
Combining Bayesian and Deep Learning
Methods in Computer Vision Problems

A Dissertation

submitted to the designated

by the General Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Panagiotis Dimitrakopoulos

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina

July 2024

Advisory Committee:

• Christophoros Nikou, Professor , Department of Computer Science and Engi-
neering, University of Ioannina

• Giorgos Sfikas, Assistant Professor, Department of Surveying and Geoinformat-
ics Engineering, University of West Attica

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina

Examining Committee:

• Christophoros Nikou, Professor , Department of Computer Science and Engi-
neering, University of Ioannina

• Giorgos Sfikas, Assistant Professor, Department of Surveying and Geoinformat-
ics Engineering, University of West Attica

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina

• Lisimachos P. Kondi, Professor, Department of Computer Science and Engi-
neering, University of Ioannina

• Konstantinos D. Blekas , Professor, Department of Computer Science and En-
gineering, University of Ioannina

• Stefanos Zafeiriou, Professor, Department of Computing, Imperial College Lon-
don

• Nikos Paragios, Professor, School of Engineering (CentraleSupelec), University
of Paris - Saclay

DEDICATION

To all the people who supported me on this incredible journey!

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor,
Prof. Christoforos Nikou, for granting me the opportunity to pursue this PhD. His
guidance and support throughout these years have been invaluable. Particularly valu-
able was the intellectual and research freedom he offered, allowing me to explore my
research topic and direction without restrictions. Furthermore, his financial support
through the ”BESSARION” research project position was instrumental in making this
dissertation possible. I would also like to extend my deepest thanks to my co-advisor,
Prof. Giorgos Sfikas. His contributions were crucial to this thesis. Throughout my PhD
year whenever I brought him an idea with some preliminary experiments, he helped
me to grasp the potential and significance of it and how we can further improve it.
He instilled in me the importance of asking the right scientific questions which really
shape my scientific way of thinking. His unwavering support and constant presence
were invaluable. Moreover, his belief in our work, exceeding even my own, and his
guidance in fostering high aspirations and dreams for the future were truly inspiring.

TABLE OF CONTENTS

List of Figures v

List of Tables x

List of Algorithms xiii

Abstract xiv

Εκτεταμένη Περίληψη xv

1 Introduction 1
1.1 Efficient Bayesian Deep Learning in Computer Vision 2

1.1.1 Probabilistic Object Detection . 3
1.1.2 Low Dimensional Bayesian Deep Learning 4
1.1.3 Modeling of Weight Correlations in Approximate Inference . . . 6

1.2 Dissertation Layout . 7

2 Bayesian Deep Learning 8
2.1 Neural Networks and Deep Learning . 9
2.2 Probabilistic Perspective of Neural Networks 11

2.2.1 Probabilistic Paradigm . 11
2.2.2 Maximum Likelihood . 14
2.2.3 Maximum A-Posteriori . 15
2.2.4 Bayesian Inference . 17

2.3 Approximate Inference . 18
2.3.1 Posterior Approximation . 19
2.3.2 Predictive Approximation . 26
2.3.3 Prior Specification . 30

i

2.4 Optimization-based Approximate Inference 33
2.4.1 Variational Inference . 34
2.4.2 Stochastic Variational Inference & Challenges 36
2.4.3 Beyond Gaussian Approximate Distributions 41

2.5 Efficient Approximate Bayesian Inference 46
2.5.1 Advances in Scalable Bayesian Inference 47

2.6 Discussion . 48

3 Probabilistic Object Detection via Variational Feature Pyramid Networks 49
3.1 Challenges of Object Detection & Contributions 50
3.2 Related Work . 52

3.2.1 Feature Fusion Networks . 52
3.2.2 Probabilistic Pruning & Stochastic Architectures 53
3.2.3 Probabilistic Object Detection . 54

3.3 Variational Feature Pyramid Networks 56
3.3.1 Proposed Feature Fusion Network 56
3.3.2 Variational Inference . 57
3.3.3 Choice of Prior Distribution . 59

3.4 Experimental Evaluation . 61
3.4.1 Implementation Details . 63
3.4.2 Detection Predictive Performance 64
3.4.3 Evaluating Predictive Uncertainty 66
3.4.4 Segmentation Uncertainty in Low Data Regime 68

3.5 Discussion . 72

4 Low Dimensional Bayesian Deep Learning via Implicit Neural Represen‐
tation Inference 73
4.1 Challenges of Bayesian Deep Learning & Contributions 74
4.2 Related Work . 76

4.2.1 Low-Dimensional Inference . 76
4.2.2 Hypernetwork Modeling . 77
4.2.3 Stochastic Implicit Neural Representations 77

4.3 Implicit Neural Representation Inference 78
4.3.1 Implicit Neural Representation Modeling 78
4.3.2 Bayesian Inference over the Neural Representation 80

ii

4.4 Experimental Evaluation . 82
4.4.1 Hypernetwork Design Choices 83
4.4.2 Visualizing Predictive Uncertainty 85
4.4.3 Calibration Evaluation on Regression Benchmarks 86
4.4.4 Image Classification under Distribution Shift 87

4.5 Discussion . 89

5 Modeling Weight Correlations in Approximate Inference: When Structure
Matters More Than Flexibility 91
5.1 Modeling Weight Correlations & Contributions 92
5.2 Related Work . 93

5.2.1 Correlated Weight Posteriors . 94
5.2.2 Simple Weight Posterior for Deep Neural Networks 94
5.2.3 Circulant and Toeplitz Covariance Matrices 94
5.2.4 Circulant Weight Matrices . 95

5.3 Background & Motivation . 95
5.4 The Circulant Normal Distribution . 96

5.4.1 Exploiting the Circulant Structure 99
5.4.2 Concerning the Prior Distribution 99

5.5 Experimental Evaluation . 100
5.5.1 Evaluating Approximate Circulant Posteriors 101
5.5.2 Circulant Structure as Improvement to Existing VI Methods . . 104
5.5.3 Evaluating Effectiveness of Circulant Priors 106
5.5.4 How Circulant Kernel Size Affects Predictive Performance . . . 106

5.6 Discussion . 108

6 Conclusions and Future Work 109
6.1 Summary of Contributions . 109
6.2 Future Research Directions . 111

Bibliography 112

A Variational Feature Pyramid Networks 137
A.1 Using a Laplace prior . 137

A.1.1 Laplace Distribution . 137

iii

A.1.2 Experimental Results . 138

B Implicit Neural Representation Inference 139
B.1 INR Hypernetwork Details . 139
B.2 Experimental Setup . 140

B.2.1 Design Choices . 141
B.2.2 Visualizing Uncertainty . 141
B.2.3 UCI Regression Benchmarks . 142
B.2.4 Image Experiments . 142

B.3 ReLU and Sinusoidal Hypernetworks 144
B.4 Evaluating INR Hypernetwork Size . 147
B.5 Computational Time . 147
B.6 Additional Experiments . 149
B.7 Qualitative Evaluation of Empirical Densities 150

C Circulant Normal Approximate Distribution 154
C.1 Experimental Setup . 154

C.1.1 UCI Regression Benchmarks . 155
C.1.2 Image Classification . 155

C.2 Empirical Bayes for the Circulant Normal 157
C.3 Additional Experiments . 159

iv

LIST OF FIGURES

2.1 Graphical illustration of three common deep learning building blocks:
the residual block, the bottleneck residual block, and the scaled dot-
product attention block. (From left to right) 10

2.2 Illustration of how the introduction of a non constant prior distribution
reshapes the optimization landscape resulting in a different solution w

for MAP (left) inference compared to ML (right). 16
2.3 Common Generalized Gauss-Newton matrix lightweight parameteriza-

tions. 22
2.4 Hierarchical modeling of common sparse priors. 31
2.5 Posterior density visualization for a small MLP on 1D regression. Visu-

alization of posterior log-posterior, log-likelihood and log-prior in the
two- dimensional subspace of the parameter space spanned by three
HMC samples (Inspired from [38]). We can observe that even this sim-
ple NN can induce multimodal posterior attributes. 42

2.6 This figure illustrates the hypernetwork learning framework. A smaller
hypernetwork, gϕ(z), with parameters ϕ takes an input, z, and gener-
ates parameters, θ, that influence the parameters of the larger main
neural network, fθ(x). Both networks can typically be learned using
backpropagation from the final loss on the predicted output, y. 43

3.1 A high level object detection/segmentation architecture, which is based
on CNN features. 51

v

3.2 An illustration of pruning under the proposed method. The image on
the left depicts the initial model before training which is highly com-
plex, including multiple-level feature fusion and is “fully” connected.
On the right, the same network is shown after 10 epochs of training,
where redundant connections and building blocks have been pruned,
leading to an efficient fusion network. 56

3.3 Left: Plot of the number of non-pruned weights/connections versus
training iterations using different priors on the same setting (Faster
RCNN on COCO). Right: Plot of indicative values of the means of the
approximate posterior versus training iterations, over randomly picked
network connections (each color corresponds to a different connection). 64

3.4 Plot of different resulting architectures for the trained model, combined
with the proposed FullARD prior on Faster RCNN on three different
datasets (top row: “COCO”, “Plants”, bottom row: “Cards”). 65

3.5 Results of standard NMS method (left column) and the Var voting
results (right column) for the Faster RCNN network combined with the
proposed method with ARD prior on COCO dataset. Bounding boxes
are drawn with blue color, and the variance of each bounding box
is outlined using green circles (variance is proportional to the radius
around the respective bound point). 67

3.6 Qualitative Results for VarFPN-QGAN: The figure shows qualitative re-
sults for the VarFPN-QGAN model. The left column displays the input
images. The middle column shows the mean text predictions generated
by the enhanced generator network using Monte Carlo simulations. The
right column visualizes the variance of these predictions. 70

3.7 Qualitative Results: Uncertainty-Weighted Prediction for the VarFPN
Model. Figure shows the effectiveness of uncertainty weighting in sup-
pressing false positives. The left image displays the raw prediction,
while the right image shows the final text region prediction after ap-
plying uncertainty weighting. The weighted prediction image uses a
larger connected component to identify the true text region, effectively
suppressing most false positives. 71

vi

4.1 The figure illustrates the INR Hypernetwork. It takes three input co-
ordinates, denoted as Ix, Iy, and Il, as input. Ix and Iy represent the
spatial dimensions (x and y coordinates) of the value to be generated.
Il indicates the specific layer matrix to which the generated value ξ

belongs. 78
4.2 Illustration of the proposed INR model. 79
4.3 Comparison of Log-Likelihood (↑), Expected Calibration Error (↓) and

Normalized Diversities between INR networks of increasing size, over
CIFAR10 and corrupted CIFAR10 datasets. INR-x represents an INR
with x parameters. 85

4.4 Visualization of the predictive distribution for the “toy” regression task.
The data are denoted as purple circles, predictive mean is the solid
orange line and the shaded region is ± 1 std. 85

4.5 Numerical results for regression trials on UCI datasets [196]. Mean
values of test Log-Likelihood (↑) are shown with ± 1 standard deviation
error bars, obtained over standard [63] and GAP [195] splits. 86

4.6 Numerical results for classification trials on Corrupted CIFAR100 dataset.
The x-axis of each plot corresponds to increasingly corruption levels. . 87

4.7 Testing the quality of calibration with Rejection-Classification plots.
MNIST & CIFAR10 are considered as “in-distribution”, Fashion-MNIST
& SVHN are “out-of-distribution” respectively. Methods reject increas-
ing data proportions based on predictive entropy before classifying the
rest. All predictions on OOD samples are treated as incorrect. The black
curve denotes maximum theoretical performance. 88

5.1 Left: Illustration of the parameters (mean µw, covariance Σw) of the
proposed Circulant-Constrained distribution for Variational Inference.
Right: Negative Log Likelihood ResNet20 in CIFAR100 vs log param-
eters of covariance Σw per method. Colors indicate shared parame-
ter values. The Circulant Normal allows modeling posterior correlation
structure at a negligible computational overhead. 93

5.2 Histogram plot of learned diagonal covariance matrix values in Resnet-
20, equipped with MFVI posterior, and trained on CIFAR100 under
isotropic prior. 97

vii

5.3 Numerical results for regression trials on UCI datasets [196]. Mean
values of test Log-Likelihood (↑) are shown with ± 1 standard deviation
error bars, obtained over standard [63] and GAP [195] splits. 102

5.4 Illustration of learned covariance matrices for the 1st convolutional
layer of Resnet-20 trained on CIFAR100 for diagonal prior and for
empirical circulant prior distribution. 107

5.5 Numerical results for classification trials on CIFAR100. X-axis corre-
spond to increasing kernel size for the circulant approximate posterior. 107

5.6 Computational complexity for the circulant method against other co-
variance parameterizations (top), time for increasing kernel size (bot-
tom). Forward indicates the time for a single forward pass, KL is the
time for computing the Kullback–Leibler term in the ELBO loss and
Backward indicates the time for computing the gradients w.r.t. posterior
parameters. 108

5.7 Illustration of learned covariance matrices for the first convolutional
layer of Resnet-20 trained on CIFAR100 for increasing circulant kernel
size. 108

A.1 Plot of the number of non-pruned weights/connections versus the train-
ing iterations using different priors on the same setting on COCO, (left
Mask-RCNN and right Faster-RCNN). 138

B.1 High level pseudo-code to introduce our method’s behavior in training
and inference settings (in this setting, a post-training Monte Carlo-based
approximate inference method is implied). 140

B.2 Values of ξ as a function of input weight coordinates (channel-wise). . 145
B.3 Empirical variance of ξ as a function of input weight coordinates (channel-

wise). 146
B.4 Numerical results for regression trials on UCI standard [63] and GAP

[195] splits for different hypernetwork sizes. 147
B.5 Numerical results for classification trials on Rotated MNIST (top row)

dataset and on Corrupted CIFAR10 (bottom row). Log-Likelihood (↑),
Expected Calibration Error (↓), Brier Score (↓), Error (↓) and Accuracy
(↑) are used for comparison. The x-axis of each plot corresponds to
increasingly levels of corruption intensity. 150

viii

B.6 Empirical Covariance for the INR-RealNVP for the first linear layer of
the regression network. 151

B.7 Empirical Covariance for the INR-Laplace for the first linear layer of
the regression network. 152

B.8 Empirical density histogram and empirical covariance for of kernel
values of the first convolutional layer of ResNet-50 using INR-RealNVP. 152

B.9 Empirical Covariance for the INR-RealNVP and INR-Laplace for the
first linear layer of the regression network. 153

C.1 Density histograms of predictive entropy estimates on CIFAR10 (in-
distribution) and SVHN (out-distribution) 159

C.2 Illustration of learned covariance matrices for the 1st convolutional
layer of Resnet-20 trained on CIFAR100 for diagonal prior and for
empirical circulant prior distribution. 160

C.3 Histogram plot of learned covariance matrix values in Resnet-20 equipped
with MFVI posterior trained on CIFAR100 under isotropic prior. 160

C.4 Histogram plot of learned covariance matrix values in Resnet-20 equipped
with MFVI posterior trained on CIFAR100 under the block diagonal
prior of [11]. 161

ix

LIST OF TABLES

3.1 Numerical results for object detection/segmentation trials on COCO [160].
Average precision and precision on different threshold and object sizes
are shown, alongside with network size and inference time (measured
in milliseconds), for proposed models and other feature pyramid variants. 62

3.2 Numerical evaluation of uncertainty estimates for Faster RCNN trained
on three different datasets. Baseline indicates detections acquired using
the weight scaling rule and thresholded via the use of NMS, Mean
detections are obtained with test time averaging and NMS applied and
Var voting indicates predictions of time averaging but with the use of
prediction variance coupled with the var voting algorithm. Ten forward
passes where performed for each image. 62

3.3 Numerical results for instance segmentation trials on COCO [160]. Av-
erage precision (AP) is shown, alongside with network size (in terms of
preserved connections, “Cons” and number of parameters, “Params”)
and inference time (measured in milliseconds) for different pruning
schemes. 65

3.4 Numerical results for two variants of the proposed model (Variational
FPN-QGAN) versus its counterpart with the same number of neurons
(QGAN). Test BCE figures (lower is better) are shown and correspond-
ing IoU scores in parenthesis (higher is better). 69

4.1 Numerical results for classification on CIFAR10 (top) and Corrupted
CIFAR10 (bottom) for different design choices. Log-Likelihood (↑) and
Expected Calibration Error (↓) are reported. 82

4.2 Numerical results for classification trials on CIFAR100 for different pro-
posed low-dimensional spaces alongside their inference time. 89

x

5.1 Numerical results for classification trials on Corrupted CIFAR100/CIFAR10
datasets. Log-Likelihood , Expected Calibration Error and Error. The
area under the ROC (AUROC) of a for binary classifier using the predic-
tive entropy values to distinguish CIFAR (in-distribution) from SVHN
(out-of-distribution) examples. 103

5.2 Total number of variational parameters for the covariance matrix com-
putation, alongside the computational time in seconds for one forward
and backward pass for each method on ResNet-20. 103

5.3 Numerical results for transfer learning trials on ’real-world’ datasets.
Log-Likelihood, Expected Calibration Error, Brier Score, Error and Se-
lective prediction accuracy are used for comparison 104

5.4 Numerical results for Renset-20 on CIFAR100 for different prior and
posterior combinations. Log-Likelihood, Expected Calibration Error
and the area under the ROC (AUROC) are used for comparison. GPI
indicates the GP-induced Gaussian priors from [231] and MVG Matrix
variate Gaussian Matérn covariance from [11]. 105

5.5 Numerical experiments for ResNet-20 with rank1 parameterization [123]
trained on CIFAR100. Diag mix k=3 indicates vanilla approximate pos-
terior (mixture of 3 Normal distributions), Circ. mix k=3 mixture of 3
circulant Normal and circ mix k=6 mixture of 6 ciculant Normal distri-
butions. 105

5.6 Numerical experiments for ResNet-20 with ELRG [12] approximate
posterior trained on CIFAR100. Diagonal indicates vanilla isotropic prior,
Rand Circ. circulant prior with random valued kernel Empir Circ. Em-
pirical Circulant. 106

A.1 Numerical results for object detection/segmentation trials on COCO [160].
Average precision and precision on different threshold and object sizes
are shown, alongside with network size and inference time (measured
in milliseconds), for proposed models and other feature pyramid variants.138

B.1 Numerical results for classification trials with different hypernetwork
activations. 144

B.2 Indicative time requirements for INR-based hypernetwork model. . . . 148

xi

B.3 Computational time of INR low dimensional inference versus other
approximate inference methods. 148

B.4 Numerical results for classification trials of ResNet18 in CIFAR100. . . . 149
B.5 Numerical results for classification trials on different proposed low-

dimensional spaces (CIFAR10). 149

xii

LIST OF ALGORITHMS

B.1 INR Training procedure . 140
B.2 INR Inference procedure . 140

xiii

ABSTRACT

Panagiotis Dimitrakopoulos, Ph.D., Department of Computer Science and Engineer-
ing, University of Ioannina, Greece, July 2024.
Combining Bayesian and Deep Learning Methods in Computer Vision Problems.
Advisor: Christophoros Nikou, Professor.

Neural networks dominate computer vision tasks, yet their predictions often lack
reliability. Bayesian Deep Learning (BDL) offers a solution by treating model pa-
rameters as random variables. This approach leads to well-calibrated predictions and
handles distribution shifts better than deterministic methods. However, computational
limitations prevents its widespread applicability. This thesis focuses on developing
efficient BDL methods for high-dimensional parameter spaces, which are applied on
various computer vision tasks, including image classification, segmentation, and ob-
ject detection. Specifically we propose lightweight Bayesian modules for robust and
probabilistic object detection via efficient stochastic feature fusion. Additionally, we
introduce a novel hypernetwork-based method for incorporating Bayesian inference
to large vision models. Finally we experimented with a structured posterior distri-
bution, which efficiently captures correlations between weights, leading to improved
calibration and uncertainty quantification. This research paves the way for the devel-
opment of more interpretable and reliable machine learning models.

xiv

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Παναγιώτης Δημητρακόπουλος, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πα-
νεπιστήμιο Ιωαννίνων, Ιούλιος 2024.
Συνδυασμός Μπεϋζιανών Μεθόδων και Βαθιάς Μάθησης για Προβλήματα Υπολο-
γιστικής Όρασης.
Επιβλέπων: Χριστόφορος Νίκου, Καθηγητής.

Τα νευρωνικά δίκτυα έχουν αναδειχθεί σε κυρίαρχη επιλογή για την μηχανική
μάθηση τα τελευταία χρόνια, κυριαρχώντας σε πλήθος επιστημονικών πεδίων. Η
άνοδός τους οφείλεται σε μεγάλο βαθμό στην ανάπτυξη των συνελικτών νευρωνικών
δικτύων, ιδιαίτερα στον τομέα της υπολογιστικής όρασης. Παρά την αδιαμφισβή-
τητη επιτυχία και τα εξαιρετικά αποτελέσματά τους, τα κλασικά νευρωνικά δίκτυα
παρουσιάζουν και ορισμένα μειονεκτήματα. Ένα από τα πιο σημαντικά είναι η πολύ
μεγαλή βεβαιότητα στις προβλέψεις τους (ειδικά τις λανθασμένες), φαινόμενο που
γίνεται πιο έντονο όταν το μοντέλο καλείται να προβλέψει δεδομένα που διαφέρουν
από τα δεδομένα εκπαίδευσης.

Τα Μπεϋζιανά νευρωνικά δίκτυα έρχονται να προσφέρουν μια λύση σε αυτά
τα προβλήματα, καθώς συνδυάζουν την αποτελεσματικότητα της βαθιάς μάθησης
με τα πλεονεκτήματα της πιθανοτικής προσέγγισης που βασίζεται στην Μπεϋζιανή
ανάλυση. Κατά την εκπαίδευση Μπεϋζιανών νευρωνικών δικτύων, η εστίαση τίθε-
ται στην εκτίμηση της εκ των υστέρων κατανομής των παραμέτρων, δεδομένου του
συνόλου εκπαίδευσης. Η Μπεϋζιανή αυτή προσέγγιση της μάθησης προσφέρει πλή-
θος πλεονεκτημάτων, όπως είναι οι αξιόπιστες προβλέψεις στα δεδομένα ελέγχου,
που συνοδεύονται από εκτιμίσεις αβεβαιότητας. Βελτιωμένες προβλέψεις σε δεδο-
μένα που διαφέρουν από το σύνολο εκπαίδευσης. Καθώς επίσης και ένα πλαίσιο
για την εκμάθηση των υπερπαραμέτρων. Συνολικά, τα Μπεϋζιανά νευρωνικά δί-
κτυα αποτελούν μια ελπιδοφόρα εναλλακτική λύση στα κλασικά νευρωνικά δίκτυα,
προσφέροντας πιο αξιόπιστες και γενικεύσιμες προβλέψεις.

xv

Παρά τα πλεονεκτήματά τους, τα Μπεϋζιανά νευρωνικά δίκτυα φέρουν και μειο-
νεκτήματα. Ένα από τα πιο σημαντικά είναι η αυξημένη υπολογιστική ισχύς που
απαιτούν σε σύγκριση με τα κλασικά νευρωνικά δίκτυα. Καθώς ο αριθμός των
παραμέτρων στα νευρωνικά δίκτυα αυξάνεται με την πάροδο του χρόνου, το εν-
διαφέρον στρέφεται σε πιθανοτικές μεθόδους και τεχνικές που συνδυάζουν απο-
δοτικότητα με χαμηλή κατανάλωση υπολογιστικών πόρων. Στόχος λοιπόν είναι η
αποδοτική πιθανοτική μοντελοποίηση παραμέτρων που οδηγεί σε εύρωστες προ-
βλέψεις και αξιόπιστες τιμές αβεβαιότητας στα αποτελέσματα. Η παρούσα διδα-
κτορική διατριβή εστιάζει στην ανάπτυξη αποδοτικών Μπεϋζιανών μοντέλων και
τεχνικών με εφαρμογή σε προβλήματα υπολογιστικής όρασης, όπως η κατηγοριο-
ποίηση εικόνων, η ανίχνευση αντικειμένων και σημασιολογική κατάτμηση.

Ειδικότερα, η διατριβή εστιάζει στο πρόβλημα της αξιόπιστης και πιθανοτικής
ανίχνευσης αντικειμένων σε εικόνες. Προτείνεται μια νέα Μπεϋζιανή τεχνική για την
εξαγωγή χαρακτηριστικών, με στόχο τη δημιουργία ευρύτερων περιγραφών εικό-
νων που μπορούν να αξιοποιηθούν για βελτιωμένα αποτελέσματα. Η τεχνική αυτή
βασίζεται στο υποδικτύα Feature Pyramid Networks [1], τα οποία αντλούν χαρακτη-
ριστικά από διαφορετικά επίπεδα ενός νευρωνικού δικτύου και τα επεξεργάζονται
με βάση μια αρχιτεκτονική πυραμιδοειδούς σχήματος, ώστε να γίνουν πιο περι-
γραφικά. Χαρακτηριστικό του προτεινόμενου υποδικτύου είναι η στοχαστική φύση
τής αρχιτεκτονικής του, ή οποία μαθαίνεται από τα δεδομένα εκπαίδευσης με τη
χρήση Variational Inference, Με το τρόπο αυτό η αρχιτεκτονική του μπορέι και προ-
σαρμόζεται ανάλογα με τα ιδιαίτερα χαρακτηριστικά του συνόλου εκπαίδευσης,
προσφέροντας εξατομικευμένα χαρακτηριστικά σαν έξοδο. Επιπλέον, η πιθανοτική
προσέγγιση ενσωματώνει στοχαστικότητα στο μοντέλο ανίχνευσης, επιτρέποντας
την παροχή πιθανοτικών προβλέψεων με εκτίμιση αβεβαιότητας στις τελικές προ-
βλέψεις ανίχνευσης. Το προτεινόμενο μοντέλο αξιολογήθηκε σε συνδυασμό με σύγ-
χρονα μοντέλα ανίχνευσης, επιτυγχάνοντας αξιόπιστα αποτελέσματα σε διάφορα
σύνολα δεδομένων.

Στη συνέχεια, η διατριβή εστιάζει στην εφαρμογή της Μπεϋζιανής ανάλυσης σε
νευρωνικά δίκτυα με παραμετρους υψηλής διαστασης, προτείνοντας τεχνικές που
υπερβαίνουν αυτό το πρόβλημα ορίζοντας έναν εναλλακτικό χαμηλής διαστασης
χώρο στον οποίο εφαρμόζεται η πιθανολογική ανάλυση. Συγκεκριμένα, προτείνε-
ται ένα υπερδίκτυο με λίγες παραμέτρους που λειτουργεί παράλληλα με το κύριο
δίκτυο. Σκοπός του υπερδικτύου είναι η παραγωγή στοχαστικών παραμέτρων που

xvi

εισάγουν τυχαιότητα στο κύριο δίκτυο. Η Μπεϋζιανή ανάλυση πραγματοποιείται
μόνο στις χαμηλών διαστάσεων παραμέτρους του υπερδικτύου, επιτρέποντας την
υιοθέτηση πιθανοτικών μεθόδων μεγάλης ευελιξίας που θα ήταν αδύνατες σε υψη-
λής διάστασης χώρους (όπως ο χώρος παραμέτρων του κύριου δικτύου). Ο χωρος
διαστάσης του υπερδικτύου διατηρείται μικρός μέσω της χρήσης Implicit Neural
Representation [2]. Τα οφέλη αυτής της έμμεσης πιθανοστατιστικής προσέγγισης
αξιολογήθηκαν σε μια σειρά πειραμάτων.

Η διατριβή ολοκληρώνεται με την πρόταση μιας νέας μεθόδου για την απο-
τελεσματική μοντελοποίηση των συσχετίσεων μεταξύ των βαρών ενός νευρωνικού
δικτύου. Η προτεινόμενη μέθοδος παρουσιάζει σημαντικά μειωμένο υπολογιστικό
κόστος σε σύγκριση με εναλλακτικές προσεγγίσεις. Συγκεκριμένα, στο πλαίσιο του
Variational Inference, όπου η πραγματική εκ των υστέρων κατανομή των βαρών
προσεγγίζεται από μια πολυδιάστατη Γκαουσιανή κατανομή, προτείνεται μια πα-
ραμετροποίηση του πίνακα συνδιακύμανσης βασισμένη στη θεωρία των κυκλωτικών
πινάκων. Η παραμετροποίηση αυτή δίνει έμφαση στη μοντελοποίηση συγκεκριμέ-
νων συσχετίσεων μεταξύ των παραμέτρων του νευρωνικού δικτύου. Η πειραματική
αξιολόγηση της παραμετροποίησης επιβεβαιώνει τα οφέλη της τόσο σαν εκ των
υστέρων όσο και σαν εκ των προτέρων κατανομής, προσφέροντας μια πιο αποδο-
τική επιλογή με αρκετά καλά αποτελέσματα.

Η διατριβή αυτή υποστηρίζει ότι οι Μπεϋζιανές μέθοδοι αποτελούν όχι μόνο
μια αξιόπιστη εναλλακτική λύση εκπαίδευσης για σύγχρονα νευρωνικά δίκτυα με
πολλές παραμέτρους, αλλά και μια αποδοτική λύση, η οποία μπορεί να έχει χαμηλό
υπολογιστικό κόστος. Η ανάπτυξη πιθανοτικών μεθόδων που παρέχουν αξιόπιστες
εκτιμήσεις αβεβαιότητας στις προβλέψεις τους μπορεί να αποτελέσει λύση προς την
κατεύθυνση μοντέλων με πιο ενημερωτικές προβλέψεις, κατάλληλων για εφαρμογές
υψηλής κρισιμότητας, όπως ιατρικές και εφαρμογές αυτόνομης οδήγησης.

xvii

CHAPTER 1

INTRODUCTION

1.1 Efficient Bayesian Deep Learning in Computer Vision

1.2 Dissertation Layout

Neural networks (NNs) are the cornerstone of many fields where machine learning
models are applicable. While shallow networks, primarily Multi-Layer Perceptrons,
have limited descriptive power, the ability to increase the number of hidden units
has paved the way for deeper architectures like deep NNs and the emergence of
deep learning. In recent years, deep learning models have witnessed an exponen-
tial growth in popularity, not only within research but also in everyday life. This
widespread adoption is further fueled by advancements with the huge popularity of
large foundational models.

Despite their massive success and widespread deployment, NNs have several crit-
ical shortcomings. Their predictions are often characterized by overconfidence, which
becomes especially problematic when there is a significant distribution shift between
the training and test data. Ideally, we would like the network to identify cases where
the test data point is statistically far from the training set distribution and produce
a quantifiable measure of uncertainty. This becomes crucial for applications like au-
tonomous driving or medical diagnosis, where making confident decisions on poten-
tially out-of-distribution data is critical. Even in cases where outputs are probabilities
(e.g., softmax outputs), standard NNs often suffer from poorly calibrated probabil-

1

ity scores. Furthermore, neural networks are known to be vulnerable to distribution
shifts. Additionally, the process of selecting hyperparameters through cross-validation
or meta-learning can be challenging due to the inherent difficulties associated with
these approaches.

Bayesian Deep Learning (BDL) emerges as a solution to the aforementioned
pathologies of traditional deep learning models. It aims to combine the effectiveness
of deep learning with the advantages of Bayesian inference. From a Bayesian per-
spective, model parameters are treated as probabilistic random variables. Instead of
training the network in the traditional sense, BDL focuses on computing the posterior
distribution of these parameters given the observed training data. This Bayesian ap-
proach offers several benefits, such as well-calibrated predictive distributions, a frame-
work for hyperparameter selection, and improved handling of issues like training-test
distribution shift and catastrophic forgetting. Despite its advantages, Bayesian infer-
ence also has limitations. In most practical models, including those outside the realm
of deep learning, it often requires approximate inference techniques. However, even
these approximations can introduce significant computational overhead.

In this thesis, we leverage this paradigm to develop new methods that unify the
complementary benefits of deep learning and probabilistic modeling. Deep learning
excels at extracting high-dimensional feature representations from data (e.g., images).
Probabilistic modeling, on the other hand, allows for flexible reasoning about the
distribution over the model’s parameters. We demonstrate how this combination
address the aforementioned challenges and provide robust models in computer vision
applications.

1.1 Efficient Bayesian Deep Learning in Computer Vision

As neural networks grow increasingly complex, with parameter size scaling into the
billions, straightforward Bayesian modeling becomes computationally infeasible. This
naturally leads to a focus on developing and applying approximate Bayesian inference
techniques for handling these extremely high-dimensional parameter spaces. The
goal is to achieve reliable uncertainty quantification, allowing for efficient real-time
predictions, a crucial aspect of modern machine learning applications.

This thesis focuses on modeling lightweight Bayesian modules and techniques

2

applicable to various computer vision problems, particularly image classification, se-
mantic segmentation, and object detection. These techniques offer advantages in terms
of interpretability and uncertainty quantification compared to traditional deep learn-
ing approaches. In this section, we describe the application domains of Bayesian
deep learning considered in this thesis and outline our contributions to address each
problem.

We first study the problem of probabilistic object detection. Our work focuses on
developing lightweight Bayesian techniques for effective feature fusion, which aims
to create robust and stochastic deep representations of real-world images suitable
for various downstream tasks (i.e. segmentation detection). We then steer our focus
to Low-Dimensional Deep Learning, where we discuss its challenges. We propose
novel techniques for applying Bayesian treatment of deep learning while maintaining
high accuracy. Then we conclude with weight correlation modeling. This approach
seeks to learn a structured posterior distribution that efficiently captures the inherent
correlations between neural network weights. Our work in this area contributes to
improved model interpretability and uncertainty quantification.

1.1.1 Probabilistic Object Detection

Motivation & Problem Statement

Object detection and instance segmentation are two fundamental problems in com-
puter vision, posing significant challenges. These challenges arise from the need to
detect or segment multiple objects at various scales, locations, and under diverse
conditions. While deep convolutional neural networks (CNNs) have shown remark-
able progress in object localization and segmentation in recent years, their ability
to perform safely in diverse environments remains an area of active research. Fur-
thermore, quantifying both epistemic (knowledge-based) and aleatoric (inherent data
noise) uncertainty is crucial for safe decision-making in safety-critical applications.
In such applications, the reliability of an agent’s perception and decision-making is
paramount [3] .

Contributions

Many computer vision methods using neural networks rely directly on features ex-
tracted from the original image data. These features are typically obtained using a

3

neural network (often referred to as a backbone) due to their ability to generate com-
pact features rich in semantic information [4]. Feature fusion techniques introduce
an additional sub-network that efficiently combines the extracted feature information
from an input image. This aims to generate even richer and more compact features,
ultimately leading to improved prediction performance in object detection tasks. Our
work specifically focused on the feature fusion process to achieve robust and proba-
bilistic object detection models.

Following previous works [5] we build an efficient feature fusion network. This
network adopts elements from state-of-the-art fusion networks and initialize a com-
plex fusion architecture, which subsequently is pruned to its more efficient coun-
terpart, reducing the excess parameters and computational cost. We opt to learn to
highlight the network components that are more suitable to the specific task and
dataset that it is trained on. The process of pruning the network is formulated as
learning the posterior distribution over a set of architectural weight variables given
the training dataset. By treating even this small subset of parameters probabilistically
we are able to introduce stochasticity to the main network [6] and acquire uncertainty
in the final predictions.

Our experiments show that the models produced using the proposed method,
combined with various object detectors and segmentation networks, produce state-
of-the-art results. Furthermore, we utilized a method for numerically quantifying
uncertainty estimates in object detection. To this end we utilize a non-maximum-
suppression algorithm [7], which takes into account uncertainties in bounding box
locations. We directly link the quality of uncertainty estimates with the numerical
benefits gained from using this method and leverage this connection to evaluate our
approach.

1.1.2 Low Dimensional Bayesian Deep Learning

Motivation & Problem Statement

While current deep learning models can accommodate millions of trainable parame-
ters, performing exact Bayesian inference on such complex, high-dimensional settings
is infeasible. Applying Bayes’ rule directly to derive the posterior over parameter
weights becomes impractical. Consequently, practitioners rely on approximate infer-
ence methods, often introducing specific restrictions or assumptions. However, even

4

with these simplifications, existing approximate inference schemes might not be able
to efficiently handle millions of parameters, necessitating even more stringent limita-
tions on the approximate posterior distribution.

Low-dimensional Bayesian deep learning emerges as a solution to this very chal-
lenge. The goal is to find an approximation where probabilistic reasoning over the full
network parameters is cast to approximate inference in a smaller dimensional space.
Ideally we would like this approximation to minimize the discrepancy to approximate
posterior over the full parameters space. Several solutions have been proposed in this
respect, rehashing and adapting older methods [8] [9] or putting forward completely
fresh approaches [10].

Contributions

We propose a novel framework modeling for applying flexible low dimensional in-
ference in deep learning networks. In our method we augment each weight of the
main network with a multiplicative nuisance factor. These factors are in turn ob-
tained by evaluating a flexible hypernetwork designed to be compact and reusable
across the main network. We define a prior over the nuisance factors implicitly by
probabilistically modeling the hypernetwork parameters. This prior combined with a
Dirac distribution over the main network weights results in a Bayesian treatment of
the main network. We leverage the power of implicit neural representations (INRs),
inspired by their success in various fields [2]. These networks and their data model-
ing procedure unable as to keep the hypernetwork parameters to a very small scale.
Finally the low dimensionality of the hypernetwork parameter space allows as to use
any off-the-shelf multi-modal approximate posterior in the main network.

In a nutshell, main weights are responsible for ensuring accurate results, while
the low-dimensional probabilistic component is responsible for inducing stochasticity
to the entirety of the network and stochastically influence the main network weights
in a non-linear way. We validate our claims and model across a variety of experi-
mental trials, where we show that our model produces accurate and well-calibrated
uncertainty estimates.

5

1.1.3 Modeling of Weight Correlations in Approximate Inference

Motivation & Problem Statement

Modeling the approximate posterior distributions of deep neural networks is a chal-
lenging task. Finding the right balance between efficient optimization, tractable prop-
erties, and the ability to capture the true posterior characteristics remains crucial.
One inherent characteristic of deep learning networks naturally induces correlations
between the neural network weights [11]. This is because modern deep networks
leverage techniques like parameter sharing and component reuse to efficiently pro-
cess high-dimensional data [4]. Recent works have attempted to address this chal-
lenge by introducing structured Gaussian approximate distributions. These distribu-
tions relax the limitations of diagonal covariance Gaussian distributions, allowing for
more flexible covariance structures. However, even simple diagonal covariances can
be problematic in some cases. They double the number of learnable parameters while
offering, at best, mediocre performance by today’s standards.

Contributions

In our work we build upon empirical observations which indicate that under the
common setups approximate covariance values across weights converge near to sin-
gle value. This in combination with the relatively good performance of restricted
posteriors [12, 13] lead us to rethink covariance flexibility.

We propose Circulant-Constrained Gaussian as a family of approximate posterior
distributions where the flexibility of the covariance matrix (i.e. degrees of freedom) is
restricted promoting heavy correlations between network weights. We take advantage
of the fact that Circulant matrices can be easily parameterized in terms of their gen-
erating kernel, as well as easily manipulated by leveraging their Fourier Transform
and related eigendecomposition [14]. Furthermore, our model succeeds in providing
a good trade-off between computational complexity and richness of structure. Nu-
merical experiments on a variety of datasets and benchmarks validate our claims.
We believe this fact is crucial when deciding on covariance modeling. We argue that
practitioners should emphasize capturing the structure of the approximate covariance,
even if it means sacrificing some of its flexibility.

6

1.2 Dissertation Layout

The rest of this dissertation is organized as follows. In Chapter 2, we describe the
mathematical foundation for the Bayesian treatment of neural networks. We high-
light several methods for applying probabilistic reasoning in these highly non-linear
and complex models. Furthermore, we discuss recent techniques and approaches that
scale Bayesian inference to deep neural networks. Chapter 3 focuses on the problem
of efficient and robust object detection. We present our contribution, which lever-
ages probabilistic feature fusion to achieve this goal. We experimentally validate our
approach and provide numerical and visual assessments to substantiate our claims.
Subsequently, in Chapter 4, we discuss our contribution to achieving high-performing,
low-dimensional Bayesian deep learning methods. We address this challenge by in-
troducing an efficient hypernetwork that injects stochasticity into a primary large
neural network. We analyze the pros and cons of our method while experimentally
demonstrating its ability to produce highly robust predictions while requiring very
low computational cost. Finally, Chapter 5 explores efficient ways to model weight
correlation in approximate Bayesian inference. We propose a method that inherently
captures low-dependence correlations among individual weights while simultane-
ously reducing the flexibility of the covariance matrix. Our method is motivated by
recent empirical findings and is experimentally validated against more flexible covari-
ance parameterizations. Lastly, Chapter 6 summarizes and concludes this dissertation
with a discussion about the future work.

7

CHAPTER 2

BAYESIAN DEEP LEARNING

2.1 Neural Networks and Deep Learning

2.2 Probabilistic Perspective of Neural Networks

2.3 Approximate Inference

2.4 Optimization‐based Approximate Inference

2.5 Efficient Approximate Bayesian Inference

2.6 Discussion

In this chapter we establish the foundation for the Bayesian deep learning framework.
We will start in Section 2.1 introducing the basic elements of deep neural networks
and explore their usage in computer vision, highlight some of their drawbacks and
limitations. We will continue in Section 2.2 introducing the probabilistic formula-
tion of neural networks and highlight the Bayesian interpretation of standard NN
training. Following that, we will build the full Bayesian formulation and discuss its
limitations. In Section 2.3 we review some possible ways of approximating the three
key-elements of the Bayesian formulation: the posterior (Section 2.3.1), the prior
(Section 2.3.3) and the predictive distribution (Section 2.3.2). In Section 2.4 we will
review in a more detail the optimization framework for approximating the posterior
distribution (Variational Inference). We will discuss different modeling options and
their application to deep neural networks. Finally we conclude with Section 2.5 by

8

exploring methods and frameworks specifically designed and optimized to introduce
Bayesian reasoning in deep vision neural networks.

2.1 Neural Networks and Deep Learning

Neural networks have emerged as the cornerstone of modern machine learning,
achieving remarkable successes in the past decade [4]. Their widespread use con-
tinues to expand in recent years as they have dominated perhaps every field where
learning models are applicable. A neural network can be defined as mapping func-
tion gw : X → Y parameterized by parameters w ∈ Rdw . This function maps input
variables x ⊂ X to output observed variables y ⊂ Y in a non-linear way. Here, w
represents the collection of parameters concatenated into a single vector.

One of the simplest mappings can be defined in the form of an affine transforma-
tion followed by an element-wise non linear function. A historical example model in
terms can be described the logistic regression composed by a linear transformation
on the input variables followed by a logistic sigmoid non linear function[15]. Multiple
successive composition of such linear transformation layers followed by non-linearities
(activation functions) define a neural network (NN) architecture. We now focus on
the linear layer as the simplest block in neural networks. For a single layer l it can
be defined by its weight matrix W l and the bias vector bl:

h(0) = x

h(l+1) = σ(W lh(l) + bl)

gw(x) = W lh(l) + bl

(2.1)

We will resort to this notation throughout the dissertation.
Over the years, further transformations have been introduced, expanding the capa-

bilities and applications of neural networks. One of the most successful is the convo-
lutional transformation [16] with the capacity to process high dimensional regularly
structured data like images. This transformation lead the way to convolutional neural
networks (CNNs). Additionally the notion of recurrence gave rise to recurrent neural
networks (RNNs), enhancing network capabilities to handle long-range data depen-
dencies, such as those found in text and audio signals, more properly and efficiently.
As for the activation functions, since their introduction, ReLU σ(x) = max(0, x) [17]
have largely dominated all other forms of activations primarily due to their ability

9

to stabilize training dynamics. Albeit ReLU’s immersive success other forms of ac-
tivation functions have been introduced to address different challenges encountered
during neural network training. Inspired by neurological signal propagation poling
functions [18], (e.g. max-pooling), offer a spatially invariant and robust way to effec-
tively reduce the feature size in the image processing networks. As a way to alleviate
optimization difficulties batch normalization [19] was introduced. It normalizes the
distribution of a layer’s inputs, addressing the issue where parameter changes in one
layer can drastically alter the input distribution for subsequent layers. This method’s
strength lies in integrating normalization from making normalization into the model
architecture, enabling the use of much higher learning rates and less sensitive pa-
rameter initialization.

In the field of machine learning, deep learning refers to the processes of training
a neural network with many successive layers. All together the number of their pa-
rameters can reach to millions. Modern neural networks of based upon sophisticated
modules-layers which we will refer to as building blocks.

Weight Layer

Weight Layer

X

Weight Layer

Weight Layer

Weight Layer

X

MatMul

Scale

Mask (Opt.)

SoftMax

MatMul

Q K V

Figure 2.1: Graphical illustration of three common deep learning building blocks: the
residual block, the bottleneck residual block, and the scaled dot-product attention
block. (From left to right)

These are sophisticated modules carefully designed to tackle specific problems. Ex-
amples of modules can be a residual block as set of convolutional transformation with
ReLU and skip connection, designed [20] for training stability. The inverted residual
blocks [21] designed to reduce feature dimension before applying transformations
and non-linearities. The multi-head attention modules which forms the basis of the
popular transformer networks [22] and are adept at capturing logn-term relation-

10

ships between elements in a sequence. As neural networks become more complex,
carefully chosen non-linearities become increasingly important. These, along with
appropriate initialization procedures, are crucial for training these massive models.
Stochastic Gradient Descent, followed by its extension ADAM [23], and RMSprop
[24] are optimization algorithms that facilitate the training process in modern deep
learning settings, where datasets are often very large.

In the next section, we will describe the probabilistic formulation of deep neural
networks by treating the parameters w of gw() as stochastic. We will highlight the
benefits of such formulation and what main drawbacks of standard deterministic
training can overcome.

2.2 Probabilistic Perspective of Neural Networks

In this section, we describe the fundamental frameworks of probabilistic learning,
the main focus of this dissertation. Specifically, we introduce the main approaches to
learning deep neural networks from a Bayesian perspective. We analyze probabilistic
modeling (Section 2.2.1), we introduce the maximum likelihood approach for learning
parameters (Section 2.2.2), followed by the maximum a-posteriori approach (Section
2.2.3) and finally motivate and introduce the fully Bayesian approach (Section 2.2.4)
to learning deep neural networks.

2.2.1 Probabilistic Paradigm

Through out this thesis we consider a supervised learning setting, where we have
a training dataset D = {X,Y }, with inputs X = {xn}Nn=1 and outputs Y = {yn}Ny=1.
In machine learning, we assume that there exist a mapping between variables X

and Y that we aim to approximate using a function g with learnable parameters w.
Under the probabilistic paradigm, dataset D is defined via a generative processes.
Variables x are sampled form the data distribution p(x) and y are formed from by
evaluating the conditional p(y|x). The goal becomes to learn the parameters w of a
the conditional distribution p(y|x,w). We assume that the mapping parameters w are
also probabilistic, so we can say that they follow some prior distribution p(w) the
parameters before the dataset D is observed. Ideally, this should be a distribution
over w that induces a distribution over functions gw(x) which encapsulates all of our

11

experience and intuition about the problem at hand.
The goal is to learn the parameters w and finally make predictions using the

predictive distribution for new unseen test datum x⋆:

p(y⋆|x⋆, D) =

∫
p(y⋆|x⋆, w)p(w|D)dw. (2.2)

The evaluation of the predictive distribution assumes the calculation of two major
quantities. The first quantity is the likelihood function p(y|x,w). It represents the
probability of observing data point y given an input x and model parameters w. As-
suming that each sample from the dataset is independent and identically distributed,
the likelihood can be decomposed as individual sample likelihoods:

p(D|w) =
N∏

n=1

p(yn|xn, w). (2.3)

The likelihood function depends on the nature of the task. In regression problems,
the target y is continuous and typically unbounded y ∈ R and can be generated as

y = gw(x) + ϵ where ϵ ∼ N (0, σ2) (2.4)

where the random noise is added form a Gaussian distribution with mean zero and
variance σ2. Then the likelihood takes the following Gaussian form:

p(y|x,w) = N (y|gw(x), σ2) (2.5)

where the mean of the Gaussian is estimated via the output of the neural network.
Variance parameter σ2 can also be treated probabilistically with the assignment of
proper a distribution. The most common choice is the Gamma distribution which is
the conjugate prior for the Gaussian:

p(σ) = Gamma(σ|α, β) (2.6)

In classification setting where the y variables are K discrete classes.

y = argmax σ(gw(x)) where σ(x) = Softmax(x) (2.7)

where the Softmax() inputs model outputs gw(x) (probits) and transforms them in
probabilities over the K classes. The above generative processes results in categorical
likelihood functions and the case where we have binary classification problem (i.e.
K = 2) reduces to the Bernoulli.

p(y|x,w) = Categorical(y|Softmax(gw(x))) (2.8)

12

Again we can define a conjugate function over the softmax probabilities introducing
a Dirichlet distribution:

p(Softmax(gw(x))) = Dirichlet(Softmax(gw(x))|α) (2.9)

Where the parameters α can shape the categorical distribution into favoring (assigning
more mass) particular classes.

The second term that needs to be evaluated is the posterior distribution p(w|D).
This distribution indicates the probability of w to generate the dataset D. The main
focus and difficulty in Bayesian deep learning lies in approximating the posterior. We
can further analyze the posterior distribution using Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D)
(2.10)

The posterior distribution depends on the likelihood, the prior over the parameters.
and a third quantity called model evidence p(D) or marginal likelihood. The second
name refers intuitively to the mathematical derivation:

p(D) =

∫
p(D,w)dw =

∫
p(D|w)p(w)dw. (2.11)

The evidence defines the probability we would generate a dataset if we were to
randomly sample from the prior over functions p(gw(x)) induced by a prior over
parameters p(w).

Evaluating the predictive distribution is inherently coupled with calculation of the
posterior. From a probabilistic perspective, the process of learning itself translates to
inferring the parameters of the posterior distribution. Direct application of Bayes’
rule for this calculation is generally impractical except for some simple cases like
linear models and small Gaussian Processes. Several factors hinder acquiring the true
posterior. Fist the non-linearities present in neural networks prevent the analytical
computation of the involved integrals. Furthermore modern problems involve mas-
sive datasets, making efficient evaluation of even closed form solutions prohibitive
(e.g. an analytical GP cannot extend to massive datasets). In practical scenarios, the
prior distribution over weights and the likelihood function are not conjugate meaning
they don’t lead to a closed-form solution for the posterior (e.g. multimodal distribu-
tions). Finally even if the posterior could be computed for small networks, the same
approach wouldn’t scale efficiently for larger models. The computational cost grows
exponentially with network size, rendering it impractical for modern architectures.

13

Since we cannot typically compute the true posterior distribution exactly, we resort
to approximating it with a tractable distribution, q(w). This approximate distribution
should share some characteristics with the true posterior and also lead to well-defined
and effective predictive distributions. In the following section, we will review the most
common learning settings, maximum likelihood (Section 2.2.2) and maximum a-
posteriori (Section 2.2.3) from a Bayesian perspective (i.e., where learning the model
is equivalent to learning the posterior) and motivate the use of full Bayesian learning
over the previous ones.

2.2.2 Maximum Likelihood

One common way to infer the parameters w is via maximum likelihood (ML) infer-
ence. From a Bayesian point of view we can see the ML as a particular choice of prior
over parameters and approximate posterior distribution. Specifically the prior distri-
bution is set to a constant value practically being completely uninformative about
prior beliefs. Consequently, the true posterior is approximated by the Dirac delta
function.

p(w) = Const

q(w) = δ(w − wML)
(2.12)

Where δ is the Dirac function centered around wML which is a mode of the true
posterior distribution p(w|D) under the specific assumptions. More formally:

wML = argmax
w

p(w|D)

= argmax
w

log p(D|w)p(w)

= argmax
w

log
N∏

n=1

p(yn|xn, w) +�����log p(w)

= argmax
w

N∑
n=1

log p(yn|xn, w),

(2.13)

where the concave log posterior is being optimized as it is easier and numerically
stable. The log prior is canceled as constant and doesn’t affect the optimization.
Finally the predictive distribution of Eq. 2.2 takes the following form:

p(y⋆|D, x⋆) =

∫
p(y|x⋆, w)q(w)dw

= p(y|gwML
(x⋆)).

(2.14)

14

Unfortunately, neural networks trained via maximum likelihood can be prone to
overfitting. In this scenario the network obtains increasingly good performance on
the training set, but begins to deteriorate in its predictive performance on unseen test
data. This behavior is coupled with the over-parameterization. The modern neural
networks have way more parameters being able to memorize entire datasets as [25]
demonstrated that deep neural networks have sufficient capacity to fit randomized
labels on popular image classification tasks.

Many methods have been proposed to prevent overfitting, including early-stopping.
This technique halts the optimization of the weights before the loss function reaches
a minimum. By doing so, the model doesn’t have time to overfit the training dataset,
leading to better performance on unseen data. Other methods focus on limiting the
complexity of the network, such as reducing its depth or the number of hidden
units. This approach aligns with Occam’s razor principle, which favors simpler mod-
els whenever possible [26]. Large neural networks, offer a larger support (ability to
represent complex datasets). However we still need to carefully introduce priors on
the parameters to ensure the model learns functions with reasonable inductive biases.
[27]

2.2.3 Maximum A‐Posteriori

Maximum A-Posteriori (MAP) inference is as a natural extension of the ML frame-
work. In MAP we incorporate prior beliefs about the desirable properties of the NN
functions, which are encapsulated in p(w) the prior distribution over weights. The
approximate posterior remains a delta function centered at the posterior mode.

p(w) = N (0, σ̂2)

q(w) = δ(w − wMAP).
(2.15)

Here we specified p(w) is set to a zero mean Gaussian distribution with a hyper-
parameter σ̂2, a modeling choice which heavily linked to L2 regularization and the

15

weight decay method.

wMAP = argmax
w

p(w|D)

= argmax
w

log p(D|w)p(w)

= argmax
w

log
N∏

n=1

p(yn|xn, w) + log p(w)

= argmax
w

N∑
n=1

log p(yn|xn, w) + log p(w).

(2.16)

Consequently, there are several choices for prior distribution specification (see Sec-
tion 2.3.3). Some popular choices include sparse priors, which are members of the
family of multivariate scale mixtures of Gaussians. These distributions are closely
related to widely used approaches for sparse deep learning, including, among others,
he L2 regularization, Laplacian priors (L1 regularization) [28] also known as LASSO
in the context of linear regression and Student-t priors (e.g. the relevance vector ma-
chines) [29]. Introducing sparse priors into the learning process encourages networks
with smaller parameter magnitudes. This is desirable because networks with large
weights tend to represent more complex functions, often exhibiting greater oscillation
as a function of inputs [30]. Notably, the majority of deep neural networks are trained
using the maximum a-posteriori (MAP) estimator.

wMAP

D
en

si
ty

Maximum A-Posteriori

Likelihood
Prior
Posterior

wMLE

D
en

si
ty

Maximum Likelihood

Likelihood

Figure 2.2: Illustration of how the introduction of a non constant prior distribution
reshapes the optimization landscape resulting in a different solution w for MAP (left)
inference compared to ML (right).

Figure 2.2 provides an illustrative example of how MAP could lead to better
model solution than ML inference. Specifically we can observe the densities of the

16

likelihood and the posterior and how the introduction of a prior shapes the optimiza-
tion landscape. In the left plot, the likelihood function (equivalent to the posterior in
the ML case) with a local maximum at wMLE. The right plot shows how introducing
a prior function reshapes the MAP posterior, leading to a new objective function that
drives the maximization towards a different set of values. In the MAP case, the right
choice of prior helps the optimization to achieve a flatter maximum compared to the
potentially overfitting one found by ML. Sharp minima are prone to non-robustness
against training-test distribution shifts, leading to poor performance on unseen data
[31].

Even with the introduction of suitable prior distribution it has been noticed that
modern neural networks are often miscalibrated. This means that their predictions are
typically overconfident [32]. For example, in classification the highest softmax output
of a convolutional neural network is typically much larger than the probability of
the associated class label. The fundamental reason for miscalibration is restricting the
posterior to Dirac having only deterministic point estimate solution of parameters.

2.2.4 Bayesian Inference

In Bayesian inference, we move beyond the deterministic approximation of weights
used in MAP and ML estimation. Instead, we aim to obtain a distribution for the
weights themselves. Therefore, the learning process becomes one of estimating a
distribution, q(w) ≈ p(w|D), that closely approximates the true posterior distribu-
tion. Neural networks with probabilistic weights are called Bayesian Neural Networks
(BNNs). The key advantage of these models compared to standard point-estimated
counterparts is the fact that they produce uncertainty estimates associated with the
networks’ outputs.

The main uncertainty encountered in the NN predictions of BNNs can be decom-
posed to the following two sources:

p(y|x,D) =

∫
p(y|x,w)

Data
Uncertainty

q(w|D)

Model
Uncertainty

dw (2.17)

The first source of uncertainty is the data uncertainty or aleatoric uncertainty. This is
arises from noise inherent in the true underlying generative process of the data. For
example, noise on an image captured by a faulty measurement system [33]. An illus-
trative example is the regression modeling in Eq 2.4, where aleatoric uncertainty is

17

modeled with independent normal noise (ϵ). Notably, even large amounts of data may
not be sufficient to fully capture this type of uncertainty. On the other hand model
uncertainty also known as epistemic uncertainty, captures our uncertainty about the
specific set of weights that best explains the data (multiple sets can lead to excellent
results). This uncertainty about the parameters is then propagated into the predic-
tions. Bayesian neural networks provide a natural and principled way to account for
the epistemic uncertainty as they would automatically consider and ensemble all the
possible settings of the parameters that are consistent with the training data.

In other words, by marginalizing over the parameters during prediction, we prop-
agate our epistemic uncertainty about the model weights to the predicted outputs.
This epistemic uncertainty allows these models to potentially provide better pre-
dictions and uncertainty estimates compared to standard training procedures. This
additional information can then be leveraged to improve the reliability of neural
networks in tasks such as predictive uncertainty calibration, out-of-distribution data
detection, and safety-critical applications. The ability to marginalize over different
weights addresses issues of miscalibration and overconfidence of standard models
[34].

To optimize a distribution, we need to establish a framework for acquiring val-
ues that approximate the true posterior distribution based on our prior beliefs. In
the next section, we will establish the theoretical foundation for Bayesian posterior
approximation and focus on popular methods for this task.

2.3 Approximate Inference

Building on the benefits of Bayesian treatment for neural networks, in this section we
explore methods to address the challenges encountered in application and training of
BNNs. While this might seem straightforward in theory, direct application of Bayesian
inference becomes very challenging in practice. Here, we examine established practices
and techniques for approximate Bayesian inference. Specifically, this section focuses
on the three main probabilities encountered in Bayesian inference, as discussed in
Section 2.2.1. First, Section 2.3.1 introduces methods for approximating the posterior
distribution. Subsequently, Section 2.3.2 delves into the challenges associated with the
marginalization process for the predictive distribution. Finally, Section 2.3.3 concludes

18

with a discussion on the prior distribution and highlights strategies for selecting
appropriate distributions for neural network weights.

2.3.1 Posterior Approximation

In this subsection, we discuss and summarize some of the most common and popular
methods for approximating the posterior distribution. In the Bayesian framework of
learning, the ultimate goal is to find an accurate and meaningful approximation of the
posterior distribution. This has motivated extensive research to develop and propose
new methods. We begin by discussing the gold standard in probabilistic learning:
Markov chain Monte Carlo (MCMC) methods. Unlike other methods, MCMC does
not approximate the posterior; instead, it attempts to directly sample from the true
distribution. Next, we will explore methods that perform local approximations of the
distribution around a specific mode (maximum) of the true posterior. These methods
are known as Laplace approximation methods. Finally, we will discuss entirely new
approaches specifically designed to address the challenges of deep learning and the
high dimensionality of modern networks.

Markov Chain Monte Carlo & Sampling Methods

Rather then trying to find tractable forms of the integral in Eq 2.2, one can often use
numerical integration techniques based on discretisation and Monte Carlo. A Monte
Carlo approach would make use of the property that the integral is computed against
a probability distribution. This allows the expectations to be approximated by a finite
sum. ∫

f(w)p(w|D)dw ≈ 1

K

K∑
k=1

f(wk) (2.18)

As long as the samples are drawn from the distribution p(w|D) the estimation has
the same mean. Unfortunately, this simple Monte Carlo approach assumes that it is
easy to draw samples from the posterior, which is not true in most cases.

Sampling-based approaches are historically one of the most fundamental meth-
ods for probabilistic inference. These methods, unlike those that attempt to directly
approximate the posterior distribution, aim to acquire samples from the true posterior
distribution. The main framework generates probable samples from a target distribu-
tion relying on a proposal distribution. This is a surrogate distribution from which

19

samples can be easily drawn. These base samples can be transformed using impor-
tance sampling techniques, or rejected according to our knowledge about the target
distribution (rejection sampling). Unfortunately, these methods (as discussed in [15])
suffer from severe limitations, particularly in high-dimensional spaces.

To address limitations in dimensionality and computational efficiency Markov chain
approaches have been introduced. These methods are based in a proposal distribu-
tion g(). This time, however, they build a framework for maintaining a record of
drawn samples which affect the proposal distribution () which depends the sequence
of samples w(1), w(2) . . . w(n) which form a Markov chain. The Metropolis-Hastings
algorithm provides a solid framework upon the majority of modern sampling meth-
ods and approaches are based. In the case of the Bayesian setting the true posterior
distribution can be approximated as q(w|D) ∝ p(D|w)p(w) simply ignoring the nor-
malizing constant. The algorithm simulates samples from the true p(w|D) using a
proposal distribution g(w1|w2, D), βυ fist sampling w⋆ from the proposal distribution
and then accepting the sample with a with the probability min(1, r) where:

r =
q(w⋆|D)g(w(t)|w⋆, D)

q(w(t)|D)g(w⋆|w(t), D)
(2.19)

Extending the above framework Hamiltonian (Hybrid) Monte Carlo (HMC) [35,
36] provides a more sophisticated method for proposing samples of w in a Metropolis-
Hastings framework. Compared to standard random-walk proposals, HMC efficiently
explores the state space.

Despite their effectiveness, Hamiltonian Monte Carlo (HMC) methods can be com-
putationally expensive when applied to modern deep neural networks. To address
this challenge, recent work has proposed Scalable Gradient HMC (SGHMC) as a more
scalable variant [37]. However, high-fidelity sampling methods remain valuable only
in research. These methods, as exemplified by [38], provide a reliable way to as-
sess assumptions about approximations and establish baselines for more efficient
approaches. Notably, works like [38] have even attempted using HMC on large-scale
CNNs to explore fundamental questions in Bayesian deep learning.

Laplace Approximation

One of the most common methods for approximating the posterior distribution is
Laplace approximation. While originally proposed by Mackay in [30], it has recently
seen a resurgence in popularity due to its ability to work with modern large-scale

20

neural networks and datasets (e.g., [39]). The core idea is to approximate the true
posterior distribution of the parameters locally, around an already acquired mode
(i.e., the most likely value) of the posterior. This ”post-hoc” approach is particularly
appealing in deep learning because it can leverage the vast number of pre-trained
models available to researchers.

Specifically, the Laplace approximation utilizes the second-order Taylor series ex-
pansion of the loss function L around the mode wMAP approximating in this way
the posterior distribution p(w|D). More specifically the loss can be approximated as
follows:

L ≈ L(D,wMAP) +
1

2
(w − wMAP)

T (∇2
wL(D,w)|wMAP)(w − wMAP). (2.20)

The term in the expansion accounting for the first-order derivatives is canceled
out because the expansion point, by definition, is the mode of the distribution.
∇wL(D,w)|wMAP = 0. In fact the mode for the true posterior can be obtained by via
MAP estimation 2.2.3. Taking the exponential of Eq. 2.20 we obtain an normalized
distribution q(w) that results to Gaussian distribution with mean the mode wMAP and
and precision proportional to the negative inverse Hessian of the model parameters:

p(w|D) ≈ q(w) = N (wMAP,Σ) where Σ =
(
∇2

wL(D,w)|wMAP

)−1
. (2.21)

In general, any prior distribution with twice differentiable log-density can be used.
But due to its popularity a zero-mean isotropic Gaussian prior with precision γ is
assumed in the majority of cases. This leads to the following:

∇2
wL(D,w)|wMAP = −

N∑
n=1

∇2
w log p(yn|gw(xn))|wMAP − γ−2I. (2.22)

One of the main drawbacks of the plain Laplace approximation is the computational
cost associated with calculating the Hessian. As in any application where information
about the second derivative of the parameters is required, practitioners often resort to
approximations for the Hessian structure. In the remainder of this section will briefly
introduce advances in Hessian approximations and their factorizations.

At this point, we observe that there is no guarantee that the direct computation of
the Hessian in Eq. 2.22 will result to a positive definite matrix. The Hessian is then
approximated with the Generalized Gauss-Newton (GNN) matrix [40]:

G =
N∑

n=1

J(xn)(∇2
g log p(yn|g)|g=gwMAP

(xn))J(xn)
T . (2.23)

21

Where J(xn) is the Jacobian matrix derived as:

J(xn) = ∇wgw(xn)|g=gwMAP
. (2.24)

The Gauss-Newton matrix is also interconnected with the Fisher information matrix.
However, since both the GNN and the Fisher information matrix are still quadratically
large (i.e., as large as the exact Hessian of the network), their computation is often
infeasible [40].

Full Low Rank Diagonal KFAC

Figure 2.3: Common Generalized Gauss-Newton matrix lightweight parameteriza-
tions.

To circumvent the quadratic computational cost of evaluating the GGN matrix
several parameterizations have been proposed. The most straightforward approach is
the diagonal restriction of the matrix, where all the off-diagonal elements are set to
zero. Recent work has shown that this factorization can be effective for sufficiently deep
neural networks [41]. This finding suggests that even simple posterior approximations
can sometimes be sufficient as neural network depth increases significantly. Beyond
reducing the storage cost of the matrix, the diagonal covariance structure also makes
its inversion highly computationally efficient.

More expressive alternatives include block-diagonal factorization methods such as
Kronecker-factored approximate curvature (KFAC) [42]. This parameterization has
been tested extensively in the large-scale NNs [43]. The key idea is to model the cor-
relation between weights in the same layer, while assuming independence between
weights from different layers. This is a more realistic assumption from than the di-
agonal one as recent works suggest [11]. The Kronecker factorized parameterization
leads to block diagonal structure of the GGN which can be intrinsically viewed as a
Matrix Normal distribution over the weights [44]. To improve KFAC’s efficiency, its
low-rank factorization can be considered [45]. This approach involves eigendecom-
posing the Kronecker factors and retaining only the eigenvectors corresponding to the

22

first k largest eigenvalues. We can go beyond approximating individual blocks of the
Hessian or GGN with low-rank structures, as the entire Hessian or GGN itself can also
be approximated using a low-rank structure [46]. These advancements have made
Laplace approximation-based methods truly applicable to a wide range of models
and problems [47, 48, 9].

Stochastic Weight Averaging

In this subsection, we discuss approximate Bayesian inference methods that heavily
rely on extracting valuable information from the stochastic gradient decent (SGD)
training trajectory of neural networks. One of the pioneer of using SGD characteristic
where [49] proposed to use the iterates of averaged SGD as an MCMC sampler. After
analyzing the dynamics of SGD using tools from stochastic calculus show that SGD
has a Gaussian limiting distribution. Building on this notion, authors in [50] found
that simple averaging of multiple points along the trajectory of SGD, with either a
cyclical or constant learning rate, leads to better generalization performance than
standard training.

This trajectory-based learning approach is called stochastic weight averaging (SWA).
Following this method, weights of the network obtained after epoch i as wi, the SWA
solution after T epochs is given by:

wSWA =
1

T

T∑
i=1

wi. (2.25)

Unlike SGD, which converges to a single point in the weight space, SWA explores a
set of possible solutions. This approach leads to finding wider local optima, which
translates to better generalization [50]. Building upon this work, Maddox et al. [10]
extended the procedure by attempting to approximate the empirical second moment
of the stochastic SGD trajectory. This approximation is used as an estimate for the true
posterior distribution’s second moment at test time. The simplest approximation to
the second moment of the distribution of weights is to restrict the empirical trajectory
covariance matrix to be diagonal

Σdiag = diag(w̄2 − w2
SWA) where w̄2 =

1

T

T∑
i=1

w2
i . (2.26)

Where the running average of the second moment is maintained for each weight
along side the their mean value. Further more one can easily acquire a structured

23

variation, enriching the rather restricted diagonal covariance approximate matrix. A
low-rank component can be integrated to the diagonal approximation allowing for
cross weight correlations in the final model

Σlow rank =
1

T − 1

T∑
i=1

(wi − w̄i)(wi − w̄i)
T . (2.27)

Where the w̄i is an approximate of the wSWA at the current epoch i. The resulting
matrix is of rank T and can be combined with the diagonal one to yield the final
posterior approximation distribution.

p(w|D) ≈ q(w) = N (wSWA,Σdiag + Σlow rank) (2.28)

This trajectory averaging approach has produced quite excellent experimental results.
This property, along with its simplicity and ease of implementation, has made it a
standard baseline method for approximating the posterior distribution in Bayesian
deep learning research within a short period of time.

Further Approximations

In this subsection, we will discuss alternative methods for approximating the posterior
distribution that deviate from those previously discussed. These methods include
ensemble techniques, which have roots in bootstrapping models, but are not strictly
Bayesian according to the rigorous mathematical definition. Furthermore we will also
explore the use of neural networks to directly acquire samples from the posterior
distribution.

Posterior Networks: are a recently developed class of approximate Bayesian infer-
ence methods. These networks utilize neural networks to directly acquire samples of
epistemic uncertainty, deviating from traditional probabilistic modeling approaches.
While this approach may seem to diverge from the established direction and narra-
tive of this section, the potential for a more straightforward approach to probabilistic
reasoning in modern deep neural networks compels us to mention them briefly. We
will describe these methods in the context of classification. Here, the categorically
distributed class label yi ∼ Cat(pi) is modeled with its natural conjugate prior, the
Dirichlet distribution q(i) = Dir(αi). The key idea is to use a neural network to di-
rectly predict the parameters of the Dirichlet distribution, rather than predicting the
parameters of the categorical distribution (i.e., converting logits to class probabilities)

24

[51]. However, challenges arise during the training of these networks, particularly
in acquiring useful epistemic uncertainty estimates. The Dirichlet prior needs to be
shaped differently for in-distribution data, where its mass can be assigned to the true
class label. Conversely, it must retain a more spread mass for out-of-distribution data
(input data that deviate significantly from the training data). Many works directly
model this property by incorporating out-of-distribution (OOD) data during training
to smooth the Dirichlet probability space. However, this requirement for OOD data is
often impractical. A recent class of networks proposed in [52] bypasses the need for
OOD data. It learns the prior distribution parameters by first mapping input samples
x to a latent space z. Then, a parametric distribution p(z|c) is trained for the class c.
demonstrate that by learning a latent mapping, a manifold naturally forms clusters.
This allows p(z|c) to assign the appropriate mass to each class for each sample zi.

Deep Ensembles: or ensembling neural network predictions is a well-known prac-
tice that leads to improved generalizability of predictions [53]. Predictions from dif-
ferent ensemble members are combined to create a form of predictive distribution in
the notion of Eq. 2.2 [54]. Recent work has shown that deep ensembles can outper-
form some Bayesian approaches for uncertainty estimation, making them a strong
baseline for comparison [55]. Although ensemble methods do not strictly adhere to
the mathematical formulation of Bayesian inference, they can be considered a com-
pelling approach to approximating Bayesian model averaging [56]. This is because
ensembles, by their nature, can account for multiple parameter solutions, which aligns
with the concept of a multimodal true posterior distribution. In simpler terms, rather
than relying solely on a single hypothesis with a specific set of parameters w, these
methods leverage all possible parameter settings, weighted by their corresponding
posterior probabilities [27].

Further research has explored enforcing neural network diversity, in an afford to
capture multiple ”posterior modes”. This is achieved by making individual models
within the ensemble repel each other in weight space [57]. This ensures no two
models share identical weights. Directly enforcing diversity [58] by encouraging the
networks to produce discrepancies between its predictions could lead to sub-optimal
performance [59]. Since diversity on highly accurate models can only come at the
expense of predictive performance. The greatest drawback of deep ensemble methods
is their computational cost as the improved predictive performance and calibration
are strongly tied to the number of networks in the ensembles.

25

2.3.2 Predictive Approximation

Having discussed various options for evaluating the approximate posterior distribu-
tion, this section explores some fundamental approaches to approximating the pre-
dictive distribution. Even with the posterior distribution available, marginalization in
Eq. 2.2 is not a straightforward procedure. As such, we still need to resort to approx-
imations. We will begin in Section 2.3.2 by introducing the Monte Carlo estimator as
the most straightforward method for approximating the predictive distribution. Sub-
sequently, Section 2.3.2 details the linearization approaches. We will then continue
with variance and uncertainty propagation techniques in Section 2.3.2, concluding in
Sec. 2.3.2 with a discussion about distillation approaches.

Monte Carlo

Definitely the most popular way of approximating the predictive distribution is the
Monte Carlo (MC) iteration algorithm:

p(y⋆|x⋆, D) ≈ 1

K

K∑
i=1

p(y|x⋆, wi) where wi ∼ q(w|D) (2.29)

This straightforward approach, while easy to implement, yields unbiased estimates.
The mean of the summation approximates the true integral with an error of 1/

√
K ,

but only as K approaches infinity. In practice, dealing with large K values is infeasible.
Therefore, we resort to using smaller K values for efficient inference on large models.
However, these small sample sizes compared to the high dimensionality of neural
networks can introduce bias in the final integration outcome. Despite this, MC-based
predictive distributions can still achieve state-of-the-art results [55].

Linearization

Monte Carlo integration requires evaluating the neural network multiple times for ev-
ery new test point prediction. This can be computationally expensive and prohibitive
for real-time applications. Linearization offers an alternative. It provides an analyti-
cal approximation for Eq. 2.2, eliminating the need for exhaustive re-evaluations in
MC iterations. This processes starts by applying the Taylor approximation to the NN

26

output g = gw(x) ∈ Rs around the point weights µ:

gw(x) ≈ gµ(x) + J (x)(w − µ)

where J (x) = ∇wgw(x)|µ.
(2.30)

The matrix J (x) ∈ Rs×d is the Jacobian matrix, holding the partial derivatives of the
gµ(x) the neural network evaluated at the µ w.r.t. w. This approximation allows the
neural network output to linearly depend on the w weights. To evaluate the resulting
distribution on the NN outputs p(g), we first note that g depends linearly on w. Under
the Gaussian assumption q(w) = N (µ,Σ) the NN weights w can be marginalized:

p(g|x) ≈
∫

δ(g − gw(x))q(w)dw = N (g|gµ(x),J (x)TΣJ (x)). (2.31)

The computation of this distribution is not only useful for theoretical analysis, but
it also simplifies the inference problem. As inference involves reasoning about the
weight vector w of dimensionality d. This approach is replaced by evaluating g(x),
which has a dimensionality of s << d. This shift is advantageous because higher
dimensionality often leads to computational difficulties.

Finally the computation of the predictive distribution Eq. 2.2 can be defined as:

p(y⋆|x⋆) =

∫
p(y|g⋆)p(g⋆|x)dg. (2.32)

The Gaussian weight assumption makes this computation tractable for Gaussian like-
lihood functions p(y|g) (i.e. regression). However, for non-Gaussian likelihoods, es-
pecially in classification, the introduction of the Softmax or sigmoid function renders
direct integration intractable. Fortunately, the Gaussianity of the neural network out-
puts allows us to obtain a good approximation ([60] [26] [61] by exploiting the close
similarity between the logistic sigmoid function σ(a) and the probit function Φ(a)

leveraging the analytical solutions of the probit approximations.
Linearized predictive models have gained significant popularity due to their ability

to improve predictive performance, particularly for common underfitting problems
encountered with the Laplace approximation [62]. However, the computational cost
associated with Jacobian computation restricts their application to small networks,
output spaces, and datasets. Works have addressed this limitation by introducing
a scalable, sample-based Bayesian inference method for conjugate Gaussian multi-
output linear models [48]. Additionally, potential pitfalls have been discussed in the
context of Bayesian optimization and active learning [39].

27

Variance Propagation

Variance propagation is an alternative method that can be used to obtain a distribution
for the network’s output. This approach avoids the use of Monte Carlo sampling,
thus reducing variance in the likelihood. Variance propagation methods perform
approximate inference analytically by propagating means and variances of the weights
through all layers of a neural network to the output while ensuring computational
efficiency and differentiability. Several authors have proposed methods that propagate
moments in different contexts. Probabilistic Back Propagation [63] utilizes moment
matching principles from the expectation propagation framework [64] to compute
the approximate posterior.

To illustrate moment propagation, we will focus on recent sampling-free ap-
proaches based on the central limit theorem (CLT). These approaches typically omit
covariances in the second moment. The core principle of moment propagation based
on the central limit theorem property is to focus on a single linear layer, denoted as
l, with weights W l ∈ RIl×Ol , pre-activations αl ∈ R1×Il , and activations hl ∈ R1×l.

hl = f(α(l−1))

αl = W lhl + b
(2.33)

Since the linear transformation is applied to hl after the non-linear function this results
the pre-activations α using the CLT being approximately normally distributed. Mean
and variance parameters can be computed by moment matching from the earlier
layers as:

E[αl] = E[W l]E[hl] + E[b]

Var[αl] = Var[hl]Var[W l] + Var[hl]E[W l]2 + E[hl]2Var[hl].
(2.34)

The mean and variance of the post-activation feature maps h = ReLU(α(l−1)) are
tractable for ReLU activations [65]. Here, is often assumed that the pre-activations
αl can be approximated by a Gaussian distribution with mean µ and variance σ2.
Under this assumption, the mean and variance of the output distribution through the
non-linearity become tractable.

E[ReLU(α(l−1))] = µΦ
(µ
σ

)
+ σΦ

(µ
σ

)
Var[ReLU(α(l−1))] = (µ2 + σ2)Φ

(µ
σ

)
+ µσϕ

(µ
σ

)
− E[h]2.

(2.35)

Propagating the covariances has been studied more thoroughly in [66], where the
authors focus on the effect of activation covariance propagation. Furthermore, in

28

recent years, numerically stable approximations have been developed for propagating
means and variances through multivariate functions such as softmax, argmax, and
log-sum-exp. These approximations can handle categorical distributions as well as
non-linearities like max-pooling and leaky ReLU [67]. Additionally, approximations
have been developed to deal with batch normalization layers in neural networks, as
presented in [68].

Expectation Distillation

Another popular way to approximate the predictive distribution is through the process
of distillation. Following this idea the predictive distribution under different sampled
parameters wi ∼ q(w) can be learned or ”distilled”, into single neural network with
ϕ parameters. This method offers the benefit of requiring only one evaluation at test
time, in contrast to Monte Carlo integration. Among the first to apply this were the [69]
who proposed the Bayesian-dark-knowledge framework. This framework is a way to
train a parametric model S(y|x, ϕ) to approximate the Monte Carlo posterior predictive
distribution q(y|x) in order to gain the benefits of the Bayesian approach while only
using the same run time cost as the plugin method. Following [70], q(y|x) is called
the ”teacher” and Sϕ(y|x) the ”student”. The framework of knowledge distillation
uses stochastic MCMC methods (see Section 2.3.1) to estimate q(w) and hence q(y|x)
online. Then uses these estimates to train the student network to minimize the KL
divergence between the teacher and the student predictions:

L(ϕ) = KL(p(y|x,D)||Sϕ(y|x))

= −Ep(y|x,D) [logSϕ(y|x)] + const

= −
∫ [∫

p(y|x,w)p(w|D)dw

]
logSϕ(y|x)dy

= −
∫

p(w|D)
[
Ep(y|x,w) logS(y|x, ϕ)

]
dw.

(2.36)

Unfortunately, computing this integral is not analytically tractable. However, we can
approximate this by Monte Carlo

L(ϕ) = − 1

K

K∑
i=1

Ep(y|x,w) logS(y|x,w) (2.37)

wi ∼ p(w|D) ≈ q(w) (2.38)

This technique of training a neural network to approximate an MC expectation
and deploying it at test time has been further developed. Works like [71] make

29

connections and utilize this approach to distill Deep Ensembles [72] as an expectation
of networks trained under different random seeds. A shortcoming of the distillation
approach is that it only distills the posterior predictive distribution, thus losing access
to other valuable posterior statistics. However, a more significant limitation regarding
uncertainty estimation is the loss of information about the ensemble’s diversity. This
results in making the posterior distillation performance highly sensitive to the student
model’s architecture.

2.3.3 Prior Specification

The prior distribution summarizes our beliefs about the neural network parame-
ters before we even see any data. Specifying a particular distribution can be very
challenging, as it’s not straightforward to set specific values for the neural network
parameters. This makes defining a Bayesian prior notoriously difficult for complex
models like neural networks. The high dimensionality of parameter space further
complicates reasoning about the NN parameters. Since the true posterior distribu-
tion can almost never be recovered, it is difficult to isolate the influence of a prior
(even empirically) [27]. Additionally simple priors might be sufficient, as neural net-
works possess strong inductive biases due to their architectural structure. In other
words, simple priors have the potential to induce highly complex functions, which
is often more important in applications than using more complex and informative
parameter priors. This section discusses the two main approaches to prior specifica-
tion in Bayesian inference. We first analyze common priors placed directly on neural
network parameters (Section 2.3.3). Subsequently, in Section 2.3.3, we will briefly
discuss priors that implicitly affect the network weights by acting upon each layer’s
activations.

Parameter Space Priors

Since reasoning about specific network weight values is often impractical, the majority
of Bayesian inference methods employ a standard Gaussian distribution as the prior.
Therefore, the isotropic zero-mean Gaussian prior, p(w) = N (0, I) is the most common
choice. Most practitioners chose this prior for its simplicity, heavily relying on better
and more flexible posterior approximation to capture the true posterior distribution
and achieve improved predictive performance and uncertainty quantification in their

30

models.
Instead of promoting specific weight values, parameter space priors have been

employed to enforce desirable attributes on the learned weights. One of the most fun-
damental properties is sparsity. Sparsity not only leads to lighter models by pushing
neural network values closer to zero, but it has also been shown to improve model
robustness and generalization capabilities [73, 74]. A common approach to enforc-
ing sparsity is through sparse priors. These distributions can be implemented using
hierarchical modeling with a non-centered parameterization.

w ∼ N (0, z2) where z ∼ p(z)

p(w) =

∫
N (0, z2)p(z)dz

By treating the scales z of w as random variables we can recover marginal prior
distributions over the parameters that have heavier tails and more mass at zero; this
subsequently biases the posterior distribution over w to be sparse. An example of
resulting w priors for different choices of scale distributions is illustrated in Fig 2.4.
The hierarchical modeling framework results in heavy-tailed priors. These priors

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

w

D
en

si
ty

Student’s t: w ∼ N(0, σ2)

Laplace: w ∼ N(0, σ2)

Horseshoe: w ∼ N(0, σ2)

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

σ2

D
en

si
ty

σ2 ∼ InvGamma(u/2, u/2)

σ2 ∼ Exp(2λ2)

σ2 ∼ HalfCauchy(0, λ)

Figure 2.4: Hierarchical modeling of common sparse priors.

apart from shifting the majority weights to zero, give the model freedom to converge
in large weight values as well; allowing for more model flexibility.

Furthermore, some works propose determining priors over parameters by ex-
ploiting empirical weight properties of already ML trained networks. For example,
Fortuin et al. [11] proposed structured Gaussian priors based on empirical weight
values, capturing the empirical correlations in neural network weights. Priors for in-
variance can be another way to specify informative prior distributions. Authors in
[75] proposed learning a model that exploits invariance in model predictions under

31

certain input transformations. Finally, [76] explored how Gabor filters can be specified
as an implicit probability distribution for the first layer filters of a convolutional neu-
ral network (CNN). This approach leverages the well-known properties and empirical
distribution of already learned neural network parameters.

Function Space Priors

Rather than working with the uninterpretable parameter space, function space priors
place the Bayesian prior on the model’s induced functions directly. As we truly care
about the distribution over predictive functions, specifying functional priors has re-
ceived much attention [77]. Placing a functional prior on a neural network requires
either taking infinite-width limits [78] or optimizing divergences involving stochastic
processes, which are distributions over functions. An intuitive and well-studied case
is Gaussian processes (GPs), which define a distribution over functions characterized
by a mean and a kernel function. Sun et al. [79] proposed a framework extending
variational inference (see Section 2.4) to minimize the divergence between two distri-
butions over functions via a function-space evidence. This allows the introduction of
GP priors in BNNs and the integration of more interpretable priors.

To avoid the infinite support of stochastic processes and the inaccuracies asso-
ciated with directly inferring and working in the function space, especially in high
dimensions, several methods have been proposed. These methods implicitly define a
prior in the function space while avoiding the computational burden of directly work-
ing in that space. An illustrative example is the function-space regularization method
presented by [80]. The authors take a probabilistic perspective on function-space reg-
ularization in deep neural networks, defining an empirical prior distribution (in the
Maximum A Posteriori style) over parameters. This allows for the explicit encoding
of relevant prior information about the data-generating process into the training pro-
cess. Furthermore, Tran et al. [81] proposed finding weight parameter values that
produce GP-like functions, enabling explanation, extrapolation, and high flexibility.
These parameter values are then used as the prior distribution. Another approach,
proposed by Nalisnick et al. [82], implicitly models the prior distribution by control-
ling the complexity of the model, defined as the predictive divergence from a reference
model. However, the use of the change of variables formula to translate this distance
to parameter space is not elaborated upon here.

32

2.4 Optimization‐based Approximate Inference

In optimization-based approximate inference, the main goal is to find the approxi-
mate distribution q(w) that is closest to the true posterior distribution p(w|D) via the
optimization of some property that incorporate the distance between both. Typically
q(w) is a parametric distribution with parameters θ that belongs to a family of dis-
tributions q ∈ Q. The choice of the approximate family Q is crucial to the overall
approximation procedure. Practitioners often face a trade-off between choosing flexi-
ble approximate posterior to ensure that they are as closer to the true posterior and
computational efficiency as at the same Q has to offer significant benefits. In the ma-
jority of cases we restrict the Q approximations so we can easily sample and evaluate
their densities or to be able to compute easily expectations under this distribution. A
significant amount of work proposes various directions for the approximate choice,
ranging from simple Gaussians [41] to highly flexible implicit distributions [83]. We
will discuss these further in Section2.4.3. Therefore, the main goal is to find the θ

that best approximates the posterior distribution. This optimization is often defined
via a cost function:

qθ(w) = argmin
θ

D(qθ(w)||p(w|D)) (2.39)

Thus we aim to acquire the parameters θ that minimize the distance between the
approximate qθ and the true posterior distribution. Unfortunate this distance even
for non deep learning models cannot be computed analytically. Way to circumvent
the intractability of the optimization cost is to define a quantity that we can easily
optimize and provides a guarantee of the overall optimization procedure. The most
common choice of divergence measure D(qθ(w)||p(w|D)) to quantify the proximity
between two densities is the information-theoretic Kullback-Leibler (KL). A lower
bound based framework which is the most common is the Variational inference (VI).
The goal is to acquire the parameters θ that minimize the distance between the approx-
imate posterior distribution qθ(W) and the true posterior distribution. Unfortunately,
even for non-deep learning models, this distance cannot be computed analytically.
To circumvent the intractability of the optimization cost, we define a quantity that
can be easily optimized and provides a guarantee for the overall optimization pro-
cedure. The most common choice for this divergence measure, denoted by D, is the
information-theoretic KL divergence. A common framework based on a lower bound
is Variational Inference.

33

In this section, we will analyze optimization-based approximate inference, focusing
particularly on the VI framework. This framework plays a crucial role in applications
introduced in this dissertation. We will begin by introducing the basic form of the VI
framework (Section 2.4.1). In Section 2.4.2, we will discuss methods and techniques
for extending typical VI to deep learning models. Finally, Section 2.4.3 will explore
several ways to utilize the VI framework for highly flexible posterior distribution
approximations in deep neural networks.

2.4.1 Variational Inference

The VI optimization method implicitly optimizes Eq. 2.39 by optimizing a lower
bound of the evidence function Eq. 2.11. While this connection might not be im-
mediately apparent, the most appealing characteristic of the VI framework is its
simplicity and tractability in most cases. We begin our discussion by introducing
a tractable parameterization of the distance between the approximate posterior and
the true posterior distribution.

DKL(q(w)||p(w|D)) = −
∫

q(w) log p(w|D)

q(w)
dw

= −
∫

q(w) log p(D|w)p(w)
p(D)q(w)

dw

= −
∫

q(w)

(
log p(D|w)p(w)

q(w)
− log p(D)

)
dw

= −
∫

q(w)

(
log p(D,w)

q(w)

)
dw + log p(D)

= −L(q(w)) + log p(D)

(2.40)

Where L(q(w)) is called the Evidence Lower Bound (ELBO). This reparameterization
allows us to easily optimize the KL-divergence with respect to θ, by directly optimizing
the ELBO; which is a tractable quantity. The evidence p(D) which is unknown,
does not depend on the approximate distribution parameters θ and can therefore be
treated as a constant during optimization. Thus minimizing the KL-diverge Eq. 2.39
is equivalent to maximizing the ELBO. To understand why the ELBO get its name

34

we can deploy its alternative derivation:

log(p(D)) =

∫
log p(D,w)dw

=

∫
log
(
q(w)

p(D,w)

q(w)

)
dw

≥
∫

q(w) log
(
p(D,w)

q(w)

)
dw

= L(q(w))

(2.41)

where Jensen’s inequality takes advantage of logarithm’s is a concave nature. For-
mally we defined the lower bound according to parameterization.

L(q(w)) = Eq(w) log p(D|w)−DKL(q(w)||p(w))dw. (2.42)

Upon examining this equation, we can see that the ELBO is clearly composed of
two terms. These terms form a relationship which allows different interpretations
to emerge, each offering a distinct perspective on the overall optimization problem.
From a statistical perspective, the ELBO reflects the trade-off between model accuracy
and regularization penalty. A Bayesian point of view states that the ELBO reflects the
balance between the data likelihood and the prior distribution over model parameters.
Finally an information-theoretical approach states that there exists a strong connection
between ELBO and the minimum description length principle, as described in [84].

Further analyzing Eq. 2.42, the KL divergence term can be interpreted as a reg-
ularizer that is minimized when the posterior distribution exactly matches the prior
distribution. This definition of the ELBO has been used to explain the overregular-
ization phenomenon observed in variational inference methods, where they tend to
prune many weight parameters and lead networks trained with VI to sub-optimal
performance (see Section 2.4.2). Therefore, the KL-divergence term’s value ideally
should be small. However, we don’t want it to approach zero, as this prevents the
variational posterior from capturing any meaningful dependencies in the underlying
training data. Additionally the ELBO function can be also parameterized as follows:

L(q(w)) = Eq(w) log p(D,w)−H(q(w))dw. (2.43)

This alternative parameterization highlights that, a ”good” posterior approximation
should assign most of its probability mass to regions with high joint probability
density. Additionally, it should maximize the entropy of q(w). This viewpoint helps

35

us understand the key difference between variational Bayesian inference and the MAP
approach. In MAP estimation, the goal is to find a single value of w that maximizes the
joint density, even if it resides in a region with very low posterior mass. In contrast,
the entropy term Eq. 2.43 discourages q(w) from collapsing into a single point [85].

2.4.2 Stochastic Variational Inference & Challenges

The ELBO optimization allows us to learn the parameters θ of the approximate
posterior distribution, qθ(w) , using simple stochastic optimization. This enables the
VI framework to scale to modern deep learning architectures. Therefore, stochastic
variational inference (SVI) addresses this problem in the spirit of stochastic gradient
descent. In each iteration, a random minibatch of size M is selected to obtain a
stochastic estimate of the ELBO:

L(q(w)) = N

M

M∑
m=1

Eq(w) log p(ym|xm, w)−DKL(q(w)|p(w)). (2.44)

Where m is defined as the variable index from the mini-batch. The gradient is then
computed, providing a noisy estimate of the true ELBO’s direction of steepest as-
cent. Stochastic variational inference shares the same convergence requirements as
regular stochastic gradient descent. The minibatch indices, denoted by m, must be
drawn uniformly at random. The minibatch size is denoted by M . Larger M values
reduce the stochastic gradient’s variance. When M = N (dataset size), SVI reduces
to traditional VI. To perform stochastic optimization, a tractable form for the ELBO
gradients is needed:

∇θL(q(w), θ) = ∇θ

∫
qθ(w) log p(D,w)

qθ(w)
dw. (2.45)

However, calculating the ELBO and its gradient often intractable as it involves the
computation of the expectation w.r.t approximate posterior distribution. A common
approach is to construct a Monte Carlo estimator for the ELBO and its gradient with
respect to θ. The chosen estimator’s properties, particularly its bias and variance, are
crucial for the viability and accuracy of the stochastic optimization process. We will
discuss two popular gradient estimators used to approximate the ELBO gradients in
the following section.

36

Unbiased Gradient Estimators

First we consider the score function estimator also known as a likelihood ratio esti-
mator or Reinforce, [86].

∇θL(q(w), θ) =
∫

∇θ[qθ(w)] log p(D,w)− log qθ(w)dw

+

∫
∇θ[log p(D,w)− log qθ(w)]qθ(w)dw

= −Eq(w) log qθ(w)

+

∫
∇θ[qθ(w)] log p(D,w)− log qθ(w)dw

=

∫
∇θ log qθ(w)qθ(w)(log p(D,w)− log qθ(w))dw

= Eq(w)[∇θ log qθ(w)(log p(D,w)− log qθ(w))]

(2.46)

In the above derivation the identity that, the expected value of the score function is
equal to zero Eq(w)[∇θ log qθ(w)] = 0 and the log derivative trick which is related to
the chain rule ∇θ[qθ(w)] = ∇θ[log qθ(w)]qθ(w), was used. The score function estimator
depends only on the variational distribution, and not on the underlying model. Thus
it can be trivially handle various variational approximations. Furthermore there are
no assumptions about the form of the model (in fact non-differentiable models can
works as well), only that the logarithm of the joint p(D,w) can be computed, this
significantly reduces the effort needed to implement variational inference in a wide
variety of models [87].

The score function estimator, despite its benefits, also has drawbacks. It has been
showed that stochastic gradients can exhibit high variance. The variance introduced
by the Monte Carlo estimate can be too large for practical use and prevent the stochas-
tic optimization process from converging. Additionally, high variance gradients neces-
sitate very small optimization steps, leading to slow convergence. Therefore, variance
reduction techniques are often employed when using the score function estimator.
Common methods include Rao-Blackwellization, which reduces the variance of a ran-
dom variable by replacing it with its conditional expectation with respect to a subset
of variables [88], and control variates, a method where a stochastic term is added to
the stochastic gradient such that its expectation remains the same, but its variance is
reduced [89].

We will continue our discussion by deriving the pathwise gradient estimator, also
known as the reparameterization trick (RT). While not as broadly applicable as the

37

score function estimator, the RT generally exhibits lower variance [90, 91]. It is appli-
cable to continuous random variables whose probability density can be reparameter-
ized. This reparameterization allows us to rewrite expectations. In the more general
the goal is to compute the expectation w.r.t. qθ(w) of a function f that depends on θ.
The main goal of the pathwise estimator is apply change of variable and transform
the expectation w.r.t qθ(w) to an expectation of q0(ϵ)

Eqθ(w)[fθ(w)] = Eq0(ϵ)[fθ(T (ϵ; θ))]. (2.47)

In this setup q0 is a fixed distribution with no dependence on θ and T (ϵ; θ) is a
differentiable θ-dependent transformation. Since the expectation w.r.t. q0 has no θ

dependence, gradients w.r.t. θ can be computed by pushing ∇θ through the expecta-
tion:

∇θ

∫
q(w)(f(w))dw = ∇θ

∫
p(ϵ)| dϵ

dw
|f(w)dw

= ∇θ

∫
p(ϵ)| dϵ

dw
|f(g(ϵ, θ))dT (ϵ, θ)

dϵ
dw

= ∇θ

∫
p(ϵ)f(T (ϵ, θ))dϵ.

(2.48)

Where the change of variables formula was used for the density function which states
that q(w) = p(ϵ)| dϵ

dw
| and the change of variables theorem for integration dw = dg(ϵ,θ)

dϵ
dϵ.

Equality in the above equation holds for specific types of variational distributions. This
reparameterization can be done for a number of distributions, including for example
the Normal distribution. However, applying it to other commonly used distributions,
such as the Gamma and Beta distributions, is non-trivial. This is because the required
shape transformations T (ϵ, θ) often involves special functions [92].

As discussed, Monte Carlo gradient estimators exhibit high variance, especially
when the gradient dimensionality extends to high-dimensional settings in Bayesian
deep learning. Several attempts have been made to reduce variance in gradients dur-
ing optimization. We will discuss two of the most widely used methods in variational
deep learning.

In the case of stochastic ELBO optimization, the variance of the likelihood term
Var[log p(yi|xi, w)] is large. This arises from the introduction of gradient covariances
because different mini-batch instances share the same weight sample. One solution
to this problem involves decorrelating the individual likelihoods by sampling one
set of weights w per mini-batch input example. However, this incurs a great com-
putational cost. Therefore the authors in [93] proposed the local reparameterization

38

trick (LRT) which avoids the exhaustive per-example weight sampling by directly
working in the space of pre-activations. Following the same ideas as variance propa-
gation methods (see Section 2.3.2), the LRT analytically computes the induced statis-
tics of the pre-activations. The core idea of LRT is that rather than sampling the
Gaussian weights and then computing the resulting pre-activations, it samples the
pre-activations from their implied Gaussian distribution directly. The linear layer
formulation can be utilized to serve as a concrete example of resulting mean and
variance of the pre-activations. Having B ∈ RB×O with activations A ∈ RB×I and
layer weights W ∈ RI×W the moments for the pre-activations can be defined:

E[B] = A E[W]

Var[B] = A Var[W] AT .
(2.49)

If one ignores the correlations between activations which occur in (2.49) by taking the
diagonal part of the implied variance matrix then each activation bi,j is independent
and the Gaussian distribution reduces to:

qϕ(bi,j|A) = N (γm,j, δm,j) where γm,j =
K∑
i=1

αm,iµi,j and δm,j =
K∑
i=1

α2
m,iσ

2
i,j. (2.50)

By doing so, the global uncertainty in the weights is translated into a form of local
uncertainty that is independent across examples and easier to sample.

While the LRT has been widely popular and used extensively in variational infer-
ence applied to deep neural networks, there may be cases where directly transferring
the sampling procedure to the pre-activations might not be the optimal choice or
even possible. For example, consider relatively small neural networks (e.g., ResNet-
11) acting on large-scale input images. In such cases, the dimensionality of activations
is larger than that of the weights themselves. Consequently, while weights can be eas-
ily sampled from the approximate posterior distribution, sampling from the implied
pre-activation distribution becomes computationally more expensive. Additionally,
for layer operations that do not allow for easy analytical derivation of the full pre-
activation distribution (e.g., squeeze-excitation blocks [94] , depthwise convolutions
[95]), the LRT approach might not be feasible.

To address the variance problem in situation where the sampling is performed
directly on weights, the authors in [96] proposed the Flipout method. This method
shares a similar concept with pathwise reparameterization gradients. As the sampling
from the main approximate distribution can be performed by transforming samples

39

coming from a base distribution typically (location-scale Gaussians). Assuming that
the base distribution is symmetric around zero and samples are i.i.d. the authors
propose to decorralate batch weights using pseudo-random samples. Specifically they
profit on the property that ∆̂w ∼ qθ(w) sample from the approximate posterior iden-
tically distributed with the ∆̂w⊙E where E is a random sign matrix. Flipout exploits
this fact by using a base weight sample shared by all examples in the mini-batch, and
multiplies it by a different rank-one sign matrix for each example:

∆wn = ∆̂w ⊙ rns
T
n (2.51)

where the subscript n denote the index within the mini-batch. The rn and sn vectors
are sampled uniformly from ±1. As noted in [96], the marginal distribution over
gradients computed for individual training examples is identical to the distribution
computed using shared weight perturbations. This procedure can be formulated in
matrix form, making the sampling process quite efficient in practice. Furthermore, it
leads to an estimator with low variance and a model with good empirical performance.

Overregularization & Cold Posteriors

Directly optimizing the ELBO is a challenging task. As we discussed, the two terms
composing the ELBO the likelihood and the prior are often difficult for practitioners
to balance effectively. Even in the pioneering work of applying variational inference
to neural network parameters [84], some form of heuristic manipulation had to be
applied to the ELBO in order to derive a more stable optimization procedure. The
most common manipulation involves scaling the KL divergence term by a small factor,
denoted by λ:

L(q(w)) = Eq(w)

[N∑
m=1

log p(ym|xm, w)
]
− λDKL(q(w)|p(w)). (2.52)

This technique has been quite useful in providing models with good empirical perfor-
mance, and it has been common practice even in modern applications of VI [97][98].
The KL term pushes the posterior distribution closer to the prior (which is often
a simpler distribution). This is the case when sparse priors are deployed (see Sec-
tion 2.3.3), which in some cases can lead the weights to become inactive during
training, effectively reducing model capabilities. This can have a strong effect on a
large number of weights, often pushing their values towards local optima, which can

40

result in significant underfitting of the data. Sonderby et al. [99] proposed a dynamic
λ factor that starts from zero, allowing the model to fit the data initially. This factor
gradually increases to one, promoting sparsity as training progresses. This approach
is particularly beneficial when there is a significant discrepancy between the number
of weights and the number of training samples.

The authors [100] made a connection that annealing the KL term in the ELBO
is connected with the famous cold posterior effect. According to this when performing
inference in Bayesian models, the posterior can be tempered by a positive temperature
factor T :

log p(w|D) =
1

T
[log p(D|w) + log p(w)] + C. (2.53)

Temperature values T < 1 (i.e., cooling the posterior) have been found to achieve
better predictive performance. This downweighting of the KL term corresponds to
a different ELBO that minimizes the divergence between the approximate posterior
qθ(w) and a partial cold posterior, where only the likelihood term is tempered with
T < 1. A version of the ELBO that directly minimizes the divergence with respect to
the full cold posterior was derived in [101]. This work showed that well-tempered
posteriors lead to even better predictive performance and improved uncertainty cali-
bration in computer vision tasks. There are several hypotheses that attempt to explain
the cold posterior phenomenon. One such hypothesis is the ’data augmentation hy-
pothesis’ proposed in [100]. This suggests that suppressing data augmentation might
be sufficient to remove the cold posterior effect. Alternatively, the cold posterior effect
may simply be an phenomenon of a misspecified prior or inaccurate inference. While
the cause of posterior scaling and its connection to the ”cold posterior effect” remain
active research topics, there is debate among researchers regarding the impact of these
techniques on Bayesian principles. Some argue they invalidate these principles, while
others propose alternative explanations and solutions [102].

2.4.3 Beyond Gaussian Approximate Distributions

In the previous sections, we have focused on cases where the approximate poste-
rior remains a Gaussian-like distribution. Although these distributions offer desirable
mathematical properties that simplify the ELBO calculation and often lead to analyti-
cal computation of the KL divergence, restricting the variational posterior distribution
to the Gaussian family can be problematic. This is because the Gaussian distribution

41

may not be flexible enough to capture the potentially complex latent space of the
weight variables. Intuitively, more complex variational distributions should theoret-
ically reduce the distance to the true underlying posterior, thereby yielding better
results. The fact simple approximate weight posteriors often fail to outperform non-
Bayesian posterior (like Deep Ensembles) and especially in the case of covariance
shift they seem to under perform, might indicate that the posterior might have mul-
timodal shape, as the example in Figure 2.5 indicates. While BNNs have previously
been shown to provide uncertainty estimates that are useful for a range of tasks,
authors in [103] theoretically proved that VI with diagonal covariance Gaussian ap-
proximate posterior (also reffed to as mean-field) has an additional gap in the evidence
lower bound compared to a purpose-built posterior. Many works try to explain this
behavior by exposing the problems of simple mean field variational inference. It was
empirically found in [104], that the maximization of the ELBO function in the mean
field setting is prone to yield very poor inferences.

Log-Likelihood Log-Prior Log-Posterior

Figure 2.5: Posterior density visualization for a small MLP on 1D regression. Visual-
ization of posterior log-posterior, log-likelihood and log-prior in the two- dimensional
subspace of the parameter space spanned by three HMC samples (Inspired from [38]).
We can observe that even this simple NN can induce multimodal posterior attributes.

Several approaches exist to model neural network weights with distributions more
flexible than Gaussians. A simple example involves introducing an auxiliary variable,
augmenting the weight distribution in an hierarchical way (see Section 2.3.3 and Fig-
ure 2.4). While these methods achieve richer distributions, they are still restricted to
unimodal shaped posteriors. The remainder of this section focuses on two methods
for approximating posterior distributions with minimal restrictions on the target dis-
tribution’s form. Both methods leverage a network to transform samples drawn from
a base distribution into an approximation of the target approximate weight posterior.
These network that are used to predict deterministically the parameters of another,

42

Primary Main Network

Hypernetwork

θ

x y

z

gϕ(z)

fθ(x)

Figure 2.6: This figure illustrates the hypernetwork learning framework. A smaller
hypernetwork, gϕ(z), with parameters ϕ takes an input, z, and generates parameters, θ,
that influence the parameters of the larger main neural network, fθ(x). Both networks
can typically be learned using backpropagation from the final loss on the predicted
output, y.

typically larger network, termed the primary network [105] are called hypernetworks
and where extend to a Bayesian setting [106].

Normalizing Flows

Normalizing flows are a flexible approach for defining complex probability distribu-
tions over high-dimensional data. They achieve this by transforming a samples from
a base distribution (e.g., a standard normal distribution) into samples generated by a
more complex and flexible one, while preserving valuable mathematical tractabilities.

The core idea of flow-based modeling is to express a new variable w′ as a trans-
formation f applied to a real vector w sampled from the base distribution p(w),

w′ = f(w) where w ∼ p(w). (2.54)

The defining property of flow-based models is that the transformation f must be in-
vertible and both f and f−1 must be differentiable. Such transformations are known as
diffeomorphisms and require both w′ and w to have the same number of dimensions
[107]. The density of w′ can be obtained via:

q(w′) = q(w)

∣∣∣∣det ∂f
−1

∂w′

∣∣∣∣ = q(w)

∣∣∣∣det ∂f
∂w

∣∣∣∣−1

. (2.55)

Where the last equality holds by applying the chain rule and is a property of Jacobians
of invertible functions. Arbitrarily complex densities can be constructed, by composing

43

several simple maps and repetitively applying (2.55). After K sequential mapping
applied on the initial random variable w0 then the density qk(wk) is obtained by:

log qk(wk) = log q0(w0)−
K∑
k=1

log
∣∣∣∣det ∂fk

∂wk−1

∣∣∣∣ . (2.56)

The path which is modeled by the successive distributions qk is a normalizing flow.
A property of such transformations, often referred to as the law of the unconscious
statistician (LOTUS), is that expectations w.r.t. the transformed density qk can be
computed without explicitly defining it. Any expectation Eqk [h(w)] can be written as
an expectation under q0 as:

Eqk [h(w)] = Eq0 [h(fk ◦ fk−1 ◦ · · · ◦ f1(w))]. (2.57)

As an illustrative example of a diffeomorphisms transformation is the ResNet-like
transformation proposed by Rezende et al. [108] which is defined as follows:

fk(zk−1) = zk−1 + w1h(w
T
2 zk−1 + b). (2.58)

Where the vectors w1, w2 and the scalar b are the learnable parameters of the transfor-
mation and h() is a non linear function. The term w1h(w

T
2 zk−1 + b) can be interpreted

as an MLP with a hidden layer with a single unit. This transformation if it is stacked
to flow has been proven to be able to capture high-dimensional dependencies. How-
ever it has significant limitations as its inverse cannot be computed easily. Affine
transformations are also an option, but their expressivity is limited. To address this,
the authors in [109] introduced a coupling method that enables highly expressive
transformations for flows. Similarly, [110] utilized autoregressive models as a form
of normalizing flow. For a comprehensive review of available transformations, please
refer to [111].

Normalizing flows can be used in variational inference to model the approximate
posterior distribution qϕ(w|D) = qk(wk), and the ELBO takes the following form:

L(q(w), θ, ϕ) = Eqϕ(w|D)

[
log p(D,w)

qϕ(w|D)

]
= Eq0(w0) [log qK(wK)− log p(D,wK)]

= Eq0(w0) [log q0(w0)]− Eq0(w0)[log p(D,wK)]− Eq0(w0)

[
K∑
k=1

log
∣∣∣∣det ∂fk

∂wk−1

∣∣∣∣
]
.

(2.59)

44

Normalizing flows can be used with any variational optimization scheme. Direct ap-
plication of Bayesian deep learning in the framework of variational inference is not
straightforward. The computation of the ELBO, necessitates flows that are efficient to
sample from and their densities can be evaluated easily. These requirements inher-
ently limit the scalability of normalizing flows for directly modeling the weights of a
deep neural network. However there are ways to address this issue. A popular way
is to restrict flows to model a certain part of the model weights. As shown in [112],
where flows can be used to model specific components of the weight distribution.
Furthermore the weights can be mapped to a lower-dimensional space [113], where
normalizing flows become more computationally efficient.

Implicit Distributions

Another key approach for modeling flexible approximate posterior distributions comes
in the form of implicit distributions. These distributions are implicitly defined through
their generative process. This allows sampling from these distributions, but neither
their density nor their gradients of their density can be evaluated, hence the term
”implicit”. Similar to normalizing flows, they can be defined define a transformation
function, which typically takes the form of a network, to transform/generate samples
from a base distribution. In the case of modeling neural network weights, this parallel
transformation network generates weight samples. However, unlike normalizing flows
where the transformation network does not need to be invertible, the involvement of
implicit distributions makes the probabilistic modeling more general and significantly
more scalable to modern deep neural networks.

The generative process involves two distributions: z ∼ q(z) and w ∼ qθ(z) . Here,
q(z) is a fixed base distribution, while qθ : Rd → Rm is a non-linear, typically non-
invertible mapping. This non-invertibility makes it challenging to directly compute
the density function. Although the likelihood term in the ELBO Eq. 2.45 alongside
its gradients can be estimated using Monte Carlo methods and the reparameteriza-
tion trick [90]. The same is not true for the regularization term which involves the
computation of DKL(qθ(w)||p(w)), as a closed-form solution is unavailable. Further-
more, q(w) is not a well-defined density in the parameter space. Its support lies on
a low-dimensional manifold and has measure zero, leading to potential issues with
the KL divergence not being well-defined.

Several approaches exist to efficiently and stably approximate the KL-term for

45

implicit distributions. Works like [83] found that a single discriminator network is
inaccurate at estimating log-ratios proposing an analytical form by deploying a kernel
method. A more recent approach further decomposes the KL-term in the ELBO.
It first proposes and tests an entropy approximation for an implicit density. They
use a linearization method to compute the integral H[qθ(w)]. This method considers
an analytical approximation (see Sec. 2.3.2) obtained via a local linearization of the
generator/neural sampler around z. This approach, along with some modeling choices,
provides an analytical approximation to the implicit-VI ELBO, leading to significant
performance boost.

2.5 Efficient Approximate Bayesian Inference

Although their success in providing well-calibrated predictions for medium-sized
neural networks, Bayesian inference methods discussed in this chapter often struggle
to scale effectively to deep neural networks. An example of a method with mod-
erate scalability is the Mean-Field Variational Inference (MFVI). Despite its founda-
tional role in constructing well-known models (e.g., Variational Mixture of Gaussians,
Bayesian Relevance Vector Machine) even before the deep learning era, suffers from
limitations in the posterior approximation constraint. This limitation becomes par-
ticularly significant when the dimensionality of the variational posterior distribution
grows, leading to sub-optimal performance in deep networks. Consequently, achiev-
ing a fully Bayesian treatment that delivers excellent performance in modern deep
networks remains a challenge.

In practice, the weight size limits the posterior’s expressiveness. Consider the
Laplace approximation, for example. As the dimensionality of the weights increases
significantly, the only practical option for covariance parameterization becomes a re-
strictive diagonal or Kronecker factorization. While this approach performs well in
practice, it penalizes the ability to capture correlations. The same limitation applies to
other methods that use a Gaussians to approximate the weights, hindering their abil-
ity to capture correlations in the approximate posterior. Another crucial aspect when
dealing with deep neural networks is the overall training cost. This is particularly
true for foundational models with the introduction of large language models (LLMs)
like BERT [114] or ViTs [115]. Even retraining or, in some cases, fine-tuning these

46

transformer-based models becomes computationally prohibitive in many scenarios.
Consequently, traditional optimization-based approaches for probabilistic reasoning
must be adapted to address these challenges. Therefore, practitioners strive to intro-
duce probabilistic treatment to deep neural networks efficiently by leveraging available
information.

2.5.1 Advances in Scalable Bayesian Inference

This section explores methods of fusing Bayesian inference with deep learning mod-
els. We will distinguish some key methods for applying low-dimensional Bayesian
deep learning. It’s important to acknowledge that numerous approaches exist for
probabilistic reasoning within deep neural networks.

One way to scale Bayesian inference is to consider them as models where a subset
of the parameters are treated as random variables, while the remaining parameters
function deterministically. A common and straightforward approach involves last-
layer BNNs. These models only assign probabilistic treatment to the final layer, re-
sulting in a linear model. This choice ensures analytical tractability for both inference
and predictive distribution, similar to Gaussian processes. Additionally, the remaining
neural network structure acts as a feature extractor [116, 117, 118, 119]. Following the
same notion researchers in [120] proposed a method to select a subset of weights that
minimizes the discrepancy between the full posterior and an approximation formed
by a smaller subset. This approach allows for high-fidelity inference on the smaller
subset, leading to good results. In fact, the work in [121] even questions the necessity
of a fully Bayesian treatment for large BNNs. Their findings suggest that accounting
for the complete posterior doesn’t necessarily lead to better performance.

Parallel to the aforementioned approaches, authors in [122] proposed to learn a
distribution over non-linear projections of the weights, finding a latent representation
for the weights directly rather than projecting the nodes. This involves projecting
the weight space and applying inference there, essentially learning a non-linear la-
tent representation of the network weights. This approach builds upon the work of
[113], who identified a low-dimensional subspace of neural network weights. Infer-
ence is then applied directly on this subspace of weights, promoting more flexible
approximate posteriors due to the drastically reduced dimensionality.

Another line of work that can scale to large neural networks involves introducing

47

stochastic noise to the network weights. These approaches typically utilize a mul-
tiplicative low-dimensional stochastic variable whose primary purpose is to induce
stochasticity in the weights. The low dimensionality allows the noise to originate
from highly flexible and multimodal posterior distributions, theoretically making the
distribution of the whole network non-Gaussian. Louizos et al. [112] employed low-
dimensional noise derived from a normalizing flow trained using variational inference
(VI), while Dusenberry et al.[123], inspired by [124], used rank-1 multiplicative noise
components sampled from a mixture of Gaussian distributions to enable multimodal
posteriors.

As applications and model architectures become increasingly complex, research
has shifted towards promoting model-agnostic uncertainty estimation strategies. These
approaches introduce stochasticity by adding external modules to pre-defined and
trained models. For example, Deng et al. [125] propose BayesAdapter, a method
that performs post-hoc ELBO optimization of the weights. Similarly, Franchi et al.
[6] introduce techniques inspired by convolutional variational neural pruning [126].
Building on these ideas, we propose a novel Bayesian normalization layer by modi-
fying existing normalization layers with a Gaussian perturbation.

2.6 Discussion

This chapter lays the foundation for the remainder of the thesis. Here, we defined how
deep neural networks are constructed and highlight their probabilistic modeling. We
then discussed how each element of Bayesian inference is addressed appropriately
in the high dimensionality of neural networks. Building on the concepts introduced
here, subsequent chapters will explore how Bayesian treatment can be applied to
vision models. Specifically, Chapter 3 will discuss the creation of robust and flexi-
ble vision object detectors using probabilistic feature fusion. Chapter 4 will combine
the hypernetwork modeling from Section 2.4.3 with flexible generative models to in-
troduce low-dimensional Bayesian inference for neural networks. Finally, Chapter 5
will elaborate on modeling weight correlations in the approximate posterior distribu-
tion. We will motivate their usage, highlight their benefits, and outline a covariance
parameterization that can efficiently model weight correlations.

48

CHAPTER 3

PROBABILISTIC OBJECT DETECTION VIA
VARIATIONAL FEATURE PYRAMID NETWORKS

3.1 Challenges of Object Detection & Contributions

3.2 Related Work

3.3 Variational Feature Pyramid Networks

3.4 Experimental Evaluation

3.5 Discussion

This chapter focuses on probabilistic object detection, specifically how to develop ro-
bust and well-calibrated detector models that provide reliable uncertainty estimates
for each predicted object within an image. We propose a novel approach that reinter-
prets fusion networks, a core component of most detection deep learning architectures,
with a sparse probabilistic architecture. To ensure efficiency, we train the network to
identify the most relevant components specific to the task and dataset at hand. This
approach achieves excellent accuracy in our numerical experiments.

The rest of this chapter is structured as follows. We begin by introducing the
challenges of object detection with deep neural networks, in Section 3.1. We explore
ways of how a probabilistic approach to detectors can alleviate them and briefly
highlight our contribution. Section 3.2 focuses into the fundamental related work
that significantly influences our contribution. This includes research on future fusion

49

network, stochastic neural network architectures and probabilistic deep learning de-
tection methods in general. Section 3.3 provides a detailed review of our proposed
fusion network named Variational Feature Network (VarFPN). We discuss the design
choices we made and our Bayesian interpretation in great extend. The experimen-
tal evaluation of our method, combined with various detectors for both detection
and segmentation tasks, is presented in Section 3.4. We numerically evaluate our
method’s predictive performance in object detection and instance segmentation tasks,
followed by an evaluation of the uncertainty estimates. Furthermore, we emphasize
the probabilistic benefits of the proposed stochastic architecture modeling in a low
training data semantic segmentation task. The chapter is concluded in Section 3.5
with a discussion on our contribution.

3.1 Challenges of Object Detection & Contributions

Object detection and instance segmentation are two of the most fundamental problems
in the computer vision field. These problems are quite difficult to solve and provide
multiple challenges as multiple objects have to be detected or segmented at multiple
scales, locations and under different conditions. The majority of those problems in
practice are today approached via the use of deep learning architectures. In the
recent years multiple deep architectures have been proposed, leading to widely known
models in computer vision [127, 128]. Neural network-based detectors are typically
built and designed upon deep robust feature extraction (sub-)networks referred to as
backbones. The task of these components is to transform the input image to a deep
embedded representation, subsequently fed to the detector head in order to have it
produce the required predictions.

These networks heavily rely on good representations, as the input feature must
be descriptive enough to capture the different relations and scales among the image
objects. A common practice is to use pretrained deep convolutional backbones such
as ResNet [20] or Inception [129] to first extract rich features at different scales from
the input image. Subsequently, their output is processed using a pyramidal-shaped
multi-scale fusion network in order to create richer and more descriptive features, see
Figure 3.1 for a graphical illustration. Since the introduction of Feature Pyramid Net-
works (FPNs) [1], which standardize the above procedure, works have been proposed

50

to design more flexible, sophisticated and also efficient fusion networks pushing even
more the accuracy boundary limits of deep detectors.

Input Image

Cls

Bbox

Mask

Backbone CNN Feature Fusion

Segmentation Head

Detection Head

Figure 3.1: A high level object detection/segmentation architecture, which is based on
CNN features.

While the accuracy of object detectors is crucial for safety-critical systems like au-
tonomous driving, it’s not the only factor. Robustness aspects, such as the ability to
estimate uncertainty at the detection level, are equally important but often overlooked.
Our work addresses this gap by leveraging Variational Inference to create sophisti-
cated feature fusion networks for object detection tasks. This approach is applicable to
various deep learning-based detection frameworks. Most common detection models
share a similar high-level architecture consisting of three modules: a backbone net-
work for feature extraction, a fusion network to combine features at different scales,
and a head component responsible for making detections. We focus on the fusion net-
work sub-module and propose a novel design with a distinct characteristic: a sparse
probabilistic architecture. Our model leverages the ability to automatically adapt its
architecture based on the training dataset’s characteristics. This allows our model
to achieve superior results while maintaining computational efficiency comparable to
other related methods. Beyond promising performance, our approach based on prob-
abilistic modeling enables any detection network to be easily transformed into a BNN,
allowing it to predict uncertainty estimates for its outputs. Although our method only
incorporates probabilistic modeling of a small number of parameters (around 100),
the crucial role of feature fusion in overall detector performance allows us to reap

51

the benefits of a proper probabilistic model treatment.

3.2 Related Work

This section reviews related work on sophisticated feature fusion modules for object
detection. We explore methods that propose and design these modules to provide
richer and more robust features for task-specific heads. Additionally, we examine
methods that introduce stochasticity into neural network models through probabilis-
tic pruning of components, leading to stochastic architectures. Finally, we consider
approaches for incorporating uncertainty estimation into detection methods and mod-
els.

3.2.1 Feature Fusion Networks

Feature fusion networks in the object detection framework was first proposed with
the introduction of Feature Pyramid Networks (FPN) [1]. These networks offered an
architectural solution to providing a multi-scale feature representation of the input.
A “pyramidal”-structured hierarchy of feature maps is to be produced by a convo-
lutional pipeline and combined to high-level semantic outputs. A bottom-up and a
top-down pathway are the basic structural sub-elements of the feature pyramid. The
bottom-up pathway computes a feature hierarchy, where each level corresponds to
a different resolution scale. On the top-down pathway, starting from the coarsest
resolution towards the finest one, feature maps are progressively upsampled (e.g.
by a constant factor of 2), and combined with corresponding bottom-up maps. Over
each pair of top-down and bottom-up corresponding blocks, the top-down map is
semantically high-level, and the bottom-up map is semantically low-level.

There are a lot of recent works that propose sophisticated modules to extract
more representative features for object detection tasks. Telling examples include [130],
where the Pconv module is introduced to simultaneously extract features at different
scales; attention-based modules [131, 132]; or even methods that discard the whole
FPN structure [133] and methods that incorporate the popular Transformer architec-
ture [134]. PANet [135] adds an extra bottom-up pathway on top of the original FPN
architecture. The M2Det object detector [136] extends the idea and builds stronger
feature pyramid representations by employing multiple U-shape modules after back-

52

bone pipeline.
Another approach, more related to our method, is NAS-FPN [137]. This approach

uses a Neural Architecture Search (NAS) algorithm to find an optimal structure in-
stead of manually designing architectures for pyramidal representations. This model
requires a significant computational load for training, and the output network is ir-
regular and difficult to interpret or modify. In [5], the proposed BiFPN model uses
less building blocks as the authors drop blocks with only one input feature map.
Furthermore, they add an extra edge linking the original input to an output node if
they are at the same level, in order to fuse more features while avoiding too much
extra cost. Another novelty of BiFPN is weighted fusion, with which they introduce a
set of learnable parameters associated with each input feature map on every block. In
this manner, the network is allowed to learn the importance of each separate feature
map.

3.2.2 Probabilistic Pruning & Stochastic Architectures

Several works address the limitations of deterministic models by incorporating stochas-
tic modules and architectures into their design [138]. This approach offers two main
benefits. First, the inherent randomness in these architectures likely helps to regular-
ize the training process. Second, the ”plug-and-play” nature of these models allows
us to evaluate the same input data with a diverse range of architectures once training
is complete. This not only reduces the training effort required to explore a broad
spectrum of architectures, but it also leverages the unique inductive biases inherent
to each architecture, potentially leading to more robust predictions. Furthermore, the
predictions from these diverse architectures can be combined to estimate uncertainty,
resulting in a more accurate, robust, and calibrated prediction model.

There are several works which adopt stochastic architectures. Works like [139]
introduce DropBlock, where in the spirit of [140], is a form of structured dropout,
where units in a contiguous region of a feature map are dropped together. Apply-
ing DropbBlock in skip connections in addition to the convolution layers increases
the accuracy. The authors in [141] proposed a model where different depths corre-
spond to subnetworks sharing weights. By marginalizing the predictions from these
subnetworks, their approach captures model uncertainty.

In the spirit of [142], methods that deploy stochastic architectures often augment

53

a deterministic network with differentiable architecture parameters that have the abil-
ity to prune away several computational paths. Straightforwardly with this modeling
choice, literature on sparse networks and sparse training is highly relevant. The notion
of pruning parameters of deep neural networks comes to relax the implementation
difficulties on resource-constrained platforms. In general a successful pruning method
must be able to compress the model and improve efficiency with a minimal loss in
terms of accuracy. To this end, probabilistic approaches using Variational Inference
have already been deployed. [93] treat weights of neural networks as random vari-
ables and leverage Variational Inference to efficiently estimate the parameters, in a
model that is shown to elegantly generalize Gaussian dropout [143]. [144] revised the
previous work and proposed a scheme to estimate the dropout rate, proving that the
resulting method leads to sparse solutions. Further works, imposing sparse priors
on the weights [145], proposed the use of hierarchical priors on hidden units; on a
different note, neurons can be pruned altogether, including all their incoming and
outgoing weights. This avoids more complicated and inefficient encoding schemes.
Unfortunately, these methods cannot be generalized to complex convolutional layers
found in modern deep learning models due to the complexity and interdependence
of operations. To tackle this problem, more general probabilistic methods of network
pruning have been proposed. In [126] for example, the batch normalization layer
is reformulated, where the normalized features are multiplied channel-wise with a
sparse prior-based stochastic parameter that effectively prunes redundant channels.

3.2.3 Probabilistic Object Detection

Integrating Bayesian and probabilistic principles into object detection has long been a
focus for researchers. Scene image understanding is inherently uncertain, with factors
like unclear object boundaries and partial occlusion making object labels ambiguous.
Probabilistic object detection addresses this challenge by detecting objects in images
while simultaneously quantifying the spatial and semantic uncertainties associated
with those detections [3]. Building upon these ideas the pioneering work by Kendall
et al. [33], models both aleatoric and epistemic uncertainties for tasks like pixel-wise
semantic segmentation and depth regression . The authors highlight the importance
of epistemic uncertainty in safety-critical applications and for scenarios with limited
training data.

54

Thus researchers have increasingly focused on incorporating epistemic uncertainty
into their object detection models. Two popular approaches to introduce uncertainty
are widely implemented [146]. First approach utilizes Monte Carlo Dropout (MC
Dropout) [147]. Methods based on this approach leverage the existing dropout layers
commonly used in object detectors, making it a straightforward way to achieve uncer-
tainty estimation. MC dropout based methods [148] [149] estimate both spatial and
classification uncertainties for object detection and use the uncertainty to accept or
reject detections under open-set conditions. Frameworks such as BayeOD [150], also
leverage MC dropout to approximate the posterior over parameters, while directly
replacing standard non-maximum suppression (NMS) with Bayesian inference, This
allows the detector to retain all predicted information for both the bounding box and
the category of a detected object instance. The second approach is the Deep Ensem-
bles method, which shares similar benefits with MC Dropout in terms of uncertainty
estimation and ease of implementation. Works like [151] utilize deep ensembles to
quantify the uncertainty in overall detection results. They propose a merging algo-
rithm for Deep Ensembles that combines detections from various models based on
the predicted object similarity. In contrast to these methods, works like [7] focus
on estimating aleatoric uncertainty, which reflects inherent noise in the data. They
directly estimate the spatial uncertainty as a Gaussian distribution and propose an
uncertainty-aware NMS method for suppressing redundant predictions of the same
object.

Several non-Bayesian methods aim to improve the calibration of object detection
networks, enhancing their robustness to distribution shifts and data degradation.
These methods achieve this by producing more calibrated predictions. For instance,
authors in [152] propose a Gaussian process (GP) recalibration scheme that yields
parametric output distributions. This approach addresses the issue of standard de-
tection models overestimating spatial uncertainty. Similarly, in the context of object
classification calibration, additional information from an object detector’s regression
output is leveraged for calibration [153]. Notably, this method can jointly calibrate
multi-class confidence and box localization by exploiting their predictive uncertain-
ties. Additionally, several non-probabilistic techniques have been explored, including
self-distillation [154] and self-prediction ensemble techniques [155].

55

3.3 Variational Feature Pyramid Networks

We now formally introduce our proposed feature fusion network that combines as-
pects proposed in recent works such as [5], which we will use as a network base-
line. This fusion network is composed by multiple computation nodes or building
blocks with dense pathway connections between them. Each connection is augmented
with an architecture weight. Subsequently, instead of using deterministic architecture
weights, we show how to estimate the distribution of architecture weights cast as
random variables via the use of variational inference. We analytically describe how
the Stochastic Gradient Variational Bayes (SGVB) estimator [90] (See Section 2.4.2)
can be used to apply inference on the fusion weights. Finally, we introduce sparse
prior distributions like Automatic Relevance Determination (ARD) to effectively prune
network connections, thus obtaining a model with the optimal lower complexity.

P-7

P-6

P-5

P-4

P-7

P-6

P-5

Figure 3.2: An illustration of pruning under the proposed method. The image on
the left depicts the initial model before training which is highly complex, including
multiple-level feature fusion and is “fully” connected. On the right, the same network
is shown after 10 epochs of training, where redundant connections and building
blocks have been pruned, leading to an efficient fusion network.

3.3.1 Proposed Feature Fusion Network

The architecture of our network is initialized as a ’fully connected’ version of the
PaNET [135] (with bottom-up and top-down pathways) using skip connections. On
each building block, the input features are combined via the use of fast normalized
fusion, an efficient approximation of softmax proposed in [5]. An illustration of this
initial architecture is depicted in Figure 3.2 (left). The output of a building block Fout

in our network is formally defined as follows. All building blocks are considered to

56

be identical. Let F layer
level = {F1, . . . , FN} be the set of all N features that are input to

the given block and W layer
level = {w1, . . . , wN} a set of weights wi ≥ 0 each of which is

associated with one input feature from F layer
level

1: Then for Fout we write:

Fout = Conv
(∑N

i=1wiFi∑N
i=1wi + ϵ

)
, (3.1)

where ϵ is a small constant added for numerical stability and Conv stands for a 2D
convolutional operation. Note that all features in F layer

level are resized using bilinear in-
terpolation when they correspond to cross-scale connections. The use of normalized
fusion to re-weight feature, such that all weights are normalized to be a probabil-
ity with value range from zero to one. Representing the importance of each input
stabilizes the training and allows smoother architecture pruning.

3.3.2 Variational Inference

Our method treats each weight w associated with a network connection as a stochastic
variable drawn from a parametric distribution p(W). This probabilistic approach, as
we already discussed, offers two key benefits. First, it elegantly promotes sparsity,
leading to lightweight fusion networks. Second, as the weights can amplify or suppress
the importance of specific features within the fusion process, they play a crucial role.
By treating these parameters probabilistically, we can achieve calibrated and robust
features and acquire uncertainty estimates for the features most relevant to the specific
dataset the detector network is trained on. We will study this argument deeper in in
our experimental results.

Up to this point we consider a detection dataset D = {(xj, yj)}Jj=1 as a set of
random variables, where x is input data and y is the corresponding ground truth, in
a dataset comprised of J images. The joint distribution which combines and depicts
the relations of model random variables is defined in the following way:

p(X,Y,W) = p(Y |X,W)p(W). (3.2)

Our goal is to estimate the posterior distribution of latent variables W i.e. p(W |Y,X).
Since the posterior distribution cannot be obtained in closed form, we cannot apply
exact inference methods, thus we resort to approximate inference and specifically

1At this point, we want to make clear to the reader, that throughout this chapter notation w refers
only to the architecture/connection weights.

57

to the variational Bayesian methodology (see Sec. 2.4.1). We assume a family of
approximate posterior distributions qϕ(W) parameterized by ϕ, and then seek values
for the parameters ϕ that best approximate the true posterior. The best approximation
of the true posterior distribution comes via maximizing the lower bound ELBO, a
process which as we showed in the previous chapter is equivalent to minimizing
the KL divergence. Unfortunately, the required integrals for applying a mean-field
VB algorithm are also intractable. These intractabilities appear since the detection
networks are extremely complicated likelihood functions p(Y |X,W). Thus, in order
to find the posterior distribution w.r.t. hidden variables we directly optimize the
ELBO, which we in this case can be written as:

L(W) = Eqϕ(W)[log p(Y |X,W)]−KL(qϕ(W)||p(W)). (3.3)

We want to differentiate and optimize the ELBO L(W) w.r.t. both the varia-
tional parameters ϕ and generative parameters θ. However, the gradient of the ELBO
w.r.t. ϕ is not trivial to compute. We proceed by using pathwise gradient estima-
tor/reparameteriarion trick (see Sec. 2.4.2) [90] and use an estimate L̃(W) ≃ L(W) of
the lower bound and its derivatives w.r.t. the parameters. According to RT, the ap-
proximate posterior qϕ(W) can be reparameterized via a differentiable transformation
f(ϕ, ϵ) of an (auxiliary) noise variable ϵ:

w = f(ϕ, ϵ), where ϵ ∼ p(ϵ) (3.4)

We can now form a low-variance Monte Carlo estimate on the expectation appearing
in (3.3). Under the change-of-variables rule for integrals, the expected log-likelihood
is the same as the expectation w.r.t. the auxiliary distribution

L̃(W) =
1

L

L∑
l=1

J∑
j=1

log p(yj|xj,W = f(w, ϵl,j))−KL(qϕ(W)||p(W)), (3.5)

where ϵl,j is the lth sample of p(ϵ) for the jth input datum. The advantage of using
the reparametrization trick is that we can construct Monte-Carlo estimators with low
variance, leading to more efficient training in the context of use with a variational
mode, as long as we can find functions f(ϕ, ϵ) and fixed distribution p(ϵ) given some
distribution qϕ(·).

58

3.3.3 Choice of Prior Distribution

Here we explicitly define the prior distribution for the connection weights, the choice
of the approximate variational posterior distribution and the ELBO. Regarding the
type of prior distribution we have to account for several things. First, since we want
the fusion architecture to be as far from complex as possible we need our model to
discard redundant connections –and if possible entire building blocks– that do not
contribute to the model accuracy. Thus, we have to choose a sparse prior that will
gear a significant part of connections towards zero. Also, for the RT to be applicable,
the distribution must be reparameterized w.r.t. an auxiliary variable, and finally the
KL term must be easy to compute while also being numerically stable in order to
facilitate efficient training. As recent research does point out to non-Gaussianity [11],
we plan to experiment with heavy-tailed alternatives 2

Automatic Relevance Determination

The mechanism of Automatic Relevance Determination (ARD) is a well studied sub-
ject, first introduced in the context of sparse linear regression using relevance vector
machines [156, 157]. This setting causes a subset of parameters to be driven to zero.
Assuming that the weights are independent and identically distributed (i.i.d.) we set
the prior distributions to zero-mean Gaussian 3:

p(W) =
∏
i

p(wi) where wi ∼ N (0, σ̂2
i) (3.6)

The straightforward choice for the approximate variational distribution that satisfies
the conditions for applying RT is the factorized Gaussian:

q(W) =
∏
i

q(wi) where wi ∼ N (µi, σ
2
i) (3.7)

The set of variational parameters to be optimized is ϕ = {µ, σ}. After reparameteri-
zation, we have:

w = µ+ σϵ where ϵ ∼ N (0, 1). (3.8)
2We have included a short discussion, derivation and numerical results for a model with a Laplace

prior in the Appendix.
3In the remainder of the text, we omit the upper limit on i-indexed sums and products for brevity.

This will be implied equal to the total number of network weights-connections, unless stated otherwise.

59

The optimal hyperparameter σ̂ of the prior distribution can be calculated by optimiz-
ing the ELBO:

∂L̃(W)

∂σ̂2
i

= 0 ⇒ − ∂

∂σ̂2
i

KL(qϕ(W)||p(W)) = 0, (3.9)

which yields the optimal parameters σ̂2
i = µ2

i + σ2
i . By substituting those parameters

the KL term of the ELBO can be computed analytically, as it is defined over Gaussian
terms:

KL(qϕ(W)||p(W)) =
1

2

∑
i

log
(
µ2
i

σ2
i

+ 1

)
(3.10)

ARD with Correlated Weights

We extended the mechanism of Automatic Relevance Determination (ARD) in or-
der to study the correlation between the connection weights and how it affects the
pruning parameters of our method. We now set the prior distributions to zero-mean
multivariate Gaussian:

p(W) = N (w|0, Σ̂), (3.11)

where w is now a vector containing all the connection weights of our model. The
straightforward choice for the approximate variational distribution that satisfies the
conditions for applying SGVB is Gaussian:

q(W) = N (w|µ,Σ), (3.12)

and the set of variational parameters that we wish to optimize is now ϕ = {µ,Σ}.
Reparametrizing, we have:

w = µ+ Lϵ where ϵ ∼ N (0, I) (3.13)

where Σ = LLT is the Cholesky decomposition of the covariance matrix Σ. The op-
timal hyperparameter Σ̂ can be calculated directly by maximizing the ELBO which
yields parameters Σ̂ = µµT + Σ. By substituting these parameters, the KL term of
the ELBO can be computed analytically. For numerical stability, the variational pa-
rameters that we estimate are the mean of the variational distribution µ and the
lower triangular matrix with positive diagonal elements L−1. Using the estimate ma-
trix L−1, we can sample from the variational distribution with eq. 3.13. Instead of
inverting L−1, we directly sample the weights by solving the triangular linear system
L−1(w − µ) = ϵ. Solving the linear system is much more numerically stable and can
be executed fast via hardware acceleration.

60

In order to avoid the inversion of the covariance matrices and the calculation of
the determinants during the optimization procedure we decompose the KL term as:

KL(q(W)||p(W)) = −
∫

q(w) log p(w)dw +

∫
q(w) log q(w)dw

= −Eq(w)(log p(w))−H(q(w)),

=
1

2
log(|Σ̂|) + 1

2
Eq(W)(w

T Σ̂−1w)− 1

2
log(|Σ|) + C,

(3.14)

where H(q(W)) is the entropy of the variational distribution. By substituting the
optimal hyperparameters found as Σ̂ = µµT +Σ, the term log(|Σ̂|) can be decomposed
further by leveraging the matrix determinant lemma [158]:

log(|Σ̂|) = 1

2
log(1 + µTΣ−1µ) +

1

2
log(|Σ|). (3.15)

The second term in equation (3.14) can be computed using the reparameterization
trick (3.13) which leads to the final expression for the KL term:

KL(q(W)||p(W)) =
1

2
log(1 + µTΣ−1µ) +

1

2
Eq(ϵ)(w̃

T Σ̂−1w̃), (3.16)

where w̃ are the reparameterized sampled values for the weights using ϵ and the
matrix Σ̂−1 can be easily computed via the Sherman-Morrison identity. This de-
composition of the KL term allows us to avoid the inversion and log determinant
operation in the ELBO computations leading to very stable training of the network.

3.4 Experimental Evaluation

In this Section, we provide numerical results for the proposed method, in comparison
to recent existing feature fusion networks. For our numerical analysis, we perform
three different experiments. First, we evaluate our methods as a backbone network
for detection, using [127] and instance segmentation, using [159] versus state-of-the-
art backbone combinations. We carried out experiments to evaluate how the learned
architecture of our network can adapt to different types of datasets, containing objects
at various scales and sizes. Furthermore, we tested the proposed probabilistic pruning
methods versus different deterministic ones and we highlight the benefits of pruning
components probabilistically. Finally, we introduce a way of acquiring uncertainty
estimates of the model predictions and we evaluate the quality of those estimates
experimentally in two different setups.

61

Table 3.1: Numerical results for object detection/segmentation trials on COCO [160].
Average precision and precision on different threshold and object sizes are shown,
alongside with network size and inference time (measured in milliseconds), for pro-
posed models and other feature pyramid variants.

Network Model AP AP50 AP70 APS APM APL Params Inference

Faster RCNN

BiFPN 0.293 0.486 0.311 0.163 0.316 0.350 1.60M 7.8± 0.0

PANet 0.296 0.486 0.314 0.167 0.320 0.351 1.74M 6.7± 0.0

NAS-FPN 0.307 0.509 0.326 0.175 0.342 0.392 1.53M 5.4± 0.1

PConv 0.308 0.510 0.320 0.180 0.346 0.391 1.25M 8.4± 0.7

HRNet 0.305 0.510 0.310 0.161 0.345 0.381 1.32M 3.2± 0.1
ARD 0.315 0.525 0.331 0.187 0.340 0.377 1.67M 6.3± 0.0

FullARD 0.322 0.533 0.342 0.186 0.351 0.388 1.74M 6.5± 0.0

Mask RCNN

BiFPN 0.271 0.451 0.284 0.109 0.291 0.402 1.60M 7.8± 0.0

PANet 0.268 0.446 0.279 0.111 0.288 0.393 1.74M 6.7± 0.0

NAS-FPN 0.280 0.468 0.290 0.117 0.308 0.411 1.53M 5.4± 0.1

PConv 0.279 0.464 0.290 0.117 0.309 0.410 1.25M 8.4± 0.7

HRNet 0.288 0.484 0.301 0.114 0.314 0.418 1.32M 3.2± 0.1
ARD 0.290 0.481 0.303 0.124 0.315 0.424 1.67M 6.5± 0.0

FullARD 0.299 0.499 0.314 0.126 0.324 0.447 1.74M 6.8± 0.0

Table 3.2: Numerical evaluation of uncertainty estimates for Faster RCNN trained on
three different datasets. Baseline indicates detections acquired using the weight scaling
rule and thresholded via the use of NMS, Mean detections are obtained with test time
averaging and NMS applied and Var voting indicates predictions of time averaging
but with the use of prediction variance coupled with the var voting algorithm. Ten
forward passes where performed for each image.

Dataset Model AP AP50 AP70

PlantDoc
Baseline 0.321 0.525 0.354

Mean 0.333 0.533 0.364

Var voting 0.351 0.539 0.404

COCO
Baseline 0.313 0.521 0.332

Mean 0.286 0.451 0.315

Var voting 0.341 0.563 0.365

Cards
Baseline 0.886 0.997 0.984

Mean 0.889 0.999 0.989

Var voting 0.912 0.999 0.994

62

3.4.1 Implementation Details

Model Details

Following [161, 162] we use feature pyramid levels P3 to P7, where P3 to P5 are com-
puted from the output of the corresponding ResNet-50 residual stage (C3 through C5)
using top-down and lateral connections, P6 is obtained via a 3×3 stride-2 convolution
on C5, and P7 is computed by applying ReLU followed by a 3×3 stride-2 convolution
on P6. These minor modifications have a positive impact on training and inference
speed while maintaining accuracy. We used a 3× 3 depth-wise separable convolution
[95] for feature fusion, as it reduces significantly the number of trainable parameters,
and we added batch normalization and ReLU activation after each convolution. Each
connection weight was restricted to positive values via the use of ReLU activation.
Also, in order to avoid numerical instabilities our network optimizes the logarithmic
variance log(σ2

i) of the variational distribution, instead of the equivalent optimization
over σ2

i . All the means were initialized with a value of 1 and the logarithmic variances
were set to 0 corresponding to variance of 1. In order to improve training stability
and also force our model to take advantage of all 5 levels, we added residual connec-
tions from P3, P4, P5, P6, P7 to their respected outputs. This significantly helped the
optimization procedure and slightly boosted model accuracy.

Training Details

Our main experiments are conducted on the large-scale detection benchmark COCO
[160]. Following common practices [161, 162], we use the COCO trainval35k split
(115K images) for training and the minival split (5K images) as validation. We report
our main results on the test dev split (20K images) by uploading our detection results
to the evaluation server. Our model implementations were based on the MMDetection
open source project [163]. At each trial, we have trained the network for 15 epochs
using Stochastic Gradient Descent (SGD) with momentum set to 0.9 and weight decay
parameter set to 0.0001. The learning rate was set according to the linear scaling rule
[164]; this rule states that the learning rate has to be proportional to the batch size,
where each batch was set to include 2 input images, each at resolution of 1333× 800

pixels. The training and test parameters for the employed detectors were set according
to the values prescribed in the respective papers.

63

Variational Details

We prune redundant connections based on the distribution of weights w. When the
means of the variational distribution are less than a threshold value, those connections
are dropped; additionally, when a building block is left with zero input connections,
the whole block is dropped, further reducing model complexity. Through our ex-
periments, the KL term in the loss function was annealed by a small factor to avoid
over-regularization. At test time, we followed the weight scaling rule [143] by replac-
ing the weights with their expected values, i.e. formally:

Eqϕ(w)p(y|x,w) ≈ p(y|x,Eqϕ(w)[w]). (3.17)

3.4.2 Detection Predictive Performance

For fair comparison we followed the same training scheme for all the networks. As
recent works have shown, repeating the same feature fusion network multiple times
enables higher-level feature fusion and provides better accuracy. However, in our
experiments we choose not to repeat the networks, as we believe that stacking layers
makes the results of the experiments more difficult to interpret.

0 500 1000 1500 2000 2500 3000

10

20

30

40

50

60

Training Iterations

A
ct

iv
e

co
nn

ec
tio

ns

ARD
Correlated ARD

0 500 1000 1500 2000 2500 3000

0.0

0.5

1.0

1.5

2.0

Training Iterations

W
ei

gh
tV

au
lu

e

Figure 3.3: Left: Plot of the number of non-pruned weights/connections versus train-
ing iterations using different priors on the same setting (Faster RCNN on COCO).
Right: Plot of indicative values of the means of the approximate posterior versus train-
ing iterations, over randomly picked network connections (each color corresponds to
a different connection).

Table 3.1 shows the accuracy and model complexity for our proposed network
and other state-of-the-art feature fusion networks, (NAS-FPN) [137],(PANet) [135],
(BiFPN) [5], (PConv) [130], (HRNet) [165]. The variational-based networks were

64

P6

P5 P5

P4

P7

P5

Figure 3.4: Plot of different resulting architectures for the trained model, combined
with the proposed FullARD prior on Faster RCNN on three different datasets (top
row: “COCO”, “Plants”, bottom row: “Cards”).

compared according to the choice of prior distribution. As we can see, in all cases
accurate detection is quite a challenging problem. It is clear that supervised segmenta-
tion techniques like deep convolutional neural networks can benefit from the presence
of sophisticated feature fusion. The variational models outperform the standard ar-
chitectures in terms of average precision. With respect to the type of the model prior,
the model that is integrated with the correlated Gaussian (FullARD) outperforms
other variants, but at a small cost of pruning less weighted connections.

Table 3.3: Numerical results for instance segmentation trials on COCO [160]. Average
precision (AP) is shown, alongside with network size (in terms of preserved connec-
tions, “Cons” and number of parameters, “Params”) and inference time (measured in
milliseconds) for different pruning schemes.

Model AP Cons Inference Params
No Pruning 0.299 63 14.2± 0.1 1.74

Random Pruning 0.222 16 8.1± 0.04 1.60

Lasso-based 0.283 9 4.8± 0.02 1.32
Method in [166] 0.286 9 6.1± 0.03 1.38

Method in [167] 0.280 9 7.1± 0.02 1.40

ARD 0.290 9 6.5± 0.01 1.39

FullARD 0.299 16 6.8± 0.02 1.60

In Table 3.3, we added some experiments in order to highlight the benefits of
pruning weights in a probabilistic manner. Specifically, we experimented with the
initialized complex architecture of our model with no pruning; also, we randomly
pruned a subset of weights and trained the resulting network via maximum likelihood
(respectively “no pruning” and “random pruning” in Table 3.3). We tested the non-

65

probabilistic method of Lasso pruning where a scaled regularization term based on
the L1 norm of the weights was added to the detector loss function. Finally, we
added more sophisticated deterministic pruning methods. We experimented with the
gradient-based pruning method in [166] and with the method of [167]. Both methods
require the fully connected network to be trained up to an optimal point, and then
iterative connection pruning is applied. We set both methods to prune connections
until 9 connections remain (in order to match ours and the Lasso-based pruning
techniques).

We can see that the probabilistic methods of pruning yield better results than the
deterministic ones. The correlated prior furthermore has the same accuracy as the
fully complex model with no pruning while keeping only 25% of total connections.
Additionally, both the variational and Lasso based methods yield better results than
random pruning, verifying our notion that the network can learn to drop redundant
connections. In Figure 3.3, we present two plots: the top plot depicts the active
weights versus the training iteration, where all the methods progressively drop this
number to a point where it reaches stability. In the bottom plot, we can observe some
indicative values of the means of the approximate posterior on the weights.

Finally, we trained our proposed model with the ARD prior on the connection
weights, integrated with the Faster RCNN network in three distinct datasets (COCO,
Plants, Cards). By conducting these experiments we wanted to study the feature fusion
architecture (i.e., corresponding to the non-pruned connection set after training).
The datasets for this experiment where carefully chosen as each one bears its unique
characteristics. Specifically, COCO [160] is an extremely demanding dataset containing
multiple objects at different scales and sizes, PlantDoc [168] contains (mostly) medium
and large objects and the Cards dataset [169] is comprised solely of small objects. As
we can see in Figure 3.4, each dataset leads to its own distinct optimal architecture.
This means that the network can learn to fuse and use those feature maps that are
more valuable to each specific dataset.

3.4.3 Evaluating Predictive Uncertainty

We conducted experiments to quantify the uncertainty estimates of our model. By
having the distribution of the connection weights w we can easily sample values of
w. Each different sample from these distributions results to a distinct feature fusion

66

Figure 3.5: Results of standard NMS method (left column) and the Var voting results
(right column) for the Faster RCNN network combined with the proposed method
with ARD prior on COCO dataset. Bounding boxes are drawn with blue color, and the
variance of each bounding box is outlined using green circles (variance is proportional
to the radius around the respective bound point).

network. Thus, instead of directly using the mean values of w at test time, we can
first draw sample of weights acquiring a feature fusion network and then pass the
image to it. This practice is referred to as test time averaging, and has been used for
acquiring uncertainty estimates in stochastic neural networks [93]. Also, it has been
previously applied in an objection detection architecture context [149].

We have performed 10 single forward passes (each time sampling different values
of w), a process which yields a larger set D = {D1, . . . , D10} of 10 individual detection
sets Di = B, S where B and S are sets containing the bounding boxes and the object
scores respectively. Those prediction sets will have significant overlap, thus we sort
the predictions according to their IoU and then we calculate the mean and variance
of each prediction box resulting in Df = {Bmean, Bvariance, Smean, Svariance}.

In order to numerically quantify those uncertainty estimates we used the variance
voting (“var voting”) algorithm proposed in [7], which modifies the non-maximum
suppression (NMS) scheme. It uses the variance of a predicted location and refines
each candidate bounding box location according to the learned variances of neighbor-
ing bounding boxes. The results are reported in Table 3.2. For all the datasets we can
observe that the use of variance estimates can slightly improve network performance.

67

We can observe the effectiveness of the var voting algorithm combined with our un-
certainty estimates in Figure 3.5. The bounding boxes where refined to better match
the target object. We can also observe model uncertainty for the predicted locations
of bounding boxes, and we can see that accumulating predictions can even result in
a prediction that a single forward pass could miss.

3.4.4 Segmentation Uncertainty in Low Data Regime

While FPNs are primarily used for object detection due to their ability to generate
refined features, the head architecture of the proposed Variational FPN in Figure 3.2
can be adapted for various tasks. To demonstrate this flexibility, we experiment with
semantic segmentation, following the approach outlined in [170]. Specifically, we ex-
plore the limits of potential benefits arising from the Bayesian interpretation of the
VarFPN architecture by applying our model to the challenging task of low-data se-
mantic segmentation.

We evaluate the model’s performance on a real-world inscription localization task,
where a neural network predicts image regions containing text-related information.
The dataset consists of only 67 images containing inscriptions written in Greek, found
within Byzantine churches and monasteries of Epirus, Northwestern Greece. This
represents an extremely low-data regime by deep learning standards. Limited training
data in turn, can lead to overfitting, where the model memorizes specific details of the
training set and performs poorly on unseen data. Additionally, overconfidence can
potentially arise, where the network assigns high certainty to inaccurate predictions
on slightly different test data. This instability renders the model unreliable for real-
world applications.

To avoid this behavior in practice, highly regularized networks with significant
sparsity are often deployed. In this direction, Sfikas et al. [171] proposed quaternion
CNNs for lightweight modeling. Quaternion operations reduce the number of param-
eters needed for the multidimensional representation of a single RGB pixel, leading
to better image classification results and compressed models. They further proposed
QGan, a quaternionic conditional GAN (inspired by[172]), to generate segmentation
maps from an input image. We propose an improvement by integrating the varia-
tional FPN model with QGan. This creates a more flexible generator network that
can effectively fuse extracted features from the input image, ultimately leading to

68

superior segmentation results. While the intrinsic sparsity of quaternions and hy-
percomplex networks in QGan allows for lightweight models that function well with
limited training data, the probabilistic aspect introduced by VarFPN enhances the
prediction segmentation maps with uncertainty estimates. Notably, the ”plug-and-
play” design of our method simplifies implementation, making it a cost-effective way
to ”Bayesianize” image understanding tasks.

For training this new model, we adopted the experimental protocol established
in [171]. During training, we employed annealing with a small factor on the KL
divergence term within the loss function to prevent over-regularization. To assess the
effectiveness of the FPN Quaternionic GAN model, we compared it to its corresponding
vanilla (non-FPN) counterpart. This comparison ensured both models had the same
number of neurons, accounting for the additional nodes introduced by the Variational
FPN.

Table 3.4: Numerical results for two variants of the proposed model (Variational
FPN-QGAN) versus its counterpart with the same number of neurons (QGAN). Test
BCE figures (lower is better) are shown and corresponding IoU scores in parenthesis
(higher is better).

Model Test BCE Test IoU

Quaternion GAN 6.54 45.4%
Quaternion FPN GAN 4.74 61.2%

In Table 3.4, we compare our two model variants using binary cross-entropy
(BCE) and Intersection over Union (IoU) metrics. The results demonstrate that the
introduction of the VarFPN and a fusion process outperforms the standard U-Net-
based model from [171]. In both metrics, the FPN generator produces higher quality
segmentation results. The benefits of the probabilistic interpretation are further evi-
dent in Figure 3.6, which shows segmentation results for test images. The Bayesian
approach allows us to obtain not only the mean prediction but also the variance,
highlighting the model’s uncertainty in its final predictions. The importance of mod-
eling uncertainty, particularly in areas outside of text regions, is crucial for robust text
segmentation as the limited training data leads to a significant number of false pos-
itives, where the model erroneously identifies non-text regions as text. However, the
model’s ability to highlight these regions with high variance indicates its own uncer-
tainty. This variance estimate can be leveraged to effectively suppress false positives

69

Figure 3.6: Qualitative Results for VarFPN-QGAN: The figure shows qualitative re-
sults for the VarFPN-QGAN model. The left column displays the input images. The
middle column shows the mean text predictions generated by the enhanced generator
network using Monte Carlo simulations. The right column visualizes the variance of
these predictions.

70

without requiring additional training data or complex post-processing techniques.

Cropped Text region

Figure 3.7: Qualitative Results: Uncertainty-Weighted Prediction for the VarFPN
Model. Figure shows the effectiveness of uncertainty weighting in suppressing false
positives. The left image displays the raw prediction, while the right image shows
the final text region prediction after applying uncertainty weighting. The weighted
prediction image uses a larger connected component to identify the true text region,
effectively suppressing most false positives.

3.5 Discussion

In this chapter, we have presented Variational Feature Pyramid Networks, as exten-
sions to the widely used FPN backbone. These networks are efficient and can be
easily applied to various detectors for more efficient feature fusion. They can adapt
to the underlying data, leading to specific fusion architecture for each training set.
The Bayesian framework is used in our method, provides uncertainty estimates about
the predictions of the trained model in contrast to deterministic variants. Numerical
experiments show that the integration of the proposed model results in improving
overall detection efficiency.

In the next chapter, we will turn to the problem of efficient Bayesian deep learn-

71

ing through low-dimensional probabilistic modeling and optimization. While the ap-
proach discussed in this chapter can provide reasonable predictive uncertainty esti-
mates using a low-dimensional set of probabilistic parameters, selecting this set isn’t
always straightforward, limiting its applicability outside of detection architectures.
Therefore, we will explore a method for applying Bayesian inference in a highly
efficient manner, eliminating the need for manual selection of an a-priori set of pa-
rameters.

72

CHAPTER 4

LOW DIMENSIONAL BAYESIAN DEEP
LEARNING VIA IMPLICIT NEURAL

REPRESENTATION INFERENCE

4.1 Challenges of Bayesian Deep Learning & Contributions

4.2 Related Work

4.3 Implicit Neural Representation Inference

4.4 Experimental Evaluation

4.5 Discussion

This chapter explores the challenges of applying Bayesian treatment to large deep
learning models. While large models have more learnable parameters, complex archi-
tectures, and stronger inductive biases which translates to better performance, they
also pose significant challenges for incorporating Bayesian techniques and probabilis-
tic reasoning. Our approach tries to address this issue by introducing a novel method
for integrating highly rich (e.g. non-linear) approximate inference into deep image
models. We propose learning an efficient hypernetwork that utilizes elements from
Implicit Neural Representation (INR) methods. This hypernetwork produces prob-
abilistic variables that introduce stochasticity to the weight parameters of the main
neural network. Furthermore, the overall Bayesian inference leverages the hyper-

73

network’s parameters, which remain low-dimensional thanks to the implicit neural
representation, making the entire framework computationally efficient. As Bayesian
inference is performed over the low-dimensional space of hypernetwork parameters
we can use richer approximations for the desired posterior distribution.

The rest of this chapter is structured as follows. We begin in Section 4.1 by dis-
cussing the challenges associated with applying Bayesian deep learning and outlining
our contributions. Section 4.2 explores related works, including methods that utilize
low-dimensional Bayesian deep learning, those that leverage hypernetworks for prob-
abilistic design similar to our approach, and stochastic implicit neural representation
methods. In Section 4.3, we discuss our proposed INR hypernetwork modeling and
the integration of highly flexible posterior approximation methods into our scheme.
Finally, Section 4.4 presents the experimental evaluation of our method.

4.1 Challenges of Bayesian Deep Learning & Contributions

Bayesian Neural Networks (BNNs) are a class of models that propose elegant solu-
tions to the pathologies of standard NNs [173, 174, 175]. In BNNs, model parameters
are defined as random variables that follow a prior (posterior) distribution, which
encodes knowledge about the model before (after) having “seen” the training data.
Learning is cast as an inference problem, where the task is to compute efficiently
the posterior distribution. In turn, making predictions on new data is replaced by
computing a predictive distribution. Advantages include that uncertainty estimates
are calibrated and robust, and hyperparameter estimation can be performed through
a principled evidence maximization framework. In BNNs, Bayesian inference is not
exact, and a direct application of Bayes’ law leads to an intractable computation. An
approximation has to be applied, and in this respect numerous solutions have been
proposed. A factor that complicates this problem is that the approximation must lead
to a scalable, practical implementation that must take into account that the data and
model size may be far larger than what was the norm in methods and models that
dominated Bayesian inference in the pre-deep learning era. Several solutions have
been proposed in this respect, rehashing and adapting older methods [8, 9] or putting
forward completely fresh approaches [10].

Scalability is a crucial factor when it comes to learning methods in the context

74

of NNs. Assuming an entire network to be probabilistic implies significant overhead
in terms of various factors. Common remedies include assuming a Gaussian form
combined with a low-rank approximation of the Hessian, and using a simplified, even
diagonal covariance structure. Kronecker-Factored Approximate Curvature (KFAC)
expresses a useful tradeoff, which neglects only cross-layer correlations and uses a
block-diagonal covariance matrix [43]. Another option involves treating only part of
the network as non-deterministic [34, 120]. We then have uncertainty only in the
last layer neurons, treating the rest of the network as a feature extractor [119]. As
a consequence, and to the degree that these assumptions are overly simplistic, the
approximate distributions may turn out to be very far from the actual posterior and
predictive. This often translates to a dramatic reduction of predictive strength in
practice.

Implicit Neural Representations are related to a different line of research that is
orthogonal to that involving Bayesian networks [2, 176]. With INRs, the goal is to
represent a signal in terms of a trained neural network. Unlike standard represen-
tations as discrete sets of values over a canonical grid, an INR accepts continuous
coordinates as inputs. Therefore, the INRs allow for a continuous representation,
with the underlying NN providing values of the represented signal at theoretically
any granularity. Related breakthroughs in improving representation of high frequen-
cies have contributed to the popularity of the approach [2, 177]. Numerous signal
representation use-cases have been explored, including images, video, 3D shapes or
Neural Radiance Fields (NeRFs). With the latter, a NN is tasked with mapping ray
position and direction to color and density values. Part of the parameters of a larger
NN can also be encoded with an INR; in [178], convolutional kernels are represented
in terms of Multiplicative Anisotropic Gabor Networks. In this case, the implicit rep-
resentation allows for kernels that generalize well to higher resolutions than the ones
originally trained with. Aside from allowing for continuous representation at multiple
scales, another major focus involves the INR’s capability of producing a compressed,
low-dimensional representation [179, 180].

In this work, we propose a class of Bayesian Neural Network that is parameter-
ized using a combination of deterministic and stochastic parameters. In recent work,
similar partitions are employed [34, 123, 120], where a specific subnetwork is set to
be stochastic while the rest of the network is deterministic. Unlike these works, we
define all parameters as functions conditioned over both deterministic and probabilis-

75

tic components. Normally, this is very much desired but computationally prohibitive
due to the huge number of parameters in modern NNs; in our work, this is made
feasible due to the probabilistic component being parameterized through an INR hy-
pernetwork, which compresses probabilistic factors through a low-dimensional SIREN
representation [2]. It is over this representation that we assume a prior distribution,
and perform inference. As the number of probabilistic factors is kept low, we are
allowed to make fewer concessions w.r.t. constraining the form of the posterior and
the predictive. The result is a process that is comparatively closer to exact inference,
leading to more accurate estimates and better uncertainty calibration.

In a nutshell, the deterministic model component is responsible for ensuring ac-
curate results, while the low-dimensional probabilistic component is responsible for
inducing stochasticity to the entirety of the network. We validate our claims and
model across a variety of experimental trials, where we show that our model pro-
duces accurate and well-calibrated uncertainty estimates.

4.2 Related Work

This section examines related works exploring methods to introduce flexible approxi-
mate posterior distributions into deep neural networks. We focus on approaches that
introduce stochasticity to large neural networks by employing a hypernetwork design.
We also consider works that explore stochastic INRs in a diverse context.

4.2.1 Low‐Dimensional Inference

Bayesian inference in a low-dimensional space is another important related concept,
with often considerable overlap to works that can be understood as forms of hyper-
networks. [123], in the spirit of [124], employ rank-1 multiplicative noise components,
before attempting to estimate an approximate posterior over the weights. [113] adopt
post-hoc Bayesian inference by constructing a subspace of the BNN weights. They
apply high fidelity inference on these small subspaces, and were able to produce
state-of-the-art results at a moderately low computational cost. [122] learn a non-
linear latent representation of network weights. Another subgroup of related work
can be described as selecting a portion of the BNN parameters to be treated as ran-
dom variables, and leaving the rest of the model to work deterministically. One of

76

the most popular and straightforward approaches are last-layer BNNs. By selecting a
priori only the last layer to have a probabilistic treatment, they resort to a linear model
which ensures analytical tractability of both inference and predictive distribution in
the spirit of Gaussian processes, while the remaining NN structure acts as a feature
extractor [116, 117, 118, 119]. Finally, [120] first obtain a MAP estimate of all weights,
then define a subnetwork selected in a way that aims to maximally preserve predictive
uncertainty. The small size of the subnetwork allows for the use of a full-covariance
Gaussian posterior in tandem with linearized LA [181].

4.2.2 Hypernetwork Modeling

Hypernetworks are NNs that are used to predict deterministically the parameters of
another, typically larger network, termed the “primary” network. The terminology is
due to [105], however the main idea can be traced back to earlier works (see discussion
in e.g. [106, 182]). [106] have been among the first to extend hypernetworks to
a Bayesian setting. Their Bayesian hypernetwork, modelled as a normalizing flow,
learns to predict distributions of weights for the primary network. The flow predicts
scaling per-neuron factors for the primary network weights. This is similar to the
closely related [112], which however require an extra inference network to estimate the
entropy term of the VLB. Almost concurrently, [83] proposed BbH for VI with implicit
distributions. They use a discriminator network for density ratio estimation (DRE)
in the context of prior-constrastive VI [183], and a generator to model the variational
distribution. [184] use a kernel method for DRE instead of a discriminator. [182] and
[185] explore hierarchical prior modeling using NN-based implicit distributions and
Gaussian processes. INRs have also been used for approximating model parameters
of deep NNs [178, 186].

4.2.3 Stochastic Implicit Neural Representations

INRs have been used as models for signal compression [187], and more recently they
have been extended to the Variational Bayesian setting [188]. [189] extend NeRFs to
learning distributions of all possible radiance fields. A simple variational posterior is
assumed, and the base model is extended to learn uncertainty estimates over scene
parameters. [190] use a BNN as an INR of computerized tomography.

77

4.3 Implicit Neural Representation Inference

This section studies in great detail our method for applying low-dimensional Bayesian
inference within deep neural network models. We propose to move from the high-
dimensional setting of full inference in a modern Neural Network to low-dimensional
inference, by assuming an auxiliary Implicit Neural Representation alongside the main
network. We perform density estimation over the parameters of the INR hypernet-
work, while treating the factors corresponding to the original weights as deterministic
parameters. This allows us to employ powerful inference methods (we discuss LA,
SWAG, NFs) with minimal approximation concessions, by leveraging on the small
size and representational strength of the INR.

4.3.1 Implicit Neural Representation Modeling

Given the NN gw is a mapping gw : X → Y , where X and Y , the first step of our
approach is to augment each weight w with a multiplicative nuisance factor ξ [143,
93, 112]. In particular, we use w ◦ ξ, where ◦ is point-wise multiplication, and the
dimensionality of ξ is identical to that of w.

ξ

ξ

ξ

x

y

l

ξ

Input Tensor Coordinatesξ: Output Tensor

fWINR
Implicit Neural Representation

Figure 4.1: The figure illustrates the INR Hypernetwork. It takes three input coordi-
nates, denoted as Ix, Iy, and Il, as input. Ix and Iy represent the spatial dimensions (x
and y coordinates) of the value to be generated. Il indicates the specific layer matrix
to which the generated value ξ belongs.

The ξ factor is parameterized using an INR [191], obtained as the output of a
function fwINR

: I → R, where tensor coordinates (domain I) are mapped to layer
values. More specifically for a convolutional main network, the INR hypernetwork
learns a mapping from a 5 dimensional I to a scalar value which corresponds to

78

the nuisance factor associated with the weight wc,o,ki,kj ,l located at the kernel position
ki, kj at channel c of filter o in layer l of the main/primary network (in the case of a
fully-connected layer Figure 4.1, dimensions ki and kj are omitted). With the above
modeling choice, the hypernetwork can be easily shared across each layer of the main
network and reduce the overall modeling complexity. The architecture of the INR is
defined as a multi-layer perceptron with sinusoidal activations, as with the SIREN
model of [2]. Formally, the input vector zi−1 for layer i is transformed according to
zi−1 → sin(ω0(w

i
INRzi−1 + biINR)), where wi

INR, b
i
INR denote weights and biases of the

INR layer i, and ω0 is a fixed hyperparameter.
In INRs, any target quantity can be modelled regardless of its size, while in tra-

ditional networks parameter size is coupled with target dimensionality. This char-
acteristic, in combination with the stochastic character of ξ allows us to choose the
complexity of fwINR

(·) to be (much) lower than that of its target (dwINR
≪ dξ). Thus,

wINR parameters can also be interpreted as a low-dimensional representation of fac-
tors ξ.

W4 � Ξ4

W3 � Ξ3

W2 � Ξ2

W1 � Ξ1

INR Stochastic Hypernetwork

Main Network

I1

I2

I3

I4

I5

ξ[1...4]ξ[1...4]ξ[1...4]ξ[1...4]
w

(2)
INR w

(1)
INR

w4 � ξ4

w3 � ξ3

w2 � ξ2

w1 � ξ1

Figure 4.2: Illustration of the proposed INR model.

79

4.3.2 Bayesian Inference over the Neural Representation

In our method, we treat the product w ◦ ξ as a stochastic random variable coming
from a parametric distribution p(w, ξ) = p(w)p(ξ). Here we are taking advantage of
the INR hypernetwork modeling of ξ and implicitly place a prior over those variables,
by defining a prior over the INR parameters wINR. This allows us to reason about ξ
but in the much lower dimensional space of wINR. Following the supervised learning
setting of Section 2.2.1, our aim remains to compute the posterior p(w,wINR|D). Since
the posterior distribution cannot be obtained in closed form, we cannot apply exact
inference methods. Thus we resort to approximate inference, under an additional
assumption that we only require a deterministic estimate over w. We encode this
constraint as a factorization over separate approximate posterior distributions q(w)

and q(wINR), where q(w) = δ(w−w), and δ(·) is the Dirac delta function. This forces
w to be deterministic, equal to a point estimate w. The full approximate posterior is
then written as:

p(w,wINR|D) ≈ q(w,wINR) = q(wINR)q(w) = q(wINR)δ(w − w). (4.1)

Laplace Approximation

One way to proceed is by constructing a Laplace approximation over q(wINR). We
approximate p(wINR|D) by

q(wINR) = N (w̄INR,Λ
−1), (4.2)

Λ = C−1 +
N∑

n=1

∇2
wINR

log p(yn|gw,wINR
(xn))|w̄INR, (4.3)

where we have assumed a prior wINR ∼ N (0, C). Mean w̄INR is found as the Maxi-
mum a Posteriori solution (Section 2.2.3). Under this scheme, q(w,wINR) is expressed
by a product of a Gaussian and a Dirac delta distribution, which can be seen al-
ternatively as a single Gaussian distribution with precision γ → +∞ for variates
corresponding to w and zero covariance between w and wINR terms by assumption
(eq. 4.1). Concerning the weights and biases that directly parameterize the “main”
network (i.e. the product w ◦ ξ), we note that these are in general non-Gaussian, even
under LA assumptions. The INR fwINR

(·) transforms the (approximately) Gaussian
wINR into a non-Gaussian density q(ξ). This is multiplied by deterministic w where

80

the result follows a density that is a scaled version of q(ξ). The first and second mo-
ments are equal to WE{ξ} and WV{ξ}W , where W = diag{w} and E{·},V{·} denote
expectation and covariance respectively. Once we have computed a posterior over
the weights, we can estimate the predictive (eq. 2.2) by acquiring ξ samples by first
sampling wINR ∼ q(wINR) and evaluating ξ = fwINR

(·). We finally scale them by w,
then the product is used to compute g(x) and p(y|g(x)) in a Monte Carlo fashion.

Alternatively, the predictive distribution (eq. 2.2) can be computed in closed form,
as long as we impose a linearizing assumption over the network output. Specifically,
this involves a first-order Taylor expansion of network output g(·) around wINR. As
by LA assumption, parameters wINR are a posteriori Gaussian-distributed, a linear
transformation over them through linearization would result in a Gaussian predictive
as well; linearization over other variables (w, ξ) would not have been fruitful due to
their being non-Gaussian. Hence, we only require parameters wINR to vary in this
approximation, while we assume the rest of the parameters w to be constant at their
MAP solution. Formally we write:

glin(x) ≈ gw̄,w̄INR
(x) + JwINR

(x)(wINR − w̄INR), (4.4)

where we used JwINR
(x) =

∂gw̄,wINR
(x)

∂wINR
|w̄INR. For the predictive we then have:

p(y|D, x⋆) = N (gw̄,w̄INR
(x⋆), JT

wINR
(x⋆)Λ−1JwINR

(x⋆)). (4.5)

Stochastic Weight Averaging

An alternative over LA is to use SWAG [10] over INR parameters. In this context, this
amounts to approximating p(wINR|D) by a Gaussian q(wINR) as in eq. 4.2, but with
inverse Λ equal to the sample covariance over the SGD trajectory:

Λ−1 =
1

T − 1

T∑
i=1

(w
(i)
INR − w̄INR)(w

(i)
INR − w̄INR)

T , (4.6)

where {w(1)
INR, w

(2)
INR, . . . , w

(T)
INR} are training updates of INR parameters. The predictive

distribution is estimated by Bayesian model averaging through Monte Carlo sampling.
Formally we have:

p(y|D, x⋆) ≈ 1

K

K∑
k=1

p(y|gw̄,ξk(x
⋆)), (4.7)

where K samples {ξ1, ξ2, . . . , ξK} are drawn from the approximate posterior q(ξ) by
evaluating wINR ∼ q(wINR) as described in the previous paragraph.

81

Normalizing Flows

Normalizing Flows are another powerful modeling choice for q(wINR). In this context,
q(wINR) is freed from the Gaussian restriction and can be any parameterized flexible
parametric distribution. A normalizing flow transforms an initial random variable z,
typically sampled from a standard Normal, by applying a chain of invertible param-
eterized transformations. The RealNVP model [192] is based on a flow composed of
a series of affine coupling layers defined as: y → m ◦ zi−1 + (1 −m) ◦ (zi−1 exp(s(m ◦
zi−1)) + t(m ◦ zi−1)) where s and t stand for scale and translation, which are typical
linear mappings, while m is a channel-wise masking scheme. The flow parameters
can be computed by directly optimizing the variational lower bound:

L(w,wINR) = Eq(wINR) log p(y|gw,wINR
(x⋆))−KL(q(wINR)||p(wINR)), (4.8)

where the carefully designed coupling layers ensure that the inverse and the Jacobian
of the determinant of each transformation can be efficiently computed. The predictive
distribution is estimated by Bayesian model averaging through Monte Carlo sampling
similar to eq.4.7.

Table 4.1: Numerical results for classification on CIFAR10 (top) and Corrupted CI-
FAR10 (bottom) for different design choices. Log-Likelihood (↑) and Expected Cali-
bration Error (↓) are reported.

Modeling Noise Structure Type of INR Noise Type Activation Type
w wξ ξ Rank-1 Channel Full Individual Shared Mult Add ReLU Sine

LL -1.29 ‐0.37 -0.44 -0.47 -0.40 ‐0.37 ‐0.29 -0.37 ‐0.37 -5.28 -0.289 ‐0.287
ECE 0.01 0.05 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.19 0.032 0.034

LL -1.80 ‐0.97 -1.60 -1.43 -1.18 ‐0.97 ‐0.90 -0.97 ‐0.97 -6.29 -0.50 ‐0.47
ECE 0.17 0.11 0.20 0.20 0.15 0.11 0.10 0.11 0.11 0.26 0.06 0.05

4.4 Experimental Evaluation

In this Section, we provide numerical results for the proposed INR-based scheme, in
comparison to recent Bayesian inference methods. Namely, we compare ourselves ver-
sus methods that perform inference over the full network, (i.e. the full set of network
parameters): MC Dropout [147]; Bayes by Hypernet (BbH) [83] Deep Ensembles [54]

82

– considered among the state-of-the-art methods for uncertainty estimation in Deep
Learning [193, 98] – and last layer Laplace approximation (LL). Albeit we consider
additional baseline methods that apply low-dimensional inference in order to isolate
the INR ”subspace” contribution in the predictive performance of our method.

We start by experimenting with different types of modeling choices and evalu-
ate each one on a baseline classification task, in order to quantify how our method
performs under different modeling scenarios. For our main numerical analysis, we
deployed three different experimental setups. First, we evaluate our predictive uncer-
tainties for our method on a 1D synthetic regression task. We carried out experiments
to evaluate INR performance on different types of regression UCI datasets. Last, we
ran image classification trials (CIFAR100, CIFAR10 and MNIST) where we compare
ResNet variants for prediction and out-of-distribution robustness. We test three vari-
ants of the proposed INR-based model, namely INR-Laplace (eq. 4.2,4.3,4.5), INR-
SWAG (eq. 4.2,4.6,4.7) and INR-RealNVP (eq. 4.8). The three variants differ w.r.t. the
approximation strategy for the posterior and the predictive. For the first two cases we
compute the full Gaussian covariance for the weight posterior (avoiding e.g. KFAC or low-
rank approximations [9]). Throughout our experiments, we found that the proposed
model provides good predictive uncertainties on a variety of settings, highlighting the
benefits of low-dimensional Bayesian inference. Concerning implementation details
of the proposed and compared models and benchmark setup in general, we have
moved additional information to the Appendix (App. B.2).

4.4.1 Hypernetwork Design Choices

In this Section we carry out ablation studies that justify the particular modeling and
INR architecture described in subsection 4.3.1 and help us understand the behavior
of the hypernetwork under different settings. We numerically evaluate each different
potential modeling scenario by training a ResNet-20 model at CIFAR-10 according
to subsection:4.4.4 and evaluate its MAP solution in both in and out of distribution
data. Table 4.1 includes the main results.

Our first ablation study aims to justify the introduction and use of ξ variables
i.e. we investigate how the BNNs perform with only the INR for the posterior (see
Table 4.1 under the column ”Modeling”). As the ξ variables only serve to induce
stochasticity, removing weights w result in a model which is not able to capture any

83

information from the training data. Furthermore, augmenting w with ξ results in a
more sophisticated model which yields better calibrated predictions. We choose the
INR hypernetwork to be shared across all the layers of the main network. Sharing
the INR hypernetwork, besides being efficient, can also reduce significantly the di-
mensionality of wINR, as the total d(wINR) for the individual hypernetwork will by
a multiple of the number of layers of the main network. As an example, for Wide-
ResNets the magnitude of this figure can be up to hundreds of variates. Despite
having less parameters, the shared version of the hypernetwork is highly comparable
to its more expensive counterpart as Table 4.1 (column labelled as ”Type of INR”)
indicates. Also, we introduce independent nuisance factors ξ for every single weight
w. In Table 4.1 (column labelled as ”Noise Structure”) we measure the benefits of
our full-rank multiplicative noise versus other low-rank modeling options used in
related works [123, 112]. In the same Table (column labelled as ”Noise Type”), we
can see results for evaluation of two different types of noise injection in the main
model, namely multiplicative noise (“Mult”) and additive noise (“Add”). The addi-
tive noise hugely underperforms where multiplicative noise factors seem to provide
good and calibrated solutions. Because in the multiplicative structure during training
∇ξ depends on W , we argue that as W is responsible for fitting the data, it can pass
valuable information to the hypernetwork weights in the multiplicative case leading
to significant increase in overall performance. Furthermore we find that Sine/Periodic
activations – the “default” choice in [2] – slightly outperforms a hypernet with ReLU
activations as we can see in Table 4.1 (column labelled as ”Activation Type”), even
though results are still very close.

Finally, we evaluate the effects of INR network size on uncertainty estimates. We
want to measure how increasing the number of paramters of the hypernetwork will
affect the predictive behavior of the model. We trained 3 different INR models, with
increasing numbers of trainable parameters.

Following [194] and [123], in Figure 4.3 we examine the normalized diversity of
INRs of increasing size, where the posterior over w ◦ ξ was estimated via INR-SWAG
and INR-MAP. Increasing the size of the INR hypernetwork results in more complex
weight posteriors, which is depicted with better scores across all metrics in out-of-
distribution data. Nevertheless, a small INR with only 350 trainable parameters is
competitive in this training setup.

84

SWAG MAP

−3.20

−3.15

−3.10

C
IF

A
R

10

LL

INR SWAG 350 INR SWAG 4K INR SWAG 10K

SWAG MAP

0.25

0.30

0.35

0.40
ECE

8.0

8.5

9.0

9.5

10.0
Diversity

SWAG MAP
−1.20

−1.15

−1.10

−1.05

−1.00
LL

SWAG MAP

−1.0

−0.5

0.0

ECE

0.5

1.0

1.5

2.0

2.5
Diversity

Figure 4.3: Comparison of Log-Likelihood (↑), Expected Calibration Error (↓) and
Normalized Diversities between INR networks of increasing size, over CIFAR10 and
corrupted CIFAR10 datasets. INR-x represents an INR with x parameters.

4.4.2 Visualizing Predictive Uncertainty

We use a synthetic 1D regression task with three disjoint clusters of input data as
proposed in [113]. This dataset is carefully designed to test “in-between” uncertainty,
i.e. model confidence in between these disjoint clusters of data [195]. This simplistic
experiment is commonly used for testing model uncertainty calibration [141]. Ideally,
we want a model to predict high uncertainty values as test data move away from the
observed data. In this test, we use a fully-connected architecture with hidden layers

Dropout Deep Ensembles INR Laplace Gaussian Processes

Figure 4.4: Visualization of the predictive distribution for the “toy” regression task.
The data are denoted as purple circles, predictive mean is the solid orange line and
the shaded region is ± 1 std.

that have [200, 50, 50, 50] neurons respectively. Following [113], the network takes two
inputs x̂ = (x, x2) and outputs a single real value y = f(x̂). The INR network has
3 layers consisting of [2, 10, 4] neurons respectively, resulting totally in 160 training
parameters (equal to only 1% of the number of the ξ parameters). Results are shown
in Figure 4.4. We also include a Gaussian Process with a Radial Basis Function
(RBF) kernel as the state-of-the-art for this problem. Our INR-Laplace preserves

85

more of the uncertainty regarding both “out” and “in-between” of the observed data.
Other methods, like Deep Ensembles and MC Dropout infer a desirable uncertainty
structure but still remain quite overconfident. Furthermore, the proposed INR model
is able to maintain the appealing characteristics of the approximate inference methods
applied, specifically the stationary structure (or in-between-uncertainty) benefits of the
Linearized Laplace approximation as shown in multiple works [34, 120].

4.4.3 Calibration Evaluation on Regression Benchmarks

We next test our method on the UCI regression tasks [196]. We experiment with 8

UCI regression datasets using standard training-evaluation-test splits from [63] and
their GAP-variants [195]. To measure performance we deployed Gaussian test log-
likelihood (LL). Our training strategy follows the work of [120]. The INR network
has 4 layers consisting of [5, 5, 5, 1] neurons respectively, resulting totally in 70 training
parameters (equal to only 2% of the number of the ξ parameters)

−3.5

−3.4

−3.3

−3.2

−3.1
Boston

−4

−3.9

−3.8

−3.7

Concrete

−3.2

−3.1

−3
Energy

−3.2

−3

Power

Deep Ensembles BbH LL Laplace INR Laplace INR RealNVP Dropout Laplace Full GGN

−1.05

−1

−0.95

−0.9

Wine

−3.8

−3.7

−3.6

Yacht

0.8

1

Kin8nm

3.5

4

4.5

Naval

−3.5

−3.4

−3.3

−3.2

Boston Gap

−4

−3.9

−3.8

−3.7
Concrete gap

−4

−3.5

−3
Energy Gap

−3.6

−3.4

−3.2

−3
Power Gap

−1.1

−1.05

−1

−0.95
Wine Gap

−3.9

−3.8

−3.7

Yacht Gap

Figure 4.5: Numerical results for regression trials on UCI datasets [196]. Mean values
of test Log-Likelihood (↑) are shown with ± 1 standard deviation error bars, obtained
over standard [63] and GAP [195] splits.

The main results are depicted in Figure 4.5. The small MLP network enabled us
to compute the full GGN matrix in the Laplace approximation of the main network
and add it as baseline. As we can see, INR combined with RealNVP or LA achieves
better test log-likelihood – a metric which considers both uncertainty and accuracy
– compared to BbH and LL Laplace approximation, while followed closely by MC

86

Dropout. Furthermore, the proposed INR remain competitive with Deep Ensembles
networks, even surpassing them in five out of eight datasets while overall being close
enough, in both standard and gap splits, as standard deviation bars indicate.

4.4.4 Image Classification under Distribution Shift

We evaluate our method on standard image classification tasks over the CIFAR10,
CIFAR100 [197] datasets. We use ResNet-50 [20] in order to test the ability of the
proposed INR-based method to scale into larger models. A capable Bayesian inference
technique is critical when applied in deep models, as they tend to exhibit less accurate
calibration in this context [32]. We provide experiments in a context of high degree of
distribution shift, as under these conditions the evaluation of predictive uncertainty
is the most useful in practice [193]. The majority of methods yield good results when
input data are “close” to the training data distribution, but can fail under even a mild
shift in the input data [193]. Our INR hypernetwork [2], has 4 layers with [10, 10, 10, 1]

neurons each, resulting in 260 training parameters (only 0.001% of the parameters
ξ). Following [193, 141], we train ResNet50 on CIFAR10/CIFAR100 and evaluate on

0 1 2 3

−4

−3

−2

LL

0 1 2 3

0.5

0.6

Error

Deep Ensembles INR RealNVP Dropout LL Laplace INR SWAG

0 1 2 3

0.6

0.7

0.8

0.9
Brier

0 1 2 3

0.15

0.2

0.25

0.3
ECE

Figure 4.6: Numerical results for classification trials on Corrupted CIFAR100 dataset.
The x-axis of each plot corresponds to increasingly corruption levels.

data subject to 16 different types of corruption with 5 levels of noise intensity each
[198]. As Figure 4.6 indicated, one of the proposed variants, INR-RealNVP, outper-
forms non-INR methods in terms, log-likelihood and expected calibration error. Both
INR-based methods outperform LL Laplace and MC Dropout which are overconfi-
dent in their predictions and more often erroneous while still being competitive w.r.t
Deep Ensembles. Overall, these results suggest that the proposed approach produces
more calibrated and accurate models than other popular uncertainty quantification
approaches.

87

0 25 50 75 100

0.6

0.8

1

% Rejected

A
cc

ur
ac

y
MNIST vs FASHION

0 25 50 75 100

0.4

0.6

0.8

1

% Rejected

CIFAR10 vs SVHN

Deep Ensembles INR RealNVP Dropout LL Laplace INR SWAG

0 25 50 75 100

0.2

0.4

0.6

0.8

1

% Rejected

CIFAR100 vs SVHN

Figure 4.7: Testing the quality of calibration with Rejection-Classification plots. MNIST
& CIFAR10 are considered as “in-distribution”, Fashion-MNIST & SVHN are “out-
of-distribution” respectively. Methods reject increasing data proportions based on
predictive entropy before classifying the rest. All predictions on OOD samples are
treated as incorrect. The black curve denotes maximum theoretical performance.

We quantify the quality of uncertainty estimates by jointly evaluating the predictive
entropy of our model on an in-distribution and an OOD test set. Ideally, we want
predictive entropy to be high on OOD data as predictions should be more uncertain,
and vice versa. Following [141, 199], we deployed the OOD rejection scenario by
jointly evaluating the entropy of our model on an in-distribution and OOD test set,
where we allow the models to reject an increasing proportion of the data based
solely on their entropy values. Ideally, we want highly calibrated and robust models
to reject all the OOD examples, as well as the in-distributional examples when the
corresponding predictions are inaccurate. Figure 4.7 illustrates on what percentage
of the remaining non-rejected examples the predictions are accurate. On CIFAR10-
SVHN all methods have the same performance, while on CIFAR100 the INR-RealNVP
model fails to distinguish very uncertain in-distribution data from low uncertainty
OOD ones. On MNIST-Fashion, the proposed methods INR-SWAG and INR-RealNVP
perform best, followed by LL Laplace and Dropout.

Finally, we tried to measure the quality of proposed low-dimensional spaces
in terms of predictive uncertainty. Specifically, we compare our INR low dimen-
sional space with: rank-1 [123], Wasserstein subnetwork [120], and partially stochas-
tic Resnets from [121]. We trained (each method) combined with a Resnet18 for
100 epochs in CIFAR100 while keeping the approximate inference method the same
across all low-dimensional spaces. Results in Table 4.2 show a trend in favor of both

88

Table 4.2: Numerical results for classification trials on CIFAR100 for different pro-
posed low-dimensional spaces alongside their inference time.

Subspace Inference
Standard Corrupted

Time ↓
LL ↑ Error ↓ Brier ↓ ECE ↓ LL ↑ Error ↓ Brier ↓ ECE ↓

Rank1
SWAG −2.29 0.34 0.55 0.22 −4.77 0.57 0.92 0.39 0.28

Laplace −4.01 0.31 0.97 0.66 −4.25 0.58 0.97 0.40 0.55

INR
SWAG −2.09 0.30 0.50 0.22 −4.18 0.53 0.84 0.36 0.11
Laplace −3.91 0.30 0.96 0.67 −4.19 0.58 0.97 0.39 0.51

Subnetwork
SWAG −2.14 0.30 0.49 0.20 −3.97 0.51 0.82 0.34 0.29

Laplace −3.95 0.32 0.96 0.65 −4.13 0.51 0.97 0.46 0.42

Partially Stochastic
SWAG −2.14 0.30 0.49 0.20 −3.97 0.51 0.82 0.34 0.28

Laplace −3.99 0.34 0.97 0.63 −4.18 0.51 0.98 0.47 0.49

proposed INR-x methods and validate to a considerable degree the premise of our
method: instead of choosing a subset or subnet following the rationale of the corre-
sponding methods, the INR produces ξ outputs that endow the full network with the
desirable stochasticity, while keeping the dimensionality of the random process that
we want to do inference upon at a low level.

4.5 Discussion

In this chapter, we have presented an approach for scalable and efficient Bayesian
Deep Learning, that leverages on the small size and representational strength of INRs.
As Bayesian inference is performed over the low-dimensional space of INR parameters
we can use richer approximations for the desired posterior distribution. In large models
it is better to introduce multimodal stochasticity implicitly to the weights rather that trying
to directly model them probabilistically This method is efficient and can be easily applied
to various networks for more efficient and richer Bayesian inference. Our claims are
corroborated by the reported experimental results, which show that the integration of
the proposed method results in improving considerably overall uncertainty estimates.

While full rich posterior approximation methods offer significant potential, as
discussed in this chapter, approximate inference often leads to simpler solutions.
However, this simplicity can sometimes come at the expense of not fully exploiting
the richness of the approximate posterior method. In the next chapter, we study

89

this phenomenon by examining an approximate Gaussian distribution with different
covariance parameterizations. We propose that when the approximation is Gaussian,
practitioners should favor structured, less flexible covariance parameterizations (with
lower degrees of freedom) over unrestricted, highly flexible ones. This approach can
lead to better results by capturing more effectively the true correlations that naturally
arise in NNs.

90

CHAPTER 5

MODELING WEIGHT CORRELATIONS IN
APPROXIMATE INFERENCE: WHEN STRUCTURE

MATTERS MORE THAN FLEXIBILITY

5.1 Modeling Weight Correlations & Contributions

5.2 Related Work

5.3 Background & Motivation

5.4 The Circulant Normal Distribution

5.5 Experimental Evaluation

5.6 Discussion

Modern deep networks, known for their efficiency in processing high-dimensional
data, leverage techniques like parameter sharing [4]. These inherent properties, how-
ever, induce correlations between NN weights. This chapter investigates ways of mod-
eling these weight interactions/correlations within the Variational Inference frame-
work, a topic still relevant for developing Bayesian Neural Networks with finely cal-
ibrated uncertainties in large models. Supported by related research and empirical
evidence, we argue that under the Gaussian distribution assumption, practitioners
should focus on imposing less flexible, structured representations rather than compu-
tationally expensive, unstructured ones when modeling these correlations. To validate

91

this proposition, we introduce the Circulant Normal approximate distribution, which
inherently captures the aforementioned properties. We evaluate its effectiveness exper-
imentally across diverse tasks. Our method not only outperforms existing approaches
on a wide range of benchmarks but also offers lightweight space and time complex-
ity, making it a compelling choice for future research and practical applications in
Bayesian deep learning

The rest of this chapter is organized as follows. We begin by discussing the chal-
lenges associated with approximate inference distribution modeling and outlining our
contributions in Section 5.1. Next, Section 5.2 reviews related work. In Section 5.3,
we establish the theoretical background for this chapter and motivate our intuition,
that structure matters more than flexibility in approximate inference. We then introduce
our proposed method, the Circulant Normal distribution, in Section 5.4 to validate
our claims. Finally, Section 5.5 presents an experimental evaluation of our method
on various tasks.

5.1 Modeling Weight Correlations & Contributions

Bayesian Deep Learning has been put forward as a solution to deterministic NN
pathologies, aiming to combine the effectiveness of Deep Learning with the elegance
of Bayesian Inference. From the Bayesian viewpoint, model parameters are to be
treated as probabilistic, and the notion of training the network “replaced” by computing
the posterior distribution of the parameters after having observed the training data.
The Bayesian paradigm allows for well-calibrated predictive distributions, provides a
framework to deal with hyperparameter selection, and deals sufficiently with problems
related to training-test distribution shift and catastrophic forgetting.

Unfortunately, Bayesian Inference does have its shortcomings: In most practical
models – in a non-deep learning context included – it must be treated as Approx-
imate Inference [15]. Also, even the most naive approximations entail considerable
computation overhead. For example, Mean-Field Variational Inference in Bayesian
deep learning refers to a Gaussian posterior with a diagonal covariance matrix. This
simple model already effectively doubles model parameters [174] as we require to
save mean and variance values for each model weight.

The above indicates that correlation modeling flexibility (DoF, degree of freedom),

92

σ1 σ1,2 σ1,3 σ1,N−1σ1,N

σ2,1 σ2 σ2,3 σ2,4 σ2,N

σ3,1 σ3,2 σ3 σ3,N σ3,N . . .

...
...

.

.

.

...
...

.

σN−1,1. σ3,1

σN,1 σN,2 σ3,1 σ3,1 σ3,1

N − c

µ1

µ2

µ3

...

. . .

. . .

. . .

...

. . .

...

µN

µw= Σw=

2 4 6 8 10 12 14 16 18

Log Parameters

1.2

1.3

1.4

1.5

1.6

N
eg

at
iv

e
L

L

ELRG

MFVI

K-Tied

Ours

Figure 5.1: Left: Illustration of the parameters (mean µw, covariance Σw) of the
proposed Circulant-Constrained distribution for Variational Inference. Right: Neg-
ative Log Likelihood ResNet20 in CIFAR100 vs log parameters of covariance Σw

per method. Colors indicate shared parameter values. The Circulant Normal allows
modeling posterior correlation structure at a negligible computational overhead.

solely does not necessarily translates to better performance. Instead, prioritizing more
structured covariance parameterization which account for better correlation modeling
between weights can lead to superior results. To validate this, we propose a Circulant-
Constrained Gaussian distribution as a family of approximate posterior distributions
within the framework of Variational Inference. We take advantage of the fact that
Circulant matrices (Figure. 5.1) can be easily parameterized in terms of their gen-
erating kernel, as well as easily manipulated by leveraging their Fourier Transform
and related eigendecomposition [14]. We show that the proposed model allows for
a posterior approximation with a rich correlation structure, an issue where previous
works have struggled to deal with effectively. Furthermore, our model succeeds in
providing a good trade-off between computational complexity and richness of struc-
ture. Numerical experiments on a variety of datasets and benchmarks validate our
claims.

5.2 Related Work

We start by exploring methods which leverage the benefits of structured approximate
posterior distributions. We then discuss approaches that advocate for simple weight
posterior distributions, arguing that neural networks possess inductive biases that can
compensate for simpler posterior modeling. Finally, we briefly review methods that

93

employ Circulant and Toeplitz matrices, first as covariance matrices within Gaussian
distribution assumption and then as neural network weight parameterizations.

5.2.1 Correlated Weight Posteriors

Many works try to explain the pathologies of BNNs by exposing the problems of
MFVI especially in smaller models [200, 41, 104, 201]. The authors in [103] theoret-
ically proved that MFVI has an additional gap in the ELBO, compared to a suitable,
purpose-built posterior. A popular way of overcoming these limitations is to intro-
duce correlations in the approximate posterior. Works such as [12, 202] promote low
rank structured correlations, while [203, 204] used the matrix Normal approximate
posteriors. Empirically, the introduction of correlations is justified by [11], showing
that weights in CNNs are spatially correlated, while authors in [205] showed that
correlations can be useful in models that use a form of weight sharing.

5.2.2 Simple Weight Posterior for Deep Neural Networks

In the setting of deep neural networks the approximate posterior distribution of the
weights tend to have a simple structure. As the authors in [41] showed, the MFVI
posterior can induce similar distributions in function-space to those induced by shal-
lower networks with complex weight posteriors. This idea has been extended by [200]
who showed that for deep models there exist MFVI approximate posteriors which
provide flexible uncertainty estimates. Empirically, works had successfully applied
MFVI approximate posteriors [97, 206, 207]. Closely related to our work, some au-
thors applied even more restrictive approximations; a compact parameterization of
the MFVI [13] and a spherical diagonal plus low-rank correlation components [12].

5.2.3 Circulant and Toeplitz Covariance Matrices

These type of covariance matrices arise naturally when data are regularly spaced
and the covariance function is stationary. Typical applications can be found in the
field of signal processing [208] where the goal is to estimate the empirical covariance
using few samples [209]. More related to our work the properties of these could be
exploited to accelerate inference for Gaussian Processes (GPs) [210, 211, 212, 213].

94

5.2.4 Circulant Weight Matrices

Circulant or other low displacement rank neural network weights configurations have
been explored in the previous years. Among the first pioneers, authors in [214, 215]
focused on restricting the weight matrices to a specific structure to achieve high
network compression. Followed by further works [216, 217, 218], who experimented
with circulant adaptation of modern neural network components, Notably authors
in [219] worked on a theoretical justification of this parameterization. For further
applications we refer the reader to the survey of [220].

5.3 Background & Motivation

Following a fully supervised learning setting, where gw is a Neural Network defined
by weights denoted as w. 1 A fully Bayesian solution, if we assume a prior distribution
p(w), aims to compute distributions for both the posterior and predictive distribution.
Since the posterior cannot be obtained in closed form, we cannot apply exact inference
methods. Thus we must resort to approximate inference p(w|D) ≈ q(w) where we try
to approximate the true posterior distribution. Multiple ways to define q have been put
forward. For example, Laplace Approximation involves approximating q as a Gaussian
with mean equal to the MAP solution and covariance matrix defined as a function of
the loss geometry around the mean [181]. The Stochastic Weight Averaging-Gaussian
method (SWAG) approximates posterior parameters as a function of the objective
optimization method [10].

In this work, we focus primarily in Variational Inference, as this framework can
still provide excellent result in various applications [221, 222]. Variational inference
involves defining an approximant in terms of a lower bound on model evidence p(D):

p(D) = L(w) + KL(q(w)||p(w|D)), (5.1)

where KL(·) stands for the Kullback-Leibler divergence, and L(w) is the Evidence
Lower Bound (ELBO). The ELBO is the objective to be maximized, and can be written
as:

L(w) = Eq(w)(p(y|gw(x⋆))) + KL(q(w)||p(w)). (5.2)
1The term “weights” will refer to both weights and biases of a NN, unless stated explicitly. It will

be interchangeable with the term “parameters” (of a NN).

95

The true posterior p(w|D) is far from being unimodal or Gaussian, as an applica-
tion of Bayes’ law, involves a highly non-linear component represented by the Neural
Network gw(·). On the other hand, optimization of the ELBO will require an effective
way to compute the expectation Eq(w)(p(y|gw(x⋆))), and an effective way to compute
the KL divergence KL(q(w)||p(w)). Hence, choosing the approximation family for q(·)
must be done under these considerations.

Previous work has experimented with various forms for q(·), most notably the
Gaussian or other related location-scale parameterized distributions (e.g. Cauchy
[123]). In particular, as the covariance parameter scales quadratically with the num-
ber of parameters, a number of ways to constrain the form and degrees of freedom
(DOFs) of the covariance have been explored [12, 123, 174]. One key insight concern-
ing the choice of the approximate posterior family is that while many works have
prioritized a covariance parameterization allowing variation w.r.t. variances of differ-
ent model weights, empirical evidence seems to suggest that this kind of flexibility is
rather left underexploited during learning. Parameter variances tend to converge to
values close to prior variance (see Figure 5.2), which is typically chosen to be uni-
form across variates. This is corroborated by related experiments in recent work; [12]
find that the posterior tends towards an isotropic, diagonal structure, with the rank
part acting as a regularizer. [13] further criticize shortcomings related to a diagonal
covariance structure.

We build on this trend and introduce Circulant Normal a distribution parame-
terization that sacrifices flexibility (in the aforementioned sense), in favor of allowing
richer correlation structure. On this note, the authors in [223] hypothesized that even
with simplistic assumptions over a prior, during optimization the parameters will find
a version of the network where this restriction is least costly, which our work bears
out.

5.4 The Circulant Normal Distribution

We approximate the true posterior as a Gaussian distribution:

p(w|D) ≈ q(w) = N (µw,Σw), (5.3)

where µw ∈ RN is the mean of variational posterior distribution and Σw ∈ RN×N is
the positive definite covariance matrix. In any practical setting, the dimensionality of

96

10−2 100
0

1

2

3

10−1 101
0

2

4

6

10−1 101
0

2

4

6

10−1 101
0.0

2.5

5.0

7.5

10−1 101
0

2

4

6

10−1 101
0

2

4

6

10−1 101
0.0

2.5

5.0

7.5

10−1 101
0

2

4

6

MFVI Isotropic Prior

Figure 5.2: Histogram plot of learned diagonal covariance matrix values in Resnet-20,
equipped with MFVI posterior, and trained on CIFAR100 under isotropic prior.

w is very high, and modeling an unconstrained Σw is infeasible. Hence, we must place
some form of restriction over the structure of Σw. In this work, we use a circulant
covariance-constrained Normal distribution for modeling the weights (cf. Figure 5.1).
In this text, we shall refer to this distribution as Circulant-Constrained Gaussian, or
Circulant Normal (CN) for brevity.

In order to train our model under this constraint, we will require two basic ingredi-
ents: sampling from the variational approximation and computing the KL divergence
between the approximate posterior and the prior. These are necessary to optimize the
ELBO (eq. 5.2). Concerning sampling, for an (unconstrained) Gaussian posterior we
write:

w ∼ q(w) ≡ w = µw + Lϵ, (5.4)

where ϵ ∼ N (0, I) and L is such that LLT = Σw. Usually L is lower triangular,
and related with Σw through a Cholesky decomposition. In our model, eq. 5.4 is
formulated as follows:

w ∼ q(w) ≡ w = µw + k ⊛ ϵ, (5.5)

Where k ∈ RN is a vector which is convolved with white noise ϵ. From the ’kernel’
vector k we can define the corresponding circulant matrix Ck where Ck ∈ RN×N and
its elements are defined from the kernel k as Ck(i, j) = k(i−j) mod N . The convolutional
operation can now be described as a matrix multiplication k⊛ ϵ = Ckϵ. This sampling
procedure imposes variational covariance matrix Σw = CkC

T
k .

97

Lemma 5.4.1. The product of two circulant matrices is also a circulant matrix.

Proof. Let C1 and C2 be two circulant matrices. The proof takes advantage from
the spectral decomposition of circulant matrices. This states columns of the inverse
Discrete Fourier Transform (DFT) matrix Q are eigenvectors of any circulant matrix
[14], while the corresponding eigenvalues are the DFT values of the kernel generating
the circulant matrix, ΛC1 = Q−1k1:

C1C2 = QΛC1���
QHQΛC2Q

H = QΛC1ΛC2Q
H . (5.6)

Thus the product is also a circulant matrix, with its kernel computed as the DFT of
diag{ΛC1ΛC2}.

Following the above lemma we can see that Σw is also circulant. However, for Σw

to be a valid covariance matrix, its positive definitivity must be ensured.

Lemma 5.4.2. The result of the multiplication of a circulant matrix by its transpose, is
positive semi-definite.

Proof. A matrix is positive semi-definite if it is symmetric and all its eigenvalues λ

are non-negative. The matrix C as an outer product is symmetric and its eigenvalues
following the previous lemma are ΛC1Λ

⋆
C1

, where “⋆” denotes conjugation. This equals
Λ2

C1
, hence all eigenvalues are non-negative.

Concerning the KL-divergence between the matrix-variate Gaussian posterior and
the proposed CN, we have:

KL(q(µw,Σw)||p(µ̂w, Σ̂w)) =
1

2
[log |Σ̂w|

|Σw|
−N+

Tr(Σ̂−1
w Σw) + (µw − µw)

T Σ̂−1
w (µw − µw)]

(5.7)

where µ̂w, Σ̂w are the prior parameters for the weights w. In order to compute the
KL in closed form we have to compute the determinant of the variational circulant
covariance where |Σw| =

∏
i(λk)

2 getting the eigenvalues from Lemma 1 and 2. In
order to ensure the numerical stability related to the logarithm and to ensure a strong
positive definite covariance matrix, the KL is computed w.r.t. to the closest positive
definite matrix to Σw, simply by adding a small value to the logarithm computation.
As for the matrix trace, involved when the prior covariance is a scaled version of the
identity matrix, it can be computed as the sum of the eigenvalues Tr(Σw) =

∑
i(λk)

2. If
there is another prior matrix, we can simply convolve them using the inverse Fourier
Transform.

98

5.4.1 Exploiting the Circulant Structure

As it is common practice in image and signal processing the only reason for k to be
of length N is to be able to perform the multiplication when the circulant is created.
Thus the vector k can have c << N learnable parameters (DOFs) while the rest N − c

can be zero-padded in order to define the circulant matrix.
Different c values induce different circulant structure in the Σw matrix. The zero

elements added in k correspond to zero off-diagonals in Σw. Thus the c parameter
controls both the flexibility and the structural rigidity of our method. At this point it
is important to note that even one non-zero off-diagonal in Σw can enforce heavy cor-
relations between many weights. In fact, the spherical mean field factorized Gaussian
(i.e. diagonal Σw) can be seen as a special case of the Circulant Normal where the
c = 1. In our experiments we found that even a small c can induce heavy correlation
in the approximate posterior and yield calibrated predictions.

The authors in [11] showed empirically that weights correlate strongly with neigh-
boring pixels, and anti-correlate or do not correlate with distant ones. This property is
fully incorporated in the notion of our zero-pad covariance version, as increasing the
zero padding (deceasing c) removes offset diagonals from the main diagonal which
correspond to correlations of far spaced weight elements in the weight matrix. In
other words the hyperparameter c controls the proximity of neighboring weight pix-
els up to which we wish to model the correlations. This in addition to the empirical
property from [11] allows us in practice to set c to take values even up to 20 (see
experiments) and still get excellent results as this models the between kernel corre-
lations (mainly 3 × 3 in modern CNNs) and disabling the cross channel correlations
which do not contribute too much.

5.4.2 Concerning the Prior Distribution

As in any Bayesian formulation, we will need a distribution that will encode our belief
about the inferred variables prior to considering our observations [224]. A standard
Normal distribution states that all weights are distributed according to the same
variance, with zero correlations. Formally we write p(w) = N (0, I). Another option is
to place a prior that will encode circulant-related correlations explicitly. The standard
Normal distribution is a good choice to encode an agnostic prior belief, apart from
that weights are more likely to be distributed around zero. An identity covariance

99

is indeed a circulant matrix itself, however it is rather an edge case of the circulant
family due to its only (repeating) unity eigenvalue, which leads to trivial circulant
structure and correlation. In the context of the stated motivation for using circulant
matrices, we may want to allow weights to be more likely to be explicitly correlated.
To this end, we consider a circulant prior with a random kernel, so formally we have
p(w) = N (0,Σk) with k ∼ N (0, Ic). Matrix Ic denotes a diagonal matrix where indices
i ≤ c are equal to unity, and the rest are set to zero. The hyperparameter c effectively
controls the amount of structural penalty enforced to the posterior; for example, c = 1

will imply a spherical, uncorrelated prior.
Furthermore, instead of choosing the kernel values at random the circulant prior

can compute the values via empirical Bayes in closed analytical form [225, 226].
where assuming that the approximate distribution is a Gaussian distribution. We use
p(w) = N (0,Σk), where Σk is generated by a kernel formed as k = [k0k1 · · · kN], Its
values are given by:

kn = Tr(P nΣw) + µT
wP

nµw, (5.8)

where P n is the nth power of the permutation matrix P . P is defined as the square
matrix that permutes row n to row n + 1 mod k, when it multiplies a vector from
the left. A full mathematical derivation of the empirical circulant distribution can be
found in Appendix C

5.5 Experimental Evaluation

This section presents numerical results to evaluate the benefits of the circulant Nor-
mal. We begin by quantifying the advantages of CN distribution as an approximate
posterior in various variational inference settings (Section 5.5.1). Next, Section 5.5.2
explores methods for integrating CN distributions into existing state-of-the-art VI
methods to further enhance their predictive performance. Finally, Section 5.5.3 in-
vestigates the benefits of using structured CN distributions as priors to enforce more
correlated approximate posteriors.

Throughout our experiments, we found that the proposed method provides good
predictive uncertainties while having excellent computational efficiency on a variety
of settings, highlighting the benefits of Bayesian inference with a circulant-imposed
structure on the posterior. Concerning implementation details of the proposed and

100

compared models, and benchmark setup in general, we have moved additional in-
formation to the Appendix C. In all cases, we treat inference on a per-layer basis (so
in practice the posterior covariance is block-circulant).

5.5.1 Evaluating Approximate Circulant Posteriors

We compared our method against several covariance approximation schemes from
the literature. This included the popular mean field approximation (mean field Vari-
ational Inference, MFVI) [15], which assumes a diagonal posterior covariance matrix.
We further included a compact parameterization of the diagonal covariance [13] (k-
Tied) and the low-rank extension of the diagonal covariance [12] (ELRG). Through-
out our experiments, we found that the proposed method provides good predictive
uncertainties while having excellent computational efficiency and order of magnitude
less parameters, on a variety of settings.

UCI Regression

We begin by testing our method on the UCI regression tasks [196]. We experiment
with 8 UCI regression datasets using standard training-evaluation-test splits from
[63] and their GAP-variants [195], which are specifically designed to test “in-between”
uncertainty (i.e. the ability of the model to predict high uncertainty values as test data
move away from the observed data). In this test, we use a fully connected architecture
with hidden layers that have [100, 50, 20] neurons respectively. The kernel size c for the
circulant approximate covariance matrix per layer was set to 20 (equal to only 1.17%
of the number of MFVI parameters). To measure performance we deployed Gaussian
test log-likelihood (LL), a metric which evaluates both uncertainty and accuracy. The
main results are depicted in Figure 5.3. As we can see, the circulant posterior achieves
better test log-likelihood compared to other covariance approximation methods. The
excellent performance of our method is further highlighted in the GAP-splits, as it
yields better LL values in 7 out of 8 datasets considered.

Image Classification Under Distribution Shift

Next, we evaluate our method on standard image classification tasks over the CI-
FAR10, CIFAR100 datasets where we employed a ResNet-20 [20] [197]. A robust
Bayesian inference technique is particularly important in deep learning applications,

101

−0.90

−0.88

−0.86

Boston

−1.0

−0.5

0.0

Concrete

−1

0

1

Energy

−1.0

−0.5

0.0

0.5

Power

Ktied Circulant Diagonal ELRG

−2.0

−1.5

−1.0

−0.5

Wine

−0.85

−0.84

−0.83

Yacht

−0.6

−0.4

−0.2

0.0

Kin8nm

−0.90

−0.88

−0.86

−0.84

Boston Gap

−0.6
−0.4
−0.2
0.0

Concrete gap

−0.87
−0.86
−0.85
−0.84
−0.83

Energy Gap

−1.0

−0.5

0.0

Power Gap

−1.4

−1.2

−1.0

−0.8

Wine Gap

−0.86
−0.85
−0.84
−0.83
−0.82

Yacht Gap

−0.8
−0.6
−0.4
−0.2

Kin8nm Gap

Figure 5.3: Numerical results for regression trials on UCI datasets [196]. Mean values
of test Log-Likelihood (↑) are shown with ± 1 standard deviation error bars, obtained
over standard [63] and GAP [195] splits.

as these models often exhibit suboptimal calibration [32]. We also provide experi-
ments in a context of high degree of distribution shift, as under these conditions the
evaluation of predictive uncertainty is the most useful in practice [193]. The kernel
size c for the circulant approximate covariance matrix per layer was set to 20 (equal
to only 0.003% of the number of MFVI parameters) the additional overhead that each
method introduces in order to compute the covariance matrix (in the Resnet-20 case)
is depicted in table 5.2.

According to Table 5.1 our proposed approximation outperforms the other meth-
ods in terms of log-likelihood and expected calibration in both standard and corrupted
data, while still having high competitive performance in terms of error and Brier
score. Furthermore it produces predictive uncertainty estimates that enable success-
ful semantic shift detection, as the AUROC values demonstrate. Overall, these results
suggest that the proposed approach produces better calibrated and more accurate
models than other popular uncertainty quantification approaches.

Transfer Learning Experiments

Seeking a more rigorous evaluation of our method we moved away from the standard
benchmark datasets and small models towards a more “real-world” setting scenario.
We followed the experimental protocol of [227, 80] to evaluate our claims on a transfer

102

Table 5.1: Numerical results for classification trials on Corrupted CIFAR100/CIFAR10
datasets. Log-Likelihood , Expected Calibration Error and Error. The area under
the ROC (AUROC) of a for binary classifier using the predictive entropy values to
distinguish CIFAR (in-distribution) from SVHN (out-of-distribution) examples.

Dataset Method
Standard Corrupted OOD

AUROC ↑Error ↓ LL ↑ ECE ↓ Error ↓ LL ↑ ECE ↓

CIFAR100

MAP 0.32 ±0.09 −3.47 ±1.07 0.26±0.01 0.53 ±0.00 −6.89 ±0.07 0.42±0.00 0.74 ±0.02

MFVI 0.32 ±0.00 −1.63 ±0.47 0.14±0.00 0.57 ±0.00 −3.73 ±0.08 0.27±0.00 0.71 ±0.02

K-Tied 0.35 ±0.02 −1.49 ±0.25 0.07±0.06 0.57 ±0.02 −3.30 ±0.75 0.20±0.08 0.73 ±0.02

ELRG 0.29 ±0.00 −1.41 ±0.16 0.11±0.01 0.52 ±0.00 −3.38 ±0.04 0.24±0.01 0.72 ±0.03

Circulant 0.31 ±0.00 −1.22 ±0.01 0.06±0.00 0.55 ±0.00 −2.95 ±0.07 0.18±0.00 0.76 ±0.02

CIFAR10

MAP 0.06 ±0.00 −0.54 ±0.01 0.04±0.00 0.19 ±0.02 −2.08 ±0.39 0.16±0.02 0.89 ±0.02

MFVI 0.06 ±0.00 −0.25 ±0.00 0.02±0.00 0.22 ±0.02 −1.11 ±0.29 0.12±0.01 0.87 ±0.01

K-Tied 0.07 ±0.00 −0.31 ±0.01 0.03±0.00 0.22 ±0.03 −1.24 ±0.29 0.13±0.01 0.88 ±0.01

ELRG 0.06 ±0.00 −0.26 ±0.05 0.02±0.00 0.19 ±0.02 −1.00 ±0.31 0.10±0.03 0.89 ±0.01

Circulant 0.08 ±0.01 −0.27 ±0.01 0.02±0.00 0.23 ±0.01 −0.89 ±0.04 0.11±0.01 0.89 ±0.00

Table 5.2: Total number of variational parameters for the covariance matrix compu-
tation, alongside the computational time in seconds for one forward and backward
pass for each method on ResNet-20.

Method Parameters Forward Backward

MFVI 11211328 0.016±0.00 0.123±0.00

K-Tied (k=3) 109245 0.017±0.00 0.059±0.00

K-Tied (k=1) 36415 0.016±0.00 0.035±0.00

ELRG (k=2) 44841728 0.016±0.00 0.035±0.00

ELRG (k=1) 22420864 0.016±0.00 0.034±0.00

Circulant (c=20) 420 0.016±0.00 0.031±0.00

learning problem. We considered three additional real-world large scale datasets:
the APTOS Blindness Detection[228], Melanoma Classification [229], and Cassava
Leaf Disease Classification [230]. We used an ImageNet-pretrained ResNet-50 and
fine-tuned it on each dataset for 30 epochs. In Table 5.3, we find that the circulant
posterior often outperforms the baselines while achieving significant improvement in
uncertainty quantification. This is a strong indication that our methods can generalize
beyond small scale datasets and models.

103

Table 5.3: Numerical results for transfer learning trials on ’real-world’ datasets. Log-
Likelihood, Expected Calibration Error, Brier Score, Error and Selective prediction
accuracy are used for comparison

Dataset Method Error ↓ LL ↑ ECE ↓ Sel. ↑

APTOS
MFVI 0.26 −0.79 0.07 89.7

ELRG 0.27 −0.82 0.06 88.1

Circ. 0.25 −0.78 0.04 89.8

CASSAVA
MFVI 0.20 −0.56 0.01 93.70

ELRG 0.20 −0.60 0.05 93.74
Circ 0.20 −0.58 0.01 93.08

MELANOMA
MFVI 0.01 −0.084 0.01 99.17

ELRG 0.01 −0.079 0.01 99.25

Circ 0.01 −0.077 0.01 99.27

Beyond Isotropic Priors

Up to this point, in our experiments we tested the benefits of a circulant approximate
posterior distribution but in a VI setting where the prior was set to be an isotropic
Gaussian. The choice of prior distribution could potentially affect the posterior per-
formance and the overall stochastic optimization general. We tried to investigate how
our proposed posterior behaves when the prior distribution changes significantly. We
thus deployed two additional priors. First we used the multivariate Gaussian with
Matérn covariance from [11] where the prior for all the convolutional layers was set
to be block diagonal where each block a toeplitz matrix specially crafted by the au-
thors to model correlations within convolutional filters. Also we adopted the induced
functional prior from [231] where authors assume a Gaussian prior over the model
parameters with parameter values that minimize the Wasserstein distance between
BNN induced functions and the ones acquired from a target Gaussian process model.
Numerical results are showed in Table 5.4 indicate that the proposed can produce
valuable uncertainty estimates especially under semantic scenario.

5.5.2 Circulant Structure as Improvement to Existing VI Methods

Furthermore, we carried out experiments to highlight some additional usages of the
circulant normal. We argue that the proposed CN distribution can be used as a ”plug-
and-play” replacement of the diagonal normal in current state-fo-the-art methods to
further boost their performance Specifically, we start by highlighting that the circu-

104

Table 5.4: Numerical results for Renset-20 on CIFAR100 for different prior and pos-
terior combinations. Log-Likelihood, Expected Calibration Error and the area under
the ROC (AUROC) are used for comparison. GPI indicates the GP-induced Gaussian
priors from [231] and MVG Matrix variate Gaussian Matérn covariance from [11].

Prior Posterior
Standard Corrupted OOD

AUROC ↑LL ↑ ECE ↓ LL ↑ ECE ↓

MVG
MFVI −3.43 0.26 −6.80 0.429 0.742

ELRG −3.36 0.26 −6.18 0.411 0.736

Circ. −3.72 0.27 −6.61 0.423 0.743

GPI
MFVI −3.21 0.24 −6.36 0.40 0.72

ELRG −3.31 0.26 −5.92 0.41 0.72

Circ −3.62 0.26 −6.68 0.41 0.77

Table 5.5: Numerical experiments for ResNet-20 with rank1 parameterization [123]
trained on CIFAR100. Diag mix k=3 indicates vanilla approximate posterior (mixture
of 3 Normal distributions), Circ. mix k=3 mixture of 3 circulant Normal and circ mix
k=6 mixture of 6 ciculant Normal distributions.

Posterior
Standard Corrupted

LL ↑ ECE ↓ LL ↑ ECE ↓

Diag mix k=3 −3.23±0.10 0.24±0.00 −6.77±0.25 0.41±0.00

Circ. mix k=3 −3.26±0.08 0.24±0.00 −6.53±0.01 0.40±0.00

Circ. mix k=6 −3.10±0.07 0.24±0.00 −5.89±0.05 0.38±0.00

lant normal can be a part of more complex approximate posterior for modeling the
neural network weights. We use as a baseline the popular rank-1 parameterization
of [123], where we replaced the original mean field Gaussian mixture components
with circulant ones of kernel size c = 20. This allows us to enjoy the benefits of a
mixture of structured distributions while having reduced the parameters compared
to the vanilla mixture. The dramatic decrease in additional parameters for the cir-
culant mixture allows us in practice to double the number of components in the
approximate posterior. The numerical results can be found in Table 5.5, where the
mixture approximate posterior distribution comprised circulant components yields
better calibrated prediction for both in and out distribution data, while the extra
mixture components (Circ. mix k=6) (which came as a result of using the circulant
approximation) significantly boost the overall performance.

105

Table 5.6: Numerical experiments for ResNet-20 with ELRG [12] approximate poste-
rior trained on CIFAR100. Diagonal indicates vanilla isotropic prior, Rand Circ. circu-
lant prior with random valued kernel Empir Circ. Empirical Circulant.

Prior
Standard Corrupted

LL ↑ ECE ↓ LL ↑ ECE ↓

Diagonal −1.27±0.00 0.10±0.00 −3.07±0.04 0.22±0.01

Rand Circ. −1.46±0.06 0.06±0.01 −2.76±0.13 0.17±0.01

Empir Circ. −1.35±0.02 0.05±0.00 −2.54±0.09 0.14±0.00

5.5.3 Evaluating Effectiveness of Circulant Priors

Also we wanted to test whether our method can function as a prior for structured
approximate posterior distributions. We adopted the ELRG [12] posterior approxima-
tion method but we replaced the spherical Gaussian prior with a circulant one with
kernel size was set to c = 20. We experimented tested both random and empirical
circulant priors, with two different versions of circulant priors, one where the prior
kernel values where initialized based on the Normal distribution and another where
the values where computed using empirical Bayes. In Table 5.6, we can observe their
performance.

The circulant empirical prior and even the one with the random kernel values is
able to produce higher quality predictive samples via inducing further correlations
to the approximate distribution. The structured prior achieves excellent performance
especially in corrupted test under covariance shift. As we can see from the results
in Figure 5.4 (see Appendix for further visualizations) the circulant prior enforces
more non-diagonal elements of the covariance matrix to be non-zero, versus the plain
diagonal prior.

5.5.4 How Circulant Kernel Size Affects Predictive Performance

We carry out experiments in order to study the behavior of our method under differ-
ent kernel size c choices, which affect the number of non-zero off-diagonal terms in
the covariance matrix. In Figure 5.5, we quantify the performance benefits of linearly
increasing the kernel size. We can see clearly that increasing the kernel size of the
approximate posterior is strongly coupled with numerical gain. More structured cir-
culant covariance matrices yield increasingly calibrated results as the performance on

106

Diagonal

0.00

0.02

0.04

0.06

0.08

Circulant Empirical

−10

−5

0

5

10

Circulant Empirical

−10

−5

0

5

10

Figure 5.4: Illustration of learned covariance matrices for the 1st convolutional layer
of Resnet-20 trained on CIFAR100 for diagonal prior and for empirical circulant prior
distribution.

out-of-distribution data suggests. Additionally, in Figure 5.7 we plot the correspond-
ing covariance matrices for the first convolutional layer of ResNet-20 for increasing
kernel size. As the the c increases, offset diagonal rows are introduced to the ap-
proximation. Furthermore we can observe that the as the kernel size increases the
magnitude of the variance values increases as well. In Figure 5.6, we can see how
the kernel size impacts the computational time of our method. While the time for
forward pass and the computation of the KL divergence seems to be independent of
the kernel size, the time for computing gradients (backward pass) raises exponentially
as c is increased. In our experiments we found that there is a limit at c = 2000 which
after that the training overhead becomes too big to justify the benefits of a larger
circulant kernel.

1 20 100200500 1K

−1.7
−1.6
−1.5
−1.4
−1.3
−1.2

LL

1 20 100200500 1K

0.04

0.06

0.08

0.10

0.12

0.14

ECE

1 20 100200500 1K

−4.0

−3.5

−3.0

−2.5

LL

1 20 100200500 1K

0.10
0.12

0.15
0.17

0.20
0.22

0.25
0.27

ECE

Out of Distribution In Distribution

Figure 5.5: Numerical results for classification trials on CIFAR100. X-axis correspond
to increasing kernel size for the circulant approximate posterior.

107

Forward KL Backward
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ti
m

e

Circ = 100
Circ = 200
Circ = 500
Circ = 1000

Figure 5.6: Computational complexity for the circulant method against other covari-
ance parameterizations (top), time for increasing kernel size (bottom). Forward indi-
cates the time for a single forward pass, KL is the time for computing the Kullback–
Leibler term in the ELBO loss and Backward indicates the time for computing the
gradients w.r.t. posterior parameters.

Kernel size = 20

0.00

0.02

0.04

0.06
0.08

Kernel size = 100

0.0

0.1

0.2
0.3
0.4
0.5

Kernel size = 500

0.0

0.4
0.6
0.8

1.6

Figure 5.7: Illustration of learned covariance matrices for the first convolutional layer
of Resnet-20 trained on CIFAR100 for increasing circulant kernel size.

5.6 Discussion

In this work, we explore and evaluate the idea that introduction of correlations within
the prior and posterior distribution had a more significant impact on the model’s
uncertainty estimates than simply increasing its flexibility. We validate our claims
by introducing the Circulant Normal distribution for approximate inference, which
leverages a circulant structure for the covariance matrix. This unique structure offers
attractive mathematical properties while enabling the incorporation of interpretable
correlation patterns inspired by existing literature into the network weights. Remark-
ably, this approach allows us to drastically reduce the posterior’s flexibility (number
of parameters) while effectively maintaining a substantial level of correlations. Our
experiments demonstrated, across diverse scenarios, that the Circulant Normal distri-
bution effectively serves both as a posterior and as a prior for NN weights.

108

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of Contributions

6.2 Future Research Directions

This chapter concludes the dissertation by summarizing our main contributions to
efficient Bayesian deep learning across the applications considered throughout this
thesis. We then in Section 6.2 discuss future research directions and potential appli-
cations for each individual contribution.

6.1 Summary of Contributions

In Chapter 3, we proposed a novel probabilistic neural network module, the Vari-
ational Feature Pyramid Network (VarFPN), specifically designed for robust and
probabilistic object detection. VarFPN builds upon the widely used Feature Pyramid
Network (FPN), a feature fusion module frequent in object detection architectures.
Our method offers several benefits due to its stochastic architecture. We introduce
probabilistic architecture parameters and VarFPN learns these parameters via vari-
ational inference. The fusion architecture can adapt to the training data, leading to
a customized feature fusion process for each dataset. Additionally, the probabilistic
design allows for uncertainty estimates to be incorporated into the final object detec-
tion prediction. These uncertainty estimates are of good quality despite the extremely

109

low number of probabilistic parameters, due to the significant impact these parame-
ters have on the final detection results. We tested VarFPN with various detectors on
both detection and segmentation tasks. It consistently outperformed related methods,
highlighting the twofold benefits of our approach.

In Chapter 4, we focused on the challenges of applying Bayesian inference to
large neural networks. The high dimensionality of probabilistic parameters is a sig-
nificant hurdle in Bayesian modeling, as these methods notoriously scale poorly.
Low-dimensional Bayesian deep learning offers a solution. Like the previous chapter,
where a small number of neural network parameters is treated probabilistically, al-
lowing for more flexible and multimodal posteriors within a lower-dimensional space.
We introduced INR Inference, which involves learning an efficient hypernetwork that
utilizes elements from implicit neural representation methods. This hypernetwork
generates probabilistic variables that introduce stochasticity into the weight param-
eters of the main neural network. Since Bayesian inference is performed over the
low-dimensional space of hypernetwork parameters, enables richer approximations
for the desired posterior distribution. This advantage of INR Inference is qualitatively
evaluated in various experiments. Our results suggest that, for practitioners, it may be
more effective to introduce flexible/multimodal stochasticity into the neural network
weights rather than attempting to poorly approximate them directly.

We continued in Chapter 5, where we studied the problem of approximate pos-
terior modeling in BNNs within the variational inference framework. Variational in-
ference requires specifying an approximate posterior distribution. Ideal posteriors
are easy to optimize, with analytical or tractable properties, while also being flexible
enough to theoretically capture the true posterior (often assumed to be non-linear).
In our work, we challenged the emphasis on pure flexibility in favor of structured
posteriors that leverage correlation modeling with a restricted number of degrees of
freedom (DoF). To validate our claims, we introduced the Circulant Normal distri-
bution. This is a structured parameterization of the Gaussian that offers efficiency
and structure at the same time by restricting the DoF. Empirical evidence across
a wide range of benchmarks demonstrates that our approach outperforms alterna-
tive methods by combining our flexible parameterization with low space and time
complexity.

110

6.2 Future Research Directions

Our proposed VarFPN method holds promise for further exploration. One promising
direction involves investigating other forms of initial complex architectures, incorpo-
rating more hidden layers and modules. We also plan to experiment with different
sparse prior distributions, enabling the exploration of more complex variational dis-
tributions over the model weights. We envision employing a Student’s-t distribution
using a Gaussian-Gamma factorization, while other options like the Weibull or Gamma
distributions could be considered to constrain weights as strictly positive, following
the works [232] or [233]. Additionally, a valuable future direction would be to ex-
amine whether posterior collapse [138] occurs, evaluate if the model converges to
a single architecture during inference. We can then explore ways to encourage the
model to explore multiple stochastic architectures at test time, leading to more diverse
predictions.

There are several promising avenues for further research on the proposed INR
inference method. One direction is to explore integrating different INR architectures,
such as multiplicative filter networks [234], with our current method. Additionally,
investigating the use of alternative approximation techniques, such as Hamiltonian
Monte Carlo [36], could be beneficial. To enhance the flexibility of the INR, we could
consider adopting learnable positional encodings to augment the input indices, as
demonstrated in recent work [235, 236]. Furthermore, developing a proper initial-
ization strategy for the INR hypernetwork that avoids disrupting the main network’s
existing MAP solution is a promising approach with the potential to significantly
reduce training time.

Our future work aims to further explore the potential of low-rank displacement
covariance parameterizations for the Circulant Normal distribution. Additionally, we
plan a comprehensive analysis of the phenomenon where approximate posteriors
tend towards solutions with low flexibility. This exploration will extend beyond the
Circulant Normal, examining broader possibilities for structured modeling. Investi-
gating whether the benefits of using restricted structured modeling generalize to other
variational inference frameworks. This includes natural gradient methods [237] and
in Laplace methods [9]

111

BIBLIOGRAPHY

[1] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
Pyramid Networks for Object Detection,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 521, 2017,
pp. 2117–2125.

[2] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit
Neural Representations with Periodic Activation Functions,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, pp. 7462–7473, 2020.

[3] D. Hall, F. Dayoub, J. Skinner, H. Zhang, D. Miller, P. Corke, G. Carneiro,
A. Angelova, and N. Sünderhauf, “Probabilistic Object Detection: Definition and
Evaluation,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 2020, pp. 1031–1040.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[5] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and Efficient Object De-
tection,” in Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 10 781–10 790.

[6] G. Franchi, O. Laurent, M. Leguéry, A. Bursuc, A. Pilzer, and A. Yao, “Make
Me a Bnn: A Simple Strategy for Estimating Bayesian Uncertainty from Pre-
trained Models,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2024, pp. 12 194–12 204.

[7] Y. He, C. Zhu, J. Wang, M. Savvides, and X. Zhang, “Bounding Box Regression
with Uncertainty for Accurate Object Detection,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 2888–2897.

112

[8] M. Betancourt, “A Conceptual Introduction to Hamiltonian Monte Carlo,” arXiv
preprint arXiv:1701.02434, 2017.

[9] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hen-
nig, “Laplace Redux-Effortless Bayesian Deep Learning,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 34, pp. 20 089–20 103, 2021.

[10] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, and A. G. Wilson, “A
Simple Baseline for Bayesian Uncertainty in Deep Learning,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 32, pp. 13 153–13 164, 2019.

[11] V. Fortuin, A. Garriga-Alonso, S. W. Ober, F. Wenzel, G. Ratsch, R. E. Turner,
M. van der Wilk, and L. Aitchison, “Bayesian Neural Network Priors Revisited,”
in Proceedings of the International Conference on Learning Representations (ICLR),
2022.

[12] M. Tomczak, S. Swaroop, and R. Turner, “Efficient Low Rank Gaussian Varia-
tional Inference for Neural Networks,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 33, pp. 4610–4622, 2020.

[13] J. Swiatkowski, K. Roth, B. Veeling, L. Tran, J. Dillon, J. Snoek, S. Mandt,
T. Salimans, R. Jenatton, and S. Nowozin, “The k-tied Normal Distribution: A
Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neu-
ral Networks,” in Proceedings of the International Conference on Machine Learning
(ICML), vol. 119, 2020, pp. 9289–9299.

[14] A. K. Jain, Fundamentals of Digital Image Processing. Prentice-Hall, Inc., 1989.

[15] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning.
Springer, 2006, vol. 4, no. 4.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based Learning Ap-
plied to Document Recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[17] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” in Proceedings of the International Conference on Machine Learning
(ICML), 2010, pp. 807–814.

113

[18] H. Gholamalinezhad and H. Khosravi, “Pooling Methods in Deep Neural Net-
works, A Review,” arXiv preprint arXiv:2009.07485, 2020.

[19] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” in Proceedings of the Interna-
tional Conference on Machine Learning (ICML). PMLR, 2015, pp. 448–456.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in Proceedings of the IEEE International Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted Residuals and Linear Bottlenecks,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp.
4510–4520.

[22] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Trans-
formers in Vision: A Survey,” ACM Computing Surveys (CSUR), vol. 54, pp.
1–41, 2022.

[23] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[24] A. Graves, “Generating Sequences with Recurrent Neural Networks,” arXiv
preprint arXiv:1308.0850, 2013.

[25] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
Deep Learning (still) Requires Rethinking Generalization,” Communications of
the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[26] D. J. MacKay, “The Evidence Framework Applied to Classification Networks,”
Neural computation, vol. 4, no. 5, pp. 720–736, 1992.

[27] A. G. Wilson and P. Izmailov, “Bayesian Deep Learning and a Probabilistic
Perspective of Generalization,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 33, pp. 4697–4708, 2020.

[28] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of
the Royal Statistical Society Series B: Statistical Methodology, vol. 58, no. 1, pp.
267–288, 1996.

114

[29] M. Tipping, “The Relevance Vector Machine,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 12, 1999.

[30] D. J. C. Mackay, Bayesian Methods for Adaptive Models. California Institute of
Technology, 1992.

[31] B. Kronheim, M. P. Kuchera, H. B. Prosper, and A. Karbo, “Bayesian Neural
Networks for Fast SUSY Predictions,” Physics Letters B, vol. 813, p. 136041,
2021.

[32] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On Calibration of Mod-
ern Neural Networks,” in Proceedings of the International Conference on Machine
Learning (ICML). PMLR, 2017, pp. 1321–1330.

[33] A. Kendall and Y. Gal, “What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?” Advances in Neural Information Processing Sys-
tems (NeurIPS), vol. 30, 2017.

[34] A. Kristiadi, M. Hein, and P. Hennig, “Being Bayesian, Even Just a Bit, Fixes
Overconfidence in Relu Networks,” in Proceedings of the International Conference
on Machine Learning (ICML). PMLR, 2020, pp. 5436–5446.

[35] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte
Carlo,” Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987.

[36] R. M. Neal et al., “MCMC Using Hamiltonian Dynamics,” arXiv preprint
arXiv:1206.1901, 2012.

[37] T. Chen, E. Fox, and C. Guestrin, “Stochastic Gradient Hamiltonian Monte
Carlo,” in Proceedings of the International Conference on Machine Learning (ICML).
PMLR, 2014, pp. 1683–1691.

[38] P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson, “What are Bayesian
Neural Network Posteriors Really Like?” in Proceedings of the International Con-
ference on Machine Learning (ICML). PMLR, 2021, pp. 4629–4640.

[39] A. Kristiadi, A. Immer, R. Eschenhagen, and V. Fortuin, “Promises and Pit-
falls of the Linearized Laplace in Bayesian Optimization,” Fifth Symposium on
Advances in Approximate Bayesian Inference, 2023.

115

[40] J. Martens, “New Insights and Perspectives on the Natural Gradient Method,”
Journal of Machine Learning Research, vol. 21, no. 146, pp. 1–76, 2020.

[41] S. Farquhar, L. Smith, and Y. Gal, “Liberty or Depth: Deep Bayesian Neural
Nets Do Not Need Complex Weight Posterior Approximations,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 33, pp. 4346–4357, 2020.

[42] A. Botev, H. Ritter, and D. Barber, “Practical Gauss-Newton Optimisation for
Deep Learning,” in Proceedings of the International Conference on Machine Learning
(ICML). PMLR, 2017, pp. 557–565.

[43] H. Ritter, A. Botev, and D. Barber, “A Scalable Laplace Approximation for
Neural Networks,” in Proceedings of the International Conference on Learning Rep-
resentations (ICLR), vol. 6, 2018.

[44] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions. Chapman and
Hall/CRC, 2018.

[45] J. Lee, M. Humt, J. Feng, and R. Triebel, “Estimating Model Uncertainty of
Neural Networks in Sparse Information Form,” in Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 2020, pp. 5702–5713.

[46] W. J. Maddox, G. Benton, and A. G. Wilson, “Rethinking Parameter Count-
ing in Deep Models: Effective Dimensionality Revisited,” arXiv preprint
arXiv:2003.02139, 2020.

[47] F. Bergamin, P. Moreno-Muñoz, S. Hauberg, and G. Arvanitidis, “Riemannian
Laplace Approximations for Bayesian Neural Networks,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 36, 2024.

[48] J. Antoran, S. Padhy, R. Barbano, E. Nalisnick, D. Janz, and J. M. Hernández-
Lobato, “Sampling-based Inference for Large Linear Models, with Application
to Linearised Laplace,” in Fifth Symposium on Advances in Approximate Bayesian
Inference - Fast Track, 2023.

[49] M. Stephan, M. D. Hoffman, D. M. Blei et al., “Stochastic gradient descent as
approximate bayesian inference,” Journal of Machine Learning Research (JMLR),
vol. 18, no. 134, pp. 1–35, 2017.

116

[50] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, “Averag-
ing Weights Leads to Wider Optima and Better Generalization,” arXiv preprint
arXiv:1803.05407, 2018.

[51] A. Malinin and M. Gales, “Predictive Uncertainty Estimation via Prior Net-
works,” Advances in Neural Information Processing Systems (NeurIPS), vol. 31,
2018.

[52] B. Charpentier, D. Zügner, and S. Günnemann, “Posterior Network: Uncertainty
Estimation Without OOD Samples via Density-based Pseudo-counts,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 1356–1367, 2020.

[53] L. K. Hansen and P. Salamon, “Neural Network Ensembles,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993–1001, 1990.

[54] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and Scalable Pre-
dictive Uncertainty Estimation Using Deep Ensembles,” Advances in Neural In-
formation Processing Systems (NeurIPS), vol. 30, 2017.

[55] F. Seligmann, P. Becker, M. Volpp, and G. Neumann, “Beyond Deep Ensembles:
A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift,”
Advances in Neural Information Processing Systems (NeurIPS), vol. 36, 2023.

[56] L. Hoffmann and C. Elster, “Deep Ensembles from a Bayesian Perspective,”
arXiv preprint arXiv:2105.13283, 2021.

[57] F. D’Angelo and V. Fortuin, “Repulsive Deep Ensembles are Bayesian,” Ad-
vances in Neural Information Processing Systems (NeurIPS), vol. 34, pp. 3451–
3465, 2021.

[58] C. Shui, A. S. Mozafari, J. Marek, I. Hedhli, and C. Gagné, “Diversity Regular-
ization in Deep Ensembles,” arXiv preprint arXiv:1802.07881, 2018.

[59] T. Abe, E. K. Buchanan, G. Pleiss, and J. P. Cunningham, “Pathologies of Pre-
dictive Diversity in Deep Ensembles,” Transactions on Machine Learning Research,
2024.

[60] D. J. Spiegelhalter and S. L. Lauritzen, “Sequential Updating of Conditional
Probabilities on Directed Graphical Structures,” Networks, vol. 20, no. 5, pp.
579–605, 1990.

117

[61] D. Barber and C. M. Bishop, “Ensemble Learning in Bayesian Neural Net-
works,” Nato ASI Series F Computer and Systems Sciences, vol. 168, pp. 215–238,
1998.

[62] A. Immer, M. Korzepa, and M. Bauer, “Improving Predictions of Bayesian
Neural Nets via Local Linearization,” in Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS). PMLR, 2021, pp. 703–711.

[63] J. M. Hernández-Lobato and R. Adams, “Probabilistic Backpropagation for
Scalable Learning of Bayesian Neural Networks,” in Proceedings of the Interna-
tional Conference on Machine Learning (ICML). PMLR, 2015, pp. 1861–1869.

[64] T. P. Minka, “Expectation propagation for approximate bayesian inference,”
arXiv preprint arXiv:1301.2294, 2013.

[65] B. J. Frey and G. E. Hinton, “Variational Learning in Nonlinear Gaussian Belief
Networks,” Neural Computation, vol. 11, no. 1, pp. 193–213, 1999.

[66] O. Wright, Y. Nakahira, and J. M. Moura, “An Analytic Solution to Covariance
Propagation in Neural Networks,” in Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS). PMLR, 2024, pp. 4087–4095.

[67] A. Shekhovtsov and B. Flach, “Feed-forward Propagation in Probabilistic Neu-
ral Networks with Categorical and Max Layers,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

[68] M. Haußmann, F. A. Hamprecht, and M. Kandemir, “Sampling-free Varia-
tional Inference of Bayesian Neural Networks by Variance Backpropagation,”
in Proceedings of the International Conference on Uncertainty in Artificial Intelligence
(UAI). PMLR, 2020, pp. 563–573.

[69] A. Korattikara Balan, V. Rathod, K. P. Murphy, and M. Welling, “Bayesian
Dark Knowledge,” Advances in Neural Information Processing Systems (NeurIPS),
vol. 28, 2015.

[70] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in a Neural
Network,” arXiv preprint arXiv:1503.02531, 2015.

[71] A. Malinin, B. Mlodozeniec, and M. Gales, “Ensemble Distribution Distillation,”
arXiv preprint arXiv:1905.00076, 2019.

118

[72] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and Scalable Pre-
dictive Uncertainty Estimation using Deep Ensembles,” in Advances in Neural
Information Processing Systems (NeurIPS), I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, 2017.

[73] R. Muthukumar and J. Sulam, “Sparsity-aware Generalization Theory for
Deep Neural Networks,” in International Conference on Learning Theory (COLT).
PMLR, 2023, pp. 5311–5342.

[74] S. Liu, “Learning Sparse Neural Networks for Better Generalization,” in Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2020, pp. 5190–5191.

[75] E. Nalisnick and P. Smyth, “Learning Priors for Invariance,” in Proceedings of the
International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR,
2018, pp. 366–375.

[76] T. Pearce, A. Y. Foong, and A. Brintrup, “Structured Weight Priors for Convo-
lutional Neural Networks,” arXiv preprint arXiv:2007.14235, 2020.

[77] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani,
“Gaussian Process Behaviour in Wide Deep Neural Networks,” Proceedings of
the International Conference on Learning Representations (ICLR), vol. 6, 2018.

[78] T. Pearce, R. Tsuchida, M. Zaki, A. Brintrup, and A. Neely, “Expressive Priors
in Bayesian Neural Networks: Kernel Combinations and Periodic Functions,”
in Proceedings of the International Conference on Uncertainty in Artificial Intelligence
(UAI). PMLR, 2020, pp. 134–144.

[79] S. Sun, G. Zhang, J. Shi, and R. Grosse, “Functional variational bayesian neural
networks,” Proceedings of the International Conference on Learning Representations
(ICLR), vol. 7, 2019.

[80] T. G. Rudner, S. Kapoor, S. Qiu, and A. G. Wilson, “Function-Space Regu-
larization in Neural Networks: A Probabilistic Perspective,” in Proceedings of
the International Conference on Machine Learning (ICML). PMLR, 2023, pp.
29 275–29290.

119

[81] B.-H. Tran, S. Rossi, D. Milios, and M. Filippone, “All You Need is a Good
Functional Prior for Bayesian Deep Learning,” Journal of Machine Learning Re-
search (JMLR), vol. 23, no. 74, pp. 1–56, 2022.

[82] E. Nalisnick, J. Gordon, and J. M. Hernández-Lobato, “Predictive Complexity
Priors,” in Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS). PMLR, 2021, pp. 694–702.

[83] N. Pawlowski, A. Brock, M. C. Lee, M. Rajchl, and B. Glocker, “Implicit Weight
Uncertainty in Neural Networks,” arXiv preprint arXiv:1711.01297, 2017.

[84] A. Graves, “Practical Variational Inference for Neural Networks,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 24, 2011.

[85] M. D. Hoffman and M. J. Johnson, “Elbo Surgery: Yet Another Way to Carve
up the Variational Evidence Lower Bound,” 2016.

[86] R. J. Williams, “Simple Statistical Gradient-following Algorithms for Connec-
tionist Reinforcement Learning,” Machine Learning, vol. 8, pp. 229–256, 1992.

[87] R. Ranganath, S. Gerrish, and D. Blei, “Black Box Variational Inference,” in
Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS). PMLR, 2014, pp. 814–822.

[88] G. Casella and C. P. Robert, “Rao-Blackwellisation of Sampling Schemes,”
Biometrika, vol. 83, no. 1, pp. 81–94, 1996.

[89] S. M. Ross, Introduction to Probability Models. Academic press, 2014.

[90] D. P. Kingma and M. Welling, “Auto-encoding Variational Bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[91] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic Backpropagation and
Approximate Inference in Deep Generative Models,” in Proceedings of the Inter-
national Conference on Machine Learning (ICML). PMLR, 2014, pp. 1278–1286.

[92] M. Jankowiak and F. Obermeyer, “Pathwise Derivatives Beyond the Reparame-
terization Trick,” in Proceedings of the International Conference on Machine Learning
(ICML). PMLR, 2018, pp. 2235–2244.

120

[93] D. P. Kingma, T. Salimans, and M. Welling, “Variational Dropout and the Local
Reparameterization Trick,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 28, 2015.

[94] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” in Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 7132–7141.

[95] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,”
in Proceedings of the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 1251–1258.

[96] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse, “Flipout: Efficient Pseudo-
Independent Weight Perturbations on Mini-Batches,” in Proceedings of the In-
ternational Conference on Learning Representations (ICLR), 2018.

[97] K. Osawa, S. Swaroop, M. E. E. Khan, A. Jain, R. Eschenhagen, R. E. Turner,
and R. Yokota, “Practical Deep Learning with Bayesian Principles,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 32, 2019.

[98] A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov, “Pitfalls of In-Domain
Uncertainty Estimation and Ensembling in Deep Learning,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2020.

[99] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, “How
to Train Deep Variational Autoencoders and Probabilistic Ladder Networks,”
arXiv preprint arXiv:1602.02282, vol. 3, no. 2, 2016.

[100] F. Wenzel, K. Roth, and B. S. Veeling, “How Good is the Bayes Posterior in
Deep Neural Networks Really?” pp. 10 248–10 259, 2020.

[101] M.-H. Laves, M. Tölle, A. Schlaefer, and S. Engelhardt, “Posterior Tempera-
ture Optimization in Variational Inference for Inverse Problems,” Workshop in
Advances in Approximate Bayesian Inference, 2021.

[102] L. Noci, K. Roth, G. Bachmann, S. Nowozin, and T. Hofmann, “Disentangling
the Roles of Curation, Data-Augmentation and the Prior in the Cold Posterior
Effect,” Advances in Neural Information Processing Systems (NeurIPS), vol. 34, pp.
12 738–12 748, 2021.

121

[103] R. Kurle, R. Herbrich, T. Januschowski, Y. B. Wang, and J. Gasthaus, “On the
Detrimental Effect of Invariances in the Likelihood for Variational Inference,”
Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 4531–
4542, 2022.

[104] B. Coker, W. P. Bruinsma, D. R. Burt, W. Pan, and F. Doshi-Velez, “Wide
Mean-Field Bayesian Neural Networks Ignore the Data,” in Proceedings of the
International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR,
2022, pp. 5276–5333.

[105] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint arXiv:1609.09106,
2016.

[106] D. Krueger, C.-W. Huang, R. Islam, R. Turner, A. Lacoste, and A. Courville,
“Bayesian Hypernetworks,” Workshop in Advances in Approximate Bayesian Infer-
ence, 2017.

[107] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Laksh-
minarayanan, “Normalizing Flows for Probabilistic Modeling and Inference,”
Journal of Machine Learning Research (JMLR), vol. 22, no. 57, pp. 1–64, 2021.

[108] D. Rezende and S. Mohamed, “Variational Inference with Normalizing Flows,”
in Proceedings of the International Conference on Machine Learning (ICML). PMLR,
2015, pp. 1530–1538.

[109] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-Linear Independent Compo-
nents Estimation,” arXiv preprint arXiv:1410.8516, 2014.

[110] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling,
“Improved Variational Inference with Inverse Autoregressive Flow,” Advances
in Neural Information Processing Systems (NeurIPS), vol. 29, 2016.

[111] I. Kobyzev, S. J. Prince, and M. A. Brubaker, “Normalizing flows: An intro-
duction and review of current methods,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 43, no. 11, pp. 3964–3979, 2020.

[112] C. Louizos and M. Welling, “Multiplicative Normalizing Flows for Variational
Bayesian Neural Networks,” in Proceedings of the International Conference on
Machine Learning (ICML). PMLR, 2017, pp. 2218–2227.

122

[113] P. Izmailov, W. J. Maddox, P. Kirichenko, T. Garipov, D. Vetrov, and A. G.
Wilson, “Subspace Inference for Bayesian Deep Learning,” in Proceedings of the
International Conference on Uncertainty in Artificial Intelligence (UAI). PMLR,
2020, pp. 1169–1179.

[114] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale,” Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

[115] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-Training of
Deep Bidirectional Transformers for Language Understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[116] J. Watson, J. A. Lin, P. Klink, J. Pajarinen, and J. Peters, “Latent Derivative
Bayesian Last Layer Networks,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS). PMLR, 2021, pp. 1198–1206.

[117] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary,
M. Prabhat, and R. Adams, “Scalable Bayesian Optimization Using Deep Neural
Networks,” in Proceedings of the International Conference on Machine Learning
(ICML). PMLR, 2015, pp. 2171–2180.

[118] M. Lázaro-Gredilla and A. R. Figueiras-Vidal, “Marginalized Neural Network
Mixtures for Large-Scale Regression,” IEEE Transactions on Neural Networks,
vol. 21, no. 8, pp. 1345–1351, 2010.

[119] N. Weber, J. Starc, A. Mittal, R. Blanco, and L. Màrquez, “Optimizing Over a
Bayesian Last Layer,” in Workshop in Advances in Approximate Bayesian Inference,
2018.

[120] E. Daxberger, E. Nalisnick, J. U. Allingham, J. Antorán, and J. M. Hernández-
Lobato, “Bayesian Deep Learning via Subnetwork Inference,” in Proceedings of
the International Conference on Machine Learning (ICML). PMLR, 2021, pp.
2510–2521.

[121] M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth, “Do Bayesian Neu-
ral Networks Need to be Fully Stochastic?” in Proceedings of the International

123

Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2023, pp.
7694–7722.

[122] M. F. Pradier, W. Pan, J. Yao, S. Ghosh, and F. Doshi-Velez, “Projected BNNs:
Avoiding Weight-Space Pathologies by Learning Latent Representations of Neu-
ral Network Weights,” arXiv preprint arXiv:1811.07006, 2018.

[123] M. Dusenberry, G. Jerfel, Y. Wen, Y. Ma, J. Snoek, K. Heller, B. Lakshmi-
narayanan, and D. Tran, “Efficient and Scalable Bayesian Neural Nets with
Rank-1 Factors,” in Proceedings of the International Conference on Machine Learn-
ing (ICML). PMLR, 2020, pp. 2782–2792.

[124] Y. Wen, D. Tran, and J. Ba, “Batchensemble: An Alternative Approach to Effi-
cient Ensemble and Lifelong Learning,” Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

[125] Z. Deng and J. Zhu, “Bayesadapter: Being Bayesian, Inexpensively and Reliably,
via Bayesian Fine-Tuning,” in Asian Conference on Machine Learning (ACML).
PMLR, 2023, pp. 280–295.

[126] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational Con-
volutional Neural Network Pruning,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2780–
2789.

[127] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2016.

[128] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end Object Detection with Transformers,” in Proceedings of the IEEE
European Conference in Computer Vision (ECCV), 2020, pp. 213–229.

[129] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going Deeper with Convolutions,” in Proceedings
of the IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1–9.

124

[130] X. Wang, S. Zhang, Z. Yu, L. Feng, and W. Zhang, “Scale-Equalizing Pyra-
mid Convolution for Object Detection,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 13 359–
13368.

[131] T. Kong, F. Sun, C. Tan, H. Liu, and W. Huang, “Deep Feature Pyramid Recon-
figuration for Object Detection,” in Proceedings of the IEEE European Conference
in Computer Vision (ECCV), 2018, pp. 169–185.

[132] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and L. Zhang, “Dynamic
Head: Unifying Object Detection Heads with Attentions,” in Proceedings of the
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 7373–7382.

[133] Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, and J. Sun, “You Only Look One-
Level Feature,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 13 039–13048.

[134] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and
L. Shao, “Pyramid Vision Transformer: A Versatile Backbone for Dense Predic-
tion Without Convolutions,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2021, pp. 568–578.

[135] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggregation Network for Instance
Segmentation,” in Proceedings of the IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 8759–8768.

[136] Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai, and H. Ling, “M2det: A
Single-Shot Object Detector Based on Multi-Level Feature Pyramid Network,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01,
2019, pp. 9259–9266.

[137] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Nas-FPN: Learning Scalable Feature Pyra-
mid Architecture for Object Detection,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 7036–
7045.

125

[138] Z. Deng, Y. Dong, S. Zhang, and J. Zhu, “Understanding and Exploring the
Network with Stochastic Architectures,” Advances in Neural Information Process-
ing Systems (NeurIPS), vol. 33, pp. 14 903–14 914, 2020.

[139] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A Regularization Method
for Convolutional Networks,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 31, 2018.

[140] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of Neural
Networks Using Dropconnect,” in Proceedings of the International Conference on
Machine Learning (ICML). PMLR, 2013, pp. 1058–1066.

[141] J. Antorán, J. Allingham, and J. M. Hernández-Lobato, “Depth Uncertainty in
Neural Networks,” Advances in Neural Information Processing Systems (NeurIPS),
vol. 33, pp. 10 620–10634, 2020.

[142] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable Architecture Search,”
arXiv preprint arXiv:1806.09055, 2018.

[143] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal
of Machine Learning Research (JMLR), vol. 15, no. 1, pp. 1929–1958, 2014.

[144] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational Dropout Sparsifies
Deep Neural Networks,” in Proceedings of the International Conference on Machine
Learning (ICML), 2017, pp. 2498–2507.

[145] C. Louizos, K. Ullrich, and M. Welling, “Bayesian Compression for Deep Learn-
ing,” Advances in Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

[146] D. Miller, N. Sunderhauf, H. Zhang, D. Hall, and F. Dayoub, “Benchmark-
ing Sampling-based Probabilistic Object Detectors,” in Proceedings of the IEEE
International Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), vol. 3, 2019, p. 6.

[147] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian Approximation: Repre-
senting Model Uncertainty in Deep Learning,” in Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 2016, pp. 1050–1059.

126

[148] R. Zhao, K. Wang, Y. Xiao, F. Gao, and Z. Gao, “Leveraging Monte Carlo
Dropout for Uncertainty Quantification in Real-Time Object Detection of Au-
tonomous Vehicles,” IEEE Access, 2024.

[149] D. Miller, L. Nicholson, F. Dayoub, and N. Sünderhauf, “Dropout Sampling for
Robust Object Detection in Open-Set Conditions,” in International Conference on
Artificial Neural Networks (ICANN). IEEE, 2018, pp. 3243–3249.

[150] A. Harakeh, M. Smart, and S. L. Waslander, “Bayesod: A bayesian approach
for uncertainty estimation in deep object detectors,” in International Conference
on Artificial Neural Networks (ICANN). IEEE, 2020, pp. 87–93.

[151] Z. Lyu, N. Gutierrez, A. Rajguru, and W. J. Beksi, “Probabilistic Object Detection
via Deep Ensembles,” in Proceedings of the IEEE European Conference in Computer
Vision (ECCV). Springer, 2020, pp. 67–75.

[152] F. Kuppers, J. Kronenberger, A. Shantia, and A. Haselhoff, “Multivariate Confi-
dence Calibration for Object Detection,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 326–
327.

[153] B. Pathiraja, M. Gunawardhana, and M. H. Khan, “Multiclass Confidence and
Localization Calibration for Object Detection,” in Proceedings of the IEEE In-
ternational Conference on Computer Vision and Pattern Recognition (CVPR), 2023,
pp. 19 734–19 743.

[154] X. Du, X. Wang, G. Gozum, and Y. Li, “Unknown-Aware Object Detection:
Learning What you Don’t Know from Videos in the Wild,” in Proceedings of the
IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),
2022, pp. 13 678–13688.

[155] S. Wang, J. Gao, B. Li, and W. Hu, “Narrowing the Gap: Improved Detec-
tor Training with Noisy Location Annotations,” IEEE Transactions on Image
Processing, vol. 31, pp. 6369–6380, 2022.

[156] M. E. Tipping, “The Relevance Vector Machine,” in Advances in Neural Infor-
mation Processing Systems (NeurIPS), 1999, pp. 652–658.

127

[157] M. Titsias and M. Lázaro-Gredilla, “Doubly Stochastic Variational Bayes for
Non-Conjugate Inference,” in Proceedings of the International Conference on Ma-
chine Learning (ICML), 2014, pp. 1971–1979.

[158] K. B. Petersen, M. S. Pedersen et al., “The Matrix Cookbook,” Technical Univer-
sity of Denmark, vol. 7, no. 15, p. 510, 2008.

[159] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2961–
2969.

[160] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2014, pp. 740–755.

[161] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense
Object Detection,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017, pp. 2980–2988.

[162] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully Convolutional One-Stage
Object Detection,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2019, pp. 9627–9636.

[163] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,
Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu,
J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open
MMLab Detection Toolbox and Benchmark,” arXiv preprint arXiv:1906.07155,
2019.

[164] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tul-
loch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD: Training Imagenet in
1 Hour,” arXiv preprint arXiv:1706.02677, 2017.

[165] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu,
and J. Wang, “High-Resolution Representations for Labeling Pixels and Re-
gions,” arXiv preprint arXiv:1904.04514, 2019.

[166] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance Esti-
mation for Neural Network Pruning,” in Proceedings of the IEEE International

128

Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 11 264–
11 272.

[167] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks,” in Proceedings of the International Conference on
Learning Representations (ICLR), 2019.

[168] D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Batra, “Plantdoc: A
Dataset for Visual Plant Disease Detection,” 2019.

[169] A. Crawshaw, “Uno Cards Dataset,” https://public.roboflow.com/
object-detection/uno-cards, 2020.

[170] A. Kirillov, K. He, R. Girshick, and P. Dollár, “A Unified Architecture for In-
stance and Semantic Segmentation,” in Proceedings of the IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[171] G. Sfikas, A. P. Giotis, G. Retsinas, and C. Nikou, “Quaternion generative ad-
versarial networks for inscription detection in byzantine monuments,” in In-
ternational Conference on Pattern Recognition Workshops. Springer, 2021, pp.
171–184.

[172] M. Mirza and S. Osindero, “Conditional Generative Adversarial Nets,” arXiv
preprint arXiv:1411.1784, 2014.

[173] H. Ritter, A. Botev, and D. Barber, “Online Structured Laplace Approxima-
tions for Overcoming Catastrophic Forgetting,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 31, 2018.

[174] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun, “Hands-
on Bayesian Neural Networks: A Tutorial for Deep Learning Users,” IEEE
Computational Intelligence Magazine, vol. 17, no. 2, pp. 29–48, 2022.

[175] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, A. Kruspe,
R. Triebel, P. Jung, R. Roscher et al., “A Survey of Uncertainty in Deep Neural
Networks,” Artificial Intelligence Review, pp. 1–77, 2023.

[176] E. Dupont, Y. W. Teh, and A. Doucet, “Generative Models as Distributions of
Functions,” arXiv preprint arXiv:2102.04776, 2021.

129

https://public.roboflow.com/object-detection/uno-cards
https://public.roboflow.com/object-detection/uno-cards

[177] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “NERF: Representing Scenes as Neural Radiance Fields for View Syn-
thesis,” Proceedings of the IEEE European Conference in Computer Vision (ECCV),
pp. 405–421, 2020.

[178] D. W. Romero, R.-J. Bruintjes, J. M. Tomczak, E. J. Bekkers, M. Hoogendoorn,
and J. C. van Gemert, “Flexconv: Continuous Kernel Convolutions with Dif-
ferentiable Kernel Sizes,” Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

[179] N. Benbarka, T. Höfer, and A. Zell, “Seeing Implicit Neural Representations as
Fourier Series,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 2022, pp. 2041–2050.

[180] Y. Strümpler, J. Postels, R. Yang, L. V. Gool, and F. Tombari, “Implicit Neural
Representations for Image Compression,” in Proceedings of the IEEE European
Conference in Computer Vision (ECCV). Springer, 2022, pp. 74–91.

[181] D. J. MacKay, “A Practical Bayesian Framework for Backpropagation Net-
works,” Neural computation, vol. 4, no. 3, pp. 448–472, 1992.

[182] T. Karaletsos, P. Dayan, and Z. Ghahramani, “Probabilistic Meta-
Representations of Neural Networks,” arXiv preprint arXiv:1810.00555, 2018.

[183] F. Huszár, “Variational Inference Using Implicit Distributions,” arXiv preprint
arXiv:1702.08235, 2017.

[184] J. Shi, S. Sun, and J. Zhu, “Kernel Implicit Variational Inference,” arXiv preprint
arXiv:1705.10119, 2017.

[185] T. Karaletsos and T. D. Bui, “Hierarchical Gaussian Process Priors for Bayesian
Neural Network Weights,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 33, pp. 17 141–17 152, 2020.

[186] D. W. Romero, A. Kuzina, E. J. Bekkers, J. M. Tomczak, and M. Hoogendoorn,
“CKConv: Continuous Kernel Convolution for Sequential Data,” in Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

130

[187] E. Dupont, A. Goliński, M. Alizadeh, Y. W. Teh, and A. Doucet,
“Coin: Compression with Implicit Neural Representations,” arXiv preprint
arXiv:2103.03123, 2021.

[188] Z. Guo, G. Flamich, J. He, Z. Chen, and J. M. Hernández-Lobato, “Compression
with Bayesian Implicit Neural Representations,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[189] J. Shen, A. Ruiz, A. Agudo, and F. Moreno-Noguer, “Stochastic Neural Radiance
Fields: Quantifying Uncertainty in Implicit 3D Representations,” in International
Conference on 3D Vision (3DV). IEEE, 2021, pp. 972–981.

[190] F. Vasconcelos, B. He, N. M. Singh, and Y. W. Teh, “UncertaINR: Uncertainty
Quantification of End-to-End Implicit Neural Representations for Computed
Tomography,” Transactions on Machine Learning Research, 2023.

[191] E. Dupont, H. Kim, S. A. Eslami, D. J. Rezende, and D. Rosenbaum, “From
Data to Functa: Your Data Point is a Function and You Can Treat It Like
One,” in Proceedings of the International Conference on Machine Learning (ICML).
PMLR, 2022, pp. 5694–5725.

[192] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density Estimation Using Real NVP,”
arXiv preprint arXiv:1605.08803, 2016.

[193] Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Laksh-
minarayanan, and J. Snoek, “Can You Trust Your Model’s Uncertainty? Evalu-
ating Predictive Uncertainty Under Dataset Shift,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 32, 2019.

[194] S. Fort, H. Hu, and B. Lakshminarayanan, “Deep Ensembles: A Loss Landscape
Perspective,” arXiv preprint arXiv:1912.02757, 2019.

[195] A. Y. Foong, Y. Li, J. M. Hernández-Lobato, and R. E. Turner, “’in-Between’
Uncertainty in Bayesian Neural Networks,” arXiv preprint arXiv:1906.11537,
2019.

[196] A. Asuncion and D. Newman, “UCI Machine Learning Repository,” 2007.

[197] A. Krizhevsky, G. Hinton et al., “Learning Multiple Layers of Features from
Tiny Images,” 2009.

131

[198] D. Hendrycks and T. Dietterich, “Benchmarking Neural Network Robustness
to Common Corruptions and Perturbations,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

[199] M. S. A. Nadeem, J.-D. Zucker, and B. Hanczar, “Accuracy-rejection curves
(arcs) for comparing classification methods with a reject option,” in Workshop
of the International Conference on Machine Learning (ICMLW). PMLR, 2009, pp.
65–81.

[200] A. Foong, D. Burt, Y. Li, and R. Turner, “On the Expressiveness of Approx-
imate Inference in Bayesian Neural Networks,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 33, pp. 15 897–15 908, 2020.

[201] C. C. Margossian and L. K. Saul, “The Shrinkage-Delinkage Trade-Off: An
Analysis of Factorized Gaussian Approximations for Variational Inference,” in
Proceedings of the International Conference on Uncertainty in Artificial Intelligence
(UAI). PMLR, 2023, pp. 1358–1367.

[202] V. M.-H. Ong, D. J. Nott, and M. S. Smith, “Gaussian Variational Approxima-
tion With a Factor Covariance Structure,” Journal of Computational and Graphical
Statistics, vol. 27, no. 3, pp. 465–478, 2018.

[203] C. Louizos and M. Welling, “Structured and Efficient Variational Deep Learning
with Matrix Gaussian Posteriors,” in Proceedings of the International Conference
on Machine Learning (ICML). PMLR, 2016, pp. 1708–1716.

[204] S. Sun, C. Chen, and L. Carin, “Learning Structured Weight Uncertainty in
Bayesian Neural Networks,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS). PMLR, 2017, pp. 1283–1292.

[205] A. Garriga-Alonso and M. van der Wilk, “Correlated Weights in Infinite Lim-
its of Deep Convolutional Neural Networks,” in Proceedings of the International
Conference on Uncertainty in Artificial Intelligence (UAI). PMLR, 2021, pp. 1998–
2007.

[206] A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernandez-Lobato, and
A. L. Gaunt, “Deterministic Variational Inference for Robust Bayesian Neural
Networks,” Proceedings of the International Conference on Learning Representations
(ICLR), 2018.

132

[207] S. Farquhar, M. A. Osborne, and Y. Gal, “Radial Bayesian Neural Networks: Be-
yond Discrete Support In Large-Scale Bayesian Deep Learning,” in Proceedings
of the International Conference on Artificial Intelligence and Statistics (AISTATS),
2020, pp. 1352–1362.

[208] D. Romero, D. D. Ariananda, Z. Tian, and G. Leus, “Compressive Covariance
Sensing: Structure-Based Compressive Sensing Beyond Sparsity,” IEEE Signal
Processing Magazine, vol. 33, no. 1, pp. 78–93, 2015.

[209] Y. C. Eldar, J. Li, C. Musco, and C. Musco, “Sample Efficient Toeplitz Covariance
Estimation,” in ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM,
2020, pp. 378–397.

[210] J. P. Cunningham, K. V. Shenoy, and M. Sahani, “Fast Gaussian Process Meth-
ods for Point Process Intensity Estimation,” in Proceedings of the International
Conference on Machine Learning (ICML), 2008, pp. 192–199.

[211] Y. Saatçi, “Scalable Inference for Structured Gaussian Process Models,” Ph.D.
dissertation, University of Cambridge, 2012.

[212] W. Tebbutt, T. D. Bui, and R. E. Turner, “Circular Pseudo-Point Approxima-
tions for Scaling Gaussian Processes,” in Workshop in Advances in Approximate
Bayesian Inference, 2016, pp. 1–5.

[213] A. G. Wilson, C. Dann, and H. Nickisch, “Thoughts on Massively Scalable
Gaussian Processes,” arXiv preprint arXiv:1511.01870, 2015.

[214] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-F. Chang,
“An Exploration of Parameter Redundancy in Deep Networks with Circulant
Projections,” in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 2857–2865.

[215] V. Sindhwani, T. Sainath, and S. Kumar, “Structured Transforms for Small-
Footprint Deep Learning,” Advances in Neural Information Processing Systems
(NeurIPS), vol. 28, 2015.

[216] S. Liao and B. Yuan, “Circconv: A Structured Convolution with Low Complex-
ity,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp.
4287–4294.

133

[217] S. Liao, A. Samiee, C. Deng, Y. Bai, and B. Yuan, “Compressing Deep Neural
Networks Using Toeplitz Matrix: Algorithm Design and FPGA Implementa-
tion,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 1443–1447.

[218] A. Thomas, A. Gu, T. Dao, A. Rudra, and C. Ré, “Learning Compressed Trans-
forms with Low Displacement Rank,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 31, 2018.

[219] L. Zhao, S. Liao, Y. Wang, Z. Li, J. Tang, and B. Yuan, “Theoretical Properties
for Neural Networks with Weight Matrices of Low Displacement Rank,” in
Proceedings of the International Conference on Machine Learning (ICML). PMLR,
2017, pp. 4082–4090.

[220] M. Kissel and K. Diepold, “Structured Matrices and Their Application in Neural
Networks: A Survey,” New Generation Computing, vol. 41, no. 3, pp. 697–722,
2023.

[221] J. Harrison, J. Willes, and J. Snoek, “Variational Bayesian Last Layers,” Proceed-
ings of the International Conference on Learning Representations (ICLR), 2024.

[222] J. Li, Z. Miao, Q. Qiu, and R. Zhang, “Training Bayesian Neural Networks with
Sparse Subspace Variational Inference,” Proceedings of the International Conference
on Learning Representations (ICLR), 2024.

[223] G. E. Hinton and D. Van Camp, “Keeping the Neural Networks Simple by
Minimizing the Description Length of the Weights,” in International Conference
on Learning Theory (COLT), 1993, pp. 5–13.

[224] V. Fortuin, “Priors in Bayesian Deep Learning: A Review,” International Statis-
tical Review, 2022.

[225] J. McInerney, “An Empirical Bayes Approach to Optimizing Machine Learn-
ing Algorithms,” Advances in Neural Information Processing Systems (NeurIPS),
vol. 30, 2017.

[226] M. Welling, C. Chemudugunta, and N. Sutter, “Deterministic Latent Variable
Models and Their Pitfalls,” in International Conference on Data Mining (SDM).
SIAM, 2008, pp. 196–207.

134

[227] A. Fang, S. Kornblith, and L. Schmidt, “Does progress on imagenet transfer to
real-world datasets?” Advances in Neural Information Processing Systems, vol. 36,
2024.

[228] S. D. Karthik, Maggie, “APTOS 2019 Blindness Detection,” 2019. [Online].
Available: https://kaggle.com/competitions/aptos2019-blindness-detection

[229] Z. Anna, H. Brian, S. George, W. Jochen, E. Julia, C. Marc, K. Nicholas, C. Noel,
C. Phil, and R. Veronica, “SIIM-ISIC Melanoma Classification,” 2020. [Online].
Available: https://kaggle.com/competitions/siim-isic-melanoma-classification

[230] E. Mwebaze, J. Mostipak, Joyce, J. Elliott, and S. Dane, “Cassava Leaf Disease
Classification,” 2020. [Online]. Available: https://kaggle.com/competitions/
cassava-leaf-disease-classification

[231] B.-H. Tran, S. Rossi, D. Milios, and M. Filippone, “All You Need is a Good
Functional Prior for Bayesian Deep Learning,” Journal of Machine Learning Re-
search (JMLR), vol. 23, pp. 1–56, 2022.

[232] X. Fan, S. Zhang, B. Chen, and M. Zhou, “Bayesian Attention Modules,” Ad-
vances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 16 362–
16376, 2020.

[233] M. Figurnov, S. Mohamed, and A. Mnih, “Implicit Reparameterization Gra-
dients,” Advances in Neural Information Processing Systems (NeurIPS), vol. 31,
2018.

[234] R. Fathony, A. K. Sahu, D. Willmott, and J. Z. Kolter, “Multiplicative Filter Net-
works,” in Proceedings of the International Conference on Learning Representations
(ICLR), 2020.

[235] A. Kazemnejad, I. Padhi, K. Natesan Ramamurthy, P. Das, and S. Reddy, “The
Impact of Positional Encoding on Length Generalization in Transformers,” Ad-
vances in Neural Information Processing Systems (NeurIPS), vol. 36, 2024.

[236] J. He, G. Flamich, Z. Guo, and J. M. Hernández-Lobato, “Recombiner: Robust
and Enhanced Compression with Bayesian Implicit Neural Representations,”
Proceedings of the International Conference on Learning Representations (ICLR),
2024.

135

https://kaggle.com/competitions/aptos2019-blindness-detection
https://kaggle.com/competitions/siim-isic-melanoma-classification
https://kaggle.com/competitions/cassava-leaf-disease-classification
https://kaggle.com/competitions/cassava-leaf-disease-classification

[237] Y. Shen, N. Daheim, B. Cong, P. Nickl, G. M. Marconi, C. Bazan, R. Yokota,
I. Gurevych, D. Cremers, M. E. Khan et al., “Variational Learning is Effective
for Large Deep Networks,” arXiv preprint arXiv:2402.17641, 2024.

[238] I. Bellido and E. Fiesler, “Do Backpropagation Trained Neural Networks have
Normal Weight Distributions?” Springer, 1993, pp. 772–775.

[239] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu, “Improving Adversarial Robustness
via Promoting Ensemble Diversity,” in Proceedings of the International Conference
on Machine Learning (ICML). PMLR, 2019, pp. 4970–4979.

[240] J. Yao, W. Pan, S. Ghosh, and F. Doshi-Velez, “Quality of Uncer-
tainty Quantification for Bayesian Neural Network Inference,” arXiv preprint
arXiv:1906.09686, 2019.

[241] G. W. Brier et al., “Verification of Forecasts Expressed in Terms of Probability,”
Monthly weather review, vol. 78, no. 1, pp. 1–3, 1950.

[242] M. P. Naeini, G. Cooper, and M. Hauskrecht, “Obtaining Well Calibrated Prob-
abilities Using Bayesian Binning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2015.

[243] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on Imagenet Classification,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

[244] R. El-Yaniv et al., “On the Foundations of Noise-Free Selective Classification.”
Journal of Machine Learning Research (JMLR), vol. 11, no. 5, 2010.

[245] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep Feed-
forward Neural Networks,” in Proceedings of the International Conference on Ar-
tificial Intelligence and Statistics (AISTATS). JMLR Workshop and Conference
Proceedings, 2010, pp. 249–256.

136

APPENDIX A

VARIATIONAL FEATURE PYRAMID NETWORKS

A.1 Using a Laplace prior

A.1 Using a Laplace prior

A.1.1 Laplace Distribution

Our first option for the weight-connection prior had to be a Gaussian distribution,
due to its simplicity, good analytical properties, and implications of the central limit
theorem [238]. Recent research however does point out to non-Gaussianity of neu-
ral network weights [11], and we have indeed conducted (preliminary) experiments
towards this direction, especially focusing on heavy-tailed alternatives. We experi-
mented with the Laplace distribution which has heavier tails than the Gaussian and
is discontinuous at w = µ. It is often used in the context of Lasso regression, where it
encourages sparsity in the learned weights [28]. Assuming that the weights are i.i.d.,
we set the prior distributions to zero-mean Laplace:

p(W) =
∏
i=1

p(wi) where wi ∼ Laplace(0, 1). (A.1)

The straightforward choice for the approximate variational distribution that satisfies
the conditions for applying SGVB is the factorized Laplace distribution:

q(W) =
∏
i=1

q(wi) where wi ∼ Laplace(µi, βi). (A.2)

137

Thus the set we wish to optimize are the variational parameters ϕ = {µ, βi}. We can
easily draw samples from the variational posterior:

w = µ− βsign(ϵ) log(1− 2|ϵ|+ α) where ϵ ∼ U(−1

2
,
1

2
), (A.3)

where the sign function evaluates the sign of ϵ and α is a parameter with small value
introduce to provide numerical stability. The KL term of the VLB can be computed
analytically as:

KL(qϕ(W)||p(W)) = − log(β) + |µ|+ β exp(−|µ|
β

)− 1. (A.4)

A.1.2 Experimental Results

Table A.1: Numerical results for object detection/segmentation trials on COCO [160].
Average precision and precision on different threshold and object sizes are shown,
alongside with network size and inference time (measured in milliseconds), for pro-
posed models and other feature pyramid variants.

Network Model AP AP50 AP70 APS APM APL Params Inference

Faster RCNN Laplace 0.312 0.517 0.328 0.179 0.346 0.392 1.602M 6.8± 0.10

Mask RCNN Laplace 0.283 0.473 0.294 0.125 0.304 0.412 1.740M 6.9± 0.03

0 500 1000 1500 2000 2500 3000

10

20

30

40

50

60

Training Iterations

A
ct

iv
e

co
nn

ec
tio

ns

ARD
Correlated ARD
Laplace

Figure A.1: Plot of the number of non-pruned weights/connections versus the training
iterations using different priors on the same setting on COCO, (left Mask-RCNN and
right Faster-RCNN).

138

APPENDIX B

IMPLICIT NEURAL REPRESENTATION
INFERENCE

B.1 INR Hypernetwork Details

B.2 Experimental Setup

B.3 ReLU and Sinusoidal Hypernetworks

B.4 Evaluating INR Hypernetwork Size

B.5 Computational Time

B.6 Additional Experiments

B.7 Qualitative Evaluation of Empirical Densities

B.1 INR Hypernetwork Details

This section delves deeper into the INR hypernetwork. We analyze its functional-
ity and provide a graphical illustration of the process in Figure 4.2. Additionally,
we present the training and inference procedures of our proposed low-dimensional
inference scheme in two separate algorithms outlined in Figure B.1. .

As for the weight coordinates I , in practice these values are batched and computed
separately for each layer. For the i− th layer indices/input-coordinates positions have
the shape [n, Idims] where n is the number of the total main network parameters
of the i − th layer and Idims is the dimensionality of the indices. For example, for

139

Algorithm B.1 INR Training proce-
dure
Require: I (Indices of main network weights),
Net (Main network), INR (INR hypernet-
work), Dataset.
for each Epoch do

for (x, y) in Dataset do
y⋆ = Net(x,ξ)
loss = (y,y⋆)
update INR w.r.t loss
update Net w.r.t loss

end for
end for

Algorithm B.2 INR Inference proce-
dure
Require: I (Indices), Net (Main network), INR

(INR hypernetwork), Testset Approximate In-
ference (Approximate inference method) MC
Samples (Number of Monte Carlo samples).
for x in Testset do

for j in range MC Samples do
ξj = Approximate Inference(INR, I)
y⋆ = Net(x,ξj)

end for
end for
Calculate y⋆ statistics

Figure B.1: High level pseudo-code to introduce our method’s behavior in training
and inference settings (in this setting, a post-training Monte Carlo-based approximate
inference method is implied).

a convolutional main layer Idims = 5, the first 4 positions correspond to the kernel
weights plus 1 dimension to act as the layer position (conditional position for each
layer).

B.2 Experimental Setup

In this Section, we provide all the experimental details that were used in order to
produce the results of the main paper. Our experimental setups and procedures are
heavily influenced by current practices in the literature. In all experiments we chose
the SIREN [2] network to serve as the INR hypernetwork, due its popularity and
its ability to model highly complex signals without any use of positional encoding
layers (for the coordinate tensors I). Furthermore, [2] described a hypernetwork
initialization scheme for the wINR parameters, that results in values ξ that are initially
Normally distributed. This is in general beneficial for the training procedure and it
is also common practice for initializing multiplicative noise [93, 147].

140

B.2.1 Design Choices

For each different modeling scenario we trained a ResNet-20 [20] on the CIFAR10
dataset. All models are trained using the Adam optimizer with learning rate equal to
10−3, weight decay equal to 10−6 and a batch size equal to 256 running for 100 epochs.
We evaluated the MAP solution for each model in clear and corrupted test data. As
for evaluating the size of the INR hypernetwork we also deployed SWAG. We used a
full Gaussian covariance to approximate the distribution of wINR, and used 10 epochs
of average with a learning step of 0.01. We evaluated the effect of the increasing size
of hypernetworks by using the Log-likelihood, Expected Calibration Error and the
Normalized Diversity. Concerning the latter, a typical way to quantify diversity is to
compute the fraction of points where discrete predictions differ between two members,
averaged over all possible pairs. This disagreement measure is normalized by (1 −
accuracy) of each prediction to take into account its sample predictive accuracy. Recent
works [239, 194] point out that measuring the diversity of individual predictions
obtained from each sampled network can highlight the quality of uncertainty.

B.2.2 Visualizing Uncertainty

This visualization task is highly suited to quantify “in-between” uncertainty of a
model, as recent works found that standard numerical evaluation metrics such as
log-likelihood struggle to fully capture this behavior, while at times overconfident
methods may obtain better scores [240, 98]. We train a single, 2 hidden layer network,
with 50 hidden ReLU units per layer using MAP inference until convergence. For the
INR network fwINR

(·) we used a SIREN [2] The INR network has 3 layers consisting of
[2, 10, 4] neurons respectively, resulting totally in 160 training parameters. Concerning
the hyperparameters we used Ω1 = 30 for the first INR layer and Ωl = 1 for the
rest while keeping the the parameter c = 1 fixed for all layers. The INR weights
wINR are initialized uniformly as ∼ U(−

√
c/n/Ω,

√
c/n/Ω). The input coordinates

I ∈ R2 are normalized to be in the range [−1, 1]2. We optimize the Gaussian log-
likelihood of our data, where the mean is produced by the network and the variance
is a hyperparameter learnt jointly with NN parameters. We used a full batch Adam
optimizer with a learning rate of 10−3, α = 0.9, β = 0.999 and weight decay = 10−4. We
trained all models for 600 epochs (since the amount of training samples are less than
the actual training parameters). We used the same strategy for all of the baselines.

141

We deployed deep ensembles with an ensemble of 5 networks, as suggested by [193].
Dropout was set with dropping probability of 0.1. For the INR-RealNVP, following the
literature, we tempered the posterior by applying a weight on the Kullback-Leibler
term of the ELBO, equal to 0.1. For the INR equipped with the linearized Laplace we
set the prior precision of λ = 0.001, where C = λ−2Idξ . Methods that required Monte
Carlo sampling for estimating the predictive distribution use 30 MC samples during
testing and 1 sample during training.

B.2.3 UCI Regression Benchmarks

We experiment with 8 UCI regression datasets using standard training-evaluation-
test splits from [63] and their gap versions [195]. In this test, we use a fully-
connected architecture with hidden layers that have [50, 50, 20] neurons respectively
followed by ReLU activation. All the training details are applied to all the regression
datasets regardless of their individual characteristics such as size, input dimensions,
etc. We used homoscedastic regression methods with a global variance parameter,
N (yi, gw(xi), σ̂

2I), where the logarithm of global log-variance logσ̂2 (in order to ensure
positivity) is jointly optimized with the model parameters. Our training strategy fol-
lows [120]. We trained all methods for 50 epochs, except INR-RealNVP, which needed
approximately 5 additional epochs to adapt. We employed early stopping if validation
performance does not increase for 10 consecutive epochs. The weight settings which
provide best validation performance in terms of log-likelihood are kept for testing.
Again we used the Adam optimizer with a learning rate equal to 10−3, weight decay
equal to 10−6, and a batch size equal to 512 samples. For the INR equipped with
SWAG, we used full Gaussian covariance to approximate the distribution of wINR,
and used 25 epochs of average with a learning step of 0.01. For INR-Laplace, after
trying several precision values we use a prior with a precision value λ = 0.005, as it
yielded better validation results across all datasets.

B.2.4 Image Experiments

Through our image experiments we deployed the ResNet50 architecture [20]. As it is
common practice, we applied several modifications to the original architecture such
as replacing the kernel size of the first strided convolutional layer (7×7) to size 3×3.
Additionally, we remove the first max-pooling layer. The rest of the ResNet details

142

were set according to [164]. For the INR network fwINR
(·) we used a SIREN [2] shared

across each layer of the main network. We used a variety of metrics, these include:
test log-likelihood (LL); Brier score [241], which is a metric that measures accuracy of
predictive probabilities by computing their mean squared distance from the one-hot
class labels; the Expected Calibration Error (ECE, [242]), a metric which measures the
difference between predictive confidence and empirical accuracy in classification. A
detailed explanation of uncertainty evaluation metrics can be found in [141, 98, 193].
In our experiments we emphasized on out-of-distribution performance, as model that
was well-calibrated on the training and validation distributions must ideally remain
so on shifted data. Regarding the completely “out-of-distribution” (OOD) data, we
expect the empirical entropy of the predicted distribution to be quite high. Essen-
tially, a good model must be uncertain according to the degree that test inputs are
far from the training distribution. For Dropout experiments, we add Dropout to the
standard ResNet model in between the 2nd and 3rd convolutions in each ResNet block
[98]. We used an ensemble of 5 elements for prediction. Ensemble elements differ
from each other in their initialization, which is sampled from the He initialization
distribution [243]. All models are trained using the Adam optimizer with learning
rate equal to 10−3, weight decay equal to 10−6, with a batch size equal to 256 running
for 50 epochs for MNIST and 150 epochs for the CIFAR10/CIFAR100 experiments
respectively. The weight settings which provide best validation performance in terms
of log-likelihood are kept for testing. During training, we also used plain data aug-
mentation strategies including random image cropping and random horizontal flips.
We used INR-SWAG for 10 epochs with learning rate equal to 10−4. For INR-RealNVP,
the base Gaussian distribution is set to N (0, 0.1I), transformed with a cascade of 4

coupling layers. Finally as for the experiments validating the uncertainty quality per
low dimensional space we trained (each method) combined with a Resnet18 for 100
epochs in both Cifar10 and Cifar100 datasets while keeping the approximate infer-
ence method fixed same across all low dimensional spaces. While for each subspace
method we followed the hyperparameters proposed in the original papers, for SWAG
and Linearized Laplace with GGN, in order to be able to run across low dimensional
spaces we choose the covariance to have Diagonal structure. We used SWAG for 10

epochs with learning rate equal to 10−3. For the Laplace, we use a prior with a pre-
cision value λ = 1.0. All hyperparameters stayed the same across each method for
comparison. Inference time (Table 4.2) for Resnet18 combined with different stochas-

143

tic subspaces and different approximate inference methods was measured in seconds
and for a batch of 10 CIFAR images.

B.3 ReLU and Sinusoidal Hypernetworks

This section delves deeper into the activation function used in the hypernetworks.
Our ablation study, focusing on SIREN activation, suggests that the hypernetworks
need to model high-frequency representations of the weight perturbations. We begin
by empirically quantifying the benefits of each activation type by evaluating the per-
formance of the Maximum A Posteriori (MAP) estimate. We trained Resnet18 in both
CIFAR10 and CIFAR100 for 100 epochs to evaluate the predictive capabilities of the
Sinusoidal hypernetwork versus each ReLU counterpart.

Table B.1: Numerical results for classification trials with different hypernetwork acti-
vations.

Dataset Hypernet Activation Accuracy ↑ LL ↑ Error ↓ Brier ↓ ECE ↓

CIFAR10
ReLU 91.11 −0.48 0.08 0.14 0.05

Sine 91.70 −0.44 0.08 0.13 0.05

CIFAR100
ReLU 67.79 −2.54 0.32 0.53 0.23

Sine 68.49 −2.39 0.31 0.52 0.22

In Table B.1 we find that Sine/Periodic activations (the “default” choice in SIREN)
slightly outperforms a hypernet with ReLU activations. Still, results are very close,
though there is a trend in favor of sine in both benchmarks. The original motivation
behind using the sine activation is related to modeling high-frequency content, which
translates as details in structured signals such as images or video [2]. We can however
see this “in the top of its head”, so to speak: in structured signals we care more for low-
frequency content, and high-frequency is a “good-to-have” content. We can interpret
an input semantically if we see its low frequencies, but not necessarily vice versa.
For example, image compression will invariably throw away high frequencies first,
and the last frequencies to lose will be the lower ones. Our conjecture is as follows:
When using an INR to model perturbations, we are faced with a different situation,
that corresponds to a different “frequency landscape” (perhaps even different than
the one of model weights). In particular, we do not have any reason to differentiate

144

lower or higher frequency content in any respect. We “care” for all frequencies, so
we need to have a good way to model high frequencies as well. Perhaps this is the
reason the sine activation gives a small edge over ReLU.

To elaborate further on this argument, we constructed a setting where we can
visualize the ξ parameters and see if we can observe any meaningful connection
between hypernetwork activation and frequencies modelled by the hypernetwork.

0 50 100 150 200 250

−10.0
−7.5
−5.0

ReLU Hypernetwork

0 50 100 150 200 250

−9.0
−8.5
−8.0
−7.5

Sinusoidal Hypernetwork

0 50 100 150 200 250

−3

−2

0 50 100 150 200 250

−7

−6

0 50 100 150 200 250

−20

−10

0 50 100 150 200 250

−10

−9

0 50 100 150 200 250

−6

−4

−2

0 50 100 150 200 250

−10
−8
−6
−4

0 50 100 150 200 250

−20
−15
−10
−5

0 50 100 150 200 250

−10
−9
−8

Figure B.2: Values of ξ as a function of input weight coordinates (channel-wise).

In Figure B.2 we plotted the the values of ξ as a function of input weight coor-
dinates. Specifically for Resnet18 trained on CIFAR we plotted the flattened values
for each specific kernel position across channels (channel slice) for 2 different con-
volutional layers. Both types of hypernetworks produce well structured perturbation
functions. The ξ values produced from the sinusoidal hypernetwork are expressed as
a somewhat oscillatory behavior w.r.t. channel position, which translates as higher
frequency content. As for the ReLU perturbations, while having some high frequen-
cies due to the discontinuity of the ReLU activation, the overall signal has a smooth

145

0.2

0.4

0.6

0.8

ReLU Hypernetwork

0 50 100 150 200 250

0.4

0.5

0.6

Sinusoidal Hypernetwork

0 50 100 150 200 250

0.25

0.50

0.75

1.00

0 50 100 150 200 250

0.4

0.6

0 50 100 150 200 250

0.8

1.0

1.2

0 50 100 150 200 250

0.4

0.5

0 50 100 150 200 250

2.0

2.2

2.4

0 50 100 150 200 250

1

2

0 50 100 150 200 250

0.4

0.6

0.8

1.0

0 50 100 150 200 250

0.4

0.5

0.6

Figure B.3: Empirical variance of ξ as a function of input weight coordinates (channel-
wise).

structure less complicated that the sinusoidal ones in some cases. Unsurprisingly,
the ReLU result consists of practically piecewise linear components. This is what we
believe that highlights the marginally better performance of SIREN hypernetworks.
Furthermore, following the same experimental procedure we plotted alongside the
mean values of ξ also their variance (Figure B.3), as this was computed from the
SWAG-diagonal approximate inference method, again as a function of channel co-
ordinates. We can observe that the variance has the same structural properties as
the mean values of ξ. Thus, we believe that it makes sense for the main network
convolutional kernel to take advantage of its structure.

146

B.4 Evaluating INR Hypernetwork Size

We added an ablation w.r.t. INR size following the UCI regression setting in our
method 4.4. We compare four different versions of INR hypernetworks with an
increasing number of parameters each, namely (BIG=2500, MED=625, SMALL=75,
XSMALL=10), all combined with a Full GGN Laplace approximate posterior. From

−3.5
−3.4
−3.3
−3.2
−3.1

Boston

−4.0
−3.9
−3.8
−3.7

Concrete

−3.25

−3.20

−3.15

−3.10

Energy

BIG MED SMALL XSMALL

−3.3
−3.2
−3.1
−3.0
−2.9

Power

−1.05

−1.00

−0.95

Wine

−3.85
−3.80
−3.75
−3.70
−3.65
−3.60

Yacht

0.7

0.8

0.9

1.0

1.1

Kin8nm

−3.5

−3.4

−3.3

−3.2

Boston Gap

−4.0

−3.9

−3.8

−3.7

Concrete gap

−4.0
−3.8
−3.6
−3.4
−3.2

Energy Gap

−3.6
−3.5
−3.4
−3.3
−3.2
−3.1

Power Gap

−1.04
−1.02
−1.00
−0.98
−0.96

Wine Gap

−3.90
−3.85
−3.80
−3.75
−3.70
−3.65

Yacht Gap

0.6

0.7

0.8

0.9

Kin8nm Gap

Figure B.4: Numerical results for regression trials on UCI standard [63] and GAP
[195] splits for different hypernetwork sizes.

the experiments (Figure B.4) we can observe that there is a limit to where one can
easily scale the INR hypernetwork and simultaneously gain performance. Individual
characteristics play significant role to the INR size (main network size, dataset size,
dataset dimension).

B.5 Computational Time

Regarding the computational time requirement of our method, it can be decomposed
as follows:

tTotal = tHypernet evaluation + tApproximate Inference (B.1)

Where hypernetwork evaluation time according to Table B.2 makes the overall net-
work in practice ≈ 1.2 slower than the vanilla network training. As for the approx-
imate inference time although these methods we are using in our experiments are

147

expensive, because in our method they are applied in the small dimensional INR
space in general it takes less time to evaluate. In Table B.3 we are considering the
computational time of inference of our method versus standard inference popular
ones.

Table B.2: Indicative time requirements for INR-based hypernetwork model.

Our method Vanilla Network Our method (fixed ξ perturbations)
Forward Backward Forward Backward Forward Backward

0.0069± 0.0001 0.014± 0.008 0.0046± 0.0001 0.011± 0.000 0.0045± 0.0002 0.009± 0.001

Table B.3: Computational time of INR low dimensional inference versus other ap-
proximate inference methods.

Method Deep Ensembles Dropout LL Laplace INR SWAG INR RealNVP

Inference Time 0.9014± 0.0273 0.0372± 0.0066 2.0030± 0.0073 0.6393± 0.0184 0.2045± 0.0043

For the Deep Ensembles method the obtained values include additional overhead
such as ensemble element loading etc. as it is common practice. Furthermore, the
Linearized LL Laplace is much slower than the other methods as computing the
Jacobian for the ResNet50 reaches the limits of our computational budget at this
time.

As for the overhead in terms of learnable parameters, we have: Winr (total number
of the hypernetwork parameters), and qinr (number of approximate inference param-
eters applied on the INR space), which as we mention in the main paper is in fact
much less than qW (number of approximate inference parameters applied on the full
set of main network weights). Performance-wise our method is still being competitive
w.r.t. methods like ensembles of D networks which at best is D times slower than
the vanilla network.

Furthermore, because the main overhead of our method is the hypernetwork eval-
uation we investigated the following alternative training scheme, to further improve
our method in terms of time. Instead of training the main network weights W and
WINR together we update the WINR parameters every 10 epochs of the main net-
work training, this significantly reduces the computational overhead of our method
and we hypothesize it can scale to ImageNet models and datasets. Inference time
for Resnet18 combined with different stochastic subspaces and different approximate

148

inference methods (time is measured in seconds and for a batch of 10 CIFAR images).

Table B.4: Numerical results for classification trials of ResNet18 in CIFAR100.

Training Scheme Accuracy ↑ LL ↑ Error ↓ Brier ↓ ECE ↓

Full Training 69.01 −2.32 0.30 0.51 0.22

Alternative Training 68.59 −2.38 0.31 0.52 0.22

B.6 Additional Experiments

Further Image Experiments. Following [141, 120, 193], we train all methods on
MNIST and CIFAR10 evaluate their predictive distributions on increasingly rotated
digits. We trained the models for 50 epochs using the Adam optimizer. The results
are depicted in Figure B.5. The importance of distributional shift expressed in this
experiment via rotation of the original test set, which is highly informative as all
methods perform more or less the same until the degradation shift reaches high
intensity, where at this point methods begin to differentiate from one another. While
the error of the prediction remains the same, metrics such as ECE and LL favor
INR inference and Dropout which surpass the Deep Ensembles and LL Laplace as
degradation increases significantly.

Table B.5: Numerical results for classification trials on different proposed low-
dimensional spaces (CIFAR10).

Subspace Inference
Standard Corrupted

LL ↑ Error ↓ Brier ↓ ECE ↓ LL ↑ Error ↓ Brier ↓ ECE ↓

Rank1
SWAG −0.41 0.08 0.13 0.05 −1.25 0.22 0.35 0.14

Laplace −1.56 0.09 0.68 0.68 −1.70 0.22 0.73 0.57

INR
SWAG −0.32 0.07 0.12 0.04 −1.16 0.21 0.35 0.14

Laplace −1.56 0.11 0.68 0.66 −1.66 0.19 0.32 0.58

Subnetwork
SWAG −0.42 0.07 0.12 0.04 −1.45 0.23 0.38 0.17

Laplace −1.55 0.09 0.68 0.68 −1.65 0.19 0.71 0.58

Partially stochastic
SWAG −0.42 0.07 0.12 0.04 −1.44 0.20 0.38 0.17

Laplace −1.56 0.09 0.68 0.70 −1.67 0.21 0.72 0.59

149

50 100 150 200 250

Degrees of Rotation

−6

−5

−4

−3

−2

−1

0

A
cc

u
ra

cy
Deep Ensembles INR SWAG LL Laplace INR RealNVP

50 100 150 200 250

Degrees of Rotation

0.0

0.2

0.4

0.6

0.8

E
rr

or
50 100 150 200 250

Degrees of Rotation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

B
ri

er
S

co
re

50 100 150 200 250

Degrees of Rotation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
x
p

ec
te

d
C

al
ib

ra
ti

on
E

rr
or

1 2 3 4 5

Level of Corruption

−2.5

−2.0

−1.5

−1.0

−0.5

A
cc

u
ra

cy

1 2 3 4 5

Level of Corruption

0.15

0.20

0.25

0.30

0.35

0.40

0.45

E
rr

or

1 2 3 4 5

Level of Corruption

0.2

0.3

0.4

0.5

0.6

0.7

B
ri

er
S

co
re

1 2 3 4 5

Level of Corruption

0.10

0.15

0.20

0.25

0.30

E
x
p

ec
te

d
C

al
ib

ra
ti

on
E

rr
or

Figure B.5: Numerical results for classification trials on Rotated MNIST (top row)
dataset and on Corrupted CIFAR10 (bottom row). Log-Likelihood (↑), Expected Cali-
bration Error (↓), Brier Score (↓), Error (↓) and Accuracy (↑) are used for comparison.
The x-axis of each plot corresponds to increasingly levels of corruption intensity.

B.7 Qualitative Evaluation of Empirical Densities

In this Section, we qualitatively inspect the approximate posterior distributions pro-
duced by INR variants in regression and classification settings. First, in Figure B.6
we plot the empirical density of w ◦ ξ for the network trained on the toy regression
task. The variables are acquired by evaluating first eq:4.2 with 400 samples. Then we
transform each sample according to ξ = fINR(·) and finally scale the resulted values
by w.

As we can see, INR-based models produce non-Gaussian approximate posterior
distributions. Our results are in line with works like [224], which analyzed the em-
pirical weight distributions of SGD-trained networks with different architectures, sug-
gesting that fully connected neural networks learn heavy-tailed weight distributions.

We plotted empirical covariance matrices (see Figure B.9) that correspond to
part of the w ◦ ξ parameters (specifically, the parameters that are “connected” to the
first output neuron of the first layer of the main network). We can see that even
the INR-based models are able to produce covariance matrices with high-magnitude

150

off-diagonal elements. This result validates the use of more expressive posterior distri-
butions and highlights the performance of our hypernetwork method in the previous
tasks.

We evaluated the empirical densities of convolutional layers following the classi-
fication setting of subsection 4.4.4. More specifically, we trained a ResNet-50 using
the INR-RealNVP method on CIFAR10 dataset and evaluated the approximate dis-
tribution of w ◦ ξ for the first convolutional layer of the network, following the same
sampling procedure as before. Results are depicted in Figure B.8, where the density
histograms of the kernel values are Gaussian-like but still placing a lot of probability
mass towards the tails.

We plotted the empirical covariance (Figure B.8 left) of values belonging to the
same 3× 3 kernel for nine different kernels. The covariance matrices indicated high
spatial correlations of kernel values as was expected [224].

−0.10 −0.08
0

20
40
60
80

100

0.07 0.08 0.09

·10−2

0
25
50
75

100
125

0.040

·10−2

0
50

100
150
200
250

0.050 0.060

·10−2

0

50

100

150

0.00175

·10−3

0
1000
2000
3000
4000

−0.07 −0.06

·10−2

0

50

100

150

−0.09
0

20
40
60
80

100

−0.040−0.035

·10−3

0
500

1000
1500
2000
2500

0.140.160.180.20

0
10
20
30
40
50

−0.08−0.07−0.06

·10−2

0
25
50
75

100
125

INR-Real NVP

Figure B.6: Empirical Covariance for the INR-RealNVP for the first linear layer of the
regression network.

151

0 5

0.0
0.1
0.2
0.3
0.4
0.5

−5 0 5

0.00
0.05
0.10
0.15
0.20
0.25

−2 0 2

0.0

0.2

0.4

0.6

−0.2 0.0 0.2

0

2

4

6

−5 0 5

0.0

0.1

0.2

0.3

−1 0 1

0.0

0.5

1.0

1.5

2.0

−2 0 2

0.00
0.25
0.50
0.75
1.00
1.25

−10 0 10

0.00

0.05

0.10

0.15

−0.2 0.0 0.2

0
2
4
6
8

10

−5 0 5

0.0

0.1

0.2

0.3

0.4

INR Laplace

Figure B.7: Empirical Covariance for the INR-Laplace for the first linear layer of the
regression network.

2.225

0

10

20

1.125 1.200

0

10

20

0 2 4 6 8

0
2
4
6
8 −0.25

0.00
0.25
0.50
0.75

0 2 4 6 8

0
2
4
6
8 −0.4

−0.2
0.0
0.2
0.4

0.64 0.65 0.66

0

20

40

60

80

0.50 0.55 0.60 0.65

0

5

10

0 2 4 6 8

0
2
4
6
8 −0.10

−0.05
0.00
0.05
0.10

0 2 4 6 8

0
2
4
6
8 −0.1

0.0

0.1

0.2

−0.72 −0.69
0

20

40

60

80

−1.42−1.40−1.38
0

10

20

30

0 2 4 6 8

0
2
4
6
8 −0.25

0.00

0.25

0.50

0 2 4 6 8

0
2
4
6
8 0

1

2

3

Empirical Density Empirical Covariance

Figure B.8: Empirical density histogram and empirical covariance for of kernel values
of the first convolutional layer of ResNet-50 using INR-RealNVP.

152

INR-RealNVP INR-Laplace

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure B.9: Empirical Covariance for the INR-RealNVP and INR-Laplace for the first
linear layer of the regression network.

153

APPENDIX C

CIRCULANT NORMAL APPROXIMATE
DISTRIBUTION

C.1 Experimental Setup

C.2 Empirical Bayes for the Circulant Normal

C.3 Additional Experiments

C.1 Experimental Setup

In this Section, we provide all the experimental details that were used in order to
produce the results of the main paper. Our experimental setups and procedures are
heavily influenced by current practices in the literature. In all experiments we chose
the standard variational inference. With tempered the kulbak-liebre term in Eq.5.2
by a factor λ, when λ = 1 the ELBO is a true lower bound to the marginal likelihood
of the model, and the true posterior is recovered as the optimal solution when q is the
family of all distributions over w. We use the pseudo-independent sampling method
Flipout [96] for gradient variance reduction. In all experiments the hyperparameters
for each method are optimized using the validation set. All the posteriors and prior
are applied layer-wise thus we assume throughout the paper that the posterior and
the prior over the neural network weights factorizes for each layer. We keep the
weights with the produce the lowest error and use them for testing. Error bars and
standard deviation number are acquired by averaging on three seeds We used a

154

variety of metrics, these include: test log-likelihood (LL); Brier score [241], which
is a metric that measures accuracy of predictive probabilities by computing their
mean squared distance from the one-hot class labels; the Expected Calibration Error
[242], a metric which measures the difference between predictive confidence and
empirical accuracy in classification. Also we included Selective prediction, a metric
which modifies the standard prediction pipeline by introducing a “reject option” if
the score for a prediction is below a certain threshold, the metric score is obtained by
computing the area under the curve obtained for over a range of thresholds [244]

C.1.1 UCI Regression Benchmarks

We tested our method on 8 UCI regression datasets using established training-
evaluation-test splits from [63] and their gap versions [195]. In this test, we use
a fully-connected architecture with hidden layers that have [100, 50, 20] neurons
respectively followed by ReLU activation. All the training details are applied to all
the regression datasets regardless of their individual characteristics such as size, input
dimensions, etc. We used homoscedastic regression methods with a global variance
parameter, N(yi, gw(xi), σ

2I), where the logarithm of global log σ2 variance log (in or-
der to ensure positivity) is jointly optimized with the model parameters. We trained
all methods for 100 epochs, we employed early stopping if validation performance
does not increase for 10 consecutive epochs. The weight settings which provide best
validation performance in terms of error are kept for testing. Again we used the
Adam optimizer with a learning rate equal to 1e − 3, weight decay equal to 0.0001

momentum 0.9, and a batch size equal to 512 samples and we set the kl scale term
λ = 1

C.1.2 Image Classification

Through our image experiments we deployed the ResNet50 architecture [20]. As it is
common practice, we applied several modifications to the original architecture such
as replacing the kernel size of the first strided convolutional layer (7× 7) to size 3× 3

and removing the first max-pooling layer. In our experiments we emphasized on
out-of-distribution performance, as model that were well-calibrated on the training
and validation distributions must ideally remain so on shifted data. Regarding the
completely “out-of-distribution” (OOD) data, we expect the empirical entropy of the

155

predicted distribution to be quite high. Essentially, a good model must be uncertain
according to the degree that test inputs are far from the training distribution. Follow-
ing [193, 120, 141], we evaluate the models on both CIFAR10/CIFAR100 original test
sets and also on the respective degraded sets. In the degraded sets, the original sets
have been exposed to 16 different types of corruption with 5 levels of noise intensity
each [198]. In the main paper for the corrupted version of the training dataset we
used the concatenation of all 16 corrupted test sets with intensity 3. Random image
cropping and horizontal flips are applied to each dataset during training alongside
normalization using the training mean and standard deviation. All models are trained
using the Adam optimizer with learning rate equal to 10 − 3, weight decay equal to
10 − 6, with a batch size equal to 64 running for 150 epochs with decreasing the
learning rate by a factor 0.1 at epochs 80 and 120. The number Monte Carlo samples
for estimating the predictive distribution was set to 10 while during training in order
to estimate the reconstruction term (1st term of Eq 5.2) we use only one sample. The
weight settings which provide best validation performance in terms of error are kept
for testing.

For all the posterior methods we used fixed variance initialization for the variances
while following the typical weight initialization for the mean values. Specifically for
MFVI we set the posterior log variance −5.0 also for the K-Tied method. As for the
ELRG we used a spherical diagonal with log variance −5.0 and low rank correlations
were with 0.005 For the above methods we also used random initialization as well,
but the where not a significant performance benefits. For the circulant covariance the
initialization of kernel values affects in a great extend the predictive performance and
the overall training stability. We used a fixed initialization scheme inspired from the
Xavier method [245] where ki = 0.01∗

√
2/d where d is the over all number of weight

in the layer. In all the experiments we used a circulant distribution with a kernel of
c = 20 for the K-tied distribution we used k = 3 and for the ELRG we utilized rank-2
correlations. The kl anneal term λ through cross validation was set λ = 0.001 while
for the ELRG method set to be λ = 0.1

For the transfer learning experiments we utilized the ImageNet pretrained weights
for the ResNet 50. For each posterior distribution we initialized the means from the
ImageNet weights and the covariance matrix for each method as in the previous
experiments. Apart from the standard augmentations we specifically resized each
image to 250 × 250 size. Following [227, 80] we used a class balanced random 20%

156

of the data as test data for every dataset. We fined tune each dataset for 30 epochs
and report the prediction evaluate the model setting which provide the lowest error.
For the experiments in Table 5.5 we adopted the rank-1 parameterization [123].
We used as a posterior distribution the log mixture following the paper. For the
experiments which are considering additional priors first we used the prior from
[11]. All convolutional weights of shape In × Out × k × k were set to follow the
following Gaussian while the linear layers were left deterministic.

p(w) = N(0, Σ̂) where Σ̂ = I ⊗B (C.1)

σ(i,j),(i,j′) = exp(−||j − j′||2)) Where I has size of in ∗ out× in ∗ out and B has the size
of k2, k2 This distribution is equivalent to a Matrix Normal prior on the convolutional
weights. We used the same hyperparameters bu this time we set the λ = 0.0001

As a second prior distribution we choose the induced functional prior from [231].
We to draw preferable functions from an radial basis function (RBF) kernel with
length scale and variance set to 1 and we minimized the Wasserstein distance between
BNN induced functions and GP functions (activations) w.r.t the prior variances as
proposed in the main paper. We adopted the publicly available implementation After
the training we set the prior variance as the once found via the optimization, the
prior means to zero and proceed to train the methods following the same training
protocols as before while setting λ = 0.001 for all methods

C.2 Empirical Bayes for the Circulant Normal

Assuming a Gaussian posterior distribution q(w) ∼ N (µw,Σw) and a prior distribution
p(w) ∼ N (µ̂w, Σ̂w) for w ∼ RN , under the variational inference scheme we set to
optimize the variational lower bound L(w). Optimization w.r.t. the parameters of the
variational distribution can be done via stochastic optimization. In Empirical Bayes
in an Expectation Minimization fashion we seek the parameters of p(w) that directly
optimize the ELBO:

∂L(w)
∂Σ̂w

= 0 ⇒ ∂

∂Σ̂w

Eq(w)(p(y|gw(x⋆))) +
∂

∂Σ̂w

KL(q(w)||p(w)) = 0

⇒ ∂

∂Σ̂w

KL(q(w)||p(w)) = 0

(C.2)

157

Above we assumed that the mean of the prior is se to zero we want to optimize w.r.t.
Σ̂w. As the first term does not depend on the prior parameters the ELBO optimization
resorts to find Σ̂w the KL divergence between the prior and the posterior. The kl
divergence between these two Gaussian distributions. is defined as:

KL(q(w)||p(w)) = log(|Σ̂w|)
(1)

− log(|Σw|)−N + Tr(Σ̂−1
w Σw)

(2)

+(µw − µ̂w)
T Σ̂−1

w (µw − µ̂w)

(3)
(C.3)

If now we assume that the matrix Σ̂w is circulant, then the main goal is to find the
values of the kernel k̂ that describes, generates the prior covariance matrix. The kernel
has n elements in total. From the properties of circulant matrices we can expand Σ̂w

as follows:
Σ̂w = k̂0I + k̂1P + k̂2P

2 + · · ·+ k̂nP
n (C.4)

The matrix is decomposed as linear combination of powers of a special permutation
matrix P . This special permutation matrix is called circular shift matrix. Using the
above equation its enables as to find the exact analytical solution for each optimization
problem. ∂ KL(q(w)||p(w))/∂k̂i where k̂i are the kernel values of Σ̂−1

w . We rewrite and
differentiate each annotated term of Eq.C.3 w.r.t k̂i.

(1) = log(|Σ̂w|) = − log(|Σ̂−1
w |)

∂k̂i=⇒ −∂ log(|Σ̂−1
w |)

∂k̂i
= −Tr(P n(k̂0I + k̂1P + k̂2P

2 + · · ·+ k̂nP
n))

= Tr(P n(Σ̂w)) = −Nk̂i

(C.5)

In the final step P n shifts the Σ̂w moving the k̂i elements in the main diagonal thus
the trace can be easily computed.

(2) = Tr(Σ̂−1
w Σw) = Tr(k̂0IΣw) + Tr(k̂1PΣw) + · · ·+ Tr(k̂nP nΣw)

= k̂0 Tr(IΣw) + k̂1 Tr(PΣw) + · · ·+ k̂n Tr(P nΣw)

∂k̂i=⇒ Tr(P iΣw)

(C.6)

(3) = (µw − µ̂w)
T Σ̂−1

w (µw − µ̂w)

= (µw − µ̂w)
T (k̂0I + k̂1P + · · ·+ k̂nP

n)(µw − µ̂w)

∂k̂i=⇒ (µw − µ̂w)
T (P i)(µw − µ̂w)

(C.7)

Using the above we can substitute (1), (2) and (3) in Eq. C.3 and compute the optimal
prior values

∂ KL(q(w)||p(w))
∂k̂i

= 0 ⇒ nk̂i = (µw − µ̂w)
T (P i)(µw − µ̂w) + Tr(P iΣw) (C.8)

158

C.3 Additional Experiments

This section delves deeper into the visualizations presented in the main paper. It offers
supplementary figures to clarify the findings. We start by plotting the difference in en-
tropy values under the semantic shift scenario is illustrated in Figure C.1. We plotted
the density histogram of predictive entropy estimates obtained from different meth-
ods on the SVHN dataset (out-distribution) and CIFAR100 test set (in-distribution).
Ideally, the two histograms must be highly separated. We include further visualiza-
tion for more layers of trained ResNet-20 with ELRG posterior for both Isotropic
and empirical circulant prior Figure C.2. Finally, we conclude with histogram plots
showcasing the values of the learned covariance matrix in a ResNet-20 equipped
with MFVI posterior, trained on CIFAR100 under different priors (Figure C.4 and
Figure C.3).

0 1 2 3

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Entropy

D
en

si
ty

Circulant

Source
Target

0 1 2 3

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Entropy

ELRG

0 1 2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Entropy

MFVI

0 1 2 3

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Entropy

Ktied

Figure C.1: Density histograms of predictive entropy estimates on CIFAR10 (in-
distribution) and SVHN (out-distribution)

159

Diagonal Diagonal Diagonal Diagonal

Circulant Empirical Circulant Empirical Circulant Empirical Circulant Empirical

0.00

0.02

0.04

0.06

0.08

−1000

0

1000

0.00

0.02

0.04

0.06

0.08

−10

−5

0

5

10

−0.5

0.0

0.5

1.0

−5

0

5

0.00

0.02

0.04

0.06

0.08

−100

0

100

200

Figure C.2: Illustration of learned covariance matrices for the 1st convolutional layer
of Resnet-20 trained on CIFAR100 for diagonal prior and for empirical circulant prior
distribution.

10−2 100
0

1

2

3

10−1 101
0

2

4

6

100
0

2

4

6

10−1 101
0.0

2.5

5.0

7.5

10−1 101
0
2
4
6

10−1 101
0

2

4

6

10−1 101
0

2

4

6

100
0

2

4

6

10−1 101
0.0

2.5

5.0

7.5

10−1 101
0
2
4
6

10−1 101
0

2

4

6

10−1 101
0.0

2.5

5.0

7.5

MFVI Isotropic Prior

Figure C.3: Histogram plot of learned covariance matrix values in Resnet-20 equipped
with MFVI posterior trained on CIFAR100 under isotropic prior.

160

10−3 10−2

0.0

2.5

5.0

7.5

0

100

200

0

100

200

0

100

200

300

0

100

200

300

0
100
200
300

0

100

200

0

100

200

0

100

200

300

0

100

200

300

0
100
200
300

0

1000

2000

MFVI Block Diagonal Prior

Figure C.4: Histogram plot of learned covariance matrix values in Resnet-20 equipped
with MFVI posterior trained on CIFAR100 under the block diagonal prior of [11].

161

AUTHOR’S PUBLICATIONS

1. P. Dimitrakopoulos, G. Sfikas, and C. Nikou. “Implicit Neural Representation
Inference for Low‐Dimensional Bayesian Deep Learning.”. In Proceedings
of the 12th International Conference on Learning Representations (ICLR), 2024.

2. G. Sfikas, G. Retsinas, P. Dimitrakopoulos, B. Gatos and C. Nikou, “Shared‐
Operation Hypercomplex Networks for Handwritten Text Recognition.”, In
Proceedings of the 17th International Conference on Document Analysis and
Recognition (ICDAR), 2023, pp. 200-216.

3. P. Dimitrakopoulos, G. Sfikas, and C. Nikou. “Variational feature pyramid
networks”. In Proceedings of the 39th International Conference on Machine
Learning (ICML), 2022, pp. 5142-5152.

4. P. Dimitrakopoulos, G. Sfikas, and C. Nikou. “Wind: Wasserstein inception dis‐
tance for evaluating generative adversarial network performance”, In Pro-
ceedings of the 45th IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 3182-3186.

5. P. Dimitrakopoulos, G. Sfikas, and C. Nikou. “ISING‐GAN: annotated data aug‐
mentation with a spatially constrained generative adversarial network”, In
Proceedings of the 17th IEEE International Symposium on Biomedical Imaging
(ISBI), 2020, pp. 1600-1603.

6. P. Dimitrakopoulos, G. Sfikas, and C. Nikou. “Nuclei detection using residual
attention feature pyramid networks”, In Proceedings of the 19th IEEE Inter-
national Conference on Bioinformatics and Bioengineering (BIBE), 2019, pp.
109-114.

7. M. E Plissiti, P. Dimitrakopoulos, G. Sfikas, C. Nikou, O. Krikoni, and A.
Charchanti. “ Sipakmed: A new dataset for feature and image based clas‐

sification of normal and pathological cervical cells in pap smear images”,
In Proceedings of the 25th IEEE International Conference on Image Processing
(ICIP), 2018, pp. 3144-3148

SHORT BIOGRAPHY

Dimitrakopoulos Panagiotis received his M.Eng. and M.Sc. degrees in Computer Sci-
ence from the Department of Computer Science and Engineering, University of Ioan-
nina, Greece in 2019 and 2020, respectively. His M.Eng and M.Sc theses focused
on Deep learning detection, classification models and Bayesian Variational models,
both applied on the Medical Imaging domain. He is currently a Ph.D. candidate stu-
dent in the same department from 2020. His theses is focused on the combination
of Bayesian and deep learning methods for computer vision tasks. His research in-
terests lie on Bayesian methods, Machine/Deep Learning, Computer Vision, Instance
Segmantation/Detection, Medical Imaging.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Efficient Bayesian Deep Learning in Computer Vision
	Probabilistic Object Detection
	Low Dimensional Bayesian Deep Learning
	Modeling of Weight Correlations in Approximate Inference

	Dissertation Layout

	Bayesian Deep Learning
	Neural Networks and Deep Learning
	Probabilistic Perspective of Neural Networks
	Probabilistic Paradigm
	Maximum Likelihood
	Maximum A-Posteriori
	Bayesian Inference

	Approximate Inference
	Posterior Approximation
	Predictive Approximation
	Prior Specification

	Optimization-based Approximate Inference
	Variational Inference
	Stochastic Variational Inference & Challenges
	Beyond Gaussian Approximate Distributions

	Efficient Approximate Bayesian Inference
	Advances in Scalable Bayesian Inference

	Discussion

	Probabilistic Object Detection via Variational Feature Pyramid Networks
	Challenges of Object Detection & Contributions
	Related Work
	Feature Fusion Networks
	Probabilistic Pruning & Stochastic Architectures
	Probabilistic Object Detection

	Variational Feature Pyramid Networks
	Proposed Feature Fusion Network
	Variational Inference
	Choice of Prior Distribution

	Experimental Evaluation
	Implementation Details
	Detection Predictive Performance
	Evaluating Predictive Uncertainty
	Segmentation Uncertainty in Low Data Regime

	Discussion

	 Low Dimensional Bayesian Deep Learning via Implicit Neural Representation Inference
	Challenges of Bayesian Deep Learning & Contributions
	Related Work
	Low-Dimensional Inference
	Hypernetwork Modeling
	Stochastic Implicit Neural Representations

	Implicit Neural Representation Inference
	Implicit Neural Representation Modeling
	Bayesian Inference over the Neural Representation

	Experimental Evaluation
	Hypernetwork Design Choices
	Visualizing Predictive Uncertainty
	Calibration Evaluation on Regression Benchmarks
	Image Classification under Distribution Shift

	Discussion

	Modeling Weight Correlations in Approximate Inference: When Structure Matters More Than Flexibility
	Modeling Weight Correlations & Contributions
	Related Work
	Correlated Weight Posteriors
	Simple Weight Posterior for Deep Neural Networks
	Circulant and Toeplitz Covariance Matrices
	Circulant Weight Matrices

	Background & Motivation
	The Circulant Normal Distribution
	Exploiting the Circulant Structure
	Concerning the Prior Distribution

	Experimental Evaluation
	Evaluating Approximate Circulant Posteriors
	Circulant Structure as Improvement to Existing VI Methods
	Evaluating Effectiveness of Circulant Priors
	How Circulant Kernel Size Affects Predictive Performance

	Discussion

	Conclusions and Future Work
	Summary of Contributions
	Future Research Directions

	Bibliography
	Variational Feature Pyramid Networks
	Using a Laplace prior
	Laplace Distribution
	Experimental Results

	Implicit Neural Representation Inference
	INR Hypernetwork Details
	Experimental Setup
	Design Choices
	Visualizing Uncertainty
	UCI Regression Benchmarks
	Image Experiments

	ReLU and Sinusoidal Hypernetworks
	Evaluating INR Hypernetwork Size
	Computational Time
	Additional Experiments
	Qualitative Evaluation of Empirical Densities

	Circulant Normal Approximate Distribution
	Experimental Setup
	UCI Regression Benchmarks
	Image Classification

	Empirical Bayes for the Circulant Normal
	Additional Experiments

	Author's Publications
	Short Biography

