD2gCtgKCaGUKa4+avNRlRRhibOognBXTx5mbSqFbdWqd2el+tX8zgK5JickDPikgtSJzekQZqEkUfyTF7Jm/VkvVjv1sdsdMWa7xyRP7C+fgDon6R4</latexit>

relatemeets

<latexit sha1_base64="2xzCLKUsTO/zwkNdPzH7dYHLVpE=">AAACHHicbVDLSsNAFJ3UV62vqEs3wSK4KolKdVl047KCfUAbymR62w6dPJy5EUvIh7jxV9y4UMSNC8G/cZpmoa0HLvdwzr3M3ONFgiu07W+jsLS8srpWXC9tbG5t75i7e00VxpJBg4UilG2PKhA8gAZyFNCOJFDfE9DyxldTv3UPUvEwuMVJBK5PhwEfcEZRSz3ztIvwgNJPss4xkSAoQpr2knkH7mIqVKots2xX7AzWInFyUiY56j3zs9sPWexDgExQpTqOHaGbUImcCUhL3VhBRNmYDqGjaUB9UG6SHZdaR1rpW4NQ6grQytTfGwn1lZr4np70KY7UvDcV//M6MQ4u3IQHUYwQsNlDg1hYGFrTpKw+l8BQTDShTHL9V4uNqKQMdZ4lHYIzf/IiaZ5UnGqlenNWrl3mcRTJATkkx8Qh56RGrkmdNAgjj+SZvJI348l4Md6Nj9lowch39skfGF8/yPCk7w==</latexit>

relateequals

Figure 3.18: Intermediate filter flow diagrams for relatep tests.

3.3.4 Experimental Analysis

We evaluated the performance of our topological relation detection approach, com-
pared to the current practice and the use of intermediate filters for intersection de-
tection [50]. We compare the following approaches in a single-machine environment
without thread parallelism:
ST2: standard 2‐phase This method applies the current MBR filter+refinement prac-
tice used in most previous work that detect topological relations [35, 11]. If the object
MBRs do not intersect, then the pair is disjoint, otherwise we compute the DE-9IM
matrix to determine the topological relation.
OP2: optimized 2‐phase This method uses the relation between the MBRs, as de-
scribed in Sec. 3.3.1 to limit the possible topological relations and, in turn, reduce the
number of DE-9IM masks to compare with the DE-9IM matrix.
APRIL: optimized MBR filter + APRIL intermediate filter + refinement This
method applies APRIL [50] to detect non-intersection between two objects whose
MBRs intersect, before applying the refinement step. As the intermediate filter in this
case cannot detect more special relations than intersects, the DE-9IM matrix compu-
tation is necessary even for pairs that are found to definitely intersect, to detect a



Table 3.25: Description of datasets.

Dataset Entity type # polygons Size (MB) MBRs (MB) P + C (MB)
TL US Landmarks 123K 52.5 3.7 6.3

TW US Water areas 2.25M 1.2K 68.6 73.0

TC US Counties 3.04K 112.8 0.1 15.4

TZ US Zip Codes 26.1K 587 0.8 170.1

OBE EU Buildings 90.4M 10.9K 2.8K 2.3K

OLE EU Lakes 1.96M 1.1K 59.8 82.0

OPE EU Parks 7.17M 3.7K 218.8 389.0

OBN NA Buildings 9.38M 1.3K 286.3 201.0

OLN NA Lakes 4.02M 2.5K 122.7 133.0

OPN NA Parks 999K 767.4 30.5 60.0

potentially more specific relation.
P+C: optimized MBR filter + Progressive/Conservative filter + refinement This is our
algorithm, presented in Section 3.3.2.

3.3.4.1 Datasets & Setup

We used popular benchmarking datasets from the TIGER 2015 and Open Street Map
(OSM) collections [51], containing real-world areas from the USA and the entire globe,
respectively. As the find relation problem makes sense for objects that exist in the same
region, we also split each OSM dataset to two parts, one for Europe and one for North
America (the continents with the highest concentration of objects). Additionally, we
cropped the TIGER datasets to include only entities in the contiguous (lower 48)
United States. Table 3.25 describes the datasets that we used, and the space occupied
by their polygons and their approximations. T- and O- prefixes of datasets denote
TIGER and OSM collections, respectively.

Table 3.26 shows dataset combinations that we used in our experiments. For each
combination, the table also shows the number of object pairs that pass the MBR filter.
The dataset pairs represent real-world scenarios where the detection of topological
relations between areas is meaningful:

• TL-TW: US landmarks (TL) may include parks, lakes, canyons, buildings, etc.,



Table 3.26: Semantically meaningful dataset combinations for the find relation and
relatep problems.

Datasets TL-TW TL-TC TC-TZ OLE-OPE OLN-OPN OBE-OPE OBN-OPN

Candidate pairs 63.3K 168K 65.7K 5.18M 2.77M 79.3M 2.17M

so geospatially interlinking pairs from TL and TW may reveal unexpected re-
lations and statistics about all landmark and water areas in the US.

• TL-TC: As US counties (TC) are relatively large areas, it is expected that most of
the relations in this scenario will be inside. However, unique cases can be found,
such as cross-county landmarks or even landmarks containing entire counties.

• TC-TZ: This pair provides insights about the county and zip code relations in
the US.

• OBx-OPx(E/N): Topological relations in this scenario may provide insight on
the amount of human intervention (buildings) in green areas (parks) in Europe
and North America.

• OLx-OPx(E/N): Interlinking entities between these datasets provides informa-
tion about the presence of water elements (currents, lakes, marshes etc.) in the
parks of Europe and North America.

For each of the scenarios above, we run a spatial intersection join algorithm [27]
that produces the pairs of objects whose MBRs intersect. Each such pair was fed to
our topological relation detection pipeline. For each of the evaluated methods, we
measured their throughput; i.e., the number of MBR-filtered pairs that the method
processed per second. We did not account for the cost of the filter step (i.e., the time
to produce the pairs of MBRs that intersect), which is negligible compared to the cost
of identifying the topological relation for each such pair.

All raster approximations that we used for the experiments, were created using
independent 216→216 grids overlayed on each data scenario’s dataspace. As shown in
Table 3.25, the Progressive and Conservative interval lists occupy much less space
compared to the polygons. For the refinement, we use the boost geometry’s relation
function [56] that calculates the DE-9IM matrix for two input geometries (boost’s
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Figure 3.19: Throughput and Effectiveness for find relation.

implementation was found to be much faster than GEOS [46]). We ran our exper-
iments on a machine with a 3.6GHz Intel i9-10850k and 64GB of RAM, running
Linux. The code was written in C++ and compiled with the -O3 flag.

3.3.4.2 Performance

Figure 3.19(a) shows the throughput of the compared methods on the test dataset
pairs. Observe that, in practice, there is no improvement when using an optimized
MBR filter (OP2), compared to directly moving the pair to refinement (ST2). This
is because the computation of the DE-9IM matrix is the bottleneck of the entire
process, so the savings of OP2 by reducing the number of masks (relations) that are
being checked are marginal. Using the APRIL intermediate filter greatly improves
the throughput, by detecting many cases of object pairs that are disjoint. Our P+C
method (Sec. 3.3) guides the comparison between the C and P lists of the objects,
and detects more topological relations than APRIL (on top of intersects [50]). Overall,
our P+C approach improves the throughput of find relation by one order of magnitude
compared to the current practice (ST2, OP2) [35, 11] and by a few to several times
compared to using the APRIL intermediate filter [50].

The improvement in the throughput when transitioning from 2 stages in the
pipeline (ST2, OP2) to 3 (APRIL, P+C) is related to the effectiveness of the inter-
mediate filters. For each pair of datasets, we measure filter effectiveness in terms of
undetermined pairs, i.e. pairs that need to be refined using DE-9IM to detect their



Table 3.27: OLE-OPE post-MBR filter polygon pairs, grouped by complexity level
(sum of their vertex count).

Complexity level Sum of vertices Pair count
1 [8,41] 525K

2 [42,67] 518K

3 [68,104] 513K

4 [105,163] 520K

5 [164,265] 520K

6 [266,447] 517K

7 [448,786] 518K

8 [787,1354] 518K

9 [1355,2629] 518K

10 [2630,60398] 518K

topological relation. As shown in Figure 3.19(b), the introduction of the APRIL inter-
mediate filter reduces the DE-9IM matrix computations to around half compared to
ST2, OP2, on average. Our specialized intermediate filter workflows (Sec. 3.3) reduce
the object pairs to be refined even more, to about 25% on average.

3.3.4.3 Scalability

We tested the scalability of our approach (P+C) with respect to the complexities of
the object pairs whose topological relation is being detected. For a pair of polygons r

and s, we define complexity as the sum of their vertices, as this determines the cost
of computing intersections between their parts [48], and in turn, the cost of DE-9IM
matrix computations. We selected a fairly large scenario (OLE-OPE) and divided its
post-MBR candidate pairs into 10 groups of increasing complexity, shown in Table
3.27. The ranges were selected, such that each complexity level contains around the
same number of object-pairs; hence, we test the scalability of our method on similar
data workloads per complexity level.

Figure 3.20(a) shows P+C’s intermediate filter effectiveness in detecting relations
without DE-9IM matrix computations for polygon pairs from the OLE-OPE scenario,
having different complexities. High complexity pairs are resolved more frequently
by the intermediate filters of P+C compared to low complexity pairs. This is due
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Figure 3.20: Find relation filter effectiveness and total cost for polygons pairs grouped
by complexity level.

to the fact that most of the intermediate filters of P+C utilize the polygons’ P lists
to detect early definite topological relations. Raster-based interval approximations
of small polygons usually result in very few, if any at all, full cells and progressive
intervals, rendering refinement necessary to detect their topological relation. As shown
in Figure 3.20(a), 4 out of 5 pairs of complexity level 1 in the OLE-OPE scenario
need to be geometrically refined, contrary to pairs of complexity level 10 where only
around 5% are refined.

Polygon pairs of low complexity are cheap to refine and, as complexity increases,
the refinement becomes more expensive, with polygons of complexity level 10 being
the bottleneck of the entire pipeline. This is reflected in Figure 3.20(b), where the
cost of OP2 which refines almost all pairs increases superlinearly with the complexity
level. On the other hand, the cost of P+C is almost insensitive to the complexity of
the pairs due to the fact that the increase in the refinement per pair is compensated
by the decrease of the number of pairs that need to be refined, as seen in Figure
3.20(a). This experiment unveils an important value of our approach, which achieves
its highest filtering power on objects that have the largest need for it. Besides saving
computations, our approach also manages to load less data compared to OP2. For
example, in the OLE-OPE scenario, the P+C approach accesses only 48.5% of the
unique objects from OLE and OPE that are accessed by OP2, as the topological
relations involving the remaining objects are detected by the P+C intermediate filters.

Figure 3.21 showcases a pair of objects at complexity level 10, where their relation
(inside) is identified by the P+C intermediate filter and the DE-9IM matrix compu-
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Figure 3.21: A level-10 complexity pair of a lake (blue) residing inside a park (green),
from the OLE-OPE scenario.

tation is avoided. This pair is forwarded to refinement by ST2, OP2, and APRIL, as
these methods cannot detect the most specific relation (APRIL would only be able to
detect intersection). As a result, our P+C approach is 50x faster than the other meth-
ods for this pair. The pair represents a lake residing inside a park; even though the
park is a lot bigger than the lake, they both have an adequate amount of P intervals,
due to the fine-grained grid (216 cells per dimension) that was used to create their
approximations.

3.3.4.4 Relate Performance

In the last experiment, we compare the effectiveness of our relatep algorithms for spe-
cific topological predicates p (Section 3.3.3) against our general find relation algorithm
(Section 3.3.2). We chose the OLE-OPE scenario because of the two datasets’ relative
balance in terms of polygon size and complexity. For three different predicates p,
Table 3.28 shows that the throughput for find relation is independent of p, as the
algorithm does not consider p. On the other hand, the throughput of relatep queries
is sensitive to the predicate, as a different intermediate filter is used in each case.
The more focused relatep approach is faster in all tested cases, due to the specialized
steps it takes, depending on p. The difference is huge for some predicates (e.g., meets),
where non-satisfaction is fairly easy to identify using the object approximations.



Table 3.28: Throughput (pairs/sec) of find relation and relatep methods using our P+C
approach (OLE-OPE).

Method Equals Meets Inside
find relation 93160.2 93160.2 93160.2

relatep 107265.6 7000989.2 565509.7

3.4 Conclusions

In this chapter, we proposed a technique (RI and its extension, APRIL) that represents
raster approximations of polygons as sets of intervals, offering a fast and effective
intermediate step between the filter and the refinement steps of polygon intersection
joins. RI, the first version of our approach, approximates each object as a single list
of intervals that include the raster cells that intersect the object; together with each
interval we store a bitstring that encodes the classes of cells (Full, Strong, Weak) in the
interval. APRIL is an enhanced version of our method that captures the cells that are
partially or fully covered by the object using two separate lists of intervals, eliminating
the need for the space-consuming and complex bitstring. APRIL’s intermediate filter
is different from that of RI in that it performs a pipeline of three interval joins instead
of a single interval join paired with bitwise operations on the bitstrings.

As we have shown experimentally, compared to previous approaches [1, 28],
APRIL is (i) lightweight, as it represents each polygon by two lists of integers that
can be effectively compressed; (ii) effective, as it typically filters the majority of MBR-
join pairs as true negatives or true positives; and (iii) efficient to apply, as it only
requires at most three linear scans over the interval lists. Specifically, RI and APRIL
offer at least 3x speedup in end-to-end spatial intersection joins compared to previ-
ous intermediate filters (raster approximations [28], 5C-CH [1]). At the same time,
the space complexity of RI and APRIL is relatively low and the approximations can
easily be accommodated in main memory. Compared to RI approximations, APRIL
approximations are much cheaper to construct, occupy significantly less space, offer
a much faster intermediate filter, and significantly improve the end-to-end cost of
spatial intersection joins.

APRIL is a general approximation for polygons that can also be used in selec-
tion queries, within-joins, and joins between polygons and linestrings. We propose a
compression technique for APRIL and customizations that trade space for filter effec-



tiveness. Finally, we propose an efficient construction technique for APRIL approx-
imations that is orders of magnitude faster than the rasterization-based techniques
used for other filters.

Additionally, we presented a scalable technique for detecting topological relations
between complex spatial objects (i.e., polygons) by leveraging raster approximations
to minimize expensive DE-9IM matrix computations. Our approach not only reduces
the number of object pairs requiring refinement but also becomes increasingly effective
as object complexity (and thus refinement cost) grows.



CHAPTER 4

HECATONCHEIR: SCALING UP AND OUT
SPATIAL DATA MANAGEMENT

4.1 Architecture

4.2 Experimental Evaluation

4.3 Conclusions

In this chapter, we present Hecatoncheir, a research prototype for distributed spatial
data management that integrates raster interval approximations and their specialized
query evaluation pipelines from our previous work. Hecatoncheir supports beyond-
join query types including k-nearest neighbor (kNN), range, and distance joins, across
all major spatial data types: points, linestrings, and polygons. Implemented in C++
and built on MPI, Hecatoncheir is designed for efficient and scalable query evaluation
across distributed nodes, while at the same time parallelizing computationally inten-
sive tasks on the CPU when possible. Its black-box architecture and lightweight C++
API ensure ease of deployment and use, with no reliance on underlying database
engines. Hecatoncheir is particularly well-suited for tightly coupled cluster environ-
ments, and experimental results demonstrate its scalability, high performance, and
memory efficiency in comparison to Apache Sedona.
Outline In Section 4.1, we provide an overview of Hecatoncheir’s architecture and
describe in-depth its individual components and layers. In Section 4.2 we experimen-
tally evaluate Hecatoncheir’s performance, scalability and usability using real-world
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Figure 4.1: Hecatoncheir architecture overview.

data in spatial query scenarios. We additionally compare Hecatoncheir against Apache
Sedona, highlighting their differences in terms of design and performance. Section
4.3 summarizes our conclusions.

4.1 Architecture

Hecatoncheir’s architecture is summarized in Figure 4.1. The MPI Layer is where all
inter- and intra- process communication takes place. Internally, the Query Processor
uses the Index Layer [57] for spatial queries, the results of which are potentially
refined using Boost Geometry (boost.org). The API and the GUI are the entry points
to the system’s functionalities for the user.

4.1.1 Data Loading and Distribution

The Host partitions user data across Workers using a coarse-grained spatial grid,
whose tiles are assigned to Workers in a round-robin manner [49]. An object is
sent to the Worker responsible for any tile its minimum bounding rectangle (MBR)
overlaps. This coarse grid acts as a global spatial index, and its granularity (e.g.,
100→100 for 10 Workers) ensures more tiles than Workers, promoting load balancing
and limiting fragmentation of nearby objects, which is important for distance-based
queries. An illustration for a (global) dataset is shown in Figure 4.2 (bold lines).

Each Worker stores and indexes its assigned tiles using a much finer grid, with
granularity set so that the number of cells is divisible by the number of threads,
facilitating intra-node parallelism during query evaluation. Both grid granularities
can be set manually or optimized automatically based on data distribution.



Figure 4.2: Spatial partitioning using a coarse grid.

The Host is solely responsible for partitioning the data across Workers, which in-
troduces considerable overhead. To mitigate this, if supported by the storage medium
(e.g., SSD, NVMe), the Host spawns threads to parallelize both data reading and dis-
tribution. Each thread performs its own MPI calls, sending object batches to Workers
based on a coarse partitioning grid. The batch size is configurable to (i) avoid ex-
hausting Host memory and (ii) allow Workers to begin processing before the entire
dataset is read. Since each thread maintains a batch per Worker, the Host’s memory
usage is approximately numthreads → numworkers → batchsize, plus additional space for
in-memory partitioned data. Hence, batch size must be chosen with memory limits
and input size in mind.

4.1.2 MPI Layer

Communications in Hecatoncheir are illustrated in Figure 4.3. All machines in the
cluster are connected via (passwordless) SSH within the same network, though they
may or may not also be physically interconnected. The user provides a program,
referred to as the Driver process, which communicates exclusively with the Host,
either through the C++ MPI API or via the GUI. The Driver runs as a separate
process on the user’s machine (or, alternatively, on one of the cluster machines).

Each machine runs a single Worker process. On the Host machine, an additional
process called the Host, is responsible for coordinating Workers and communicating
with the Driver. The Host handles message passing but performs no CPU-intensive
computations. Upon receiving requests from the Driver, the Host propagates them
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to the Workers and, when necessary, returns results or status updates to the Driver.
Communication between the Driver and the Host is carried out through a dedicated
MPI communicator

The Workers, in contrast, carry out all computationally intensive operations, lever-
aging the available threads on their respective machines to parallelize assigned tasks.
In certain cases, Workers may need to exchange information directly (e.g., distance
queries). Such communication is supported but carefully optimized to remain mini-
mal during query evaluation, thereby reducing the overhead typically associated with
inter-node communication

4.1.3 Internal Layers

Hecatoncheir’s internal layers are hidden from the user, and the MPI layer is not
considered part of them. All system operations are accessed exclusively through the
C++ API. Although the Driver communicates with the Host using MPI, this interaction
is fully abstracted behind the API, eliminating the need for users to write MPI calls
and significantly reducing usage complexity.

4.1.3.1 Boost Geometry

Boost Geometry offers a wide variety of geometric operations and data structures,
which can be used to post-process objects that pass the filter step of spatial queries on
complex object geometries, such as range selections and intersection joins. Hence, for
objects or object pairs that pass the MBR-based filter step of such queries, the Workers
access their geometries and use the Boost Geometry library for the refinement step.



Hecatoncheir defines and employs a custom wrapper around Boost Geometry’s
shape concepts, encapsulating relevant metadata such as object identifiers, approx-
imations (MBR, APRIL), and data types, within the wrapper class. Consequently,
Hecatoncheir’s refinement capabilities rely on the operations and cross-type support
provided by Boost Geometry.

4.1.3.2 Index Layer

During data loading, each Worker re-partitions its local data by a fine-grained uniform
grid. Non-point geometries are further indexed using Two-Layer partitioning [57];
in each fine cell, the objects are divided two four classes, depending on whether the
bottom-left point of their MBR begins (A) inside that cell, (B) in a previous cell on
Y axis, (C) in a previous cell on X axis, or (D) in a previous cell on both axes. Object
MBRs that overlap with more than one cell are replicated and classified. Fine-grid cells
indexed by a Worker w store only the objects assigned to w and are not visible to other
workers. The local indices are stored in the main memories of the Workers. Figure
4.4 illustrates an example index for a coarse grid partition P and a worker W , where
the fine grid has four times the granularity of the coarse grid i.e., each coarse grid
cell contains 16 fine grid cells. Objects o1 (linestring), o2 (polygon) and o3 (polygon)
are further indexed using the Two-Layer index classes in W ’s index, whilst points o4,
o5 and o6 are simply assigned to their respective fine partitions. Note that object o3 
will also be assigned to the Worker responsible for the next coarse grid partition in
row P +1, as it overlaps with that partition as well. Consequently, it will be assigned
class C by the Worker responsible for P + 1, not by W . In addition, each Worker
computes and stores a raster interval approximation [50] for each object assigned to
it. The granularity of the fine grid is in the order of a thousand partitions for each
dimension. Contrary to tree-based indexes, Hecatoncheir’s grid-based partitioning
and indexing facilitate both fast data updates and parallel query evaluation.

4.1.3.3 Query Processing Layer

Query processing takes place after Hecatoncheir has been initialized successfully and
all data has been already partitioned to and indexed by the Workers. Since our query
processing algorithms do not require re-partitioning the input data, the preprocessing
cost of data files is one-off. Queries are evaluated in parallel by each Worker using
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Figure 4.4: The Two-Layer index on a Worker W ’s local fine-grained grid.

their local (fine-grid) index. The results are then collected by the Host and returned
to the Driver. The following queries are currently supported by Hecatoncheir:
Range Queries (Polygonal or Box) The user (Driver) submits a range query or
a batch of range queries to the Host. The Host determines which partitions of the
coarse grid overlap with the query window to identify the Workers responsible for
evaluating it and sends the query to these Workers. Range queries on non-point data
are evaluated using the Two-Layer partitioning scheme [57] that identifies candidates
fast using their MBRs and does not generate duplicate results. For point data, a
simple, equally fine-grained uniform grid is used to prune non-candidates and no
refinement is required for rectangle query windows. However, for polygonal query
windows, refinement must be performed for each candidate object to verify whether
the geometry is actually intersecting the query range using Boost Geometry. For non-
point data, to avoid refining all MBR-filter candidates, the Worker performs further
filtering stage by accessing their raster interval approximations [50] and applying the
query to those, before forwarding any indecisive cases to the refinement. The contents
of cells that are fully covered by the query range are automatically returned as results,
without any comparisons. For a query batch, the Host distributes the queries to
Workers in sub-batches and each Worker evaluates its sub-batch in-parallel using its
local threads. Parallel evaluation is implemented with OpenMP, assigning each thread



to a separate range query.
Topological Joins Spatial join queries are initially broadcast to all Workers. Based
on the predicate, Workers use their local indexes to perform the join between the al-
ready partitioned and indexed datasets. Supported spatial predicates for joins include:
Equals, Disjoint, Intersects, Inside, Contains, Covered by, Covers and Meets. The system
computes the result of Disjoint implicitly as the complement of Intersects, which is
faster to derive. Hecatoncheir also supports a special predicate Find Relation that
identifies the exact topological relation of all non-disjoint pairs between the datasets.
The partitioning of objects within cells to classes [57] accelerates the filter step of the
spatial join. The pre-computed raster interval approximations of objects [127] fur-
ther reduce the number of pairs for which the computationally expensive refinement
step is applied (using Boost Geometry). Each Worker performs the join on its own
partitions independently, using OpenMP to parallelize the processing across threads.
Since the partitions are independent, their contents can be processed simultaneously.
Distance queries Hecatoncheir supports distance spatial queries, including ε-range
queries (given a query point q, retrieve all points with distance at most ε to q),
kNN queries (find the k nearest neighbors to query point q), and ε-distance joins
(given two input datasets, find the pairs of objects in them having distance at most
ε to each other). For ε-range queries and kNN queries, processing of each query is
done independently at each Worker which may include query results and the results
are aggregated by the Host. For instance, kNN queries near a coarse-grid boundary
require neighboring (W ) Workers to compute their results (Wk total objects), which
are then reported to and refined by the Host. For distance joins, the Workers exchange
data at the borders of the coarse grid to facilitate correct and duplicate-free join
computation [128]. To optimize communication and minimize data transfer, each
Worker first notifies its neighboring Workers of the number of objects it intends to
send, specifically, the number of points located within a distance of ε from their shared
borders. When data exchange is required between two nodes, only the Worker with
fewer objects to send initiates the transfer, while the other node receives the data and
evaluates it against its own. Additionally, Hecatoncheir supports specialized indexing
of non-point geometries to facilitate fast and duplicate-free filtering in distance-joins
[129].



4.1.4 API & Interface

Hecatoncheir’s C++ API (header-based) facilitates access to the system’s features,
without burdening the user with low-level implementation details. The Driver ini-
tializes Hecatoncheir by calling the appropriate initialization method, specifying the
desired number of Workers and their IP addresses. Passwordless SSH connection
between the Driver’s machine and the Workers must be properly setup. The user
then can develop their own program to load and query their datasets with just a few
method calls.

4.1.4.1 C++ API

Hecatoncheir’s C++ API is exposed to the user through a single C++ header file
Hecatoncheir.h and all methods are encapsulated in its namespace called hec. The
first call that the user’s driver program must make is the hec::init(...), which takes
cares of all internal initialization steps automatically. The method’s parameters and
behavior are defined as follows:

• int init(int N, vector<string> &IPaddresses)

– Parameters:

* N: the number of worker nodes to initialize.

* IPaddresses: a list containing the IP addresses or the aliases of the
nodes to use.

– Returns: An integer status code that indicates success/failure.

– Description: Initializes the system by connecting to the specified worker
nodes, spawning the processes and establishing communication channels.

After successful initialization, all Worker nodes remain on standby, awaiting user
requests propagated through the Host.

In order to load and query a dataset, the user must first notify the system of
certain metadata in order for it to ”prepare the ground” for the partitioning and
indexing of the data. This is realized by the prepareDataset(...) method which is
described below:

• DatasetID prepareDataset(string path, string fileType, string dataType, bool

persist)



– Parameters:

* path: the local path to the dataset on disk.

* fileType: the dataset file type. Supported file types include WKT and
CSV.

* dataType: the dataset’s contents are defined by a spatial data type.
Currently, Hecatoncheir expects all objects within a dataset to share
the same spatial type. Supported types include points, linestrings, and
polygons.

* persist: a flag indicating whether Worker nodes should persist their
assigned partitioned data on local disks for future use.

– Returns: An integer identifier that uniquely represents the dataset, allowing
both the user and Hecatoncheir to reference it.

– Description: Prepares the dataset for partitioning and indexing. This in-
cludes defining internal structures, generating spatial approximations, and
assigning partitions to nodes.

After the preparation of the dataset, the user can initialize the partitioning through
the partition(...) method which is described below:

• int partition(vector<DatasetID> &identifiers)

– Parameters:

* identifiers: a list containing the unique identifiers of the datasets to
partition.

– Returns: An integer status code that indicates success/failure.

– Description: Performs the distributed partitioning of the specified datasets
across the Worker nodes.

In order to query the partitioned data efficiently, it is mandatory that they are
indexed in-memory. Hecatoncheir’s API offers the buildIndex(...) method that per-
forms the parallel index building across all Worker nodes.

• int buildIndex(vector<DatasetID> identifiers, IndexType indexType)

– Parameters:



* identifiers: a list containing the unique identifiers of the datasets to
index.

* indexType: a value that represents the index to use. Currently, Heca-
toncheir supports the uniform grid (for points) and the two-layer in-
dexes (for non-point data).

– Returns: An integer status code that indicates success/failure.

– Description: Tasks all Worker nodes to construct their local indexes in
parallel. The specified index type must be compatible with the dataset’s
spatial data type.

After these steps, all Worker nodes are standing by ready with all data partitioned
and indexed in-memory. The user can now use Hecatoncheir’s API to generate and
evaluate spatial queries.

The API supports a variety of spatial query types and provides custom structures
to define them uniquely. Users first construct a query object representing the query
they wish to execute and then pass it to Hecatoncheir for evaluation. The following
query classes inherit from a general hec:Query class and may share members; however,
each derived query class primarily specifies how the query is processed internally.

• hec::RangeQuery

– Members:

* DatasetID identifier: the identifier that specifies the dataset to be
queried with this range query.

* string wktText: the WKT defining the range window. Currently, range
queries must be specified using WKT format.

* DataType shapeType: a value that represents the type of the window
(rectangle or polygon).

– Description: Range (selection) queries specify a rectangular or polygonal
window and return all objects that intersect with the window’s border or
area.

• hec::PredicateJoinQuery

– Members:



* DatasetID identifierR: the identifier that specifies the left (R) relation
in the R ✶ S spatial join.

* DatasetID identifierS: the identifier that specifies the right (S) relation
in the R ✶ S spatial join.

* (inherited from base hec::Query class)QueryType queryType: always spec-
ifies the type of the query, but in spatial joins it also specifies the
predicate for the join.

– Description: Spatial joins are always performed between two datasets R

and S with a predicate that defines the relation to evaluate for (intersection,
adjacency etc.).

• hec::KNNQuery

– Members:

* DatasetID identifierR: the identifier that specifies the left (R) relation
in the R ✶ S spatial join.

* string wktText: the reference object over which the kNN query will be
evaluated. Currently, it must be in WKT format.

* int k: a positive integer value that specifies the number of nearest
neighbors to look for in the query evaluation.

* DataType dataType: the reference object’s spatial data type. Currently,
kNN queries expect the reference object to be a point.

– Description: kNN queries are executed on a single dataset and return the
k objects closest to the reference object.

• hec::DistanceJoinQuery

– Members:

* DatasetID identifierR: the identifier that specifies the first relation in
the distance join.

* DatasetID identifierS: the identifier that specifies the second relation
in the distance join.

* double distance: a positive value specifying the maximum distance ε

for evaluating the distance join. This value must use the same coordi-
nate system as the queried data.



– Description: Distance joins are always performed between two datasets
using a distance threshold ε, and return all pairs of objects that are within
ε units of each other.

After constructing a query object, the user may use the hec::query(...) method
described below, to initialize the query evaluation.

• hec::QResultBase* query(hec::Query* query)

– Parameters:

* hec::Query* query: a derived query-class object from those described
above, cast as a pointer to the base hec::Query class.

– Returns: A reference to a hec::QResultBase object that encapsulates the
results of the evaluated query. This object provides an interface for conve-
nient retrieval and projection of the results.

– Description: Evaluates the spatial query specified by the hec::Query de-
rived class object.

For flexibility, Hecatoncheir’s API provides the hec::unloadDataset(DatasetID

identifier) method, which removes a previously partitioned and indexed dataset
from the system’s memory. This allows users to interchange datasets and execute
queries on different datasets without needing to terminate or re-initialize the entire
system.

Finally, the user can safely terminate a Hecatoncheir instance by calling the hec::

finalize() method, which frees memory, saves any necessary data to disk, and stops
all operations in a structured and safe manner.

4.1.4.2 GUI

Additionally, Hecatoncheir comes with a web-based GUI that enables users to interact
with Hecatoncheir without writing any code. The interface abstracts the underlying
communication with Hecatoncheir’s API, allowing users to configure and execute
spatial queries through an easy-to-use point-and-click workflow. A snapshot of a
spatial query execution through Hecatoncheir’s GUI is shown in Figure 4.5.

When launching the GUI, users provide the addresses (or aliases) of their cluster
nodes, after which the system automatically manages all initialization steps internally.



Figure 4.5: Snapshot of spatial query execution through Hecatoncheir’s GUI.

From that point on, the intuitive interface allows users to select and configure queries,
load datasets, and retrieve results entirely through mouse interactions, eliminating the
need for any manual coding, configuration or know-how of the system’s internals.

4.1.5 In‐Memory Management

Hecatoncheir is designed to perform all operations in memory without requiring all
data to be memory-resident. For instance, non-point geometries, which can have a
significant memory footprint, can be stored on disk and loaded on-demand during
query processing, ensuring that only the required objects are brought into memory
when needed. This is attributed to Hecatoncheir’s filter-and-refine approach, that
uses space-efficient approximations such as MBRs [1] and APRIL [29, 50] as effective
filters.

If the cluster’s memory is constrained, the user has the option to forego storing ge-
ometries in memory, instead loading only the required ones on demand during query
processing, which is expected to impact performance negatively, due to additional I/O



operations. This trade-off between memory usage and performance enhances Heca-
toncheir’s flexibility in managing memory requirements.

4.2 Experimental Evaluation

We experimentally evaluate Hecatoncheir’s performance, scalability, and its ability
to balance load and memory across a wide range of real-world datasets and query
scenarios.

4.2.1 Setup

Hecatoncheir’s plug-and-play design enables deployment by simply downloading it
directly from its GitHub repository onto a cluster of virtual machines. In our envi-
ronment, each node in the cluster operates on a fresh installation of Ubuntu 22.04,
configured with only the minimum requirements necessary for Hecatoncheir: (i) host
set up with Boost Geometry 1.73, CMake 3.22, and C/C++17; (ii) MPICH installed
on all nodes; and (iii) passwordless SSH configured between the nodes. Once down-
loaded, we build Hecatoncheir using the installation script and we execute the pro-
vided test suite to validate inter-node connectivity, communication, and the system’s
deployment in the cluster.

Our cluster setup consists of 10 VMs on 5 host computers. Each VM runs on an
Intel CPU i9 (4 cores), clocked at 3.70GHz and 12GB RAM. The virtual machines run
Ubuntu 22.04 LTS and have C++17 and MPICH 4.0 installed.

We compare Hecatoncheir against Apache Sedona [52], set with 2 executor-cores
per VM, 8GB of memory per executor, QuadTree partitioning with sampling enabled,
RTree indexing per Spark partition and underlying Hadoop for data distribution.

4.2.2 Datasets

In our experiments, we used datasets from the Tiger 2015 and OpenStreetMap
(OSM) collections of SpatialHadoop ([51]). For point data, we computed the cen-
troids of dataset T2 to generate a new dataset T2P. Additionally, we randomly
generated rectangular range queries QX on U.S. territory with varying selectivity
X = [0.01, 0.05, 0.1, 0.5, 1] . A summary of the datasets is shown in Table 4.1.



Table 4.1: Summary of datasets that were used in our experiments.

Dataset Data Type Object Count Description
T2 Polygon 2.3M TIGER2015 U.S. Water Areas

T2P Point 2.3M TIGER2015 U.S. Water Areas Centroids

T8 Linestring 20M TIGER2015 U.S. Roads

O3P Point 114.7M OSM Global Building Centroids

O5 Polygon 8.4M OSM Global Lakes

O6 Polygon 10M OSM Global Parks

QX Rectangle 10K U.S. X% selectivity random queries

NN Point 100 Randomly sampled from T2P

4.2.3 Scalability

Hecatoncheir’s scalability stems from several factors. First, preparation tasks such as
data distribution, indexing, and APRIL creation are distributed across all Workers,
with minimal additional cost which is limited to a few extra inter-node communi-
cations and some overhead on the Host Worker for batch organization during par-
titioning. Additionally, query times are reduced through two-level parallelism, with
operations executed concurrently by Workers and their threads.

Table 4.2 shows Hecatoncheir’s scalability for various query scenarios on an in-
creasing number of Workers. For the two spatial intersection join scenarios, query
evaluation times decrease as the number of Workers increases, demonstrating effec-
tive workload distribution. In the O5✶O6 scenario the scaling converges around 8-10
nodes. In the distance join scenario, Hecatoncheir scales more gradually, primarily due
to imbalances in the dataset distributions. While T2P contains points limited to the
U.S. (lower 48 states), O3P is global, which can lead to uneven workload distribution
across Workers, affecting scalability and performance. In the kNN scenario, perfor-
mance does not scale, likely because the Host’s serial aggregation of results dominates
the total runtime. In Section 4.2.5, we analyze these scenarios in greater detail, iden-
tifying bottlenecks and examining per-Worker workloads to provide deeper insights
into Hecatoncheir’s scalability across different query types.

In batch range query evaluation, scalability can be influenced by several factors.
First, batches of queries are broadcast to all Workers. This means that query win-



Table 4.2: Scaling of Hecatoncheir’s query evaluation time (seconds) for spatial join,
distance join and kNN query scenarios.

Spatial Intersection Join
Scenario/Nodes 2 4 6 8 10

O5✶O6 14.68 8.12 7.41 5.83 6.75

O6✶T8 3.78 2.63 2.12 2.16 1.95

Distance Join (ε = 0.001)
Scenario/Nodes 2 4 6 8 10

T2P✶O3P 25.70 20.13 20.19 15.51 14.97

kNN (k = 5)
Scenario/Nodes 2 4 6 8 10

NN on O3P 2.58 3.69 2.66 2.16 2.63

dows overlapping exclusively with partitions a Worker does not manage are quickly
determined to yield zero results for that Worker, allowing it to move on to the remain-
ing queries. However, with fewer Workers, each Worker is more likely to manage a
partition relevant to a query, resulting in more queries being evaluated per Worker.
This, in turn, increases the total batch evaluation time. Additionally, the selectivity
of queries (i.e., the extent of the range windows) may overlap with multiple parti-
tions in Hecatoncheir’s partitioning and indexing grids. This increases the number
of partitions that need to be evaluated, which (especially in setups with fewer nodes)
can reduce task parallelism and lead to more serialized evaluation. Consequently, the
available pool of threads on each node must handle more partitions, further reducing
per-node parallelism.

Table 4.3 illustrates Hecatoncheir’s scalability on batch range queries over the T2P
dataset for varying selectivities and increasing node count. Notice that low-selectivity
query windows do not benefit significantly from adding more Workers. This is due to
two factors: first, the dataset is relatively small, so evaluating individual range queries
is not very costly; second, as mentioned earlier, small range windows overlap fewer
partitions per query, resulting in less total workload to parallelize. In contrast, for 1%
selectivity range queries, Hecatoncheir demonstrates noticeable scaling as additional
Workers are added, with performance converging around 4–6 Workers. On the much
larger, global O3P dataset, which cannot fit into the memory of a single machine,



Table 4.3: Scaling of Hecatoncheir’s query evaluation time (seconds) for the QX batch
range queries on the T2P and O3P datasets.

QX on T2P
Selectivity X%/Nodes 1 2 4 6 8 10

0.01 0.12 0.10 0.15 0.14 0.16 0.21

0.1 0.41 0.24 0.18 0.20 0.20 0.25

1 2.95 1.52 0.78 0.84 0.64 0.65

QX on O3P
Selectivity X%/Nodes 1 2 4 6 8 10

0.01 N/A 0.30 0.23 0.22 0.24 0.23

0.1 N/A 0.72 0.67 0.56 0.66 0.52

1 N/A 3.33 2.27 1.74 1.88 1.66

Hecatoncheir’s scalability becomes even more evident. Even at smaller selectivities,
such as 0.1%, the vast number of objects to be processed highlights the advantages of
Hecatoncheir’s internal parallelization and batch-processing optimizations that scale
combined with the increasing number of Workers.

4.2.4 Performance

4.2.4.1 Range Queries

We compare the performance of Hecatoncheir and Sedona across various spatial query
types. Since Sedona does not natively support batch range queries and to avoid the
costly overhead of rebuilding indexes for each query, we implemented batch range
query processing as a spatial join between the queries and the input dataset. Table
4.4 summarizes two batch range query scenarios for varying selectivity, on datasets
T2P and O3P. In both cases Hecatoncheir outperforms Sedona by at least two orders
of magnitude.

Hecatoncheir’s superior performance relies on several factors: first, Hecatoncheir
paralellizes query processing by broadcasting range queries in batches, allowing
Workers to evaluate them asynchronously and in parallel with each other, as making
the most out of their available threads to parallelize the processing of each batch. Re-
sults are also returned in batches to the Host to minimize communication overhead



Table 4.4: Hecatoncheir and Apache Sedona comparison on Range Queries evaluation
time (seconds), in a cluster with 10 nodes.

QX on T2P
Selectivity X% Sedona Hecatoncheir

0.01 18 0.16

0.05 29 0.16

0.1 61 0.19

0.5 85 0.36

1 210 0.51

QX on O3P
Selectivity X% Sedona Hecatoncheir

0.01 70 0.23

0.05 92 0.37

0.1 97 0.55

0.5 187 1.09

1 203 1.59

Table 4.5: Hecatoncheir and Apache Sedona comparison on Spatial Intersection Join
evaluation time (seconds), in a cluster with 10 nodes.

O5✶O6
Sedona Hecatoncheir

Time (s) 1378 6.74

O6✶T8
Sedona Hecatoncheir

Time (s) 299 1.98

and facilitate more flexible result aggregation.

4.2.4.2 Spatial Intersection Joins

As shown in Table 4.5, Apache Sedona required 1378 seconds to run the O5✶O6 spa-
tial intersection join on 10 nodes, whereas Hecatoncheir completed the task in just 6.74
seconds. Similarly, in the O6✶T8 polygon–linestring join, Hecatoncheir again achieved
a substantial performance advantage. This efficiency stems from Hecatoncheir’s high-
performance two-layer index combined with APRIL spatial approximations, which
enable advanced, efficient, and accurate filtering while significantly reducing refine-
ment overhead for complex geometries. We also observed that Apache Sedona pro-
duced many more object pairs as results that do not actually intersect, indicating that
its internal geometrical operations are less precise than the Boost Geometry library
used by Hecatoncheir.

4.2.4.3 kNN Queries

Table 4.6 compares Hecatoncheir and Apache Sedona on kNN queries for various
values of k. The performance of both frameworks is only slightly affected by increasing



Table 4.6: Hecatoncheir and Apache Sedona comparison on kNN query evaluation
time (seconds), for increasing k, in a cluster with 10 nodes.

NN on T2P
k Sedona Hecatoncheir
5 154 0.71

50 159 0.72

500 156 0.79

NN on O3P
k Sedona Hecatoncheir
5 N/A 2.38

50 N/A 2.44

500 N/A 2.71

k. We were unable to run the kNN queries on the O3P dataset in our cluster, as Apache
Sedona repeatedly failed internally, even when the allocated executor memory was
reduced significantly.

Both frameworks evaluate kNN queries in a similar way, processing points one by
one without batch execution. Hecatoncheir, however, fully exploits available threads to
parallelize partition checks and comparisons, achieving over two orders of magnitude
faster performance than Apache Sedona in both scenarios.

4.2.4.4 Distance Joins

We ran the O3P✶T2P distance join scenario on both Apache Sedona and Hecatoncheir.
As shown in Table 4.7, Hecatoncheir outperforms Apache Sedona in this scenario as
well, though the margin is smaller compared to other query types. This is because
Hecatoncheir’s current (and preliminary) distance join implementation consists of
several sequential phases, with limited opportunities for parallelization beyond par-
titioning and distance evaluations.

In future work, we plan to optimize distance join evaluation to be more parallel
and asynchronous across Workers, enabling faster overall performance.

4.2.5 Profiling

In this section, we present experimental results that profile Hecatoncheir’s memory
usage and load balancing across Workers. Using the TAU system profiling tool [130],
we break down and measure the execution time, memory footprint and number of
MPI receive/send operations on a per-Worker basis.

In all experiments, we used 10 Worker nodes (ranks 1–10), with rank 0 denoting



Table 4.7: Hecatoncheir and Apache Sedona comparison on Distance Join evaluation
time (seconds) for increasing distance value ε, in a cluster with 10 nodes.

O3P✶T2P
ε Sedona Hecatoncheir

0.001 72 17

0.005 85 16

0.01 102 21

0.1 268 55

the Host process, which runs on the same machine as the Worker assigned rank 1.
In the following plots, columns of the same color (i.e., representing the same metric)
with comparable values indicate that the metric is balanced across Workers, a desirable
property in distributed systems such as Hecatoncheir.

Figure 4.6 illustrates the O5✶O6 spatial intersection join scenario. Both the peak
memory footprints (Figure 4.6(a)) and query evaluation times (Figure 4.6(b)) per
Worker fall within similar ranges, indicating that each Worker requires a compara-
ble amount of memory to index its assigned data in-memory and spends a similar
amount of time processing it, without significant variation. This behavior can be at-
tributed to the O5 and O6 datasets, which span the entire globe and exhibit similar
distributions. Furthermore, all Workers perform comparable MPI send and receive
operations (Figure 4.6(c)) throughout the end-to-end workflow.

In contrast, Figure 4.7 profiles a distance join between the T2P and O3P datasets,
which exhibit markedly different spatial distributions. T2P contains points exclusively
within the contiguous United States (lo48), whereas O3P spans the entire globe. This
discrepancy is reflected in the evaluation times: Workers 9 and 10 require substantially
more time than Workers 5 and 7. We infer that Workers 9 and 10 are responsible
for a larger portion of data located in the U.S., resulting in a higher number of
comparisons. Conversely, the data assigned to Workers 5 and 7 likely resides outside
the U.S., enabling them to quickly discard non-results due to the properties of the
grid index. Notably, the peak memory footprints of all Workers remain within a
similar range, reinforcing the conclusion that the differences in evaluation time stem
from the topological characteristics of the data rather than disparities in data volume.
Additionally, in the distance join, data exchange occurs between Workers, creating a
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Figure 4.6: Per Worker (rank) profiling for the O5✶O6 spatial intersection join, re-
garding count of messages sent/received (a), memory (b), and query execution time
(c).
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Figure 4.7: Per Worker (rank) profiling for the T2P✶O3P distance join with ε = 0.001,
regarding count of messages sent/received (a), memory (b), and query execution time
(c).

correlation between the number of MPI receive operations and the total evaluation
time: Workers that receive more data from others must evaluate it, thereby increasing
their overall processing time.

Figure 4.8 profiles Hecatoncheir in a batch range query scenario with high-
selectivity queries (Q1) on the O3P dataset. As in Figure 4.7, the Q1 queries are
restricted to the U.S., whereas O3P spans the globe. This discrepancy is again reflected
in the total query evaluation time, which is significantly higher for Worker 5 than
for Worker 3. However, since Workers evaluate batches of queries asynchronously
and return results to the Host as soon as a batch is complete, there is minimal wait-
ing among Workers, except toward the very end of the dataset evaluation. In this
scenario, we measured the average query evaluation time per Worker to be 220.25
seconds. Meanwhile, the Host spent a total of 155.65 seconds gathering results for all
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Figure 4.8: Per Worker (rank) profiling for the Q1 range queries on the O3P dataset,
regarding count of messages sent/received (a), memory (b), and query execution time
(c).

batches, meaning that on average, by the time all Workers finished their evaluations,
the user experienced minimal delay for the Host to aggregate the results. Workers
exhibit memory requirements of a similar order of magnitude, with slight variations
arising from the O3P dataset’s global distribution. The data tends to cluster in high-
density regions such as Europe, Asia, and North America, while remaining sparse
across vast areas like the oceans.

Figures 4.9(a) and (b) illustrate the uneven workloads and memory requirements
across Workers in the kNN scenario on the O3P dataset with k = 5. As in Figure
4.8, the memory requirements are uneven due to the clustered global distribution of
the O3P dataset. In kNN queries, however, this imbalance has little impact, since all
Workers compute a local set of k nearest neighbors for each query point, and the
final results are aggregated by the Host. This behavior is evident in Figure 4.9(b),



where most Workers perform similarly across the entire query set, with only minor
variations. Notably, Workers 6, 7, and 9 are the fastest, as their partitions (and neigh-
boring partitions) contain relatively little data, reducing the number of points they
must iterate through to identify the top-k neighbors. An interesting observation is
that all Workers completed their respective kNN evaluations in 1.81 to 5.65 seconds,
whereas the Host’s gathering and aggregation of the kNN results took about 7.2 sec-
onds in total. This creates a bottleneck in the query evaluation pipeline: queries are
processed sequentially, and even though some Workers finish early, they must wait
for others to complete and for the Host to aggregate the results before moving on to
the next query in the batch. In future work, we plan to adopt an asynchronous batch
evaluation technique similar to the one used in Hecatoncheir’s range query evalua-
tion. With respect to send/receive operations, all Workers issue the same number of
MPI_Send() calls. The variation in MPI_Recv() calls arises from data partitioning, as
some Workers receive more data than others.

4.3 Conclusions

In this chapter, we introduced Hecatoncheir, a prototype distributed spatial data man-
agement framework built with MPI and OpenMP. Hecatoncheir is designed for high
performance, leveraging state-of-the-art indexes, spatial approximations, and query
optimization techniques, while also being a self-contained C++ library that is easy to
set up and use for fast, accurate spatial data management. Hecatoncheir abstracts its
internals by offering a high-level, C++ header API and a web-based GUI for users to
interact with it.

Through detailed experiments on real-world datasets and system profiling, we
demonstrated Hecatoncheir’s superior performance and flexibility compared to the
current state-of-the-art distributed framework, Apache Sedona.
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CHAPTER 5

SPATIAL REASONING USING
RETRIEVAL-AUGMENTED GENERATION

5.1 SpaRAGraph Overview

5.2 Pre‐processing

5.3 Spatial Reasoning with SpaRAGraph

5.4 SRB ‐ The Spatial Reasoning Benchmark

5.5 Experimental Evaluation

5.6 Conclusions

As discussed in Sections 1.3 and 2.4, LLMs are increasingly being integrated into GIS
as AI assistants or agentic tools for extracting spatial reasoning knowledge from spatial
data. Since spatial data is often highly domain-specific, it is natural to consider RAG
as a method for enhancing LLM performance in these tasks. This, however, raises
the question of whether LLMs can truly comprehend and utilize spatial knowledge
expressed in text, and how scalable and efficient such an approach can be in real
time.

In this chapter, we propose SpaRAGraph, a RAG-based approach that enhances
LLMs’ spatial reasoning for domain-specific questions by generating relevant context
from pre-processed topological relations in a spatial database. SpaRAGraph leverages
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our proposed spatial approximation and processing techniques to compute these re-
lations scalably over large spatial datasets, which are then provided to LLMs via RAG
to improve performance on spatial reasoning tasks in real time.
Outline In Section 5.1 we present an overview of SpaRAGraph’s architecture, describ-
ing its components, usage and goal. Section 5.2 describes in detail SpaRAGraph’s
pre-processing stage and how topological relations are extracted and structured to
facilitate its RAG mechanism for efficient spatial reasoning context generation. In Sec-
tion 5.3 we describe how SpaRAGraph uses the aforementioned pre-processed spatial
relations at inference time through RAG. In Section 5.4 we propose a benchmark de-
signed to evaluate the performance of RAG-based techniques on the improving spatial
reasoning capabilities of LLMs. Section 5.5 includes our experiments that evaluate
SpaRAGraph’s efficiency. Finally, in 5.6 we discuss our conclusions.

5.1 SpaRAGraph Overview

This section presents an overview of SpaRAGraph, describing its end-to-end pipeline
and showcasing its usage and benefits through example scenarios.

Spatial Textual Context The geometry of a spatial entity is represented by a se-
quence of geographic coordinates (longitude, latitude). To compute spatial relations
between entities from their raw representations, costly operations, such as line in-
tersection detection, point-in-polygon tests (to detect containment of an object into
another), and distance calculations (for proximity detection) must be applied [131].
Additionally, spatial, domain-specific knowledge is missing from foundation models,
giving room for improvement via RAG. We hypothesize that if spatial knowledge is
expressed comprehensively (via natural language) and concisely (lack of noise, re-
dundancy) in textual form, then the LLM may be able to infer spatial relationships
between objects. For example, consider the prompt: “What is the relative location of A to
C, if A is west of B and B is west of C?” This question asks for the spatial relationship
between entities A and C while providing intermediate context from which the rela-
tionship can be inferred. When we presented this prompt to Llama-3.1-8B-Instruct,
it responded as follows: “To find the relative location of A to C, let’s break it down: A is
west of B, B is west of C. This means A is to the west of B, and B is to the west of C.
So, A is to the west of C.” The LLM successfully inferred the correct spatial relation



between A and C using the context provided with the question, purely over text.
Without such context, however, the same model fails to infer the correct relationship
between entities (Figure 5.4).

5.1.1 Pipeline

Figure 5.1 illustrates the full SpaRAGraph framework, which is divided into two
main stages: pre-processing and inference. During pre‐processing (performed once
unless the underlying datasets change), all spatial datasets are processed through
SpaTex. This module computes precise spatial relationships (both topological and
directional) between entities by analyzing their geometries. The resulting relationships
are encoded as RDF triplets and indexed into a global spatial graph. A relation
composition matrix is also defined, capturing all possible transitions between spatial
relations to support multi-hop reasoning across the graph.

At inference time, when a user poses a spatial question, SpaRAGraph uses named
entity recognition (NER) via spaCy [132] to extract mentioned spatial entities. These
are matched to graph nodes using FAISS-based similarity search. The shortest paths
connecting matched entities are then computed, and the corresponding RDF triplets
are retrieved. Using the relation composition matrix, these triplets are summarized
into a coherent spatial context, which is appended to the user’s original query. This
enriched prompt is finally passed to the LLM for response generation.

5.1.2 Usage

An example interaction with our framework is shown in Figure 5.2, demonstrating
how it facilitates spatial reasoning and natural language dialogue by automatically
generating the necessary contextual information, relieving the user of the burden to
supply it manually. We focus on generation tasks involving spatial relations (e.g., ad-
dressing the following question: “Is Dickinson County, Kansas east of Douglas County,
Kansas?”), implementing and testing our framework using spatial data. Nonetheless,
our approach can be generalized to assist any RAG approach that involves com-
plex relations between objects that can be supported by inference rules. Additionally,
SpaRAGraph is compatible with existing RDF datasets, bypassing the need for spatial-
to-RDF pre-processing, provided that the RDF data encodes semantically meaningful
relations between entities. For effective traversal and inference, a composition matrix
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Figure 5.1: SpaRAGraph’s overview divided into two stages: pre-processing, per-
formed once and consisting of SpaTex’s spatial RDF generation and their indexing
in a graph; and usage, which illustrates user interaction with SpaRAGraph, showing
how context is generated in the back-end through named entity recognition and path
search on the RDF graph, before being appended to the prompt and sent to the LLM.

Ø Using SpaRAGraph - Give a question (type ‘exit’ to quit): Is Dickinson County, Kansas east of 
Douglas County, Kansas?  

Ø Generated Context - Dickinson County, Kansas is west of Douglas County, Kansas. 
Ø Prompt - Question: Is Dickinson County, Kansas east of Douglas County, Kansas?  

 Context: Dickinson County, Kansas is west of Douglas County, Kansas. 
Ø Response – No, Dickinson County, Kansas is to the west of Douglas County, Kansas. 
 

Figure 5.2: Example interaction with SpaRAGraph when given a spatial question.
The context is automatically generated and appended to the prompt, to guide the
model’s response.



Figure 5.3: Map of all counties in Kansas, illustrating possible shortest paths (yellow)
between Dickinson County (red) and Douglas County (blue). These paths enable
inference of the relative spatial relation between the two entities through intermediate
connections. The map was created on https://www.mapchart.net

or algebra must be defined over the relation set, enabling the combination of any pair
of relations to compute a composed relation between any two connected entities in
the graph.

Figure 5.3 presents the complete map of Kansas counties, with the possible short-
est paths highlighted through which the spatial relation between Dickinson County
and Douglas County was inferred using the RDF graph. Assuming that each pair of
neighboring counties has their spatial relation explicitly encoded in RDF, the relation
between the two counties can be derived compositionally. For instance, Dickinson
County is west of Geary County, Geary County is west of Wabaunsee County, and so
on, allowing us to infer that Dickinson County is west of Douglas County by chain-
ing these intermediate spatial relations step by step. In the example of Figure 5.2,
SpaRAGraph helps Llama-3.1-8B-Instruct respond correctly to a question regarding
the relative topology of two counties in Kansas, by enriching the original prompt with
the necessary context for an accurate response. With the context-enriched prompt, the
model is able to answer the question accurately.

Without the generated context, the model may either be unable to respond or
hallucinate on the answer based on the general knowledge it might possess. In Figure

https://www.mapchart.net
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Figure 5.4: Llama-3.1-8B-Instruct response to an example spatial question.

5.4, for example, we prompted Meta’s Llama-3.1-8B-Instruct model with the ques-
tion: ”What is the relative location of Dickinson County to Douglas County in Kansas?”
Based on its response, it becomes evident that the model possesses a general under-
standing of the locations of the two Counties within the State of Kansas, but it is
ultimately unable to infer their relative spatial positioning and hallucinates, respond-
ing incorrectly. This limitation highlights the model’s deficiency in spatial reasoning
based solely on textual information. On the other hand, Figure 5.5 shows the model’s
response to the same question when employed with SpaRAGraph. The context gen-
erated by SpaRAGraph was deterministically constructed and explicitly conveyed the
relative locations of the two counties to the model, thereby guiding and informing its
response internally.

5.2 Pre‐processing

SpaRAGraph relies on the pre-processing of raw spatial data to generate synthetic
RDF data that captures key relationships between entities. By explicitly storing a
subset of spatial relations from the dataset, SpaRAGraph can infer relations that are
not explicitly stored and enriches model responses with related context. The pre-
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Figure 5.5: Llama-3.1-8B-Instruct response to an example spatial question when
employed with SpaRAGraph.

processing stage consists of two components. First, the SpaTex component processes
all input spatial data and generates RDF triplets that capture meaningful spatial
relations among entities. Second, these RDF triplets are organized into a bidirectional
graph index, forming a per-relation topological structure over all unique entities. This
enables efficient computation of relationships between entities by traversing the graph
through intermediate nodes.

5.2.1 SpaTex: Spatial Relation RDF Generator

Spatial knowledge may contain various different aspects and metrics, such as the
distance between entities, their topological relationships (e.g. adjacent, intersect) and
the cardinal direction of an entity in relation to another one (e.g. north, southwest).
We refer to any type of relation between two geographical entities as a spatial relation.
Note that determining the cardinal direction between two non-point, arbitrary poly-
gons (such as countries or lakes) can be inherently subjective. Different parts of one
object may lie north, east, or northeast of parts of the other. To produce a definitive
spatial relation, we compute the centroids of each polygon and determine the cardinal
direction based on the relative position of these centroids. While this approach sim-
plifies the spatial representation, it introduces some distortion in the resulting RDF
triplets, rendering them approximate. Consequently, any inference derived from these
relations should also be considered approximate.

To extract these spatial relations and generate RDF triplets that describe them
comprehensively and concisely, we introduce SpaTex, a rule-based spatial-to-RDF
data generator that takes as input spatial data collections in raw format (WKT, CSV,
etc.). An overview of SpaTex is shown in Figure 5.6. The output is a collection of
RDF triplets that encapsulate the spatial relations between (nearby) pairs of objects.



<subject> <predicate> <object>
<Morris County Kansas> <adjacent to and north of> <Chase County Kansas>
<Chase County Kansas> <adjacent to and south of> Morris County Kansas>
<Morris County Kansas> <adjacent to and northeast of> Marion County Kansas>
<Marion County Kansas> <adjacent to and southwest of> Morris County Kansas>
<Morris County Kansas> <adjacent to and east of> Dickinson County Kansas>
<Dickinson County Kansas> <adjacent to and west of> Morris County Kansas>
…

Figure 5.6: The Spatial relation identification process by SpaTex that uses a global
grid to group nearby entities and compute their spatial relations, outputting them in
RDF format.

We aim for the RDF triplets to be as concise and simple as possible, minimizing
redundancy by ensuring that each subject and object consists of a single entity name,
and that each predicate captures only the spatial relation, free of any descriptive or
“flavor” text. However, predicates must still be concise and semantically informative
enough for an LLM to effectively infer implicit spatial relationships not explicitly
encoded in the data.

Generating spatial RDF triplets that capture nearby entities’ spatial relations is
computationally challenging. The total number of pairwise spatial relations between
entities on a map is quadratic, making their generation and encoding a challenging
task. In SpaRAGraph, we address this scalability challenge by i) dividing the map
into numerous local partitions, ii) computing non-trivial spatial relations between all
pairs of entities within each local region, and iii) structuring the computed relations
in a clear and comprehensive RDF format to enhance the model’s ability to infer
non-local relations.

The partitioning approach employed by SpaTex has two advantages. First, we
avoid computing an excessive (and redundant) number of spatial relations, which
can be inferred; for two entities (e.g., Counties) in different partitions, their relation
should be disjoint and their relative cardinal direction can be inferred by the cardinal
directions of entities that enclose them (e.g., States). Second, each partition is pro-
cessed independently and in parallel, scaling up the relation generation process. The
input spatial data must be accompanied by metadata that provides a human-readable
name for each entity, enabling reference in natural language. RDF data often uses
URIs, which may or may not include meaningful names. When the URIs already
contain readable names, SpaTex retains them as node labels in the graph. However,
if the URIs consist of non-descriptive identifiers or links, SpaTex replaces them with



custom URIs derived from the provided metadata (names) to ensure compatibility
with natural language processing.

For the detection of topological relations, we use the standard Dimensionally
Extended 9-Intersection model (DE-9IM) [40]. DE-9IM defines a 3→ 3 matrix where
the rows and columns represent two objects’ interior, boundary and exterior areas.
Note that, by the definition of DE-9IM, spatial relations are asymmetric. This means
that any pair of entities can have at most one spatial relation in a given direction,
and at most its inverse in the opposite direction. In other words, a single pair of
entities cannot simultaneously be related by multiple distinct spatial predicates. The
combination of values in the matrix defines the exact topological relationship for two
objects. Moreover, SpaTex calculates the cardinal direction between nearby objects
in relation to one another, as well as their in-between distance and their common
area (if any) in square kilometers. For two input spatial datasets R and S, SpaTex
performs a spatial join R "# S between them, an operation that identifies all pairs of
objects 〈(r, s)|r ∈ R, s ∈ S〉 that intersect with each other. For each dataset, a self-join
is performed (R "# R and S "# S), to identify relations between objects in the same
dataset as well.

The vast majority of object pairs in real-world spatial datasets are disjoint [29], so
we only detect and generate non-disjoint topological relations, as disjointness can be
implied. This saves us both the effort and the overhead of encoding and retrieving
disjoint relations. In general, spatial relations between objects that are disjoint and far
from each other can be inferred by LLMs and do not need to be explicitly defined in
the context. For example, describing two entities as adjacent implies that their borders
touch and thus, LLMs can infer that since they touch, they are not disjoint with each
other.

SpaRAGraph takes advantage of spatial reasoning as much as possible to reduce
the volume of the generated relations by SpaTex. To this end, we partition the data
space using a uniform grid and assign each spatial entity to the partitions (i.e., tiles)
that it spatially overlaps. SpaTex then performs a partition-to-partition spatial join
[49] for each cell; hence, we only compute and generate the spatial relations between
objects of the same tile. For any pair of objects in a partition, we first compare their
Minimum Bounding Rectangle (MBR(r)). If the MBRs do not intersect, then we only
compute the relative cardinal direction between them (e.g., north of); otherwise, we
compute the DE-9IM matrix. For overlapping objects, we only generate the topological



relation (e.g., overlaps, inside, covers); if the objects are adjacent, we also compute
their cardinal direction relation.

5.2.2 Graph‐based Topology Index

We index the spatial RDF triplets generated by SpaTex using a directed graph G =

(V,E), where each node v ∈ V represents an entity from the original data and each
edge e = (v1, v2) ∈ E corresponds to a spatial relation (predicate) from v1 (subject) to
v2 (object).

For each pair of entities, SpaTex generates bi-directional RDF triplets. For exam-
ple, both <The State of Kansas> <contains> <Morris County Kansas> and <Morris
County Kansas> <inside> <The State of Kansas> are created. This results in two edges
between the nodes <Morris County Kansas> and <The State of Kansas>, one labeled
<contains>, the other <inside>. This bi-directionality supports a greater number of
possible paths during graph indexing, resulting in more flexible graph traversal. An
illustration of an example graph index for a set of RDF triplets is shown in Figure 5.7.
Recall that SpaTex computes spatial relations only between entities that fall within
the same grid cell.

The total number of nodes |V | in the graph corresponds to the number of unique
entities in the original input data. The number of edges |E|, however, depends on
the granularity of the grid used by SpaTex when computing spatial relations. A fine-
grained grid results in fewer RDF triplets, as each object is compared against a smaller
set of nearby neighbors. In contrast, a coarse-grained grid leads to a significantly
higher number of relations, since each entity is compared with more entities within
the same larger cell. Grid granularity is directly correlated with the size of the objects
(in terms of area covered). We found that relatively coarse-grained grids (e.g., 1,000
cells per dimension) are sufficient for larger entities, such as U.S. Counties and States.
In contrast, smaller entities (such as Zipcodes) benefit from finer grids (e.g., 10,000
cells per dimension), which produce a meaningful number of spatial relations without
generating an excessive number of RDF triplets.

We hypothesize that a small number of spatial RDF triples is sufficient to help
models infer missing relations, allowing them to answer questions about entities
whose relationships are not explicitly stored by reasoning over the available informa-
tion. The graph index represents the final step of the pre-processing stage and must



Spatial RDF triplets
<A> <west> <B>
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<C> <southwest> <B>
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<A> <inside> <C>
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Figure 5.7: An example graph constructed from a set of spatial RDF triplets. The
map illustrates the spatial arrangement of objects in the data space, with dotted lines
indicating the grid cells defined by SpaTex and the resulting bi-directional index built
over them.

be loaded and ready at inference time. Since the spatial relationships between entities
typically remain static, there is usually no need to repeat the pre-processing pipeline
(from SpaTex’s RDF generation to graph indexing) more than once.

5.2.3 Spatial Relation Composition matrix

Building on the foundations established by DE-9IM [40, 133], RCC8 [134], and Cardi-
nal Direction Composition [135], we define a simplified composition matrix for pairs of
spatial relations (Table 5.1). The matrix sets the rules for composing an overall spatial
relation between two entities A and B, based on their relation with an intermediate
entity I. Specifically, for any two RDF triplets <A> <p1> <I> and <I> <p2> <B>, the
matrix defines the composition of the two predicates p1, p2 as p1 → p2 = p3, forming
a new relation p3 such that the RDF triplet <A> <p3> <B> describes accurately the
spatial relation between entities A and B.

Topological relations such as inside, contains, intersects, and meets (adjacency) of-
ten become redundant once combined with cardinal directions. For example, for two
example RDF triplets <o1> <inside> <o2> and <o2> <south> <o3>, then o1 inherits
that directional relation from o2 to o3, generating <o1> <south> <o3>. The same goes



Table 5.1: Relation composition matrix with a right arrow (→) denoting left-to-right
composition.

→ N NE E SE S SW W NW inside contains intersects

N N NE NE E N W NW NW N N N
NE NE NE E E E N N N NE NE NE
E NE E E SE SE SE N N E E E
SE E E SE SE S S E E SE SE SE
S S E SE S S S SW W S S S
SW W S S S SW SW W W SW SW SW
W NW N N E SW W W NW W W W
NW NW N N E W W NW NW NW NW NW

inside N NE E SE S SW W NW inside ??? ???
contains N NE E SE S SW W NW ??? contains ???
intersects N NE E SE S SW W NW ??? ??? ???

for the contains relation. When not combined with a cardinal direction, the intersec-
tion/containment relations usually carry on, as long as they remain the same. For
example, if o1 is inside of o2 and o2 is inside of o3, then o1 is inside of o3 as well.
In our case, through SpaTex’s global grid and per-cell processing of neighboring
entities, all non-disjoint topological relations will be generated and explicitly stored,
meaning that they won’t have to be inferred. Hence, SpaRAGraph simplifies paths by
discarding topological relations when they co-occur with directional ones, preserving
only the latter.

On the other hand, cross-topological combinations are much harder to deduce ac-
curately. For example, for two RDF triplets <o1> <inside> <o2> and <o2> <contains>
<o3>, the combined relation inside→ contains = pc does not, by itself, convey mean-
ingful information about the relation between o1 and o3. We can disregard cases where
pc = inside, as SpaTex would have already computed and explicitly stored the RDF
triplet <o1> <inside> <o3>. The same applies to the contains relation. Additionally,
this composition indicates that both o1 and o3 are inside the same, larger entity o2.
For their explicit relation not to exist in the graph, they have to be far away enough
so that they do not fall inside the same cell of SpaTex’s grid as well. Aside from this,
it remains unclear what the correct relation pc is, based solely on the given pair of
RDF triples.



Another special case is the intersects relation, which does not convey much useful
information in combination with other topological relations. For example, the com-
posed relation between two RDF triplets <o1> <intersects> <o2> and <o2> <intersects>
<o3> can not be intersects, contains or inside, otherwise it would have been explic-
itly generated by SpaTex. On the other hand, for such case to appear, o2 must have
large extent, so that o1 and o3 intersect with it inside different cells in SpaTex’s grid,
otherwise their relation would have been stored explicitly. In such cases, entities o1

and o3 may only be related by a cardinal direction, which cannot be deduced based
solely on this pair of RDF triplets.

These rare, but possible, edge cases are labeled with three question marks (“???”)
in the composition matrix, as they require specialized handling by SpaRAGraph. We
elaborate on how such cases are managed in Section 5.3.2. Moreover, as discussed
in Section 5.2.1, defining the relative direction between two entities using a single
cardinal direction term is often only partly accurate and inherently approximate. This
approximation carries over into the estimations performed during the compositions
shown in Table 5.1.

5.3 Spatial Reasoning with SpaRAGraph

In this section, we detail how SpaRAGraph utilizes the graph index constructed over
the spatial RDF data to generate relevant context for a given spatial question during
inference. The process consists of two main stages: First, SpaRAGraph identifies the
spatial entities referenced in the question and traverses the RDF graph to determine
their relative spatial relation. Then, it synthesizes this information into a coherent
context, which is appended to the original question and provided to the language
model to support accurate and informed reasoning.

5.3.1 Graph Traversal

Named Entity Recognition When a spatial question is posed, the first step is to
identify the entities it references. We use spaCy [132] for this NER task. spaCy must
be configured to recognize the types of entities present in the RDF data. For example,
in our experimental evaluation, we use data from States, Counties, and Zipcodes in
the U.S., so we customized spaCy’s rules to distinguish between these entity types



and accurately identify them. Note that the extracted entities are returned in the
order they appear in the user’s prompt. More advanced recognition rules can be
defined to further guide SpaRAGraph’s graph traversal and context generation, such
as identifying specific relations to target in the graph or retrieving multiple paths
between two entities. However, in this initial version of SpaRAGraph, we simply use
spaCy to extract all referenced entities.
Entity‐Node Matching Once the referenced entities are extracted, they must be
matched to the corresponding nodes in the RDF graph. However, node names are
stored as URIs, which may not match the way users refer to the same entities. For in-
stance, a user might refer to “The State of Kansas” as “Kansas State”, simply “Kansas”,
or by its abbreviation, “KS.” To bridge this gap, we perform entity-to-node matching
via similarity search. All node labels are indexed using FAISS [136] to enable fast ap-
proximate similarity search. Each extracted entity is then queried against this index,
and the most similar node label is returned as its match.
Path Search The identified entities are then paired into (start, end) tuples, defining
the list of paths to be searched in the RDF graph. A path p in a graph G = (V,E)

is defined as p = (v0, v1, ..., vk) such that all edges (i.e. pairs of vertices) vi, vi+1 ∈ E

for all i = 0, 1, ..., k − 1. Note that, due to the way SpaTex computes spatial relations,
a given pair of nodes can have at most one edge in each direction between them.
Depending on the task, multiple paths —possibly in both directions— may need
to be considered. To determine the spatial relation between two entities, a single
path may suffice. However, when querying the relation of one entity with multiple
others, it is necessary to traverse additional paths to comprehensively capture all
relevant relations. For a given pair (subject, object), SpaRAGraph first attempts to
find the shortest path (the one with the fewest edges) from subject to object. We use
Breadth-First Search (BFS) because all edges in the graph are considered to have
equal weight, making it effectively an unweighted graph. BFS is optimal for such
cases, as it guarantees the discovery of the shortest path in terms of the number of
edges (i.e., the minimal number of intermediate RDF triples) from the subject to the
object. If no path is found, it then searches in the reverse direction, from object to
subject. If no path exists in either direction, no contextual information is generated
for that entity pair. For questions involving multiple entities, paths for all possible
(start, end) combinations may need to be computed, depending on the task. In this
version of SpaRAGraph, the path search strategy is defined by the task type. In our



experimental evaluation, we test SpaRAGraph on binary, multiclass, and multilabel
classification tasks. For binary classification, we extract a single (subject, object) pair
based on the order of appearance in the question. If no path is found from subject to
object, we attempt the reverse direction, from object to subject. We follow the same
strategy for multiclass classification, where each question involves two entities and a
set of relation options, only one of which is correct. Again, we search for a path from
subject to object and fall back to the reverse if necessary. In multilabel classification,
each question involves a single subject entity and multiple candidate object entities.
The task is to identify all (if any) object entities that satisfy the specified relation
in the question. In this case, we compute paths from the subject to each candidate
object. If no path is found in that direction, we then check the reverse direction on a
per-pair basis.

5.3.2 Context Generation

At this stage, SpaRAGraph has identified a list of paths between the entities mentioned
in the question. For a path p from the subject to the object, each hop in the path
corresponds to a spatial RDF triple. This creates a natural, sequential order in which to
process the triples (from subject to object) in order to determine their overall spatial
relationship. The next step is to generate context based on the identified path(s)
and use it to augment the user’s question, providing the LLM with relevant spatial
information to guide its response so that it answers correctly.

We semantically evaluate a path through deterministic, rule-based means, fol-
lowing the relation composition matrix (Table 5.1). Figures 5.8 and 5.9 show two
end-to-end examples of how graph traversal and context generation is done for two
spatial questions on the example data and graph of Figure 5.7. In Figure 5.8, the
spatial relation between entities A and D is not explicitly stored as an RDF, so the
path from A to D is longer than one hop. Combining the inside and northwest relations
that A and D have with intermediate entity C respectively, leads to the conclusion that
A is northwest of D (as the ‘inside’ topological relation is discarded when combined
with a directional one). We can verify from the map that entity A is indeed northwest
of entity D, confirming that the generated context is accurate. This context is then
provided alongside the original spatial question to the LLM, guiding its response
with factually grounded information about the referenced entities. In the example of
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Figure 5.8: Path traversal and context generation for an example spatial question
based on the data in Figure 5.7. SpaRAGraph identifies a 2-hop path, performs one
directional composition, and generates context that accurately captures the spatial
relation between the entities based on the map.

Figure 5.9, the path from entity D to entity E traverses through entities C and B,
composing each spatial relation step-by-step and ultimately concluding that entity D
is south of entity E. This result is approximately correct, offering the LLM a useful
hint about D’s location relative to E. However, the more precise relation would be that
D is southwest of E. This detail cannot be inferred from the available data without
directly accessing the entities’ geometries.

Furthermore, due to the structure of our spatial RDFs and their indexing in
the graph, adjacency relations (meets) typically become obsolete beyond the first hop
in the path. This is because all adjacency relations are explicitly captured in the
graph, as SpaTex groups nearby entities into grid cells and computes relations among
neighboring entities. Hence, the shortest path in the graph between two adjacent
entities will be a single hop, namely, the RDF that describes their adjacency and
relative direction to one another.

We handle composition edge cases (marked as “???” in Table 5.1) as follows: if
the shortest path between two nodes consists solely of undetermined compositions,
SpaRAGraph iteratively searches for the next shortest path, continuing this process
until it finds a path that includes at least one valid composition (up to a threshold).
The generated context then includes both the summarized relation between the start
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Figure 5.9: Path traversal and context generation for an example spatial question
based on the data in Figure 5.7. SpaRAGraph identifies a 3-hop path, performs
two directional compositions, and generates context that is approximately correct for
entities D and E. in reality, D lies southwest of E based on the map.

and end nodes, as determined by the top k shortest path, and all RDF triplets from the
top k − 1 paths as additional context. This approach ensures that the LLM receives
as much relevant information as possible, even in the presence of incomplete or
ambiguous composition data.

Based on how cardinal direction relations are computed by SpaTex and the in-
herently approximate composition matrix, our External Reasoning approach is by
extension approximate as well; however, it provides a fast and efficient way to se-
mantically compose spatial relations over text, enabling the generation of contextual
information that can assist an LLM in answering spatial questions more accurately.

5.4 SRB ‐ The Spatial Reasoning Benchmark

Evaluating the generation performance of a retrieval-augmented method such as
SpaRAGraph on real-world spatial data requires two components: (i) datasets that
are loaded and query-ready in an external database (in our case, RDF triplets that
have been generated and indexed in the graph), and (ii) a set of question–answer
pairs that either directly relate to the data in the database or are at least relevant to



it. Existing spatial reasoning benchmarks, such as StepGame [109], do not involve
real-world, globally positioned spatial entities. As a result, they are not well-suited
for evaluating RAG approaches, unless a small, per-question index is artificially con-
structed. However, such setups fall short of meaningfully testing a method’s scalability
and retrieval capabilities.

To thoroughly evaluate SpaRAGraph, we introduce three datasets comprising nat-
ural language spatial questions based on real-world geographic divisions in the United
States, specifically States, Counties, and ZIP Codes (hereafter referred to as Zipcodes).
These questions evaluate topological relationships to benchmark methods that en-
hance spatial inference in large language models. The three datasets test binary, mul-
ticlass, and multilabel classification tasks, respectively, using natural language texts
containing spatial knowledge.

Our generated benchmarking datasets comprise semantically meaningful ques-
tions (and answers), which are produced from raw spatial data. Specifically, the
questions focus on the relative locations of geographic divisions within the United
States, such as states and counties. Each dataset contains 1,000 questions of the same
type (Yes/No, Single-Choice, or Multi-Choice) and includes the correct answers for
training and evaluation purposes. Table 5.2 summarizes these question types along
with an example for each case.

5.4.1 Source Data

We used the TIGER 2015 real-world datasets [51] for U.S. States (50 entities), Coun-
ties (3,225 entities), and Zipcodes (33,144 entities) as the foundation for generating
our spatial questions. Figure 5.10 presents example entities from these datasets to
illustrate the relative scale of the different geographic divisions. All entities have non-
overlapping areas within the same type (e.g., State borders do not intersect with other
States), as these geographic divisions are defined by official geopolitical boundaries
established by governmental authorities. In the United States, such boundaries are
determined and maintained by entities like the U.S. Census Bureau and state legisla-
tures, ensuring that units like Zipcodes, Counties, and States are usually hierarchically
ordered and divisions of the same type are mutually exclusive in area.



Table 5.2: Overview of the different question types in the dataset, each illustrated
with an example.

Type Example Question Example Answer(s)
Yes/No Is Zipcode 62546 northeast of Zipcode 62560? yes

Radio Select exactly one option (a-e) that best de-
scribes the relationship of Douglas County
Washington in relation to Zipcode 98848 in
terms of geography. Options: a. contains b. ad-
jacent to and northwest of c. adjacent to and
north of d. southeast of e. none of the above

e

Checkbox Select all options that are adjacent to and west
of The State of Illinois? You may choose one
or more options. Options: a. Zipcode 47993 b.
Zipcode 47991 c. Zipcode 63782 d. Zipcode
62324 e. None of the above

a,b

(a) The State of California and its Counties (b) Santa Clara County, CA and its Zipcodes

Figure 5.10: Illustrative example showing the State of California and its Counties (a),
with a focus on the Zipcodes within Santa Clara County, CA (b), to highlight the
relative scale of the geographic divisions in our source data. (Visualized on QGIS
[2].)



Spatial Data RDF triplets

<Zipcode 16650> <west of> <Zipcode 16689>Longitude Latitude
41.13009945 -73.70991433

41.13018385 -73.70989947

41.13043715 -73.70985008

Spatial Question

“Is Zipcode 16650 east of Zipcode 16689?”

Figure 5.11: Overview of our pipeline for generating spatial questions from raw geo-
graphic data. The process involves calculating spatial relationships and transforming
them into RDF triplets using SpaTex. Then, structured yes/no, single-choice, and
multiple-choice questions are randomly generated from the set of RDF triplets.

5.4.2 Construction

To generate semantically meaningful questions grounded in the data stored in our
database, we leverage the same set of RDF triples produced by SpaTex during SpaRA-
Graph’s pre-processing phase. From these triplets, we automatically generate ran-
domized natural language questions tailored to binary, multiclass, and multilabel
classification tasks, all framed as question–answer (QA) pairs. An overview of this
process is shown in Figure 5.11. The first step in the pipeline (transforming spatial
data into RDF triplets) is performed by SpaTex.

5.4.2.1 Yes/No ‐ Binary Classification

Figure 5.12 illustrates the generation process of questions with Yes/No answers. For
a randomly selected triplet out of the available ones (e.g., the leftmost box in Fig-
ure 5.12), we assign a Yes/No answer with 50-50 chance. For questions with a positive
answer, we simply transform the RDF triplet in the form of question. For example,
the triplet <Santa Clara County California> <south> <Alameda County, California>
becomes the question: Is Santa Clara County, California south of Alameda County, Cali-
fornia? For generating questions with a negative answer, we retain the same entities
but alter the relation to its semantic opposite. In the case of cardinal directions, we
use the inverse (e.g., ‘north’ becomes ‘south’, ‘southwest’ becomes ‘northeast’). For
topological relations, we replace each with its logical counterpart. For example, ‘con-
tains’ becomes ‘is inside of’ and vice versa. This approach ensures that the resulting
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Figure 5.12: Example of Yes/No random question generation from a randomly sam-
pled RDF triplet. The correct answer is indicated with a bolded boundary.

question is definitely false while preserving grammatical and semantic coherence. The
phrasing of the questions is rule-based, ensuring that all questions follow a consistent
syntactic structure.

5.4.2.2 Radio ‐ Multiclass Classification

To generate multiple-choice questions, we begin by randomly sampling a triplet from
the available dataset. Each question includes five answer options, labeled (a) through
(e), with only one being correct based on the sampled triplet. Option (e) is always
reserved for ‘none of the above’, allowing for cases where the correct answer is
intentionally excluded from the listed options.

We introduce such cases with a 20% probability. In these instances, four incorrect
relations are randomly selected with equal probability from the available pool (ex-
cluding the correct one), shuffled, and assigned to options (a) through (d), making
(e) the correct answer. In the remaining 80% of the cases, where the correct relation
is included, we randomly select three incorrect relations (excluding the correct one),
shuffle them along with the correct relation, and assign them to options (a) through
(d), with (e) remaining as ‘none of the above’. This approach ensures that the correct
answer may appear in any of the five options.

The phrasing of Radio questions is always in the following format: Select exactly one
option (a-e) that best describes the relationship of <subject> in relation to <object> in terms of
geography. Options: a. <relation1> b. <relation2> c. <relation3> d. <relation4> e. none
of the above. In this format, the instruction is embedded within the question itself,
while the answer choices are presented separately, with exactly one correct option
among (a) through (e).
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Figure 5.13: Radio (single-choice) random question generation from a randomly se-
lected RDF triplet. The correct answer is indicated with a bolded boundary.

5.4.2.3 Checkbox ‐ Multilabel Classification

For checkbox queries, we first construct a relation map for each subject entity before
sampling a random triplet. Specifically, given an RDF triplet <subject> <predicate>
<object>, we identify all objects in the dataset that share the same relation predicate
with the subject. This results in a grouped set of related entities per relation, making
it easier to identify and use them as multi-label answer options.

Next, we sample a random triplet and use the relation map to select a random
relation for the triplet’s subject, along with all objects that share that relation with the
subject. This set forms the pool of correct answer options for the query. To construct
the incorrect options, we gather all other objects that are related to the same subject
via a different relation. These objects serve as distractors, as they do not satisfy the
target relation specified in the sampled triplet.

We then randomly determine the number of correct answers c to include in the
question, selecting between 0 and 4 options from the pool of correct entities. If the pool
contains fewer than c entities, c is reduced incrementally until sampling is possible.
The pool is guaranteed to contain at least one entity; the object of the RDF triple that
initially introduced the target relation into the pool.

The remaining options are filled with randomly chosen distractors from the in-
correct set, and all answer choices are shuffled. Option (e) is always ‘none of the
above’, enabling the inclusion of questions with no correct answer. For example, Fig-
ure 5.14 illustrates a case in which an entity (Zipcode 16650) appears as the subject



<Zipcode 16650 
<west> 

<Zipcode 16689>

Select all options that are west of 
Zipcode 16650. You may choose 

one or more options.
80% to include any correct 
answer(s)

20% chance to not include 
a correct answer

a. Zipcode 15533

b. Zipcode 16664

c. Zipcode 16689

d. Zipcode 16621

e. none of the above

Options

<Zipcode 16650> 
<west> 

<Zipcode 16694>

50% chance for one 
correct answer

50% chance for two 
correct answers

RDF triplets Question

a. Zipcode 15533

b. Zipcode 16664

c. Zipcode 16689

d. Zipcode 16694

e. none of the above

Options
a. Zipcode 15533

b. Zipcode 16664

c. Zipcode 16621

d. Zipcode 16633

e. none of the above

Options

Figure 5.14: Checkbox (multiple-choice) random question generation from all triplets
regarding a randomly selected entity (Zipcode 16650). The correct answers are shown
with a boundary.

in two triplets involving the west relation. Based on these triplets, a checkbox query
is randomly generated to include zero, one, or both of the correct objects among the
answer options.

5.5 Experimental Evaluation

Question Answering (QA) To assess the performance of SpaRAGraph, we evaluate
it on binary, multiclass, and multilabel classification tasks using SRB, introduced in
Section 5.4. For each model, we run every question three times and retain the most
representative response, as smaller models often produce varied outputs across runs.
Evaluating the spatial inference capabilities of SpaRAGraph on open-ended, complex
spatial questions is inherently challenging, as it would require textual ground truth
annotations and expert evaluators to assess the correctness of generated responses.
To date, no evaluation framework has been established with proven effectiveness for
open-ended spatial reasoning tasks. Additionally, the StepGame benchmark [108] is
comprised of randomly generated, locally-scoped synthetic entities, which prevents
the use of a global index (such as our RDF graph) for capturing spatial relations at a
broader, global level. Moreover, StepGame focuses solely on multilabel classification.



Table 5.3: Breakdown of question datasets by type of entities referenced in questions.

States only Counties only Zipcodes only State‐County State‐Zipcode Zipcode‐County

Yes/No N/A 3.5% 56.2% 0.8% 9.6% 28.0%

Radio 0.1% 5.7% 55.0% 1.3% 9.8% 27.1%

Checkbox 12.4% 35.6% 50.5% N/A N/A N/A

Hence, SRB provides a practical foundation for preliminary yet detailed evaluation,
focusing on structured but non-trivial tasks such as binary, multiclass, and multilabel
classification over real-world ontologies.
Subject Entities States in the U.S. cover much larger areas than Counties or Zipcodes,
and their names are more widely recognized beyond local contexts. Consequently,
they are more likely to be referenced in bibliographic sources, online content, or
other types of text. Such widely available geographic information increases the like-
lihood that topological relationships between states appeared in the documents used
to train certain foundation models. Table 5.3 breaks down the datasets by the types
of entities referenced in the questions. Yes/No and Radio questions always involve a
relation between two entities (which may be of the same or different types), whereas
Checkbox questions refer to a single entity (see Figures 5.12-5.14). Additionally, ap-
proximately half of the questions in each dataset pertain to Zipcodes, which is due to
the uniform sampling from the source data to generate the questions, which comprise
a significantly higher number of Zipcodes (33,144) compared to Counties (3,225) or
States (50).
Embeddings & Indexing We implement SpaRAGraph in Python 3.9. All RDF-
related operations such as reading, writing, indexing the graph and path finding,
are handled using the RDFLib library. To embed both the RDF graph’s node labels
and the extracted entities from user questions, we employ Sentence Transformers
[137], specifically the all-MiniLM-L6-v2 model. For approximate k-nearest neighbors
(akNN) search over these embeddings, we use FAISS [136] for efficient indexing and
similarity-based querying.
Models & Setup In our experiments, we test the models shown in Table 5.4 employed
with and without SpaRAGraph. All our experiments were conducted single-threaded
on a machine with Ubuntu 20.04 OS, 64GB of memory and an Intel Core i9 3.60GHz
processor. The models were loaded in an NVIDIA GeForce RTX 3060 with 12GB of
memory.



Table 5.4: The models that we tested on SpaRAGraph.

Model # of Parameters Quantization
meta-llama/Llama3.1-8B-Instruct [138] 8B 4 bits

mistralai/Mistral-7B-Instruct [139] 7B 4 bits

Qwen/Qwen2.5-7B-Instruct [140] 7B 8 bits

To ensure statistical reliability, all generation experiments were conducted three
times, with the reported scores representing the average across these runs. The total
execution times for running each dataset once with and without SpaRAGraph is
shown in Table 5.5. Notably, the task complexity affects the total execution time,
as simpler tasks such as Yes/No questions are processed more quickly, while more
complex formats like Radio and Checkbox questions require longer inference times.
Using SpaRAGraph introduces a time overhead of approximately 6% to 29%. This
increase is partly due to the RAG process (which includes the NER, node matching,
graph traversal, and context generation) and partly due to longer generation times
caused by the expanded prompt size.

Most individual components in SpaRAGraph can be independently optimized,
further enhancing overall performance thanks to its highly modular architecture. For
instance, incorporating state-of-the-art graph indexes and path traversal algorithms
can significantly reduce the time required for context generation. Moreover, both
accuracy and efficiency can be improved by integrating more advanced NER or simi-
larity search techniques. Ultimately, the primary bottleneck in the pipeline tends to be
the model’s response generation, rather than any of SpaRAGraph’s internal modules.

5.5.1 SpaRAGraph Generation Evaluation

To evaluate model performance across the three classification tasks, we apply task-
appropriate metrics. For binary (Yes/No) questions, we report Precision (P), Recall (R),
and F1 score. For multiclass (Radio) questions, where only one option is correct, we
use macro-averaged Precision, Recall, and F1 score to account for class imbalance. For
multilabel (Checkbox) questions, we adopt a sample-based evaluation: each question
is treated as a separate sample, and Precision, Recall, and F1 score are computed
by comparing the predicted set of labels to the ground truth for that sample. These
metrics are then averaged across all samples, allowing us to assess how accurately



Table 5.5: Comparison of models’ average execution time after three runs, in seconds
± the standard error of the mean rounded up, on the Spatial Reasoning Benchmark,
with and without SpaRAGraph in zero-shot setting.

Model Yes/No (✓/✗) Radio (●) Checkbox [x]

Llama-3.1-8B-
Instruct

248±2 286±4 434±4

+ SpaRAGraph 278±2 328±2 473±1

Mistral-7B-
Instruct

315±1 360±1 509±1

+ SpaRAGraph 334±2 429±1 655±1

Qwen2.5-7B-
Instruct

316±1 328±4 461±2

+ SpaRAGraph 351±1 381±3 544±5

the model predicts multiple relevant labels per question, while also capturing partial
correctness. Model generation temperature was set to 0.7 across all runs.

5.5.1.1 Effectiveness

We experimentally demonstrate the effectiveness of SpaRAGraph on all models by
comparing its response accuracy across all three tasks to the accuracy of the same
models when used out-of-the-box, in a zero-shot setting. Table 5.6 summarizes the
performance of all evaluated models across the three tasks, highlighting the significant
improvements achieved when augmented with SpaRAGraph.

In particular, all models exhibit the most substantial gains on the Yes/No (bi-
nary) classification task achieving near-perfect F1 scores compared to their stan-
dalone performance, which ranges from 35% to 61%. In Radio questions, which pose
a greater challenge for LLMs than binary (Yes/No) queries due to their multi-class,
single-answer nature, the improvements introduced by SpaRAGraph are great for
both Llama-3.1-8B and Qwen2.5-7B. However, Mistral-7B continues to struggle even
when assisted by SpaRAGraph, suggesting that the increased complexity of selecting
a single correct option among several may exceed its reasoning capabilities, despite
the additional context. A similar trend is observed in Checkbox questions, where



Table 5.6: Performance comparison of models on the Spatial Reasoning Benchmark,
with and without SpaRAGraph in zero-shot setting. The scores (%) are the averages
across three different response generation cycles and the standard error of the mean
across all scores does not exceed 1%.

Yes/No (✓/✗) Radio (●) Checkbox [x]
Model P R F1 macro-P macro-R macro-F1 sample-P sample-R sample-F1

Llama-3.1-8B-
Instruct

50 80 61 23 21 17 24 50 30

+ SpaRAGraph 94 98 96 73 70 70 44 68 51

Mistral-7B-
Instruct

52 50 51 23 21 14 24 45 29

+ SpaRAGraph 93 98 96 57 34 31 30 58 37

Qwen2.5-7B-
Instruct

83 22 35 27 27 26 34 50 39

+ SpaRAGraph 100 97 98 83 82 76 72 85 76

the improvements from SpaRAGraph are somewhat smaller but present. Overall,
Qwen2.5-7B consistently outperforms the other models and has the highest perfor-
mance gains when employed with SpaRAGraph, highlighting the effectiveness of the
generated context in guiding its responses more accurately.

5.5.1.2 Zero‐ vs Few‐shot

We evaluated SpaRAGraph under zero-shot, one-shot, two-shot, and three-shot set-
tings using prompts with static examples (shots). Due to the nature of our tasks and
the inherent structure of spatial relations, these examples do not function as context
in the conventional sense, meaning that they lack factual information about the spe-
cific entities involved in the test queries. Instead, the examples are intended to help
models infer relational patterns, such as recognizing inverse spatial relationships. For
instance, a static example might be: “Entity A is south of Entity B. Where is B relative
to A? // B is north of A.” Figure 5.15 illustrates the limited benefits (that worsen
as the number of examples increases) which few-shot learning brings when com-
bined with SpaRAGraph. While static examples can occasionally guide the models
toward generating correct responses, they generally lack the contextual grounding
that SpaRAGraph provides. In many cases, these examples confuse the model more
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Figure 5.15: F1, macro-F1 and sample-F1 scores (Y axis) of each model for Yes/No,
Radio and Checkbox questions, respectively, in k-shot settings (k ∈ [0, 3]).

than they help. We omit results from few-shot learning with randomly selected ex-
amples, as these are almost sure to introduce irrelevant information to each question,
further impairing model performance.

In general, SpaRAGraph is specifically designed to be effective with out-of-the-
box, untuned models operating in a zero-shot setting. Its structured guidance and
contextual grounding are sufficient to elicit accurate and relevant responses from the
model without the need for additional examples. As such, few-shot learning becomes
unnecessary, as SpaRAGraph already provides the essential task understanding and
relational context that examples would otherwise aim to convey. However, as spatial



questions grow more complex, few-shot learning may offer benefits by guiding the
model on how to reason with the generated context.

5.5.2 Retrieval Accuracy

SpaRAGraph’s retrieval accuracy primarily depends on two factors: a) the effective-
ness of NER, i.e., extracting all relevant entities from a prompt, and b) the accuracy
of matching these entities to their corresponding nodes in the graph via similarity
search. For NER, we use spaCy, which supports custom rule-based entity extraction
tailored to the specific characteristics of the data. For similarity search, we lever-
age FAISS, a library known for its high-performance and accurate vector similarity
search, enabling fast and precise entity-node matching in the graph. The tasks of
accurately extracting entities from text and identifying the most similar nodes in the
graph are orthogonal to SpaRAGraph’s core functions of path traversal and context
generation. Therefore, state-of-the-art solutions (such as spaCy for NER or FAISS for
similarity search) can be integrated to minimize retrieval inaccuracies without inter-
fering with the framework’s primary operations. This compartmentalization allows
for easier tuning of the various components in SpaRAGraph.

To thoroughly evaluate SpaRAGraph on retrieval accuracy, we employ three key
metrics:

• Mean Reciprocal Rank (MRR) – This metric assesses the rank of the ground
truth (i.e., the correct entities) within the list of retrieved entities. It is calcu-
lated as the reciprocal of the rank of the first correct entity, averaged across all
questions.

• Full Match Rate (FMR) – This measures the percentage of prompts for which
all related entities were correctly retrieved, with no omissions.

• Precision – This reflects the proportion of retrieved entities that are correct,
indicating the accuracy of the results with respect to the entities relevant to
each prompt.

Table 5.7 presents the performance of SpaRAGraph in accurately retrieving the
target entities used for graph traversal across each dataset in the SRB. SpaRAGraph
achieves near-perfect scores in MRR, FMR, and Precision across all datasets, demon-
strating robust entity matching performance, even in scenarios where entities have



Dataset MRR FMR Precision
Yes/No 0.99 0.97 0.99

Radio 1.00 0.98 0.99

Checkbox 1.00 0.97 0.99

Table 5.7: SpaRAGraph’s retrieval accuracy expressed through its MRR, FMR (per-
centage of prompts that had all their entities retrieved correctly) and Precision (per-
centage of all retrieved entities that are correct for their respective prompts). Metrics
are shown per individual dataset, as Yes/No and Radio questions always regard two
entities each, whilst SRB’s Checkbox questions always pertain five entities.

highly similar names (e.g., Zipcode 00951 vs. Zipcode 00952). The very few retrieval
errors observed typically involve such edge cases. For instance, in questions involv-
ing counties in West Virginia, the entity recognizer (spaCy) may include the state
name alongside county names, resulting in additional graph paths being explored
and introducing noise into the generated context. Even these few issues, however,
could be easily mitigated through refinements, e.g., calibrating spaCy or adopting
more standardized naming conventions for RDF subjects and graph nodes.

Optimizing NER and entity-to-node similarity search is beyond the scope of this
work. Nonetheless, existing state-of-the-art solutions for both tasks are readily com-
patible with SpaRAGraph and can be integrated to further enhance its performance.

5.6 Conclusions

This chapter introduced SpaRAGraph, a novel approach for enhancing the ability of
LLMs to answer spatial queries using RAG. Our method is applicable to a wide range
of spatial data, including existing RDF datasets, as long as their predicate transitions
can be represented using a transition matrix or a suitable algebraic framework. Our
experimental analysis shows that SpaRAGraph improves the response generation of
three LLMs for spatial questions by 35-63 points (47 average) in binary, 17-53 points
(40 average) in multiclass and 8-37 points (23 average) in multilabel classification
tasks.

We also introduced the first spatial reasoning datasets, along with a benchmark
designed to evaluate model performance on binary, multiclass, and multilabel clas-



sification tasks involving spatial questions. Our datasets are grounded in accurate,
real-world topological relationships among States, Counties, and Zipcodes in the U.S.,
enabling robust evaluation of spatial reasoning capabilities in large language models
in both RAG and non-RAG scenarios.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of Contributions

6.2 Directions for Future Work

In conclusion, we present a summary of this dissertation’s most significant contribu-
tions and outline potential directions for future work.

6.1 Summary of Contributions

In this dissertation, we studied the challenges of managing complex, non-point data
types such as high-complexity polygons. The goal was to design new techniques of
indexing, approximating, evaluating and storing such geometries to improve spatial
query efficiency and performance. At the same time, we focused on the scalability
of our approaches, both vertically and horizontally in distributed spatial data man-
agement environments, as well as on a per-object basis by reducing processing costs
as shapes grew more complex. Additionally, we explored how these techniques can
be applied both in traditional spatial DBMS scenarios and in RAG mechanisms to
enhance LLMs’ spatial reasoning capabilities.
Spatial Joins with Complex Geometries In the first part of this thesis, we focused
on spatial joins between complex geometries, which are inherently computationally
expensive. To address this, we proposed a new spatial approximation technique, along
with its extended version (Raster Intervals and APRIL), that can be used during query
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processing to (i) avoid direct computation on geometries, (ii) detect results and non-
results early, and (iii) minimize memory requirements, enabling their practical use
in real-world spatial DBMS. Additionally, we proved how these approximations can
support multiple topological predicates in spatial joins, as well as specialized cross-
type queries such as polygon–linestring joins.
Scalable Spatial Data Management In the second part of this thesis, we designed a
novel distributed spatial data management framework that integrates our proposed
techniques. We studied the challenges of achieving scalable spatial data management,
focusing on minimizing inter-node communication and data distribution costs, while
ensuring that our single-node strategies can be parallelized to fully exploit each ma-
chine’s resources (threads, cores, etc.). Our system supports all major spatial data
and query types and outperforms similar state-of-the-art frameworks in both perfor-
mance, memory requirements and usability.
Spatial Reasoning using RAG In the last part of this thesis, we explored how topo-
logical relations combined with RAG can be used to improve and guide an LLM’s
spatial reasoning on domain-specific knowledge at inference time. We combined mod-
ern techniques (NER, graph indexing, vector similarity search, etc.) with our spatial
data management methods to generate text that captures meaningful spatial relation-
ships between entities and to automatically provide context relevant to a user’s spatial
query to the LLM, thereby guiding the model’s response with factual data in a form
it can readily comprehend.

In summary, this dissertation demonstrates how spatial approximations can make
spatial data management scalable, with proven potential for integration into real-
world spatial DBMS to enhance performance. We showed that efficient and accurate
detection of topological relationships in spatial data has broad applicability, and we
presented methods for integrating such techniques into distributed environments, as
well as coupling them with non-spatial indexes (graphs, vectors) for LLM-specific use
cases. Together, these contributions underscore the growing importance of modern,
scalable spatial data management in meeting ever-increasing demands.

6.2 Directions for Future Work

In the future, we will explore the effectiveness of approximate join evaluation ac-
cording with the recent trend [25]. Additionally, we plan to investigate further the



problem of interval join order optimization and explore the effectiveness of APRIL
for 3D objects (e.g., polytopes). We also aim to investigate integrating APRIL into a
big distributed spatial database management system, such as Apache Sedona, as well
as an open-source spatial database system, such as PostGIS and leverage GPUs for
parallelizing both the construction and the evaluation of APRIL.

Regarding topological relations, we plan to integrate our method into existing link
discovery frameworks such as Silk [141] to enable faster user-defined spatial link
generation, contributing to the expansion of geospatially linked data available online.
Additionally, implementing our approach in open-source spatial DBMSs (e.g., PostGIS
[43]) could enhance the performance of topological relation queries, and, in turn the
usability of systems and applications that handle complex spatial data and, in turn,
improve the usability of systems and applications that handle complex spatial data.

For Hecatoncheir to be considered a full-scale spatial data management system,
it must support (i) cloud deployment, (ii) fault tolerance, and (iii) security. These
represent the most important directions for future work on the system. While some of
these challenges could be addressed using robust, publicly available tools for resource
management, allocation, and load balancing, the overarching goal of Hecatoncheir is
to remain a self-contained framework with minimal installation requirements and
no external dependencies. Therefore, it requires specialized, dedicated mechanisms
to provide these features while remaining lightweight and independent.

We also plan to integrate a wider range of indexing techniques, particularly for
data assignment to nodes. For example, QuadTrees and Adaptive Grids can help better
balance non-uniform data distributions across a finite number of nodes. Furthermore,
certain query processing mechanisms in Hecatoncheir such as kNN and distance join
workflows, can be further parallelized and made more asynchronous between Workers
and the Host, enabling faster performance and reduced downtime.

In addition, we aim to introduce more user-oriented features, including broader
support for cross-type query combinations, user-defined functions (UDFs), and SQL
support. These enhancements will allow users to define and execute more complex
queries, moving Hecatoncheir closer to a fully featured spatial DBMS.

Finally, the ultimate goal of our work on SpaRAGraph in LLMs is to evaluate
models on open-ended spatial reasoning tasks, allowing evaluators to assess model
predictions against textual ground truths while examining the evaluators’ own ef-
fectiveness and accuracy. We also plan to expand our datasets to include global



coverage and incorporate additional entity types such as lakes, parks and rivers. This
will increase both the diversity and complexity of spatial relationships, enabling more
rigorous evaluation of spatial inference across varied data types.
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