

Adaptive Indexing for Complex Data

Konstantinos Lampropoulos

P h . D . D i s s e r t a t i o n

– ♦ –

Ioannina, April 2025

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF IOANNINA

Adaptive Indexing for Complex Data

A Dissertation

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Konstantinos Lampropoulos

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina

School of Engineering

Ioannina 2025

Advisory Committee:

• Nikos Mamoulis, Professor, Department of Computer Science and Engineering,
University of Ioannina (Advisor)

• Panagiotis Vassiliadis, Professor, Department of Computer Science and Engi-
neering, University of Ioannina

• Panagiotis Bouros, Assistant Professor, Institute of Computer Science, Johannes
Gutenberg University Mainz (JGU)

Examining Committee:

• Nikos Mamoulis, Professor, Department of Computer Science and Engineering,
University of Ioannina (Advisor)

• Panagiotis Vassiliadis, Professor, Department of Computer Science and Engi-
neering, University of Ioannina

• Panagiotis Bouros, Assistant Professor, Institute of Computer Science, Johannes
Gutenberg University Mainz (JGU)

• Panagiotis Tsaparas, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Apostolos Zarras, Professor, Department of Computer Science and Engineering,
University of Ioannina

• Panagiotis Karras, Professor, Department of Computer Science, University of
Copenhagen

• George Papastefanatos, Principal Researcher, Information Management Systems
Institute (IMSI) of the Athena Research Center.

DEDICATION

To my beloved family

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my supervisor,
Nikos Mamoulis, for his unwavering support, guidance, and patience, as well as for
giving me the opportunity to work alongside him. I would also like to sincerely thank
Professor Panagiotis Karras for his valuable guidance and for sharing his expertise.
Additionally, I am grateful to my colleagues at both Ioannina and Aarhus for their
support and for contributing to a positive, collaborative work environment. Last but
not least, I want to express my deep appreciation to my family for their constant
encouragement and for motivating me to continue pushing toward my goals.

Konstantinos Lampropoulos
April 2025

TABLE OF CONTENTS

List of Figures iv

List of Tables vi

List of Algorithms vii

Abstract viii

Εκτεταμένη Περίληψη x

1 Introduction 1
1.1 Adaptive Indexing . 3
1.2 Adaptive indexing in high-dimensional metric spaces 4
1.3 Benchmarking Adaptive Multidimensional Indices 6
1.4 Updating an Adaptive Spatial Index . 7
1.5 Dissertation Outline . 9

2 Background & Related Work 11
2.1 Spatial Indices . 11
2.2 Indexing metric spaces . 14
2.3 Adaptive Indices . 17

2.3.1 Database Cracking . 17
2.3.2 Multidimensional Adaptive and Progressive indices 21

2.4 Learned Indices . 24

3 Adaptive Indexing in High‐Dimensional Metric Spaces 26
3.1 Definitions and Preliminaries . 27
3.2 The AV-tree . 29

3.2.1 Range Query . 29

i

3.2.2 Nearest-Neighbor Query . 32
3.2.3 Enhancements . 34
3.2.4 Cost Analysis . 39

3.3 Experimental Evaluation . 39
3.3.1 Experimental Settings . 40
3.3.2 Enhancements and parameter tuning 42
3.3.3 Comparative study . 44
3.3.4 Index Size . 49

3.4 Conclusions . 50

4 Benchmarking Adaptive Multidimensional Indices 55
4.1 Methods . 56

4.1.1 Non-adaptive indices . 56
4.1.2 Adaptive indices . 57
4.1.3 Hybrid indexing . 59

4.2 Experimental Setup . 60
4.2.1 Datasets . 60
4.2.2 Workloads . 62
4.2.3 Measures . 64
4.2.4 Tuning . 64

4.3 Experimental Evaluation . 65
4.3.1 Method Selection . 66
4.3.2 Effect of object location . 69
4.3.3 Effect of object size . 73
4.3.4 Effect of object cardinality . 75
4.3.5 Effect of query selectivity . 75
4.3.6 Effect of query pattern . 76
4.3.7 Effect of dimensionality . 77
4.3.8 Memory usage . 77

4.4 Conclusions & Findings . 78

5 Updating an Adaptive Spatial Index 85
5.1 GLIDE . 86

5.1.1 Design options . 86
5.1.2 Handling insertions . 87

ii

5.1.3 Deletions: complete self-driven 90
5.2 Reorganizing the static array . 90

5.2.1 The ripple strategy . 90
5.2.2 The sling strategy . 93
5.2.3 Sling with a crack . 93

5.3 Theoretical Analysis . 95
5.4 Experimental Analysis . 96

5.4.1 Implementation . 96
5.4.2 Experimental setup . 97
5.4.3 Workloads . 98
5.4.4 Parameter Tuning . 101
5.4.5 Ablation study . 101
5.4.6 Range workloads comparative study 105
5.4.7 kNN workloads comparative study 113

5.5 Conclusion . 114

6 Conclusions & Future Work 115
6.1 Summary of Contributions . 115
6.2 Directions for Future Work . 117

Bibliography 119

iii

LIST OF FIGURES

1.1 Adaptive indexing . 3
1.2 Spatial adaptive indexing. 8

2.1 Standard cracking example . 18
2.2 QUASII indexing strategy. 21
2.3 AKD indexing strategy. 22
2.4 AIR indexing strategy. 24

3.1 Four cases of overlap between qi and qj 28
3.2 Search-and-crack example . 33
3.3 Use of cached distances at AV-tree leaves 38
3.4 AV-tree versions, 100 selectivity range workload. 39
3.5 L1 distance, 100-selectivity range workload 43
3.6 Parameter Tuning, 100 selectivity range workload 43
3.7 Cost Breakdown . 45
3.8 Effect of dimensionality, MNIST data, 100-selectivity range workload,

per query (left) and cumulative time (right). 46
3.9 Effect of dimensionality, MNIST data, 20NN workload, per query (left)

and cumulative time (right). 47
3.10 Effect of selectivity, MNIST50 data, range workload, cumulative time. . 48
3.11 Effect of k, MNIST50 data, kNN workload, cumulative time. 49
3.12 Effect of query length, Words data, edit distance ϵ = 2, cumulative time. 50
3.13 Effect of ϵ, Words data, 6-letter-word queries, range workload, cumu-

lative time. 51
3.14 Effect of k, Words data, 6-letter-word kNN queries, cumulative time. . . 52
3.15 Effect of data size, Synthetic 100D data, 100-selectivity range workload,

cumulative time. 53

iv

3.16 Effect of data size, Synthetic 100D data & 20NN workload, cumulative
time. 54

4.1 Multidimensional GCI using AKD . 60
4.2 Distribution of point datasets . 62
4.3 Distribution of shape datasets . 63
4.4 Access pattern of synthetic workloads 63
4.5 Comparison of indices in each category (cumulative time), point data . 67
4.6 Comparison of indices in each category (cumulative time), shape data . 68
4.7 Effect of data distribution on 2D point datasets. 70
4.8 Effect of data distribution on 2D shapes. 72
4.9 Effect of object extent (2D shapes) . 74
4.10 Effect of data cardinality on point data 76
4.11 Effect of query selectivity, per query (left) and cumulative time (right). 81
4.12 Effect of query access pattern, uniform point data. 82
4.13 Effect of query access pattern, uniform shape data. 83
4.14 Effect of dimensionality, point data. 84

5.1 GLIDE design space. 87
5.2 Diffusion example, tree structure. 88
5.3 Ripple reorganisation strategy. 92
5.4 Sling reorganisation strategy: plain, with mediocre crack, with quantile

crack. 92
5.5 Ablation study on range workloads. 99
5.6 Average Leaf Areas on range workloads 100
5.7 ROADS dataset, Uniform range queries. 102
5.8 ROADS dataset, Zipfian range queries. 103
5.9 BUILDINGS dataset, Uniform range queries. 104
5.10 Uniform 2D shape data, uniform 75-25 range workload. 105
5.11 Uniform 2D point data, uniform 75-25 range workload. 106
5.12 Buildings data, 75-25 per query decoupled time. 109
5.13 Synthetic shape data, 75-20-05, deletion 110
5.14 Uniform 2D shape data, 75-25, sequential queries 112
5.15 TLC data, 75-25, Uniform queries. 112
5.16 MNIST data, 75-25, 20NN workload. 113

v

LIST OF TABLES

1.1 GLIDE vs. other ways to update a spatial index. 9

3.1 Datasets used in experiments . 40
3.2 AV-tree versions, MNIST50, post 1k range queries 42
3.3 Index size (MB) after 1K range queries. 49

4.1 Classification of tested methods . 58
4.2 Data sets . 61
4.3 Grid size tuning . 64
4.4 AIR, QUASII, AKD, RTree, and GPKD tuning 65
4.5 Irregular Grid and Quadtree tuning . 65
4.6 Extent of datasets with different object sizes. 73
4.7 Memory Usage (MB) . 78

5.1 Data sets. 98
5.2 Query workloads. 98
5.3 Parameters, uniform 2D shape data, 25% inserted. 100

vi

LIST OF ALGORITHMS

3.1 Distance-Range Search and Crack . 31
3.2 kNN Search and Crack . 34
3.3 Search and Cracking with Caching . 37
5.1 Gradual insertion . 89
5.2 Sling . 93
5.3 Crack Upon insertion . 94

vii

ABSTRACT

Konstantinos Lampropoulos, Ph.D., Department of Computer Science and Engineer-
ing, School of Engineering, University of Ioannina, Greece, 2025.
Adaptive Indexing for Complex Data.
Advisor: Nikos Mamoulis, Professor.

As data continues to grow in both volume and complexity, especially in the con-
text of multidimensional datasets, traditional indexing methods often fail to offer
efficient solutions for large-scale data exploration. Constructing an index upfront can
be costly and inefficient, particularly when query volumes are low or have unpre-
dictable patterns. Adaptive indexing addresses this challenge by dynamically building
and optimizing an index incrementally, following the query workload. This approach
ensures that the indexing structure evolves to meet the specific needs of the queries
being executed, reducing the cumulative cost of index construction and usage. It
proves particularly advantageous in environments where query workloads are small
or skewed. By building an index only on relevant data, adaptive indexing offers an
efficient, flexible solution for accelerating exploratory search operations without the
high cost of constructing and maintaining a pre-built index. This is especially benefi-
cial for data analysis tasks, where the goal is to query large, multidimensional datasets
stored in main memory efficiently.

Adaptive indexing has shown success for single-attribute or simpler data models;
however, it encounters challenges when applied to complex spatial data objects and
multidimensional range queries. Existing methods for multidimensional adaptive in-
dexing partition space into orthotopes (hyperrectangular units), but this approach
is highly ineffective in high-dimensional spaces. To address this limitation, we pro-
pose an alternative method for adaptive high-dimensional indexing that partitions the
space around query centers into units defined by hyperspheres, leveraging previously
computed distances, with the query centers serving as vantage points.

viii

Several adaptive indexing techniques have been developed for multidimensional
range queries, each with its own strengths and weaknesses. There is a lack of com-
parative studies that evaluates these methods under diverse conditions, including
different data types, distributions, sizes, and workload patterns. To fill this gap, we
have developed a comprehensive benchmark to rigorously evaluate the performance,
strengths, and weaknesses of existing multidimensional adaptive indexing methods
across various scenarios, providing valuable insights that complement previous re-
search. Additionally, we propose technical extensions that enhance the efficiency of
existing methods.

Finally, we note that existing spatial adaptive indexing methods are generally de-
signed for static data, available in a one-off manner. To date, no spatial adaptive index-
ing method can accommodate interleaved data updates during data exploration. We
propose an update mechanism for adaptive in-memory indices for multidimensional
objects, enabling the index to absorb data insertions as they arrive while maintaining
up-to-date accuracy. Our design integrates insertions into the structure progressively,
allowing them to gradually move down the hierarchy as they accumulate, while re-
organizing the underlying data array by moving and splitting partitions.

In summary, this dissertation provides a comprehensive exploration of adaptive
indexing techniques for multidimensional data, addressing key challenges in effi-
ciently handling large-scale data exploration and complex query workloads. It intro-
duces a novel approach to high-dimensional adaptive indexing by leveraging query
centers as vantage points, overcoming the limitations of traditional partitioning meth-
ods. Through a proposed benchmark, the dissertation systematically evaluates existing
multidimensional adaptive indexing techniques across various data types, distribu-
tions, and query patterns, offering valuable insights for optimizing indexing perfor-
mance. Furthermore, it presents a unique update mechanism that enables dynamic
adaptation to real-time data insertions and deletions, ensuring the index remains up
to date during data exploration. These contributions significantly advance the field of
adaptive indexing, providing practical solutions for managing and querying complex,
multidimensional data in dynamic environments.

ix

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Κωνσταντίνος Λαμπρόπουλος, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πο-
λυτεχνική Σχολή, Πανεπιστήμιο Ιωαννίνων, 2025.
Adaptive Indexing for Complex Data.
Επιβλέπων: Νίκος Μαμουλής, Καθηγητής.

Καθώς τα δεδομένα συνεχίζουν να μεγαλώνουν τόσο σε όγκο όσο και σε πο-
λυπλοκότητα, ειδικά όταν τα σύνολα δεδομένων είναι πολυδιάστατα, τα παραδο-
σιακά ευρετήρια συχνά αποτυγχάνουν να προσφέρουν αποτελεσματικές λύσεις για
εξερεύνηση δεδομένων μεγάλης κλίμακας. Η κατασκευή ενός ευρετηρίου μπορεί να
είναι δαπανηρή και αναποτελεσματική, ιδιαίτερα όταν ο όγκος των ερωτημάτων εί-
ναι μικρός ή όταν τα ερωτήματα δεν είναι ομοιόμορφα κατανεμημένα στο χώρο. Η
προσαρμοστική ευρετηρίαση (adaptive indexing) αντιμετωπίζει αυτή την πρόκληση
δημιουργώντας και επεκτείνωντας ένα ευρετήριο σταδιακά, προσαρμοσμένο στα
ερωτήματα. Αυτή η μέθοδος εξασφαλίζει ότι η δομή του ευρετηρίου εξελίσσεται για
να καλύψει τις ανάγκες των ερωτημάτων που αποτιμούνται, μειώνοντας το συνολικό
κόστος της κατασκευής και συντήρησης του. Αποδεικνύεται ιδιαίτερα αποδοτική σε
καταστάσεις όπου ο φόρτος των ερωτημάτων είναι μικρός ή ιδιόμορφος. Με τη δη-
μιουργία ενός ευρετηρίου μόνο σε σχετικά δεδομένα, η προσαρμοστική ευρετηρίαση
προσφέρει μια αποτελεσματική, ευέλικτη λύση ιδανική για εργασίες διερευνητικής
αναζήτησης αποφεύγοντας το υψηλό κόστος κατασκευής και διατήρησης ενός προ-
κατασκευασμένου ευρετηρίου. Αυτό είναι ιδιαίτερα ωφέλιμο στην ανάλυση δεδομέ-
νων, όπου σκοπός είναι η αναζήτηση σε μεγάλα, πολυδιάστατα σύνολα δεδομένων
που είναι αποθηκευμένα στην κύρια μνήμη.

Η προσαρμοστική αναζήτηση έχει αποδειχθεί πολύ αποδοτική για απλά δεδο-
μένα ή μιας διάστασης, ωστόσο αντιμετωπίζει προβλήματα όταν εφαρμόζεται σε
πολύπλοκα χωρικά δεδομένα και πολυδιάστατα ερωτήματα εύρους. Οι υπάρχου-
σες μέθοδοι για προσαρμοστική ευρετηρίαση πολυδιάστατων δεδομένων, χωρίζουν

x

το χώρο σε (υπερ)ορθογώνια, κάτι που είναι εξαιρετικά αναποτελεσματικό σε πο-
λυδιάστατους χώρους. Για να αντιμετωπίσουμε αυτό το πρόβλημα, προτείνουμε μια
μέθοδο για την προσαρμοστική ευρετηρίαση δεδομένων υψηλής διάστασης, η οποία
χωρίζει το χώρο γύρω από τα ερωτήματα χρησιμοποιώντας υπερ-σφαιρικές δομές
και αξιοποιεί προηγουμένως υπολογισμένες αποστάσεις.

Αρκετές τεχνικές προσαρμοστικής ευρετηρίασης έχουν αναπτυχθεί για πολυ-
διάστατα ερωτήματα εύρους, καθεμία με τα δικά της πλεονεκτήματα και μειονε-
κτήματα. Ωστόσο, δεν υπάρχει μια συγκριτική μελέτη που να αξιολογεί αυτές τις
μεθόδους υπο διαφορετικές συνθήκες, συμπεριλαμβανομένων δεδομένων διαφορετι-
κού τύπου, κατανομής, μεγέθους και διαφορετικών ερωτημάτων. Για να καλύψουμε
αυτό το κενό, προτείνουμε μια ολοκληρωμένη μελέτη για την αξιολόγηση της από-
δοσης, των δυνατοτήτων και των αδυναμιών των υφιστάμενων προσαρμοστικών
ευρετηρίων για πολυδιάστατα δεδομένα σε ποικίλα σενάρια, παρέχοντας πολύτιμα
ευρήματα που συμπληρώνουν την προτερη έρευνα. Επιπλέον, προτείνουμε τεχνικές
επεκτάσεις που βελτιώνουν την αποτελεσματικότητα των υφιστάμενων μεθόδων.

Τέλος, παρατηρούμε ότι τα υπάρχοντα προσαρμοστικά ευρετήρια για χωρικά
δεδομένα είναι σχεδιασμένα για στατικά δεδομένα. Μέχρι σήμερα, κανένα τέτοιο
ευρετήριο δεν μπορεί να διαχειριστεί ενημερώσεις. Προτείνουμε ένα μηχανισμό που
επιτρέπει σε προσαρμοστικά ευρετήρια κύριας μνήμης για πολυδιάστατα δεδομένα
να δέχεται εισαγωγή δεδομένων διατηρώντας την ακρίβεια και αποτελεσματικότητά
του. Η σχεδίαση μας ενσωματώνει την εισαγωγή δεδομένων στη δομή προοδευτικά.
Παράλληλα η δομή αναδιοργανώνεται μετακινώντας και διαμερίζοντας τα δεδο-
μένα.

Συνοψίζοντας, αυτή η διατριβή παρέχει μια ολοκληρωμένη εξερεύνηση της προ-
σαρμοστικής ευρετηρίασης για πολυδιάστατα δεδομένα, αντιμετωπίζοντας σημα-
ντικές προκλήσεις για τον αποτελεσματικό χειρισμό δεδομένων μεγάλης κλίμακας
και σύνθετων ερωτημάτων. Επιπλέον, εισάγει μια νέα προσέγγιση για την ευρε-
τηρίαση δεδομένων υψηλής διάστασης χρησιμοποιώντας τα ερωτήματα ως σημεία
αναφοράς, ξεπερνώντας τους περιορισμούς των παραδοσιακών ευρετηρίων. Στη
συνέχεια, η διατριβή αξιολογεί συστηματικά τα υπάρχοντα προσαρμοστικά ευρετή-
ρια για πολυδιάστατα δεδομένα σε ένα ευρύ φάσμα δεδομένων και ερωτημάτων,
προσφέροντας σηματνικά ευρήματα για την βελτίωση της απόδοσης τους. Τέλος,
παρουσιάζει ένα μηχανισμό ενημερώσεων που επιτρέπει τη δυναμική προσαρμογή
του ευρετηρίου σε εισαγωγές και διαγραφές δεδομένων σε πραγματικό χρόνο, δια-

xi

σφαλίζοντας την αξιοπιστία και αποδοτικότητα του. Αυτές οι συνεισφορές, προά-
γουν τον τομέα της προσαρμοστικής ευρετηρίασης, παρέχοντας πρακτικές λύσεις
στη διαχείριση πολυδιάστατων δεδομένων και αναζήτηση σύνθετων ερωτημάτων σε
δυναμικά περιβάλλοντα.

xii

CHAPTER 1

INTRODUCTION

1.1 Adaptive Indexing

1.2 Adaptive indexing in high‐dimensional metric spaces

1.3 Benchmarking Adaptive Multidimensional Indices

1.4 Updating an Adaptive Spatial Index

1.5 Dissertation Outline

Data management is an essential component of modern computing, focusing on the
processes of collecting, storing, organizing, retrieving, and maintaining data in an
efficient and effective manner. As the volume and complexity of data increase across
various industries, ranging from healthcare to finance to social media, traditional
data management systems that rely on static and predefined structures are often
insufficient. These systems are typically designed for specific use cases and struggle
to meet the diverse and growing demands of modern data. Efficient data management
is essential for storing large datasets in a way that ensures fast and easy access, while
also maintaining consistency and minimizing redundancy. A key challenge in data
management lies in selecting the right methods for accessing and organizing data
to optimize both storage and retrieval times, particularly as queries become more
complex and diverse. As datasets grow larger and more varied, especially with the
rise of big data, traditional methods may no longer be sufficient. New approaches are
needed to ensure that data management remains responsive to ever-changing user
queries and evolving business requirements.

1

One such innovative approach to addressing the challenges of modern data man-
agement is adaptive indexing. Adaptive indexing is a dynamic technique that en-
hances the performance of databases by automatically adjusting the structure and
creation of indices based on query patterns and data access behaviors. Unlike tra-
ditional indexing methods, which require manual configuration and can become in-
efficient as data grows, adaptive indexing allows the system to continuously adapt
to the queries being executed and optimize the indexing strategy accordingly. This
self-tuning mechanism helps improve query performance, reduce unnecessary index
overhead, and ensure that data retrieval is fast and efficient, even as datasets become
larger and more complex. As a result, adaptive indexing is becoming an essential tool
for managing data in environments where the volume and diversity of queries are
constantly evolving.

Data accessing methods are the backbone of how systems interact with stored
data, and choosing the appropriate method has a significant impact on performance.
Various methods of data access exist, each suitable for different types of workloads.
For instance, methods like linear scanning, hashing, and tree-based structures are
commonly used for data retrieval. Linear scanning involves searching through data
sequentially, which works well for small datasets but can be inefficient as the size
of the dataset grows. Hashing, while providing fast access for certain types of data,
lacks flexibility when it comes to more complex queries. Tree-based structures, such
as B-trees or binary search trees, allow for efficient searching by organizing data
hierarchically. These structures help minimize the number of comparisons required
to find specific data elements, thus significantly improving performance.

Indexing transforms data retrieval from potentially slow, linear searches into
highly optimized queries that can return results almost instantaneously, even in large-
scale datasets. However, as data grows in complexity and the range of possible queries
expands, the upfront construction cost of pre-built indices does not pay off, especially
when queries are few or skewed. This is where more sophisticated indexing ap-
proaches, like adaptive indexing, come into play, as they allow systems to evolve
their structure in real-time based on actual usage patterns, thereby improving data
access efficiency and minimizing the cumulative cost of index construction and query
evaluation.

2

1.1 Adaptive Indexing

Adaptive indexing has been extensively studied in the database community since
2007 [1, 2]. Consider an unorganized column C of a relation, e.g., in a column
store [3, 4]. Adaptive indexing constructs an in-memory index for C progressively and
in response to range (or equality) queries along a single dimension or attribute [5].
Assume the first range query q1 seeks records r such that q1.low ≤ r.C < q1.high. An
adaptive index scans C to answer the query and also swaps its entries and divides it
into three segments; the first segment contains the values smaller than q1.low (at no
particular order), the second the query results, and the third the values greater than
or equal to q1.high. At the same time, a binary balanced search tree (e.g., an AVL
tree) is initialized with nodes q1.low and q1.high to index the trichotomy. Figure 1.1a
shows an example with q1.low = 17 and q1.high = 35. The array is first cracked via
one iteration of quicksort [6] using 17 as pivot. Elements are swapped accordingly
to create a binary tree rooted at 17, having as leaves array position ranges [0, 3]

and [4, 7]. Then, the tree is searched for 35, cracking the subarray on its right leaf
on 35, to gather all query results between the cracks, i.e., at positions 4 to 6. Each
subsequent query qi uses the tree to find the segments wherein qi.low and qi.high fall
and partitions these segments in-place to obtain the results of qi and expand the tree.

Cracking example
[22, 5, 8, 19, 3, 56, 33, 12]

crack using q1.low = 17

[12, 5, 8, 3, 19, 56, 33, 22]
17 ≥<

[0,3] [4,7]

crack using q1.high = 35

[12, 5, 8, 3, 19, 22, 33, 56]
17 ≥<

[0,3]

[7,7]

35 ≥<
[4,6]

(a) Cracking example

Motivation for cracking

cu
m

ul
at

iv
e

co
st

queries

linear scan

indexing + probing

adaptive indexing

101 102 103 104

(b) Cumulative cost

Figure 1.1: Adaptive indexing

Figure 1.1b illustrates the typical cumulative cost for processing a query sequence
by adaptive indexing vs. that of two alternatives: linearly scanning the unorganized
data column for each query and probing a bulk-loaded index for each query. Linear
scan is cheaper when a few queries are applied, while indexing fares well when the
queries are many, amortizing the construction cost. Adaptive indexing is costly for

3

the first few queries, which crack large data segments, yet settles to the per-query cost
of searching a fully built index. In effect, for medium query counts, its cumulative
cost is significantly lower compared to building an index in advance and probing it
for each query.

Adaptive indexing facilitates the exploration of large short-lived datasets that be-
come available in batches with not many, unpredictably distributed queries [7, 8, 9,
10]. For example, in meteorology and satellite imagery, data arrive in batches (e.g.,
snapshots of an entire area monitored by sensors or views of a big area of the globe),
each batch becoming obsolete when the next batch arrives. In such cases, building a
traditional, static index upfront with each batch arrival would delay query processing.
Besides, if the queries are relatively few or target limited areas of the search space, it
is not worthwhile to construct an index for the entire batch. When examining spatial
entities from satellite images, the workflow typically involves finding a region of in-
terest and zooming in to refined resolution. In effect, only a small portion of the data
is examined, rendering the building of an index for all entities superfluous.

1.2 Adaptive indexing in high‐dimensional metric spaces

Let O be a set of objects in a (high-dimensional) metric space. Given a query object q, a
distance bound ϵ, and a distance metric d(), a range similarity query seeks the objects o ∈
O for which d(q, o) ≤ ϵ. Similarly, given a positive integer k, a k-nearest-neighbor (kNN)
similarity query seeks k objects o ∈ O having smaller d(q, o) than all other objects in O.
Range and kNN similarity queries are routinely used in similarity-based search and
data mining tasks (e.g., clustering [11], NN classification and outlier detection [12])
for application domains including computer vision [13], information retrieval [14],
kNN search in spatial networks [15], and recommender systems [16].

We consider applications where data in a metric space are short-lived and a rela-
tively small number of queries is expected before the data become obsolete. For exam-
ple, satellite images that depict weather phenomena or other transient information are
periodically received and automatically converted to feature vectors appropriate for
similarity computations. Data scientists perform similarity search against the image
collection to detect phenomena. Such images become obsolete when the next batch
arrives, hence the number of queries applied on one batch is not expected to be large.

4

In such environments, building an index prior to query processing for each batch of
data is costly and may thus not be worthwhile. Instead, one may evaluate each query
directly on the raw feature vectors by linear scan.

Given the modern size of memories and the fact that we target applications where
the data are short-lived, hence not voluminous, we assume that the data are stored
in memory, like the majority of previous work in adaptive indexing [1, 17, 18]. For
example, a collection O of objects in a D-dimensional vector space can be stored in
a data array as a sequence of feature vectors ⟨oid, o1, o2, o3, . . . , oD⟩, where oid is the
identifier of object o ∈ O and oi is the value of the object in the i-th dimension
(feature). Let (q1, ϵ1) be the first (range) query. While linearly scanning the data array
to derive query results, we conduct object swaps to crack the array in two pieces:
one piece containing all objects that are query results and another all remaining
objects. At the same time, we initialize an adaptive vantage tree (AV-tree) with (q1, ϵ1)

as root. As new queries arrive, we compare them to past queries using the AV-tree,
and search only the parts of the array that may contain query results. Guided by
the triangle inequality, we avoid accessing irrelevant fragments of the array, while
introducing cracks and tree nodes corresponding to new queries. To prevent the tree
from becoming excessively large, we abide by a threshold θ for cracked pieces; if a
piece has fewer elements than θ, then it is fixed and not further cracked. Further, we
find that cracking based on the median distance of all data points in a piece rather
than the current query bound ϵi results in a much better index. In addition, in fixed
pieces we cache previously computed distances and exploit the sort order to achieve
an early termination of comparisons.

Contributions. We propose AV-tree, a method for adaptive high-dimensional in-
dexing that exploits previously computed distances, using query centers as vantage
points. Additionally, it is the first multidimensional adaptive index that supports kNN
queries. The AV-tree is not only applicable in vector spaces where, for example, an
Lp-norm distance (e.g., Euclidean distance) is used, but also in general metric spaces;
e.g., for indexing a collection O of strings to support similarity search based on edit
distance.

The contributions of the first chapter can be summarized as follows:

• We investigate, for the first time, the problem of building a distance-based mul-
tidimensional adaptive index.

5

• We define the AV-tree, an index that efficiently adapts to the query workload,
forming a unified solution for both distance range queries and kNN queries.

• We provide several enhancements on the AV-tree.

• We conduct an extensive experimental study, showing that the AV-tree behaves
as an ideal adaptive index should.

1.3 Benchmarking Adaptive Multidimensional Indices

In-memory adaptive indexing of multidimensional data has been an area of interest
for several years [19, 20, 18, 21, 22, 23, 24]. Cracking a multidimensional data space
is challenging, as dimensionality provides numerous partitioning options. Further-
more, objects in applications such as spatial databases, publish-subscribe systems, and
data stream management systems are themselves multidimensional ranges, adding to
the complexity of the ensuing indices. While 1D adaptive indices have reached a
maturity level already 10 years ago and have been extensively evaluated [25, 26],
multidimensional adaptive indexing is an active research area with several recent
developments [18, 21, 22] that have yet to be evaluated within the same framework.
Besides, ideas developed for one index (e.g., as in [21]) have not been tested on other
structures (e.g., those in [18]) and composite solutions for the 1D case [25] have not
been transferred and evaluated in the multidimensional case. Further, no practical
guideline exists for the selection of an appropriate method based on the data type
(points or ranges) and distribution. Lastly, the community currently lacks a testbed
for the development and evaluation of new methods.

Contributions. A previous experimental study on multidimensional adaptive in-
dices [27] compared QUASII [19] and AKD [28], the only available methods at the
time. Variations of these methods were also evaluated in [18]. However, the studies
in [27, 18] only target point data and do not consider hybrid schemes that combine
multidimensional partitioning with cracking, as in [25] for 1D data. A later study [21]
reevaluated state-of-the-art methods, yet focuses on low-dimensional spatial data. Be-
sides, an adaptive index for metric spaces [22] was not included in those studies. We
fill these gaps via the following contributions:

• We comprehensively evaluate existing multidimensional adaptive indices using

6

real and synthetic datasets and workloads of diverse (i) data types (point or box),
(ii) dimensionality, (iii) data distribution, (iv) size distribution (for boxes), (v)
query distribution, and (vi) query order. Thereby, we determine the superiority
of certain techniques within various areas of the problem space.

• We apply enhancements proposed for AIR [29] to AKD [18] to craft the Ad-
vanced AKD (AAKD).

• We implement the concept of Course Granular Index (CGI) [25] in multidimen-
sional spaces and evaluate its effectiveness.

• We devise and evaluate a range-query version of multidimensional distance-
based adaptive indexing, originally developed for radius and kNN queries [22].

• We propose an evaluation framework for multidimensional adaptive indexing,
including module and method implementations, real datasets, synthetic data
generation modules, and generators of query workloads.

1.4 Updating an Adaptive Spatial Index

Existing spatial adaptive indexing methods cater to static data made available in
an one-off manner. To date, no spatial adaptive indexing method can ingest data
updates interleaved with data exploration. An extension of database cracking [30]
provisionally stores newly inserted data in a log and triggers their insertion in the
data array only once they become relevant to a query by a rippling strategy that
recursively moves items from one array partition to the next, until it reaches the end
of the array or a piece not relevant to the query; in the latter case, it moves some
data to the log, to be reinserted in response to future queries. Deletions are also
materialized once they become relevant to a query, creating empty array positions
(holes) that are used whenever possible to accommodate insertions.

To our knowledge, no existing method handles updates intertwined with queries
on an adaptive spatial index. The challenge is that all data are packed in a single array,
so inserting a new object (e.g., object x) in a leaf would require fitting a new item in
a packed subarray (e.g., subarray [4..6] pointed by r2 in Figure 1.2b). Updates on
an adaptive index have only been treated in 1D in a rudimentary manner [30]. To fit

7

r1 r2 r3

a b g d e c h f i

a
b

c
d

e

f

g h

i

r1

r3

r2

[0..3] [4..6] [7..8]

x

insert(x)?

r1 r2 r3

[7..8]
x
TBI array

….

(a) MBRs and partitions (b) adaptive R-tree (c) GLIDE update techniques

a b g d f i e c h x

r1 r2 r3

[0..3] [4..8] [9..12]

Figure 1.2: Spatial adaptive indexing.

newly inserted data values relevant to a query in the partitioned 1D array, a rippling
strategy [30] repeatedly swaps data from one partition to the next, until it reaches a
partition outside the query range, whereupon it pushes some data into a temporary
log to make space space for the new items. Rippling is imposed by the total order
that the cracked array pieces should follow. However, in multidimensional indexing,
there is no requirement that the partitions follow a total order.

Table 1.1 positions GLIDE in relation to alternative ways to handle spatial data
subject to an unpredictable workload of queries and updates. Classic methods, such
as the R-tree and the Quad-tree, have an immense startup cost to construct the index
before processing a workload. In addition, updating a fully grown index is quite
expensive, yielding a high cumulative cost for construction and usage. An alternative,
denoted as SAI (Spatial Adaptive Index)+Scan, incrementally constructs an adaptive
spatial index on the initially unorganized array (as in previous work [21, 28, 19]),
while appending insertions at the end of a separate array, keeping them unorganized.
This alternative has low insertion cost, yet its query processing cost remains relatively
high throughout the workload, as initial queries apply on an unformed index and
later ones have to scan the unorganized inserted data. GLIDE confers the advantages
expected from an adaptive index, i.e., zero startup cost and decreasing query cost,
while also gradually ingesting insertions with consistently low cumulative cost.

In summary, we propose GLIDE, a versatile update management module appli-
cable to any tree-based multidimensional index built by adapting to queries [28, 19,
29, 22]. To design GLIDE, we consider eager vs. lazy and update-driven vs. query-
driven options for ingesting query-intertwined data updates into a single data array
of contiguous leaf buckets; we opt for a lightweight design that lets inserted data
objects gradually trickle down the index, provisionally residing at internal nodes at

8

Table 1.1: GLIDE vs. other ways to update a spatial index.

startup
cost

query cost
insertion
cost

cumulative
cost

robust-
ness

R/quad-tree v. high low medium high high
SAI+Scan zero high→high v. low high low

GLIDE zero high→low low low high

any level, as illustrated at the top of Figure 1.2(c). In case an array partition grows
too large, GLIDE moves a part to the array’s end, leveraging the flexibility to locate
data in the multidimensional case, while also introducing holes (i.e., empty slots) in
the array to efficiently accommodate future insertions, as illustrated at the bottom of
Figure 1.2(c). Our thorough experimental analysis shows that GLIDE robustly offers
superior overall performance across query-to-insertion ratios on real-world data sets.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2 we review related
work and present in detail the characteristics and weaknesses of existing methods.

In Chapter 3 we present the AV-tree, an adaptive index designed for similarity
search in high-dimensional metric spaces that exploits previously computed distances,
using query centers as vantage points. The AV-tree partitions the space around query
centers into units defined by hyperspheres that naturally adapt to the data distribu-
tion.

In Chapter 4, we present a comprehensive benchmark that thoroughly evalu-
ates the performance, strength, and limitations of existing multidimensional adaptive
indexing methods across diverse scenarios contributing valuable insights that com-
plement previous works. In addition, we suggest complementary technical extensions
that enhance the efficiency of existing methods.

In Chapter 5 we introduce GLIDE, a novel method that intertwines adaptive index-
ing and incremental updating of a spatial-object data set. GLIDE builds a hierarchical
spatial index incrementally in response to queries and also ingests updates judiciously
into it. We examine several design choices and settle for a variant that combines grad-
ual self-driven top-down insertions with query-driven indexing operations.

9

Finally, Chapter 6 summarizes the contributions of this dissertation and provides
a discussion about future work.

10

CHAPTER 2

BACKGROUND & RELATED WORK

2.1 Spatial Indices

2.2 Indexing metric spaces

2.3 Adaptive Indices

2.4 Learned Indices

2.1 Spatial Indices

Spatial indices are data structures specifically designed to optimize the querying and
retrieval of spatial data, making them crucial for efficiently handling large datasets in
applications involving geographic, image, or multidimensional data. These indices are
typically constructed ahead of time, before any query is executed, to speed up search
operations. They are designed to quickly locate data points or objects within a defined
spatial region, thereby reducing the computational cost of performing queries like
range queries or nearest neighbor searches. Rather than scanning the entire dataset
for each query, spatial indices enable targeted, efficient searches, which is especially
beneficial in applications dealing with large, complex datasets, such as Geographic
Information Systems (GIS), computer graphics, and spatial databases. In this section,
we will explore several popular prebuilt spatial indexing structures—R-trees, Quad-
trees, and k-d trees—that are commonly used for organizing and searching spatial
data efficiently.

11

The R-tree [31] is a dynamic, height-balanced tree data structure primarily used
for indexing spatial objects, such as points, lines, and polygons, in multi-dimensional
spaces. Unlike traditional B-trees [32], which are designed for indexing one-dimensional
data like numbers or strings, R-trees are specifically designed to index spatial data,
where objects can have multiple dimensions, such as two-dimensional data (e.g., lati-
tude and longitude) or three-dimensional data (e.g., x, y, and z coordinates). The key
idea behind the R-tree is to represent spatial objects by enclosing them in the small-
est bounding box that contains the entire object, known as the Minimum Bounding
Rectangle (MBR).

In an R-tree, each node contains a set of entries, and each entry consists of two
parts: a bounding box that encompasses a subset of spatial objects and a pointer to
the next level of the tree or the actual data. The root node is at the top level and
contains the broadest bounding boxes, while leaf nodes contain the actual spatial data
or references to the data.

One of the main advantages of an R-tree is its ability to efficiently perform spatial
queries, such as range queries (finding all objects within a specific area) and nearest
neighbor searches (finding the closest object to a given point). These types of queries
can be computationally expensive, especially in large datasets, but the hierarchical
structure of the R-tree reduces the search space by pruning irrelevant areas of the
data. This makes R-trees particularly suitable for applications that need to handle
large datasets, such as Geographic Information Systems (GIS), spatial databases, and
location-based services.

Additionally, R-trees are designed to be dynamic, allowing for efficient insertion,
deletion, and updates of spatial objects. However, the performance of R-trees can
degrade in certain scenarios due to inefficiencies in the node splitting process and
excessive overlap of Minimum Bounding Rectangles (MBRs), which can lead to poor
query performance. Specifically, suboptimal splits can result in high overlap between
MBRs, causing more nodes to be visited during range queries and nearest neighbor
searches. Furthermore, inefficient space utilization within the tree can lead to slower
searches and larger trees. To address these issues, variants of the R-tree, such as
the R*-tree [33], have been developed. The R*-tree introduces improved strategies
for node splitting, minimizing MBR overlap, and reinsertion of data to optimize tree
balance and performance, especially in large and dynamic datasets.

A Quad-tree [34] is a tree data structure commonly used for partitioning two-

12

dimensional spaces by recursively subdividing the space into four quadrants or re-
gions. It is particularly useful for spatial indexing and efficient querying of data points
in 2D spaces, such as geographical maps, images, or any data that can be represented
by spatial coordinates. In a quad-tree, each node represents a region of space, and
the tree recursively subdivides the region into four smaller, equally sized quadrants.
These quadrants are stored as child nodes, and this process continues until a certain
condition is met, such as when a node contains a specified maximum number of
objects or reaches a predefined level of depth.

Each node in a quad-tree holds data related to the spatial region it represents,
such as the objects located within that region or references to further subdivided
regions. The recursive division of the space enables efficient searching, insertion, and
deletion of spatial data. A key feature of the quad-tree is its ability to quickly prune
large portions of the search space, making it highly effective for spatial range queries,
nearest neighbor searches, and point location queries, where the goal is to find all
points within a certain area or the closest point to a given location.

Quad-trees are commonly used in applications such as geographic information
systems (GIS), computer graphics, image processing, and spatial databases. They are
especially effective in situations where the spatial data is sparse in some areas but
dense in others, as they allow the space to be divided more finely where necessary
while keeping the overall structure relatively simple.

A k-d tree [35] is a data structure used for organizing points in a k-dimensional
space, where k can be any number. It is a binary tree where each node represents
a point in the k-dimensional space, and the tree recursively partitions the space
into two halves at each level based on one of the dimensions. This makes k-d trees
particularly useful for multidimensional searching, such as range queries, nearest
neighbor searches, and other spatial queries that involve high-dimensional data.

In a k-d tree, each level of the tree corresponds to one of the dimensions in the k-
dimensional space. For example, in a 2D space (k=2), the first level of the tree might
split the points based on the x-coordinate, and the second level would split based on
the y-coordinate. At each level, the points are divided into two subsets: one subset
contains points that are less than the median value of the current dimension, and the
other subset contains points greater than the median value. This process continues
recursively, alternating dimensions at each level until the tree reaches a desired depth
or a stopping condition, such as having a small number of points at the leaf nodes.

13

The structure of the k-d tree allows for efficient searches, especially for queries
like nearest neighbor search, where the goal is to find the closest point(s) to a given
query point. The recursive partitioning allows for a search that quickly eliminates
large portions of the space that are irrelevant to the query, improving performance
significantly compared to a brute-force search.

Grid based indexing is commonly used to partition spatial data by dividing the
space into a regular, uniform grid of cells. Each spatial object is then assigned to
all cells that the object overlaps. By partitioning the data into small, manageable
regions, grid-based indexing helps improve the efficiency of spatial operations, such
as range queries, making them a popular choice due to their efficiency in searches
and updates [36, 37, 38]. Since, the space is divided into spatially disjoint regions,
objects that overlap with multiple partitions need to be replicated in each of them.
As a result, their performance can be hindered by requiring a secondary filter step to
avoid duplicate results, and they require more storage space. To address this issue,
a secondary partitioning approach has been proposed [39], which eliminates the
generation of duplicate results and, consequently, removes the need for a filtering
step. This method classifies objects within each partition into four categories based
on whether they start before or after the partition in each dimension. When a range
query is evaluated, only a subset of object classes in each partition is selected, ensuring
that the query results are free of duplicates.

2.2 Indexing metric spaces

Indexing high-dimensional spaces is a hard problem for two main reasons. First, due
to the curse of dimensionality [40], if data points are uniformly distributed, the prob-
ability that two points are too close or too far from each other is very low, rendering
similarity search mostly meaningless. However, in many real applications, data typ-
ically form clusters, so this predicament does not apply. Second, indices that divide
the data space into orthotopes (e.g., the R-tree [31], the KD-tree [35], etc.) do not
perform well, as they necessarily use only a limited number of dimensions,1 hence
orthotopes end up spanning the entire domain on most dimensions and do not sepa-

1Partitioning a D-dimensional space at least once in each dimension defines 2D partitions, which
are much more than the data points for large D (e.g., D = 100).

14

rate the objects well. Besides, such indices are only applicable in vector spaces and are
mostly suited for hyperrectangular range queries rather than distance-based search.
In low-dimensional spaces, rectangular range queries are often sufficient to find the
relevant data points, as the data are more easily separated by simple boundary condi-
tions. However, in high-dimensional spaces, this type of query becomes less effective.
Instead of looking for points within fixed boundaries, we typically perform similarity
searches based on distance metrics, where the notion of proximity becomes much
more complex. As the number of dimensions increases, the notion of a ”rectangu-
lar” region becomes less meaningful, and the structure of the data makes traditional
range queries increasingly impractical for capturing the true relationships between
data points.

Ref. [41] (see also [42]) is a recent comprehensive survey of existing indices for
exact similarity search in metric spaces. Based on this study, pivot-based indices are the
most effective ones. These methods select few vantage points (a.k.a. pivots, landmarks,
representatives), partition the data space based on them, and use the vantage points
to prune the search space, guided by the triangle inequality. Pivot-based indices
are applicable even when distances are not computed using point coordinates, but
in arbitrary metric spaces (e.g., as shortest paths in graphs [43]). Besides being very
efficient, pivot-based indices provide exact and explainable results to similarity queries,
which is imperative in application domains like public safety [41], bioinformatics [44],
and computer forensics [45]. Hence, performing exact search in the original metric
space may be preferable over solutions that transform the data to a vector space using
machine-learning techniques (e.g., embedding approaches [46]) and apply search in
the transformed space or LSH-based approximate indices [47, 48, 49, 50]; the latter
are mostly appropriate in spaces where objects are not well-separated, thus exact
similarity search may not be meaningful or critical.

While approximate similarity search methods are commonly used when the ap-
plication allows sacrificing accuracy for speed, they are typically employed in sce-
narios where large datasets make exact search computationally expensive or when
it is not crucial for the application to provide exact results. These methods priori-
tize speed and efficiency by providing near-optimal results rather than guaranteed
exact answers. They are particularly useful when some degree of imprecision is ac-
ceptable, especially in situations where objects are not well-separated in the space,
and a small margin of error in the results won’t critically impact the application.

15

However, approximate methods may compromise the quality of results, leading to
reduced precision and potentially missing highly relevant data points. For example,
in the field of medicine, where precise matching of genetic data or tumor markers
is essential for accurate diagnoses and treatment plans, approximate methods could
lead to significant errors with critical consequences.

For our purposes, we focus on exact similarity search because we target applica-
tions with smaller datasets, where computational resources allow for the use of precise
methods without the performance bottlenecks often associated with larger datasets.
In these contexts, the accuracy of results is crucial, and the computational cost of
exact search is manageable.

We present in detail three representative main-memory pivot-based metric indices
that we use as competitors to our proposed adaptive index for metric spaces, described
in Chapter 3.

SimplePivot employs Farthest First Traversal (FFT) [51] to choose vantage points.
The FFT algorithm starts by selecting a random point as the first pivot. In each
subsequent iteration, it selects as a pivot the object u that maximizes minp∈P d(u, p),
where P is the set of previously selected pivots. Thereafter, we compute the distances
of each data point to all vantage points. When evaluating queries, we use the pre-
computed distances to avoid unnecessary distance computations. Specifically, consider
a query point q and radius ϵ. At the beginning of query evaluation, we compute and
cache d(pi, q) for all pi. For each data object o ∈ S, if there exists a pivot pi, such
that |d(pi, o) − d(pi, q)| > ϵ, then o is certainly not a result, hence we do not need
calculate dist(q, o). Since d(pi, o) has been precomputed, the pruning test for each
object o takes O(m) time, where m is the number of pivots.

The Spatial Approximation Tree (SAT) [52] is a hierarchical data structure, where
the children of a node are its neighbors in the Delaunay graph on the entire data set.
To find the nearest neighbor (NN) of a query object q, we start from the root n; if n
is closer to q than its children, then search stops reporting n as the NN. Otherwise,
we navigate to the child of n nearest to q and search recursively. To evaluate a range
query (q, ϵ), SAT uses the triangle inequality to prune nodes (and corresponding
sub-trees) that are guaranteed to be further than ϵ from q.

The Vantage Point tree (VP-tree) [53] partitions the data hierarchically based on a
vantage point at each node. Starting with the root, which indexes all data, at each node
v, a vantage object (pivot) pv is selected at random from the objects indexed at this

16

node. The data under node v are then split in two partitions as follows: Let µ be the
mean distance of points under v to pivot pv. Objects having distance to pv less than or
equal to µ are placed in the left sub-tree; remaining objects go to the right sub-tree. To
evaluate a range query, we recursively traverse the VP-tree. For a query (q, ϵ), at each
node v with pivot pv having median distance from its indexed points µ, we examine
the following:

• if dist(q, pv) ≤ ϵ, then pv is a result;

• if |dist(q, pv)− µ| ≤ ϵ, then search the left sub-tree;

• if dist(q, pv) + ϵ > µ, then search the right sub-tree.

For a single query, we may follow multiple paths of the VP-tree, according to the
above. The MVP-tree [54] generalizes the VP-tree to a m-ary tree. Instead of splitting
the objects in two partitions, it orders them by their distance to the vantage point
and partitions them to m groups of equal cardinality. During search, it uses the mean
distance for each of the m groups to prune sub-trees that cannot include query results.
According to the extensive experimental study in [41], the MVP-tree performs best
compared to a wide-range of main-memory metric space indices, including pivot-
based methods [55, 56] and SAT [52]. Notable metric-space indices optimized for
secondary memory are the M-tree [57] and the PM-tree [58]

2.3 Adaptive Indices

Adaptive indexing refers to the approach where an index is not constructed apriori
for a set of data. Instead, the index is built dynamically and progressively as queries
are executed and results are retrieved. This technique first appeared under the name
Deferred Data Structuring [59]. The concept has since evolved and been reintroduced
in various forms, such as database cracking [1, 5, 17, 25, 26, 60] and progressive
merging [61], leading to hybrid versions [23, 62, 63].

2.3.1 Database Cracking

Adaptive indexing constructs a data structure for a static dataset on demand by adapt-
ing to an evaluated query workload [59]. Each query divides the data space based

17

on its results, triggering the construction of a search tree that guides the evaluation
of subsequent queries. This idea has been applied to database indexing [1], progres-
sively cracking an initially unsorted array to segments that obey a total order and
constructing a binary search tree to prune sub-arrays that do not contain query re-
sults. Figure 2.1 shows the cracking of an unsorted array based on query 10 < x ≤ 20

and one step in the progressive construction of the corresponding binary search tree.
The array is first cracked based on 10 < x. Indices i and j scan the array in forward
and backward, respectively. For each out-of-order value found (i.e., a value > 10 at i
and one ≤ 10 at j), if i < j, the values are swapped and the process continues; oth-
erwise, cracking stops. After cracking based on 10 < x, we update the binary search
tree: all values less than 10 are in array positions 0 to 1 and all values of 10 or larger
are in array positions 2 to 7. The second crack, based on x ≤ 20 applies on the right
child of the root and cracks the corresponding subarray to two pieces: positions 2
to 3 having keys less than or equal to 20 and positions 4 to 7, having keys greater
than 20. The search tree (e.g., an AVL-tree) is re-balanced after each cracking.

Standard database cracking (cont’d)
p Example initial index (keys only):

{52, 37, 63, 14, 17, 8, 6, 25}
p Example first query: 10<key<=20
p First, crack using 10<key

n {52, 37, 63, 14, 17, 8, 6, 25}
n {6, 37, 63, 14, 17, 8, 52, 25}
n {6, 37, 63, 14, 17, 8, 52, 25}
n {6, 8, 63, 14, 17, 37, 52, 25}

n {6, 8, 63, 14, 17, 37, 52, 25} 15

j i

10<key

i → ← j

10

[0,1]
< ≥

[2,7]

Standard database cracking (cont’d)
p Example initial index (keys only):

{52, 37, 63, 14, 17, 8, 6, 25}
p Example first query: 10<key<=20
p Second, crack using key<=20

n {6, 8, 63, 14, 17, 37, 52, 25}
n {6, 8, 63, 14, 17, 37, 52, 25}
n {6, 8, 17, 14, 63, 37, 52, 25}

n {6, 8, 17, 14, 63, 37, 52, 25}
16

j i

10<key key<=20

i → ← j

10

[0,1]
< ≥

[2,3]

20
≤ >

[4,7]

(a) cracking based on 10 < x (b) cracking based on x ≤ 20

Figure 2.1: Standard cracking example

In effect, cracking conducts quicksort incrementally, triggered by queries. This pro-
cess has been extended to efficiently handle updates efficiently [30]. As an alternative
to quicksort, one may perform a mergesort operation incrementally [61], a hybrid ap-
proach that combines merging and cracking [63], or first partition the domain in
disjoint ranges and then crack the partitions [26].

Cracking variants

Database cracking is extended to address its limitations, namely CPU efficiency, con-
vergence, tuple reconstruction, and robustness.

18

Hybrid cracking [63] is introduced to improve the convergence of standard cracking
to a full index. It combines ideas from adaptive merging [61] with database cracking
to achieve faster convergence while maintaining low initialization costs. The main
drawback of standard cracking is that it can only create two new partitions per
query, requiring multiple queries to reach a full index. In contrast, adaptive merging
creates initial sorted runs, which incurs a high cost for the first query.

Hybrid cracking addresses the challenges of slow convergence by creating initial
unsorted partitions that fit in memory, which are then physically reorganized and
adaptively merged. As queries are processed, qualifying tuples are moved from the
initial partitions into final partitions. Each initial partition uses a table of contents
to track the key ranges it contains, and a master table of contents is used to track
both initial and final partitions. As tuples are transferred, both tables are updated.
Lightweight reorganization is applied to the initial partitions, and several strategies
for reorganizing both initial and final partitions—such as sorting, cracking, and radix
clustering—are explored.

For the initial partitions, cracking proves more effective than radix clustering, as
radix clustering introduces some overhead in the first query. Sorting, on the other
hand, does not work well for the initial partitions due to the high overhead it adds to
the first query. For the final partitions, both radix clustering and sorting are viable,
depending on the scenario. Radix clustering offers a lightweight footprint for scan
queries and achieves optimal performance quickly, while sorting is slower for the
first query but achieves optimal performance faster. By using cracking for the initial
partitions and sorting for the final partitions, hybrid cracking achieves better conver-
gence. The implementation of hybrid crack sort demonstrated superior performance
compared to standard cracking, full index, and scan, showing faster convergence.
Sideways cracking [64] addresses the inefficiency of tuple reconstruction in stan-

dard crackinging cracker maps. A cracker map consists of two logical columns: the
cracked column and a projected column. It ensures that the projection attributes
remain aligned with the selection attributes. When a query is processed, sideways
cracking creates and cracks only those cracker maps that contain any of the accessed
attributes, ensuring that each accessed column is aligned with the cracked column
of its corresponding cracker map. If the attribute access pattern changes, the cracker
maps may reflect different progressions based on the applied cracks. Sideways crack-
ing maintains a log to track the state of each cracker map and synchronize them

19

when necessary. This approach allows sideways cracking to function without need-
ing prior knowledge of the workload and adapts the cracker maps to the attribute
access patterns. Additionally, it improves efficiency and reduces overhead by only
materializing the parts of the projected columns in the cracker maps that are actually
queried, known as partial sideways cracking.
Stochastic cracking [17] addresses performance unpredictability in database cracking

by introducing additional random cracks during query time to help partition a column
more uniformly. A key issue with standard cracking is that partition boundaries are
highly dependent on the query sequence. This can result in unbalanced partitions,
and subsequent queries may need to reorganize large chunks of data. To mitigate this,
stochastic cracking adds random cracks alongside the query-driven cracks, evolving
the cracker index more evenly.

Several variants of stochastic cracking have been proposed to introduce these
additional cracks, including data-driven and probabilistic approaches. These variants
strike a balance between the variance they introduce and the overhead associated with
the cracking process. One such approach is the Data Driven Center (DDC) algorithm,
which recursively halves the portion of the array where the query range falls until the
piece is sufficiently small. However, finding medians for halving is computationally
expensive, leading to significant overhead. Another approach, the Data Driven Ran-
dom algorithm (DDR), selects random pivots until the target piece becomes smaller
than a set threshold. Both methods, though effective, incur considerable overhead
from the auxiliary operations.

To reduce this overhead, variants such as DD1C and DD1R were introduced,
performing at most one auxiliary reorganization. DD1C halves a piece and cracks the
remaining part, while DD1R only performs a single random reorganization. Despite
this reduction in auxiliary operations, the cost of even a single reorganization can still
add significant overhead, especially during the first few queries. The MDD1R variant,
which further reduces initialization cost, addresses this by avoiding cracking based
on query bounds. Instead, the results are materialized in a new array, much like a
standard select operation, and integrated with a random crack on another piece to
prevent an additional scan.

This MDD1R variant has shown the best overall performance, as it cracks parti-
tions at the query boundaries with one random split, materializes the result of each
boundary partition in a separate view, and builds the result by reading from the

20

index for inner partitions and from the views for boundary partitions.

2.3.2 Multidimensional Adaptive and Progressive indices

The QUery-Aware Spatial Incremental Index (QUASII) [19] was the first attempt to
apply adaptive indexing to spatial data. It organizes objects based on each query’s
lower and upper coordinates by slicing each dimension and performing nested re-
organizations. The process begins by reorganizing objects along the x-dimension,
producing three slices. Next, the middle slice from the x-dimension is reorganized
along the y-dimension, creating three slices, with the middle one containing objects
in the range [xl, yl]. Finally, the middle slice from the y-dimension is reorganized
along the z-dimension, resulting in a slice that contains the query result. This hierar-
chical structure becomes more granular as we move deeper into the index. Figure 2.2
illustrates the indexing strategy employed by QUASII.

Figure 2.2: QUASII indexing strategy.

Unlike a KD-tree, which splits the space on the same dimension at each level,
QUASII cracks one dimension per tree level. It first cracks along the x-dimension to
organize the data at the first tree level, then cracks the piece corresponding to the
query’s x-range along the y-dimension at the second level, and so on. Each level in the
resulting wide tree corresponds to one of the d dimensions, with each level focusing
on progressively refining the query’s range. During query processing, the hierarchical
structure is traversed depth-first, and additional refinements are performed when the
size of a slice exceeds a defined threshold. This incremental approach to indexing
allows QUASII to adaptively organize spatial data in response to specific queries.

The Adaptive KD-tree (AKD) [18, 20] is a dynamic extension of the traditional
KD-tree that adapts its structure in response to the queries it processes, making
it particularly well-suited for environments with fluctuating or unpredictable query

21

patterns. Unlike the conventional KD-tree, where data is statically partitioned along
alternating dimensions at fixed points, the AKD refines its partitioning dynamically
during query execution. As queries are issued, the tree modifies its structure to align
with the specific access patterns of those queries. For instance, if a query targets a
particular region of the data space, the tree can further partition that region, allowing
it to optimize indexing in real-time based on the evolving query workload. This
adaptability enables the AKD to focus on regions of the dataset that are frequently
accessed, improving query performance over time.

The AKD processes all lower bounds of a query before handling the higher bounds
and assigns dimensions to tree levels in a round-robin manner, ensuring balanced
partitioning. Unlike QUASII, which cracks the data along a single dimension at each
tree level, the AKD cracks the same dimension multiple times at different levels, pre-
serving its binary tree structure throughout. This strategy allows for more granular
and responsive partitioning as the data and queries evolve. While the AKD offers
a high degree of flexibility and responsiveness to query patterns, it can also incur
high initial query costs. Specifically, it may require substantial partitioning effort be-
fore it can efficiently handle queries, particularly during the early stages of index
construction. This overhead, especially for the first few queries, can affect its overall
performance in scenarios where initial query costs are critical. Figure 2.3 shows the
partitioning strategy of AKD.

Figure 2.3: AKD indexing strategy.

The Progressive KD-tree [18] takes a more controlled approach to partitioning
compared to the Adaptive KD-tree. This structure allows indexing to happen incre-
mentally, which is particularly useful when there is a need to balance the time and
resources spent on index refinement versus query processing. Rather than continually

22

refining the index, the Progressive KD-tree uses a defined budget for each query to
decide how much to invest in further index refinement. As queries are processed, the
index is progressively improved, but only as much as needed based on the current
workload. This prevents unnecessary refinement and ensures that query performance
is maintained without burdening the system with excessive index construction. The
Progressive KD-tree adapts to the query workload by adjusting the budget for refine-
ment dynamically, providing an efficient balance between indexing effort and query
response time.

The Greedy Progressive KD-tree [18] is a specialized variant of the Progressive
KD-tree, where the index refinement process is governed by a greedy algorithm.
This algorithm prioritizes which parts of the data to refine based on the potential
improvements in query performance. Instead of refining all regions of the dataset
uniformly, the Greedy Progressive KD-tree focuses on the most important areas—
those that are expected to yield the greatest benefit in terms of query response time.
By selecting these critical regions for refinement, the Greedy Progressive KD-tree
optimizes its resources and achieves faster query performance. This greedy approach
ensures that the system does not waste resources on less critical regions of the data,
making it more efficient than the standard Progressive KD-tree. However, the greedy
strategy assumes that query patterns are somewhat predictable or stable, as it relies
on prior query behavior to make decisions about which parts of the tree to refine.

The Greedy Progressive KD-tree (GPKD) takes the approach of the PKD a step
further by using a cost model to estimate the execution time of each query. This
model helps ensure that the execution time remains consistent and robust during
the index growth phase. By prioritizing index refinement in areas that offer the most
significant performance gains, the GPKD seeks to optimize query performance while
maintaining a steady index construction process. The GPKD’s cost model allows it
to dynamically adjust the indexing effort based on the expected benefits, providing a
more efficient use of resources compared to the standard PKD.

Those approaches were recently superseded by the adaptive incremental R-tree
(AIR) [21], which builds a compact tree by overseeing all dimensions in each in-
dex level and applying quality-aware criteria in splitting and adjusting tree nodes
based on query boundaries. AIR commences with an unorganized static data array
and progressively organizes queried data areas while responding to queries. It ini-
tially comprises a single leaf root enclosing all the data, relaxing the principles of a

23

traditional R-tree, whereby each node holds no more than a predefined number of
entries. Leaves of cardinality above a threshold Mℓ, called irregular, are eligible for
cracking, while those belowMℓ, called regular, are not cracked further. As the example
in Figure 2.4 shows, in response to a range query, represented by a rectangle, AIR
cracks the data space through 2d hyper-planar cracks (dashed lines), each yielding a
spatial partition, with a remaining partition containing the query results; each crack
reorganizes the data array accordingly, as the bottom part of Figure 2.4 shows. To
avoid the repercussions of a pathologically skewed workload, AIR adds a stochastic
crack on the largest ensuing piece, totaling at most 2d + 2 pieces in d dimensions.
We illustrate this process for a single node fully containing a query range, yet it is
applicable on each leaf node that overlaps the query. AIR cracks irregular leaves in
response to queries, eventually creating regular leaves, and evolves into a structure
resembling a classic R-tree that outperforms prior multidimensional adaptive index-
ing methods [28, 19] across spatial and multidimensional point datasets. Figure 2.4
illustrates the cracks formed by AIR’s indexing strategy, as well as the reorganization
of the data array.

Figure 2.4: AIR indexing strategy.

2.4 Learned Indices

Learned indices leverage machine learning (ML) models to replace traditional in-
dex structures like B-Trees, hash indices, and bitmaps. These models map keys to
positions or conditions, offering more optimized index structures that reflect data
patterns more efficiently than traditional approaches. Traditional indexing methods,
such as B-Trees, are designed for general-purpose data access patterns but may not
fully exploit the distribution of the data. Learned indices, however, adapt to data

24

distributions by automatically synthesizing specialized indexing structures, improv-
ing memory efficiency and query performance, especially in cases with predictable or
evolving data patterns.

In [65], the authors propose the Recursive Model Index (RMI), which uses a
hierarchy of models to predict key locations, replacing B-Tree internal nodes with
models. The Naïve learned index uses the cumulative distribution function (CDF),
but RMI refines this approach with multiple prediction levels and error bounds. The
piecewise linear function-based approach in [66] approximates data distribution with
a bounded error and stores segments in a B+-Tree, optimizing memory usage and
performance.

ALEX [67] builds on RMI, supporting updates via exponential search and using
linear regression models at inner nodes. Its gapped array layout optimizes space and
performance, especially during insertions. The PGM-index [68] combines probabilistic
graphical models with worst-case performance guarantees for efficient insertions and
deletions, making it suitable for real-time applications. In [69], a learned indexing
structure for multi-dimensional data adapts the index for better performance in space
and query efficiency.

RadixSpline [70] combines Radix trees with spline interpolation to optimize range
queries on high-dimensional data, while Tsunami [71] leverages deep learning to
predict key locations in multi-dimensional data with skewed and correlated distri-
butions. It outperforms traditional multi-dimensional indices by reducing memory
usage and improving query times. Hist-Tree [72] challenges learned indices by lever-
aging implicit assumptions, such as sortedness and range, using histograms at each
node to better represent key distribution, outperforming learned indices in certain
scenarios.

Several learned index structures have been proposed [73, 74, 75, 76, 77, 78, 79],
with benchmarks offering insights into their performance [80, 81, 82] and surveys
providing a clear picture into their strengths and weaknesses [83, 41]. Additionally,
learned cardinality estimation has emerged, employing ML techniques to estimate the
number of distinct elements in datasets or data streams [84, 85, 86].

Learned indexes have a significant start up cost, which is even higher than that
of classic indexes. Therefore, in our application scenarios where the objective is to
minimize the cumulative cost of index building plus query processing, learned indexes
may not stand as viable competitors to adaptive ones.

25

CHAPTER 3

ADAPTIVE INDEXING IN HIGH-DIMENSIONAL
METRIC SPACES

3.1 Definitions and Preliminaries

3.2 The AV‐tree

3.3 Experimental Evaluation

3.4 Conclusions

Similarity search in high-dimensional metric spaces is a common technique used
in various applications, such as content-based image retrieval, bio-informatics, data
mining, and recommender systems. To speed up search processes, indices are often
employed. However, building an index for high-dimensional spaces can be compu-
tationally expensive, and it may not be cost-effective if the number of queries is low.
In these cases, constructing an index adaptively, in response to an evolving query
workload, becomes more advantageous.

Indexing high-dimensional spaces presents a significant challenge for two primary
reasons. First, due to the curse of dimensionality, if data points are uniformly dis-
tributed, the likelihood that two points are either too close or too far apart is very low,
making similarity search ineffective. Second, traditional indexing methods, such as the
R-tree and KD-tree, divide the space into orthotopes (hyperrectangular units). These
methods struggle in high-dimensional spaces because they can only utilize a limited

26

number of dimensions, causing the orthotopes to span the entire domain across most
dimensions and failing to effectively separate the objects. Furthermore, such indices
are often limited to vector spaces and are generally optimized for hyperrectangular
range queries, rather than distance-based searches.

In this chapter, we propose a method for adaptive high-dimensional indexing, the
AV-tree, that exploits previously computed distances, using query centers as vantage
points. The AV-tree differs from VP-tree variants in the following ways: (i) it builds
the tree progressively, via query evaluation, rather than in advance; (ii) it selects pivots
adaptively from queries rather than from the data collection; and (iii) it keeps the data
in a single array and swaps them to partition them to sub-arrays.

Outline. In Section 3.1, we introduce the definitions and foundational concepts essen-
tial for understanding the methodology presented in this work. Section 3.2 provides
a comprehensive overview of our indexing and querying algorithms, including en-
hancements to improve performance. Section 3.3 discusses the experimental setup
and presents the results of our experiments, evaluating the effectiveness of our ap-
proach. Finally, Section 3.4 offers a summary of the key findings and concludes with
potential directions for future research.

3.1 Definitions and Preliminaries

We examine similarity-based queries in a metric space. A metric space is defined as
a pair {M,d}. M is a domain wherefrom objects are instantiated. For example, if M
is be a D-dimensional vector space, each object o in it has the form ⟨id, o1, o2, . . . , oD⟩,
where id is an identifier and oi ∈ [0, 1] is the i-th dimensional value of o; d is a
metric distance function applied between objects in M ; in vector spaces, d is typically
the Euclidean distance, i.e., d(q, o) =

√∑D
i=1(qi − oi)2. In general, a metric distance

function d has the following four properties:

• Identity. The distance of an object to itself is 0; d(x, x) = 0.

• Non‐negativity. The distance between two distinct objects is positive; if x ̸= y

then d(x, y) > 0.

• Symmetry. The distance from x to y is the same as that from y to x; d(x, y) =

27

d(y, x).

• Triangle Inequality. For any three objects x, y, z, d(x, z) ≤ d(x, y) + d(y, z).

We consider a set O of objects in the metric spaceM . The most common similarity-
based queries are the range query and the k-nearest-neighbor query.

Definition 3.1. Range Query. Given an object q and a distance bound ϵ, a range
query returns all objects o ∈ O that are within distance ϵ from q, i.e., d(q, o) ≤ ϵ.

Definition 3.2. k‐Nearest‐Neighbor (kNN) Query. Given an object q and a positive
integer k, k ≤ |O|, a k-nearest-neighbor query returns a subset R ⊆ O, such that |R| =
k and ∀o ∈ R, o′ ∈ O \R : d(q, o) ≤ d(q, o′); in other words, a kNN query finds a set R
of k objects in O having no larger distances to q than those outside R.

Answering a query amounts to finding the identifiers of the objects o ∈ O in the
result set. We assume that the objects are stored row-wise in memory, i.e., the entire
tuple of the first object precedes the tuple of the second object, and so on; such a
representation facilitates efficient distance computations.

Overlap cases between queries

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj
<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi
<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

Overlap cases between queries

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj
<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi
<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

Overlap cases between queries

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj
<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi
<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

Overlap cases between queries

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj
<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi
<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i

<latexit sha1_base64="DiaORP0tn9kVo2xSTVYNBqZw7zs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfR4r1xxq+4M5C/xclKBHPVe+bPbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmySp+EsbIlDZmpPycyGmk9jgLbGVEz1IveVPzP66QmvPQzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl/+S5onVe+8enp7Vqld5XEU4QAO4Rg8uIAa3EAdGsBgAE/wAq+OcJ6dN+d93lpw8pl9+AXn4xtYgo3Z</latexit>qi

<latexit sha1_base64="AFXWo/tk1PSPCv1ol42FBrnBcFA=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6rFeueFVvBneZ+DmpQI56r/zV7UuaxigM5UTrju8lJsiIMoxynJS6qcaE0BEZYMdSQWLUQTa7eOKeWKXvRlLZEsadqb8nMhJrPY5D2xkTM9SL3lT8z+ukJroOMiaS1KCg80VRyl0j3en7bp8ppIaPLSFUMXurS4dEEWpsSCUbgr/48jJpnlX9y+r5/UWldpPHUYQjOIZT8OEKanAHdWgABQHP8ApvjnZenHfnY95acPKZQ/gD5/MHz42RBA==</latexit>✏i
<latexit sha1_base64="qCHW0ktPv3H1w0W1LFtiFiU+Np4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqMegF48RzQOSJcxOepMxs7PrzKwQlnyCFw+KePWLvPk3Th4HTSxoKKq66e4KEsG1cd1vJ7e0vLK6ll8vbGxube8Ud/fqOk4VwxqLRayaAdUouMSa4UZgM1FIo0BgIxhcj/3GEyrNY3lvhgn6Ee1JHnJGjZXuHjsPnWLJLbsTkEXizUgJZqh2il/tbszSCKVhgmrd8tzE+BlVhjOBo0I71ZhQNqA9bFkqaYTazyanjsiRVbokjJUtachE/T2R0UjrYRTYzoiavp73xuJ/Xis14aWfcZmkBiWbLgpTQUxMxn+TLlfIjBhaQpni9lbC+lRRZmw6BRuCN//yIqmflL3z8untWalyNYsjDwdwCMfgwQVU4AaqUAMGPXiGV3hzhPPivDsf09acM5vZhz9wPn8AWgaN2g==</latexit>qj

<latexit sha1_base64="X11bB8t1wzQPsbdIyZ2AJCpdTr0=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68VjBfmAbymY7adduNmF3I5TQf+HFgyJe/Tfe/Ddu2xy09cHA470ZZuYFieDauO63s7S8srq2Xtgobm5t7+yW9vYbOk4VwzqLRaxaAdUouMS64UZgK1FIo0BgMxjeTPzmEyrNY3lvRgn6Ee1LHnJGjZUeOphoLmLZfeyWym7FnYIsEi8nZchR65a+Or2YpRFKwwTVuu25ifEzqgxnAsfFTqoxoWxI+9i2VNIItZ9NLx6TY6v0SBgrW9KQqfp7IqOR1qMosJ0RNQM9703E/7x2asIrP+MySQ1KNlsUpoKYmEzeJz2ukBkxsoQyxe2thA2ooszYkIo2BG/+5UXSOK14F5Wzu/Ny9TqPowCHcAQn4MElVOEWalAHBhKe4RXeHO28OO/Ox6x1yclnDuAPnM8f0RGRBQ==</latexit>✏j

(a) disjoint (b) overlap (c) qi contains qj (d) qj contains qi

Figure 3.1: Four cases of overlap between qi and qj

We aim to exploit previously evaluated queries to expedite the evaluation of subse-
quent queries. To do so, using the triangle inequality, we quickly determine whether,
and how, the range of a previous query (qi, ϵi) overlaps with that of the current
query (qj, ϵj). There are four cases in this regard, depicted in Figure 3.1.

(a) (qi, ϵi) does not overlap (qj, ϵj), i.e., d(qi, qj) > ϵi + ϵj.

(b) (qi, ϵi) overlaps (qj, ϵj), but neither is a subset of the other.

28

(c) (qi, ϵi) contains (qj, ϵj), i.e., ϵi ≥ d(qi, qj) + ϵj.

(d) (qj, ϵj) contains (qi, ϵi), i.e., ϵj ≥ d(qi, qj) + ϵi.

3.2 The AV‐tree

In this section, we present our proposed adaptive vantage tree (AV-tree) for high-
dimensional metric spaces. We first show how the AV-tree is incrementally constructed
while evaluating range queries and then present the corresponding algorithm for
kNN queries. Notably, range queries can be interleaved with kNN queries in a mixed
workload without affecting the data structure and its effectiveness. In Section 3.2.3,
we present some enhancements to the basic version of our index, followed by a cost
analysis (Sec. 3.2.4).

3.2.1 Range Query

Our algorithm builds on the framework for one-dimensional database cracking with
some significant departures: First, there is no total order of the indexed data to guide
the process. Second, contrary to existing multidimensional cracking approaches [19,
18, 21], we partition the space based on the distances between the query and data,
rather than using hyperrectangular partitions.

We evaluate the first query (q1, ϵ1) by scanning the entire data array O, and, while
computing the results, performing a crack-in-two operation: we place data points o ∈ O

with d(q1, o) ≤ ϵ before data points o ∈ O with d(q1, o) > ϵ. At the same time, we define
the root of the adaptive vantage tree, or AV-tree, a binary search tree which helps
identify relevant data for subsequent queries and avoid redundant computations.
For each subsequent query, we use the AV-tree to guide search and expand it by
introducing new cracks.

Each node v in the AV-tree contains two elements: the scope [v.lo, v.hi] of v, i.e.,
the range of array indices that v indexes; and the query (v.q, v.ϵ), that guides the
search in v, if v is not a leaf node. The tree root has lo = 0 and hi = |O| − 1,
where |O| is number of data objects. If v is a leaf, then v.q is null. Otherwise, v has
two pointers v.left, v.right to its left and right children, respectively. For each object o
in the scope of v.left, it is d(q, o) ≤ v.ϵ, while for each object o in the scope of v.right,

29

it is d(q, o) > v.ϵ.
Algorithm 3.1 presents the search-and-crack process in detail, outlined in two

procedures. The main recursive SEARCH-AND-CRACK procedure takes as input an array O
with the data points, a query point q and the corresponding distance bound ϵ and
the node v of the AV-tree on which it is applied. For a new query, we initialize the
query result to R = ∅ and call the procedure with v being the tree root. If v.q is null,
then v is a leaf node, hence we crack by procedure CRACK-IN-TWO (described later),
yielding two new vertices as children of v. If node v is not a leaf, then we examine the
relationship between the node query range (v.q, v.ϵ) and the new query range (q, ϵ) as
in Section 3.1. If the two ranges are disjoint, all data under the scope of v.left are not
part of the query result, hence we call SEARCH-AND-CRACK for the right child v.right,
as its scope may include results of q. On the other hand, if the new query range
overlaps with (v.q, v.ϵ), we distinguish two cases. If (v.q, v.ϵ) is entirely inside (q, ϵ),
then we add1 to R all data under the scope of v.left as query results and SEARCH-AND-
CRACK the right subtree of v. Otherwise, if (q, ϵ) is entirely inside (v.q, v.ϵ), we only
SEARCH-AND-CRACK the left subtree of v. Lastly, if there is no containment relationship
between (v.q, v.ϵ) and (q, ϵ), as in Figure 3.1b, then we also call SEARCH-AND-CRACK for
the right subtree.

Procedure CRACK-IN-TWO is based on Hoare’s quicksort partitioning [6]; it scans
the scope of a node v array O from position lo to position hi and swaps data items
to divide [lo, hi] in two parts: [lo, j], including data points o such that d(q, o) ≤ ϵ

and [j+1, hi] including remaining points. We add the former part, [lo, j], to the query
result R and generate two new nodes for the two new scopes, as children of calling
node v. Note that one of the two scopes may be empty, in case the scope of v includes
either (i) no query results or (ii) only query results. In the former case, vL.lo = lo

and vL.hi = lo − 1; in the second case, vR.lo = hi + 1 and vL.hi = hi. Procedure
SEARCH-AND-CRACK does not perform recursive calls for a child having empty scope,
as no query results can be obtained from such nodes. We call leaves that cannot be
further cracked because they have an empty scope empty leaves.

Example. Figure 3.2 presents a detailed example. Data array O includes eight 2D
points, p1 to p8, and initially the tree has a single node v1 with scope [0, 7]. Upon
the first query, (q1, ϵ1), CRACK-IN-TWO runs for the root node v1 (Line 3), which is a

1For simplicity, we denote the query result as a set of interval ranges indicating the positions of
result objects in array O.

30

Algorithm 3.1 Distance-Range Search and Crack
1: procedure SEARCH-AND-CRACK(data array O, query q, bound ϵ, node v, result R)
2: if v.q is null then ▷ leaf node
3: (v.left, v.right)←CRACK-IN-TWO(O, v.lo, v.hi, q, ϵ, R)
4: v.q ← q; v.ϵ← ϵ

5: else ▷ non-leaf node
6: if d(q, v.q) > ϵ+ v.ϵ then ▷ disjoint query ranges
7: SEARCH-AND-CRACK(O, q, ϵ, v.right, R)
8: else ▷ overlapping query ranges
9: if d(q, v.q) < ϵ− v.ϵ then ▷ v.q entirely inside q

10: R← R ∪ [v.left.lo, v.left.hi] ▷ update query result
11: SEARCH-AND-CRACK(O, q, ϵ, v.right, R)
12: else
13: SEARCH-AND-CRACK(O, q, ϵ, v.left, R)
14: if d(q, v.q) ≥ v.ϵ− ϵ then ▷ q not entirely inside v.q

15: SEARCH-AND-CRACK(O, q, ϵ, v.right, R)
16:
17: procedure CRACK-IN-TWO(array O, int lo, int hi, query pt q, bound ϵ, result R)
18: i← lo

19: j ← hi

20: while true do
21: while d(q,O[i]) ≤ epsilon and i ≤ hi do
22: i← i+ 1

23: while d(q,O[j]) > epsilon and j ≥ lo do
24: j ← j − 1

25: if i ≥ j then
26: break
27: swap O[i] with O[j] ▷ O[i] and O[j] on wrong sides

28: R← R ∪ [lo, j] ▷ update query result
29: vL.lo← lo; vL.hi← j; vL.q ← null
30: vR.lo← j + 1; vR.hi← hi; vR.q ← null
31: return (vL, vR)

leaf, to produce two new nodes, v2 and v3, as its left and right child, respectively, as
Figure 3.2a shows. The result of R is the scope of v2 (i.e., p7, p2, and p5). For the
second query, (q2, ϵ2), SEARCH-AND-CRACK runs for (q, ϵ) = (q2, ϵ2). Figure 3.2b shows
that the range of q2 overlaps with the query range of the root, (q1, ϵ1). Hence, we
enter Lines 13–15. The call in Line 13 yields a CRACK-IN-TWO of v1’s left child (i.e.,
node v2). However, this crack produces no results, because all points in the scope of v2

31

are outside q2’s range; thus the newly produced node v4 as left child of v2 has empty
range [0,-1] (shaded in the figure). The generated right child v5 has the same scope as
its parent v2. The recursive call at Line 15 invokes CRACK-IN-TWO for v1’s right child
(i.e., v3). Now we do have a query result [3,4] added to R (i.e., points p4 and p6) and
two new vertices v6 and v7 with non-empty scopes as new children of v3. Figure 3.2c
shows the effect of the next query, (q3, ϵ3). Query range (q3, ϵ3) is outside the range
of the root v1, hence we only visit its right child v3 (Line 7). We find that (q3, ϵ3) is
fully contained in (q2, ϵ2), hence only visit v3’s left child v6 (Line 13), where we find
no results for q3, yielding v8 as an empty child of, and v9 as identical to, v6.

3.2.2 Nearest‐Neighbor Query

Like range queries, kNN queries crack the data array and progressively construct and
use AV-tree as a binary search tree that guides them to relevant data, yet now we ac-
cess the AV-tree nodes in a best-first order that is appropriate for kNN search. Further,
adaptive indexing in response to kNN queries poses a distinct challenge, as queries do
not readily offer a distance bound. We define such a bound as the distance between
the query object and its running k-th nearest neighbor. Algorithm 3.2 presents the
process in detail. A query (q, k) comprises a query point q and the integer number
of sought nearest neighbors k. We use two priority queues: a min-heap searchPQ
that organizes unvisited nodes by least possible distance to q to guide the search in a
best-first manner, initialized with the root; and a max-heap resultPQ that holds the
running kNN data object results. In each iteration of the while loop (Lines 5–20), we
pop the top element v from searchPQ. If v is a leaf (Line 8), we compute the dis-
tance of each data object in v to the query point q and update resultPQ accordingly,
keeping track of the k nearest objects to q; resultPQ is a max-heap of data-objects
ordered by their distance to the query point, hence the top element is the farthest
from q, i.e., the running kth Nearest Neighbor. When looping over the data objects
in a leaf (Line 9), if one is closer to q than the running kth-NN (Line 10), then we
remove the current top element (Line 11), and add this object to resultPQ (Line 12).
We also crack the leaf node using as bound (to be enhanced in Section 3.2.3) the
distance to the top item in resultPQ (Line 13). If v is an internal tree node (Line 14)
then we push its children to searchPQ with their priority key set as the least possible
distance of an object under v to q, using the triangle inequality. As the left sub-tree

32

Before and after q1,ε1

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1

<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3

<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7

0, 7, q1, ε1

data array (after q1)
<latexit sha1_base64="XsH4matLDC8g3BOMKtDa3y7sa3w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfS8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559fT2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcDoo2h</latexit>q1

<latexit sha1_base64="JotCSX/LkwzLH/NKWuvUsbXy3zI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6fq9c8areDO4y8XNSgRz1Xvmr25c0jVEYyonWHd9LTJARZRjlOCl1U40JoSMywI6lgsSog2x28cQ9sUrfjaSyJYw7U39PZCTWehyHtjMmZqgXvan4n9dJTXQdZEwkqUFB54uilLtGutP33T5TSA0fW0KoYvZWlw6JItTYkEo2BH/x5WXSPKv6l9Xz+4tK7SaPowhHcAyn4MMV1OAO6tAACgKe4RXeHO28OO/Ox7y14OQzh/AHzucPeq2QzA==</latexit>✏1

Visit root. Since root is leaf, crack root and create two children. Content range of left child is returned as result

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1
<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3
<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7
<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

320 7

0, 2 3, 7result of q1: [0,2]

<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

data space

0

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1
<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3
<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7
<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

7
0, 7

data array (initially) tree (initially)

tree (after q1)

v1

v1

v2 v3

(a) data array and tree, before and after (q1, ϵ1)

After query q2,ε2

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1

<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3

<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7 0, 7, q1, ε1
<latexit sha1_base64="XsH4matLDC8g3BOMKtDa3y7sa3w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfS8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559fT2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcDoo2h</latexit>q1

<latexit sha1_base64="JotCSX/LkwzLH/NKWuvUsbXy3zI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6fq9c8areDO4y8XNSgRz1Xvmr25c0jVEYyonWHd9LTJARZRjlOCl1U40JoSMywI6lgsSog2x28cQ9sUrfjaSyJYw7U39PZCTWehyHtjMmZqgXvan4n9dJTXQdZEwkqUFB54uilLtGutP33T5TSA0fW0KoYvZWlw6JItTYkEo2BH/x5WXSPKv6l9Xz+4tK7SaPowhHcAyn4MMV1OAO6tAACgKe4RXeHO28OO/Ox7y14OQzh/AHzucPeq2QzA==</latexit>✏1

Visit root (q1). Range of q1 overlaps with range of query, hence run recursively for v1.left
v1.left is leaf, so a crack is applied, result is empty, resulting crack has [0,-1] as range
v1.right is also visited, so a crack is applied

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1
<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3
<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7
<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

320 7

0, 2, q2, ε2 3, 7, q2, ε2

<latexit sha1_base64="a/a92Z2ZeP7H5vpFtwLlBJTj8co=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laSKeix68VjBfmAbymY7aZdudsPuRiih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLE8608bxvZ2V1bX1js7BV3N7Z3dsvHRw2tUwVxQaVXKp2SDRyJrBhmOHYThSSOOTYCke3U7/1hEozKR7MOMEgJgPBIkaJsdJjFxPNuBS9aq9U9ireDO4y8XNShhz1Xumr25c0jVEYyonWHd9LTJARZRjlOCl2U40JoSMywI6lgsSog2x28cQ9tUrfjaSyJYw7U39PZCTWehyHtjMmZqgXvan4n9dJTXQdZEwkqUFB54uilLtGutP33T5TSA0fW0KoYvZWlw6JItTYkIo2BH/x5WXSrFb8y8r5/UW5dpPHUYBjOIEz8OEKanAHdWgABQHP8ApvjnZenHfnY9664uQzR/AHzucPfDGQzQ==</latexit>✏2
<latexit sha1_base64="7hCiKcPa1oqzXCoVhSoqGIq7PSk=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswODUyYnV1nZk3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3n1BpHskHM47RD+lA8j5n1Fjp/rFb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5NGpexdlM/uzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4ABSaNog==</latexit>q2

0, -1 0, 2 3, 4 5, 7

4 5

<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

data space
result of q2: [3,4]

v1
v2 v3

v4 v5 v6 v7

tree (after q2)

data array (after q2)

(b) after (q2, ϵ2)

After q3,ε3

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1

<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3

<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7
0, 7, q1, ε1

<latexit sha1_base64="XsH4matLDC8g3BOMKtDa3y7sa3w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0s4m7G6GE/gQvHhTx6i/y5r9x2+ag1QcDj/dmmJkXJIJr47pfTmFpeWV1rbhe2tjc2t4p7+41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nvqtR1Sax/LejBP0IzqQPOSMGivdPfS8XrniVt0ZyF/i5aQCOeq98me3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JklT4JY2VLGjJTf05kNNJ6HAW2M6JmqBe9qfif10lNeOlnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb78lzRPqt559fT2rFK7yuMowgEcwjF4cAE1uIE6NIDBAJ7gBV4d4Tw7b877vLXg5DP78AvOxzcDoo2h</latexit>q1

<latexit sha1_base64="JotCSX/LkwzLH/NKWuvUsbXy3zI=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6fq9c8areDO4y8XNSgRz1Xvmr25c0jVEYyonWHd9LTJARZRjlOCl1U40JoSMywI6lgsSog2x28cQ9sUrfjaSyJYw7U39PZCTWehyHtjMmZqgXvan4n9dJTXQdZEwkqUFB54uilLtGutP33T5TSA0fW0KoYvZWlw6JItTYkEo2BH/x5WXSPKv6l9Xz+4tK7SaPowhHcAyn4MMV1OAO6tAACgKe4RXeHO28OO/Ox7y14OQzh/AHzucPeq2QzA==</latexit>✏1

Visit root (q1). Range of q1 does not overlap with range of query, just v1.right is visited
Range of q2 overlaps with range of query, which is contained, so just v3.left is visited
v3.left is leaf, so a crack is applied, result is empty, resulting crack has [3,2] as range

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1
<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3
<latexit sha1_base64="SlX1jmUCxZfixeLuOjObmdVwHyI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5F9fyuVqlf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsGqI2j</latexit>p4

<latexit sha1_base64="Jr2Vq+CJZsY6v0LqEOqzfP40y+k=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6Pga9eIxoHpAsYXbSmwyZnV1mZoWw5BO8eFDEq1/kzb9xkuxBowUNRVU33V1BIrg2rvvlFJaWV1bXiuuljc2t7Z3y7l5Tx6li2GCxiFU7oBoFl9gw3AhsJwppFAhsBaObqd96RKV5LB/MOEE/ogPJQ86osdJ90jvvlStu1Z2B/CVeTiqQo94rf3b7MUsjlIYJqnXHcxPjZ1QZzgROSt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP150RGI63HUWA7I2qGetGbiv95ndSEV37GZZIalGy+KEwFMTGZ/k36XCEzYmwJZYrbWwkbUkWZsemUbAje4st/SfOk6l1UT+/OKrXrPI4iHMAhHIMHl1CDW6hDAxgM4Ale4NURzrPz5rzPWwtOPrMPv+B8fAMILI2k</latexit>p5
<latexit sha1_base64="srwcIIBS7wGVFiMD8yED85Y+LfE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOql6ten53Ualf53EU4QiO4RQ8uIQ63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsJsI2l</latexit>p6

<latexit sha1_base64="tmwSSKWRiBPW2M1R6BD9TGZbVes=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUrMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x+0TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfjm5nffuTaiFg94CThfkSHSoSCUbTSfdKv9csVt+rOQf4SLycVyNHolz97g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUpOrDIgYaxtKSRz9edERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb/8l7TOqt5l9fzuolK/zuMowhEcwyl4UIM63EIDmsBgCE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsLNI2m</latexit>p7
<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

320 7

0, 2, q2, ε2 3, 7, q2, ε2
<latexit sha1_base64="a/a92Z2ZeP7H5vpFtwLlBJTj8co=">AAAB8XicbVBNS8NAEJ34WetX1aOXYBE8laSKeix68VjBfmAbymY7aZdudsPuRiih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLE8608bxvZ2V1bX1js7BV3N7Z3dsvHRw2tUwVxQaVXKp2SDRyJrBhmOHYThSSOOTYCke3U7/1hEozKR7MOMEgJgPBIkaJsdJjFxPNuBS9aq9U9ireDO4y8XNShhz1Xumr25c0jVEYyonWHd9LTJARZRjlOCl2U40JoSMywI6lgsSog2x28cQ9tUrfjaSyJYw7U39PZCTWehyHtjMmZqgXvan4n9dJTXQdZEwkqUFB54uilLtGutP33T5TSA0fW0KoYvZWlw6JItTYkIo2BH/x5WXSrFb8y8r5/UW5dpPHUYBjOIEz8OEKanAHdWgABQHP8ApvjnZenHfnY9664uQzR/AHzucPfDGQzQ==</latexit>✏2

<latexit sha1_base64="7hCiKcPa1oqzXCoVhSoqGIq7PSk=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswODUyYnV1nZk3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3n1BpHskHM47RD+lA8j5n1Fjp/rFb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5NGpexdlM/uzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4ABSaNog==</latexit>q2
0, -1 0, 2 3, 4, q3, ε3 5, 7

4 5

<latexit sha1_base64="bH+2Ns+WaRzF2hVz7D9HttbtVpE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbFqEeiF48Y5ZHAhswODUyYnV1nZk3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HoZuo3n1BpHskHM47RD+lA8j5n1Fjp/rFb6RZLbtmdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/8lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5PGWdm7KFfuzkvV6yyOPBzBMZyCB5dQhVuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4ABqqNow==</latexit>q3
<latexit sha1_base64="w27KzFOXvs/M4BiNbagtu1H5kHY=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69BIvgqSQq6rHoxWMF+4FtKJvtpF262Q27G6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTDjTxvO+ncLK6tr6RnGztLW9s7tX3j9oapkqig0quVTtkGjkTGDDMMOxnSgkccixFY5up37rCZVmUjyYcYJBTAaCRYwSY6XHLiaacSl6571yxat6M7jLxM9JBXLUe+Wvbl/SNEZhKCdad3wvMUFGlGGU46TUTTUmhI7IADuWChKjDrLZxRP3xCp9N5LKljDuTP09kZFY63Ec2s6YmKFe9Kbif14nNdF1kDGRpAYFnS+KUu4a6U7fd/tMITV8bAmhitlbXTokilBjQyrZEPzFl5dJ86zqX1bP7y8qtZs8jiIcwTGcgg9XUIM7qEMDKAh4hld4c7Tz4rw7H/PWgpPPHMIfOJ8/fbWQzg==</latexit>✏3

3, 2 3, 4

<latexit sha1_base64="LmLiw/XyRZIFAqToBFrMU7Ifuks=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUtMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSATXxnW/nMLK6tr6RnGztLW9s7tX3j9o6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8M/Pbj6g0j+WDmSToR3QoecgZNVa6T/q1frniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NWPMzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll/+S1pnVe+yen53Ualf53EU4QiO4RQ8uII63EIDmsBgCE/wAq+OcJ6dN+d90Vpw8plD+AXn4xsMuI2n</latexit>p8

data array (after q3)data space

tree (after q3)

result of q3: ∅

v1
v2 v3

v4 v5 v6 v7

v8 v9

(c) after (q3, ϵ3)

Figure 3.2: Search-and-crack example

33

contains points that are closer than v.ϵ to v’s vantage point, q’s minimum possible
distance from an object therein is the maximum of 0 and distance of v’s vantage point
from the query minus v.ϵ (Line 15); if the latter is negative, then q is in the sphere
of v. The right child, conversely, contains the objects outside the sphere centered
at v’s vantage point with radius v.ϵ, hence q’s minimum possible distance from such
an object is the maximum of 0 and v.ϵ minus the distance of v’s vantage point from q

(Line 18); if the latter is negative, then q is outside the sphere of v. In both cases, if
the minimum distance is not smaller than the running k-th smallest distance at the
top of resultPQ, then we do not need to look into that child; otherwise (Lines 16
and 19), we add the node to searchPQ (Lines 17 and 20). The search terminates
when searchPQ becomes empty.

Algorithm 3.2 kNN Search and Crack
1: procedure kNNSEARCH(data array O, query q, int k)
2: searchPQ← PriorityQueue⟨dist, node⟩ ▷ guide search
3: resultPQ← PriorityQueue⟨dist, pid⟩ ▷ results PQ
4: searchPQ.push([0, root])
5: while !searchPQ.empty() and
6: searchPQ.top().dist < resultPQ.top().dist do
7: v = searchPQ.top().deheap()
8: if v is leaf then
9: for o in v do ▷ o is a data point
10: if d(p, q) < resultPQ.top().dist then
11: resultPQ.pop() ▷ update kNN set
12: resultPQ.push([d(p, q), pid])

13: Crack v ▷ on distance to current k-th NN
14: else ▷ non-leaf node
15: leftMinDist = max{0, d(v, q)− v.ϵ}
16: if leftMinDist < resultPQ.top().dist then
17: searchPQ.push([leftMinDist, v.left])

18: rightMinDist = max{0, v.ϵ− d(v, q)}
19: if rightMinDist < resultPQ.top().dist then
20: searchPQ.push([rightMinDist, v.right])

3.2.3 Enhancements

We introduce three enhancements that significantly improve the performance of the
AV-tree: First, we crack leaves by the median distance of objects therein to the query.

34

Second, we eschew constructing empty leaves and cracking leaves that have a few
objects. Third, we cache and sort the last computed distances of objects in leaves
that cannot be cracked further, to avoid distance computations for objects that are
definitely not results.

Cracking based on mediocre distances

A popular practice in both cracking-based and pivot-based indexing methods is to
partition the data on an intrinsic median value rather than an extrinsic threshold. For
instance, the VP-tree [53] partitions data on their median distance to a vantage point.
Likewise, in 1D cracking, using a median or mediocre value in a cracked piece rather
than a query threshold brings efficiency benefits [29]. Inspired by such precedents,
we use a sample-based mediocre pivot for leaf cracking. When we crack a sub-array
corresponding to a leaf node v, we compute the distances from a few sample points
in v to q and crack on the median thereof as v.ϵ. We confirmed experimentally that,
with as few as 3 samples, mediocre-based cracking is superior to the default strategy
that cracks on the query range ϵ or the running kth NN. Besides, mediocre-based
cracking leads to a balanced tree, since each crack yields two partitions of almost
equal size.

Avoiding empty leaves and applying a cracking threshold

As we saw in Section 3.2.1, our default algorithm may add empty leaves to the AV-tree.
Such empty leaves add space and search overhead. In our implementation, we do not
create leaves with empty scopes, i.e., we do not commit a crack of a leaf v that results
in an empty vL or vR and let v remain a leaf. In addition, the default algorithm cracks
a leaf v unconditionally; however, leaf nodes that contain few objects are not worth
cracking in practice, as they increase tree height without offering a significant pruning
advantage. As in 1D cracking [1], we do not crack leaves holding fewer objects than
cracking threshold θ, which effectively delimits the height of the AV-tree. We thus expect
average leaf size to converge to θ/2 and tree height to 1 + log2

|O|
θ
. We call such leaves

that are not cracked further fixed leaves. When a query reaches a fixed leaf, we obtain
query results therefrom by linear scan.

35

Distance Caching

As distance computations consume most of the query evaluation cost, reducing them
is important. While cracking, we can cache each object’s distance to the current query.
Thereby, we get the distance of each object in a leaf v to the leaf’s parent node p(v).
Next time we visit v while processing another query q, we may use the triangle
inequality on d(p(v), q) and the cached distance d(p(v), o) for each object o ∈ v to
check whether o can be a query result and either prune o or add it to the result set R
accordingly, avoiding the associated distance computation.

To minimize its overhead, we apply distance caching only in fixed leaves; we cache
the distance of each object o in leaf v to the leaf’s parent node p(v). We sort objects by
distance to p(v) and follow this order to conduct only a few comparisons to cached
distances with early termination, pruning distance computations for objects directly
determined to be, or not be, query results.

Algorithm 3.3 shows how we handle fixed leaves using cached distances, modi-
fying procedure SEARCH-AND-CRACK in Algorithm 3.1. We show the differing part for
range queries; for kNN queries, we use the distance to the item at the top of the result
heap as a threshold in comparisons in place of ϵ and update the kNN result set when
accessing qualifying data objects. We now discuss in detail how we prune distance
computations in each of four cases, as depicted in Figure 3.3: two for left-child fixed
leaves v that point to data within their parent’s query range (p(v), p(v).ϵ) and two for
right-child fixed leaves pointing to data outside the query range.

In Case L1, d(q, p(v)) > ϵ. Then, by the triangle inequality, objects owith d(p(v), o) <

d(q, p(v)) − ϵ or d(p(v), o) > d(q, p(v)) + ϵ cannot be query results. We find, by bi-
nary search on the sorted cached distances, the position of the first object o ∈ v

with d(p(v), o) ≥ d(q, p(v)) − ϵ and that of the last object o ∈ v with d(p(v), o) ≤
d(q, p(v))+ ϵ, scan objects in-between, and include in the result those having distance
to q at most ϵ (Lines 10–14). In Figure 3.3a, assume p(v) is the parent of fixed leaf v,
with objects p1 to p5 sorted by distance to p(v). Only p3 and p4 can be query results;
we compute distances only for those two, yielding p4 as a result.

In Case L2, d(q, p(v)) ≤ ϵ. Then, objects o with d(p(v), o) ≤ ϵ−d(q, p(v)) are surely
query results. Hence, we find, by binary search, the position of the first object o ∈ v

with d(p(v), o) > ϵ − d(q, p(v)) (e.g., p3 in Figure 3.3b), add all objects heretofore to
the query result (e.g., p1 and p2 in Figure 3.3b), and conduct distance computations

36

only for objects thereafter (Lines 17–24).

Algorithm 3.3 Search and Cracking with Caching
1: procedure SEARCH-AND-CRACK-CACHING(data array O, query pt q, bound ϵ, node v, result R, threshold

θ)
2: if v.q is null then
3: if v.size ≤ θ then ▷ fixed leaf node
4: qDist = distance(v,q)
5: p(v) = parent of v
6: if v.isLeftChild() then
7: if qDist > ϵ then ▷ Case L1
8: low = first o ∈ v, such that d(p(v), o) ≥ qDist− ϵ

9: high = last o ∈ v, such that d(p(v), o) ≤ qDist+ ϵ

10: for o ∈ v from low to high do
11: if d(q, o) ≤ ϵ then
12: R = R ∪ {o}

13: else ▷ Case L2
14: low = first o ∈ v, s. t. d(p(v), o) ≥ ϵ− qDist

15: for o ∈ v from start until low (excl.) do
16: R = R ∪ {o}

17: for o ∈ v from low until end do
18: if d(q, o) ≤ ϵ then
19: R = R ∪ {o}

20: else ▷ v is right child of p(v)
21: if qDist ≤ ϵ+ p(v).ϵ then ▷ Case R2
22: low = first o ∈ v

23: else ▷ Case R1
24: low = first o ∈ v, such that d(p(v), o) ≥ qDist− ϵ

25: high = last o ∈ v, such that d(p(v), o) ≤ qDist+ ϵ

26: for o ∈ v from low to high do
27: if d(q, o) ≤ ϵ then
28: R = R ∪ {o}

29: else ▷ non-fixed leaf
30: Lines 3–4 of Algorithm 3.1
31: if v.left.size ≤ θ then ▷ v.left is fixed
32: qsort(v.left)

33: if v.right.size ≤ θ then ▷ v.right is fixed
34: qsort(v.right)

35: Lines 6–15 of Algorithm 3.1

37

Distance caching L1 general case (change v to
p(v)), change colors

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3

<latexit sha1_base64="IZTywYQOmLMf5Bsd/7S0Vt6TEzQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6LjP4=</latexit>q

<latexit sha1_base64="pxCsljL5+1ZnkmpQIdJjuiELoIU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBPv5Ap</latexit>✏

Case L1 (general case)
v is left child of its parent and d(q,p(v))>q.epsilon

Guaranteed no result if 𝑑(p(𝑣), 𝑜) < 𝑑(𝑞, p(𝑣)) − q.𝜖, for example p1 and p2
Guaranteed no result if 𝑑(p(𝑣), 𝑜) > 𝑑(𝑞, p(𝑣)) + q.𝜖, for example p5

guaranteed no results

<latexit sha1_base64="5qqAjw1YTtZ9L4PvUnzbaUEklQQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh6Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVe+yWruvVeo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEG+o2k</latexit>p4
<latexit sha1_base64="PuuWPAzGFadNj9P9bu46192aDws=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHoXvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Xqnd5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcIfo2l</latexit>p5

<latexit sha1_base64="4gc1OAqORQiNnuiOS81eEpjzkk8=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUy7IrRT0WvXisYD+gXUo2zbah2WxMsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5oeRMG8/7dtbWNza3tgs7xd29/YPD0tFxUyepIrRBEp6odog15UzQhmGG07ZUFMchp61wdDfzW2OqNEvEo5lIGsR4IFjECDZWCmRlfOF2qdSMJ6JXKnuuNwdaJX5OypCj3it9dfsJSWMqDOFY647vSRNkWBlGOJ0Wu6mmEpMRHtCOpQLHVAfZ/OgpOrdKH0WJsiUMmqu/JzIcaz2JQ9sZYzPUy95M/M/rpCa6CTImZGqoIItFUcqRSdAsAdRnihLDJ5Zgopi9FZEhVpgYm1PRhuAvv7xKmpeuf+VWH6rl2m0eRwFO4Qwq4MM11OAe6tAAAk/wDK/w5oydF+fd+Vi0rjn5zAn8gfP5AzRDkcA=</latexit>

p(v).✏

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1
<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="PEZPE9pxOMwGlIrx4Zp+zG2lh+M=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyRbK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek/vM70yp0iyST2YWU1/gkWQhI9hkUlydXg7KFbfmLoDWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTuelfqJpjMkEj2jPUokF1X66uHWOLqwyRGGkbEmDFurviRQLrWcisJ0Cm7Fe9TLxP6+XmPDWT5mME0MlWS4KE45MhLLH0ZApSgyfWYKJYvZWRMZYYWJsPCUbgrf68jppX9W861r9sV5p3OVxFOEMzqEKHtxAAx6gCS0gMIZneIU3RzgvzrvzsWwtOPnMKfyB8/kDe4mN4g==</latexit>

p(v)

Distance caching L2 general case (v changed
to p(v))

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3

<latexit sha1_base64="IZTywYQOmLMf5Bsd/7S0Vt6TEzQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6LjP4=</latexit>q

<latexit sha1_base64="pxCsljL5+1ZnkmpQIdJjuiELoIU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBPv5Ap</latexit>✏

Case L2
v is left child of its parent p(v) and d(q,p(v))<=q.epsilon

Guaranteed result if d(o,p(v)) < q.epsilon-d(q,p(v))

guaranteed results

<latexit sha1_base64="4gc1OAqORQiNnuiOS81eEpjzkk8=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUy7IrRT0WvXisYD+gXUo2zbah2WxMsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5oeRMG8/7dtbWNza3tgs7xd29/YPD0tFxUyepIrRBEp6odog15UzQhmGG07ZUFMchp61wdDfzW2OqNEvEo5lIGsR4IFjECDZWCmRlfOF2qdSMJ6JXKnuuNwdaJX5OypCj3it9dfsJSWMqDOFY647vSRNkWBlGOJ0Wu6mmEpMRHtCOpQLHVAfZ/OgpOrdKH0WJsiUMmqu/JzIcaz2JQ9sZYzPUy95M/M/rpCa6CTImZGqoIItFUcqRSdAsAdRnihLDJ5Zgopi9FZEhVpgYm1PRhuAvv7xKmpeuf+VWH6rl2m0eRwFO4Qwq4MM11OAe6tAAAk/wDK/w5oydF+fd+Vi0rjn5zAn8gfP5AzRDkcA=</latexit>

p(v).✏

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1 <latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

<latexit sha1_base64="PEZPE9pxOMwGlIrx4Zp+zG2lh+M=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyRbK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek/vM70yp0iyST2YWU1/gkWQhI9hkUlydXg7KFbfmLoDWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTuelfqJpjMkEj2jPUokF1X66uHWOLqwyRGGkbEmDFurviRQLrWcisJ0Cm7Fe9TLxP6+XmPDWT5mME0MlWS4KE45MhLLH0ZApSgyfWYKJYvZWRMZYYWJsPCUbgrf68jppX9W861r9sV5p3OVxFOEMzqEKHtxAAx6gCS0gMIZneIU3RzgvzrvzsWwtOPnMKfyB8/kDe4mN4g==</latexit>

p(v)

(a) case L1 (b) case L2

Distance caching R1 general case (v replaced
by p(v))

<latexit sha1_base64="IZTywYQOmLMf5Bsd/7S0Vt6TEzQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6LjP4=</latexit>q
<latexit sha1_base64="pxCsljL5+1ZnkmpQIdJjuiELoIU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBPv5Ap</latexit>✏

Case R1
v is right child of its parent p(v) and d(q,p(v))>q.eps+p(v).eps

guaranteed no results
guaranteed no results

Guaranteed no result if d(p(v),o) < d(p(v),q)-q.eps
Guaranteed no result if d(p(v),o) > d(p(v),q)+q.eps

<latexit sha1_base64="PEZPE9pxOMwGlIrx4Zp+zG2lh+M=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyRbK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek/vM70yp0iyST2YWU1/gkWQhI9hkUlydXg7KFbfmLoDWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTuelfqJpjMkEj2jPUokF1X66uHWOLqwyRGGkbEmDFurviRQLrWcisJ0Cm7Fe9TLxP6+XmPDWT5mME0MlWS4KE45MhLLH0ZApSgyfWYKJYvZWRMZYYWJsPCUbgrf68jppX9W861r9sV5p3OVxFOEMzqEKHtxAAx6gCS0gMIZneIU3RzgvzrvzsWwtOPnMKfyB8/kDe4mN4g==</latexit>

p(v)

<latexit sha1_base64="4gc1OAqORQiNnuiOS81eEpjzkk8=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUy7IrRT0WvXisYD+gXUo2zbah2WxMsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5oeRMG8/7dtbWNza3tgs7xd29/YPD0tFxUyepIrRBEp6odog15UzQhmGG07ZUFMchp61wdDfzW2OqNEvEo5lIGsR4IFjECDZWCmRlfOF2qdSMJ6JXKnuuNwdaJX5OypCj3it9dfsJSWMqDOFY647vSRNkWBlGOJ0Wu6mmEpMRHtCOpQLHVAfZ/OgpOrdKH0WJsiUMmqu/JzIcaz2JQ9sZYzPUy95M/M/rpCa6CTImZGqoIItFUcqRSdAsAdRnihLDJ5Zgopi9FZEhVpgYm1PRhuAvv7xKmpeuf+VWH6rl2m0eRwFO4Qwq4MM11OAe6tAAAk/wDK/w5oydF+fd+Vi0rjn5zAn8gfP5AzRDkcA=</latexit>

p(v).✏
<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3
<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

Distance caching R2 general case (v repl by p(v))

<latexit sha1_base64="IZTywYQOmLMf5Bsd/7S0Vt6TEzQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl77JcqVdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AN6LjP4=</latexit>q
<latexit sha1_base64="pxCsljL5+1ZnkmpQIdJjuiELoIU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBPv5Ap</latexit>✏

<latexit sha1_base64="5syBhnkZLiV3s00CrUvLjIm6J/c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQ9LzeuWKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1busnt9fVGo3eRxFOIJjOAUPrqAGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AECHI2g</latexit>p1

<latexit sha1_base64="Q0e3DGQlX+KiC2U+bdL4oVWjFl8=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9JL1qr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wzu8vyrWbPI4CHMMJnIEHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEDoI2h</latexit>p2

Case R2
v is right child of its parent p(v) and d(q,p(v))<=q.eps+p(v).eps

guaranteed no results

Guaranteed no result if d(p(v),o) > d(p(v),q)+q.eps

<latexit sha1_base64="PEZPE9pxOMwGlIrx4Zp+zG2lh+M=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxgv2AdinZNNuGJtklyRbK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek/vM70yp0iyST2YWU1/gkWQhI9hkUlydXg7KFbfmLoDWiZeTCuRoDspf/WFEEkGlIRxr3fPc2PgpVoYRTuelfqJpjMkEj2jPUokF1X66uHWOLqwyRGGkbEmDFurviRQLrWcisJ0Cm7Fe9TLxP6+XmPDWT5mME0MlWS4KE45MhLLH0ZApSgyfWYKJYvZWRMZYYWJsPCUbgrf68jppX9W861r9sV5p3OVxFOEMzqEKHtxAAx6gCS0gMIZneIU3RzgvzrvzsWwtOPnMKfyB8/kDe4mN4g==</latexit>

p(v)

<latexit sha1_base64="4gc1OAqORQiNnuiOS81eEpjzkk8=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUy7IrRT0WvXisYD+gXUo2zbah2WxMsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5oeRMG8/7dtbWNza3tgs7xd29/YPD0tFxUyepIrRBEp6odog15UzQhmGG07ZUFMchp61wdDfzW2OqNEvEo5lIGsR4IFjECDZWCmRlfOF2qdSMJ6JXKnuuNwdaJX5OypCj3it9dfsJSWMqDOFY647vSRNkWBlGOJ0Wu6mmEpMRHtCOpQLHVAfZ/OgpOrdKH0WJsiUMmqu/JzIcaz2JQ9sZYzPUy95M/M/rpCa6CTImZGqoIItFUcqRSdAsAdRnihLDJ5Zgopi9FZEhVpgYm1PRhuAvv7xKmpeuf+VWH6rl2m0eRwFO4Qwq4MM11OAe6tAAAk/wDK/w5oydF+fd+Vi0rjn5zAn8gfP5AzRDkcA=</latexit>

p(v).✏

<latexit sha1_base64="r1HxXlECM1vo/+Hw2nNpPweKS/o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6SHrnvXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeO1nXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+yen5/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8wcFJI2i</latexit>p3

(c) case R1 (d) case R2

Figure 3.3: Use of cached distances at AV-tree leaves

In Case R1, the ranges of query q and p(v) are disjoint, i.e., d(q, p(v)) > p(v).ϵ +

ϵ. Then, objects o outside the query range of p(v) with d(p(v), o) < d(q, p(v)) − ϵ

or d(p(v), o) > d(q, p(v)) + ϵ (e.g., p1 and p3 in Figure 3.3c) cannot be query results;
thus, as in Case L1, we find, by binary search, the range of candidate query results and
compute distances only for those. Case R2 applies when d(q, p(v)) ≤ p(v).ϵ+ ϵ and is
similar to Case R1, except that now there are no objects o with d(p(v), o) < d(q, p(v))−ϵ
outside the query range (p(v), p(v).ϵ), hence a single binary search suffices.

In addition, when possible, we avoid binary search to compute the range of po-
sitions in which to scan objects and compute distances. For example, in Case L1,
if p(v).ϵ ≤ d(q, p(v)), then there are no objects within the query range of p(v)with d(p(v), o) >

d(q, p(v)) + ϵ, hence high is the last position of v. Similarly, in Case L2, if d(q, p(v)) +
p(v).ϵ ≤ ϵ, then all objects within the query range of p(v) are query results, hence

38

we need not do any comparisons. We also exploit the fact that, as objects in fixed
leaves are sorted, the first and the last object in v provide lower and upper bounds
to d(p(v), o), respectively. Thus, in Cases R1 and R2, if the last cached distance dLast
is dLast ≤ d(q, p(v)) + ϵ, then we set high to the last object position in v and eschew
binary search.

3.2.4 Cost Analysis

Here, we analyze the cost of the AV-tree index with all enhancements. Assuming
that AV-tree leaves of size no larger than θ are not cracked, we expect the tree to
reach its maximum size after a large number of queries, whereupon no more cracks
are performed. In this state, each leaf has θ/2 objects on average, so the expected
number of leaves is 2n

θ
, where n is the number of objects in O. Since the AV-tree is a

binary tree, the expected number of nodes is 4n
θ
−1, hence the index space complexity

is O(n/θ). The worst-case cost of query processing is O(n), accessing all leaves and
data objects and computing their distances to q. So is the cost of the first query over
an uncracked array. However, after a large number of queries, we expect the cost per
query to drop and to converge to that of using a fully built VP-tree [53]. Lastly, the
space requirements of distance caching are O(n), i.e., one scalar per object, whereas
those for storing the D-dimensional data array are O(Dn).

mediocre-128 cachingmediocre-128standard mediocrelinear scan

100 101 102 103

10−4

10−3

Number of queries

Ti
m
e(
se
c)

(a) Time per query

(MNIST50)

100 101 102 103
10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(b) Cumulative time

(MNIST50)

100 101 102 103
10−2

10−1

100

101

Number of queries

Ti
m
e(
se
c)

(c) Cumulative time

(Synthetic)

100 101 102 103

10−1

100

101

102

Number of queries

Ti
m
e(
se
c)

(d) Cumulative time

(Words)

Figure 3.4: AV-tree versions, 100 selectivity range workload.

3.3 Experimental Evaluation

We evaluate AV-tree against the following competitors:

39

• Linear scan computes distances d(q, o) for all o ∈ O and does not perform any
data array re-organization or indexing.

• SimplePivot is described in Chapter 2. After experimental tuning, we opted to set
the number of pivots m to 5, which yields the best performance; this parameter
value selection is consistent with the experimental setup in [41].

• MVP‐tree [54], described in Chapter 2. We used the same implementation2 as
in [41]. MVP-tree has two parameters, bucket size (equivalent to the threshold θ in
AV-tree) and arity (i.e., number of children per node). We experimentally found
that the MVP-Tree performs best with bucket size 64 and arity 5.

• AKD‐tree [18] is the state-of-the-art adaptive index for multi-dimensional points;
we used the authors’ implementation3. To prevent excessive tree growth, we se-
lect 128 as the size threshold after experimentally assessing various values. The
original implementation handles rectangular queries, i.e., the Lmax distance met-
ric. To adapt it to the L2 distance metric, we first perform an Lmax-query for the
surrounding tangent box using the given q and ϵ, and then filter false positives by
a L2-based linear scan.

• SAT is an implementation2 of the Spatial Approximation Tree [52] (see Chapter
2), which has no construction parameters.

Table 3.1: Datasets used in experiments

Dataset Cardinality dimensionality distance size (MB)
MNIST 70k 5, 20, 50, 100 L1, L2 3–55
Words 650k 2-33 edit distance 8
Synthetic 50k, 100k, 200k, 500k 100 L1, L2 20–450

3.3.1 Experimental Settings

Environment. We compiled all codes in g++ 9.4.0 with flags -O3, -mavx, and -
march=native and ran experiments on a 32GB Ubuntu 20.04.3 LTS machine with
Intel Core i9-10900K CPU @3.70GHz.

2https://github.com/kaarinita/metricSpaces
3https://github.com/pdet/MultidimensionalAdaptiveIndexing

40

Datasets. We use two publicly available real datasets and synthetically generated
high-dimensional vectors. Table 5.1 summarizes statistics about the data with the
default values of parameters and distance metrics shown in boldface. We provide
more details below.

• MNIST4 is a database of 70K handwritten digits [87]. Each digit is stored as a
grayscale image with a size of 28x28 pixels. MNIST has been used in numerous
similarity search studies (e.g., [88, 89, 90]). We use the UMAP [91] dimensionality
reduction method to create various vector representations of the data with D in 5–
100.

• Words is a database of 650K proper nouns, acronyms, and compound words,
taken from the Moby project5, with lengths varying from 2 to 33 characters. On
Words, the query goal is to find words that are similar to a given query string by
edit distance.

• Synthetic are generated datasets of 10 non-overlapping, equally sized clusters com-
prising 20K–500K points in 100 dimensions, generated as isotropic Gaussian blobs
by make_blobs function of Python’s sklearn [92] with a standard deviation of 0.5.

Queries. We ran workloads of range and kNN queries. In line with previous work [1,
18], our query workload consists of 1000 randomly sampled query points from the
target dataset.6 For range queries, we tuned ϵ to ensure that queries return the desired
number of results. Query selectivity ranges from 20 to 1000 (default 100). For kNN
queries, k ranges in {5, 20, 50, 100} (default k = 20).

Cost measures. We evaluate all methods by their (i) cost per query and (ii) cumu-
lative cost, as the query workload progresses; we average results over 5 runs. As
SimplePivot, MVP-tree, and SAT are built in advance, we add their construction cost
to the cumulative cost prior to the first query. Linear scan, AV-tree, and AKD-tree
do not bear preprocessing costs.

4http://yann.lecun.com/exdb/mnist/
5https://en.wikipedia.org/wiki/Moby_Project
6In most real applications in metric spaces, queries are not ad hoc, but follow the data distribution.

41

3.3.2 Enhancements and parameter tuning

Effect of AV‐tree enhancements

First, we evaluate different AV-tree versions with 1000 queries on the 50D MNIST
dataset, including the performance of linear scan for reference. We compare the basic
version of AV-tree, which uses standard cracking without any enhancements (labeled
‘standard’) to (i) its variant using mediocre cracking (Section 3.2.3, ‘mediocre’); (ii) a
variant using mediocre cracking and threshold θ = 128 (Section 3.2.3, ‘mediocre-
128’); and (iii) a variant that applies all enhancements including caching (Section 3.2.3,
‘mediocre-128 caching’).

Figures 3.4a and 3.4b show the per-query and cumulative costs, respectively, of
all AV-tree variants on MNIST, while Figures 3.4c and 3.4d show their cumulative
costs on Sythetic and Words. Notably, both mediocre cracking and thresholding boost
performance, with the effect of thresholding being smaller on MNIST. Mediocre crack-
ing creates a balanced tree, as each crack splits a leaf in two partitions of roughly
equal size, while thresholding avoids building an excessively tall tree, which would be
detrimental to performance, as its traversal does not pay off compared to the achieved
savings. On the other hand, caching pays off in cases where distance computation is
expensive, e.g., on the Words data, where we use edit distance.

Table 3.2: AV-tree versions, MNIST50, post 1k range queries

cum. time cum. distance comp. #nodes
Linear Scan 1.8548 70000 -
Standard 1.4831 38818.553 11983
Mediocre 0.1215 1602.105 85809

Mediocre-128 0.1019 1735.236 1843
Mediocre-128 caching 0.1002 1555.677 1843

Table 3.2 shows the cumulative costs, distance computations and number of AV-
tree nodes after 1000 range queries on the 50-dimensional MNIST. The fully op-
timized AV-tree surpasses all other versions in all respects. While on these data
Mediocre without threshold performs similarly to Mediocre-128, it incurs a signifi-
cant space overhead by building an AV-tree even bigger than Standard. The same
also holds for all other datasets; we omit the corresponding tables in the interest of
space.

42

mediocre-128 cachingmediocre-128standard mediocrelinear scan

100 101 102 103

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(a) MNIST50

100 101 102 103
10−2

10−1

100

101

Number of queries

Ti
m
e(
se
c)

(b) Synthetic

Figure 3.5: L1 distance, 100-selectivity range workload

Figure 3.5 shows the cumulative cost of AV-tree variants on MNIST and Synthetic
using L1 distance instead of L2 (Euclidean). Note that the performance difference
when using L1 is insignificant. Henceforward, we adopt all enhancements in the AV-
tree and use L2 as a distance measure on MNIST and Synthetic.

32 64 128 256 512 1024 2048

0.2

0.4

0.6

0.8

𝜃

To
ta
lT

im
e(
se
c)

AV-tree
AKD-tree
MVP-tree

(a) MNIST50

32 64 128 256 512 1024 2048

10

20

30

40

𝜃

To
ta
lT

im
e(
se
c)

AV-tree
MVP-tree

(b) Words

Figure 3.6: Parameter Tuning, 100 selectivity range workload

Parameter setting

We tuned the threshold parameter on AV-tree, AKD-tree, and MVP-tree on MNIST50
and Words. Figure 3.6 plots the total cost for an 1K-query workload vs. different

43

threshold values. As the plot shows, the optimal threshold values for AV-tree, AKD-
tree, and MVP-tree, are 128, 128, and 64 respectively.

3.3.3 Comparative study

MNIST

Next, we try the fully enhanced AV-tree vs. the competitors listed in Section 3.3 with
range and kNN queries on MNIST.

Dimensionality Figure 3.8 shows the per-query and cumulative cost, as the query
workload (selectivity s = 100) progresses, on MNIST datasets of varying dimension-
ality. AV-tree exhibits the ideal behavior of an adaptive index: its per-query cost
gradually drops and reaches that of the MVP-tree. Its cumulative cost outpaces all
competitors and eventually matches the MVP-tree. This progression is slower on
lower dimensionality; on higher dimensionality, the two lines meet after around 100
queries. The AKD-tree performs competitively to the AV-tree only on very low di-
mensionality (D=5), where hyperplane-based partitioning works satisfactorily. Until
it reaches the size threshold, the AKD-tree creates 2D new levels per crack, leading to
an exorbitantly tall tree that is expensive to traverse, hence its disadvantage on higher
dimensionality. SimplePivot is inferior to MVP-tree and SAT, especially when D is
small. These results are consistent with the findings in [41]. MVP-tree has lower per-
query cost than SAT in data of medium dimensionality, but the two costs are similar
in high-dimensional spaces. Still, SAT incurs a very high start-up (i.e., construction)
cost compared to MVP-tree.

Figure 3.9 repeats the experiment with kNN queries, setting k to 20. We excluded
the AKD-tree from the comparison, as it does not support kNN queries. Our findings
reaffirm those for range queries, as the data are reorganized (i.e., cracked) similarly in
both cases, leading to a good data structure, while the use of the two priority queues
in the AV-tree prevents redundant search.

Selectivity Figure 3.10 juxtaposes all methods on workloads of varying selectivity s;
their relative performance is largely unaffected by selectivity, with the discernible
exception of the AKD-tree, which is sensitive to large s due to the expensive L2-
filtering; as s grows, the items to be scanned increase. Cost is largely unaffected by k

in kNN queries, as Figure 3.11 shows. The AV-tree is robust to selectivity, as cracking

44

is insensitive to the number of query results and thanks to the data structures it uses
to manage kNN query results.

Cost breakdown Figure 3.7 breaks down the total runtime of the default range
workloads for the AV-tree and AKD-tree on the default MNIST50 and Synthetic
datasets. Total time comprises the costs for: (i) searching the index for relevant par-
titions (Index Search); (ii) index restructuring, i.e., creating new nodes and swap-
ping (Adaptation); and (iii) scanning data objects in fixed leaves that are not being
cracked further (Scan) — in the AKD-tree, Scan includes the time for L2 filtering.
All costs are higher for the AKD-tree: (i) index-search cost due to the ineffectiveness
of hyperplane-based partitions and the larger index size, (ii) adaptation cost due to
generating more (hyperplane-based) partitions than the AV-tree, (iii) scan cost due
to refining spherical range queries.

AKD-tree AV-tree
0

0.2

0.4

0.6

0.8

To
ta
lt
im

e(
se
c)

(a) MNIST50

AKD-tree AV-tree
0

2

4

6

To
ta
lt
im

e(
se
c)

Scan
Adaptation
Index Search

(b) Synthetic

Figure 3.7: Cost Breakdown

Words

We next compare all methods for range and kNN query workloads on the Words data.
We omit the AKD-tree, as it does not support non-vector data and non-Lp distance
measures. First, we create range query workloads by picking 1000 random words of
fixed length (4 to 10), set ϵ = 2, and measure the cumulative cost of all methods. As
Figure 3.12 shows, AV-tree outperforms all competitors, and fares better on smaller
query word lengths. With longer words, the curse of dimensionality comes into play
and all index-based methods acquire costs similar to linear scan; yet even then, AV-
tree outpaces SimplePivot and matches the MVP-tree.

45

AV-tree AKD-tree MVP-tree Linear Scan SimplePivot SAT

100 101 102 103

10−5

10−4

10−3

Ti
m
e(
se
c)

100 101 102 103

10−3

10−2

10−1

100

5D

100 101 102 103
10−5

10−4

10−3

Ti
m
e(
se
c)

100 101 102 103

10−3

10−2

10−1

100

20
D

100 101 102 103

10−4

10−3

10−2

Ti
m
e(
se
c)

100 101 102 103
10−3

10−2

10−1

100

50
D

100 101 102 103

10−4

10−3

10−2

Number of queries

Ti
m
e(
se
c)

100 101 102 103

10−2

10−1

100

Number of queries

10
0D

Figure 3.8: Effect of dimensionality, MNIST data, 100-selectivity range workload, per
query (left) and cumulative time (right).

Figure 3.13 juxtaposes all methods the same workload of length-6 queries, tuning
the values of ϵ, i.e., varying selectivity. With more selective queries (lower ϵ), index-
based methods outperform linear scan, and the AV-tree gains an advantage. However,
indices are less effective with less selective queries (ϵ = 4), thus the AV-tree advantage

46

AV-tree MVP-tree SimplePivotLinear Scan SAT

100 101 102 103

10−5

10−4

Ti
m
e(
se
c)

100 101 102 103

10−3

10−2

10−1

5D

100 101 102 103
10−5

10−4

10−3

Ti
m
e(
se
c)

100 101 102 103

10−3

10−2

10−1

100

20
D

100 101 102 103

10−4

10−3

Ti
m
e(
se
c)

100 101 102 103

10−2

10−1

100

50
D

100 101 102 103

10−4

10−3

Number of queries

Ti
m
e(
se
c)

100 101 102 103

10−2

10−1

100

Number of queries

10
0D

Figure 3.9: Effect of dimensionality, MNIST data, 20NN workload, per query (left)
and cumulative time (right).

diminishes. Lastly, Figure 3.14 shows the performance of AV-tree on kNN queries
vs. the value of k. The results resemble those for range queries of varying selectivity.

47

AV-tree AKD-tree MVP-tree Linear Scan SimplePivot SAT

100 101 102 103

10−2

10−1

100

Ti
m
e(
se
c)

(a) s=20

100 101 102 103

10−2

10−1

100

(b) s=100

100 101 102 103

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(c) s=500

100 101 102 103

10−2

10−1

100

Number of queries

(d) s=1000

Figure 3.10: Effect of selectivity, MNIST50 data, range workload, cumulative time.

Overall, AV-tree presents an ideal behavior on the Words dataset, as its cumulative
cost is consistently below that of all other methods, with the difference being more
striking in the first few hundreds of queries.

Synthetic data

We now compare the performance of all methods against synthetically generated
datasets of different scale, generated as described in Section 3.3.1. Figure 3.15 shows
cumulative costs on range query workloads. Noticeably, the superior performance of
the AV-tree is insensitive to data scale; its cost is close to that of linear scan in the
first few queries and matches that of MVP-tree after a few hundreds of queries, while
linear scan remains too slow. AV-tree is equally robust to data scale on kNN query
workloads, as Figure 3.16 shows.

48

AV-tree MVP-tree SimplePivotLinear Scan SAT

100 101 102 103
10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(a) k=10

100 101 102 103
10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(b) k=20

100 101 102 103
10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(c) k=50

100 101 102 103

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(d) k=100

Figure 3.11: Effect of k, MNIST50 data, kNN workload, cumulative time.

Table 3.3: Index size (MB) after 1K range queries.

AV-tree AV-Tree (no cache) AKD-tree MVP-tree

MNIST 0.3989 0.1189 2.7989 0.2864

Words 3.2654 0.6654 - 2.7

Synthetic 0.5682 0.1682 2.6732 0.2909

3.3.4 Index Size

Lastly, we compare the eventual index sizes of AV-tree, AKD-tree, and MVP-tree, after
the default workload of 1K range queries of selectivity 100. As Table 3.3 shows, AV-
tree is lightweight, as it has size controlled by a threshold and caches at most one
distance per object. Compared to the size of the corresponding datasets in Table 5.1,
AV-tree occupies little space; this is yet another advantage of our method. If we
eschew distance caching in AV-tree (2nd column), the index becomes even smaller

49

AV-tree MVP-tree SimplePivotLinear Scan SAT

100 101 102 103

10−1

100

101
Ti
m
e(
se
c)

(a) wl=4

100 101 102 103

10−1

100

101

102

(b) wl=6

100 101 102 103

10−1

100

101

102

Number of queries

Ti
m
e(
se
c)

(c) wl=8

100 101 102 103
10−1

100

101

102

Number of queries

(d) wl=10

Figure 3.12: Effect of query length, Words data, edit distance ϵ = 2, cumulative time.

than that of MVP-tree, at the price of a small overhead in the search performance.

3.4 Conclusions

We introduced the adaptive vantage tree (AV-tree), the first, to our knowledge, adap-
tive index tailored for high-dimensional metric spaces. In manner reminiscent of
previously proposed adaptive indices for single columns [1, 17] and for a few at-
tributes [19, 18], the AV-tree gracefully adapts to a query workload to progressively
build a complete high-quality index. Nevertheless, unlike previous adaptive indexing
methods, the AV-tree partitions the space around query centers into units defined by
hyperspheres using mediocre distance bounds that naturally adapt to the data distri-
bution, rather than into orthotopes (i.e., hyperrectangular units). Our experimental
study on two real datasets of different natures, with diverse distance metrics, demon-
strates that the AV-tree achieves low cumulative query cost compared to (i) iteratively

50

AV-tree MVP-tree SimplePivotLinear Scan SAT

100 101 102 103

10−1

100

101

102

Ti
m
e(
se
c)

(a) ϵ=1

100 101 102 103

10−1

100

101

102

(b) ϵ=2

100 101 102 103

10−1

100

101

102

Number of queries

Ti
m
e(
se
c)

(c) ϵ=3

100 101 102 103

10−1

100

101

102

Number of queries

(d) ϵ=4

Figure 3.13: Effect of ϵ, Words data, 6-letter-word queries, range workload, cumulative
time.

applying a linear scan; (ii) using a pre-built MVP-tree, the state-of-the-art index for
metric spaces; and (iii) employing the AKD-tree, the state-of-the-art adaptive index for
multidimensional data. In the future, we intend to investigate the performance of a
multiway AV-tree (MAV-tree) that, unlike the current binary space partitioning, will
divide the space around each query into layers based on several distance bounds.
We also intend to examine alternative ways of measuring distance [93] and adaptive
multidimensional synopses [94].

51

AV-tree MVP-tree SimplePivotLinear Scan SAT

100 101 102 103

10−1

100

101

102

Ti
m
e(
se
c)

(a) k=10

100 101 102 103

10−1

100

101

102

(b) k=20

100 101 102 103

10−1

100

101

102

Number of queries

Ti
m
e(
se
c)

(c) k=50

100 101 102 103

10−1

100

101

102

Number of queries

(d) k=100

Figure 3.14: Effect of k, Words data, 6-letter-word kNN queries, cumulative time.

52

AV-tree AKD-tree MVP-tree Linear Scan SimplePivot SAT

100 101 102 103

10−2

10−1

100

Ti
m
e(
se
c)

(a) 50K

100 101 102 103

10−2

10−1

100

101

(b) 100K

100 101 102 103
10−2

10−1

100

101

Number of queries

Ti
m
e(
se
c)

(c) 200K

100 101 102 103

10−1

100

101

Number of queries

(d) 500K

Figure 3.15: Effect of data size, Synthetic 100D data, 100-selectivity range workload,
cumulative time.

53

AV-tree MVP-tree SimplePivotLinear Scan SAT

100 101 102 103

10−2

10−1

100

Ti
m
e(
se
c)

(a) 50K

100 101 102 103

10−2

10−1

100

101

(b) 100K

100 101 102 103
10−2

10−1

100

101

Number of queries

Ti
m
e(
se
c)

(c) 200K

100 101 102 103

10−1

100

101

Number of queries

(d) 500K

Figure 3.16: Effect of data size, Synthetic 100D data & 20NN workload, cumulative
time.

54

CHAPTER 4

BENCHMARKING ADAPTIVE
MULTIDIMENSIONAL INDICES

4.1 Methods

4.2 Experimental Setup

4.3 Experimental Evaluation

4.4 Conclusions & Findings

By adaptive indexing, an index grows dynamically and progressively through query
processing. This mode of index-building, well explored over the past fifteen years,
proves especially useful in exploratory scenarios where prebuilt indices do not pay
off the time to construct them, as the query workload variably focuses on particular
areas of the search space, or the data become quickly obsolete. In the case of multidi-
mensional range queries, various adaptive indexing techniques have been developed,
each with distinctive strengths. Despite this significant body of work, there remains
a gap in comparative studies that evaluate these methods on equal terms in a wide
array of settings, including data types, distributions, sizes, and workload patterns.
This work fills this gap with a comprehensive benchmark to thoroughly evaluate the
performance, strengths, and limitations of existing multidimensional adaptive index-
ing methods across diverse scenarios, contributing valuable insights that complement
previous works. Further, we suggest supplementary technical extensions that enhance
the efficiency of existing methods.

55

Outline. Section 4.1 offers an overview of the methods compared in this study. Sec-
tion 4.2 details the experimental setup, including the datasets, query workloads, and
the methodology used for evaluation. Section 4.3 presents the experimental results
and analysis. Finally, Section 4.4 summarizes our findings, discusses the results, and
provides guidelines for selecting the most appropriate methods in various use cases.

4.1 Methods

Here, we describe the multidimensional (adaptive) indices that we compare experi-
mentally. We focus on in-memory indexing of multidimensional points and hyper-
rectangular ranges, which we call, for simplicity, boxes. Table 4.1 summarizes the
compared methods and classifies them into three categories based on their adaptive-
ness. Pre-bulit, i.e, non-adaptive indices are fully constructed before query processing.
The second class includes adaptive indices that employ database cracking: they pro-
gressively construct an index in response to queries on an initially unorganized array.
In a class of its own is a composite index that applies CGI [25] in the multidimen-
sional space; this is not a purely adaptive index, as it first coarsely partitions the data
and then indexes the partitions adaptively.

4.1.1 Non‐adaptive indices

Non-adaptive indices are general-purpose index structures for multidimensional data,
applicable to index multidimensional points and ranges. These include the R-tree [31],
the quadtree [34], and a multidimensional uniform grid [39]. The R-tree and quadtree
adapt to data skew. The R-tree yields a balanced hierarchical structure, originally de-
signed for disk-based indexing, yet has been implemented for efficient in-memory
search too [95]. Contrariwise, the quadtree partitions the data space at varying res-
olution per region adapting to data skew to yield an imbalanced structure, and is
designed for points, yet can be extended to handle ranges. Grids are highly efficient
data structures for in-memory indexing, originally proposed for point data, yet ex-
tensible to handle non-points [39]. While they perform best on non-skewed data,
they were shown to perform well for moderately skewed data [39]. R-tree partitions
may overlap on each level of the hierarchy, while quadtree and grid partitions are
spatially disjoint.

56

4.1.2 Adaptive indices

The QUery-Aware Spatial Incremental Index (QUASII) [19] is the first proposed multi-
dimensional adaptive index. For each query, it cracks the data partitions that overlap
the query range at one dimension per level by fixed order, following the recipe of
1D cracking. In effect, it associates one dimension with each index level. As it is
designed for multidimensional ranges (i.e., spatial objects), QUASII adjusts partition
boundaries to contain the query results. A partition is finalized and never re-cracked
once the objects it comprises are no more than a cracking threshold τ , which ensures
that the indexing overhead is worth the benefits it brings. Using QUASII for point
data is straightforward by skipping the query adjustment.

The adaptive KD-tree (AKD) [28, 18] repetitively cracks a leaf node of the binary
search tree in two pieces, along a multidimensional range query boundary, as long
as the piece which includes the query has more than τ elements. For each query, it
processes all lower bounds before all higher bounds, and associates dimensions with
tree levels in round robin fashion. Unlike QUASII, it cracks on the same dimension
multiple times at different levels to build a (binary) KD-tree.

The Progressive KD-Tree (PKD) and its extension, the Greedy Progressive KD-Tree
(GPKD) [28], mitigate some disadvantages of the AKD associated with the initial
query cost. PKD lets a parameter δ dictate the fraction of the dataset indexed per
query, to achieve a tradeoff between indexing overhead and pace of index-building.
Smaller δ values reduce the overhead, yet also slow down the progress, whereas
larger values accelerate construction at the cost of higher overhead. GPKD uses a cost
model to estimate the execution time of each query and ensures that each query has
a consistent and robust execution time during index growth.

The adaptive Incremental R-tree (AIR) [21] progressively constructs an in-memory
R-tree [31], distinguishing its leaf nodes into regular and irregular ones. AIR cracks each
irregular leaf along each rectangular range query boundary that intersects the leaf; it
prioritizes dimensions that split the data space evenly by choosing, in each cracking
step, the query bound closest to the leaf’s midpoint along the leaf axis with the largest
extent. A partition holding fewer than τ elements becomes a regular leaf, not to be
further cracked. Although designed for range data (i.e., MBRs of spatial objects), AIR
is also applicable on point data. Its performance is affected by a pathological scenario
where queries come in a sequential spatial order. To mitigate these effects, AIR applies

57

Table 4.1: Classification of tested methods
Method name points boxes replication (boxes) tree tree balance overlapping partitions

Pr
e-
bu
ilt R-tree [31] ✓ ✓ X ✓ ✓ ✓

Quadtree [34] ✓ ✓ ✓ ✓ X X
grid [39] ✓ ✓ ✓ X – X

A
da
pt
iv
e

QUASII [19] ✓ ✓ X ✓ ✓ X
AKD [28, 18] ✓ X X ✓ X X
AIR [21] ✓ ✓ X ✓ ✓ ✓

AV-tree [22] ✓ X X ✓ X ✓
AAKD (combines [18] and [21]) ✓ X X ✓ X X

H
yb
ri
d

CGI (applies CGI [25] to kD spaces) ✓ X X X X X

stochastic cracking on the largest piece resulting from a query.
The AV-tree [22] is designed for similarity queries in high-dimensional spaces.

We apply it on rectangular range queries as follows. Consider a rectangular query q,
expressed by an interval [qd.low, qd.high] in each dimension d. We convert this query
to a weighted Lmax query using its geometric center q.p = { qd.low+qd.high

2
, ∀d} as a pivot

point and retrieve all data points p, such that for each dimension d, |q.pd − pd| ≤
q.bd, where q.bd = (qd.high − qd.low)/2. When constructing the AV-tree, we use these
geometric centers as pivots and median distances as ϵ bounds. To determine the
cracked pieces (i.e., AV-tree leaves) relevant to a query q, we use the Lmax distance
of the pivot v.p at each tree node v:

• We access the left subtree of v.p, which includes all data points p such that ∀d :

|v.pd − pd| ≤ v.ϵ, when ∃d : |v.pd − qd| − v.ϵ ≤ q.bd.

• We access the right subtree of v.p, which includes all data points p such that ∃d :

|v.pd − pd| > v.ϵ, when ∃d : |v.pd − qd| − v.ϵ > q.bd.

QUASII and AIR can handle points and rectangles, whereas AKD and AV-tree
are designed for point data. AKD is applicable to rectangles by treating each data
rectangle as a point formed by its lower bound at each dimension and extending the
query range to the maximum object extent in each dimension [96].

For the sake of fairness, apart from the aforementioned methods, we also test
an Advanced AKD (AAKD), which, instead of a round robin process, prioritizes the
cracked dimensions by the heuristics of AIR, proved in Ref. [21] to be more robust
than other alternatives. We crack a piece on the minimum query bound along the

58

dimension of its largest extent. We also introduce a stochastic crack to the largest
ensuing piece, as also successfully applied in AIR.

4.1.3 Hybrid indexing

The Coarse Granular Index (CGI) [25] is hybrid method proposed for 1D data. Initially,
CGI scans and partitions the data domain to equi-width ranges. For each query q,
CGI determines the partitions relevant to q in O(1), cracks the borderline relevant
partitions on the query bounds, updates an AVL tree accordingly, and returns the
query results. Hence, in 1D, each query requires at most two cracks, one for each
bound.

As CGI has yet to be generalized to the multidimensional case, we explore the
effectiveness of a coarse multidimensional grid that partitions the data before the
first query, and then cracks each partition using a local adaptive multidimensional
index, such as AKD or AIR. Figure 4.1 sketches a multidimensional GCI. First, we
partition the data space into tiles T1 to T16 by a 4× 4 uniform grid and place the data
in each tile Ti into an (unorganized) array. Upon the first query q1, we identify the
set of relevant tiles, T4, T5, T8, T9 and crack the array of each of those on the query
boundaries to initialize a local adaptive index (e.g., AKD tree), which guides and
grows with subsequent queries.

We name CGI methods by the granularity and adaptive index they use, e.g.,
CGI100+AKD denotes a CGI of granularity 100 per dimension where each partition
hosts an AKD index. We include CGI with AIR in experiments with shape data,
where AIR is competent vs. AKD. We apply CGI only on 2D and 3D data, as the
number of tiles, and hence the partitioning and storage costs and partitoin sparsity,
grow exponentially with dimensionality.

Using an irregular grid.

While CGI has been proven to be very effective for uniform 1D data [26], it has not
been tested for non-uniform data, where it might falter due to load imbalance between
partitions. On skewed multidimensional data distributions, in addition to testing CGI
with a regular grid, we also test an alternative approach that defines irregular domain
partitions in each dimension, following the data distribution. As finding an optimal
irregular grid is costly, we collect a data sample to find the dividers in each dimension

59

Multidimensional CGI

T0 T1 T2 T3

T4 T5 T6 T7

T8 T9 T10

T12 T13 T14 T15

T11

42

30

60

90

30 60 900 10 38

70

x

y
T4.AKD

x
≥10

<10 y
≥42<42

T4.array

T5.AKD
y

≥42
<42 x

>38≤38

T5.array

q1 T8.AKD
x

≥10
<10 y

>70≤70

T8.array

T9.AKD
x

>38
≤38
y
>70≤70

T9.array

Figure 4.1: Multidimensional GCI using AKD

that partition the domain into cells of approximately equal cardinality. We sort the
samples data on the x-axis and identify the values (i.e., quantiles) that divide the
sample into equal parts. We repeat this process on the y-axis to generate an irregular
grid based on the data distribution. The resulting grid balances cell cardinality, aiming
to more efficient indexing and query processing on non-uniform data distributions.

4.2 Experimental Setup

We implemented all methods in C++ and compiled them in g++ 7.4.0 with the -o3
switch; experiments ran on a 3.10GHz 10-core Intel Xeon machine with 396G RAM
running Ubuntu 18.04.3 LTS. Here, we provide details on datasets (Section 4.2.1),
query workloads (Section 4.2.2), and performance measures (Section 4.2.3). We also
conduct tuning experiments (Section 4.2.4) that suggest the most robust parameter
values for the compared methods.

4.2.1 Datasets

Synthetic data

To test adaptive indexing across various datasets and query workloads with diverse
characteristics, we generate synthetic datasets comprising of 20 to 80 million data

60

Table 4.2: Data sets

Size Dim Max Ext.

Uniform 20M 2 0.0035 0.0035

Clustered 20M 2 0.0038 0.0038

SkewNormal 20M 2 0.00069 0.00069

ROADS 19M 2 0.0076 0.029

objects, both points and range objects. The dimensionality of point datasets ranges
from 2 to 6, while for range (i.e., hyperrectangular) data, we tested 2 and 3 dimen-
sions, as ranges of higher dimensions rarely arise in real applications [39, 21]. We
normalize the values in each dimension to the range [0, 1]. We generated the following
synthetic point datasets:

• Uniform data. Random values following a uniform distribution in each dimen-
sion.

• Clustered data.We generate isotropic Gaussian blobs using the make_blobs func-
tion of Python’s scikit-learn module, with standard deviation 0.37 to ensure the
formation of five non-overlapping clusters of equal cardinality. These values
were set empirically to ensure minimum overlap, which challenges indices with
the problem of handling white space.

• Skewed data. We generate random values by the skewnorm function from the
SciPy library in Python, which produces data that follow a skew-normal distri-
bution, which extends the normal distribution to incorporate non-zero skewness,
allowing for asymmetric data shapes. We set the skewness parameter to α = 20.
For α = 0, the distribution reverts to a standard normal distribution. We chose
the value empirically to ensure that the generated data points exhibit sufficient
skewness.

For range data, we generate points as above and use them as centers, then generate
two random numbers within the range [0.0001, 00.2] as mid-height and mid-width,
to be added to and subtracted from the coordinates of the center point to determine
the top right and bottom left corners. To assess the performance of methods such
as the AKD, which is affected by the extent of range objects as they require query

61

extension, we generated a 2D dataset with objects centered uniformly, and width and
height following an exponential distribution g(u) = 3−3u.

Real data

As real data, we utilize the publicly available ROADS dataset which features the
shape of roads in the US [97]. We use the bottom left corner of each road shape as
points. For points of higher dimensionality we use the Taxi1 dataset which contains
records of New York yellow-taxi trips. Each record captures the pick-up and drop-off
location and time, trip distance, and fare amount for a period that spans January to
July 2024.

(a) Uniform (b) Clustered (c) SkewNormal (d) ROADS

Figure 4.2: Distribution of point datasets

Figures 4.2 and 4.3 visualize the distribution of our data, both synthetically gen-
erated and real, points and ranges. The distribution of the real dataset depicting U.S.
roads is notably uneven, denser in urban areas and sparser in rural regions, lead-
ing to a skewed distribution. The generated shapes vary in both width and length,
reflecting realistic and diverse spatial extents.

4.2.2 Workloads

Figure 4.4 depicts the access patterns in our workloads. For the random access pat-
tern, we randomly select a point from the data and assign it an extent such that the
average query selectivity is 0.01% (the default selectivity). The query distribution thus
follows the data distribution. The sequential workload consists of non-overlapping di-
agonally consecutive queries. This workload presents a worst-case scenario for adap-

1https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

62

(a) Uniform (b) Clustered

(c) Skewed (d) Roads

Figure 4.3: Distribution of shape datasets

tive indexing, as each new query cracks a large area without benefit from previous
ones. Lastly, the ‘Zoom In’ workload models a stylized exploratory search scenario.

(a) Random (b) Sequential (c) Zoom In

Figure 4.4: Access pattern of synthetic workloads

63

4.2.3 Measures

As all adaptive indexes are in-memory access methods, the main evaluation measure is
the evolving cumulative cost for a sequence of queries. Side-by-side to cumulative cost,
we plot how the per-query cost changes while constructing the adaptive index. We
expect the cost per query to progressively become lower and settle to that of a pre-built
index. We average both the per-query and cumulative costs over 5 runs. For pre-built
indexes, such as the R-Tree, we add their construction cost to the cumulative time
prior to the first query. We also measure space requirements. We assess robustness
to varying data distributions, query workloads, data dimensionality, object size and
cardinality.

4.2.4 Tuning

Prior to comparative studies, we select values of the following parameters for our
investigation: the cracking threshold for AIR, QUASII, and AKD, node cardinality
for the RTree, the δ variable for the GPKD, and grid size for the static grid and the
course granular index. The δ variable for the GPKD controls the percentage of data
that are used to expand the index in each query. A value of 0 means that no indexing
occurs, only full scans, while δ = 1 means that the index is fully built upon the first
query.

Table 4.3: Grid size tuning

Grid CGI+AAKD

Grid Size 100 200 500 100 200 500

Uniform 1.140 1.029 1.348 1.050 0.970 1.364

Clustered 1.181 1.190 1.234 1.881 1.133 1.199

Skewed 1.183 1.166 1.186 1.844 1.101 1.185

Roads 0.909 0.826 0.935 3.274 0.972 1.430

We tune parameters across different values on our four main datasets: the synthetic
uniform, clustered, and skewed points, as well as the ROADS dataset. Tables 4.3
and 4.4 show the total workload time. We chose the most robust parameters, indicated
via highlighted cells, for further experiments. Interestingly, while we expected the best
size for the coarse granular index (CGI) to be smaller, i.e., coarser, than for the static
grid, it turned out to have the same empirically best size. We attribute this result to the
low creation cost of regular grids, which do not warrant waiting for the adaptation.

64

Table 4.4: AIR, QUASII, AKD, RTree, and GPKD tuning

AIR - Threshold QUASII - Threshold AKD - Threshold R-Tree Node size GPKD - δ

2048 4096 8192 1024 2048 4096 1024 2048 4096 1024 2048 4096 0.4 0.6 0.8

Uniform 2.071 2.056 2.060 2.498 2.408 2.414 2.515 2.426 2.431 4.589 4.552 4.641 2.641 2.582 2.584

Clustered 2.018 2.003 2.002 2.423 2.335 2.340 2.539 2.472 2.455 4.612 4.551 4.561 2.674 2.616 2.662

Skewed 2.031 2.014 2.179 2.464 2.377 2.393 2.509 2.471 2.481 4.687 4.641 4.483 2.709 2.562 2.592

Roads 1.283 1.304 1.307 1.881 1.812 1.808 1.516 1.506 1.570 4.235 4.061 4.070 2.575 2.450 2.473

On the irregular grid, we use a sample of the data to estimate the data distribution,
whose size affects the quality of the estimate, hence the need to tune it. Similarly, the
quad-tree has two parameters, node capacity and height. The former controls the
amount of data a quadrant can hold before it splits further, while the latter controls
the maximum tree depth, which can help avoid excessive splitting on skewed data.
Table 4.5 details the search for the best empirical values of these parameters.

Table 4.5: Irregular Grid and Quadtree tuning

Irregural - Grid Size QuadTree - Height

10 50 100 8 10 12

100 2.848 3.491 3.846 14.253 19.551 19.511

1000 2.866 3.582 4.054 12.058 12.014 12.138

10000 2.875 3.601 3.963 8.311 8.313 8.330

U
ni
fo
rm

100 2.768 3.470 3.810 10.659 17.209 20.532

1000 2.835 3.558 3.932 10.301 12.312 12.330

10000 2.826 3.593 3.970 9.177 9.156 9.197 Cl
us
te
re
d

100 2.858 3.541 3.988 10.469 16.740 20.363

1000 2.947 3.792 3.945 10.037 11.914 11.875

10000 2.873 3.618 3.978 8.914 8.952 8.948

Sk
ew
ed

100 2.151 2.965 3.477 8.672 12.185 19.170

1000 2.149 3.077 3.546 8.550 11.441 12.830

B
at
ch
/C
ap
ac
ity

10000 2.130 3.121 3.576 8.369 9.502 9.362

Ro
ad
s

4.3 Experimental Evaluation

This section presents the results of our evaluation.

1. First, we compare methods within each category: static, AKD-based, and grid-
based using point and shape data to identify the most robustly performing

65

representative for each category (§4.3.1).

2. Next, we thoroughly evaluate the top methods across various types of data
(points and ranges), with different distributions of object locations (§4.3.2) and
query access (§4.3.6).

3. Then, we assess how the distribution of object extents affects performance
(§4.3.3).

4. We also examine the effect of dataset size (§4.3.4) and query selectivity (§4.3.5).

5. Finally, we examine the effect of dimensionality using high-dimensional point
data (§4.3.7).

We plot the results in groups to maintain readable plots.
Since QUASII and AKD-based methods are not designed to handle data with

spatial extent, we adjust them to achieve proper functioning with the query window
extension technique [96] on data with spatial extent. We adjust the lower coordinates
of the query window by the maximum object extent in the data, in each dimension,
so that it overlaps any qualifying object. This extension introduces the overhead
of filtering out false positives from the results, as the window then overlaps non-
qualifying objects too.

4.3.1 Method Selection

Static Indices

We refer to indices that are pre-built before evaluating any query as static. These
structures remain unchanged throughout the query workload. Figures 4.5a and 4.6a
illustrate the total workload time for index construction and evaluation of 10k queries,
for three static indices: R-tree, Quadtree, and a Grid with granularity of 200×200, for
points and shapes data respectively. Surprisingly, while simply partitioning the space
into equally sized cells, the grid index significantly and consistently outperforms the
competition across all datasets and data types, independently of data skew. More com-
plex indices, such as the R-tree and the quadtree, take longer time to construct, which
may pay off only after extremely long query workloads. For workloads intended for
adaptive indices (such as 10K queries), the simpler and less costly to construct grid

66

index performs better overall. We thus use the grid as the representative of static
methods in subsequent experiments.

UniformClustered Skewed Roads
0

2

4

6

8

Datasets

To
ta
lT
im
e
(s
ec
)

Rtree QuadTree Grid

(a) Static

UniformClustered Skewed Roads
0

1

2

3

Datasets

To
ta
lT
im
e
(s
ec
)

CGI+AAKD Irregular Grid+AAKD Grid

(b) Grid-based

UniformClustered Skewed Roads
0

1

2

3

Datasets

To
ta
lT
im
e
(s
ec
)

AKD AAKD PKD GPKD

(c) AKD-based

Figure 4.5: Comparison of indices in each category (cumulative time), point data

Grid Indices

Next, we examine the performance of grid-based indices, both static and hybrid,
comparing Grid (static) to two hybrid indices: CGI+AAKD (regular grid) and Irreg-
ular+AAKD (irregular grid). Recall that the latter two (i) prebuild a coarse grid with
spatially equal cells and (ii) adaptively and progressively grow an AAKD adaptive
index within each grid cell. We consider the option of complementing CGI with an
AIR index later, when dealing with range data. We set the granularity of all coarse
grids to 200× 200, as the tuning experiments indicated, and measure the cumulative
cost for index creation and evaluation of 10k random queries.

Figures 4.5b and 4.6b show that CGI+AAKD is the best choice, apart from when
dealing with the ROADS dataset, as the inclusion of an AAKD endowed with ample
indexing space within each grid cell renders query evaluation faster, with uniform data
benefiting the most. The AAKD index refinement reduces the number of elements
accessed, leading to improved query evaluation performance. Although one might
have expected the irregular grid to outperform the regular one on non-uniform data,
this is not the case, as the irregular grid incurs a higher cost for data partitioning,
compared to the linear-time cost of constructing a regular grid. We thus use the
regular grid combined with the AAKD to representative the CGI index in subsequent
experiments.

67

UniformClustered Skewed Roads
0

2

4

6

Datasets

To
ta
lT
im
e
(s
ec
)

Rtree QuadTree Grid

(a) Static

UniformClustered Skewed Roads
0

2

4

6

8

Datasets

To
ta
lT
im
e
(s
ec
)

CGI+AAKD Irregular Grid+AAKD Grid

(b) Grid-based

UniformClustered Skewed Roads
0

5

10

15

20

25

Datasets

To
ta
lT
im
e
(s
ec
)

AKD AAKD PKD GPKD

(c) AKD-based

Figure 4.6: Comparison of indices in each category (cumulative time), shape data

AKD Indices

Three adaptive KD-tree variants are suggested in [18]: the simple adaptive KD-tree
(AKD), the progressive adaptive KD-tree (PKD), and the greedy progressive adaptive
KD-tree (GPKD). We have formulated another option, the Advanced adaptive KD-tree
(AAKD), which adapts the heuristic ordering of cracks proposed by AIR. Specifically,
AKD performs 2d cracks along the ends of a query range in each dimension by a
fixed order, e.g., xlow, xhigh, ylow, then yhigh. Contrariwise, AIR orders cracks by a
heuristic aiming to enhance the marginality of the ensuing structure. AAKD applies
this heuristic on the AKD structure. We also introduce a stochastic crack on the largest
resulting piece. Figures 4.5c and 4.6c show the total time to process a workload of 10k
queries by these four options on different data distributions, for points and shapes
respectively. As expected, GPKD outperforms the non-greedy on points. Additionally,
the simple AKD outpaces progressive options. That is expected, as the progressive
options are meant to overcome variance in the query time over the workload rather
than to achieve low total workload time. Besides, the application of the crack-order-
heuristic on the simple AKD proves worthwhile, as it outperforms other variants in
all data distributions. In the following, we use AAKD as the representative of AKD
methodologies. However, since AKD is the original method, we have chosen to include
it in the experiments as well.

68

4.3.2 Effect of object location

Point Data

We commence our comparative study for static, adaptive, and hybrid indexing options
with 2D point data. Figure 4.7 shows how the methods selected in Section 4.3.1, i.e.,
static grid, CGI+AAKD, and AAKD, perform alongside the adaptive indices: AIR,
AKD, AV-tree, and QUASII. We present results for a random access pattern, showing
both per-query and accumulated time across various datasets. Adaptive methods
exhibit the typical behavior, starting with a high per-query cost, continuing with
a declining trend, and eventually settling to the performance of a pre-built index.
QUASII has an expensive start and subsequent slow growth, and does not overcome
its initial handicap. AIR and AKD exhibit similar performance, with AAKD holding
a small edge over both of them. This is expected as the datasets in question are
point datasets. We discuss experiments with range data in the following. These three
indices also appear largely insensitive to the data distribution.

The coarse granular index option with a regular grid complemented with an
AAKD (CGI+AAKD) performs robustly across all datasets. So much so, that the per
query performance resembles a pre-built static index even though the AAKD is still
extending itself. Remarkably, this benefit does not come at an exorbitant initial cost,
as the initial cost often resembles QUASII’s first query cost, while this investment is
vindicated by the total cost remaining competitive. Besides, the cumulative cost of
CGI crosses the fully adaptive method latest after 100 queries. Another interesting
observation is the comparison among the static grid and CGI. As mentioned in the
tuning discussion (§4.2.4), the grid size of the static and CGI methods are equal, hence
their initial building costs match. The total costs are on par with each other in all
dataset comparisons except the ROADS data. As Figure 4.2 shows, the ROADS data
has a few areas that are extremely crowded, and queries follow this data pattern.
Therefore, the grid cells in those areas are overwhelmed with too many points to
manage and many queries to respond to. This is where the extra layer of the adaptive
index comes into play and facilitates better performance. Grid-based methods perform
best when faced with a uniform data distribution.

On the other hand, the AV-tree performs significantly worse than its competi-
tors. We attribute this gap to two factors: (i) a fundamental change in the query
processing mechanism to accommodate rectangular range queries; as the index was

69

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100
Ti
m
e(
se
c)

Per Query

100 101 102 103 104

100

101

Accumulated

AIR AKD AAKD QUASII CGI+AAKD Grid AV-Tree

(a) Uniform

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

101

(b) Skewed

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

101

(c) Clustered

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103 104

100

101

query progress

(d) Roads

Figure 4.7: Effect of data distribution on 2D point datasets.

70

designed to accommodate L2 distance queries, it creates suboptimal partitions when
faced with Lmax distance queries. And (ii) the low data dimensionality, which renders
distance-based partitioning less appropriate. The combination of these two factors
contributes to AV-tree’s poor results. As its inclusion limits our ability to compare to
other lines in the figures, we exclude this method from the remaining plots.

Shape Data

Figure 4.8 shows the per-query and cumulative workload time for the methods in
Section 4.3.2 apart from the excluded AV-tree. CGI+AAKD performs consistently well
for our synthetic data but struggles on real data. Interestingly, AIR shows the opposite
behavior, which calls for further investigation. In the same context, QUASII, AKD,
and AAKD also take a hit with different size distributions. We discuss this matter in
detail in Section 4.3.3.

The performance of AAKD, AKD, and QUASII has shifted up compared to the
point experiments due to the query-window-extension handicap they have to endure
to process shape datasets. This effect makes AAKD and AIR perform similarly for
uniformly sized objects. While the static grid does not outperform the current state of
the art for shape datasets, AIR, in the uniform and ROADS data experiment, it does
cross under in the other synthetic datasets, which is an important finding. We create
another hybrid to complete the space of investigation: CGI using an AIR index. At
first glance it may seem that this is a simple extension; however, we had to make an
effectual design choice: We had to choose between either treating the dataset objects
as shapes, creating the initial grid with replication, and consequently having shapes
in our AIR indices, which would then deal with raw queries, or treat the dataset as
points, create the initial grid without replication, inserting points into the AIR indexes,
and applying the query window extension technique to reach correct results. The size
of the initial grid in the CGI matches that of the static. As Figure 4.8 shows, the initial
cost of creation is much higher when dealing with replication. Thus, we decided to
go with the second option. This makes the likelihood of a better performance from
this hybrid very low, but we have included it for completeness. This is also proven
in the results that show the almost equivalent performance of the two CGI methods.

Finally, another important finding is the performance of AAKD on real shape data.
Several factors need to be considered here. First, the shape data are treated as points
and the search simulates retrieval of shape data using the query window extension

71

100 101 102 103 104

10−4

10−3

10−2

10−1

100
Ti
m
e(
se
c)

Per Query

100 101 102 103 104

100

Accumulated

AIR AKD AAKD QUASII CGI+AAKD Grid CGI+AIR

(a) Uniform

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

(b) Skewed

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

(c) Clustered

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

101

(d) ROADS

Figure 4.8: Effect of data distribution on 2D shapes.

72

Table 4.6: Extent of datasets with different object sizes.

Extent AVG MAX MIN

Uniform 0.5% [0.0049, 0.0049] [0.009, 0.009] [4.64e−10, 1.92e−9]
Uniform 1% [0.009, 0.009] [0.019,0.019] [5.62e−10, 1.31e−10]
Uniform 5% [0.045,0.045] [0.09,0.09] [2.05e−8, 1.39e−9]

technique. Second, the heuristic employed by AAKD aims to create partitions that
are square-like by cracking on the longest axis on mediocre bounds. This combina-
tion limits the pruning ability, resulting in more data being scanned per query and,
consequently slower search times. If the data were handled as actual shapes then we
would expect a performance more similar to AIR.

4.3.3 Effect of object size

AKD-based methods are not tailored handle shapes, and as a result, the extent of a
single object in the dataset can significantly impact performance, as queries have to be
extended by the largest object extent. When an object with a large extent—such as one
covering a substantial portion of the domain (e.g., half of the domain)—is present,
the query window is excessively enlarged. This can lead to an increased number of
false positives, thereby degrading the efficiency of the algorithm. To investigate the
effect of this parameter, we take a closer look at the datasets we have been using.

Table 5.1 indicates that our synthetically generated datasets have more uniformly
sized shapes, while the real data have shapes of varying size distributions. To further
improve our argument that the distribution of the shapes can affect the performance
the indices under study, we vary the sizes in two manners: First we changed the
parameters of the widths and heights of the shapes from a uniform distribution with
an average of 0.2% of the dimension range, to 0.5%, 1%, and 5% of the dimension
range. The details of these new distributions are found in Table 4.6. And second
we synthetically generated a dataset where shapes are uniformly placed in the do-
main space but have extents that follow an exponential distribution, as described in
section 4.2.1. Figure 4.9 shows the performance of the different indices under these
settings.

The static grid’s index creation cost grows as the average size of the objects grows.
This is due to the rising number of objects that are replicated in the grid cells. The

73

100 101 102 103 104

10−4

10−3

10−2

10−1

100
Ti
m
e(
se
c)

Per Query

100 101 102 103 104

100

Accumulated

AIR AKD AAKD QUASII CGI+AAKD Grid CGI+AIR

(a) Uniform 0.5%

100 101 102 103 104

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

101

(b) Uniform 1%

100 101 102 103 104

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

101

102

(c) Uniform 5%

100 101 102 103 104

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103 104

100

101

102

103

query progress

(d) Exponential

Figure 4.9: Effect of object extent (2D shapes)

74

performance of AIR remains immune to changes in the size of the data objects.
AKD, AAKD, and QUASII get more and more hindered with larger data objects as
a consequence of the extensions. An interesting pattern to notice is the behaviour of
AAKD when dealing with particularly large objects, as in Figure 4.9d, and even in the
ROADS dataset in Figure 4.8d. We can see that the AAKD performs worse than than
both of its parents, AIR and AKD. This is because trying to fit left corner points of
large objects into square-like partitions, actually backfires, and creates a badly shaped
index. We notice this in the number of shapes scanned per query, which is the most
fundamental measure for index performance. The coarse granular indices try to resist
the unusual sizes and have best performance for objects with sizes up to 1% of the
space, but eventually for larger and exponentially sized objects, AIR prevails as the
best choice.

4.3.4 Effect of object cardinality

Figure 4.10 illustrates the scalability performance of the indices across datasets of
varying cardinality. In this experiment, we use uniform point datasets of varying
size. All other experiments use 20 million objects, in this section and examine the
performance of the methods for larger sizes, namely 40, 60, and 80 million ob-
jects. Consistent with previous studies [21, 18, 22], the results demonstrate that data
cardinality has little to no impact on the relative performance of the indices under
evaluation, highlighting their robustness and scalability. As in other experiments, we
see that using a simple static grid seems to be the best choice for point datasets. The
performance of the course granular index in also equivalent.

4.3.5 Effect of query selectivity

This subsection includes experiments showcasing the effect of query selectivity on
point data. Figure 4.11 shows the per-query and cumulative performance of the
indices when faced a workload of varying selectivity. When the selectivity is very
high, adaptive indices struggle to create good enough indexes that can filter out future
searches. This is evident in the per query times displayed in the 0.1% selectivity that
do not decrease down to the static index performance. A similar phenomenon can be
seen in too small selectivities, although not as harshly for the 0.0001% selectivity. We
have set 0.001% as our default selectivity for all other experiments as a reasonable

75

100 101 102 103 104

10−4

10−3

10−2

10−1

100
Ti
m
e(
se
c)

Per Query

100 101 102 103 104

100

Accumulated

AIR AKD AAKD QUASII CGI+AAKD Grid

(a) 40m

100 101 102 103 104

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

(b) 60m

100 101 102 103 104

10−4

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103 104

100

101

query progress

(c) 80m

Figure 4.10: Effect of data cardinality on point data

size. Overall, the coarse granular index, or equivalently the static grid performs
reliably even while affected by the query size.

4.3.6 Effect of query pattern

Figures 4.12 and 4.13 show the performance of the methods in workloads with
non-random access patterns for points and shapes respectively. Please note that the
number of queries are lower for these experiments. The normalized data space limits

76

the number of sequential non-overlapping queries and meaningful zoom-in queries
we can create.

As expected, the stochastic crack employed by AIR and AAKD helps mitigate the
negative effects of a sequential workload. Note that CGI+AAKD is extremely robust
and not affected by the query access pattern when dealing with points.

The decreasing trend seen in the per query times are expected for adaptive indices.
For the static indices there is also a decreasing trend in the zoom in patterns. This is
due to the drop in the extent and selectivity of queries as we zoom in.

This pattern also makes the benefit of accessing the data only once become par-
ticularly evident. In the point experiment, we can also notice that since we are only
accessing a few cells of the grid, and less and less as the workload goes on, the benefits
of the CGI with AAKD over the plain AAKD, and CGI with AIR over the plain AIR
become moot. As seen in the object size experiments in section 4.3.3, the performance
of AKD, AAKD, CGI with AAKD, and QUASII are affected by the query windows
extension and the static grid by its replication. As such, AIR seems to be performing
better. However, it is important to remember these workloads are very short therefore
the benefit of the coarse grid does not have time to shine.

4.3.7 Effect of dimensionality

Figure 4.14 shows results on the effect of dimensionality on point data, performing
the same set of experiments on uniform data of higher dimensionality. Most of the
indexing methods in this study are designed to support multidimensional data. We
have included more indexes in this experiment to make the results come across
more clearly. Grids do not scale to higher than 3 dimensions, so they were excluded.
The AV-tree still struggles due to the Lmax distances. The AAKD becomes worse
with higher dimensional data, while the plain AKD is less affected. Evidently, the
heuristic choice becomes less worthwhile and instead just becomes a burden with
higher dimensions. Given the datasets are points, AKD and AIR have similar reliable
behavior regardless of dimensionality as expected.

4.3.8 Memory usage

Table 4.7 shows the memory usage of various indices for 20 million shape data
objects uniformly distributed, measured both before any queries are evaluated and

77

after the workload has been completed. Initially, all adaptive indices consume the
same amount of memory (accounting for storing the data objects), as no indexing has
occurred at that point. In contrast, the grid index allocates discrete memory space for
each cell, since the partition is out-of-place. Since the objects are shapes, they may
span across multiple cells, resulting in replicated entries across these cells. The grid
combined with AAKD (CGI+AAKD) shows that the overhead of the adaptive index
in minimal. That is the case for uniform data where the data are equally distributed
among the cells and their cardinality is not much bigger than the threshold used.

Table 4.7: Memory Usage (MB)

Before 1st query After workload

AAKD 320 323.16

AIR 320 326.06

AKD 320 322.67

QUASII 320 320.77

Grid 623 623

CGI+AAKD 623 626

4.4 Conclusions & Findings

We evaluated the performance and robustness of multidimensional adaptive indices in
a plethora of diverse scenarios. Their effectiveness can be influenced by various factors
such as object size and distribution, workload pattern, and more. Our comparison
includes an advanced AKD implementation which adopts cracking heuristics from
AIR [21]. We also included a first-time implementation of multidimensional coarse
granular indexing (CGI) [25].

Grid-based methods perform best on uniformly distributed data, but they are also
robust for non-uniform point data, however, their excellent performance is limited
to low dimensional spaces. Highly clustered collections of real shape data collections,
such as ROADS, pose challenges due to their unique characteristics, such as relatively
high object sizes and high density of data in small areas. Query-window extension
negatively impacts AKD-based methods such as AKD, whereas methods designed to
ingest data with extent such as AIR are more resilient. To that end a hybrid approach
combining CGI with AIR was tested but did not show any significant improvements.

78

For shape data, AIR is unaffected by object size, while CGI+AAKD maintains good
performance up to 1% object size. Object cardinality has minimal impact on index
efficiency; across datasets containing 20M to 80M objects, all indices maintain stable
performance. Static grids and coarse granular indices are particularly robust for point
datasets, showing little variation as dataset size increases.

Query selectivity significantly affects adaptive indexing. When selectivity is high,
adaptive indices struggle to filter future searches effectively, leading to degraded per-
formance. Low selectivity also impacts performance but to a lesser extent. In contrast,
static grid methods maintain stable and reliable performance regardless of query se-
lectivity. Similarly, query patterns play a crucial role in index performance. Adaptive
indices improve as they learn from past queries, while static grids benefit from zoom-
in query patterns that progressively refine search areas. CGI+AAKD remains robust
and is largely unaffected by different query access patterns.

Dimensionality presents challenges for indexing methods, particularly for grid-
based approaches, which do not scale well beyond three dimensions. AAKD strug-
gles with higher-dimensional data, whereas AKD remains stable across different di-
mensions. AIR and AKD continue to deliver reliable performance as dimensionality
increases, while AV-tree consistently underperforms due to its reliance on Lmax dis-
tances, which does not adapt well to high-dimensional spaces.

Findings. Our main experimental findings can be summarized as follows:

• When dealing with point data irrespective of scale, distribution, and query se-
lectivity, CGI+AAKD performs best.

• For shape datasets with small objects, CGI is the most effective. However, when
objects are larger and less regular, AIR outperforms the other methods.

• In higher-dimensional spaces (more than 3D), AKD and AIR are the best
choices, delivering comparable performance.

• For irregular query patterns, there is no single best method. Among the four
indices discussed, none consistently achieves optimal performance across all
patterns. However, AIR and AAKD demonstrate the most robust performance
overall.

Our key conclusion is that a static index, the grid, which had not been considered
as a competitor of adaptive indices in any previous study, is highly effective on point

79

data, offering robust performance across a variety of settings. Our findings challenge
the assumption that adaptive indices always outperform static ones for a reasonable
workload. One of our proposed extensions is also based on this method: the coarse-
granular index. The intention was to create a coarse grid that will be refined via
adaptation during the query workload. However, during tuning, the best-performing
grid sizes were equal. Hence, we found that the simplicity and inexpensive build of
the grid is hard for adaptive indices to overcome. Nonetheless, on shape data, which
incur replication in grids, the inherently shape-oriented indices like AIR perform the
best, and especially so on oddly-sized shape data.

80

AIR AKD AAKD QUASII CGI+AAKD Grid

100 101 102 103 104

10−4

10−3

10−2

10−1

100
Ti
m
e(
se
c)

100 101 102 103 104

100

101

0.
1%

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

10−1

100

0.
01
%

100 101 102 103 104

10−6

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

100

0.
00
1%

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103 104

100

query progress

0.
00
01
%

Figure 4.11: Effect of query selectivity, per query (left) and cumulative time (right).

81

100 101 102

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

Per Query

100 101 102

100

Accumulated

AIR AKD AAKD QUASII CGI+AAKD Grid

(a) Sequential

100 101 102 103

10−6

10−5

10−4

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103

100

query progress

(b) Zoom In

Figure 4.12: Effect of query access pattern, uniform point data.

82

100 101 102

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

Per Query

100 101 102

100

Accumulated

AIR AKD AAKD QUASII CGI+AAKD Grid CGI+AIR

(a) Sequential

100 101 102 103
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103

100

query progress

(b) Zoom In

Figure 4.13: Effect of query access pattern, uniform shape data.

83

100 101 102 103 104

10−6

10−5

10−4

10−3

10−2

10−1

100
Ti
m
e(
se
c)

Per Query

100 101 102 103 104

10−1

100

101

102

103
Accumulated

AIR AKD AAKD QUASII AV-Tree Linear Scan RTree CGI+AAKD Grid

(a) 3D

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104
10−1

100

101

102

103

(b) 4D

100 101 102 103 104

10−5

10−4

10−3

10−2

10−1

100

Ti
m
e(
se
c)

100 101 102 103 104

10−1

100

101

102

103

(c) 5D

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

query progress

Ti
m
e(
se
c)

100 101 102 103 104
10−1

100

101

102

103

query progress

(d) 6D

Figure 4.14: Effect of dimensionality, point data.

84

CHAPTER 5

UPDATING AN ADAPTIVE SPATIAL INDEX

5.1 GLIDE

5.2 Reorganizing the static array

5.3 Theoretical Analysis

5.4 Experimental Analysis

5.5 Conclusion

Adaptive indexing allows for the progressive and simultaneous query-driven explo-
ration and indexing of memory-resident data, starting as soon as they become avail-
able without upfront indexing. This technique has been so far applied to one-dimensional
and multi-dimensional data, as well as to objects with spatial extent arising in ge-
ographic information systems. However, existing spatial adaptive indexing methods
cater to static data made available in an one-off manner. To date, no spatial adaptive
indexing method can ingest data updates interleaved with data exploration. In this
paper we introduce GLIDE, a novel method that intertwines the adaptive indexing and
incremental updating of a spatial-object data set. GLIDE builds a hierarchical spatial
index incrementally in response to queries and also ingests updates judiciously into
it. We examine several design choices and settle for a variant that combines gradual
self-driven top-down insertions with query-driven indexing operations. In an exten-
sive experimental comparison, we show that GLIDE achieves a lower cumulative cost
than upfront-indexing methods and adaptive-indexing baselines.

85

Outline. Section 5.1 explores the design space for updating an adaptive index. Sec-
tion 5.2 presents the reorganization strategy for adapting the index structure to ac-
commodate updates. Section 5.3 provides a theoretical analysis of the proposed meth-
ods. Section 5.4 presents the experimental evaluation, followed by a discussion of the
findings. Finally, Section 5.5 offers the concluding remarks.

5.1 GLIDE

GLIDE is a mechanism that augments any tree-based adaptive spatial index to ac-
commodate updates interleaved with queries. We assume that the data is stored in a
single array, with the data items belonging to a leaf residing in contiguous memory
space. We investigate our options with respect to when and how to ingest updates into
the index and the data array. Section 5.1.1 overviews the design space for GLIDE,
considering these issues. We outline strategies for handling insertions in Section 5.1.2
and discuss deletions in Section 5.1.3.

5.1.1 Design options

Figure 5.1 arranges the design options we explore along three axes and presents the
arising candidates we consider.

First, we consider the design choice of what event triggers an insertion; we outline
two options: by the self-driven option, we insert items to the index as they arrive; by
the query-driven option, we keep insertions in a separate global list and materialize
them only once they become relevant to a query. Second, we consider two options for
how we materialize a triggered insertion; in the complete manner, we fully traverse
the index and directly enter newly inserted items into the tree leaves; in the gradual
manner, we accommodate inserted data in separate, pre-reserved spaces in each tree
node, and distribute them in bulk among the node’s children once they exceed the
size threshold. Lastly, we consider three options on how to reorganize the data in the
single array, which we describe in Section 5.2.

86

rip
ple

sli
ng

sli
ng
-cr
ack
complete

gradual

self-drive
n

query-dr
iven

GS GS-crack

CS CS-crack

GQ GQ-crack

CQ CQ-crack

CQ
-rip
ple

Array reorganisation strategy

Ma
nn
er
of
ins
ert
ionTr

ig
ge
r

Figure 5.1: GLIDE design space.

5.1.2 Handling insertions

Complete self‐driven (CS)

The complete self-driven (CS) insertion strategy processes each insertion fully upon
arrival, positioning new data in the appropriate place in the tree structure, reorganizing
the static array as necessary (see Sec. 5.2).

Complete query‐driven (CQ)

The complete query-driven (CQ) insertion strategy appends each received insertion,
temporarily, in a log structure, separate from the index. Each query scans the log,
retrieves query-relevant objects, and fully inserts them into the tree in the same
manner as the CS strategy does. Insertion is conducted while traversing the tree for
query-answering purposes; at each internal node we assign each insertion item to the
appropriate child by the tree insertion heuristic, ultimately placing each new object
to ts corresponding leaf node.

87

1 2 3

4 5 6

insert 7

…

…

… … …

root

n1

n11 n12 n13

n2
4 5 6

…

…

… … …

Insert 8

diffuse
1 2 3 7 + 8)(rootroot

n1

n11 n12 n13

n2

4 5 6 1

…

…

… … …

diffuse

{2, 7, 8} {3}
root

n1

n11 n12 n13

n2

6 1

7 8 4 2 5

…

…

… … …

root

n1

n11 n12 n13

n2

Figure 5.2: Diffusion example, tree structure.

Gradual self‐driven (GS)

The gradual self-driven (GS) strategy, like CS, introduces each data insertion directly
into the tree upon arrival. However, instead of immediately placing new data objects
to leaves by completely traversing the tree, GS lets them gradually trickle down the
tree, allowing internal tree nodes to temporarily store data objects, called spares, up
to an empirically determined size threshold θs. When the amount of spares in an
internal tree node exceeds θs, GS diffuses them to children nodes. Diffusion recursively
propagates downwards from children, if they lack the space to accommodate the new
items.

Algorithm 5.1 outlines the recursive gradual insertion method for a batch of new
items to be inserted tbi in a node. If there is not enough space in node for its spares
plus tbi, diffusion takes place for all these items (Line 5). We create a tbi list of items
for each child node and recursive call Algorithm 5.1 for each child (Line 12). This
allows subsequently inserted items to be assigned well and query-driven cracking to
operate on an up-to-date index. At a leaf that cannot fit the set of objects to be inserted
among its spares, we introduce all accumulated spares and items to be inserted into
the data array (Line 14), a process to be discussed in Sec. 5.2.

We show an example of diffusion in a generic spatial-index tree in Figure 5.2,
assuming the tree has a θs threshold of 4 spare items per node. At the outset, the
root holds items {1, 2, 3}, node n1 holds {4, 5} and node n2 holds {6} as spares. First,
we try to insert item 7. As there is space in the root’s spares, we keep it there. Then

88

Algorithm 5.1 Gradual insertion
1: procedure INSERT-GRAD(node, tbi)
2: if node.spares.size + tbi.size < θs then
3: place tbi in node.spares
4: return
5: if node is internal then
6: diffused_tbi = [] for each node.children
7: for item in node.spares ∪ tbi do
8: b = PICKBRANCH(item, node.children) [31]
9: diffused_tbi[b].append(item)
10: for child in node.children do
11: if |diffused_tbi[child]| > 0 then
12: INSERT-GRAD(child, diffused_tbi[child])
13: else
14: REORGANISE(node, node.spares + tbi)
15: return

we try to insert item 8. Now, there is no more space in the root’s spares, hence we
diffuse each of the root’s spares and the new item down the tree, based on the tree
insertion algorithm. For instance, we assign item 1 to node n2; as there is enough
space among its spares, this branch of the recursion ends here. Item 3 is assigned to
one of the other children. However, items {2, 7, 8} are assigned to node n1, which has
no spare space to accommodate them; thus, we diffuse all its spares and let each of
them find its place in the next tree level.

GS requires extra precaution when processing a query. During tree traversal, we
need to scan the spares of each node to retrieve any arising query results.

Gradual query‐driven (GQ)

As a fourth possible combination of our design choices, the gradual query-driven strat-
egy lets insertions be triggered by queries, as CQ does (Section 5.1.2), yet follows a
gradual manner of insertion, like GS does (Section 5.1.2). We store each arriving in-
sertion in the unstructured log of pending insertions and, upon the arrival of a query,
we scan the log to identify query-relevant objects and insert them gradually into the
tree. We let internal nodes store a limited number of spare items and employ the dif-
fusion method of Section 5.1.2; diffusion occurs as a side-effect of the query-driven
tree traversal.

89

5.1.3 Deletions: complete self‐driven

GLIDE handles deletions in a simple manner; it locates the object to be deleted by
tree search, swaps it with the first non-empty slot in its leaf (or list of spares), and
increments the number of empty slots, creating space for future insertions. We ignore
underflows of the minimum capacity.

5.2 Reorganizing the static array

Any data item ingested into the index structure is stored either in the spare space of a
tree node or in the global, statically allocated array. The entries of a leaf node occupy
contiguous memory blocks in the same array partition, facilitating efficient query
evaluation. Still, this leaf node design was intended for static data. GLIDE caters to
dynamic insertions and deletions at arbitrary positions of the array while retaining the
contiguity of data within a partition. To this end, GLIDE adds the following features
to this basic design:

• the beginning of a leaf partition may have unused slots, or holes, as in [30];
we keep a counter h of such holes per leaf; hence, the contents of a leaf with
range [s, e] are at array positions s+ h to e.

• tree leaves keep linked-list pointers to their left and right adjacent leaves in the
array; we note that such adjacent leaves do not necessarily have any spatial
relation.

We devise two policies that deal with a set of items tbi that are to be inserted to a
leaf with insufficient space: (1) the ripple and (2) the sling strategy. Rippling cascades
excessive items to neighboring leaves as necessary, while slinging moves the entire
overflown leaf to the end of the array. In addition, we present an enhancement on
the sling policy that cracks a large leaf and moves one or both pieces to the end of
the array.

5.2.1 The ripple strategy

The ripple strategy is driven by queries and presupposes a log of pending insertions,
hence can be used with query-driven strategies that utilize such a log, i.e., CQ and

90

GQ. When processing a query, we denote leaves and items that overlap it as hot and
those who do not as cold. We aim to keep hot items in the array but allow cold ones
to leave the array to facilitate an early termination of the process. In contradistinc-
tion to a similar method proposed for indexing one-dimensional scalar attributes in
column stores [30], when indexing multidimensional spatial data, array partitions
corresponding to index leaf nodes do not need to obey a particular order. Thus, we
may move leaves around liberally, taking in consideration their current position in
the array and data insertion requirements.

We consider that data is stored in a static array with available space for new data
on its end. Under this design, we first outline the actions taken in some simple cases
of inserting k objects into a target leaf’s partition in the array:

1. If we insert data to the last leaf in the array, then we append the data directly
to the end of the array.

2. If the data to be inserted fits into the holes at the beginning of the leaf, then we
place the data there directly.

3. If k exceeds the size of the target leaf l, then we move the leaf along with its
new contents to the array’s end in k + l < 2k operations; for it would take 3k

operations to move k items from the array to the temporary log, enter k items
in the array, and later return the removed k items from the log to the array.

The above cases notwithstanding, we apply the ripple method when inserting a
number of new items of size smaller than the target leaf size. To make space for the
items to be inserted, we start from that target leaf and cascade across array partitions
as in [30], occupying any available holes and shifting items from the start of a partition
to its end, taking over space from the next partition. Once we arrive at a cold leaf node,
we halt the process and push a sufficient amount of data to the log. The rationale for
this measure is that we are interested to keep hot data, relevant to the current query,
in the array, but may shift cold data out of it. Otherwise, if we arrive at the end of
the array and remain in the hot area, we expand the last leaf as necessary.

Fig. 5.3 illustrates the ripple strategy, assuming that the numbers are identifiers of
spatial objects. Holes are denoted by an X. Suppose that we insert items {15, 16, 17}
into leaf i. Consider that leaves i and ii overlap the current query (i.e., they are hot),
while leaf iii does not (i.e., it is cold). Leaf i has one hole, wherein we place object 15.

91

Then, we use the hole of the next leaf ii to accommodate {16}. Now only item 17 is
to be placed. As leaf ii is hot, we ripple its contents, i.e., item 11 forward to the end
of leaf ii and beginning of leaf iii and adjust the range boundaries of leaves i and ii

accordingly. As leaf iii is cold, i.e., does not overlap the query, we cease rippling, eject
cold item 13 from leaf iii into the pending insertions log (to stay there until some
other query drives it back into the tree structure). Notably, by this rippling method,
the size of the pending insertion log fluctuates.

X 2 3 11X109876541

insert into leaf i

initial state

leaf i leaf ii leaf iii

15

move to end of i/start of ii

fill holes

17

15 2 3 6541

move to end of i/start of ii

fill holes

leaf i
11move to end of ii/start of iii

ripple

13place in pending list

kick out

12 13 14

2 3 11X109876541

leaf i

12 13 14

leaf ii leaf iii

111610987 12 13 14

leaf ii leaf iii

15 2 3 6541

leaf i

171610987 12 13 14

leaf ii leaf iii

15 2 3 6541 171610987 12 11 14

leaf i leaf ii leaf iii

15 16 17

16 17

Figure 5.3: Ripple reorganisation strategy.

X 2 3 11X109876541

insert into leaf i

initial state

leaf i leaf ii

Xsling

12

X X 11XXXXXXXXX 12

leaf ii

move i to the end
X 2 3 109876541… 15 16 17

X
med-crack

& sling
X X 11X1028741716X

leaf i

12

leaf ii

crack, move smaller piece to the end

X 9 3 561…

leaf i

leaf iv

15
quant-crack

& sling
17 3 11X1028765416

leaf i

12

leaf ii

crack, move smaller piece to the end

X 91…

leaf iv

15

15 16 17

Figure 5.4: Sling reorganisation strategy: plain, with mediocre crack, with quantile
crack.

92

5.2.2 The sling strategy

The ripple strategy does not fully exploit the lack of a total order in a multidimen-
sional index and therefore incurs a substantial overhead. We propose an alternative
approach that makes space for insertions by deliberately leveraging the flexibility to
relocate leaves in the data array.

Algorithm 5.2 outlines our sling strategy. First, in case the target leaf is the last
leaf in the array, we append the inserted data to its end (Line 2). Likewise, if there
is enough available space in a leaf’s holes, we avail of them for the insertion (Line 4).
Otherwise, the sling strategy ejects the entire leaf to the end of the array alongside
the new data and offers the empty space created by the move as holes to the next
leaf (Line 8). For the sake of robustness, we endow the moved leaf with a certain
amount of default holes ∆H (Line 9).

Algorithm 5.2 Sling
1: procedure SLING(node, tbi)
2: if leaf is right-most then
3: append tbi to end of array
4: else if leaf.holes > tbi.size then
5: fill holes with tbi
6: reduce leaf.holes by tbi.size
7: else
8: set leaf.size holes at the start of leaf.right_sibling
9: move leaf to array’s end with ∆H holes
10: append tbi to leaf’s end

Figure 5.4 illustrates the sling method with an example. We insert items {15, 16, 17}
into leaf i, which is not the last leaf and does not have enough holes to accommodate
the new items. We then move leaf i along with the items to be inserted tbi to the
space available at the end of the array, along with one default hole, and assign the
available space left behind as holes to leaf ii.

5.2.3 Sling with a crack

By the sling strategy, an insertion to a large leaf may cause superfluous movement
of data in the array and leave behind a lot of empty space. To ameliorate this effect,
we amend the sling strategy with a stochastic cracking [17] step, replacing Lines 8–10

93

in Algorithm 5.2 by Algorithm 5.3. When inserting to a leaf larger than twice the
regular leaf size threshold, 2Mℓ, we crack it on a mediocre, i.e., the median of a small
number of samples [29], to split it into two approximately equal pieces (Line 4); if
at least one of those pieces leaves behind enough space for the data to be inserted,
we move the smallest such piece to the array’s end; if none of them leaves behind
enough space, we move both to the array’s end, keeping in check the amount of
moved data and the memory space occupied by the data including holes.

Algorithm 5.3 Crack Upon insertion
1: if leaf.size > 2Mℓ then
2: sca = longest axis of leaf area ▷ stochastic crack axis
3: scp = mediocre on sca ▷ stochastic crack pivot
4: lp, rp = crack leaf on scp value in sca axis ▷ left and right piece
5: if tbi.size > lp.size ∧ tbi.size > rp.size then ▷ neither fits
6: move lp with ∆H holes and tbi.size extra space to array’s end
7: move rp with ∆H holes to array’s end
8: else if (tbi.size ≤ lp.size ∧ lp.size ≤ rp.size) ∨
9: tbi.size > rp.size then ▷ lp is smallest fitting
10: move lp with ∆H holes to array’s end
11: else if (tbi.size ≤ rp.size ∧ rp.size ≤ lp.size) ∨
12: tbi.size > lp.size then ▷ rp is smallest fitting
13: move rp with ∆H holes to array’s end

14: scan tbi and place values in lp or rp using scp pivot
15: else
16: set leaf.size holes at the start of leaf.right_sibling
17: move leaf to array’s end with ∆H holes
18: append tbi to leaf’s end

We also crack the items in tbi on the same pivot and distribute them among the
two leaf pieces. As they may all be assigned to one of the two pieces, we need to
ensure there is adequate space to accommodate them. In the worst case, neither of
the pieces is big enough to accommodate tbi in the space it leaves behind (Line 5);
in that case, we move both pieces to the array’s end. In the most fortuitous case, the
smallest piece we create is large enough to accommodate tbi in the space it leaves
behind; then we move the smallest piece to the array’s end and safely distribute tbi

among the two pieces (Lines 8 and 11). If the smaller piece is not large enough to
accommodate tbi in the space it leaves behind, we move the larger piece to the array’s
end (Lines 9 and 12).

94

The third row in Figure 5.4 shows an instance of the sling method with cracking
in action. Considering leaf i as larger than 2Mℓ, we choose a spatial axis and pivot
as the median of 3 samples taken from the leaf, and crack items in the leaf’s par-
tition thereby. Assume items {1, 9, 3, 6, 5} fall on the one (left) side of the pivot and
items {4, 7, 8, 2, 10} on the other (right) side by our spatial cracking criterion. As the
two pieces have equal size and the tbi items fit in it, we move the first of the two
pieces to the array’s end. We then crack tbi items on the same pivot. Let item {15}
fall on the left side and the rest on the right side. We leverage the holes created by
slinging {1, 9, 3, 6, 5} to the array’s end to place tbi alongside each cracked partition,
creating the new leaf iv, which we add to the tree structure with one initial hole (∆H

= 1). We experimented with more sophisticated choices for the cracking pivot, but
did not find a better option.

We combine the designs of Section 5.1 with the reorganization strategies dis-
cussed here to create indexing methods. Standard methods use the sling strategy
(Section 5.2.2) without extra cracking, denoted with the suffix -sling. We refer to
combinations with the ripple reorganization strategy (Section 5.2.1) by the suffix *-
ripple and to those with the sling strategy (Section 5.2.2) with a mediocre crack by
the suffix *-crack.

5.3 Theoretical Analysis

We analyse the cost of insertions and queries separately, and combine results. An
analysis of adaptive indexing in 1D is available in [29]; its results are applicable,
mutatis mutandis, to the multidimensional case. In adaptive tree indices, the query
response comprises index traversal and index extension. In the 1D case, traversal is
done on a binary search tree with logarithmic complexity. In balanced trees, queries
need O(logN + T) operations for N data objects and T query results. As GLIDE
is implementable on top of any adaptive tree index, let the expected tree traversal
operations be Ψ(N, d, T) for queries on N d-dimensional data objects, each yielding
up to T results. Also, let the expected total number of operations for index adaption
be Γ(N, r, d). Then the expected number of operations is λ(N, r, d, T) = Γ(N, r, d) +

rΨ(N, d, T).
The complete self-driven (CS) design follows the same querying strategy, and will

95

therefore perform the same amount of query operations. For the GS design, scanning
the spares in each accessed node will add some overhead resulting in λ(N, r) =

Γ(N, r, d) + r θs
2
Ψ(N, r, d) operations in the expectation, where θs is the space available

for spares in a node, assuming half the spares are occupied when visited.
Insertions in the CS design comprise tree traversal as well as array reorganisation

efforts. For the array reorganization, we need to move pieces of size N/2i on average
in the ith insertion. For a total of ω insertions, we then need to perform Φ(N,ω) =

ωΨ(N, r, d)+N(1− 1
2

ω−1
) operations in expectation. In the GS design, these expressions

capture the worst case, as traversals terminate early and some items never get inserted
into the array. The traversal cost for some items is amortized over several insertions,
but the accumulated cost remains the same. Adding the extra stochastic crack upon
insertion to the methods, i.e. CS-slingCrack and GS-slingCrack, would only add a
small constant factor to the second term, as the moved pieces go through a partitioning
but the amount of copying may become smaller. Therefore the total cost of a workload
of r queries and ω insertions on N shapes adds up to λ(N, r)+Φ(N,ω) operations in
expectation.

5.4 Experimental Analysis

5.4.1 Implementation

AIR. We implemented1 all different design options on top of a query-adaptive R-tree,
AIR [21]. We tailored the GLIDE module to this particular structure as follows.

First, by all candidate designs (§5.1.1), new data do not enter not only the data
array, but also the tree structure. Regarding leaf-splitting, if the leaf that receives
the inserted data is irregular, then we simply allow the index to accommodate the
new data. If the leaf is regular, i.e., has size below the cracking threshold, and in
effect exceeds that threshold, then we switch the leaf to irregular, allowing it to be
cracked again by future query-driven cracking operations. Thereby, the index structure
accepts updates with little overhead. As we trickle down the tree on the path to the
location where newly inserted data is to be introduced, we extend the MBB of each
encountered node to accommodate that data.

1Code available at https://github.com/fatemeh-zardbani/GLIDE

96

Second, when cracking a leaf node by AIR [21] procedures, we disperse its spares
among the ensuing pieces by the R-tree insertion heuristic [31], always choosing the
cracked piece that undergoes the least area enlargement.

Third, regarding deletions, we deliberately do not tighten MBBs to reflect deletions,
to make the procedure more lightweight, in the same spirit as lazy-update R-trees
[98]. As deletions are relatively rare compared to queries and insertions, we anticipate
that eschewing the tightening of MBBs benefits overall GLIDE performance; node
MBBs subjected to deletions are eventually tightened due to queries and insertions.

AV‐tree. To evaluate the generality of the proposed methods, we apply them on
the Adaptive Vantage Tree (AV-tree) [22], an adaptive index structure designed for
indexing high-dimensional data in metric spaces. The AV-tree partitions the space
around query centers into units defined by hyperspheres, utilizing distance bounds. It
supports both range and k-nearest neighbor (kNN) queries. Since we evaluate range
queries on AIR, we focus on kNN queries on the AV-tree to cover more of the spectrum
of query types.

The query-driven design presumes an absolute criterion of query relevance, such
as belonging to a given range, to guide query-driven insertion. Such a criterion does
not apply to kNN queries, where one object’s query relevance depends on other data
objects being near neighbors to the query center. Therefore, we have only implemented
the self-driven designs for this index. Inserting items in to an AV-tree is inherently
simpler when compared to AIR, as no changes are required to be made to the tree
structure, and the tree grows top-down.

5.4.2 Experimental setup

We conduct an extensive experimental study to evaluate GLIDE using real and syn-
thetic data on realistic workloads. We implemented GLIDE and competitors in C++
and compiled them in g++ 7.4.0 with the -O3 switch; experiments ran on a 10-core
Intel Xeon machine at 3.10GHz with 396G RAM running Ubuntu 18.04.3 LTS.

Performance measures. Following the common practice in prior work [20, 19, 2,
1, 30], we measure the progressively evolving response time during the workload.
In terms of response times, we measure: (i) the cost per query over a workload,
averaged over 5 runs; and (ii) the cumulative cost, which aggregates the cost per
query over a workload; including the creation time for static indices. For the sake of

97

fairness, all methods perform identical count range queries. Insertion times inevitably
fluctuate, as some trigger cascading diffusion; to visualize results comprehensibly, we
add a continuous moving-average line in those plots, with window size 30. In cases
where the full workload progression offers no new insights, we show only the time
to evaluate the entire workload.

Table 5.1: Data sets.

Name Synth ROADS EDGES BUILD’S TLC MNIST

Size 64M 19M 70M 115M 153M 70k

Dim. 2 2 2 2 3 50

Datasets. In experiments where GLIDE is applied on AIR, our focus is on the adaptive
indexing of spatial objects. We generated a large 2D synthetic dataset of 64M rectangu-
lar shapes using SpiderWeb [99]. The location, as well as the width and height of these
objects adhere to a uniform distribution within the [0, 1] and [0,0.01] range, respec-
tively. We also experiment with publicly available 2D and 3D real datasets:2 ROADS
and EDGES from the US Census Bureau and BUILDINGS from OpenStreetMap. The
ROADS data feature shapes of U.S. roads and the EDGES data comprise of lines
on the U.S. map, including roads, rivers, and borders. The BUILDINGS dataset is
comprised of the boundaries of all buildings worldwide. We also use a real-world 3D
data set of taxi cab trip records3 from year 2010 normalising pick-up and drop-off
longitudes, latitudes, and timestamps to represent 3D boxes. Finally, we use the pop-
ular MNIST[87][101], database of handwritten digits, to test the application of GLIDE
on AV-tree. We used UMAP [91] to reduce their dimensionality down to 50.Table 5.1
summarizes data characteristics.

Table 5.2: Query workloads.

Location distribution Size distribution Source Size

Uniform Uniform Synthetic 100k

Zipfian Uniform Synthetic 100k

5.4.3 Workloads

We measure time per query and cumulative time over workloads of queries inter-
twined with insertions. For the range workloads, we use query workloads consisting

2http://spatialhadoop.cs.umn.edu/datasets.html at the University of Minnesota [100]
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

98

http://spatialhadoop.cs.umn.edu/datasets.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

CS-sling CS-slingCrack CQ-sling CQ-slingCrack CQ-ripple GQ-sling GQ-slingCrack GS-sling GS-slingCrack

10-90 25-75 50-50 75-25 90-10
0

2

4

6

8

10

Query-to-Insertion Ratio

To
ta
lW

or
kl
oa
d
Ti
m
e(
se
c)

(a) ROADS

10-90 25-75 50-50 75-25 90-10
0

5

10

15

20

Query-to-Insertion Ratio

To
ta
lW

or
kl
oa
d
Ti
m
e(
se
c)

(b) BUILDINGS

10-90 25-75 50-50 75-25 90-10
0

2

4

6

8

10

12

14

16

Query-to-Insertion Ratio

To
ta
lW

or
kl
oa
d
Ti
m
e(
se
c)

(c) Synthetic

Figure 5.5: Ablation study on range workloads.

of at most 100K rectangular queries placed according to either a Uniform distribution
or a Zipfian distribution with α = 4 using Python’s scikit-learn [92] module. Table 5.2
summarises workload characteristics. As the default option, with the ROADS and
EDGES datasets, we tailor each query extent so that it has a result size in the order
of 0.001% (e-3%) of all data objects. With the BUILDINGS dataset, which features
locations and shapes of buildings, to create queries of the desired selectivity on built
areas, we select at most 100K random objects from the data and extend their width
and height. While we use a default query selectivity of e-3%, we also look into the
effect of the query result size by investigating other values: e-4%, e-2%, and e-1%.
We interleave queries with insertions as follows.

Each workload performs 100K actions encompassing a shuffled combination of
insertions and range queries, with a set ratio between the amount of queries and
insertions. We draw the inspiration for this class the YCSB benchmark workload type

99

E [102], a well-established Yahoo! data management system benchmark. The default
ratio of queries to insertions is 75% range queries to 25% insertions (i.e., 75K queries
and 25K insertions). To draw data for insertion, we set aside a properly sized subset of
the data set at hand apart from the fixed data set sizes reported in Table 5.1. Moreover,
as the query-to-insertion ratio is seldom known a priori. To affirm robustness with
respect to variations in that ratio, we examine a range of query-to-insertion ratios
other than the default one. We dub these query-and-update workloads, action ratio
workloads.

GS-sling GS-slingCrack omniscient AIR R-Tree

100 101 102 103 104 105

10−3

10−2

10−1

Number of queries

Av
er
ag
e
Le
af
A
re
a

(a) Synthetic, Leaf Areas

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

101

102

Number of queries

Av
er
ag
e
Le
af
A
re
a

(b) ROADS, Leaf Areas

Figure 5.6: Average Leaf Areas on range workloads

For the kNN workloads on the MNIST data, the queries are samples of the dataset.
As the dataset is fairly small, we could not set aside part of it to add later; and as
it is clustered and in a meaningful distribution, we could not synthetically generate
new data to insert. So, we insert a sample of the data as duplicates. The interleaving
of the actions are done in the same manner as described for the range workloads but
the size of the workload is kept to 10k given the dataset size.

Table 5.3: Parameters, uniform 2D shape data, 25% inserted.

Q-to-I ratio 25-75 50-50 75-25

∆H

θs 8 16 32 8 16 32 8 16 32

0 3.47 3.62 3.75 5.106 5.29 5.41 6.53 6.68 7.01

32 3.53 3.64 3.70 5.22 5.20 5.35 6.613 6.92 6.88

64 3.53 3.59 3.65 5.04 5.14 5.47 6.47 6.81 6.94

100

5.4.4 Parameter Tuning

We use the range workloads on AIR to investigate the parameter values. Firstly, we
investigate the choice of values for GLIDE parameters: regular leaf size threshold Mℓ,
tree fan-out f , default number of holes ∆H , and limit of spare items stored in nodes θs.
For the first two, we use the values found best in [21], i.e., Mℓ = 64 and f = 16.
Regarding ∆H and θs, Table 5.3 shows the total time (in seconds) spent by GLIDE on
the whole Uniform workload of queries and insertions of various ratios with different
configurations. Following these results, we choose to allow 64 holes on moved leaves
(∆H = 64) and to up to θs = 8 spare items in each internal node, by virtue of the
dependability of these values. We stress that the performance of GLIDE is not overly
sensitive to parameter values. For the kNN workloads in the AV-tree we use the
same ∆H and θs values, and let the cracking threshold parameter, θ, to be set as 128
as suggested in [22].

5.4.5 Ablation study

We perform analysis of the designs on the range workloads implemented on the
adaptive R-tree. We compare GLIDE variants differentiated by the trigger and manner
of insertions and the array reorganisation strategy. We use each on a synthetic dataset
of 8M objects, the ROADS data, and the BUILDINGS data, with workloads of varying
action ratios represented on the x-axis. We use a shuffled mix of queries and insertions
as described in § 5.4.3 with ratio of 75 to 25 respectively.

We compare the total workload runtime of the variants presented in Section 5.1,
including CQ-sling, CQ-slingCrack, CQ-ripple, GQ-sling, GQ-slingCrack, GS-sling, GS-
slingCrack, CS-sling, and CS-slingCrack.

Figure 5.5 presents our results. Observe that GS-slingCrack achieves the best cu-
mulative time in insertion-heavy workloads and proves to be robust against various
action ratios. Query-driven methods are all burdened with keeping an extra array
for pending new items, which they need to scan with each query, whereby query-
driven GLIDE variants fully or gradually insert the related items into the index. In
such query-driven approaches, insertions are cheap whereas range queries can be
expensive. One might intuitively expect such variants to perform worse on insertion-
heavy workloads, as they need to scan through more inserted items; however, such
workloads invoke fewer queries that warrant those expensive scans, causing perfor-

101

GLIDE R*-tree R-tree Quad-tree AIR+Scan

100 101 102 103 104 105
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m
e(
se
c)

(a) 75-25, e-3%: per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

(b) 75-25, e-3%: per insert

100 101 102 103 104 105

10−1

100

101

Number of queries

Ti
m
e(
se
c)

(c) 75-25, e-3%: cumulative

10-90 25-75 50-50 75-25 90-10
100

101

Query-to-Insertion Ratio

(d) Total workload time

0.1% 0.01% 0.001% 0.0001%
100

101

102

Action selectivity

Ti
m
e(
se
c)

(e) Total workload time

Figure 5.7: ROADS dataset, Uniform range queries.

mance to deteriorate as the query-to-insertion ratio tilts towards the query-heavy
side; performance relapses after the unsorted list becomes small enough that its scans
are less burdensome. Still, GS-slingCrack presents the most dependable performance
regardless of workload arrangement.

We observe that the extra stochastic crack upon insertions drastically improves the

102

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m
e(
se
c)

(a) 75-25: time per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

(b) 75-25: time per insertion

100 101 102 103 104 105

10−1

100

Workload Progress

Ti
m
e(
se
c)

(c) 75-25: cumulative time

10-90 25-75 50-50 75-25 90-10

10−0.5

100

100.5

Query-to-Insertion Ratio

(d) Total workload time

Figure 5.8: ROADS dataset, Zipfian range queries.

performance of GS-sling. To understand this phenomenon, we perform the following
experiment: We measure the average area of tree leaves as the workload progresses vs.
those of an R-tree receiving insertions using the Superliminal4 R-tree implementation,
which allows setting fan-out 16 and leaf size threshold 64, as in GLIDE, and, for
reference, a version of AIR with all data pre-loaded, denoted as omniscient AIR, which
does not face data insertions. Figures 5.6a and 5.6b show our results on the synthetic
shape data and ROADS data, respectively. Notably, in both datasets GS reaches large
leaf areas after the 100th action, while GS-slingCrack keeps leaf sizes checked, as it
mostly cracks leaves that receive insertions, and reaches average leaf size as small as
the R-tree, and slightly larger than AIR, which is privileged in this comparison.

Summary. In insertion costs, the query-driven design with gradual insertion (GQ) is
4Code available at https://superliminal.com/sources/

103

https://superliminal.com/sources/

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(a) 75-25, e-3%: per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

(b) 75-25, e-3%: per insert

100 101 102 103 104 105
100

101

Number of queries

Ti
m
e(
se
c)

(c) 75-25, e-3%: cumulative

10-90 25-75 50-50 75-25 90-10

101.2

101.4

101.6

Query-to-Insertion Ratio

(d) Total Workload time

0.1% 0.01% 0.001% 0.0001%

101.5

102

Action selectivity

Ti
m
e(
se
c)

(e) Total Workload time

Figure 5.9: BUILDINGS dataset, Uniform range queries.

best. In query time, the self-driven design with complete insertion (CQ) is best. The
gradual self-driven design with an extra crack upon insertion (GS-slingCrack) is the
most robust option, performing best in terms of total throughput in the plethora of
experimental settings we have tried.

104

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−4

10−3

10−2

10−1

Number of queries

Ti
m
e(
se
c)

(a) 8M : per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

(b) 8M : per insertion

100 101 102 103 104 105

10−1

100

Workload Progress

Ti
m
e(
se
c)

(c) 8M : cumulative time

10-90 25-75 50-50 75-25 90-10

100.2

100.4

100.6

100.8

Query-to-Insertion Ratio

(d) Total workload time

8m 16m 32m 64m

101

101.5

Dataset size

Ti
m
e(
se
c)

(e) Total workload time

Figure 5.10: Uniform 2D shape data, uniform 75-25 range workload.

5.4.6 Range workloads comparative study

As our main baseline, we include a naive extension of AIR with a simplistic array,
denoted as AIR+Scan, which appends inserted data to a separate log-like structure
without an index. When we evaluate a query, we also scan this auxiliary data structure

105

GLIDE R*-tree R-tree Quad-tree AIR+Scan

100 101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m
e(
se
c)

(a) 8M: per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

(b) 8M: per insertion

100 101 102 103 104 105

10−1

100

101

Number of queries

Ti
m
e(
se
c)

(c) 8M: cumulative

10-90 25-75 50-50 75-25 90-10

100

100.5

Query-to-Insertion Ratio

(d) Total workload time

8m 16m 32m 64m

100.5

101

101.5

Dataset size

Ti
m
e(
se
c)

(e) Total workload time

Figure 5.11: Uniform 2D point data, uniform 75-25 range workload.

to retrieve results from the inserted data. Besides AIR+Scan, we compare GLIDE
against implementations of the following methods:

• A static in-memory R-tree with quadratic split;

• A static in-memory R∗-tree;

106

• A static in-memory Quad-tree.

Both static tree implementations were taken from the Boost5 library. We set the
leaf size of R-tree variants at 16, as recommended, and conduct the comparison on
different workloads of queries and updates applied to our synthetic and real datasets.
The Quad-tree [34] implementation is provided in [39].

We organize the remainder of this section as follows: We evaluate GLIDE under
varying action-ratios (§5.4.6), different dataset sizes (§5.4.6), and query selectivity
(§5.4.6). Next, we assess performance on point data (§5.4.6) and examine how the
system handles workloads that include deletions (§5.4.6). We also investigate behav-
ior when the order of range queries is pathologically sequential (diagonal in space)
(§5.4.6). Lastly, we examine performance on 3D datasets (§5.4.6).

Varying Query‐to‐Insertion ratio

We use shuffled action-ratio workloads that contain 100K actions, as defined in Sec-
tion 5.4.3. To study the index robustness across different environments, we test a
range of ratios between range queries and insertions in the workload, intertwining
insertions into Uniform and Zipfian queries on the ROADS data-set. Figures 5.7
and 5.8 show our results with the x-axes of 5.7d and 5.8d representing action ratios.

To illustrate workload progression, Figures 5.7a, 5.7b and 5.7c display the trend of
action times for 75-25 action ratio workloads as an example, and Figure 5.7d shows
the total workload time across different ratios. The observed decreasing per query
times of AIR and GLIDE are typical for adaptive indices. As Quad-tree is a space-
partitioning index, it handles dynamic insertions better than the data-partitioning
R-tree variants. However, that minor advantage does not counterbalance other costs
in the overall workload time; this behaviour persists across different action ratios,
as Figure 5.7d shows; given these results, we exclude Quad-tree from subsequent
shape-data experiments.

Figures 5.8a, 5.8b, and 5.8c present the progression of the 75-25 ratio workload
with Zipfian queries, while Figure 5.8d shows the trend of total workload times. In
a Zipfian workload certain areas are queried more often than others, hence GLIDE
builds a compact index with a few regular leaves thoroughly indexing oft-queried
areas and a few irregular leaves that are rarely accessed. It achieves shorter times per

5Code available at https://www.boost.org/users/history/version_1_61_0.html

107

https://www.boost.org/users/history/version_1_61_0.html

query (Figure 5.8a) and hence cumulative times. The AIR index behaves similarly,
yet the extra work of scanning the newly-arrived data eventually becomes cumber-
some. The insertion performance of GLIDE also outpaces classic R-tree methods (Fig-
ure 5.8b), superseding their burdensome index creation time and slower query times
to result in a striking improvement in the total workload time (Figure 5.8c). This
effect remains unabated by the ratio of the actions in the workload, as Figure 5.8d re-
veals. The trend for AIR+Scan is similar to the one observed in the ablation studies for
the query-driven designs, as discussed in Section 5.4.5, and exhibits the same trends
across ratios for Uniform and Zipfian queries. Figures 5.10d and 5.11d replicate this
study on synthetic shape data and point data (cf. Section 5.4.6), with analogous
results.

Figure 5.9 illustrates that GLIDE preserves its advantages on the BUILDINGS
data, with a realistic workload and across various ratios. To inspect the separate
costs more thoroughly, we present those times decoupled in Figure 5.12. Notably,
as Figure 5.12b shows, insertion times of GLIDE are lower than those of the classic
solutions. Moreover, the insertion times for both static R-tree variants start at high
values and decrease as the workload progresses. To understand this front-loaded be-
haviour, we measured the insertion time of pre-built R-tree and R∗-tree variants that
are initialized on the data set by inserting data items one-by-one, instead of using the
default Sort-Tile-Recursive (STR) bulk-loading [103] method; we denote these vari-
ants as CBI (created by insertion). As Figure 5.12b shows, CBI variants exhibit stable,
rather than front-loaded, insertion cost. We infer that the STR bulk-loading method
builds packed trees that initially necessitate intensive leaf-splitting to accommodate
insertions, while the space created by such initial splits suffices to absorb insertions
later in the workload, depicted in Figure 5.12c. Previous work has used the term
waves of misery [104] for this front-loaded, in general oscillating, behaviour of indices.

Summary. Inspecting the behaviour of GLIDE under various distributions, i.e. dif-
ferent ratios between the count of insertions and queries, we observe that it performs
most robustly with superior total workload time.

Varying data size

We also compared all methods, for both shape and point data (cf. Section 5.4.6), using
different synthetic data set sizes: 8, 16, 32, and 64 million. Figures 5.10a, 5.10b, 5.11a,

108

GLIDE R*-tree R-tree R-tree CBI R*-tree CBI

100 101 102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(a) Query time

100 101 102 103 104

10−7

10−6

10−5

10−4

Number of insertions

Ti
m
e(
se
c)

(b) Insertion time

100 101 102 103 104 105

0

2

4

6

Number of splits

Ti
m
e(
se
c)

(c) Splits

Figure 5.12: Buildings data, 75-25 per query decoupled time.

and 5.11b plot the decoupled per query and per insertion times for each case, for the
8M size experiment, while Figures 5.10c and 5.11c show the respective cumulative
times to tackle the workload, which remain favorable to GLIDE throughout the 100K
actions. Other dataset sizes follow similar trends. Most pertinently, as the results in
Figures 5.10e and 5.11e illustrate, GLIDE scales well with dataset size, indicated on
the x-axis, with both shape data and points. All methods display a linear growth
of cumulative time in response to dataset size. AIR with linear scan has a less steep
ascent, yet that is only due to the fact that it always scans at most 25K insertion
items, while other methods manage growing indices in their insertions; this advantage
is only an artifact of our specific experimental design, which keeps the number of
insertions stable and only lets the initial data size grow. Naturally, it does not scale
with a growing insertion workload.

Exhibiting the typical behavior of indices assembled by adaptation to queries,
GLIDE starts out with high per-query cost that follows a descending trend. Eventually

109

GLIDE R*-tree R-tree

100 101 102 103 104 105

10−4

10−3

10−2

10−1

Number of queries

Ti
m
e(
se
c)

(a) per query

100 101 102 103 104

10−7

10−6

10−5

10−4

Number of insertions

(b) per insertion

100 101 102 103 104
10−6

10−5

Number of deletions

Ti
m
e(
se
c)

(c) per deletion

100 101 102 103 104 105

10−1

100

101

Number of queries

(d) cumulative time

Figure 5.13: Synthetic shape data, 75-20-05, deletion

GLIDE reaches the per-query performance of the R-tree while maintaining a lower
cumulative time even by 105 queries. Besides, while the AIR index starts out with a
performance similar to GLIDE, in later stages of the workload the burden of linearly
scanning the inserted data escalates, raising the cost per query. Regarding insertion
costs, appending each new item to an unordered list, i.e., the modus operandi of AIR
with linear scan, is the quickest insertion strategy. On the other hand, R-tree variants
present divergent insertion costs, as the R*-tree is tailored to reduce node overlaps,
yet that design feature deteriorates its insertion performance compared to the standard
R-tree. By virtue of its gradual insertion scheme, GLIDE achieves average insertion
times almost one order of magnitude lower than classic R-tree variants throughout
the workload. Moreover, the insertion cost of GLIDE descends, because as the tree
grows, it offers more spare spaces.

Summary. We find that GLIDE performs competitively in total workload time under

110

growing dataset size.

Varying query selectivity

We now study the robustness of GLIDE to the size of query results using the real-
world ROADS and BUILDINGS data sets with 75% shuffled action ratio workload. We
tune selectivity to the order of magnitude of 0.0001%, 0.001% (which is the default),
0.01%, and 0.1%. As the size of the query results grows, all indices register longer
total times, as Figures 5.7e and 5.9e show with the x-axis representing selectivity. The
higher the selectivity, the smaller the difference in cumulative times; this behavior
was also observed in [105]. Still, under realistic query result sizes, GLIDE has a clear
advantage.

Point datasets

As mentioned, to demonstrate the generality of our methods, we conducted experi-
ments with point data sets. We use a synthetic 2D point dataset and validate GLIDE’s
robustness to workload distribution and dataset size. We reinstate the Quad-tree in
this experiment, as it is designed for point data. Figure 5.11 shows the resulting
trends, which are similar to those obtained with shape data, with the Quad-tree
showing a slight improvement.

Effect of deletions

We apply expanded workloads that also include deletions on the synthetic data set.
We find the object to delete in the index using its geometry; if the id of the object
is given, we use it to access its geometry. To adhere to standard realistic workloads,
we design a workload comprising 75% of range queries, 20% of insertions, and 5%
of deletions, in shuffled order. Figure 5.13 presents our results, decoupling the query
(5.13a), insertion (5.13b) and deletion times (5.13c), and also displays the progression
of the overall workload time (5.13d). In all cases, GLIDE gracefully integrates deletions
in its operation.

A pathological workload

Adaptive indexing methods are vulnerable to query workloads that explore the data
space in a skewed manner, especially by a sequential pattern [17, 21]. Here, we study

111

such a synthetic workload of queries ordered across a diagonal line in the 2D space
intertwined with insertions; we let query extents follow a Uniform distribution in the
range of [0, 0.005] to create the default target selectivity of 0.001%, and interleave
them with insertions to create a 75% shuffled action-ratio workload. Figure 5.14 de-
picts our results. GLIDE reaches a steady-state performance with per-query time in
the same order of magnitude as the R-tree in fewer than 1000 queries, while main-
taining a cumulative-time advantage. This achievement is due to both the stochastic
cracks created upon range queries and the extra cracks created upon insertions, as
explained in Section 5.2.2. Other methods follow the trends observed in preceding
experiments.

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

Number of queries

Ti
m
e(
se
c)

(a) Time per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

Number of insertions

(b) Time per insertion

100 101 102 103 104 105

10−1

100

101

Number of queries

(c) Cumulative time

Figure 5.14: Uniform 2D shape data, 75-25, sequential queries

GLIDE R*-tree R-tree AIR+Scan

100 101 102 103 104 105

10−4

10−3

10−2

10−1

100

Number of queries

Ti
m
e(
se
c)

(a) Time per query

100 101 102 103 104
10−8

10−7

10−6

10−5

10−4

10−3

Number of insertions

(b) Time per insertion

100 101 102 103 104 105

101

102

Number of queries

(c) Cumulative time

Figure 5.15: TLC data, 75-25, Uniform queries.

3D data

As in previous work [21], we focus on objects with spatial extent, which naturally
occur in two or three dimensions. In the 3D space, we experimented with TLC.
Figure 5.15 depicts our results, which corroborate GLIDE’s resilience with respect to

112

dimensionality. Owing to the small number of insertions relative to the data set’s size
in this case, AIR+Scan achieves performance close to GLIDE.

5.4.7 kNN workloads comparative study

We let the action ratio be 75-25 queries to insertions and investigate the results of
searching for 20 nearest neighbors. As our main baselines, we include (i) a simple
Linear Scan, and (ii) a naive extension of AV-tree with a simplistic array, denoted as
AV-tree+Scan. We include the first as high-dimensional indexes are susceptible to the
curse of dimensionality, which a brute-force algorithm may avoid. The second baseline
appends inserted data to a separate log structure. When evaluating a query, we also
scan this auxiliary data structure to retrieve results from inserted data. Figure 5.16
depicts these results.

The observed decreasing per query times of AV-tree and GLIDE are typical for
adaptive indexes. For the AV-tree, the extra scanning of newly-arrived data eventually
becomes cumbersome, as evinced in the per-query and cumulative plots. Overall, the
GLIDE design of gradual insertion performs best.

We observe that the extra crack on gradual insertion with sling has a negligible
effect. We found that this is due to the large tree height, which allows for many spare
spaces in the nodes and thus hardly lets insertions ever reach the leaf level to be
inserted in the array, where an extra crack could make a difference. This is a result
of the binary-ness, and hence tall height of the tree. On the other hand, the declining
trend in the per-insertion CS-sling times is due to sling operations, as initial insertions
incur many slings and later ones exploit the created holes. Still, due to the tree height,
complete insertion designs cost more than gradual insertion ones.

GS-slingCrack GS-sling CS-sling Linear Scan AV-tree + Scan

100 101 102 103 104

10−4

10−3

Number of queries

Ti
m
e(
se
c)

(a) Time per query

100 101 102 103
10−7

10−6

10−5

10−4

10−3

Number of queries

(b) Time per insertion

100 101 102 103 104

10−2

10−1

100

101

Number of queries

(c) Cumulative time

Figure 5.16: MNIST data, 75-25, 20NN workload.

113

5.5 Conclusion

We proposed GLIDE, an update mechanism applicable to adaptive in-memory indices
for multi-dimensional objects. While the index is built in response to queries, it ab-
sorbs data insertions as they arrive, remaining up to date. We investigated the design
space and arrived at a design that introduces insertions directly into the structure,
allows them to gradually progress down as they accumulate, and reorganizes the un-
derlying data array in response by moving and cracking partitions; we extended the
design to manage deletions as well. Through a comprehensive experimental analysis
on synthetic and real multi-dimensional data, we validated that GLIDE outperforms
both patchwork extensions of previous adaptive indexing solutions to accommodate
updates and static indices when responding to the same workloads.

114

CHAPTER 6

CONCLUSIONS & FUTURE WORK

6.1 Summary of Contributions

6.2 Directions for Future Work

In conclusion, we present a summary of our significant contributions and outline
potential paths for future research.

6.1 Summary of Contributions

In this dissertation, we studied adaptive indexing in various scenarios, such as data
with spatial extent and high-dimensional data and explored an updating mechanism
for such indexes.

In the first part of this thesis, we introduced AV-tree, to the best of our knowledge,
the first adaptive index specifically designed for high-dimensional metric spaces. We
proposed a novel technique for partitioning the space around query centers, organiz-
ing the data into units defined by hyperspheres, and using mediocre distance bounds
that naturally adapt to the underlying data distribution. To achieve this, we developed
algorithms capable of handling the most common similarity queries, including range
and k-NN queries, while efficiently building and maintaining an index that adapts
to the data relevant to the users’ needs. Our experimental results, using datasets of
various types and distance metrics, demonstrate that AV-tree outperforms both linear

115

scan and the current state-of-the-art adaptive index for multidimensional data, as
well as a static, pivot-based index.

In the second part of this thesis, we present a comprehensive evaluation of adaptive
indices. In our earlier work, we concluded that there is a significant gap in compara-
tive studies that assess these methods on equal terms across a broad range of settings,
including various data types, distributions, sizes, and workload patterns. This work
aims to fill that gap by providing a detailed benchmark that thoroughly evaluates
the performance, strengths, and limitations of existing multidimensional adaptive in-
dexing methods across diverse scenarios, offering valuable insights that complement
previous studies. Additionally, we compare these adaptive methods with static in-
dices, which prove to be highly effective in certain scenarios, such as for uniformly
distributed, low-dimensional data.

We also propose extensions to existing adaptive indices to address their perfor-
mance limitations. Specifically, we extend the coarse-granular index, which previously
only supported 1-dimensional, uniformly distributed data. Our extension suggests ini-
tially partitioning the data using a grid, where each cell is then further refined with an
adaptive index. Additionally, we propose an enhancement to the AKD, introducing
different heuristics for partitioning the data. This extension aims to improve perfor-
mance under challenging conditions, such as irregular query patterns and varying
object sizes.

Our key conclusion is that a static index, specifically the grid index, which had not
been considered a competitor to adaptive indices in prior studies, performs excep-
tionally well on point data, offering robust performance across a variety of settings.
These findings challenge the assumption that adaptive indices will always outperform
static ones under reasonable workloads.

In the third and final part of this work, we introduced GLIDE, an update mecha-
nism designed for adaptive in-memory indexes for multi-dimensional objects. While
adaptive indexing has been extensively studied, existing spatial indexing methods
typically cater to static datasets, where data is available all at once. No existing spatial
adaptive indexing method can handle data updates interleaved with ongoing data
exploration. Our proposal, GLIDE, integrates adaptive indexing with the incremental
updating of spatial datasets. It allows the index to be built dynamically in response
to queries while absorbing data insertions as they arrive, keeping it up-to-date. We
explored the design space and developed a mechanism that incorporates updates (in-

116

sertions and deletions) directly into the index structure, allowing them to propagate
over time. Additionally, it reorganizes the underlying data array, moving and crack-
ing partitions as necessary. Through extensive experimentation on both synthetic
and real multi-dimensional datasets, we demonstrated that GLIDE outperforms both
patchwork extensions of previous adaptive indexing solutions and static indexes when
responding to the same workloads.

6.2 Directions for Future Work

In this section, we outline ideas for additional research. For future work, there are
several directions, on which we elaborate below:

Adaptive indexing for road networks
One promising direction for future work is to explore adaptive indexing in other

spaces, such as graphs (e.g., road networks). In the context of road networks, adap-
tive indexing has the potential to address challenges posed by the complex network
structure and the diverse query patterns. A promising avenue for exploration is to
potentially exploit the graph structure to gain insights into how to expand the index.
The graph structure can provide valuable clues about regions that may benefit from
indexing expansion. For example, the presence of a strongly connected component
could suggest that certain areas are more likely to receive frequent queries, indicating
that the index should be expanded in those regions. Identifying such a component
can also help in selecting landmark nodes, as all nodes within the component are
mutually accessible. This can facilitate the creation of a hierarchical structure (or par-
titioning) within the graph, reducing the number of distance computations required
and improving query efficiency. By leveraging these structural patterns, the adaptive
indexing approach could dynamically adjust to query needs based on the network’s
topology, making it more efficient and responsive to evolving query patterns.

Another approach could be to develop a novel adaptive indexing strategy specif-
ically for graph data, or to adapt existing graph-based indexing techniques, such as
hub labeling, to integrate with the adaptive indexing scheme. Furthermore, the spatial
and topological properties of the nodes and edges in a graph leave room for exper-
imentation with various partitioning techniques, potentially enhancing the indexing
strategy’s ability to process different types of queries.

117

The Dijkstra algorithm is widely used for finding the shortest path in a weighted
graph with non-negative edge weights. In each iteration, the algorithm computes the
shortest path from the source node to a new node and adds it to the set of visited
nodes. However, the values computed during each iteration are typically discarded
after completion. An interesting direction for future work is to explore the potential
benefits of caching and reusing these values to speed up the process for subsequent
queries, effectively building an adaptive index for shortest path queries. For example,
cached values could be used to guide the search for the shortest path, helping the
algorithm focus on areas of the graph that are more likely to lead to the desired
outcome. This approach could minimize the need for recalculating distances along
paths already explored. Additionally, cached values could inform the priority queue
in the algorithm, enabling it to prioritize nodes based on their computed distance
from previous iterations. This could result in faster convergence and fewer redun-
dant iterations. Finally, drawing inspiration from database cracking techniques, we
could leverage the shortest path tree generated during each iteration to partition the
graph into meaningful segments, such as dividing the network into closer and farther
components based on their distance from the query source. This partitioning could
enhance the efficiency of subsequent searches by narrowing the search space.

Multiway AV‐tree
The AV-tree has demonstrated promising results in efficiently indexing and query-

ing high-dimensional data in metric spaces. However, to further enhance its scalabil-
ity and performance, two potential extensions warrant exploration: extending to an
m-ary tree structure and implementing re-balancing techniques. The first extension
involves partitioning the data space into m disjoint subspaces, which, unlike the cur-
rent binary space partitioning, would divide the space around each query into layers
based on multiple distance bounds. A promising avenue for investigation is whether
this m-ary tree extension offers greater benefits when applied to data structured as
graph data, as discussed earlier. The second extension focuses on re-balancing the
tree, which involves adjusting the order of the nodes to optimize the index structure
and improve performance for subsequent queries.

118

BIBLIOGRAPHY

[1] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in Third
Biennial Conference on Innovative Data Systems Research, CIDR 2007, Asilomar,
CA, USA, January 7-10, 2007, Online Proceedings. www.cidrdb.org, 2007, pp.
68–78. [Online]. Available: http://cidrdb.org/cidr2007/papers/cidr07p07.pdf

[2] S. Idreos, “Database cracking: Towards auto-tuning database kernels,” Ph.D.
dissertation, CWI, 2010.

[3] P. A. Boncz and M. L. Kersten, “MIL primitives for querying a fragmented
world,” VLDB J., vol. 8, no. 2, pp. 101–119, 1999. [Online]. Available:
https://doi.org/10.1007/s007780050076

[4] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik, “C-store: A column-oriented DBMS,” in Proceedings of the 31st
International Conference on Very Large Data Bases, Trondheim, Norway, August 30 -
September 2, 2005, K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P. Larson,
and B. C. Ooi, Eds. ACM, 2005, pp. 553–564. [Online]. Available: http://www.
vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf

[5] S. Idreos, M. L. Kersten, and S. Manegold, “Self-organizing tuple reconstruction
in column-stores,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,
June 29 - July 2, 2009, U. Çetintemel, S. B. Zdonik, D. Kossmann,
and N. Tatbul, Eds. ACM, 2009, pp. 297–308. [Online]. Available:
https://doi.org/10.1145/1559845.1559878

[6] C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4, no. 7, p.
321, 1961. [Online]. Available: https://doi.org/10.1145/366622.366644

119

http://cidrdb.org/cidr2007/papers/cidr07p07.pdf
https://doi.org/10.1007/s007780050076
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
http://www.vldb.org/archives/website/2005/program/paper/thu/p553-stonebraker.pdf
https://doi.org/10.1145/1559845.1559878
https://doi.org/10.1145/366622.366644

[7] M. Liu, D. Li, Q. Chen, J. Zhou, K. Meng, and S. Zhang, “Sensor
information retrieval from internet of things: Representation and indexing,”
IEEE Access, vol. 6, pp. 36 509–36521, 2018. [Online]. Available:
https://doi.org/10.1109/ACCESS.2018.2849865

[8] Y. Fathy, P. M. Barnaghi, and R. Tafazolli, “Large-scale indexing, discovery,
and ranking for the internet of things (iot),” ACM Comput. Surv., vol. 51, no. 2,
pp. 29:1–29:53, 2018. [Online]. Available: https://doi.org/10.1145/3154525

[9] Q.-T. Doan, A. S. M. Kayes, W. Rahayu, and K. Nguyen, “A framework for
iot streaming data indexing and query optimization,” IEEE Sensors Journal,
vol. 22, no. 14, pp. 14 436–14 447, 2022.

[10] N. Chaudhry, M. M. Yousaf, and M. T. Khan, “Indexing of real time
geospatial data by iot enabled devices: Opportunities, challenges and design
considerations,” J. Ambient Intell. Smart Environ., vol. 12, no. 4, pp. 281–312,
2020. [Online]. Available: https://doi.org/10.3233/AIS-200565

[11] A. Nanopoulos, Y. Theodoridis, and Y. Manolopoulos, “C2p: Clustering based
on closest pairs,” in VLDB 2001, Proceedings of 27th International Conference
on Very Large Data Bases, September 11-14, 2001, Roma, Italy, P. M. G.
Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. T.
Snodgrass, Eds. Morgan Kaufmann, 2001, pp. 331–340. [Online]. Available:
http://www.vldb.org/conf/2001/P331.pdf

[12] C. C. Aggarwal and P. S. Yu, “Outlier detection for high dimensional
data,” in Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001, S. Mehrotra
and T. K. Sellis, Eds. ACM, 2001, pp. 37–46. [Online]. Available:
https://doi.org/10.1145/375663.375668

[13] Y. Rui, T. S. Huang, and S. Chang, “Image retrieval: Current techniques,
promising directions, and open issues,” J. Vis. Commun. Image Represent.,
vol. 10, no. 1, pp. 39–62, 1999. [Online]. Available: https://doi.org/10.1006/
jvci.1999.0413

[14] R. Connor, “A tale of four metrics,” in Similarity Search and Applications -
9th International Conference, SISAP 2016, Tokyo, Japan, October 24-26, 2016.

120

https://doi.org/10.1109/ACCESS.2018.2849865
https://doi.org/10.1145/3154525
https://doi.org/10.3233/AIS-200565
http://www.vldb.org/conf/2001/P331.pdf
https://doi.org/10.1145/375663.375668
https://doi.org/10.1006/jvci.1999.0413
https://doi.org/10.1006/jvci.1999.0413

Proceedings, ser. Lecture Notes in Computer Science, L. Amsaleg, M. E. Houle,
and E. Schubert, Eds., vol. 9939, 2016, pp. 210–217. [Online]. Available:
https://doi.org/10.1007/978-3-319-46759-7_16

[15] T. Abeywickrama, M. A. Cheema, and D. Taniar, “k-nearest neighbors on road
networks: A journey in experimentation and in-memory implementation,”
Proc. VLDB Endow., vol. 9, no. 6, pp. 492–503, 2016. [Online]. Available:
http://www.vldb.org/pvldb/vol9/p492-abeywickrama.pdf

[16] H. Li, T. N. Chan, M. L. Yiu, and N. Mamoulis, “FEXIPRO: fast and exact
inner product retrieval in recommender systems,” in Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, S. Salihoglu, W. Zhou, R. Chirkova,
J. Yang, and D. Suciu, Eds. ACM, 2017, pp. 835–850. [Online]. Available:
https://doi.org/10.1145/3035918.3064009

[17] F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database
cracking: Towards robust adaptive indexing in main-memory column-stores,”
Proc. VLDB Endow., vol. 5, no. 6, pp. 502–513, 2012. [Online]. Available:
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf

[18] M. A. Nerone, P. Holanda, E. C. de Almeida, and S. Manegold,
“Multidimensional adaptive & progressive indexes,” in 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22,
2021. IEEE, 2021, pp. 624–635. [Online]. Available: https://doi.org/10.1109/
ICDE51399.2021.00060

[19] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki, “QUASII: query-aware
spatial incremental index,” in Proceedings of the 21st International Conference
on Extending Database Technology, EDBT 2018, Vienna, Austria, March
26-29, 2018, M. H. Böhlen, R. Pichler, N. May, E. Rahm, S. Wu, and
K. Hose, Eds. OpenProceedings.org, 2018, pp. 325–336. [Online]. Available:
https://doi.org/10.5441/002/edbt.2018.29

[20] P. Holanda, M. Nerone, E. C. de Almeida, and S. Manegold, “Cracking
kd-tree: The first multidimensional adaptive indexing (position paper),” in
Proceedings of the 7th International Conference on Data Science, Technology and

121

https://doi.org/10.1007/978-3-319-46759-7_16
http://www.vldb.org/pvldb/vol9/p492-abeywickrama.pdf
https://doi.org/10.1145/3035918.3064009
http://vldb.org/pvldb/vol5/p502_felixhalim_vldb2012.pdf
https://doi.org/10.1109/ICDE51399.2021.00060
https://doi.org/10.1109/ICDE51399.2021.00060
https://doi.org/10.5441/002/edbt.2018.29

Applications, DATA 2018, Porto, Portugal, July 26-28, 2018, J. Bernardino
and C. Quix, Eds. SciTePress, 2018, pp. 393–399. [Online]. Available:
https://doi.org/10.5220/0006944203930399

[21] F. Zardbani, N. Mamoulis, S. Idreos, and P. Karras, “Adaptive indexing of
objects with spatial extent,” Proc. VLDB Endow., vol. 16, no. 9, pp. 2248–2260,
2023. [Online]. Available: https://www.vldb.org/pvldb/vol16/p2248-karras.pdf

[22] K. Lampropoulos, F. Zardbani, N. Mamoulis, and P. Karras, “Adaptive
indexing in high-dimensional metric spaces,” Proc. VLDB Endow., vol. 16,
no. 10, pp. 2525–2537, 2023. [Online]. Available: https://www.vldb.org/pvldb/
vol16/p2525-mamoulis.pdf

[23] P. Holanda, S. Manegold, H. Mühleisen, and M. Raasveldt, “Progressive
indexes: Indexing for interactive data analysis,” Proc. VLDB Endow., vol. 12,
no. 13, pp. 2366–2378, 2019. [Online]. Available: http://www.vldb.org/pvldb/
vol12/p2366-holanda.pdf

[24] M. L. Kersten and S. Manegold, “Cracking the database store,” in Second
Biennial Conference on Innovative Data Systems Research, CIDR 2005, Asilomar,
CA, USA, January 4-7, 2005, Online Proceedings. www.cidrdb.org, 2005, pp.
213–224. [Online]. Available: http://cidrdb.org/cidr2005/papers/P18.pdf

[25] F. M. Schuhknecht, A. Jindal, and J. Dittrich, “The uncracked pieces in
database cracking,” Proc. VLDB Endow., vol. 7, no. 2, pp. 97–108, 2013.
[Online]. Available: http://www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf

[26] ——, “An experimental evaluation and analysis of database cracking,”
VLDB J., vol. 25, no. 1, pp. 27–52, 2016. [Online]. Available: https:
//doi.org/10.1007/s00778-015-0397-y

[27] A. H. Jensen, F. Lauridsen, F. Zardbani, S. Idreos, and P. Karras, “Revisiting
multidimensional adaptive indexing [experiment & analysis],” in Proceedings of
the 24th International Conference on Extending Database Technology, EDBT 2021,
Nicosia, Cyprus, March 23 - 26, 2021, Y. Velegrakis, D. Zeinalipour-Yazti, P. K.
Chrysanthis, and F. Guerra, Eds. OpenProceedings.org, 2021, pp. 469–474.
[Online]. Available: https://doi.org/10.5441/002/edbt.2021.53

122

https://doi.org/10.5220/0006944203930399
https://www.vldb.org/pvldb/vol16/p2248-karras.pdf
https://www.vldb.org/pvldb/vol16/p2525-mamoulis.pdf
https://www.vldb.org/pvldb/vol16/p2525-mamoulis.pdf
http://www.vldb.org/pvldb/vol12/p2366-holanda.pdf
http://www.vldb.org/pvldb/vol12/p2366-holanda.pdf
http://cidrdb.org/cidr2005/papers/P18.pdf
http://www.vldb.org/pvldb/vol7/p97-schuhknecht.pdf
https://doi.org/10.1007/s00778-015-0397-y
https://doi.org/10.1007/s00778-015-0397-y
https://doi.org/10.5441/002/edbt.2021.53

[28] P. Holanda, M. Nerone, E. C. de Almeida, and S. Manegold, “Cracking
kd-tree: The first multidimensional adaptive indexing (position paper),” in
Proceedings of the 7th International Conference on Data Science, Technology and
Applications, DATA 2018, Porto, Portugal, July 26-28, 2018, J. Bernardino
and C. Quix, Eds. SciTePress, 2018, pp. 393–399. [Online]. Available:
https://doi.org/10.5220/0006944203930399

[29] F. Zardbani, P. Afshani, and P. Karras, “Revisiting the theory and practice
of database cracking,” in Proceedings of the 23rd International Conference on
Extending Database Technology, EDBT 2020, Copenhagen, Denmark, March 30 -
April 02, 2020, A. Bonifati, Y. Zhou, M. A. V. Salles, A. Böhm, D. Olteanu,
G. H. L. Fletcher, A. Khan, and B. Yang, Eds. OpenProceedings.org, 2020,
pp. 415–418. [Online]. Available: https://doi.org/10.5441/002/edbt.2020.46

[30] S. Idreos, M. L. Kersten, and S. Manegold, “Updating a cracked
database,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14, 2007, C. Y. Chan, B. C.
Ooi, and A. Zhou, Eds. ACM, 2007, pp. 413–424. [Online]. Available:
https://doi.org/10.1145/1247480.1247527

[31] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in
SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June
18-21, 1984, B. Yormark, Ed. ACM Press, 1984, pp. 47–57. [Online].
Available: https://doi.org/10.1145/602259.602266

[32] R. Bayer and E. M. McCreight, “Organization and maintenance of large
ordered indexes,” in Record of the 1970 ACM SIGFIDET Workshop on Data
Description and Access, November 15-16, 1970, Rice University, Houston, Texas,
USA (Second Edition with an Appendix), E. F. Codd, Ed. ACM, 1970, pp.
107–141. [Online]. Available: https://doi.org/10.1145/1734663.1734671

[33] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
Proceedings of the 1990 ACM SIGMOD International Conference on Management
of Data, Atlantic City, NJ, USA, May 23-25, 1990, H. Garcia-Molina and
H. V. Jagadish, Eds. ACM Press, 1990, pp. 322–331. [Online]. Available:
https://doi.org/10.1145/93597.98741

123

https://doi.org/10.5220/0006944203930399
https://doi.org/10.5441/002/edbt.2020.46
https://doi.org/10.1145/1247480.1247527
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/93597.98741

[34] R. A. Finkel and J. L. Bentley, “Quad trees: A data structure for retrieval on
composite keys,” Acta Informatica, vol. 4, pp. 1–9, 1974. [Online]. Available:
https://doi.org/10.1007/BF00288933

[35] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975. [Online].
Available: https://doi.org/10.1145/361002.361007

[36] D. V. Kalashnikov, S. Prabhakar, and S. E. Hambrusch, “Main memory
evaluation of monitoring queries over moving objects,” Distributed Parallel
Databases, vol. 15, no. 2, pp. 117–135, 2004. [Online]. Available: https:
//doi.org/10.1023/B:DAPD.0000013068.25976.88

[37] D. Sidlauskas, S. Saltenis, C. W. Christiansen, J. M. Johansen, and D. Saulys,
“Trees or grids?: indexing moving objects in main memory,” in 17th ACM
SIGSPATIAL International Symposium on Advances in Geographic Information
Systems, ACM-GIS 2009, November 4-6, 2009, Seattle, Washington, USA,
Proceedings, D. Agrawal, W. G. Aref, C. Lu, M. F. Mokbel, P. Scheuermann,
C. Shahabi, and O. Wolfson, Eds. ACM, 2009, pp. 236–245. [Online].
Available: https://doi.org/10.1145/1653771.1653805

[38] X. Yu, K. Q. Pu, and N. Koudas, “Monitoring k-nearest neighbor queries
over moving objects,” in Proceedings of the 21st International Conference on
Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, K. Aberer, M. J.
Franklin, and S. Nishio, Eds. IEEE Computer Society, 2005, pp. 631–642.
[Online]. Available: https://doi.org/10.1109/ICDE.2005.92

[39] D. Tsitsigkos, P. Bouros, K. Lampropoulos, N. Mamoulis, and M. Terrovitis,
“Two-layer space-oriented partitioning for non-point data,” CoRR, vol.
abs/2307.09256, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.
2307.09256

[40] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ”nearest
neighbor” meaningful?” in Database Theory - ICDT ’99, 7th International
Conference, Jerusalem, Israel, January 10-12, 1999, Proceedings, ser. Lecture Notes
in Computer Science, C. Beeri and P. Buneman, Eds., vol. 1540. Springer, 1999,
pp. 217–235. [Online]. Available: https://doi.org/10.1007/3-540-49257-7_15

124

https://doi.org/10.1007/BF00288933
https://doi.org/10.1145/361002.361007
https://doi.org/10.1023/B:DAPD.0000013068.25976.88
https://doi.org/10.1023/B:DAPD.0000013068.25976.88
https://doi.org/10.1145/1653771.1653805
https://doi.org/10.1109/ICDE.2005.92
https://doi.org/10.48550/arXiv.2307.09256
https://doi.org/10.48550/arXiv.2307.09256
https://doi.org/10.1007/3-540-49257-7_15

[41] L. Chen, Y. Gao, X. Song, Z. Li, Y. Zhu, X. Miao, and C. S. Jensen, “Indexing
metric spaces for exact similarity search,” ACM Comput. Surv., vol. 55, no. 6,
pp. 128:1–128:39, 2023. [Online]. Available: https://doi.org/10.1145/3534963

[42] L. Chen, Y. Gao, B. Zheng, C. S. Jensen, H. Yang, and K. Yang, “Pivot-based
metric indexing,” Proc. VLDB Endow., vol. 10, no. 10, pp. 1058–1069, 2017.
[Online]. Available: http://www.vldb.org/pvldb/vol10/p1058-gao.pdf

[43] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013, K. A. Ross, D. Srivastava,
and D. Papadias, Eds. ACM, 2013, pp. 349–360. [Online]. Available:
https://doi.org/10.1145/2463676.2465315

[44] N. S. Detlefsen, S. Hauberg, and W. Boomsma, “Learning meaningful
representations of protein sequences,” Nature Communications, vol. 13, 2020.
[Online]. Available: https://api.semanticscholar.org/CorpusID:227305297

[45] S. Li, K. Li, J. Yang, Y. Liu, W. Han, and Y. Luo, “Research on the local regional
similarity of automatic fingerprint identification system fingerprints based on
close non-matches in a ten million people database – taking the central region
of whorl as an example,” Journal of Forensic Sciences, vol. 68, no. 2, pp. 488–499,
2023.

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” in 1st International Conference on Learning
Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2013. [Online]. Available:
http://arxiv.org/abs/1301.3781

[47] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions
via hashing,” in VLDB’99, Proceedings of 25th International Conference on
Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK,
M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, Eds. Morgan Kaufmann, 1999, pp. 518–529. [Online]. Available:
http://www.vldb.org/conf/1999/P49.pdf

125

https://doi.org/10.1145/3534963
http://www.vldb.org/pvldb/vol10/p1058-gao.pdf
https://doi.org/10.1145/2463676.2465315
https://api.semanticscholar.org/CorpusID:227305297
http://arxiv.org/abs/1301.3781
http://www.vldb.org/conf/1999/P49.pdf

[48] Y. Tian, X. Zhao, and X. Zhou, “DB-LSH: locality-sensitive hashing with
query-based dynamic bucketing,” in 38th IEEE International Conference
on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-
12, 2022. IEEE, 2022, pp. 2250–2262. [Online]. Available: https:
//doi.org/10.1109/ICDE53745.2022.00214

[49] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 824–836, 2020. [Online].
Available: https://doi.org/10.1109/TPAMI.2018.2889473

[50] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest
neighbor search with the navigating spreading-out graph,” Proc. VLDB
Endow., vol. 12, no. 5, pp. 461–474, 2019. [Online]. Available: http:
//www.vldb.org/pvldb/vol12/p461-fu.pdf

[51] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for the k-center
problem,” Math. Oper. Res., vol. 10, no. 2, pp. 180–184, 1985. [Online].
Available: https://doi.org/10.1287/moor.10.2.180

[52] G. Navarro, “Searching in metric spaces by spatial approximation,”
VLDB J., vol. 11, no. 1, pp. 28–46, 2002. [Online]. Available: https:
//doi.org/10.1007/s007780200060

[53] P. N. Yianilos, “Data structures and algorithms for nearest neighbor search in
general metric spaces,” in Proceedings of the Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA,
V. Ramachandran, Ed. ACM/SIAM, 1993, pp. 311–321. [Online]. Available:
http://dl.acm.org/citation.cfm?id=313559.313789

[54] T. Bozkaya and Z. M. Özsoyoglu, “Indexing large metric spaces for similarity
search queries,” ACM Trans. Database Syst., vol. 24, no. 3, pp. 361–404, 1999.
[Online]. Available: https://doi.org/10.1145/328939.328959

[55] A. W. Fu, P. M. Chan, Y. Cheung, and Y. S. Moon, “Dynamic vp-tree indexing
for n-nearest neighbor search given pair-wise distances,” VLDB J., vol. 9, no. 2,
pp. 154–173, 2000. [Online]. Available: https://doi.org/10.1007/PL00010672

126

https://doi.org/10.1109/ICDE53745.2022.00214
https://doi.org/10.1109/ICDE53745.2022.00214
https://doi.org/10.1109/TPAMI.2018.2889473
http://www.vldb.org/pvldb/vol12/p461-fu.pdf
http://www.vldb.org/pvldb/vol12/p461-fu.pdf
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1007/s007780200060
https://doi.org/10.1007/s007780200060
http://dl.acm.org/citation.cfm?id=313559.313789
https://doi.org/10.1145/328939.328959
https://doi.org/10.1007/PL00010672

[56] H. V. Jagadish, B. C. Ooi, K. Tan, C. Yu, and R. Zhang, “idistance: An
adaptive b+-tree based indexing method for nearest neighbor search,” ACM
Trans. Database Syst., vol. 30, no. 2, pp. 364–397, 2005. [Online]. Available:
https://doi.org/10.1145/1071610.1071612

[57] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” in VLDB’97, Proceedings of 23rd
International Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopoulos,
and M. A. Jeusfeld, Eds. Morgan Kaufmann, 1997, pp. 426–435. [Online].
Available: http://www.vldb.org/conf/1997/P426.PDF

[58] T. Skopal, J. Pokorný, and V. Snásel, “Pm-tree: Pivoting metric tree for
similarity search in multimedia databases,” in Advances in Databases and
Information Systems, 8th East European Conference, ADBIS 2004, Budapest,
Hungary, September 22-25, 2004, Local Proceeding, 2004. [Online]. Available:
http://www.sztaki.hu/conferences/ADBIS/9-Skopal.pdf

[59] R. M. Karp, R. Motwani, and P. Raghavan, “Deferred data structuring,”
SIAM J. Comput., vol. 17, no. 5, pp. 883–902, 1988. [Online]. Available:
https://doi.org/10.1137/0217055

[60] P. Karras, A. Nikitin, M. Saad, R. Bhatt, D. Antyukhov, and S. Idreos,
“Adaptive indexing over encrypted numeric data,” in Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016,
San Francisco, CA, USA, June 26 - July 01, 2016, F. Özcan, G. Koutrika,
and S. Madden, Eds. ACM, 2016, pp. 171–183. [Online]. Available:
https://doi.org/10.1145/2882903.2882932

[61] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incrementally optimized
indexes,” in EDBT 2010, 13th International Conference on Extending Database
Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings, ser. ACM
International Conference Proceeding Series, I. Manolescu, S. Spaccapietra,
J. Teubner, M. Kitsuregawa, A. Léger, F. Naumann, A. Ailamaki, and
F. Özcan, Eds., vol. 426. ACM, 2010, pp. 371–381. [Online]. Available:
https://doi.org/10.1145/1739041.1739087

127

https://doi.org/10.1145/1071610.1071612
http://www.vldb.org/conf/1997/P426.PDF
http://www.sztaki.hu/conferences/ADBIS/9-Skopal.pdf
https://doi.org/10.1137/0217055
https://doi.org/10.1145/2882903.2882932
https://doi.org/10.1145/1739041.1739087

[62] P. Holanda and S. Manegold, “Progressive mergesort: Merging batches of
appends into progressive indexes,” in Proceedings of the 24th International
Conference on Extending Database Technology, EDBT 2021, Nicosia, Cyprus,
March 23 - 26, 2021, Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis,
and F. Guerra, Eds. OpenProceedings.org, 2021, pp. 481–486. [Online].
Available: https://doi.org/10.5441/002/edbt.2021.55

[63] S. Idreos, S. Manegold, H. A. Kuno, and G. Graefe, “Merging what’s cracked,
cracking what’s merged: Adaptive indexing in main-memory column-stores,”
Proc. VLDB Endow., vol. 4, no. 9, pp. 585–597, 2011. [Online]. Available:
http://www.vldb.org/pvldb/vol4/p586-idreos.pdf

[64] S. Idreos, M. L. Kersten, and S. Manegold, “Self-organizing tuple reconstruction
in column-stores,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,
June 29 - July 2, 2009, U. Çetintemel, S. B. Zdonik, D. Kossmann,
and N. Tatbul, Eds. ACM, 2009, pp. 297–308. [Online]. Available:
https://doi.org/10.1145/1559845.1559878

[65] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for
learned index structures,” in Proceedings of the 2018 International Conference
on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June
10-15, 2018, G. Das, C. M. Jermaine, and P. A. Bernstein, Eds. ACM, 2018,
pp. 489–504. [Online]. Available: https://doi.org/10.1145/3183713.3196909

[66] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska, “Fiting-
tree: A data-aware index structure,” in Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki,
A. Deshpande, and T. Kraska, Eds. ACM, 2019, pp. 1189–1206. [Online].
Available: https://doi.org/10.1145/3299869.3319860

[67] J. Ding, U. F. Minhas, J. Yu, C. Wang, J. Do, Y. Li, H. Zhang, B. Chandramouli,
J. Gehrke, D. Kossmann, D. B. Lomet, and T. Kraska, “ALEX: an updatable
adaptive learned index,” in Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, D. Maier, R. Pottinger, A. Doan, W. Tan,

128

https://doi.org/10.5441/002/edbt.2021.55
http://www.vldb.org/pvldb/vol4/p586-idreos.pdf
https://doi.org/10.1145/1559845.1559878
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3299869.3319860

A. Alawini, and H. Q. Ngo, Eds. ACM, 2020, pp. 969–984. [Online].
Available: https://doi.org/10.1145/3318464.3389711

[68] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic
compressed learned index with provable worst-case bounds,” Proc. VLDB
Endow., vol. 13, no. 8, pp. 1162–1175, 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf

[69] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska, “Learning multi-dimensional
indexes,” in Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020, D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini,
and H. Q. Ngo, Eds. ACM, 2020, pp. 985–1000. [Online]. Available:
https://doi.org/10.1145/3318464.3380579

[70] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
T. Neumann, “Radixspline: a single-pass learned index,” in Proceedings of the
Third International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, aiDM@SIGMOD 2020, Portland, Oregon, USA, June 19, 2020,
R. Bordawekar, O. Shmueli, N. Tatbul, and T. K. Ho, Eds. ACM, 2020, pp.
5:1–5:5. [Online]. Available: https://doi.org/10.1145/3401071.3401659

[71] J. Ding, V. Nathan, M. Alizadeh, and T. Kraska, “Tsunami: A learned
multi-dimensional index for correlated data and skewed workloads,” Proc.
VLDB Endow., vol. 14, no. 2, pp. 74–86, 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol14/p74-ding.pdf

[72] A. Crotty, “Hist-tree: Those who ignore it are doomed to learn,” in 11th
Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event,
January 11-15, 2021, Online Proceedings. www.cidrdb.org, 2021. [Online].
Available: http://cidrdb.org/cidr2021/papers/cidr2021_paper20.pdf

[73] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W.
Lee, S. A. Brandt, and P. Dubey, “FAST: fast architecture sensitive tree search
on modern cpus and gpus,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA,

129

https://doi.org/10.1145/3318464.3389711
http://www.vldb.org/pvldb/vol13/p1162-ferragina.pdf
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.1145/3401071.3401659
http://www.vldb.org/pvldb/vol14/p74-ding.pdf
http://cidrdb.org/cidr2021/papers/cidr2021_paper20.pdf

June 6-10, 2010, A. K. Elmagarmid and D. Agrawal, Eds. ACM, 2010, pp.
339–350. [Online]. Available: https://doi.org/10.1145/1807167.1807206

[74] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc, S. Madden,
H. Mao, and V. Nathan, “Sagedb: A learned database system,” in 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA,
January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019. [Online].
Available: http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf

[75] P. Ferragina, F. Lillo, and G. Vinciguerra, “Why are learned indexes so
effective?” in Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine
Learning Research, vol. 119. PMLR, 2020, pp. 3123–3132. [Online]. Available:
http://proceedings.mlr.press/v119/ferragina20a.html

[76] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in 29th IEEE International Conference
on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, C. S.
Jensen, C. M. Jermaine, and X. Zhou, Eds. IEEE Computer Society, 2013, pp.
38–49. [Online]. Available: https://doi.org/10.1109/ICDE.2013.6544812

[77] M. Mitzenmacher, “A model for learned bloom filters and optimizing
by sandwiching,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp.
462–471. [Online]. Available: https://proceedings.neurips.cc/paper/2018/hash/
0f49c89d1e7298bb9930789c8ed59d48-Abstract.html

[78] A. Kipf, D. Horn, P. Pfeil, R. Marcus, and T. Kraska, “LSI: a learned
secondary index structure,” in aiDM ’22: Proceedings of the Fifth International
Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
Philadelphia, Pennsylvania, USA, 17 June 2022, R. Bordawekar, O. Shmueli,
Y. Amsterdamer, D. Firmani, and R. Marcus, Eds. ACM, 2022, pp. 4:1–4:5.
[Online]. Available: https://doi.org/10.1145/3533702.3534912

130

https://doi.org/10.1145/1807167.1807206
http://cidrdb.org/cidr2019/papers/p117-kraska-cidr19.pdf
http://proceedings.mlr.press/v119/ferragina20a.html
https://doi.org/10.1109/ICDE.2013.6544812
https://proceedings.neurips.cc/paper/2018/hash/0f49c89d1e7298bb9930789c8ed59d48-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/0f49c89d1e7298bb9930789c8ed59d48-Abstract.html
https://doi.org/10.1145/3533702.3534912

[79] K. Vaidya, E. Knorr, M. Mitzenmacher, and T. Kraska, “Partitioned learned
bloom filters,” in 9th International Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. [Online].
Available: https://openreview.net/forum?id=6BRLOfrMhW

[80] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann, “SOSD: A benchmark for learned indexes,” CoRR, vol.
abs/1911.13014, 2019. [Online]. Available: http://arxiv.org/abs/1911.13014

[81] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper,
T. Neumann, and T. Kraska, “Benchmarking learned indexes,” Proc.
VLDB Endow., vol. 14, no. 1, pp. 1–13, 2020. [Online]. Available:
http://www.vldb.org/pvldb/vol14/p1-marcus.pdf

[82] C. Wongkham, B. Lu, C. Liu, Z. Zhong, E. Lo, and T. Wang, “Are
updatable learned indexes ready?” Proc. VLDB Endow., vol. 15, no. 11,
pp. 3004–3017, 2022. [Online]. Available: https://www.vldb.org/pvldb/vol15/
p3004-wongkham.pdf

[83] A. Al-Mamun, H. Wu, Q. He, J. Wang, and W. G. Aref, “A survey of
learned indexes for the multi-dimensional space,” 2024. [Online]. Available:
https://arxiv.org/abs/2403.06456

[84] Y. Chronis, Y. Wang, Y. Gan, S. Abu-El-Haija, C. Lin, C. Binnig, and
F. Özcan, “Cardbench: A benchmark for learned cardinality estimation in
relational databases,” CoRR, vol. abs/2408.16170, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2408.16170

[85] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper, “Learned
cardinalities: Estimating correlated joins with deep learning,” in 9th Biennial
Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA,
January 13-16, 2019, Online Proceedings. www.cidrdb.org, 2019. [Online].
Available: http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[86] A. Kipf, D. Vorona, J. Müller, T. Kipf, B. Radke, V. Leis, P. A.
Boncz, T. Neumann, and A. Kemper, “Estimating cardinalities with deep
sketches,” in Proceedings of the 2019 International Conference on Management
of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30

131

https://openreview.net/forum?id=6BRLOfrMhW
http://arxiv.org/abs/1911.13014
http://www.vldb.org/pvldb/vol14/p1-marcus.pdf
https://www.vldb.org/pvldb/vol15/p3004-wongkham.pdf
https://www.vldb.org/pvldb/vol15/p3004-wongkham.pdf
https://arxiv.org/abs/2403.06456
https://doi.org/10.48550/arXiv.2408.16170
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

- July 5, 2019, P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande,
and T. Kraska, Eds. ACM, 2019, pp. 1937–1940. [Online]. Available:
https://doi.org/10.1145/3299869.3320218

[87] L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141–142, 2012. [Online]. Available: https://doi.org/10.1109/MSP.
2012.2211477

[88] W. Li, J. Mao, Y. Zhang, and S. Cui, “Fast similarity search via optimal
sparse lifting,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp.
176–184. [Online]. Available: https://proceedings.neurips.cc/paper/2018/hash/
a8baa56554f96369ab93e4f3bb068c22-Abstract.html

[89] O. Jafari, P. Nagarkar, and J. Montaño, “Improving locality sensitive hashing
by efficiently finding projected nearest neighbors,” in Similarity Search and
Applications - 13th International Conference, SISAP 2020, Copenhagen, Denmark,
September 30 - October 2, 2020, Proceedings, ser. Lecture Notes in Computer
Science, S. Satoh, L. Vadicamo, A. Zimek, F. Carrara, I. Bartolini, M. Aumüller,
B. Þ. Jónsson, and R. Pagh, Eds., vol. 12440. Springer, 2020, pp. 323–337.
[Online]. Available: https://doi.org/10.1007/978-3-030-60936-8_25

[90] D. Alvarez-Melis and N. Fusi, “Geometric dataset distances via optimal
transport,” in Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/
paper/2020/hash/f52a7b2610fb4d3f74b4106fb80b233d-Abstract.html

[91] L. McInnes, J. Healy, N. Saul, and L. Großberger, “UMAP: uniform manifold
approximation and projection,” J. Open Source Softw., vol. 3, no. 29, p. 861,
2018. [Online]. Available: https://doi.org/10.21105/joss.00861

132

https://doi.org/10.1145/3299869.3320218
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477
https://proceedings.neurips.cc/paper/2018/hash/a8baa56554f96369ab93e4f3bb068c22-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a8baa56554f96369ab93e4f3bb068c22-Abstract.html
https://doi.org/10.1007/978-3-030-60936-8_25
https://proceedings.neurips.cc/paper/2020/hash/f52a7b2610fb4d3f74b4106fb80b233d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f52a7b2610fb4d3f74b4106fb80b233d-Abstract.html
https://doi.org/10.21105/joss.00861

[92] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. VanderPlas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830,
2011. [Online]. Available: https://dl.acm.org/doi/10.5555/1953048.2078195

[93] A. Tsitsulin, M. Munkhoeva, D. Mottin, P. Karras, A. M. Bronstein, I. V.
Oseledets, and E. Müller, “The shape of data: Intrinsic distance for data
distributions,” in 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
[Online]. Available: https://openreview.net/forum?id=HyebplHYwB

[94] P. Karras and N. Mamoulis, “Hierarchical synopses with optimal error
guarantees,” ACM Trans. Database Syst., vol. 33, no. 3, pp. 18:1–18:53, 2008.
[Online]. Available: https://doi.org/10.1145/1386118.1386124

[95] Boost, “Boost C++ Libraries,” http://www.boost.org/, 2015, last accessed 2025-
01-10.

[96] E. Stefanakis, Y. Theodoridis, T. K. Sellis, and Y. Lee, “Point representation
of spatial objects and query window extension: A new technique for spatial
access methods,” Int. J. Geogr. Inf. Sci., vol. 11, no. 6, pp. 529–554, 1997.
[Online]. Available: https://doi.org/10.1080/136588197242185

[97] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for
spatial data,” in 31st IEEE International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015, J. Gehrke, W. Lehner, K. Shim,
S. K. Cha, and G. M. Lohman, Eds. IEEE Computer Society, 2015, pp.
1352–1363. [Online]. Available: https://doi.org/10.1109/ICDE.2015.7113382

[98] D. Kwon, S. Lee, and S. Lee, “Indexing the current positions of moving
objects using the lazy update r-tree,” in Proceedings of the Third International
Conference on Mobile Data Management (MDM 2002), Singapore, January 8-11,
2002. IEEE Computer Society, 2002, pp. 113–120. [Online]. Available:
https://doi.org/10.1109/MDM.2002.994387

[99] P. Katiyar, T. Vu, A. Eldawy, S. Migliorini, and A. Belussi, “Spiderweb: A
spatial data generator on the web,” in SIGSPATIAL ’20: 28th International

133

https://dl.acm.org/doi/10.5555/1953048.2078195
https://openreview.net/forum?id=HyebplHYwB
https://doi.org/10.1145/1386118.1386124
http://www.boost.org/
https://doi.org/10.1080/136588197242185
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/MDM.2002.994387

Conference on Advances in Geographic Information Systems, Seattle, WA, USA,
November 3-6, 2020, C. Lu, F. Wang, G. Trajcevski, Y. Huang, S. D.
Newsam, and L. Xiong, Eds. ACM, 2020, pp. 465–468. [Online]. Available:
https://doi.org/10.1145/3397536.3422351

[100] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework for
spatial data,” in 31st IEEE International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 13-17, 2015, J. Gehrke, W. Lehner, K. Shim,
S. K. Cha, and G. M. Lohman, Eds. IEEE Computer Society, 2015, pp.
1352–1363. [Online]. Available: https://doi.org/10.1109/ICDE.2015.7113382

[101] http://yann.lecun.com/exdb/mnist/, [Accessed 10-Mar-2023].

[102] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, J. M. Hellerstein, S. Chaudhuri, and
M. Rosenblum, Eds. ACM, 2010, pp. 143–154. [Online]. Available:
https://doi.org/10.1145/1807128.1807152

[103] S. T. Leutenegger, J. M. Edgington, and M. A. López, “STR: A simple
and efficient algorithm for r-tree packing,” in Proceedings of the Thirteenth
International Conference on Data Engineering, April 7-11, 1997, Birmingham, UK,
W. A. Gray and P. Larson, Eds. IEEE Computer Society, 1997, pp. 497–506.
[Online]. Available: https://doi.org/10.1109/ICDE.1997.582015

[104] L. Xing, E. Lee, T. An, B. Chu, A. Mahmood, A. M. Aly, J. Wang, and
W. G. Aref, “An experimental evaluation and investigation of waves of misery
in r-trees,” Proc. VLDB Endow., vol. 15, no. 3, pp. 478–490, 2021. [Online].
Available: http://www.vldb.org/pvldb/vol15/p478-aref.pdf

[105] T. Gu, K. Feng, G. Cong, C. Long, Z. Wang, and S. Wang, “The
rlr-tree: A reinforcement learning based r-tree for spatial data,” Proc. ACM
Manag. Data, vol. 1, no. 1, pp. 63:1–63:26, 2023. [Online]. Available:
https://doi.org/10.1145/3588917

134

https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1109/ICDE.2015.7113382
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1109/ICDE.1997.582015
http://www.vldb.org/pvldb/vol15/p478-aref.pdf
https://doi.org/10.1145/3588917

AUTHOR’S PUBLICATIONS

• K. Lampropoulos, F. Zardbani, N. Mamoulis, P. Karras: Benchmarking adaptive
indexes for spatial data. VLDB 2025 (under review)

• F. Zardbani, K. Lampropoulos, N. Mamoulis, P. Karras: Updating an Adaptive
Spatial Index. ICDE 2025

• A. Michalopoulos, K. Lampropoulos, G. Kelantonakis, C. Zeginis, K. Magoutis,
and N. Mamoulis: Similarity Search based on Geo-footprints. EDBT 2024

• K. Lampropoulos, F. Zardbani, P. Karras, N. Mamoulis: Adaptive Indexing in
High-Dimensional Metric Spaces. VLDB 2023

• D. Tsitsigkos, K. Lampropoulos, P. Bouros, N. Mamoulis, M. Terrovitis: A Two-
level Partitioning for Non-point Spatial Data. ICDE 2021

• P. Bouros, K. Lampropoulos, D. Tsitsigkos, N. Mamoulis, M. Terrovitis: Band
Joins for Interval Data. EDBT 2020

SHORT BIOGRAPHY

Konstantinos Lampropoulos was born in 1993. He received his diploma in Computer
Science and Engineering from the Department of Computer Science and Engineering
at the University of Ioannina in 2019. During his PhD studies, he visited the Depart-
ment of Computer Science at Aarhus University in Denmark, where he worked under
the supervision of Prof. Panagiotis Karras. His research interests lie in data manage-
ment, with a particular focus on in-memory databases, and (adaptive) indexing of
complex data types, such as temporal, spatial, and high-dimensional data.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Adaptive Indexing
	Adaptive indexing in high-dimensional metric spaces
	Benchmarking Adaptive Multidimensional Indices
	Updating an Adaptive Spatial Index
	Dissertation Outline

	Background & Related Work
	Spatial Indices
	Indexing metric spaces
	Adaptive Indices
	Database Cracking
	Multidimensional Adaptive and Progressive indices

	Learned Indices

	Adaptive Indexing in High-Dimensional Metric Spaces
	Definitions and Preliminaries
	The AV-tree
	Range Query
	Nearest-Neighbor Query
	Enhancements
	Cost Analysis

	Experimental Evaluation
	Experimental Settings
	Enhancements and parameter tuning
	Comparative study
	Index Size

	Conclusions

	Benchmarking Adaptive Multidimensional Indices
	Methods
	Non-adaptive indices
	Adaptive indices
	Hybrid indexing

	Experimental Setup
	Datasets
	Workloads
	Measures
	Tuning

	Experimental Evaluation
	Method Selection
	Effect of object location
	Effect of object size
	Effect of object cardinality
	Effect of query selectivity
	Effect of query pattern
	Effect of dimensionality
	Memory usage

	Conclusions & Findings

	Updating an Adaptive Spatial Index
	GLIDE
	Design options
	Handling insertions
	Deletions: complete self-driven

	Reorganizing the static array
	The ripple strategy
	The sling strategy
	Sling with a crack

	Theoretical Analysis
	Experimental Analysis
	Implementation
	Experimental setup
	Workloads
	Parameter Tuning
	Ablation study
	Range workloads comparative study
	kNN workloads comparative study

	Conclusion

	Conclusions & Future Work
	Summary of Contributions
	Directions for Future Work

	Bibliography
	Author's Publications
	Short Biography

