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ABSTRACT

Paraskevi Chasani, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of Ioannina, Greece, 2025.
Machine Learning Methods based on Unimodality Testing.
Advisor: Aristidis Likas, Professor.

Recognizing unimodal data distributions is of great significance in statistics, ma-
chine learning and data science. The characteristic property of a unimodal distribution
is that data values are gathered around a single value (peak), which is the mode of
the distribution. Due to this property, data can be characterized as homogeneous,
forming a single and coherent group. Well-known distributions, such as Gaussian,
Student’s t and Gamma are typical examples of unimodal distributions. Also, the uni-
form distribution is considered as an extreme unimodal case. Unimodality tests have
been proposed to decide on the unimodality of a set of data values, thus providing
useful knowledge about the structure of the data.

This thesis concerns the development and implementation of machine learning
methods based on the notion of unimodality, focusing on four main axes: i) the
creation of a new unimodality test for deciding data unimodality, ii) the analysis
of key characteristics of data density, such as modes and valleys, which leads to
the discovery of innovative properties explored in detail, iii) the development of
statistical models, specifically mixture models, for modeling univariate unimodal and
multimodal (multiple peaks) data, and iv) the development of partitioning methods
for multidimensional data into clusters that are unimodal along each axis, achieved
through the unsupervised construction of axis-aligned binary decision trees.

We begin, by proposing a new unimodality test called Unimodal Uniform test
(UU-test) to decide if a dataset has been generated by a unimodal distribution or
not. The method utilizes the empirical distribution function (ecdf) and attempts to
obtain a unimodal piecewise linear approximation of the ecdf under the constraint
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that the data corresponding to each linear segment follow the uniform distribution.
Compared to other unimodality tests, it also produces a generative model of the
unimodal data in the form of a mixture of uniform distributions (UMM). Thus, it
can be used for statistical data modeling of unimodal distributions with arbitrary
shape. Next, we improve UMM performance by substituting the uniform distribution
with a more flexible and differential one, called Π-sigmoid. The Π-sigmoid distribu-
tion, defined as the difference of two translated logistic sigmoids, can approximate a
wide range of distributions. We employ and train a mixture model of Π-sigmoids,
called UΠsMM, initialized using the output of the UU-test. Additionally, we intro-
duce a mechanism to maintain the unimodality of the model during training via the
Expectation-Maximization (EM) algorithm. UΠsMM achieves an accurate fit while
often requiring fewer components than UMM.

Afterward, we address the problem of modeling univariate multimodal data, with
two main contributions. First, we introduce properties of critical points of the data
ecdf that provide indications on the existence of density valleys. Using these proper-
ties, we propose UniSplit, an algorithm that detects valley points and partitions the
dataset into unimodal subsets, automatically estimating their number. Second, we
propose a statistical model, the Unimodal Mixture Model (UDMM), which models
each unimodal subset with a UMM. A key strength of UDMM is its flexibility and in-
dependence from specific parametric assumptions, making it well-suited for datasets
generated by sources of different probability density (e.g., one Gaussian and one uni-
form). Another important property is that the number of components is automatically
estimated, therefore, a major issue in mixture modeling is addressed.

Finally, we focus on developing an unsupervised method for clustering multi-
dimensional data using decision trees. We introduce the concept of axis unimodal
clusters, i.e., clusters where all features are unimodal as decided by a unimodality
test. We present a method that constructs binary decision trees, providing axis-aligned
partitions of the data and offering interpretable clustering solutions. Two criteria are
proposed to identify the best split pair (feature and threshold) at each node, aiming
to improve the unimodality of the partition after each split. Compared to other un-
supervised decision tree methods, this approach has several advantages: it is simple,
avoids preprocessing steps and does not employ computationally expensive opti-
mization methods or difficult to tune hyperparameters, such as number of clusters or
maximum tree depth.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Παρασκευή Χασάνη, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική
Σχολή, Πανεπιστήμιο Ιωαννίνων, 2025.
Μέθοδοι Μηχανικής Μάθησης βασισμένες σε Έλεγχο Μονοτροπικότητας.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Η αναγνώριση μονοτροπικών (unimodal) κατανομών διαδραματίζει σημαντικό
ρόλο στη στατιστική, τη μηχανική μάθηση και την ανάλυση δεδομένων. Η χαρα-
κτηριστική ιδιότητα των μονοτροπικών κατανομών είναι ότι τα δεδομένα βρίσκο-
νται πολύ κοντά σε μία τιμή, η οποία είναι η κορυφή (mode/peak) της κατανομής.
Εξαιτίας αυτής της ιδιότητας, τα δεδομένα χαρακτηρίζονται ως ομοιογενή, σχημα-
τίζοντας μία συνεκτική ομάδα. Γνωστές κατανομές, όπως οι: Κανονική (Gaussian),
Student’s t και Γάμμα είναι παραδείγματα μονοτροπικών κατανομών. Επίσης, η
Ομοιόμορφη (uniform) κατανομή είναι μια ακραία περίπτωση μονοτροπικής κατα-
νομής. Τα τελευταία χρόνια έχουν προταθεί τεστ μονοτροπικότητας (unimodality
tests) που αποφασίζουν τη μονοτροπικότητα ενός συνόλου δεδομένων, παρέχοντας
χρήσιμη γνώση για τη δομή των δεδομένων.

Η παρούσα διατριβή επικεντρώνεται στην ανάπτυξη και εφαρμογή μεθόδων μη-
χανικής μάθησης βασισμένες στην έννοια της μονοτροπικότητας, εστιάζοντας σε
τέσσερις βασικούς θεματικούς άξονες: α) τη δημιουργία ενός νέου τεστ μονοτροπι-
κότητας για να αποφασίζουμε σχετικά με τη μονοτροπικότητα των δεδομένων, β) την
ανάλυση χαρακτηριστικών της πυκνότητας των δεδομένων, όπως είναι οι κορυφές
και οι κοιλάδες (valleys), που οδηγεί στην ανακάλυψη καινοτόμων ιδιοτήτων που θα
εξερευνηθούν ενδελεχώς, γ) την ανάπτυξη στατιστικών μοντέλων, συγκεκριμένα μει-
κτών μοντέλων (mixture models), για μοντελοποίηση μονοδιάστατων μονοτροπικών
και πολυτροπικών (πολλαπλές κορυφές) (multimodal) δεδομένων και δ) την ανά-
πτυξη μεθόδων διαμέρισης πολυδιάστατων δεδομένων σε ομάδες (clusters), ώστε
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να είναι μονοτροπικά σε κάθε άξονα, η οποία πραγματοποιήθηκε με την κατασκευή
χωρίς επίβλεψη παράλληλων με τους άξονες δυαδικών δέντρων απόφασης.

Αρχικά, προτείνουμε ένα νέο τεστ μονοτροπικότητας που λέγεται Μονοτροπικό-
Ομοιόμορφο τεστ (UU-τεστ) για να αποφασίζουμε εάν ένα σύνολο δεδομένων έχει
παραχθεί ή όχι από μονοτροπική κατανομή. Η μέθοδος αυτή χρησιμοποιεί την εμπει-
ρική συνάρτηση κατανομής (ecdf) και προσπαθεί να κατασκευάσει μια μονοτροπική
κατά τμήματα γραμμική προσέγγιση (piecewise linear approximation) αυτής υπό
τον περιορισμό ότι τα δεδομένα που αντιστοιχούν σε κάθε γραμμικό κομμάτι να
ακολουθούν ομοιόμορφη κατανομή. Συγκριτικά με άλλα τεστ μονοτροπικότητας,
παράγει επίσης ένα μοντέλο για μονοτροπικά δεδομένα που έχει τη μορφή μει-
κτών ομοιόμορφων κατανομών (UMM). Επομένως, μπορεί να χρησιμοποιηθεί για
στατιστική μοντελοποίηση μονοτροπικών κατανομών οποιασδήποτε μορφής. Ακο-
λούθως, βελτιώνουμε την επίδοση του ομοιόμορφου μεικτού μοντέλου αντικαθιστώ-
ντας την ομοιόμορφη κατανομή με μια πιο ευέλικτη, που ονομάζεται Π-σιγμοειδή.
Η Π-σιγμοειδής κατανομή ορίζεται ως η διαφορά δύο μετατοπισμένων σιγμοειδών
και μπορεί να προσεγγίσει ένα ευρύ φάσμα κατανομών. Εκπαιδεύουμε ένα μεικτό
μοντέλο Π-σιγμοειδών, που ονομάζεται UΠsMM και αρχικοποιείται χρησιμοποιώ-
ντας το αποτέλεσμα του UU-τεστ. Επιπροσθέτως, προτείνουμε ένα μηχανισμό για
να διατηρείται η μονοτροπικότητα του μοντέλου κατά τη διάρκεια της εκπαίδευ-
σης με τον αλγόριθμο ΕΜ. Το UΠsMM βελτιώνει την ακρίβεια της μοντελοποίησης,
ενώ συχνά απαιτεί λιγότερες συνιστώσες (components) σε σχέση με το ομοιόμορφο
μεικτό μοντέλο.

Στη συνέχεια, ασχολούμαστε με το πρόβλημα της μοντελοποίησης μονοδιάστα-
των πολυτροπικών δεδομένων κάνοντας δύο βασικές συνεισφορές. Αρχικά, προτεί-
νουμε ιδιότητες κρίσιμων σημείων της εμπειρικής συνάρτησης κατανομής των δεδο-
μένων, οι οποίες παρέχουν ενδείξεις για την ύπαρξη κοιλάδων στην πυκνότητα των
δεδομένων. Χρησιμοποιώντας αυτές τις ιδιότητες, προτείνουμε τον UniSplit, έναν
αλγόριθμο που εντοπίζει κοιλάδες και διαμερίζει το σύνολο δεδομένων σε μονοτρο-
πικά υποσύνολα, εκτιμώντας αυτόματα τον αριθμό τους. Ακολούθως, προτείνουμε
ένα στατιστικό μοντέλο, το μονοτροπικό μεικτό μοντέλο (UDMM), το οποίο μοντε-
λοποιεί κάθε μονοτροπικό υποσύνολο με ένα ομοιόμορφο μεικτό μοντέλο. Βασικό
πλεονέκτημα του μονοτροπικού μεικτού μοντέλου είναι η ευελιξία και η ανεξαρ-
τησία του από συγκεκριμένες παραμετρικές υποθέσεις, καθιστώντας το κατάλληλο
για σύνολα δεδομένων που προέρχονται από πηγές διαφορετικής πυκνότητας πι-
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θανότητας (π.χ., μία κανονική και μία ομοιόμορφη). Επιπλέον, ο αριθμός των συνι-
στωσών υπολογίζεται αυτόματα, αντιμετωπίζοντας έτσι, ένα σημαντικό πρόβλημα
των μεικτών μοντέλων.

Τέλος, εστιάζουμε στην ανάπτυξη μια μεθόδου χωρίς επίβλεψη (unsupervised)
για ομαδοποίηση (clustering) πολυδιάστατων δεδομένων χρησιμοποιώντας δέντρα
απόφασης σε ομάδες μονοτροπικές σε κάθε άξονα (axis unimodal), δηλαδή ομά-
δες όπου όλα τα χαρακτηριστικά τους είναι μονοτροπικά, σύμφωνα με τις αποφά-
σεις ενός τεστ μονοτροπικότητας. Αυτή η μέθοδος κατασκευάζει δυαδικά δέντρα
απόφασης, παρέχοντας διαμερίσεις των δεδομένων παράλληλες με τους άξονες και
προσφέροντας ερμηνεύσιμες λύσεις ομαδοποίησης. Δύο κριτήρια προτείνονται για
να εντοπίσουμε το καλύτερο ζεύγος διάσπασης (χαρακτηριστικό και τιμή) σε κάθε
κόμβο του δέντρου, στοχεύοντας στην βελτίωση της μονοτροπικότητας της διαμέ-
ρισης μετά από κάθε διάσπαση. Συγκριτικά με άλλες μεθόδους δέντρων απόφα-
σης χωρίς επίβλεψη, αυτή η προσέγγιση έχει αρκετά πλεονεκτήματα: είναι απλή,
αποφεύγει βήματα προεπεξεργασίας και δεν χρησιμοποιεί ακριβές υπολογιστικά
μεθόδους βελτιστοποίησης ή πολλές υπερπαραμέτρους, όπως είναι ο αριθμός των
ομάδων και το μέγιστο βάθος του δέντρου.
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CHAPTER 1

INTRODUCTION

1.1 Statistics Basics

1.2 Unimodality

1.3 Mode Estimation

1.4 Decision Trees

1.5 Thesis Contribution

As the amount of available data is permanently growing, there is increasing interest
in methods capable of extracting valuable knowledge from this data. In the fields of
Data Analysis, Data Mining and Machine Learning specific algorithms are applied
to prepare data for the purpose of either prediction or description [6]. Prediction
involves finding patterns that can assist in forecasting the behavior of a phenomenon
(or some entities) (e.g., feed-forward artificial neural networks). Description involves
finding useful explanatory patterns that can be presented to a user in a digestible,
understandable form (e.g., decision trees).

Machine learning is the area of artificial intelligence that attempts to provide
machines with the ability to learn from examples [7, 8]. It aims to develop algorithms
that can infer patterns, make predictions, or discover structures in data, often without
explicit programming for specific tasks. The two main areas of machine learning
are supervised and unsupervised learning. In supervised learning, models are trained
using labeled data, where the input-output relationships are explicitly provided. This

1



approach is widely applied in classification and regression problems, such as image
recognition or predicting housing prices. On the other hand, unsupervised learning
deals with unlabeled data, aiming to uncover hidden patterns or structures within the
dataset. Techniques such as clustering and dimensionality reduction fall under this
category, with applications in customer segmentation, anomaly detection, and more.

But how do we learn a system using the available observations? A common ap-
proach is to consider a parametric function (model) that is used to describe the process
that generates the observed data and then estimate the corresponding parameters.

An important issue to note is that in order for a model to be accurate, it needs to
make certain assumptions for the mechanism that generates the observations. Accu-
rate modeling of these mechanisms is essential for several reasons. First, it allows for
better generalization - enabling models to perform well on unseen data. Second, it fa-
cilitates interpretability, helping domain experts gain insights into the data’s structure
and behavior. Finally, a well-crafted model can serve as a foundation for tasks like
prediction, simulation, and decision-making. For these reasons, statistical modeling has
become a key component of machine learning research and practice. However, mod-
els that make many assumptions have generally poor performance, since too many
assumptions are unlikely to be realistic.

One powerful approach to data modeling involves the use of mixture models. Mix-
ture models assume that the data is generated by a combination of underlying proba-
bility distributions, each representing a distinct cluster or component within the data.
These models are highly flexible and can approximate complex distributions, making
them a valuable tool for both density estimation and clustering tasks.

In many practical situations, assuming a specific model to characterize the density
function of a given dataset may not be feasible, especially when we have no prior
knowledge about how the data was generated. In such cases, we must rely on non-
parametric statistical methods.

When examining the histogram or kernel density estimate of a dataset, one im-
portant characteristic to consider is unimodality, i.e., a property of data distributions
where the values form a single peak or mode1. Understanding whether a dataset
is unimodal has important implications for modeling and clustering. For example,
many statistical models, including mixture models, rely on assumptions about the
unimodality or multimodality of data. Moreover, identifying transitions between uni-

1Formal definitions are provided in the next sections.
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modal and multimodal regions can help detect structural changes in the data, such
as boundaries between clusters. To determine whether a given dataset follows a uni-
modal distribution, we use statistical tools, called unimodality tests. These tests are vital
in many applications, as they guide decisions about how to partition data and design
models.

In this thesis, the notion of unimodality serves as the foundation for the devel-
opment of novel machine learning methods and models. A new unimodality test
is introduced, providing a robust tool for determining whether data follows a uni-
modal distribution. Additionally, key characteristics of data density, such as modes
and valleys, are thoroughly examined, leading to the discovery of innovative prop-
erties that are explored in detail. These insights pave the way for the creation of
statistical models, particularly mixture models, which advance clustering techniques
and enhance our understanding of data-driven mechanisms. The following sections
delve into these problems, providing an in-depth analysis and a review of the related
work. Afterward, we present the main contributions of the thesis.

1.1 Statistics Basics

Some basic definitions are provided to make more clear the rest of the thesis. First, the
definitions of a probability density function (pdf), cumulative distribution function
(cdf) and empirical distribution function (ecdf) are provided, while the greatest con-
vex minorant function and the least concave majorant function are explained, since
they play essential role to construct our methods.

The probability density function (pdf) of a continuous 1-d random variable X

with support S is an integrable function f(x) satisfying the following:

1. f(x) is positive everywhere in the support S, that is, f(x) > 0, for all x in S.

2. The area under the curve f(x) in the support S is 1, that is:
∫
S
f(x) dx = 1.

3. If f(x) is the pdf of x, then the probability that x belongs to A, where A is some
interval, is given by the integral of f(x) over the interval, that is:
P (X ∈ A) =

∫
A
f(x) dx.

More specifically, if A = [a, b], the integral will be P (a ≤ X ≤ b) =
∫ b

a
f(x) dx.
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Figure 1.1: Histogram and pdf curve of a Gaussian (µ = 0, σ2 = 1) where µ is the
mean value and σ2 is the variation.

Fig. 1.1 illustrates the pdf and histogram of a Gaussian (µ = 0, σ2 = 1), where µ

is the mean value and σ2 is the variation.
The cumulative distribution function (cdf) of a real-valued random variable X ,

or just distribution function of X , evaluated at x, is the probability that X will take
a value less than or equal to x. The cumulative distribution function of a real-valued
random variable X is the function given by: FX(x) = P (X ≤ x), where the right-hand
side represents the probability that the random variable X takes on a value less than
or equal to x. The probability that X lies in the semi-closed interval (a, b], where
a < b, is therefore P (a < X ≤ b) = FX(b)− FX(a).

An empirical distribution function (ecdf) is the distribution function associated
with the empirical measure of a sample of N data points. It is a step function that
jumps up by 1/N at each of the N data points. Its value at any specified value of the
measured variable is the fraction of observations of the measured variable that are
less than or equal to the specified value. In other words:

Given N ordered points x1, x2, ..., xN , the ecdf is defined as:

FX(x) =
number of elements in the sample ≤ x

N
=

1

N

N∑
i=1

I(−∞,x)(xi) (1.1)

I(−∞,x)(xi) is the indicator function: I(−∞,x)(xi) =

 1, if xi ≤ x

0, otherwise
In Fig. 1.2 the cdf and ecdf of a Gaussian distribution are presented. As the

number of points increases, the distributions become more similar.
A significant tool in our methodology is the computation of the greatest convex

minorant and the lowest concave majorant functions. We provide below the definitions
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Figure 1.2: Cdf (left) and ecdf (right) of a Gaussian (µ = 0, σ2 = 1).

Figure 1.3: A convex (left) and a concave (right) function.

of the two functions.
The greatest convex minorant (gcm) of a function F in (−∞, a] is supG(x) for

x ≤ a, where the sup is taken over all functions G that are convex in (−∞, a] and
nowhere greater than F . Similarly, the least concave majorant (lcm) of a function F

in [a,∞) is defined as infL(x) for x ≥ a, where the inf is taken over all functions
L that are concave in [a,∞) and nowhere less than F . In Fig. 1.3 a convex and a
concave function are illustrated.

The gcm/lcm points of the ecdf of four distributions are illustrated in Fig. 1.4. The
red dotted line illustrates the gcm of the ecdf F (blue line), while the green dotted
line illustrates the lcm of F . The red stars on the lower line are the gcm’s points
of contact with F , while the green circles on the upper line are the lcm’s points.
The former are called gcm points and the latter lcm points. These points are of great
importance in approximating F , since they can be characterized as a lower and upper
limit of F . In the top row of Fig. 1.4 only gcm (left plot) or lcm (right plot) points
of the ecdf exist, while in the plots of bottom row both gcm and lcm points exist.

Let X = {x1, ..., xN}, xi ∈ R and xi < xi+1 an ordered 1-d dataset of distinct real
numbers. For an interval [a,b], we define X(a, b) = {a ≤ xi ≤ b, xi ∈ X} the subset of
X whose elements belong to that interval. This notation will be used throughout the
rest of the thesis.
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Figure 1.4: Visualization of the gcm function (red dotted line), lcm function (green
dotted line), gcm points (red stars) and lcm points (green circles) of four different
ecdfs (blue lines).

1.1.1 Statistical Tests

Statistical tests are used in the field of statistics to prove various properties of a dataset
[9]. They provide a mechanism for making quantitative decisions about a process of
interest. In other words, we use statistical tests to decide whether a pattern we observe
is due to chance or due to the program or intervention effects. Research often uses
them to determine if there is a relationship between an intervention and an outcome
as well as to quantify the strength of that relationship.

At first, a test statistic (a quantity derived from the sample) is computed and is
considered as a numerical summary of a dataset that reduces the data to one value.
The intent is to determine whether there is enough evidence to “reject” a conjecture
or hypothesis about the process. The conjecture is called the null hypothesis. Not
rejecting may be a good result if we want to continue to act as if we “believe” the null
hypothesis is true. Or it may be a disappointing result, possibly indicating we may
not yet have enough data to “prove” something by rejecting the null hypothesis.

The test statistic is used in testing the statistical hypothesis and is selected or
defined in such a way as to quantify, using observed data, behaviors that would dis-
tinguish the null from the alternative hypothesis. A common format for a hypothesis
test is:

H0: A statement of the null hypothesis, e.g., two population means are equal.
Ha: A statement of the alternative hypothesis, e.g., two population means are not
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equal.
Test Statistic: The test statistic is based on the specific hypothesis test.
Significance Level: The significance level, α, defines the sensitivity of the test. A

value of α = 0.05 means that we inadvertently reject the null hypothesis 5% of the
time when it is in fact true. This is also called the type I error. The choice of α is
somewhat arbitrary, although in practice values of 0.1, 0.05, and 0.01 are commonly
used.

Common test statistics are one-sample, two-sample and paired tests [10]. One-
sample tests are appropriate when a sample is being compared to the population
from a hypothesis. The population characteristics are known from theory or are cal-
culated from the population. Two-sample tests are appropriate for comparing two
samples, typically experimental and control samples from a scientifically controlled
experiment. Paired tests are appropriate for comparing two samples where it is im-
possible to control important variables. Rather than comparing two sets, members are
paired between samples so the difference between the members becomes the sample.
Typically, the mean of the differences is then compared to zero. The common exam-
ple scenario for when a paired difference test is appropriate is when a single set of
test subjects has something applied to them and the test is intended to check for an
effect. For example, if we compare the weight of every person in a group of people
before they went on a diet with their weight after they completed the diet program.

According to the null and alternative hypothesis, there are two kinds of tests: the
two-sided and one-sided tests (or two-tailed and one-tailed tests) [11]. A two-tailed
test is appropriate if the estimated value may be more than or less than the reference
value, for example, whether a test taker may score above or below the historical
average. A one-tailed test is appropriate if the estimated value may depart from the
reference value in only one direction, for example, whether a machine produces more
than one-percent defective products.

A measure for evaluating the result of a test of hypothesis is critical values. Critical
values for a test of hypothesis depend upon a test statistic, which is specific to the
type of test. They are essentially cut-off values that define regions where the test
statistic is unlikely to lie; for example, a region where the critical value is exceeded
with probability α if the null hypothesis is true. The null hypothesis is rejected if the
test statistic lies within this region which is often referred to as the rejection region(s).

Another quantitative measure for reporting the result of a test of hypothesis is the
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p-value. The p-value is the probability of the test statistic being at least as extreme as
the one observed given that the null hypothesis is true. A low p-value is an indication
that the null hypothesis is false. The benefit of using p-value is that it calculates a
probability estimate, we can test at any desired level of significance by comparing
this probability directly with the significance level. It is good practice to decide in
advance of the test how small a p-value is required to reject the test. This is exactly
analogous to choosing a significance level, α, for test. For example, we decide either
to reject the null hypothesis if the test statistic exceeds the critical value (for α = 0.05)
or analogously to reject the null hypothesis if the p-value is smaller than 0.05.

Known statistical tests are: Z-test, T-test and Chi-square [11]. In Z-test, the sample
is assumed to be normally distributed and a z-score is calculated with population
parameters, such as “population mean” and “population standard deviation”. It is
used to validate the hypothesis that the sample drawn belongs to the same population.
A T-test is used to compare the mean of two given samples. Like a Z-test, a T-test also
assumes a normal distribution of the sample. A T-test is used when the population
parameters (mean and standard deviation) are not known. Chi-square test is used to
compare categorical variables. There are two types of Chi-square tests: (1) Goodness of
fit test, which determines if a sample matches the population and (2) a Chi-square fit
test for two independent variables is used to compare two variables in a contingency
table to check if the data fits.

Gaussianity (Normality) Tests

There is a large number of tests for determining if a dataset is well-modeled by a
normal distribution and computing how likely it is for a random variable underlying
the dataset to be normally distributed. In Statistics, these tests are called Gaussianity
or Normality tests [9]. An informal and simple approach to testing normality is to
compare a histogram of the sample data to a normal probability curve. The empirical
distribution of the data (the histogram) should be bell-shaped and resemble the
normal distribution. This might be difficult to observe if the sample is small. Another
test of normality is Shapiro-Wilk test, which tests the null hypothesis that a sample
{x1, ..., xn} comes from a normally distributed population.

There are more general tests, which check if a dataset is well-modeled not only
by a normal distribution but also by other distributions. For example, the Anderson–
Darling test is a statistical test of whether a given sample of data is drawn from a given
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Figure 1.5: Illustration of the Kolmogorov–Smirnov statistic. Red line is the ecdf of
two gaussian distributions, blue line is the cdf of a gaussian (left) and a uniform
(right), and the length of the black arrow is the KS statistic.

probability distribution. It works well for distributions such as: normal, exponential,
extreme-value, Weibull, Gamma, Logistic, Cauchy, etc. Kolmogorov-Smirnov test (KS
test) is another statistical test which determines if a dataset comes from a given
population. In our methods we use KS test, so we provide more details below.

Kolmogorov‐Smirnov Test

The Kolmogorov–Smirnov (KS test) [12] is a nonparametric test of the equality of
continuous, one-dimensional probability distributions that can be used to compare a
sample with a reference probability distribution (one-sample KS test) or to compare
two samples (two-sample KS test).

The KS statistic quantifies a distance between the ecdf of the sample and the cdf of
the reference distribution or between the ecdfs of two samples. The null distribution
of this statistic is calculated under the null hypothesis that the sample is drawn from
the reference distribution (in the one-sample case) or that the samples are drawn
from the same distribution (in the two-sample case). The KS test can be modified
to serve as a goodness of fit test. The goodness of fit of a statistical model describes
how well it fits a set of observations. In the special case of testing for normality of
the distribution, samples are standardized and compared with a standard normal
distribution. The KS test is defined as:

H0: The data follow a specified distribution.
Ha: The data do not follow the specified distribution.
The KS test statistic is defined as: DN = supx |FN(x) − F (x)|, where supx is the

supremum of the set of distances, FN(x) is the ecdf and F (x) is the cdf (specified
distribution).
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The left plot of Fig. 1.5 illustrates the cdf and ecdf of two different gaussian
distributions. The maximum distance between these two curves is indicated by the
black arrow (KS statistic).

The KS test decides to reject the null hypothesis by comparing the p-value with
the significance level α, not by comparing the test statistic with the critical value.
Since the critical value is approximate, comparing the statistic with the critical value
occasionally leads to a different conclusion than comparing p-value with α.

As we mentioned, p-value is the probability of observing a test statistic as extreme
as, or more extreme than, the observed value under the null hypothesis. Small values
of p cast doubt on the validity of the null hypothesis. Therefore, if p-value ≤ α, the
KS test rejects the null hypothesis, otherwise, it accepts. KS test computes the critical
value using an approximate formula or by interpolation in a table. The formula and
table cover the range 0.005 ≤ α ≤ 0.1 for one-sided tests.

For testing uniformity, we use one-sample KS test with reference distribution being
the uniform distribution. KS test decides if the ecdf’s segments come from a uniform
population (are uniformly distributed).

Similar to the left plot, the right plot of Fig. 1.5 illustrates the cdf of a uniform
distribution and the ecdf of a gaussian distribution along with the KS statistic (black
arrow).

An attractive feature of this test is that the distribution of the KS test statistic itself
does not depend on the underlying cumulative distribution function being tested.
Another advantage is that it is an exact test (e.g. the chi-square goodness-of-fit test
depends on an adequate sample size for the approximations to be valid). However,
KS test tends to be more sensitive near the center of the distribution than at the tails,
which may affect the final decision.

1.1.2 Statistical Data Modeling

A statistical model is a mathematical model that embodies a set of statistical as-
sumptions concerning the generation of similar data from a larger population [10]. A
statistical model represents, often in considerably idealized form, the data-generating
process. The assumptions embodied by a statistical model describe a set of probability
distributions, some of which are assumed to adequately approximate the distribution
from which a dataset is sampled. In simple terms, statistical modeling is a simplified,
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mathematically-formalized way to approximate reality (i.e., what generates our data)
and optionally to make predictions from this approximation. The statistical model
is the mathematical equation that is used. It should summarize the data as closely
as possible (be “a good fit”) but also be as simple as possible. We cannot measure a
population, so the best we can do is generalize from a sample to a population using a
representative summary, i.e., a statistical model. Fitting a model to data means choos-
ing the statistical model that predicts values as close as possible to the ones observed
in our population. We need to find the values for the parameters in the model that
are most appropriate to predicting the data. More details are provided below regard-
ing the widely used Gaussian model, the uniform model and the Gaussian mixture
model.

The Gaussian Model

The Gaussian model [9] is a widely used statistical model which works well as a
good fit of many sets of data. It is often the case that we don’t know the parameters
of the Gaussian distribution, but instead want to estimate them. That is having a
sample {x1, ..., xn} from a Gaussian N(µ, σ2) population we would like to learn the
approximate values of parameters µ and σ2. The standard approach to this problem
is the Maximum Likelihood Estimation (MLE) method. The principle is called the
maximum likelihood principle because, given a set of data, the probability of the data,
regarded as a function of the parameters, is called a likelihood function. MLE requires
maximization of the log-likelihood function. For the Gaussian model the maximum
likelihood estimates are:

µ̂ = x =
1

n

n∑
i=1

xi, σ̂2 =
1

n

n∑
i=1

(xi − x)2 (1.2)

Modeling our data with a Gaussian model needs estimation of the parameters
of the Gaussian distribution. Estimator µ̂ is called the sample mean, since it is the
arithmetic mean of all observations. The estimator σ̂2 is called the sample variance,
since it is the variance of the sample {x1, ..., xn}. In practice, another estimator is often
used instead of the σ̂2. This estimator is denoted s2, and is also called the sample
variance, which represents a certain ambiguity in terminology; its square root s is
called the sample standard deviation. The estimator s2 differs from σ̂2 by having
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(n− 1) instead of n in the denominator.

s2 =
n

n− 1
σ̂2 =

1

n− 1

n∑
i=1

(xi − x)2 (1.3)

The Gaussian model is very popular and fits well for several real datasets. A
significant disadvantage, though, is its failure in asymmetric distributions. Fig. 1.6
illustrates six examples of a Gaussian Model fitting in samples of six distributions. In
the top row, samples from Gaussian, Student’s t and Gamma distributions are illus-
trated, while in the bottom row, the samples are generated by a triangular, asymmetric
triangular and a mixture of a uniform and Gaussian distribution, respectively. For
symmetric distributions, such as the Gaussian or triangular, the Gaussian model pro-
vides accurate fit. However, for asymmetric distributions (e.g., Gamma, asymmetric
triangular, and the mixture of uniform and Gaussian), it fails to fit effectively.

The Uniform Model

Another model which can model our dataset is the uniform model. Similar to the
Gaussian Model, the parameters of the Uniform model (a and b) are estimated through
the maximum likelihood method. In Fig. 1.7, we work with the same distributions
as in Fig. 1.6. It is evident that the uniform model lacks the flexibility needed to fit
these samples accurately.

The Gaussian Mixture Model

A mixture distribution [7, 13] is the probability distribution of a random variable
that is derived from a collection of other hidden random variables as follows: first, a
random variable is selected by chance from the collection according to given probabil-
ities of selection, and then the value of the selected random variable is realized. The
underlying random variables may be random real numbers, or they may be random
vectors (each having the same dimension), in which case the mixture distribution is
a multivariate distribution.

In cases where each of the underlying random variables are continuous, the out-
come variable will also be continuous, and its probability density function is some-
times referred to as a mixture density. The cdf (and the pdf) can be expressed as
a convex combination (i.e., a weighted sum, with non-negative weights that sum to
1) of other distribution functions and density functions. The individual distributions
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Figure 1.6: A Gaussian model (red curve) fits in several datasets.

Figure 1.7: A uniform model (red curve) fits in several datasets.

that are combined to form the mixture distribution are called the mixture compo-
nents, and the probabilities (or weights) associated with each component are called
the mixture weights.

Given a finite set of pdfs p1(x), ..., pK(x), or corresponding cdfs P1(x), ..., PK(x) and

weights w1, ..., wK such that wi ≥ 0 and
K∑
i=1

wi = 1, the mixture distribution can be

represented by writing either the density (f), or the distribution function (F ), as a
sum (which in both cases is a convex combination):

f(x) =
K∑
i=1

wipi(x), F (x) =
K∑
i=1

wiPi(x) (1.4)

Mixture distributions arise in many contexts in the literature and arise naturally
when a statistical population contains two or more subpopulations. It is frequently
the case that data is not explained by a single underlying distribution. Typically, this
is because there are multiple phenomena occurring in the dataset, each with their own
underlying distribution. If we want to try to recover the underlying distributions, we
need to have a model which has multiple components. An example could be sensor
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Figure 1.8: A Gaussian Mixture of three Gaussian distributions.

readings where the majority of the time a sensor shows no signal, but sometimes it
detects some phenomena. Modeling both phenomena as a single distribution would
be inaccurate because the readings would come from two distinct phenomena.

In such cases we utilize mixture models for modeling tasks, which rely on the
assumption that the data has been generated by sampling from a set of compo-
nent distributions. A common type of mixture model, called Gaussian Mixture Model
(GMM) [13], is a probabilistic model that assumes all the data points are generated
from a mixture of a finite number of Gaussian distributions with unknown parame-
ters. Fig. 1.8 illustrates a GMM of three Gaussian distributions.

Given a statistical model for the data, it is necessary to estimate the parameters of
that model. A standard approach used for this task is MLE (similarly to the Gaussian
model). To begin, consider a set of n points X = {x1, ..., xn} that are generated from
a one-dimensional Gaussian distribution. Assuming that the points are generated
independently, the probability of these points is just the product of their individual
probability densities. Using the above Equation we can write this probability density
as follows:

p(X|Θ) =
n∏

i=1

1√
2πσ

exp−
(xi−µ)2

2σ2 (1.5)

Since this probability would be a very small number, we typically will work with
the log probability:

log p(X|Θ) = −
n∑

i=1

(xi − µ)2

2σ2
− 0.5n log 2π − nlogσ (1.6)
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In order to estimate the parameters µ and σ the MLE approach is followed. In
general, we do not know which points were generated by which distribution. Thus, we
cannot directly calculate the probability of each data point, and hence, it would seem
that we cannot use the maximum likelihood principle to estimate parameters. The
solution to this problem is the Expectation - Maximization (EM) algorithm. Briefly,
given a guess for the parameter values, the EM algorithm calculates the probability
that each point belongs to each distribution and then uses these probabilities to com-
pute a new estimate for the parameters. This iteration continues until convergence.
Thus, we still employ maximum likelihood estimation, but via an iterative search.
Overall, mixture models are flexible in treating data of different characteristics; how-
ever a major problem is the specification of the number of mixture components, which
should be specified by the user.

1.2 Unimodality

In mathematics, science, and engineering, one often encounters data that can be mod-
eled as a sample from some unknown underlying distribution. From this limited data
sample, we wish to learn about the various characteristics of the underlying distri-
bution, which then gives information about the dynamics of the system that is being
examined. One such characteristic is whether the underlying distribution is unimodal
or multimodal: whether it has one or several maxima [14], where the probability den-
sity is (locally) maximal. Such maxima are called modes, and can manifest themselves
in samples from the distribution in the form of clusters: intervals where a large num-
ber of data points are concentrated. This can often be observed when a histogram is
drawn from the data, where a large concentration of data points appears as a hill near
the mode, i.e. the data has a “grouping behavior”. In particular, a multimodal under-
lying distribution can imply that there are two or more separate groups present in the
data, which behave differently from one another. For example, suppose one observes
two modes in the distribution of the incubation times of a disease. This could point
towards there being two different strains of this disease that behave differently, where
on average, one strain has a larger incubation time compared to the other strain. It
could also point towards a certain subgroup of patients being more resistant to the
disease than others, and several other hypotheses could be formulated. In contrast,
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Figure 1.9: Histogram plots of unimodal distributions (top row) and corresponding
cdf plots (bottom row).

a histogram with a single mode highlights the most common value; for example,
the heights of adult males are often grouped around a single peak. Either way, the
observation of unimodality/multimodality leads to several novel research questions,
which contributes to a greater understanding of the dynamics at play.

1.2.1 Unimodality Definition

In what concerns the unimodality [15] of a distribution there are two definition
options. The first relies on the probability density function (pdf). A pdf is unimodal,
if it has a single mode; a region where the density becomes maximum, while non-
increasing density is observed when moving away from the mode. In other words,
a function f(x) is a unimodal function if for some value m , it is monotonically
increasing for x ≤ m and monotonically decreasing for x ≥ m. In that case, the
maximum value of f(x) is f(m) and there are no other local maxima. The most widely
used unimodal distribution function is the Gaussian. Other examples of unimodal
functions are Student’s t, Gamma, Chi-square, triangular, Cauchy and exponential
and etc.

The second definition option relies on the cumulative distribution function (cdf).
A cdf is unimodal if there exist two points xl and xu such that the function can be
divided into three parts: a) a convex part (−∞, xl), b) a constant part [xl, xu] and c) a
concave part (xu,∞). It is worth mentioning that it is possible for either the first two
parts or the last two parts to be missing. Fig. 1.9 illustrates the histogram (top row)
and cdf (bottom row) plots of four unimodal functions. In the cases of Gaussian and
Student’s t, we clearly see first a convex part, after a linear, and last a concave part
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on the cdf plots. In the case of Gamma function, the convex part is small enough,
but it still remains unimodal according to unimodality’s definition. The single modes
in the corresponding histogram plots of these functions are evident. We should clear
that the uniform distribution is an extreme single mode case where the mode covers
all the region with non-zero density. The cdf plot only contains the linear part of
unimodality’s definition as it is shown in Fig. 1.9.

On the other hand, a non-unimodal distribution is called multimodal with two
or more modes. A common case is when a distribution has only two modes; these
appear as distinct peaks (local maxima) in the pdf plot. The distribution with exactly
two modes is called bimodal, while the distribution with exactly three modes is called
trimodal. A bimodal distribution most commonly arises as a mixture of two different
unimodal distributions (i.e. distributions having only one mode). For example, a
mixture of two Gaussian distributions with the same variance, but different means is
a bimodal distribution.

In Fig. 1.10, we present the histogram and cdf plots of four multimodal distribu-
tions. In the first two columns, the histogram plots of two Gaussians (showing the
presence of two modes) are illustrated along with the corresponding cdf plots. In the
cdf plots, we observe two convex parts separated by a concave region (or equivalently,
two concave parts separated by a convex region). This pattern is more pronounced in
the case of the two widely-separated Gaussians (second column). The existence of a
second convex (or concave) part violates the definition of unimodality, indicating that
the functions in these plots are multimodal (specifically, bimodal). This phenomenon
becomes even more pronounced in the third (mixture of three Gaussians) and fourth
(mixture of three Gaussians and a uniform distribution) columns. Three and four
modes are evident in the histogram plots, respectively, while the presence of multiple
alternating convex and concave regions is clearly visible in the corresponding cdf
plots.

1.2.2 Assessing Unimodality

Visual Inspection

We could consider “visual inspection” as a method in order to recognize unimodal
distributions, however this methodology is not always sufficient to test for multi-
modality. In everyday life, when one suspects a distribution might be multimodal,
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Figure 1.10: Histogram plots of multimodal distributions (top row) and corresponding
cdf plots (bottom row).

Figure 1.11: Histograms of a distribution function with different number of bins.

one might simply draw a histogram (or kernel density plot), and visually inspect the
maxima of this histogram. If several disjoint intervals contain a large concentration
of data points, one might conclude the distribution is multimodal. Conversely, if only
one maximum is shown (or the histogram does not show clear maxima at all), one
might conclude the distribution is unimodal.

While this approach can certainly give correct results, it has several disadvantages.
Firstly, one has to properly choose the bin size (or kernel width): if the bin size is
chosen to be too large, several present modes can be combined into a seemingly single
mode. Conversely, if the bin size is chosen to be too small, extraneous maxima that
do not correspond to modes in the distribution can be introduced, that appear due
to randomness in the finite sample. Choosing a “correct” bin size is often a somewhat
subjective matter.

In Fig. 1.11 we see the histograms of the same pdf for three different numbers of
bins (10, 20, 50). This number affects significantly the plot and if we depend on the
number of bins, we may end up in different conclusions.

Secondly, even for a well-chosen bin size, it can still be subjective whether an
observed maximum is an extraneous maximum or a mode that truly appears in the
underlying distribution: a small hump in the histogram can represent a weak mode
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in the distribution, but can also be a point where several data points are concentrated
purely by chance. Finally, conclusions drawn from this method are highly qualitative
in nature, since no quantitative confidence level can be assigned. In many occasions,
this makes it insufficiently reliable to use in science and industry.

Although the definition of unimodality in the case of pdf functions is sufficiently
comprehensible and simple, the shape of a histogram - in which we visualize a pdf -
varies depending on the number of bins. In contrast, a cdf plot is independent of any
parameters, even though defining unimodality for cdf functions may be a little tricky.
Thus, the cdf has the clear advantage over the pdf, as a more stable and handier tool,
and it is primarily utilized in the methods proposed in this thesis.

Moreover, since the underlying distribution function is not known, and we work
with sample observations, ecdf is favored over cdf in this thesis. The ecdf is useful,
since it approximates the true cdf well if the sample size (the number of data) is
large, and knowing the distribution is helpful for statistical inference. Also, a plot of
the ecdf can be visually compared to known cdfs of frequently used distributions to
check if the data came from one of those common distributions.

Unimodality Tests

A reliable way to assess data unimodality are statistical tests, called unimodality tests,
that are used for discovering the presence of more than one mode in a distribution
[15]. In other words, they are used to decide whether a set of data points has been
generated by a probability distribution with a single mode (peak). The unimodality
property is directly related to the grouping behavior of points, i.e. whether data are
‘gathered’ or not.

The most typical example of unimodality is normality (or Gaussianity), which
can be tested using several well-known tests, for example the Anderson-Darling test
[16] and Shapiro-Wilk test [17]. For this reason, in several data analysis methods,
the normality test has been used to check the grouping behavior of data. One test,
suggested in [18] uses the likelihood ratio for a two-component normal mixture
against the normal null hypothesis. A related test [19] divides the sample into two
subsets to maximize the likelihood ratio that the two subsets are sampled from normal
with different means, against the null hypothesis that the means are equal. It is
obvious that the employment of normality tests to check unimodality relies on a
crude assumption, since there are many datasets whose density (e.g. histogram) has
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a single peak (i.e. they are unimodal) but its shape does not resemble the shape
of the normal distribution. It is obvious that in such cases a normality test will
fail. Therefore, the development of general unimodality tests offers great advantage
compared to normality tests, since it allows to test the “gathering property” of data
without focusing on a particular functional form (e.g. Gaussian, Student’s t, uniform,
etc.).

Many statistical tests to assess unimodality (or multimodality) have been proposed
in the literature, for example a nice survey is presented in [1] (one may also refer
to [20] for earlier contributions). The approaches commonly test unimodality versus
bimodality, but they can be adapted to test unimodality versus k modes.

In [21] a test is suggested for multimodality, called k-critical windows. The idea
is the following: The smallest window width is used, such that the resulting kernel
density estimate is unimodal, as a test statistic for unimodality. A sample from a
density with more than k modes will require more smoothing to exhibit k or less
modes in the density estimate compared to a sample from a density with exactly k
modes. The significance level of the test statistic is evaluated by empirically sampling
from a rescaled version of the unimodal density estimate. It applies kernel density
estimation with Gaussian kernel and relies on the kernel bandwidth to decide on
unimodality. Note that kernel bandwidth is related to the amount of smoothing. If
high bandwidth (i.e. large smoothing) is needed to obtain a unimodal estimate, this is
an indication of multimodality. The above idea is well-studied and several weaknesses
have been identified [22]. Another 1-d unimodality test is the excess mass test [23]
that measures the excess mass of the modes, i.e. the amount of density (as estimated
by a histogram) that is above a specific level L. If this excess mass is distributed
in several regions, then this is an indication of multimodality. Even if the test is
theoretically designed to tackle multivariate densities, general effective algorithms are
not available [24].

The RUNT test [25] and the MAP test [26] constitute attempts to address the
unimodality issue in multiple dimensions. RUNT test is based on single linkage clus-
tering, while MAP test uses minimum trees with additional constraints, thus both
approaches are computationally expensive.

The Hartigans’ dip-test [27] is a notable test statistic which decides on the uni-
modality of a real-valued dataset. It takes as input an 1-d dataset, examines the
underlying ecdf of the set of numbers and decides whether it contains a single or
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more than one mode (peak). Specifically, it computes the dip statistic as the maximum
difference between the ecdf, and the unimodal distribution function that minimizes
that maximum difference. The uniform distribution is the asymptotically least fa-
vorable unimodal distribution, and the distribution of the test statistic is determined
asymptotically and empirically when sampling from the Uniform.

Given a set of real numbers X = {x1, ..., xn} the dip-test computes the dip value
dip(X), which is the departure from unimodality of the ecdf. For bounded input
functions F,G, let ρ(F,G) = max

x
|F (x)−G(x)|, and let U be the class of all unimodal

distributions. Then the dip statistic of a distribution function F is given by: dip(F ) =

min
G∈U

ρ(F,G).
In other words, the dip statistic computes the minimum among the maximum

deviations observed between the cdf F and the cdfs from the class of unimodal
distributions. A nice property of dip is that, if X is a sample distribution of n ob-
servations from F , then lim

n→∞
dip(Fn) = dip(F ). It is argued that the class of Uniform

distributions U is being used for the null hypothesis, since its dip values are stochas-
tically larger than other unimodal distributions, such as those having exponentially
decreasing tails. Dip-test also has the benefit of not requiring a kernel width.

Given a dataset X = {x1, ..., xn}, xi ∈ R the dip statistic is computed as follows:

i. Begin with xL = x1, xU = xn, D = 0.

ii. Compute the gcm G and lcm L for F in [xL, xU ]; suppose the points of contact
with F are respectively g1, g2, ..., gk and l1, l2, ..., lm.

iii. Suppose d = sup |G(gi) − L(gi)| > sup |G(li) − L(li)| and that the sup occurs at
lj ≤ gi ≤ lj+1. Define x0

L = gi, x
0
U = lj+1.

iv. Suppose d = sup |G(li) − L(li)| > sup |G(gi) − L(gi)| and that the sup occurs at
gi ≤ lj ≤ gi+1. Define x0

L = gi, x
0
U = lj.

v. If d ≤ D, stop and set D(F ) = D.

vi. If d > D, set D = sup{D, sup
xL≤x≤x0

L

|G(x)− F (x)|, sup
x0
U≤x≤xU

|L(x)− F (x)|}

vii. Set xU = x0
U , xL = x0

L and return to ii.

A graphical example is given in Fig. 1.12 [1].
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Figure 1.12: Graphical example of the taut string metaphor used in describing the
algorithm for the dip-test. The red line is the string, the bottom blue line is F −d and
the upper blue line is F + d. Note that the string forms the gcm on (x1, xL) for F − d,
and the lcm on (xU , xn) for F + d. The bottom plot depicts the minimum value of d.
If we would decrease d even further, the string would get bent out of its unimodal
shape at around x ≈ 0.5 [1].

Dip-test examines the n(n − 1)/2 possible modal intervals [xL, xU ] between the
sorted n individual observations. For all these combinations it computes in O(n) time
the respective gcm and the lcm curves in (min

x
Xn, xL) and (xU ,max

x
Xn), respectively.

Fortunately, for a given Xn, the complexity of one dip computation is O(n). The dip-
test returns not only the dip value, but also the statistical significance of the computed
dip value, i.e. a p-value. The computation of the p-value for a unimodality test uses
bootstrap samples and expresses the probability of dip(Xn) being less than the dip
value of a cdf U r

n of n observations sampled from the U [0, 1] Uniform distribution:

P = #[dip(X) ≤ dip(U r
n)]/b, r = 1, ..., b (1.7)

It should be stressed that for each value of n, the bootstrap samples U r
n do not
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Figure 1.13: Folding mechanism for univariate distribution. Initial (left) and folded
(right) distribution are provided [2].

depend on the dataset X , therefore they can be computed only once, along with the
corresponding values dip(U r

n). The null and alternative hypothesis, H0 and Ha, are
given below:

H0: Xn is unimodal Ha: Xn is multimodal
H0 is accepted at significance level α if p-value > α, otherwise H0 is rejected in

favor of the alternative hypothesis Ha, which suggests multimodality.
In [2] a multivariate unimodality test is proposed, called folding test, which makes

no distribution assumption and utilizes only a p-value. Given a multidimensional
dataset of numerical attributes, the authors wonder about the “grouping behavior” of
the data points. In [2] it is argued that in unimodal cases, the data points make a single
peak in the histogram. It is obvious that if this fact is known, we will not proceed in
a clustering method, since our data points make exactly one group (cluster).

The approach of the folding test relies on a folding technique and is the following:
(1) fold up the distribution (left plot of Fig. 1.13) with respect to a pivot s⋆, (2)
compute the variance of the folded distribution and (3) compare it with the initial
variance. The main idea is that the resulting density (right plot of Fig. 1.13) of
the folded distribution will have a far lower variance in multimodal distributions,
while this phenomenon will not appear in unimodal cases (i.e. not with the same
amplitude).

The folding step is performed with the transformation X 7→ |X − s⋆| and the
folding ratio is computed as:

ϕ(X) =
V ar|X − s⋆|

V arX
(1.8)

In higher dimensions the absolute value is replaced by the Euclidean norm
V ar‖X−s⋆‖ where X is a random vector of Rd and s⋆ ∈ Rd is the pivot. The variance
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Figure 1.14: Folding mechanism in dimension 2. Initial (left) and folded (right)
distribution are provided [2].

Figure 1.15: Impact of the pivot location. Initial (left) and folded (right) distribution
are provided [2].

is replaced by E[‖X−E[X]‖2]. In the unimodal case, this expected value will be much
lower than in the multimodal case. Finally, the folding ratio is generalized through:

ϕ(X) =
V ar‖X − s⋆‖

E[‖X − E[X]‖2]
(1.9)

Fig. 1.14 gives an empirical example of the folding mechanism in two dimensions.
To this end, more details should be given about pivot. According to [2], the right

pivot should be found, so the variance can be significantly reduced through the folding
process. Thus, the pivot should reduce the variance the most (if such a pivot exists).
It is mentioned that the best pivot s⋆ is likely to be close to the mode in the unimodal
case, while is likely to stand “between” the modes in the multimodal case.

The best pivot s⋆ is found as: s⋆ = argmin
s∈Rd

V ar‖X − s‖. The level of confidence
of the test is computed with a p-value. The lower p-value is, the more significant the
decision will be. A unimodal example in R2 is given in Fig. 1.15.

1.2.3 Significance of Unimodality Tests

The concept of unimodality and the application of unimodality tests have been utilized
across various machine learning domains, including clustering, density estimation,
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and feature selection. In data analysis it is of great importance to discover information
about the structure in data. There are significant topics, such as clustering, which
are only appropriate when cluster structure is present. In [28] it is presented in
a nice way why a unimodality test is so important in cluster analysis. First, the
meaning of clusterability needs to be mentioned. Clusterability [28] depends on the
presence of inherent structure and aims to quantify the degree of cluster structure.
This analysis should precede the application of clustering algorithms, as the success of
any clustering algorithm depends on the presence of underlying cluster structure. If
such a structure exists, the next step of choosing a clustering algorithm will follow. In
other cases, the results of any clustering technique become arbitrary and potentially
misleading, so clustering should possibly not be applied.

For concreteness, consider a dataset randomly generated from a single Gaussian
distribution. Because the data contains only one cluster, it makes no sense to divide
the dataset into clusters. Most clustering algorithms (e.g. k-means with k ≥ 2) would
find multiple clusters in the data, even though no multi-cluster structure is present.
Before the clustering algorithm, we could have checked with a unimodality test, if
the dataset makes one single and coherent cluster or not. In other words, we would
know that the data are homogeneous, so clustering would not be suitable in this case.

On the other hand, if a dataset contains multiple clusters, then there should be
some separation between the clusters. For example, consider a dataset randomly
generated from two Gaussian distributions with the two means being extremely dif-
ferent. There are two peaks in the Gaussians’ histogram, so there are two clusters
in the dataset and a unimodality test will decide multimodality. Thus, running a
unimodality test before the clustering algorithm ensures us that the cluster struc-
ture is present in the dataset. For multidimensional data, these unimodality methods
face a significant limitation, making their performance unpredictable for real-world
datasets, which often have multiple or high dimensions. Their application typically
requires reducing the data to a single dimension beforehand.

Exploitation of Unimodality Tests in Various Scientific Fields

Although unimodality tests are primarily applied to 1-dimensional data, the dip-test
has also been utilized for multidimensional datasets. In such cases, dataset unimodal-
ity can be evaluated by conducting multiple 1-dimensional tests. Below, we present
several multidimensional methods that leverage the dip test to assess data unimodal-
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ity.
The dip-means algorithm [29] integrates the dip statistic with k-means to evaluate

cluster homogeneity using the dip-dist criterion, which relies on Hartigan’s dip-test.
Instead of testing unimodality in the original data space, the dip-dist criterion assesses
the density distribution of pairwise distances among data objects. Each object acts as
a “viewer”, determining unimodality or multimodality based on the dip test applied
to its pairwise distances. If the majority of viewers detect multimodality, the cluster is
deemed multimodal; otherwise, it is considered unimodal. When k-means produces
a non-unimodal cluster, dip-means reruns the algorithm with an additional cluster,
refining the clustering process.

In [30], Hartigan’s dip-test is utilized in the DipTransformation, a nearly parameter-
free method that enhances dataset structure, improving k-means clustering and other
clustering techniques. By leveraging the dip statistic as a measure of a dimension’s
structure and relevance, the method scales more relevant dimensions to increase their
impact on clustering. This deterministic algorithm requires no distance calculations
or distributional assumptions, making it a versatile and effective tool for improving
clustering performance.

In [31], the dip statistic is applied in projection pursuit, a method for identify-
ing low-dimensional projections of high-dimensional data that are “interesting”. This
approach is critical for exploratory data analysis, visualization, and addressing the
“curse of dimensionality” in machine learning. Unlike traditional projection indices
that focus on non-Gaussianity, the dip measures distance from unimodality, offering a
more generalized criterion. Efficient algorithms are introduced to maximize the dip for
detecting multimodal data projections and extended for finding higher-dimensional
projections through two strategies: iterative orthogonal searches and recursive proce-
dures that remove interesting structures to achieve unimodality. According to their
experiments, they demonstrate the dip’s robustness, effectively identifying informative
directions even in high-dimensional spaces with minimal preprocessing.

Unimodality and unimodality tests, apart from their applications in machine learn-
ing, have been utilized across various scientific fields, including ecology [32, 33],
biology [34, 35], and economics [36, 37, 38]. In ecology, unimodality is central to
the humped-back model (HBM), which explains plant species richness as peaking
at intermediate productivity due to a balance between abiotic stress in unproductive
ecosystems and competitive exclusion in highly productive ones. In [32] regression
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models are employed to confirm a significant unimodal relationship between plant
richness and productivity using a negative binomial generalized linear model (GLM).
In biology, unimodality tests like Hartigans’ dip-test [27] and Silverman’s test [21] are
applied in cytometry for identifying unimodal cell populations. These tests support
automated gating algorithms by distinguishing between unimodal and bimodal den-
sity distributions with low error rates, providing an objective alternative to manual
gating [34].

1.3 Mode Estimation

The concept of mode is central to statistical analysis, particularly when dealing with the
distribution of data. In its simplest form, the mode refers to the most frequently oc-
curring value in a dataset. However, when applied to continuous data, this traditional
definition becomes less useful, as each data point is typically unique. For continuous
random variables, the mode is better understood as the value that maximizes the pdf.

The importance of mode increases when dealing with multimodal distributions,
which often indicate the presence of multiple subpopulations within the data. In such
cases, both the mean and median may fail to provide an accurate measure of central
tendency. Even the global mode may not effectively represent a central value for the
entire distribution. This highlights the importance of conducting a “modal analysis”
to fully understand the data’s structure. Key steps in this analysis include identifying
all modes or estimating valleys, and, in the case of multimodal distributions, modeling
each subpopulation using a mixture density approach.

Modes and valley estimation are particularly useful in scenarios such as image
segmentation or cluster analysis. In these applications, modes are often detected by
analyzing histograms or density estimates of the data. Valley points, which correspond
to local minima between modes, can serve as natural dividing points that separate
the different modes or clusters. Identifying these valleys accurately is important for
defining mixture models, where the goal is to model the data as a combination of
multiple distributions.

The process of mode detection, however, is not without challenges. In real-world
data, noise and skewness can distort the clear identification of modes and valleys.
Furthermore, determining the number of modes is often not straightforward, as it may
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depend on the underlying structure of the data. As a result, several methods have been
developed to address these challenges, including mixture modeling and unimodality-
based methods aiming to identify peaks (modes) and valleys (split points) in a data
density.

1.3.1 Mixture models for Density Estimation and Clustering

As mentioned in Section 1.1.2, mixture models are essential for gaining meaning-
ful insights into the underlying distribution. GMMs are popular models, using the
Gaussian distribution to model each mixture component. In this context, the den-
sity is estimated using a parametric model, and the modes are found by identifying
the local maxima of the estimated density. The EM algorithm is commonly used to
estimate the parameters of these distributions, allowing for efficient mode detection.
A key limitation of parametric approaches (such as GMM) is their reliance on the
assumption that the data follows a known distribution. In many real-world cases,
especially in image processing or other high-dimensional data, this assumption may
not hold. For instance, histograms of natural image data may not follow a Gaussian
mixture, which can lead to poor performance when using methods like GMM for
mode estimation.

A recent extension is proposed in [39], where GMMs carry out density estimation
not on the original data but on appropriately transformed data in case of bounded
variables. The basic idea is to use an invertible function to map a bounded variable
to an unbounded support, estimate the density of the transformed variable, and
then back-transform to the original scale. For particular applications, mixtures of
distributions other than Gaussian have been explored for clustering. For example,
in [40] a two-way mixture model of Poisson distributions is proposed for document
classification and word clustering, while in [41] a mixture of Mises-Fisher distributions
is used to cluster data on a unit sphere.

Many clustering algorithms assume that multiple modes indicate multiple clusters,
while unimodality is a sign for a single cluster. Several classical clustering algorithms
are based on partitioning the space around a pre-fixed number of central points
(these are usually called partitioning methods, and include k-means clustering, for
instance). In the recent times, however, there is a growing body of researchers that
advocate that “density needs to be incorporated in the clustering procedures” [42].
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In this spirit, mixture models have been successfully used for data clustering [43],
where data points are assigned to clusters based on the component distribution that
most probably generated them. The clustering procedure involves fitting a mixture
model, often using the EM algorithm, and assigning each data point to the component
with the highest posterior probability. Another density-based approach is clustering
based on high density regions [44]. In the last approach (also characterized as modal
clustering [45, 46]) the clusters are taken as the “domains of attraction” of the density
modes.

1.3.2 Nonparametric Methods for Density and Mode Estimation

Nonparametric methods do not assume a specific underlying distribution. These
methods estimate the data density directly from the data points and are more flexible
in capturing the true structure of the data.

Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric method used to estimate the
pdf of a dataset. By smoothing data points with a chosen kernel function, KDE
provides a continuous estimate of the underlying distribution. For example, in case
a Gaussian kernel is used, each data point contributes a bell-shaped curve to the
overall estimate. In contrast to mixture models, the number of kernels is equal to the
number of data points. Furthermore, the kernel function, the bandwidth of the kernel
and other hyperparameters have to be chosen by the user. A small bandwidth may
overfit the data, capturing spurious fluctuations and leading to too many detected
peaks (modes), while a large bandwidth may smooth out important features of the
data, resulting in an underestimation of the number of modes.

Mean Shift and Medoidshift

One widely used nonparametric method is mean shift [47, 48], a “mode seeking”
clustering algorithm based on the idea of associating each data point to a mode of
the underlying probability density function, which is modeled using kernel density
estimation. The general idea is to shift each data point until it reaches its nearest peak
of the data density, thus a cluster is formed around each peak. While mean shift is
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effective in many cases, it often detects too many peaks in noisy data, leading to over-
segmentation. The challenge here is distinguishing between true modes and spurious
peaks, which are often caused by noise. Another major difficulty is that it includes a
critical user defined hyperparameter which is the bandwidth of kernel function used
in kernel density estimation. Medoidshift [49] follows a similar approach to mean
shift also requiring the bandwidth of kernel function. Many attempts for a bandwidth
selection have been made, however they do not always work successfully [50].

Density Peaks

Another popular mode seeking algorithm is density peaks [51], which detects clusters
based on two simple and intuitive assumptions: cluster centers are usually in dense
areas and are surrounded by points with lower density. The algorithm first calculates
the local density around each point and then calculates the distance (called delta) of
each point to its nearest point with higher density. The cluster centers are selected so
that they have a high value of both delta and density. After that, the remaining points
are allocated to the clusters by merging with the nearest higher density point. Similar
to mean shift, the method requires the specification of several hyperparameters [52].

Modal Clustering Methods

Two recent methods have been proposed in [53] and [42] for modal clustering. In
[53] the goal is to associate each data point with a local maximum, or mode. The
method relies on specifying kernel density functions (specifically Gaussian kernels)
and estimating each of them. Modal clustering is applied to the dataset upon mixture
density estimation. The exact mechanism is an EM-type nonparametric algorithm
called Modal EM (MEM) [53] that allows finding “hilltops” of the given density. The
suggested algorithm is then extended to hierarchical clustering by recursively locating
modes of kernel density estimators with increasing bandwidths. An extended version
of MEM algorithm is proposed in [54] to deal with any parsimonious component-
covariance matrix decomposition. Furthermore, a fast implementation of the algo-
rithm is discussed that allows to perform the M-step simultaneously for all data
points. Once the modes of the underlying density are estimated, a modal clustering
partition can be obtained by associating each observation to the pertaining mode.

In [42] the “modclust” methodology is presented which combines modal clustering
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with mixture modeling. Specifically, it applies the modal clustering methodology to a
density estimate obtained by fitting a mixture model to the data. By applying the EM
algorithm to find the maximum likelihood estimates of the parameters and mixing
weights, and the Bayesian Information Criterion (BIC) [7] to select the number of
components, a density in the form of a GMM is fitted to the data. Then, the mean shift
algorithm is used on the Gaussian mixture density to find the domains of attraction of
the estimated density modes. The methods proposed in [53] and [42], as any other
mode-seeking procedure, relies on the quality of the underlying density estimate.
Clearly, if the parameters of the mixture model are not well estimated, several issues
could arise. A review on non-parametric modal clustering is given in [46].

Unimodality‐Based Methods

SkinnyDip [3] is a clustering method inspired by Hartigans’ dip-test of unimodality.
SkinnyDip offers a compelling set of features: it is highly resistant to noise, nearly
parameter-free, and fully deterministic. Unlike traditional methods, SkinnyDip avoids
multivariate distance calculations, instead employing insightful recursion through
“dips” into univariate projections of the data. It can identify various cluster shapes
and densities, provided that each cluster exhibits a unimodal distribution. In [3] a
dip-based heuristic solution (called UniDip) is proposed for univariate clustering. It
operates recursively and mirrors the mechanism used by the dip-test to compute its
statistic, isolating one mode at a time from the sample.

Let a sorted univariate sample {x1, ..., xn} of size n. To be more clear, we also
present a histogram plot of the sample, as illustrated in Fig. 1.16 [3]. At first the
dip-test is applied on the initial sorted sample. The resulting p-value indicates, based
on a significance level α, that the distribution has at least two modes. Additionally,
the dip-test identifies the modal interval [xL, xU ] for this sample, which in this con-
text, represents the interval for ecdf’s prescribed maximum constant slope. In this
example, the initial modal interval encompasses modes C, D, and E (the gray region
in Fig. 1.16). These modes are grouped into one interval because of their proxim-
ity in the ecdf, allowing for a minimal dip. A recursion into this interval results in
extracting the individual modes C, D, and E, yielding three distinct modal intervals
[xLC

, xUC
], [xLD

, xUD
], [xLE

, xUE
].

Since there is at least one more mode, the search continues. The next mode must
be outside the gray interval [xL, xU ]. If a mode exists to the right, then dipping over
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Figure 1.16: Histogram and ecdf of univariate data. The detected modes are also
presented [3].

[xLE
, xn] (including mode E and everything to its right) will produce a significant re-

sult. Choosing this interval is crucial. If the search is focused over [xU , xn] (everything
right of the gray region), and this region contained only uniform noise, the dip test
would yield a non-significant (unimodal) result. The same result would occur if a
single “cluster” (e.g., another Gaussian) was present. By including mode E, if the dip
test indicates unimodality, it is evident that the single mode is mode E, with nothing
notable to its right. Conversely, a multimodal result implies something of interest to
the right. Similarly, if a mode exists to the left of xL, dipping over [x1, xUC

] (including
mode C) would yield a significant result. In the above example, the right part [xLE

, xn]

is unimodal, so the search is done right of xU . The left part [x1, xUC
] is multimodal,

prompting further recursion into the region [x1, xL]. This recursion identifies intervals
[xLA

, xUA
] and [xLB

, xUB
] for modes A and B. Overall, UniDip leverages the dip test’s

capabilities to 1) make a binary decision (unimodal or not) and 2) determine the
primary modal interval.

TailoredDip [55] is an enhancement of UniDip, designed to address a specific lim-
itation of UniDip: its tendency to overly classify the tails of distributions as outliers.
TailoredDip improves the identification of these tails. This is achieved by examining
the spaces between clusters for additional structures after the standard UniDip algo-
rithm has completed. Specifically, the area between two clusters is mirrored and the
dip p-value is calculated. If this suggests multimodal structures, the corresponding
modes are identified and those points are assigned to the most suitable neighboring
cluster. Additionally, if outlier detection is not required, a strategy is employed to as-
sign points to either the left or right cluster: rather than using the midpoint between
neighboring clusters as the decision boundary, the point where the ecdf intersects
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Algorithm 1.1 Fine to Coarse (FTC) Segmentation Algorithm
1) Initialize S = {s0, ..., sn} as the finest segmentation of the histogram, i.e.,
the list of all the local minima, plus the endpoints s0 = 1 and sn = L.

2) Repeat:
Choose i randomly in [1, length(S) − 1]. If the pair of segments on both
sides of si can be merged into a single interval [si−1, si+1] following the
unimodal hypothesis, group them. Update S.
Stop when no more pair of successive intervals in S follows the uni-
modal hypothesis. length(S) has decreased by one with each merging.
Now length(S) = l0.

3) For j from 3 to l0, repeat step 2 with the unions of j segments.

Figure 1.17: Initialization of FTC algorithm (left) and final segmentation after FTC
algorithm (right) [4].

with the line connecting the right boundary of the left cluster and the left boundary
of the right cluster is chosen. This approach provides a more accurate handling of
different tails.

Histograms have long been used in image and data analysis for two main reasons:
they offer a compact representation of large datasets, and they often allow us to infer
global properties of the data through their behavior. One of the key features of a 1-d
histogram is the list of its modes, which are the intervals where data is concentrated.
For instance, a histogram of hues or intensities of an image composed of different re-
gions will show several peaks, each corresponding to a different region. Proper image
segmentation can then be achieved by identifying suitable thresholds that separate
these modes in the histogram. However, quantifying the “data concentration” within
an interval, and thus separating the modes, is not always straightforward.

In [4] a method (called Fine to Coarse (FTC) Segmentation Algorithm) is pro-
posed to segment a 1-d histogram without a priori assumptions about the underlying
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density function. It is based on the automatic detection of unimodal intervals in the
histogram, which allow the histogram segmentation. A density function f is consid-
ered unimodal on an interval [a, b] if it increases on some [a, c] and decreases on [c, d].
It is therefore useful to segment a histogram by identifying segments where it is likely
to represent a unimodal distribution. On such intervals, the histogram is denoted as
“statistically unimodal”. Clearly, such segmentation is generally not unique. Specif-
ically, the segmentation defined by all the local minima of the histogram exhibits
this property. Yet, minor variations due to the sampling process should not be mis-
taken for modes. To achieve a “minimal” division of the histogram, these fluctuations
should be neglected. This leads to two criteria for acceptable segmentation: 1) each
segment of the histogram should be “statistically unimodal” and 2) there is no union
of consecutive segments on which the histogram is “statistically unimodal”.

Algorithm 1.1 describes the FTC algorithm. Let h be a histogram on L bins
{1, ..., L}. Starting from the segmentation defined by all the local minima of h, merge
recursively the consecutive intervals until both properties are satisfied. The necessity
of step 3) comes from the fact that a union of j successive segments can follow the
unimodal hypothesis whereas no more union of k successive segments for k < j does.

Fig. 1.17 [4] illustrates the initial and final segmentation of a dataset providing
the corresponding histogram plots along with the detected splits. The initialization
of the algorithm (all the local minima of the histogram) is provided in the left plot,
where the histogram presents small oscillations, creating several local minima. The
final segmentation after FTC algorithm is given in the right plot. Three modes are
detected in this histogram with one of them being very small.

1.4 Decision Trees

Decision trees are widely used models in machine learning and data analysis, rec-
ognized for their intuitive, rule-based structure. They are constructed by iteratively
splitting a dataset into subsets based on feature values, with the goal of creating in-
creasingly homogeneous groups in relation to a specific target, outcome, or inherent
pattern in the data. This process yields a tree-like structure that visually represents
the decision-making process: each path in the tree corresponds to a series of feature-
based decisions leading to a specific outcome.
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Decision trees can be applied to both classification tasks, where the goal is to
group data into discrete classes, and regression tasks, where the objective is to predict
a continuous outcome. By tracing each decision path from the top to the final nodes,
a decision tree model can either assign a label (in classification) or estimate a value
(in regression). Additionally, decision trees have been proposed for clustering in an
unsupervised framework.

A decision tree consists of the following components:

• Root Node: This is the topmost node in the tree, representing the entire dataset.
It is the starting point for the decision-making process, where the initial data
partition occurs.

• Internal Nodes: These nodes represent decision points where the data is split
based on a specific feature’s value. Each internal node performs a test on a
feature, branching data into subgroups depending on the outcome of the test.
This recursive partitioning continues through successive layers of internal nodes.

• Leaf Nodes: The terminal nodes in the tree are the leaf nodes, which corre-
spond to the final output or decision reached after following a path through the
tree. For classification, a leaf node contains a class label, while for regression,
it contains a continuous predicted value. In unsupervised tasks, these nodes
contain cluster labels.

• Edges: These are the connectors between nodes, representing the outcomes of
each decision. An edge indicates which path to follow based on the result of a
feature test, guiding the flow of data through the tree from root to leaves.

To prevent overfitting and ensure a manageable tree size, decision trees employ
stopping criteria that terminate further splitting when certain conditions are met:

• Maximum Depth: Limits the depth of the tree. Once a specified maximum
depth is reached, no further splits are allowed, and nodes at this level become
leaf nodes.

• Minimum Data Points per Leaf: Specifies the minimum number of data points
required to create a leaf node. If a split results in a subset with fewer data points
than this threshold, the split is not made, reducing the likelihood of forming
nodes based on insufficient data.
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• Impurity Threshold: Some algorithms define a minimum reduction in their
splitting criterion that must be achieved by a split. If a split does not produce
the minimum required improvement, the split is not made.

• Early Stopping with Validation Data: In some implementations, decision trees
are trained with a separate validation dataset. The tree stops growing when its
performance on the validation set begins to degrade, preventing overfitting to
the training data.

One of the major advantages of decision trees is their interpretability [56]. Unlike
many other machine learning models, decision trees are easy to visualize and un-
derstand, making them particularly valuable in domains where model transparency
is critical. They provide a clear, intuitive structure that allows users to trace the
decision-making process step-by-step, from the root node to the leaf nodes. In a typ-
ical decision tree, the decision rule of an internal node involves simple thresholding
on a feature value, thus it is straightforward to interpret. Typical decision trees (often
called axis-aligned trees) partition the data space into hyperrectangular regions. The
property of interpretability is especially useful in fields like healthcare, finance, and
law, where decisions need to be justified. Additionally, decision trees can handle both
categorical and continuous features without requiring feature scaling, which simpli-
fies the preprocessing of data. They also perform well with non-linear relationships
between features and the target variable, as they can create complex, hierarchical
decision boundaries that adapt to the data.

However, decision trees also have notable limitations. One of the most significant
drawbacks is their tendency to overfit the training data, especially when the tree is
allowed to grow deep without constraint. Overfitting occurs when the tree learns the
noise and fine details of the training data, which can hurt its ability to generalize
to new, unseen data. This is addressed through pruning methods, which remove
branches that add little predictive power, and by limiting tree depth or the minimum
number of data points required for a split. Another limitation is their instability:
small changes in the data can lead to large changes in the structure of the tree.
This sensitivity to noise makes decision trees less reliable when the data is prone
to fluctuations. Additionally, decision trees have a bias towards features with many
values. When a feature has many possible values, it is more likely to be selected for a
split, even if it does not provide the most meaningful or useful information. This bias
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can lead to suboptimal tree structures if the model is not regularized appropriately.

1.4.1 Supervised Decision Trees

In supervised learning, decision trees are used with labeled data, where the objective
is to create a model that can predict a specific outcome based on input features.
Supervised decision trees are commonly applied to both classification and regression
tasks. For classification tasks, the decision tree algorithm aims to split data in a way
that maximizes class purity at each node. The tree continues to grow until a stopping
criterion is met, with each path ultimately leading to a specific class label. These
labels are determined by the majority class within each leaf node after the final split.
For regression, the target variable is continuous, and the tree seeks to partition data
in a way that minimizes prediction errors, typically based on metrics like variance
reduction. Each leaf node in a regression tree contains a predicted value, which is
usually the average of the target variable within that subset.

At each internal node, the decision tree algorithm selects a feature and corre-
sponding threshold to partition the data into two or more subsets. The choice of
feature and threshold is based on a criterion that seeks to maximize the separation
of the target variable within each subset. Commonly used criteria include:

• Information Gain: Often used for classification, information gain measures the
reduction in entropy (a measure of disorder) achieved by splitting the data on a
given feature. Features that produce greater reductions in entropy are favored,
as they contribute more to creating homogenous subsets.

• Gini Impurity: Another common metric for classification, Gini impurity calcu-
lates the likelihood of incorrectly classifying a randomly chosen element from
the dataset if it were labeled according to the distribution of labels within the
subset. Lower Gini values indicate more homogenous groups.

• Variance Reduction: For regression tasks, variance reduction is used to assess
the quality of splits. It measures the reduction in variance within each subset
after the split. Splits that result in lower variance within subsets are preferred
as they improve the model’s ability to make accurate predictions on continuous
data.
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The recursive partitioning process continues through each level of the tree until
one of the stopping criteria is met, ensuring the tree does not become overly complex
and prone to overfitting.

Popular decision tree algorithms include CART (Classification and Regression
Trees) [57], ID3 (Iterative Dichotomiser 3) [58], C4.5 [59], CHAID (Chi-squared Au-
tomatic Interaction Detector) [60] and M5 [61]. CART is widely used due to its
simplicity and ability to handle both classification and regression tasks, using crite-
ria like Gini impurity or mean squared error for splitting. ID3, one of the earliest
algorithms, uses information gain based on entropy to make splits, though it may
favor features with many values. C4.5 improves on ID3 by using gain ratio to reduce
bias, incorporating pruning to prevent overfitting, and supporting both discrete and
continuous features. CHAID uses the statistical χ2 test to determine the best split dur-
ing the tree-growing process. The M5 algorithm extends decision trees to regression
by fitting linear models at the leaf nodes. These algorithms differ in their splitting
criteria, pruning techniques, and handling of missing data, with the choice depending
on the specific task and dataset.

1.4.2 Unsupervised Decision Trees

Unsupervised decision trees are decision tree models used for tasks where labels are
not available, focusing instead on discovering inherent structures or patterns within
the data. While commonly applied for clustering, outlier detection, and data parti-
tioning, unsupervised decision trees differ from supervised ones in their objectives,
learning methods, and evaluation criteria.

Clustering methods aim at partitioning a set of points into groups, the clusters, such
that data within the same group share common characteristics and differ from data
in other groups. Most of the popular clustering algorithms, such as k-means, do not
directly provide any explanation of the clustering result. To overcome this limitation,
some research works propose the use of decision tree models for clustering in order
to achieve explainability. Tree-based clustering methods return unsupervised binary
trees that provide an interpretation of the data partitioning.

While in the supervised case, the construction of decision trees is relatively straight-
forward due to the presence of target information, this task becomes more challenging
in the unsupervised case (e.g., clustering) where only data points are available. The
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difficulty arises for two reasons:

• Definition of splitting criterion. Metrics like information gain or Gini index,
which are commonly used to guide the splitting process in supervised learning,
cannot be applied in unsupervised learning, since no data labels are available.

• Specification of hyperparameters (e.g., number of clusters), since cross-validation
cannot be applied.

Despite the apparent difficulties, several methods have been proposed to build
decision trees for clustering. The category of indirect methods typically follows a two-
step procedure: first, they obtain cluster labels using a clustering algorithm, such as
k-means, and then they apply a supervised decision tree algorithm to build a decision
tree that interprets the resulting clusters. For example, in [62], labels obtained from
k-means are used as a preliminary step in tree construction. Similarly, in [63], the
centroids derived from k-means are also involved in splitting procedures. Indirect
methods heavily rely on the clustering result of their first stage. Moreover, fitting the
cluster labels with an axis-aligned decision tree may be problematic since the clusters
are typically of spherical or ellipsoidal shape. It is also assumed that the number of
clusters is given by the user.

Direct methods integrate decision tree construction and partitioning into clusters.
Many of them follow the typical top-down splitting procedure used in the supervised
case but exploit unsupervised splitting criteria, e.g., compactness of the resulting
subsets. Some direct unsupervised methods are described below.

In [64] a top-down tree induction framework with applicability to clustering (Pre-
dictive Clustering Trees) as well as to supervised learning tasks is proposed. It works
similarly to a standard decision tree with the main difference being that the variance
function and the prototype function, used to compute a label for each leaf, are treated
as parameters that must be instantiated according to the specific learning task. The
splitting criterion is based on the maximum separation (inter-cluster distances) be-
tween two clusters, while after the construction of the tree, a pruning step is applied
using a validation set.

In [65] four measures for selecting the most appropriate split feature and two
algorithms for partitioning the data at each decision node are proposed. The split
thresholds are computed either by detecting the top k−1 valley points of the histogram
along a specific feature or by considering the inhomogeneity (information content)
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of the data with respect to some feature. Distance-related measures and histogram-
based measures are proposed for selecting an appropriate split feature. For example,
the deviation of a feature histogram from the uniform distribution is considered
(although it depends on the bin size).

In [66] an unsupervised method is proposed, called Clustering using Unsupervised
Binary Trees (CUBT), which achieves clustering through binary trees. This method
involves a three-stage procedure: maximal tree construction, pruning, and joining.
First, a maximal tree is grown by applying recursive binary splits to reduce the
heterogeneity of the data (based on the input’s covariance matrices) within the new
subsamples. Next, tree pruning is applied using a criterion of minimal dissimilarity.
Finally, similar clusters (leaves of the tree) are joined, even if they do not necessarily
share the same direct ascendant. Although CUBT constructs clusters directly using
trees, it relies on several parameters throughout the three-stage process, while post
hoc methods are required to combine leaves into unified clusters, which adds to the
complexity and parameter dependency of the approach.

An alternative method for constructing decision trees for clustering is proposed
in [67]. At first, noisy data points (uniformly distributed) are added to the original
data space. Then, a standard (supervised) decision tree is constructed by classifying
both the original data points and the noisy data points under the assumption that
the original data points and the noisy data points belong to two different classes. A
modified purity criterion is used to evaluate each split, in a way that dense regions
(original data) as well as sparse regions (noisy data) are identified. However, this
method requires additional preprocessing through the introduction of synthetic data
in order to create the binary classification setting.

In contrast to axis-aligned trees, oblique trees allow test conditions that involve
multiple features simultaneously, enabling oblique splits across the feature space. In
[68] oblique trees for clustering are proposed, where each split is a hyperplane defined
by a small number of features. Although oblique trees can produce more compact
trees, finding the optimal test condition for a given node can be computationally
expensive, while they may not always be interpretable [69].

An interesting direct approach [70] exploits the method of Optimal Classification
Trees (OCT) [71], which are built in a single step by solving a mixed-integer opti-
mization problem. Specifically, in [70] the Interpretable Clustering via Optimal Trees
(ICOT) algorithm is presented, where two cluster validation criteria, the Silhouette
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Metric [72] and the Dunn Index [73] are chosen as objective functions. The ICOT
algorithm begins with the initialization of a tree, which serves as the starting point.
Two options are provided for a tree initialization: either a greedy tree is constructed
or the k-means is used as a warm-start algorithm to partition the data into clusters
and then OCT is used to generate a tree that separates these clusters. Next, ICOT runs
a local search procedure until the objective value (Silhouette Metric or Dunn Index)
reaches an optimum value. This process is repeated from many different starting
trees, generating many candidate clustering trees. The final tree is chosen as the one
with the highest cluster quality score across all candidate trees and is returned as
the output of the algorithm. ICOT is able to handle both numerical and categorical
features as well as mixed-type features efficiently, by introducing an appropriate dis-
tance metric. Although it performs well on very small datasets and trees, it is slower
compared to other methods. In addition, there exist hyperparameters that have to be
tuned by the user, such as the maximum depth of the tree and the minimum number
of observations in each cluster.

Unsupervised decision trees offer several advantages: they are highly interpretable,
provide a hierarchical clustering structure, and are capable of handling large and
high-dimensional datasets with ease. Their axis-aligned splits simplify implementa-
tion and make them computationally efficient compared to more complex clustering
algorithms. However, these trees also have limitations. The axis-aligned splits can
sometimes yield overly simplistic clusters that do not capture complex patterns as
well as other methods might do. Additionally, unsupervised decision trees may be
sensitive to the choice of splitting criteria and stopping rules, potentially leading to
variability in the clusters they generate.

1.5 Thesis Contribution

In this thesis, we develop machine learning methods based on unimodality, mainly
focusing on four different axes: i) creating a unimodality test for deciding data uni-
modality, ii) splitting multimodal data into unimodal subsets by detecting appropriate
valley points, iii) building statistical models of univariate unimodal and multimodal
data and iv) constructing (unsupervised) binary decision trees for clustering based on
axis unimodal partitions. These problems are not independent from each other, while
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the common key among them is the notion of unimodality. Next, we summarize the
contribution of this thesis.

In Chapter 2 we present a new method for deciding on dataset unimodality, called
UU-test (Unimodal Uniform test) [74]. The method takes as input a 1-d dataset and
works with the ecdf of the dataset. It attempts to approximate the ecdf by constructing
a cdf that is piecewise linear, unimodal and models the data sufficiently. The latter is
ensured by applying uniformity tests on the data subsets corresponding to the linear
segments. Unimodality is ensured by first computing the set (GL) of gcm and lcm
points of the ecdf graph and then determining consistent subsets of GL, i.e. subsets
where all gcm points lie before the lcm points. In the case where a cdf is found with
the above two properties, then UU-test decides unimodality. The left plot of Fig. 1.18
illustrates the ecdf (blue solid line) of a unimodal dataset along with its piecewise
linear cdf approximation (red dotted line) provided by UU-test. A unique feature
of the method is that it also provides a statistical model of a unimodal dataset in
the form of a uniform mixture model (UMM). In the middle plot of Fig. 1.18, the
histogram of the previously mentioned dataset, along with the pdf of the statistical
model UMM (red line) provided by the UU-test, are shown. Experimental results
are presented in order to assess the ability of UU-test to decide on unimodality and
perform comparisons with the well-known dip-test approach. In addition, in the
case of unimodal datasets we evaluate the uniform mixture models provided by the
proposed method using the test set log-likelihood and the two-sample Kolmogorov-
Smirnov test.

Chapter 3 introduces a statistical model (called UΠsMM) that effectively models
univariate unimodal data [75]. It is based on a Π-sigmoid mixture model (ΠsMM),
where each component is a Π-sigmoid distribution. The Π-sigmoid distribution is
defined as the difference of two translated sigmoid functions. This distribution is
flexible enough to approximate data distributions ranging from Gaussian to uniform
depending on the slope of the sigmoids. Therefore, in this chapter, instead of using
a mixture of uniform distributions, we train a mixture of Π-sigmoid distributions,
called Π-sigmoid Mixture Model (ΠsMM). This model is initialized from the UMM
provided by the UU-test and subsequently trained through EM algorithm to maxi-
mize the likelihood of the dataset. A notable difficulty on this training task is that
since the data has been characterized as unimodal, training of the ΠsMM should
ensure that its density also remains unimodal. Therefore, during training, we check
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Figure 1.18: The ecdf of a unimodal dataset and its cdf approximation provided by
the UU-test (left). The histogram plot of the unimodal dataset, along with statistical
model fits using a UMM (middle) and a UΠsMM (right), are provided.

whether the model remains unimodal and in case of multimodality, we follow an
appropriate strategy that gradually reduces the number of components, to ensure the
model’s unimodality. A benefit from this strategy is that as the initial number of
components decreases, a simpler ΠsMM model is obtained with better generalization
ability. Numerical experiments are presented that compare UΠsMM with UMM and
the typical Gaussian model showing that UΠsMM provides a more accurate fit in
several datasets, while it achieves a lower number of components than UMM. The
right plot of Fig. 1.18 illustrates the pdf of the solution provided by the UΠsMM for
the previously mentioned dataset. It is evident that the UΠsMM fit is more accurate
than that of the UMM.

Chapter 4 focuses on partitioning and statistical modeling of univariate datasets
(including multimodal datasets) [76]. The proposed method relies on the notion of
unimodality and partitions the dataset into unimodal subsets through a novel ap-
proach for determining valley points in the probability density. We have introduced
properties of critical points (gcm/lcm points) of the data ecdf that provide indications
on the existence of density valleys. Those critical points are exploited in the proposed
algorithm, called UniSplit. UniSplit is non-parametric and automatically estimates the
number of unimodal subsets. In contrast to other approaches, it requires only a sta-
tistical significance threshold as input and no other user specified hyperparameters.
Based on the splitting result, we introduce and construct a Unimodal Mixture Model
(UDMM), where each mixture component constitutes a statistical model of the corre-
sponding unimodal subset in the form of a Uniform Mixture Model (UMM). Fig. 1.19
illustrates the histogram and pdf plot of the solution provided by the UDMM for a
multimodal dataset with three modes. The number of UDMM components is auto-
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Figure 1.19: Histogram plot of a multimodal dataset along with the UDMM pdf.

matically obtained by the proposed UniSplit method, which constitutes a significant
advantage over other models (e.g. Gaussian Mixture Model). In addition UDMM is
very flexible and does not assume any specific parametric form for the unimodal
mixture components. We present extensive experimental results aiming at evaluating
in various tasks involving synthetic and real datasets, both the effectiveness of the
splitting procedure as well as the performance of the constructed unimodal mixture
model.

In Chapter 5 we propose the Decision Trees for Axis Unimodal Clustering (DTAUC)
method for constructing unsupervised binary trees for clustering based on axis uni-
modal partitions [77]. This method identifies multimodal features of the data utilizing
two proposed criteria. In criterion 1, the dip-test for unimodality is employed to de-
tect the best split feature among the multimodal features based on a novel greedy
approach. In this approach two new values are defined which measure the quality of
each candidate split point of multimodal features. Using these values, the best split
feature and the best split point are identified. Criterion 2 is based on the multimodal-
ity degree of the feature with the best split point estimated more directly using the
UU-test for unimodality. Based on the detected split (calculated using either criterion
1 or criterion 2), each node of the tree is split into two subnodes, until all features
are unimodal. In case all features of the data at a node are unimodal, the node is
considered as leaf and the splitting procedure stops. The DTAUC method relies on
the idea of unimodality, which is a novel technique for constructing unsupervised
trees for clustering. This approach is simple and since it provides axis-aligned par-
titions of the data, it also offers interpretable clustering solutions. In addition the
method requires no training, while it demonstrates the significant advantage that
(apart from the typical statistical significance level) it does not include user specified
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Figure 1.20: DTAUC method: 2D plot of a dataset split into three axis unimodal
clusters (left), and the corresponding binary decision tree (right).

hyperparameters such as for example the maximum depth of the tree, or post hoc
techniques, such as a pruning step. Our experimental evaluation reveals that DTAUC
demonstrates good (and often superior) performance compared to other unsuper-
vised decision tree methods using synthetic and real datasets. Fig. 1.20 illustrates the
split result of a 2D dataset (with three axis unimodal clusters and two axis-aligned
splits) using either criterion 1 or criterion 2, along with the constructed decision tree.

Finally, Chapter 6 summarizes this dissertation and draws directions for future
research work.
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CHAPTER 2

THE UU-TEST FOR STATISTICAL MODELING
OF UNIMODAL DATA

2.1 Introduction

2.2 Notations and Definitions

2.3 UU‐test Description

2.4 Modeling Unimodal Data

2.5 Experimental Results

2.6 Unimodality in Multiple Dimensions

2.7 Summary

2.1 Introduction

Gaining knowledge of data distributions is a significant topic in data analysis. As
mentioned in Chapter 1, Section 1.2, it is of considerable importance to understand
the grouping behavior of points, i.e., whether the data is unimodal or not. Although a
great deal of research work focused on Gaussianity (or normality) tests (see Chapter 1,
Section 1.1.1), few methods have been proposed for the more general problem of
deciding distribution unimodality.

In this chapter we propose the UU-test (Unimodal Uniform test) method for mod-
eling one dimensional data generated by unimodal distributions [74]. It works with
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the empirical distribution function (ecdf) of the data, assuming the data distribution
is continuous. It is important to note that UU-test does not make use of any parame-
ters. In addition, it relies on well-known uniformity tests (e.g. Kolmogorov-Smirnov
[12]), thus it does not require the computation of bootstrap samples (like Hartigans’
dip-test [27]), a fact that saves computational time. Note also that all other tests fo-
cus on the decision on distribution unimodality and do not address the problem of
statistical modeling of unimodal data. On the contrary our approach, in the case of
unimodality, provides also a statistical model of the data in the form of a Uniform
Mixture Model (UMM).

The proposed UU-test approach exhibits analogy to the dip-test methodology, i.e.
it is applied on 1-d datasets and works with the ecdf of the dataset. However, instead
of computing the distance of the ecdf from the family of unimodal distributions (dip-
test), it attempts to define a unimodal distribution whose cdf sufficiently approximates
the ecdf, i.e. the obtained distribution is both unimodal and a good statistical model
of the dataset. In this way, in the case where unimodality is detected, we also obtain
a generative model of the dataset in the form of a mixture of uniform distributions.
Therefore, the method has a clear advantage over the dip-test.

The rest of this chapter is organized as follows. In Section 2.2 we provide the
necessary definitions and notations, while in Section 2.3 we present the proposed UU-
test method and attempt to explain the method using several illustrative examples.
In Section 2.4, we present the statistical model of unimodal data in the form of
a uniform mixture model provided by UU-test. Experimental results are provided
in Section 2.5 aiming at evaluating both the decisions of the method as well as
the performance of the constructed uniform mixture model. Section 2.6 refers to
unimodality in multiple dimensions while appropriate cut points are suggested by
UU-test in order to split multimodal datasets into unimodal subsets. Finally, Section
2.7 summarizes the chapter.

2.2 Notations and Definitions

In this section we provide the main definitions needed to present and clarify our
method. Let X = {x1, ..., xN}, xi ∈ R and xi < xi+1 an ordered 1-d dataset of distinct
real numbers. Let a subset S = {s1, ..., sL} of X(si ∈ X) with si 6= sj , s1 = x1, sL = xN .
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We define the piecewise linear cdf PLS(x) obtained by ’drawing’ the line segments from
(si, FX(si)) to (sj, FX(sj)). Also, we assume that PLS(x) = 0 if x < s1 and PLS(x) = 1

if x ≥ sL.
It is important to note that using a piecewise linear cdf PLS(x) as data model, we

make the assumption that the subset X(si, si+1) of data points in each interval [si, si+1]

is uniformly distributed. Thus PLS(x) is actually the cdf of a uniform mixture model
(UMM).

In UU-test, we aim to approximate the ecdf FX(x) using a PLS(x) that is unimodal.
In order for the PLS(x) to be a good approximation of the ecdf, it should be sufficient
in the sense defined as follows:

Let a subset S = {s1, ..., sL} ⊆ X with si 6= sj , s1 = x1, sL = xN . Subset S will
be called sufficient if the cdf PLS(x) is a good statistical model of X. Since PLS(x)

models the data in each interval using the uniform distribution, in order for PLS(x)

to be a good statistical model of X , for each i the subset X(si, si+1) should follow the
uniform distribution as decided by a uniformity test. Thus in the case where PLS(x)

is sufficient, the corresponding uniform mixture model fits well to the data.
If PLS(x) is both unimodal and sufficient then we consider that the dataset X

is unimodal and PLS(x) provides a good statistical model of X. Thus, the UU-test
method searches for a subset S of X, such that the cdf PLS(x) is unimodal and sufficient.

In order to address the unimodality issue of PLS(x) we confine our search to the
gcm and lcm points of the ecdf, exploiting the idea used in the dip-test method [27]
for computing the dip statistic.

Fig. 2.1a presents an ecdf plot, along with the gcm function GX(x) and the set of
gcm points G, while in Fig. 2.1b an ecdf plot along with the lcm function LX(x) and
the corresponding set of lcm points L are illustrated.

Given the sets of gcm (G) and lcm points (L) of FX(x), we define as GL the
ordered set of points obtained from the union of G and L: GL = {v1, ..., vM}, where
v1 = x1, vM = xN , vi < vj if i < j and either vi ∈ G or vi ∈ L. Note that v1 = x1 and
vM = xN belong to both G and L. We also define as maxG = max(vi|vi ∈ G− {xN})
and minL = min(vi|vi ∈ L−{x1}), the maximum value of G and the minimum value
of L respectively, excluding the maximum and minimum elements of X.

Let S be a subset of GL that i) includes v1 and vM and ii) has the property that
maxG < minL. Based on the definition of unimodality for cdf, it is straightforward
to observe (see Fig. 2.2) that PLS(x) is unimodal and we will call the set S with the
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(a) (b)

Figure 2.1: (a) Gcm function and gcm points of an ecdf. (b) Lcm function and lcm
points of an ecdf.

Figure 2.2: Gcm/Lcm function and gcm/lcm points of a unimodal ecdf. AB, BC and
CD correspond to the convex, intermediate and concave part, respectively.

above two properties as consistent. It should be stressed that this definition includes
the cases where either the gcm or the lcm part is missing.

A remarkable implication of consistency is that, since PLS(x) is unimodal, the set
S can be decomposed into three subsets namely:

• SG with the elements of S less than or equal to maxG (convex part, PLSG
(x) is

convex)

• PI = {maxG,minL} (intermediate linear part, PLPI
(x) is linear)

• SL with the elements of S greater than or equal to minL (concave part, PLSL
(x)

is concave).

Fig. 2.2 presents a unimodal ecdf and the gcm/lcm (GL) points. The three sets SG,
PI and SL correspond to segments AB, BC and CD, respectively. Table 2.1 summarizes
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Table 2.1: Summary of notation.

Notation Explanation

X = {x1, . . . , xN} A set of distinct N points in R.

X(a, b) The set {a ≤ xi ≤ b, xi ∈ X} for an interval [a,b].

FX(x) Ecdf of X.

S Subset of X.

PLS(x) Piecewise linear cdf of FX(x).

G = {g1, ..., gPG
} The set of gcm points of FX(x), where g1 = x1, gPG

= xN .

GX(x) The gcm function of FX(x).

L = {l1, ..., lPL
} The set of lcm points of FX(x), where l1 = x1, lPL

= xN .

LX(x) The lcm function of FX(x).

GL The set of ordered points of G ∪ L.

maxG maxG = max(vi|vi ∈ G− {xN}).

minL minL = min(vi|vi ∈ L− {x1}).

sufficient(S) True, if X(si, si+1) is uniform for each i.

consistent(S) True, if S ⊆ GL and S includes x1 and xN and maxG < minL.

the necessary notations and definitions for this chapter.

2.3 UU‐test Description

As mentioned in the previous section, UU-test aims at finding a subset S of dataset X ,
such that the corresponding cdf PLS(x) is unimodal and sufficient. The latter means
that the data in each interval [si, si+1] are well-fitted by the uniform distribution. It
should be noted that exhaustive search could have been used to determine an appro-
priate subset S, but it is computationally prohibitive. Alternatively, search techniques
based on generate-and-test could also have been used.

In the UU-test method, search is restricted to subsets S of GL = {v1, . . . , vM},
instead of examining the whole dataset X. We make the search even more focused, by
looking for subsets of GL that are consistent, since consistency implies unimodality.
Thus, we search for a subset S of GL that is consistent and sufficient. If such a set S
is found, then PLS(x) defines a unimodal distribution that sufficiently models the

50



Algorithm 2.1 S = UUtest(X)

E = (xi, FX(xi))← ecdf(X)

SG ← ∅, SL ← ∅, success ← true, PI ← {xmin, xmax}
(S ′

G, P
′
I , S

′
L, success)← UU(SG, PI , SL)

return S ← S ′
G ∪ S ′

L

dataset X. In this case UU-test decides unimodality and outputs the corresponding
statistical model.

Given a 1-d dataset X = {x1, . . . , xN}, function S = UUtest(X) (Algorithm 2.1)
takes X as input and outputs a non-empty set S (that is consistent and sufficient) in
the case of unimodality and the empty set S = ∅ in the case of multimodality. It first
computes the ecdf of the dataset (set E) and then calls function UU (Algorithm 2.2)
where most of the work takes place.

UU function takes three sets as input, namely SG (convex part), PI (intermediate
part) and SL (concave part) and, if successful, it returns (possibly) updated versions
of the three sets, otherwise it returns empty sets. Initially SG and SL are empty, while
PI = {x1, xN}, i.e., X(PI) = X(x1, xN) = X. UU function operates on the data in the
intermediate part X(PI). At first it checks for early success, this means that we test
the uniformity of X(PI). If this happens, the function terminates successfully.

2.3.1 Consistent Subsets

If X(PI) is not uniform, we compute the corresponding set GL (union of gcm and
lcm points) of X(PI) and determine the set C containing the consistent subsets GLC

of GL. Two cases are considered:

• either C = {GL}, i.e. GL is itself consistent, maxG < minL

• or C = {GL1, GL2}

In the latter case, the first consistent subset (GL1) is obtained by removing all gcm
points that lie after the first lcm point. Similarly, the second consistent subset (GL2)
is obtained by removing all lcm points that lie before the last gcm point.

Next we examine each set GLC ∈ C. Since GLC is consistent, it is decomposed into
three sets corresponding to the convex (P ′

G), intermediate (P ′
I) and concave (P ′

L) part.
Then we try to determine a sufficient subset S ′

G of P ′
G as well as a sufficient subset S ′

L
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Algorithm 2.2 (S ′
G, P

′
I , S

′
L, success) = UU(SG, PI , SL)

if check_uniformity(X(PI)) = true then
return (SG, PI , SL, true)

end if
EI = {(xi, yi) ∈ E/xi ∈ X(PI)}
GL← compute gcm & lcm points of EI

determine set C of consistent subsets of GL

for all consistent subsets GLC ∈ C do
(P ′

G, P
′
I , P

′
L)←decompose(GLC)

(S ′
G, success)←sufficient(P ′

G)

if success=false then
continue

end if
(S ′

L, success)←sufficient(P ′
L)

if success=false then
continue

end if
S ′
G ← S ′

G ∪ SG

S ′
L ← S ′

L ∪ SL

(S ′′
G, P

′′
I , S

′′
L, success)← UU(S ′

G, P
′
I , S

′
L)

if success=true then
return (S ′′

G, P
′′
I , S

′′
L, true)

end if
end for
return (∅, ∅, ∅,false)

of P ′
L. In the case of failure, the second consistent subset GLC is examined (if it exists).

In the case of success (i.e. both sufficient sets S ′
G and S ′

L have been found), the sets
S ′
G and S ′

L are updated, and the UU function is called recursively in order to examine
the intermediate part P ′

I . The recursion ends either if P ′
I cannot be decomposed into

a sufficient gcm part (S ′′
G) and a sufficient lcm part (S ′′

L) (unsuccessful termination) or
when X(P ′

I) is found uniform (successful termination). If UU is successfully applied
on X(P ′

I) providing the sets S ′′
G, P

′′
I , S

′′
L, then S ′′ = S ′′

G ∪ P ′′
I ∪ S ′′

L is the final solution
for X. If the UU function fails on X(P ′

I), then the calling function UU(X(PI)) also
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(a) (b)

(c) (d)
Figure 2.3: Example of multimodal dataset with consistent GL subsets that are not
sufficient.

fails for the specific consistent subset GLC . In this case the second GLC subset (if it
exists) should be examined.

Fig. 2.3 concerns a multimodal dataset. The histogram and the ecdf are presented
in Fig. 2.3a and Fig. 2.3b respectively. In Fig. 2.3b the GL points are also presented.
It can be observed that there exist lcm points (e.g. A) that lie before a gcm point (B).
Therefore GL is inconsistent. In Fig. 2.3c we consider the consistent subset of GL
that is obtained by omitting the lcm points (e.g. A) that lie between gcm points (B)
and (C). Another consistent subset of GL can be obtained by omitting the gcm point
(B) that lies between lcm points A and D. This case is shown in Fig. 2.3d. In UU

function, both consistent subsets are checked for sufficiency and they fail in this test.
Thus the dataset is characterized as multimodal.

Fig. 2.4 concerns a unimodal dataset. The histogram and the ecdf are presented
in Fig. 2.4a and Fig. 2.4b respectively. In Fig. 2.4b the GL points are also presented.
It can be observed that there exists a lcm point (A) that lies before gcm points (e.g.
B). Therefore GL is inconsistent. In Fig. 2.4c we consider the consistent subset of GL
that is obtained by omitting the lcm point (A) that lies between gcm points (B) and
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(a) (b)

(c) (d)
Figure 2.4: Example of unimodal dataset with consistent GL subsets that are sufficient.

(C). Another consistent subset of GL can be obtained by omitting the gcm points (e.g.
B) that lie between lcm points A and D. This case is shown in Fig. 2.4d. In contrast
to the case of Fig. 2.3, both consistent subsets are sufficient. In UU function, the first
consistent subset is checked for sufficiency and succeeds in this test. Thus the dataset
is characterized as unimodal.

2.3.2 Sufficient Subsets

Let GLC = {s1, . . . , sK} be a consistent subset of GL. Note that s1 = x1 and sK = xN .
Since GLC is consistent, PLGLC

(x) is unimodal. In the general case, GLC contains
both gcm and lcm points. Thus, there exists a single index c such that all elements
si for i = 1, . . . , c are gcm points and all elements sj (for j = c + 1, . . . , K) are lcm
points. Thus we can write that: GLC = PG ∪ PI ∪ PL, where PG = {s1, . . . , sc} (gcm
elements), PI = {sc, sc+1} and PL = {sc+1, . . . , sK} (lcm elements).

Moreover, every subset of GLC that includes the points s1, sc, sc+1, sK is also consistent
(i.e. cdf PLS is unimodal). Therefore it can be decomposed into three parts. The
convex part which is a subset of PG having s1 and sc as the first and last element.
The concave part which is a subset of PL having sc+1 and sK as the first and last
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element. The intermediate part is always the two-element set PI = {sc, sc+1}. Thus
our objective is to find a subset S of GLC that is also sufficient.

In order to determine a sufficient subset S ′
G of PG = {s1, . . . , sc} (convex part) we

work as follows: We first test whether the subset X(s1, sc) succeeds in the uniformity
test. If this is the case, we have successfully determined a sufficient set S ′

G = {s1, sc}.
However, if it fails, we continually test the successive subsetsX(si, si+1) (i = 1, . . . , c−1)
using the uniformity test. If the test succeeds, the points si, si+1 are saved in S ′

G. If all
subsets X(si, si+1) are uniform, then PG is sufficient (S ′

G = PG). However, it is possible
for some subset to fail in the uniformity test. Let X(si, si+1) the first non-uniform data
subset that is encountered, thus currently S ′

G = {s1, . . . , si}. We make two attempts
to fix this problem.

The first attempt is the Forward search method that searches for uniform supersets
of X(si, si+1) by moving the right interval endpoint, i.e. X(si, sj), j > i+1. This method
works in increasing order of si and successively tests whether the sets X(si, si+2),
X(si, si+3), X(si, si+4) etc. are uniform. If a set X(si, sj), j > i + 1 is found uniform,
the element sj is added in S ′

G and we continue by testing the next subset X(sj, sj+1)

for uniformity.
If the Forward search fails, the Backward search method is called that searches

for uniform supersets of X(si, si+1) by moving the left interval endpoint, i.e. X(sm, si+1),
m < i. This method searches backwards and tests successively if the sets X(si−1, si+1),
X(si−2, si+1), X(si−3, si+1) etc. are uniform. If such a set is found, the non-uniformity
problem is fixed. More specifically, if a set X(sm, si+1), m < i is found uniform, the
elements sm+1, . . . , si are removed from S ′

G and we continue by testing if the next
subset X(si+1, si+2) succeeds in the uniformity test.

In order to determine a sufficient subset S’L (concave part) we work in a similar
way with the S ′

G set. Algorithm 2.3 describes the overall method of determining a
sufficient subset of a convex or concave set. We denote en = next(e, P ) the next element
of e in set P and ep = prev(e, P ) the previous element of e in set P . Algorithm 2.4
describes the Forward search method, while Algorithm 2.5 describes the steps of the
Backward search method.

Fig. 2.5 presents an example of a multimodal dataset which exhibits non-uniformity
in the interval between two successive lcm points. Fig. 2.5a presents the histogram
of the dataset and Fig. 2.5b the ecdf of the dataset along with the GL points. It can
be observed that the part of the ecdf between lcm points A and B is not linear, i.e.

55



Algorithm 2.3 (P ′,success) = sufficient(P )
e1 ← min(P )
P ′ ← {e1}, success ← true
while eL ← max(P ′) 6= max(P ) do

if eR ← next(eL, P ) not exist then
return (∅, false)

end if
if check_uniformity(X(eL, eR))=true then

P ′ ← P ′ ∪ {eR}
else
(P ′

F ,success) ← Forward_search(P, eL)
if success=true then

P ′ ← P ′ ∪ P ′
F

else
(P ′

B ,success)←Backward_search(P ′, eR)
if success=false then

return (∅, false)
end if
P ′ ← P ′

B

end if
end if

end while
return (P ′,success)

the subset is not uniform. In Fig. 2.5c and Fig. 2.5d we zoom into the concave (lcm)
part of the ecdf where the nonlinearity (i.e. non-uniformity) of the ecdf is made more
clear. In such a case we attempt to fix this issue by using the Forward and Backward
search algorithms, however in this example both attempts fail.

Fig. 2.6 concerns an example of a unimodal dataset that includes a data subset
in the concave part that is not uniform. However, in contrast to the case of Fig. 2.5,
the Forward search algorithm manages to fix this problem. Fig. 2.6a presents the
histogram of the dataset and Fig. 2.6b the ecdf of the dataset along with the GL
points. It can be observed that the ecdf segment between successive lcm points A and
B is not linear. In Fig. 2.6c and Fig. 2.6d we zoom into the lcm part of the dataset.
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Algorithm 2.4 (P ′
F ,success) = Forward_search(PF , eL)

PF ← PF − {next(eL, PF )}, eR ←next(eL, PF )

while eR exist do
if check_uniformity(X(eL, eR))=true then

P ′
F ← {eR},

return (P ′
F , true)

end if
eR ← next(eR, PF )

end while
return (∅,false)

Algorithm 2.5 (P ′
B ,success) = Backward_search(PB, eR)

P ′
B ← PB − {maximum element of PB}

eL ← max(P ′
B)

while eL exist do
if check_uniformity(X(eL, eR))=true then

P ′
B ← P ′

B ∪ {eR},
return (P ′

B , true)
end if
P ′
B ← P ′

B − {eL}, eL ← prev(eL, P ′
B)

end while
return (∅,false)

Fig. 2.6c presents the histogram and Fig. 2.6d the ecdf of this subset, where subset
X(A,B) between points A and B is characterized non-uniform. Using the Forward
search algorithm, the superset X(A,C) is found uniform, thus the non-uniformity
issue is fixed.

Two examples of the recursive application of UU function are presented in Fig. 2.7
and Fig. 2.8. Fig. 2.7 concerns a multimodal dataset whose histogram is shown in
Fig. 2.7a. In Fig. 2.7b the ecdf is presented along with the gcm and lcm points (GL
points). It can be observed that the intermediate part X(A,B) (between points A and
B) of the ecdf is not linear (uniform). Fig. 2.7c and Fig. 2.7d focus on the intermediate
part presenting the histogram of this subset and the ecdf respectively. In Fig. 2.7d it
is clear that the intermediate part is not uniform. For this reason the UU function is
recursively applied on subset X(A,B). Fig. 2.7d presents the GL points of X(A,B). It
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(a) (b)

(c) (d)
Figure 2.5: Example of multimodal dataset where consistent subsets are not sufficient.

(a) (b)

(c) (d)
Figure 2.6: Example of unimodal dataset. A non-uniform interval exists between
lcm points A and B. Forward search method fixes the non-uniformity problem by
considering the extended interval between A and C.
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(a) (b)

(c) (d)

(e)

Figure 2.7: Example of multimodal dataset where the UU function is recursively
applied on the intermediate part.

can be observed that there exist lcm points among gcm points, UU function cannot fix
this inconsistency, thus the whole dataset is characterized as multimodal. In Fig. 2.7e
the initial ecdf is presented along with both the GL points of the initial ecdf and the
GL points of the ecdf of the intermediate part. It is clear that there exist gcm points
that lie among lcm points and this observation leads to decide multimodality.

Fig. 2.8 concerns a unimodal dataset whose histogram is shown in Fig. 2.8a. In
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Fig. 2.8b the ecdf is presented along with the gcm and lcm points (GL points). It can
be observed that the intermediate part of the ecdf is not linear (uniform). Fig. 2.8c
and Fig. 2.8d focus on the intermediate part X(A,B) presenting the histogram of
this subset and the ecdf respectively. In Fig. 2.8d it is clear that the intermediate part
is not uniform and UU function is recursively applied on this subset. As shown in
Fig. 2.8d, the intermediate part is unimodal and the whole dataset is characterized
as unimodal. In Fig. 2.8e the initial ecdf is presented along with both the GL points
of the initial ecdf and the GL points of the ecdf of the intermediate part. It can
be observed that all gcm points precede the lcm points and this is an indication of
unimodality, provided that the sufficiency criterion is also met.

2.3.3 Uniformity Test

A very common operation in the UU-test method, is to decide whether a subset is
sufficiently modeled by the uniform distribution. For this reason a uniformity test is
needed. In our implementation we use the Kolmogorov-Smirnov test (KS test) as a
uniformity test. KS test first computes the KS statistic, which is the distance between
the ecdf of the dataset and the cdf of the uniform distribution. Next a p-value is
determined and compared with a user-defined significance level α (we use α = 0.01

in our experiments). Therefore, if p-value ≤ a, the KS test will reject uniformity.
There are two interesting features of KS test. First, the distribution of the KS test

statistic itself does not depend on the underlying cumulative distribution function
being tested and second, it is an exact test. Moreover, it is straightforward to determine
the corresponding p-value, while the dip-test employs bootstrapping to compute the
p-value.

However, KS test exhibits a peculiarity that may affect the result. It tends to be more
sensitive near the center of the distribution than at the tails. In several experiments
with large unimodal datasets, the KS test fails to early accept the uniformity of the
intermediate part requiring the additional iterations. However, the final unimodality
decision is not affected.

2.3.4 Computational Complexity

The computational complexity of UU-test mainly depends on cost of computing the
gcm/lcm points of the ecdf which is O(n) using the isotonic regression method for
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(a) (b)

(c) (d)

(e)

Figure 2.8: Example of unimodal dataset where the UU function is recursively applied
on the intermediate part.

gcm points and antitonic regression for lcm points [78]. Gcm/lcm points can also be
determined in O(nlogn) from the convex hull of the ecdf plot. If the data are not
sorted an additional O(nlogn) complexity should be considered. It should be stressed
that UU-test relies on KS-test, thus it does not require extra computations on bootstrap
samples to obtain the p-value.
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2.4 Modeling Unimodal Data

As already mentioned, in contrast to other unimodality tests, UU-test also achieves
to model adequately a unimodal dataset X. In unimodal cases, the UU-test directly
provides a statistical model, through the final set of S points it returns. The cdf of
the statistical model is PLS(x), which is both unimodal and sufficient approximation
of the ecdf. Since the cdf model is piecewise linear, it defines a Uniform Mixture Model
(UMM) in which each component is the uniform distribution [79, 80, 81]. More
specifically, if the set provided by UU-test is S = {s1, . . . , sM+1}, then a UMM with M

components is defined, where each component i is uniformly distributed in the range
[si, si+1], (i = 1, ...,M). If N is the size of X and Ni is the number of data points in
each interval [si, si+1), then the UMM pdf is defined as follows:

p(x) =
M∑
i=1

πi
x− si

si+1 − si
I(x ∈ [si, si+1)), πi = Ni/N (2.1)

The corresponding cdf F (x) of the UMM is:

F (x) =
i−1∑
j=1

πj + πi
x− si

si+1 − si
, si ≤ x ≤ si+1 (2.2)

and it is expected to be close to the ecdf. In Figure 2.9 the UMMs obtained by
applying the UU-test on four unimodal datasets are presented both in terms of UMM
pdf and of UMM cdf. Left subfigures present the histogram and the UMM pdf (solid
line), while right subfigures present the points of set S, the ecdf (solid line) and the
UMM cdf (dashed line).

The UMM provided by the UU-test can also be used to generate synthetic data
samples following the same unimodal distribution as the original dataset using the
typical approach for sampling from a mixture model. Fig. 2.10 refers to a dataset
with 2000 points generated by a Gaussian distribution. The histogram and the ecdf
of the dataset are presented in Fig. 2.10a and Fig. 2.10b respectively. The UU-test
is applied to this dataset and a UMM model is obtained. Fig. 2.10c and Fig. 2.10d
present the pdf and ecdf of a dataset of the same size that is generated using the
UMM model. It is obvious that both histograms and ecdfs are almost identical.

62



(a)

(b)

(c)

(d)

Figure 2.9: Unimodal datasets sampled from (a) a truncated (x < 0) Gaussian, (b)
a truncated (x > 0) Gaussian, (c) a Gaussian, (d) two highly overlapping Gaussians.
(Left) Histogram and UMM pdf (solid line). (Right) Points of S, ecdf (solid line) and
UMM cdf (dashed line).
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(a) (b)

(c) (d)

Figure 2.10: Histogram (a) and ecdf (b) of a dataset X sampled from the Gaussian
distribution. Histogram (c) and ecdf (d) of a dataset sampled from the UMM obtained
by applying UU-test on the Gaussian dataset X of (a) and (b).

2.5 Experimental Results

To assess the effectiveness of the UU-test, we conducted two series of experiments. In
the first series, we compared the decisions of UU-test to those of the dip-test using
several unimodal and multimodal synthetic and real datasets. In the second series
of experiments, our aim was to evaluate the Uniform Mixture Model provided by
UU-test as a tool for statistical modeling of unimodal data.

2.5.1 Evaluating UU‐test Decisions

This part of our experimental study aims to assess the performance of UU-test in
deciding on the unimodality of a dataset. At first, we generated synthetic unimodal
and multimodal datasets and computed the decisions of dip-test and UU-test. In
addition, we provide two synthetic examples illustrating the influence of noise and
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outliers on gcm/lcm points and UU-test decision. Finally, we present the results from
the application of dip-test and UU-test on the features of several real datasets.

Synthetic Datasets

At this part, we generated datasets from 15 unimodal (U) and multimodal (M) dis-
tributions as presented in Table 2.2. The multimodal distributions were mixtures of
two or three Gaussians. The parameters and the dataset sizes (N) are shown in the
second column of Table 2.2. For each distribution 50 datasets were generated and
both UU-test and dip-test were applied on each dataset. Thus, in total 750 synthetic
datasets were generated.

We compared the results of UU-test and dip-test using the same significance level
(α = 0.01). For each distribution, the percentage of 50 datasets for which each test pro-
vides correct decision is presented (third and fourth column) as well as the percentage
of 50 datasets for which the two tests provided the same decision (fifth column). It
can be observed that UU-test provides in most cases (for 741 out of 750 datasets)
correct unimodality decisions that are in agreement with those of the dip-test.

Examples with noise and outliers

As it can be expected, noise and outliers affect the existence and position of gcm/lcm
points. In Fig. 2.11 we present a bimodal dataset generated from two Gaussians which
is distorted by adding uniform noise between the two Gaussians. It can be observed
that the lcm/gcm points (A/B) in the middle of the ecdf (Fig. 2.11b) have been
eliminated once the noise has been added (Fig. 2.11d). Nevertheless, the application
of UU-test on the noisy dataset provides the correct decision, i.e. that the dataset
remains multimodal.

In Fig. 2.12 we present a unimodal dataset generated from a single Gaussian,
which distorted by the addition of outliers (left tail) generated from a Student’s t
distribution. It can be observed that the original gcm points (between A and B)
(Fig. 2.12b) neither change or move, however, due to the addition of outliers on the
left, two new gcm points (C and D) are generated (Fig. 2.12d). As with the previous
example, the addition of outliers does not modify the result of the UU-test, which
decides that the distorted dataset remains unimodal.

It should be noted that, in case we wish to explicitly deal with noise and outliers,
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Table 2.2: Accuracy of UU-test and dip-test on deciding unimodality (U) or multi-
modality (M).

Distribution Parameters Dip-test (%) UU-test (%)
Agreement of
two tests (%)

Gaussian(µ, σ2) (U) µ = 0, σ = 1, N = 2000 100 100 100

Student’s t(ν) (U)
ν: degrees of freedom

ν = 4, N = 2000 100 100 100

Gamma(k, θ) (U)
k: shape, θ: scale

k = 1, θ = 2, N = 2000 100 100 100

Exponential(λ) (U)
λ: rate

λ = 3, N = 2000 100 100 100

Cauchy(v) (U)
v: degrees of freedom

v = 1, N = 2000 100 100 100

Triangular (L,U,m) (U)
L: Lower limit, U : Upper limit,
m: mode

L = −1, U = 1, m = 0,

N = 3700
100 100 100

Asymmetric Triangular (U)
L = −4, U = 3, m = 0,

N = 6500
100 96 96

Two Gaussians (M)
µ1 = 0, σ1 = 1, N1 = 2000

µ2 = 4, σ2 = 1, N2 = 2000
100 100 100

Two Gaussians (M)
µ1 = 0, σ1 = 1, N1 = 2000

µ2 = 4, σ2 = 1, N2 = 1000
100 100 100

Two Gaussians (U)
µ1 = 0, σ1 = 1, N1 = 1000

µ2 = 4, σ2 = 2, N2 = 1000
100 100 100

Two Truncated Gaussians (U)
with same mean

µ1 = 0, σ1 = 1, N1 = 1000 (Left part)

µ2 = 0, σ2 = 3, N2 = 1000 (Right part)
100 94 94

Three Gaussians (M)
µ1 = 0, µ2 = 4, µ3 = 8,
σ1 = σ2 = σ3 = 1,
N1 = N2 = N3 = 1000

100 100 100

Three Gaussians (M)
µ1 = 0, µ2 = 4, µ3 = 7,
σ1 = σ2 = σ3 = 1,
N1 = N2 = 1000, N3 = 2000

100 100 100

Student’s t(ν) & Uniform(a, b) (U)
a:minimum value
b:maximum value

ν=10, a = 0, b = 10, N = 15000 100 96 96

Uniform(a, b) & Gaussian(µ, σ2) (U)
a = −10, b = 5, µ = 3, σ = 1,

N = 16000
100 96 96

we could approximate the ecdf using an appropriate regression method, and then
work (e.g. compute gcm and lcm points) with the obtained regression model. Such
an approach has been successfully applied in [82] where the image histogram is
approximated using support vector regression and the obtained support vectors are
exploited to appropriate segmentation thresholds.
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(a) (b)

(c) (d)

Figure 2.11: Top row: histogram and ecdf of a bimodal dataset generated by two
Gaussians. A and B are middle lcm and gcm points respectively. Bottom row: his-
togram and ecdf of the dataset after adding uniform noise between the Gaussians.
The middle lcm/gcm points A and B have been eliminated, however, UU-test still
decides multimodality.

Real Datasets

We also applied dip-test and UU-test on each feature of five known real datasets,
namely Iris, Banknote, Seeds, House from the UCI Machine Learning Repository [5]
and Prestige [83]. Table 2.3 presents the datasets and the decision (unimodality (U)
or multimodality (M)) of dip-test and UU-test on each dataset feature. Note that
the ground truth decision for each feature is not available. The two tests agree on
all dataset features except for feature 14 of House dataset. This feature is unimodal
based on dip-test and multimodal based on UU-test. Fig. 2.13 presents the histogram
and ecdf of this feature. As it can be observed, this is a borderline case.
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(a) (b)

(c) (d)

Figure 2.12: Top row: histogram and ecdf of a dataset generated by a single Gaussian.
The gcm points between A and B are illustrated. Bottom row: histogram and ecdf of
the dataset after adding Student’s t distributed noise (outliers) on the left. Two new
gcm points (C and D) have been generated, however, UU-test still decides unimodality.

Figure 2.13: Histogram and ecdf of feature 14 of House dataset for which dip-test
decides unimodality and UU-test decides multimodality.
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Table 2.3: Dip-test and UU-test unimodality (U) or multimodality (M) decisions on
features of real datasets.

Datasets Features Dip-test UU-test
Agreement of
two tests

Iris
1-2 U U yes
3-4 M M yes

Banknote
1 U U yes
2 M M yes
3-4 U U yes

Seeds 1-7 U U yes

Prestige
1-4 U U yes
5 M M yes

House

1 U U yes
2-5 M M yes
6-8 U U yes
9-11 M M yes
12-13 U U yes
14 U M no

2.5.2 Uniform Mixture Modeling of Unimodal Data

We also conducted a series of experiments using synthetic datasets in order to evaluate
the UMM provided by the UU-test. For each dataset, we also fitted a Gaussian model
as well as a uniform model. In our experiments we considered a variety of unimodal
distributions. Table 2.4 describes the distributions, their parameters and the size of
training and test set. In Fig. 2.14, we present for each dataset the pdfs of the three
fitted models: Gaussian (left figure), Uniform (middle figure) and UMM (right figure).
It can be clearly observed that the UMMs provided by the UU-test constitute accurate
statistical models of the datasets.

In order to measure the quality of the three statistical models, two criteria were
considered. The first one is the log-likelihood on a test set and the results are pre-
sented in Table 2.5. We used 75% of the sample without replacement as a test set.
The rest 25% was used as a training set to build the UMM, Gaussian and Uniform
models. Then we computed the log-likelihood of each model on the test set (higher
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Table 2.4: Types and parameters of distributions and size of training and test set of
the datasets used for UMM evaluation.

Distribution Parameters Size of training set Size of test set

Gaussian(µ, σ2) µ = 0, σ = 1 650 2000

Student’s t(ν) ν = 4 650 2000

Gamma(k, θ) k = 1, θ = 2 650 2000

Triangular (L,U,m) L = −1, U = 1, m = 0 12500 37000

Asymmetric Triangular L = −4, U = 3, m = 0 2150 6500

Two Gaussians
µ1 = 0, σ1 = 1

µ2 = 3, σ2 = 1
5850 17500

Student’s t(ν) & Uniform(a, b) ν = 10, a = 0, b = 10 5000 15000

Uniform(a, b) & Gaussian(µ, σ2) a = −10, b = 5, µ = 3, σ = 1 5300 16000

Table 2.5: Statistical model evaluation using the test set log-likelihood (the higher the
better). Bold values indicate the best model in each row.

Distribution Gaussian Model Uniform Model UMM

Gaussian −13338 −17694 −14027

Student’s t −16331 −26681 −16149
Gamma −38283 −37044 −34591
Triangular −19451 −25697 −18899

Asymmetric Triangular −93852 −104910 −89273
Two Gaussians −32877 −42027 −32483

Student’s t & Uniform −40245 −43284 −36288
Uniform & Gaussian −45959 −45828 −39153

values imply better fit).
In addition, we used the two-sample Kolmogorov-Smirnov test as another criterion

to evaluate and compare the three models. The two-sample KS test is a nonparametric
hypothesis test that evaluates the difference between the ecdfs of two datasets, by
computing the maximum absolute difference between the two ecdfs. Actually the test
decides if two datasets have been generated from the same continuous distribution.
In each experiment we used a dataset (test set) generated from the ground truth
distribution and compared it (using the two-sample KS test) with a dataset generated
from each of the three fitted models. The smaller the distance provided by the KS
test, the better the fitted model. The experimental results are provided in Table 2.6.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.14: Examples of statistical model fitting on several datasets using Gaussian
(left figures), Uniform (middle figures) and UMM (right figures).

The experimental results clearly indicate that the UU-test successfully models
unimodal data through the UMM it provides. According to the test set likelihood
criterion (Table 2.5) the Gaussian model constitutes a better solution only in the case
of Gaussian distribution. According to the two-sample KS test criterion, the UMM
provides much better results except for the case of Gaussian dataset (Table 2.6). In
most cases the difference in performance is notable and becomes much more higher
in the case of asymmetric distributions.
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Table 2.6: Statistical model evaluation using the two-sample KS test (the lower the
better). Bold values indicate the best model in each row.

Distribution Gaussian Model Uniform Model UMM

Gaussian 0.0133 0.1945 0.02320

Student’s t 0.0366 0.3451 0.0186
Gamma 0.1046 0.2350 0.0164
Triangular 0.0180 0.1260 0.0062
Asymmetric Triangular 0.0929 0.2072 0.0050
Two Gaussians 0.0365 0.2336 0.0055
Student’s t & Uniform 0.1488 0.2720 0.0065
Uniform & Gaussian 0.2041 0.2703 0.0048

2.6 Unimodality in Multiple Dimensions

Tackling the unimodality issue for multidimensional datasets is not straightforward.
The folding test [2] provides a direct approach to assess the ’unimodality character’
(or level of unimodality) of a dataset X in multiple dimensions. As mentioned in
Chapter 1, Section 1.2.2, it is based on the idea of folding up the distribution with
respect to a pivot point s⋆, computing the variance of the folded distribution and finally
computing the folding statistic (Φ(X)) based on the ratio of the folded variance to the
initial variance. Values of Φ(X) greater or equal to one indicate unimodality of X.
Although Φ(X) is easy to compute, the computation of p-value relies on bootstraps
sampled from the uniform distribution and is computationally heavy especially in
multiple dimensions.

A major concern regarding the folding test is that it relies on the empirical claim
that folding up a multimodal distribution leads to variance reduction. Therefore, the
notion of unimodality is not explicitly involved in folding test computation. It is
not difficult to specify distributions where the above claim is not valid, thus fold-
ing test fails to provide the correct decision. We next provide two 1-d characteristic
examples. According to the folding test, a dataset X sampled from three Gaussians
(µ1 = −4, µ2 = 0, µ3 = 4, σ1 = σ2 = σ3 = 0.5, N1 = N2 = N3 = 2000 points) is
unimodal (Φ(X) = 1.12, p-value=0.009). On the contrary, for this clearly multimodal
dataset, dip-test and UU-test agree that it is multimodal. Another example is a dataset
generated by a Gaussian (µ = 0, σ = 0.5, N1 = 2400 points) and a Uniform (α = 1,
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β = 4, N2 = 1600 points). For this clearly unimodal dataset, the folding test decides
multimodality, since Φ(X) = 0.853 and p-value=0.01. On the contrary, dip-test and
UU-test correctly decide unimodality.

The most common approach to assess the unimodality character of a multidimen-
sional dataset X is through the exploitation of 1-d unimodality tests. A characteristic
example is the dip-dist criterion which is used in the dip-means clustering algorithm
algorithm [29]. The dip-dist criterion decides on the unimodal character of X by
exploiting the notion of viewer. A viewer is an arbitrary data point whose role is to
suggest on the unimodality of the dataset by forming the set of its distances to all
other data points and applying the unimodality test on this set of distances. The idea
is that the distribution of the values in this distance vector could reveal information
about the cluster structure. In presence of a homogeneous cluster, the distribution of
distances is expected to be unimodal. In the case where distinct subclusters exist, the
distribution of distances should exhibit distinct modes, with each mode containing
the distances to the data objects of each subcluster. Considering each data point as
a viewer, the result of unimodality tests on the rows of the distance matrix provide
evidence on whether the dataset X contains subclusters or not.

Another way to assess the unimodality character of a multidimensional dataset
is based on the assumption that, if a dataset is unimodal, then every 1-d projection
of X should be unimodal. To approximately implement this idea the projection axes
should be selected. The skinny-dip method [3] applies dip-test on the data axes,
while the projected dip-means method [84] applies dip-test both on data axes and
PCA axes.

UU-test could directly replace dip-test in the above two approaches. It should
be stressed, that UU-test has particular advantages over dip-test. In the case of uni-
modality, it provides a statistical model in the form of UMM. This can be exploited
in the naive Bayes framework [85, 86]: if all features are found unimodal, their joint
density can be modeled as a product of UMMs. In another scenario, if the PCA pro-
jections [87, 7] of a multidimensional dataset are unimodal, then each PCA projection
can be modeled using a UMM. Since PCA projections are independent, the density of
the PCA vector of projections can be modeled as a product of UMMs.
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2.6.1 UU‐test for Clustering

Another useful property of UU-test (compared to dip-test) is that, in the case of
multimodality, it provides information on how to cut (split) the dataset into subsets
so as to finally obtain unimodal subsets. This property is particularly useful for
designing incremental clustering schemes (based on cluster splitting) [88, 89, 90]
since it provides information on how to split the multimodal clusters.

Two illustrative examples are provided next. Fig. 2.15a illustrates a 2-d dataset
sampled from three Gaussians. It is clear that feature 1 (horizontal axis) is multimodal,
while this of feature 2 (vertical axis) is unimodal. Fig. 2.15b presents the histogram
of the values of multimodal feature 1. We wish to split this set of values and describe
how UU-test can be used to determine effective cut points. UU-test fails to accept
unimodality, due to the existence of lcm point A before gcm point B in Fig. 2.15c.
Therefore, it is reasonable to assume that an effective cut point (cp1) exists in the
middle between xA and xB. After splitting the dataset using cp1, we obtain a left
subset that is unimodal and a right subset that is bimodal (see Fig. 2.15d, Fig. 2.15e).
Focusing on the right subset, UU-test decides multimodality due to the existence of
lcm point C before gcm point D in Fig. 2.15f. Therefore, the middle between xC

and xD specifies a new cutpoint cp2 that further splits the bimodal subset into two
unimodal subsets. Fig. 2.15g, Fig. 2.15h and Fig. 2.15i illustrate the final split of the
original dataset into three clusters.

Fig. 2.16 presents another application of the split method on feature 3 of Iris
dataset [5]. More specifically, we see the histogram and ecdf of the bimodal feature 3.
The existence of lcm point A before gcm B indicates multimodality, and the middle
between A and B determines and effective cut point.

2.7 Summary

In this chapter, we have introduced UU-test (Unimodal Uniform test), which is a new
method for deciding on dataset unimodality and for statistical modeling of unimodal
data. The method takes as input a 1-d dataset and works with the ecdf of the dataset.
It attempts to approximate the ecdf by constructing a cdf that is piecewise linear, uni-
modal and models the data sufficiently. The latter is ensured by applying uniformity
(KS) tests on the data subsets corresponding to the linear segments. Unimodality is
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(g) (h) (i)

Figure 2.15: Top row: 2-d plot, histogram and ecdf of feature 1 of a 2-d dataset
sampled from three Gaussians. Cut point cp1 is also presented. Middle row: 2-d plot,
histogram and ecdf of feature 1 corresponding to the right bimodal subset obtained
from the first split. Cut point cp2 is also presented. Bottom row: 2-d plot, histogram
and ecdf of feature 1 corresponding to the original dataset along with the two cut-
points.

ensured by first computing the set GL the gcm and lcm points of the ecdf graph
and then determining consistent subsets of GL, i.e. subsets where all gcm points lie
before the lcm points. In the case where a cdf is found with the above two properties
(consistent and sufficient), then UU-test decides unimodality. A unique feature of the
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Figure 2.16: Histogram and ecdf of feature 3 of Iris dataset [5] along with the com-
puted cut point.

method is that it also provides a statistical model of a unimodal dataset in the form
of a uniform mixture model (UMM).

In our experimental evaluation we compared UU-test and dip-test in assessing
dataset unimodality using synthetic and real datasets. Initially, we generated synthetic
unimodal and multimodal datasets and computed the decisions made by the two
tests. Results demonstrate that UU-test provides in most cases correct unimodality
decisions that are in agreement with those of the dip-test. Additionally, we presented
two synthetic examples to illustrate how noise and outliers influence gcm/lcm points
and the UU-test’s decisions. Lastly, we applied both tests to the features of several
real datasets, highlighting their respective performance.

We also evaluated the Uniform Mixture Model (UMM) provided by the UU-test
as a statistical model for unimodal data. Experiments with synthetic datasets showed
that the UMM accurately models various unimodal distributions, outperforming Gaus-
sian and uniform models using criteria, such as the log-likelihood and the two-sample
Kolmogorov-Smirnov tests. The results confirm effectiveness of UU-test in modeling
unimodal data.
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CHAPTER 3

STATISTICAL MODELING OF UNIVARIATE
UNIMODAL DATA USING Π-SIGMOID MIXTURE

MODELS

3.1 Introduction

3.2 Statistical Modeling using the Π‐Sigmoid Distribution

3.3 Method Description

3.4 Experimental Results

3.5 Summary

3.1 Introduction

UU-test (proposed in Chapter 2) is a unimodality test which decides whether a dataset
is generated by a unimodal or multimodal distribution. The unique feature of UU-
test is that in case it decides that a dataset is unimodal, it also directly provides a
statistical model of the data, in the form of a mixture of uniform distributions (i.e. a
Uniform Mixture Model (UMM)). In Chapter 2 it is shown that this model is effective
in modeling data generated from unimodal distributions of various shape. Fig. 3.1,
provides an illustrative example of how a dataset sampled from an asymmetric tri-
angular distribution is fitted by three models: Gaussian (left figure), uniform (middle
figure) and UMM provided by UU-test (right figure). It is clear that UMM provides
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Figure 3.1: Statistical model fitting on data sampled from asymmetric triangular distri-
bution using Gaussian (left figure), uniform (middle figure) and UMM (right figure).

a better solution, however there is still room to improve UMM performance, if we
substitute the uniform distribution with a more flexible distribution.

For this reason in this chapter, we have considered the Π-sigmoid distribution
[91] defined as the difference of two translated sigmoid functions. This distribution is
flexible enough to approximate data distributions ranging from Gaussian to uniform
depending on the slope of the sigmoids. Therefore, instead of using a mixture of
uniform distributions, we consider in this chapter a mixture of Π-sigmoid distribu-
tions, called Π-sigmoid Mixture Model (ΠsMM) [75]. This model is initialized from
the UMM provided by the UU-test and subsequently trained through EM algorithm
to maximize the likelihood of the dataset. A notable difficulty on this training task is
that since the data has been characterized as unimodal, training of the ΠsMM should
ensure that its density also remains unimodal. Therefore, during training, we check
whether the model remains unimodal and in case of multimodality, we follow an
appropriate strategy that gradually reduces the number of components, to ensure the
model’s unimodality. A benefit from this strategy is that as the initial number of
components decreases, a simpler ΠsMM model is obtained with better generalization
ability.

The rest of this chapter is organized as follows. In Section 3.2 the Π-sigmoid dis-
tribution is described and the corresponding ΠsMM is explained. Section 3.3 presents
the proposed methodology, while Section 3.4 presents experimental results on syn-
thetic and real unimodal datasets. Finally, Section 3.5 concludes this chapter.
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3.2 Statistical Modeling using the Π‐Sigmoid Distribution

The Π-sigmoid, proposed in [91], is a probability density function, which has the
ability to form the shape of the letter “Π” by appropriately combining two sigmoid
functions. It is used to define the ΠsMM which is a mixture model with each com-
ponent being a Π-sigmoid distribution. Below, we provide the necessary notations of
a Π-sigmoid distribution and a ΠsMM.

3.2.1 The Π‐Sigmoid Distribution

The Π-sigmoid distribution is computed as the difference between two logistic sig-
moid functions with the same slope. The logistic sigmoid with slope λ is given by:
σ(x) = 1

1+e−λx . The Π-sigmoid pdf with parameters a, b, λ (with b > a) is defined by
subtracting two translated sigmoids:

Πs(x) =

(
1

b− a

)[
1

1 + e−λ(x−a)
− 1

1 + e−λ(x−b)

]
, b > a, λ > 0 (3.1)

The parameters a, b, λ affect the behavior of the distribution, with a, b being related
with the variance of the data points. Large values of λ indicate a uniform distribution,
while smaller values make the function more bell-shaped. In Fig. 3.2a a small value
of λ is employed (λ = 0.5), thus the curve is more bell-shaped, while in Fig. 3.2b,
the distribution tends to be more uniform, since a large value of λ is used (λ = 55).

Given a dataset to be modeled by a Π-sigmoid distribution, the parameters of the
distribution can be estimated by maximizing the likelihood of the dataset with respect
to the parameters a, b, and λ. The maximum likelihood solution cannot be obtained
in closed form, however gradient-based maximization methods have been proposed.

3.2.2 The Π‐Sigmoid Mixture Model (ΠsMM)

Exploiting the Π-sigmoid distribution, the Π-sigmoid Mixture Model (ΠsMM) [91] is
defined as follows:

p(x) =
K∑
k=1

πkΠs(x; ak, bk, λk) (3.2)

where K is the number of Π-sigmoid components, ak, bk, λk are the parameters of

k-th component and the mixing weights πk satisfy the constraints: πk ≥ 0,
K∑
k=1

πk = 1.
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(a) (b)

Figure 3.2: Two shapes of the Π-sigmoid distribution by varying the λ parameter.
(a) λ = 0.5. (b) λ = 55.

Given a dataset X = {x1, ...xN}, xi ∈ R the parameters of the ΠsMM can be esti-
mated through maximum likelihood using the EM algorithm. The EM algorithm is
an iterative approach involving two steps at each iteration. The E-step computes the
posterior probability that xi has been generated by component k:

P (k|xi) =
πkΠs(xi; ak, bk, λk)
K∑
j=1

πjΠs(xi; aj, bj, λj)

(3.3)

The M-step requires the maximization of the complete likelihood Lc with respect
to the parameters of the ΠsMM model.

Lc =
N∑
i=1

K∑
k=1

P (k|xi)log[πkΠs(xi; ak, bk, λk)] (3.4)

For the parameters πk the update equation is the same for all mixture models:

πk =
1
N

N∑
i=1

P (k|xi). The M-step does not lead to closed form update equations for the

parameters ak, bk, λk of the Π-sigmoid components, though. Thus the GEM (gener-
alised EM) algorithm [92, 93] is suggested to update the model parameters so that
higher (not necessarily maximum) values of the complete likelihood are obtained.
Based on [91] the following changes are made, in order to simplify the optimization:
λk = g2k and bk = ak + r2k. Thus the ΠsMM model is finally defined as:

p(x) =
K∑
k=1

πkΠs(x; gk, ak, rk, πk) (3.5)
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3.3 Method Description

We propose a method that builds a statistical model of univariate unimodal data by
training a Π-sigmoid mixture model under the constraint that its distribution remains
unimodal. We call such a model as Unimodal-ΠsMM (UΠsMM).

3.3.1 Assessing the Unimodality of a Probability Distribution

As mentioned in Chapter 1, Section 1.2.1, a pdf is defined as unimodal, if it has a
single mode; a region where the density becomes maximum, while non-increasing
density is observed when moving away from the mode. A second definition option
relies on the cdf: a cdf F (x) is unimodal if there exist two points xl and xu such that
F (x) can be divided into three parts: a) a convex part (−∞, xl), b) a constant part
[xl, xu] and c) a concave part (xu,∞). For a twice-differentiable function, it is convex
if its second derivative is non negative and concave if its second derivative is non
positive. The cdf of the Π-sigmoid distribution is:

F (x) =
ln(e−λ(x−a) + 1)− ln(e−λ(x−b) + 1)

λ(b− a)
+ 1 (3.6)

and its second derivative is:

F ′′(x) =
d2F

dx2
=

λ

b− a

[
e−λ(x−a)

(e−λ(x−a) + 1)2
− e−λ(x−b)

(e−λ(x−b) + 1)2

]
. (3.7)

For a ΠsMM with K components (equation 3.5), F ′′
Π(x) =

K∑
k=1

πkF
′′
k (x) is the sec-

ond derivative of its cdf FΠ(x) =
K∑
k=1

πkFk(x) where Fk(x) and F ′′
k (x) are given by

equation 3.6 and equation 3.7 respectively.
In order for FΠ(x) to be unimodal, there must be a point xm of our dataset X , such

that F ′′
Π(x) ≥ 0, ∀x ≤ xm and F ′′

Π(x) < 0,∀x > xm. If such a point exists, we decide
unimodality for FΠ(x) and we characterize the corresponding ΠsMM as a unimodal
model, since the values of F ′′

Π(x) are first positive and then negative. Otherwise, when
there is no point with the above property, FΠ(x) and the corresponding ΠsMM are
considered multimodal. In such a case there exist points with negative F ′′

Π value
among points with positive F ′′

Π value and/or vice versa. We denote the points of X
with the above property as multimodality indicators (MI). In Fig. 3.3a the points
depicted as stars constitute multimodality indicators.
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Algorithm 3.1 new_model = fix_multimodality(model)
small_interval← [ak, bk] with |bk − ak| < 10−4

if a small_interval exists then
new_model← Merge(small_interval,K) // K := K − 1

else
FΠ ← cdf of model

MI ← set of multimodality indicators
determine the interval [ak, bk] which contains the majority of x ∈MI

new_model← Merge(interval,K) // K := K − 1

end if
return new_model

3.3.2 Unimodal ΠsMM Training

In our method we aim to build a Unimodal ΠsMM (UΠsMM) which adequately
models unimodal data. Let X = {x1, . . . , xN} be our dataset. We first call UU-test with
X as input. In the case that the dataset is considered unimodal, UU-test provides a
data subset S = {s1, . . . , sK+1} that defines a unimodal UMM (see equation 2.1 in
Chapter 2). Then, using the UMM information, we initialize our model. A big issue
in mixture modeling is the specification of the number of components K. In our case
this number is initially provided by the UMM.

To initialize our UΠsMM, we set the parameters of each component k as follows:
ak = sk, bk = sk+1 and rk =

√
bk − ak. As suggested in [91], we choose a small value

to initialize gk (gk = 1), since it makes the distribution wider and thus it is more easy
to change its shape. The prior πk is initialized as πk =

Nk

N
where Nk is the number of

data points in the interval [ak, bk].
Training proceeds by applying EM iterations to update model parameters so that

the data likelihood is maximized (see Section 3.2.1). However, after each EM iteration,
we have to verify whether the updated model remains unimodal. To do this we first
check whether there exist model components k that are restricted on very small
intervals [ak, bk]. In such a case very narrow peaks appear in the model’s density. We
identify those peaks by setting a very small threshold (10−4) to the interval width
bk − ak and we eliminate those components of the model.

Next, in order to ensure unimodality, we check the second derivative of the model’s
cdf to determine data points that are multimodality indicators as described previously.
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(a) (b)

Figure 3.3: (a) A multimodal ΠsMM pdf with red stars indicating the second formed
peak. (b) UΠsMM pdf with the multimodality issue being fixed.

We count the number of such points that fall into each interval [ak, bk], and we
eliminate the component with the maximum number of counts.

To tackle both of the above sources of multimodality, we eliminate the component
by merging its corresponding interval [ak, bk] with those of other components. This
approach effectively reduces the number of components and enhances the model’s
generalization. Experimentally, we have concluded that the update of model’s pa-
rameters after EM step may create overlapping intervals. Two intervals [ak, bk] and
[al, bl] are considered as overlapping when either al ∈ [ak, bk] or ak ∈ [al, bl]. These
overlapping intervals can lead to regions with increased density, which may be the
source of multimodality. Therefore, for the selected interval [ak, bk], we first check
whether it overlaps with other intervals. In case this occurs, we select the closest
overlapping interval as its candidate for merging. To determine the closest interval
to [ak, bk] we first compute the dl = min(|ak − al|) and dm = min(|bk − bm|) for each
l = 1, ..., K and m = 1, ..., K with l 6= k and m 6= k. dl corresponds to the minimum
distance among ak and al, while dm corresponds to the minimum distance among bk

and bm. Next we detect the closest interval to [ak, bk] as follows: if dl < dm then the
closest interval is [al, bl], otherwise the closest interval is [am, bm]. In cases where there
are no overlapping intervals, we simply choose the closest interval for merging, as
no overlapping intervals are present. The closest interval is detected similarly as the
closest overlapping interval. We then proceed to merge these two intervals into one
and appropriately adjust the priors πk and the rest parameters (ak, bk, rk, and gk). This
approach effectively reduces the number of intervals, or in other words, the number
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Algorithm 3.2 new_model = Merge([ak, bk], K)

[ak′ , bk′ ]← the closest overlapping interval to [ak, bk]

if [ak′ , bk′ ] = ∅ then
[ak′ , bk′ ]← the closest interval to [ak, bk]

end if
merge [ak, bk] and [ak′ , bk′ ] into a new interval [min(ak, ak′),max(bk, bk′)]

update: ak = min(ak, ak′), bk = max(bk, bk′), rk =
√
bk − ak

gk = (gk + gk′)/2, πk = πk + πk′

delete: ak′ , bk′ , rk′ , gk′ , πk′

K ← K − 1

new_model← ΠsMM(x; g, a, r, π)

return new_model

of components, and leads to unimodal models since the sources of multimodality are
eliminated.

Fig. 3.3 presents a ΠsMM pdf which is initially multimodal and after applying
the fixing method it turns into unimodal. Fig. 3.3a illustrates the initial multimodal
pdf with a second low peak in range of [2, 3]. To address the issue of multimodality,
we identify the points that form the second peak (depicted as stars) and merge
overlapping intervals in this region. This merging process reduces the number of
components in the model, leading to parameter adjustments that make the model less
multimodal and finally unimodal. In Fig. 3.3b, it can be observed that the second
peak has been eliminated.

Algorithm 3.1 describes the procedure for fixing multimodality. It takes the model
as input and returns an updated version with adjusted parameters. It initially detects
possible small intervals. If at least one small interval is found, the algorithm selects this
as the interval to merge. Otherwise, it computes the cdf FΠ of the current model and
identifies and selects the interval that includes the majority of multimodality indicators
as the interval to merge. Then the Merge procedure is called (Algorithm 3.2) that
returns a new model with decreased number of components K.

Algorithm 3.2 describes the process of merging two intervals. It takes as input
the selected interval [ak, bk] and merges this interval with another one [ak′ , bk′ ] with
k′ = 1, ..., K and k′ 6= k. The interval [ak′ , bk′ ] is detected as follows: In case [ak, bk]

overlaps with another interval, then [ak′ , bk′ ] will be the closest overlapping interval
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Algorithm 3.3 new_model = UΠsMM(X)
UMM ← UU-test(X)
initialize: g, a, r, π from UMM // K ← number of UMM components
model← ΠsMM(x; g, a, r, π)
loop until EM convergence
loop

new_model← EM(X,model)
if new_model is multimodal then

new_model← fix_multimodality(new_model) // K := K − 1

end if
model← new_model

end loop
return new_model

to [ak, bk]. Otherwise, [ak′ , bk′ ] will be simply the closest interval to [ak, bk]. The result
of the merging is a new interval [min(ak, ak′),max(bk, bk′)]. Then the slope parameter
of the new component is set equal to the average of gk and gk′ , while its prior is set
equal to πk + πk′.

As already mentioned, after each EM step we check the unimodality of the model.
If it is determined to be multimodal, we use Algorithm 3.1 and Algorithm 3.2 to
resolve the multimodality issue. The above steps are repeated until EM converges to
a unimodal solution. The whole method is described in Algorithm 3.3, which takes
a dataset X as input and returns a fitted unimodal model (new_model).

3.4 Experimental Results

In our experimental evaluation we have compared the modeling capabilities of UΠsMM
against UMM (provided by UU-test) and the single Gaussian model. A variety of uni-
modal distributions were used including synthetic and real datasets. In the case of
real datasets, we fitted the three compared models to their unimodal features. In
order to measure the performance of the three statistical models, we used the test
log-likelihood criterion. We used 30% of the sample without replacement as a test
set. The rest 70% was used as a training set to build the UΠsMM, UMM and Gaussian

85



models. Then we computed the log-likelihood of each model on the test set (higher
values imply better fit).

3.4.1 Synthetic Datasets

We have generated synthetic datasets through sampling from seven unimodal dis-
tributions as detailed in Table 3.1. For each distribution, 20 datasets were generated
to assess the performance of the three models. We also evaluated the behavior of K
(number of components) during fitting. The initial value of K corresponds to the
number of UMM components, which is also provided as input to UΠsMM. The final
value of K is the reduced number of UΠsMM components. In most cases, we observed
a decrease of almost 50% in the initial number of components.

In Table 3.2 we present the average initial and final values of K for each distri-
bution and the mean log-likelihood value of each model on the test sets. It is evident
that UΠsMM achieves superior performance in most cases. For datasets generated
from a Gaussian distribution, it is reasonable for the Gaussian model to fit better.
However, the UΠsMM’s performance is quite similar to that of the Gaussian model,
since they both provide close log-likelihood results. UΠsMM has also achieved a sig-
nificant decrease on the number of components (from 29 to 15), resulting in a simpler
model with fewer parameters than UMM. In asymmetric triangular and mixture of
Student’s t and uniform distributions the component decrease is also remarkable
(from 23 to 8). In Fig. 3.4, we present the histograms of two datasets sampled from a
Gaussian (Fig. 3.4a) and a mixture of Student’s t & Uniform (Fig. 3.4b) along with
the pdf plots of the three fitted models: UΠsMM (left figure), UMM (middle figure)
and Gaussian model (right figure).

3.4.2 Real Datasets

We also evaluated the three models on unimodal features of five known real datasets:
Iris, Banknote and Seeds from the UCI Machine Learning Repository [5], Prestige
[83], and Boston house [94]. Similar to synthetic datasets, we employed a held-out
test set for each dataset to calculate the log-likelihood. The procedure was repeated
20 times and in Table 3.2 we present the average test log-likelihood results along
with the mean initial and final number of components. For most features, UΠsMM
and UMM provide the best fit. The Gaussian model is superior in the Iris features,
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Table 3.1: Synthetic dataset characteristics.

Distribution Parameters Training set Test set

Gaussian(µ, σ2) µ = 0, σ = 1 1400 600

Student’s t(ν) ν = 2 700 300

Uniform(a, b) a = 0, b = 3 700 300

Triangular (L,U,m) L = 0, U = 2, m = 1 2100 900

Asymmetric Triangular (L,U,m) L = −1, U = 3, m = 0 1400 600

Student’s t(ν) & Uniform(a, b) ν = 5, a = 1, b = 8 1260 540

Uniform(a, b) & Gaussian(µ, σ2) a = −3, b = 2, µ = 4, σ = 1 2100 900

(a)

(b)

Figure 3.4: Statistical model fitting on two synthetic datasets using UΠsMM (left plot),
UMM (middle plot) and Gaussian model (right plot).

with UΠsMM being extremely close to its performance. We should note here that
even in the cases where UMM provides a slightly better fit than UΠsMM, the latter
achieves to significantly decrease the number of components K , thus constituting a
simpler model providing a sufficiently accurate fit.
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Table 3.2: Statistical model evaluation using the test set log-likelihood (the higher the
better). Bold values indicate the best model in each row. Initial and final number of
components are also provided.

K
Distribution

Initial Final
UΠsMM UMM Gaussian model

Synthetic

Gaussian 29 15 −857.468 −868.968 −855.899
Student’s t 33 18 −591.29 −596.006 −727.374
Uniform 1 1 −341.776 −345.225 −384.38
Triangular 28 24 −458.968 −470.309 −475.614
Asymmetric Triangular 23 8 −719.646 −726.533 −751.14
Student’s t & Uniform 23 8 −1198.399 −1210.339 −1295.897
Gaussian & Uniform 22 12 −1895.798 −1898.702 −2082.739

Real

Iris feat.1 1 1 -54.314 -64.601 ‐54.232
Iris feat.2 1 1 -26.377 -46.032 ‐26.373
Banknote feat.1 21 2 -1001.8 ‐999.51 -1014.6
Seeds feat.1 6 4 ‐3.27 -13.6 -8.55
Seeds feat.2 1 1 ‐0.47 -8.16 -8.07
Seeds feat.5 1 1 ‐2.11 -12.83 -8.17
Prestige feat.2 6 6 -298.083 ‐297.898 -304.299
Prestige feat.3 10 2 -142.304 ‐132.559 -151.465
Prestige feat.4 1 1 ‐131.209 -139.777 -131.526
Boston house feat.6 19 5 ‐151.686 -162.967 -159.917
Boston house feat.8 17 3 -326.116 ‐299.808 -329.274

3.5 Summary

In this chapter, we have proposed a methodology to train a unimodal mixture
(UΠsMM) that effectively models univariate unimodal data. UΠsMM is based on
a Π-sigmoid mixture model (ΠsMM), where each component is a Π-sigmoid distri-
bution defined as the difference of two translated logistic sigmoids. Depending on
the slope value of the sigmoids, it can capture a wide range of data from Gaussian to
uniform. This property makes UΠsMM a powerful tool for statistical modeling.
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An important aspect in UΠsMM training is its effective initialization which is
provided by the UU-test algorithm for deciding unimodality. The model is updated
using the EM algorithm, but care is taken so that the unimodality constraint is not
violated. If such violation occurs, an appropriate fixing procedure is applied that aims
to eliminate multimodality by reducing the number of mixture components.

The modeling capabilities of UΠsMM were tested against the Uniform Mixture
Model (UMM) provided by UU-test and the single Gaussian model. Our evaluation
included a variety of unimodal distributions using both synthetic and real datasets.
For real datasets, the three models were fitted to the unimodal features, and their
performance was assessed using the test log-likelihood criterion. The results demon-
strate that UΠsMM achieves superior performance in most cases. While the Gaussian
model performed better on datasets generated from Gaussian distributions, UΠsMM
provided comparable log-likelihood results, showcasing its flexibility and robustness.
Furthermore, we observed that UΠsMM significantly reduced the number of compo-
nents K initially provided by UMM. Overall, UΠsMM proves to be an efficient choice
for the statistical modeling of unimodal data, constituting a simpler model with fewer
parameters compared to UMM.
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CHAPTER 4

STATISTICAL MODELING OF UNIVARIATE
MULTIMODAL DATA

4.1 Introduction

4.2 Detecting Valleys in Data Density

4.3 The Unimodal Mixture Model (UDMM)

4.4 Experimental Results

4.5 Summary

4.1 Introduction

As mentioned in Chapter 1, Sections 1.1.2 and 1.3.1, mixture models (e.g. GMMs) can
be used for clustering and density estimation tasks. Other methods1 achieve cluster-
ing by focusing on the underlying density structure, detecting high-density regions
(modes) and separating them based on low-density areas. While the above approaches
rely on local density estimates for cluster identification, another research direction is
to employ unimodality testing. Data unimodality could play a decisive role in building
a successful statistical model (such as the Uniform Mixture Model (UMM) introduced
in Chapter 2), estimating the number of components and partitioning a dataset into
clusters2. In Chapter 1, Section 1.3 the significance of mode estimation and valley

1More details are provided in Chapter 1, Section 1.3
2More details are provided in Chapter 1, Section 1.2.3
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detection in understanding the structure of complex datasets is also explained. Mode
estimation captures the central tendencies in complex distributions (e.g., skewed or
asymmetric), while valley detection reveals the boundaries between modes, facilitating
a clearer distinction of clusters or regions with lower density.

This chapter addresses both the detection of valleys in univariate multimodal data
and the development of a corresponding statistical model. Since a UMM can be used
to model univariate unimodal data (as described in Chapter 2), we propose a more
general method, which builds a statistical mixture model that models adequately
univariate multimodal data, i.e., data generated by distributions with more than one
mode (peak) [76]. This statistical model is called Unimodal Mixture Model (UDMM).
Its mixture components correspond to arbitrary unimodal distributions and each
of them is modeled using a UMM provided by UU-test algorithm. Thus UDMM is
actually a hierarchical mixture model, since each component is also a uniform mixture
model. We also propose a technique, called UniSplit, for determining valley points of
univariate multimodal data achieving to split the original data into unimodal subsets.
Our approach relies on the idea of unimodality. We introduce properties of critical
points (gcm/lcm points) of the data empirical distribution function (ecdf) that provide
indications on the existence of density valleys. These properties are exploited in the
proposed UniSplit algorithm. Based on the computed valley points, the initial dataset
is partitioned into unimodal subsets. Then we model each unimodal subset with a
UMM and obtain the final Unimodal Mixture Model (UDMM) as a mixture of the
computed UMMs. In this way the number of UDMM components is automatically
determined as a result of the unimodal data splitting procedure.

The proposed approach is very flexible, since it makes no assumptions about
the specific parametric of each unimodal mixture component. Therefore it can effec-
tively model datasets generated by sources of different probability density (e.g., one
Gaussian and one uniform). In addition the method requires no training, while it
demonstrates the significant advantage that (apart from a typical statistical signifi-
cance level of a uniformity test) it does not include user specified hyperparameters,
such as for example the number of components in GMMs, the kernel bandwidth in
mean shift, etc.

In a nutshell, we make the following contributions:

• A novel valley detection method (called UniSplit) for determining valley points
of univariate multimodal datasets and obtaining partitions into unimodal sub-
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sets is proposed.

• Since UniSplit works with the ecdf of the data, significant properties of the ecdf
are presented based on critical points (called gcm and lcm) in the convex hull
of the ecdf graph. Their location on the graph and the uniformity of the data
in intervals between successive critical points help us to draw conclusions on
the existence of valleys in those intervals.

• A statistical mixture model is proposed, where each mixture component corre-
sponds to a unimodal distribution. UniSplit is used to split a multimodal dataset
into unimodal subsets and then, the UU-test algorithm is employed to model
each unimodal subset with a Uniform Mixture Model (UMM). The final model
is called Unimodal Mixture Model (UDMM).

• The proposed method is flexible, requires no training, while apart from the
typical statistical significance level, it does not include user specified hyperpa-
rameters. The number of components in the UDMM model is automatically
determined by the UniSplit algorithm, rather than being manually defined by
the user.

• Experiments are conducted using both synthetic and real datasets. Comparisons
are made with other clustering algorithms to evaluate the UniSplit algorithm,
while the performance of UDMM for statistical modeling is also evaluated.

The rest of this chapter is organized as follows. Section 4.2 introduces the ideas
implemented in our method for detecting valley points of the data density. Section 4.3
presents the proposed UniSplit methodology and defines the Unimodal Mixture Model
(UDMM). Section 4.4 presents extensive experimental results aiming at evaluating
in various tasks involving synthetic and real datasets, both the effectiveness of the
splitting procedure as well as the performance of the constructed unimodal mixture
model. Finally, Section 4.5 provides a brief summary of the chapter.

4.2 Detecting Valleys in Data Density

The shape of the ecdf of a univariate dataset provides crucial information on the
multimodality of the underlying data distribution. Gcm and lcm points constitute key
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points in the ecdf plot, since their location and the uniformity of intervals defined by
successive gcm/lcm points constitute significant indicators related to the existence of
density valleys in those intervals. We have identified and present below three main
cases for intervals [a, b] defined by successive gcm or lcm points:

(a) Uniformity of X(a, b) indicates no density valley in [a, b].

(b) If X(a, b) is non-uniform and unimodal, a single density valley exists in [a, b].

(c) If X(a, b) is non-uniform and multimodal, multiple density valleys exist in [a, b].

We clarify below in detail each of the above cases and present illustrative figures.
(a) Uniform X(a, b) indicates no density valley in [a, b]: in case X(a, b) is uniform, the

corresponding ecdf segment is linear. Based on the type of a and b (gcm or lcm), they
both lie on the increasing or decreasing part of the same mode on a histogram plot,
respectively. Fig. 4.1 illustrates the histogram and ecdf plots of a unimodal dataset.
The ecdf segments between the gcm/lcm points are linear, indicating uniformity. On
the histogram plot, the gcm points (between A and B) lie on the increasing part of
the mode, and the lcm points (between C and D) lie on the decreasing part, thus no
density valleys are detected between gcm or between lcm points.

(b) Non-uniform and unimodal X(a, b) indicates a single density valley in [a, b]: non-
uniformity of X(a, b) indicates the existence of non-linear ecdf segments (i.e., convex
and/or concave ecdf segments) within [a, b]. If an interval [a, b] exists, where a, b are
successive gcm points and X(a, b) is non-uniform and unimodal, this implies that the
ecdf segment is exclusively concave. This property is ensured, since, if it were partially
convex and partially concave, then X(a, b) would be multimodal. Thus, a and b lie on
increasing parts, while the concave segment corresponds to a decreasing part between
a and b on a histogram plot, with one valley (and one peak) being detected in [a, b]. It
is evident that a and b lie on increasing parts of successive modes. Fig. 4.2a illustrates
the histogram and ecdf plots of a bimodal dataset sampled from two close Gaussians.
On the ecdf plot, we can see that A,B are gcm points and X(xA, xB) is not uniformly
distributed (AB is non-linear), since the ecdf segment AB is concave (unimodal
X(xA, xB)). It is evident that one density valley is formed between A and B on the
histogram plot. Similarly, in case a, b are successive lcm points, the ecdf segment is
convex. The lcm points a and b lie on successive decreasing parts of different modes,
while the convex segment corresponds to an increasing part between a and b on a
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(a)

Figure 4.1: Histogram: gcm (AB part) and lcm (CD part) correspond to increasing
and decreasing parts, respectively. Ecdf: AB, BC and CD correspond to the convex,
intermediate and concave part, respectively.

(a) (b)

Figure 4.2: Histogram and ecdf of a bimodal dataset. The non-uniform and unimodal
X(xA, xB) indicates a density valley between A and B. MD is a point close to the
valley. vp is the valley point. (a) A, B are gcm points on increasing parts of successive
modes. (b) A, B are lcm points on decreasing parts of successive modes.

histogram plot. Thus one density valley (and one peak) is detected in [a, b]. Fig. 4.2b
illustrates the histogram and ecdf plots of a bimodal dataset. On the ecdf plot, AB is
convex, while on the histogram plot A and B lie on the decreasing parts of different
modes with one density valley (and one peak) being formed between them.

(c) Non-uniform and multimodal X(a, b) indicates multiple density valleys in [a, b]:
similarly to case (b), non-uniformity of X(a, b) corresponds to a non-linear ecdf seg-
ment, and since X(a, b) is multimodal, the corresponding ecdf is expected to include
convex and concave segments. Thus, multiple increasing/decreasing parts exist on a
histogram plot, i.e., multiple density valleys are formed. We should note here that
all multimodal sets X(a, b) are also non-uniform. We choose to refer both properties
of multimodality and non-uniformity for sake of clarity. In Fig. 4.3a the histogram
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(a) Multiple density valleys in non-uniform and multi-

modal X(xA, xF ).

(b) Candidate splitting intervals [xA, xB], [xG, xC ], [xD, xE ]

in zoomed set X(xA, xF ). Best splitting interval: [xG, xC ].

(c) Non-uniform and unimodal set X(xG, xC) with a den-

sity valley being formed between G and C. MD point is

also illustrated.

Figure 4.3: Histogram and ecdf plot of a multimodal dataset with its best splitting
intervals, processed recursively until a non-uniform and unimodal interval containing
a single valley point is detected.
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(a) Closer peaks demonstrate a lower degree of non-uniformity.

(b) Smaller valley depth corresponds to lower degree of non-uniformity.

Figure 4.4: Histogram and ecdf plots of bimodal datasets with varying peak distances
and valley depths. The black segments on the pdfs correspond to the horizontal
distances (d′1 and d′2) between the two peaks, while on the ecdfs correspond to the
max distances (d1 and d2) of MD from line segment AB.

and ecdf plot of a multimodal dataset are illustrated. On the ecdf plot, A and F are
successive lcm points with X(xA, xF ) being non-uniform and more specifically mul-
timodal. Multimodality is evident by the multiple peaks and density valleys on the
histogram plot and the multiple convex/concave parts between A and F on the ecdf
plot.

4.2.1 Multimodality Degree

To apply our splitting algorithm, we need a fast and easy way to assess of the degree
of multimodality of a data subset. To define the multimodality degree, we consider
the distance among the peaks and the depth of the valley between the peaks on the data
histogram. As the distance and the depth become larger, the degree should be higher.
Since multimodality implies that at least two peaks (and at least one valley) exist, it
is strongly related to non-uniform intervals (considering cases (b) and (c)). Thus we
measure the multimodality degree of the data in an interval [a, b] as the distance from
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uniformity. Let FU(x) be the cdf of the uniform distribution in [a, b]. Then the value
d = max

x∈X(a,b)
(|F (x) − FU(x)|) computes the maximum distance (deviation) of the ecdf

from uniformity. In plots we denote as MD(xMD, F (xMD)) the point of maximum
distance.

Fig. 4.4a shows two bimodal datasets with peaks at 0 and 30 (left) and at 0 and 10

(right). Both datasets are multimodal due to non-linear ecdf segments AB. The black
segments on the ecdf plots illustrate the maximum distances (d1 and d2) of MD from
the line segment connecting (xA, F (xA)) to (xB, F (xB)), with d′1 and d′2 representing
the distances between the peaks on the pdf plots. The peaks in the dataset on the right
are closer (d′2 < d′1), which is also evident on the ecdf plots where d2 < d1. Valley
depth is also related to the distance from uniformity as shown in Fig. 4.4b. Two
bimodal datasets with equally spaced peaks (distance = 10) are illustrated. The left
histogram shows a deeper valley than the right, with the deeper valley corresponding
to a higher degree of non-uniformity on the ecdf plots (d1 > d2).

In what concerns the location of the maximum deviation (MD) point, in case there
exists a single valley in [a, b], the MD point will be very close to the valley point. In
particular, if a, b are successive gcm points, then a sequence of increasing (containing
a), decreasing (containingMD) and again increasing (containing b) parts is formed. It
is clear that [xMD, b] defines the valley region, since a valley exists between a decreasing
part and an increasing part. Similarly, if a, b are successive lcm points, the valley region
will be [a, xMD], since a sequence of decreasing (containing a), increasing (containing
MD), decreasing (containing b) parts exists. Fig. 4.2a and Fig. 4.2b illustrate these
cases with histograms and ecdf plots, showing the relationship between the MD point
and valley regions. In Fig. 4.2a, A and B are gcm points, thus between MD and B a
valley is identified, while in Fig. 4.2b a valley is identified between A and MD, since
A and B are lcm points.

4.3 The Unimodal Mixture Model (UDMM)

In this section, we propose a method that builds a statistical mixture model for
modeling univariate multimodal data. In this model, each component is unimodal as
determined by UU-test for unimodality. First, we present a technique, called UniSplit,
that splits multimodal data into unimodal sets. To achieve this, we identify an interval
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with high degree of multimodality and then compute an appropriate valley point
inside this interval. Based on the computed valley points, we recursively partition the
data until unimodal segments are obtained. Finally, we provide the formulation for
the Unimodal Mixture Model (UDMM) where each component constitutes a statistical
model of a unimodal subset in the form of a uniform mixture model.

4.3.1 The UniSplit Algorithm

Based on Section 4.2, a dataset is characterized as multimodal, when at least one
non-uniform interval [a, b] defined by successive gcm or lcm points of the ecdf exists.
In that case, at least one valley is noted inside the interval. In our method, we
aim to compute valley points in the density of multimodal datasets, thus we need
to detect non-uniform intervals between successive gcm or lcm points in the ecdf.
These intervals constitute candidate splitting intervals, since they contain at least one
valley. To detect candidate splitting intervals, the UU-test algorithm is applied, which
utilizes a uniformity test (Kolmogorov-Smirnov [12]), to decide whether a set of
points follows the uniform distribution or not. As happens with every statistical test,
the uniformity test requires a user-defined statistical significance level as input (we
use the value equal to 0.01 in our experiments). We should note here that apart
from the uniformity significance level, our approach does not include any other user
specified hyperparameters.

Our method starts by calling UU-test that takes the initial dataset X as input. In
case X is unimodal and since no valley points are detected in unimodal datasets,
the algorithm terminates and returns the corresponding UMM. Let G and L be the
ordered sets of gcm and lcm points respectively, and GL be the ordered union of
them. Let also maxG and minL be the maximum value of G and minimum value of
L, respectively. In case X is multimodal, we search for non-uniform intervals defined
by successive gcm or lcm points to detect valley points (cases (b) and (c) in Section
4.2).

A special case occurs when maxG < minL, i.e., all gcm points precede all lcm
points. If X(maxG,minL) is uniform (linear ecdf) then it is ensured that no valleys
exist in [maxG,minL]. Otherwise, we compute the gcm set G′ and lcm set L′ of
X(maxG,minL) to detect possible valley points in non-uniform intervals defined by
successive gcm (or lcm) points in G′ (or in L′). Thus, we augment the original GL
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set with the new gcm and lcm points, GL := G ∪G′ ∪ L′ ∪ L.
Based on the computed GL set, UU-test detects and finally returns a set I of

candidate splitting (multimodal) intervals where at least one valley exists. Next, we
determine the multimodality degree of each candidate interval and select the one
with the highest degree, called as the best splitting interval. Let T = [a∗, b∗] be the best
splitting interval. If X(a∗, b∗) is unimodal, a single valley is formed in T (case (b)),
otherwise, multiple valleys are detected (case (c)).

In case of a single valley in T = [a∗, b∗], the following strategy is used to determine
a point in the valley region. We compute the MD point of T and subsequently, use
the xMD, a∗ and b∗ values to compute a valley point. If a∗, b∗ are gcm points, the
valley point lies in the middle of xMD and b∗. Since MD is on the decreasing part
of the mode and b∗ is on the increasing part of the next mode, a valley is formed
between them, thus their middle point seems a reasonable location for the valley
point. Similarly, if a∗, b∗ are lcm points, a valleys exists between the decreasing part
(a∗) of the mode and the increasing part (MD) of the next mode, thus we compute
the valley point as the middle point between a∗ and xMD. In Fig. 4.2 the best splitting
interval T = [xA, xB] and the MD point of T are illustrated. In Fig. 4.2a, A and B

are gcm points. On the histogram plot a valley exists between MD and B, thus the
middle point (vp) between xMD and xB is considered as a reasonable location for the
valley point. Similarly, in Fig. 4.2b A,B are lcm points with the average of xA and
xMD denoting the vp.

In case where X(a∗, b∗) is multimodal, multiple valleys exist in T = [a∗, b∗]. For an
accurate valley point computation, we aim at detecting an interval with a single valley.
Thus, we focus on the multimodal set X(a∗, b∗) and work recursively, until we detect
a non-uniform and unimodal interval. Such an interval will contain a single valley,
thus we can follow the previously described methodology to compute a valley point.
Fig. 4.3a shows the histogram and ecdf plots of a multimodal dataset with its best
splitting interval being [xA, xF ], identified as non-uniform and multimodal. Focusing
on X(xA, xF ) (Fig. 4.3b), three candidate intervals are identified: [xA, xB], [xG, xC ],
and [xD, xE]. Among these, T = [xG, xC ] demonstrates the highest degree of non-
uniformity (largest distance of the ecdf of X(xG, xC) from the line segment GC) and
is unimodal, since a single peak is formed (histogram in Fig. 4.3c). Thus, T contains
a single valley, making it the final splitting interval for valley point computation. MD

on the ecdf plot (Fig. 4.3c) is a close point to the valley region and helps us compute
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Algorithm 4.1 vp = find_vp(X) // X is multimodal
Compute GL set of X
I ← set of candidate splitting intervals of GL

T = [a∗, b∗]← best splitting interval
if X(a∗, b∗) is unimodal then

xMD ← compute MD point of T
if a∗, b∗ gcm points then

vp← xMD+b∗

2

else
vp← a∗+xMD

2

end if
return vp

else
vp← find_vp(X(a∗, b∗))

end if

the valley point. Algorithm 4.1 presents the steps of computing a valley point of a
univariate multimodal dataset X. It takes X as input and returns an appropriate
valley point (vp).

After computing a valley point vp, we split the data into two subsets: a left subset
XL (points on the left of vp) and a right subset XR (points on the right of vp). Then,
the method runs recursively on each subset, until all obtained subsets are unimodal.
The whole method (UniSplit algorithm) is described in Algorithm 4.2, which takes
a univariate dataset X and a list of valley points (vp_list) as input and returns an
updated vp_list that partitions the data domain into adjacent unimodal intervals.

4.3.2 Merging Adjacent Intervals

It should be noted that there exist cases where oversplitting may occur, due to low
density variations at the tails of unimodal subsets. This results in unnecessary split-
tings that define subsets with a small number of data points. To tackle this issue,
we follow the typical merging procedure: Let our dataset X has been splitted into R

adjacent unimodal subsets: X = {X1, X2, ..., XR}. We iteratively merge the two first
sets into one set and check its unimodality. In case it is unimodal we replace the two
sets with their union, otherwise we merge the next two sets and repeat the procedure.
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Algorithm 4.2 vp_list = UniSplit(X, vp_list)
result ← UU-test(X)
if result = unimodal then

return vp_list
end if
vp← find_vp(X)

vp_list← vp_list ∪ {vp}
XL ← X(x1, vp), XR ← X(vp, xN)
vp_list← UniSplit(XL, vp_list)
vp_list← UniSplit(XR, vp_list)
return vp_list
// First call: vp_list=UniSplit(X, ∅)

(a) (b) (c)
Figure 4.5: (a) Bimodal dataset with two computed valley points by UniSplit. (b)
Omitting vp1 leads to a multimodal set X1 ∪ X2, thus vp1 is necessary. (c) Merging
X2 and X3 (omitting vp2) leads to a unimodal set, thus vp2 can be deleted. vp1 is the
final valley point.

The iterations stop when there is no unimodal union of successive sets. In this way
a minimal unimodal partition is obtained, i.e., there is no union of successive subsets
resulting in a unimodal set.

Fig. 4.5a illustrates the histogram of a bimodal dataset with a single density valley.
However, two valley points (vp1, vp2) have been determined by UniSplit method with
the resulting unimodal subsets being X1, X2 and X3. In Fig. 4.5b we merge sets X1

and X2 (by omitting vp1) resulting to a multimodal set X1 ∪X2. This means that vp1
is a required split point and cannot be omitted. Next, we merge X2 with X3 (omitting
vp2), which results to a unimodal set X2 ∪X3 (Fig. 4.5c). In such case, we delete vp2
and our final solution contains a single valley point (vp1).
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4.3.3 Computational Complexity

The computational complexity mainly depends on determining the gcm/lcm points of
the ecdf, which can be computed in O(n logn) using the convex hull of the ecdf plot
[74]. In case the data is unsorted, an additional O(n logn) is needed. Once the gcm/lcm
points are computed, calculating the multimodality degree of a subset requires O(n),
and the valley point is computed in O(1). Thus, computing the first valley point
has a total complexity of O(n logn). As the method iterates through subsets after
each split, with far fewer splits than n, the overall complexity remains O(n logn).
Additionally, the merging procedure incurs O(n logn) complexity due to the UU-test
for unimodality.

4.3.4 UDMM formulation

Based on the result of the UniSplit algorithm which splits multimodal data into uni-
modal subsets, a mixture model can be defined with each component modeling the
unimodal data of each subset. More specifically, given a univariate dataset X , we first
apply UniSplit method to obtain unimodal subsets of X. Then we employ UU-test
to generate a UMM that models each unimodal set. Thus we obtain a hierarchical
statistical model in the form of a mixture of UMMs, where each component is uni-
modal. We call such a model as Unimodal Mixture Model (UDMM). Let we split X
into K unimodal subsets, i.e., X = {X1, ..., XK}. Thus we can build a UDMM with
K components where each component j is unimodal with j = 1, ..., K.

Let N be the size of X and Nj be the size of Xj. For each unimodal subset Xj ,
UU-test provides the set Sj = {sj1, . . . , s

j
Mj+1}. Then a UMM with Mj components

is computed for Xj , where each UMM component i is uniformly distributed in the
range [sji , s

j
i+1], (i = 1, ...,Mj). Let Nij be the the number of data points of Xj in each

interval [sji , s
j
i+1]. The UDMM pdf of the multimodal set X is defined as follows [74]:

p(x) =
K∑
j=1

wj

Mj∑
i=1

πij

sji+1 − sji
I(x ∈ [sji , s

j
i+1)), wj =

Nj

N
, πij =

Nij

Nj

It should be noted that the computed UDMM could also be used to generate
synthetic data samples following the same multimodal distribution as the original dataset.
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4.4 Experimental Results

This section presents the experimental evaluation of our method across various tasks.
At first, the modeling performance of UDMM was assessed using synthetic and real
datasets. Next, its effectiveness in splitting tasks, mode estimation, and splitting quality
was evaluated. UDMM’s applicability to image segmentation based on pixel intensity
was tested, followed by its use as a probability density model in the Naive Bayes
[7] classification method, where class distributions of each feature are modeled by a
UDMM. Finally, we provide examples involving noise and outliers, demonstrating the
robustness of our method and discuss the impact of the statistical significance level
(α) on our method.

4.4.1 Modeling Multimodal Data with UDMM

We conducted a series of experiments using synthetic and real datasets to evaluate the
statistical modeling capabilities of UDMM against GMM, KDE and GMDEB3 [39]. We
have generated synthetic datasets by sampling from various univariate multimodal
distributions defined as mixtures of different unimodal distributions: i) N(µ, σ, n):
Gaussian (Normal) distribution with mean µ and standard deviation σ, ii) U(a, b, n):
uniform distribution between a and b, iii) Tr(l, d, u, n): triangular distribution with
lower limit l, mode d and upper limit u, iv) St(ν, l, s, n): Student’s t distribution with
ν degrees of freedom, location l and scale s, v) C(l, s, n): Cauchy distribution with
location l and scale s, and vi) Γ(k, θ, l, n): Gamma distribution with shape k, scale θ

and location l. In all cases, the parameter n indicates the dataset size.
Specifically, the synthetic datasets were generated from 12 multimodal distributions

(D1 - D12), as shown in Table 4.1. The size of each distribution is also presented as a
multiple of m, where m = 100. We also evaluated the four models on 9 real datasets
[97]. The size and the description of each real dataset is also provided in Table 4.1.

For each synthetic distribution, 50 datasets were generated, and the four mod-
els were fitted to each dataset. While UDMM automatically estimates the number of
components, GMM requires this number as input. Two criteria were used for this
task: BIC [7] and the silhouette score [72]. For BIC, we fit the dataset under con-
sideration using several GMMs with components k ranging from 1 to 10, and the
GMM corresponding to the k value yielding the lowest BIC was considered the best

3GMDEB is implemented using the mclustAddons package [95, 96].
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Table 4.1: Characteristics of synthetic and real datasets.

Name Parameters

Synthetic
D1 N(0, 1, 5m) ∪N(6, 1, 8m)

D2 N(−1, 0.8, 20m) ∪N(4, 1.5, 25m)

D3 St(2, 0, 1, 5m) ∪ U(4, 7, 2m) ∪N(10, 1, 4m)

D4 Tr(−5,−4, 0, 3m) ∪ Tr(1, 5, 6, 5m) ∪ U(7, 10, 2m)

D5 Γ(1, 2, 0, 5m) ∪ Tr(5, 6, 7, 5m) ∪N(10, 0.2, 5m) ∪ St(10, 15, 1, 8m)

D6 C(0, 2,m) ∪ U(50, 55, 3m) ∪ U(100, 105, 3m) ∪ St(1, 200, 1,m)

D7 U(−1, 1, 10m) ∪ U(2, 7, 12m)

D8 St(1,−10, 1, 2m) ∪ St(2, 0, 1, 3m) ∪ St(1, 5, 1, 3.5m) ∪ St(3, 15, 1, 2.5m) ∪ St(5, 20, 1, 4m)

D9 U(−20,−15, 10m) ∪ U(−10, 0, 25m) ∪ U(1, 10, 30m) ∪ U(12, 14, 20m) ∪ U(20, 50, 15m) ∪ U(55, 60, 5m)

D10 U(−15,−7, 50m) ∪N(−2, 4, 40m) ∪N(9, 3, 30m) ∪ U(15, 20, 20m)

D11 St(5,−2, 1, 2m) ∪N(5, 0.5, 2m) ∪ U(7, 10, 2m) ∪ Γ(2, 3, 12, 2m) ∪ U(25, 30, 2m) ∪ Tr(40, 45, 50, 2m) ∪ Tr(55, 56, 60, 2m)

D12 St(1,−50, 1,m) ∪ C(0, 2,m) ∪ U(30, 60,m)

Real Size Description
suicide n = 86 Lengths of spells of psychiatric treatment undergone by control patients in a suicide study.
racial n = 56 Proportion of white student enrollment in school districts in Nassau County (Long Island, New York), for the 1992-1993 school year.
acidity n = 155 Acidity index measured in a sample of lakes in the Northeastern United States.
faithful eruptions n = 272 Eruption duration of the Old Faithful Geyser in Yellowstone National Park, Wyoming, USA.
faithful waiting n = 272 Waiting time in between eruptions of the Old Faithful Geyser in Yellowstone National Park, Wyoming, USA.
galaxy n = 82 Velocities of distant galaxies, diverging from our own galaxy.
enzyme n = 245 Distribution of enzymatic activity in the blood, for an enzyme involved in the metabolism of carcinogenic substances.
stamps n = 485 Thickness measurements (in millimeters) of unwatermarked used white wove stamps of the 1872 Hidalgo stamp issue of Mexico.
geyser n = 272 Interval times between the starts of the geyser eruptions on the Old Faithful Geyser.

solution for the dataset. For the silhouette score, k ranged from 2 to 10 (as silhouette
does not support k = 1), with the k achieving the highest silhouette score selected
as the best GMM solution. Since GMDEB [39] utilizes GMMs for density estimation,
k is estimated using BIC, as with the typical GMM. For KDE, we used a Gaussian
kernel, and considered two rules for the bandwidth estimation: Scott’s rule [98] and
Silverman’s rule [99].

To evaluate the quality of the obtained UDMM, GMM, KDE and GMDEB solutions,
we used the two-sample Kolmogorov-Smirnov (KS) test criterion. The two-sample
KS test computes the maximum absolute difference between the ecdfs of two datasets.
In the case of synthetic datasets, in each experiment we used a dataset generated from
the ground truth distribution and compared it (using the two-sample KS test) with
a dataset generated from each of the four models fitted on the generated dataset. In
the case of real datasets we compared the original dataset with a dataset generated
from each of the four fitted models. We repeated the above procedure 50 times and
obtained the average distance (KS statistic) and the average number of components
(k) for each model. The smaller the distance provided by the KS test, the better the
obtained statistical model. The results are presented in Table 4.2.

The results in Table 4.2 demonstrate that UDMM effectively models univariate
multimodal data. While GMM and KDE excel for datasets generated by Gaussian
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Table 4.2: Statistical model evaluation using the two-sample KS test (the lower the
better). Bold values indicate the best model in each row. The ground truth number
of components (k⋆) (in case of synthetic datasets) and the average estimated number
of components (k) are also provided.

Average KS statistic Average number of components (k)

Name GMM (BIC) GMM (Sil) KDE (Scott) KDE (Silverman) GMDEB UDMM k⋆ GMM (BIC) GMM (Sil) GMDEB UDMM

Synthetic
D1 0.031 0.031 0.026 0.025 0.053 0.032 2 2 2 2.82 2
D2 0.013 0.013 0.014 0.013 0.019 0.016 2 2 2 4.1 2
D3 0.026 0.044 0.027 0.029 0.172 0.027 3 4.96 3.94 1.78 3.1
D4 0.030 0.037 0.030 0.027 0.047 0.025 3 6.14 3 4.26 3
D5 0.021 0.022 0.030 0.032 0.099 0.017 4 7.26 4 3.18 4
D6 0.037 0.061 0.032 0.032 0.267 0.031 4 8.78 4.94 1.78 4.1
D7 0.021 0.042 0.025 0.025 0.022 0.020 2 8.66 2.04 8.16 2
D8 0.026 0.140 0.024 0.022 0.306 0.018 5 8.84 2.62 1.38 5.06
D9 0.016 0.079 0.009 0.010 0.017 0.007 6 10 2 9.9 6
D10 0.011 0.049 0.007 0.007 0.011 0.006 4 9.55 2 8.45 4.05
D11 0.033 0.051 0.024 0.024 0.072 0.017 7 8.28 6.24 3.78 7
D12 0.061 0.132 0.053 0.052 0.281 0.048 3 7.32 3.02 1.48 3.02
Real
suicide 0.097 0.135 0.098 0.094 0.115 0.011 6 3 2 1
racial 0.145 0.145 0.372 0.381 0.225 0.120 2 2 1 1
acidity 0.082 0.082 0.100 0.100 0.165 0.090 2 2 2 1
faithful eruptions 0.070 0.070 0.080 0.080 0.157 0.050 2 2 2 2
faithful waiting 0.070 0.070 0.080 0.090 0.168 0.050 2 2 2 2
galaxy 0.121 0.121 0.048 0.085 0.390 0.109 3 3 1 2
enzyme 0.085 0.093 0.220 0.240 0.155 0.044 2 3 2 2
stamps 0.475 0.565 0.478 0.478 0.099 0.058 3 2 2 1
geyser 0.051 0.051 0.058 0.073 0.161 0.062 2 2 2 1

distributions (e.g., D1 and D2), UDMM’s performance is comparable. In other cases,
UDMM outperforms, accurately estimating the true number of components (k⋆), un-
like GMM (BIC), which often overestimates, and GMDEB, which provides less accu-
rate results. For real data, UDMM performs well except for acidity, galaxy, and geyser
datasets, where it uses fewer components than GMM. However, it is noteworthy that
UDMM achieves its performance using only a single component for the acidity and
geyser datasets, while GMMs employ two components. Overall, UDMM is a successful
statistical model for univariate multimodal data, correctly estimating components in
synthetic datasets and providing accurate modeling solutions for real data with fewer
components compared to other methods.

In Fig. 4.6, we present the histogram and pdf plots of the solutions provided by
the two best-performing models, namely GMM (left plot) and UDMM (right plot), for
some of the datasets from Table 4.1. For the synthetic datasets, GMMs were trained
using the true number of components (k⋆), since the estimated number of components
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D9 D11

D12 faithful eruptions

Figure 4.6: Examples of statistical model fitting results on several datasets using GMM
and UDMM.

(k) for GMM (BIC) and GMM (Sil) is averaged in Table 4.2. For the real datasets,
GMMs were trained using the minimum number of components provided by GMM
(BIC) and GMM (Sil) in Table 4.2. It is evident that the obtained UDMMs constitute
accurate statistical models for the datasets, whereas the GMMs do not always provide
adequate solutions. For instance, in the plots of D11 and D12 in Fig. 4.6, although
GMM uses the ground truth number of components (k⋆ = 7 and k⋆ = 3, respectively),
it fails to accurately fit the two rightmost components. In contrast, UDMM successfully
captures these components without requiring prior knowledge of k⋆.

4.4.2 Multimodal Data Splitting

We also assessed the performance of UniSplit on partitioning univariate synthetic
data, focusing on the accurate estimation of the number of modes and the quality
of data splitting. We compare UniSplit with TailoredDip4 [55], FTC5 [4], mean shift6

[47, 48], modclust7 [42] and MEM8 [53, 54]. TailoredDip and FTC rely on exploiting
unimodality as UniSplit does, while the remaining three methods (mean shift, mod-

4TailoredDip is implemented using the ClustPy package [100] in Python.
5FTC is implemented in Matlab as described in [4].
6For mean shift we use the sklearn package in Python.
7The implementation of modclust is available in http://matematicas.unex.es/ jechacon.
8MEM is implemented using the mclustAddons package [95, 96] in R.
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Table 4.3: Characteristics of synthetic datasets.

Name Distribution Parameters
D13 N(0, 1.7, 700) ∪N(5, 1, 500)

D14 U(−1, 3, 300) ∪ U(8, 10, 200)

D15 Tr(0.8, 1, 5, 1000) ∪ Tr(3, 7.8, 8, 1000)

D16 N(0, 1, 1000) (right part) ∪N(4, 1, 1000) (left part)
D17 Tr(−3.3, 1, 2.5, 1000) ∪N(4, 1, 1000)

D18 U(−2, 0, 200) ∪ U(1, 5, 300) ∪ U(6, 7, 450)

D19 N(0, 1, 500) ∪N(6, 1, 80) ∪N(12, 1, 500) ∪N(18, 1, 100)

D20 N(0, 1, 500) ∪N(4, 1, 300) ∪N(11, 1, 500) ∪ U(14, 15, 50)

D21 N(0, 1, 500) ∪N(4, 1, 300) ∪ U(10, 11, 100) ∪ U(14, 15, 50)

D22 N(0, 1, 500) ∪ U(2.5, 4, 200) ∪ U(10, 11, 100) ∪ U(14, 15, 50)

Table 4.4: Partition evaluation of multimodal datasets. The average and standard
deviation for NMI, the ground truth number of modes (k⋆) and the average number
of detected modes (k) are provided.

Mean NMI Average Number of Detected Modes (k)

Distributions UniSplit TailoredDip FTC Mean shift Modclust MEM k⋆ UniSplit TailoredDip FTC Mean shift Modclust MEM

D13 0.78±0.02 0.71±0.07 0.77±0.03 0.71±0.07 0.75±0.03 0.79±0.02 2 2 2 2.05 2.46 2 2
D14 1.00±0.00 0.94±0.08 1.00±0.00 0.87±0.12 0.41±0.04 0.86±0.16 2 2 2 2 2.56 5.58 2.44
D15 0.71±0.02 0.65±0.07 0.64±0.13 0.61±0.05 0.38±0.06 0.40±0.04 2 2 2 1.97 2.83 4.74 4.29
D16 0.73±0.03 0.71±0.05 0.58±0.29 0.64±0.07 0.41±0.06 0.55±0.10 2 2 2 1.8 2.7 4.2 3.16
D17 0.84±0.02 0.69±0.11 0.78±0.03 0.75±0.09 0.82±0.02 0.84±0.02 2 2 2 2 2.54 2 2
D18 0.99±0.01 0.92±0.11 0.96±0.04 0.91±0.02 0.51±0.04 0.80±0.04 3 3 3 3.32 3.06 8.24 4.43
D19 0.97±0.03 0.89±0.07 0.97±0.04 0.99±0.01 0.99±0.01 0.99±0.01 4 3.9 3.3 3.8 4.07 4 4
D20 0.91±0.04 0.84±0.03 0.89±0.06 0.86±0.02 0.93±0.02 0.93±0.02 4 3.7 3 3 3.01 3.96 3.93
D21 0.89±0.08 0.80±0.08 0.80±0.11 0.73±0.14 0.77±0.12 0.78±0.06 4 3.92 3.76 3.5 3.5 4.56 5.48
D22 0.93±0.02 0.89±0.06 0.92±0.07 0.70±0.00 0.68±0.10 0.75±0.07 4 4.02 3.92 3.88 3 5.92 5.66

clust and MEM) focus on identifying modes and their corresponding clusters within
a distribution, making them well-suited for modal clustering tasks.

We generated synthetic datasets by sampling from various univariate multimodal
distributions (D13 - D22 in Table 4.3). For each distribution, 100 datasets were cre-
ated, and the six methods were applied to cluster the generated data. Ground truth
clustering information was available for each dataset, thus the methods were eval-
uated in terms of splitting (clustering) using the Normalized Mutual Information
(NMI) score. NMI ranges from 0 to 1, with values closer to 1 indicating better clus-
tering performance.

The parameters of each method are initialized as follows. For UniSplit and Tai-
loredDip, the significance level is set to 0.01. TailoredDip also requires a factor pa-
rameter, which defines the maximum difference in sample size during the merge
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test of two clusters, while FTC requires a segmentation parameter e, with large and
small values resulting in coarse and finer segmentation, respectively. We have tuned
both parameters taking into account the NMI value, and finally selected: factor = 0.5

and e = 0. In mean shift, the bandwidth was calculated based on distances between
points, scaling it according to a quantile (0.3) of nearest neighbor distances. Finally,
for GMMs employed in modclust and MEM, we use the k value (ranging from 1 to
10) that yields the lowest BIC score.

Table 4.4 provides the average and standard deviation of NMI values, along with
the ground truth (k⋆) and estimated number of modes (k) for each method across 100
datasets generated by each distribution. UniSplit outperforms most methods in both
splitting performance (NMI) and estimating k. In Gaussian mixture distributions, such
as D13 and D19, UniSplit’s NMI values are slightly lower than the best-performing
methods but remain close, with the estimated k being closely to the ground truth.
Interesting examples include D20, D21, and D22, where the number of uniform com-
ponents increases. In these cases, UniSplit improves, while other methods, such as
modclust and MEM, deteriorate. Overall, UniSplit shows robust performance, accu-
rately estimating the number of modes across different multimodal distributions.

4.4.3 Image Segmentation

A widely studied statistical modeling task concerns image segmentation where the
objective is to identify and differentiate various objects or regions within an image
based on pixel intensities. We have applied UniSplit, TailoredDip, FTC, mean shift,
modclust and MEM to solve this task and tested their performance in estimating the
number of segments and their ability to accurately segment the image. To apply the
methods for rgb (colored) images, each rgb image is first converted to grayscale, thus
a univariate dataset is obtained containing the gray values of the pixels. Then we
applied each compared method to the resulting dataset and obtained a segmentation
of the image, i.e., a partition of the pixels into subsets.

We tested the performance of the six methods on rgb images, where the ground
truth number of colors can be easily determined through visual inspection. Once the
ground truth value of colors (k⋆) has been specified, we used the k-means algorithm
to obtain the ground truth partition for each image, which is subsequently used to
evaluate the quality of the obtained solutions using the NMI score. The parameters
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Table 4.5: Image segmentation results: i) Estimated number of colors (k), ii) NMI
values with respect to a ground truth solution obtained by applying k-means with
the ground truth number of colors (k⋆).

Images k⋆ / NMI UniSplit TailoredDip FTC Mean shift Modclust MEM

France flag
k⋆ = 3 k = 5 k = 6 k = 6 k = 4 k = 8 k = 3

NMI 0.969 0.967 0.967 0.960 0.736 0.740

Europe flag
k⋆ = 2 k = 2 k = 2 k = 2 k = 11 k = 2 k = 9

NMI 0.936 0.965 0.656 0.730 0.853 0.119

Face
k⋆ = 3 k = 3 k = 3 k = 3 k = 5 k = 5 k = 4

NMI 0.998 0.963 0.936 0.950 0.830 0.877

Flower
k⋆ = 6 k = 6 k = 6 k = 6 k = 3 k = 7 k = 6

NMI 0.998 0.996 0.992 0.770 0.851 0.995

of each method are set as they were in the previous experiments.
In Table 4.5 we present the NMI values and the obtained number of colors for each

image as provided by the six methods. In the second column, we provide the ground
truth value of colors (k⋆). In general, the differences in the highest NMI values for
each image are small, indicating that some methods provide similar segmentations.
An interesting case is the flag of Europe, where mean shift and MEM fail to provide
correct segmentation, detecting 11 and 9 colors, respectively, instead of the correct 2,
while FTC, despite its correct estimation, it does not achieve the optimal NMI value.
As shown in Table 4.5, it is clear that UniSplit achieves very high NMI values (> 0.93)
for all images and provides accurate or very close estimates of k compared to k⋆.

In the top four rows of Fig. 4.7 we present the original images in grayscale
(leftmost image in each row) along with the segmented images obtained by each
method. Above the original and segmented images, the ground truth value of colors
(k⋆) and the obtained value of colors (k) by the compared methods are recorded,
respectively. For most images, the methods provide similar visual results, accurately
detecting the main colors of each image. It can be observed that when additional
segments are detected compared to ground truth, these segments correspond to very
small regions of the image that are difficult to be visually detected. For instance,
UniSplit and TailoredDip detect thin line segments between the three major segments
of the France flag. Similarly, in the European flag, mean shift assigns multiple colors
to the stars, while MEM produces a noisy segmentation, as indicated in Table 4.5.

We also evaluated the six compared methods on grayscale images utilizing the
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Figure 4.7: Initial images (first column). Segmented images obtained by the compared
methods (second - seventh column). For rgb images the ground truth value of colors
(k⋆) is illustrated, while the estimated number of colors (k) is provided for both rgb
and grayscale images.
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Table 4.6: Accuracy results on synthetic and real datasets. Bold numbers indicate the
best average performance for each dataset.

Parameters Accuracy

Datasets n d K UDMM - NB GNB

Synthetic 400 2 2 0.998 ± 0.01 0.883 ± 0.03
Banknote 1371 4 2 0.916 ± 0.02 0.837 ± 0.04
Cardiotocography 2126 21 10 0.702 ± 0.02 0.637 ± 0.03
Dermatology 358 34 6 0.891 ± 0.05 0.893 ± 0.08
Glass 214 9 6 0.560 ± 0.06 0.458 ± 0.10
Image-Segmentation 210 19 7 0.785 ± 0.09 0.766 ± 0.11
Iris 150 4 3 0.946 ± 0.05 0.960 ± 0.04
Page Blocks 5473 10 5 0.940 ± 0.01 0.888 ± 0.02
Prestige 98 5 3 0.918 ± 0.06 0.948 ± 0.06
Steel Plates Faults 1941 27 7 0.663 ± 0.02 0.462 ± 0.02
Wall Following Robot Navigation 5456 4 4 0.972 ± 0.01 0.891 ± 0.01
Wall Following Robot Navigation 5456 24 4 0.898 ± 0.03 0.524 ± 0.01

same parameter values as those used in the previous experiment. To illustrate the
segmentation result for each image, we assign to each pixel the average color value
of its group, since the number of colors in these images cannot be reliably assessed
through visual inspection. Therefore a ground truth partition cannot be specified, thus
NMI values cannot be computed. In the bottom three rows of Fig. 4.7, the original
grayscale images (first column) are presented alongside the segmentation results and
the number of segments (k) obtained by each method. UniSplit produces results
closely resembling the original images in all cases, while the other methods often
fall short. Notably, TailoredDip and FTC fail to segment the Moon image accurately,
estimating fewer segments, while modclust and MEM generate noisy segmentations
in the Man-Window image.

4.4.4 UDMM Naive Bayes for Classification

A machine learning algorithm that requires the statistical model of univariate data is
the well-known Naive Bayes classifier [7]. This method assumes independence among
all d features of each example, therefore the per class density of each feature p(zi|Ck)
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(a) Ground truth solution. (b) UDMM-NB solution. (c) GNB solution.

Figure 4.8: Data generated by three uniform rectangles assigned to two classes.

is estimated by considering the set of values of feature zi for the examples belonging
to class Ck. Once the densities p(zi|Ck) have been determined for all features zi and
classes Ck, the posterior probability that an example z = (z1, ..., zd) belongs to class Ck

is proportional to P (Ck|z) ∝ P (Ck)
d∏

i=1

p(zi|Ck) where P (Ck) are typically set equal to
class frequencies and the example z is assigned to the class with maximum posterior
probability.

A widely approach is Gaussian Naive Bayes (GNB), which assumes that p(zi|Ck)

follows a single Gaussian distribution. In this experiment we model each feature
density p(zi|Ck) using a UDMM and we call the resulting method as UDMM-NB.
We have considered one synthetic and several real datasets [5]. For each dataset,
we used 10-fold cross validation to measure the accuracy. Table 4.6 provides the
names and parameters (n: number of samples, d: number of features, K: number
of classes) of each dataset in the first four columns, with the average and standard
deviation of accuracy values for UDMM-NB and GNB in the fifth and sixth columns.
UDMM-NB generally outperforms GNB, except for small datasets like Iris and Pres-
tige, where sample sizes per class are low. A notable example is the synthetic 2-d
dataset (Fig. 4.8), where UDMM-NB correctly discriminates the two classes, while
GNB lacks the flexibility required for correctly modeling the data points (as also
indicated in the first row of Table 4.6).

4.4.5 Examples with Noise and Outliers

Noise and outliers can affect the ecdf shape, as well as the gcm/lcm points positions,
but as shown in [74], the unimodality decisions by UU-test remain unaffected. Pre-
vious experiments with synthetic datasets containing outliers, such as distributions
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(a) Original trimodal dataset.

(b) Trimodal dataset with uniform noise added to the val-

leys.

(c) Trimodal dataset with left-side Student’s t-distributed

noise (outliers).

Figure 4.9: Histogram and ecdf plots of a trimodal dataset before and after adding
noise/outliers. The original valley points (dotted vertical lines) are almost identical to
the final valley points (solid vertical lines).

D6, D8, and D12 (Table 4.2), demonstrated that UDMM outperformed other models
in component detection and modeling accuracy, even with extreme values (e.g., in
D6 the range is [−6800, 330]). We next provide an example that highlights UniSplit’s
robustness to noise and outliers. For a trimodal dataset (Fig. 4.9a), UniSplit identi-
fies two valley points (vp1, vp2) (dotted vertical lines). When uniform noise is added
between Gaussians (Fig. 4.9b), the ecdf changes, but the valley points (solid vertical
lines) remain close to their original locations. Similarly, the addition of outliers (on
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the left) generated from a Student’s t distribution (Fig. 4.9c) shifts gcm/lcm points
and modifies the ecdf significantly, however UniSplit detects correctly the number
and positions of valley points (solid lines coincide with the original dotted lines),
indicating robustness against noise and outliers.

4.4.6 Impact of the Statistical Significance Level

The UniSplit method automatically estimates the number of valleys in univariate mul-
timodal data, leading to the automatic determination of the number of components
in the UDMM, unlike other models requiring user-defined hyperparameters. UniSplit
requires solely the significance level (α) of the uniformity test employed in UU-test,
which was set to α = 0.01 in all previous experiments.

To examine the influence of α, experiments were repeated with α = 0.05 and
α = 0.1 using datasets from Table 4.1. Results showed minimal influence on UDMM’s
performance or component count. In 9 of 21 datasets, the number of components
remained unchanged across all values of α. In 10 datasets, small increases (0.6%–
12.3%) were observed as α increases. For example, in synthetic dataset D4, the average
number of components increased from k = 3 (when α = 0.01) to k = 3.02 (when
α = 0.1), and in D10, from k = 4.05 to k = 4.55. In the real datasets stamps and
geyser, k increased more noticeably (from 1 to 3); however they could be considered
as borderline cases of unimodality, as evident from histogram inspection.

4.5 Summary

In this chapter, we have proposed an approach for partitioning and statistical mod-
eling of univariate datasets. The method relies on the notion of unimodality and
partitions the dataset into unimodal subsets through a novel approach for determin-
ing valley points in the probability density. We have introduced properties of critical
points (gcm/lcm points) of the data ecdf that provide indications on the existence of
density valleys and further are exploited in the proposed UniSplit algorithm. UniSplit
is non-parametric and automatically estimates the number of unimodal subsets. In
contrast to other approaches, it requires only a statistical significance threshold as
input and no other user specified hyperparameters. After splitting the datasets into
unimodal subsets, our approach constructs a Unimodal Mixture Model (UDMM),
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where each mixture component constitutes a statistical model of the corresponding
unimodal subset in the form of a Uniform Mixture Model (UMM). The number
of UDMM components is automatically obtained by the proposed UniSplit method,
which constitutes a significant advantage over other models (e.g., GMM). In addition
UDMM is very flexible and does not assume any specific parametric form for the uni-
modal mixture components. Experimental results on various modeling and clustering
tasks indicate that UniSplit and UDMM are generally superior to competing methods
without requiring any hyperparameter tuning.
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CHAPTER 5

UNSUPERVISED DECISION TREES FOR AXIS
UNIMODAL CLUSTERING

5.1 Introduction

5.2 Notations and Definitions

5.3 Axis Unimodal Clustering with a Decision Tree Model

5.4 Experimental Results

5.5 Summary

5.1 Introduction

As mentioned in previous chapters, the concept of unimodality has been employed
in unimodality tests, statistical modeling and valley detection (mode estimation). In
Chapter 1, Section 1.2.3, the application of unimodality tests in clustering methods
is also discussed. Since most clustering methods handle multidimensional data, and
most unimodality tests are applied to univariate data only, some techniques have
been proposed that apply the unimodality tests on univariate datasets containing for
example 1-d projections of the data or distances between data points. Unimodality
assessment has been used either in a top-down fashion, by splitting clusters that
are decided as multimodal [3, 29], or in a bottom-up fashion by merging clusters
whose union is decided as unimodal [101]. In addition to intuitive justification, the
use of unimodality provides a natural way to terminate the splitting or merging
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procedure, thus allowing for the automated estimation of the number of clusters. Since
those methods provide ellipsoidal or arbitrarily shaped clusters the results are not
interpretable. We aim to tackle this issue by proposing a unimodality-based method
for the construction of decision trees for clustering.

A detailed analysis of decision trees is provided in Chapter 1, Section 1.4. While
decision trees are widely used in supervised learning tasks (e.g., classification), their
construction becomes more challenging in unsupervised learning tasks (e.g., cluster-
ing), where data labels are absent, and only data points are available. Unlike typical
clustering methods (e.g., k-means), which do not inherently provide explanations for
the resulting clusters, decision trees offer an interpretable decision-making process.

Our approach is based on the notion of an axis unimodal cluster: a cluster where
all features are unimodal, i.e., the set of values of each feature is unimodal as de-
cided by a unimodality test [77]. The proposed method, called Decision Trees for Axis
Unimodal Clustering (DTAUC), follows the typical top-down splitting paradigm for
building axis-aligned decision trees (the data space is partitioned into hyperrectan-
gular regions) and aims to partition the initial dataset into axis unimodal clusters.
The decision rule at each node involves an appropriately selected feature and the
corresponding threshold value. More specifically, given the dataset at each node,
the multimodal features are first detected. For each multimodal feature, we follow a
greedy strategy to detect the best threshold value (denoted as split threshold) that splits
the set of feature values into subsets so that the unimodality of the partition is in-
creased. We propose two criteria, criterion 1 and criterion 2, that rely on unimodality
tests to assess the unimodality of the partition.

More specifically, criterion 1 is based on the p-values provided by Hartigans’ dip-
test [27] for unimodality. To improve performance, we combine this criterion with
another one that measures the separation of data points before and after the split
point, thus obtaining the final criterion used to assess the quality of splitting. Criterion
2 is based on the multimodality degree1 of a multimodal feature. A high degree of
multimodality indicates that this feature provides an appropriate split threshold. For
assessing unimodality criterion 2 uses the UU-test [74] for unimodality.

Based on these criteria, the best-split threshold for a multimodal feature is de-
termined. The procedure is repeated for every multimodal feature and the feature-
threshold pair of highest quality (criterion 1) or highest multimodality degree (cri-

1For details on multimodality degree see Chapter 4, Section 4.2.1
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terion 2) is used to define the decision rule of the node. When the data subset in a
node does not contain any multimodal features, i.e., it is axis unimodal, no further
splitting occurs, the node is characterized as leaf and a cluster label is assigned to this
node. In this way at the end of the method, a partitioning of the original dataset into
axis unimodal clusters has been achieved that is interpretable since it is represented
by an axis-aligned decision tree.

The proposed DTAUC algorithm is direct (e.g., does not employ k-means as a
preprocessing step), end-to-end and relies on the intuitively justified notion of uni-
modality. It is simple to implement and does not employ computationally expensive
optimization methods. It contains no hyperparameters except for the statistical signif-
icance level of the unimodality test. The latter remark is important since most unsu-
pervised decision tree methods include hyperparameters such as number of clusters,
maximum tree depth, etc., which are difficult to tune in an unsupervised setting.

The rest of this chapter is organized as follows. In Section 5.2 we provide the
necessary definitions and notations along with the unimodality tests (Hartigans’ dip-
test [27] and UU-test [74]) demonstrating illustrative figures. In Section 5.3 we de-
scribe the proposed method (DTAUC) for constructing unsupervised decision trees
for clustering that mainly relies on the computation of appropriate split thresholds
for partitioning multimodal features. The two proposed criteria for determining those
split thresholds are also presented. Comparative experimental results are provided in
Section 5.4, while Section 5.5 summarizes this chapter.

5.2 Notations and Definitions

In this section, we provide some definitions needed to present and clarify our method.
At first, we briefly describe Hartigans’ dip-test and UU-test, as they are employed in
criterion 1 and 2, respectively. Illustrative figures are provided to clarify the concepts
of the two criteria. Next, we present the definition for an axis unimodal dataset and
finally, we provide notations related to the binary decision tree which is built by our
method.
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5.2.1 Dip‐Test for Unimodality

Hartigans’ dip-test [27] constitutes the most popular unimodality test and in this
chapter, it is used for deciding unimodality of univariate datasets in criterion 1. In dip-
test the null hypothesis Ha is that F is unimodal, while the alternative hypothesis H1

suggests multimodality. H0 is accepted at significance level a if p-value > a, otherwise
it is rejected. A detailed description of dip-test is provided in Chapter 1, Section 1.2.2.

Fig. 5.1 illustrates examples of unimodal and multimodal datasets in terms of
pdf plots (histograms) and ecdf plots. The p-values provided by the dip-test are
also presented above each subfigure. In Fig. 5.1a a unimodal dataset generated by
a Gaussian distribution is illustrated along with the corresponding p-value = 0.98.
p-values close to 1 indicate unimodality and this is also evident in that case. In
contrast, Fig. 5.1b presents a dataset generated by two close Gaussian distributions
which does not clearly constitute a unimodal or multimodal dataset. This uncertainty
is indicated by the computed p-value of 0.08, which is closer to 0. In this case, the
significance level defined by the user plays a crucial role in determining unimodality.
For example, if the significance level is set to α = 0.1, then a p-value less than α

leads to the dataset being determined multimodal. However, with significance levels
of α = 0.01 or α = 0.05, the dataset would be considered unimodal. In Fig. 5.1c,d
two strongly multimodal datasets are shown, with two and three peaks, respectively.
The p-value is 0 in both datasets, and the test decides multimodality regardless of the
significance level chosen by the user.

5.2.2 UU‐Test for Unimodality

The UU-test [74] is a method for determining the unimodality of a dataset by con-
structing a piecewise linear (PL) approximation of its ecdf. In this chapter it is used
in criterion 2 in order to assess unimodality of a feature. It uses critical points called
gcm and lcm points to form an ordered set and attempts to build a unimodal PL

function, where gcm points precede lcm points. For the approximation to be accurate,
the data within each interval between successive gcm and lcm points must follow the
uniform distribution, which is ensured by a uniformity test. The UU-test is described
in detail in Chapter 2, Section 2.3.

In case UU-test fails constructing a good approximation of the ecdf, it indicates
multimodality, which occurs when there exist non-uniform intervals between gcm and
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(a) (b)

(c) (d)

Figure 5.1: Histogram and ecdf plots of unimodal and multimodal univariate datasets.
The p-values provided by the dip-test are also presented. (a) Unimodal dataset. (b)
Borderline case of unimodal dataset (with two close peaks). (c) Multimodal dataset
(with two peaks). (d) Multimodal dataset (with three peaks).

lcm points, indicating the presence of density valleys. In such cases, those non-uniform
intervals are utilized to detect appropriate valley points. In Chapter 4, Section 4.2 an
analysis is conducted on the existence and number of density valleys, by examining
intervals [a, b] between successive gcm or lcm points. Specifically, three main cases are
discussed:

(a) If the data in [a,b] are uniformly distributed, the ecdf segment is linear, indi-
cating no density valley, as both gcm or lcm points lie within the same mode’s
increasing or decreasing segment.

(b) A non-uniform but unimodal distribution in [a,b] results in a nonlinear ecdf
segment, suggesting a single density valley between the successive modes rep-
resented by gcm or lcm points.

(c) When [a,b] is non-uniform and multimodal, the ecdf segment shows both con-
vex and concave sections, pointing to multiple density valleys corresponding to
the multiple modes within the interval.
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Multimodality Degree

To quantify the degree of multimodality within a data interval, the distance among
the peaks and the depth of the valley between the peaks on the data histogram
is considered. Larger distances between peaks and deeper valleys indicate a higher
multimodality degree, distinguishing intervals from uniformity. For an interval [a, b],
the multimodality degree is calculated as the maximum deviation d of the ecdf from
the cdf of the uniform distribution, FU(x). Specifically, d = max

x∈X(a,b)
(|F (x) − FU(x)|),

where d is marked by the maximum deviation (MD2) point, typically located near
valley points.

In Fig. 4.4 (see Chapter 4, Section 4.2.1) larger distance between peaks results in
a higher d value (top row), while for intervals with equal peak spacing, valley depth
further influences d: deeper valleys increase d, indicating a stronger deviation from
uniformity of the corresponding ecdf segment (bottom row). The location of the MD

point aligns closely with valley points, helping to define an accurate valley point3.

5.2.3 Axis Unimodal Dataset

Let X ⊆ Rd be a dataset consisting of data vectors in a d-dimensional space. Each
point x ∈ X can be represented as a vector x = (x1, x2, . . . , xd), where xj ∈ R denotes
the j-th feature of x for j = 1, 2, . . . , d. We also denote as Xj the j-th feature vector
of the dataset X , which consists of the j-th feature values of all points in X. Given
a dataset X , a feature j is characterized as unimodal or multimodal based on the
unimodality or multimodality of Xj.

Definition 5.1. A d-dimensional dataset X is axis unimodal if every feature j is uni-
modal, i.e., each univariate subset Xj (j = 1, . . . , d) (consisting of the j-th feature
values) is unimodal [77].

Obviously, in order for a dataset X to be decided as axis unimodal, a unimodality
test (e.g., dip-test, UU-test) should decide unimodality for each subset Xj. A dataset
that is not axis unimodal will be called axis multimodal.

2More details on MD point are given in Chapter 4, Section 4.2.1.
3More details on computing valley points are given in Chapter 4, Section 4.3.1 and Fig. 4.2.
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5.2.4 Node Splitting

Let u be a node during decision tree construction and X the corresponding set of
data vectors to be split by applying a thresholding rule on a feature value. A split
rule for u is defined as the pair (j, sp) ∈ {1, 2, . . . , d} × R, where j is the feature on
which the rule is applied and sp is the corresponding threshold level. A splitting
rule of the form {x ∈ X : xj ≤ sp} is then applied to the node. We denote the
subset of X that satisfies this condition as XL, while the set of points that do not
satisfy this condition is denoted as XR. Two child nodes uL and uR are then created
corresponding to the subsets XL and XR, respectively. In this chapter, we aim to
determine the feature-threshold pair that results in a decrease in the multimodality of
the partition by computing two appropriately defined criteria. We denote the best-split
pair as (j⋆, sp⋆), where j⋆ and sp⋆ denote the best feature and the best split threshold,
respectively. If for the dataset X , no features are detected for splitting, then node u

is considered a leaf. This occurs when the dataset X is axis unimodal.

5.3 Axis Unimodal Clustering with a Decision Tree Model

The proposed method can be considered as a divisive (i.e., incremental) cluster-
ing approach that is based on binary cluster splitting and produces rectangular axis
unimodal clusters. It starts with the whole dataset as a single cluster and, at each
iteration, it selects an axis multimodal cluster and splits this cluster into two subclus-
ters. The method terminates when all produced clusters are axis unimodal. Binary
cluster splitting is implemented by applying a decision threshold on the values of a
multimodal feature. In this way the cluster assignment procedure can be represented
with a typical (axis-aligned) decision tree, ensuring the interpretability of the cluster-
ing decision. Obviously, the leaves of the decision tree correspond to axis unimodal
clusters.

Since our objective is to produce axis unimodal clusters, we consider multimodal
features for cluster splitting. Let X be the multimodal cluster to be split and Xj be
the set of values of a multimodal feature j. Since Xj is multimodal, our objective
is to determine a splitting threshold such that the splitting of Xj will result in two
subsets XjL and XjR that are less multimodal than Xj (ideally they should be both
unimodal). We define two criteria to evaluate the partition (XjL, XjR) in terms of
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unimodality and separation (criterion 1) and multimodality degree (criterion 2).
In criterion 1, we follow the typical case for decision tree construction, i.e., we eval-

uate several partitions obtained by considering all multimodal features and several
candidate threshold values for each feature. The best partition is determined accord-
ing to the criterion 1 and the corresponding feature-threshold pair, which defines the
decision rule for splitting cluster X. Criterion 2 identifies the best partition, i.e., the
best multimodal feature and the best split threshold, using a more direct approach.
By detecting non-uniform intervals between gcm and lcm points of the data ecdf
and assessing their multimodality degree, it achieves identifying the best partition,
without the need to explicitly test all possible threshold values.

The two criteria used to evaluate a partition are presented next.

5.3.1 Criterion 1

Let S = {s1, s2, . . . , sN} denote the set of values corresponding to a multimodal fea-
ture. Initially, we sort the values si, i = 1, 2, . . . , N in ascending order. For each
i = 1, 2, . . . , N − 1 we consider the average between si and its successor si+1 as candi-
date split threshold sp. Given a threshold value sp, S is partitioned into two subsets:
a left subset SL (values on the left of sp) and a right subset SR (values on the right
of sp). Let also NL and NR be the sizes of SL and SR, respectively. The dip-test is
then applied to both subsets to assess their unimodality, yielding two p-values: pL for
SL and pR for SR. To evaluate the effectiveness of threshold sp, we define a weighted
p-value of the partition: psplit = NL

N
pL + NR

N
pR.

An intuitive justification of the psplit formula is the following:

1. If both subsets SL and SR are multimodal, then the pL-value and pR-value are
low resulting in a low psplit value.

2. If both subsets SL and SR are unimodal, then the pL-value and pR-value are
high resulting in a high psplit value.

3. In case one subset (let SL) is unimodal and the other (let SR) is multimodal,
we need to consider the size of each subset: if NL > NR and since pL > pR

(unimodal SL, multimodal SR) then the resulting psplit value is high. In the
opposite case, the set SR becomes the dominant set and thus psplit demonstrates
a lower value.
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(a) (b)

Figure 5.2: Histogram of a bimodal dataset along with its split threshold (star) com-
puted using criterion 1. (a) The split threshold was computed without utilizing the
separation criterion. (b) The split threshold was computed taking into account the
separation criterion.

Case 2 describes a scenario where the data splits into two unimodal sets resulting
in high psplit values. In case 3 a dominant unimodal subset is compared against a
relatively small multimodal subset, also yielding high psplit values. These findings
indicate that high psplit values occur when the split highlights one or two unimodal
subsets. By selecting the candidate threshold value providing the highest psplit value
we obtain a partition of S into subsets of increased average unimodality.

Following the above procedure, we have experimentally noticed that although
sensible splittings were generally obtained, the selected threshold sp was not always
very accurate. For example, Fig. 5.2a illustrates the histogram of a bimodal dataset
along with the computed sp marked with a star. Splitting can be considered successful
since the dataset is split into two unimodal subsets; however, the sp presented in
Fig. 5.2b is a more accurate split point than the one in Fig. 5.2a. Thus, there is
some room for improvement in threshold determination. To tackle this issue we
consider not only the unimodality partition, but also the separation of points before
and after the threshold sp. More specifically, we consider a subset of w successive
points right before sp and a second subset of w successive points right after sp. We
define the separation (sep) of a threshold value sp as the average distance among all
pairs of points belonging to different subsets. A large distance value indicates a high
separation between the points before and after sp, thus sp lies in a density valley.
Therefore, the split corresponding to sp is efficient, if the separation is high. We
denote as sep(sp) the separation of the points defined by a split point sp. We choose
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Algorithm 5.1 (sp⋆, q⋆) = best_split_point_c1(S, α)
p-value ← dip-test(S, α)
if p-value > a return ∅ // S: unimodal
S ← sort(S)

for all i with w < i ≤ N − w do
spi ← si+si+1

2

SLi
← S(s1, spi)

SRi
← S(spi, sN)

pLi
← dip-test(SLi

, α)

pRi
← dip-test(SRi

, α)

pspliti ←
NLi

N
pLi

+
NRi

N
pRi

sepi ← sep(spi)

qi ← pspliti × sepi

end for
i⋆ ← argmax

i

(qi)

sp⋆ ← spi⋆

q⋆ ← qi⋆

return (sp⋆, q⋆)

a small value of w (e.g., w = 0.01 × N), with the choice of value w not affecting the
final result. Since sep computation requires at least w points before and after sp, we
do not consider candidate threshold values defined by the first w and last w points
of S.

Therefore, since our objective is to determine a threshold with both a high psplit

value and high sep value, we define a new criterion q = psplit × sep to measure
the quality of a split (criterion 1). A high q value provides a split into two highly
separated (high sep value) and unimodal (high psplit value) subsets. Thus, we choose
the candidate threshold sp resulting in a maximum q value as the best split threshold
and denote it as sp⋆. Algorithm 5.1 presents the steps of computing the best-split point
sp⋆ of a univariate dataset S using criterion 1. It first takes as input the univariate
dataset S and the significance level α and returns the best-split point sp⋆ of S along
with the corresponding q⋆ value. In case S is unimodal as decided by the dip-test,
then Algorithm 5.1 returns the empty set.
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Figure 5.3: Histogram plots of synthetic datasets along with the best split thresholds
found using criterion 1 (stars) and criterion 2 (circles).

5.3.2 Criterion 2

Non-uniform intervals defined by successive gcm or lcm points of the ecdf are called
“candidate splitting intervals” indicating that they contain at least one valley (as
described in Chapter 4, Section 4.3.1). Among them, the one with the highest degree
of non-uniformity (highest multimodality degree) is selected as the “best splitting
interval”. Based on case (b) in Section 5.2.2, in case this interval is unimodal, a single
valley exists. For the computation of the valley point, the maximum deviation (MD)
point and the interval’s boundary points are utilized. In case the boundary points are
gcm points, the vp is computed as the middle point of MD and the upper boundary,
while in case the boundaries are lcm points, the vp is computed as the middle of
the lower boundary and the MD. Fig. 4.2 (see Chapter 4, Section 4.3.1) provides
illustrative plots. In case the best splitting interval is multimodal, multiple valleys
may exist, requiring recursive refinement. Then we focus on the most non-uniform
subinterval and repeat the process until a unimodal interval is found. This ensures
that the final valley point corresponds to a single valley within the best splitting
interval. Fig. 4.3 (see Chapter 4, Section 4.3.1) provides illustrative plots.

Since the valley point is detected in the best splitting interval (which corresponds
to the interval with the highest multimodality degree) the determined valley point in
the interval demonstrates the best split threshold of the feature (given a multimodal
feature). Algorithm 5.2 presents the steps of computing the best-split point sp⋆ of
a univariate dataset S using criterion 2. It takes as input the univariate dataset S
and the significance level α and returns the best-split point sp⋆ of S along with
the corresponding d⋆ value. In case S is unimodal as decided by the UU-test, then
Algorithm 5.2 returns the empty set. Fig. 5.3 illustrates the histogram plots and the
best split points of several datasets which are generated by sampling from mixtures
of Gaussian, uniform and triangular distributions. The best split points computed
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Algorithm 5.2 (sp⋆, d⋆) = best_split_point_c2(S, α)
if UU-test(S, α) decides unimodality for S return ∅ // S: unimodal
Compute GL set of S
I ← set of candidate splitting intervals of GL

T = [a∗, b∗]← best splitting interval
if X(a∗, b∗) is unimodal then

d⋆ ← max
s∈S(a∗,b∗)

(|F (s)− FU(s)|)
sMD ← compute MD point of T
if a∗, b∗ gcm points then

sp⋆ ← sMD+b∗

2

else
sp⋆ ← a∗+sMD

2

end if
return (sp⋆, d⋆)

else
(sp⋆, d⋆)← best_split_point_c2(S(a∗, b∗))

end if

using criterion 1 are marked with stars, whereas those computed using criterion 2
are marked with circles. Notably, both criteria yield nearly identical split points.

5.3.3 Decision Tree Construction

Next, we describe our method, called Decision Trees for Axis Unimodal Clustering
(DTAUC), for obtaining interpretable axis unimodal partitions of a multidimensional
dataset. Our method employs a divisive (top-down) procedure, thus we first assign the
whole initial dataset to the root node. Assuming that at some iteration a node u con-
tains a dataset X , our goal is to determine the splitting rule for node u. This involves
determining the best pair consisting of a multimodal feature and the corresponding
split threshold. The steps for determining the best pair according to criterion 1 and
2 are provided below.

Criterion 1

To identify the best split for u using criterion 1, we work as follows: first, we apply
the dip-test to detect the multimodal features of X. If all features are unimodal,
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node u is considered a leaf and no split occurs. If multimodal features exist,
then for each multimodal feature j, Algorithm 5.1 is used to compute its best
split threshold spj and the corresponding evaluation qj of the resulting partition.
Among the multimodal features, we select as best the one with maximum qj

value. Algorithm 5.3 describes the steps for determining the splitting rule of a
dataset X using criterion 1. It takes the set X and a significance level α as input
and returns the best pair (j⋆, sp⋆) where j⋆ is the selected multimodal feature
and sp⋆ the corresponding threshold.

Criterion 2

To identify the best split for u using criterion 2, we work as follows: first we
apply the UU-test to detect the multimodal features of X. Similarly to criterion
1, if all features are unimodal, node u is considered as leaf and no split occurs. If
multimodal features exist, then for each multimodal feature j, Algorithm 5.2 is
used to compute its best split threshold spj and the corresponding multimodality
degree dj. Among the multimodal features we select as best the one with max-
imum dj value. Algorithm 5.4 describes the steps for determining the splitting
rule of a dataset X using criterion 2. It takes the set X and a significance level
α as input and returns the best pair (j⋆, sp⋆) where j⋆ is the selected multimodal
feature and sp⋆ the corresponding threshold.

Algorithm 5.3 (j⋆, sp⋆) = best_split_c1(X,α)
for all feature Xj do

pj-value ← dip-test(Xj, a)
if pj-value ≤ a then
(spj, qj)← best_split_point_c1(Xj, α)

end if
end for
if pj-value> a, ∀j return ∅ // X: axis unimodal
j⋆ ← argmax

j

(qj)

sp⋆ ← spj⋆

return (j⋆, sp⋆)
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Algorithm 5.4 (j⋆, sp⋆) = best_split_c2(X,α)
for all feature Xj do
unimodality ← UU-test(Xj, a)
if unimodality = False then
(spj, dj)← best_split_point_c2(Xj)

end if
end for
if unimodality = True, ∀Xj return ∅ // X: axis unimodal
j⋆ ← argmax

j

(dj)

sp⋆ ← spj⋆

return (j⋆, sp⋆)

In case the best split for u exists (i.e., u is not considered as a leaf), the data
vectors of X are partitioned into two subsets, XL and XR, based on the feature j⋆

values: XL = {x ∈ X : xj⋆ ≤ sp⋆} and XR = {x ∈ X : xj⋆ > sp⋆}. Therefore
two child nodes of u, denoted as uL and uR, are added to the tree, corresponding
to sets XL and XR, respectively. Finally, the method is applied recursively on each
resulting node, until all nodes are identified as leaves, i.e., the subsets in all nodes are
axis unimodal. We assign each leaf a cluster label meaning that each leaf represents
a single cluster. Therefore, an axis unimodal partition of the initial dataset X into
hyperrectangles is obtained. Algorithm 5.5 describes the proposed DTAUC method. It
takes a multidimensional dataset X and a significance level α as input and returns the
constructed tree using either criterion 1 or criterion 2. It should be emphasized that
the algorithm does not require as input the number of clusters which is automatically
determined by the method.

5.3.4 An Illustrative Example

Table 5.1 presents the intermediate steps from the application of DTAUC on the two-
dimensional dataset (called X) illustrated in the first plot of Fig. 5.4a. In this example,
DTAUC uses criterion 1 to determine the best split pairs with the final partition being
identical using both criteria. For each subset of X (listed in first column), we provide
the feature along with its unimodal (U) / multimodal (M) property (second column)
as determined by the dip-test. The best split thresholds sp⋆ and the corresponding q
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Algorithm 5.5 DTAUC(X,α)
Create a root node u corresponding to X

(j⋆, sp⋆)← best_split(X,α) // using criterion 1 or 2
if (j⋆, sp⋆) = ∅ then

return the leaf u
else

XL = {x ∈ X : xj⋆ ≤ sp⋆}
XR = {x ∈ X : xj⋆ > sp⋆}
uL ←DTAUC(XL, α)
uR ←DTAUC(XR, α)
return the decision tree rooted at u

end if

values for each feature are given in the third and fourth columns, respectively. The
fifth column indicates whether to split or save the set mentioned in the first column.
If a split decision is made, the best split feature is mentioned in parentheses. Either
two subsets are created (in case of a split decision) or the set specified in the first
column is axis unimodal, thus it is saved in set C which contains the axis unimodal
subsets.

In Fig. 5.4 we provide illustrative plots corresponding to the step-by-step partition
of the 2-D set X. Fig. 5.4a displays the 2-D plot of the initial dataset X , along with
the histogram plots of feature vectors X1 and X2. A higher q value is computed for
feature X2 (q2 = 1.96 > q1 = 0.47) as shown in Table 5.1, thus we apply the split on
feature X2 with the threshold value sp2 = 4.14. The partitioning of X into two subsets
XL and XR is given in the right plot of Fig. 5.4a. The dotted line illustrates the split
threshold sp2. The plot of XL is presented in Fig. 5.4b. The first feature is bimodal,
while the second is unimodal, as indicated by the histogram plots and the q values
for X1 and X2 in Table 5.1. Therefore, the split is applied considering the first feature
using the threshold value sp3 = 6.17 (dotted line in the right plot of Fig. 5.4b). This
split results in two subsets, denoted as XLL and XLR. Fig. 5.4c illustrates the 2-D plots
of XLL and XLR along with the corresponding histograms for each feature. It is clear
that XLL and XLR are axis unimodal, thus we save them in C. The 2-D plot of XR is
presented in Fig. 5.4d, where it is clear that each feature is unimodal (the histogram
plots and q values for XR in Table 5.1 indicate unimodality), thus we save it in set C.
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Table 5.1: Stepwise partitioning of the two-dimensional dataset of Figure 5.4a using
criterion 1.

Sets Features sp⋆ q Split (j⋆) or Save Result

X
1 (M) sp1 = 9.29 q1 = 0.47

Split X (j⋆ = 2) Sets XL, XR
2 (M) sp2 = 4.14 q2 = 1.96

XL

1 (M) sp3 = 6.17 q3 = 6.72
Split XL (j⋆ = 1) Sets XLL, XLR

2 (U) ∅ ∅

XLL

1 (U) ∅ ∅
Save XLL C = {XLL}

2 (U) ∅ ∅

XLR

1 (U) ∅ ∅
Save XLR C = {XLL, XLR}

2 (U) ∅ ∅

XR

1 (U) ∅ ∅
Save XR C = {XLL, XLR, XR}

2 (U) ∅ ∅

The final 2-D plot of X is given in Fig. 5.4e, where the two resulting split thresholds
(horizontal split sp2 and vertical split sp3) and the final partition {XLL, XLR, XR} of
X are illustrated. The corresponding binary decision tree for dataset X is presented
in Fig. 5.5.

5.4 Experimental Results

5.4.1 Evaluating DTAUC Performance

In this section we assess the performance of DTAUC on clustering synthetic and real
data, focusing on the accurate estimation of the number of clusters and the quality of
data partitioning. We compare the DTAUC method (using criteria 1 and 2) with the
ICOT method [70] and the ExShallow method [62]. To the best of our knowledge,
ICOT is the only method that provides a partition of the data into axis-aligned regions
without using the ground-truth number of clusters during training. We also include
an indirect method (ExShallow) in our experimental evaluation, in order to compare
DTAUC and ICOT with a method that uses the ground-truth number of clusters.

The three methods were applied to both synthetic (from the Fundamental Clus-
tering Problems Suite (FCPS) [102]) and real datasets (from UCI [5]). Since ground
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(a)

(b)

(c)
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(d) (e)

Figure 5.4: Stepwise partitioning of a 2-D dataset (X) into axis unimodal rectangular
regions using criterion 1. (a) 2-D plot of the original dataset X , with histogram plots
of each feature, the obtained split points, and the resulting 2-D plot illustrating X

split (by sp2) into two clusters (XL, XR). (b) 2-D plot of XL, with histogram plots of
each feature, the obtained split point, and the resulting 2-D plot illustrating XL split
(by sp3) into two clusters (XLL, XLR). (c) 2-D plots of XLL and XLR, along with the
unimodal histogram plots of each feature. (d) 2-D plot of XR, along with the unimodal
histogram plots of each feature. (e) Final 2-D plot of X , illustrating the final split
points (sp2, sp3) that partition X into three axis unimodal clusters (XLL, XLR, XR).

X2 ≤ 4.14

X1 ≤ 6.17

XLL

True

XLR

False

True

XR

False

Figure 5.5: Binary decision tree constructed for the two-dimensional dataset of Fig-
ure 5.4a.

truth clustering information is available for each dataset, we evaluated the two meth-
ods in terms of splitting (clustering) performance using the widely used Normalized
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Table 5.2: Parameters of synthetic and real datasets used in the experiments.

Dataset n d k⋆

Synthetic

Synthetic I 750 3 4
Hepta 212 3 7
Lsun 400 2 3
Tetra 400 3 4
TwoDiamonds 800 2 2
WingNut 1016 2 2

Real

Boot Motor 94 3 3
Dermatology 366 33 6
Ecoli 327 7 5
Hist OldMaps 429 3 10
Image Seg. 210 19 7
Iris 150 4 3
Ruspini 75 2 4
Seeds 210 7 3

Mutual Information (NMI) score defined as follows:

NMI(Y,C) =
2× I(Y,C)

H(Y ) +H(C)
, (5.1)

where Y denotes the ground-truth labels, C denotes the cluster labels, I(·) is the
mutual information measure and H(·) the entropy. This score ranges between 0 and
1, with a value close to 1 indicating that the ground truth partition has been found.
All three methods build binary decision trees; therefore, we selected datasets suitable
for partitioning into axis-aligned clusters for our experimental evaluation. Table 5.2
presents the parameters of each dataset (n: number of samples, d: number of features,
k⋆: ground-truth number of clusters). We used min-max scaling for all datasets to
ensure comparability with the ICOT method, which assumes features in the [0, 1]

range.
The DTAUC method uses a single parameter, the significance level α, which is

necessary for the dip-test and UU-test to determine data unimodality during the
splitting procedure. To determine an appropriate α for each dataset, we used the
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Table 5.3: Partition results on synthetic data reported: (i) The estimated number of
clusters (k) and (ii) NMI values with respect to the ground truth labels. The ground
truth number of clusters (k⋆) is also reported.

Dataset k⋆/NMI DTAUC_c1 DTAUC_c2 ICOT ExShallow

Synthetic I
k⋆ = 4 k = 4 k = 4 k = 3 k⋆ is given
NMI 0.99 0.99 0.77 0.60

Hepta
k⋆ = 7 k = 7 k = 7 k = 4 k⋆ is given
NMI 0.95 0.98 0.74 1.00

Lsun
k⋆ = 3 k = 3 k = 3 k = 4 k⋆ is given
NMI 0.97 0.99 0.73 0.53

Tetra
k⋆ = 4 k = 4 k = 7 k = 4 k⋆ is given
NMI 0.94 0.92 1.00 1.00

Two Diamonds
k⋆ = 2 k = 2 k = 2 k = 2 k⋆ is given
NMI 1.00 1.00 1.00 1.00

WingNut
k⋆ = 2 k = 2 k = 2 k = 2 k⋆ is given
NMI 1.00 1.00 1.00 0.17

silhouette score [72] that is commonly used to assess the quality of a clustering
solution. Specifically, for each dataset, we run the method for each value of α ∈
{0.01, 0.05, 0.1}, compute the silhouette score for each obtained partition and keep the
partition of maximum score as the final partition. In the ICOT method, we utilized a
k-means warm start and retained the remaining parameters as specified in [70]. We
encountered challenges running ICOT on datasets with a large number of features
or clusters. This aligns with observations made by the authors in [70], who reported
excessive runtimes for some datasets. For the ExShallow method, we provided the
ground-truth number of clusters to run k-means and obtain the cluster labels. Then, a
supervised binary decision tree is built by minimizing appropriate metrics as proposed
in [62].

Tables 5.3 and 5.4 present for each dataset the NMI values and the number of
clusters (k) as provided by the methods (it should be noted that in ExShallow the
number of clusters is given). The ground-truth number of clusters (k⋆) is also pro-
vided in the second column of each table. DTAUC_c1 and DTAUC_c2 correspond to
DTAUC method using criteria 1 and 2, respectively. The performance of DTAUC is
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Table 5.4: Partition results on real data reported: (i) The estimated number of clusters
(k) and (ii) NMI values with respect to the ground truth labels. The ground truth
number of clusters (k⋆) is also reported.

Dataset k⋆/NMI DTAUC_c1 DTAUC_c2 ICOT ExShallow

Boot Motor
k⋆ = 3 k = 3 k = 3 k = 3 k⋆ is given
NMI 1.00 1.00 1.00 0.99

Dermatology
k⋆ = 6 k = 28 k = 67 k = 2 k⋆ is given
NMI 0.55 0.50 0.44 0.83

Ecoli
k⋆ = 5 k = 3 k = 3 k = 2 k⋆ is given
NMI 0.61 0.61 0.01 0.54

Hist OldMaps
k⋆ = 10 k = 10 k = 11 k = 2 k⋆ is given
NMI 0.74 0.81 0.03 0.75

Image Seg.
k⋆ = 7 k = 7 k = 8 k = 2 k⋆ is given
NMI 0.69 0.58 0.01 0.60

Iris
k⋆ = 3 k = 2 k = 4 k = 2 k⋆ is given
NMI 0.73 0.64 0.73 0.81

Ruspini
k⋆ = 4 k = 5 - k = 4 k⋆ is given
NMI 0.89 - 1.00 1.00

Seeds
k⋆ = 3 k = 2 - k = 2 k⋆ is given
NMI 0.63 - 0.53 0.66

superior compared to ICOT in most cases, achieving higher NMI values and closer
estimations (k) of the ground-truth number of clusters (k⋆). However, DTAUC en-
counters challenges with some datasets, such as the Tetra dataset, where there is
significant overlap among clusters. Another dataset where DTAUC_c1 demonstrates
inferior performance is the Ruspini dataset. This dataset is relatively small (n = 75)
and one of the four clusters is not compact. Consequently, DTAUC splits the non-
compact cluster into two subclusters, detecting five clusters instead of four. For the
Ruspini and Seeds datasets, DTAUC_c2 is not able to detect multimodal features or
provide splits using the given α values (0.01, 0.05, 0.1). While it can generate splits
with higher values of α, using α > 0.1 is not a reliable choice in the context of
statistical tests.

Another dataset to be discussed is Synthetic I, a three-dimensional dataset where
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(a)

(b)

Figure 5.6: 2-D plots of (a) Synthetic I and (b) WingNut. The ground truth partition
and the partitions obtained by DTAUC (using either criterion 1 or 2), ICOT and
ExShallow are provided.

feature vectors X1 and X2 were generated using two Gaussian distributions and two
uniform rectangles, and X3 was generated using a uniform distribution. A 2-D plot
of Synthetic I, with axes representing features X1 and X2, is provided in the left plot
of Fig. 5.6a. It should be noted that since feature X3 is uniformly distributed it does
not contribute to the splitting process. This dataset is separated by axis-aligned splits;
however, the ICOT and ExShallow methods fail in this task. As shown in Fig. 5.6a,
ICOT fails to estimate the correct number of clusters (k = 3 instead of the actual
k⋆ = 4) (right plot), while the partition obtained by DTAUC (using either criterion 1
or 2) (middle plot) is successful. The 2-D plot of the ExShallow solution is almost
identical to the ICOT plot (right plot in Fig. 5.6a).

DTAUC provides successful data partitions and accurately (or very closely) esti-
mates the number of clusters for most synthetic and real datasets. In datasets (e.g.,
Ruspini) where sparse clusters exist, DTAUC demonstrates inferior performance com-
pared to ICOT, since, based on the criterion of unimodality, it decides to split those
clusters. However, ICOT is inferior in simple datasets, such as Synthetic I and Lsun,
particularly when the clusters are close to each other and have a rectangular shape.
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Table 5.5: Parameters of synthetic datasets used in the experiments comparing the
two proposed criteria of the DTAUC method.

Dataset n d k⋆

Synthetic II 800 2 5
Synthetic III 400 2 3
Synthetic IV 576 2 4
Synthetic V 790 2 5
Synthetic VI 2900 2 10
Synthetic VII 1900 2 3
Synthetic VII 2100 2 7

Table 5.6: Partition results of DTAUC method using criterion and criterion 2 on
synthetic data reported: (i) The estimated number of clusters (k) and (ii) NMI values
with respect to the ground truth labels. The ground truth number of clusters (k⋆) is
also reported.

Dataset k⋆/NMI DTAUC_c1 DTAUC_c2

Synthetic II
k⋆ = 5 k = 6 k = 5

NMI 0.952 0.995

Synthetic III
k⋆ = 3 k = 3 k = 3

NMI 0.986 1.00

Synthetic IV
k⋆ = 4 k = 2 k = 4

NMI 0.880 1.00

Synthetic V
k⋆ = 5 k = 5 k = 5

NMI 0.986 0.995

Synthetic VI
k⋆ = 10 k = 11 k = 10

NMI 0.978 0.992

Synthetic VII
k⋆ = 3 k = 4 k = 3

NMI 0.890 0.979

Synthetic VIII
k⋆ = 7 k = 7 k = 7

NMI 0.959 0.962

In what concerns the indirect method (ExShallow), the information provided about
the ground truth number of clusters seems to be helpful, in general. However, there
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are simple datasets where it provides inferior results, such as Synthetic I, Lsun and
WingNut. For example, in the case of the WingNut dataset (as illustrated in Fig. 5.6b),
a single vertical line is required to split the data into two clusters (left plot); however,
ExShallow fails to correctly determine this split (right plot). This mainly occurs due to
an incorrect initial partition provided by the k-means algorithm, that is employed in
the initial processing step. In this dataset, both DTAUC and ICOT provide a successful
solution (middle plot).

5.4.2 Comparing Criterion 1 with Criterion 2

At this part of our experimental evaluation, we aim to compare the performance of the
two proposed criteria (1 and 2) in DTAUC method. We created seven 2-d datasets and
applied DTAUC method on each of them using the two criteria. Table 5.5 presents
the parameters of each synthetic dataset.

In Table 5.6, we present the NMI values and the number of clusters (k) estimated
by the DTAUC method using each criterion, along with the ground-truth number of
clusters (k⋆), which is provided in the second column. Both criteria demonstrate high
performance, with NMI results being similar. However, DTAUC_c2 achieves slightly
higher NMI values across all datasets and provides cluster estimates that are closest to
the ground truth numbers. In contrast, DTAUC_c1 produces less accurate estimates
for some datasets, such as Synthetic II and IV.

The 2-D plots of the datasets listed in Table 5.6 are shown in Fig. 5.7, illustrat-
ing the original datasets (left plots), the solutions obtained by DTAUC_c1 (middle
plots), and those by DTAUC_c2 (right plots). In most cases, the partitions are similar.
However, for the Synthetic IV, VI, and VII datasets, the two criteria yield different so-
lutions. Synthetic IV is a dataset containing four clusters (two very small and two very
large) that can be partitioned with one vertical and one horizontal line. DTAUC_c1,
however, fails to identify X2 as a multimodal feature and, consequently, does not
compute a horizontal split for X2. In Synthetic VI and VII, DTAUC_c1 incorrectly
splits a coherent rectangular cluster into two clusters, resulting in k = 11 and k = 4

clusters instead of the ground truth k⋆ = 10 and k⋆ = 3, respectively. In contrast,
DTAUC_c2 successfully provides accurate partitions for these datasets.

Overall, although the two criteria demonstrate high performance and often pro-
duce nearly identical results, each one has its limitations. First, for a given feature,
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Figure 5.7: 2-D plots of synthetic datasets (Synthetic II – Synthetic VIII) illustrating
the ground truth partition and the partitions obtained by DTAUC_c1 and DTAUC_c2.
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DTAUC_c1 requires an explicit search to identify an appropriate split threshold among
the feature values, whereas DTAUC_c2 is more straightforward, estimating the thresh-
old directly using the splitting intervals provided by the UU-test. Both criteria de-
pend on the significance level required for the dip-test (DTAUC_c1) and UU-test
(DTAUC_c2). In our experiments, we ran DTAUC for α ∈ {0.01, 0.05, 0.1}; however,
DTAUC_c2 fails to provide a partition for two real datasets in Table 5.4 using these
values, whereas DTAUC_c1 does not encounter this issue. Additionally, compared to
DTAUC_c1, DTAUC_c2 produces more clusters than the ground truth in three real
datasets. A limitation of DTAUC_c1 is its sensitivity to imbalanced clusters. In simple
datasets from Table 5.6, where partitioning into hyperrectangles seems to be straight-
forward, DTAUC_c1 fails to deliver an entirely accurate partition, either due to the
issue of imbalanced clusters or due to incorrect splitting of coherent clusters.

5.5 Summary

In this chapter, we have introduced the notion of axis unimodal cluster and pro-
posed a method (DTAUC) for constructing binary trees for clustering based on axis
unimodal partitions. This method follows the typical top-down paradigm for decision
tree construction. It implements dataset splitting at each node by applying thresh-
olding on the values of an appropriately selected multimodal feature. In order to
select features and thresholds, two criteria have been proposed for the quality of the
resulting partition that take into account unimodality and separation (criterion 1) and
multimodality degree (criterion 2). The method automatically terminates when the
subsets in all nodes are axis unimodal.

The DTAUC method relies on the idea of unimodality, which is closely related
to clustering. It is simple to implement and provides axis-aligned partitions of the
data, thus it offers interpretable clustering solutions. In addition, it does not involve
any computationally expensive optimization technique, while it demonstrates the sig-
nificant advantage that (apart from the typical statistical significance level) it does
not include user-specified hyperparameters, for example, the number of clusters, the
maximum depth of the tree or post-processing techniques, such as a pruning step.

In our experimental evaluation we assessed the performance of DTAUC on clus-
tering both synthetic and real data, focusing on the accurate estimation of the number
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of clusters and the quality of data partitioning. DTAUC, using either criterion 1 or
criterion 2, was compared against methods that either require the number of clusters
as input or determine it automatically. The experiments have shown that it pro-
vides successful data partitions and closely estimates the number of clusters across
most synthetic and real datasets. Additionally, a comparison of the two criteria re-
vealed their strong performance, with results often being nearly identical. However,
each criterion has specific limitations, such as high dependence on the significance
level or sensitivity to imbalanced clusters, making them complementary in handling
challenging clustering problems.

142



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The objective of this thesis was the development and implementation of machine
learning methods based on the notion of unimodality. During the elaboration of
the thesis we mainly focused on four different axes: i) creating a unimodality test
for deciding data unimodality, ii) splitting multimodal data into unimodal subsets
by detecting appropriate valley points, iii) building statistical models of univariate
unimodal and multimodal data and iv) constructing (unsupervised) binary decision
trees for clustering based on axis unimodal partitions.

Specifically, in Chapter 2, we proposed the Unimodal Uniform Test (UU-test), a
novel approach for evaluating unimodality in one-dimensional datasets and construct-
ing effective statistical models for unimodal data. The method operates by analyzing
the empirical distribution function (ecdf) of a dataset, constructing a cumulative dis-
tribution function (cdf) that is piecewise linear, unimodal, and sufficiently models the
data. The latter is ensured by applying uniformity tests on the data subsets corre-
sponding to the linear segments. A key feature of UU-test is that it does not require
any parameter estimation or bootstrapping, which makes it computationally efficient
compared to methods like the dip-test. A notable advantage of UU-test is its dual pur-
pose: it not only decides whether a dataset is unimodal but also generates a statistical
model for the data in the form of a Uniform Mixture Model (UMM). This model pro-
vides a meaningful representation of the underlying distribution while maintaining
simplicity and interpretability. Unlike typical methods that focus solely on deter-
mining unimodality, UU-test fills the gap by offering both a decision and a model,
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which is particularly beneficial in applications that require further data processing or
simulation.

Future research could focus on integration of the UU-test on various data analysis
tasks exploiting the decisions on unimodality that it offers. UU-test could be used in
clustering algorithms [3, 29] that currently rely on the dip-test for unimodality. As
illustrated in Chapter 2, Section 2.6, in addition to the decision on unimodality (also
provided by dip-test), UU-test directly suggests appropriate cut points in the case of
multimodality. Such information is valuable for the clustering algorithm, since the
cut points can be used for splitting the multimodal clusters. UU-test could also be
used in applications that rely on statistical modeling to enhance the typical approach
for unimodal data modeling by using the Uniform Mixture Model instead of using a
single distribution (e.g. Gaussian, uniform, Student’s t etc.). Another line of research
concerns the generation of synthetic unimodal data that follow the same distribution
as the original unimodal dataset. Finally, the UU-test method could prove useful in
image thresholding problems that work with the image histogram [103, 104, 105].

In Chapter 3 we focused on improving UMM performance provided by UU-test,
by substituting the uniform distribution with a more flexible distribution. Specifically,
we proposed the Unimodal Π-sigmoid Mixture Model (UΠsMM), which replaces the
uniform components of UMM with Π-sigmoid distributions. The Π-sigmoid distribu-
tion, defined as the difference of two translated logistic sigmoids, exhibits significant
flexibility, enabling it to approximate a wide range of distributions, from Gaussian to
uniform, by adjusting the slope of the sigmoids. This versatility allows UΠsMM to
effectively capture the underlying characteristics of unimodal data. A critical aspect
of our approach is the initialization of UΠsMM using the output of the UU-test algo-
rithm, which ensures the unimodality of the initial mixture model. During training via
the Expectation-Maximization (EM) algorithm, we addressed the challenge of main-
taining the unimodality constraint. To this end, we introduced a mechanism to detect
and correct any violations of unimodality during training by iteratively reducing the
number of mixture components. This procedure not only ensures that the result-
ing model remains unimodal but also leads to a more parsimonious representation,
improving its generalization ability.

While the current approach ensures unimodality during training, future work
could focus on refining the optimization process to enhance convergence speed and
computational efficiency. Incorporating modern optimization techniques or approx-
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imate EM algorithms could further improve the training phase, especially for large
datasets. Although the Π-sigmoid distribution provides notable flexibility, future re-
search could investigate alternative distributions with similar or greater flexibility
to model unimodal data. Comparing the performance of UΠsMM with these alter-
natives could provide insights into potential improvements or hybrid approaches.
Additionally, since UΠsMM effectively models univariate unimodal data, similar to
UMM, future research could focus on integrating the proposed approach into machine
learning/data mining algorithms and methodologies that exploit univariate statistical
modeling (e.g. Naive Bayes). Another major research direction is related to the sta-
tistical modeling of multimodal datasets using a mixture of UΠsMMs, where each
UΠsMM component models a unimodal subset of the data.

In Chapter 4, we introduced the Unimodal Mixture Model (UDMM), a hierar-
chical statistical mixture model for effectively modeling univariate multimodal data.
The UDMM builds on the Uniform Mixture Model (UMM) by leveraging its ability to
model unimodal data and extends this capability to multimodal distributions through
the use of a novel data partitioning technique, UniSplit. The proposed UniSplit algo-
rithm determines valley points of univariate multimodal data achieving to split the
original data into unimodal subsets. This approach relies on the idea of unimodality.
We introduced properties of critical points (gcm/lcm points) of the data ecdf that pro-
vide indications on the existence of density valleys. These properties are exploited in
the proposed UniSplit algorithm. The subsets provided by UniSplit are then modeled
using UMMs, resulting in a flexible, non-parametric approach for density estimation
that requires no training or manual hyperparameter tuning.

One of the key strengths of UDMM is its flexibility and independence from specific
parametric assumptions about the underlying distributions of the data. This makes
the method particularly appropriate for datasets generated by sources of different
probability density (e.g., one Gaussian and one uniform). Additionally, the number
of components in the UDMM is determined automatically, eliminating the need for
user-defined parameters such as the number of components in Gaussian Mixture
Models or the kernel bandwidth in mean shift algorithm. The lack of hyperparam-
eters, apart from the statistical significance level of the uniformity test, underscores
the method’s ease of use and practical applicability. Through experiments on syn-
thetic and real-world datasets, we demonstrated the efficacy of UDMM for statistical
modeling and the robustness of the UniSplit algorithm for partitioning multimodal
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data into unimodal subsets. The comparisons with alternative clustering and mod-
eling approaches highlighted the advantages of our method in terms of flexibility,
accuracy, and interpretability.

Since the proposed approach provides accurate statistical modeling of univariate
data, it could be employed in any method or application requiring this type of mod-
eling. Exploitation of the method for partitioning and statistical modeling of multidi-
mensional datasets constitutes an important future research direction. For example,
this could be achieved by determining appropriate univariate projections of the data
where UniSplit could be employed for data splitting. Another direction for future
work is to address the limitation of UDMM when applied to very small datasets,
particularly in cases where limited data within specific intervals can lead to missing
gcm/lcm points, resulting in unidentified valley points. To overcome this challenge,
future research could explore alternative approaches for valley detection that do not
solely rely on gcm/lcm points.

Finally, in Chapter 5 we introduced Decision Trees for Axis Unimodal Clustering
(DTAUC), a novel clustering methodology that is based on the notion of axis uni-
modality to partition datasets into interpretable axis-aligned clusters. DTAUC builds
decision trees in a top-down manner, where each split is guided by a carefully se-
lected feature and an optimal threshold that increases the unimodality of the resulting
partition. Two distinct criteria were proposed to evaluate the quality of splits: the first
combines the p-values from Hartigans’ dip-test with a separation metric, while the
second uses the multimodality degree and the UU-test for unimodality. DTAUC is a
simple method that offers interpretability. It avoids the complexity of preprocessing
steps, computationally intensive optimization methods, or numerous hyperparame-
ters that are typical in many unsupervised decision tree methods. Instead, it only
requires setting the statistical significance level for the unimodality test, making it
well-suited for unsupervised settings where hyperparameter tuning is challenging.
Additionally, the axis-aligned decision tree structure provides a clear representation
of the clustering process, enhancing the interpretability of the results.

Future work could focus on using a set of features/splitting rules (instead of a
single feature/splitting rule) at each node, as oblique trees do. While this would make
the resulting trees less interpretable, it would offer more accurate clustering solutions.
It is also interesting to implement post-processing steps to improve the performance
of DTAUC. In DTAUC each tree leaf represents a single cluster. Several methods
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merge adjacent leaves into larger clusters, thereby capturing more complex structures
in the data. After obtaining the final tree, we could consider the possibility of merging
leaves if the unimodality assumption is retained.

147



BIBLIOGRAPHY

[1] I. Stoepker and E. van den Heuvel, “Testing for multimodality,” Ph.D. disser-
tation, BS thesis, Eindhoven University of Technology, Eindhoven, 2016.

[2] A. Siffer, P.-A. Fouque, A. Termier, and C. Largouët, “Are your data gathered?”
in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 2018, pp. 2210–2218.

[3] S. Maurus and C. Plant, “Skinny-dip: clustering in a sea of noise,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1055–1064.

[4] J. Delon, A. Desolneux, J.-L. Lisani, and A. B. Petro, “A nonparametric ap-
proach for histogram segmentation,” IEEE Transactions on Image Processing,
vol. 16, no. 1, pp. 253–261, 2006.

[5] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to knowl-
edge discovery in databases,” AI Magazine, vol. 17, no. 3, pp. 37–37, 1996.

[7] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[8] I. Kononenko and M. Kukar, Machine Learning and Data Mining. Horwood
Publishing, 2007.

[9] S. D. Silvey, Statistical Inference. Routledge, 2017.

[10] W. J. Conover, Practical Nonparametric Statistics. John Wiley & Sons, 1999, vol.
350.

148

http://archive.ics.uci.edu/ml


[11] E. L. Lehmann, J. P. Romano, and G. Casella, Testing Statistical Hypotheses.
Springer, 1986, vol. 3.

[12] Y. Dodge, “Kolmogorov–smirnov test,” The Concise Encyclopedia of Statistics, pp.
283–287, 2008.

[13] G. McLachlan, “Finite mixture models,” A Wiley-Interscience Publication, 2000.

[14] C. Loader, Local Regression and Likelihood. Springer Science & Business Media,
2006.

[15] S. Dharmadhikari and K. Joag-Dev, Unimodality, Convexity, and Applications.
Elsevier, 1988.

[16] T. W. Anderson and D. A. Darling, “Asymptotic theory of certain ”goodness
of fit” criteria based on stochastic processes,” Ann. Math. Statist., vol. 23, no. 2,
pp. 193–212, 06 1952.

[17] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611, 12 1965.

[18] J. H. Wolfe, “Pattern clustering by multivariate mixture analysis,” Multivariate
Behavioral Research, vol. 5, no. 3, pp. 329–350, 1970.

[19] L. Engelman and J. A. Hartigan, “Percentage points of a test for clusters,”
Journal of the American Statistical Association, vol. 64, no. 328, pp. 1647–1648,
1969.

[20] M. C. Minnotte, A Test of Mode Existence with Applications to Multimodality. Rice
University, 1993.

[21] B. W. Silverman, “Using kernel density estimates to investigate multimodality,”
Journal of the Royal Statistical Society: Series B (Methodological), vol. 43, no. 1, pp.
97–99, 1981.

[22] P. Hall and M. York, “On the calibration of silverman’s test for multimodality,”
Statistica Sinica, pp. 515–536, 2001.

[23] D. W. Muller and G. Sawitzki, “Excess mass estimates and tests for multi-
modality,” Journal of the American Statistical Association, vol. 86, no. 415, pp.
738–746, 1991.

149



[24] G. Sawitzki, The Excess Mass Approach and the Analysis of Multi-modality.
Springer, 1996.

[25] J. A. Hartigan and S. Mohanty, “The runt test for multimodality,” Journal of
Classification, vol. 9, no. 1, pp. 63–70, 1992.

[26] G. P. M. Rozál and J. Hartigan, “The map test for multimodality,” Journal of
Classification, vol. 11, no. 1, pp. 5–36, 1994.

[27] J. A. Hartigan, P. M. Hartigan et al., “The dip test of unimodality,” The Annals
of Statistics, vol. 13, no. 1, pp. 70–84, 1985.

[28] A. Adolfsson, M. Ackerman, and N. C. Brownstein, “To cluster, or not to cluster:
An analysis of clusterability methods,” Pattern Recognition, vol. 88, pp. 13–26,
2019.

[29] A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering method for
estimating the number of clusters,” in Advances in Neural Information Processing
Systems, 2012, pp. 2393–2401.

[30] B. Schelling and C. Plant, “Diptransformation: Enhancing the structure of a
dataset and thereby improving clustering,” in 2018 IEEE International Confer-
ence on Data Mining (ICDM). IEEE, 2018, pp. 407–416.

[31] A. Krause and V. Liebscher, “Multimodal projection pursuit using the dip
statistic,” Ernst-Moritz-Arndt-Univ., Inst. für Mathematik und Informatik,
Tech. Rep., 2005.

[32] L. H. Fraser, J. Pither, A. Jentsch, M. Sternberg, M. Zobel, D. Askarizadeh,
S. Bartha, C. Beierkuhnlein, J. A. Bennett, A. Bittel et al., “Worldwide evidence
of a unimodal relationship between productivity and plant species richness,”
Science, vol. 349, no. 6245, pp. 302–305, 2015.

[33] C. Barichievy, D. G. Angeler, T. Eason, A. S. Garmestani, K. L. Nash, C. A.
Stow, S. Sundstrom, and C. R. Allen, “A method to detect discontinuities in
census data,” Ecology and Evolution, vol. 8, no. 19, pp. 9614–9623, 2018.

[34] K. Johnsson, M. Linderoth, and M. Fontes, “What is a “unimodal” cell pop-
ulation? using statistical tests as criteria for unimodality in automated gating
and quality control,” Cytometry Part A, vol. 91, no. 9, pp. 908–916, 2017.

150



[35] X. Yao, J. Cafaro, A. J. McLaughlin, F. R. Postma, D. L. Paul, G. Awatramani,
and G. D. Field, “Gap junctions contribute to differential light adaptation across
direction-selective retinal ganglion cells,” Neuron, vol. 100, no. 1, pp. 216–228,
2018.

[36] N. Schmitt and F. Westerhoff, “On the bimodality of the distribution of the s&p
500’s distortion: Empirical evidence and theoretical explanations,” Journal of
Economic Dynamics and Control, vol. 80, pp. 34–53, 2017.

[37] D. Cliff, “Co-evolutionary dynamics in a simulation of interacting financial-
market adaptive automated trading systems,” in 34th European Modelling and
Simulation Symposium. CAL-TEK SRL, 2022, pp. 1–13.

[38] D. Cliff, “Parameterised response zero intelligence traders,” Journal of Economic
Interaction and Coordination, pp. 1–54, 2023.

[39] L. Scrucca, “A transformation-based approach to gaussian mixture density es-
timation for bounded data,” Biometrical Journal, vol. 61, no. 4, pp. 873–888,
2019.

[40] J. Li and H. Zha, “Two-way poisson mixture models for simultaneous docu-
ment classification and word clustering,” Computational Statistics & Data Analysis,
vol. 50, no. 1, pp. 163–180, 2006.

[41] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Sra, and G. Ridgeway, “Clustering on
the unit hypersphere using von mises-fisher distributions.” Journal of Machine
Learning Research, vol. 6, no. 9, 2005.

[42] J. E. Chacón, “Mixture model modal clustering,” Advances in Data Analysis and
Classification, vol. 13, pp. 379–404, 2019.

[43] R. A. Sampaio, J. D. Garcia, M. Poggi, and T. Vidal, “Regularization and op-
timization in model-based clustering,” Pattern Recognition, vol. 150, p. 110310,
2024.

[44] J. Hartigan, Clustering Algorithms. New York: John Wiley & Sons, 1975.

[45] J. E. Chacón, “The modal age of statistics,” International Statistical Review, vol. 88,
no. 1, pp. 122–141, 2020.

151



[46] G. Menardi, “A review on modal clustering,” International Statistical Review,
vol. 84, no. 3, pp. 413–433, 2016.

[47] K. Fukunaga and L. Hostetler, “The estimation of the gradient of a density
function, with applications in pattern recognition,” IEEE Transactions on Infor-
mation Theory, vol. 21, no. 1, pp. 32–40, 1975.

[48] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790–799, 1995.

[49] Y. A. Sheikh, E. A. Khan, and T. Kanade, “Mode-seeking by medoidshifts,” in
2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007, pp.
1–8.

[50] J. N. Myhre, K. Ø. Mikalsen, S. Løkse, and R. Jenssen, “Robust clustering using
a knn mode seeking ensemble,” Pattern Recognition, vol. 76, pp. 491–505, 2018.

[51] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,”
Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[52] Z. Rasool, S. Aryal, M. R. Bouadjenek, and R. Dazeley, “Overcoming weaknesses
of density peak clustering using a data-dependent similarity measure,” Pattern
Recognition, vol. 137, p. 109287, 2023.

[53] J. Li, S. Ray, and B. G. Lindsay, “A nonparametric statistical approach to clus-
tering via mode identification.” Journal of Machine Learning Research, vol. 8,
no. 8, 2007.

[54] L. Scrucca, “A fast and efficient modal em algorithm for gaussian mixtures,”
Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 14, no. 4,
pp. 305–314, 2021.

[55] L. G. Bauer, C. Leiber, C. Böhm, and C. Plant, “Extension of the dip-test
repertoire-efficient and differentiable p-value calculation for clustering,” in Pro-
ceedings of the 2023 SIAM International Conference on Data Mining (SDM). SIAM,
2023, pp. 109–117.

[56] C. Molnar, Interpretable Machine Learning. Lulu. com, 2020.

152



[57] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and Regression
Trees. CRC Press, 1984.

[58] J. R. Quinlan, “Discovering rules by induction from large collections of exam-
ples,” Expert Systems in the Micro Electronics Age, 1979.

[59] J. R. Quinlan, “C4. 5: Programs for machine learning,” 1993.

[60] G. V. Kass, “An exploratory technique for investigating large quantities of cat-
egorical data,” Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 29, no. 2, pp. 119–127, 1980.

[61] J. R. Quinlan et al., “Learning with continuous classes,” in 5th Australian joint
conference on artificial intelligence, vol. 92. World Scientific, 1992, pp. 343–348.

[62] E. Laber, L. Murtinho, and F. Oliveira, “Shallow decision trees for explainable
k-means clustering,” Pattern Recognition, vol. 137, p. 109239, 2023.

[63] P. Tavallali, P. Tavallali, and M. Singhal, “K-means tree: an optimal clustering
tree for unsupervised learning,” The Journal of Supercomputing, vol. 77, no. 5,
pp. 5239–5266, 2021.

[64] H. Blockeel, L. De Raedt, and J. Ramon, “Top-down induction of clustering
trees,” arXiv preprint cs/0011032, 2000.

[65] J. Basak and R. Krishnapuram, “Interpretable hierarchical clustering by con-
structing an unsupervised decision tree,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 1, pp. 121–132, 2005.

[66] R. Fraiman, B. Ghattas, and M. Svarc, “Interpretable clustering using unsu-
pervised binary trees,” Advances in Data Analysis and Classification, vol. 7, pp.
125–145, 2013.

[67] B. Liu, Y. Xia, and P. S. Yu, “Clustering through decision tree construction,”
in Proceedings of the Ninth International Conference on Information and Knowledge
Management, 2000, pp. 20–29.

[68] M. Gabidolla and M. Á. Carreira-Perpiñán, “Optimal interpretable clustering
using oblique decision trees,” in Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, 2022, pp. 400–410.

153



[69] D. Heath, S. Kasif, and S. Salzberg, “Induction of oblique decision trees,” in
IJCAI, vol. 1993. Citeseer, 1993, pp. 1002–1007.

[70] D. Bertsimas, A. Orfanoudaki, and H. Wiberg, “Interpretable clustering: an
optimization approach,” Machine Learning, vol. 110, no. 1, pp. 89–138, 2021.

[71] D. Bertsimas and J. Dunn, “Optimal classification trees,” Machine Learning, vol.
106, pp. 1039–1082, 2017.

[72] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp.
53–65, 1987.

[73] J. C. Dunn, “Well-separated clusters and optimal fuzzy partitions,” Journal of
Cybernetics, vol. 4, no. 1, pp. 95–104, 1974.

[74] P. Chasani and A. Likas, “The uu-test for statistical modeling of unimodal
data,” Pattern Recognition, vol. 122, p. 108272, 2022.

[75] P. Chasani and A. Likas, “Statistical modeling of univariate unimodal data using
Π-sigmoid mixture models,” in Artificial Intelligence Applications and Innovations,
I. Maglogiannis, L. Iliadis, J. Macintyre, M. Avlonitis, and A. Papaleonidas, Eds.
Cham: Springer Nature Switzerland, 2024, pp. 349–361.

[76] P. Chasani and A. Likas, “Statistical modeling of univariate multimodal data,”
2024. [Online]. Available: https://arxiv.org/abs/2412.15894

[77] P. Chasani and A. Likas, “Unsupervised decision trees for axis unimodal
clustering,” Information, vol. 15, no. 11, 2024. [Online]. Available: https:
//www.mdpi.com/2078-2489/15/11/704

[78] T. Robertson, F. Wright, and R. Dykstra, Order Restricted Statistical Inference.
New York: John Wiley and Sons, 1988.

[79] G. McLachlan and D. Peel, Finite Mixture Models. Wiley, New York, 2000.

[80] P. F. Craigmile and D. Tirrerington, “Parameter estimation for finite mixtures of
uniform distributions,” Communications in Statistics-Theory and Methods, vol. 26,
no. 8, pp. 1981–1995, 1997.

154

https://arxiv.org/abs/2412.15894
https://www.mdpi.com/2078-2489/15/11/704
https://www.mdpi.com/2078-2489/15/11/704


[81] N. Bouguila and W. Fan, Mixture Models and Applications. Springer, 2020.

[82] S. Chen and M. Wang, “Seeking multi-thresholds directly from support vectors
for image segmentation,” Neurocomputing, vol. 67, pp. 335–344, 2005.

[83] J. Fox and S. Weisberg, An R Companion to Applied Regression, 3rd ed.
Thousand Oaks CA: Sage, 2019. [Online]. Available: https://socialsciences.
mcmaster.ca/jfox/Books/Companion/

[84] T. Chamalis and A. Likas, “The projected dip-means clustering algorithm,” in
Proceedings of the 10th Hellenic Conference on Artificial Intelligence, 2018, pp. 1–7.

[85] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning. Springer Science
& Business Media, 2011.

[86] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Science & Business Media,
2009.

[87] I. T. Jolliffe, Principal Component Analysis,, 2nd ed. New York, Springer, 2002.

[88] M. Roux, “A comparative study of divisive and agglomerative hierarchical clus-
tering algorithms,” Journal of Classification, vol. 35, no. 2, pp. 345–366, 2018.

[89] D. Boley, “Principal direction divisive partitioning,” Data Mining and Knowledge
Discovery, vol. 2, no. 4, pp. 325–344, 1998.

[90] G. Hamerly and C. Elkan, “Learning the k in k-means,” ser. NIPS’03. Cam-
bridge, MA, USA: MIT Press, 2003, pp. 281–288.

[91] A. Alivanoglou and A. Likas, “Probabilistic models based on the π-sigmoid
distribution,” in Artificial Neural Networks in Pattern Recognition: Third IAPR
Workshop, ANNPR 2008 Paris, France, July 2-4, 2008 Proceedings 3. Springer,
2008, pp. 36–43.

[92] G. J. McLachlan and D. Peel, Finite Mixture Models. New York: Wiley Series
in Probability and Statistics, 2000.

[93] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. John
Wiley & Sons, 2007.

155

https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/


[94] H. D Jr, “Hedonic prices and the demand for clean air,” Journal of Environmental
Economics and Management, vol. 5, pp. 81–102, 1978.

[95] L. Scrucca, M. Fop, T. B. Murphy, and A. E. Raftery, “mclust 5: clustering,
classification and density estimation using gaussian finite mixture models,” The
R journal, vol. 8, no. 1, p. 289, 2016.

[96] L. Scrucca, C. Fraley, T. B. Murphy, and A. E. Raftery, Model-Based Clustering,
Classification, and Density Estimation Using mclust in R. Chapman and Hall/CRC,
2023.

[97] J. Ameijeiras-Alonso, R. M. Crujeiras, and A. Rodriguez-Casal, “multimode:
An r package for mode assessment,” Journal of Statistical Software, vol. 97,
no. 9, p. 1–32, 2021. [Online]. Available: https://www.jstatsoft.org/index.php/
jss/article/view/v097i09

[98] D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons, 2015.

[99] B. Silverman, “Density estimation for statistics and data analysis,” Monographs
on Statistics and Applied Probability, 1986.

[100] C. Leiber, L. Miklautz, C. Plant, and C. Böhm, “Benchmarking deep clustering
algorithms with clustpy,” in 2023 IEEE International Conference on Data Mining
Workshops (ICDMW). IEEE, 2023, pp. 625–632.

[101] G. Vardakas, A. Kalogeratos, and A. Likas, “Uniforce: The unimodality forest
method for clustering and estimation of the number of clusters,” arXiv preprint
arXiv:2312.11323, 2023.

[102] A. Ultsch, “Fundamental clustering problems suite (fcps),” Technical report,
University of Marburg, Tech. Rep., 2005.

[103] P. L. Rosin, “Unimodal thresholding,” Pattern Recognition, vol. 34, no. 11, pp.
2083–2096, 2001.

[104] N. Coudray, J.-L. Buessler, and J.-P. Urban, “Robust threshold estimation for
images with unimodal histograms,” Pattern Recognition Letters, vol. 31, no. 9,
pp. 1010–1019, 2010.

156

https://www.jstatsoft.org/index.php/jss/article/view/v097i09
https://www.jstatsoft.org/index.php/jss/article/view/v097i09


[105] H.-F. Ng, “Automatic thresholding for defect detection,” Pattern Recognition
Letters, vol. 27, no. 14, pp. 1644–1649, 2006.

157



AUTHOR’S PUBLICATIONS

1. Paraskevi Chasani and Aristidis Likas, The UU-test for statistical modeling of
unimodal data, Pattern Recognition, vol. 122, p. 108272, 2022
doi: https://doi.org/10.1016/j.patcog.2021.108272

2. Paraskevi Chasani and Aristidis Likas, Statistical Modeling of Univariate Uni-
modal Data Using Π-Sigmoid Mixture Models, IFIP Advances in Information and
Communication Technology, pp. 349–361, 2024
doi: https://doi.org/10.1007/978-3-031-63219-8_26

3. Paraskevi Chasani and Aristidis Likas, Unsupervised Decision Trees for Axis
Unimodal Clustering, Information, vol. 15, no. 11, pp. 704–704, 2024
doi: https://doi.org/10.3390/info15110704

4. Paraskevi Chasani and Aristidis Likas, Statistical Modeling of Univariate Multi-
modal Data, submitted for publication
doi: https://doi.org/10.48550/arXiv.2412.15894

https://doi.org/10.1016/j.patcog.2021.108272
https://doi.org/10.1007/978-3-031-63219-8_26
https://doi.org/10.3390/info15110704
https://doi.org/10.48550/arXiv.2412.15894


SHORT BIOGRAPHY

Paraskevi Chasani received her B.Sc. degree in Mathematics (2015) (grade 8.67/10
“Excellent”) from the Department of Mathematics, University of Ioannina, Greece. In
2019 she received her M.Sc. degree in Computer Science (grade 9.58/10 “Excellent”)
from the Department of Computer Science and Engineering, University of Ioannina,
Greece. Since 2019 she has been a Ph.D. candidate at the same department. She
received various scholarships during her undergraduate and graduate studies. Her
research interests include statistical modeling, machine learning and data mining.


	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Statistics Basics
	Statistical Tests
	Statistical Data Modeling

	Unimodality
	Unimodality Definition
	Assessing Unimodality
	Significance of Unimodality Tests

	Mode Estimation
	Mixture models for Density Estimation and Clustering
	Nonparametric Methods for Density and Mode Estimation

	Decision Trees
	Supervised Decision Trees
	Unsupervised Decision Trees

	Thesis Contribution

	The UU-test for Statistical Modeling of Unimodal Data
	Introduction
	Notations and Definitions
	UU-test Description
	Consistent Subsets
	Sufficient Subsets
	Uniformity Test
	Computational Complexity

	Modeling Unimodal Data
	Experimental Results
	Evaluating UU-test Decisions
	Uniform Mixture Modeling of Unimodal Data

	Unimodality in Multiple Dimensions
	UU-test for Clustering

	Summary

	Statistical Modeling of Univariate Unimodal Data using -sigmoid Mixture Models
	Introduction
	Statistical Modeling using the -Sigmoid Distribution
	The -Sigmoid Distribution
	The -Sigmoid Mixture Model (sMM)

	Method Description
	Assessing the Unimodality of a Probability Distribution
	Unimodal sMM Training

	Experimental Results
	Synthetic Datasets
	Real Datasets

	Summary

	Statistical Modeling of Univariate Multimodal Data
	Introduction
	Detecting Valleys in Data Density
	Multimodality Degree

	The Unimodal Mixture Model (UDMM)
	The UniSplit Algorithm
	Merging Adjacent Intervals
	Computational Complexity
	UDMM formulation

	Experimental Results
	Modeling Multimodal Data with UDMM
	Multimodal Data Splitting
	Image Segmentation
	UDMM Naive Bayes for Classification
	Examples with Noise and Outliers
	Impact of the Statistical Significance Level

	Summary

	Unsupervised Decision Trees for Axis Unimodal Clustering
	Introduction
	Notations and Definitions
	Dip-Test for Unimodality
	UU-Test for Unimodality
	Axis Unimodal Dataset
	Node Splitting

	Axis Unimodal Clustering with a Decision Tree Model
	Criterion 1
	Criterion 2
	Decision Tree Construction
	An Illustrative Example

	Experimental Results
	Evaluating DTAUC Performance
	Comparing Criterion 1 with Criterion 2

	Summary

	Conclusions and Future Work
	Bibliography
	Author's Publications
	Short Biography

