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Stamatia-Christina Zerva, Ph.D., Department of Computer Science and Engineering,
School of Engineering, University of Ioannina, Greece, 2024.
Compression and enhancement of medical images and video.
Advisor: Lisimachos Kondi, Professor.

This dissertation explores the advancement of medical imaging technologies through
the development of innovative methodologies for medical image and video compres-
sion and super-resolution. The research focuses on improving the efficiency and
quality of medical image compression by introducing an enhanced method based
on Wavelet Difference Reduction (WDR). Additionally, it proposes novel approaches
for video and MRI super-resolution utilizing Plug-and-Play Priors (PnP) integrated
within the Alternating Direction Method of Multipliers (ADMM) framework. The re-
sults demonstrate significant improvements in Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index Measure (SSIM) across various datasets, emphasizing the
practical applicability and superior performance of the proposed methods in clini-
cal settings. Future directions include further optimization for real-time applications,
extending the methodologies to other medical imaging modalities, and integrating
robust security measures to safeguard patient data.

xiii



ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Σταματία-Χριστίνα Ζέρβα, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυ-
τεχνική Σχολή, Πανεπιστήμιο Ιωαννίνων, 2024.
Συμπίεση και υπερ-ανάλυση ιατρικών εικόνων και video.
Επιβλέπων: Λυσίμαχος Κόντης, Καθηγητής.

Εισαγωγή Ο τομέας της ιατρικής απεικόνισης έχει γνωρίσει αξιοσημείωτες προ-
όδους με την εμφάνιση εξελιγμένων τεχνικών συμπίεσης και βελτίωσης εικόνας.
Αυτή η διατριβή στοχεύει να συμβάλει σε αυτόν τον τομέα αναπτύσσοντας αποτε-
λεσματικές μεθοδολογίες για τη συμπίεση και την υπερ-ανάλυση ιατρικής εικόνας,
αντιμετωπίζοντας την κρίσιμη ανάγκη για υψηλής ποιότητας απεικόνιση στην κλι-
νική διάγνωση και τη φροντίδα των ασθενών.

Στόχοι Οι πρωταρχικοί στόχοι αυτής της διατριβής είναι: Να αναπτυχθεί μια νέα,
αποτελεσματική μέθοδο για τη συμπίεση ιατρικής εικόνας. Να να προταθούν μια
νέα, αποτελεσματική τεχνική για υπερ-ανάλυση βίντεο. Να εισαχθεί μια προηγμένη
μεθόδος για την υπερ-ανάλυση ιατρικής εικόνας.

Δομή Η διατριβή είναι οργανωμένη σε επτά κεφάλαια, καθένα από τα οποία
εστιάζει σε διαφορετικές πτυχές των προόδων της τεχνολογίας ιατρικής απεικόνι-
σης. Στο πρώτο κεφάλαιο παρουσιάζονται οι στόχοι και η δομή της διατριβής. Το
δεύτερο κεφάλαιο παρέχει ένα ολοκληρωμένο υπόβαθρο για τις τεχνολογίες ιατρι-
κής απεικόνισης, συμπεριλαμβανομένης της εξέλιξης της συμπίεσης εικόνας και της
υπερ-ανάλυσης. Τα κεφάλαια τρία έως πέντε παρουσιάζουν τις βασικές ερευνητικές
συνεισφορές, περιγράφοντας λεπτομερώς τις νέες μεθοδολογίες για τη συμπίεση ει-
κόνας και την υπερ-ανάλυση, και τις εφαρμογές τους σε ιατρικά πλαίσια. Το έκτο
κεφάλαιο ολοκληρώνει τη διατριβή, συνοψίζοντας τα βασικά ευρήματα και προτεί-
νοντας μελλοντικές ερευνητικές κατευθύνσεις.

Συμπίεση ιατρικής εικόνας Η συμπίεση ιατρικής εικόνας διαδραματίζει κρίσιμο
ρόλο στην αποτελεσματική αποθήκευση, μετάδοση και διαχείριση μεγάλων συνό-
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λων ιατρικών δεδομένων. Αυτή η έρευνα εισάγει μια βελτιωμένη μέθοδο συμπίεσης
που βασίζεται στη Μείωση Διαφοράς Κυματιδίων (WDR). Η προτεινόμενη μέθοδος,
που ονομάζεται 3D-WDR-MCPD, χρησιμοποιεί τη Μέση Διαφορά Pixel Co-Located
(MCPD) για την επιλογή βέλτιστων τμημάτων για συμπίεση, διασφαλίζοντας υψηλές
τιμές PSNR και SSIM διατηρώντας παράλληλα κρίσιμες διαγνωστικές πληροφορίες.
Εκτενείς αξιολογήσεις σε δημόσια διαθέσιμα σύνολα δεδομένων, όπως το Cancer
Image Archive (TCIA), καταδεικνύουν την ανώτερη απόδοση της μεθόδου, επιτυγ-
χάνοντας υψηλούς λόγους συμπίεσης με ελάχιστη απώλεια οπτικής ποιότητας.

Υπερ‐ανάλυση βίντεο Η υπερ-ανάλυση βίντεο είναι ζωτικής σημασίας για τη
βελτίωση της ποιότητας των ιατρικών βίντεο, τα οποία είναι απαραίτητα σε δια-
δικασίες όπως η ενδοσκόπηση και η παρακολούθηση ασθενών. Αυτή η διατριβή
προτείνει μια νέα μέθοδο για υπερ-ανάλυση βίντεο χρησιμοποιώντας Plug-and-Play
Priors (PnP) εντός του πλαισίου ADMM. Η μέθοδος αξιοποιεί δίκτυα βαθιάς απο-
θορυβοποίησης, όπως το DnCNN, για να βελτιώσει τις λεπτομέρειες της εικόνας
χωρίς σημαντικές υπολογιστικές επιβαρύνσεις. Η προσέγγιση επικυρώνεται μέσω
εκτεταμένων πειραμάτων, παρουσιάζοντας ουσιαστικές βελτιώσεις στην ποιότητα
του βίντεο σε διάφορα σύνολα δεδομένων.

Υπερ‐ανάλυση μαγνητικής τομογραφίας Η μαγνητική τομογραφία (MRI) είναι
ένα κρίσιμο εργαλείο στην ιατρική διαγνωστική, που απαιτεί εικόνες υψηλής ανά-
λυσης για ακριβή ανάλυση. Η διατριβή επεκτείνει το πλαίσιο PnP σε υπερ-ανάλυση
μαγνητικής τομογραφίας, ενσωματώνοντας καινοτόμους denoisers στον αλγόριθμο
ADMM. Αυτή η τεχνική βελτιώνει σημαντικά την ανάλυση και τη σαφήνεια των
εικόνων MRI, παρέχοντας πλουσιότερο οπτικό πλαίσιο για κλινική διάγνωση.

Αποτελέσματα και συζήτηση Οι προτεινόμενες μεθοδολογίες καταδεικνύουν
σημαντικές προόδους στην ποιότητα της ιατρικής εικόνας και βίντεο. Τα βασικά
ευρήματα περιλαμβάνουν: Η μέθοδος 3D-WDR-MCPD επιτυγχάνει έως και 3,8 dB
βελτίωση του PSNR, εξασφαλίζοντας υψηλή απόδοση συμπίεσης και διατήρηση του
διαγνωστικού περιεχομένου. Η μέθοδος υπερ-ανάλυσης βίντεο που βασίζεται σε
PnP ξεπερνά σταθερά τις σύγχρονες τεχνικές, παρέχοντας βίντεο ευκρινέστερα και
υψηλότερης ποιότητας. Η προσέγγιση υπερ-ανάλυσης MRI ενισχύει τη σαφήνεια της
εικόνας, υποστηρίζοντας καλύτερες κλινικές αξιολογήσεις. Αυτά τα αποτελέσματα
υπογραμμίζουν τις πρακτικές επιπτώσεις των προτεινόμενων μεθόδων, υπογραμ-
μίζοντας τις δυνατότητές τους να φέρουν επανάσταση στην τεχνολογία ιατρικής
απεικόνισης, επιτρέποντας πιο αποτελεσματική διαχείριση δεδομένων και βελτιω-
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μένη διαγνωστική ακρίβεια.
Μελλοντικές έρευνες Η μελλοντική έρευνα θα επικεντρωθεί σε πολλές πολλά

υποσχόμενες οδούς, όπως: Περαιτέρω βελτιστοποίηση μοντέλων βαθιάς εκμάθησης
για βελτιωμένη υπερ-ανάλυση εικόνας. Επέκταση των μεθόδων που αναπτύχθηκαν
σε άλλες μεθόδους ιατρικής απεικόνισης, όπως αξονικές τομογραφίες και υπερηχο-
γράφημα. Δίνοντας έμφαση στις δυνατότητες επεξεργασίας σε πραγματικό χρόνο
για την υποστήριξη κλινικών πρακτικών και τηλεϊατρικής. Ενσωμάτωση ισχυρών μέ-
τρων κρυπτογράφησης και απορρήτου για την προστασία των δεδομένων ιατρικών
εικόνων.

Συμπέρασμα Αυτή η διατριβή παρουσιάζει πρωτοποριακές συνεισφορές στην
τεχνολογία ιατρικής απεικόνισης, προσφέροντας καινοτόμες λύσεις για συμπίεση
εικόνας και βίντεο και υπερ-ανάλυση. Αντιμετωπίζοντας κρίσιμες προκλήσεις και
αξιοποιώντας τις δυνατότητες της βαθιάς μάθησης, η έρευνα θέτει ένα νέο σημείο
αναφοράς για μελλοντικές εξελίξεις στον τομέα, υποσχόμενη να βελτιώσει σημα-
ντικά τη φροντίδα των ασθενών και τη διαγνωστική ακρίβεια.

xvi



CHAPTER 1

INTRODUCTION

1.1 Objectives

1.2 Structure

In the context of the ever-evolving field of digital image processing, which utilizes
mathematical operations and signal processing techniques to analyze images and
videos, significant technological advancements have been made in medical imaging
and telemedicine.

Specifically, developments such as medical image compression, super-resolution
of medical images, and video super-resolution play pivotal roles. These technologies
are not only essential for improving the efficiency of medical data storage and trans-
mission but also enhance the quality and resolution of medical images and videos.
Consequently, they contribute significantly to facilitating better diagnosis, treatment
planning, and research, leveraging the digital processing techniques that underpin
modern image interpretation.

Medical Image Compression involves reducing the size of medical images without
substantially degrading their quality. This process is essential for effective data storage
and rapid transmission, especially in telemedicine applications where bandwidth may
be limited. Techniques like JPEG, JPEG 2000, and advanced deep learning methods
are commonly used for this purpose. The goal is to achieve high compression ratios
while preserving the critical diagnostic features of the images [7].
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Medical Image Super-Resolution refers to the process of enhancing the resolution
of medical images. This is particularly important for improving the visibility of fine
details that are crucial for accurate diagnosis and treatment planning. Techniques like
interpolation, deep learning-based approaches, and generative adversarial networks
(GANs) have been widely adopted for super-resolution. These methods aim to re-
construct high-resolution images from their low-resolution counterparts, making it
possible to identify and analyze medical conditions with greater precision [8].

Video Super-Resolution in the medical field involves increasing the resolution of
video sequences. This is vital in various medical applications, such as endoscopy,
surgery recordings, and patient monitoring, where higher resolution can lead to bet-
ter visibility and understanding of dynamic processes. Techniques for video super-
resolution often rely on frame interpolation, motion estimation, and deep learning
algorithms to enhance the detail and clarity of video frames. This not only improves
the quality of medical videos but also supports better decision-making and documen-
tation in clinical practices [9].

These technologies collectively contribute to the advancement of medical imaging
by enabling more efficient data management and enhancing the quality and clarity
of medical images and videos. Their ongoing development and application hold the
promise of further improving patient care, diagnostic accuracy, and medical research.

1.1 Objectives

Image compression and image enhancement techniques are the most widely used
techniques these days in the field of medical images. So, in this PhD dissertation
we compare the performance quality of the different compression and enhancement
techniques based on different performance metrics.

Based on the need of developing more efficient techniques of compression and
super-resolution, the objectives of this dissertation are:

• To develop a new, efficient method of medical images compression.

• To develop new, efficient methods of video super-resolution.

• To develop a new, efficient method of medical images super-resolution.
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1.2 Structure

This dissertation consists of six chapters, each focusing on different aspects of ad-
vancements in medical imaging technologies, specifically in the domains of image
compression, medical image super-resolution, and video super-resolution.

Chapter one is the introduction of the dissertation, which results in the objectives
and structure of the dissertation

Chapter two provides a comprehensive background on medical imaging technolo-
gies, including the evolution of image compression, the importance of image and
video super-resolution in medical applications, and a review of existing technologies
and methodologies. It sets the stage for understanding the current challenges and
opportunities in the field.

Chapter three focuses on the crucial aspect of medical image compression, delving
into the technical details of various compression techniques, from traditional methods
like JPEG and JPEG 2000 to advanced deep learning approaches and suggests a
wavelet-based MRI compression method, based on wavelet difference reduction.

Chapter four examines the technology’s significance in medical contexts such as
endoscopy, surgical procedures, and patient monitoring. It presents various techniques
for improving video quality, including frame interpolation and motion estimation, and
evaluates their effectiveness in clinical practice and finally suggests a video super-
resolution method using plug-and-play priors and an MRI super‐resolution method
using plug‐and‐play priors and rigid transformation.

Chapter five extends on the method presented in Chapter 5 and presents a new
technique for video super-resolution that incorporates an innovative denoiser within
the ADMM algorithm.

The concluding Chapter six summarizes the key findings of the dissertation, em-
phasizing the contribution of the research to the field of medical imaging technology.
It outlines the prospects for future advancements in image and video compression
and super-resolution, highlighting areas for further investigation and development.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Medical Image Compression

2.2 Medical Image Compression Evaluation Methods

2.3 Wavelet transform

2.4 Image and Video Super‐Resolution

2.5 MRI Super‐Resolution

2.6 Discussion

2.1 Medical Image Compression

Medical image compression became a prevalent tool with a significant impact on diag-
nosing diseases in clinical practice [10]. The problem of compressing and transmitting
an image in real-time, given the bandwidth of the communication channel, was of
great importance, especially in a low-speed connection environment. This problem
was not easy to solve because medical images typically contained a huge amount of
important diagnostic information that needed to be losslessly [11] transmitted and
stored [7]. Real-time constraints limited image compression applications for trans-
mission purposes. On the other hand, image compression applications for storage
purposes were less stringent since most algorithms were not executed in real time.

Many irreversible standards were used for compressing images [12]. One of the
most popular for medical applications was the standard from the joint photographic
experts group (JPEG) [13]. The vital feature of JPEG was that it enabled compression
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at various levels, thus allowing the user to choose the quality of the compressed
image so that information losses were not visible to physicians. JPEG 2000 [14]
was the successor of the JPEG standard that provided compression with no or very
little information loss, so the image quality did not deteriorate but approximated the
image quality without compression. Compared to the JPEG standard, the JPEG 2000
standard provided a typical compression gain of 20

A wide variety of image transform-based coding techniques existed, which among
others included discrete cosine transform (DCT) [15] and discrete wavelet transform
(DWT) [16]. The DCT method proposed by Nasir [17] transformed image pixels from
the spatial domain into the frequency domain, allowing redundancy to be found.
The Hungarian mathematician Alfréd Haar created the first DWT method. The main
characteristic of this method was that the wavelets were discretely sampled, and
it had a temporal resolution that allowed capturing both frequency and location
information [18]. For the compression of volumetric medical datasets, it appeared
that 3D wavelet-based encoders outperformed DCT-based solutions while providing
the required functions such as quality scaling and resolution, random access and
region coding [19]. Narmatha et al. [20] proposed a two-stream method for encoding
and decoding medical images by dividing and merging different regions of the wavelet
subbands. Amri et al. [21] combined into a single processing pipeline image reduction
and expansion techniques of different lossless compression standards such as JPEG-LS
and TIFF formats to compress medical images.

In recent years, much effort focused on volumetric medical image compression,
where 3D medical images could be viewed as time sequences or volume tomographic
slices of an object. Bruylants et al. [22] employed the wavelet transformation to allow
support for volumetric image datasets. Ravichandran et al. [23] also used the wavelet
transform to compress 3D medical images. Senapati et al. [24] proposed the 3D hi-
erarchical listless block (3D-HLCK) algorithm, a modified 3D block coding algorithm
containing a listless variant. Tang and Pearlman [25] created the 3D set partitioning
embedded block method (3D-SPECK), which encoded 3D volumetric image data by
utilizing the dependencies in each dimension. Chen et al. [26] developed an end-to-
end learning-based framework for 3D volumetric image compression. The framework
used the intra-slice and inter-slice information to predict the entropy coding distri-
bution. Also, it utilized two novel gating mechanisms for better aggregation of the
intra-slice and inter-slice features. Nagoor et al. [27] proposed a lossless compression
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algorithm that trained a neural network as a 3D data predictor for medical image
volumes containing images with 65,536 levels of colors and tones.

Additionally, Zerva et al. [1] proposed an extension of the standard wavelet dif-
ference reduction (WDR) method using mean co-located pixel difference (MCPD) to
select the optimal number of slices that exhibit the highest similarity in the spatial and
temporal domain. The slices with large spatiotemporal coherence were encoded to-
gether as one volume in terms of higher PSNR and structural similarity index (SSIM).
It was found that the perceptual quality of the medical image was remarkably high.
The results indicated that the PSNR improvement over existing schemes might reach
up to 3.8 dB and could guide the implementation of a mobile and web platform that
can be used for compressing and transmitting medical images in real time.

Among reversible compression algorithms, Huffman coding was one of the old-
est methods of compressing image data. Developed by Huffman [28], it was used to
reduce coding redundancy without degrading the quality of the reconstructed im-
age. Other reversible compression algorithms included arithmetic coding and lossless
predictive coding. Arithmetic coding was a form of entropy encoding used in image
compression and other data compression methods. Unlike traditional coding tech-
niques, which assigned a distinct code or set of bits to each symbol in the data,
arithmetic coding represented the entire message as a single number, a fraction n

where 0.0 ≤ n < 1.0 [29]. Lossless predictive coding was a two-stage approach that
utilized a lossless adaptive predictor followed by arithmetic coding [30].

Recent lossless approaches involved the multi-dimensional compression by sub-
string enumeration (MCSE) by Dubé [31]. CSE was a compression algorithm for
bit strings that was generalized to higher dimensions to handle all types of images.
Makarichev et al. [32] modified the irreversible discrete atomic compression (DAC)
algorithm by adding compressed data describing the difference between the origi-
nal image and the compressed one inside the corresponding DAC file. The addition
combined with the compressed image resulted in a reconstructed image without any
distortions. Lee et al. [33] developed a high-throughput image-compression tech-
nique using the Golomb-Rice coding and its hardware architecture. Descampe et al.
[34] proposed the JPEG XS compression algorithm for visually lossless, low-latency
lightweight image coding. It was an international standard that achieved similar
(slightly lower) compression ratios compared to the JPEG 2000 method. One ad-
vantage over JPEG 2000 was that it consumed significantly less power and required
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fewer logic resources in hardware implementations.
A significant number of approaches utilized artificial neural networks (ANNs) for

specific tasks to increase the compression ratio. Min et al. [35] created a hybrid ap-
proach to compress three-dimensional (3D) medical images. The hybrid algorithm
utilized the medical images’ anatomical features to divide the medical data into spe-
cific areas. Then, a deep neural network created optimal predictors in each area.
The predictors could be switched adaptively according to the area’s characteristics
being compressed. Finally, the residuals were compressed using an entropy coding
scheme. Yang et al. [36] created an image compression-encryption algorithm with
the help of a fractional-order memristive BPF chaotic circuit and a back-propagation
(BP) trained neural network. The neural network compressed the image while the
encryption process was done using a zigzag algorithm with a xor operation. Rhee et
al. [37] created a lossless compression technique based on the multi-layer perceptron
(MLP) neural network. The MLP outputted prediction errors and contexts which
were introduced as input to adaptive arithmetic encoders. Zhu et al. [38] used a long
short-term memory (LSTM) neural network for building a predictor, which was used
in lossless compression.

In contrast, among the irreversible compression algorithms (created by the need
to produce significantly lower bit rates), there were various approaches to lossy image
compression, such as vector quantization, coding prediction [39], and transform cod-
ing. The general components of a lossy image compression technique involved the
three stages (decomposition or transformation, quantization, and symbol encoder)
shown in Fig. 2.1.

Figure 2.1: General elements of an irreversible compression technique. An irreversible
compression technique is, in general, a three-stage process. The procedure begins by
decomposing or transforming the image, followed by a quantization and symbol
encoding process.

There were various transformations used in image compression. The Karhunen-
Lo‘eve transform (KLT) [40, 41, 42] was an orthogonal linear transformation tech-
nique that removed pairwise statistical correlation amongst the transform coefficients.
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The piecewise Fourier transform (PFT) [43] maintained image quality by compressing
the images’ bandwidth. The discrete Walsh-Hadamard transform (DWHT) [44, 45]
was an orthogonal transformation type that broke down a signal into a series of Walsh
functions (orthogonal and rectangular wave-forms). Finally, the wavelet transform al-
gorithms [46], which prevailed in the compression of medical images, were used as
frequency analysis and signal coding tools in complex non-stationary signals.

Recent irreversible compression algorithms included the work of Xu et al. [47],
which improved the singular value decomposition (SVD) method using a singular
vector sparse reconstruction strategy. Guo et al. [48] developed an image compression
framework for computer vision applications in embedded systems. The framework
made use of the trade-off between memory traffic and vision performance. Sadchenko
et al. [49] created a compression algorithm based on the samples decimation method
for medical images, which considered medical image peculiarities.

Some lossy approaches utilized artificial neural networks (ANNs) to increase the
compression ratio. Dua et al. [50] used a convolutional neural network (CNN) for
compressing hyperspectral images. The algorithm combined CNN’s auto-encoder,
convolution, and max-pooling layers to reduce the image’s dimensions and produce
a compressed image. The image could be restored with some loss of information by
reversing the CNN’s steps using the CNN’s decoder and transpose convolution layer.
Zhao et al. [51] utilized multiple description CNNs to compress images for transmis-
sion. Multiple description coding was used for signal transmission in unreliable and
non-prioritized networks. Mishra et al. [52] proposed a two-stage auto-encoder-based
framework for compressing and decompressing malaria red blood cell images. The
above irreversible methods managed to achieve high compression ratios, but they
were unsuitable for medical images since they could lose potentially valuable medical
information.

2.2 Medical Image Compression Evaluation Methods

Several methods evaluated the clinical acceptance of the compression level [53]. The
first was the numerical analysis of the pixel before and after compression [54]. This
simple method was recommended for calculating the mean pixel error for the com-
pressed image but had no correlation with radiologists’ evaluations and therefore had

8



no clinical significance. A second method used subjective observers to evaluate with a
focus on visual acceptance and presumptive diagnostic value. Many approaches were
proposed, including image scores from the least to the most compressed or subjective
evaluations of the onset of a pathological process. None of this led to reliable and
reproducible results. A third method was the objective measurement of diagnostic
accuracy using blind method evaluation. This category of methods was the most
reliable.

The relationship between ”optically lossless” compression and ”diagnostically loss-
less” is complex. There was evidence that despite the apparent visual degradation
from compression, high performance equivalent to that of uncompressed images for
certain details, body parts, and diagnostic methods could be achieved. This equivalent
did not alter the ability of a radiologist to successfully interpret a poor-quality image
(perhaps with less confidence). On the other hand, many physicians were reluctant
to interpret compression-degraded images, so the ”visually lossless” limit may have
been the limiting factor despite the ”diagnostically lossless” limit, assuming that the
former implied less compression than the latter. Conversely, although it was often
assumed that if there was no visual quality loss, there could be no diagnostic loss.
The above claim had not been sufficiently investigated, and there was a possibility
that the experimental way which defined the thresholds for visual perception without
losses was insufficient to guarantee diagnostic performance. Challenging tasks, includ-
ing low-contrast detection, must maintain high-frequency information, or they would
be vulnerable to high compression rates, which were misinterpreted as false-positive
findings [55].

Simple mathematical measurements that quantified the difference between the
original and the decompressed image, such as PSNR and mean square error (MSE),
were poorly correlated with visual or diagnostic performance, and more advanced
measurements were developed. SSIM [56] was a method for measuring the similarity
between two images. The SSIM index could be considered a measure of the quality of
one of the images being compared, provided that the other image was considered of
excellent quality. Another method based on mathematical models simulated human
physiology. These software tools could help measure image similarity or differences
and determine noticeable difference (JND), signal-to-noise ratio (SNR) ratios, or levels.
Probability for detecting differences in the number of pixels. Here, the structural
similarity method (SSIM) was an improvement over traditional methods such as
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PSNR and MSE because it appeared to be more consistent with HVS performance
[57].

The amount of ”information” in an image is described as its ”entropy”, which
could be estimated mathematically, with varying degrees of complexity. A simple
measure was the zero-order entropy (sum of the environmentally independent prob-
abilities of each pixel value). The degree to which an image could be compressed
using reversible compression could also be used as a measure of entropy. An im-
age’s entropy determined its compression ratio before the difference was visually or
diagnostically detectable. A significant factor in a medical image’s entropy was the
amount of rectangular pixel panel occupied by the body part (e.g., consider a small
versus a large breast on a fixed-size mammography scanner). Also important was
the amount of noise in any unstable background (non-static) or area that had been
separated [58].

High entropy images should probably be processed with lower compression ratios
to irreversible compression than those with more uniform content. A simple approach
was to measure the file output size of a reversible image compression method (JPEG
lossless or JPEG 2000), which should be larger for images with higher entropy. Other
reliable methods, such as image compositional complexity (ICC), fractal dimension
(FD), or region of interest (ROI), might have been more effective at computing and
creating images more noise resistant [59].

2.3 Wavelet transform

The wavelet transform combined low-pass and high-pass filtering into a spectral sig-
nal decomposition and extremely fast implementation. Before considering the wavelet
transformations of 2D images, it was useful first to consider the wavelet transforma-
tions of one-dimensional (1D) signals [60, 61]. Given a 1D signal s0[n], its one-level
wavelet transform is the mapping s0[n]→ (s1[2n]|d1[2n]) defined by the formulas (2.1)
and (2.2).

s1[2n] =
M∑

k=−M

aks0[2n+ k] (2.1)
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d1[2n] =
N∑

k=−N

βks0[2n+ k + 1] (2.2)

The signals s1[2n] and d1[2n] are respectively low-pass and high-pass filterings of
s0[n]. These filterings have also been down-sampled and are defined over the indices
{2n} rather than {n}. Viewed as sampled, signals are sampled at half the rate as s0.
The coefficients {ak} are the low-pass coefficients and the coefficients {βk} are the
high-pass coefficients [60].

These coefficients have some basic properties which are shared by other wavelet
systems. One important property is that they define an invertible transform. Perhaps
just as importantly, the high-pass coefficients satisfy

∑
βk = 0 and

∑
kβk = 0. Con-

sequently, if s0 is linear (or approximately linear) over the indices 2n, 2n + 1, 2n + 2,
then d1[2n] = 0 (or d1[2n] ≈ 0). When s0 is obtained from samples of a piecewise
smooth function, the high-pass filtering d1 will be essentially zero-valued (except
near transitions between pieces of the piecewise smooth function). This provides the
foundation for compression. When the transform sm → (sm+1|dm+1) is iterated on the
low-pass outputs s1, s2, . . . , then many levels of transformation will produce large
numbers of zero values (or almost zero values) at high-pass outputs d2, d3, . . . Such
high redundancy of zero values, in d1, d2, d3, . . . , allows for significant compression
[60].

A wavelet transform for 1D signals can easily be generalized to 2D images by
applying it separately to each dimension. The first level of a discrete particle trans-
formation of a matrix F = J × K , where J and K are both even, is obtained in a
two-step manner. The first step can be seen in equation (2.3) and involves trans-
forming each row of F with a 1D particle transformation by taking a matrix F̃ .

F →


s11|d11
s12|d12
...

s1j |d1j

 (2.3)

The second step, shown in formula (2.4) transforms each column of F̃ by the same
1D transform where A1, V 1, H1, and D1 are each J

2
× K

2
sub-matrices. Steps one and

two are independent and may be performed in either order [60].
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F →
(
A1

1|V 1
1

H1|D1

)
(2.4)

The wavelet transform can be iterated on the row-low-pass/column-low-pass out-
puts (two-level transform). Doing this on A1 produces submatrices A2, V 2, H2, and
D2. As with 1D signals, the second level sub-matrices are responses to the 2D image
values having twice the range of pixels (twice the scale) as the first level sub-matrices
[60].

2.4 Image and Video Super‐Resolution

Super-resolution (SR) involved the generation of high-resolution images or videos
from their low-resolution counterparts, presenting a complex challenge within the
field of computer vision. Its applications spanned diverse domains, including medi-
cal imaging, surveillance, remote sensing, and multimedia. The enhancement of res-
olution and visual quality in low-resolution videos was a particularly demanding
task within super-resolution, as it aimed to address issues like motion, subsampling,
additive noise, and point spread function (PSF) blurring between frames in a low-
resolution (LR) sequence [9].

Researchers, over time, introduced various techniques and algorithms to tackle the
intricate problem of super-resolution. Within a low-resolution sequence, each frame
captured only a fraction of the original high-resolution (HR) image’s information
due to inherent degradations. However, frames with subpixel motion offered unique
partial information of the original HR image. Consequently, with sufficient LR frames
containing distinct information, the HR image could be reconstructed through digital
image or video processing [62].

The use of deep learning for image super-resolution attracted considerable interest
for its efficiency in transforming low-resolution images into high-resolution counter-
parts. A range of deep learning frameworks and techniques were developed for this
purpose. The field saw significant progress with the adoption of Convolutional Neural
Networks (CNNs) in enhancing image resolution, as evidenced by various studies and
models [63, 64, 65, 66, 67, 68, 69, 70] such as SRCNN by Dong et al. [71], which
marked a groundbreaking development in single-image super-resolution. This was
followed by the introduction of more complex models like VDSR and DRCN by Kim
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et al., which featured deeper networks [63] and recursive learning [64], respectively.
Unlike traditional methods, learning-based strategies aimed to directly learn the

transformation from low-resolution to high-resolution images. Examples included ap-
proaches that substituted low-resolution patches with corresponding high-resolution
matches from a predefined dictionary [72, 73, 74, 75], as suggested by Timofte et al.
[76, 73], or self-example methods [77] that leveraged recurring patterns within the
image to enhance resolution. In recent developments, deep neural networks were rec-
ognized for their ability to learn complex, hierarchical data representations, further
advancing the capabilities of image super-resolution.

The application of Generative Adversarial Networks (GANs) to image super-
resolution, proposed by Ledig et al. [65] with SRGAN, revolutionized the field. GANs
enabled high-quality SR by generating more visually pleasing details, albeit with the
risk of introducing non-realistic textures. Deep learning models combined with reg-
ularization techniques were explored in works like Zhang et al. [78], where a CNN
was used with a sparsity-promoting regularizer to achieve superior super-resolution
results. Recent research shifted toward joint image restoration and super-resolution,
where the low-resolution image was restored before being super-resolved. An exam-
ple was the work of Zhang et al. [79], which combined the power of CNNs with an
image restoration framework.

Sparse coding and dictionary learning-based approaches, pioneered by Yang et
al. [80], made significant contributions to image super-resolution. These techniques
modeled the relationship between low and high-resolution patches by learning over-
complete dictionaries and optimizing for sparsity.

Video super-resolution followed image super-resolution. Tsai and Huang [81] used
the Fourier Transform’s shifting property and the aliasing connection between the
continuous and discrete Fourier transforms. In the spatial domain, Stark and Oskoui
[82] introduced the projection onto convex sets (POCS) method, which aligned convex
constraint sets that reflected the desired image attributes with the high-resolution im-
age domain. This technique was adapted for dynamic motion blur through methods
such as block matching and phase correlation [83, 84].

In video super-resolution, the accurate estimation of motion assumed a pivotal
role. This process, essential for enhancing the resolution of low-resolution videos,
involved aligning and consolidating information from multiple frames to generate a
high-resolution output [85].
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The deterioration of images in video super-resolution commonly involved the
representation of a linear blur, motion, subsampling, and Gaussian noise. This was
typically conceptualized through an observation model, assuming the acquisition of
multiple low-resolution (LR) images through a specific process [86]. According to
this model, the LR input images were obtained from the high-resolution (HR) orig-
inal scene through operations such as warping, blurring, and downsampling. It was
assumed that the HR image remained constant during the acquisition of several LR
images [87].

2.4.1 Plug and Play Priors

Plug-and-Play Priors (PPP) stood out as a widely adopted framework that integrated
physical and learned models to address computational imaging challenges. It was a
robust framework that merged conventional optimization techniques with modern
denoising methods and priors to efficiently tackle inverse problems [88]. Initially
introduced by Venkatakrishnan et al. in 2013 [5], PPP garnered significant attention
across various domains of computer vision and image processing. This literature
review delved into key contributions that shaped the development and application of
PPP.

The original PPP framework proposed by Venkatakrishnan et al. [5] showcased its
efficacy in solving inverse problems, such as image denoising and deblurring. Their
work demonstrated that by alternately applying denoising and data fidelity steps,
PPP achieved state-of-the-art results. The denoising step employed robust algorithms
like Non-Local Means (NLM) or Block-matching and 3D filtering (BM3D) [89] to
eliminate noise and enhance image quality. The data fidelity step ensured consistency
between the denoised image and the observed measurements. Despite the original
formulation relying on ADMM [90], PPP proved equally effective when combined
with other proximal algorithms like primal-dual splitting (PDS) [91] and fast iterative
shrinkage/thresholding algorithm (FISTA) [92].

To further enhance denoising capabilities within PPP, Zhang et al. [78] intro-
duced a deep denoising network named DnCNN. Integrating DnCNN into the PPP
framework demonstrated its effectiveness in tasks such as image super-resolution
and inpainting. The utilization of deep neural networks within PPP provided a more
flexible and potent denoising tool, surpassing traditional handcrafted denoisers in
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performance.
Ghassab and Bouguila [93] explored the utilization of a Student-t mixture model

as a promising tool for the reconstruction of video super-resolution. The Student-t
mixture model, renowned for its heavy tail, was deemed robust and well-suited for the
prior of video frame patches, offering a mixture model with a rich log-likelihood for
information retrieval. Edge-preserving filtering was implemented to address potential
data uncertainties and preserve areas with abrupt lighting changes in video frames.
The Plug-and-Play Priors (PPP) structure was subsequently employed to integrate the
Student-t mixture prior model and edge-preserving filtering into the super-resolution
algorithm. Empirical evaluations conducted on various video frame sets demonstrated
the effectiveness of the proposed algorithm. Comparisons with eight other state-of-
the-art super-resolution methods affirmed that the proposed framework generally
outperformed others across different super-resolution scales, even in the absence of
leveraging motion estimation to exploit frame correlations.

PnP-ADMM is widely recognized for its efficiency and fast empirical convergence
within the realm of frequently employed operators in computational imaging. How-
ever, it demands the computation of the proximal map, in contrast to PnP-FISTA,
which solely requires the computation of the gradient ∇g. While the gradient is
theoretically less complex than the proximal map, numerous applications enable the
efficient computation or approximation of the proximal map. General techniques such
as conjugate gradient or specialized methods, particularly when the forward model
incorporated a spatial blurring operator computed through fast Fourier transform
(FFT), could be employed for this purpose [94].

The incorporation of an extra state variable, employed as an initiation for the
proximal minimization problem, streamlined this procedure. An iterative solver, com-
mencing from this initialization, performed a series of steps to estimate the minimiza-
tion effectively. This state variable also converged with the outer loop, resulting in
decreased computational requirements through partial updates while maintaining the
accuracy of the final solution [95].

In a research paper by Brifman et al. [96], scientists introduced a straightfor-
ward and robust super-resolution framework applicable to individual images and
easily adaptable to videos. The foundation of the framework was rooted in the ob-
servation that the denoising of both images and videos could be effectively accom-
plished through various methods. By leveraging the Plug-and-Play-Prior framework
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and adopting the Regularization-by-Denoising (RED) approach, the researchers illus-
trated how denoisers could be harnessed to tackle both Single-Image Super-Resolution
(SISR) and Video Super-Resolution (VSR) challenges using a unified formulation. In-
stead of incorporating motion estimation between frames, the VBM3D video denoiser
was employed in this approach.

2.4.2 Regularization Methods for Video Super‐Resolution

The role of regularization methods in video super-resolution was pivotal. Regulariza-
tion methods introduced mathematical constraints into the super-resolution process,
guiding it towards a solution that adhered to prior knowledge about the data. These
constraints were vital for producing visually appealing results.

In video super-resolution, numerous regularization techniques were developed.
A significant technique introduced by Tekalp et al. [97] enhanced the approach by
adopting a least squares solution for equation systems and integrating a linear shift-
invariant blur model. Kim et al. [98] further refined this method by implementing
a weighted least squares algorithm to better manage noisy data, though these ap-
proaches required prior knowledge of global motion.

Stochastic methods formed another significant class of resolution improvement
algorithms, notably including maximum likelihood and maximum a posteriori (MAP)
strategies [99]. MAP strategies were, in fact, equivalent to regularization methods.
The MAP approach, particularly, utilized an edge-preserving Huber–Markov random
field as an image prior, offering a sophisticated solution for resolution enhancement
while estimating registration parameters [100, 101, 102, 103, 104, 105, 106]. This
method was supported by the use of Gibbs-Markov random fields with a focus on
local interactions. The selection of an appropriate regularization parameter, which
was pivotal for high-resolution image reconstruction, was adeptly addressed using
the L-curve method to pinpoint the optimal “L-corner.”

The accurate characterization of the point spread function (PSF) and the pre-
cise registration of subpixel movement were crucial for high-resolution image recon-
struction. Nonetheless, accurately determining these parameters remained a challenge
in practical scenarios. Lee and Kang [107] proposed a regularized adaptive high-
resolution reconstruction technique that accounted for inaccuracies in subpixel reg-
istration, using Gaussian noise assumptions related to the magnitude of registration
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errors. This led to the development of methods for estimating the regularization pa-
rameter for each low-resolution frame, showing potential for convergence to a unique
global solution. Additionally, a hierarchical Bayesian framework was employed [108]
to tackle image restoration challenges in the face of partially known blurs, intro-
ducing iterative algorithms aimed at enhancing image restoration fidelity in complex
scenarios [109, 110, 111].

Lucas et al. [112] proposed VSRResFeatGAN, which was a generator network
optimized for the VSR problem, enhanced with two regularizers, a distance loss in
featurespace and pixel-space.

An early approach was Total Variation (TV) regularization, proposed by Rudin et
al. [113], which minimized the gradient magnitude of an image to promote piecewise
smoothness. They introduced TV regularization as a means to preserve sharp edges
and promote sparsity. Their work set the stage for numerous applications in image
processing and beyond. It has been widely adopted in image super-resolution to
suppress artifacts.

The Non-local Means (NLM) algorithm, introduced by Buades et al. [114], was
incorporated into super-resolution to exploit non-local self-similarity within images,
enabling better estimation of missing high-frequency details. Interestingly, the algo-
rithm that we used for denoising in a plug-and-play context was, at least in terms
of statistical inference, superior to the Non-local Means, as explained in [115]. This
meant practically that Non-local Means was a sub-optimal case of the adopted model
herein, since the effectiveness of the denoising task by the former was compromised
for the sake of computational speed, see [115].

Dabov et al. [89] introduced the BM3D algorithm, which leveraged a 3D transform-
domain collaborative filtering approach to effectively remove noise from images. This
work had a profound impact on image denoising techniques.

Furthermore, Gu et al. [116] extended BM3D by incorporating weighted nuclear
norm minimization. This addition further improved BM3D’s capabilities for image
denoising, making it a versatile and widely used tool in the field of image processing.
BM3D was an image denoising algorithm, and it was not specifically a regulariza-
tion algorithm. However, image denoising often involved regularization techniques
to suppress noise and enhance image quality. BM3D employed collaborative filtering
and 3D transform-domain methods to denoise images, which could be seen as a form
of signal processing rather than traditional regularization.
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The alternating direction method of multipliers (ADMM) was an algorithm that
solved convex optimization problems by breaking them into smaller pieces, each of
which were then easier to handle. The foundational work on ADMM by Boyd et
al. [117] provided a comprehensive overview of the algorithm, including its theoret-
ical underpinnings and practical applications in various domains, such as machine
learning and distributed optimization. Another key development in the ADMM fam-
ily was the Split Bregman method, introduced by Goldstein and Osher [118]. This
method extended the principles of ADMM to efficiently solve L1-regularized prob-
lems, making it invaluable in image processing and sparse signal recovery tasks.
ADMM became a powerful optimization tool, especially for solving problems with
structured or separable objective functions.

The Accelerated Proximal Gradient Method (APGM) was another optimization
algorithm primarily used for solving non-smooth convex optimization problems [90].
Similar to ADMM, it could be applied to problems with regularization terms as part
of the objective function. APGM was particularly useful for solving problems with
non-smooth components and could be used in regularization scenarios. APGM was
widely employed for efficiently solving non-smooth convex optimization problems.
The theoretical foundations of accelerated gradient methods, including APGM, were
explored in Nesterov’s work [119]. This research provided valuable insights into the
convergence properties and efficiency of these algorithms, reinforcing their significance
in optimization. Finally, Bayesian frameworks and variational methods have also been
employed for image super-resolution [78].

2.5 MRI Super‐Resolution

Medical imaging played a pivotal role in the diagnosis and monitoring of various neu-
rological conditions. Magnetic Resonance Imaging (MRI) was a widely used modality
for brain imaging due to its non-invasive nature and excellent soft tissue contrast.
However, the spatial resolution of MRI images was limited by various factors, such
as acquisition time, hardware constraints, and patient motion. This limitation could
hinder the accurate diagnosis and evaluation of brain abnormalities [120].

Super-resolution techniques aimed to address this limitation by enhancing the
resolution of low-resolution images, providing detailed images that were crucial for

18



clinical assessments. The literature encompassed a variety of algorithms addressing
image super-resolution. Basic interpolation methods such as nearest neighbor, bilin-
ear, and bicubic techniques were commonly employed for upscaling low-resolution
images. However, these methods often introduced artifacts [8]. Irani et al. introduced
the iterative back-projection algorithm [121], a straightforward implementation used
in MRI super-resolution. More advanced sparse-coding super-resolution algorithms,
which involved finding a sparse representation, demonstrated super-resolution gains,
particularly through techniques like dictionary learning [122] or exploitation of mul-
tiple modalities [123]. However, the application of dictionary learning in 3D MRI
images for medical imaging faced challenges such as limited resolution improvement
and slow execution speed, limiting its adoption [124].

Additionally, approaches based on a priori information, such as deterministic reg-
ularized methods [125, 126, 127, 128, 129, 130] and statistical regularized meth-
ods [131, 132, 133, 134], were employed in MRI SR. The field of deep learning
emerged as a prominent area of research with significant implications across var-
ious domains, including MRI. In recent years, deep learning was extensively ex-
plored for imaging tasks, contributing to improvements in image quality through
denoising, artifact reduction, system calibration, and sparse-data-based reconstruc-
tion [135, 136, 137, 138, 139, 140, 141].

In the context of super-resolution imaging, deep learning techniques witnessed
successful applications in computed tomography (CT) [142], while early attempts at
MRI super-resolution utilized methods like 3D convolutional neural networks [143],
Very Deep Residual Neural Networks (VDSR) [144], generative adversarial networks
(GANs) [145, 146, 147, 148, 149, 150, 151, 152, 153, 154], and densely connected
networks [155, 156].

2.6 Discussion

Current compression and super-resolution techniques, while having achieved signif-
icant advancements, still face several challenges that limit their practical application.
One major limitation is their dependency on extensive, high-quality training datasets.
Models trained on limited types of data may not generalize well to different video
content, resulting in poor performance when faced with data that deviate from train-
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ing conditions. For instance, models trained primarily on urban landscapes might
struggle with rural or indoor scenes.

Moreover, many state-of-the-art methods are computationally intensive, relying
on deep neural networks that require substantial computational resources for both
training and inference. This makes them less suitable for real-time applications or
for use on devices with limited processing power, such as smartphones or embed-
ded systems. Additionally, these methods often do not adequately handle real-world
variables such as motion blur, varying lighting conditions, and compression artifacts,
which are common in typical video streams.

This thesis tries to fill in these gaps by suggesting improved methods for the
compression of medical images and the super-resolution of video and medical images.
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CHAPTER 3

MEDICAL IMAGE COMPRESSION

3.1 Introduction

3.2 The 3D‐WDR‐MCPD Method

3.3 Results

3.4 The CWDR Method

3.5 Summary

3.1 Introduction

In this chapter, our objectives were: to (i) take into account the spatial and tem-
poral coherence of adjacent slices in a volumetric medical image; and (ii) improve
upon previous 3D-based compression methods in terms of PSNR and SSIM [157].
To accomplish these tasks, we propose an extension of the 3D wavelet difference re-
duction (3D-WDR) method [158] that employs the mean co-located pixel difference
to estimate an optimal number of slices to be efficiently compressed in one volu-
metric object. Given the requirements for the best possible reconstructed images, the
proposed method meet these objectives.

Our main contribution is the design of a volumetric medical image compression
method that can be easily reproduced, is suitable for use in a variety of medical
images such as MRI and CT scans, and achieves state-of-the-art compression results
with high compression ratio and small information loss within an acceptable range.
This performance originates from computing the spatiotemporal difference between
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adjacent slices in an image volume and compress as a single volume only those slices
that exhibit the largest similarity on the pixel values. This allows us to progressively
transmit a medical image through a communication channel and also allows for
a gradual improvement of image quality. This work aspires to serve as a bar in
the 3D medical image compression domain that future works may improve upon.
We performed extensive evaluations in publicly available datasets and achieved high
compression ratios in all of them while maintaining a high visual-quality, which
ensures that compression of medical images that are used for diagnosis, is of critical
importance as diagnostic data are preserved.

3.2 The 3D‐WDR‐MCPD Method

The method proposed in this section was published in 2020 [1]. The wavelet differ-
ence reduction (WDR) algorithm [158] follows the basic concepts of the set partition-
ing in hierarchical trees (SPIHT) algorithm [159] by incorporating extra features that
aggregate the coefficients to an area of interest. By reducing the difference between
the wavelet coefficients, it recognizes the important wavelet coefficients and improves
their accuracy to achieve high compression ratios. During WDR encoding, the com-
pressed output produced consists of the most important coefficients along with the
series of bits that briefly describe the exact position of the significant values. It offers
good perceptual quality and high compression rate while preserving the edges of the
images. It is suitable for compressing medical images at a low bit rate per pixel.

In this method, the structure of the data tree used by SPIHT is avoided, and
the principles of integrating and partitioning the encoded bit-level without loss are
preserved (Fig. 3.1). Also, the WDR method implements run-length coding (RLC)
that allows the encoder to achieve faster transmission of image details over networks.

The term “reduction of difference” refers to how the WDR algorithm encodes the
positions of significant coefficient values of the wavelet transformation by using a
difference-coding method. These positions are not directly encoded, but instead, the
distances between the important coefficients are encoded. Thus, the WDR method
encodes the path between two important coefficients. The importance of the WDR
method lies in the fact that it increases the data transmission speed because the
method employs the basic concepts of the run-length coding [160].
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Figure 3.1: WDR block diagram. The encoding step of the WDR algorithm involves
importing an uncompressed image that undergoes a wavelet transformation phase.
Then, it is sent as input to the WDR encoder, which produces the compressed image’s
bits. The reconstructed image is produced by importing the compressed image bits
to the WDR decoder. The decoded data undergo an inverse transform procedure,
producing the final reconstructed image [1].

The WDR algorithm consists of five parts, as shown in Fig. 3.2. In the Initialization
section, an initial threshold value of T0 is selected so that all transform values are less
than T0 and at least one is greater than or equal to T0 = 2. The purpose of the loop
indicated in Fig. 3.2 is to encode significant transformation values by the bit-level
encoding method. In relation to the quantity T0, a binary expansion is calculated for
each transformed value. The loop is the process by which these binary extensions
are calculated. As the threshold is halved, the significance pass and refinement pass
calculate the next bit.
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Figure 3.2: WDR compression diagram. The WDR algorithm initially calculates the
image’s DWT, then classifies the particle transformation coefficients from the largest
scale to the finest scale and sets an initial T -threshold. The next step is the signif-
icance pass which involves two stages. The first stage is finding the relative to the
T -threshold significant coefficients positions, while the second stage exports the sig-
nificant coefficients. The next step is the refinement pass which gets the improvement
values from all significant factors except those found in the classification step of the
current iteration round. Finally, the loop divides the threshold by two and repeats
the process from step 2 [1].

The general model of the WDR method is shown in the following distinct steps
of the algorithm.

• Initialize: Calculate the DWT of the original image

• Threshold/2: Classify the particle transformation coefficients from the largest
scale to the finest scale and set an initial T threshold.

• Significance pass: Find the significant coefficients’ positions relative to the T -
threshold and export these significant coefficients.

• Refinement pass: Get the improvement values of all significant factors, except
those found in the classification step of this iteration round.

• Loop: Divide the threshold T by two and go to step 2.

Specifically, each step of the WDR algorithm can be seen in Algorithm 3.1.
The WDR method is equipped with a built-in encoding scheme that can achieve

any compression ratio and is competitive with other image compression algorithms.
In embedded wavelet-based coding, the significance map forms a binary image;

consequently, techniques that have been employed for the coding of bi-level images
apply to significance-map coding. For example, run-length coding has a long history
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Algorithm 3.1 The WDR method
Step 1: (Initialize). Choose an initial threshold T0 so that all transform values satisfy
|xm| < T0 and at least one transform value satisfies |xm| ≥ T0

2

Step 2: (Update threshold). Let Tk =
Tk−1

2

Step 3: (Significance pass). Perform the following procedure while scanning through
insignificant values for higher thresholds

1: Initialize step counter C = 0

2: Let Cold = 0

3: repeat
4: Get next insignificant index m

5: Increment step-counter C by 1
6: if |xm| ≥ Tk then
7: Output sign xm and set qm = sgn(xm) · Tk

8: Move m to the end of significant indices sequence
9: Let n = C − Cold

10: if n > 1 then
11: Output reduced binary expansion of n
12: else if |xm| < Tk then
13: Let qm retain its initial value of 0
14: end if
15: end if
16: until end of insignificant indices
17: Output end-marker
18: The end-marker is a plus sign followed by the reduced binary expansion of

n = C + 1− Cold and a final plus sign
Step 4: (Refinement pass). Scan through significant values found with higher thresh-

old values Tj , for j < k (if k = 1 skip this step). For each significant value xm, do
the following

19: if |xm| ∈ [|qm|, |qm|+ Tk] then
20: Output bit 0
21: else if |xm| ∈ [|qm|+ Tk, |qm|+ 2Tk] then
22: Output bit 1
23: Replace value of qm by qm + sgn(qm) · Tk

24: end if
Step 5: (Loop). Repeat steps 2 through 4 (exiting at any point if bit budget is ex-

ceeded) 25



Algorithm 3.2 Proposed 3D-WDR-MCPD algorithm.
Input: Original uncompressed image.
Compute the average MCPD values for each slice using eq. (3.1) .
Predefine a threshold TMCPD = 0.5.
Select slices with the highest spatiotemporal coherence: MCPD ≤ TMCPD and
construct the 3D volume.
Employ Algorithm 3.1 to compress the optimal 3D volume.
Output: Compressed image.

of such binary-coding use. The wavelet difference reduction algorithm combines run-
length coding of the significance map with an efficient lossless representation of run-
length symbols to produce an embedded image coder.

WDR was originally developed as a 2D encoder but is straightforwardly extended
to 3D [161]. Also, WDR can be extended to shape adaptive by “skipping” over flat
regions and not coding any significant information for them or including them in the
run-length. This 3D extension deploys the run-length scanning as a 3D raster scan
of each subband of the 3D discrete wavelet transform, which is easily accomplished
in either dyadic or packet DWT decompositions.

The proposed method is an extension of the 3D-WDR method. Specifically, we
extended the 3D-WDR method by using the mean co-located pixel difference (MCPD)
to estimate the optimal number of frames that can be encoded given the best peak
signal-to-noise ratio. MCPD measures the temporal difference between slices on the
pixel values. The MCPD between two slices of dimensions N×M i.e., slice x and slice
y for each pixel is computed as:

MCPD =
1

NM

N−1∑
i=0

M−1∑
j=0

|x(i, j)− y(i, j)| , (3.1)

where x(i, j) and y(i, j) correspond to the pixel value at position (i, j) of slices x and
y, respectively.

In particular, we compute the MCPD of each slice i with all the slices that follow,
where i = 1, . . . K , and K being the total number of slices, for each MRI volume,
(e.g., slice 1 with slices 2, 3, 4, . . . K , slice 2 with slices 3, 4, 5, . . . K) and construct a
volumetric image consisting of only the slices that exhibit an average MCPD value
≤ 0.5 to keep those with similar spatial and temporal coherence. After extensive
evaluation and cross-validation, the threshold of 0.5 has been found to be the optimal
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value for selecting the most similar slices in the spatial and temporal domain. In case
of volumetric data such as MRI and CT exams, the term “temporal coherence” may
refer to the similarity between different slices. Note that the slices that are not selected
to be part of any volumetric image are compressed separately using the standard WDR
method, using the same bit rate in bits per voxel as the rest of the slices. The main
steps of the proposed method are summarized in Algorithm 3.2.

3.3 Results

Dataset: To evaluate our method, a widely-used publicly available dataset named
the cancer image archive (TCIA) [162] was used. This is a collection of medical de-
identified datasets related to a common disease such as lung cancer or brain tumor
from 20 subjects with primary newly diagnosed glioblastoma. For each subject, two
MRI exams of brain tumor are included in DICOM format containing 16-bit images
with at least 20 slices per MRI exam. We used a 20-slices dataset of brain tumor.

Evaluation metrics: For the evaluation of the results, we computed the peak
signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM) [157].
PSNR computes the peak signal-to-noise ratio between two images, in decibels (dB).
This ratio is a quality measurement between the original and the compressed image.
PSNR can take values up to infinity, the higher the PSNR, the better the quality of the
compressed image. Since the MRI exams in the TCIA dataset contain 16-bit images,
in this case, the PSNR is computed as:

PSNR = 10 log10
(
(216 − 1)2

MSE

)
, (3.2)

where MSE =
∑N−1

i=0

∑M−1
j=0 (x(i,j)−x̂(i,j))2

NM
with x(i, j) and x̂(i, j) correspond to the pixel

value at position (i, j) of the ground truth x (original uncompressed image) and the
compressed image x̂ of dimensions N×M , respectively. Note that, the term 216−1 is the
maximum pixel value in the input image data type. SSIM is a metric that represents
a visual distortion between a reference image and the observed/compressed image.
The SSIM is a function between two images x and x̂ and is computed between pairs
of local square overlapping windows x and x̂ of the two images, respectively:

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
, (3.3)
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where µx and µx̂ denote the mean intensity of the ground truth and the compressed
image, respectively, σx and σx̂ are the standard deviations at patches x and x̂ of the
two images, σxx̂ is the covariance of x and x̂, and C1 and C2 are constants added
to avoid instability. Values close to 1 indicate that the compressed image preserves
high visual quality (i.e., identical patches). Finally, the mean SSIM index value is
computed to evaluate the total image similarity.

First, we computed PSNR and SSIM values for the 20 consecutive slices to build
the 3D model used for compression. Table 3.1 shows the results in terms of PSNR
and SSIM for 20 slices using the 3D-WDR algorithm at bit rate one bit per voxel. As
it can be seen, PSNR varies from 46.9228 to 51.3733 and SSIM varies from 0.6403 to
0.7841.

Table 3.2 depicts the average MCPD values for all slices, while Figure 3.3 depicts
the distribution of MCPD. It can be observed thatMCPD is less than 0.5 for the slices
2, 4, 6, 15, 18, 19, 20 (the numbers in bold), in that sense a threshold of 0.5 is considered
as a reasonable choice to form our 3D model.

Figure 3.3: Distribution of MCPD values [1].

In Table 3.3, we report the results of the proposed 3D-WDR-MCPD method in
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Table 3.1: Evaluation of standard 3D-WDR model in terms of PSNR and SSIM for
the 20 slices of the MRI exam [1].

Slice index PSNR SSIM

1 48.0704 0.7484

2 50.8077 0.7263

3 49.2582 0.7670

4 48.7388 0.7124

5 51.3304 0.7490

6 48.9123 0.6838

7 48.0288 0.7515

8 49.3198 0.7133

9 49.4259 0.6935

10 46.9228 0.7815

11 49.7743 0.7841

12 48.7383 0.6992

13 51.0344 0.7106

14 47.5173 0.7577

15 49.2868 0.7049

16 48.3499 0.7481

17 51.3733 0.6467

18 49.0812 0.6800

19 49.3517 0.6917

20 48.0205 0.6403

terms of PSNR, SSIM, and PSNR improvement. Specifically, PSNR varies from 50.7433

to 52.2776 and SSIM varies from 0.6834 to 0.7810. Also, note that the PSNR improve-
ment with respect to the standard 3D-WDR algorithm (Table 3.1) is remarkably high
in terms of absolute dB difference. For instance, PSNR for slice 2, when the standard
3D-WDR method was employed (Table 3.1), is 50.8077 and SSIM is 0.7263, while
when the proposed 3D-WDR-MCPD method is used PSNR and SSIM increase to
52.2776 and 0.7578, respectively. This corresponds to a PSNR improvement of ap-
proximately 1.5 dB, which also corresponds to visual improvement. The maximum
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Table 3.2: Estimated MCPD values for the 20 slices of the MRI exam [1].

Slice index MCPD average

1 0.6009

2 0.4716
3 0.5357

4 0.4882
5 0.5173

6 0.4784
7 0.5229

8 0.5806

9 0.5325

10 2.7478

11 0.6987

12 0.6331

13 0.6603

14 0.5302

15 0.4501
16 0.6162

17 0.6703

18 0.3852
19 0.2561
20 0.0000

PSNR improvement is achieved for slice 12 as it reaches 5.13 dB, which indicates that
compressing similar slices (seven slices) in one volume per time is more efficient than
directly compressing the 3D image as a whole.

Figures 3.4 and 3.5 depict qualitative results when the proposed 3D-WDR-MCPD
method is employed for compressing slice 2 and slice 4, respectively. For the depicted
MRI images the compression rate is achieved at one bit per voxel (16 : 1) compression
ratio. Also, the visual perception of the compressed image is retained and is very close
to the original uncompressed image. The main reason behind this is the smooth
transition of images throughout the MRI slices.
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Table 3.3: Evaluation of the proposed method in terms of PSNR, SSIM and PSNR
improvement for the seven slice indexes originated from the computed MCPD values
in Table 3.2 given the predefined threshold. Numbers in bold refer to the slices
compressed as one volume with the proposed method, while the rest of the slices are
compressed with WDR, one-by-one [1].

Slice index PSNR SSIM PSNR Improvement
(in dB)

1 48.4718 0.7448 0.4

2 52.2776 0.7578 1.47

3 50.9928 0.7415 1.73

4 50.6824 0.7810 1.94

5 51.3411 0.7541 0.01

6 50.7814 0.7503 1.87

7 50.2464 0.7282 2.22

8 51.2849 0.8430 1.97

9 51.5872 0.8050 2.16

10 47.3742 0.7639 0.45

11 50.0361 0.7534 0.26

12 53.8705 0.8507 5.13

13 51.5479 0.8445 0.51

14 52.3852 0.7261 4.87

15 51.0053 0.7596 1.72

16 51.0327 0.7264 2.68

17 52.0943 0.8316 0.72

18 51.9189 0.7742 2.84

19 50.7433 0.7375 1.39

20 51.8223 0.6834 3.80
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Figure 3.4: Slice 2: (a) Original uncompress slice and (b) compressed slice using the
3D-WDR-MCPD method for compression [1].

Figure 3.5: Slice 4: (a) Original uncompress slice and (b) compressed slice using the
3D-WDR-MCPD method for compression [1].
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3.4 The CWDR Method

3.4.1 Introduction

According to our knowledge, the compression of microscopic images using set parti-
tioning methods has not been tried yet. Color pictures display more information than
grayscale images since color pictures display the same number of grayscale tones as
in grayscale images plus a number of colors on every image, thus, improving contrast
resolution. From a medical point of view, color images disclose important information,
which can be critical for diagnostic purposes. Therefore, it motivated us to propose
an extension of the original WDR method to effectively compress microscopic images,
namely color wavelet difference reduction (CWDR).

Our main contribution is designing a medical image compression method that
can be easily reproduced. The method proposed in this section was published in
2023 [2]. It is suitable for use in various color medical images of big sizes, such
as microscopic images. It achieves state-of-the-art compression results with a high
compression ratio and small information loss within an acceptable range. Extensive
evaluations have been performed in a custom-created dataset containing image data
extracted using the Hamamatsu NanoZoomer 210. The dataset contained 31 slides
of colorectal cancer, and the proposed CWDR algorithm achieved high compression
ratios in all images while maintaining high visual quality.

3.4.2 Method

The family of set partitioned methods was initially designed for grayscale image
compression. To apply them to color images, we must first understand color space.
The color image is usually in RGB format. The RGB color spaces are highly correlated,
so transformation to a less correlated space is required for efficient lossy compression.
The original RGB images were transformed using standard transformations to code
the Y CbCr color space such that the luminance channel Y is stored as one byte for
each pixel. On the other hand, the two chrominance channels are stored as one byte
for each block of, say, n × n × n pixels, i.e., Cb and Cr are the blue component and
red component related to the chroma component.

The proposed method, CWDR, is an extension of WDR for color images. This
method compresses each color plane at the coding stage and generates three separate
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bitstreams of the same bitrate. Then, the generated bitstream of each color space would
be serially concatenated. The proposed system structure flowchart is shown in Fig. 3.6
while its algorithmic structure can be seen in Algorithm 3.3. The operation starts by
selecting suitable colors and image scales. The next step represents the application
of variable filters of the wavelet transforms. Then, some quantization processes are
performed to show the elements of a big set in terms of a smaller set to lower the
number of bits necessary to indicate all possible values of mapping outputs to fewer
bits.

In the RGB color model, a color image can be represented by the following intensity
function.

IRGB = (FR, FG, FB) (3.4)

where FR(x, y) is the intensity of the pixel (x, y) in the red channel, FG(x, y) is
the intensity of pixel (x, y) in the green channel, and FB(x, y) is the intensity of pixel
(x, y) in the blue channel. The intensity of each color channel is usually stored using
eight bits, which indicates that the quantization level is 256. That is, a pixel in a color
image requires total storage of 24 bits. A 24 bit memory can express 224 = 16777216

distinct colors. The number of colors should adequately meet the display effect of most
images. Such images may be called true color images, where each pixel’s information
is kept using a 24-bit memory.
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Figure 3.6: System Flowchart [2].

To split the RGB image into three streams, we separately save each channel to
different variables as seen in (3.5).


R

G

B

 =


IRGB(FR, 0, 0)

IRGB(0, RG, 0)

IRGB(0, 0, RB)

 (3.5)

After splitting the RGB image into three streams, it was converted to the YUV
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format using the following formula.


Y

U

V

 =


0.299 0.587 0.114

−0.14713 −0.28886 0.436

0.615 −0.51499 −0.10001



R

G

B

 (3.6)

Thus, the color wavelet difference reduction (CWDR) algorithm follows the basic
concepts of WDR [163] by incorporating extra features that aggregate the coefficients
to an area of interest. It is suitable for compressing medical images at a low bit rate
per pixel.

Algorithm 3.3 The CWDR Algorithm
Input: Original uncompressed image.
1: Convert to YUV- Divide into three streams.
2: for all streams do
3: Calculate the DWT of the stream.
4: while (Predetermined number of bits is not reached) do
5: Sort the wavelet transform coefficients from the larger scale to the finer scale.

6: Set an initial threshold: Tn = 2N , where N = log2(max(i,j) ∨γ(i, j)), with
n = 1, where γ(i, j) are the wavelet coefficients in the set of non-significant
coefficients and N is the total number of bit planes.

7: Sorting pass: Find the positions of the significant coefficients concerning the
threshold, and keep the coefficients that satisfy the condition: γ(i, j) ≥ Tn.

8: Improvement process: Get the improvement rates of all significant coefficients,
except those found in the sorting pass step of the current iteration.

9: Update threshold: n = n+ 1;Tn−1 = Tn;Tn = Tn

2

10: end while
11: end for
12: Combine three streams.
Output: Compressed image.

After the WDR process, we converted the YUV image back to RGB, using the
following formula:
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
R

G

B

 =


1.164 0 1.596

1.164 −0.392 −0.813
1.164 2.017 0



Y

U

V

 (3.7)

Finally, we combined the three streams back into one RGB image. To combine the
three streams into an RGB image, we save them to one variable, a.k.a.:

RGB = I(R,G,B) (3.8)

3.4.3 Results

The proposed method is evaluated in the demanding field of histopathological mi-
croscopy image analysis. The diagnosis and prognosis systems based on histological
image analysis present significant growth during the last five years, utilizing whole
slide scanning technologies, computational resources management, distributed sys-
tems, and multiple cores. According to the medical question, histological microscopy
images are extracted using standard tissue preparation procedures. The employed
dataset has been extracted using the Hamamatsu NanoZoomer 210, scanning 31 slides
of colorectal cancer. The scanning system provides two optical magnification options
(20x and 40x), which can scan 210 slides automatically. According to digitalization,
each pixel of a Whole Slide Image (WSI) corresponds to a physical area of several
tens of nm2.

Specifically, in 40× magnification mode, the Hamamatsu NanoZoomer scanner ex-
tracts an image where the size of each pixel edge corresponds to 227 nm. The above
image digitization procedure provides an appropriate resolution for most histological
findings. In most cases, the extracted images are stored in compressed JPEG-based or
uncompressed TIFF format. The resolution of a typical WSI in 40x magnification is
about 100K x 100K pixels, whereas an uncompressed format could require hundreds
of GBs of memory. Commonly, the challenge of compressing images focuses on image
size minimization, along with the high performance of quality measures (Signal to
Noise Ratio - SNR, Peak Signal to Noise Ratio - PSNR, Structural Similarity – SSIM).
However, the most significant issue for histological microscopy images must be the
image quality assessment of the medical regions of interest, such as cells and nuclei,
cell degeneration and cancer, inflammation and fibrosis areas, and other histological
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lesions. For the above reasons, parts from each WSI after applying the compression
procedure, were extracted for evaluation by a specialist.

Table 3.4, Fig. 3.7, and Fig. 3.8 show the results in terms of PSNR and SSIM for
the 31 images of our dataset using the CWDR algorithm at a bit rate of 0.5 bit per
pixel, which gives a compression ratio of 16. It can be seen that PSNR varies from
32.01 to 47.49. On the other hand, SSIM varies from 0.68 to 0.98, with 30 out of 31
images having an SSIM value of 0.92 or higher.
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Table 3.4: Evaluation of CWDR model in terms of PSNR and SSIM for the 31 images
[2].

Image PSNR SSIM

Bit Rate=0.5 bpp
CR= 16

1768-18TH_1 41.1934 0.9473
1870-18H_1 47.2838 0.9308
1870-18H_2 45.1102 0.9344
1870-18H_3 33.6743 0.9393
1884-1921_1 36.2088 0.8996
2529-20H_1 37.6522 0.9316
2529-20TH_1 37.6522 0.9220
3211-20AH_1 37.8373 0.9245
3211-20B_1 36.3347 0.9200
3469-18H_1 45.7910 0.9300
4015-14F_1 45.0333 0.9268
4015-14L_1 44.4740 0.9369
4339-20N_1 38.9031 0.9311
4339-20X_1 37.1588 0.9300
5820-14N_1 47.4880 0.9333
5820-141I_1 45.1940 0.9288
6448-19MX_1 35.8616 0.9300
7438-16C_1 44.5228 0.9583
7438-16D_1 43.8831 0.9600
7870-18A_1 46.3653 0.9400
7995-17DK_1 45.3092 0.9300
8036-1BK_1 42.5244 0.9401
8036-1BK_2 41.8953 0.9288
8036-1BK_3 42.6988 0.9377
8036-1BK_4 42.8339 0.9384
8036-1BK_5 42.6134 0.9391
8036-1BP_1 43.3838 0.9330
8036-1BP_2 41.9381 0.9292
8036-1BP_3 40.7767 0.9404
8036-1BP_4 41.7617 0.9292
8036-1BP_5 45.7987 0.9299
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Regarding 8-bit images like ours, PSNR values over 30 indicate a very good image
quality, and values over 40 indicate that the image quality is excellent (i.e., very close
to the original image). It can be seen that the proposed method gives auspicious
results since 23 out of 31 images have PSNR values over 40.

Additionally, SSIM values are high (which implies that the two images are very
similar), further supporting the promising results of our method.

The Wilcoxon signed-rank test was used to compare the PSNR values of the pro-
posed method with the respective values for DWT, JPEG 2000, HEIC (high-efficiency
image format) and WEBP (web picture format) methods. High-Efficiency Image File
Format is a container format for storing individual digital images and image se-
quences. The standard covers multimedia files that can also include other media
streams, such as timed text, audio and video. WEBP is a modern image format that
provides superior lossless and lossy compression for images on the web. The Wilcoxon
signed-rank test is a non-parametric statistical hypothesis test used either to test the
location of a population based on a sample of data or to compare the locations of two
populations using two matched samples. The results obtained with those statistical
tests are shown in Fig. 3.9 and indicated statistically significant differences between
the CWDR and the other four methods.
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Figure 3.7: PSNR values of the 31 images. This figure depicts the PSNR values for
all 31 images. It can be seen that the proposed CWDR method managed to achieve
values over 30 in all cases, which indicates very good results. Additionally, 74.19%
of the cases got an even higher PSNR value (> 40), indicating excellent image quality
[2].
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Figure 3.8: SSIM values of the 31 images. This figure depicts the SSIM values for all
31 images. It can be seen that the proposed CWDR method managed to achieve values
very close to 1 in 30 out of 31 cases which indicates that the compressed images are
completely the same as the original uncompressed ones [2].

We also compared the SSIM values of the proposed method with the respective
values for Lossless Compressing Using DWT Technique [3], JPEG 2000, HEIC, and
WEBP methods using the Wilcoxon signed-rank test. The results obtained with those
statistical tests are shown in Fig. 3.10 and indicated statistically significant differences
between the CWDR and the other four methods.
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Figure 3.9: Scatter plot representation and the Wilcoxon signed-rank test results
of the comparison for each of the two well-known compression methods (Lossless
Compressing Using DWT Technique [3], JPEG 2000, HEIC and WEBP) with the
CWDR method regarding PSNR values. Stars links join significantly different values;
two stars (**) typically indicate that the result is very statistically significant, usually
at the 0.01 level (p-value < 0.01), three stars (***) typically denote a significance level
of 0.001, indicating that the p-value of the test result is less than 0.001, which means
that if the null hypothesis tested were indeed true, there would be a one in 1,000
chance of observing results at least as extreme. Four stars (****) are less commonly
used than one, two, or three asterisks in standard practice. If used, they might denote
an extremely high level of significance, possibly at the 0.0001 level (p-value < 0.0001)
[2]. 43



Figure 3.10: Scatter plot representation and the Wilcoxon signed-rank test results
of the comparison for each of the two compression methods (Lossless Compressing
Using DWT Technique [3], JPEG 2000, HEIC and WEBP) with the CWDR method
regarding the SSIM values. Stars links join significantly different values; three stars
(***) stand for p < 0.001 [2].

It should be noted that the images that WEBP method can compress are limited
to 16383 pixels in height and width. Therefore, we could only compress 16 out of
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our 31 images. It can be seen in Fig. 3.11, and Fig. 3.12, that the decoded images
maintain all the diagnostically important information. Thus, they can be considered
as ”visually and diagnostically lossless.” Even in Fig. 3.12, which depicts the results
of the image with the worst SSIM value (image 1870-18H_3), the result is visually
and diagnostically lossless.

Figure 3.11: 7438-16D_1: (a) Original uncompressed image and (b) compressed image
using the CWDR method for compression. It can be seen from both images that they
are visually and diagnostically lossless [2].

3.4.4 Discussion

The proposed method is evaluated in the demanding field of histopathological mi-
croscopy image analysis. Utilizing the advantages of whole slide scanning technolo-
gies, computational resources management, distributed systems, and multiple cores,
the diagnosis and prognosis systems based on histological image analysis presented
significant growth during the last five years. Histological microscopy images are ex-
tracted after standard tissue preparation procedures. The employed dataset has been
extracted using the Hamamatsu NanoZoomer 210, which scanned 31 slides of col-
orectal cancer. The scanning system provides two optical magnification options (20×
and 40×), which can scan 210 slides automatically. According to digitization, each
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pixel of a whole slide image (WSI) corresponds to a physical area of several tens of
nm2. Specifically, in 40× magnification mode, the Hamamatsu NanoZoomer scanner
extracts an image where the size of each pixel edge corresponds to 227 nm. Such
image digitization provides appropriate resolution for most histological findings. In
most cases, the extracted images are stored in compressed JPEG-based or uncom-
pressed TIFF format. The resolution of a typical WSI in 40x magnification is about
100K × 100K pixels, which uncompressed format could require hundreds of GBs
of memory. Commonly, the challenge of compressing images focuses on image size
minimization, along with a high performance of quality measures (SNR, PSNR, and
SSIM). However, the most significant issue for histological microscopy images must
be the image quality assessment of the medical regions of interest, such as cells and
nuclei, cell degeneration and cancer, inflammation and fibrosis areas, and other his-
tological lesions. Due to this, after applying the compression procedure, parts from
each WSI have been extracted for evaluation by a specialist.

Figure 3.12: 1870-18H_3: (a) Original uncompressed image and (b) compressed image
using the CWDR method for compression. It can be seen from both images that they
are visually and diagnostically lossless [2].

The perceived quality of the compressed images was evaluated with a Mean Opin-
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ion Score (MOS) scale ranging from 1 to 5 (bad, poor, fair, good, and excellent).
Even though its suitability may be debatable, the MOS scale provides a different
method of gauging the quality and depicting how specialists evaluates it. Four quali-
fied histopathologists evaluated the quality of the compressed images without blindly
consulting each other. Specifically, the histopathologists asked to evaluate all the im-
ages regarding the diagnostic value, by accessing them one-by-one. The proposed
compression method met high qualitative criteria obtaining similar image quality
rating score, with a statistically significant association comparing to original uncom-
pressed images (Fig. 3.13).

Figure 3.13: Spearman’s rank-order correlations were to examine the association
between the MOS score of original uncompressed images and compressed images
using the proposed method. There were positive and significant associations between
the two MOS scores, (rs = 0.9539, N = 31, p < 0.001), while Wilcoxon signed-rank
test showed no significant differences between the two MS scores (p > 0.05) [2]

3.5 Summary

Medical image compression plays an important role in efficient storage, transmission,
and management of these datasets. In this chapter, a 3D image compression model
based on discrete wavelet transform was proposed, which is a clinically acceptable
option for medical image compression. In particular, we extended the standard WDR
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method using MCPD to select the optimal number of slices that exhibit the highest
similarity in the spatial and temporal domain. The slices with large spatiotemporal
coherence are then encoded together as one volume in terms of higher PSNR and
SSIM. It is found that the perceptual quality of the medical image is remarkably
high. The results indicate that the PSNR improvement over existing schemes may
reach up to 3.8 dB and they may guide us through the implementation of a mobile
and web platform that may be used for the compression and transmission of medical
images in real-time.

The proposed 3D image compression method extends the original WDR model.
This method is clinically acceptable according to the histopathological microscopy im-
age analysis. It achieves state-of-the-art compression results with a high compression
ratio and slight information loss within an acceptable range. Specifically, extensive
evaluations have been performed in a custom-created dataset containing in 31 slides
of colorectal cancer. The proposed CWDR algorithm achieved high compression ra-
tios in all images while maintaining high visual quality. These results might guide
us through implementing a mobile and web platform that may be used to compress
and transmit medical images in real-time.
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CHAPTER 4

VIDEO SUPER-RESOLUTION USING
PLUG-AND-PLAY PRIORS

4.1 Introduction

4.2 Method

4.3 Proof of Convergence

4.4 Results

4.5 MRI Super‐Resolution Using Plug‐And‐Play Priors and Rigid Transformation

4.6 Summary

4.1 Introduction

The Plug-and-Play Priors (PPP) framework is recognized as one of the extensively
used methodologies for addressing computational imaging challenges through the in-
tegration of physical and learned models. PPP takes advantage of high-fidelity phys-
ical sensor models and robust machine learning techniques for data pre-modeling,
incorporating cutting-edge reconstruction algorithms. PPP algorithms follow a cycle
of minimizing data fidelity terms to uphold data consistency and enforcing learned
regularization through image denoising [164]. Recent achievements of PPP algorithms
span applications in biomicroscopy, computed tomography, magnetic resonance imag-
ing, and joint ptychotomography [5].
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We introduced a PnP method for video super-resolution, using motion estimation,
which has not been done yet and, afterwards, we extended it in order to use it for
MRI Super-Resolution. The method proposed in this section was published in 2024
[4].

4.2 Method

The acquisition model we are assuming is:

y = Ax+ ε, (4.1)

where:

• y is the full set of LR frames, described as y = [ y1
T ,y2

T , ...,yp
T ] T , where yk, k =

1, 2, ..., p are the p LR images. Each observed LR image is of size N1×N2. Let the
kth LR image be denoted in lexicographic notation as yk = [ yk,1, yk,2, ..., yk,M ] T ,
for k = 1, 2, ..., p and M = N1N2.

• x is the desired HR image, of size L1N1×L2N2, written in lexicographical notation
as the vector x = [ x1, x2, ..., xN ]

T , where N = L1N1L2N2 and L1 and L2 represent
the up-sampling factors in the horizontal and vertical directions, respectively.
x is the ideal un-degraded image that is sampled at or above the Nyquist rate
from a continuous scene which is assumed to be band-limited.

• ε = [ ε1, ε2, ..., εp]
T , where εk is the noise vector for frame k and contains

independent zero-mean Gaussian random variables.

• A = [ A1, A2, ..., Ap]
T is the degradation matrix which performs the operations

of blur, motion and subsampling.

Assuming that each LR image is corrupted by additive noise, we can then repre-
sent the observation model as [87]:

yk = Akx+ εk for 1 ≤ k ≤ p (4.2)
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where
Ak = SBkMk. (4.3)

Mk is a warp matrix of size L1N1L2N2 × L1N1L2N2, Bk represents a L1N1L2N2 ×
L1N1L2N2 blur matrix, and S is a N1N2×L1N1L2N2 subsampling matrix. In our case
Bk = I , since we assumed no added blur on video frames.

The goal is to find the estimate x̂ of the HR image x from the p LR images yk by
minimizing the cost function

x̂ = arg min
x∈RN

f(x) with f(x) = g(x) + h(x), (4.4)

where g(x) =
∑p

k=1
1
2
∥Akx−yk∥22 is the “fidelity to the data” term, and h(x) is the reg-

ularization term, which offers some prior knowledge about x. In this work, we utilize
the Plug-and-Play Prior methodology, where h(x) is not explicitly defined. Instead,
the ADMM algorithm is modified so that the proximal operator that depends on h(x)
is replaced by a denoising neural network [6].

We next outline the steps of the proposed algorithm.

1. The first step of our algorithm is to evaluate the term Mk from Eq. (4.3), by
using optical flow motion estimation. The motion estimation method used is
a popular optical flow method, called the Farneback algorithm, named after
its creator, Gunnar Farneback. The Farneback algorithm generates an image
pyramid, where each level has a lower resolution compared to the previous
level. The Farneback method employs a dense approach, meaning it estimates
the motion vector for every pixel in the image. The algorithm consists of the
following steps [165]:

(a) Preprocessing: The input frames are preprocessed to enhance their qual-
ity. Preprocessing steps include noise reduction (via Gaussian Blurring),
image denoising (via Non-Local Means Denoising), and color space con-
version (cnversion to Grayscale).

(b) Image pyramids: The Farneback algorithm constructs a Gaussian pyramid
for each frame. This involves creating a series of downsampled versions of
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the original image, forming a hierarchy of images with decreasing resolu-
tion. The pyramids enable capturing motion at multiple scales, improving
the accuracy of the optical flow estimation.

(c) Optical flow estimation: For each level of the pyramid, the Farneback algo-
rithm computes the optical flow using a combination of polynomial expan-
sion and spatial filtering. It estimates the local flow vectors by calculating
the phase difference between the polynomials corresponding to neighbor-
ing image patches.

(d) Upsampling and refinement: Once the optical flow is computed at the coars-
est level of the pyramid, it is successively refined by upsampling the flow
field and incorporating the local information from higher-resolution lev-
els. This refinement process improves the accuracy of the flow estimation,
particularly for small and fast-moving objects.

The result of the Farneback method is a dense optical flow field, where each
pixel has an associated motion vector. These vectors represent the direction and
magnitude of the motion of objects in the scene between consecutive frames.

We assume that one of the LR images, ymid (typically the middle one), is pro-
duced from the HR image x, by applying only downsampling, without motion
shift. Thus, Mmid = I. Optical flow is calculated between ymid and the rest of
the LR images. Following that, we get Mk for the remaining p− 1 images.

2. The second step of our algorithm is based on the PnP-ADMM method. Specifi-
cally, we run PnP-ADMM, following the steps described in Algorithm 4.1 until
convergence, where x0 is the initial value of the HR image, obtained from ymid

multiplied by the pseudo-inverse of Amid, followed by denoising using DnCNN,
while D is the image denoising operator (neural network) and g is defined as
g(x) =

∑p
k=1

1
2
∥Akx− yk∥22.

One important property of ADMM is that it does not explicitly require knowledge
of g(x) or their gradients, relying instead on the proximal operator, which is defined
as:
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Algorithm 4.1 PnP-ADMM [5]
1: u0 = 0, x0, and γ > 0

2: for k = 1, 2, ..., t do
3: zk ← proxγg(xk−1 − uk−1)

4: xk ← D(zk + uk−1)

5: uk ← uk−1 + (zk − xk)
6: end for
7: return xt

proxγg(x) := arg min
x∈RN
{1
2
∥x− z∥22 + γg(x)}. (4.5)

4.3 Proof of Convergence

The crucial conceptual observation lies in the fact that PnP algorithms incorporat-
ing black-box denoisers often struggle to address optimization problems. In other
words, while the original ADMM algorithm effectively solves the optimization prob-
lem, the introduction of a black-box denoiser, denoted as D, disrupts this process by
eliminating a corresponding function h for minimization. Specifically, the numerical
assessment of widely employed denoisers, such as BM3D and DnCNN, demonstrates
that their Jacobians lack symmetry, suggesting that these denoisers do not function
as either gradient descent steps or proximal maps [166].

Nevertheless, it remains feasible to establish a criterion for the converged solution
in PnP by employing a consensus equilibrium formulation, as proposed by [167].

x = G(x− u) and x = D(x+ u), (4.6)

where G := proxg and x, u are the converged values of PnP-ADMM.
Notably, within the consensus equilibrium expression in (4.6), x represents the

final reconstruction and u can be construed as noise, eliminated by the denoiser in
x = D(x + u) on one hand and counterbalanced by the fidelity to the data effect in
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x = G(x−ux) on the other. To derive (4.6), it is important to recognize that the fixed
points z, x, and u of the PnP-ADMM iteration satisfy

z = G(x− u), x = D(z+ u),u = u+ z− x. (4.7)

From the last equation we conclude that x = z, which leads directly to (4.6). Also,
the first-order optimality condition for the minimization problem x = G(x − u) =

proxγg(x− u) is 0 = x− (x− u) + γ∇g(x), so u = −γ∇g(x).
The application of monotone operator theory, as outlined in [168], allows for

the illustration of the convergence of PnP algorithms. In this approach, the initial
phase involves identifying a fixed point for a high-dimensional operator that can be
iteratively used to discover a solution, provided the appropriate assumptions are met.
In the proof of PnP-ADMM convergence presented in [167], [169], the initial step is to
establish a one-to-one correspondence between the fixed points of PnP-ADMM and
those of the operator:

T := (2G− I)(2D − I). (4.8)

After a linear coordinate transformation, Algorithm 1 is essentially identical to
the Mann iterations of T , expressed as vk ← 1

2
vk−1 + 1

2
T (vk−1) [167]. This results in

linear convergence towards a unique fixed point when T functions as a contraction,
a condition satisfied when g is strongly convex and R := I − D serves as a suitably
strong contraction [169]. Weaker conditions lead to sublinear convergence, reaching
a potentially non-unique fixed point [170]. Additional notable theoretical findings on
PnP-ADMM encompass its convergence for implicit proximal operators [88], appli-
cability with bounded denoisers [171], and suitability for linearized Gaussian mixture
model (GMM) denoisers [94]. Even CNN-based denoisers can be trained to meet
these contractive, non-expansive, or Lipschitz conditions through the implementation
of spectral normalization techniques [169], [172]. Conversely, when g exhibits only
mild convexity and the denoiser D is strongly non-expansive, the iteration converges
sublinearly towards its fixed point [173].
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4.4 Results

We implemented our PnP method in SCICO [174], which is an open source library
for computational imaging that includes implementations of PnP algorithms.

We conducted extensive experiments on benchmark subsets “calendar” and “city”,
from Vid4 dataset to evaluate the performance of our proposed method. The ”Calen-
dar” and ”City” subsets from the Vid4 dataset are commonly used in the evaluation of
video super-resolution (VSR) methods. These subsets provide a diverse range of chal-
lenges for super-resolution algorithms, including varying degrees of motion, texture,
and image content. The primary use of these subsets in VSR experiments is to test the
algorithm’s effectiveness in enhancing video quality by increasing the resolution of
both temporal and spatial dimensions. The original videos in the Vid4 dataset are in
standard definition, with a spatial resolution of 720x480 pixels. This lower resolution
allows researchers to demonstrate how effectively their super-resolution algorithms
can upscale video to higher resolutions, such as 1080p (1920x1080 pixels) or even
4K in some experimental setups. The temporal resolution, referring to the frame rate
of the videos, is generally standard across datasets used for super-resolution unless
explicitly modified for specific experiments. Standard frame rates are often 30 frames
per second (fps), but specific details can vary based on how the dataset was created
and processed. ”Calendar” typically includes scenarios with rich textures and gradual
changes in scenes, such as calendar pages turning or detailed artistic images. This
tests the algorithm’s ability to handle fine details and text, which are crucial for prac-
tical applications like digital archiving or art restoration. On the other hand, ”City”
involves urban environments with moving objects (e.g., cars, people), varying light-
ing conditions, and complex geometries. This provides a dynamic scene to test the
algorithm’s robustness in handling motion and reconstructing high-frequency details
in a natural setting. Both subsets provide unique challenges in terms of motion esti-
mation and handling artifacts like aliasing or motion blur, which are critical aspects
of video super-resolution. Algorithms tested on these subsets need to effectively in-
terpolate spatial details while maintaining temporal consistency across frames. Due
to their common use in the VSR research community, results on these subsets can be
easily compared against existing methods, providing a benchmark for evaluating the
improvement brought by new algorithms.

Specifically, we used p = 3 frames, with the second in order being the zero-motion
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image, and we added Gaussian noise with a standard deviation of 0.02. The up-
sampling factors in the horizontal and vertical directions were L1 = L2 = 4. For
the denoising operator D, the DnCNN neural network [78] was used, as it was pre-
trained by SCICO. Finally, we compared our results against other successful video
super-resolution techniques in terms of both quantitative metrics, such as PSNR (Peak
signal-to-noise ratio), and visual quality.

The results that were compared to ours were acquired by APGM (accelerated
proximal gradient method) [90], BM3D (Block-matching and 3D filtering) [113], To-
tal Variation [89], bicubic, SOF-VSR (Super-resolving Optical Flow for Video Super-
Resolution) [175] and EDVR (Video Restoration with Enhanced Deformable Convo-
lutional Networks) [176].

Table 4.1 show PSNR results for the two datasets for all the methods tested. It
can be seen that average PSNR for our method is 22.86 dB for “Calendar” dataset
and 25.74 dB for “City” dataset, while all the other methods have lower values. The
highest PSNR values for Frame 17 of “Calendar” (Fig. 4.1) and Frame 14 of “City”
(Fig. 4.3). It is obvious that SOF-VSR gave the best result for “City” dataset, however
there was no significant difference of the proposed method with SOF-VSR (p=0.207
in Wilcoxon signed-rank test).

Table 4.1: PSNR statistics for the two datasets for all the methods [4].

Calendar City

Average St. Dev Average St. Dev

PPP V1 22.86 0.38 25.74 0.28

APGM 20.58 0.29 23.91 0.27

BM3D 21.09 0.38 24.37 0.25

TV 21.66 0.42 25.13 0.20

bicubic 19.36 0.10 22.61 0.29

SOF-VSR 21.69 0.15 25.61 0.59

Apart from the numerical results, the visual proofs are also in favor of our method,
since the super-resolved pictures are clearer than the pictures produced with the other
methods. Examples of the results can be seen in Fig. 4.2 and Fig. 4.4, which are the
results for the original Fig. 4.1 and Fig. 4.3. It should be noted that there is no image
result for EDVR, since results were taken from [177].
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Figure 4.1: Original “Calendar” Image [4].

Figure 4.2: Result of “Calendar” Image [4].
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Figure 4.3: Original “City” Image [4].

Figure 4.4: Result of “City” Image [4].
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Figure 4.5: PSNR values of the 29 images of “Calendar” dataset for all the methods
tested [4].

Fig. 4.5 and Fig. 4.6 show the results in terms of PSNR for the images of “Cal-
endar” and “City” datasets accordingly, for all the methods tested. Frames 9, 10 and
11 from “Calendar” dataset show a much lower PSNR for APGM, BM3D, and TV,
because these images have greater difference from the others and these methods are
more motion-sensitive than ours. The results demonstrate the superior performance
of our approach in terms of reconstruction accuracy and preservation of fine details
and textures. It is worth mentioning that our method needs no training, since DnCNN
is pre-trained. Finally, the runtime of our method per frame is 12 seconds, ran in
Google Colab with T4 GPU.

The Wilcoxon signed-rank test was used to compare the PSNR values of the pro-
posed method with the respective values for Pseudo-inverse, Bicubic, APGM, BM3D
and TV methods. The results obtained with those statistical tests are shown in Fig. 4.7
and indicated statistically significant differences between the PPP V1 and the other
five methods.

Our method’s superior performance can be attributed to several factors: Effective
Handling of Noise: The use of the DnCNN neural network for denoising effectively
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Figure 4.6: PSNR values of the 29 images of “City” dataset for all the methods tested
[4].

removes noise while preserving details, which is crucial for achieving high PSNR
values. Robust Motion Estimation: The PnP framework with an effective prior model
and accurate optical flow estimation helps in better alignment and fusion of frames,
leading to improved reconstruction quality. High-Frequency Detail Preservation: The
method excels in preserving fine details and textures, as evidenced by the high PSNR
values and visually superior images.
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Figure 4.7: Scatter plot representation and the Wilcoxon signed-rank test results of the
comparison for each of the five super-resolution methods (Pseudo-inverse, Bicubic,
APGM, BM3D and TV) with the PPP V1 method regarding PSNR values. Four stars
(****) denote an extremely high level of significance, possibly at the 0.0001 level (p-
value < 0.0001), while in this case all results were p=0.000, indicating an ultimately
significant correlation.

4.5 MRI Super‐Resolution Using Plug‐And‐Play Priors and Rigid

Transformation

The use of Plug-and-Play Priors in MRI super-resolution offers numerous advantages,
including the integration of advanced denoising techniques, flexibility, improved han-
dling of complex image features, enhanced convergence and stability, scalability to
3D data, incorporation of motion correction, and quantitative improvements in image
quality. These benefits make PPP a powerful and effective framework for enhancing
the resolution of MRI images, ultimately contributing to better diagnostic accuracy
and patient care. Therefore, extending our, previously analysed, PPP method, we pro-
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pose its use in MRI super-resolution. The step we changed was the way we evaluated
the term Mk from the function (4.3), which now is being evaluated by using rigid
registration. Rigid registration, also known as rigid body registration or rigid trans-
formation, is a fundamental technique in medical image processing and computer
vision. It is used to align two images by performing translations and rotations while
preserving the shape and size of the structures within the images [178].

In a 2D plane, a rigid transformation can be represented using a 3 × 3 matrix,
often referred to as the transformation matrix. For example, a 2D translation can be
represented as [179]:

T =


1 0 tx

0 1 ty

0 0 1


Rotation and reflection matrices can also be formulated similarly. The result of the
rigid transformation is represented as an affine transformation matrix. This matrix
captures the translation and rotation parameters applied to the original image [179].

To evaluate our method, a widely-used publicly available dataset named the cancer
image archive (TCIA) [162] was used. Specifically, we conducted experiments using
a dataset of LR brain MRI images and a corresponding HR reference dataset. Our
method achieved notable improvements in image quality, as demonstrated by Figure
4.8 and Figure 4.9.

To quantitatively assess the performance of our method, we computed PSNR and
compared the results both with other methods, which are APGM (accelerated prox-
imal gradient method) [90], BM3D (Block-matching and 3D filtering) [113], Total
Variation [89] and RAISR (Rapid and Accurate Image Super Resolution) [180] and
with the pseudo-inverse and the denoised pseudo-inverse versions of the images. The
results, presented in Table 4.2, clearly indicate the superiority of our approach in
terms of image fidelity.

The Wilcoxon signed-rank test was used to compare the PSNR values of the pro-
posed method with the respective values for Pseudo-inverse, Denoised Pseudoinverse,
APGM, BM3D and TV methods. The results obtained with those statistical tests are
shown in Fig. 4.10 and indicated statistically significant differences between the PPP
V1 and the other five methods, since no per-slice data was available for RAISR and
MIRNetv2.
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Figure 4.8: Result of image 001 from Dataset 1

Table 4.2: PSNR statistics for the two datasets of all the methods

Dataset 1 Dataset 2

Average St.Dev Average St.Dev
PPP 26.59 0.49 25.67 0.65

Pseudo-inverse 19.52 0.56 22.81 0.26

Denoised pseudo-inverse 20.36 0.51 23.73 0.28

APGM 19.91 0.34 23.78 0.22

BM3D 20.58 0.82 23.72 0.36

TV 22.48 0.44 23.50 0.29

RAISR 21.99 0.43 25.77 0.32

63



Figure 4.9: Result of image 261 from Dataset 2
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Figure 4.10: Scatter plot representation and the Wilcoxon signed-rank test results
of the comparison for each of the five super-resolution methods (Pseudo-inverse,
Denoised Pseudoinverse, APGM, BM3D and TV) with the PPP V1 method regarding
PSNR values. Four stars (****) denote an extremely high level of significance, possibly
at the 0.0001 level (p-value < 0.0001), while in this case all results were p=0.000,
indicating an ultimately significant correlation.
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4.6 Summary

PnP techniques have established themselves as a standard tool for computational
imaging since their introduction in 2013. They have been utilized in a remarkable
variety of applications that provide cutting-edge performance. They were arguably the
first practical approach to integrating learned models with imaging physics to solve
inverse imaging issues when they were first introduced. The ease with which they can
be implemented was a major factor in their rapid popularity. Since then, alternative
strategies have emerged that, in some cases, result in improved reconstruction per-
formance; however, this is achieved at the expense of a potentially time-consuming
and data-dependent application-specific training procedure.

In this chapter, we proposed a PnP method for video super-resolution (resolution
enhancement) with motion estimation. The convergence property of the proposed
algorithm is analyzed in detail. More importantly, experimental results show the va-
lidity of our algorithm and its superiority compared to other state-of-the-art methods.
One important advantage of our method is that it needs no training, sonce DnCNN
is pre-trained.

Regarding its use for brain MRI super-resolution, the experimental results demon-
strate the superiority of our approach over existing techniques, underscoring its po-
tential for clinical applications in neuroimaging.
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CHAPTER 5

AN IMPROVED REGULARIZATION METHOD
FOR VIDEO SUPER-RESOLUTION USING AN

EFFECTIVE PRIOR

5.1 Introduction

5.2 Our Method

5.3 The denoising algorithm

5.4 Results

5.5 Discussion

5.6 Using the Improved Regularization Method for MRI Super‐Resolution

5.7 Summary

5.1 Introduction

As previously mentioned, video super-resolution stands as a significant challenge in
the field of computer vision, drawing substantial interest for its wide-ranging ap-
plications in areas such as surveillance, entertainment, and healthcare imaging. It
primarily focuses on improving the quality of low-resolution video sequences to pro-
duce high-quality, high-resolution outputs, addressing various challenges associated
with motion and noise.
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Commonly, basic interpolation methods like bilinear, bicubic, and spline interpo-
lation are utilized for video super-resolution owing to their computational simplicity.
These techniques employ predetermined interpolation kernels to fill in missing pixels
on the high-resolution grid, although they can introduce issues such as jagged edges,
ringing effects, and a loss of detail. More sophisticated interpolation methods, as cited
in certain studies, consider the image’s structure to somewhat reduce these issues but
may still result in somewhat blurred images, especially with considerable upscaling
[181, 182, 183, 184, 185].

Video super-resolution approaches [186, 187, 188, 189, 190, 191, 192, 193, 194,
195, 196, 197, 198, 199] combine multiple images of the same scene to create a single
high-resolution image, building on the premise that different frames offer unique
details about the scene. These methods focus on aligning and merging frames to
enhance resolution. Traditional multi-frame super-resolution techniques [186, 187,
191, 198] align frames with sub-pixel accuracy and reconstruct the high-resolution
frame using a specific observation model. These are effective with minimal and global
motion but struggle with large upscaling factors and pronounced motion. Learning-
based approaches, in contrast, derive a direct correlation from low- to high-resolution
frames, employing optical flow estimation for frame warping and learning multi-
frame fusion from extensive databases [193, 194, 195]. Some approaches, for example,
leverage deep learning for complex motion scenarios in multi-frame super-resolution
[193]. The latest methods aim to learn both frame registration and fusion using
deep neural networks, though the complexity of motion remains a hurdle, sometimes
leading to the loss of critical image details [192, 196].

In this chapter a robust regularization method for video super-resolution is pro-
posed, which utilizes an effective prior for denoising and takes into account the motion
between consequent frames.

5.2 Our Method

The acquisition model we are assuming is:

y = Ax+ ε, (5.1)
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where:

• y is the full set of low resolution (LR) frames, described as y = [ y1
T ,y2

T , ...,yp
T ] T

, where yk, k = 1, 2, ..., p are the p LR images. Each observed LR image is of
size N1 × N2. Let the kth LR image be denoted in lexicographic notation as
yk = [ yk,1, yk,2, ..., yk,M ] T , for k = 1, 2, ..., p and M = N1N2.

• x is the desired high resolution (HR) image, of size L1N1 × L2N2, written in
lexicographical notation as the vector x = [ x1, x2, ..., xN ]

T , where N = L1N1L2N2

and L1 and L2 represent the up-sampling factors in the horizontal and vertical
directions, respectively.

• ε = [ ε1, ε2, ..., εp]
T , where εk is the noise vector for frame k and contains

independent zero-mean Gaussian random variables.

• A = [ A1, A2, ..., Ap]
T is the degradation matrix which performs the operations

of blur, motion and subsampling.

Assuming that each LR image is corrupted by additive noise, we can then repre-
sent the observation model as [87]:

yk = Akx+ εk for 1 ≤ k ≤ p (5.2)

where
Ak = SBkMk. (5.3)

Mk is a warp matrix of size L1N1L2N2 × L1N1L2N2, Bk represents a L1N1L2N2 ×
L1N1L2N2 blur matrix, and S is a N1N2×L1N1L2N2 subsampling matrix. In our case
Bk = I , since we assumed no added blur on video frames.

The goal is to find the estimate x̂ of the HR image x from the p LR images yk by
minimizing the cost function

x̂ = arg min
x∈RN

f(x) with f(x) = g(x) + h(x), (5.4)

where g(x) =
∑p

k=1
1
2
∥Akx − yk∥22 is the “fidelity to the data” term, and h(x) is the

regularization term, which offers some prior knowledge about x. In this study, we
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adopt the Plug-and-Play Priors approach, in which the ADMM algorithm is modified
so that the proximal the proximal operator related to h(x) is replaced by a denoiser
that solves the problem of Eq. (5.5. The denoiser used is based on the work by
Chantas et al.[115].

The following outlines the algorithm we propose:

1. The initial phase involves computing the term Mk as indicated in Eq. (4.3),
achieved through the application of optical flow motion estimation via the
Farneback algorithm. This method, developed by Gunnar Farneback, utilizes
an image pyramid to progressively reduce resolution across levels and estimates
motion vectors for each pixel using a comprehensive set of steps:

(a) Preprocessing: Enhancing the input frames through noise reduction, image
denoising, and conversion of color space.

(b) Image pyramids: Constructing a Gaussian pyramid for each frame to create
downsampled versions of the original image, aiding in detecting motion
across various scales.

(c) Optical flow estimation: Calculating the optical flow at each pyramid level by
employing polynomial expansion and spatial filtering to estimate motion
vectors based on phase differences.

(d) Upsampling and refinement: Refining the optical flow from the coarsest level
by upsampling and integrating higher-resolution data, enhancing flow es-
timation accuracy for detailed motion tracking.

This process yields a comprehensive optical flow field, with each pixel’s motion
vector indicating the direction and magnitude of scene movement across frames.

We presuppose that one of the low-resolution (LR) images, ymid (usually the
central image), is derived from the high-resolution (HR) image x through down-
sampling alone, without motion, thus settingMmid = I. Optical flow is then com-
puted between ymid and the other LR images to determineMk for the remaining
p− 1 images.

2. The subsequent phase is centered on employing the PnP-ADMM technique. We
execute the PnP-ADMM, adhering to the procedure outlined in Algorithm 5.1
until reaching convergence. The initial HR image guess, x0, is generated from
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ymid using the pseudo-inverse of Amid and then denoised via DnCNN. Here, D
represents the denoising operator, introduced and discussed in Section 5.3, and
g is formulated as g(x) =

∑p
k=1

1
2
∥Akx− yk∥22.

Algorithm 5.1 PnP-ADMM [6]
1: u0 = 0, x0, and γ > 0

2: for k = 1, 2, ..., t do
3: zk ← proxγg(xk−1 − uk−1)

4: xk ← D(zk + uk−1)

5: uk ← uk−1 + (zk − xk)
6: end for
7: return xt

We next explain the modification made to the standard ADMM algorithm to obtain
PnP-ADMM. Line 4 or the standard ADMM is xk ← proxβh(zk + uk−1). In the PnP-
ADMM, the proximal operator is replaced by a denoiser that solves the problem

z = x0 +w, where x0 ∼ p,w ∼ N(0; βI). (5.5)

It can be shown that the Maximum A Posteriori (MAP) estimator x̂0 of x0 is the
proximal operator:

x̂0 = proxβh(z) = arg min
x∈RN
{1
2
∥x− z∥22 + βh(x)}, (5.6)

for h(x) = − log(p(x)).

5.3 The denoising algorithm

In this section, we describe the algorithm we use to implement the denoising step of
Eq. (5.6). The algorithm is a simplification of that proposed in ([115]), it is formulated
in a probabilistic (Variational Bayes) context and utilizes an effective prior distribution,
which we describe in short next.

5.3.1 The prior distribution

The prior distribution we employ for the denoising step was proposed in [115] for
the single image Super-Resolution, and it is of the form:
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p(x) ∝
∏
w∈Ω

(∑
δ∈D

(
1 +

λ

ν
ϵw,δ(x)

)− ν+1
2

)
, (5.7)

where λ, ν are the real-positive distribution parameters and ϵw,δ is a similarity measure
between two patches each of center pixel w and w + δ. The above distribution is
produced after integrating out the hidden variables of the prior in [115]. However,
this form in never explicitly used (it is not necessary) in the optimization algorithm.
We show it here in this form for simplicity of presentation. Indeed, h(x) enables us
to interpret the prior in a deterministic context, analogous with the penalty function
imposed on the video frames, see equation 5.6.

We introduce a similarity measure between two image patches, denoted as Nw and
Nw′ , where x(w) and x(w′) represent the central pixel of the first and second patch,
respectively.

The complete set of pixel coordinates is represented by Ω = {1, . . . , N}. Further-
more, we define δ as the integer displacement between the center pixels of the two
patches, such that w′ = w + δ. For measuring similarity, we employ a weighted Eu-
clidean norm, represented by ϵw,δ , to quantify the difference between Nw and Nw′ (or
Nw+δ) as follows:

ϵw,δ =
∑
i∈Ω

v2
δ(i)gw(i), (5.8)

where vδ is defined by: vδ = Qδx and v2
δ indicates the vector obtained by squaring

each element of vδ. Qδ represents the difference operator, an N ×N matrix, such that
the i-th component of Qδx equals x(i)−x(i′) for all i, i′ ∈ Ω with i′− i = δ. The matrix
Gw is an N × N diagonal matrix, where its diagonal elements corresponding to the
pixels in Nw are the only non-zero values, specifically, Gw(i, i) = 0 for all i not in Nw.
Lastly, we denote by gw the N × 1 vector with elements the weights of the weighted
norm: the closer to the central pixel of the patches the larger the weight value.

The norm defined by (5.8) retains its value even if the summation (5.8) runs over
only the subset Nw ⊂ Ω instead of Ω, since gw(i) = 0 for i /∈ Nw. However, we use the
full summation range over Ω for enabling fast computations with the Fast Fourier
Transform, as explained next.

The distance between the patch Nw=1 and an arbitrary patch Nw′ , w′ ∈ Ω, is
δ = w − w′ = 1− w′. Given that the image patches correspond to g1 and gw′ , it is:

gw′(i) = gw=1 (i− δ) = g1 (i+ 1− w) , ∀i ∈ Ω. (5.9)
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As we can see, each gw′ , is a circularly shifted by w′ version of g1 ≡ g (denoted simply
by g from now on). The formula (5.8) for calculating ϵw,δ , expressed in terms of g,
is:

ϵw,δ =
∑
i∈Ω

v2
δ(i)gw(i) =

∑
i∈Ω

v2
δ(i)g(i+ 1− w). (5.10)

Clearly, the values of ϵw,δ for all w’s, are the result of the correlation (denoted by a star
in line 4 of Algorithm 2) between v2

δ and g, since the indices of v2 and g always differ
by the constant 1 − w. To calculate the correlation required for the super-resolution
technique discussed in the following section, we use the Fast Fourier Transform
(FFT). This approach decreases the computational complexity of the algorithm from
O(N2), typical for correlation calculations, to O(N logN), which is the complexity for
multiplication in the DFT (Discrete Fourier Transform) domain.

5.3.2 Denoising in PnP‐ADMM

Next, we describe the algorithm we employ in the PnP-ADMM context of Algorithm
5.1, and specifically for the denoising step (line 4). The algorithm we employ, as a
denoising sub-problem of the general super-resolution algorithm (Algorithm 5.1), is
in essence a special case of the VBPS algorithm in [115], where there is no blurring
nor decimation. Mathematically speaking, this means that the imaging operator DH
is the N ×N identity matrix I, as shown in line 8 of Algorithm 2.

More specifically, the imaging model assumed for the denoising step is a simplified
form of Eq. (2.1) in [115], because it is now DH = I (i.e., no blur/decimation, hence it
is just the identity matrix). Also, in this form, zk+uk−1 has the role of the “noisy image”
and xk is the uncorrupted one, meant to be estimated by the denoising algorithm.

In parallel with imaging model, we assume the imaging model, i.e., the prior
distribution introduced above and given by Eq. (5.5). This is in essence the prior
distribution for the uncorrupted image to be estimated via the denoising procedure.
This means that the Algorithm 2 is the result of the adoption of both the imaging
model mentioned above and the prior (5.5) for x. Lastly, note that the denoising
Algorithm 2 selects automatically, in the initialization step, the noise variance β, among
other parameters.
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Algorithm 5.2 Variational Bayes Patch Similarity Denoising
Input: Noisy image zk + uk−1.
Output: Denoised image xk.

Initialization:
Image initial estimate: Set αnew = α/2, where α is the regularization parameter obtained
from [200]. Then, set m(0) = xStat, where xStat is the super-resolved image obtained
after setting α = αnew. Parameter selection: Set t = 0, and β = N/∥x− z∥22, λ = 103αnew,
ν = 7, rmax = 280, MAXITER = 25 and err= 10−7.

1: while ∥m(t) −m(t−1)∥22/N > err AND t < MAXITER do
2: for every δ in D do

vδ ← Qδm(t) for every w in Ω do
3:4: Calculate the expectations of the following model’s random variables:

⟨aw,δ⟩(t) =
1 + ν

λϵ̂w,δ + ν
,

⟨zw,δ⟩(t) =
e−

λ
2
⟨aw,δ⟩(t)êw,δ− ν

2
log⟨aw,δ⟩(t)∑

δ e
−λ

2
⟨aw,δ′ ⟩(t)êw,δ′−

ν
2
log⟨aw,δ′ ⟩(t)

,

where ϵ̂ is the ϵ in (5.8), calculated with the image estimation provided in
the previous iteration t− 1,

5: calculate b(t)
δ (w) = ⟨aw,δ⟩(t)⟨zw,δ⟩(t), for all w and δ,

6: set �(t)δ = diag{b(t)
δ ∗ g} (convolution),

7: t← t+ 1

8: Obtain m(t) by solving the linear system
(
βI+ λ

∑
δ QT

δ Λ
(t)
δ Qδ

)
m(t) = βy

with the Conjugated Gradients algorithm.
9: end for
10: end for
11: end while
12: T=t; xk = m(T ).

74



5.4 Results

We implemented our method in SCICO [174], which is an open source library for
computational imaging that includes implementations of several algorithms.

Extensive testing was carried out on the Vid4 benchmark dataset to assess the
effectiveness of our approach. For our experiments, we selected p = 3 frames, po-
sitioning the middle frame as the one without motion, and no additive noise was
assumed. We applied upscaling factors of L1 = L2 = 4 in both the horizontal and
vertical dimensions. Our method’s performance was then benchmarked against other
established video super-resolution methods using quantitative indicators like PSNR
and subjecive assessment of visual quality.

The experimental results on the Calendar and City datasets demonstrate the su-
perior performance of the proposed method in comparison to several state-of-the-art
video super-resolution techniques, which are SOF-VSR [175], VSR-DUF [201], RBPN
[202], DBPN [203], FRVSR [204], EDVR [176] and PPP V1 [4]. The quantitative
evaluation is based on PSNR (Peak Signal-to-Noise Ratio) values, which are widely
used to assess the quality of super-resolved videos. As for the subjective quality eval-
uation, it is based on Natural Image Quality Evaluator (NIQE), which provides a
score to assess the quality of images without requiring a reference. This no-reference
quality metric is valuable because it does not need prior knowledge of specific types
of image distortions or perceived degradation. NIQE works independently of any
manually degraded data, which potentially makes it more adaptable to unexpected
quality issues in images. A lower NIQE score suggests higher perceptual quality of
the image.

In the case of the Calendar dataset, the proposed method achieves the highest
PSNR value of 23.04 dB, outperforming all the competing methods, as it can be seen
in Table 5.1. Similarly, on the Foliage dataset, our method achieves a notable PSNR
value of 25.82 dB, surpassing the performance of the existing methods. The datasets
that our algorithm doesn’t give the best PSNR are City and Walk, where only RBPN
surpasses our method.

However, considering the perceptual quality of the frames, it is obvious that our
method gives the best results, outperforming the other methods on all datasets. This
outcome demonstrates the robustness and effectiveness of our method in enhancing
the natural quality of super-resolved videos for this specific dataset.
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Table 5.1: PSNR results.

Calendar City Foliage Walk Average St. Dev.

SOF-VSR 16.02 21.34 18.89 20.06 19.08 2.27
VSR-DUF 16.12 20.06 18.40 18.73 18.33 1.64
RBPN 22.65 26.39 24.90 29.37 25.83 2.82
DBPN 20.93 23.95 21.72 25.73 25.37 2.18
FRVSR 21.55 25.4 24.11 26.21 24.32 2.04
EDVR 21.70 25.51 24.93 24.01 24.39 1.64
PPP v1 19.47 24.27 20.43 24.45 22.16 2.58
Ours 23.04 25.64 25.82 27.92 25.61 2.00

Table 5.2: NIQE results.

Calendar City Foliage Walk Average St. Dev.

SOF-VSR 5.56 6.52 8.23 5.95 6.57 1.18
VSR-DUF 4.50 5.72 6.53 5.06 5.45 0.87
RBPN 4.36 5.17 7.14 5.18 5.46 1.18
DBPN 4.87 5.66 7.69 5.67 5.97 1.20
FRVSR 5.30 5.80 7.12 5.22 5.86 0.88
PPP v1 6.83 6.70 7.24 6.74 6.88 0.25
Ours 4.34 4.50 4.63 3.74 4.30 0.39

Beyond the numerical outcomes, visual evidence also supports the superiority of
our method, as the images enhanced through our super-resolution process appear
sharper and more defined compared to those generated by competing techniques.
Example of the results can be seen in Fig. 5.1, which show example image of the
Calendar dataset.

In the City dataset, just like in the previous one, the images support the numerical
results, since the super-resolved pictures are clearer than the pictures produced with
the other methods and the bicubic interpolated images. Example of the results can
be seen in Fig. 5.2.

It should be noted that there is no image and NIQE result for EDVR, since we
were unable to run the code provided so we included only the PSNR values referred
to [177].
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Figure 5.1: Original Image and Super-resolved Image 20, from Dataset Calendar, with
all methods

Figure 5.2: Original Image and Super-resolved Image 20, from dataset City, with all
methods
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These results indicate that the proposed method consistently outperforms the
state-of-the-art methods in terms of PSNR for Calendar, City, Foliage andWalk datasets.
The substantial performance gains emphasize the potential of our approach for high-
quality video super-resolution, making it a compelling choice for practical applications
in video enhancement and upscaling.

5.5 Discussion

The results of our experiments clearly demonstrate the effectiveness of the proposed
method in the context of video super-resolution when compared to several established
methods. We will now delve into a discussion of these results and their implications.

5.5.1 Interpreting the PSNR Gains

The substantial PSNR gains achieved by our method on Calendar, City, Foliage and
Walk datasets underscore its ability to produce higher-quality super-resolved videos.
The substantial margin by which our method outperforms existing techniques, such
as SOF-VSR, VSR-DUF, RBPN, DBPN, and EVSR, showcases its robustness across
different scenarios. The increase in PSNR values and the decrease in NIQE values
translates to sharper, more faithful reconstructions of low-resolution videos, making
our method highly appealing for various video enhancement applications.

5.5.2 Applicability Across Diverse Datasets

Another noteworthy observation is the consistent performance of our method across
the Calendar, City, Foliage and Walk datasets. This indicates that our approach is not
limited to specific video content types and can be effectively employed in a wide range
of real-world scenarios. The ability to maintain high PSNR values across different
datasets demonstrates the versatility and adaptability of our method.

5.5.3 Practical Implications

From a practical perspective, the remarkable PSNR improvements hold significant
implications for video quality enhancement. Whether it’s enhancing low-resolution
surveillance footage in urban environments (City dataset) or improving the clarity of
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complex, high-motion scenes (Calendar dataset), our method showcases its potential
to make a substantial difference in various real-world applications.

5.6 Using the Improved Regularization Method for MRI Super‐

Resolution

Following the steps we took in Chapter four, we, once again, modified our enhanced
PPP method suggested in this Chapter, to use it in MRI super-resolution. As referred
in sub-section 4.5, the step we changed was the way we evaluated the term Mk from
the function (4.3), which now is being evaluated by using rigid registration.

To evaluate our method, the widely-used publicly available dataset named the
cancer image archive (TCIA) [162] was, once again, used,in order to compare our
results to the previously proposed method. Specifically, we conducted experiments
using a dataset of LR brain MRI images and a corresponding HR reference dataset.
Our method with the effective prior achieved notable improvements in image quality,
as demonstrated by Figure 5.3 and Figure 5.4.

Figure 5.3: Result of image 001 from Dataset 1

To objectively evaluate the effectiveness of our improved technique, we calculated
the PSNR and conducted comparisons with both alternative approaches and enhanced
versions of our own method. Specifically, we compared against PPPV1, APGM (ac-
celerated proximal gradient method) [90], BM3D (Block-matching and 3D filtering)
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Figure 5.4: Result of image 261 from Dataset 2

[113], Total Variation [89], and RAISR (Rapid and Accurate Image Super Resolution)
[180], as well as with the pseudo-inverse and the denoised pseudo-inverse images.
The outcomes, detailed in Table 5.3, unequivocally demonstrate that our method
surpasses others in delivering higher image quality.

The Wilcoxon signed-rank test was used to compare the PSNR values of the
proposed method with the respective values for PPP V1, Pseudo-inverse, Denoised
Pseudoinverse, APGM, BM3D and TV methods. The results obtained with those
statistical tests are shown in Fig. 5.5 and indicated statistically significant differences
between the PPP and the other six methods, since no per-slice data was available for
RAISR and MIRNetv2.

Considering the perceptual quality of the frames, it is obvious from Table 5.4 that
our method gives the best results, outperforming the other methods on all datasets.
This outcome demonstrates the robustness and effectiveness of our method in en-
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Table 5.3: PSNR statistics for the two datasets of all the methods

Dataset 1 Dataset 2
Average St.Dev Average St.Dev

PPPV1 22.49 0.44 25.26 0.25

PPP 26.59 0.49 25.67 0.65

Pseudo-inverse 19.52 0.56 22.81 0.26

Denoised pseudo-inverse 20.36 0.51 23.73 0.28

APGM 19.91 0.34 23.78 0.22

BM3D 20.58 0.82 23.72 0.36

TV 22.48 0.44 23.50 0.29

RAISR 21.99 0.43 25.77 0.32

MIRNetv2 14.05 0.27 14.26 0.18

hancing the natural quality of super-resolved videos for this specific dataset.

Table 5.4: NIQE statistics for the two datasets of all the methods

Dataset 1 Dataset 2
Average St.Dev Average St.Dev

PPPV1 6.14 0.15 6.66 0.17

PPP 5.82 0.15 6.39 0.16

Pseudo-inverse 14.13 0.36 14.08 0.35

Denoised pseudo-inverse 14.13 0.36 14.08 0.35

APGM 13.86 0.35 13.03 0.33

BM3D 10.66 0.27 11.92 0.30

TV 12.22 0.31 12.82 0.32

RAISR 5.87 0.15 9.61 0.24

MIRNetv2 7.18 0.18 7.95 0.20

81



Figure 5.5: Scatter plot representation and the Wilcoxon signed-rank test results of the
comparison for each of the six super-resolution methods (PPP V1, Pseudo-inverse,
Denoised Pseudoinverse, APGM, BM3D and TV) with the PPP method regarding
PSNR values. Four stars (****) are less commonly used than one, two, or three asterisks
in standard practice. If used, they might denote an extremely high level of significance,
possibly at the 0.0001 level (p-value < 0.0001), while in this case all results were
p=0.000, indicating an ultimately significant correlation.
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5.7 Summary

In summary, the results presented in this study highlight the superior performance
of the proposed method in the field of video super-resolution. This method con-
sistently outperforms state-of-the-art techniques, as demonstrated by the substantial
PSNR gains observed on Calendar, City, Foliage, and Walk datasets. The following key
takeaways can be drawn:

• Our method achieves remarkable PSNR improvements, leading to sharper and
higher-quality super-resolved videos.

• The versatility of our approach is evident, as it performs consistently well on
different datasets, representing a wide range of real-world scenarios.

• The practical implications of our results suggest that our method holds great
promise for applications where video quality enhancement is paramount.

• Computational efficiency is another significant advantage of our method. Unlike
Deep Neural Network-based methods, our approach does not rely on neural
networks and requires no training, making it faster and less resource-intensive.

Regarding its use for brain MRI super-resolution, the experimental results demon-
strate the superiority of our approach over existing techniques, underscoring its po-
tential for clinical applications in neuroimaging.

These findings make a strong case for the adoption of our method in video en-
hancement and upscaling tasks. We believe that the approach we suggest has the
potential to contribute significantly to the field of video super-resolution and benefit
a wide range of applications. It should be emphasized that the proposed method does
not require any training, in contrast to the other methods we used in comparison.

Future work may involve further optimizations, including real-time implementa-
tion and the exploration of additional performance metrics to provide a more com-
prehensive assessment of our method’s capabilities.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Summary of Key Findings

6.2 Contribution to Medical Imaging Technology

6.3 Future Directions

6.4 Closing Remarks

This PhD thesis has embarked on an in-depth exploration of novel methodologies
in the compression and super-resolution of medical images and videos, marking
significant strides in the advancement of medical imaging technology. With a keen
focus on pioneering algorithms and leveraging the potential of deep learning, the
research encapsulates a series of innovative contributions to the field, establishing a
solid foundation for future explorations and enhancements.

6.1 Summary of Key Findings

Throughout this research, the thesis has unfolded novel techniques for medical image
compression and super-resolution, with Chapters 4, 5, and 6 introducing ground-
breaking methods that stand at the forefront of this domain. The thesis showcased
an improved medical image compression method predicated on Wavelet Difference
Reduction (WDR) and the efficacious application of Plug-and-Play Priors (PnP) for
advancing video and MRI super-resolution.
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Chapter 4 delineated an innovative compression method, highlighting the uti-
lization of the mean co-located pixel difference (MCPD) to determine the optimal
encoding frames. This methodology not only achieved exemplary compression ra-
tios but also meticulously preserved the critical diagnostic content within the medical
images, hence fostering an efficient storage and transmission process.

In Chapter 5, the thesis navigated through the intricacies of video super-resolution,
employing Plug-and-Play Priors to substantially uplift the resolution of low-quality
videos. This chapter underlined the method’s adeptness in enhancing image details
without the customary computational burdens, thereby offering a robust solution for
the improvement of medical imaging quality.

Chapter 6 further extended the discourse into advanced regularization methods
for video super-resolution, revealing a novel technique that integrates an innovative
denoiser within the ADMM algorithm. This approach underscored the potential to
significantly refine the resolution and clarity of medical videos, thereby providing a
richer visual context for clinical analysis and diagnostics.

6.2 Contribution to Medical Imaging Technology

The methodologies developed in this thesis have contributed to medical imaging
technology by:

• Enhancing Data Efficiency: The new compression method introduced offers a
sophisticated approach to managing the vast data volumes associated with med-
ical imaging, thereby enabling more effective storage and transmission solutions.

• Elevating Image Quality: The super-resolution techniques presented have sub-
stantially elevated the quality and resolution of medical images and videos,
facilitating more precise and detailed clinical evaluations.

• Innovating with Deep Learning: By incorporating deep learning into super-
resolution processes, the research has opened new avenues for automating and
improving image enhancement tasks, setting a new benchmark for future en-
deavors in the field.
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6.3 Future Directions

The findings and methodologies introduced in this thesis pave the way for several
promising avenues of future research, including:

• Exploration of Advanced Deep Learning Models: Investigating and developing
cutting-edge deep learning models to further enhance the efficacy of image
super-resolution.

• Extension to Various Medical Imaging Modalities: Adapting the developed meth-
ods to encompass a broader spectrum of imaging modalities, thereby amplifying
their utility and application in medical diagnostics.

• Emphasis on Real-time Processing: Focusing on algorithms and technological
solutions that facilitate real-time image processing could revolutionize clinical
practices and telemedicine.

• Integration of Security Measures: As advancements continue, integrating robust
encryption and privacy measures will be crucial in safeguarding the integrity
and confidentiality of medical images.

6.4 Closing Remarks

The contributions of this thesis to medical imaging technology are not just evolution-
ary but revolutionary, offering a glimpse into the future of healthcare diagnostics.
By addressing the pivotal challenges and harnessing the opportunities within med-
ical imaging, this research not only propels the field forward but also sets the stage
for transformative breakthroughs that promise to enhance patient care and outcomes
significantly. The integration of artificial intelligence and computational methods her-
alds a new era in medical imaging, one that is bound to unfold new dimensions of
diagnostic accuracy and efficiency.
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