
Efficient Algorithms for Some Connectivity
Problems, in Static and Dynamic Graphs

A Dissertation

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Evangelos Kosinas

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina

School of Engineering

Ioannina 2024

Advisory Committee:

• Loukas Georgiadis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina (supervisor)

• Christos Nomikos, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Leonidas Palios, Professor, Department of Computer Science and Engineering,
University of Ioannina

Examining Committee:

• Loukas Georgiadis, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Monika Henzinger, Professor, Institute of Science and Technology, Austria

• Spyridon Kontogiannis, Associate Professor, Department of Computer Science
and Engineering, University of Patras

• Christos Nomikos, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Leonidas Palios, Professor, Department of Computer Science and Engineering,
University of Ioannina

• Charis Papadopoulos, Associate Professor, Department of Mathematics, Uni-
versity of Ioannina

• Nikos Parotsidis, Research Scientist, Google Research, Switzerland

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Loukas Georgiadis, who guided
me through the process of pursuing my PhD, by suggesting very nice topics for
research, and for being very agreeable and encouraging in our conversations. It is
fair to say that, without his trust, patience, and understanding, this work would not
have been possible. I would like to thank Giuseppe Italiano for his collaboration
in various projects, and for inviting me at LUISS as a visiting scholar during the
fall semester of 2022. I enjoyed very much my stay in Rome, and it has been very
exciting throughout to be in contact with the perspective of a highly experienced
and distinguished researcher. I would also like to thank Debasish Pattanayak for
his collaboration in a part of this work. I am very grateful to Christos Nomikos and
Leonidas Palios for being part of the advisory and examining committee, and I would
also like to thank Monika Henzinger, Spyridon Kontogiannis, Charis Papadopoulos,
and Nikos Parotsidis, who have accepted to be members of the examining committee.
Finally, I would like to thank my parents for their support all these years, and for
their unconditional belief in the value of my academic pursuits.

FUNDING ACKNOWLEDGEMENTS

The research work was supported by the Hellenic Foundation for Research and In-
novation (HFRI) under the 3rd Call for HFRI PhD Fellowships (Fellowship Number:
6547).

TABLE OF CONTENTS

List of Figures vii

List of Tables ix

List of Algorithms x

Abstract xiii

Εκτεταμένη Περίληψη xv

1 Introduction 1
1.1 Objective . 1
1.2 Overview of our results . 2

1.2.1 Computing the 4-edge-connected components 2
1.2.2 Computing the 5-edge-connected components 3
1.2.3 Connectivity queries under four edge failures 4
1.2.4 Connectivity queries under vertex failures 5
1.2.5 On computing the maximal k-edge-connected subgraphs 7

1.3 Organization . 8

2 Preliminaries 9
2.1 Basic graph terminology . 9
2.2 Partitions and atoms . 11
2.3 Edge-connectivity and k-edge-connected components 12
2.4 Maximal k-edge-connected subgraphs 13
2.5 Notation . 14

3 Concepts defined on a DFS Tree 16
3.1 Basic definitions . 17

i

3.1.1 low and high edges . 19
3.1.2 Maximum points, leftmost and rightmost edges 20

3.2 Properties of the DFS parameters . 21
3.3 Computing the low-edges . 29
3.4 Computing the high-edges . 34
3.5 Computing the leftmost and the rightmost edges 40
3.6 Computing the maximum points . 48
3.7 Pointer-machine algorithms for some DFS parameters 50

3.7.1 Computing all M(v) . 51
3.7.2 Computing all M̃(v), Mlow1(v) and Mlow2(v) 54
3.7.3 Computing all lowM(v) and lowMD(v) 60
3.7.4 Computing all L1(v), L2(v), R1(v) and R2(v) 63

3.8 Two lemmata concerning paths . 65
3.9 An oracle for back-edge queries . 66
3.10 Segments of vertices that have the same high point 69

4 Computing the 4‐Edge‐Connected Components in Linear Time 74
4.1 Introduction . 74
4.2 3-cuts on a DFS tree . 75

4.2.1 Type-1 3-cuts . 77
4.2.2 Type-2 3-cuts . 77
4.2.3 Type-3 3-cuts . 79

4.3 Computing all 3-cuts of a 3-edge-connected graph 81
4.3.1 Computing Type-1 3-cuts . 81
4.3.2 Computing Type-2 3-cuts . 82

4.3.2.1 The upper case . 82
4.3.2.2 The lower case . 89

4.3.3 Computing Type-3 3-cuts . 95
4.4 Computing the 4-edge-connected components 96

4.4.1 Reducing the computation to 3-edge-connected graphs 96
4.4.2 Splitting a 3-edge-connected graph according to its 3-cuts 97

4.5 Testing 4-edge connectivity . 99
4.5.1 The upper case . 100
4.5.2 The lower case . 101

ii

5 Computing the 5‐Edge‐Connected Components 104
5.1 Introduction . 104

5.1.1 Problem definition . 104
5.1.2 Related work . 105
5.1.3 Our contribution . 107
5.1.4 Technical overview . 109

5.1.4.1 Reduction to 3-edge-connected graphs 110
5.1.4.2 Computing enough 4-cuts of a 3-edge-connected graph 111
5.1.4.3 Unpacking the implicating sequences of a complete col-

lection of 4-cuts . 113
5.1.4.4 Cyclic families of 4-cuts, and minimal 4-cuts 114
5.1.4.5 Isolated and quasi-isolated 4-cuts 117
5.1.4.6 The full algorithm . 118

5.1.5 Organization of this chapter . 120
5.2 Properties of 4-cuts in 3-edge-connected graphs 120

5.2.1 The structure of crossing 4-cuts of a 3-edge-connected graph . . 121
5.2.2 Implied 4-cuts, and cyclic families of 4-cuts 125
5.2.3 Properties of cyclic families of 4-cuts 139
5.2.4 Generating the implied 4-cuts . 140
5.2.5 Isolated and quasi-isolated 4-cuts 146
5.2.6 Some additional properties satisfied by the output of Algo-

rithm 16 . 150
5.3 Using a DFS-tree for some problems concerning 4-cuts 159

5.3.1 Computing the r-size of 4-cuts 161
5.3.2 Checking the essentiality of 4-cuts 163
5.3.3 Computing the atoms of a parallel family of 4-cuts 164

5.4 Computing the 5-edge-connected components 177
5.4.1 Overview . 177
5.4.2 Computing the minimal 4-cuts 180
5.4.3 Computing the essential isolated 4-cuts 183
5.4.4 Computing enough 4-cuts in order to derive the 5-edge-

connected components . 190
5.4.5 The algorithm . 192

5.5 Computing a complete collection of 4-cuts 194

iii

5.5.1 A typology of 4-cuts on a DFS-tree 194
5.5.2 Type-2 4-cuts . 200
5.5.3 Type-3 4-cuts . 202

5.5.3.1 Type-3α 4-cuts . 203
5.5.3.2 Type-3β 4-cuts . 209

5.5.4 Min-max vertex queries . 219
5.6 Computing Type-2 4-cuts . 222

5.6.1 The case B(v) = B(u) ⊔ {e1, e2} 224
5.6.2 The case B(v) ⊔ {e1} = B(u) ⊔ {e2} 229
5.6.3 The case B(u) = B(v) ⊔ {e1, e2} 239

5.7 Computing Type-3α 4-cuts . 242
5.7.1 Type-3αi 4-cuts . 246

5.7.1.1 The case where M(B(u) \ {ehigh(u)}) = M(u) 249
5.7.1.2 The case where M(B(u) \ {ehigh(u)}) ̸= M(u) 254

5.7.2 Type-3αii 4-cuts . 259
5.8 Computing Type-3β 4-cuts . 282

5.8.1 Type-3βi 4-cuts . 289
5.8.1.1 Case (1) of Lemma 5.57 289
5.8.1.2 Case (2) of Lemma 5.57 296
5.8.1.3 Case (3) of Lemma 5.57 305
5.8.1.4 Case (4) of Lemma 5.57 315

5.8.2 Type-3βii 4-cuts . 333
5.8.2.1 Type-3βii-1 4-cuts . 333
5.8.2.2 Type-3βii-2 4-cuts . 344
5.8.2.3 Type-3βii-3 4-cuts . 372
5.8.2.4 Type-3βii-4 4-cuts . 383

6 Connectivity Queries under 4 Edge Failures 441
6.1 Introduction . 441
6.2 E ′ contains zero tree-edges . 450
6.3 E ′ contains one tree-edge . 450
6.4 E ′ contains two tree-edges . 451
6.5 E ′ contains three tree-edges . 452

6.5.1 u and v are not related as ancestor and descendant 452

iv

6.5.2 v is an ancestor of u . 453
6.6 E ′ contains four tree-edges . 457

6.6.1 No two vertices in {u, v, w} are related as ancestor and descendant458
6.6.2 w and v are not related as ancestor and descendant, and v is an

ancestor of u . 459
6.6.3 w is an ancestor of both u and v, and {u, v} are not related as

ancestor and descendant . 461
6.6.4 w is an ancestor of v, and v is an ancestor of u 463

6.7 The data structure . 471

7 Connectivity Queries under Vertex Failures 472
7.1 Introduction . 472

7.1.1 Previous work . 473
7.1.2 Our contribution . 473

7.2 Preliminaries . 475
7.2.1 DFS-based concepts . 476

7.3 The algorithm for vertex failures . 479
7.3.1 Initializing the data structure . 479
7.3.2 The general idea . 481
7.3.3 The structure of the internal components 483
7.3.4 Handling the updates: construction of a connectivity graph for

the internal components of T \ F 489
7.3.5 Answering the queries . 498

8 On Maximal k‐Edge‐Connected Subgraphs of Undirected Graphs 501
8.1 Introduction . 501

8.1.1 Overview of our results . 503
8.1.2 Organization . 507

8.2 Preliminaries . 507
8.3 The decomposition tree of the maximal k-edge-connected subgraphs . . 509

8.3.1 A general framework for maintaining the k-edge-connected sub-
graphs . 510

8.3.2 Maintaining the decomposition tree 512
8.3.3 The decomposition tree of the maximal 3-edge-connected sub-

graphs . 514

v

8.3.3.1 N is the root or a 3-ecc node 519
8.3.3.2 N is a 1-ecc node . 519
8.3.3.3 N is a 2-ecc node . 521

8.4 Maintaining the decomposition tree after insertions 524
8.4.1 An O(n2 log2 n +mα(m,n))-time algorithm for the incremental

maintenance of T . 525
8.4.2 An O(n2α(n, n) +mα(m,n))-time algorithm for the incremental

maintenance of T . 529
8.5 Data structures for trees and cactuses 532

8.5.1 An implementation for trees . 533
8.5.2 An implementation for cactuses 535

8.6 Improved data structures for trees and cactuses 541
8.6.1 Fractionally rooted trees . 541
8.6.2 An implementation for trees . 542
8.6.3 An implementation for cactuses 546

8.7 Sparse certificates for the maximal k-edge-connected subgraphs 555
8.8 Computing the maximal k-edge-connected subgraphs 558
8.9 A fully dynamic algorithm for maximal k-edge-connectivity 561
8.10 Conclusions . 564

Bibliography 566

vi

LIST OF FIGURES

2.1 The maximal 3-edge-connected subgraphs constitute a refinement of
the 3-edge-connected components. 14

2.2 It is not straightforward how to efficiently derive the maximal 3-edge-
connected subgraphs from the 3-edge-connected components. 14

4.1 The types of 3-cuts with respect to a DFS tree. 76
4.2 The three cases of Type-2 3-cuts (upper case). 84
4.3 The three cases of Type-2 3-cuts (lower case). 90
4.4 Splitting a graph according to a 3-cut. 98

5.1 All possible crossings of two 4-cuts. 122
5.2 The crossing square of two essential 4-cuts. 125
5.3 The possible arrangements of two distinct 4-cuts that share a pair of

edges. 127
5.4 The relation of implication for collections of 4-cuts is not transitive. . . 130
5.5 A cyclic family of 4-cuts generated by a collection of five pairs of edges. 130
5.6 A depiction of the situation analyzed in Lemma 5.17. 149
5.7 The 4-cuts with distance 1 are not necessarily implied straightforwardly

from the collection of pairs of edges that generates them. 152
5.8 The 4-cuts with distance 2 are not necessarily implied straightforwardly

from the collection of pairs of edges that generates them. 153
5.9 The 4-cuts with distance at least 3 are implied straightforwardly from

the collection of pairs of edges that generates them. 154
5.10 Companion figures to Lemma 5.20. 157
5.11 Expanding a square family of 4-cuts into a hexagonal family, under

some restrictions. 158

vii

5.12 The condition of essentiality of both 4-cuts in the statement of
Lemma 5.20 cannot be removed. 160

5.13 A depiction of the situation analyzed in Lemma 5.21. 161
5.14 Splitting a graph according to a 4-cut. 166
5.15 Two essential quasi-isolated 4-cuts may cross. 179
5.16 Illustration of Type-1 4-cuts. 200
5.17 The three different cases for Type-2 4-cuts. 201
5.18 The number of Type-2ii 4-cuts can be Ω(n2). 203
5.19 The two different cases of Type-3α 4-cuts. 204
5.20 The number of Type-3αi 4-cuts can be Ω(n2). 205
5.21 Cases (1)-(3) of Lemma 5.50 for Type-3αii 4-cuts. 207
5.22 Cases (4.1) and (4.2) of Lemma 5.50 for Type-3αii 4-cuts. 208
5.23 The four different cases of Type-3β 4-cuts. 211
5.24 The number of Type-3βi 4-cuts that satisfy (2) of Lemma 5.57 can be

Ω(n2). 212
5.25 The number of Type-3βi 4-cuts that satisfy (3) of Lemma 5.57 can be

Ω(n2). 213
5.26 The last case of Type-3βii-4 4-cuts. 433
5.27 Splitting a vertex with the introduction of five parallel edges. 434
5.28 Splitting a vertex v on a DFS-tree, so that the number of back-edges

with lower endpoint v is reduced by one. 439

7.1 A set of failed vertices on a DFS tree. 482

8.1 A sequence of insertions can force Ω(n) 3-interconnection edges to in-
crease their level by one Ω(n) times. 515

8.2 The decomposition tree T of the graph G of Figure 2.1. 516
8.3 Changes to the decomposition tree upon insertion of an edge (x, y) (I). 520
8.4 Changes to the decomposition tree upon insertion of an edge (x, y) (II).522
8.5 Changes to the decomposition tree upon insertion of an edge (x, y) (III).523
8.6 An example of a tree-of-cactuses representation of a cactus. 547

viii

LIST OF TABLES

7.1 Comparison of the best-known deterministic bounds for an oracle for
connectivity queries upon vertex failures. 474

7.2 Comparison of the best-known deterministic bounds for an oracle for
connectivity queries upon vertex failures, when d⋆ is a fixed constant. . 475

8.1 Previous best time bounds for computing the maximal k-edge-
connected subgraphs. 561

8.2 Improved time bounds for computing the maximal k-edge-connected
subgraphs. 561

ix

LIST OF ALGORITHMS

1 Compute the lowi-edges . 32
2 Compute the highi-edges . 36
3 Compute the sets L(v1, c1, t1), . . . , L(vN , cN , tN) 44
4 Compute all M(v) . 52
5 Compute all M̃(v) . 55
6 Compute all Mlow1(v) and Mlow2(v) . 56
7 Compute all (lowMD(v), lowM(v)) . 61
8 Compute all L1(v) and L2(v) . 64
9 Determine whether there is a back-edge (x, y) ∈ B(v) \ B(u) such that

y ≤ w, where u is a proper descendant of v, and v is a proper descendant
of w . 69

10 Compute the collection S of the segments of H(x) that are maximal w.r.t.
the property that their elements are related as ancestor and descendant . 71

11 Find all Type-2 3-cuts in the upper case 83
12 Find all Type-2 3-cuts in the lower case 91
13 Compute the 4-edge-connected components of a 3-edge-connected graph 100
14 Check whether there exists a Type-2 3-cut in the upper case 102
15 Check whether there exists a Type-2 3-cut in the lower case 103

16 Return a set of collections of pairs of edges that generate in total all the
4-cuts that are implied by a collection of 4-cuts 142

17 Compute the atoms of a parallel family of 4-cuts 174
18 Compute the minimal 4-cuts . 182
19 Compute the essential isolated 4-cuts . 186
20 Generate enough 4-cuts in order to separate the 4-edge-connected vertices190
21 Compute the 5-edge-connected components of a 3-edge-connected graph 192

x

22 Answering a collection of min-max vertex queries 221
23 Compute all Type-2i 4-cuts . 227
24 Compute a collection of Type-2ii 4-cuts, which implies all Type-2ii 4-cuts236
25 Compute all Type-2iii 4-cuts . 241
26 Compute all Type-3αi 4-cuts (for a special case) 253
27 Compute a collection of Type-3αi 4-cuts, which implies all Type-3αi 4-cuts258
28 Compute all Type-3αii 4-cuts (I) . 267
29 Compute all Type-3αii 4-cuts (II) . 271
30 Compute all Type-3αii 4-cuts (III) . 277
31 Compute all Type-3αii 4-cuts (IV) . 281
32 Compute all Type-3βi 4-cuts that satisfy (1) of Lemma 5.57 294
33 Compute a collection of Type-3βi 4-cuts that satisfy (2) of Lemma 5.57,

which implies all such 4-cuts . 303
34 Compute a collection of Type-3βi 4-cuts that satisfy (3) of Lemma 5.57,

which implies all such 4-cuts . 313
35 Compute all Type-3βi 4-cuts that satisfy (4) of Lemma 5.57 (I) 329
36 Compute all Type-3βi 4-cuts that satisfy (4) of Lemma 5.57 (II) 331
37 Compute the sets U1(v) . 341
38 Compute all Type-3βii-1 4-cuts . 343
39 Compute the values firstW(v) and lastW(v) 350
40 Compute the sets U2(v) . 357
41 Compute a collection of Type-3βii-2 4-cuts of a special type, which im-

plies all such 4-cuts . 359
42 Compute the sets W̃ (v) . 366
43 Compute all Type-3βii-2 4-cuts of a special case 371
44 Compute the sets U3(v) . 380
45 Compute a collection of Type-3βii-3 4-cuts, which implies all such 4-cuts 382
46 Compute the sets U1

4 (v) . 395
47 Compute a collection of Type-3βii-4 4-cuts of a special type, which im-

plies all such 4-cuts . 399
48 Compute the sets U2

4 (v) . 406
49 Compute all Type-3βii-4 4-cuts of a special type (I) 411
50 Compute the sets U3

4 (v) . 418
51 Compute all Type-3βii-4 4-cuts of a special type (II) 421

xi

52 Compute the sets U4
4 (v) . 426

53 Compute all Type-3βii-4 4-cuts of a special type (III) 431

54 Compute all Type-1 edges to construct a connectivity graph for the in-
ternal components of T \ F . 491

55 Compute enough Type-2 edges to construct a connectivity graph for the
internal components of T \ F . 495

56 Answer a connectivity query . 499

57 Update the decomposition tree after inserting a new edge to the graph . 518
58 Merge the children D1, . . . , Dk of a 2-ecc node X 519
59 Update the decomposition tree after inserting a new vertex to the graph 529
60 compressPath(T, x, y) . 545
61 joinTrees(T1, T2, (x, y)) . 546
62 updateCactus(D, z1, z2) . 553
63 compressCyclePath(S, x, y) . 554
64 joinCactuses(S1, . . . , Sk, (x1, x2), . . . , (xk, x1)) 556
65 initialize_cycle(C, x1, . . . , xk, (x1, x2), . . . , (xk, x1)) 556
66 Compute a certificate for the maximal k-edge-connected subgraphs of G 557

xii

ABSTRACT

Evangelos Kosinas, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of Ioannina, Greece, 2024.
Efficient Algorithms for Some Connectivity Problems, in Static and Dynamic Graphs.
Advisor: Loukas Georgiadis, Associate Professor.

Graphs are some of the most fundamental and widely used objects in computer
science, and they appear naturally in a variety of applications. The notion of connec-
tivity in graphs introduces itself immediately as a very basic and intuitive concept,
and as such it is very important in the analysis of networks. Despite its rudimentary
nature, it poses highly challenging computational problems, with both theoretical and
practical interest. Many such problems are still unresolved, and demand a deeper un-
derstanding of the structure of graphs. Furthermore, the sheer size of the graphs that
appear in real-world applications, and the fact that they change dynamically over
time, makes those problems even more challenging.

In this thesis, we provide efficient algorithms for some connectivity problems in
undirected graphs, in the static, dynamic, and sensitivity setting. Our contributions
can be summarized as follows.

• We provide the first linear-time algorithms for computing the 4- and 5-edge-
connected components in undirected multigraphs. This result answers a theo-
retical question, and sheds light on the possibility that a linear-time solution
may exist for general k. Furthermore, the algorithms that we provide can have
a very efficient implementation with the use of elementary data structures. Es-
pecially for the case k = 5, we provide a novel analysis of the structure of 4-edge
cuts in 3-edge-connected graphs, that can guide us into a proper selection of
them for our purposes. We believe that this analysis may provide a clue for a

xiii

general solution for the k-edge-connected components, or other related graph
connectivity problems.

A key component in our algorithm for the case k = 5 is an oracle for answering
connectivity queries for pairs of vertices in the presence of at most four edge-
failures. Specifically, the oracle has size O(n), it can be constructed in linear time,
and it answers connectivity queries in the presence of at most four edge-failures
in constant time, where n denotes the number of vertices of the graph. We note
that this is a result of independent interest.

• We provide an oracle for efficiently answering connectivity queries in the pres-
ence of vertex failures. Specifically, we design a data structure that can handle
an arbitrary but fixed number of vertex failures, so that it can efficiently answer
connectivity queries between vertices in the remaining graph. This very basic
connectivity problem has received the attention of researchers for more than a
decade now, but the solutions that have been provided are highly complicated
and very difficult to be implemented efficiently. On the other hand, our solution
is arguably the simplest that has been proposed for this problem; it is relatively
easy to describe and analyze, and it uses only standard textbook data structures.
Furthermore, it even provides some trade-offs that improve on the state of the
art in some respects.

• Finally, we deal with the computation of the maximal k-edge-connected sub-
graphs in incremental graphs. We provide a general framework that reduces
this computation to the incremental maintenance of the k-edge-connected com-
ponents. As a concrete application of this framework, we provide an algorithm
for the incremental maintenance of the maximal 3-edge-connected subgraphs,
by relying on algorithms and data structures for the incremental maintenance
of the 3-edge-connected components. This provides a significant improvement
over the state of the art, which is given by applying the best known static algo-
rithm after every insertion. Furthermore, we provide fast constructions of sparse
spanning subgraphs that have the same maximal k-edge-connected subgraphs
as the original graph. These can be used in order to speed up computations
that involve the maximal k-edge-connected subgraphs.

xiv

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Ευάγγελος Κοσίνας, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική
Σχολή, Πανεπιστήμιο Ιωαννίνων, 2024.
Αποδοτικοί Αλγόριθμοι για Ορισμένα Προβλήματα Συνεκτικότητας, σε Στατικά και
Δυναμικά Γραφήματα.
Επιβλέπων: Λουκάς Γεωργιάδης, Αναπληρωτής Καθηγητής.

Τα γραφήματα εμφανίζονται με φυσικό τρόπο σε πολλά προβλήματα πληροφο-
ρικής ως ένας ιδανικός τρόπος για την οργάνωση των δεδομένων, καθώς αποτε-
λούν τα μαθηματικά μοντέλα των σχέσεων. Για παράδειγμα, κάθε κοινωνικό δίκτυο
που υποστηρίζει σχέσεις “φιλίας” ή “ακολούθου” μπορεί να αναπαρασταθεί ως ένα
γράφημα, όπου οι άνθρωποι που το αποτελούν αναπαρίστανται ως κόμβοι, και
δύο κόμβοι συνδέονται με μια ακμή όταν οι άνθρωποι στους οποίους αντιστοιχούν
συνδέονται με την αντίστοιχη πραγματική σχέση.

Μία από τις πιο βασικές έννοιες που ορίζονται σε ένα γράφημα είναι η έννοια
της συνεκτικότητας, δηλαδή το αν μπορεί ένας κόμβος να φτάσει κάποιον άλλον
ακολουθώντας τις συνδέσεις του γραφήματος. Είναι εύκολο να διαπιστώσει κανείς
ότι η έννοια της συνεκτικότητας έχει τεράστιο θεωρητικό και πρακτικό ενδιαφέρον.
Για παράδειγμα, τίθενται διάφορα ερωτήματα αλγοριθμικής φύσεως, όπως π.χ. το
να υπολογίσουμε ομάδες κόμβων που είναι “πολύ καλά” συνδεδεμένοι μεταξύ τους
(με βάση διάφορες μετρικές συνεκτικότητας). Τέτοια προβλήματα έχουν ιδιαίτερο
ενδιαφέρον στην πράξη, διότι τα γραφήματα που εμφανίζονται σε διάφορες εφαρ-
μογές είναι τεράστια σε μέγεθος, οπότε γίνεται πολύ προκλητικό το πρόβλημα του
αποδοτικού υπολογισμού μιας ακριβούς απάντησης. Ο μόνος τρόπος να επιτευχθεί
αυτό είναι μέσω ειδικά σχεδιασμένων αλγορίθμων, που επεξεργάζονται με έξυπνο
τρόπο την δομή του γραφήματος.

Σε αυτήν την διατριβή παρουσιάζουμε αποδοτικούς αλγορίθμους για ορισμένα
προβλήματα συνεκτικότητας σε γραφήματα. Το πρώτο πρόβλημα που θα μας απα-

xv

σχολήσει είναι ο υπολογισμός των k-συνεκτικών συνιστωσών. Οι k-συνεκτικές συ-
νιστώσες ενός γραφήματος είναι τα μεγιστικά σύνολα κόμβων που παραμένουν
συνδεδεμένοι μεταξύ τους ακόμη και αν αφαιρεθούν k − 1 ακμές από το γράφημα
(οπότε πρέπει να αφαιρέσουμε τουλάχιστον k ακμές για να καταστρέψουμε την
συνεκτικότητα μεταξύ τους). Για την περίπτωση k ≤ 3, υπάρχουν ήδη γνωστοί αλ-
γόριθμοι γραμμικού χρόνου για αυτό το πρόβλημα. Δεδομένης της έρευνας που έχει
γίνει πάνω στο ζήτημα της k-συνεκτικότητας, είναι εύλογο να υποθέσει κανείς ότι
υπάρχουν αλγόριθμοι γραμμικού χρόνου και για οποιοδήποτε k ≥ 4, αλλά αυτό δεν
έχει αποδειχτεί ακόμη. Σε αυτήν την διατριβή, παρέχουμε τους πρώτους αλγορίθ-
μους γραμμικού χρόνου για τις περιπτώσεις k = 4 και k = 5, ενισχύοντας έτσι την
υπόθεση ότι αυτό το πρόβλημα έχει λύση γραμμικού χρόνου για οποιοδήποτε k.
Η δυσκολία σε αυτό το πρόβλημα έγκειται στο ότι υπάρχουν πολλοί συνδυασμοί
συνόλων ακμών που μπορούν να καταστρέψουν την συνεκτικότητα του γραφήμα-
τος με την αφαίρεσή τους. Τέτοια σύνολα κόμβων ονομάζονται τομές. Επομένως, η
πρόκληση είναι να γίνει μία προσεκτική επιλογή τομών, ώστε να λάβουμε την δια-
μέριση στις k-συνεκτικές συνιστώσες. Προκειμένου να λύσουμε αυτό το πρόβλημα,
βασιζόμαστε σε μία κατηγοριοποίηση των τομών μικρού μεγέθους (τριάδες ή τετρά-
δες ακμών), με βάση την δομή που λαμβάνουμε μετά από μία καθοδική διερεύνηση
του γραφήματος (DFS). Ειδικά για την περίπτωση k = 5, αυτό που μας καθοδη-
γεί στην επιλογή των τομών είναι μία θεωρητική ανάλυση της δομής τους, δηλαδή
των τρόπων με τους οποίους μπορεί να εμπλέκονται μεταξύ τους, συμμεριζόμε-
νες υποσύνολα ακμών. Πιστεύουμε ότι αυτή η ανάλυση μπορεί να έχει εφαρμογές
και στην γενικότερη εκδοχή του προβλήματος, ή και σε άλλα σχετικά προβλήματα
συνεκτικότητας.

Έπειτα, ασχολούμαστε με προβλήματα συνεκτικότητας σε δυναμικά γραφήματα.
Ένα γράφημα ονομάζεται δυναμικό όταν μεταβάλλεται με την πάροδο του χρόνου,
συνήθως με την μορφή εισαγωγών ή αφαιρέσεων κόμβων ή ακμών. Τέτοια γραφή-
ματα εμφανίζονται με φυσικό τρόπο σε πολλές εφαρμογές. Η μεταβαλλόμενη δομή
τους δυσχεραίνει σημαντικά την αποδοτικότητα στους υπολογισμούς σε σχέση με
την περίπτωση όπου το γράφημα είναι στατικό. Μάλιστα, υπάρχουν πολλά παρα-
δείγματα προβλημάτων όπου έχει αποδειχτεί (με βάση αναγωγές σε δημοφιλείς και
αρκετά πιστευτές εικασίες) ότι γενικά δεν μπορούμε να κάνουμε κάτι καλύτερο
από το να εφαρμόζουμε τον βέλτιστο στατικό αλγόριθμο μετά από κάθε αλλαγή
στο γράφημα. Παρά ταύτα, υπάρχουν αρκετά προβλήματα στα οποία μπορούμε να

xvi

έχουμε αρκετά πιο αποδοτικές λύσεις. Η βασική ιδέα είναι ότι είτε κάθε μεμονω-
μένη αλλαγή (προσθήκη ή διαγραφή κόμβου ή ακμής) επιφέρει μια σχετικά μικρή
μεταβολή στο γράφημα, ή ότι οι αλλαγές που μπορούν να επηρεάσουν ριζικά τις
παραμέτρους που θέλουμε να υπολογίσουμε είναι σχετικά λίγες ή αντισταθμιστικά
διαχειρίσιμες.

Μία βασική κατηγορία προβλημάτων σε δυναμικά γραφήματα προϋποθέτει ότι
υπάρχει ένα όριο στο πλήθος των αλλαγών που μπορεί να έχει υποστεί το γρά-
φημα σε κάθε δεδομένη χρονική στιγμή. Τέτοιες καταστάσεις εμφανίζονται π.χ. σε
οδικά δίκτυα, όπου αναμένεται κάποιοι δρόμοι να πάψουν να λειτουργούν για ένα
διάστημα (π.χ. λόγω έργων συντήρησης), αλλά έπειτα προβλέπεται να επανέλθει η
λειτουργία τους. Σε αυτήν την διατριβή, ασχολούμαστε με το πρόβλημα του πώς
μπορούμε να απαντούμε αποδοτικά σε ερωτήματα συνεκτικότητας όταν το γρά-
φημα έχει υποστεί ένα περιορισμένο πλήθος απωλειών κόμβων. Πιο συγκεκριμένα,
ο σκοπός είναι να κατασκευάσουμε μία δομή δεδομένων, η οποία να μπορεί να επε-
ξεργαστεί αποδοτικά την πληροφορία ότι ένα (περιορισμένο σε πλήθος) σύνολο κόμ-
βων έχει απενεργοποιηθεί, ώστε να μπορεί να απαντήσει αποδοτικά σε ερωτήματα
της μορφής “δοθέντων δύο κόμβων x και y (που είναι ακόμη ενεργοί), παραμένουν
οι x και y συνδεδεμένοι διά μέσου μονοπατιών που αποφεύγουν τους ανενεργούς
κόμβους;”. Σε αυτό το πρόβλημα, θέλουμε να βελτιστοποιήσουμε ταυτόχρονα (1)

τον χρόνο κατασκευής της δομής δεδομένων, (2) τον χώρο που καταλαμβάνει, (3) τον
χρόνο που χρειάζεται για να επεξεργαστεί την πληροφορία των απωλειών, και (4)
τον χρόνο για να απαντήσει τα ερωτήματα συνεκτικότητας. Αυτό είναι ένα βασικό
πρόβλημα συνεκτικότητας, και έχουν προταθεί διάφορες λύσεις στην βιβλιογραφία,
αλλά καμία τους δεν είναι απολύτως βέλτιστη, διότι συνήθως η κάθε μια πλεονεκτεί
από ορισμένες μονάχα απόψεις σε σχέση με τις άλλες. Η δομή δεδομένων που προ-
τείνουμε εμείς, αν και δεν είναι βέλτιστη, είναι σίγουρα η πιο απλή και πρακτική
λύση που έχει προταθεί μέχρι σήμερα, και η επίδοσή της είναι συγκρίσιμη με τις
καλύτερες γνωστές λύσεις (και μάλιστα παρουσιάζει και μια θεωρητική βελτίωση
από ορισμένες απόψεις).

Επιπλέον, ασχολούμαστε με το πρόβλημα του να απαντούμε αποδοτικά σε ερω-
τήματα συνεκτικότητας όταν το γράφημα έχει υποστεί απώλειες ακμών. Συγκε-
κριμένα, ασχολούμαστε με την περίπτωση όπου το γράφημα μπορεί να έχει χάσει
μέχρι και τέσσερις ακμές. Πιο συγκεκριμένα, δείχνουμε ότι μπορούμε να κατα-
σκευάσουμε σε γραμμικό χρόνο μία δομή δεδομένων που μπορεί να απαντάει σε

xvii

σταθερό χρόνο ερωτήματα της μορφής “δεδομένου ότι έχει χαθεί ένα σύνολο ακμών
E ′ από το γράφημα, με |E ′| ≤ 4, υπάρχει μονοπάτι μεταξύ των κόμβων x και y που
δεν χρησιμοποιεί ακμές από το E ′;”. Αυτή η δομή μάς χρειάζεται στον αλγόριθμο
που υπολογίζει τις 5-συνεκτικές συνιστώσες, όμως συνιστά και ένα αποτέλεσμα
ανεξάρτητου ενδιαφέροντος, καθώς αποτελεί την πρώτη ουσιαστικά βέλτιστη λύση
σε αυτό το πρόβλημα.

Τέλος, ασχολούμαστε με το πρόβλημα του υπολογισμού των μεγιστικών k-
συνεκτικών υπογραφημάτων ενός γραφήματος. Αν και αυτό το πρόβλημα συγγε-
νεύει στενά με εκείνο του υπολογισμού των k-συνεκτικών συνιστωσών, ο υπολο-
γισμός των μεγιστικών k-συνεκτικών υπογραφημάτων παρουσιάζει μια ιδαίτερη
δυσκολία, εφόσον δεν έχουν βρεθεί ακόμη εξ ίσου αποδοτικοί αλγόριθμοι για αυτό,
παρά την εκτεταμένη έρευνα που έχει γίνει μέχρι σήμερα. Το σημαντικότερο αποτέ-
λεσμά μας εδώ είναι ότι παρέχουμε ένα γενικό πλαίσιο για την αποδοτική διατήρηση
των μεγιστικών k-συνεκτικών υπογραφημάτων καθώς το γράφημα υφίσταται εισα-
γωγές κόμβων ή ακμών, μέσω αναγωγής σε αλγορίθμους για την διατήρηση των
k-συνεκτικών συνιστωσών. Η δομή που προτείνουμε έχει την μορφή ενός δέντρου
που αναπαριστά την επαναλαμβανόμενη διαμέριση στις k-συνεκτικές συνιστώσες,
μέχρι να φτάσουμε στα μεγιστικά k-συνεκτικά υπογραφήματα. Αυτή η ιδέα απο-
καλύπτει και από μία άλλη άποψη την ιδιαίτερη δυσκολία που έχει το πρόβλημα
των μεγιστικών k-συνεκτικών υπογραφημάτων, σε σχέση με αυτό των k-συνεκτικών
συνιστωσών. Ως μια απτή εφαρμογή αυτής της ιδέας, παρέχουμε αποδοτικούς αλ-
γορίθμους για την διατήρηση των μεγιστικών 3-συνεκτικών υπογραφημάτων, καθώς
για την περίπτωση k = 3 μπορούμε να βασιστούμε σε γνωστούς αλγορίθμους και δο-
μές δεδομένων για την διατήρηση των 3-συνεκτικών συνιστωσών. Τέλος, παρέχουμε
αποδοτικές κατασκευές για αραιά υπογραφήματα που έχουν τα ίδια μεγιστικά
k-συνεκτικά υπογραφήματα με το αρχικό γράφημα. Τέτοιες κατασκευές μπορούν
να επιταχύνουν διάφορους υπολογισμούς που αφορούν τα μεγιστικά k-συνεκτικά
υπογραφήματα.

xviii

CHAPTER 1

INTRODUCTION

1.1 Objective

1.2 Overview of our results

1.3 Organization

1.1 Objective

Our goal in this thesis is to provide efficient algorithms for some connectivity problems
in undirected graphs, in the static, dynamic, and sensitivity setting. Specifically, we aim
at algorithms that either (1) provide time and space bounds that are asymptotically
optimal, or (2) improve the previous best known bounds, or (3) are relatively simple
to describe, analyze and implement, while providing bounds that compare very well
with the previous best. (Ideally, the “or” here should be inclusive.) In order to discuss
the problems that we wanted to solve, we assume some familiarity with standard
graph-theoretic terminology, that can be found e.g. in [20] or [52], and we also refer
to Chapter 2.

First, we consider the problem of computing the k-edge-connected components.
Here we focus on the case k ∈ {4, 5}, because for k ≤ 3 it is already known how to
compute the k-edge-connected components in linear time. In particular, we provide
the first linear-time algorithms for computing the k-edge-connected components in
the case where k = 4 or k = 5 (see Chapters 4 and 5, respectively).

1

Then we consider the problem of designing an oracle for efficiently answering
connectivity queries in the presence of failures. The goal here is to preprocess a graph
in order to build a data structure that can efficiently answer connectivity queries for
pairs of vertices, after receiving information about a bounded number of failures (of
vertices or edges).1 Here we want to simultaneously optimize (1) the preprocessing
time, (2) the space usage of the data structure, (3) the time to handle the information
of failures (updates), and (4) the time to answer the queries. In Chapter 6, we provide
an (essentially) optimal solution for the case where we want to be able to handle at
most four edge-failures. In Chapter 7, we provide a solution that can handle an
arbitrary (but fixed) number of vertex failures; our solution is very efficient, and it is
arguably the simplest that has been proposed for this problem.

Finally, we consider the problem of maintaining the maximal k-edge-connected
subgraphs of a graph after insertions of vertices or edges. We focus primarily on the
case k = 3, because here we can rely on existing data structures in order to provide
algorithms that are more efficient than re-computing the solution from scratch after
every insertion.

1.2 Overview of our results

1.2.1 Computing the 4‐edge‐connected components

In Chapter 4 we provide a linear-time algorithm for computing the 4-edge-connected
components of an undirected multigraph. This result is based on our paper with
title “Computing the 4-Edge-Connected Components of a Graph in Linear Time”,
which was done in collaboration with Loukas Georgiadis and Giuseppe F. Italiano,
and has been presented at the European Symposium on Algorithms (ESA), 2021. We
note that in 2021 another group of researchers has independently reached the same
result [50]. However, the algorithm that we provide here has a linear-time imple-
mentation in the pointer-machine model of computation [65], and thus it provides
a theoretical improvement over [50] (which relies on the RAM model of computa-
tion to achieve linear time). Furthermore, in Section 4.5 we provide a very simple
linear-time algorithm for determining whether a graph is 4-edge-connected.

1A nice way to think about this problem is in the context of “emergency planning” [60].

2

The general idea for computing the 4-edge-connected components can be de-
scribed as follows. First, we use a construction described in [21], that reduces this
computation to 3-edge-connected graphs. Then, the problem reduces to the computa-
tion of all 3-cuts of a 3-edge-connected graph. To perform this computation efficiently,
we rely on a DFS-tree T of the graph, and we provide a typology of 3-cuts w.r.t. T .
Specifically, we distinguish three types of 3-cuts, depending on the number of tree-
edges of T that they contain (notice that a 3-cut must contain at least one tree-edge
of T). Then, we can compute all three types of 3-cuts separately. The case of 3-cuts
that contain exactly one tree-edge is the easiest one. The case of 3-cuts that contain
exactly two tree-edges is the most demanding, and we further distinguish it into
various subcases. Finally, the case of 3-cuts that consist of three tree-edges can be
easily reduced to the previous two cases, as described in [50]. For the computation
of 3-cuts, we rely on some DFS-based parameters that we introduce in Chapter 3.
In particular, all the parameters that we use here can be computed with linear-time
algorithms with a pointer-machine implementation.

1.2.2 Computing the 5‐edge‐connected components

In Chapter 5 we provide the first linear-time algorithm for computing the 5-edge-
connected components of an undirected multigraph. There were probably good in-
dications that this computation can be performed in linear time, but no such algo-
rithm was actually known prior to this work. Thus, our results answers a theoretical
question, and sheds light on the possibility that a solution may exist for general k.
Furthermore, although the algorithm that we provide is quite extensive and broken
up into several pieces, it can have an almost-linear time implementation with the use
of elementary data structures.

This algorithm can be considered as a follow-up of previous work on computing
the 4-edge-connected components in linear time. Specifically, we follow a DFS-based
approach in order to compute a collection of 4-edge cuts, that is rich enough in
properties for our purposes. However, in dealing with the computation of the 5-
edge-connected components, we are faced with unique challenges that do not appear
when dealing with lower connectivity. The problem is that the 4-edge cuts in 3-edge-
connected graphs are entangled in various complicated ways, that make it difficult
to organize them in a compact way. Here we provide a novel analysis of those cuts,

3

that reveals the existence of various interesting structures. These can be exploited so
that we can disentangle and collect only those cuts that are essential in computing
the 5-edge-connected components. This analysis may provide a clue for a general
solution for the k-edge-connected components, or other related graph connectivity
problems.

We note that the problem of computing the k-edge-connected components is re-
lated to the problem of computing a Gomory-Hu tree [39], which provides the edge-
connectivity for all pairs of vertices.2 A very recent line of impressive work [47, 3, 2, 4]
has culminated in a randomized Monte Carlo algorithm for computing a Gomory-Hu
tree of a weighted graph in m1+o(1) time, where m is the number of edges of the
graph. Then, given a Gomory-Hu tree of the graph, we can derive the partition of
the k-edge-connected components in linear time, for any fixed k. Thus, the k-edge-
connected components can be computed with a randomized Monte Carlo algorithm in
m1+o(1) time, for any k. However, the question still remains, whether we can compute
the k-edge-connected components deterministically in linear time, for any k > 5.

The results of Chapter 5 are based on our paper with title “Computing the 5-Edge-
Connected Components in Linear Time”, which was presented at the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2024.

1.2.3 Connectivity queries under four edge failures

In Chapter 6 we provide an (essentially) optimal solution for answering connectivity
queries in the presence of at most four edge failures. Specifically, we provide the
following result, that is summarized in Proposition 6.1. Let G be a connected graph
with n vertices and m edges. Then, in linear time, we can construct a data structure
with size O(n), that we can use in order to answer connectivity queries in the presence
of at most four edge failures in constant time. Specifically, given an edge-set E ′ with
|E ′| ≤ 4, and two vertices x and y, we can determine whether x and y are connected
in G \ E ′ in O(1) time.

We note that this result is a special instance of the general problem of designing
an oracle that answers connectivity queries in the presence of edge-failures [60].
The currently best bounds for this problem are given by Duan and Pettie in [26],
where they show how to construct an oracle of O(m log logn) (or O(m)) size3, so

2For more information, we refer to Section 5.1.2.
3The time-bounds for constructing the oracle are not specified.

4

that, given a set E ′ of at most d edges, one can answer connectivity queries in G \E ′

in O(min{ log logn
log log logn ,

log d
log logn}) time, after a O(d2 log logn)-time (or O(d2 logϵ n)-time, for

any ϵ > 0) preprocessing. Thus, the oracle that we provide improves on the state of
the art in the case where d is a fixed constant, upper bounded by 4. It is an interesting
question whether we can achieve the same bounds for larger fixed d. We believe that
this is probably the case, but it appears that this is a very challenging combinatorial
problem.

We achieve this result by using a DFS-tree T of G, and by making a creative use of
some of the DFS parameters that we introduce in Chapter 3, in order to reconstruct on
a high-level the connected components of the graph upon removal of a set of (at most
four) edges. More specifically, given a set E ′ of at most four edge-failures, we consider
all the different topologies of the edges in E ′ w.r.t. T . Thus, we distinguish various
cases, depending e.g. on the number of tree-edges that are contained in E ′, or their
ancestry relation on T , and we show how to handle each particular case separately,
in order to determine the connectivity relation of the connected components of T \E ′

in G \ E ′.
The result of Chapter 6 was provided in our paper with title “Computing the 5-

Edge-Connected Components in Linear Time”, because we need it in order to provide
our linear-time algorithm for computing the 5-edge-connected components. More
specifically, we use Proposition 6.1 in order to provide an oracle for checking the
essentiality of 4-cuts, in an on-line manner, in constant time per query. (See Proposi-
tion 5.4; we refer to Section 2.3 for the definition of the essential 4-cuts.) However,
the data structure described in Proposition 6.1 is a result of independent interest.

1.2.4 Connectivity queries under vertex failures

In Chapter 7 we provide an oracle for efficiently answering connectivity queries in the
presence of vertex failures. Specifically, the input to this problem are an undirected
graph G with n vertices and m edges, and a fixed integer d⋆ (d⋆ ≪ n). Then, the
goal is to construct a data structure D that can be used in order to answer efficiently
connectivity queries in the presence of at most d⋆ vertex-failures. More precisely,
given a set of vertices F , with |F | ≤ d⋆, we must be able to efficiently derive an
oracle from D, which can efficiently answer queries of the form “are the vertices x

and y connected in G \ F ?”. In this problem, we want to simultaneously optimize

5

the following parameters: (1) the construction time of D (preprocessing time), (2) the
space usage of D, (3) the time to derive the oracle from D given F (update time), and
(4) the time to answer a connectivity query in G \ F .

We provide a deterministic data structure for this problem that has preprocessing
time O(d⋆m logn), uses space O(d⋆m logn), and has O(d4 logn) update time and O(d)

query time. Although this is not an optimal solution, the bounds that we provide
compare very well with the previous best, and even improve them in some respects.
(For more details, we refer to Section 7.1.2, and especially Tables 8.1 and 8.2.) We
note that this is a problem with various parameters, and thus it is very difficult to
optimize all of them simultaneously. In fact, there are at least three different known
solutions for this problem in the literature, every one of which is better than the others
in some respects. (For example, in the update time of [55], there is no dependency on
n; however, this is superexponential in d⋆, whereas in the data structures of [26] and
[49] the dependency on d⋆ is polynomial.) Perhaps the most important aspect of our
own solution is the simplicity of our approach: this is arguably the simplest solution
that has been proposed for this problem. Furthermore, it uses only standard textbook
data structures. We believe that it is important to have a simple and practical solution
for this very basic connectivity problem.

Our solution relies on a DFS tree T of G. Given a set of failed vertices F , the
high-level idea is to reconstruct the connectivity relation of some of the connected
components of T \ F in G \ F , guided by the non-tree edges of the graph. (Notice
that we cannot afford to reconstruct the connectivity relation for all the connected
components of T \F , because their number can be as high as n−1, even when |F | = 1.)
The crucial observation is that there are only at most |F | connected components of
T \F that are ancestors of failed vertices (which we call internal components), and that
these are enough in order to efficiently capture the connectivity between the remaining
components as well (which we call hanging subtrees). We rely on 2D-range-emptiness
data structures [19], in order to efficiently perform queries for the existence of non-tree
edges that connect subtrees of T .

A very useful property of our data structure is that it can be efficiently adapted to
changes in the sensitivity parameter d⋆. Thus, we can rely on the already computed
data structure, in order to augment it so that it can handle more failures. To be
specific, let D(d⋆) denote the data structure that handles up to d⋆ failures on G, and
let T (d⋆) denote the time for initializing D(d⋆). Then, if we have computed D(d⋆), for

6

some d⋆ ≥ 0, we can derive D(d⋆ + d′), for any d′ ≥ 0, in time O(T (d′)), by adding
some extra items on D(d⋆). (Thus, we can avoid recomputing D(d⋆+d′) from scratch,
which would take time T (d⋆ + d′), for any d′ ≥ 0.) This also allows us to free some
space, if later on we want to handle less failures, by simply discarding the extra items
that we have computed. We note that it is very natural to ask whether a solution
for a sensitivity problem satisfies such a property, and we call it flexibility of the data
structure (w.r.t. the sensitivity parameter d⋆). As far as we know, we are the first to
take notice of this aspect of the problem.

The result of Chapter 7 is based on our paper with title “Connectivity Queries un-
der Vertex Failures: Not Optimal, but Practical”, which was presented at the European
Symposium on Algorithms (ESA), 2023.

1.2.5 On computing the maximal k‐edge‐connected subgraphs

In Chapter 8 we provide the following new results on maximal k-edge-connected
subgraphs of undirected graphs.

1. A general framework for maintaining the maximal k-edge-connected subgraphs
upon insertions of edges or vertices, by successively partitioning the graph into
its k-edge-connected components. This defines a decomposition tree, which can
be maintained by using algorithms for the incremental maintenance of the k-
edge-connected components as black boxes at every level of the tree.

2. As a concrete application of this framework, we provide two algorithms for the
incremental maintenance of the maximal 3-edge-connected subgraphs. These
algorithms allow for vertex and edge insertions, interspersed with queries asking
whether two vertices belong to the same maximal 3-edge-connected subgraph,
and there is a trade-off between their time- and space-complexity. Specifically,
the first algorithm has O(mα(m,n)+n2 log2 n) total running time and uses O(n)

space, where m is the number of edge insertions and queries, and n is the total
number of vertices inserted starting from an empty graph. The second algorithm
performs the same operations in faster O(mα(m,n) + n2α(n, n)) time in total,
using O(n2) space.

3. We provide efficient constructions of (almost) sparse spanning subgraphs that
have the same maximal k-edge-connected subgraphs as the original graph. We

7

refer to such subgraphs as k-certificates. We use those certificates to speed up
the computation of the maximal k-edge-connected subgraphs in the static and
the fully-dynamic setting.

4. Finally, we give a simple reduction for computing the maximal k-edge-connected
subgraphs to fully dynamic mincut. By using Thorup’s fully dynamic mincut
algorithm [66], we obtain a deterministic algorithm that computes the maximal
k-edge-connected subgraphs in O(m+kO(1)n

√
n logO(1) n) time, for k = logO(1) n.

The results of Chapter 8 are a joint work with Loukas Georgiadis, Giuseppe F.
Italiano, and Debasish Pattanayak.

1.3 Organization

In Chapter 2 we provide some basic definitions and notation that we will use through-
out. In Chapter 3 we introduce some DFS-based concepts that we will use in Chap-
ters 4, 5 and 6, and we provide efficient algorithms for their computation. In Chap-
ters 4 and 5 we provide our results that concern the computation of the 4-edge and
the 5-edge-connected components, respectively. In Chapter 6 we provide the oracle
for answering connectivity queries in the presence of at most four edge-failures. In
Chapter 7 we provide the oracle for answering connectivity queries in the presence of
vertex failures. It is important to note that Chapter 7 is essentially self-contained; in
particular, the “low” points that are used in Chapter 7 are different from those that
are introduced in Chapter 3. Finally, in Chapter 8 we provide our results that concern
the computation and the incremental maintenance of the maximal k-edge-connected
subgraphs.

8

CHAPTER 2

PRELIMINARIES

2.1 Basic graph terminology

2.2 Partitions and atoms

2.3 Edge‐connectivity and k‐edge‐connected components

2.4 Maximal k‐edge‐connected subgraphs

2.5 Notation

2.1 Basic graph terminology

In this work, all graphs considered are undirected multigraphs (i.e., they may have
parallel edges). We use standard graph-theoretic terminology, that can be found e.g.
in [20] or [52]. Let G = (V,E) be a graph. We let V (G) and E(G) denote the vertex-
set and the edge-set of G, respectively. (That is, we have V (G) = V and E(G) = E.)
Since G is a multigraph, it may have multiple edges of the form (x, y), for two vertices
x and y. Thus, in order to be precise, we should also include an index to specify the
edge we are referring to. That is, every edge e ∈ E should be written as (x, y, i), where
x and y are the endpoints of e, and i is a unique identifier of e ∈ E. However, we keep
our notation simple (i.e., we identify edges just with the tuple of their endpoints),
and this will not affect our arguments.

For every two subsets X and Y of V , we let EG[X,Y] denote the set of the edges
of G with one endpoint in X and the other endpoint in Y . We may skip the subscript
“G” from this notation if the reference graph is clear from the context. Although it is

9

not necessary that X and Y are disjoint, wherever we use this notation in the sequel
we have that X and Y are disjoint. We let ∂G(X) denote EG[X,V \X]. Again, we may
skip the subscript “G” when no confusion arises. For a singleton {v} that consists of
a vertex v, we may simply write ∂(v) instead of ∂({v}). If X is a set of vertices of G,
we let G[X] denote the induced subgraph on X. This is the graph with vertex set X
and edge set {(x, y) ∈ E | x ∈ X and y ∈ X}. If C is a subset of edges of G, we use
G \C to denote the graph (V,E \C). If C consists of a single edge e, we may use the
simplified notation G \ e := G \ {e}.

A path P in G is an alternating sequence x1, e1, . . . , xk−1, ek−1, xk, with k ≥ 1, of
vertices and edges of G, starting with a vertex x1 and ending with a vertex xk, such
that ei = (xi, xi+1) for every i ∈ {1, . . . , k − 1}. In this case, we say that P is a path
from x1 to xk in G, and these are called the beginning and the end, respectively, of
P . Furthermore, we say that P passes from the vertices x1, . . . , xk, and uses the edges
e1, . . . , ek−1. If P and Q are two paths such that the end of P coincides with the
beginning of Q, then P +Q denotes the path that is formed by the concatenation of
P and Q (by discarding either the end of P or the beginning of Q, in order to keep a
single copy of it as the concatenation point). Thus, if P is a path from x to y, and Q

is a path from y to z, then P +Q is a path from x to z. For every two vertices x and
y of G, we say that x is connected with y if there is a path from x to y in G. Notice
that this defines an equivalence relation on V (G); its equivalence classes are called
the connected components of G. In particular, if V (G) is the only connected component
of G, then G is called a connected graph. Otherwise, it is called disconnected.

Let G be a connected graph. A bipartition {X,V \X} of V (G) is called a cut of G.
The corresponding edge-set C = E[X,V \X] has the property that its removal from G

increases the number of connected components at least by one. Since G is connected,
it is not difficult to verify that C is uniquely determined by X (i.e., {X,V \X} is the
only bipartition of V (G) whose corresponding edge-set is C). Thus, we also call C a
cut of G. We will be using the term “cut” to denote interchangeably a bipartition of G
and the edge-set that is derived from it. It will be clear from the context whether the
term cut refers to a bipartition or its corresponding edge-set. In particular, whenever
we speak of the “edges” of a cut, we consider it as an edge-set. Notice that a set C
of edges with the property that G \ C is disconnected is not necessarily a cut of G.
However, this is definitely the case when C is minimal w.r.t. this property (i.e., if no
proper subset C ′ of C has the property that G \C ′ is disconnected). In this work, we

10

will deal exclusively with edge-minimal cuts. An edge-minimal cut C is a set of edges
with the property that G \C is disconnected, but G \C ′ is connected for every proper
subset C ′ of C. Notice that C has the property that G \ C consists of two connected
components X and V \X. These are called the sides of C , and they have the property
that C = E[X,V \X]. From now on, the term “cut” will always mean “edge-minimal
cut”. A cut with k edges is called a k-cut. We let Ckcuts(G) denote the collection of all
k-cuts of G. Since the reference graph will always be clear from the context, we will
simply denote this as Ckcuts. Following standard terminology, we refer to the 1-cuts as
bridges.

Let G be a graph and let {V1, . . . , Vk} be a partition of V (G). By shrinking every
one of V1, . . . , Vk into a single node, and by ignoring the self-loops that may be formed,
we get a new graph Q, which is called a quotient graph of G. Thus, the vertex-set of Q
is given by {V1, . . . , Vk}. In order to describe the edge-set of Q precisely, we need the
quotient map q : V (G)→ V (Q), which maps every x ∈ V (G) into the unique set from
{V1, . . . , Vk} that contains it. By slightly abusing notation, we extend the quotient map
as follows. For every edge e = (x, y) ∈ E(G), we let q(e) = (q(x), q(y)).1 Then, the
edge-set of Q is given by {q(e) | e = (x, y) ∈ E(G) and q(x) ̸= q(y)}. Thus, if there
are two distinct edges (x, y), (x′, y′) ∈ E(G) such that q(x) ̸= q(y), q(x) = q(x′) and
q(y) = q(y′), then Q contains at least two parallel edges of the form (q(x), q(y)).

2.2 Partitions and atoms

Let P be a partition of a set V . Then we say that P separates two elements x, y ∈ V

if and only if x and y belong to different sets from P . A refinement P ′ of P is a
partition with the property that every set in P ′ is a subset of a set in P . Equivalently,
P ′ is a refinement of P if and only if every two elements separated by P are also
separated by P ′. The common refinement of two partitions P and Q is the unique
partition R with the property that two elements are separated by R if and only if
they are separated by either P or Q. Equivalently, R is given by the collection of the
non-empty intersections of the form X ∩ Y , where X ∈ P and Y ∈ Q.

Let P be a collection of partitions of a set V . Then, the atoms of P , denoted as
1More precisely, for every e = (x, y, i) ∈ E(G), we let q(e) = (q(x), q(y), i), where i is the unique

identifier of e.

11

atoms(P), is the common refinement of all partitions in P. In other words, the partition
atoms(P) is defined by the property that two elements x and y of V are separated by
atoms(P) if and only if they are separated by a partition in P.

We are particularly interested in collections of bipartitions. Two bipartitions P =

{X,Y } and Q = {X ′, Y ′} of V are called parallel if at least one of the intersections
X ∩ X ′, X ∩ Y ′, Y ∩ X ′, Y ∩ Y ′ is empty. (Notice that, in general, at most one of
those intersections may be empty, unless P = Q, in which case precisely two of those
intersections are empty.) Otherwise, if none of the intersections X∩X ′, X∩Y ′, Y ∩X ′,
Y ∩Y ′ is empty, then we say that P and Q cross. Notice that a collection of bipartitions
of a set with n elements can have size Ω(2n). However, the number of partitions in a
collection of bipartitions that are pairwise parallel is bounded by O(n) [24].

This terminology concerning partitions can be naturally applied to (collections of)
cuts, since these are defined as bipartitions of the vertex set of a graph. Thus, we may
speak of cuts that are parallel, or that cross. Also, if C is a collection of cuts, then the
partition atoms(C) is defined. (Regardless of whether C was considered as a collection
of sets of edges, the expression atoms(C) interprets C as a collection of bipartitions.)
A collection of cuts that are pairwise parallel is called a parallel family of cuts. Thus,
a parallel family of cuts of a graph G contains O(|V (G)|) cuts.

2.3 Edge‐connectivity and k‐edge‐connected components

It is natural to ask how “well connected” is a graph, and various concepts have been
developed to capture this notion. Let G be a connected graph. We say that two vertices
x and y of G are k-edge-connected, if we have to remove at least k edges from G in
order to disconnect them. Equivalently, by Menger’s theorem we have that x and y

are k-edge-connected if and only if there are k edge-disjoint paths from x to y (see,
e.g., [52]). The maximum k such that x and y are k-edge-connected is called the
edge-connectivity of x and y, denoted as λ(x, y).

It is not difficult to see that the relation of k-edge-connectivity defines an equiv-
alence relation on V (G); its equivalence classes are called the k-edge-connected com-
ponents of G. Equivalently, a k-edge-connected component of G is a maximal set of
vertices with the property that every pair of vertices x, y in it has λ(x, y) ≥ k (and so
we have to remove at least k edges in order to disconnect them). Notice that, if two

12

vertices x and y are not k-edge-connected, then there is a k′-cut that separates them,
for some k′ < k. Thus, the collection of the k-edge-connected components is given by
atoms(C1cuts ∪ · · · ∪ C(k−1)cuts). If V (G) is the unique k-edge-connected component of G,
then G is called k-edge-connected. Equivalently, G is k-edge-connected if and only
if we have to remove at least k edges in order to disconnect it.

In Chapter 5 we provide a novel analysis of the structure of 4-cuts in 3-edge-
connected graphs, that is useful in order to compute the 5-edge-connected components
in linear time. A key idea in our analysis is to consider the 4-cuts that separate at least
one pair of vertices that are 4-edge-connected. We call those 4-cuts essential, because
they strictly refine the collection of the 4-edge-connected components. On the other
hand, there are 4-cuts that separate vertices that are only 3-edge-connected, but not
4-edge-connected. These 4-cuts can be discarded for the purpose of computing the
atoms of C3cuts ∪C4cuts, because the separations that are induced by them are captured
by the separations according to the C3cuts (i.e., the 4-edge-connected components).

2.4 Maximal k‐edge‐connected subgraphs

Let G = (V,E) be a connected undirected multigraph with m edges and n vertices,
and let S ⊆ V be a subset of vertices of G. We say that the induced subgraph G[S]

is a maximal k-edge-connected subgraph of G if (1) G[S] is k-edge-connected and, (2)
no proper superset of S has this property. Unlike 2-edge connectivity, for k ≥ 3 the
k-edge-connected components of G do not necessarily correspond to maximal k-edge-
connected subgraphs. Indeed, for k ≥ 3, two vertices in the subgraph induced by a
k-edge-connected component may not be k-edge-connected in this subgraph, as some
of the k edge-disjoint paths may go outside of the component; see Figure 2.1. Also,
Figure 2.2 shows a graph where almost all its vertices are 3-edge-connected but has
only trivial maximal 3-edge-connected subgraphs. Notice that, if S is a subset of V ,
then λG[S](x, y) ≤ λG(x, y) for any pair of vertices x, y ∈ S, since every path in G[S]

is also a path in G. Thus, every maximal k-edge-connected subgraph lies within the
subgraph induced by a k-edge-connected component.

13

𝐺

𝑥1

𝑥2
𝑥3 𝑦3

𝑦1

𝑦2

𝑦4𝑥4

𝑥5 𝑦5

𝑧1

𝑧2

maximal 3-edge-connected subgraphs of 𝐺

𝑥1

𝑥2
𝑥3 𝑦3

𝑦1

𝑦2

𝑦4𝑥4

𝑥5 𝑦5

𝑧1

𝑧2

3-edge-connected components of 𝐺

𝑥1

𝑥2
𝑥3 𝑦3

𝑦1

𝑦2

𝑦4𝑥4

𝑥5 𝑦5

𝑧1

𝑧2

Figure 2.1: A 2-edge-connected graph G, its maximal 3-edge-connected subgraphs,
and its 3-edge-connected components. Note that while any two vertices xi and yj

are 3-edge-connected, they do not belong to the same maximal 3-edge-connected
subgraph.

maximal 3-edge-connected subgraphs

𝑥1 𝑥𝑛−2𝑥𝑛−3𝑥2 𝑥3

𝑥𝑛

𝑥𝑛−1

3-edge-connected components

𝑥1 𝑥𝑛−2𝑥𝑛−3𝑥2 𝑥3

𝑥𝑛

𝑥𝑛−1

Figure 2.2: A 2-edge-connected graph G with only trivial maximal 3-edge-connected
subgraphs, despite that almost all vertices are 3-edge-connected.

2.5 Notation

Here we introduce some notation that we will use throughout.
For any two positive integers i and k such that i ∈ {1, . . . , k}, we define the

“cyclic” addition and subtraction as:

14

i+k 1 =

 i+ 1 if i < k

1 if i = k

i−k 1 =

 i− 1 if i > 1

k if i = 1

For any two sets A and B such that A ∩ B = ∅, we use the notation A ⊔ B to
denote the union A ∪ B, while emphasizing the fact that A ∩ B = ∅. This notation
will be very convenient for our argumentation, because it packs more information in
a single symbol. Also, whenever we use the expression A ⊂ B, we imply that A is a
proper subset of B (and thus A ̸= B). Otherwise, if A = B is allowed, then we write
A ⊆ B.

If L is a sorted list of elements and x is an element in L, we use nextL(x) and
prevL(x) to denote the successor and the predecessor, respectively, of x in L. We use ⊥
to denote the end-of-list element. A segment of L is a sublist of consecutive elements.
For convenience, sometimes we may view a list as a set (and write, e.g., x ∈ L).

If f : X → Y is a function and C is a collection of subsets of Y , we let f−1(C)
denote the collection {f−1(C) | C ∈ C} of subsets of X.

For every graph that we consider, we assume a total ordering of its edge set (e.g.,
lexicographic order). If p = {e, e′} is a pair of edges of a graph and e < e′, then we
let p⃗ denote the ordered pair of edges (e, e′).

15

CHAPTER 3

CONCEPTS DEFINED ON A DFS TREE

3.1 Basic definitions

3.2 Properties of the DFS parameters

3.3 Computing the low‐edges

3.4 Computing the high‐edges

3.5 Computing the leftmost and the rightmost edges

3.6 Computing the maximum points

3.7 Pointer‐machine algorithms for some DFS parameters

3.8 Two lemmata concerning paths

3.9 An oracle for back‐edge queries

3.10 Segments of vertices that have the same high point

Throughout this chapter we assume that G is a connected graph with n vertices and
m edges, and r is a vertex of G. In Section 3.1 we present the parameters that are
defined w.r.t. a DFS-tree of G, and we will use throughout in the rest of this work. In
Section 3.2 we state and prove some simple properties that are satisfied by the DFS
parameters. In Sections 3.3, 3.4, 3.5 and 3.6, we show how to compute the low edges,
the high edges, the leftmost and the rightmost edges, and the M points, respectively.
In Section 3.7 we provide alternative linear-time algorithms for the computation of
some of the DFS parameters, that are implementable in the pointer machine model

16

and will be useful in Chapter 4. In Section 3.8 we prove two lemmata that concern the
structure of paths w.r.t. a DFS-tree. In Section 3.9 we present an oracle for back-edge
queries that we will use in our oracle for connectivity queries in the presence of at
most four edge-failures in Section 6. Finally, we conclude with Section 3.10 that deals
with the computation of the decreasingly ordered segments that consist of vertices
that have the same high (or high2) point, and are maximal w.r.t. the property that
their elements are related as ancestor and descendant. These segments are involved
in the computation of Type-3βii 4-cuts, in Section 5.8.2.

3.1 Basic definitions

Let T be a DFS-tree of G with start vertex r [63]. We identify the vertices of G with
their order of visit by the DFS. (Thus, r = 1, and the last vertex visited by G is n.)
For a vertex v ̸= r of G, we let p(v) denote the parent of v on T . (Thus, v is a child of
p(v).) We let T [v, u] denote the simple path from v to u on T , for any two vertices v
and u of G. We use T [v, u), T (v, u] or T (u, v), in order to denote the path T [v, u] minus
the vertex on the side of the parenthesis. If v lies on the tree-path T [r, u], then we say
that v is an ancestor of u (equivalently, u is a descendant of v). Notice that if v is an
ancestor of u, then v ≤ u. (The converse is not necessarily true.) If v is an ancestor
of u such that v ̸= u, then we say that v is a proper ancestor of u (equivalently, u is
a proper descendant of v). We extend the ancestry relation to tree-edges. If (u, p(u))
and (v, p(v)) are two tree-edges, then we say that (v, p(v)) is an ancestor of (u, p(u))
(or equivalently, (u, p(u)) is a descendant of (v, p(v))) if and only if v is an ancestor of
u. We let T (v) denote the set of descendants of a vertex v. (Notice that this is a subtree
of T .) The number of descendants of v is denoted as ND(v) (i.e., ND(v) = |T (v)|).
We note that ND(v) can be computed easily during the DFS, because it satisfies the
recursive formula ND(v) = ND(c1)+ · · ·+ND(ck)+1, where c1, . . . , ck are the children
of v. We use the ND values in order to check the ancestry relation in constant time.
Specifically, given two vertices u and v, we have that u is a descendant of v if and only
if v ≤ u ≤ v +ND(v)− 1. Equivalently, we have T (v) = {v, v + 1, . . . , v +ND(v)− 1}.

A DFS traversal imposes an organization of the edges of the graph that is very rich
in properties. Specifically, every non-tree of G has its endpoints related as ancestor
and descendant on T [63]. Thus, the non-tree edges of G are called “back-edges”.

17

Whenever we let (x, y) denote a back-edge, we always assume that x is the higher
endpoint of (x, y) (i.e., x > y). Thus, x is the endpoint of (x, y) that is a descendant of
y. For a vertex v ̸= r, we say that a back-edge (x, y) leaps over v if x is a descendant of
v and y is a proper ancestor of v. We let B(v) denote the set of the back-edges that leap
over v. Recently, the sets of leaping back-edges were used in order to solve various
graph-connectivity problems (see [38, 36]). The usefulness of those sets is intimated
by the fact that if we delete the tree-edge (v, p(v)) from G, then the subtree T (v) of T
is connected with the rest of the graph through the back-edges in B(v). Thus, e.g., we
can test if an edge (v, p(v)) is a bridge by checking whether the set B(v) is non-empty.
In general, we can extract a lot of useful information from those sets, that can help
us solve various connectivity problems. We note that we do not explicitly compute
the sets of leaping back-edges, as their total size can be excessively large (i.e., it can
be Ω(n2) even in graphs with O(n) number of edges). Instead, we compute some
parameters that summarize the information that is contained in those sets (e.g., by
considering the distribution of the endpoints of the back-edges that are contained
in them). Here we will define some parameters that we will use throughout. Others
that are more specialized, and probably of a more restricted scope, are developed and
analyzed on the spot, in the sections that follow.

Let v ̸= r be a vertex. We let bcount(v) denote the number of back-edges that
leap over v (i.e., bcount(v) = |B(v)|). We let SumDesc(v) denote the sum of the higher
endpoints of the back-edges in B(v), and we let SumAnc(v) denote the sum of the
lower endpoints of the back-edges in B(v). Similarly, we let XorDesc(v) denote the
XOR of the higher endpoints of the back-edges in B(v), and we let XorAnc(v) denote
the XOR of the lower endpoints of the back-edges in B(v). We introduce use val-
ues XorDesc(v) and XorAnc(v) because they help us retrieve back-edges from B(v).
Specifically, supposing that we know the XOR X of the higher endpoints of the
back-edges in B(v) \ {e}, and the XOR Y of the lower endpoints of the back-edges
in B(v) \ {e}, where e is a back-edge in B(v), then we can retrieve the endpoints of e
with the values X ⊕XorDesc(v) and Y ⊕XorAnc(v). The values SumDesc and SumAnc
are used in order to draw inferences for the existence of back-edges. We note that
these parameters satisfy a recursive formula that allows us to compute them in linear
time in total, for all vertices. Specifically, let In(z) denote the set of the back-edges
with lower endpoint z, for every vertex z. Also, let Out(z) denote the set of the back-
edges with higher endpoint z, for every vertex z. Then, bcount(v) = bcount(c1) + · · ·+

18

bcount(ck)+ |Out(v)|− |In(v)|, where c1, . . . , ck are the children of v. Similarly, we have
SumDesc(v) = SumDesc(c1) + · · · + SumDesc(ck) + SumDesc(Out(v)) − SumDesc(In(v)),
where we let SumDesc(S) denote the sum of the higher endpoints of the back-edges
in a set S of back-edges. The analogous relations hold for SumAnc(v), XorAnc(v) and
XorDesc(v). Thus, we can compute all these parameters with a bottom-up procedure
(e.g., during the backtracking of the DFS), in total linear time, for all vertices v ̸= r.

3.1.1 low and high edges

Now we consider parameters that are defined in relation to the lower endpoints of
the back-edges in B(v), for a vertex v ̸= r. First, let (v, z1), . . . , (v, zs) be the list of
the back-edges with higher endpoint v, sorted in increasing order w.r.t. their lower
endpoint. (Notice that these back-edges belong to B(v).) Then we let li(v) denote zi,
for every i ∈ {1, . . . , s}. If i > s, then we let li(v) = v. The vertex l1(v) is of particular
importance, and we may denote it simply as l(v). Thus, we can know e.g. if there is
a back-edge that stems from v, by checking whether l(v) < v.

Now let (x1, y1), . . . , (xk, yk) be the list of the back-edges in B(v) sorted in increasing
order w.r.t. their lower endpoint. We note that such a sorting may not be unique,
but we suppose that we have fixed one. Then (w.r.t. this sorting) we call (xi, yi) the
lowi-edge of v, for every i ∈ {1, . . . , k}. The lower endpoint of the lowi-edge of v is
called the lowi point of v, and we denote it as lowi(v) (i.e., we have lowi(v) = yi).
Notice that the definition of the lowi points of v is independent of the sorting of the
back-edges in B(v), provided only that this is in increasing order w.r.t. the lower
endpoints. If we want to reference the lowi-edge of v with its endpoints, then we
denote it as (lowDi(v), lowi(v)). Of particular importance is the low1 point of v, which
we may simply denote as low(v). The low points have been introduced several decades
ago, in order to solve various graph problems with a DFS-based approach (see, e.g.,
[63]). In Section 3.3 we show how to compute the lowi-edges of all vertices, for every
i ∈ {1, . . . , k}, where k is a fixed integer, in total linear time (see Proposition 3.2).

Now let v be a vertex, and let c1, . . . , ct be the children of v sorted in increas-
ing order w.r.t. their low point (breaking ties arbitrarily). In other words, we have
low(c1) ≤ · · · ≤ low(ct). Then we call ci the lowi child of v. Once we have computed
the low points of all vertices, we note that it is easy to construct the lists of the low
children of all vertices in O(n) time in total, using bucket-sort.

19

Now let v ̸= r be a vertex, and let (x1, y1), . . . , (xk, yk) be the list of the back-edges
in B(v) sorted in decreasing order w.r.t. their lower endpoint. Again, we note that
such a sorting may not be unique, but we suppose that we have fixed one. Then
(w.r.t. this sorting) we call (xi, yi) the highi-edge of v, for every i ∈ {1, . . . , k}. The
lower endpoint of the highi-edge of v is called the highi point of v, and we denote it
as highi(v) (i.e., we have highi(v) = yi). Notice that the definition of the highi points
of v is independent of the sorting of the back-edges in B(v), provided only that this
is in decreasing order w.r.t. the lower endpoints. If we want to reference the highi-
edge of v with its endpoints, then we denote it as (highDi(v), highi(v)). Of particular
importance is the high1 point of v, which we may simply denote as high(v). Also, we
denote the high1-edge of v as ehigh(v). The high points have been introduced relatively
recently (as a concept dual to the low points) in order to solve various problems of low
connectivity with a DFS-based approach (see, e.g., [38, 36]). One of the reasons that
the high points are useful is that they let us know whether there exists a back-edge
that leaps over a vertex u, but not over a specific proper ancestor v of u. (Specifically,
this is equivalent to high(u) ≥ v.) Thus, if that is the case, then we know that if we
remove both (u, p(u)) and (v, p(v)) from the graph, then u is connected with p(u)

through a path that uses ehigh(u). In Section 3.4 we show how to compute the highi-
edges of all vertices, for every i ∈ {1, . . . , k}, where k is a fixed integer, in total linear
time (see Proposition 3.3).

3.1.2 Maximum points, leftmost and rightmost edges

Now we consider concepts that are defined in relation to the higher endpoints of the
leaping back-edges. Let v ̸= r be a vertex. We let M(v) denote the maximum vertex
that is an ancestor of the higher endpoints of the back-edges in B(v). Equivalently,
M(v) is the nearest common ancestor of the higher endpoints of the back-edges
in B(v). (If B(v) = ∅, then we let M(v) := ⊥.) Notice that M(v) (if it exists) is a
descendant of v. For every vertex x, we let M−1(x) denote the list of all vertices v

with M(v) = x, sorted in decreasing order. Thus, we have that all vertices in M−1(x)

have x as a common descendant, and therefore they are related as ancestor and
descendant. For every vertex v ∈ M−1(x), we let nextM(v) and prevM(v) denote the
successor and the predecessor, respectively, of v inM−1(x). Equivalently, we have that
nextM(v) (resp., prevM(v)) is the greatest proper ancestor (resp., the lowest proper

20

descendant) u of v such that M(u) = M(v). We also let lastM(v) denote the lowest
vertex in M−1(M(v)).

We extend the concept of theM points in general sets of back-edges. Thus, if S is a
set of back-edges, then we letM(S) denote the nearest common ancestor of the higher
endpoints of the back-edges in S. (Thus, we have M(v) = M(B(v)).) We introduce a
notation for the M points of some special sets of back-edges. Let c be a descendant of
a vertex v ̸= r, and let S be the set of the back-edges that leap over v and stem from
the subtree of c (i.e., S = {(x, y) ∈ B(v) | x is a descendant of c}). Then we denote
M(S) asM(v, c). Also, let S̃ be the set of the back-edges in B(v) that stem from proper
descendants of M(v) (i.e., S̃ = {(x, y) ∈ B(v) | x is a proper descendant of M(v)}).
Then we denote M(S̃) as M̃(v). In Section 3.6 we deal with the computation of the
M points. This relies on the computation of the leftmost and the rightmost points,
which we define next.

Let v ̸= r be a vertex, and let (x1, y1), . . . , (xk, yk) be the list of the back-edges
in B(v) sorted in increasing order w.r.t. their higher endpoint. We note that such
a sorting may not be unique, but we suppose that we have fixed one. Then we call
(xi, yi) the i-th leftmost edge of v. We denote xi as Li(v), and we call it the i-th leftmost
point of v. Of particular importance is the first leftmost edge of v, which we denote as
eL(v). On the other hand, let (x1, y1), . . . , (xk, yk) be the list of the back-edges in B(v)

sorted in decreasing order w.r.t. their higher endpoint. Again, such a sorting may
not be unique, but we suppose that we have fixed one. Then we call (xi, yi) the i-th
rightmost edge of v. We denote xi as Ri(v), and we call it the i-th rightmost point of
v. Of particular importance is the first rightmost edge of v, which we denote as eR(v).
(We note that the edges eL(v) and eR(v) were used in [50], with different notation.)
In Section 3.5 we extend the concepts of the leftmost and the rightmost edges, and
provide an efficient method to compute them (see Proposition 3.4).

3.2 Properties of the DFS parameters

Lemma 3.1. Let u and v be two vertices ̸= r such that v is an ancestor of u and M(v) is
a descendant of u. Then M(v) is a descendant of M(u).

Proof. Let (x, y) be a back-edge in B(v). Then x is a descendant ofM(v), and therefore
a descendant of u. Futhermore, y is a proper ancestor of v, and therefore a proper

21

ancestor of u. This shows that (x, y) ∈ B(u), and thus x is a descendant of M(u). Due
to the generality of (x, y) ∈ B(v), this implies that M(v) is a descendant of M(u).

Lemma 3.2. Let u and v be two vertices ̸= r such that v is an ancestor of u and M(v) is
a descendant of M(u). Then B(v) ⊆ B(u).

Proof. Let (x, y) be a back-edge in B(v). Then x is a descendant ofM(v), and therefore
a descendant ofM(u). Furthermore, y is a proper ancestor of v, and therefore a proper
ancestor of u. This shows that (x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(v),
we conclude that B(v) ⊆ B(u).

Lemma 3.3. Let u and v be two vertices ̸= r such that u is a descendant of v and
high(u) = high(v). Then B(u) ⊆ B(v).

Proof. Let (x, y) be a back-edge in B(u). Then x is a descendant of u, and therefore a
descendant of v. Furthermore, y is an ancestor of high(u), and therefore an ancestor
of high(v), and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due
to the generality of (x, y) ∈ B(u), we conclude that B(u) ⊆ B(v).

Lemma 3.4. Let v and v′ be two vertices such that M(v) = M(v′). Then low(v) = low(v′).

Proof. Since M(v) = M(v′), we have that v and v′ are related as ancestor and descen-
dant. Thus, we may assume w.l.o.g. that v′ is an ancestor of v. Then, Lemma 3.2
implies that B(v′) ⊆ B(v). This implies that low(v) ≤ low(v′). Now let (x, y) be a
back-edge in B(v) such that y = low(v). Then x is a descendant of v, and therefore a
descendant of v′. Furthermore, both y and v′ have v as a common descendant, and
therefore they are related as ancestor and descendant. Then, y = low(v) ≤ low(v′) < v′

implies that y is a proper ancestor of v′. This shows that (x, y) ∈ B(v′), and therefore
y ≥ low(v′). Thus, we conclude that low(v) = low(v′).

Lemma 3.5. Let u and v be two vertices ̸= r such that v is an ancestor of u and
high(u) = high(v). Then low(v) ≤ low(u).

Proof. By Lemma 3.3 we have that B(u) ⊆ B(v), and thus we get low(v) ≤ low(u) as
an immediate consequence.

Lemma 3.6. Let u and v be two vertices ̸= r such that M(u) = M(v), v is a proper
ancestor of u, and B(u) ̸= B(v). Then high(u) is a descendant of v.

22

Proof. By Lemma 3.2 we have B(v) ⊆ B(u). Since u is a common descendant of v
and high(u), we have that v and high(u) are related as ancestor and descendant. Now
let us suppose, for the sake of contradiction, that high(u) is not a descendant of v.
This implies that high(u) is a proper ancestor of v. Now let (x, y) be a back-edge in
B(u). Then we have that x is a descendant of u, and therefore a descendant of v.
Furthermore, y is an ancestor of high(u), and therefore a proper ancestor of v. This
shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u), this implies that
B(u) ⊆ B(v). Thus, since B(v) ⊆ B(u), we have that B(u) = B(v), in contradiction
to the assumption B(u) ̸= B(v). Thus, we conclude that high(u) is a descendant of
v.

Lemma 3.7. Let u and v be two vertices ̸= r. Then the following are equivalent:

(1) B(u) = B(v)

(2) M(u) = M(v) and high(u) = high(v)

(3) M(u) = M(v) and bcount(u) = bcount(v)

Proof. (1) obviously implies (2) and (3). Conversely, we will show that either of (2)
and (3) also implies (1). Let us first assume (2). Let (x, y) be a back-edge in B(u).
Then x is a descendant of M(u), and therefore a descendant of M(v). Furthermore, y
is an ancestor of high(u), and therefore an ancestor of high(v), and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u), this
implies that B(u) ⊆ B(v). Similarly, we can show the reverse inclusion, and therefore
we have B(u) = B(v).

Now let us assume (3). If B(u) = ∅, then M(u) = ⊥, and therefore M(v) = ⊥,
and therefore B(v) = ∅. So let us assume that B(u) ̸= ∅. Then M(u) is defined, and
therefore M(u) = M(v) implies that M(u) is a common descendant of u and v, and
therefore u and v are related as ancestor and descendant. Thus, we may assume
w.l.o.g. that u is a descendant of v. Then, since M(u) = M(v), Lemma 3.2 implies
that B(v) ⊆ B(u). Therefore, bcount(u) = bcount(v) implies that B(u) = B(v).

The following provides a criterion that characterizes 3-edge-connected graphs, and
we will use it throughout without explicit mention.

Proposition 3.1. A connected graph G is 3-edge-connected if and only if: for every vertex
v ̸= r we have bcount(v) > 1, and for every two distinct vertices u and v such that r /∈ {u, v}
we have B(u) ̸= B(v).

23

Proof. (⇒) Let v ̸= r be a vertex, let A = T (v) and let B = T (r) \ T (v). Notice
that A and B are connected subgraphs of G \ {(v, p(v))}. Then it is easy to see that
{(v, p(v))}∪B(v) is a cut of G. Thus, since G is 3-edge-connected, we have |B(v)| > 1.

Now let us suppose, for the sake of contradiction, that there exist two distinct
vertices u and v such that r /∈ {u, v} and B(u) = B(v). We have already established
that B(u) ̸= ∅ and B(v) ̸= ∅. Thus, B(u) = B(v) implies that there is a back-edge
(x, y) ∈ B(u) ∩ B(v). Then x is a common descendant of u and v, and therefore u

and v are related as ancestor and descendant. Thus, we may assume w.l.o.g. that v
is a proper ancestor of u. Now consider the parts A = T (u), B = T (v) \ T (u) and
C = T (r) \ T (v). Then A, B and C are non-empty subtrees of T . Since B(u) = B(v),
the following two implications are immediate: first, there is no back-edge from A to
B, and second, there is no back-edge from B to C. Thus, B becomes disconnected
from the rest of the graph in G \ {(u, p(u)), (v, p(v))}, in contradiction to the fact that
G is 3-edge-connected.
(⇐) Let us suppose, for the sake of contradiction, that G is not 3-edge-connected.
Thus, there is either a 1-cut or a 2-cut of G. First, let us assume that there is a bridge
e of G. Then e is a tree-edge, and so it has the form (v, p(v)) for a vertex v ̸= r.
Notice that T (v) and T (r)\T (v) are two connected subgraphs of G\{(v, p(v))}. Thus,
these must be the connected components of G \ {e}. But this implies that there is no
back-edge from A to B, in contradiction to bcount(v) > 1. This shows that G has no
bridges.

Thus, there is at least one 2-cut C of G. Then, either C consists of one tree-edge
and one back-edge, or it consists of two tree-edges. The first case can be excluded
with an argument that is similar to the one that we used in order to show that G
has no bridges. (In particular, here we rely again on bcount(v) > 1, for every vertex
v ̸= r.) So let us assume that C consists of two tree-edges (u, p(u)) and (v, p(v)), for
some vertices u, v with r /∈ {u, v}. Let us suppose, for the sake of contradiction, that
u and v are not related as ancestor and descendant. Since bcount(u) > 1, there is a
back-edge (x, y) ∈ B(u). Then, since v is not related as ancestor and descendant with
u, we have that the tree-paths T [x, u] and T [p(u), y] remain intact in G \ {(v, p(v))}.
But this implies that u remains connected with p(u) in G\{(u, p(u)), (v, p(v))} through
the path T [u, x], (x, y), T [y, p(u)], in contradiction to the fact that {(u, p(u)), (v, p(v))}
is a 2-cut of G. This shows that u and v are related as ancestor and descendant,
and so we may assume w.l.o.g. that v is a proper ancestor of u. Then, notice that

24

X = T (u), Y = T (v) \ T (u) and Z = T (r) \ T (v) are three connected subgraphs of
G \ {(u, p(u)), (v, p(v))}. Thus, there cannot exist a back-edge from X to Y , because
otherwise u remains connected with p(u) in G \ C. Similarly, there cannot exist a
back-edge from Y to Z , because otherwise v remains connected with p(v) in G \ C.
But then it is easy to see that B(u) = B(v), a contradiction. This shows that G is
3-edge-connected.

Lemma 3.8. Let v and v′ be two vertices with M(v) = M(v′) such that v′ is a proper
ancestor of v. If G is 3-edge-connected, then v′ is an ancestor of high(v).

Proof. We have that high(v) is a proper ancestor of v. Thus, since v′ and high(v)
have v as a common descendant, they are related as ancestor and descendant. Let us
suppose, for the sake of contradiction, that v′ is not an ancestor of high(v). Then, we
have that v′ is a proper descendant of high(v). Since M(v) = M(v′) and v′ is a proper
ancestor of v, by Lemma 3.2 we have that B(v′) ⊆ B(v). Now let (x, y) be a back-edge
in B(v). Then x is a descendant of v, and therefore a descendant of v′. Furthermore,
y is an ancestor of high(v), and therefore a proper ancestor of v′. This shows that
(x, y) ∈ B(v′). Due to the generality of (x, y) ∈ B(v), this implies that B(v) ⊆ B(v′).
But then, since B(v′) ⊆ B(v), we have that B(v′) = B(v), in contradiction to the
fact that the graph is 3-edge-connected. Thus, we conclude that v′ is an ancestor of
high(v).

Lemma 3.9. Let v ̸= r be a vertex and let e be a back-edge in B(v) such that M(B(v) \
{e}) ̸= M(v). Then, either e = eL(v) or e = eR(v).

Proof. Let X be the set of the higher endpoints of the back-edges in B(v). Then
we have M(v) = nca(X), L1(v) = min(X) and R1(v) = max(X). We claim that
M(v) = nca{L1(v), R1(v)}. First, we obviously have that M(v) is an ancestor of
nca{L1(v), R1(v)}. Conversely, nca{L1(v), R1(v)} is an ancestor of both L1(v) and R1(v).
Since L1(v) ≤ R1(v), this implies that nca{L1(v), R1(v)} is an ancestor of every vertex
z such that L1(v) ≤ z ≤ R1(v). Thus, since L1(v) = min(X) and R1(v) = max(X),
we have that nca{L1(v), R1(v)} is an ancestor of every vertex in X , and therefore
nca{L1(v), R1(v)} is an ancestor of M(v). Thus, we have M(v) = nca{L1(v), R1(v)}.

Now let X ′ be the set of the higher endpoints of the back-edges in B(v) \ {e}.
Then we have X ′ ⊆ X and M(B(v) \ {e}) = nca(X ′). Since M(B(v) \ {e}) ̸= M(v)

and M(v) = nca{L1(v), R1(v)}, this implies that we cannot have both L1(v) and R1(v)

25

in X ′. Thus, either L1(v) /∈ X ′ or R1(v) /∈ X ′. Let us assume that L1(v) /∈ X ′. This
implies that e is the only back-edge in B(v) whose higher endpoint is L1(v). Thus,
by definition we have e = eL(v). Similarly, if we have R1(v) /∈ X ′, then we can infer
that e = eR(v).

The following two lemmata show that the leftmost and the rightmost points are
useful for testing inclusion relations of the B sets.

Lemma 3.10. Let u, v (̸= r) be two vertices such that u is a descendant of v. Then
B(v) ⊆ B(u) if and only if L1(v) ∈ T (u) and R1(v) ∈ T (u).

Proof. (⇒) Let (x, y) and (x′, y′) be the leftmost and the rightmost back-edges of v,
respectively. Then B(v) ⊆ B(u) implies that (x, y) ∈ B(u) and (x′, y′) ∈ B(u). This
implies that x ∈ T (u) and x′ ∈ T (u). Thus we have L1(v) ∈ T (u) and R1(v) ∈ T (u)

(by the definition of L1(v) and R1(v)).
(⇐) Let (x, y) be a back-edge in B(v). Then (by the definition of L1(v) and R1(v))
we have L1(v) ≤ x ≤ R1(v). Now L1(v) ∈ T (u) ⇒ u ≤ L1(v), and so L1(v) ≤ x

implies that u ≤ x. Similarly, R1(v) ∈ T (u) ⇒ R1(v) < u + ND(u), and so x ≤ R1(v)

implies that x < u + ND(u). Thus we have x ∈ T (u). Furthermore, (x, y) ∈ B(v) ⇒
y < v, and since u is a descendant of v this implies that y < u. We conclude that
(x, y) ∈ B(u).

Lemma 3.11. Let u, v (̸= r) be two vertices such that u is a descendant of v and bcount(v) ≥
2. Then B(v) = B(u) ⊔ {e}, for a back-edge e, if and only if bcount(v) = bcount(u) + 1

and either (1) L1(v) /∈ T (u), L2(v) ∈ T (u) and R1(v) ∈ T (u), or (2) R1(v) /∈ T (u),
R2(v) ∈ T (u) and L1(v) ∈ T (u).

Proof. (⇒) bcount(v) = bcount(u) + 1 is an obvious implication of B(v) = B(u) ⊔ {e}.
Now, since there exists a back-edge e ∈ B(v) \ B(u), by Lemma 3.10 we have that
either L1(v) /∈ T (u) or R1(v) /∈ T (u). Suppose that L1(v) /∈ T (u) (the proof for the
other case is similar). Then the first leftmost back-edge of v is not in B(u), and so
e is the first leftmost back-edge of v. Every other back-edge in B(v) is contained in
B(u), and therefore we have L2(v) ∈ T (u) and R1(v) ∈ T (u) (and these vertices are
defined, since bcount(v) ≥ 2).
(⇐) Suppose that (1) is true (the proof for the other case is similar). Let (x, y)

be a back-edge in B(v). Then (by the definition of L1(v) and R1(v)) we have that
L1(v) ≤ x ≤ R1(v). If x ̸= L1(v), then L2(v) ≤ x ≤ R1(v). Since L2(v) ∈ T (u) and

26

R1(v) ∈ T (u), this implies that x ∈ T (u). Furthermore, (x, y) ∈ B(v) implies that y
is a proper ancestor of v, and therefore y is a proper ancestor of u. This shows that
(x, y) ∈ B(u). Thus we infer that every back-edge (x, y) ∈ B(v) with L2(v) ≤ x ≤ R1(v)

is in B(u) (∗). Now, since bcount(v) = bcount(u) + 1, we have that there exists at least
one back-edge e = (x, y) ∈ B(v)\B(u), and so it has x = L1(v). Furthermore, this is the
only back-edge with this property (otherwise, bcount(v) = bcount(u)+1 is contradicted
by (∗)). Thus, by (∗) we have that B(v) = B(u) ⊔ {e}.

Lemma 3.12. Let w ̸= r be a vertex, and let u and v be two descendants of w such
that M(u) = M(w, x) ̸= ⊥ and M(v) = M(w, y) ̸= ⊥, where x and y are descendants of
different children of M(w). Then u and v are not related as ancestor and descendant.

Proof. Let c1 be the child of M(w) that is an ancestor of x, and let c2 be the child of
M(w) that is an ancestor of y. By assumption we have that c1 ̸= c2. Now let us suppose,
for the sake of contradiction, that u is not a descendant of c1. Since M(u) = M(w, x),
we have that M(u) is a common descendant of u and x, and therefore u and x are
related as ancestor and descendant. Since u is not a descendant of c1, we cannot have
that u is a descendant of x. Thus, u is a proper ancestor of x. Then, we have that x is
a common descendant of u and c1, and therefore u and c1 are related as ancestor and
descendant. Thus, we have that u is a proper ancestor of c1. This implies that u is an
ancestor of M(w), and therefore an ancestor of c2. Now, since M(w, y) is defined, we
have that there is a back-edge (z, t) ∈ B(w) such that z is a descendant of y. Then,
z is a descendant of c2, and therefore a descendant of u. Furthermore, t is a proper
ancestor of w, and therefore a proper ancestor of u. This shows that (z, t) ∈ B(u). This
implies that z is a descendant ofM(u). SinceM(u) = M(w, x) ̸= ⊥, we have that there
is a back-edge (z′, t′) ∈ B(u) such that z′ is a descendant of x. Since (z, t) ∈ B(u) and
(z′, t′) ∈ B(u), we have that M(u) is an ancestor of nca{z, z′}. But z is a descendant
of c1, whereas z′ is a descendant of c2. This implies that nca{z, z′} = M(w), and
therefore M(u) is an ancestor of M(w), contradicting the fact M(u) = M(w, x) (which
implies that M(u) is a descendant of x, and therefore of c1). Thus, we have that u is
a descendant of c1. Similarly, we can show that v is a descendant of c2. Thus, since
u and v are descendants of different children of M(w), we have that they cannot be
related as ancestor and descendant.

Lemma 3.13. Let v ̸= r be a vertex with B(v) ̸= ∅ such that there is no back-edge of the
form (M(v), z) in B(v). Then low(c2) < v, where c2 is the low2 child of M(v).

27

Proof. Let (x, y) be a back-edge in B(v). Then we have that x is a descendant ofM(v).
Since there is no back-edge of the form (M(v), z) in B(v), we have that x ̸= M(v).
Thus, x is a proper descendant of M(v). This shows that M(v) has at least one child.
Furthermore, it cannot be the case that M(v) has only one child, because otherwise
all the back-edges of B(v) would stem from the subtree of this child, and so M(v)

would be a descendant of its child, which is absurd. Thus, M(v) has at least two
children, and so it makes sense to consider the low2 child c2 of M(v).

Let us suppose, for the sake of contradiction, that low(c2) ≥ v. This implies that, of
all the children ofM(v), only the low1 child c1 ofM(v)may have low(c1) < v. Let (x, y)
be a back-edge in B(v). Then we have that x is a descendant of M(v). Since there is
no back-edge of the form (M(v), z) in B(v), we have that x ̸= M(v), and therefore x

is a proper descendant of M(v). Let c be the child of M(v) that is an ancestor of x.
Since (x, y) ∈ B(v), we have that y is a proper ancestor of v, and therefore a proper
ancestor of M(v), and therefore a proper ancestor of c. This shows that (x, y) ∈ B(c).
Since y is a proper ancestor of v, we have y < v. Thus, since (x, y) ∈ B(c), we have
that low(c) ≤ y < v. This implies that c = c1. Due to the generality of (x, y) ∈ B(v),
this implies that M(v) is a descendant of c1, which is absurd. Thus, our supposition
cannot be true, and therefore we have that low(c2) < v.

Lemma 3.14. Let C be an edge-minimal cut of G. Let (v1, p(v1)), . . . , (vk, p(vk)) be the
list of the tree-edges in C. Let us assume w.l.o.g. that v1 is the lowest among v1, . . . , vk.
Then v1 is a common ancestor of {v1, . . . , vk}. Furthermore, suppose that C contains a
back-edge e. Then e ∈ B(v1) ∪ · · · ∪ B(vk).

Proof. Let us suppose, for the sake of contradiction, that v1 is not a common ancestor
of {v1, . . . , vk}. This means that at least one among {v1, . . . , vk} is not a descendant of
v1. Now let I be the collection of all indices in {1, . . . , k} such that vi is a descendant
of v1, for every i ∈ I. Thus, we have I ⊂ {1, . . . , k}. Now let CI = {(vi, p(vi)) | i ∈ I},
and let C ′ be the subset of C that consists of all the back-edges in C. Then, since
I ⊂ {1, . . . , k}, we have CI ∪ C ′ ⊂ C. Thus, since C is an edge-minimal cut of G,
we have that G′ = G \ (CI ∪ C ′) is connected. Thus, there is a path P from v1 to
p(v1) in G′. Then, by Lemma 3.19 we have that the first occurrence of an edge in P

that leads outside of T (v1) is either (v1, p(v1)) or a back-edge that leaps over v1. The
first case is rejected, since (v1, p(v1)) ∈ CI . Thus, the first occurrence of an edge in
P that leads outside of T (v1) is a back-edge (x, y) that leaps over v1. Now consider

28

the part P ′ of P from v1 up to, and including, x. Then we have that P ′ avoids the
tree-edges from C that have the form (v, p(v)) where v is a descendant of v1 (since
P has this property). Also, P ′ avoids all the back-edges from C (since P has this
property). Furthermore, P ′ avoids the tree-edges of the form (v, p(v)) where v is not
a descendant of v1, because it is the initial part of P that lies entirely within T (v1).
This shows that P ′ is a path in G \ C. Since v1 is the minimum among {v1, . . . , vk},
we have that no vertex in {v1, . . . , vk} is a proper ancestor of v1. Thus, the tree-path
T [p(v1), r] remains intact in G \C. But then, P ′ + (x, y) + T [y, p(v1)] is a path from v1

to p(v1) in G\C , in contradiction to the fact that C is an edge-minimal cut of G. This
shows that v1 is a common ancestor of {v1, . . . , vk}.

Now let e be a back-edge in C. Let us suppose, for the sake of contradiction, that
e /∈ B(v1)∪ · · · ∪B(vk). Let e = (x, y). Then we have that none of v1, . . . , vk, can be on
the tree-path T [x, y]. Thus, T [x, y] remains intact in G\C , and therefore the endpoints
of e remain connected in G\C , in contradiction to the fact that C is an edge-minimal
cut of G. We conclude that e ∈ B(v1) ∪ · · · ∪ B(vk).

3.3 Computing the low‐edges

Let v ̸= r be a vertex. The definition of the lowi-edges of v, for i = 1, 2, . . . , assumes any
ordering of the back-edges in B(v) that it is increasing w.r.t. the lower endpoints.
For computational purposes (basically, for convenience in our arguments), we will
fix such an ordering for sets of back-edges, which we call the low ordering. Let
(x1, y1), . . . , (xt, yt) be a list of back-edges. Then we say that this list is sorted in the
low ordering if it is increasing w.r.t. the lower endpoints, and also satisfies xi ≤ xi+1,
for every i ∈ {1, . . . , t− 1} such that yi = yi+1.1

Now let v ̸= r be a vertex, and let (x1, y1), . . . , (xt, yt) be the list of the back-edges
in B(v) sorted in the low ordering. Then we let (xi, yi) be the lowi-edge of v, for
every i ∈ {1, . . . , t}. We assume that the low ordering is applied for every set of
leaping back-edges, and the lowi-edges correspond to this ordering. Then we have
the following.

1Here we have to be a little more precise. Since we consider multigraphs, we may have several
back-edges of the form (x, y) in a set of back-edges. Then we assume a unique integer identifier that
is assigned to every edge of the graph, and the ties here are broken according to those identifiers.
However, for the sake of simplicity, we will not make explicit use of this information in what follows.

29

Lemma 3.15. Let v ̸= r be a vertex, and let (v, z1), . . . , (v, zs) be the list of the back-edges
with higher endpoint v, sorted in the low ordering. Let e be the lowk-edge of v, for some
k ≥ 1. Then, either e ∈ {(v, z1), . . . , (v, zk)}, or there is a child c of v such that e is the
lowk′-edge of c, for some k′ ≤ k.

Proof. Let (x1, y1), . . . , (xt, yt) be the list of the back-edges in B(v) sorted in the low
ordering. Then we have e = (xk, yk).

First, let us suppose, for the sake of contradiction, that s > k and e ∈
{(v, zk+1), . . . , (v, zs)}. Then, since the back-edges in (v, z1), . . . , (v, zs) are sorted in
increasing order w.r.t. their lower endpoint, we have that, for every i ∈ {1, . . . , s},
there is a j ∈ {i, . . . , t} such that (v, zi) = (xj, yj). Since e ∈ {(v, zk+1)), . . . , (v, zs)},
there is an i ∈ {k + 1, . . . , s} such that e = (v, zi). But then we have e = (xj, yj) for
some j ∈ {k+1, . . . , t}, contradicting the fact that e = (xk, yk). This shows that either
e ∈ {(v, z1), . . . , (v, zk)}, or e does not belong to the set {(v, z1), . . . , (v, zs)} at all.

Now let us assume that e /∈ {(v, z1), . . . , (v, zs)}. Then, since e = (xk, yk), we have
xk ̸= v, and therefore xk is a proper descendant of v. So let c be the child of v

that is an ancestor of xk. Then we have e ∈ B(c). Let (x′
1, y

′
1), . . . , (x

′
t′ , y

′
t′) be the

list of the back-edges in B(c) sorted in the low ordering. Then we have that the
lowi-edge of c, for any i ∈ {1, . . . , t′}, is (x′

i, y
′
i). Now let us suppose, for the sake of

contradiction, that t′ > k and e ∈ {(x′
k+1, y

′
k+1), . . . , (x

′
t′ , y

′
t′)}. So let i be the index in

{k + 1, . . . , t′} such that e = (x′
i, y

′
i). Since e = (xk, yk) ∈ B(v) we have that yk is a

proper ancestor of v, and therefore yk < v. Thus, since yk = y′i, we have y′i < v. Since
the back-edges in (x′

1, y
′
1), . . . , (x

′
t′ , y

′
t′) are sorted in increasing order w.r.t. their lower

endpoint, we have y′j ≤ y′i, and therefore y′j < v, for every j ∈ {1, . . . , i}. Now let j
be an index in {1, . . . , i}. Then we have that x′

j is a descendant of c, and therefore a
descendant of v. Since (x′

j, y
′
j) is a back-edge, we have that x′

j is a descendant of y′j.
Thus, x′

j is a common descendant of v and y′j , and therefore v and y′j are related as
ancestor and descendant. Since j ∈ {1, . . . , i}, we have y′j < v, and therefore y′j is a
proper ancestor of v. This shows that all back-edges in (x′

1, y
′
1), . . . , (x

′
i, y

′
i) leap over

v. Thus, since (x′
1, y

′
1), . . . , (x

′
i, y

′
i) and (x1, y1), . . . , (xt, yt) are sequences of back-edges

sorted in the low ordering and {(x′
1, y

′
1), . . . , (x

′
i, y

′
i)} ⊆ {(x1, y1), . . . , (xt, yt)}, we have

(x′
j, y

′
j) = (xj′ , yj′), where j′ ≥ j, for every j ∈ {1, . . . , i}. But since i ≥ k + 1, this

implies that e = (x′
i, y

′
i) = (xi′ , yi′) for some i′ ≥ k + 1, contradicting the fact that

e = (xk, yk). This shows that e ∈ {(x′
1, y

′
1), . . . , (x

′
k, y

′
k)}.

30

Lemma 3.15 provides enough information in order to find the lowi-edge of v, for
any i ≥ 1. Specifically, it is sufficient to search for it in the list of the first i back-edges
of the form (v, z) with the lowest lower endpoint, plus the lists of the low1-,. . . ,lowi-
edges of all the children of v. A procedure that computes the low1-,. . . ,lowk-edges
of all vertices, for any fixed k, is shown in Algorithm 1. The idea is to process the
vertices in a bottom-up fashion (e.g., in decreasing order w.r.t. the DFS numbering).
Thus, for every vertex v that we process, we have computed the low1-,. . . ,lowk-edges
of its children, and therefore we have to check among those, plus the k back-edges of
the form (v, z) with the lowest lower endpoint, in order to get the low1-,. . . ,lowk-edges
of v. For our purposes in this work, k will be a fixed constant (at most 4), and thus
the dependency of the running time on k does not matter for us. However, we use
balanced binary-search trees (BST) in order to get an algorithm with O(m+nk log k)
time. Our result is summarized in Proposition 3.2.

Proposition 3.2. Let k be any fixed integer. Algorithm 1 computes the lowi-edges of all
vertices, for all i ∈ {1, . . . , k}. Furthermore, it runs in O(m+ nk log k) time.

Proof. We will prove correctness inductively, by establishing that, whenever the for
loop in Line 4 processes a vertex v, we have that the lowi-edges of the children of v
have been correctly computed, for every i ∈ {1, . . . , k}. Initially, this is trivially true
(because we process the vertices in decreasing DFS order, and so the first vertex that
we process is a leaf). So let us suppose that the for loop in Line 4 starts processing
a vertex v for which we have computed the lowi-edges of its children, for every
i ∈ {1, . . . , k}. It is sufficient to show that, by the time the processing of v is done, we
have correctly computed the lowi-edge of v, for every i ∈ {1, . . . , k}.

Let (v, z1), . . . , (v, zs) be the list of the back-edges with higher endpoint v, sorted
in the low ordering (and thus in increasing order w.r.t. their lower endpoint). Let
also c1, . . . , ct be the children of v sorted in increasing order. In Line 6 we fill BST[v]
with the first k (non-null) back-edges from {(v, z1), . . . , (v, zs)}. Notice that these are
all back-edges that leap over v. Then, we may insert more back-edges into BST[v] in
Line 13 or in Line 19. In either case, the back-edge (x, y) that we insert into BST[v] is
a back-edge in B(c), for a child c of v, that satisfies y < v. Since (x, y) ∈ B(c), we have
that x is a descendant of c, and therefore a descendant of v. Since (x, y) is a back-edge,
we have that x is a descendant of y. Thus, x is a common descendant of v and y, and
therefore v and y are related as ancestor and descendant. Then, y < v implies that y

31

Algorithm 1: Compute the lowi-edges of all vertices, for all i ∈ {1, . . . , k}

1 compute the low ordering of the adjacency list of every vertex
2 initialize an empty balanced binary-search tree BST[v] that stores back-edges,
for every vertex v

3 // BST[v] sorts the edges it stores w.r.t. the low ordering

4 for v ← n to v = 2 do
5 let L = (v, z1), . . . , (v, zs) be the list of the back-edges with higher endpoint

v, sorted in the low ordering
6 fill BST[v] with the first k (non-null) back-edges from L

7 let c1, . . . , ct be the children of v sorted in increasing order
8 for c← c1 to c = ct do
9 foreach i ∈ {1, . . . , k} do
10 let (x, y) be the lowi-edge of c
11 if y ≥ v then continue
12 if BST[v] has less than k entries then
13 insert (x, y) into BST[v]
14 end
15 else
16 let (x′, y′) be the k-th entry of BST[v]
17 if y < y′ then
18 delete the k-th entry of BST[v]
19 insert (x, y) into BST[v]

20 end

21 end

22 end

23 end
24 foreach i ∈ {1, . . . , k} do
25 let the lowi-edge of v be the i-th entry in BST[v]

26 end

27 end

is a proper ancestor of v. Thus, we have that (x, y) is a back-edge in B(v). This shows
that, when we reach Line 24, we have that all elements of BST[v] are back-edges that

32

leap over v. Furthermore, notice that, when a back-edge is deleted from BST[v] in
Line 18, this is because its lower endpoint is greater than that of the back-edge that is
to be inserted. Thus, when we reach Line 24, we have that the back-edges in BST[v]
are those with the k-th lowest lower endpoints among the back-edges that we have
met during the processing of v.

Let (x1, y1), . . . , (xN , yN) be the list of the back-edges in B(v) sorted in the low
ordering. Let i be an index in {1, . . . , k}, and let (x, y) be the lowi-edge of v. Thus,
we have (x, y) = (xi, yi). According to Lemma 3.15, we have that (x, y) is either in
{(v, z1), . . . , (v, zi)}, or it is the lowi′-edge of a child c of v, for an i′ ∈ {1, . . . , i}. In
the first case, we have that (x, y) was inserted into BST[v] in Line 6. In the second
case, due to the inductive hypothesis, we have that (x, y) was processed at some point
during the for loop in Line 9 (during the processing of a child c of v). We will show
that, when we reach Line 24, we have that (x, y) is contained in BST[v].

First, let us suppose, for the sake of contradiction, that (x, y) was inserted into
BST[v] at some point, but later on it was deleted. Then the deletion took place in
Line 18, due to the existence of a back-edge (z, w) ∈ B(c) that has w < y, for a
child c of v, and (x, y) was the k-th entry of BST[v]. But then, due to the sorting of
BST[v], this implies that there are k back-edges in B(v) that precede (x, y) in the low
ordering, contradicting the fact that (x, y) is the lowi-edge of v, for some i ≤ k. Thus,
it is impossible that (x, y) was inserted into BST[v] at some point, but later on it was
deleted. Now let us suppose, for the sake of contradiction, that (x, y) was processed
at some point, but it was not inserted into BST[v]. This implies that (x, y) was met
during the processing of a child c of v, Line 17 was reached, but the condition in
this line was not satisfied. Thus, the k-th entry (x′, y′) of BST[v] had y′ ≤ y. Since the
back-edges in BST[v] are sorted in the low ordering, we cannot have that (x′, y′) is a
predecessor of (x, y) in this ordering, because otherwise we contradict the fact that
(x, y) is the lowi-edge of v, where i ≤ k. Thus, we have that either y < y′, or y = y′

and x < x′, (or (x, y) = (x′, y′), but the precedence is given to (x, y)). Thus, since
y′ ≤ y, we have y = y′, and therefore x ≤ x′. Let c′ be the child whose processing
led to the insertion of (x′, y′) in BST[v]. Then, since we process the children of v in
increasing order, we have that c′ ≤ c. Thus, since x is a descendant of c, and x′ is
a descendant of c′, and x ≤ x′, we have that c′ = c. But then, since (x, y) precedes
(x′, y′) in the low orderding, we have that (x, y) was met before (x′, y′) during the for
loop in Line 9, due to the selection in Line 10, a contradiction. This shows that, when

33

we reach Line 24, we have that (x, y) is contained in BST[v].
Now let k′ be the maximum index in {1, . . . , k} such that the lowk′-edge of v is

not null. (We note that, if k′ < k, then |B(v)| = k′.) Then we have that, when we
reach Line 24, BST[v] is filled with k′ back-edges from B(v). Furthermore, we have
established that the lowi-edge of v is included in BST[v], for every i ∈ {1, . . . , k′}.
Thus, since the sorting of BST[v] corresponds to the sorting of the list of back-edges
in B(v) that provides the low-edges, we have that the i-th entry of BST[v] is the
lowi-edge of v, for every i ∈ {1, . . . , k′}.

This establishes the correctness of Algorithm 1. It is not difficult to argue about its
complexity. First, the sorting of the adjacency lists in Line 1 can be performed in O(m)

time with bucket-sort (since the low ordering is basically a variant of lexicographic
order). Now, whenever the for loop in Line 4 processes a vertex v, we have that
BST[v] is filled with at most k edges in Line 6. Then, the for loop in Line 9 processes
at most k · numChild(v) back-edges in total, where numChild(v) denotes the number
of the children of v. Every one of those back-edges may be inserted into BST[v]
either in Line 13 or in Line 19. Furthermore, it may force a deletion from BST[v]
in Line 18. Thus, the total number of BST operations during the processing of v is
O(k(numChild(v)+1)). Thus, the total number of BST operations during the course of
Algorithm 1 is O(kn). Since every one of those operations is performed on a balanced
binary-search tree with no more than k entries, we have that it incurs cost O(log k).
Thus, the total cost of BST operations during the course of Algorithm 1 is O(nk log k).
We conclude that Algorithm 1 runs in O(m+ nk log k) time.

3.4 Computing the high‐edges

Let v ̸= r be a vertex. The definition of the highi-edges of v, for i = 1, 2, . . . , assumes
any ordering of the back-edges in B(v) that it is decreasing w.r.t. the lower endpoints.
For convenience in our arguments, we will fix such an ordering for sets of back-edges,
which we call the high ordering. Let (x1, y1), . . . , (xt, yt) be a list of back-edges sorted
in decreasing order w.r.t. the lower endpoints, while also satisfying xi ≤ xi+1, for
every i ∈ {1, . . . , t− 1} such that yi = yi+1. Then we say that this list is sorted in the
high ordering. If (x1, y1), . . . , (xt, yt) is the list of the back-edges in B(v) sorted in the
high ordering, then we let (xi, yi) be the highi-edge of v, for every i ∈ {1, . . . , t}. We

34

assume that the high ordering is applied for every set of leaping back-edges, and the
highi-edges correspond to this ordering.

Now let k be a fixed positive integer. In order to compute the highi-edges of all
vertices, for every i ∈ {1, . . . , k}, the idea is to process all the back-edges according to
the high ordering. For every vertex v, we maintain a variable minIndex[v], that stores
the minimum i such that the highi-edge of v is not yet computed. (Initially, we set
minIndex[v] ← 1.) Then, for every back-edge (x, y) that we process, we ascend the
tree-path T [x, y), and we have that the highi-edge of v is (x, y), for every v ∈ T [x, y)

such that minIndex[v] = i. In order to implement this idea efficiently, whenever we
ascend the path T [x, y) during the processing of a back-edge (x, y), we have to avoid
the vertices for which the highi edges are computed, for every i ∈ {1, . . . , k}. (In
other words, we have to avoid the vertices that have minIndex = k + 1.) We can
achieve this with the use of a DSU data structure. Specifically, the DSU data structure
maintains sets of vertices that have minIndex = k + 1, or they are singletons. The sets
maintained by the data structure are subtrees of T . The operations supported by this
data structure are find(v) and unite(u, v). The operation find(v) returns the root of
the subtree maintained by the DSU that contains v. The operation unite(u, v) unites
the subtree that contains u with the subtree that contains v into a larger subtree.
Whenever unite(u, v) is called, we have v = p(u). We use those operations whenever
we ascend the tree-path T [x, y), during the processing of a back-edge (x, y). Thus,
whenever we meet a vertex v which has minIndex[v] = k + 1, we first unite it with its
parent p(v), if p(v) also has minIndex[p(v)] = k + 1, and then we move to find(p(v)).
Thus, the next time that we meet v, we can jump immediately to the root of the
subtree maintained by the DSU that contains p(v). This idea for computing the highi-
edges of all vertices, for every i ∈ {1, . . . , k}, is shown in Algorithm 2. The proof of
correctness and the complexity of this algorithm is given in Proposition 3.3.

Proposition 3.3. Let k be any fixed positive integer. Then Algorithm 2 computes the
highi-edges of all vertices ̸= r, for every i ∈ {1, . . . , k}, in O(m+ kn) time in total.

Proof. We will prove correctness inductively, by establishing that whenever we reach
the condition of the while loop in Line 12, we have:

(1) For every vertex z such that minIndex[z] ≤ k, the highi-edge of z has been
correctly computed, for every i < minIndex[z].

35

Algorithm 2: Compute the highi-edges of all vertices, for all i ∈ {1, . . . , k}

1 sort the adjacency list of every vertex in increasing order w.r.t. the higher
endpoints of its edges

2 initialize an array minIndex, for every vertex v ̸= r

3 foreach vertex v ̸= r do
4 foreach i ∈ {1, . . . , k} do
5 let the highi-edge of v be ⊥
6 end
7 let minIndex[v]← 1

8 end
9 for y ← n− 1 to y = 1 do
10 foreach back-edge (x, y) in the adjacency list of y do
11 let v ← x

12 while v ̸= y do
13 if minIndex[v] = k + 1 then
14 while minIndex[p[v]] = k + 1 do
15 unite(v, p(v))

16 v ← find(v)

17 end
18 v ← p(v)

19 end
20 if v = y then break
21 let i← minIndex[v]
22 let the highi-edge of v be (x, y)

23 minIndex[v]← i+ 1

24 v ← p(v)

25 end

26 end

27 end

(2) For every vertex z such that minIndex[z] ≤ k, no back-edge that has been pro-
cessed so far by the for loop in Line 10 prior to the processing of (x, y) is the
highi-edge of z, for any i ≥ minIndex[z].

36

(3) v lies on the tree-path T [x, y].

(4) Every vertex v′ that lies on the tree-path T [x, y) and is a proper descendant of v
such that (x, y) is the highi-edge of v′ for some i ∈ {1, . . . , k}, has its highi-edge
correctly computed and minIndex[v′] = i+ 1.

(5) For every vertex z such that minIndex[z] > k, we have minIndex[z] = k+1. In this
case, the highi-edge of z has been correctly computed, for every i ∈ {1, . . . , k}.
Furthermore, the set that is maintained by the DSU data structure and contains
z is a subtree of T .

(6) Every set that is maintained by the DSU data structure and is not a singleton,
has the property that all its vertices have minIndex = k + 1.

First, let us consider the first time that we reach the condition of the while loop in
Line 12. Then, all vertices have minIndex 1. Thus, properties (1) and (5) are trivially
satisfied. Furthermore, since the for loop in Line 10 has not processed any back-edge
prior to (x, y), condition (2) is trivially satisfied. Also, since v = x and x has no proper
descendants on the tree-path T [x, y), we have that (3) and (4) are trivially satisfied.
Finally, we have not performed any DSU operations yet, and so every set maintained
by the DSU data structure is a singleton. Thus, (6) is also satisfied. This establishes
the base step of our induction.

Now suppose that we reach the condition of the while loop in Line 12 and our
inductive hypothesis is true. First, suppose that v = y. This implies that either the
computation will stop (in which case there is nothing to show), or the for loop in
Line 10 will start processing a new back-edge (x′, y′) (we note that y′ is not necessarily
y, because the for loop in Line 9 may have changed the value of the variable “y”).
Then, the invariants (1), (5) and (6) are obviously maintained. Property (4) implies
that every vertex v′ whose highi-edge is (x, y), for some i ∈ {1, . . . , k}, has its highi-edge
correctly computed and minIndex[v′] = i+1. This fact, in conjunction with (2), implies
that (2) will also hold true when we reach for the first time the condition of the
while loop in Line 12 during the processing of (x′, y′). Finally, we will have (3) (since
v = x′) and condition (4) will be trivially true (because x′ has no proper descendants
on the tree-path T [x′, y′)). Thus, the inductive hypothesis will still be true. So let us
suppose that, when we reach the condition of the while loop in Line 12, our inductive
hypothesis is true and v ̸= y. Then we will enter the while loop in Line 12. Here we

37

distinguish two cases: either (i) minIndex[v] ≤ k, or (ii) minIndex[v] > k.
Let us consider case (i) first. Then the condition in Line 13 is not satisfied, and

therefore we go to Line 21, and we will set i← minIndex[v]. By property (2) we have
that no back-edge that has been processed so far by the for loop in Line 10 prior to
the processing of (x, y) is the highi-edge of v. By property (3) we have that (x, y) is
a back-edge in B(v). Thus, since the for loop in Line 9 processes the vertices “y” in
decreasing order, and since the for loop in Line 10 processes the incoming back-edges
to y in increasing order w.r.t. their higher endpoint (due to the sorting in Line 1),
we have that the highi-edge of v is (x, y). Thus, the assignment in Line 22 is correct.
Then, in Line 23 we let minIndex[v]← i+1. Let v′ = p(v). Then we reach the condition
of the while loop in Line 12, and the “v” variable holds the value v′. The invariant
(1) is maintained, because we have only increased minIndex[v] by one, and we have
correctly computed all highj-edges of v, for j < minIndex[v]. Since v had minIndex ≤ k,
by condition (6) we had that v was in a singleton set of the DSU data structure.
Thus, since we performed no DSU operations, (6) and (5) are maintainted. Since v

was on the tree-path T [x, y), we have that p(v) is on the tree-path T [x, y]. Thus, (3) is
also true. Property (2) is obviously maintained, and (4) is still true because we have
correctly established that (x, y) is the highi-edge of v. Thus, the inductive hypothesis
still holds.

Now let us consider case (ii). By property (5) we have minIndex[v] = k + 1. Thus,
the condition in Line 13 is satisfied. First, suppose that the condition of the while
loop in Line 14 is not true. Then we simply perform v ← p(v) in Line 18, and we go to
Line 20. Then, properties (1), (2), (5) and (6) are obviously maintained. By property
(3), v was on the tree-path T [x, y) (since v ̸= y). Thus, p(v) is on the tree-path T [x, y],
and so (3) is also true. By property (5) we have that the highi-edge of v was correctly
computed, for every i ∈ {1, . . . , k}. Thus, property (4) is also maintained. Thus, all the
invariants are maintained, and so, when we reach Line 20, we can argue as previously,
in order to show that when reach the condition of the while loop in Line 12 again,
our inductive hypothesis will still be true.

So let us suppose that the condition of the while loop in Line 14 is true. Then
we will unite the set that contains v with the set that contains its parent, with a
call to unite(v, p(v)). By property (5) we have that both those sets are subtrees of T .
Thus, joining two subtrees with a parent-edge maintaints this invariant. Notice that
invariant (6) is maintained. Next, due to the convention we made in the main text

38

concerning the calls to find, we have that find(v) will return the root of the new
subtree that is formed. Now we repeat the while loop in Line 14, until we reach
a vertex v such that minIndex[p(v)] ̸= k + 1. Since this process does not change the
values minIndex of the vertices, by property (5) we have minIndex[p(v)] ≤ k. Then we
go to Line 18. Notice that the invariants (1) and (2) are maintained, as well as (5) and
(6). We claim that, when we reach Line 18, we have p(v) ∈ T [x, y]. To see this, first
observe that the while loop in Line 14 was ascending the tree-path T [x, y), starting
from a vertex v0 on T [x, y) (due to property (3)). Then, all vertices from v0 up to v

have minIndex k+1 (due to (5), (6), and the fact that the condition of the while loop
in Line 14 was repeatedly satisfied). Then, by (5) we have that the highi-edges of v
are correctly computed, for every i ∈ {1, . . . , k}. Since the for loop in Line 9 processes
the vertices “y” in decreasing order, we have that no back-edge that was processed so
far by the for loop in Line 10 has low enough lower endpoint to be a back-edge in
B(y). Thus, no highi-edge of y is computed as yet, for any i ∈ {1, . . . , k}, and therefore
minIndex[y] = 1. Since all vertices on the tree-path from v0 to v have minIndex k + 1,
we have that v is still a proper descendant of y, and therefore p(v) ∈ T [x, y]. Thus,
invariant (3) is maintained. Finally, since all vertices on the tree-path from v0 to v

have all their highi-edges computed, for all i ∈ {1, . . . , k}, we have that invariant (4) is
maintained too. Thus, when we reach Line 20, we have that all the properties of the
inductive hypothesis are satisfied. Then, from this point we can argue as previously,
in order to show that when we reach the condition of the while loop in Line 12
again, our inductive hypothesis will still be true.

This shows the correctness of Algorithm 2. It remains to analyze its complexity.
The sorting of the adjacency lists in Line 1 can be performed in O(m) time with
bucket-sort. Whenever we enter thewhile loop in Line 12, by the inductive hypothesis
we have that, when we reach Line 20, we have that either v = y or v is a vertex that has
its highi-edge yet to be computed, for some i ∈ {1, . . . , k}, but this will be computed
correctly in Line 22. The case v = y can be charged to the back-edge (x, y) that is
currently processed by the for loop in Line 10. The other case can be charged to the
highi-edge of v. Thus, the while loop in Line 12 will be entered O(m + kn) times in
total. Whenever we enter the while loop in Line 12, the first run of the while loop
in Line 14 can be charged to this entry. The remaining entries can be charged to the
calls to unite, all of which are non-trivial (i.e., they join sets that were previously not
united). This is because the call to find(v) in Line 16 returns the root of the subtree

39

maintained by the DSU data structure and contains v. Thus, after the assignment
v ← find(v) in Line 16, we have that v is not in the same set of the DSU data
structure that contains p(v). Therefore, in the next run of the while loop in Line 14,
the operation unite(v, p(v)) will unite two disjoint sets. Thus, since the number of
non-trivial calls to unite is O(n), we have that the number of times that we enter the
while loop in Line 14 is dominated by the number of times that we enter the while
loop in Line 12. The final thing to do is to bound the cost of the DSU operations.
Since the tree of the unite operations is known beforehand (i.e., it coincides with
T), we can use the data structure of Gabow and Tarjan [33]. Thus, any sequence of
m′ find and unite operations can be performed in O(m′ + n) time in total. In our
case, we have m′ = O(m+nk). We conclude that Algorithm 2 has an O(m+ kn)-time
implementation.

3.5 Computing the leftmost and the rightmost edges

Let v ̸= r be a vertex, and let (x1, y1), . . . , (xk, yk) be the list of the back-edges in B(v)

sorted in lexicographic order. In other words, we have x1 ≤ · · · ≤ xk, and if xi = xi+1

then yi ≤ yi+1, for any i ∈ {1, . . . , k − 1}.2 Now let c be a descendant of v. We are
interested in computing some subsets of B(v) that consist of back-edges whose higher
endpoint is a descendant of c. Notice that, if i is the lowest index in {1, . . . , k} such
that xi ∈ T (c), then, due to the lexicographic order, the set of the back-edges in B(v)

whose higher endpoint is a descendant of c is a segment of B(v) starting from (xi, yi).
For every t = 1, 2, . . . , we let L(v, c, t) denote the set of the first t back-edges in

B(v) whose higher endpoint is a descendant of c. More precisely, L(v, c, t) is defined
as follows. Let i be the lowest index in {1, . . . , k} such that xi is a descendant of
c. If such an index does not exist, then we let L(v, c, t) = ∅. Otherwise, let j be
the maximum index in {i, . . . , i + t − 1} such that xj is a descendant of c. Then
L(v, c, t) = {(xi, yi), . . . , (xj, yj)}. Similarly, we let R(v, c, t) denote the set of the last
t back-edges in B(v) whose higher endpoint is a descendant of c. More precisely,
R(v, c, t) is defined as follows. Let i′ be the greatest index in {1, . . . , k} such that xi′ is
a descendant of c. If such an index does not exist, then we let R(v, c, t) = ∅. Otherwise,

2Notice that, since we consider multigraphs, we may have that an entry (x, y) appears several times;
then we break ties according to the unique identifiers of the edges of the graph.

40

let j′ be the minimum index in {i′ − t + 1, . . . , i′} such that xj′ is a descendant of c.
Then R(v, c, t) = {(xj′ , yj′), . . . , (xi′ , yi′)}.

The challenge in computing the sets L(v, c, t) and R(v, c, t) is that we do not have
direct access to the list B(v). Thus, the straightforward way to compute L(v, c, t) is
to start processing the vertices in T (c) in increasing order, starting from c. For every
vertex x that we process, we scan the adjacency list of x for back-edges of the form
(x, y). If y < v, then we have (x, y) ∈ B(v), and therefore we collect (x, y). We continue
this process until we have collected t back-edges, or we have exhausted the search in
the subtree of c. Similarly, in order to compute R(v, c, t) we perform the same search,
starting from the greatest descendant of c (i.e., c + ND(c) − 1), and we process the
vertices in decreasing order. Obviously, this method may take O(m′) time, where m′

is the number of edges with one endpoint in T (c). Notice that m′ can be as large as
Ω(m). Thus, this method is impractical if the number of L or R sets that we want to
compute is Ω(n).

Thus, we will assume that the queries for the L and R sets are given in
batches, to be performed in an off-line manner. We will focus on computing
the L sets. The method and the arguments for the R sets are similar. Thus, let
L(v1, c1, t1), . . . , L(vN , cN , tN) be the L sets that we have to compute. (We assume that
ci is a descendant of vi, for every i ∈ {1, . . . , N}, and ti ≥ 1.) The idea is to apply the
straightforward algorithm that we described above, but we process the queries in an
order that is convenient for us. Specifically, we processs the vertices vi in a bottom-up
fashion. By doing so, we can avoid vertices that previously were unable to provide
a leaping back-edge. More precisely, if we meet a vertex x that is a descendant of
ci, during the processing of a query L(vi, ci, ti), then, if we have l(x) ≥ vi, we can be
certain that there is no back-edge of the form (x, y) in any of B(vi), . . . , B(vN). Thus,
we mark x as “inactive”, and we attach it to a segment of inactive vertices which
we can bypass at once, because they cannot provide a leaping back-edge with low
enough lower endpoint anymore. Initially, we assume that all vertices are active.

Thus, for every vertex x, we maintain a boolean attribute is_active(x), which is true
if and only if x is active. We use a disjoint-set union data structure DSU on the set of
inactive vertices, that maintains the partition of the maximal segments (w.r.t. the DFS
numbering) of inactive vertices. Thus, if two vertices x and x + 1 are inactive, then
they belong to the same set maintained by the DSU data structure. DSU supports
the operations find(x) and unite(x, y). We use find(x), on an inactive vertex x, in

41

order to return a representative of the segment of inactive vertices that contains x.
With the operation unite(x, y) we unite the segment that contains x with the segment
that contains y (we assume that y = x + 1). Also, for every vertex x, we maintain
two pointers left(x) and right(x). These are only used when x is an inactive vertex,
which is a representative of its segment S. In this case, left(x) points to the greatest
vertex that is lower than x and not in S, and right(x) points to the lowest vertex
that is greater than x and not in S. Then, by definition, we have that left(x) (resp.,
right(x)) is either an active vertex, or ⊥. We maintain the invariant that, whenever a
DSU operation changes the representative of a segment, it passes the left and the right
pointer of the old representative to the new one (so that we can correctly retrieve the
endpoints of the corresponding maximal segment).

Now we can describe in more detail the procedure for computing the sets
L(v1, c1, t1), . . . , L(vN , cN , tN). Recall that we process these queries in decreasing order
w.r.t. the vertices vi. We assume that the edges in the adjacency list of every vertex are
sorted in increasing order w.r.t. their lower endpoint. Now, in order to answer a query
L(v, c, t), we begin the search from the lowest active vertex x that is a descendant of c.
This is because all descendants of c that are lower than x are incapable of providing
a back-edge that leaps over v. If c is active, then we have x = c. Otherwise, we have
that c is inactive, and we use z ← find(c) in order to get the representative z of the
maximal segment of inactive vertices that contains c. Then we have x = right(z). If
x = ⊥ or x is not a descendant of c, then we know that there are no back-edges with
higher endpoint in T (c) that leap over v (and so we have L(v, c, t) = ∅). Otherwise,
we check whether l(x) < v. If that is the case, then we start traversing the adjacency
list of x, in order to get back-edges of the form (x, y) that leap over v. We keep doing
that until we have either collected t back-edges for L(v, c, t), or we have reached a
back-edge that does not leap over v (because its lower endpoint is not low enough),
or we have reached the end of the adjacency list. If we have gathered less than t

back-edges that leap over v, then we continue the search in the lowest active vertex
that is greater than x and still a descendant of c. Otherwise, if we have l(x) ≥ v, then
we mark x as inactive, so as not to process it again. Then we have to properly update
the segments. To do so, we have to check whether x− 1 or x+1 is an inactive vertex.
If none of those vertices is inactive, then there is nothing we have to do. So let us
suppose that x − 1 is an inactive vertex. Then we expand the segment that contains
x− 1 with a call unite(x− 1, x), and we set the right pointer of the representative of

42

this segment to x+1. Then, if x+1 is inactive, we have to further expand the segment
with a call unite(x, x + 1); otherwise, we are done. On the other hand, if only x + 1

is inactive, then we expand the segment that contains it with a call unite(x, x + 1),
and we set the left pointer of the representative of this segment to x − 1. Now, after
updating the segments, we proceed to the lowest active vertex that is greater than x

and a descendant of c. Then we repeat the same process.

43

Algorithm 3: Compute the sets L(v1, c1, t1), . . . , L(vN , cN , tN), where ci is a descen-

dant of vi, for every i ∈ {1, . . . , N}

1 let Q be the list of all triples (v1, c1, t1), . . . , (vN , cN , tN) sorted in decreasing order w.r.t. the
first component

2 sort the adjacency list of every vertex in increasing order w.r.t. the lower endpoints
3 initialize a boolean array is_active with n entries
4 foreach vertex v do set is_active[v]← true
5 foreach vertex v do initialize two pointers v.left← v − 1 and v.right← v + 1

6 foreach (v, c, t) ∈ Q do
7 let L(v, c, t)← ∅
8 set counter← 0 // counter for the number of back-edges we have collected

9 let x← c

10 if is_active(x) = false then x← find(x).right
11 while x ̸= ⊥ and x is a descendant of c do
12 if l(x) < v then
13 let e = (x, y) be the first back-edge in the adjacency list of x
14 while y < v and counter < t do
15 insert (x, y) into L(v, c, t)

16 counter← counter+ 1

17 let e = (x, y) be the next back-edge in the adjacency list of x
18 if e = ⊥ then break

19 end
20 if counter = t then break

21 end
22 else
23 is_active(x)← false
24 if is_active(x− 1) = false and is_active(x+ 1) = true then
25 unite(x− 1, x), find(x).right← x+ 1

26 end
27 if is_active(x− 1) = true and is_active(x+ 1) = false then
28 unite(x, x+ 1), find(x).left← x− 1

29 end
30 if is_active(x− 1) = false and is_active(x+ 1) = false then
31 unite(x− 1, x), unite(x, x+ 1)

32 end

33 end
34 x← x+ 1

35 if x = ⊥ then break
36 if is_active(x) = false then x← find(x).right

37 end

38 end

44

This procedure for computing the sets L(v1, c1, t1), . . . , L(vN , cN , tN) is shown in Al-
gorithm 3. The proof of correctness and linear complexity is given in Proposition 3.4.
After that, we describe the minor changes that we have to make to Algorithm 3 in
order to get an algorithm that computes sets of the form R(v1, c1, t1), . . . , R(vN , cN , tN),
with the same time-bound guarantees.

Proposition 3.4. Let L(v1, c1, t1), . . . , L(vN , cN , tN) be a collection of queries, where ci is a
descendant of vi, for every i ∈ {1, . . . , N}, and ti ≥ 1. Then Algorithm 3 correctly computes
the sets L(v1, c1, t1), . . . , L(vN , cN , tN). Furthermore, it runs in O(t1 + · · ·+ tN +m) time.

Proof. We will prove correctness inductively, by establishing the following: Whenever
the for loop in Line 6 processes a triple (v, c, t) ∈ Q, we have that (1) every vertex
x with l(x) < v is active, and every inactive vertex x has l(x) ≥ v, and (2) for every
inactive vertex x, find(x).left is the greatest active vertex x′ such that x′ < x, and
find(x).right is the lowest active vertex x′ such that x′ > x.

Initially, all vertices are active. Thus, the inductive hypothesis is trivially true
before entering the for loop in Line 6. Now suppose that the inductive hypothesis
holds by the time the for loop in Line 6 processes a triple (v, c, t) ∈ Q. Then we will
show that L(v, c, t) will be correctly computed, and the inductive hypothesis will still
hold for the next triple (v′, c′, t′) that will be processed by the for loop in Line 6.

Now, given the query L(v, c, t), the first thing to do it to find the lowest descendant
x of c that can provide a back-edge of the form (x, y) ∈ B(v). Notice that x satisfies
the property l(x) ≤ y < v, and therefore it is active, according to (1). Thus, we first
check whether c is active, in Line 10. If c is not active, then by (1) it has l(c) ≥ v,
and therefore it is proper to set x ← find(x).right in Line 10. According to (2), now
x is the lowest active vertex that is greater than c. Otherwise, if c is active, then we
have x = c, due to the assignment in Line 9. Now, if x = ⊥ or x is great enough to
not be a descendant of c, then we will not enter the while loop in Line 11, and the
computation of L(v, c, t) is over (i.e., we have L(v, c, t) = ∅). This is correct, because
there is no descendant x of c that can provide a back-edge of the form (x, y) ∈ B(v).
Notice that the inductive hypothesis will still hold for the next query, because we have
made no changes in the underlying data structures.

Otherwise, if we enter the while loop in Line 11, then we have that x is the lowest
active descendant of c, and therefore in Line 12 we check whether it can provide a
back-edge of the form (x, y) ∈ B(v). Notice that this is equivalent to l(x) < v. The

45

necessity was already shown. To prove sufficiency, we note that l(x) < v implies that
there is a back-edge of the form (x, y) such that y < v. We have that x is a descendant
of c, and therefore a descendant of v (due to the assumption concerning the queries).
Then, since (x, y) is a back-edge, we have that x is a descendant of y. Thus, x is a
common descendant of v and y, and therefore v and y are related as ancestor and
descendant. Thus, y < v implies that y is a proper ancestor of v. This shows that
(x, y) ∈ B(v). Now, if the condition in Line 12 is satisfied, then we have to gather
as many back-edges of the form (x, y) ∈ B(v) as x can provide, provided that we
do not exceed t. This is precisely the purpose of Lines 13 to 20. Correctness follows
from the fact that the adjacency list of x is sorted in increasing order w.r.t. the lower
endpoints. The variable counter counts precisely the number of back-edges (x′, y) that
we have gathered, where x′ is a descendant of c and (x′, y) ∈ B(v). (counter has been
initialized to 0 in Line 8.) Thus, if the condition in Line 20 is satisfied, then it is
proper to stop the computation of L(v, c, t), because it has been correctly computed.
Notice that the inductive hypothesis holds true, because we have made no changes in
the underlying data structure. Otherwise, if counter < t, then we have to proceed to
the lowest active descendant of c that is greater than x. This is precisely the purpose
of Lines 34 to 36. Thus, first we move to x + 1. Now, if x ̸= ⊥ and x is active, then
we go to the condition of the while loop in Line 11. Otherwise, if x is inactive, then it
is correct to set x← find(x).right in Line 36, because now x has moved to its lowest
active successor, due to (2) of the inductive hypothesis.

Now suppose that the condition in Line 12 is false. Then we have l(x) ≥ v, and
therefore we set the mode of x to inactive, in Line 23. Notice that point of (1) of
the inductive hypothesis is maintained, because we process the triples (v′, c′, t′) in
decreasing order w.r.t. their first component. Thus, the next such triple has v′ ≤ v,
and therefore we have l(x) ≥ v ≥ v′. Now, since x is made inactive, we have to
maintain invariant (2). This is the purpose of Lines 24 to 32. The idea in those lines
is the following. First, if both x− 1 and x+ 1 are active, then there is nothing to do,
because find(x) = x, and the pointers x.left and x.right have been initialized to x− 1

and x+1, respectively, in Line 5. Otherwise, if x−1 is inactive and x+1 is active, then
we join x to the segment of inactive vertices that precede it with a call unite(x− 1, x)

in Line 25. Then, we have to set find(x).right ← x + 1, which is done in Line 25.
We work similarly, if x − 1 is active and x + 1 is inactive. Finally, if both x − 1 and
x+1 are inactive, then it is sufficient to join x to the segments of inactive vertices that

46

precede it and succeed it, which is done in Lines 31 and 31. We only have to make
sure that the left pointer of the new representative is the same as the left pointer of
what was previously the representative of the segment that contained x− 1, and the
right pointer of the new representative is the same as the right pointer of what was
previously the representative of the segment that contained x+1. Thus, the point (2)
of the inductive hypothesis is maintained.

This establishes the correctness of Algorithm 3 (taking also into account our pre-
sentation of the general idea in the main text). It remains to argue about the com-
plexity of Algorithm 3. First, the sorting of the triples in Line 1 can be performed
in O(n + N) time in total with bucket-sort. Also, the sorting of the adjacency lists
in Line 2 can be performed in O(m) time in total with bucket-sort. Whenever the
for loop in Line 6 processes a triple (v, c, t), we have that the while loop in Line 11
will only process those x that either have l(x) < v, and so they will provide at least
one back-edge for L(v, c, t), or they have l(x) ≥ v, in which case they will be made
inactive, and will not be accessed again in this while loop for any further triple. Thus,
the total number of runs of the while loop in Line 11 is O(n + t1 + · · · + tN). Every
x that we encounter that has l(x) < v, will initiate the while loop in Line 14. But
the number of runs of this while loop will not exceed t (for (v, c, t)). Thus, the total
number of runs of the while loop in Line 14 is O(t1 + · · · + tN). Finally, the unite

operations that we perform with the DSU data structure have the form unite(x, x+1).
Since the tree-structure of the calls to unite is predetermined (it is essentially a path),
we can use the data structure of Gabow and Tarjan [33] that performs a sequence of
m′ DSU operations in O(m′ + n) time, when applied on a set of n elements. Notice
that the number of calls to the DSU data structure is O(n + t1 + · · · + tN). Thus,
the most expensive time expressions that we have gathered are O(m), O(n+N) and
O(n+ t1 + · · ·+ tN). Since ti ≥ 1, for every i ∈ {1, . . . , N}, we have N ≤ t1 + · · ·+ tN .
We conclude that Algorithm 3 runs in O(m+ t1 + · · ·+ tN) time.

With only minor changes to Algorithm 3 we can also answer queries of the form
R(v1, c1, t1), . . . , R(vN , cN , tN), where ci is a descendant of vi, for every i ∈ {1, . . . , N},
and ti ≥ 1, in O(t1 + · · · + tN + m) time in total. These changes are as follows.
First, in order to compute a query of the form R(v, c, t), we start the search from the
greatest active descendant of c. Thus, we replace Line 9 with “x← c+ND(c)−1”, and
Line 10 with “x← find(x).left”. Then, since we want to process the active descendants

47

of c in decreasing order, we replace Line 34 with “x ← x − 1”, and Line 36 with
x ← find(x).left”. Now the proof of correctness is similar as in Proposition 3.4. In
particular, we can argue using the same inductive hypothesis.

3.6 Computing the maximum points

Given a vertex v ̸= r, we will need an efficient method to compute the values M(v)

and M̃(v), as well as values of the form M(v, c) and M(B(v) \ S), where c is a
descendant of v, and S is a subset of B(v). In Section 3.7, we show how to compute
the values M(v) and M̃(v), for all vertices v ̸= r, in linear time in total. Alternatively,
we have M(v) = M(v, v). Also, let c1 and c2 be the low1 and the low2 child of M(v),
respectively. Then it is easy to see that M̃(v) = M(v) if (c2 ̸= ⊥ and) low(c2) < v, and
M̃(v) = M(v, c1) otherwise. Thus, the computation of both M(v) and M̃(v) can be
reduced to the computation of values of the form M(v, c), where c is a descendant of
v.

Now let v ̸= r be a vertex, and let c be a descendant of v. Let (x1, y1), . . . , (xk, yk)

be the list of the back-edges in B(v) ∩ B(c), sorted in lexicographic order (and thus
in increasing order w.r.t. their higher endpoint). Then, following the notation in Sec-
tion 3.5, we let L(v, c, t) denote the set {(x1, y1), . . . , (xt, yt)}. Similarly, we let R(v, c, t)

denote the set {(xk, yk), . . . , (xk−t+1, yk−t+1)}. Then we have the following.

Proposition 3.5. Let (v1, c1), . . . , (vN , cN) be a sequence of pairs of vertices such that
vi ̸= r and ci is a descendant of vi, for every i ∈ {1, . . . , N}. Then the values
M(v1, c1), . . . ,M(vN , cN) can be computed in O(m+N) time in total.

Proof. First, we compute the sets L(v1, c1, 1), . . . , L(vN , cN , 1) and
R(v1, c1, 1), . . . , R(vN , cN , 1). According to Proposition 3.4 (and the comments
after Algorithm 3), this takes O(m+N) time in total. Then, for every i ∈ {1, . . . , N},
we gather the higher endpoint L(vi, ci) of the back-edge in L(vi, ci, 1), and
the higher endpoint R(vi, ci) of the back-edge in R(vi, ci, 1). We claim that
M(vi, ci) = nca{L(vi, ci), R(vi, ci)}. To see this, let (x1, y1), . . . , (xk, yk) be the list of the
back-edges in B(vi) ∩ B(ci), sorted in lexicographic order, so that L(vi, ci) = x1 and
R(vi, ci) = xk. By definition, we have M(vi, ci) = nca{x1, . . . , xk}. Thus, z = nca{x1, xk}
is a descendant of M(vi, ci). Since z = nca{x1, xk}, we have that z is an ancestor of
both x1 and xk. This implies that z ≤ x1 ≤ xk ≤ z + ND(z) − 1. Thus, for every

48

j ∈ {1, . . . , k} we have z ≤ xj ≤ z + ND(z) − 1. This implies that z is an ancestor of
all vertices in {x1, . . . , xk}, and thus z is an ancestor of M(vi, ci). This shows that
z = M(vi, ci).

Thus, we can compute the values M(v1, c1), . . . ,M(vN , cN), by answering the nca
queries nca{L(v1, c1), R(v1, c1)}, . . . nca{L(vN , cN), R(vN , cN)}. By [40] or [12], we know
that there is a linear-time preprocessing of T , so that we can answer a collection of N
nca queries in O(N) time in total. We conclude that the valuesM(v1, c1), . . . ,M(vN , cN)

can be computed in O(m+N) time in total.

Similarly, the computation of the values of the formM(B(v)\S) utilizes the leftmost
and the rightmost points, as shown by the following.

Lemma 3.16. Let v ̸= r be a vertex, let S be a subset of B(v) with |S| = k, and let
D be the multiset of the higher endpoints of the back-edges in S. Then M(B(v) \ S) =

nca({L1(v), . . . , Lk+1(v), R1(v), . . . , Rk+1(v)} \D).

Proof. Let x and y be the the minimum and the maximum, respectively, among the
higher endpoints of the back-edges in B(v)\S. We claim that nca{x, y} = M(B(v)\S).
First, it is clear that M(B(v) \ S) is an ancestor of nca{x, y}. Conversely, let z be the
higher endpoint of an edge in B(v)\S. Then we have x ≤ z ≤ y. Thus, since nca{x, y}
is an ancestor of both x and y, we have that nca{x, y} is an ancestor of z. Due to the
generality of z, this implies that nca{x, y} is an ancestor of M(B(v) \ S). This shows
that M(B(v) \ S) = nca{x, y}.

Now let D be the multiset of the higher endpoints of the back-edges in S.
(That is, if there are t distinct back-edges of the form (x, y1), . . . , (x, yt) in S, for
some t ≥ 1, then D contains at least t multiple entries for x.) We also consider
{L1(v), . . . , Lk+1(v), R1(v), . . . , Rk+1(v)} as a multiset.

It is clear that M(B(v) \ S) is an ancestor of
nca({L1(v), . . . , Lk+1(v), R1(v), . . . , Rk+1(v)} \ D). To see the converse, notice that
x ∈ {L1(v), . . . , Lk+1(v)} \ D and y ∈ {R1(v), . . . , Rk+1(v)} \ D, since |D| = k.
Thus, we have that nca({L1(v), . . . , Lk+1(v), R1(v), . . . , Rk+1(v)} \ D) is an an-
cestor of nca{x, y}, and therefore an ancestor of M(B(v) \ S). This shows that
M(B(v) \ S) = nca({L1(v), . . . , Lk+1(v), R1(v), . . . , Rk+1(v)} \D).

Proposition 3.6. Let (v1, S1), . . . , (vN , SN) be a collection of pairs of vertices and sets of
back-edges, such that vi ̸= r and ∅ ̸= Si ⊆ B(vi) for every i ∈ {1, . . . , N}. Then the values

49

M(B(v1) \ S1), . . . ,M(B(vN) \ SN) can be computed in O(m + |S1| + · · · + |SN |) time in
total.

Proof. For every i ∈ {1, . . . , N}, let ki = |Si|. Then we compute the sets
L(vi, vi, ki+1) and R(vi, vi, ki+1), for every i ∈ {1, . . . , N}. According to Propo-
sition 3.4 (and the comments after Algorithm 3), this takes O(m + |S1| +
· · · + |SN |) time in total. Then, for every i ∈ {1, . . . , N}, we can compute
the L1(v), . . . , Lk+1(v) and the R1(v), . . . , Rk+1(v) values, by gathering the higher
endpoints of the back-edges in L(vi, vi, ki+1) ∪ R(vi, vi, ki+1). Let Di be the set
of the higher endpoints of the back-edges in Si. Then, by Lemma 3.16 we
have M(B(vi) \ Si) = nca({L1(vi), . . . , Lk+1(vi), R1(vi), . . . , Rk+1(vi)} \ Di). (We
note that the sets {L1(vi), . . . , Lk+1(vi), R1(vi), . . . , Rk+1(vi)} \ Di can be com-
puted in O(n + |S1| + · · · + |SN |) time in total with bucket-sort.) Notice that
nca({L1(vi), . . . , Lk+1(vi), R1(vi), . . . , Rk+1(vi)} \ Di) can be broken up into O(ki) nca
queries. Thus, we can compute all valuesM(B(vi)\Si) with the use of O(k1+· · ·+kN) =

O(|S1| + · · · + |SN |) nca queries. By [40] or [12], we know that there is a linear-time
preprocessing of T , so that we can answer a collection of N ′ nca queries in O(N ′)

time in total. We conclude that the values M(B(v1) \ S1), . . . ,M(B(vN) \ SN) can be
computed in O(m+ |S1|+ · · ·+ |SN |) time in total.

3.7 Pointer‐machine algorithms for some DFS parameters

In this section we provide alternative linear-time algorithms for computing some pa-
rameters such as M(v), L1(v), R1(v), and a few others that we introduce here. The
characteristic of those alternative algorithms is that they are implementable in the
pointer-machine model of computation (as can be easily discerned from the pseu-
docode), and so they will be useful in establishing the result of Chapter 4, for comput-
ing the 4-edge-connected components in linear time in the pointer-machine model.
By contrast, the algorithms that we provided in the previous sections utilize the data
structure of Gabow and Tarjan [33], which is implemented in the RAM model.

First, we introduce a few more parameters. For every vertex v, we assume that
the list of the children of v is sorted in increasing order w.r.t. the low point (breaking
ties arbitrarily). We call the k-th child of v in this ordering the lowk child of v,
denoted as ck(v). (If v has less than k children, then we let ck(v) := ⊥.) Thus, we

50

have low(c1(v)) ≤ low(c2(v)) ≤ For every vertex v ̸= r, and every k ≥ 1, we let
Mlowk(v) denote the nearest common ancestor of the higher endpoints of the back-
edges that leap over v and start from a descendant of the lowk child of v. (In other
words, Mlowk(v) = M(v, ck(v)).) Now let v ̸= r be a vertex such that nextM(v) ̸= ⊥.
Then, if B(nextM(v)) ̸= B(v), we have that B(nextM(v)) ⊂ B(v), and so there is at
least one back-edge in B(v) \ B(nextM(v)). We let lowM(v) denote the lowest lower
endpoint of the back-edges in B(v)\B(nextM(v)). Let (x, lowM(v)) be any back-edge in
B(v) \B(nextM(v)). Then we let lowMD(v) = x (an arbitrary higher endpoint suffices
for our purposes).

In the following, we provide linear-time algorithms for computing the M ,
M̃ , Mlow1, Mlow2, L1, L2, R1, R2 points of all vertices v ̸= r, as well as the
(lowMD(v), lowM(v))-edges of all vertices v ̸= r with nextM(v) ̸= ⊥.

3.7.1 Computing all M(v)

We can compute all M(v) by using the leftmost and the rightmost points L1(v) and
R1(v). That is, M(v) is the nearest common ancestor of L1(v) and R1(v). Thus, if we
have all L1(v) and R1(v) computed (see Section 3.7.4), then we can use an offline
linear-time algorithm for answering nca queries in linear time [12].

However, here we will provide a different algorithm for computing allM(v), which
is much easier to implement. We refer to Algorithm 4. This is a recursive algorithm
that processes the vertices in a bottom-up fashion. For every vertex v that we process,
we first determine whether M(v) = ⊥, which is equivalent to low(v) ≥ v (see Line 3).
So let us assume that low(v) < v. Now, first we check whether l(v) < v. If that is the
case, then there is a back-edge of the form (v, l(v)), and so this is in B(v). Since the
higher endpoint of this back-edge is obviously an ancestor of the higher endpoints
of all back-edges that leap over v, in this case we set M(v)← v. Otherwise, we check
whether c2(v) exists, and whether low(c2(v)) < v. If that is the case, then there is a
back-edge (x, y) such that x is a descendant of c2(v) and y is a proper ancestor of
v. Furthermore, since low(c1(v)) must also be lower than v in this case, there is a
back-edge (x′, y′) such that x′ is a descendant of c1(v) and y′ is a proper ancestor
of v. Thus, since both (x, y) and (x′, y′) are in B(v) and nca(x, x′) = v, we set again
M(v) ← v. Otherwise, if c2(v) does not exist or it has low(c2(v)) ≥ v, then M(v)

must be a descendant of c1(v). More precisely, by Lemma 3.1 we have that M(v)

51

must be a descendant of M(c1(v)). Thus, we follow the same procedure for M(c1(v)).
Eventually we will reach M(v). It should be clear that this establishes the correctness
of Algorithm 4. Proposition 3.7 shows that it runs in linear time.

Algorithm 4: Compute all M(v), for all vertices v ̸= r

1 for v = n to v = 2 do
2 let x← v

3 if low(x) ≥ v then continue
4 while M(v) = ⊥ do
5 if l(x) < v then M(v)← x, break
6 if c2(x) ̸= ⊥ and low(c2(x)) < v then
7 M(v)← x

8 break

9 end
10 x←M(c1(x))

11 end

12 end

Proposition 3.7. Algorithm 4 runs in linear time.

Proof. The only reason that Algorithm 4 may fail to run in linear time is that, when
we process a vertex v ̸= r in order to compute M(v), we may have to descend to the
M value of the low1 child of v in Line 10. Since this may be repeated Ω(n) times
in order to compute M(v), we may have to perform Ω(n2) steps overall during the
course of the algorithm. We will show that this is impossible to occur. To do this,
we define S(v), for a vertex v ̸= r, to be the set of all x that we had to descend to in
Line 10, during the computation of M(v). Our goal is to bound

∑
v ̸=r |S(v)|. Notice

that all vertices in S(v) (if there are any) are descendants of c1(v), and the greatest
vertex in S(v) is M(v). Furthermore, notice that if x is a vertex in S(v), then every
vertex in S(v) which is greater than x is a proper descendant of x.

Now let v and v′ be two distinct vertices ̸= r such that S(v) ∩ S(v′) ̸= ∅. Since
S(v) consists of descendants of v and S(v′) consists of descendants of v′, we have
that v and v′ have a common descendant, and therefore they are related as ancestor
and descendant. Thus we may assume w.l.o.g. that v′ is a proper ancestor of v. Let

52

us suppose, for the sake of contradiction, that M(v′) is not related as ancestor and
descendant with v. Let x be a vertex in S(v) ∩ S(v′). Then x is an ancestor of both
M(v) and M(v′). Since v is an ancestor of M(v) and M(v′) is not related as ancestor
and descendant with v, we have that the nearest common ancestor ofM(v) andM(v′)

is a proper ancestor of v. Thus, we have that x is a proper ancestor of v. But this
is impossible, since all vertices in S(v) are proper descendants of v. Thus we have
that M(v′) and v are related as ancestor and descendant. Let us suppose, for the sake
of contradiction, that M(v′) is a proper ancestor of v. Then all vertices in S(v′) are
proper ancestors of v (since all of them are ancestors of M(v′)), and so none if them
is in S(v), a contradiction. Thus we have shown that M(v′) is a descendant of v, and
therefore Lemma 3.1 implies that M(v′) is a descendant of M(v).

Now let x1, . . . , xk be the vertices in S(v′) sorted in increasing order, and let x0 = v′.
Since x0 is a proper ancestor of v, we may consider the greatest index i ∈ {0, . . . , k}
such that xi is a proper ancestor of v. Since M(v′) = xk is a descendant of M(v), and
therefore a descendant of v, we have that i ̸= k, and so xi+1 is well-defined. Notice
that none of x0, . . . , xi is in S(v). Since xi is a proper ancestor of v, we have that v is
a descendant of a child of xi. Since none of x0, . . . , xi is in S(v) and S(v) ∩ S(v′) ≠ ∅,
we have that a xj ∈ {xi+1, . . . , xk} is in S(v). Then xj is a descendant of the low1
child of xi, and also a descendant of v. Thus, v cannot be a descendant of any child
of xi other than c1(xi).

Let x be a vertex in S(v)∩S(v′). Then x is a descendant of xi+1 and an ancestor of
M(v). Thus, xi+1 is an ancestor of M(v). Since v is also an ancestor of M(v), we have
that xi+1 is related as ancestor and descendant with v. Since i is the largest index in
{0, . . . , k} such that xi is a proper ancestor of v, we have that xi+1 is a descendant
of v. Since xi+1 = M(c1(xi)) and c1(xi) is an ancestor of v and xi+1 is a descendant
of v, by Lemma 3.1 we have that xi+1 is a descendant of M(v). Since xi+1 is an
ancestor of M(v), we infer that xi+1 = M(v). Then, all vertices in {xi+2, . . . , xk} are
proper descendants of M(v), and therefore none of them is in S(v). Since also none
of {x0, . . . , xi} is in S(v), we thus have that S(v) ∩ S(v′) = {M(v)}.

Thus we have shown that, for any two vertices v and v′ with v > v′ ̸= r, if
S(v) ∩ S(v′) is not empty then S(v) ∩ S(v′) = {M(v)}. Now we define, for a vertex
v ̸= r, the set S ′(v) = S(v) \ {M(v)}. Then we have that S ′(v) ∩ S ′(v) = ∅ for any
two distinct vertices v and v′ (̸= r), because S(v)∩S(v′) is either {M(v)}, or {M(v′)},
or ∅. Thus we have

∑
v ̸=r |S(v)| ≤

∑
v ̸=r(|S ′(v)| + 1) <

∑
v ̸=r |S ′(v)| + n < 2n, and so

53

Algorithm 4 runs in linear time.

3.7.2 Computing all M̃(v), Mlow1(v) and Mlow2(v)

The idea for computing all M̃(v),Mlow1(v) andMlow2(v), for v ̸= r, is similar as that for
computing all M(v). First, let us discuss the computation of M̃(v), which is shown in
Algorithm 5. Here, the first thing we do is to check whether the low1 child c1 of M(v)

exists and has low(c1) < v. If this is not true, then we have M̃(v) = ⊥ (see Line 6).
Otherwise, we check whether the low2 child c2 of M(v) exists and has low(c2) < v.
If this is the case, then we have M̃(v) = M(v) (see Line 8). Otherwise, we have to
search for M̃(v) in T (c1). Now we apply repeatedly the following procedure, until we
reach M̃(v). Let x ̸= M(v) be a vertex for which we have established that M̃(v) is a
descendant of x. Then, the first thing we do is to check whether l(x) < v. If this is
the case, then we have M̃(v) = x. Otherwise, we check whether the low2 child c′2 of
x exists and has low(c′2) < v. If this is the case, then we have M̃(v) = x. Otherwise,
we deduce that M̃(v) is a descendant of the low1 child of x. This idea is captured
in Lines 9 to 17. In order to achieve linear time, we have to avoid visiting vertices
whose l point and the low point of their low2 child are not low enough to be proper
ancestors of the current vertex v that we process. Thus, we use a variable currentM[x]

to bypass vertices that are provably unable to be the M̃ point of vertices anymore
(since we process the vertices in a bottom-up fashion). Thus, if we have established
that M̃(v) is a descendant of a vertex x, we can go immediately to currentM[x] to
continue the search for M̃(v). (Initially, we set currentM[x] ← x, and we update the
currentM pointers appropriately.)

We use a similar idea to compute all Mlow1(v) and Mlow2(v), and the corresponding
procedure is shown in Algorithm 6. The proof of correctness of both Algorithm 5
and Algorithm 6 is given in Proposition 3.8.

Lemma 3.17. Let v and v′ be two vertices such that v′ is an ancestor of v with M(v′) =

M(v). Then, M̃(v′) (resp. Mlow1(v
′), Mlow2(v

′)), if it is defined, is a descendant of M̃(v)

(resp. Mlow1(v), Mlow2(v)).

Proof. Let v′ be an ancestor of v such that M(v′) = M(v).
Assume, first, that M̃(v′) is defined. Then, there exists a back-edge (x, y) ∈ B(v′)

such that x is a proper descendant of M(v′). Since M(v′) = M(v), x is a proper
descendant of M(v). Furthermore, since y is a proper ancestor of v′, it is also a

54

Algorithm 5: Compute all M̃(v), for all vertices v ̸= r

1 initialize an array currentM with n entries
2 foreach vertex v do currentM[v]← v

3 for v = n to v = 2 do
4 x←M(v)

5 c← low1 child of m
6 if low(c) ≥ v then M̃(v)← ⊥, continue
7 c′ ← low2 child of m
8 if low(c′) < v then M̃(v)← x, continue
9 x← currentM[c]

10 while M̃(v) = ⊥ do
11 if l(x) < v then M̃(v)← x, break
12 c1 ← low1 child of x
13 c2 ← low2 child of x
14 if low(c2) < v then M̃(v)← x, break
15 x← currentM[c1]

16 end
17 currentM[c]← x

18 end

proper ancestor of v. This shows that (x, y) ∈ B(v), and M̃(v) is an ancestor of x.
Due to the generality of (x, y), we conclude that M̃(v) is an ancestor of M̃(v′).

Now assume that Mlow1(v
′) is defined. Then, there exists a back-edge (x, y) ∈ B(v′)

such that x is a descendant of the low1 child of M(v′). Since M(v′) = M(v), x is a
descendant of the low1 child of M(v). Furthermore, since y is a proper ancestor of
v′, it is also a proper ancestor of v. This shows that (x, y) ∈ B(v), and Mlow1(v) is an
ancestor of x. Due to the generality of (x, y), we conclude that Mlow1(v) is an ancestor
of Mlow1(v

′).
Similarly, we can see that, if Mlow2(v

′) is defined, then Mlow2(v) is an ancestor of
Mlow2(v

′).

Proposition 3.8. Algorithms 5 and 6 compute all M̃(v), Mlow1(v) and Mlow2(v), for all
vertices v ̸= r, in total linear time.

Proof. We will show that Algorithm 6 correctly computes all Mlow1(v), for all v ̸= r,

55

Algorithm 6: Compute all Mlow1(v) and Mlow2(v), for all vertices v ̸= r

1 initialize an array currentM with n entries

2 // Compute all Mlow1(v)

3 foreach vertex v do currentM[v]← v

4 for v = n to v = 2 do

5 x←M(v)

6 c← low1 child of x

7 if low(c) ≥ v then Mlow1(v)← ⊥, continue

8 x← currentM[c]

9 while Mlow1(v) = ⊥ do

10 if l(x) < v then Mlow1(v)← x, break

11 c1 ← low1 child of x

12 c2 ← low2 child of x

13 if low(c2) < v then Mlow1(v)← x, break

14 x← currentM[c1]

15 end

16 currentM[c]← x

17 end

18 // Compute all Mlow2(v)

19 foreach vertex v do currentM[v]← v

20 for v = n to v = 2 do

21 x←M(v)

22 c← low2 child of x

23 if low(c) ≥ v then Mlow2(v)← ⊥, continue

24 x← currentM[c]

25 while Mlow2(v) = ⊥ do

26 if l(x) < v then Mlow2(v)← x, break

27 c1 ← low1 child of x

28 c2 ← low2 child of x

29 if low(c2) < v then Mlow2(v)← x, break

30 x← currentM[c1]

31 end

32 currentM[c]← x

33 end

56

in total linear time. The proofs for the other cases are similar. So let v be a vertex ̸= r.
Since we are interested in the back-edges (z, w) ∈ B(v) where z is a descendant of the
low1 child c ofM(v), we first have to check whether low(c) < v. If low(c) ≥ v, then there
is no such back-edge, and therefore we set Mlow1(v) ← ⊥ (in Line 7). If low(c) < v,
then Mlow1(v) is defined, and in Line 8 we assign x the value currentM[c]. We claim
that, at that moment, currentM[c] is an ancestor of Mlow1(v), and every currentM[c1]

that we will access in the while loop in Line 14 is also an ancestor of Mlow1(v);
furthermore, when we reach Line 16, currentM[c] is assigned Mlow1(v). We will see
this inductively. Suppose, then, that this was the case for every vertex v′ > v, and let
us see what happens when we process v. Let c be the low1 child of M(v). Initially,
currentM[c] was set to be c. Now, if currentM[c] is still c, then Mlow1(v) is a descendant
of c (by definition). Otherwise, due to the inductive hypothesis, currentM[c] had been
assigned Mlow1(v

′) during the processing of a vertex v′ > v with M(v′) = M(v). This
implies that v′ is a descendant of v, and therefore by Lemma 3.17 we have that
Mlow1(v

′) is an ancestor of Mlow1(v). In any case, then, we have that x = currentM[c]

is an ancestor of Mlow1(v).
Now we enter the while loop in Line 9. If either l(x) < v or low(c2) < v, where

c2 is the low2 child of x, we have that Mlow1(v) is an ancestor of x. Since x is also an
ancestor of Mlow1(v), we correctly set Mlow1(v)← x (in Lines 10 or 13). Otherwise, we
have that Mlow1(v) is a descendant of the low1 child c1 of x. Now, due to the inductive
hypothesis, currentM[c1] is either c1 or Mlow1(v

′) for a vertex v′ > v with M(v′) = x.
In the first case we obviously have that currentM[c1] is an ancestor of Mlow1(v). Now
assume that the second case is true, and let (z, w) be a back-edge with z a descendant
of c1 and w a proper ancestor of v. Then, since v′ > v and v, v′ have z as a common
descendant, we have that v is ancestor of v′, and therefore w is a proper ancestor
of v′. This shows that z is a descendant of Mlow1(v

′). Thus, due to the generality
of (z, w), we have that Mlow1(v) is a descendant of Mlow1(v

′). In any case, then, we
have that currentM[c1] is an ancestor of Mlow1(v). Thus we set x ← currentM[c1] and
we continue the while loop, until we have that x = Mlow1(v), in which case we will
set currentM[c] ← x in Line 16. Thus we have proved that Algorithm 6 correctly
computes Mlow1(v), for every vertex v ̸= r, and that, during the processing of a vertex
v, every currentM[c] that we access is an ancestor of Mlow1(v) (until, in Line 16, we
assign currentM[c] to Mlow1(v)).

Now, to prove the linear time-complexity, let S(v) = {m1, . . . ,mk}, ordered in-

57

creasingly, denote the (possibly empty) set of all vertices that we had to descend to
before leaving the while loop in Lines 9-15. (Thus, if k ≥ 1, then mk = Mlow1(v).)
In other words, S(v) contains all vertices that were assigned to the variable x in
Line 14. We will show that Algorithm 6 runs in linear time, by showing that, for
every two vertices v and v′, v ̸= v′ implies that S(v) ∩ S(v′) ⊆ {Mlow1(v)}, where we
have S(v) ∩ S(v′) = {Mlow1(v)} only if Mlow1(v) = Mlow1(v

′). Of course, it is definitely
the case that S(v) ∩ S(v′) = ∅ if v and v′ are not related as ancestor and descendant,
since the while loop descends to descendants of the vertex under processing. So let
v′ be a proper ancestor of v. If Mlow1(v

′) is not a descendant of the low1 child c of
M(v), then we obviously have S(v) ∩ S(v′) = ∅ (since S(v) consists of descendants
of c, but the while loop during the computation of Mlow1(v

′) will not descend to
the subtree of c). Thus we may assume that Mlow1(v

′) is a descendant of c. Now, let
S(v′) = {m1, . . . ,mk} and let m0 = currentM[c′] (during the processing of v′), where
c′ is the low1 child of M(v′). We will show that every mi, for i ∈ {1, . . . , k}, is ei-
ther an ancestor of M(v) or a descendant of Mlow1(v). (This obviously implies that
S(v′) ∩ S(v) ⊆ {Mlow1(v)}.)

First, observe that M(v′) is either an ancestor of M(v) or a descendant of Mlow1(v).
To see this, suppose that M(v′) is not an ancestor of M(v). Since Mlow1(v

′) is a
descendant of c, there is at least one back-edge (x, y) in B(v′) with x a descendant of
c. Then, since y is a proper ancestor of v′ and v′ is a proper ancestor of v, we have that
(x, y) is in B(v), and therefore x is a descendant ofMlow1(v). Now let (x′, y′) be a back-
edge in B(v′). If x′ is a descendant of a vertex in T (c, v′], but not a descendant of c, then
the nearest common ancestor of x and x′ is in T [p(c), v′] = T [M(v), v′], and therefore
M(v′) is an ancestor of M(v), contradicting our supposition. Thus, x′ is a descendant
of c. Furthermore, y′ is a proper ancestor of v, and therefore (x′, y′) ∈ B(v). Thus,
x′ is a descendant of Mlow1(v). Due to the generality of (x′, y′) ∈ B(v′), we conclude
that M(v′) is a descendant of Mlow1(v). Thus we have shown that M(v′) is either an
ancestor of M(v) or a descendant of Mlow1(v).

Now, if M(v′) is a descendant of Mlow1(v), then we obviously have S(v)∩S(v′) = ∅
(because the vertices in S(v′) are proper descendants of M(v′), but the vertices in S(v)

are ancestors of Mlow1(v)). Let us assume, then, that M(v′) is an ancestor of M(v). If
M(v′) coincides with M(v), then c′ = c, and so m0 coincides with currentM[c], which is
a descendant of Mlow1(v) (since Mlow1(v) has already been calculated), and therefore
every mi, for every i ∈ {1, . . . , k}, is a proper descendant of Mlow1(v) (since m1, if it

58

exists, is a proper descendant of m0), and so we have S(v′)∩S(v) = ∅. So let us assume
that M(v′) is a proper ancestor of M(v). Then, c′ is an ancestor of M(v). Suppose
that m0 is not an ancestor of M(v). This means that currentM[c′] ̸= c′, and therefore
there is a vertex ṽ > v′ with M(ṽ) = M(v′) and Mlow1(ṽ) = currentM[c′]. Furthermore,
since m0 is not an ancestor of M(v), it must be a descendant of c. Now, since v′ is an
ancestor of v and M(v′) is a proper ancestor of M(v), Lemma 3.1 implies that M(v′)

is a proper ancestor of v. Since M(v′) = M(ṽ), this implies that M(ṽ) is a proper
ancestor of v, and therefore ṽ is a proper ancestor of v. Now let (x, y) be a back-edge
in B(ṽ) such that x is a descendant of Mlow1(ṽ) = currentM[c′] = m0. Then, since m0

is a descendant of c, x is also descendant of c. Furthermore, since ṽ is an ancestor of
v, y is a proper ancestor of v. This shows that x is a descendant of Mlow1(v). Due to
the generality of (x, y), we conclude that Mlow1(ṽ) is a descendant of Mlow1(v). Thus
we have shown that m0 is either an ancestor of M(v) or a descendant of Mlow1(v).

Now let us assume that mi is either an ancestor of M(v) or a descendant of
Mlow1(v), for some i ∈ {0, . . . , k − 1}. We will prove that the same is true for mi+1. If
mi is a descendant of Mlow1(v), then the same is true for mi+1. Let us assume, then,
that mi is an ancestor of M(v). Now we have that mi+1 = currentM[c1], where c1 is
the low1 child of mi. If mi = M(v), then we have c1 = c, and therefore currentM[c1] =

currentM[c] is a descendant of Mlow1(v) (since Mlow1(v) has already been computed).
Suppose, then, that mi is a proper ancestor of M(v). Then, c1 is an ancestor of
M(v). If currentM[c1] = c1, we obviously have that currentM[c1] is an ancestor of
M(v). Otherwise, if currentM[c1] ̸= c1, there is a vertex ṽ such that M(ṽ) = mi and
currentM[c1] = Mlow1(ṽ). Assume, first, that ṽ is an ancestor of v. Suppose thatMlow1(ṽ)

is not an ancestor of M(v). Then it must be a descendant of c (because all mi, for
i ∈ {0, . . . , k − 1} are ancestors of Mlow1(v

′), and we have assumed that Mlow1(v
′) is a

descendant of c). Let (x, y) be a back-edge in B(ṽ) with x a descendant of Mlow1(ṽ).
Then x is a descendant of c. Furthermore, y is a proper ancestor of ṽ, and therefore
a proper ancestor of v. This shows that x is a descendant of Mlow1(v). Due to the
generality of (x, y), we conclude that Mlow1(ṽ) is a descendant of Mlow1(v). Thus, if ṽ
is an ancestor of v, Mlow1(ṽ) is either an ancestor of M(v) or a descendant of Mlow1(v).
Suppose, now, that ṽ is a descendant of v. Let (x, y) be a back-edge in B(v). Then, x
is a descendant of M(v), and therefore a descendant of c1. Furthermore, y is a proper
ancestor of v, and therefore a proper ancestor of ṽ. This shows that x is a descendant
of Mlow1(ṽ). Due to the generality of (x, y), we conclude that M(v) is a descendant

59

of Mlow1(ṽ). In any case, then, mi+1 is either an ancestor of M(v) or a descendant of
Mlow1(v). Thus, S(v) ∩ S(v′) ⊆ {Mlow1(v)} is established.

3.7.3 Computing all lowM(v) and lowMD(v)

In order to compute all lowM(v) and lowMD(v) efficiently, we process the vertices in
a bottom-up fashion. For every vertex v that we process, we check whether u =

prevM(v) ̸= ⊥. If that is the case, then lowM(u) is defined and it lies on the simple
tree-path T (u, v]. Thus we descend the path T (u, v], starting from v, following the
low1 children of the vertices on the path; for every vertex y that we encounter we
check whether there exists a back-edge (x, y) with x ∈ T (M(v)). The first y with this
property is lowM(u), and we set (lowMD(u), lowM(u))← (x, y).

To achieve linear running time, we let In[y] denote the list of all vertices x for
which there exists a back-edge (x, y). Furthermore, we have the elements of In[y]
sorted in increasing order (this can be done easily in linear time with bucket sort).
When we process a vertex y as we descend T (u, v], during the processing of v, we
traverse In[y] starting from the element we accessed the last time we traversed In[y]
(or, if this is the first time we traverse In[y], from the first element of In[y]). Thus,
we need a variable currentBackEdge[y] to store the element of In[y] we accessed the
last time we traversed In[y]. Now, for every x ∈ In[y] that we meet, we check whether
x ∈ T (M(v)). If that is the case, then we set (lowMD(u), lowM(u)) ← (x, y); otherwise,
we move to the next element of In[y]. If we reach the end of In[y], then we descend
the path T (u, v] by moving to the low1 child of y. In fact, if prevM(c1(y)) ̸= ⊥, then
we may descend immediately to lowM(prevM(c1(y))). This ensures that In[y] will not
be accessed again. Algorithm 7 shows how to compute all pairs (lowMD(v), lowM(v)),
for all vertices v with nextM(v) ̸= ⊥, in total linear time. Proposition 3.9 establishes
the correctness and the linearity of this algorithm.

Proposition 3.9. Algorithm 7 correctly computes all pairs (lowMD(v), lowM(v)), for all
vertices v with nextM(v) ̸= ⊥, in total linear time.

Proof. Let v be a vertex with prevM(v) = u ̸= ⊥. We will prove inductively that
(lowMD(u), lowM(u)) will be computed correctly, and that lowMD(u) will be the lowest
vertex which is a descendant ofM(u) such that (lowMD(u), lowM(u)) is a back-edge. So
let us assume that we have run Algorithm 7 and we have correctly computed all pairs
(lowMD(u′), lowM(u

′)), for all vertices v′ > v with prevM(v′) = u′ ̸= ⊥, and lowMD(u′) is

60

Algorithm 7: Compute (lowMD(v), lowM(v)), for every vertex v ̸= r with
nextM(v) ̸= ⊥

1 calculate In[y], for every vertex y, and have its elements sorted in increasing
order

2 foreach vertex y do currentBackEdge[y]← first element of In[y]
3 foreach vertex v do lowM(v)← ⊥
4 for v ← n to v ← 2 do
5 if prevM(v) = ⊥ then continue
6 u← prevM(v)

7 y ← v

8 while lowM(u) = ⊥ do
9 while currentBackEdge[y] ̸= ⊥ do
10 x← currentBackEdge[y]
11 if x < M(u) then
12 currentBackEdge[y]← next element of In[y]
13 end
14 else
15 if x < M(u) +ND(M(u)) then
16 (lowMD(u), lowM(u))← (x, y)

17 end
18 break

19 end

20 end
21 if lowM(u) = ⊥ then
22 if prevM(c1(y)) = ⊥ then y ← c1(y)

23 else y ← lowM(prevM(c1(y)))

24 end

25 end

26 end

the lowest vertex in T (M(u′)) such that (lowMD(u′), lowM(u
′)) is a back-edge. Suppose

also that we have currently descended the path T (u, v], we have reached y, and
lowM(v) ≥ y.

61

Let us assume, first, that lowM(v) = y, and let (x, y) be the back-edge such that x ∈
T (M(v)) and x is minimal with this property. The while loop in line 9 will search the
list of incoming back-edges to y, starting from currentBackEdge[y]. If currentBackEdge[y]
is the first element of In[y], then is it certainly true that x will be found. Otherwise,
let x′ = currentBackEdge[y]. Due to the inductive hypothesis, we have that (x′, y) =

(lowMD(u′), lowM(u
′)), for a vertex u′ with nextM(u′) = v′ > v. Then, y is in T (u′, v′],

but also in T (u, v], and thus it is a common descendant of v and v′. This means that
v and v′ are related as ancestor and descendant. In particular, since v′ > v, we have
that v is an ancestor of v′. Furthermore, since y is an ancestor of u, it is also an
ancestor of M(u) = M(v); therefore, since v′ is an ancestor of y, it is also an ancestor
of M(v). Since v is an ancestor of v′, this implies that M(v′) is an ancestor of M(v).
Since M(v′) = M(u′) and M(v) = M(u), we thus have that M(u′) is an ancestor of
M(u), and therefore M(u′) ≤M(u). Thus, since x′ is the lowest descendant of M(u′)

such that (x′, y) is a back-edge, and x is the lowest descendant of M(u) such that
(x, y) is a back-edge, we have x′ ≤ x. This shows that x will be accessed during the
while loop in line 9.

Now let us assume that lowM(v) ̸= y. This means that lowM(u) is greater than y,
and we have to descend the path T (u, y) in order to find it. First, let c be the child of y
in the direction of u. Then we have low(c) < v (since M(v) = M(u) is a descendant of
u, and therefore a descendant of c, and we have low(M(v)) < v). If there was another
child c′ of y with low(c′) < v, this would imply that M(v) = y, which is absurd, since
y is a proper ancestor of u, and therefore a proper ancestor of M(u) = M(v). This
means that c is the low1 child of v, and thus we may descend to c1(y) = y′. Now
we have lowM(u) ≥ y′. If prevM(y′) = ⊥, then we simply traverse the list of incoming
back-edges to y′, in line 9, and repeat the same process. Otherwise, let u′ = prevM(y′).
Due to the inductive hypothesis, we know that lowM(u

′) has been computed correctly.
Since y′ is an ancestor of u, it is also an ancestor of M(u) = M(v). Furthermore, y′

is a descendant of v. Thus, M(y′) is an ancestor of M(v), and therefore M(u′) is an
ancestor of M(u) (since M(y′) = M(u′) and M(v) = M(u)). This means that u′ is
an ancestor of M(u). Now we see that lowM(u) lies on T (u, lowM(u

′)]. (For otherwise,
(lowMD(u), lowM(u)) would be a back-edge in B(u′) with lowM(u) ≥ y′ = nextM(u′) and
lowM(u) < lowM(u

′), contradicting the minimality of lowM(u
′)). Thus we may descend

immediately to lowM(u
′). Then we traverse the list of incoming back-edges to lowM(u

′),
in line 9, and repeat the same process. Eventually we will reach lowM(u) and have it

62

computed correctly. It should be clear that no vertex on the path T (lowM(u), v) will
be traversed again, and this ensures the linear complexity of Algorithm 7.

3.7.4 Computing all L1(v), L2(v), R1(v) and R2(v)

Here we will show how to compute the first and the second leftmost and rightmost
points of every vertex v ̸= r in linear time. Let (x1, y1), . . . , (xk, yk) be the back-edges
in B(v) sorted in increasing order w.r.t. their higher endpoint. Then L1(v) = x1 and
L2(v) = x2. The idea to compute x1 and x2 is pretty straightforward: we visit all
vertices in T (v) in increasing order, and for every x ∈ T (v) that we visit we check
whether there exists a y in the adjacency list of x such that (x, y) is a back-edge
leaping over v. The first such x that we find is L1(v); the second one is L2(v), and
then we stop the search (for v).

Now, to derive a linear-time algorithm from this idea, we only have to make
sure that, during the search for L1(v) and L2(v), we visit only the vertices x ∈ T (v)

that may provide a leaping back-edge over v, and we ignore all other vertices in
T (v) that provably cannot. Thus, we put all vertices, in increasing order, in a list L
(signifying that they are available for search), and we process all vertices v ̸= r in
a bottom-up fashion. For every vertex v that we process, we visit all x ∈ T (v), in
increasing order, that are still available in L, and for every x that we visit we check
whether we can find a leaping back-edge over v in the adjacency list of x. If that is
the case, then we set L1(v)← x or L2(v)← x (depending on whether L1(v) has been
already computed). Otherwise, if x provided no leaping back-edge, then it is deleted
from L. In the meantime, we also remove all vertices y in the adjacency list of x that
do not form a leaping back-edge (x, y) over v. Algorithm 8 is an implementation of
this idea. Out[x] is a doubly linked list containing all y in the adjacency list of x such
that (x, y) is a back-edge.

63

Algorithm 8: Compute L1(v), L2(v), for all vertices v ̸= r

1 join all vertices in a doubly linked list L, in increasing order
2 for v ← n to 2 do
3 x← v

4 t← 1

5 while x is a descendant of v and t ̸= 3 do
6 isEmpty← true
7 foreach y ∈ Out[x] do
8 if y < v then
9 isEmpty← false

10 Lt(v)← x

11 t← t+ 1

12 end
13 else
14 delete y from Out[x]
15 end
16 if t = 3 then break

17 end
18 next← next of x in L

19 if isEmpty then delete x from L

20 x← next

21 end

22 end

Theorem 3.1. Algorithm 8 correctly computes L1(v) and L2(v), for every vertex v ̸= r.
Its time-complexity is linear to the size of the graph.

Proof. Correctness follows easily if we observe that whenever we process a vertex v, all
back-edges that leap over v are still available for search. (This is because we process
the vertices in a bottom-up fashion; thus, whenever we remove a back-edge (x, y),
during the processing of a vertex u, this is because (x, y) does not leap over u, and
so it does not leap over v either, for any vertex v < u.) In particular, the leftmost
back-edges of v are still accessible from the lists L and Out (and so are the leftmost
points). The linear complexity is obvious, because whenever a back-edge is accessed it
is either deleted from the list in which it is contained, or it corresponds to an external

64

point. Furthermore, whenever a vertex x ∈ L is accessed it is either deleted from L

or it corresponds to an external point.

For computing R1(v) and R2(v) for all vertices v ̸= r, we use an algorithm similar
to Algorithm 8. The only difference is that, for a vertex v ̸= r, we begin the search
for R1(v) and R2(v) from the greatest vertex in T (v) that still exists in L, and we
traverse L in the reverse direction. Thus, in Line 3 we set “x← R1(c)”, where c is the
greatest child of x (or x← v, if x is childless), and we replace Line 18 with “next←
previous of x in L”. The time complexity does not change. The proof of correctness
is essentially contained in that of Theorem 3.1.

3.8 Two lemmata concerning paths

Lemma 3.18. Let u and v be two vertices, and let P be a path in G from u to v. Then,
P passes from an ancestor of nca{u, v}.

Proof. Let w be the lowest vertex that is used by P . Let us suppose, for the sake of
contradiction, that w is not an ancestor of nca{u, v}. Then, either w is not an ancestor
of u, or w is not an ancestor of v. Let us assume w.l.o.g. that w is not an ancestor
of u. Since u is not a descendant of w, we may consider the first predecessor z of w
in P that is not a descendant of w. Let z′ be the successor of z in P . Then, we have
that P uses the edge (z, z′), and z′ is a descendant of w. Let us suppose, first, that
(z, z′) is a tree-edge. Then, since z′ is a descendant of w, but z is not, we have that
z cannot be a child of z′. Thus, z is the parent of z′. But since z′ is a descendant of
w and its parent is not, we have that z′ = w, and therefore z is the parent of w. But
this contradicts the minimality of w. Thus, we have that (z, z′) is a back-edge. Then,
since z′ is a descendant of w, but z is not, we have that z cannot be a descendant
of z′, and therefore it is an ancestor of z′. Then, z′ is a common descendant of w
and z, and therefore w and z are related as ancestor and descendant. But since z is
not a descendant of w, it must be a proper ancestor of w, and therefore z < w. This
again contradicts the minimality of w. Thus, our initial supposition cannot be true,
and therefore w is an ancestor of nca{u, v}.

Lemma 3.19. Let u be a vertex and let v be a proper ancestor of u. Let P be a path that
starts from a descendant of u and ends in v. Then, the first occurrence of an edge that is

65

used by P and leads outside of the subtree of u is either a back-edge that leaps over u or the
tree-edge (u, p(u)).

Proof. Let (x, y) be the first occurrence of an edge that is used by P and leads outside
of the subtree of u. We may assume w.l.o.g. that x is a descendant of u and y is not
a descendant of u. Then, we have that y is not a descendant of x, because otherwise
it would be a descendant of u. Suppose first that (x, y) is a tree-edge. Then, since y is
not a descendant of x, it must be the parent of x. Thus, since x is a descendant of u
but its parent is not, we have that x = u and therefore y = p(u). Now let us suppose
that (x, y) is a back-edge. Then, since y is not a descendant of x, it must be a proper
ancestor of x. Thus, x is a common descendant of u and y, and therefore u and y are
related as ancestor and descendant. Then, since y is not a descendant of u, we have
that y is a proper ancestor of u. This shows that (x, y) is a back-edge that leaps over
u.

3.9 An oracle for back‐edge queries

Our goal in this section is to prove the following.

Lemma 3.20. Let T be a DFS-tree of a connected graph G. We can construct in linear
time a data structure of size O(n) that we can use in order to answer in constant time queries
of the form: given three vertices u, v, w, such that u is a proper descendant of v, and v is a
proper descendant of w, is there a back-edge (x, y) ∈ B(v) \B(u) such that y ≤ w?

Proof. First we compute the low points of all vertices. This takes linear time. Then
we compute, for every vertex v that is not a leaf, a child c(v) of v that has the lowest
low point among all the children of v (breaking ties arbitrarily). We call this the low
child of v. Then, starting from any vertex v that is either r or a vertex that is not the
low child of its parent, we consider the path that starts from v and ends in a leaf by
following the low children. In other words, this is the path v, c(v), c(c(v)), Notice
that every vertex v of G belongs to precisely one such path. We call this the low path
that contains v, and we maintain a pointer from v to the low path that contains it.
Furthermore, we consider those paths indexed, starting from their lowest vertex. In
other words, if v, c(v), c(c(v)), . . . is a low path, then v has index 1, c(v) has index 2,
and so on, on this path. We also maintain, for every vertex v, a pointer to the index

66

of v on the low path that contains it.
Now, for every vertex v, we compute a value m(v) that is defined as follows. If v

has less than two children, then m(v) := l(v). Otherwise, let c1, . . . , ck be the list of the
children of v, excluding c(v). Then, m(v) := min{l(v), low(c1), . . . , low(ck)}. Notice that
the m values of all vertices can be easily computed in total linear time. Now, for every
low path, we initialize a data structure for answering range-minimum queries w.r.t.
the m values. (We consider a low path as an array, corresponding to the indexes of its
vertices.) More precisely, for every low path P we initialize a range-minimum query
data structure RMQP. We can use RMQP in order to answer queries of the form: given
two vertices u and v on P with indices i and j, respectively, such that i ≤ j, return
the minimum of m(u1), . . . ,m(uj−i+1), where u1, . . . , uj−i+1 is the set of the vertices on
P with indices i, i+1, . . . , j. Using the RMQ data structure described, e.g., in [9], the
initialization of all those data structures takes O(n) time in total (because the total
size of the low paths is O(n)), and every range-minimum query on every such data
structure can be answered in O(1) worst-case time. This completes the description of
the data structure and its construction.

Now let u, v, w be three vertices such that u is a proper descendant of v, and v

is a proper descendant of w. We will show how we can determine in constant time
whether there is a back-edge (x, y) ∈ B(v) \B(u) such that y ≤ w. First, suppose that
low(v) > w. Then we know that there is no back-edge (x, y) ∈ B(v) such that y ≤ w,
and we are done. So let us assume that low(v) ≤ w. If l(v) ≤ w, then (v, l(v)) is a
back-edge in B(v) \B(u) such that l(v) ≤ w, and we are done. So let us assume that
l(v) > w.

First, suppose that u does not belong to the same low path as v. Then we claim
that there is a proper descendant c′ of v on the low path P that contains v such that
l(c′) ≤ w. To see this, let us assume the contrary. Now, since l(v) > w and low(v) ≤ w,
we have that low(c(v)) ≤ w (because c(v) has the lowest low point among all the
children of v). Then, by assumption, we have l(c(v)) > w. Thus, since low(c(v)) ≤ w,
we have that c(c(v)) exists, and low(c(c(v))) ≤ w. Then, again by assumption, we
have l(c(c(v))) > w. Therefore, since low(c(c(v))) ≤ w, we have that c(c(c(v))) exists,
and low(c(c(c(v)))) ≤ w. We can see that this process must continue endlessly, in
contradiction to the fact that the graph contains a finite number of vertices. Thus,
there is indeed a proper descendant c′ of v on P such that l(c′) ≤ w. Then we can
see that (c′, l(c′)) is a back-edge in B(v) \B(u) such that l(c′) ≤ w, and we are done.

67

So let us assume that u and v belong to the same low path P . Let i be the index
of v on P , and let j be the index of p(u) on P . (We note that i ≤ j.) Let m′ be the
answer to the range-minimum query on RMQP on the range [i, j]. Then we claim that
there is a back-edge (x, y) ∈ B(v) \B(u) such that y ≤ w if and only if m′ ≤ w. So let
us suppose, first, that there is a back-edge (x, y) ∈ B(v) \B(u) such that y ≤ w. Then
x is a descendant of v, but not a descendant of u. Now let z be the maximum vertex
on T [v, p(u)] (i.e, the one closest to p(u)) such that x is a descendant of z. Then, we
have that either x = z, or x is a descendant of a child c′ of z such that c′ ̸= c(z) (since
all the vertices on T [v, p(u)] are part of the low path that contains u and v). If x = z,
then we have that l(z) ≤ y ≤ w, and therefore m(z) ≤ w. Therefore, since m′ ≤ m(z),
we have m′ ≤ w, as desired. Otherwise, suppose that x is a descendant of a child c′ of
z such that c′ ̸= c(z). Then, we have that (x, y) ∈ B(c′), and therefore low(c′) ≤ y ≤ w.
Then, since m(z) ≤ low(c′), we have that m(z) ≤ w. And since m′ ≤ m(z), this shows
that m′ ≤ w.

Conversely, let us suppose that m′ ≤ w. There is a vertex z on the tree-path
T [v, p(u)] such that m′ = m(z). Then, we have that either m′ = l(z), or there is a child
c′ of z, with c′ ̸= c(z), such that low(c′) = m′. If m′ = l(z), then, since m′ ≤ w and w

is a proper ancestor of v, we have that there is a back-edge (z, l(z)). Then we have
that (z, l(z)) ∈ B(v), but (z, l(z)) /∈ B(u) (since z is a proper ancestor of u). Thus,
(z, l(z)) is the desired back-edge. Otherwise, suppose that there is a child c′ of z, with
c′ ̸= c(z), such that low(c′) = m′. Then, there is a back-edge (x, y) ∈ B(c′) such that
y = low(c′). Since low(c′) = m′ ≤ w, we can see that (x, y) ∈ B(v). But since c′ and
c(z) are two different children of z, we have that x is cannot be a descendant of u
(because u is a descendant of c(z) and x is a descendant of c′), and therefore we have
(x, y) /∈ B(u). Thus, (x, y) is a back-edge in B(v) \B(u) such that y ≤ w.

This concludes the method by which we can determine in constant time whether
there exists a back-edge (x, y) ∈ B(v) \ B(u) such that y ≤ w. This process is shown
in Algorithm 9.

68

Algorithm 9: Determine whether there is a back-edge (x, y) ∈ B(v) \ B(u)

such that y ≤ w, where u is a proper descendant of v, and v is a proper
descendant of w
1 if low(v) > w then return false
2 if l(v) ≤ w then return true
3 if u and v do not belong to the same low path then return true
4 let P be the low path that contains u and v

5 let i be the index of v on P , and let j be the index of p(u) on P

6 let m′ be the answer to the range-minimum query on RMQR on the range [i, j]
7 if m′ ≤ w then return true
8 return false

3.10 Segments of vertices that have the same high point

Throughout this section, we assume that G is a 3-edge-connected graph. According
to Proposition 3.1, this implies that |B(v)| > 2 for every vertex v ̸= r, and therefore
the high1 and high2 points of v are defined.

Let x be a vertex of G, and let H(x) be the list of all vertices v ̸= r such that
high(v) = x, sorted in decreasing order. For a vertex v ∈ H(x), we let S(v) denote the
segment of H(x) that contains v and is maximal w.r.t. the property that its elements
are related as ancestor and descendant. The collection of those segments constitutes
a partition of H(x), as shown in the following.

Lemma 3.21. Let x be a vertex. Then, the collection S of all segments of H(x) that are
maximal w.r.t. the property that their elements are related as ancestor and descendant is a
partition of H(x).

Proof. Every vertex v ∈ H(x) is contained in S(v) ∈ S , and therefore the collection
of all segments in S covers H(x). Now let S and S ′ be two distinct segments in S.
Let us suppose, for the sake of contradiction, that S ∩ S ′ ̸= ∅. Then there is a vertex
z ∈ S ∩ S ′.

We will show that all vertices in S ∪S ′ are related as ancestor and descendant. So
let u and u′ be two vertices in S ∪ S ′. If both u and u′ are either in S or in S ′, then
we have that u and u′ are related as ancestor and descendant. So let assume w.l.o.g.
that u ∈ S and u′ ∈ S ′. Since u, z ∈ S, we have that u and z are related as ancestor

69

and descendant. Also, since u′, z ∈ S ′, we have that u′ and z are related as ancestor
and descendant. Thus, we have the following cases to consider: either (1) both u and
u′ are ancestors of z, or (2) one of u and u′ is an ancestor of z, and the other is a
descendant of z, or (3) both u and u′ are descendants of z.

In case (1), we have that z is a common descendant of u and u′, and therefore u

and u′ are related as ancestor and descendant. In case (2), we may assume w.l.o.g.
that u is an ancestor of z, and u′ is a descendant of z. Then, we obviously have that u
is an ancestor of u′ (due to the transitivity of the ancestry relation). So let us consider
case (3). This implies that u ≥ z and u′ ≥ z. If u ≥ u′, then we have u ≥ u′ ≥ z. Then,
since H(x) is sorted in decreasing order and S is a segment of H(x) and u, z ∈ S, we
have u′ ∈ S. Then, u ≥ u′ implies that u′ is an ancestor of u. Otherwise, supppose that
u < u′. Then we have u′ > u ≥ z. Then, since H(x) is sorted in decreasing order and
S ′ is a segment of H(x) and u′, z ∈ S ′, we have u ∈ S ′. Then, u < u′ implies that u is
a proper ancestor of u′. Thus, in any case we have shown that u and u′ are related
as ancestor and descendant.

Now we will show that S ∪ S ′ is a segment of H(x). So let us suppose, for the
sake of contradiction, that S ∪ S ′ is not a segment of H(x). Since H(x) is sorted in
decreasing order, this means that there are two vertices u and u′ in S∪S ′, with u > u′,
and a vertex w ∈ H(x), such that u > w > u′ and w /∈ S ∪ S ′. Notice that we cannot
have that both u and u′ are either in S or in S ′, because S and S ′ are segments of
H(x), and therefore u > w > u′ implies that w ∈ S or w ∈ S ′, respectively. Thus,
we may assume w.l.o.g. that u ∈ S and u′ ∈ S ′. Since u and z are in S, we have
that u and z are related as ancestor and descendant. First, let us suppose that z is a
descendant of u. This implies that z ≥ u. Thus, we have z ≥ u > w > u′. Since S ′ is a
segment of H(x) that contains both z and u′, this implies that w ∈ S ′, a contradiction.
Thus, we have that z is a proper ancestor of u, and therefore u > z. Since u′ and z are
in S ′, we have that u′ and z are related as ancestor and descendant. Let us suppose
that u′ is a descendant of z. This implies that u′ ≥ z. Then, we have u > w > u′ ≥ z.
Since S is a segment of H(x) that contains both u and z, this implies that w ∈ S, a
contradiction. Thus, we have that u′ is a proper ancestor of z, and therefore z > u′.
Thus, since u > w > u′ and u > z > u′, we have that either u > w ≥ z or z ≥ w > u′.
Any of those cases implies that either w ∈ S or w ∈ S ′, since S and S ′ are segments
of H(x). A contradiction. This shows that S ∪ S ′ is a segment of H(x).

Thus, we have shown that S ∪ S ′ is a segment of H(x) with the property that its

70

elements are related as ancestor and descendant. But since S ̸= S ′, this contradicts
the maximality of both S and S ′ with this property. We conclude that the segments
in S partition H(x).

For every vertex x, we will need to compute the collection of the segments of
H(x) that are maximal w.r.t. the property that their elements are related as ancestor
and descendant. This can be done with a straightforward method that is shown in
Algorithm 10. The idea is to traverse the list H(x), and greedily collect all consecutive
vertices that are related as ancestor and descendant in order to get a segment. The
proof of correctness in given in Lemma 3.22.
Algorithm 10: Compute the collection S of the segments of H(x) that are
maximal w.r.t. the property that their elements are related as ancestor and
descendant
1 let S ← ∅
2 let z be the first element of H(x)

3 while z ̸= ⊥ do
4 let S ← {z}
5 let z′ ← nextH(x)(z)

6 while z′ ̸= ⊥ and z′ is an ancestor of z do
7 insert z′ into S

8 z′ ← nextH(x)(z
′)

9 end
10 insert S into S
11 z ← z′

12 end

Lemma 3.22. Let x be a vertex. Then, Algorithm 10 correctly computes the collection S
of the segments of H(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant. The running time of Algorithm 10 is O(|H(x)|).

Proof. The while loop in Line 3 begins the processing of H(x) from its first vertex
z. Then, the while loop in Line 6 collects all the consecutive successors z′ of z that
are ancestors of z, and stops until it reaches a vertex z′ that is not an ancestor of
z. Let S be the resulting set (in Line 10). Then, we have that all vertices in S have
z as a common descendant, and therefore all of them are related as ancestor and
descendant. Furthermore, by construction, S is a segment of H(x). Then, notice that

71

S is a maximal segment of H(x) with the property that its elements are related as
ancestor and descendant, because the successor of the lowest element in S is not
an ancestor of z, and therefore it is not related as ancestor and descendant with
z (because, if it was, it would be an ancestor of z, due to the ordering of H(x)).
By Lemma 3.21, we have that no other segment of S intersects with S. Thus, it is
proper to move on to the processing of z′, and always move forward in processing the
vertices of H(x). Thus, we can see that the while loop in Line 3 correctly computes
the segment S(z), for every z that it processes, and every vertex in H(x) will be
inserted in such a segment eventually (either at the beginning of the while loop of
Line 3 in Line 4, or by the while loop of Line 6 in Line 7). It is easy to see that the
number of steps performed by Algorithm 10 is O(|H(x)|).

For every vertex x, we also define the list H̃(x) that consists of all vertices v ̸= r

such that either high1(v) = x or high2(v) = x, sorted in decreasing order. Notice that,
for every vertex v ̸= r, there are at most two distinct x and x′ such that v ∈ H̃(x)

and v ∈ H̃(x′). More precisely, if a vertex v ̸= r satisfies that high1(v) ̸= high2(v),
then v belongs to both H̃(high1(v)) and H̃(high2(v)). But there is no other set of
the form H̃(x) that contains v. Thus, the collection {H̃(x) | x is a vertex} has total
size O(n). For every vertex v ̸= r, we let S̃1(v) denote the segment of H̃(high1(v))
that contains v and is maximal w.r.t. the property that its elements are related as
ancestor and descendant. Similarly, we let S̃2(v) denote the segment of H̃(high2(v)) that
contains v and is maximal w.r.t. the property that its elements are related as ancestor
and descendant. We can see that the collection of the segments of H̃(x) that are
maximal w.r.t. the property that their elements are related as ancestor and descendant
constitutes a partition of H̃(x). The proof of this property is precisely the same as in
Lemma 3.21, because it only relies on the fact that H̃(x) is sorted in decreasing order.
Furthermore, we can apply a procedure as that shown in Algorithm 10, in order to
compute the collection of all those maximal segments in O(|H̃(x)|) time. We state this
result in the following lemma, which has the same proof as Lemma 3.22.

Lemma 3.23. Let x be a vertex. Then, in O(|H̃(x)|) time, we can compute the collection
of the segments of H̃(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant.

Proof. We can use Algorithm 10, where we have replaced every occurrence of “H(x)”
with “H̃(x)”. The proof of correctness is the same as in Lemma 3.22.

72

Since every vertex v ̸= r belongs to at most two sets of the form H̃(x), for a vertex
x, the collection

⋃
{S(x) | x is a vertex }, where S(x) is the collection of the segments

of H̃(x) that are maximal w.r.t. the property that their elements are related as ancestor
and descendant, has total size O(n). That is,

∑
x

∑
S∈S(x) |S| = O(n).

We conclude this section with the following lemma, which shows that the vertices
in every segment from S(x) are sorted in decreasing order w.r.t. their low point.

Lemma 3.24. Let x be a vertex, and let u and v be two vertices in H̃(x) such that u is
a descendant of v. Then low(u) ≥ low(v).

Proof. Since u ∈ H̃(x), we have that either high1(u) = x or high2(u) = x. Since v ∈ H̃(x),
we have that either high1(v) = x or high2(v) = x. In either case then, we have that x
is a proper ancestor of v.

Let us suppose first that high1(u) = x. Let (z, w) be a back-edge in B(u). Then
z is a descendant of u, and therefore a descendant of v. Furthermore, we have that
w is an ancestor of high1(u), and therefore an ancestor of x, and therefore a proper
ancestor of v. This shows that (z, w) ∈ B(v). Due to the generality of (z, w) ∈ B(u),
this implies that B(u) ⊆ B(v). From this we infer that low(u) ≥ low(v).

Now let us suppose that high1(u) ̸= x. This implies that high2(u) = x. Let (z, w) be
a back-edge in B(u)\{ehigh(u)} (such a back-edge exists, because the graph is 3-edge-
connected, and therefore |B(u)| > 1). Then, we have that z is a descendant of u, and
therefore a descendant of v. Furthermore, w is an ancestor of high2(u), and therefore an
ancestor of x, and therefore a proper ancestor of v. This shows that (z, w) ∈ B(v). Due
to the generality of (z, w) ∈ B(u) \ {ehigh(u)}, this implies that B(u) \ {ehigh(u)} ⊆ B(v).
Since high1(u) ̸= x and high2(u) = x, we have high1(u) ̸= high2(u). This implies that
high1(u) > high2(u), and therefore low(u) < high1(u). Thus, the low point of u is given
by the lowest lower endpoint of all back-edges in B(u) \ {ehigh(u)}. Since this set is a
subset of B(v), we conclude that low(v) ≤ low(u).

73

CHAPTER 4

COMPUTING THE 4-EDGE-CONNECTED
COMPONENTS IN LINEAR TIME

4.1 Introduction

4.2 3‐cuts on a DFS tree

4.3 Computing all 3‐cuts of a 3‐edge‐connected graph

4.4 Computing the 4‐edge‐connected components

4.5 Testing 4‐edge connectivity

4.1 Introduction

In this chapter, we present a linear-time algorithm for computing the 4-edge-
connected components of an undirected multigraph. This algorithm uses elementary
data structures, and it is implementable in the pointer machine model of computa-
tion [65]. We also provide a very simple algorithm for testing the 4-edge-connectivity
of a graph in linear time.

The general idea for computing the 4-edge-connected components can be de-
scribed as follows. First, we use a construction described in [21], that reduces this
computation to 3-edge-connected graphs. This construction can be completed in lin-
ear time, using any algorithm for computing the 3-edge-connected components of an
undirected multigraph (e.g., [67]). Now, given a 3-edge-connected graph, we compute

74

the collection of all 3-cuts of the graph, and then the atoms induced by this collec-
tion. Since the collection of all 3-cuts of a 3-edge-connected graph forms a parallel
family of 3-cuts (see e.g. [24]), we can compute those atoms in linear time using
Algorithm 17. Thus, the whole problem reduces to the computation of all 3-cuts of a
3-edge-connected graph. To perform this computation efficiently, we rely on a DFS-
tree T of the graph, and we provide a typology of 3-cuts w.r.t. T . Specifically, we
distinguish three types of 3-cuts, depending on the number of tree-edges of T that
they contain (notice that a 3-cut must contain at least one tree-edge of T). Then,
we can compute all three types of 3-cuts separately. The case of 3-cuts that contain
exactly one tree-edge is the easiest one. The case of 3-cuts that contain exactly two
tree-edges is the most demanding, and we further distinguish it into various sub-
cases. Finally, the case of 3-cuts that consist of three tree-edges can be reduced to
the previous two cases, as shown in [50]. For the computation of 3-cuts, we rely on
some of the DFS-based parameters that were introduced in Chapter 3. In particular,
all those parameters that we use here can be computed with linear-time algorithms
that have a pointer-machine implementation.

4.2 3‐cuts on a DFS tree

Here we provide a typology of the 3-cuts of a connected graph, according to their
topology on a DFS tree. This will be useful in order to show how to compute them
in Section 4.3, using an appropriate algorithm for each type. Furthermore, it will be
useful in order to compute the 4-edge-connected components in Section 4.4. We refer
to Figure 4.1 for the typology of 3-cuts that we provide in this section. Our goal here
is precisely to show that this figure exhausts all possibilities for the 3-cuts on a DFS
tree. We assume throughout that we work on a connected graph G, with an r-rooted
DFS tree T .

Let C be a 3-cut of G. Then observe that C must contain at least one tree-edge
(otherwise its removal from G does not disconnect it). Thus we initially distinguish
three types of 3-cuts, Type-1, Type-2, and Type-3, depending on whether they contain
one, two, or three tree-edges, respectively.

75

u p(u)

r

u p(u)

r
v p(v) w p(w)

r

u

p(u)

v
p(v)

u p(u)

r
w p(w)v p(v)

(a) (b)

(c)

(d)

(e)

u p(u)

r
v p(v)

Figure 4.1: The types of 3-cuts with respect to a DFS tree. (a) (Type-1) One tree-edge
(u, p(u)) and two back-edges. (b) (Type-2, “upper case”) Two tree-edges (u, p(u)) and
(v, p(v)), where u is a descendant of v, and one back-edge in B(v)\B(u). (c) (Type-2,
“lower case”) Two tree-edges (u, p(u)) and (v, p(v)), where u is a descendant of v, and
one back-edge in B(u) \ B(v). (d) (Type-3α) Three tree-edges (u, p(u)), (v, p(v)) and
(w, p(w)), where w is an ancestor of u and v, but u and v are not related as ancestor and
descendant. (d) (Type-3β) Three tree-edges (u, p(u)), (v, p(v)) and (w, p(w)), where u
is a descendant of v, and v is a descendant of w.

76

4.2.1 Type‐1 3‐cuts

For Type-1 3-cuts we have the following.

Lemma 4.1. Let u ̸= r be a vertex. Then there exist two distinct back-edges e1 and e2 such
that C = {(u, p(u)), e1, e2} is a 3-cut if and only if B(u) = {e1, e2}.

Proof. (⇒) First we will show that both e1 and e2 must be in B(u). Let us suppose, for
the sake of contradiction, that this is not true. We may assume w.l.o.g. that e1 is not
in B(u). Let e1 = (x, y). Since C is a 3-cut of G, we have that G′ = G \ {(u, p(u)), e2}
is connected. In particular, since e1 /∈ B(u), we have that x is connected with y in G′

through the path T [x, y] (which remains intact in G′). But then x remains connected
with y in G′ \ e1 through this path, in contradiction to the fact that C is a 3-cut
of G. Thus we have that e1 must leap over u. Similarly, we have that e2 must leap
over u. Thus, {e1, e2} ⊆ B(u). Now let us suppose, for the sake of contradiction, that
B(u) ̸= {e1, e2}. This implies that there is a back-edge (x, y) ∈ B(u)\{e1, e2}. But then
u remains connected with p(u) in G \ C through the path T [u, x], (x, y), T [y, p(u)], in
contradiction to the fact that C is a 3-cut of G. Thus we have that B(u) = {e1, e2}.

(⇐) Consider the parts A = T (u) and B = T (r) \ T (u). Then B(u) = {e1, e2}
implies that the only back-edges from A to B are e1 and e2. Thus, A and B become
disconnected in G\C. Furthermore, observe that no proper subset of C can disconnect
A and B upon removal.

Lemma 4.2. Let C = {(u, p(u)), e1, e2} be a Type-1 3-cut. Then the connected components
of G \ C are T (u) and T (r) \ T (u).

Proof. It is easy to see that T (u) and T (r) \ T (u) become separated in G \C , and that
each of them is connected in G \ C.

4.2.2 Type‐2 3‐cuts

Lemma 4.3. Let u and v be two vertices ̸= r, and let e be a back-edge such that
C = {(u, p(u)), (v, p(v)), e} is a 3-cut. Then u and v are related as ancestor and descendant.

Proof. Let us suppose, for the sake of contradiction, that u and v are not related as
ancestor and descendant. Then we have that e cannot leap over both u and v (for
otherwise u and v would be common ancestors of the higher endpoint of e). So we
may assume w.l.o.g. that e does not leap over u. Since C is a 3-cut, we have that

77

G \ {(u, p(u))} is connected, and so B(u) is non-empty. Thus, there is a back-edge
(x, y) ∈ B(u). Then we have e ̸= (x, y). Furthermore, since v is not related as ancestor
and descendant with u, we have that v /∈ T [x, u] and v /∈ T [p(u), y]. But this implies
that u remains connected with p(u) in G\C through the path T [u, x], (x, y), T [y, p(u)],
in contradiction to the fact that C is a 3-cut of G. We conclude that u and v are
related as ancestor and descendant.

Lemma 4.4. Let C ′ = {(u, p(u)), (v, p(v)), e} be a Type-2 3-cut, where v is an ancestor
of u. Then the connected components of G \ C ′ are T (v) \ T (u) and T (u) ∪ (T (r) \ T (v)).

Proof. Consider the parts A = T (u), B = T (v) \T (u), and C = T (r) \T (v). Notice that
every one of those parts is connected in G \ C ′. Then, since G \ C ′ consists of two
connected components, we have that these components are either (i) A ∪ B and C ,
or (ii) A∪C and B, or (iii) B ∪C and A. Case (i) is rejected, because u here remains
connected with p(u) in G\C ′. Case (iii) is rejected, because v here remains connected
with p(v) in G \ C ′. We conclude that the connected components of G \ C ′ are given
by (ii).

Lemma 4.5. Let u and v be two vertices ̸= r. Then there is a back-edge e such that
C ′ = {(u, p(u)), (v, p(v)), e} is a 3-cut if and only if neither of B(u) and B(v) is empty,
and either (1) B(v) = B(u) ⊔ {e} or (2) B(u) = B(v) ⊔ {e}.

Proof. (⇒) By Lemma 4.3 we have that u and v are related as ancestor and descen-
dant. We may assume w.l.o.g. that v is a proper ancestor of u. Consider the parts
A = T (u), B = T (v) \ T (u), and C = T (r) \ T (v). By Lemma 4.4 we have that the
connected components of G\C ′ are B and A∪C. Thus, in G\C ′ there is no back-edge
from A to B, and no back-edge from B to C (∗). However, since G\{(u, p(u)), (v, p(v))}
is connected, there must exist either a back-edge from A to B, or a back-edge from
B to C.

First, let us suppose that there is a back-edge from A to B in G. Then (∗) implies
that this back-edge is unique, it coincides with e, and there is no back-edge from B

to C. Thus, e is in B(u) \ B(v), and there are no back-edges in B(v) \ B(u). Thus,
B(v) ⊔ {e} ⊆ B(u). Conversely, a back-edge in B(u) \ {e} must be a back-edge from
A to C , and therefore a back-edge in B(v). This shows that B(v) ⊔ {e} = B(u).

Now let us suppose that there is a back-edge from B to C in G. Then (∗) implies
that this back-edge is unique, it coincides with e, and there is no back-edge from A

78

to B. Thus, e is in B(v) \ B(u), and there are no back-edges in B(u) \ B(v). Thus,
B(u) ⊔ {e} ⊆ B(v). Conversely, a back-edge in B(v) \ {e} must be a back-edge from
A to C , and therefore a back-edge in B(u). This shows that B(u) ⊔ {e} = B(v).

Notice that B(u) ̸= ∅ (resp., B(v) ̸= ∅), because C ′ is a 3-cut of G, and therefore
(u, p(u)) (resp., (v, p(v))) is not a bridge.

(⇐) Since neither of B(u) and B(v) is empty, we have that either of (1) and (2)

implies that B(u) ∩ B(v) ̸= ∅. Thus, u and v are related as ancestor and descendant
(because they are ancestors of the higher endpoint of any of the back-edges that leaps
over both of them). We will consider only case (1), in both possible ancestry relations
between u and v, because case (2) is symmetric to (1).

First, let us suppose that v is an ancestor of u. We have that v is a proper ancestor
of u, because B(v) = B(u) ⊔ {e} implies that B(v) ̸= B(u). We consider the parts
A = T (u), B = T (v) \ T (u), and C = T (r) \ T (v). Then B(v) = B(u) ⊔ {e} implies
that e is the unique back-edge from B to C , and there is no back-edge from A to B.
Furthermore, since B(u) ̸= ∅, we have that there is at least one back-edge from A to
C. Thus, it is easy to see that G \C ′ is not connected, but G \C ′′ is connected for any
proper subset C ′′ of C ′.

Now let us suppose that u is an ancestor of v. We have that u is a proper ancestor
of v, because B(v) = B(u) ⊔ {e} implies that B(v) ̸= B(u). We consider the parts
A = T (v), B = T (u) \ T (v), and C = T (r) \ T (u). Then B(v) = B(u) ⊔ {e} implies
that e is the unique back-edge from A to B, and there is no back-edge from B to C.
Furthermore, since B(v) ̸= ∅, we have that there is at least one back-edge from A to
C. Thus, it is easy to see that G \C ′ is not connected, but G \C ′′ is connected for any
proper subset C ′′ of C ′.

According to Lemma 4.5, we distinguish two types of Type-2 3-cuts, depending
on whether (1) or (2) is satisfied. Following the terminology of [50], we call them
the “upper case” and the “lower case”, respectively. We refer to Figure 4.1 for an
illustration.

4.2.3 Type‐3 3‐cuts

Lemma 4.6. Let u, v, w be three vertices ̸= r such that C = {(u, p(u)), (v, p(v)), (w, p(w))}
is a 3-cut. Then one of u, v, w is a common ancestor of the other two.

79

Proof. Let us suppose, for the sake of contradiction, that none of u, v, w is a common
ancestor of the other two. This is equivalent to saying that at least one of u, v, w is not
related as ancestor and descendant with the other two. So we may assume w.l.o.g.
that w is not related as ancestor and descendant with u and v. Since C is a 3-cut,
we have that (w, p(w)) is not a cut-edge, and so B(w) is not empty. Let (x, y) be a
back-edge in B(w). Then x is descendant of w and y is a proper ancestor of w. Since
w is not related as ancestor and descendant with u and v, we have that neither of u
and v is in T [x,w] or T [p(w), y]. But this implies that w remains connected with p(w)

in G \C through the path T [w, x], (x, y), T [y, p(w)], in contradiction to the fact that C
is a 3-cut of G. Thus, we have that one of u, v, w is a common ancestor of the other
two.

Let u, v, w be three vertices ̸= r such that C ′ = {(u, p(u)), (v, p(v)), (w, p(w))} is a
3-cut. Then, according to Lemma 4.6 we have that one of u, v, w is a common ancestor
of the other two. Let us assume w.l.o.g. that w is a common ancestor of u and v.
Then, if u and v are not related as ancestor and descendant, we call C a Type-3α
3-cut. Otherwise, we call C a Type-3β 3-cut. We refer to Figure 4.1 for an illustration.

Lemma 4.7. Let u, v, w be three vertices ̸= r such that C ′ = {(u, p(u)), (v, p(v)), (w, p(w))}
is a Type-3α 3-cut, where w is a common ancestor of u and v. Then the connected components
of G \ C ′ are given by T (u) ∪ T (v) ∪ (T (r) \ T (w)) and T (w) \ (T (u) ∪ T (v)).

Proof. Consider the parts A = T (u), B = T (v), C = T (w) \ (T (u) ∪ T (v)) and D =

T (r) \ T (w). Then every one of A, B, C and D remains connected in G \ C ′. Notice
that there is no back-edge from A to C , because otherwise we would have that u
remains connected with p(u) in G \ C ′. Similarly, there is no back-edge from B to
C , because otherwise we would have that v remains connected with p(v) in G \ C ′.
Finally, there is no back-edge from C to D, because otherwise we would have that
w remains connected with p(w) in G \ C ′. This shows that C becomes disconnected
from A∪B ∪D in G \C ′. Since C ′ is a 3-cut of G, we have that G \C ′ consists of two
connected components. Since C remains connected in G \ C ′, but it is disconnected
from A ∪ B ∪ D in G \ C ′, we have that the connected components of G \ C ′ are C

and A ∪ B ∪D.

Lemma 4.8. Let u, v, w be three vertices ̸= r such that C ′ = {(u, p(u)), (v, p(v)), (w, p(w))}
is a Type-3β 3-cut, where w is an ancestor of v, and v is an ancestor of u. Then the connected
components of G \C ′ are given by T (u)∪ (T (w) \T (v)) and (T (v) \T (u))∪ (T (r) \T (w)).

80

Proof. Consider the parts A = T (u), B = T (v) \ T (u), C = T (w) \ T (v) and D =

T (r) \ T (w). Then every one of A, B, C and D remains connected in G \ C ′. Notice
that A and B cannot be in the same connected component of G \ C ′, since u ∈ A

and p(u) ∈ B (1). Similarly, B and C cannot be in the same connected component
of G \ C ′, since v ∈ B and p(v) ∈ C (2). Finally, C and D cannot be in the same
connected component of G \ C ′, since w ∈ C and p(w) ∈ D (3).

Let us suppose, for the sake of contradiction, that A and D are in the same
connected component X of G \C ′. By (1) we have that B cannot be in X. By (3) we
have that C cannot be in X. Since C ′ is a 3-cut of G, we have that G \ C ′ consists
of two connected components. Thus, one of them is A ∪ D, and the other must be
B ∪ C. But this contradicts (2). Thus we have that A and D do not belong to the
same connected component of G \ C ′ (4).

Now let us suppose, for the sake of contradiction, that A and C do not belong to
the same connected component of G\C ′. Then (1) and (4) imply that A is a connected
component of G \C ′. But also (2) and (3) imply that C is a connected component of
G \C ′. Thus, G \C ′ consists of at least three connected components, a contradiction.
Thus we have that A and C belong to the same connected component X of G \ C ′.
By (1) we have that B does not belong to X. And by (3) we have that D does not
belong to X. Thus, the connected components of G \ C ′ are A ∪ C and B ∪D.

4.3 Computing all 3‐cuts of a 3‐edge‐connected graph

In the following we assume that G is a 3-edge-connected graph with n vertices and
m edges, and we have fixed a DFS tree T of G with root r. Thus, for every vertex
v ̸= r of G, we have that B(v) contains at least two back-edges.

4.3.1 Computing Type‐1 3‐cuts

According to Lemma 4.1, {(u, p(u)), e1, e2} is a 3-cut of G, where u ̸= r and e1, e2

are back-edges, if and only if B(u) = {e1, e2}. Thus, we can determine easily
whether a tree-edge (u, p(u)) forms a 3-cut with two back-edges, by checking whether
bcount(u) = 2. In this case, we need to know the two back-edges that are in B(u). For
this purpose, we may use e1 = (lowD1(u), low1(u)) and e2 = (lowD2(u), low2(u)), since
these are two distinct back-edges that leap over u.

81

4.3.2 Computing Type‐2 3‐cuts

Let u and v be two vertices ̸= r. According to Lemma 4.3, if {(u, p(u)), (v, p(v)), e} is
a 3-cut, where e is a back-edge, then u and v are related as ancestor and descendant.
So we may assume w.l.o.g. that v is an ancestor of u. Then, by Lemma 4.5, we have
that either (1) B(v) = B(u)⊔ {e} or (2) B(u) = B(v)⊔ {e}. We treat cases (1) and (2)

with a different algorithm, in Sections 4.3.2.1 and 4.3.2.2, respectively. We note that
cases (1) and (2) correspond to the “upper case” and the “lower case”, respectively.
(For an illustration, we refer to Figure 4.1.)

4.3.2.1 The upper case

Let v ̸= r be a vertex, and suppose that there is a proper descendant u of v and a
back-edge e such that B(v) = B(u)⊔ {e}. Then, by Lemma 4.9 below we have that u
is unique. Now, if such a u exists, by Lemma 4.10 we have that one of the following
holds (see also Figure 4.2): either (1) M(u) = M̃(v), or (2) M(u) = Mlow1(v), or (3)
M(u) = Mlow2(v). Furthermore, Lemma 4.10 shows how to find the back-edge e in
every case. Thus, there are three different cases to consider in order to find u (and
e). In every case, we rely on Lemma 4.11, which says that u is the lowest proper
descendant of v in M−1(M(u)). Thus, we consider the three different cases x = M̃(v),
x = Mlow1(v) and x = Mlow2(v), and in each case we traverse the list M−1(x) in order
to find the lowest proper descendant u of v (if it exists). Then we use Lemma 4.12,
4.13 or 4.14, respectively, in order to verify that u has indeed the desired property.

This is basically the idea in order to find all 3-cuts of the form
{(u, p(u)), (v, p(v)), e}, where v is an ancestor of u and e is a back-edge such that
B(v) = B(u)⊔{e}. However, this is not a linear-time procedure, since we may have to
traverse the listsM−1(x) an excessive number of times. In order to resolve this, we pro-
cess the vertices v in a bottom-up fashion, and we keep in a variable currentVertex[x],
for every vertex x, the lowest element in M−1(x) that is a proper descendant of v (if
it exists), where v is the current vertex under process. To update this variable appro-
priately during the processing of v, we just scan the list M−1(x), each time starting
from currentVertex[x], until we reach the lowest vertex in M−1(x) that is greater than
v. The procedure for computing all Type-2 3-cuts in the upper case is shown in
Algorithm 11.

82

Algorithm 11: Find all 3-cuts {(u, p(u)), (v, p(v)), e}, where u is a descendant
of v and B(v) = B(u) ⊔ {e}, for a back-edge e.

1 // x = M̃(v)

2 for v ← n to v = 1 do

3 x← M̃(v)

4 if x = ⊥ then continue

5 let u be the lowest vertex in M−1(x) which is greater than v

6 // check the condition in Lemma 4.12

7 if bcount(v) = bcount(u) + 1 and l2(M(v)) ≥ v and (c2(M(v)) = ⊥ or

low(c2(M(v))) ≥ v) then

8 mark {(u, p(u)), (v, p(v)), (M(v), l(M(v)))} as a 3-cut

9 end

10 end

11 // x = Mlow1(v)

12 for v ← n to v = 1 do

13 x←Mlow1(v)

14 if x = ⊥ then continue

15 let u be the lowest vertex in M−1(x) which is greater than v

16 // check the condition in Lemma 4.13

17 if bcount(v) = bcount(u) + 1 and low2(Mlow2(v)) ≥ v and (c3(M(v)) = ⊥ or

low(c3(M(v))) ≥ v) then

18 mark {(u, p(u)), (v, p(v)), (Mlow2(v), l(Mlow2(v)))} as a 3-cut

19 end

20 end

21 // x = Mlow2(v)

22 for v ← n to v = 1 do

23 x←Mlow2(v)

24 if x = ⊥ then continue

25 let u be the lowest vertex in M−1(x) which is greater than v

26 // check the condition in Lemma 4.14

27 if bcount(v) = bcount(u) + 1 and low2(Mlow1(v)) ≥ v and (c3(M(v)) = ⊥ or

low(c3(M(v))) ≥ v) then

28 mark {(u, p(u)), (v, p(v)), (Mlow1(v), l(Mlow1(v)))} as a 3-cut

29 end

30 end

83

1

𝑦 = 𝑝(𝑣) = 3

2

𝑣 = 4

𝑝 𝑢 = 6

𝑢 = 𝑀 𝑢 = ෩𝑀 𝑣 = 7

𝑒

𝑥 = 𝑀 𝑣 = 5

(1)

1

𝑦 = 𝑝(𝑣) = 3

2

𝑣 = 4

𝑝 𝑢 = 6

𝑢 = 𝑀 𝑢 = 𝑀𝑙𝑜𝑤1 𝑣 = 7

𝑒

𝑥 = 𝑀𝑙𝑜𝑤2 𝑣 = 8

𝑀 𝑣 = ෩𝑀 𝑣 = 5

(2)

𝑦 = 1

𝑝(𝑣) = 3

2

𝑣 = 4

𝑝 𝑢 = 6

𝑢 = 𝑀 𝑢 = 𝑀𝑙𝑜𝑤2 𝑣 = 7

𝑒

𝑥 = 𝑀𝑙𝑜𝑤1 𝑣 = 8

𝑀 𝑣 = ෩𝑀 𝑣 = 5

(3)

Figure 4.2: An illustration of the three cases for type-2 cuts {(u, p(u)), (v, p(v)), e}
(shown with red edges) where v is an ancestor of u, e is a back-edge, and B(v) =

B(u) ⊔ {e}. Vertices are numbered in DFS order and back-edges are shown directed
from descendant to ancestor in the DFS tree.

Lemma 4.9. Let v ̸= r be a vertex, and suppose that there is a proper descendant u of v
and a back-edge e such that B(v) = B(u) ⊔ {e}. Then u is unique with this property.

Proof. Let us suppose, for the sake of contradiction, that there are two distinct proper
descendants u and u′ of v, and two back-edges e and e′ (not necessarily distinct), such
that B(v) = B(u)⊔{e} and B(v) = B(u′)⊔{e′}. Then we have B(u)⊔{e} = B(u′)⊔{e′}.
Since bcount(u) > 1 and bcount(u′) > 1 (since the graph is 3-edge-connected), we infer
that B(u) ∩ B(u′) ̸= ∅, and thus u and u′ are related as ancestor and descendant.
Thus we can assume, without loss of generality, that u′ is an ancestor of u. Now
let (x, y) ∈ B(u). Then x is a descendant of u, and therefore a descendant of u′.
Furthermore, since B(v) = B(u) ⊔ {e}, we have (x, y) ∈ B(v), and so y is a proper
ancestor of v, and therefore a proper ancestor of u′. This shows that (x, y) ∈ B(u′),
and thus we have B(u) ⊆ B(u′). In conjunction with B(u)⊔{e} = B(u′)⊔{e′} (which
implies that |B(u)| = |B(u′)|), we infer that B(u) = B(u′) (and e = e′). This contradicts
the fact that the graph is 3-edge-connected (see Proposition 3.1).

84

Lemma 4.10. Let u and v be two vertices ̸= r such that v is a proper ancestor of u

with B(v) = B(u) ⊔ {e}, for a back-edge e. Then, we have that either (1) M(u) = M̃(v),
or (2) M(u) = Mlow1(v), or (3) M(u) = Mlow2(v). According to whether (1), or (2),
or (3), is true, we have e = (M(v), l1(M(v))), or e = (Mlow2(v), l1(Mlow2(v))), or e =

(Mlow1(v), l1(Mlow1(v))), respectively.

Proof. First let us suppose, for the sake of contradiction, that M(v) is a descendant of
u. Let (x, y) be a back-edge in B(v). Then x is a descendant of M(v), and therefore
a descendant of u. Furthermore, y is a proper ancestor of v, and therefore a proper
ancestor of u. This shows that (x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(v),
this implies that B(v) ⊆ B(u), in contradiction to B(v) = B(u) ⊔ {e}. Thus we have
that M(v) is not a descendant of u.

Now suppose that e = (M(v), z), for a vertex z. Let (x, y) be a back-edge in B(u).
Then we have x ̸= M(v), and B(v) = B(u)⊔{e} implies that (x, y) ∈ B(v). This implies
that x is a descendant of M̃(v). Due the generality of (x, y) ∈ B(u), this shows that
M(u) is a descendant of M̃(v). Conversely, let (x, y) be a back-edge in B(v) such that
x ̸= M(v). Then (x, y) ̸= e, and so B(v) = B(u)⊔{e} implies that (x, y) ∈ B(u), which
further implies that x is a descendant of M(u). Due to the generality of (x, y) ∈ B(v)

with the property that x ̸= M(v), we infer that M̃(v) is a descendant ofM(u). Thus we
have that M(u) = M̃(v). Notice that there is an i ∈ {1, 2, . . . } such that z = li(M(v)).
Let us suppose, for the sake of contradiction, that i > 1. Since (M(v), z) ∈ B(v), we
have that z < v. This implies that lj(M(v)) < v, for every j ∈ {1, . . . , i}. Since M(v)

is not a descendant of u, there are no back-edges of the form (M(v), z′) in B(u). In
particular, none of the back-edges (M(v), lj(M(v))), for j ∈ {1, . . . , i}, are in B(u).
But all of them are in B(v). Since i > 1, this implies that there are more that one
back-edges in B(v) \B(u), in contradiction to B(v) = B(u) ⊔ {e}. Thus we have that
e = (M(v), l1(M(v))).

Now suppose that there are vertices w and z, with w ̸= M(v), such that e = (w, z).
We can show that w is not a descendant of u, by using the same argument that we
used in order to show that M(v) is not a descendant of u. Furthermore, we can use
the same argument that we used before in order to show that z = l1(w). Now, since
e ∈ B(v) and w ̸= M(v), we have that w is a descendant of a child of M(v). Let us
suppose, for the sake of contradiction, that w is a descendant of the lowi child ofM(v),
for some i > 2. Then we have low(c1(M(v))) < v and low(c2(M(v))) < v. This implies
that there are back-edges e1 = (x1, y1) and e2 = (x2, y2), such that x1 is a descendant

85

of the low1 child of M(v), x2 is a descendant of the low2 child of M(v), and both y1

and y2 are proper ancestors of v. Thus, we have that e1, e2 ∈ B(v). But since none of
e1 and e2 can be e, by B(v) = B(u)⊔{e} we have that e1, e2 ∈ B(u). This implies that
M(u) is an ancestor of both x1 and x2, and therefore it is an ancestor of M(v). But
this contradicts the fact that M(v) is not a descendant of u. Thus we have that w is
a descendant of either c1(M(v)) or c2(M(v)).

Let us suppose that w is a descendant of c1(M(v)) (the other case is treated
similarly). Notice that there cannot be any back-edge of the form (M(v), z′) in B(v),
for this would imply the existence of at least two back-edges in B(v)\B(u). Thus, we
must have low(c2(M(v))) < v (for otherwise we would have that all back-edges that
leap over v have their higher endpoint in T (c1(M(v))), which would imply that M(v)

is a descendant of c1(M(v)), which is absurd). This means that there must exist at
least one back-edge (x, y) such that x is a descendant of c2(M(v)) and y is a proper
ancestor of v. Then (x, y) ∈ B(v) and (x, y) ̸= e, and so B(v) = B(u) ⊔ {e} implies
that (x, y) ∈ B(u). This implies that e must be the unique back-edge in B(v) whose
higher endpoint is a descendant of c1(M(v)), for otherwise we would have that M(u)

is an ancestor of both c1(M(v)) and c2(M(v)), which would imply that M(u) is an
ancestor of M(v), which would imply that M(v) is a descendant of u. Thus, we have
that w = Mlow1(v).

Now let (x, y) be a back-edge in B(u). Then B(v) = B(u) ⊔ {e} implies that
(x, y) ∈ B(v)\{e}, and so x cannot be a descendant of c1(M(v)). Thus x is a descendant
of ci(M(v)), for some i > 1. But we cannot have i ̸= 2, because this would imply that
M(u) is an ancestor of M(v). Thus, i = 2. Thus we have that x is a descendant of
Mlow2(v). Due to the generality of (x, y) ∈ B(u), this implies that M(u) is a descendant
of Mlow2(v). Conversely, let (x, y) be a back-edge in B(v) such that x is a descendant of
c2(M(v)). Then (x, y) ̸= e, and therefore B(v) = B(u)⊔ {e} implies that (x, y) ∈ B(u).
This implies that x is a descendant of M(u). Due to the generality of (x, y) ∈ B(v)

with the property that x is a descendant of c2(M(v)), this shows that Mlow2(v) is a
descendant of M(u). Thus we have M(u) = Mlow2(v).

Lemma 4.11. Let u and v be two vertices ̸= r such that v is a proper ancestor of u. If there
is a back-edge e such that B(v) = B(u)⊔ {e}, then u is the lowest element in M−1(M(u))

which is greater than v.

Proof. Let us suppose, for the sake of contradiction, that there is a vertex u′ with

86

M(u′) = M(u), which is greater than v and lower than u. Then M(u′) = M(u)

implies that B(u′) ⊆ B(u). Furthermore, since the graph is 3-edge-connected, we
have B(u′) ⊂ B(u). This means that there is a back-edge (x, y) ∈ B(u) \ B(u′). Then
x is a descendant of M(u), and therefore a descendant of u′. Thus, y cannot be a
proper ancestor of u′, for this would imply that (x, y) ∈ B(u′). But B(v) = B(u)⊔ {e}
implies that (x, y) ∈ B(v), and so y must be a proper ancestor of v, and therefore a
proper ancestor of u′, a contradiction. We conclude that u is the lowest element in
M−1(M(u)) which is greater than v.

First, let us consider the case that u is the lowest proper descendant of v with
M(u) = M̃(v). In this case, we have the following.

Lemma 4.12 (Case (1)). Let u be the lowest vertex in M−1(M̃(v)) that is greater than v.
Then there exists a back-edge e such that B(v) = B(u) ⊔ {e} if and only if: bcount(v) =
bcount(u) + 1, l2(M(v)) ≥ v, and either M(v) has no low2 child, or low(c2(M(v))) ≥ v.

Proof. (⇒) bcount(v) = bcount(u)+1 is an immediate consequence of B(v) = B(u)⊔{e}.
Furthermore, B(v) = B(u)⊔{e} implies that M(v) is an ancestor of M(u). But it can-
not be the case that M(v) = M(u) (for otherwise, v being an ancestor of u would
imply that B(v) is a subset of B(u)); thus, M(v) is a proper ancestor of M(u). Since
M(u) = M̃(v), this implies that there is no back-edge (x, y) with x a descendant of
a child c of M(v), with c ̸= c1(M(v)), and y a proper ancestor of v (otherwise, we
would have M̃(v) = M(v)). This means that low(c) ≥ v, for every child c of M(v) with
c ̸= c1(M(v)). In other words, either M(v) has no low2 child, or low(c2(M(v))) ≥ v.
This also means that there exists a back-edge ẽ = (M(v), l(M(v))). Obviously, ẽ = e,
since ẽ ∈ B(v)\B(u). Now, if we had l2(M(v)) < v, then there would exist a back-edge
e′ = (M(v), l2(M(v))) ̸= e. But then we would have e′ ∈ B(v) \ B(u), contradicting
B(v) = B(u) ⊔ {e}.
(⇐) Let (x, y) ∈ B(v). Since M(v) either has no low2 child, or low(c2(M(v))) ≥ v,
we have that x is either M(v) or a descendant of M̃(v). Let B̃(v) = {(x, y) ∈
B(v) | x is a descendant of M̃(v)}. Then we have B(v) = B̃(v) ⊔ {(M(v), z) |
(M(v), z) is a back-edge with z < v}. Now, if (x, y) ∈ B̃(v), then x is a descendant of
M̃(v), and therefore a descendant of M(u). Furthermore, y is a proper ancestor of
v, and therefore a proper ancestor of u. This means that B̃(v) ⊆ B(u). Now, since
l2(M(v)) ≥ v, there is at most one back-edge e = (M(v), z) with z < v (which thus
satisfies z = l(M(v))). But such a back-edge must necessarily exist, for otherwise we

87

would have B(v) = B̃(v) ⊆ B(u), contradicting bcount(v) = bcount(u) + 1. Now, since
B(v) = B̃(v) ⊔ {(M(v), z) | (M(v), z) is a back-edge with z < v} and |{(M(v), z) |
(M(v), z) is a back-edge with z < v}| = 1, we have B(v) = B̃(v) ⊔ {(M(v), l(M(v)))}.
And since B̃(v) ⊆ B(u) and bcount(v) = bcount(u) + 1, we conclude that B(v) =

B(u) ⊔ {(M(v), l(M(v)))}.

Now let us consider the case where u is the lowest proper descendant of v with
M(u) = Mlow1(v). If l(M(v)) < v, then we have that e = (M(v), l(M(v))), and M(u) =

M̃(v). Thus, this possibility is included in the previous case. So we may assume that
l(M(v)) ≥ v. In this case, we have the following.

Lemma 4.13 (Case (2)). Let l(M(v)) ≥ v, and let u be the lowest vertex in M−1(Mlow1(v))

that is greater than v. Then there exists a back-edge e such that B(v) = B(u) ⊔ {e} if and
only if: bcount(v) = bcount(u) + 1, low2(Mlow2(v)) ≥ v, and either M(v) has no low3
child, or low(c3(M(v))) ≥ v.

Proof. (⇒) bcount(v) = bcount(u)+1 is an immediate consequence of B(v) = B(u)⊔{e}.
Now, l(M(v)) ≥ v implies that every back-edge (x, y) ∈ B(v) has x ∈ T (c), where c

is a child of M(v). Let (x, y) be a back-edge in B(v) with x /∈ T (c1(M(v))). Then
(x, y) /∈ B(u), and therefore B(v) = B(u) ⊔ {e} implies that (x, y) = e. This means
that x ∈ T (c2(M(v))), low2(Mlow2(v)) ≥ v, and either M(v) has no low3 child, or
low(c3(M(v))) ≥ v.
(⇐) l(M(v)) ≥ v implies that every back-edge (x, y) ∈ B(v) has x ∈ T (c),
where c is a child of M(v). Furthermore, it implies that there exists at least one
back-edge (x, y) ∈ B(v) with x ∈ T (c2(M(v))). Now let Blow1(v) = {(x, y) ∈
B(v) | x is a descendant of c1(M(v))}. Then, since low2(Mlow2(v)) ≥ v, and either
M(v) has no low3 child, or low(c3(M(v))) ≥ v, we have that B(v) = Blow1(v) ⊔
{(Mlow2(v), l(Mlow2(v)))}. Since Mlow1(v) = M(u) and v < u, we have that Blow1(v) ⊆
B(u). Now, from B(v) = Blow1(v) ⊔ {(Mlow2(v), l(Mlow2(v)))}, Blow1(v) ⊆ B(u), and
bcount(v) = bcount(u)+1, we conclude that B(v) = B(u)⊔{(Mlow2(v), l(Mlow2(v)))}.

Finally, let us assume that we are in the case where u is the lowest proper descen-
dant of v withM(u) = Mlow2(v). If l(M(v)) < v, then we have that e = (M(v), l(M(v))).
Thus, since M(u) = Mlow2(v) and B(v) = B(u) ⊔ {e}, we have that all back-edges in
B(v) \ {e} stem from T (c2(M(v))), which is impossible (because this implies that
low(c1(M(v))) < v, and thus there is at least one back-edge in B(v) that stems from

88

T (c1(M(v)))). Thus, we may assume that l(M(v)) ≥ v. In this case, we have the
following.

Lemma 4.14 (Case (3)). Let l(M(v)) ≥ v, and let u be the lowest vertex in M−1(Mlow2(v))

which is strictly greater than v. Then there exists a back-edge e such that B(v) = B(u)⊔{e}
if and only if: bcount(v) = bcount(u) + 1, low2(Mlow1(v)) ≥ v, and either M(v) has no
low3 child, or low(c3(M(v))) ≥ v.

Proof. (⇒) bcount(v) = bcount(u)+1 is an immediate consequence of B(v) = B(u)⊔{e}.
Now, l(M(v)) ≥ v implies that every back-edge (x, y) ∈ B(v) has x ∈ T (c), where c

is a child of M(v). Let (x, y) be a back-edge in B(v) with x /∈ T (c2(M(v))). Then
(x, y) /∈ B(u), and therefore B(v) = B(u) ⊔ {e} implies that (x, y) = e. This means
that x ∈ T (c1(M(v))), low2(Mlow1(v)) ≥ v, and either M(v) has no low3 child, or
low(c3(M(v))) ≥ v.
(⇐) l(M(v)) ≥ v implies that every back-edge (x, y) ∈ B(v) has x ∈ T (c),
where c is a child of M(v). Furthermore, it implies that there exists at least one
back-edge (x, y) ∈ B(v) with x ∈ T (c1(M(v))). Now let Blow2(v) = {(x, y) ∈
B(v) | x is a descendant of c2(M(v))}. Then, since low2(Mlow1(v)) ≥ v, and either
M(v) has no low3 child, or low(c3(M(v))) ≥ v, we have that B(v) = Blow2(v) ⊔
{(Mlow1(v), l(Mlow1(v)))}. Since Mlow2(v) = M(u) and v < u, we have that Blow2(v) ⊆
B(u). Now, from B(v) = Blow2(v) ⊔ {(Mlow1(v), l(Mlow1(v)))}, Blow2(v) ⊆ B(u), and
bcount(v) = bcount(u)+1, we conclude that B(v) = B(u)⊔{(Mlow1(v), l(Mlow1(v)))}.

4.3.2.2 The lower case

Let u ̸= r be a vertex, and suppose that there is a proper ancestor v of u with v ̸= r

and a back-edge e such that B(u) = B(v) ⊔ {e}. Then, by Lemma 4.15 we have
that v is unique. Now, if such a v exists, by Lemma 4.16 we have that one of the
following holds (see also Figure 4.3): either (1) M(v) = M(u), or (2) M(v) = M̃(u),
or (3) M(v) = Mlow1(u). Furthermore, in either case we have e = (highD(u), high(u)).
Thus, there are three different cases to consider in order to find v (and e). In every
case, we rely on Lemma 4.17, which says that v is the greatest proper ancestor of u
in M−1(M(v)). Thus, we consider the three different cases x = M(u), x = M̃(u) and
x = Mlow1(u), and in each case we traverse the list M−1(x) in order to find the greatest
proper ancestor v of u (if it exists). Then we use Lemma 4.18 in order to verify that u
has indeed the desired property (it is sufficient to check only bcount(u) = bcount(v)+1,

89

since x is obviously a descendant of M(u)). Furthermore, in each case we provide
alternative and more easily computable characterizations of e. Notice that for the case
x = M(u) it is sufficient to check only v = nextM(u) (and so we do not have to traverse
the list M−1(x)), because only v = nextM(u) may have bcount(v) = bcount(u) − 1, as
demanded by the condition in Lemma 4.18.

This is basically the idea in order to find all 3-cuts of the form
{(u, p(u)), (v, p(v)), e}, where v is an ancestor of u, and e is a back-edge such that
B(u) = B(v) ⊔ {e}. However, this is not a linear-time procedure, since we may have
to traverse the lists M−1(x) an excessive number of times. In order to resolve this,
we can use a similar idea as in the “upper case”: that is, we process the vertices u in
a bottom-up fashion, and we introduce a variable currentVertex[x], for every vertex x,
which points to the greatest element in M−1(x) that is a proper ancestor of u (if it
exists), where u is the current vertex under process. The implementation of this idea
is shown in Algorithm 12.

1

𝑦 = 𝑙𝑜𝑤𝑀 𝑢 = 4

𝑝 𝑣 = 2

𝑣 = 𝑛𝑒𝑥𝑡𝑀 𝑢 = 3

𝑝 𝑢 = 5

𝑢 = 𝑀 𝑢 = 𝑀 𝑣 = 6

𝑒

(1)

𝑥 = 𝑙𝑜𝑤𝑀𝐷 𝑢 = 7

1

𝑦 = 4

𝑝 𝑣 = 2

𝑣 = 3

𝑝 𝑢 = 5

𝑢 = 𝑀 𝑢 = 𝑥 = 6

𝑒

(2)

෩𝑀 𝑢 = 𝑀 𝑣 = 7

1

𝑦 = 4

𝑝 𝑣 = 2

𝑣 = 3

𝑝 𝑢 = 5

𝑢 = 𝑀 𝑢 = 6

𝑒

(3)

𝑀 𝑣 = 𝑀𝑙𝑜𝑤1 𝑢 = 7 𝑥 = 𝑀𝑙𝑜𝑤2 𝑢 = 8

Figure 4.3: An illustration of the three cases for type-2 cuts {(u, p(u)), (v, p(v)), e}
(shown with red edges) where v is an ancestor of u, e is a back-edge, and B(u) =

B(v) ⊔ {e}. Vertices are numbered in DFS order and back-edges are shown directed
from descendant to ancestor in the DFS tree.

90

Algorithm 12: Find all 3-cuts {(u, p(u)), (v, p(v)), e}, where u is a descendant
of v and B(u) = B(v) ⊔ {e}, for a back-edge e.

1 // x = M(v)

2 // just check whether the condition in Lemma 4.18 is satisfied for

nextM(u)

3 if bcount(u) = bcount(nextM(u)) + 1 then
4 mark {(u, p(u)), (nextM(u), p(nextM(u))), (lowMD(u), lowM(u))} as a 3-cut
5 end
6 // x = M̃(u)

7 for u← n to u = 1 do
8 x← M̃(u)

9 if x = ⊥ then continue
10 let v be the greatest vertex in M−1(x) which is lower than u

11 // check the condition in Lemma 4.18

12 if bcount(u) = bcount(v) + 1 then
13 mark {(u, p(u)), (v, p(v)), (M(u), l(M(u)))} as a 3-cut
14 end

15 end
16 // x = Mlow1(u)

17 for u← n to u = 1 do
18 x←Mlow1(u)

19 if x = ⊥ then continue
20 let v be the greatest vertex in M−1(x) which is lower than u

21 // check the condition in Lemma 4.18

22 if bcount(u) = bcount(v) + 1 then
23 mark {(u, p(u)), (v, p(v)), (Mlow2(u), l(Mlow2(u)))} as a 3-cut
24 end

25 end

91

Lemma 4.15. Let u ̸= r be a vertex, and suppose that there is a proper ancestor v of u
with v ̸= r and a back-edge e such that B(u) = B(v) ⊔ {e}. Then v is unique with this
property.

Proof. Let us suppose, for the sake of contradiction, that there are two distinct proper
ancestors v and v′ of u, with v, v′ ̸= r, and two back-edges e and e′ (not necessarily
distinct), such that B(u) = B(v)⊔{e} and B(u) = B(v′)⊔{e′}. Then v and v′ are related
as ancestor and descendant, since they have a common descendant. Thus we may
assume, without loss of generality, that v′ is an ancestor of v. Let (x, y) be a back-
edge in B(v′). Then, y is a proper ancestor of v′, and therefore a proper ancestor
of v. Furthermore, B(u) = B(v′) ⊔ {e′} implies that B(v′) ⊆ B(u), and therefore
(x, y) ∈ B(u). Thus, x is a descendant of u, and therefore a descendant of v. This
shows that (x, y) ∈ B(v), and thus we have B(v′) ⊆ B(v). Now, since B(u) = B(v)⊔{e}
and B(u) = B(v′) ⊔ {e′}, we have B(v) ⊔ {e} = B(v′) ⊔ {e′}. Therefore, |B(v)| =
|B(v′)|. In conjunction with B(v′) ⊆ B(v), this implies that B(v) = B(v′) (and e = e′),
contradicting the fact that the graph is 3-edge-connected (see Proposition 3.1).

Lemma 4.16. Let u and v be two vertices ̸= r such that v is a proper ancestor of u with
B(u) = B(v)⊔{e}, for a back-edge e. Then, we have that either (1) M(v) = M(u), or (2)
M(v) = M̃(u), or (3) M(v) = Mlow1(u). In either case, e = (highD(u), high(u)).

Proof. Let (x1, y1), . . . , (xk, yk) be the back-edges in B(u) sorted in decreasing order
w.r.t. their lower endpoint. Suppose that (xi, yi) is in B(v) for some i ∈ {1, . . . , k}.
Then yi is a proper ancestor of v. This implies that yj is a proper ancestor of v, for
every j ∈ {i, . . . , k}. Thus, all the back-edges (xi, yi), . . . , (xk, yk) are in B(v), since all
of x1, . . . , xk are descendants of v. Now, B(u) = B(v)⊔{e} implies that only one back-
edge in B(u) is not in B(v). Thus, this must be (x1, y1). This shows that y1 = high(u).
Since (x1, y1) ∈ B(u) \B(v) and x1 is a descendant of v, we have that high(u) is not a
proper ancestor of v. Thus, (x1, y1) is the only back-edge of the form (x, high(u)) in
B(u), for otherwise we would have that there are at least two back-edges in B(u)\B(v),
in contradiction to B(u) = B(v) ⊔ {e}. This shows that (x1, y1) = (highD(u), high(u)).

Let us suppose first that x1 is a descendant of M(v). Let (x, y) be a back-edge
in B(v). Then B(u) = B(v) ⊔ {e} implies that (x, y) ∈ B(u), and therefore x is a
descendant of M(u). Due to the generality of (x, y) ∈ B(v), this shows that M(v) is
a descendant of M(u). Conversely, let (x, y) be a back-edge in B(u). Then B(u) =

B(v) ⊔ {e} implies that either (x, y) = e, or (x, y) ∈ B(v). Thus, by our supposition

92

we have that x is a descendant of M(v). Due to the generality of (x, y) ∈ B(u), this
implies that M(u) is a descendant of M(v), and so we have that M(v) = M(u).

Now let us suppose that x1 is not a descendant of M(v). Let (x, y) be a back-edge
in B(v). Then B(u) = B(v)⊔{e} implies that (x, y) ∈ B(u). Thus, x is a descendant of
M(u), and this shows that M(v) is a descendant of M(u). Since x1 is a descendant of
M(u), but not a descendant of M(v), we thus have that M(v) is a proper descendant
of M(u). Let us suppose that x1 = M(u). Then (x1, y1) is the unique back-edge of
the form (M(u), z) in B(u), for otherwise we would have that B(u) \B(v) contains at
least two back-edges. Now let (x, y) be a back-edge in B(v). Then B(u) = B(v) ⊔ {e}
implies that (x, y) ∈ B(u), and so x is a descendant of M(u). But x cannot coincide
with M(u), for otherwise we would have that M(v) is an ancestor of M(u). This
shows that x is a descendant of M̃(u), and so we have that M(v) is a descendant
of M̃(u). Conversely, let (x, y) be a back-edge in B(u) such that x ̸= M(u). Then we
have that (x, y) ̸= e, and so B(u) = B(v)⊔ {e} implies that (x, y) ∈ B(v). This implies
that x is a descendant of M(v). Due to the generality of (x, y) ∈ B(u) with x ̸= M(u),
we thus have that M̃(u) is a descendant of M(v). This shows that M(v) = M̃(u).

Finally, let us suppose that x1 is not a descendant of M(v) and x1 ̸= M(u). Let us
suppose, for the sake of contradiction, that there is a back-edge of the form (M(u), z)

in B(u). This implies that (M(u), z) ̸= e, and so B(u) = B(v) ⊔ {e} implies that
(M(u), z) ∈ B(v). But this implies that M(u) is a descendant of M(v), contradicting
the fact that M(v) is a proper descendant of M(u). This shows that there are no
back-edges of the form (M(u), z) in B(u). Thus we have that low(c2(M(u))) < u

(for otherwise we would have that all the back-edges that leap over u stem from
T (c1(M(u))), which would imply that M(u) is a descendant of c1(M(u)), which is
absurd). This means that there is an i > 1 and a back-edge (x, y) such that x is a
descendant of ci(M(u)) and y is a proper ancestor of u. Then we have that (x, y) ∈
B(u). Let us suppose, for the sake of contradiction, that (x, y) ̸= e. Then B(u) = B(v)⊔
{e} implies that (x, y) ∈ B(v), and so x is a descendant of M(v). Furthermore, y is a
proper ancestor of v, and thus low(ci(M(u))) < v. Since low(c2(M(u))) ≤ low(ci(M(u))),
we have that low(c1(M(u))) < v. Thus, there is a back-edge (x′, y′) such that x′ is a
descendant of c1(M(u)) and y′ < v. But this implies that (x′, y′) ∈ B(v), and so x′

is a descendant of M(v). Now we have that M(v) is an ancestor of a descendant
of c1(M(u)) (i.e., x), and an ancestor of a descendant of ci(M(u)) (i.e., x′), where
i ̸= 1. This implies that M(v) is an ancestor of M(u), a contradiction. Thus we have

93

shown that the only back-edge in B(u) whose higher endpoint is not a descendant
of c1(M(u)) is e. Since such a back-edge must necessarily exist (since there are no
back-edges of the form (M(u), z) in B(u)), we have that e stems from T (c2(M(u))).

Now let (x, y) be a back-edge in B(v). Then B(u) = B(v) ⊔ {e} implies that
(x, y) ∈ B(u) \ {e}. This implies that x is a descendant of c1(M(u)). Thus, since
(x, y) ∈ B(u), we have that x is a descendant of Mlow1(u). Due to the generality of
(x, y) ∈ B(v), this shows that M(v) is a descendant of Mlow1(u). Conversely, let (x, y)
be a back-edge in B(u) such that x is a descendant of c1(M(u)). Then we have that
(x, y) ̸= e, and so B(u) = B(v) ⊔ {e} implies that (x, y) ∈ B(v). This implies that x
is a descendant of M(v). Due to the generality of (x, y) ∈ B(u) with x a descendant
of c1(M(u)), this shows that Mlow1(u) is a descendant of M(v). We conclude that
M(v) = Mlow1(u).

Lemma 4.17. Let u and v be two vertices ̸= r such that v is a proper ancestor of u. If there
is a back-edge e such that B(u) = B(v)⊔{e}, then v is the greatest element in M−1(M(v))

which is lower than u.

Proof. Notice that B(u) = B(v)⊔{e} implies thatM(u) is an ancestor ofM(v). Now let
us suppose, for the sake of contradiction, that there is a vertex v′ with M(v′) = M(v)

which is greater than v and lower than u. Then M(v′) = M(v) implies that B(v) ⊆
B(v′). And since the graph is 3-edge-connected, we have B(v) ⊂ B(v′). This implies
that there is a back-edge (x, y) ∈ B(v′) \ B(v). Then we have that x is a descendant
of M(v′) = M(v), and therefore a descendant of M(u). Furthermore, y is a proper
ancestor of v′ and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u).
Then, B(u) = B(v) ⊔ {e} and (x, y) /∈ B(v) implies that (x, y) = e. Notice that the
previous argument also shows that B(v′) ⊆ B(u). And since the graph is 3-edge-
connected, we have B(v′) ⊂ B(u). Thus, there is a back-edge e′ ∈ B(u) \ B(v′). Since
e ∈ B(u)∩B(v′), we have that e′ ̸= e. Thus, B(u) = B(v)⊔ {e} implies that e′ ∈ B(v).
But then B(v) ⊂ B(v′) implies that e ∈ B(v′), a contradiction. Thus we have that v is
the greatest element in M−1(M(v)) which is lower than u.

Lemma 4.18. Let u and v be two vertices ̸= r such that v is a proper ancestor of u. Then
there is a back-edge e such that B(u) = B(v) ⊔ {e} if and only if M(v) is a descendant of
M(u) and bcount(u) = bcount(v) + 1.

94

Proof. (⇒) bcount(u) = bcount(v)+1 is an immediate consequence of B(u) = B(v)⊔{e}.
Now let (x, y) be a back-edge in B(v). Then B(u) = B(v) ⊔ {e} implies that (x, y) ∈
B(u), and so x is a descendant of M(u). Due to the generality of (x, y) ∈ B(v), this
shows that M(v) is a descendant of M(u).

(⇐) Let (x, y) be a back-edge in B(v). Then x is a descendant of M(v), and
therefore a descendant ofM(u). Furthermore, y is a proper ancestor of v, and therefore
a proper ancestor of u. This shows that (x, y) ∈ B(u), and so we have B(v) ⊆ B(u).
Now bcount(u) = bcount(v) + 1 implies that there is a back-edge e such that B(u) =

B(v) ⊔ {e}.

Now we provide different formulations for the back-edge e that satisfies B(u) =

B(v)⊔{e}, which we can use instead of (highD(u), high(u)). According to Lemma 4.16,
there are three cases to consider: either M(v) = M(u), or M(v) = M̃(u), or M(v) =

Mlow1(u). In the case where M(v) = M(u), since B(u) = B(v) ⊔ {e} we have v =

nextM(u). Thus, since e is the unique back-edge in B(u) \B(v), we have that e must
coincide with (lowMD(u), lowM(u)). This explains Line 4 of Algorithm 12. Now let us
consider the case whereM(v) = M̃(u). Let us assume that M̃(u) ̸= M(u), for otherwise
we are back in the previous case. Then M̃(u) ̸= M(u) implies that there is a back-edge
of the form (M(u), z), with z < u. Then, since B(u) = B(v)⊔{e}, this is the only back-
edge of this form, and it coincides with e. Thus, e = (M(u), l(M(u))). This explains
Line 13 of Algorithm 12. Finally, let us consider the case where M(v) = Mlow1(u). Let
us assume that Mlow1(u) ̸= M̃(u), for otherwise we are in the previous case. Then,
since only one back-edge in B(u) is not in B(v), this must stem from the subtree
of the low2 child of M(u), and thus it coincides with (Mlow2(u), l(Mlow2(u))). This
explains Line 23 of Algorithm 12.

4.3.3 Computing Type‐3 3‐cuts

In order to compute the Type-3 3-cuts, we use the idea described in [50], for reducing
this case to the previous two types of 3-cuts. This idea works as follows. First, we
remove all the tree-edges from the graph, and we compute the connected components.
Then we contract every one of those components into a single node, and we simply
recurse the computation of 3-cuts to the quotient graph. The proof of correctness and
overall linear complexity follows from Lemma 5.26.

95

4.4 Computing the 4‐edge‐connected components

Now we consider how to compute the 4-edge-connected components of an undirected
graph G in linear time. First, we reduce this problem to the computation of the 4-
edge-connected components of a collection of auxiliary 3-edge-connected graphs.

4.4.1 Reducing the computation to 3‐edge‐connected graphs

Given an undirected graph G, we execute the following steps:

1. Compute the connected components of G.

2. For each connected component, compute its 2-edge-connected components
(which are also 2-edge-connected components of G).

3. For each 2-edge-connected component, compute its 3-edge-connected compo-
nents C1, . . . , Cℓ.

4. For each 3-edge-connected component Ci, compute a 3-edge-connected auxiliary
graph Hi, such that for any two vertices x and y of G, we have that x and y are
k-edge-connected in G, for k ≥ 3, if and only if there is an i′ ∈ {1, . . . , t} such
that x and y are both vertices of Hi′ and they are k-edge-connected in Hi′.

5. Finally, compute the 4-edge-connected components of each Hi.

Steps 1–3 take overall linear time [63, 67]. We describe step 5 in the next section, so
it remains to give the details of step 4. In order to perform this step efficiently, we rely
on a construction described by Dinitz [21]. Let H be a 2-edge-connected component
(subgraph) of G. We can construct a compact representation of the 2-cuts of H , which
allows us to compute its 3-edge-connected components C1, . . . , Cℓ in linear time [67].
Now, since the collection {C1, . . . , Cℓ} constitutes a partition of the vertex set of H , we
can form the quotient graph Q of H by shrinking each Ci into a single node. Graph
Q has the structure of a tree of cycles [21]; in other words, Q is connected and every
edge of Q belongs to a unique cycle. Let (Ci, Cj) and (Ci, Ck) be two edges of Q which
belong to the same cycle. Then (Ci, Cj) and (Ci, Ck) correspond to two edges (x, y)

and (x′, y′) of G, with x, x′ ∈ Ci, y ∈ Cj and y′ ∈ Ck. If x ̸= x′, then we add a virtual
edge (x, x′) to G[Ci]. (The idea is to attach (x, x′) to G[Ci] as a substitute for the cycle
of Q that contains (Ci, Cj) and (Ci, Ck).) Now let Ci be the graph G[Ci] plus all those

96

virtual edges. Then Ci is 3-edge-connected and its k-edge-connected components, for
k ≥ 3, are precisely those of G that are contained in Ci [21]. Thus we can compute the
4-edge-connected components of G by computing the 4-edge-connected components
of the graphs C1, . . . , Cℓ (which can easily be constructed in total linear time). Since
every Ci is 3-edge-connected, we can apply Algorithm 13 of the following section in
order to compute its 4-edge-connected components in linear time.

4.4.2 Splitting a 3‐edge‐connected graph according to its 3‐cuts

Now we describe how to compute the 4-edge-connected components of a 3-edge-
connected graph G in linear time. Let r be any fixed vertex of G, and let C be
a minimum cut of G. By removing C from G, G becomes disconnected into two
connected components. We let VC denote the connected component of G\C that does
not contain r, and we refer to the number of vertices of VC as the r-size of the cut C.
(Notice that these notions are relative to r.)

Let G = (V,E) be a 3-edge-connected graph, and let C be the collection of the
3-cuts of G. If the collection C is empty, then G is 4-edge-connected, and V is the
only 4-edge-connected component of G. Otherwise, let C ∈ C be a 3-cut of G. By
removing C from G, G is separated into two connected components, and every 4-
edge-connected component of G lies entirely within a connected component of G\C.
This observation suggests a recursive algorithm for computing the 4-edge-connected
components of G, by successively splitting G into smaller graphs according to its
3-cuts. Thus, we start with a 3-cut C of G, and we perform the splitting operation
shown in Figure 4.4. Then we take another 3-cut C ′ of G and we perform the same
splitting operation on the part which contains (the corresponding 3-cut of) C ′. We
repeat this procedure until we have considered every 3-cut of G. When no more
splits are possible, the connected components of the final split graph correspond (by
ignoring the newly introduced vertices) to the 4-edge-connected components of G.

To implement this procedure in linear time, we must take care of two things. First,
whenever we consider a 3-cut C of G, we have to be able to know which ends of the
edges of C belong to the same connected component of G \ C. And second, since an
edge e of a 3-cut of the original graph may correspond to two virtual edges of the
split graph, we have to be able to know which is the virtual edge that corresponds
to e. We tackle both these problems by locating the 3-cuts of G on a DFS tree T of G

97

G

C

splitx1
x2
x3

y1
y2
y3

x1
x2
x3

y1

y3

y2

y x

G1 G2

Figure 4.4: C = {(x1, y1), (x2, y2), (x3, y3)} is a 3-cut of G, with {x1, x2, x3} and
{y1, y2, y3} lying in different connected components of G \ C. The split operation
of G at C consists of the removal of the edges of C from G, and the introduction of
two new nodes x, y, and six virtual edges (x1, y), (x2, y), (x3, y), (x, y1), (x, y2), (x, y3).
Now the split graph is made of two connected components, G1 and G2. Every 3-cut
C ′ ̸= C of G (or more precisely: a 3-cut that corresponds to C ′) lies entirely within G1

or G2. Conversely, every 3-cut of either G1 or G2 corresponds to a 3-cut of G. Thus,
every 4-edge-connected component of G lies entirely within G1 or G2.

rooted at r, and by processing them in increasing order with respect to their r-size.
By locating a 3-cut C ∈ C on T we can answer in O(1) time which ends of the edges
of C belong to the same connected component of G \C. And then, by processing the
3-cuts of G in increasing order with respect to their size, we ensure that (the 3-cut
that corresponds to) a 3-cut C ∈ C that we process lies in the split part of G that
contains r.

Now, due to the analysis in the preceding sections, we can distinguish the following
types of 3-cuts on a DFS tree T (see also Figure 4.1):

• (I) {(v, p(v)), (x1, y1), (x2, y2)}, where (x1, y1) and (x2, y2) are back-edges.

• (IIa) {(u, p(u)), (v, p(v)), (x, y)}, where u is a descendant of v and (x, y) ∈ B(v).

• (IIb) {(u, p(u)), (v, p(v)), (x, y)}, where u is a descendant of v and (x, y) ∈ B(u).

• (III) {(u, p(u)), (v, p(v)), (w, p(w))}, where w is an ancestor of both u and v, but
u, v are not related as ancestor and descendant.

98

• (IV) {(u, p(u)), (v, p(v)), (w, p(w))}, where u is a descendant of v and v is a
descendant of w.

Let r be the root of T . Then, for every 3-cut C ∈ C, VC is either T (v), or T (v) \ T (u),
or T (w)\ (T (u)∪T (v)), or T (u)∪ (T (w)\T (v)), depending on whether C is of type (I),
(II), (III), or (IV), respectively. Thus we can immediately calculate the size of C and
the endpoints of its edges that lie in VC . In particular, the size of C is either ND(v), or
ND(v)−ND(u), or ND(w)−ND(u)−ND(v), or ND(u)+ND(w)−ND(v), depending on
whether it is of type (I), (II), (III), or (IV), respectively; VC contains either {v, x1, x2},
or {p(u), v, x}, or {p(u), v, y}, or {p(u), p(v), w}, or {u, p(v), w}, depending on whether
C is of type (I), (IIa), (IIb), (III), or (IV), respectively.

Algorithm 13 shows how we can compute the 4-edge-connected components of
G in linear time, by repeatedly splitting G into smaller graphs according to its 3-
cuts. When we process a 3-cut C of G, we have to find the edges of the split graph
that correspond to those of C , in order to delete them and replace them with (new)
virtual edges. That is why we use the symbol v′, for a vertex v ∈ V , to denote a
vertex that corresponds to v in the split graph. (Initially, we set v′ ← v.) Now, if
(x, y) is an edge of C with x ∈ VC , the edge of the split graph corresponding to
(x, y) is (x′, y′). Then we add two new vertices vC and ṽC to G, and the virtual edges
(x′, ṽC) and (vC , y

′). Finally, we let x correspond to vC , and so we set x′ ← vC . This
is sufficient, since we process the 3-cuts of G in increasing order with respect to their
r-size, and so the next time we meet the edge (x, y) in a 3-cut, we can be certain
that it corresponds to (vC , y

′). The correctness of this procedure is established with
the same argument as Proposition 5.5, and it relies on the fact that the collection of
3-cuts of a 3-edge-connected graph is a parallel family of 3-cuts [24].

4.5 Testing 4‐edge connectivity

In order to check whether a graph is 4-edge-connected, we first apply any of the
known linear-time algorithms for testing 3-edge-connectivity (e.g., [63, 67]). Thus,
let us assume that the graph is 3-edge-connected. Then we only have to check whether
the graph has a 3-cut. To do this, we use a DFS-tree as in the previous sections. The
cases of Type-1 and Type-3 3-cuts are the easiest ones: the computation of Type-
1 3-cuts is in-itself simple, and that of the Type-3 3-cuts can be easily reduced to

99

Algorithm 13: Compute the 4-edge-connected components of a 3-edge-
connected graph G = (V,E)

1 Find the collection C of the 3-cuts of G
2 Locate and classify the 3-cuts of G on a DFS tree of G rooted at r
3 For every C ∈ C, calculate size(C) (relative to r)
4 Sort C in increasing order w.r.t. the size of its elements
5 foreach v ∈ V do Set v′ ← v

6 foreach C = {(x1, y1), (x2, y2), (x3, y3)} ∈ C do
7 Find the ends of the edges of C that lie in VC // Let those ends be x1,x2

and x3

8 Remove the edges (x′
1, y

′
1),(x′

2, y
′
2),(x′

3, y
′
3) from G

9 Introduce two new vertices vC and ṽC to G

10 Add the edges (x′
1, ṽC),(x′

2, ṽC),(x′
3, ṽC),(vC , y′1),(vC , y′2),(vC , y′3) to G

11 Set x′
1 ← vC , x′

2 ← vC , x′
3 ← vC

12 end
13 Output the connected components of G, ignoring the newly introduced

vertices

the previous two cases. Thus, we only have to provide an algorithm that checks the
existence of a Type-2 3-cut. Here, again, we distinguish between the upper and the
lower case, and we discuss how to handle each in Sections 4.5.1 and 4.5.2, respectively.

4.5.1 The upper case

Here we provide a method to determine whether there exist vertices u, v and a back-
edge e, such that u is a descendant of v and B(v) = B(u)⊔{e}. We have the following:

Lemma 4.19. Let u, v be two vertices (̸= r) such that u is a descendant of v with
B(v) = B(u) ⊔ {e}, for a back-edge e. Then the nearest ancestor w of u with bcount(w) =
bcount(u) + 1 satisfies B(w) = B(u) ⊔ {e′}, for a back-edge e′.

Proof. Let w be the nearest ancestor of u with bcount(w) = bcount(u) + 1. (w exists
since v is an ancestor of u with bcount(v) = bcount(u) + 1; furthermore, we have that
w is a descendant of v.) Let (x, y) be a back-edge in B(u). Then B(v) = B(u) ⊔ {e}
implies that (x, y) ∈ B(v). Now, (x, y) ∈ B(u) implies that x is a descendant of u,

100

and therefore it is a descendant of w. Furthermore, (x, y) ∈ B(v) implies that y is
a proper ancestor of v, and therefore it is a proper ancestor of w. This means that
(x, y) ∈ B(w), and so we have B(u) ⊆ B(w). Now bcount(w) = bcount(u) + 1 implies
that there exists a back-edge e′ such that B(w) = B(u) ⊔ {e′}.

Thus we may proceed as follows. According to Lemma 4.19, we only need to
find, for every vertex u ̸= r, the nearest ancestor v of u that satisfies bcount(v) =

bcount(u) + 1 (if it exists). Then we may use Lemma 3.11 in order to check whether
B(v) = B(u)⊔{e}, for a back-edge e. Now, to perform this search efficiently, for every
vertex v ̸= r we find all descendants u of v for which v is the nearest ancestor with
bcount(v) = bcount(u)+ 1. Thus we need to have fast access to the vertices that have a
specific number of leaping back-edges, and so we keep in a stack stack[k] all vertices
u we have encountered that have bcount(u) = k. (We need as many such stacks as
there are edges in the graph.)

Now we process all vertices in a bottom-up fashion. For every vertex v ̸= r that
we process, we push v in stack[bcount(v)]. (This means that the vertices in every stack
stack[k] are popped out in increasing order.) Then we pop out every element u of
stack[bcount(v)− 1], as long as it is a descendant of v, which is the case if and only if
u < v + ND(v). (If we meet a u that is not a descendant of v, then this means that
u ≥ v+ND(v), and so no subsequent element in stack[bcount(v)−1] is a descendant of
v.) This ensures that v is the greatest ancestor of u that has bcount(v) = bcount(u)+ 1.
(And conversely: for every vertex u, this process ensures that we will eventually find
the greatest ancestor v of u that has bcount(v) = bcount(u) + 1, if it exists.) Then we
check whether B(v) = B(u)⊔{e}, for a back-edge e, using the leftmost and rightmost
points of v, according to Lemma 3.11. The implementation of this idea is shown in
Algorithm 14.

4.5.2 The lower case

Here we provide a method to determine whether there exist vertices u, v and a back-
edge e, such that u is a descendant of v and B(u) = B(v)⊔{e}. We have the following.

Lemma 4.20. Let u, v be two vertices (̸= r) such that u is a descendant of v and
B(u) = B(v)⊔{e}, for a back-edge e. Then v is the nearest ancestor of u with bcount(v) =
bcount(u)− 1.

101

Algorithm 14: Check whether there exists a 3-cut of the form
{(u, p(u)), (v, p(v)), e}, for a back-edge e, where u is a descendant of v and
B(v) = B(u) ⊔ {e}

1 initialize an array stack of empty stacks, of size m

2 for v ← n to 2 do
3 stack[bcount(v)].push(v)
4 while stack[bcount(v)− 1].top() is a descendant of v do
5 u← stack[bcount(v)− 1].pop()
6 if L1(v) /∈ T (u) and L2(v) ∈ T (u) and R1(v) ∈ T (u) then
7 return true // the graph is not 4-edge-connected

8 end
9 if R1(v) /∈ T (u) and R2(v) ∈ T (u) and L1(v) ∈ T (u) then
10 return true // the graph is not 4-edge-connected

11 end

12 end

13 end
14 return false

Proof. bcount(v) = bcount(u) − 1 is an immediate consequence of B(u) = B(v) ⊔ {e}.
Now suppose, for the sake of contradiction, that there exists an ancestor w of u such
that bcount(w) = bcount(u) − 1 and w is a proper descendant of v. Let (x, y) be a
back-edge in B(v). Then we have (x, y) ∈ B(u). This implies that x is a descendant
of u, and therefore a descendant of w. Furthermore, since y < v and v < w, we
have that y is a proper ancestor of w. This shows that (x, y) ∈ B(w). Thus, all the
back-edges from B(u) \ {e} are in B(w). Since bcount(w) = bcount(u)− 1, this means
that B(w) = B(u) \ {e}. Thus we have B(w) = B(v), contradicting the fact that the
graph is 3-edge-connected.

Lemma 4.21. Let u, v be two vertices (̸= r) such that v is an ancestor of u with bcount(v) =
bcount(u)− 1. Then B(u) = B(v) ⊔ {e}, for a back-edge e, if and only if B(v) ⊆ B(u).

Proof. The equivalence is obvious.

Thus we may proceed as follows. According to Lemma 4.20, it is sufficient to find,
for every u ̸= r, the nearest ancestor v of u that has bcount(v) = bcount(u) − 1 (if it

102

exists). Then, according to Lemma 4.21, we only have to check whether B(v) ⊆ B(u).
Now, to perform this search efficiently, for every vertex v ̸= r we find all descendants
u of v for which v is the nearest ancestor with bcount(u) = bcount(v) + 1. Thus we
need to have fast access to the vertices that have a specific number of leaping back-
edges, and so we keep in a stack stack[k] all vertices u we have encountered that have
bcount(u) = k. (We need as many such stacks as there are edges in the graph.)

Now the idea is the same as in Algorithm 14 that we used for the upper case.
Thus, we process all vertices in a bottom-up fashion. For every vertex v ̸= r that we
process, we push v in stack[bcount(v)]. (This means that the vertices in every stack
stack[k] are popped out in increasing order.) Then we pop out every element u of
stack[bcount(v) + 1], as long as it is a descendant of v, which is the case if and only if
u < v + ND(v). (If we meet a u that is not a descendant of v, then this means that
u ≥ v+ND(v), and so no subsequent element in stack[bcount(v)+1] is a descendant of
v.) Then we simply check whether B(v) ⊆ B(u) by using the leftmost and rightmost
points of v, according to Lemma 3.10. The implementation of this idea is shown in
Algorithm 15.

Algorithm 15: Check whether there exists a 3-cut of the form
{(u, p(u)), (v, p(v)), e}, for a back-edge e, where u is a descendant of v and
B(u) = B(v) ⊔ {e}

1 initialize an array stack of empty stacks, of size m

2 for v ← n to 2 do
3 stack[bcount(v)].push(v)
4 while stack[bcount(v) + 1].top() is a descendant of v do
5 u← stack[bcount(v) + 1].pop()
6 if L1(v) ∈ T (u) and R1(v) ∈ T (u) then
7 return true // the graph is not 4-edge-connected

8 end

9 end

10 end
11 return false

103

CHAPTER 5

COMPUTING THE 5-EDGE-CONNECTED
COMPONENTS

5.1 Introduction

5.2 Properties of 4‐cuts in 3‐edge‐connected graphs

5.3 Using a DFS‐tree for some problems concerning 4‐cuts

5.4 Computing the 5‐edge‐connected components

5.5 Computing a complete collection of 4‐cuts

5.6 Computing Type‐2 4‐cuts

5.7 Computing Type‐3α 4‐cuts

5.8 Computing Type‐3β 4‐cuts

5.1 Introduction

5.1.1 Problem definition

Let G = (V,E) be an undirected multigraph. We say that two vertices x and y of
G are k-edge-connected if we have to remove at least k edges from G in order to
destroy all paths from x to y. In general, a set of k edges with the property that its
removal from G disconnects at least one pair of vertices, is called a k-edge cut of
G. Equivalently, by Menger’s theorem we have that x and y are k-edge-connected if

104

there are at least k edge-disjoint paths from x to y (see, e.g., [52]). We denote this
condition at x ≡k y. It is easy to see that ≡k is an equivalence relation on V . The
equivalence classes of ≡k are called the k-edge-connected components of G.

Determining the k-edge-connectivity relation is a fundamental graph connectivity
problem. The case k = 1 coincides with the computation of the connected components,
and can be solved easily with a standard graph traversal (like BFS or DFS). For k = 2,
Tarjan [63] provided a linear-time algorithm, that essentially finds all the bridges of
the graph. The case k = 3 was initially solved in linear time through the reduction
of Galil and Italiano [34] from the triconnectivity algorithm of Hopcroft and Tarjan
[45]. Afterwards, more linear-time algorithms were developed for k = 3, that did not
rely on this reduction and were much simpler (see e.g., [52, 67]). Relatively recently,
linear-time algorithms for the case k = 4 were presented [36, 50]. Although we are
not aware of any specific application of the case k = 5 (or beyond), it is not known
if we can compute the k-edge-connected components in linear time for k ≥ 5 (not
even with randomized algorithms), and this seems to be an intriguing problem. Thus,
considering the case k = 5 seems to be the natural next step in order to determine
whether this computation is possible in linear time for general fixed k.

5.1.2 Related work

The best time bounds that we have for computing the 5-edge-connected components
are almost linear, and they are derived from solutions of more general versions of the
problem that we consider. Specifically, Dinitz and Nossenson [23] have provided an
algorithm for maintaining the relation of 5-edge-connectivity in incremental graphs.
More precisely, starting from an empty graph, they show how to process a sequence
of n insertions of vertices and m insertions of edges in O(m + n log2 n) time in total,
so that, at any point in this sequence, we can answer 5-edge-connectivity queries for
pairs of vertices in constant time. Since the relation of 5-edge-connectivity with this
algorithm is essentially maintained with the use of a disjoint-set union data structure
(DSU), we can use this incremental algorithm in order to report the 5-edge-connected
components of a graph G, after we have started from the empty graph and we have
inserted from the beginning all the edges of G. Thus, we have an O(m + n log2 n)-
time algorithm for computing the 5-edge-connected components. Since this comes
from an incremental algorithm, it is reasonable to expect that this computation can

105

be performed even faster on a static graph. It seems difficult to achieve this from
the work of Dinitz and Nossenson for the following reasons. First, this comes from
an extended abstract, but we were not able to find the journal version that would
contain the full details. And second, this algorithm relies on the 2-level cactus of
the (minimum + 1)-cuts [24], which is quite involved, and we do not know how to
construct it in linear time. Instead, we start anew the analysis of the structure of
4-cuts in 3-edge-connected graphs, that enables us to compute enough of them in
linear time, so that we can derive the 5-edge-connected components.

We note that the problem of maintaining the k-edge-connectivity relation in dy-
namic graphs is a problem that has received a lot of attention. First, for the case
k ∈ {2, 3} there are optimal and almost optimal solutions for incremental graphs,
that process a sequence of n vertex insertions and m edge insertions and queries
in O(n + mα(m,n)) time, where α is an inverse of Ackermann’s function (see
[69, 35, 59, 58]). For k = 4, Dinitz and Westbrook [25] presented an algorithm that
processes a sequence of n vertex insertions and m edge insertions in O(m + n logn)
time, so that, in the meantime, we can answer 4-edge-connectivity queries in con-
stant time. Very recently, Jin and Sun [46] presented a deterministic algorithm for
answering k-edge-connectivity queries in a fully dynamic graph in no(1) worst case
update and query time for any positive integer k = (logn)o(1) for a graph with n

vertices. This is a very remarkable result, but it is highly complicated, and it does not
seem to provide an algorithm for computing the k-edge-connected components in,
say, O(n · no(1)) time, because it only computes the answer to the queries in response
to them, without maintaining explicitly the k-edge-connected components (as do the
algorithms e.g. in [69, 35, 59, 25]). However, this result, since it applies to fully dy-
namic graphs, makes it seem reasonable that the k-edge-connected components can
be computed in (almost) linear time, for general fixed k.

Another route for computing the k-edge-connected components is given by
Gomory-Hu trees [39]. A Gomory-Hu tree of a graph G is a weighted tree on the same
vertex set as G, with the property that (1) the minimum weight of an edge on the
tree-path that connects any two vertices x and y coincides with the edge-connectivity
of x and y in G, and (2) by taking the connected components of the tree after remov-
ing such an edge we get a minimum cut of G that separates x and y. Thus, given a
Gomory-Hu tree, we can easily compute the k-edge-connected components in linear
time, for any fixed k, by simply removing all edges with weight less than k from the

106

tree, and then gathering the connected components. However, the computation of the
Gomory-Hu tree itself is very demanding. The original algorithm of Gomory and Hu
can take as much as Ω(mn) time for a graph with m edges and n vertices. In a recent
breakthrough, Abboud et al. [2] provided a randomized Monte Carlo construction of
Gomory-Hu trees that takes Õ(n2)1 time in general weighted graphs with n vertices.
Furthermore, using the recentm1+o(1)-time max-flow algorithm of Chen et al. [17], Ab-
boud et al. [2] provide a randomized Monte Carlo algorithm that runs in m1+o(1) time
in unweighted graphs with m edges. More recently, Abboud et al. [4] extended this
result to weighted graphs, and provided an m1+o(1)-time construction of a Gomory-Hu
tree. Thus, we can compute the k-edge-connected components of a graph, for any
fixed k, with a randomized Monte Carlo algorithm in m1+o(1) time. For our purposes,
it seems more fitting to use a partial Gomory-Hu tree, introduced by Hariharan et
al. [41]. This has the same properties as a general Gomory-Hu tree (i.e., (1) and (2)),
but it captures the k-edge-connectivity relation only up to a bounded k. Hariharan et
al. [41] showed how to compute a partial Gomory-Hu tree, for edge-connectivity up
to a fixed k, in expected O(m+ kn logn) time. Thus, we get an algorithm of expected
O(m+ kn logn) time for computing the k-edge-connected components, for any fixed
k.

From this general overview of the history of this subject (which omits several
other related advances, such as determining the vertex-connectivity relation [54], or
computing the k-edge-connected components in directed graphs [37]), we can see that
determining various notions of edge-connectivity is an area of active interest. However,
the precise computation of the k-edge-connectivity relation in linear time, for general
fixed k, is still an elusive open problem, that demands a deeper understanding of the
structure of cuts in undirected graphs.

5.1.3 Our contribution

Here we present a deterministic linear-time algorithm for computing the 5-edge-
connected components of an undirected multigraph. This result relies on a novel
analysis of the structure of 4-cuts in 3-edge-connected graphs. This analysis is crucial
in order to guide us to a selection of enough 4-cuts that can provide the partition
of the 5-edge-connected components. The second half of this work is devoted to

1The Õ notation hides polylogarithmic factors.

107

the development of a linear-time algorithm that computes a compact representation
of all 4-cuts of a 3-edge-connected graph. (The precise meaning of this term will
be given in the Technical Overview, in the following section.) The state of the art
in deterministically computing even a single 4-cut is the algorithm of Gabow [32]
that runs in O(m + n logn) time in a graph with n vertices and m edges. Thus, we
present the first deterministic algorithm that computes a 4-cut of a graph, and tests
the 5-edge-connectivity in linear time.

In addition to computing the 5-edge-connected components, we also provide a
linear-time construction of an oracle that can answer in constant time queries of the
form “given two vertices x and y, report a 4-cut that separates x and y, or determine
that no such 4-cut exists” (see Corollary 5.11). In essence, we provide a data structure
that retains the full functionality of a partial Gomory-Hu tree for 5-edge-connectivity.

An indispensable tool in our analysis is the concept of the essential 4-cuts. These
are the 4-cuts that separate at least one pair of vertices that are 4-edge-connected.
We do not know if this concept (or its generalization) has been used before in the
literature, but it is reasonable to care about the essential 4-cuts when we want to
compute the relation of 5-edge-connectivity. In fact, by retaining only the essential 4-
cuts in the end, we have some convenient properties that enable us to derive efficiently
the partition of the 5-edge-connected components. We show how to process a graph
in linear time, so that we can check the essentiality of any given 4-cut in constant
time. This relies on an oracle for answering connectivity queries in the presence of at
most four edge-failures (see Proposition 6.1).

Finally, we note that our algorithm for computing the 5-edge-connected compo-
nents, although it is quite extensive and broken up into several pieces, has an almost
linear-time implementation with the use of elementary data structures. Specifically,
the only sophisticated data structures that we use in order to achieve linear time are
the DSU data structure of Gabow and Tarjan [33], and any linear-time algorithm for
answering off-line NCA queries (e.g., [40] or [12]). We note that, in particular, the
DSU data structure of Gabow and Tarjan utilizes the power of the RAM model of
computation. Thus, it is still an open question whether the computation of the 5-edge-
connected components can be performed in linear time without using the power of
the RAM model. For practical purposes, however, there are implementations for those
data structures that run in almost linear time, with an overhead of only an inverse of
Ackermann’s function [64]. Thus, in practice, one could use those implementations

108

for our algorithm, in order to achieve almost-linear time.

5.1.4 Technical overview

First, let us recall some definitions from Chapter 2. In this chapter, all graphs consid-
ered are undirected multigraphs. It is convenient to consider only edge-minimal cuts.
Thus, whenever we consider a k-edge cut C of a connected graph G, we assume that
C is minimal w.r.t. the property that G \ C is disconnected. For simplicity, we call
C a k-cut of G. If two vertices x and y belong to different connected components of
G \ C , then we say that C separates x and y. Notice that two vertices of G are 5-
edge-connected if and only if there is no k-cut that separates them, for any k ≤ 4. A
k-cut that separates at least one pair of k-edge-connected vertices is called an essential
k-cut.

There is a duality between cuts of G and bipartitions of V (G). (V (G) denotes
the vertex set of G.) Specifically, if C is a cut of G and X,Y are the connected
components of G \C , then we have EG[X,Y] = C (where EG[X,Y] = {(x, y) ∈ E(G) |
x ∈ X and y ∈ Y }). Thus, we can view C either as a set of edges, or as the bipartition
{X,Y } of V (G). X and Y are also called the sides of C. If X is a subset of V (G), then
we denote EG[X,V (G) \X] as ∂(X). If r is a vertex of G, and X is the side of a cut
C of G that does not contain r, then we call |X| the r-size of C.

Let C and C ′ be two cuts of G, with sides X,Y and X ′, Y ′, respectively. If at least
one of the intersections X ∩X ′, X ∩ Y ′, Y ∩X ′ or Y ∩ Y ′ is empty, then we say that
C and C ′ are parallel. A collection C of cuts of G that are pairwise parallel is called a
parallel family of cuts of G. It is a known fact that a parallel family of cuts of a graph
with n vertices contains at most O(n) cuts (see, e.g., [24]).

If P is a collection of partitions of a set V , then we let atoms(P) denote the partition
of V that is given by the mutual refinement of all partitions in P. In other words,
atoms(P) is defined by the property that two elements x and y of V belong to two
different sets in atoms(P) if and only if there is a partition P ∈ P such that x and
y belong to different sets in P . This terminology is convenient for the following
reason. Let Ckcuts denote the collection of all k-cuts of a connected graph G, for every
k ≥ 1. Then the partition of the 5-edge-connected components of G is given by
atoms(C1cuts ∪ C2cuts ∪ C3cuts ∪ C4cuts).

In Section 5.3 we provide the following results. First, we show that, given a graph

109

G and a vertex r of G, there is a linear-time preprocessing of G such that we can
report the r-size of any 4-cut of G in O(1) time (see Lemma 5.22). Second, there is a
linear-time preprocessing of G such that, given a 4-cut C of G, we can check if C is an
essential 4-cut in O(1) time (see Proposition 5.4). And third, given a parallel family C
of 4-cuts of G, we can compute the atoms of C in linear time (see Proposition 5.5). In
order to establish Proposition 5.4, we utilize the oracle that we develop in Chapter 6,
for answering connectivity queries in the presence of at most four edge-failures.

5.1.4.1 Reduction to 3‐edge‐connected graphs

We rely on a construction that was described by Dinitz [21], that enables us to reduce
the computation of the 5-edge-connected components to 3-edge-connected graphs.
(We note that this was also used by [36] and [50] in order to compute the 4-edge-
connected components.) Specifically, [21] provided the following result. Let G be a
graph, and let S1, . . . , St be the 3-edge-connected components of G. Then, we can
augment the graphs G[S1], . . . , G[St] with the addition of O(|V (G)|) artificial edges, so
that the resulting graphs G′[S1], . . . , G

′[St] have the property that (1) G′[Si] is 3-edge-
connected for every i ∈ {1, . . . , t}, (2) for every k-edge-connected component S of G,
for k ≥ 3, there is an i ∈ {1, . . . , t} such that G′[Si] contains S as a k-edge-connected
component, and (3) for every i ∈ {1, . . . , t}, and every k ≥ 3, a k-edge-connected
component of G′[Si] is also a k-edge-connected component of G. We note that the
auxiliary graphs G′[S1], . . . , G

′[St] can be constructed easily in linear time in total, after
computing the 3-edge-connected components of G (using, e.g., the algorithm from
[67]). Thus, in order to compute the 5-edge-connected components of G in linear
time, properties (1), (2) and (3) imply that it is enough to know how to compute in
linear time the 5-edge-connected components of a 3-edge-connected graph.

We note that we do not know how to produce auxiliary 4-edge-connected graphs,
with properties like (1), (2) and (3), that can provide the 5-edge-connected com-
ponents. However, even if we knew how to do that, we would still be faced with
the problem of computing enough 4-cuts in order to derive the 5-edge-connected
components. Although the work of Gabow [32] shows that we can compute the k-
edge-connected components of a (k−1)-edge-connected graph in O(m+k2n log(n/k))
time, there are no indications that computing the 5-edge-connected components of a
4-edge-connected graph in linear time is a much easier problem than working directly
on 3-edge-connected graphs.

110

5.1.4.2 Computing enough 4‐cuts of a 3‐edge‐connected graph

Let G be a 3-edge-connected graph with n vertices and m edges. In order to compute
the 5-edge-connected components of G, we have to solve simultaneously the following
two problems. First, we have to compute a collection C of 4-cuts that are enough in
order to provide the 5-edge-connected components. At the same time, we must be
able to efficiently compute the atoms of C (in order to derive the 5-edge-connected
components). The straightforward way to compute these atoms is to compute the
bipartition of the connected components after the removal of every 4-cut in C, and
then return the mutual refinement of all those bipartitions. However, if the number
of 4-cuts in C is Ω(n), then this procedure will take Ω(nm) time in total, which is
very far from our linear-time goal. Nevertheless, if C is a parallel family of 4-cuts,
then the computation of the atoms of C can be performed in O(m + n) time (see
Proposition 5.5). Furthermore, in this case we can construct in linear time an oracle
of O(n) size that can report in constant time a 4-cut that separates any given pair of
vertices, or determine that no such 4-cut exists (see Corollary 5.10). Thus, our goal is
precisely to compute a parallel family of 4-cuts that can provide the 5-edge-connected
components.

It turns out that this is a highly non-trivial task. First of all, even computing
a single 4-cut takes O(m + n logn) time with the state-of-the-art method (which
is Gabow’s mincut algorithm [32]). On the other hand, it would be impractical to
compute all 4-cuts of the graph, no matter the algorithm used, since the number of
all 4-cuts in a 3-edge-connected graph can be as high as Ω(n2) even in graphs with
O(n) edges. Our approach, instead, is to compute a compact collection of all 4-cuts
that has size O(n). When we say a “compact collection”, we mean that there is a
procedure, through which, from this collection of 4-cuts, we can essentially derive all
4-cuts. At this point, it is necessary to precisely define our concepts. First, we have
the following property of 4-cuts in 3-edge-connected graphs.

Lemma 5.1 (Implied 4-cut). Let {e1, e2, e3, e4} and {e3, e4, e5, e6} be two distinct 4-cuts
of a 3-edge-connected graph G. Then {e1, e2, e5, e6} is also a 4-cut of G.

Proof. See Lemma 5.5.

Then, Lemma 5.1 motivates the following.

Definition 5.1 (Implicating sequences of 4-cuts). Let C be a collection of 4-cuts of

111

a 3-edge-connected graph G. Let p1, . . . , pk+1 be a sequence of pairs of edges, and
let C1, . . . , Ck be a sequence of 4-cuts from C, such that Ci = pi ∪ pi+1 for every
i ∈ {1, . . . , k}, and C = p1 ∪ pk+1 is a 4-cut of G. Then we say that C is implied from
C through the pair of edges p1 (or equivalently: through the pair of edges pk+1). In
this case, we say that C1, . . . , Ck is an implicating sequence of C. If C implies every
4-cut of G, then we say that C is a complete collection of 4-cuts of G.

One of our main results is the following.

Theorem 5.1. Let G be a 3-edge-connected graph with m edges and n vertices. Then, in
O(m+ n) time, we can compute a complete collection C of 4-cuts of G with |C| = O(n).

Proof. See Theorem 5.3.

It is not at all obvious why a complete collection of 4-cuts with size O(n) should
exist. Furthermore, computing such a collection in linear time seems to be a very
difficult problem, considering that it is not even known how to compute a single
4-cut in linear time. In particular, with Theorem 5.1 we improve on the state of the
art in computing a mincut of bounded cardinality as follows.

Corollary 5.1. Let G be any graph. Then, in linear time, we can compute a k-cut of G,
with k ≤ 4, or determine that G is 5-edge-connected.

Proof. From previous work [63, 67, 36, 50], we know that, in linear time, we can
compute a k-cut of G, with k ≤ 3, or determine that G is 4-edge-connected. So let us
assume that G is 4-edge-connected. Then, Theorem 5.1 implies that, in linear time,
we can compute a 4-cut of G, or determine that G is 5-edge-connected.

More than half of this chapter is devoted to establishing Theorem 5.1. The high-
level idea is to identify the 4-cuts on a DFS-tree of the graph. We can distinguish
various types of 4-cuts on a DFS-tree, and there is enough structure that enables us
to compute a specific selection of them, that implies all 4-cuts of the graph. For a
detailed elaboration on this idea we refer to Section 5.5. We note that the bulk of this
work would be significantly reduced if we had a simpler algorithm for computing
a complete collection of 4-cuts with at most linear size. At the moment, we do not
know any alternative method to do this. However, even computing a near-linear sized
complete collection of 4-cuts (in near-linear time), would still provide a near-linear
time algorithm for computing the 5-edge-connected components, by following the

112

same analysis. Thus, there is room for simplifying the computation a lot, by relaxing
the strictness of the linear complexity. In any case, given a complete collection of
4-cuts, we are faced with the problem of how to use this package of information in
order to derive the 5-edge-connected components. This is what we discuss next.

5.1.4.3 Unpacking the implicating sequences of a complete collection of 4‐cuts

Given a complete collection C of 4-cuts of G, the challenge is to unpack as many
4-cuts as are needed, in order to derive the 5-edge-connected components. The first
thing we do is to implicitly expand all implicating sequences of C, and organize them
in collections of pairs of edges that generate, in total, all the 4-cuts of the graph. The
concept of generating 4-cuts is made precise in the following.

Definition 5.2. Let F = {p1, . . . , pk} be a collection of pairs of edges of G, with k ≥ 2,
such that pi∪ pj is a 4-cut of G for every i, j ∈ {1, . . . , k} with i ̸= j. Then we say that
F generates the collection of 4-cuts {pi ∪ pj | i, j ∈ {1, . . . , k}, i ̸= j}.

An important intermediate result that we use throughout is the following.

Proposition 5.1. Let C be a collection of 4-cuts of G. Then, in O(n + |C|) time, we
can construct a set {F1, . . . ,Fk} of collections of pairs of edges, with |Fi| ≥ 2 for every
i ∈ {1, . . . , k}, such that Fi generates a collection of 4-cuts implied by C, and every 4-cut
implied by C is generated by Fi, for some i ∈ {1, . . . , k}. The total size of {F1, . . . ,Fk} is
O(|C|) (i.e., |F1|+ · · ·+ |Fk| = O(|C|)).

Proof. See Proposition 5.3.

Thus, given a complete collection C of 4-cuts, the collections of pairs of edges
that we get in Proposition 5.1 constitute an alternative compact representation of the
collection of all 4-cuts of the graph. In order to establish Proposition 5.1, we use
an algorithm that breaks up every 4-cut from C into its three different partitions
into pairs of edges, and then greedily reassembles all implicating sequences of C, by
constructing maximal collections of pairs of edges that participate in an implicating
sequence. Specifically, for every bipartition {p, q} of a 4-cut C ∈ C into pairs of edges,
we generate two elements (C, p) and (C, q). Then, we consider the elements (C, p)

and (C, q) as connected, by introducing an artificial edge that joins them. Notice that
F = {p, q} is a collection of pairs of edges that generates a 4-cut implied by C. Then,
we try to expand F as much as possible, into a collection of pairs of edges that

113

generates 4-cuts implied by C, by tracing the implicating sequences of C that use p or
q. Thus, if e.g. another 4-cut C ′ ∈ C contains the pair of edges p, and is partitioned
as C ′ = p ∪ q′, then we also consider the element (C ′, p) connected with (C ′, q′), and
the element (C ′, p) connected with (C, p), so that F ′ = {p, q, q′} is a collection of
pairs of edges that generates 4-cuts implied by C. The precise method by which we
create these collections of pairs of edges is shown in Algorithm 16. The output of
Algorithm 16 has some nice properties that we analyze in Sections 5.2.4, 5.2.5 and
5.2.6.

Let F be a collection of pairs of edges that is returned by Algorithm 16. Then
we distinguish three different cases for F : either |F| > 3, or |F| = 3, or |F| = 2.
The collections of pairs of edges that have size more than 3 generate collections of
4-cuts that have a very convenient structure for computational purposes. These are
discussed next.

5.1.4.4 Cyclic families of 4‐cuts, and minimal 4‐cuts

Notice that if we have a collection of k pairs of edges that generates a collection C of
4-cuts, then |C| = k(k − 1)/2. Now, the reason that the number of 4-cuts in 3-edge-
connected graphs with n vertices can be as high as Ω(n2) is essentially the existence
of some families of 4-cuts that are captured in the following.2

Definition 5.3 (Cyclic family of 4-cuts). Let {p1, . . . , pk}, with k ≥ 3, be a collection of
pairs of edges of G that generates a collection C of 4-cuts of G. Suppose that there is a
partition {X1, . . . , Xk} of V (G) with the property that (1) G[Xi] is connected for every
i ∈ {1, . . . , k}, (2) E[Xi, Xi+1] = pi for every i ∈ {1, . . . , k − 1}, and (3) E[Xk, X1] = pk.
Then C is called a cyclic family of 4-cuts. (See Figure 5.5.)

Now, our claim above is supported by Proposition 5.2, Proposition 5.3, and The-
orem 5.3. Specifically, Proposition 5.2 basically states that a collection of pairs of

2We note that Definition 5.3 is similar to the concept of a circular partition (given e.g. in [52] or
[28]), that is used in the construction of the cactus representation of the minimum cuts of a graph. The
difference is that here the 4-cuts are not necessarily mincuts. Thus, some convenient properties like
Lemma 5.1 in [52] or Lemma 2.5 in [28] fail to hold. However, organizing the 4-cuts in cyclic families
is still very useful for computational purposes. In particular, the cyclic families of 4-cuts that are
produced by the output of Algorithm 16 on a complete collection of 4-cuts have some very convenient
properties that we explore in Section 5.2 (most importantly, see Lemma 5.20).

114

edges with more than 3 pairs of edges generates a cyclic family of 4-cuts. Theo-
rem 5.3 implies that there is a complete collection C of 4-cuts with size O(n), and
then Proposition 5.3 (applied on C) implies that there is a set {F1, . . . ,Fk} of collec-
tions of pairs of edges, with |F1|+ · · ·+ |Fk| = O(|C|) = O(n), that generate in total all
4-cuts of G. Thus, we have the following combinatorial result, which is also derived
from [43].3

Corollary 5.2. The number of 4-cuts in a 3-edge-connected graph with n vertices is O(n2).

Now, given a cyclic family of 4-cuts C as in Definition 5.3, by Lemma 5.8 we
have ∂(Xi) = pi ∪ pi−1 for every i ∈ {2, . . . , k}, and ∂(X1) = p1 ∪ pk, and therefore
we have {∂(X1), . . . , ∂(Xk)} ⊆ C. The collection of 4-cutsM := {∂(X1), . . . , ∂(Xk)} is
of particular importance, and we call it the collection of the C-minimal 4-cuts. These
4-cuts are C-“minimal” in the sense that one of their sides (i.e., Xi), is a subset of one
of the sides of every 4-cut in C. (Lemma 5.8 describes the structure of the sides of
the 4-cuts in a cyclic family of 4-cuts; this can also be inferred from Figure 5.5.) The
main reasons that M is important are the following. First,M is a parallel family of
4-cuts. Second, the atoms of M coincide with the atoms of C. And third, given the
collection F of pairs of edges that generates C, we can computeM in O(n+ |F|) time.

The first two points are almost immediate from the definition of minimal 4-cuts
(see also Figure 5.5). On the other hand, the computation of the minimal 4-cuts
is not entirely trivial. The problem is that, given the collection F of pairs of edges
that generates a cyclic family of 4-cuts C, it is not necessary that the pairs of edges
in F are given in the order that is needed in order to form the C-minimal 4-cuts.
Thus, we have to determine the sequence of the pairs of edges in F that provides
the C-minimal 4-cuts. One way to achieve this can be roughly described as follows.
First, we take any vertex r ∈ V (G), and let us assume w.l.o.g. that r ∈ X1. Then
we pick any pair of edges pi from F . Then, notice that, among all 4-cuts of the
form pi ∪ pj , for j ∈ {1, . . . , k} \ {i}, we have that either pi ∪ p1 or pi ∪ pk has the
maximum r-size. Thus, we can determine one of the two pairs of edges that are
incident to X1 (i.e., either p1 or pk), by taking the maximum r-size of all 4-cuts of
the form pi ∪ pj , for j ∈ {1, . . . , k} \ {i}. So let suppose that we have determined

3It is possible that Corollary 5.2 can also be derived from the 2-level cactus representation of the
(minimum + 1)-cuts of a graph [24]. However, here perhaps it is clearer why the number of 4-cuts
in 3-edge-connected graphs is bounded by O(n2), and what are the responsible structures that this
number can be as high as Ω(n2).

115

that p1 is one of the two pairs of edges from F that is incident to X1. Then, notice
that the 4-cuts p1 ∪ p2, . . . , p1 ∪ pk are sorted in increasing order w.r.t. their r-size.
Thus, it is sufficient to form all 4-cuts of the form {p1 ∪ pi | i ∈ {2, . . . , k}}, and then
sort them in increasing order w.r.t. their r-size. Then we can extract the sequence
of pairs of edges p1, . . . , pk, which is what we need in order to find the C-minimal
4-cuts (by taking the union of every two consecutive pairs of edges in this sequence,
plus p1 ∪ pk). This method demands O(n) time in order to perform the sorting of the
4-cuts of the form {p1 ∪ pi | i ∈ {2, . . . , k}} (with bucket-sort). Thus, this method in
itself is impractical for our purposes, because we may have to compute the minimal
4-cuts for Ω(n) collections of pairs of edges. However, given all the collections of
pairs of edges beforehand, we can use this method to compute the minimal 4-cuts of
the cyclic families that are generated by those collections with only one bucket-sort
(that sorts all the 4-cuts that we will form and we need to have sorted, in increasing
order w.r.t. their r-size). Thus, Algorithm 18 shows how we can compute all C1-
,. . . ,Ct-minimal 4-cuts, where C1, . . . , Ct are cyclic families of 4-cuts that are generated
by the collections of pairs of edges F1, . . . ,Ft, respectively. The running time of this
algorithm is O(n+ |F1|+ · · ·+ |Ft|), as shown in Proposition 5.6.

Now let C be a complete collection of 4-cuts, and let F1, . . . ,Ft be the collections of
pairs of edges that are returned by Algorithm 16 on input C and have the property
that |Fi| > 3, for every i ∈ {1, . . . , t}. Then, Proposition 5.3 implies that Fi generates
a collection Ci of 4-cuts implied by C, for every i ∈ {1, . . . , t}, and by Proposition 5.2
we have that Ci is a cyclic family of 4-cuts. Thus, we can apply Algorithm 18 in
order to derive the collection Mi of the Ci-miminal 4-cuts, for every i ∈ {1, . . . , t},
in O(n + |F1| + · · · + |Ft|) time in total. As noted above, we have that atoms(Mi) =

atoms(Ci), andMi is a parallel family of 4-cuts, for every i ∈ {1, . . . , t}. Thus, we have
atoms(C1∪· · ·∪Ct) = atoms(M1∪· · ·∪Mt). We note that this formula is not very useful
for computing atoms(C1∪· · ·∪Ct), because there is no guarantee thatM1∪· · ·∪Mt is a
parallel family of 4-cuts. (In fact, Figure 5.12 provides a counterexample.) However,
if we keep the subcollectionM′ of the essential 4-cuts inM1∪· · ·∪Mt, then we have
that M′ is a parallel family of 4-cuts, as a consequence of Lemma 5.20. Thus, it is
sufficient to keep onlyM′ and compute atoms(M′).

Now let F be a collection of pairs of edges that is returned by Algorithm 16 on
input C and has |F| = 3. By Proposition 5.3 we have that F generates a collection
C ′ of 4-cuts implied by C. If C ′ is not a cyclic family of 4-cuts, then we say that

116

C ′ is a degenerate family of 4-cuts, and Lemma 5.9 describes the structure of such a
family (i.e., this is given by Figure 5.3(a), if F = {{e1, e2}, {e3, e4}, {e5, e6}}). Then, by
Corollary 5.4 we have that C ′, if it is not a cyclic family of 4-cuts, it has the property
that all its 4-cuts are non-essential. Thus, if C ′ consists of three non-essential 4-cuts,
then we can discard them. Otherwise, we have that C ′ is a cyclic family of 4-cuts.
Since |F| = 3, we have that all 4-cuts in C ′ are C ′-minimal. Thus, it is sufficient to
keep only the essential 4-cuts from C ′. Then, these are all parallel among themselves,
and also parallel with the 4-cuts inM′ (due to Lemma 5.20).

Thus, we have shown how to extract enough 4-cuts from the collections of pairs of
edges that are returned by Algorithm 16 and have size at least three. Now it remains
to consider the collections of pairs of edges that have size 2.

5.1.4.5 Isolated and quasi‐isolated 4‐cuts

Let C be a complete collection of 4-cuts, and let F be a collection of pairs of edges that
is returned by Algorithm 16 on input C and has |F| = 2. They, by Proposition 5.3
we have that F generates a 4-cut C implied by C. More precisely, by Lemma 5.15 we
have C ∈ C. Now, if there is another collection of pairs of edges F ′ that is returned by
Algorithm 16 on input C that also generates C and has |F ′| > 2, then we have collected
enough 4-cuts in order to capture the separation of V (G) induced by C. Otherwise,
we have that all collections of pairs of edges that are returned by Algorithm 16 on
input C and generate C have size 2. Then, since C ∈ C, these collections are the three
different partitions of C into pairs of edges. We note that we can determine in linear
time what are the 4-cuts from C with the property that all three partitions of them
into pairs of edges are returned by Algorithm 16 on input C. Now, for every such
4-cut C , we distinguish two different cases: either (1) there is no collection F of pairs
of edges with |F| > 2 that generates a collection of 4-cuts that includes C , or (2) the
contrary of (1) is true. In case (1), we say that C is an isolated 4-cut. In case (2), we
say that C is a quasi-isolated 4-cut. (Notice that the concept of quasi-isolated 4-cuts is
relative to a collection C of 4-cuts that is given as input to Algorithm 16.)

The distinction between isolated and quasi-isolated 4-cuts is important, because by
Corollary 5.6 we have that an essential isolated 4-cut is parallel with every essential
4-cut. On the other hand, there are examples where two essential quasi-isolated 4-cuts
may cross (see Figure 5.15). However, there are two nice things that are very helpful
here. First, the quasi-isolated 4-cuts are basically not needed for our purposes. More

117

precisely, by Lemma 5.21 we have that every pair of vertices that are separated by
an essential quasi-isolated 4-cut, are also separated by a 4-cut that is generated by a
collection of pairs of edges with size more than 2 that is returned by Algorithm 16.
And second, we have enough information in order to identify the quasi-isolated 4-
cuts, so that we can discard them. Specifically, by Corollary 5.9 we have that every
essential quasi-isolated 4-cut shares a pair of edges with an essential C ′-minimal 4-cut,
where C ′ is a cyclic family of 4-cuts that is generated by a collection of pairs of edges
(with size at least 3) that is returned by Algorithm 16 on input C. This is a property
that distinguishes the quasi-isolated from the isolated 4-cuts, and we can use it in
order to identify all the essential isolated 4-cuts, as shown in Proposition 5.7.

5.1.4.6 The full algorithm

In summary, these are the steps that we follow in order to compute the 5-edge-
connected components of a 3-edge-connected graph G.

1. Compute the partition P4 of the 4-edge-connected components of G.

2. Compute a complete collection C of 4-cuts of G with size O(n).

3. Compute the collections of pairs of edges F1, . . . ,Fk that are returned by Algo-
rithm 16 on input C.

4. Let I ⊆ {1, . . . , k} be the collection of indices such that, for every i ∈ I , either
|Fi| > 3, or |Fi| = 3 and Fi generates at least one essential 4-cut. Let Ci be the
cyclic family of 4-cuts generated by Fi, for every i ∈ I.

5. Compute the collectionMi of the Ci-minimal 4-cuts, for every i ∈ I.

6. Compute the subcollectionM′ of the essential 4-cuts in
⋃

i∈IMi.

7. Compute the collection ISO of the essential isolated 4-cuts of G.

8. Let P5 be the refinement of atoms(M′) with atoms(ISO).

9. Return P5 refined by P4.

Step 1 can be performed in linear time from previous results (see [36] or [50]). By
Theorem 5.3, Step 2 can be performed in linear time. Step 3 takes O(n) time, according
to Proposition 5.3. By Proposition 5.2, we know that every Fi with |Fi| > 3 generates

118

a cyclic family of 4-cuts. By Corollary 5.5 we have that every Fi with |Fi| = 3 that
generates at least one essential 4-cut generates a cyclic family of 4-cuts. Thus, if we
let I be the collection of indices in Step 4, then we have that Fi generates a cyclic
family of 4-cuts for every i ∈ I. Then, it makes sense to perform Step 5, and this
can be completed in O(n) time, according to Proposition 5.6. Then, we can extract
the subcollection M′ of the essential 4-cuts in

⋃
i∈IMi in O(n) time, after we have

performed the preprocessing described in Proposition 5.4. Thus, Step 6 takes linear
time. The computation in Step 7 also takes linear time, according to Proposition 5.7.
Since we have that M′ and ISO are parallel families of 4-cuts, we can compute
atoms(M′) and atoms(ISO) in linear time, according to Proposition 5.5. Then, the
mutual refinement of those partitions in Step 8 takes O(n) time, by using bucket-sort.
Finally, the refinement in Step 9 also takes O(n) time with bucket-sort.

Now we will demonstrate the correctness of this procedure. First, notice that the
partition of the 5-edge-connected components is a refinement of the partition returned
in Step 9 (because the latter is a refinement of the partition of the 4-edge-connected
components with the atoms of a specific collection of 4-cuts). Conversely, let x and
y be two vertices of G that are not 5-edge-connected. Then, there is either a 3-cut
or a 4-cut that separates x and y. If there is a 3-cut that separates x and y, then x

and y belong to different 4-edge-connected components, and therefore they belong
to different sets in the partition returned in Step 9. Otherwise, if x and y are 4-edge-
connected, then there is an essential 4-cut C that separates them. Since C is a complete
collection of 4-cuts, Proposition 5.3 implies that there is an i ∈ {1, . . . , k} such that
C is generated by Fi. If |Fi| ≥ 3, then, since C is an essential 4-cut, Proposition 5.2
and Corollary 5.5 imply that Fi generates a cyclic family Ci of 4-cuts. Therefore, by
Lemma 5.12 we have that x and y are separated by an essential Ci-minimal 4-cut.
Thus, x and y belong to different sets in atoms(M′). Otherwise, C is either an isolated
or a quasi-isolated 4-cut. If C is isolated, then it belongs to ISO, and therefore x and
y belong to different sets in atoms(ISO). Otherwise, by Lemma 5.21 we have that x
and y are separated by an essential Ci-minimal 4-cut, for some i ∈ I. Thus, x and y

belong to different sets in atoms(M′). In either case, then, we have that x and y belong
to different sets in the partition returned by Step 9. We conclude that this partition
coincides with that of the 5-edge-connected components.

119

5.1.5 Organization of this chapter

In Section 5.2 we study the structure of 4-cuts in 3-edge-connected graphs. In Sec-
tion 5.3 we present some applications of identifying 4-cuts on a DFS-tree, that we
will need in order to establish our main result. In Section 5.4 we present the algo-
rithm for computing the 5-edge-connected components of a 3-edge-connected graph.
Section 5.5 gives an overview of the algorithm for computing a complete collection
of 4-cuts of a 3-edge-connected graph. There, we provide a DFS-based classification
of all 4-cuts of a 3-edge-connected graph, and briefly discuss the methods that we
employ in order to compute the 4-cuts of each class. In Sections 5.6, 5.7 and 5.8 we
provide the full details for computing the most demanding classes of 4-cuts.

5.2 Properties of 4‐cuts in 3‐edge‐connected graphs

Throughout this section we assume that G is a 3-edge-connected graph. We also
assume a total ordering of the edges of G (e.g., lexicographic order w.r.t. their end-
points). This is needed for Algorithm 16, and for analyzing its output. We let V
denote V (G). All graph-related elements, such as vertices, edges, cuts, etc., refer to G.

Lemma 5.2. Let C1 and C2 be two distinct 4-cuts of G. Then |C1 ∩ C2| ̸= 3.

Proof. Let us suppose, for the sake of contradiction, that |C1 ∩ C2| = 3. Since C1 and
C2 are 4-cuts, we have that G′ = G\ (C1∩C2) is connected. Let e1 = C1 \ (C1∩C2) and
e2 = C2 \ (C1∩C2). Since C1 and C2 are distinct, we have that e1 ̸= e2. And since both
C1 and C2 are 4-cuts, we have that both G′ \ e1 and G′ \ e2 are disconnected. Thus,
e1 and e2 are two distinct bridges of G′, and so V (G′) can be partitioned into three
sets X , Y , and Z , such that EG′ [X,Z] = {e1}, EG′ [Y, Z] = {e2}, and EG′ [X,Y] = ∅.
Since G is 3-edge-connected, we have that |∂(X)| ≥ 3, |∂(Y)| ≥ 3 and |∂(Z)| ≥ 3. This
can only be true if either (1) two of the edges from C1 ∩ C2 connect X and Y , and
the other edge connects either X and Z , or Y and Z , or (2) one edge from C1 ∩ C2

connects X and Y , one edge from C1 ∩ C2 connects X and Z , and one edge from
C1 ∩ C2 connects Y and Z. Let us consider case (1) first, and let us assume w.l.o.g.
that an edge from C1 ∩ C2 connects X and Z. But now we have that the two edges
from C1∩C2 that connect X and Y , plus e2, constitute a 3-cut of G (with sides Y and
V \ Y). This contradicts the fact that C2 is a 4-cut of G. Thus, only case (2) can be

120

true. But then we have that ∂(X) consists of e1 and two edges from C1∩C2. Therefore
∂(X) is a proper subset of C1 that disconnects G upon removal, contradicting the fact
that C1 is a 4-cut of G. We conclude that it is impossible to have |C1 ∩ C2| = 3.

Lemma 5.3. Let X be a subset of V (G) such that |∂(X)| = 4. Then G[X] is connected,
and it has at most one bridge. If G[X] has a bridge e, then G[X]\e consists of two connected
components Y1 and Y2 such that |E[Y1, V \X]| = 2 and |E[Y2, V \X]| = 2.

Proof. First, let us suppose, for the sake of contradiction, that G[X] is not connected.
Then, let S and S ′ be two distinct connected components of G[X]. Then we have that
∂(S) ⊆ ∂(X), ∂(S ′) ⊆ ∂(X), and ∂(S) ∩ ∂(S ′) = ∅. This implies that |∂(S)|+ |∂(S ′)| =
|∂(S) ∪ ∂(S ′)| ≤ |∂(X)| = 4. Thus, at least one of |∂(S)| and |∂(S ′)| must be lower
than 3, in contradiction to the fact that G is 3-edge-connected. This shows that G[X]

is connected.
Now, let us suppose, for the sake of contradiction, that G[X] has at least two

bridges e1 and e2. Then there is a partition {Z1, Z2, Z3} of X , such that all of G[Z1],
G[Z2] and G[Z3], are connected, and such that E[Z1, Z2] = {e1}, E[Z2, Z3] = {e2} and
E[Z1, Z3] = ∅. Let Ei = E[Zi, V \X], for i ∈ {1, 2, 3}. Then we have E1⊔E2⊔E3 = ∂(X),
∂(Z1) = E1⊔{e1}, ∂(Z3) = E3⊔{e2}, and ∂(Z2) = E2⊔{e1, e2}. Since |E1|+|E2|+|E3| = 4,
|∂(Z1)| = |E1|+ 1, |∂(Z3)| = |E3|+ 1, and |∂(Z2)| = |E2|+ 2, we infer that at least one
of |∂(Zi)|, for i ∈ {1, 2, 3}, is at most 2. This contradicts the fact that G is 3-edge-
connected. Thus, G[X] can have at most one bridge.

Now let e be a bridge of G[X]. Then G[X]\e consists of two connected components
Y1 and Y2, and we have E[Y1, Y2] = {e}. Since G is 3-edge-connected, we have that
both |∂(Y1)| and |∂(Y2)| must be at least 3. We have that ∂(Yi) = E[Yi, V \ X] ∪ {e},
for i ∈ {1, 2}. Thus, both E[Y1, V \X] and E[Y2, V \X] must contain at least 2 edges.
Since E[Y1, V \ X] ⊔ E[Y2, V \ X] = ∂(X), this implies that |E[Y1, V \ X]| = 2 and
|E[Y2, V \X]| = 2 (due to |∂(X)| = 4).

5.2.1 The structure of crossing 4‐cuts of a 3‐edge‐connected graph

The following lemma is one of the cornerstones of our work. It motivates several con-
cepts that we develop in order to analyze the structure of 4-cuts in 3-edge-connected
graphs.

121

X∩X’ Y∩X’

Y∩Y’X∩Y’

X Y

X’
Y’

(i) (ii) (iii) (iv)

a b

cd

Figure 5.1: All possible crossings of two 4-cuts C = {X,Y } and C ′ = {X ′, Y ′}.

Lemma 5.4 (The Structure of Crossing 4-cuts). Let C and C ′ be two 4-cuts of a 3-
edge-connected graph. Then, cases (i) to (iv) in Figure 5.1 show all the different ways in
which C and C ′ may cross.

Proof. Let X and Y be the sides of C , and let X ′ and Y ′ be the sides of C ′. We let
a = X ∩X ′, b = Y ∩X ′, c = Y ∩ Y ′, and d = X ∩ Y ′ (see Figure 5.1). We will analyze
all the different (non-isomorphic) ways in which a, b, c and d may be connected with
edges. Thus, we have to determine all the different combinations of values for |E[a, b]|,
|E[a, c]|, |E[a, d]|, |E[b, c]|, |E[b, d]| and |E[c, d]|. There are two properties that guide us.
First, the graph that is formed by a, b, c and d does not have any 1-cuts or 2-cuts, since
the original graph is 3-edge-connected. In particular, we have |∂(a)| ≥ 3, |∂(b)| ≥ 3,
|∂(c)| ≥ 3 and |∂(d)| ≥ 3. And second, we have C = E[a, b] ∪ E[a, c] ∪ E[d, b] ∪ E[d, c],
C ′ = E[a, c] ∪ E[a, d] ∪ E[b, c] ∪ E[b, d], and |C| = |C ′| = 4.

Since |C| = 4, there are at most four edges in E[a, b]. Thus, we will consider all
possible values for |E[a, b]|. We will start by showing that |E[a, b]| ̸= 4 and |E[a, b]| ̸= 0.

First, suppose that E[a, b] consists of four edges. Then, since |C| = 4, there are no
edges in E[a, c], E[d, b] or E[d, c]. Thus, since |∂(d)| ≥ 3, there are at least three edges
in E[d, a]. Then, since |∂(c)| ≥ 3, and since E[a, c] = E[d, c] = ∅, there must be at least
three edges in E[c, b]. But then, since E[d, a]∪E[c, b] ⊆ C ′, we have |E[d, a]|+ |E[c, b]| ≤

122

|C ′| = 4, which is impossible, because |E[d, a]| + |E[c, b]| ≥ 6. This shows that there
cannot be four edges in E[a, b].

Now suppose that E[a, b] is empty. Then, since |∂(a)| ≥ 3, we have |E[a, c]| +
|E[a, d]| ≥ 3. Since C ′ = E[a, c]∪E[a, d]∪E[b, c]∪E[b, d] and |C ′| = 4, this implies that
|E[b, c]|+ |E[b, d]| ≤ 1. But then, since |E[a, b]| = 0, we have a contradiction to the fact
|∂(b)| ≥ 3. This shows that E[a, b] must contain at least one edge.

Now suppose that E[a, b] consists of three edges. Then E[a, c] contains at most one
edge. Suppose that E[a, c] contains one edge. Then, since |C| = 4, we have E[d, b] =

E[d, c] = ∅. Then, since |∂(d)| ≥ 3, we have at least three edges in E[d, a]. Furthermore,
since |∂(c)| ≥ 3 and |E[a, c]| = 1 and E[d, c] = ∅, we have at least two edges in E[c, b].
But then, since E[d, a] ∪ E[c, b] ⊆ C ′, we have |E[d, a]| + |E[c, b]| ≤ |C ′| = 4, which is
impossible, because |E[d, a]| + |E[c, b]| ≥ 5. This shows that E[a, c] = ∅. Then, since
|C| = 4, we have that one of E[d, b] and E[d, c] consists of one edge, and the other
is empty. Suppose that E[d, b] contains one edge (and therefore E[d, c] = ∅). Then,
since |∂(c)| ≥ 3 and E[a, c] = E[d, c] = ∅, we have that E[c, b] contains at least three
edges. Then, since E[c, b] ∪ E[d, b] ∪ E[d, a] ⊆ C ′ and |C ′| = 4, we have that E[d, a]

must be empty. But then we have |∂(d)| = |E[d, b]| = 1, contradicting the fact that
|∂(d)| ≥ 3. This shows that E[d, b] is empty, and E[d, c] consists of one edge. Then,
since |∂(d)| ≥ 3, we have that E[a, d] contains at least two edges. Similarly, since
|∂(c)| ≥ 3, and E[a, c] = ∅ and |E[c, d]| = 1, we have that E[b, c] contains at least
two edges. Then, since |C ′| = 4 and E[a, d] ∪ E[b, c] ⊆ C ′, we have |E[a, d]| = 2 and
|E[b, c]| = 2. Thus, we are in case (ii).

Now suppose that E[a, b] consists of two edges. Then, since |C| = 4 and E[a, b] ∪
E[a, c] ⊆ C , we have that E[a, c] contains at most two edges. Let us suppose, for the
sake of contradiction, that |E[a, c]| = 2. Then, since |C| = 4, we have C = E[a, b] ∪
E[a, c]. Since E[d, b] ∪ E[d, c] ⊆ C , this implies that E[d, b] = E[d, c] = ∅. Then, since
|∂(d)| ≥ 3, we have that E[d, a] contains at least three edges. But then, since E[a, c] ∪
E[a, d] ⊆ C ′, we have |E[a, c]| + |E[a, d]| ≤ |C ′| = 4, which contradicts the fact that
|E[a, c]|+ |E[a, d]| ≥ 5. This shows that E[a, c] contains less than two edges.

Let us assume first that E[a, c] = 1. Then, since |C| = 4 and C = E[a, b] ∪E[a, c] ∪
E[d, b] ∪ E[d, c], we have that one of E[d, b] and E[d, c] consists of one edge, and the
other is empty. Let us suppose, for the sake of contradiction, that E[d, b] contains one
edge and E[d, c] is empty. Then, since |C ′| = 4 and C ′ = E[a, c]∪E[a, d]∪E[b, c]∪E[b, d],
we have |E[a, d]| + |E[b, c]| = 2. This implies that it cannot be that both E[a, d] and

123

E[b, c] contain at least two edges. Now, if E[a, d] contains less than two edges, then
|E[d, b]| = 1 and E[d, c] = ∅ imply that |∂(d)| < 3, which is impossible. And if E[b, c]

contains less than two edges, then |E[a, c]| = 1 and E[d, c] = ∅ imply that |∂(c)| <
3, which is also impossible. Thus, we have that E[d, b] = ∅ and E[d, c] consists of
one edge. Then, since |C ′| = 4 and C ′ = E[a, c] ∪ E[a, d] ∪ E[b, c] ∪ E[b, d], we have
|E[a, d]|+ |E[b, c]| = 3. And then, since |∂(d)| ≥ 3 and |∂(c)| ≥ 3, we have |E[a, d]| = 2

and |E[b, c]| = 1. Thus, we are in case (iii).
Now let us assume that E[a, c] = ∅. Then, since |C| = 4 and C = E[a, b] ∪E[a, c] ∪

E[d, b] ∪ E[d, c], we have |E[d, b]| + |E[d, c]| = 2. This implies that either |E[d, b]| = 0

and |E[d, c]| = 2, or |E[d, b]| = 1 and |E[d, c]| = 1, or |E[d, b]| = 2 and |E[d, c]| = 0.
Let us suppose first that |E[d, b]| = 0 and |E[d, c]| = 2. Then, since |C ′| = 4 and
C ′ = E[a, c]∪E[a, d]∪E[b, c]∪E[b, d], we have |E[a, d]|+ |E[b, c]| = 4 (because E[a, c] =

E[b, d] = ∅). Then, since |∂(d)| ≥ 3 and |∂(c)| ≥ 3, we have that either |E[a, d]| = 3 and
|E[b, c]| = 1, or |E[a, d]| = |E[b, c]| = 2, or |E[a, d]| = 1 and |E[b, c]| = 3. The first and
the third case correspond to (ii) (by permuting the labels a, b, c and d). The second
case is precisely (i). Now let us suppose that |E[d, b]| = 1 and |E[d, c]| = 1. Then, since
|C ′| = 4 and C ′ = E[a, c]∪E[a, d]∪E[b, c]∪E[b, d], we have |E[a, d]|+ |E[b, c]| = 3. And
then, since |∂(d)| ≥ 3 and |∂(c)| ≥ 3, we have |E[a, d]| = 1 and |E[b, c]| = 2. Thus, we
are in case (iii) (by permuting the labels a, b, c and d). Finally, let us suppose that
|E[d, b]| = 2 and |E[d, c]| = 0. Then, since E[a, c] = E[d, c] = ∅ and |∂(c)| ≥ 3, we have
that E[b, c] contains at least three edges. But then, since E[b, c]∪E[d, b] ⊆ C ′, we have
|E[b, c]| + |E[d, b]| ≤ |C ′| = 4, which contradicts the fact that |E[b, c]| + |E[d, b]| ≥ 5.
Thus, this case is impossible.

Finally, suppose that E[a, b] consists of one edge. Since we have considered all other
cases for |E[a, b]|, it is sufficient to assume, due to the symmetry of our situation, that
|E[b, c]| = 1, |E[c, d]| = 1 and |E[d, a]| = 1. (Because, if at least one of those values is
different than 1, then we can properly relabel the corners of the square, and revert to
one of the previous cases.) It remains to determine the values |E[a, c]| and |E[d, b]|.
Since |C| = 4 and |E[a, b]| = |E[d, c]| = 1, we have that either |E[a, c]| = 2 and
|E[d, b]| = 0, or |E[a, c]| = 1 and |E[d, b]| = 1, or |E[a, c]| = 0 and |E[d, b]| = 2. The
first and the last case are rejected, because they imply that |∂(d)| = 2 and |∂(a)| = 2,
respectively. Thus, |E[a, c]| = 1 and |E[d, b]| = 1 are the only viable options, and thus
we are in case (iv).

124

The following is an obvious corollary of Lemma 5.4.

Corollary 5.3. Let C1 = {e1, e2, e3, e4} and C2 = {f1, f2, f3, f4} be two essential 4-cuts
that cross. Then, C1 and C2 cross as in Figure 5.2 (up to permuting the labels of the edges
of each cut).

Proof. Lemma 5.4 implies that the possible crossings of C1 and C2 are given by cases
(i) to (iv) of Figure 5.1. Notice that only in case (i) we have that both of the 4-cuts that
cross are essential. To see this, observe that in either of cases (ii) to (iv) we have that
the lower corners of the square have degree 3. Therefore, no vertex that is contained
in those corners can be 4-edge-connected with a vertex that is not contained in them.
But the union of the lower corners is precisely a side of one of the 4-cuts C1 and C2.
Thus, it cannot be that both C1 and C2 are essential 4-cuts in those cases. Therefore,
we may assume w.l.o.g. (i.e., by possibly permuting the labels of the edges of each
cut) that C1 and C2 cross as in Figure 5.2.

e1

e2

e4

e3

f2f1 f4 f3

Figure 5.2: The crossing square of two essential 4-cuts {e1, e2, e3, e4} and {f1, f2, f3, f4}.

5.2.2 Implied 4‐cuts, and cyclic families of 4‐cuts

The following is one of the implications of Lemma 5.4.

Lemma 5.5 (Implied 4-cut). Let C1 = {e1, e2, e3, e4} and C2 = {e3, e4, e5, e6} be two
distinct 4-cuts of a graph G. Then C3 = {e1, e2, e5, e6} is also a 4-cut of G.

Proof. First, let us assume that C1 and C2 cross. By Lemma 5.4, we have that Fig-
ure 5.1 shows all the different ways in which C1 and C2 may cross. Then, since C1 and
C2 share a pair of edges, notice that only case (iv) applies here, because this is the only
case in which the crossing 4-cuts share two edges. Thus, C1 and C2 cross as in (a) of
Figure 5.3. Then it is easy to see that Lemma 5.3 implies that the four corners of this

125

square are connected subgraphs of G. Then we observe that {e1, e2, e5, e6} is indeed a
4-cut of G, because its deletion splits the graph into two connected components, but
no proper subset of it has this property.

Now suppose that C1 and C2 are parallel. Let X be one of the two sides of C1

and let X ′ be one of the two sides of C2. Then, since C1 and C2 are parallel and
distinct, we may assume w.l.o.g. that X ′ ⊂ X. Since C1 and C2 are distinct, we have
|C1 ∩ C2| ̸= 4. By Lemma 5.2 we have |C1 ∩ C2| ̸= 3. Thus, {e3, e4} ⊆ C1 ∩ C2 implies
that {e3, e4} = C1∩C2. This implies that {e1, e2}∩{e5, e6} = ∅. Since C2 is a 4-cut, it is
a 4-element set, and therefore {e3, e4} ∩ {e5, e6} = ∅. Thus, we have C1 ∩ {e5, e6} = ∅.
Since C1 is a 4-cut of G, we have that the edges in C1 are the only edges of G that
join the sides of C1. Thus, we have that either of e5 and e6 lies entirely within either
G[X] or G[V \ X]. Since X ′ ⊂ X and both e5 and e6 have one endpoint in X ′, we
infer that both e5 and e6 lie in G[X].

Let G′ = G \ {e5, e6}. Since G[X] is connected, we have that G′[X] consists of at
most three connected components. Since X is one of the sides of C1, Lemma 5.3
implies that G[X] contains at most one bridge. Thus, it cannot be the case that G′[X]

consists of three connected components (because otherwise e5 and e6 would be two
distinct bridges of G[X]). Let us suppose, for the sake of contradiction, that G′[X]

is connected. Let G′′ = G′ \ {e3, e4}. Then, since neither of e3 and e4 lies within
G[X], we have that G′′[X] is connected. Furthermore, since neither of {e3, e4, e5, e6}
lies within G[V \ X], we have that G′′[V \ X] is connected. Then, notice that we
have EG′′ [X,V \ X] = {e1, e2}. But this implies that G′′ = G′ \ {e3, e4} = G \ C2 is
connected, in contradiction to the fact that C2 is a 4-cut of G. This shows that G′[X]

is disconnected. Therefore, we have that G′[X] consists of two connected components
X1 and X2 such that E[X1, X2] = {e5, e6}. Notice that none of the subgraphs G[X1],
G[X2] and G[V \X] contains edges from {e1, e2, e3, e4, e5, e6}.

Let Y = V \ X. Now we will determine the edge-sets E[X1, Y] and E[X2, Y].
Since X is one of the sides of C1, we have C1 = E[X,Y]. Thus, since E[X,Y] =

E[X1, Y]⊔E[X2, Y], we have E[X1, Y]⊔E[X2, Y] = {e1, e2, e3, e4}. Notice that ∂(X1) =

{e5, e6} ⊔ E[X1, Y] and ∂(X2) = {e5, e6} ⊔ E[X2, Y]. Since G is 3-edge-connected, we
have |∂(X1)| ≥ 3 and |∂(X2)| ≥ 3. Thus, we have that both E[X1, Y] and E[X2, Y]

contain at least one edge from C1.
Let us suppose, for the sake of contradiction, that one of E[X1, Y] and E[X2, Y]

contains precisely one edge from C1. Then we may assume w.l.o.g. that E[X1, Y]

126

(a)

e1

e2

e3

e4

e5 e6 e5 e6

e1

e2

e3

e4

X1

X2

Y

(b)

Figure 5.3: The possible arrangements of two distinct 4-cuts of the form C1 = {e1, e2, e3, e4}

and C2 = {e3, e4, e5, e6} (up to swapping the labels e3 and e4). In (a), C1 and C2 cross. In (b),

C1 and C2 are parallel. In either case, we have that {e1, e2, e5, e6} is also a 4-cut.

contains precisely one edge from C1. First, let us assume that E[X1, Y] = {e1}. Then
we have E[X2, Y] = {e2, e3, e4}. But then we have that G \ {e3, e4, e5, e6} is connected,
because, in G \C2, X1 is connected with V \X through e1, and X2 is connected with
V \ X through e2. This contradicts the fact that C2 is a 4-cut of G. Similarly, if we
assume that E[X1, Y] = {e2}, then with the same reasoning we get a contradiction to
the fact that C2 is a 4-cut of G. Now let us assume that E[X1, Y] = {e3}. Then we have
that ∂(X1) = {e3, e5, e6}. This implies that {e3, e5, e6} is a 3-cut of G, in contradiction
to the fact that C2 is a 4-cut of G. Similarly, if we assume that E[X1, Y] = {e4}, then
with the same reasoning we get a contradiction to the fact that C2 is a 4-cut of G.
This shows that both E[X1, Y] and E[X2, Y] contain at least two edges from C1. Since
E[X1, Y] ⊔ E[X2, Y] = C1 and |C1| = 4, this implies that |E[X1, Y]| = |E[X2, Y]| = 2.

Let us suppose, for the sake of contradiction, that one of E[X1, Y] and E[X2, Y]

is {e1, e3}. Then we may assume w.l.o.g. that E[X1, Y] = {e1, e3}. Then it is easy to
see that ∂(X1) = {e5, e6, e1, e3} is a 4-cut of G. But then we have |∂(X1) ∩ C2| = 3,
contradicting Lemma 5.2. This shows that none of E[X1, Y] and E[X2, Y] is {e1, e3}.
Similarly, we can show that none of E[X1, Y] and E[X2, Y] is {e1, e4}. Thus, we have
that one of E[X1, Y] and E[X2, Y] is {e1, e2}, and the other is {e3, e4}. Let us assume
w.l.o.g. that E[X1, Y] = {e1, e2} and E[X2, Y] = {e3, e4}. Then we have a situation
as that depicted in (b) of Figure 5.3. Then we observe that {e1, e2, e5, e6} is indeed a
4-cut of G, since its deletion splits the graph into two connected components, but no
proper subset of it has this property.

Lemma 5.5 motivates the following definition.

127

Definition 5.4 (Implicating Sequence). Let C be a collection of 4-cuts of G, let
p1, . . . , pk+1 be a sequence of pairs of edges, and let C1, . . . , Ck be a sequence of 4-cuts
from C, such that Ci = pi ∪ pi+1 for every i ∈ {1, . . . , k}. Then C1, . . . , Ck is called an
implicating sequence of C. Furthermore, if C = p1 ∪ pk+1 is a 4-cut of G, then we say
that C implies C through the pair of edges p1 (or equivalently: through the pair of
edges pk+1).

Note 5.1. We note the following two facts, which are immediate consequences of
Definition 5.4 that we will use throughout. First, every 4-cut C ∈ C is implied by
C, through any pair of edges that is contained in C. And second, if C1, . . . , Ck is
an implicating sequence of C, then, for every i ∈ {1, . . . , k − 1}, either Ci = Ci+1 or
Ci∩Ci+1 = pi+1 (as a consequence of Ci = pi∪pi+1, Ci+1 = pi+1∪pi+2, and Lemma 5.2).

Lemma 5.6. Let C be a collection of 4-cuts of G, and let C1, . . . , Ck be an implicating
sequence of C with k > 1. Let p = C1\C2, let q = Ck\Ck−1, and suppose that ∅ ̸= p ̸= q ̸= ∅.
Then p ∪ q is a 4-cut implied by C through p.

Proof. This follows inductively by a repeated application of Lemma 5.5. First we
consider the case k = 2. Thus, let C1, C2 be an implicating sequence of C such that
C1 \ C2 ̸= C2 \ C1. Then we have that C1 ∩ C2 is a pair of edges. Thus, Lemma 5.5
implies that C ′ = (C1 \ C2) ∪ (C2 \ C1) is a 4-cut. By definition, we have that C ′ is
implied by C through the pair of edges C1 \ C2.

Now let us suppose that the conclusion of the lemma holds for a k ≥ 2. We will
show that it also holds for k + 1. So let C1, . . . , Ck+1 be an implicating sequence of
C such that ∅ ̸= C1 \ C2 ̸= Ck+1 \ Ck ̸= ∅. Then there is a sequence p1, . . . , pk+2 of
pairs of edges such that Ci = pi ∪ pi+1, for every i ∈ {1, . . . , k + 1}. If Ck = Ck−1, then
C1, . . . , Ck−1, Ck+1 is an implicating sequence of C with ∅ ̸= C1 \C2 ̸= Ck+1 \Ck−1 ̸= ∅,
and the conclusion holds due to the inductive hypothesis. So let us assume that
Ck ̸= Ck−1. Then we have p1 = C1 \ C2, pk+1 = Ck \ Ck−1, pk+2 = Ck+1 \ Ck, and
p1 ̸= pk+2.

Our goal is to show that p1∪pk+2 is a 4-cut of G (then, by definition, C1, . . . , Ck+1 is
an implicating sequence of C that demonstrates that p1∪pk+2 is implied by C through
p1). Due to the inductive hypothesis, we have that either p1 = pk+1, or p1 ∪ pk+1 is a
4-cut of G. If p1 = pk+1, then, since Ck+1 = pk+1∪pk+2, we have that p1∪pk+2 is a 4-cut
of G. So let us assume that p1 ∪ pk+1 is a 4-cut of G. Then, since Ck+1 = pk+1 ∪ pk+2

128

and p1 ̸= pk+2, we have that p1 ∪ pk+1 and pk+1 ∪ pk+2 are two distinct 4-cuts. Thus,
Lemma 5.5 implies that p1 ∪ pk+2 is a 4-cut of G. This concludes the proof.

We extend the terminology of Definition 5.4 as follows. Let C and C ′ be two
collections of 4-cuts such that every 4-cut in C ′ is implied by C. Then we say that C
implies the collection of 4-cuts C ′.

Note 5.2. Despite what its name suggests, we note that the relation of implication
between collections of 4-cuts is not transitive. In other words, if a collection of 4-cuts
C implies a collection of 4-cuts C ′, and C ′ implies a collection of 4-cuts C ′′, then it is
not necessarily true that C implies C ′′. An example for that is given in Figure 5.4. The
next lemma provides a sufficient condition under which a kind of transitivity holds.

Lemma 5.7. Let C be a collection of 4-cuts, and let C and C ′ be two 4-cuts such that
C ∈ C and C implies C ′ through a pair of edges p. Suppose that {C,C ′} implies a 4-cut C ′′

through p. Then C implies C ′′ through p.

Proof. Let us assume that C ′′ /∈ {C,C ′}, because otherwise the lemma follows trivially.
Since C ′ is implied by C through the pair of edges p, we have that p ⊂ C ′. Let q = C ′\p.
Then we have C ′ = p∪q. Since C ′′ is implied by C and C ′ through p, and since p ⊂ C ′

and C ′′ ̸= C ′, we have that q ⊂ C and p ⊂ C ′′. Furthermore, let q′ = C \ q. Then,
C = q ∪ q′ and C ′′ = p∪ q′. Now, if C ′ ∈ C, then we obviously have that C ′′ is implied
by C through the pair of edges p. Otherwise, since C ′ is implied by C through p, we
have that there is a sequence of 4-cuts C1, . . . , Ck in C, and a sequence p1, . . . , pk+1 of
pairs of edges, such that p1 = p, pk+1 = q, and Ci = pi ∪ pi+1, for every i ∈ {1, . . . , k}.
Thus, the existence of the sequence of 4-cuts C1, . . . , Ck, C in C, demonstrates that C ′′

is implied by C through the pair of edges p.

A collection of 4-cuts that implies all 4-cuts of G, is called a complete collection of
4-cuts of G. One of our main contributions in this chapter is the following:

Theorem 5.2. There is a linear-time algorithm that, given a 3-edge-connected graph G,
computes a complete collection of 4-cuts of G, that has size O(n).

We prove Theorem 5.2 in Section 5.5. We note that it seems non-trivial to even
establish the existence of a complete collection of 4-cuts of G that has size O(n). This
fact is implied through the analysis of the algorithm that computes C.

129

e1 e2

e3

e4

e5

e6 f2

f1

Figure 5.4: Let C be the collection of 4-cuts {{e1, e2, e3, e4}, {e3, e5, f1, f2}, {e4, e6, f1, f2}}.
Then the collection of all 4-cuts implied by C is given by C′ = C ∪{{e3, e4, e5, e5}}. Now notice

that C′ implies the 4-cut {e1, e2, e5, e6}. However, this 4-cut is not implied by C.

Definition 5.5. Let F = {p1, . . . , pk}, with k ≥ 2, be a collection of pairs of edges with
the property that pi ∪ pj is a 4-cut of G, for every 1 ≤ i < j ≤ k, and let C be the
collection of all such 4-cuts. Then we say that F generates C.

The following concept is motivated by the structure of crossing 4-cuts that appears
in (i) of Figure 5.1.

Definition 5.6. (Cyclic families of 4-cuts.) Let {p1, . . . , pk}, with k ≥ 3, be a collection
of pairs of edges of G that generates a collection C of 4-cuts of G. Suppose that there
is a partition {X1, . . . , Xk} of V (G) with the property that G[Xi] is connected for every
i ∈ {1, . . . , k}, and E[Xi, Xi+k1] = pi for every i ∈ {1, . . . , k}. Then C is called a cyclic
family of 4-cuts. (See Figure 5.5.)

p1

p2

p3

p4

p5

X1

X2X5

X3X4

Figure 5.5: A cyclic family of 4-cuts generated by the collection of pairs of edges

{p1, p2, p3, p4, p5}.

In turns out that a cyclic family of 4-cuts has a lot of properties that are helpful in

130

order to derive efficiently the 5-edge-connected components from a complete collection
of 4-cuts. The name “cyclic” refers to the structure of the graph that is formed by
shrinking every Xi, i ∈ {1, . . . , k}, into a single vertex. This has the structure of a cycle
(if we ignore edge multiplicities), as proved in the following lemma. Throughout this
work, we may use Lemma 5.8 without explicit mention.

Lemma 5.8. Let F = {p1, . . . , pk}, with k ≥ 3, be a collection of pairs of edges that
generates a collection of 4-cuts of G such that there is a partition {X1, . . . , Xk} of V (G)

with the property that G[Xi] is connected for every i ∈ {1, . . . , k}, and E[Xi, Xi+k1] = pi

for every i ∈ {1, . . . , k}. Then ∂(Xi) = pi ∪ pi−k1, for every i ∈ {1, . . . , k}. Furthermore,
for every i, j ∈ {1, . . . , k} with i ̸= j, the connected components of G \ (pi ∪ pj) are given
by Xi+k1 ∪Xi+k2 ∪ · · · ∪Xj and Xj+k1 ∪Xj+k2 ∪ · · · ∪Xi. (See Figure 5.5.)

Proof. Let i ∈ {1, . . . , k}. Since {X1, . . . , Xk} is a partition of V , we have ∂(Xi) =

(E[Xi, X1] ∪ · · · ∪ E[Xi, Xk]) \ E[Xi, Xi]. Since E[Xi, Xi+k1] = pi and E[Xi, Xi−k1] =

pi−k1, this implies that pi ∪ pi−k1 ⊆ ∂(Xi). If we assume that E[Xi, Xj] ̸= ∅ for some
j ∈ {1, . . . , k} \ {i −k 1, i, i +k 1}, then it is easy to see that G \ (pi ∪ pi−k1) remains
connected, in contradiction to the fact that F generates a collection of 4-cuts of G.
This shows that ∂(Xi) = pi ∪ pi−k1.

Now let i and j be two distinct indices in {1, . . . , k}. If |i − j| = 1 or {i, j} =

{1, k}, then we may assume w.l.o.g. that j = i −k 1. Then we have shown that
pi ∪ pj = ∂(Xi), and therefore the connected components of G are given by Xi and
(X1 ∪ · · · ∪ Xk) \ Xi. So let us assume that |i − j| > 1 and {i, j} ̸= {1, k}. Then we
have that none of pi and pj intersects with any of E[Xi+k1, Xi+k2], . . . , E[Xj−k1, Xj]

or E[Xj+k1, Xj+k2], . . . , E[Xi−k1, Xi]. Furthermore, we have that E[Xi, Xi+k1] \ (pi ∪
pj) = ∅ and E[Xj, Xj+k1] \ (pi ∪ pj) = ∅. Finally, we have that all graphs G[X1] \
(pi ∪ pj), . . . , G[Xk] \ (pi ∪ pj) remain connected. Thus, we can see that the connected
components of G \ (pi ∪ pj) are given by Xi+k1 ∪Xi+k2 ∪ · · · ∪Xj and Xj+k1 ∪Xj+k2 ∪
· · · ∪Xi.

In Proposition 5.2, we show that if a collection of pairs of edges F , with |F| > 3,
generates a collection of 4-cuts C, then C is a cyclic family of 4-cuts. The next lemma
analyzes the case |F| = 3, which provides the base step in order to prove inductively
Proposition 5.2.

Lemma 5.9. Let F = {p1, p2, p3} be a collection of pairs of edges that generates a collection
of 4-cuts of G. Then G′ = G \ (p1 ∪ p2 ∪ p3) consists of either three or four connected

131

components. If G′ consists of three connected components X1, X2, X3, then (by possibly
permuting the indices) we have E[X1, X2] = p1, E[X2, X3] = p2, and E[X3, X1] = p3 (i.e.,
F generates a cyclic family of 4-cuts of G). If G′ consists of four connected components, then
F is maximal w.r.t. the property of generating a collection of 4-cuts of G. Furthermore,
if p1 = {e1, e2}, p2 = {e3, e4} and p3 = {e5, e6}, then the quotient graph of G that is
formed by shrinking the connected components of G′ into single vertices is shown in (a) of
Figure 5.3 (after possibly swapping the labels e3 and e4).

Proof. Let p1 = {e1, e2}, p2 = {e3, e4} and p3 = {e5, e6}. By assumption we have that
p1 ∪ p2 is a 4-cut of G, and so let X,V \ X be the two connected components of
G \ (p1 ∪ p2). Then, either (1) p3 is contained entirely within G[X] or G[V \ X], or
(2) both G[X] and G[V \X] contain an edge from p3. We will show that in case (1)

G′ consists of three connected components, in case (2) G′ consists of four connected
components, and in either case the claims of lemma hold true.

Let us consider case (1) first. Then we may assume, w.l.o.g., that p3 lies entirely
within G[X]. Since G[X] is connected, we have that G[X]\p3 is split into at most three
connected components. Now, if G[X]\p3 is connected, then G\(p2∪p3) is also connected
(since EG\(p2∪p3)[X,V \X] = p1, and both (G \ (p2 ∪ p3))[X] and (G \ (p2 ∪ p3))[V \X]

remain connected), contradicting the fact that p2 ∪ p3 is a 4-cut of G. Thus, G[X] \ p3
is split into either two or three connected components. Let us assume, for the sake
of contradiction, that G[X] \ p3 is split into three connected components. This implies
that both edges of p3 are bridges of G[X]. But since |∂(X)| = |p1∪p2| = 4, Lemma 5.3
implies that G[X] contains at most one bridge, a contradiction. Thus, we have that
G[X] \ p3 consists of two connected components, C1 and C2, and E[C1, C2] = p3.

Now we claim that either of E[C1, V \ X] and E[C2, V \ X] contains exactly two
edges from p1 ∪ p2. To see this, first notice that ∂(C1) = E[C1, C2] ⊔ E[C1, V \ X],
∂(C2) = E[C1, C2] ⊔ E[C2, V \ X], and E[C1, V \ X] ⊔ E[C2, V \ X] = p1 ∪ p2. Since
E[C1, C2] = p3 and G is 3-edge-connected, this implies that either of E[C1, V \X] and
E[C2, V \X] contains at least one edge from p1 ∪ p2. Let us suppose, for the sake of
contradiction, that one of E[C1, V \ X] and E[C2, V \ X] contains exactly one edge
from p1 ∪ p2. Then, w.l.o.g., we may assume that E[C1, V \X] = {e1} (the other cases
are treated similarly). Then we have ∂(C1) = {e1, e5, e6}, and therefore G \ {e1, e5, e6}
is not connected. But this contradicts the fact that p1 ∪ p3 is a 4-cut of G. This shows
that either of E[C1, V \X] and E[C2, V \X] contains at least two edges from p1 ∪ p2.
Then, since E[C1, V \X]⊔E[C2, V \X] = p1 ∪ p2 and |p1 ∪ p2| = 4, we infer that either

132

of E[C1, V \X] and E[C2, V \X] contains exactly two edges from p1 ∪ p2.
Now, if E[C1, V \ X] = p1 (and E[C2, V \ X] = p2), or E[C1, V \ X] = p2 (and

E[C2, V \ X] = p1), then we basically have the lemma for the case that G′ consists
of three connected components. But if we assume the contrary, then, w.l.o.g., let
E[C1, V \X] = {e1, e3} (and E[C2, V \X] = {e2, e4}). But this means that p3∪ p1 is not
a 4-cut of G (because C1 remains connected with V \ X in G \ (p3 ∪ p1) through e3,
and C2 remains connected with V \X in G \ (p3 ∪ p1) through e4), a contradiction.

Now let us consider case (2). Then we may assume, w.l.o.g., that e5 is contained
in G[X] and e6 is contained in G[V \ X]. Then G[X] \ e5 is split into at most two
connected components. Let us suppose, for the sake of contradiction, that G[X]\ e5 is
connected. Then G[X]\ (p3∪p1) is also connected (because the only edge from p3∪p1
that lies in G[X] is e5), and therefore p3∪p1 is not a 4-cut of G (because the endpoints
of e5 remain connected in G \ (p3 ∪ p1)), a contradiction. Thus, we have that e5 is a
bridge of G[X]. Similarly, e6 is a bridge of G[V \ X]. So let C1, C2 be the connected
components of G[X]\ e5, and let C3, C4 be the connected components of G[V \X]\ e6.
Then we have E[C1, C2] = e5 and E[C3, C4] = e6. This shows that G′ consists of four
connected components, C1, C2, C3, C4.

Now we have to consider how the vertex sets C1, C2, C3, C4 are interconnected using
the edges from p1∪p2. First, it is not difficult to see that every one of C1, C2, C3, C4 must
have exactly two edges from p1 ∪ p2 as boundary edges, because otherwise we violate
the fact that G is 3-edge-connected. Then, we can see that no one of C1, C2, C3, C4 can
have either both edges from p1 or both edges from p2 as boundary edges, because
otherwise we violate the fact that p1 ∪ p3 and p2 ∪ p3 are 4-cuts of G (and therefore
no proper subsets of them can destroy the connectivity of G upon removal). Finally,
we can see that both C1 and C2 must be connected with both C3 and C4 using edges
from p1∪p2, because otherwise p3 is a 2-cut of G. Thus, we may assume, w.l.o.g., that
E[C1, C3] = e1, E[C1, C4] = e3, E[C2, C3] = e4, and E[C2, C4] = e2. Notice that this is
precisely the situation depicted in (a) of Figure 5.3.

It remains to show (still being in case (2)), that there is no pair of edges p4 =

{e7, e8}, with p4 /∈ F , such that F ∪ {p4} generates a collection of 4-cuts of G. So
let us assume the contrary. Notice that this implies that {e7, e8} ∩ (p1 ∪ p2 ∪ p3) = ∅,
because otherwise p4 ∪ pi is not a 4-element set, for some i ∈ {1, 2, 3}. This means
that either both edges from p4 lie entirely within G[Ci], for some i ∈ {1, 2, 3, 4}, or
that both G[Ci] and G[Cj] contain edges from p4, for some i, j ∈ {1, 2, 3, 4} with i ̸= j.

133

Let us consider the first case first, and so let us assume w.l.o.g. that p4 is contained
within G[C1]. Then G[C1] \ p4 consists of at most three connected components. We
will show that all three cases concerning the number of connected components of
G[C1] \ p4 lead to a contradiction. If we assume that G[C1] \ p4 is connected, then we
contradict the fact that p1 ∪ p4 is a 4-cut of G (because the endpoints of p4 remain
connected in G \ (p1 ∪ p4)). Let us assume that G[C1] \ p4 consists of two connected
components D1 and D2. Then we have E[D1, D2] = p4. Now, if we consider all the
different combinations of the incidence relation of the boundary edges of C1 with
D1 and D2, we will see that, in every possible case, we either contradict the fact that
G is 3-edge-connected (e.g., if all the boundary edges of C1 are incident to D1), or
the fact that p4 must form a 4-cut of G will all of p1, p2, p3 (so, e.g., if e1 and e3

are incident to D1, and e5 is incident to D2, then we have that p4 ∪ {e5} is a 3-cut
of G, contradicting the fact that p4 ∪ p3 is a 4-cut of G). Finally, let us assume that
G[C1] \ p4 consists of three connected components D1, D2 and D3. Then w.l.o.g. we
may assume that E[D1, D2] = {e7} and E[D2, D3] = {e8}. But now, since C1 has
precisely three boundary edges in G, we have that, no matter the incidence relation
of those boundary edges to D1, D2, D3, we violate the fact that G is 3-edge-connected.

Finally, it remains to consider the case that the edges from p4 lie in two different
subgraphs G[Ci], G[Cj], for some i, j ∈ {1, 2, 3, 4} with i ̸= j. Due to the symmetry
of the interconnections between C1, C2, C3, C4, we may assume w.l.o.g. that e7 is con-
tained in G[C1] and e8 is contained in G[C2]. Observe that G[C1] \ e7 and G[C2] \ e8
cannot both be connected, because otherwise p1∪p4 (or p2∪p4, or p3∪p4) is not a 4-cut
of G. Thus we may assume w.l.o.g. that G[C1] \ e7 is not connected, and let D1, D2

be its connected components. Then we have E[D1, D2] = e7. But since C1 has only
three boundary edges in G, this violates the fact that G is 3-edge-connected (because
either e7 is a bridge of G, or it forms a 2-cut with one of the boundary edges of C1

in G). Thus we have shown that F cannot be extended with one more pair of edges
p4 such that F ∪ {p4} generates a collection of 4-cuts of G.

We consider the last case in Lemma 5.9 to be degenerate, because the pairs of
edges p1, p2, p3 are so entangled with the components induced by the three 4-cuts
generated by them, that this collection of pairs of edges cannot be extended to a larger
collection of pairs of edges that also generates a collection of 4-cuts. This singularity
cannot occur with larger collections of pairs of edges that generate 4-cuts, because

134

(loosely speaking) the ability of every pair of them to provide a 4-cut forces them to
produce a more organized system of 4-cuts (see Proposition 5.2). Formally, if F is
collection of pairs of edges with |F| = 3 that generates a collection of 4-cuts C such
that G \

⋃
F consists of four connected components, then C is a called a degenerate

family of 4-cuts.

Corollary 5.4. Let C be a degenerate family of 4-cuts. Then C consists of three non-essential
4-cuts.

Proof. By definition, we have that C is generated by a collection of pairs of edges
F with |F| = 3 such that G \

⋃
F consists of four connected components. Let F =

{{e1, e2}, {e3, e4}, {e5, e6}}. Then, by Lemma 5.9, we can assume w.l.o.g. that the edges
in

⋃
F are arranged as in (a) of Figure 5.3. Thus, it is easy to see that every pair

of vertices that are separated by a 4-cut from C can also be separated by a 3-cut. We
conclude that none of the three 4-cuts in C is essential.

Proposition 5.2. Let C be a collection of 4-cuts of G that is generated by a collection
F = {p1, . . . , pk} of k pairs of edges, with k ≥ 4. Then there is a partition {X1, . . . , Xk}
of V (G), such that G[Xi] is connected for every i ∈ {1, . . . , k}, and E[Xi, Xi+k1] = pi for
every i ∈ {1, . . . , k}. In other words, C is a cyclic family of 4-cuts of G.

Proof. For every integer k′ with 3 ≤ k′ ≤ k, we define the proposition Π(k′) ≡ “there is
a partition {X1, . . . , Xk′} of V (G), such that G[Xi] is connected for every i ∈ {1, . . . , k′},
and E[Xi, Xi+k′1

] = pi for every i ∈ {1, . . . , k′}”. We will show inductively that Π(k)
is true.

If we take the subcollection {p1, p2, p3} of F , then this generates a collection of
4-cuts of G; but since k ≥ 4, this collection is not maximal w.r.t. the property of
generating a collection of 4-cuts of G. Thus, by Lemma 5.9 we have that there is a
partition {X1, X2, X3} of V , such that G[Xi] is connected for every i ∈ {1, 2, 3}, and
E[Xi, Xi+31] = pi for every i ∈ {1, 2, 3}. This establishes Π(3) (the base step of our
induction).

Now let us suppose that Π(k′) is true, for some k′ with 3 ≤ k′ < k. This means
that there exists a partition {X1, . . . , Xk′} of V (G) such that G[Xi] is connected for
every i ∈ {1, . . . , k′}, and E[Xi, Xi+k′1

] = pi for every i ∈ {1, . . . , k′}. We will show
that Π(k′ + 1) is also true.

Since pk′+1 forms a 4-cut with every pair of edges in {p1, . . . , pk′}, we have that
none of the edges in pk′+1 lies in p1∪· · ·∪pk′ (because otherwise pk′+1∪pi would not be

135

a 4-element set, for some i ∈ {1, . . . , k′}). Thus, either pk′+1 lies entirely within G[Xi],
for some i ∈ {1, . . . , k′}, or there are i, j ∈ {1, . . . , k′}, with i ̸= j, such that both G[Xi]

and G[Xj] contain an edge from pk′+1. Let us suppose, for the sake of contradiction,
that the second case is true. Let pk′+1 = {e1, e2}, and let us assume, w.l.o.g., that e1 is
contained in G[Xi] and e2 is contained in G[Xj]. Since k′ ≥ 3, we may assume w.l.o.g.
that j ̸= i−k′1. Now, since pi∪pk′+1 is a 4-cut of G and e1 is the only edge from pi∪pk′+1

that lies in G[Xi], we have that e1 is a bridge of G[Xi] (because otherwise the endpoints
of e1 would remain connected in G[Xi] \ (pi ∪ pk′+1)). So let C1, C2 be the connected
components of G[Xi] \ e1. Thus, we have E[C1, C2] = {e1}. By applying Lemma 5.8
on the collection of pairs of edges {p1, . . . , pk′}, we have that ∂(Xi) = pi∪pi−k′1

. Notice
that ∂(C1) = E[C1, C2] ⊔ E[C1, V \ Xi] and ∂(C2) = E[C1, C2] ⊔ E[C2, V \ Xi]. Thus,
since the graph is 3-edge-connected and E[C1, V \ Xi] ⊔ E[C2, V \ Xi] = ∂(Xi) and
|∂(Xi)| = 4, we have that both E[C1, V \Xi] and E[C2, V \Xi] must contain precisely
two edges from pi ∪ pi−k′1

. If E[C1, V \Xi] = pi, then we have that pi ∪ {e1} is a 3-cut
of G, contradicting the fact that pi ∪ {e1, e2} is a 4-cut of G. Similarly, we can reject
the case E[C1, V \Xi] = pi−k′1

. Thus, we have that both E[C1, V \Xi] and E[C2, V \Xi]

must intersect with both pi and pi−k′1
. But then, since G[Xi−k′1

] is connected, and e1, e2

do not lie in G[Xi−k′1
], we have that C1 and C2 remain connected in G \ (pi ∪{e1, e2})

(because both of them remain connected with Xi−k′1
in G \ (pi ∪ {e1, e2}) through

the edges from pi−k′1
). This implies that the endpoints of e1 remain connected in

G\ (pi∪{e1, e2}), contradicting the fact that pi∪{e1, e2} is a 4-cut of G. Thus, we have
shown that pk′+1 lies entirely within G[Xi], for some i ∈ {1, . . . , k′}.

Now, since G[Xi] is connected, we have that G[Xi] \ pk′+1 is split into at most
three connected components. It cannot be the case that G[Xi] \ pk′+1 is connected,
because otherwise e.g. p1 ∪ pk′+1 is not a 4-cut of G (because the endpoints of the
edges from pk′+1 would remain connected in G \ (p1 ∪ pk′+1)). Now let us suppose, for
the sake of contradiction, that G[Xi] \ pk′+1 is split into three connected components.
This implies that both edges from pk′+1 are bridges of G[Xi]. By applying Lemma 5.8
on the collection of pairs of edges {p1, . . . , pk′}, we have that the boundary of Xi in
G contains exactly four edges. Then, Lemma 5.3 implies that G[Xi] contains at most
one bridge – a contradiction. This shows that G[Xi] \ pk′+1 consists of two connected
components C1 and C2. Then we have E[C1, C2] = pk′+1.

It remains to determine the incidence relation between C1 and C2 and the edges
from ∂(Xi) = pi ∪ pi−k′1

. Notice that ∂(C1) = E[C1, C2] ⊔ E[C1, V \ Xi] and ∂(C2) =

136

E[C1, C2] ⊔ E[C2, V \ Xi]. Thus, since the graph is 3-edge-connected, we have that
either of E[C1, V \Xi] and E[C2, V \Xi] must contain at least one edge from pi∪pi−k′1

.
Therefore, since |∂(Xi)| = 4, we can see that either of E[C1, V \Xi] and E[C2, V \Xi]

must contain exactly two edges from pi ∪ pi−k′1
, because otherwise we contradict the

fact that pk′+1 ∪ pi and pk′+1 ∪ pi−k′1
are 4-cuts of G (and therefore no proper subset

of them can disconnect G upon removal).
Now, we either have (1) E[C1, Xi+k′1

] = pi (and E[C2, Xi−k′1
] = pi−k′1

), or
(2) E[C1, Xi−k′1

] = pi−k′1
(and E[C2, Xi+k′1

] = pi), or (3) both E[C1, Xi+k′1
] and

E[C2, Xi+k′1
] intersect with pi (and both E[C1, Xi−k′1

] and E[C2, Xi−k′1
] intersect with

pi−k′1
). Let us suppose, for the sake of contradiction, that the third case is true. But

then we have that pi ∪ pk′+1 is not a 4-cut of G, since both C1 and C2 remain con-
nected with Xi−k′1

through the edges from pi−k′1
. Thus, we may assume, w.l.o.g.,

that E[C1, Xi+k′1
] = pi and E[C2, Xi−k′1

] = pi−k′1
. Now we observe that, by renaming

appropriately the sets C1, C2 and {X1, . . . , Xk′}\{Xi}, we have that there is a partition
{X1, . . . , Xk′+1} of V , such that G[Xi] is connected for every i ∈ {1, . . . , k′ + 1}, and
E[Xi, Xi+k′+11

] = pi for every i ∈ {1, . . . , k′ + 1}. Thus, Π(k′ + 1) is also true, and the
result follows inductively.

Corollary 5.5. Let C be a collection of 4-cuts with |C| ≥ 3 that is generated by a collection
of pairs of edges. Suppose that C contains an essential 4-cut. Then C is a cyclic family of
4-cuts.

Proof. If |C| = 3, then, since C contains an essential 4-cut, Corollary 5.4 implies that C
cannot be a degenerate family of 4-cuts. Thus, Lemma 5.9 implies that C is a cyclic
family of 4-cuts. Otherwise, if |C| > 3, then C is generated by a collection of pairs
of edges that has size at least four, and therefore Proposition 5.2 implies that C is a
cyclic family of 4-cuts.

A collection C of 4-cuts is called trivial if |C| = 1.

Lemma 5.10. Let F be a collection of pairs of edges of G that generates a non-trivial
collection C of 4-cuts of G. Then, F is unique w.r.t. the property of generating C.

Proof. Let us suppose, for the sake of contradiction, that there are two distinct col-
lections F1 and F2 of pairs of edges of G that generate C. Then, since F1 and F2

generate the same non-trivial collection of 4-cuts, we have that |F1| = |F2| > 2. Now,
since F1 and F2 are distinct and |F1| = |F2|, there is a pair of edges {e, e′} ∈ F2 \ F1.

137

Let C = {e1, e2, e3, e4} be a 4-cut in C. Since F1 generates C , we may assume w.l.o.g.
that {{e1, e2}, {e3, e4}} ⊂ F1. Now let us assume, for the sake of contradiction, that
{e1, e2} ∈ F2. Since {e1, e2} ∈ F1 and {e, e′} /∈ F1, we have {e1, e2} ̸= {e, e′}. Then,
since {e, e′} ∈ F2, we have that C ′ = {e1, e2, e, e′} is a 4-cut in C. But since {e, e′} /∈ F1

and F1 also generates C ′, we have that either {e1, e} ∈ F1 or {e1, e′} ∈ F1. (Notice that
none of e, e′ can be e2, for otherwise C ′ would not be a 4-element set.) But then we
have that either {e1, e2} ∪ {e1, e} or {e1, e2} ∪ {e1, e′} is a 4-cut of G, a contradiction.
This shows that {e1, e2} /∈ F2. Thus, since F2 generates C , we may assume w.l.o.g.
that {{e1, e3}, {e2, e4}} ⊂ F2.

Now, since |F1| ≥ 3, there is a pair of edges {e5, e6} ∈ F1 \ {{e1, e2}, {e3, e4}}. Then
we have that F1 generates {e1, e2, e5, e6}, and therefore F2 also generates {e1, e2, e5, e6}.
Then, since {e1, e2} /∈ F2, we have that either {e1, e5} ∈ F2 or {e1, e6} ∈ F2. Notice
that e3 /∈ {e5, e6}, because otherwise we would have that {e3, e4} ∪ {e5, e6} is not a 4-
element set, contradicting the fact that F1 generates a collection of 4-cuts. This implies
that {e1, e3} ̸= {e1, e5} and {e1, e3} ̸= {e1, e6}. But then, since {e1, e3} ∈ F2, we have
that either {e1, e3} ∪ {e1, e5} or {e1, e3} ∪ {e1, e6} is a 4-cut of G, which is absurd. We
conclude that there is a unique collection of pairs of edges of G that generates C.

Let C be a cyclic family of 4-cuts. Then, Lemma 5.10 implies that there is a unique
collection F = {p1, . . . , pk} of pair of edges that generates C. Now, by definition, we
have that there is a partition {X1, . . . , Xk} of V (G) such that G[Xi] is connected for
every i ∈ {1, . . . , k}, and (w.l.o.g.) E[Xi, Xi+k1] = pi for every i ∈ {1, . . . , k}. Thus,
by Lemma 5.8 we have that the connected components of G \

⋃
F are precisely

X1, . . . , Xk. Then, we call X1, . . . , Xk the corners of the cyclic family C (considered
either as vertex sets, or as subgraphs of G). For every i ∈ {1, . . . , k} we have that
∂(Xi) = pi ∪ pi−k1. We call the 4-cuts ∂(X1), . . . , ∂(Xk) the C-minimal 4-cuts.

Let C be a 4-cut of G. If there is no collection F of pairs of edges with |F| > 2 that
generates (a collection of 4-cuts that contains) C , then C is called an isolated 4-cut.

Corollary 5.6. Let C be an essential isolated 4-cut of G. Then, C is parallel with every
essential 4-cut of G.

Proof. Let us suppose, for the sake of contradiction, that there is an essential 4-cut
C ′ such that C and C ′ cross. Let C = {e1, e2, e3, e4}, and let C ′ = {f1, f2, f3, f4}. Then,
by Corollary 5.3 we have that C and C ′ must cross as in Figure 5.2. By Lemma 5.3,

138

we have that the four corners of this figure are connected, and therefore all of them
constitute 4-cuts of G. But this implies that {{e1, e2}, {e3, e4}, {f1, f2}, {f3, f4}} is a
collection of pairs of edges that generates C – in contradiction to the fact that C
is an isolated 4-cut. Thus, we conclude that C does not cross with other essential
4-cuts.

5.2.3 Properties of cyclic families of 4‐cuts

The following two lemmata demonstrate the importance of minimal 4-cuts. Both of
them are a consequence of the structure of the sides of the minimal 4-cuts (provided
by Lemma 5.8).

Lemma 5.11. Let C be a cyclic family of 4-cuts, and let C and C ′ be two C-minimal
4-cuts. Then C and C ′ are parallel.

Proof. Since C is a cyclic family of 4-cuts, there is a partition {X1, . . . , Xk} of V (G),
and a collection of pairs of edges {p1, . . . , pk}, such that G[Xi] is connected for every
i ∈ {1, . . . , k}, E[Xi, Xi+k1] = pi for every i ∈ {1, . . . , k}, and C = {pi ∪ pj | i, j ∈
{1, . . . , k} with i ̸= j}. Then, since C and C ′ are C-minimal 4-cuts, there are i, j ∈
{1, . . . , k} such that C = pi ∪ pi+k1 and C ′ = pj ∪ pj+k1. Then, by Lemma 5.8 we
have that the connected components of G \ C are Xi and V \Xi, and the connected
components of G \ C ′ are Xj and V \ Xj. Since {X1, . . . , Xk} is a partition of V (G),
we have that either Xi = Xj or Xi ∩Xj = ∅. Thus, the 4-cuts C and C ′ are parallel
(as an immediate consequence of the definition).

Lemma 5.12 (A non-minimal 4-cut can be replaced by minimal 4-cuts). Let C be a
cyclic family of 4-cuts, and let C be a 4-cut in C that separates two vertices x and y. Then,
there is a C-minimal 4-cut C ′ that also separates x and y.

Proof. Since C is a cyclic family of 4-cuts, there is a partition {X1, . . . , Xk} of V (G),
and a collection of pairs of edges {p1, . . . , pk}, such that G[Xi] is connected for every
i ∈ {1, . . . , k}, E[Xi, Xi+k1] = pi for every i ∈ {1, . . . , k}, and C = {pi ∪ pj | i, j ∈
{1, . . . , k} with i ̸= j}. Then, there are i, j ∈ {1, . . . , k} with i ̸= j, such that C =

pi ∪ pj. By Lemma 5.8, we have that the connected components of G \C are given by
Xi+k1 ∪Xi+k2 ∪ · · · ∪Xj and Xj+k1 ∪Xj+k2 ∪ · · · ∪Xi. Since x and y are separated by
C , we have that there are t ∈ {i+k 1, i+k 2, . . . , j} and t′ ∈ {j +k 1, j +k 2, . . . , i}, such
that x ∈ Xt and y ∈ Xt′. Consider the 4-cut C ′ = pt−k1 ∪ pt. Then, Lemma 5.8 implies

139

that C ′ = ∂(Xt), and therefore C ′ is a C-minimal 4-cut (by definition). Notice that the
connected components of G\C ′ are given by Xt and V \Xt. Thus, C ′ separates x and
y.

Corollary 5.7. Let C be a cyclic family of 4-cuts, and let M be the collection of the
C-minimal 4-cuts. Then M is a parallel family of 4-cuts with atoms(M) = atoms(C).

Proof. An immediate consequence of Lemmata 5.11 and 5.12.

5.2.4 Generating the implied 4‐cuts

Let C be a collection of 4-cuts of G. Our goal is to construct a linear-space repre-
sentation of all 4-cuts implied by C, that will be convenient in order to essentially
process all of them simultaneously and derive atoms(C). We will show how to do this
in linear time, by constructing a set {F1, . . . ,Fk} of collections of pairs of edges, each
one of which generates a collection of 4-cuts implied by C, with the property that
every 4-cut implied by C is generated by at least one of those collections.

Intuitively speaking, the idea is to partition every 4-cut C ∈ C into pairs of pairs of
edges in all possible ways, in order to (implicitly) trace all the implicating sequences
of C that use C. Thus, if C = {e1, e2, e3, e4}, then we produce the three partitions
{{e1, e2}, {e3, e4}}, {{e1, e3}, {e2, e4}} and {{e1, e4}, {e2, e3}} of C into pairs of edges.
Every one of those partitions has the potential to participate in an implicating se-
quence for a 4-cut. For example, if there is a 4-cut C ′ = {e3, e4, e5, e6} ∈ C with
C ′ ̸= C , then {e1, e2, e5, e6} is a 4-cut implied by C and C ′, and in order to derive
this implication we have to (conceptually) partition C into {{e1, e2}, {e3, e4}} and C ′

into {{e3, e4}, {e5, e6}}. Thus, F = {{e1, e2}, {e3, e4}, {e5, e6}} is a collection of pairs of
edges that generates a collection of 4-cuts implied by C. Now we would like to extend
this collection as much as possible, by considering the partition of another 4-cut from
C into pairs of edges that includes one of the pairs of edges in F . This is easy to do if
we have broken every 4-cut from C into all its possible bipartitions of pairs of edges.

In order to implement this idea, for every 4-cut C = {e1, e2, e3, e4} ∈
C, we produce six elements (C, {e1, e2}), (C, {e1, e3}), (C, {e1, e4}), (C, {e2, e3}),
(C, {e2, e4}) and (C, {e3, e4}). Then we introduce three artificial (undirected) edges
{(C, {e1, e2}), (C, {e3, e4})}, {(C, {e1, e3}), (C, {e2, e4})} and {(C, {e1, e4}), (C, {e2, e3})}.
The purpose of those edges is to maintain the information that their endpoints cor-
respond to a specific partition of C into pairs of edges. Now suppose that there are

140

two 4-cuts C,C ′ ∈ C that participate in an implicating sequence as consecutive 4-cuts.
This means that there are two elements of the form (C, {e, e′}) and (C ′, {e, e′}). Then
we would like to have those elements connected with a new artificial edge, in order
to maintain the information that the 4-cuts C,C ′ intersect in the pair {e, e′}. However,
it would be inefficient to introduce such an edge in all those cases, because we would
need Ω(|C|2) time in the worst case scenario. Instead, if C1, . . . , Ck are all the 4-cuts
from C that contain the pair of edges {e, e′}, then we ensure that we have all elements
(C1, {e, e′}), . . . , (Ck, {e, e′}) in a sequence, and then we connect every consecutive pair
of elements in this sequence with a new artificial edge. In total, this results in an undi-
rected graph G, that basically represents all the partitions of the 4-cuts from C into
two pairs of edges, and all intersections of the 4-cuts from C in a pair of edges. Then
we can efficiently derive this information if we simply compute the connected com-
ponents of this graph. We can prove that the connected components of G correspond
to collections of pairs of edges that generate collections of 4-cuts implied by C (see
Proposition 5.3).

The implementation of this idea is shown in Algorithm 16. We use a total ordering
of the edges of G (e.g., lexicographic order), so that the order of edges in a pair
of edges is fixed. This is needed because, if C and C ′ are two distinct 4-cuts that
contain a pair of edges {e, e′}, then we would like to have the elements (C, {e, e′})
and (C ′, {e, e′}) (that are generated internally by the algorithm) in a maximal sequence
of elements of this form. Thus, the order of e and e′ should be fixed, so that the tuples
(C, {e, e′}) and (C ′, {e, e′}) can be recognized as having the same second component.
If p is a pair of edges, then we let p⃗ denote the corresponding ordered pair of edges
that respects the total ordering of E(G). Whenever (e, e′) denotes an ordered pair of
edges, we assume that this order respects the total ordering of E(G).

The remainder of this section is devoted to an exploration of the properties of the
output of Algorithm 16.

Proposition 5.3. Let C be a collection of 4-cuts of a graph G, and let F1, . . . ,Fk be the
output of Algorithm 16 on input C. Then every Fi is a collection of pairs of edges that
generates a collection of 4-cuts of G that are implied by C. Conversely, for every 4-cut C

implied by C, there is at least one i ∈ {1, . . . , k} such that C belongs to the collection of
4-cuts generated by Fi. The running time of Algorithm 16 is O(n+ |C|), where n = |V (G)|.
The output of Algorithm 16 has size O(|C|) (i.e., O(|F1|+ · · ·+ |Fk|) = O(|C|)).

141

Algorithm 16: Return a set of collections of pairs of edges that generate in
total all the 4-cuts that are implied by a collection of 4-cuts C

1 input: a collection C of 4-cuts of G
2 output: a set F1, . . . ,Fk of collections of pairs of edges that generate
collections of 4-cuts of G that contain in total all the 4-cuts implied by C

3 Let P← ∅, J← ∅
4 foreach C = {e1, e2, e3, e4} ∈ C do
5 let p1 ← {e1, e2}, p2 ← {e3, e4}, p3 ← {e1, e3}, p4 ← {e2, e4}, p5 ← {e1, e4},

p6 ← {e2, e3}
6 generate the elements (C, p⃗1), (C, p⃗2), (C, p⃗3), (C, p⃗4), (C, p⃗5), (C, p⃗6)
7 add those elements to P
8 add to J the edges {(C, p⃗1), (C, p⃗2)}, {(C, p⃗3), (C, p⃗4)}, {(C, p⃗5), (C, p⃗6)}

9 end
10 sort the elements of P lexicographically w.r.t. their second component
11 foreach pair of consecutive elements (C, p), (C ′, p) of P with the same second

component do
12 add to J the edge {(C, p), (C ′, p)}
13 end
14 compute the connected components S1, . . . , Sk of the graph G = (P, J)
15 foreach i ∈ {1, . . . , k} do
16 Fi ← {{e, e′} | ∃(C, (e, e′)) ∈ Si} // consider Fi as a simple set

17 end
18 return F1, . . . ,Fk

Proof. Let i ∈ {1, . . . , k}. We will show that Fi generates a collection of 4-cuts implied
by C. Let G be the graph that is generated internally by the algorithm in Line 14, and
let Si be the connected component of G from which Fi is derived in Line 16. First
we will show that |Fi| ≥ 2. Let (C, (e, e′)) be an element in Si. Then C is a 4-cut in
C, and let {e′′, e′′′} = C \ {e, e′}. Due to the construction of G, we have w.l.o.g., (i.e.,
by possibly changing the order of the edges), that (C, (e′′, e′′′)) is a vertex of G. Then,
there is an edge in G with endpoints (C, (e, e′)) and (C, (e′′, e′′′)) (see Line 8). This
implies that (C, (e, e′)) and (C, (e′′, e′′′)) belong to the same connected component of
G, and therefore we have (C, (e′′, e′′′)) ∈ Si. This shows that {{e, e′}, {e′′, e′′′}} ⊆ F .

142

Since C is a 4-element set, we have {e, e′} ̸= {e′′, e′′′}. This shows that |Fi| ≥ 2.
Now let p and q be two distinct pairs of edges that are contained in Fi. Then

there are 4-cuts C and C ′ in C such that there are elements (C, p⃗) and (C ′, q⃗) that are
contained in Si. Then, since (C, p⃗) and (C ′, q⃗) are in the same connected component
of G, there is a path from (C, p⃗) to (C ′, q⃗) in G that passes from distinct vertices. This
implies that there is sequence of pairs of edges p1, . . . , pN of G, with N ≥ 2, and a
sequence C1, . . . , CN of 4-cuts from C, such that (C1, p⃗1) = (C, p⃗), (CN , p⃗N) = (C ′, q⃗),
and for every i ∈ {1, . . . , N − 1} there is an edge of G with endpoints (Ci, p⃗i) and
(Ci+1, p⃗i+1). Since the edges of G are generated in Lines 8 and 12, for every i ∈
{1, . . . , N−1} we have that either Ci = Ci+1 and Ci = pi∪pi+1, or Ci∩Ci+1 = pi = pi+1

(∗).
Now we define a sequence of indexes t(1), t(2), . . . , t(N ′), for some N ′ ≤ N , as

follows. First, we let t(1) be the maximum index i ≥ 1 such that p1 = p2 = · · · = pi.
Now suppose that we have defined t(i), for some i ≥ 1, and pt(i) ̸= pN . Then we let
t(i + 1) be the maximum index j > t(i) such that pt(i)+1 = pt(i)+2 = · · · = pj. This
construction is terminated when we reach the first N ′ such that pt(N ′) = pN . Notice
that N ′ ≥ 2, since p1 ̸= pN . By construction, we have pt(i)+1 ̸= pt(i) and pt(i+1) = pt(i)+1,
for every i ∈ {1, . . . , N ′ − 1}. Thus, for every i ∈ {1, . . . , N ′ − 1}, by (∗) we have
Ct(i) = pt(i) ∪ pt(i)+1, and therefore Ct(i) = pt(i) ∪ pt(i+1). Thus, Ct(1), . . . , Ct(N ′−1) is an
implicating sequence of C. If N ′ = 2, then we have Ct(1) = pt(1)∪pt(2) = p1∪pN = p∪ q.
Thus, p∪ q ∈ C. Otherwise, Lemma 5.6 implies that pt(1) ∪ pt(N ′) is a 4-cut implied by
C, and therefore p1 ∪ pN = p ∪ q is a 4-cut implied by C. In any case then, we have
that p ∪ q is a 4-cut implied by C.

Conversely, let C be a 4-cut implied by C. This means that there is a sequence
p1, . . . , pk+1 of pairs of edges of G, and a sequence C1, . . . , Ck of 4-cuts in C, with
k ≥ 1, such that C = p1 ∪ pk+1, and Ci = pi ∪ pi+1 for every i ∈ {1, . . . , k}. Then,
for every i ∈ {1, . . . , k}, there is an edge of G with endpoints (Ci, p⃗i) and (Ci, p⃗i+1)

(see Line 8). Furthermore, for every i ∈ {1, . . . , k − 1}, there is path from (Ci, p⃗i+1)

to (Ci+1, p⃗i+1) in G (due to the existence of the edges in Line 12). Thus, all pairs of
the form (Ci, p⃗i), for i ∈ {1, . . . , k}, belong to the same connected component S of
G. Furthermore, (Ck, p⃗k+1) also belongs to S, due to the existence of the edge with
endpoints (Ck, p⃗k) and (Ck, p⃗k+1) (see Line 8). Thus, there is a collection of pairs of
edges F that is returned by Algorithm 16 on input C such that {p1, . . . , pk+1} ⊆ F
(see Line 16). Then we have that C = p1 ∪ pk+1 is generated by F .

143

We can easily see that Algorithm 16 runs in O(n+ |C|) time. For every C ∈ C, we
generate six elements of O(1) size, and three edges of O(1) size. Line 10 takes O(n+|C|)
time if implemented with bucket sort, since the components of the tuples that we sort
are edges of the graph, and so their endpoints lie in the range {1, . . . , n}. Line 12 adds
O(|C|) edges of O(1) size. The computation of the connected components in Line 14
takes O(|V (G)| + |E(G)|) = O(|C|) time, and Line 16 takes O(|V (G)|) = O(|C|) time.
Thus, the running time of Algorithm 16 is O(n+ |C|). Finally, for every i ∈ {1, . . . , k},
let Si be the connected component of G from which Fi is derived (in Line 16). Then
we have O(|F1| + · · · + |Fk|) = O(|S1| + · · · + |Sk|) = O(|V (G)| = O(|C|). The second
equality is due to the fact that S1, . . . , Sk are the connected components of G.

Lemma 5.13. Let C be a collection of 4-cuts of a graph G, and let F and F ′ be two
distinct collections of pairs of edges that are returned by Algorithm 16 on input C. Then
F ∩ F ′ = ∅.

Proof. Let F and F ′ be two collections of pairs of edges returned by Algorithm 16
on input C with F ̸= F ′. Let S and S ′ be the connected components of the graph G
generated in Line 14, from which F and F ′, respectively, are derived in Line 16. Let
us assume, for the sake of contradiction, that there is a pair of edges {e, e′} ∈ F ∩F ′.
Then, w.l.o.g., (i.e., by possibly changing the order of the edges), there are elements
(C, (e, e′)) ∈ S and (C ′, (e, e′)) ∈ S ′, such that C and C ′ are 4-cuts in C. But then,
due to the existence of the edges in Line 12, we have that (C, (e, e′)) is connected
with (C ′, (e, e′)) in G. This implies that S = S ′, which further implies that F = F ′, a
contradiction. We conclude that F ∩ F ′ = ∅.

Lemma 5.14. Let C be a collection of 4-cuts of a graph G, and let C = {e1, e2, e3, e4}
be a 4-cut of G that is implied by C through the pair of edges {e1, e2}. Then, in the
output of Algorithm 16 on input C, there is a collection F of pairs of edges such that
{{e1, e2}, {e3, e4}} ⊆ F. Furthermore, if C /∈ C, then this inclusion is proper (i.e., |F| > 2).

Proof. We may assume w.l.o.g. that e1 < e2 and e3 < e4. Suppose first that C ∈ C. Let
G be the graph generated by Algorithm 16 on input C in Line 14. Then, the elements
(C, (e1, e2)) and (C, (e3, e4)) are vertices of G that are connected with an edge (due to
Line 8). Thus, let S be the connected component of G that contains (C, (e1, e2)) and
(C, (e3, e4)), and let F be the collection of pairs of edges that is derived from S in
Line 16. Then, we have {{e1, e2}, {e3, e4}} ⊆ F .

144

Now let us suppose that C /∈ C. Since C is implied by C through the pair of edges
{e1, e2}, there is a sequence p1, . . . , pk+1 of pairs of edges, and a sequence C1, . . . , Ck

of 4-cuts from C, such that p1 = {e1, e2}, pk+1 = {e3, e4}, and Ci = pi ∪ pi+1 for every
i ∈ {1, . . . , k}. Then, for every i ∈ {1, . . . , k − 1}, we have that either Ci = Ci+1 or
Ci ∩Ci+1 = pi+1. Now let i ∈ {1, . . . , k} be an index. Since Ci = pi ∪ pi+1, we have that
(Ci, p⃗i) and (Ci, p⃗i+1) are the endpoints of an edge of G (see Line 8). Now let i < k. If
Ci = Ci+1, then we have (Ci, p⃗i+1) = (Ci+1, p⃗i+1). Otherwise, we have Ci ∩ Ci+1 = pi+1,
and therefore the elements (Ci, p⃗i+1) and (Ci+1, p⃗i+1) are vertices in the same connected
component of G (due to the existence of the edges in Line 12). This shows that the
vertices (Ci, p⃗i), for i ∈ {1, . . . , k − 1}, are in the same connected component S of G.
Furthermore, since there is an edge of G with endpoints (Ck, p⃗k) and (Ck, p⃗k+1), we
have that (Ck, p⃗k+1) is also in S. Now let F be the collection of pairs of edges that
is derived from S in Line 16. Then, we have {p1, . . . , pk+1} ⊆ F . Since C /∈ C and
p1∪ p2 ∈ C, we have C ̸= p1∪ p2. Thus, since C = p1∪ pk+1, we have p2 ̸= pk+1. Finally,
since p1 ∪ p2 and p1 ∪ pk+1 are 4-cuts, we have p1 ̸= p2 and p1 ̸= pk+1. Thus, we have
that p1, p2, pk+1 are three distinct pairs of edges contained in F .

Lemma 5.15. Let C be a collection of 4-cuts of G, and let F be a collection of pairs of
edges that is returned by Algorithm 16 on input C. Suppose that |F| = 2. Then,

⋃
F ∈ C.

Proof. Let F = {p, p′}. By Proposition 5.3, we have that p ∪ p′ is a 4-cut implied by
C. Let G be the graph that is generated internally by the algorithm in Line 14, and
let S be the connected component of G from which F is derived in Line 16. Then
there are 4-cuts C and C ′ in C such that the tuples (C, p⃗) and (C ′, p⃗′) are in S, and
we have p ⊂ C and p′ ⊂ C ′. If C = C ′, then we obviously have p ∪ p′ ∈ C. So let us
assume that C ̸= C ′.

Since the tuples (C, p⃗) and (C ′, p⃗′) are in the same connected component of G, this
means that there is a path P from (C, p⃗) to (C ′, p⃗′) in G that passes from distinct
vertices. Let (C ′′, p⃗′′) be the second vertex on P (where C ′′ ∈ C and p′′ is a pair of
edges in C ′′). Since the edges of G are generated in Lines 8 and 12, and since p ̸= p′

and C ̸= C ′, we have that (1) either C ′′ = C and p′′ ̸= p, or (2) C ′′ = C ′ and p′′ ̸= p′,
or (3) C ′′ ̸= C and p′′ = p, or (4) C ′′ ̸= C ′ and p′′ = p′. Notice that, between (1) and
(2), we may assume w.l.o.g. (1). Also, between (3) and (4), we may assume w.l.o.g.
(3).

First, let us assume that (1) is true. Due to the existence of P , we have that (C ′′, p⃗′′)

145

lies in S. This implies that p′′ ∈ F . Therefore, since p′′ ̸= p and F = {p, p′}, we have
p′′ = p′. Let us suppose, for the sake of contradiction, that p∪ p′ ̸= C. Since (C, p⃗) and
(C ′′, p⃗′) = (C, p⃗′) are vertices of G, we have p ⊂ C and p′ ⊂ C. Then, since p ̸= p′ and
p ∪ p′ ̸= C , we have |C ∩ (p ∪ p′)| = 3. But this contradicts Lemma 5.2. This shows
that C = p ∪ p′, and therefore p ∪ p′ is a 4-cut in C.

Now let us assume that (3) is true. Due to the existence of P , we have that (C ′′, p⃗′′)

lies in S. Let q = C ′′ \ p′′. Then there is an edge of G with endpoints (C ′′, p⃗′′) and
(C ′′, q⃗) (see Line 8). Thus, (C ′′, q⃗) also lies in S. This implies that q ∈ F . Thus, since
q ̸= p′′ = p, we have q = p′. Therefore, we have that C ′′ = p′′ ∪ q = p ∪ p′ is a 4-cut in
C.

5.2.5 Isolated and quasi‐isolated 4‐cuts

Let C be a collection of 4-cuts of G, and let C be a 4-cut implied by C. Then, it may be
that there is no collection F of pairs of edges with |F| > 2 that generates a collection
of 4-cuts implied by C that includes C. In this case, we call C a C-isolated 4-cut. Notice
that, if C is a complete collection of 4-cuts of G and C is a C-isolated 4-cut, then C is
an isolated 4-cut.

The following lemma provides a necessary condition that must be satisfied by a
C-isolated 4-cut.

Lemma 5.16. Let C be a collection of 4-cuts of G, and let C = {e1, e2, e3, e4} be a
C-isolated 4-cut. Then we have C ∈ C, and the 2-element collections of pairs of edges
{{e1, e2}, {e3, e4}}, {{e1, e3}, {e2, e4}} and {{e1, e4}, {e2, e3}}, are part of the output of
Algorithm 16 on input C.

Proof. Let us suppose, for the sake of contradiction, that C /∈ C. Since C is a C-
isolated 4-cut, we have that C implies C. Thus, we may assume w.l.o.g. that C implies
C through the pair of edges {e1, e2}. Then, Lemma 5.14 implies that there is a col-
lection F of pairs of edges that is returned by Algorithm 16 on input C such that
{{e1, e2}, {e3, e4}} ⊂ F . Proposition 5.3 implies that F generates a collection C ′ of
4-cuts implied by C. Thus, since |F| > 2 and C ∈ C ′, we have a contradiction to the
fact that C is C-isolated 4-cut. This shows that C ∈ C.

Now, since C ∈ C, we have that C trivially implies C through the pair of edges
{e1, e2}. Thus, Lemma 5.14 implies that there is a collection F of pairs of edges that is
returned by Algorithm 16 on input C such that {{e1, e2}, {e3, e4}} ⊆ F . Proposition 5.3

146

implies that F generates a collection C ′ of 4-cuts implied by C. Thus, since C ∈ C ′, we
have that |F| = 2, because C is C-isolated. Similarly, since C implies C through the
pairs of edges {e1, e3} and {e1, e4}, we have that the 2-element collections of pairs of
edges {{e1, e3}, {e2, e4}} and {{e1, e4}, {e2, e3}} are part of the output of Algorithm 16
on input C.

We note that the condition provided by Lemma 5.16 is only necessary, but
not sufficient. In other words, it may be that there is a 4-cut C = {e1, e2, e3, e4}
such that the collections of pairs of edges {{e1, e2}, {e3, e4}}, {{e1, e3}, {e2, e4}} and
{{e1, e4}, {e2, e3}}, are part of the output of Algorithm 16 on input C, but C is not a
C-isolated 4-cut. In this case, we call C a quasi C-isolated 4-cut.

Corollary 5.8. Let C be a collection of 4-cuts of G, and let C be a quasi C-isolated 4-cut.
Then C ∈ C.

Proof. Let C = {e1, e2, e3, e4}. Since C is quasi C-isolated, we have that the three col-
lections of pairs of edges {{e1, e2}, {e3, e4}}, {{e1, e3}, {e2, e4}} and {{e1, e4}, {e2, e3}},
are part of the output of Algorithm 16 on input C. Thus, Lemma 5.15 implies that
C ∈ C.

The following lemma, which concerns essential quasi C-isolated 4-cuts, will be very
useful in computing all the essential C-isolated 4-cuts, because it provides a criterion
with which we can distinguish the C-isolated 4-cuts from the quasi C-isolated 4-cuts
(see Corollary 5.9).

Lemma 5.17 (An essential quasi-isolated 4-cut shares a pair of edges with a minimal
4-cut). Let C be a collection of 4-cuts of G, and let C be an essential quasi C-isolated 4-cut.
Then, there is a pair of edges p = C ∩C ′, where C ′ is an essential C ′-minimal 4-cut, where
C ′ is a cyclic family of 4-cuts that is generated by a collection F ′ of pairs of edges with
|F ′| ≥ 3 that is returned by Algorithm 16 on input C.

Proof. Let C = {e1, e2, e3, e4}. Since C is a quasi C-isolated 4-cut, we have that C is
not C-isolated. This means that there is a collection F of pairs of edges with |F| > 2

that generates a collection C̃ of 4-cuts that are implied by C such that C ∈ C̃. Thus,
we may assume w.l.o.g. that {{e1, e2}, {e3, e4}, {x, y}} ⊆ F , where {x, y} is a pair of
edges with {x, y} /∈ {{e1, e2}, {e3, e4}}. Since C is an essential 4-cut, by Corollary 5.5
we have that C̃ is a cyclic family of 4-cuts. This implies that there is a partition

147

{X1, X2, X3} of V (G) such that the subgraphs G[X1], G[X2] and G[X3] are connected,
and E[X1, X2] = {e1, e2}, E[X2, X3] = {e3, e4}, E[X3, X1] = {x, y}. (See Figure 5.6.)
Since C is an essential 4-cut and the connected components of G \ C are X2 and
X1 ∪ X3, we have that there is a pair u, v of 4-edge-connected vertices such that
u ∈ X2 and v ∈ X1 ∪X3. We may assume w.l.o.g. that v ∈ X1.

Let C ′ = {e1, e2, x, y}. Then we have that C ′ is a 4-cut implied by C. Let us suppose,
for the sake of contradiction, that C implies C ′ through the pair of edges {e1, e2}. Then,
Lemma 5.14 implies that there is a collection F ′ of pairs of edges that is returned by
Algorithm 16 on input C such that {{e1, e2}, {x, y}} ⊆ F ′. Since C is a quasi C-isolated
4-cut, by definition we have that the collection of pairs of edges F ′′ = {{e1, e2}, {e3, e4}}
is returned by Algorithm 16 on input C. Since {x, y} ̸= {e3, e4}, we have that F ′ ̸= F ′′.
Therefore, Lemma 5.13 implies that F ′ ∩ F ′′ = ∅, in contradiction to the fact that
{e1, e2} ∈ F ′ ∩F ′′. Thus, we have that C does not imply C ′ through the pair of edges
{e1, e2}. Thus, we may assume w.l.o.g. that C implies C ′ through the pair of edges
{e1, x}.

Notice that, since C does not imply C ′ through the pair of edges {e1, e2} ⊂ C ′,
we have that C ′ /∈ C. Thus, since C implies C ′ through the pair of edges {e1, x}, by
Lemma 5.14 we have that there is a collection F ′ of pairs of edges that is returned
by Algorithm 16 on input C such that {{e1, x}, {e2, y}} ⊂ F ′. By Proposition 5.3, we
have that F ′ generates a collection C ′ of 4-cuts that are implied by C. We have that
the connected components of G \ C ′ are X1 and X2 ∪ X3. Since u ∈ X2 and v ∈ X1,
and u, v are 4-edge-connected vertices, this implies that C ′ is an essential 4-cut. Thus,
since |F ′| ≥ 3, by Corollary 5.5 we have that C ′ is a cyclic family of 4-cuts. We will
prove that X2 ∪X3 is a corner of C ′, and therefore C ′ is C ′-minimal 4-cut.

So let us suppose, for the sake of contradiction, that X2 ∪ X3 is not a corner of
C ′. Since X2 ∪ X3 is one of the connected components of G \ C ′, this implies that
there is a pair of edges {z, w} ∈ F ′, such that {z, w} ⊂ E(G[X2 ∪ X3]). Then, since
{e1, x} ∈ F ′ and F ′ generates 4-cuts of G, we have that C ′′ = {e1, x, z, w} is a 4-cut of
G. Let G′ = G\{z, w}. Since {z, w} ⊂ E(G[X2∪X3]), we have that G′[X1] is connected.
Thus, it cannot be that either G′[X2] or G′[X3] is connected, because otherwise the
endpoints of e1 or x, respectively, remain connected in G′ \ {e1, x}, in contradiction to
the fact that C ′′ is a 4-cut of G. Thus, we have that one of z, w is a bridge of G[X2],
and the other is a bridge of G[X3]. Thus, we may assume w.l.o.g. that z is a bridge
of G[X2], and let Y1 and Y2 be the connected components of G[X2] \ z. Then we have

148

e1e2

e3

e4

x y

x1

x2x3

C’

C

u

v

Figure 5.6: A depiction of the situation analyzed in Lemma 5.17.

that E[Y1, Y2] = {z}. Since |∂(X2)| = 4, by Lemma 5.3 we have that |E[Y1, V \X2]| = 2

and |E[Y2, V \ X2]| = 2. Since E[Y1, Y2] = {z}, this implies that |∂(Y1)| = |∂(Y2)| = 3.
But then we have that u is not 4-edge-connected with v, since either ∂(Y1) or ∂(Y2)

(depending on whether Y1 or Y2 contains u, respectively) is a 3-cut that separates u
from v – a contradiction.

Thus, we have shown that X2 ∪X3 is a corner of C ′. Therefore, since X2 ∪X3 is
one of the connected components of G \ C ′, we have that C ′ is a C ′-minimal 4-cut.
Furthermore, since v ∈ X1 and u ∈ X2, we have that C ′ is an essential 4-cut. Finally,
we have that {e1, e2} = C ∩ C ′, and C ′ is generated by F ′, where F ′ is one of the
collections of pairs of edges that are returned by Algorithm 16 on input C. Thus, the
proof is complete.

Corollary 5.9. Let C be a complete collection of 4-cuts of G, and let C be an essential 4-cut
of G. Let F1, . . . ,Fk be the collections of pairs of edges that are returned by Algorithm 16
on input C, and let C1, . . . , Ck be the collections of 4-cuts that they generate, respectively.
Then, C is a quasi C-isolated 4-cut if and only if:

(1) C ∈ C.

(2) All three partitions of C into pairs of edges are contained in {F1, . . . ,Fk}.

(3) There is a pair of edges p in C such that p = C ∩ C ′, where C ′ is an essential
Ci-minimal 4-cut, for some i ∈ {1, . . . , k}.

Proof. (⇒) We have C ∈ C by Corollary 5.8. (2) is an immediate consequence of
the definition of quasi C-isolated 4-cuts. (3) is ensured by Lemma 5.17, since C is

149

essential.
(⇐) Since C∩C ′ = p, we have that p′ = C ′ \C and q = C \C ′ are two distinct pairs

of edges. Thus, we have C = p∪ q and C ′ = p∪ p′. Then, by Lemma 5.5 we have that
C ′′ = q ∪ p′ is a 4-cut of G. Thus, since C is a complete collection of 4-cuts of G, we
have that {p, p′, q} is a collection of pairs of edges that generates 4-cuts implied by C,
including C. This shows that C is not a C-isolated 4-cut. Thus, since (2) is satisfied,
by definition we have that C is a quasi C-isolated 4-cut.

5.2.6 Some additional properties satisfied by the output of Algo‐

rithm 16

Lemma 5.18. Let C be a collection of 4-cuts of G, and let F and F ′ be two distinct
collections of pairs of edges that are returned by Algorithm 16 on input C. Let p and p′ be
two pairs of edges such that p ∈ F and p′ ∈ F ′. Then, p ∪ p′ (if it is a 4-cut of G) is not
implied by C through the pair of edges p.

Proof. Let G be the graph that is generated internally by Algorithm 16 on input C
(in Line 14). Since F and F ′ are returned by Algorithm 16 on input C, there are
connected components S and S ′ of G, such that F is derived from S, and F ′ is
derived from S ′ (in Line 16). Since p ∈ F and p′ ∈ F ′, there are 4-cuts C and C ′ in
C such that (C, p⃗) ∈ S and (C ′, p⃗′) ∈ S ′.

Let us assume, for the sake of contradiction, that C ′′ = p ∪ p′ is a 4-cut of G that
is implied by C through the pair of edges p. (We note that it is not even necessary
that C ′′ is a 4-element set, but our assumption implies that.) This means that there is
a sequence p1, . . . , pk+1 of pairs of edges, and a sequence C1, . . . , Ck of 4-cuts from C,
such that p1 = p, pk+1 = p′, and Ci = pi ∪ pi+1 for every i ∈ {1, . . . , k}. Then, for every
i ∈ {1, . . . , k − 1}, Lemma 5.2 implies that either Ci = Ci+1 or Ci ∩ Ci+1 = pi+1. Now
let i ∈ {1, . . . , k} be an index. Since Ci = pi ∪ pi+1, we have that (Ci, p⃗i) and (Ci, p⃗i+1)

are the endpoints of an edge of G (see Line 8). Now let i < k. If Ci = Ci+1, then we
have (Ci, p⃗i+1) = (Ci+1, p⃗i+1). Otherwise, we have Ci ∩ Ci+1 = pi+1, and therefore the
elements (Ci, p⃗i+1) and (Ci+1, p⃗i+1) are vertices in the same connected component of G
(due to the existence of the edges in Line 12). This shows that the vertices (Ci, p⃗i), for
i ∈ {1, . . . , k − 1}, are in the same connected component S ′′ of G. Furthermore, since
Ck = pk ∪ pk+1, there is an edge of G with endpoints (Ck, p⃗k) and (Ck, p⃗k+1). Thus,

150

we have that (Ck, p⃗k+1) is also in S ′′. Now let F ′′ be the collection of pairs of edges
that is derived from S ′′ in Line 16. Then, we have {p1, . . . , pk+1} ⊆ F ′′. Since p1 = p

and pk+1 = p′, this implies that F ′′ ∩ F ̸= ∅ and F ′′ ∩ F ′ ̸= ∅. But this contradicts
Lemma 5.13. We conclude that C ′′ (if it is a 4-cut of G) is not implied by C through
the pair of edges p.

In order to appreciate the following lemma, we need to discuss a subtle point that
concerns the way in which cyclic families of 4-cuts are implied by collections of 4-cuts.
Suppose that we have a collection C of 4-cuts that implies the cyclic family C ′ of 4-cuts
that is generated by the collection of pairs of edges F = {p1, p2, p3}. Then, C ′ consists
of the 4-cuts {p1 ∪ p2, p1 ∪ p3, p2 ∪ p3}. However, it is not necessary that C implies,
say, p1 ∪ p2 through the pair of edges p1. In other words, it is not necessary that C
implies the 4-cuts in C ′ through the pairs of edges from which they are generated.
An example for that is given in Figure 5.7. Moreover, the same is true even if C ′ is
generated by a collection of four pairs of edges, as we can see in Figure 5.8. However,
if C ′ is generated by a collection F of six or more pairs of edges, then there are some
pairs of pairs of edges in F that have “distance” at least three (there is no need to
define precisely this term, but we refer to Figure 5.9 for an intuitive understanding of
it). The 4-cuts that are formed by the union of such pairs of edges have the property
that they are implied by C through them. In particular, if F consists of six pairs
of edges, then there are three pairs of pairs of edges in F that are “antipodal” (see
Figure 5.9). In this case, the following lemma establishes our claim. The intuitive
idea behind Lemma 5.19 is that every 4-cut that is formed by the union of two pairs
of edges that have distance at least three, has the property that the pairs of edges that
form it are not entangled with other edges in forming 4-cuts in a way that would
interfere with the straightforward way through which we would expect C to imply it.

Lemma 5.19 (Antipodal pairs of edges in a hexagonal family of 4-cuts). Let C be a
collection of 4-cuts of G, and let {p1, . . . , p6} be a collection of pairs of edges that generates
a cyclic family C ′ of 4-cuts that is implied by C. We may assume w.l.o.g. that there is a
partition {X1, . . . , X6} of V (G) such that G[Xi] is connected for every i ∈ {1, . . . , 6}, and
E[Xi, Xi+61] = pi for every i ∈ {1, . . . , 6}. (See Figure 5.9). Then, p1 ∪ p4 is implied by
C through the pair of edges p1.

Proof. Let us suppose, for the sake of contradiction, that C = p1∪p4 is not implied by
C through the pair of edges p1. In particular, this implies that C /∈ C. Let p1 = {e1, e2}

151

e1

e2

e3

e4

e5

e6

f1
f2

f3
f4

f5f6

Figure 5.7: This is a 3-edge-connected graph with 4-cuts C1 = {e1, e2, e3, e4}, C2 =

{e1, e2, e5, e5}, C3 = {e3, e4, e5, e6}, D1 = {e1, e5, f1, f2}, D2 = {e2, e6, f1, f2}, E1 =

{e1, e3, f3, f4}, E2 = {e2, e4, f3, f4}, F1 = {e3, e5, f5, f6} and F2 = {e4, e6, f5, f6}. It is easy

to see that C = {D1, D2, E1, E2, F1, F2} is a collection of 4-cuts that implies all 4-cuts of this

graph. In particular, C implies the cyclic family of 4-cuts {C1, C2, C3}, which is generated by

the collection of pairs of edges {{e1, e2}, {e3, e4}, {e5, e6}}. However, notice that C1 is not im-

plied by C through the pair of edges {e1, e2} (it is only implied by C through the pair of edges

{e1, e3} or {e2, e4}, with the implicating sequence E1 = {e1, e3, f3, f4}, E2 = {f3, f4, e2, e4}).

and let p4 = {e3, e4}. Since C is implied by C, but not through the pair of edges p1, we
may assume w.l.o.g. that C is implied by C through the pair of edges {e1, e3}. Then,
by Lemma 5.14 we have that there is a collection F of pairs of edges that is returned
by Algorithm 16 on input C, such that {{e1, e3}, {e2, e4}} ⊂ F . So let {f1, f2} be a pair
of edges in F \ {{e1, e3}, {e2, e4}}. Since F is returned by Algorithm 16 on input C,
Proposition 5.3 implies that C ′ = {e1, e3, f1, f2} is a 4-cut implied by C.

Let G′ = G\{e1, e3}. Then the subgraphs G′[X1], G′[X2], G′[X4] and G′[X5] remain
connected, and we have EG′ [X1, X2] = {e2} and EG′ [X4, X5] = {e4}. Thus, it cannot
be that both (G′ \ {f1, f2})[X1] and (G′ \ {f1, f2})[X2] are connected, or that both
(G′\{f1, f2})[X4] and (G′\{f1, f2})[X5] are connected, because otherwise the endpoints
of e1 or e3, respectively, would remain connected in G\{e1, e3, f1, f2} – in contradiction
to the fact that C ′ is a 4-cut of G. Thus, we have that one of f1, f2 is a bridge of either
G′[X1] or G′[X2], and the other is a bridge of either G′[X4] or G′[X5]. Thus, we may
assume w.l.o.g. (considering the symmetry of Figure 5.9), that f1 is a bridge of
G′[X1] = G[X1] (and therefore f2 lies in either G[X4] or G[X5]). Let Y1 and Y2 be the

152

e2

e3e4

e6

e8

f1

f2

g1

g2

g4

g3

e1

e5

e7

g5
g6

g7

g8

Figure 5.8: This is a 3-edge-connected graph with 4-cuts C1 = {e1, e2, e3, e4}, C2 =

{e1, e2, e5, e6}, C3 = {e1, e2, e7, e8}, C4 = {e3, e4, e5, e6}, C5 = {e3, e4, e7, e8}, C6 =

{e5, e6, e7, e8}, D1 = {e1, e3, g1, g2}, D2 = {e2, e4, g1, g2}, E1 = {e3, e5, g3, g4}, E2 =

{e4, e6, g3, g4}, F1 = {e1, e5, f1, f2}, F2 = {e2, e6, f1, f2}, G1 = {e1, e7, g5, g6}, G2 =

{e2, e8, g5, g6}, H1 = {e5, e7, g7, g8} and H2 = {e6, e8, g7, g8}. Notice that C1 is implied by

{D1, D2}, C2 is implied by {F1, F2}, C3 is implied by {G1, G2}, C4 is implied by {E1, E2}, and

C6 is implied by {H1,H2}. Thus, we have that C = {C5, D1, D2, E1, E2, F1, F2, G1, G2,H1,H2}

is a collection of 4-cuts that implies all 4-cuts of this graph. In particular, C implies the cyclic

family of 4-cuts C′ = {C1, C2, C3, C4, C5, C6}, which is generated by the collection of pairs

of edges {{e1, e2}, {e3, e4}, {e5, e6}, {e7, e8}}. However, notice that C2 = {e1, e2, e5, e6} is not

implied by C through the pair of edges {e1, e2}, and the pairs of edges {e1, e2} and {e5, e6}

have distance 2 in C′.

connected components of G′[X1] \ f1. Since ∂(X1) = p1 ∪ p6, Lemma 5.3 implies that
|E[Y1, V \X1]| = 2 and |E[Y2, V \X1]| = 2. Now there are three possibilities to consider:
either (1) E[Y1, V \ X1] = p1 (and E[Y2, V \ X1] = p6), or (2) E[Y1, V \ X1] = p6 (and
E[Y2, V \X1] = p1), or (3) both E[Y1, V \X1] and E[Y2, V \X1] intersect with both p1

and p6.
Let us suppose that (1) is true. Then we have that E[Y1, X2] = {e1, e2}. Since

neither of e1, e3, f1, f2 lies in G[X2], we have that (G \ C ′)[X2] remains connected,
and EG\C′ [Y1, X2] = {e2}. Thus, the endpoints of e1 remain connected in G \ C ′, in
contradiction to the fact that C ′ is a 4-cut of G. Thus, case (1) is rejected. With the
analogous argument, we can reject case (2). Thus, only case (3) can be true. This
implies that neither of E[Y1, X6] and E[Y2, X6] is empty (because each contains one

153

p1

p4

p2p6

p3p5

X1 X2

X4X5

X3X6

Figure 5.9: A cyclic family of 4-cuts C6 generated by the collection of pairs of edges

{p1, p2, p3, p4, p5, p6}. If i and j are two indices in {1, . . . , 6}, then we say that the pairs

of edges pi and pj have distance min{(i − j + 6)mod6, (j − i + 6)mod6} in C6. Thus, {p1, p4},

{p2, p5} and {p3, p6} are the only pairs of pairs of edges that have distance 3 in C6. Notice

that these pairs of pairs of edges are antipodal in this figure. The point of Lemma 5.19 is

that if there is a collection C of 4-cuts that implies C6, then the 4-cuts p1 ∪ p4, p2 ∪ p5 and

p3 ∪ p6 are implied by C through the pairs of edges p1, p2 and p3, respectively. In general, it

is not necessary that this is the case for 4-cuts that are generated by pairs of pairs of edges

that have distance less than 3. This is demonstrated in the previous figures, 5.7 and 5.8.

edge from p6). But then we have that Y1 and Y2 (and therefore the endpoints of f1)
remain connected in G\C ′ (because (G\C ′)[X6] is connected, and neither of E[Y1, X6]

and E[Y2, X6] intersects with C ′), in contradiction to the fact that C ′ is a 4-cut of G.
Thus, we conclude that our initial supposition cannot be true, and therefore p1 ∪ p4

is implied by C through the pair of edges p1.

Lemma 5.20 (Minimal essential 4-cuts do not cross). Let C be a complete collection of
4-cuts of G, and let F1 and F2 be two distinct collections of pairs of edges with |F1| > 2

and |F2| > 2 that are returned by Algorithm 16 on input C. Let C1 and C2 be the collections
of 4-cuts that are generated by F1 and F2, respectively. Let C1 be an essential C1-minimal
4-cut, and let C2 be an essential C2-minimal 4-cut. Then, C1 and C2 are parallel.

Proof. Let C1 = {e1, e2, e3, e4} and let C2 = {f1, f2, f3, f4}. Let us suppose, for the
sake of contradiction, that C1 and C2 cross. Since C1 and C2 are essential 4-cuts,
by Corollary 5.3 we may assume w.l.o.g. that C1 and C2 cross as in Figure 5.2.
Notice that, by Lemma 5.3, we have that the four corners of Figure 5.2 are connected
subgraphs of G. Thus, the boundaries of those corners are 4-cuts of G, and therefore
these are 4-cuts implied by C (because C implies all 4-cuts of G). Now let X be the

154

connected component of G \ C1 that contains f1 and f2, and let Y be the connected
component of G \ C1 that contains f3 and f4 (see Figure 5.10(a)). Since C1 is C1-
minimal, we have that either X or Y is a corner of C1. So let us assume, w.l.o.g.,
that X is a corner of C1. Similarly, let X ′ be the connected component of G \ C2 that
contains e1 and e2, and let Y ′ be the connected component of G \C2 that contains e3
and e4. Since C2 is C2-minimal, we have that either X ′ or Y ′ is a corner of C2. Due
to the symmetry of Figure 5.10(a), we may assume w.l.o.g. that X ′ is a corner of C2.
(I.e., although we have assumed that X is a corner of C1, there is no loss of generality
in assuming that X ′ is a corner of C2.)

Now, since C1 ∈ C1 and C1 is generated by F1, there are three possibilities to
consider: either (1) {{e1, e2}, {e3, e4}} ⊂ F1, or (2) {{e1, e3}, {e2, e4}} ⊂ F1, or (3)

{{e1, e4}, {e2, e3}} ⊂ F1. Let us consider case (2) first. Since C1 is an essential 4-cut
and |C1| ≥ 3, by Corollary 5.5 we have that C1 is a cyclic family of 4-cuts. Thus, we
may consider the neighboring corners X1 and X2 of X in C1 such that E[X,X1] =

{e1, e3} and E[X,X2] = {e2, e4}. Let Y1 and Y2 be the connected components of G[X]\
{f1, f2}. Then, since we are in the situation depicted in Figure 5.10(b), we have that
both E[Y1, V \X] and E[Y2, V \X] intersect with both {e1, e3} and {e2, e4}. Thus we
may assume, w.l.o.g., that E[Y1, X1] = {e1}, E[Y1, X2] = {e2}, E[Y2, X1] = {e3} and
E[Y2, X2] = {e4} (see Figure 5.10(b)). Then, notice that it cannot be the case that
either (G \ C2)[X1] or (G \ C2)[X2] is connected, because otherwise the endpoints of
f1 and f2 would remain connected in G \ C2, in contradiction to the fact that C2 is
a 4-cut of G. Thus, we have that either f3 is a bridge of G[X1] and f4 is a bridge of
G[X2], or reversely. So let us assume, w.l.o.g., that f3 is a bridge of G[X1] and f4 is a
bridge of G[X2]. Let Z1 and Z ′

1 be the connected components of G[X1] \ f3, and let Z2

and Z ′
2 be the connected components of G[X2] \ f4. Then we have E[Z1, Z

′
1] = {f3}

and E[Z2, Z
′
2] = {f4}.

Now consider the neighboring corner X ′
1 of X1 in C1 that is different from X.

We claim that both E[Z1, X
′
1] and E[Z ′

1, X
′
1] are non-empty. To see this, suppose the

contrary. Then we may assume w.l.o.g. that E[Z1, X
′
1] = ∅. Since the graph is 3-edge-

connected, we have |∂(Z1)| ≥ 3. Thus, since ∂(Z1) = E[Z1, Z
′
1] ∪ E[Z1, X

′
1] ∪ E[Z1, X],

we have that E[Z1, X] contains at least two edges (because E[Z1, Z
′
1] = {f3}). Thus,

E[Z1, X] consists of {e1, e3}. But this implies that ∂(Z1) = {e1, e3, f3} is a 3-cut of G,
which is impossible (see Figure 5.10(a)). This shows that both E[Z1, X

′
1] and E[Z ′

1, X
′
1]

are non-empty. Similarly, if we let X ′
2 denote the neighboring corner of X2 in C1 that

155

is different from X , then we have that both E[Z2, X
′
2] and E[Z ′

2, X
′
2] are non-empty.

Then, if (G \ C2)[X
′
1] is connected, we have that Z1 and Z ′

1 (and therefore the
endpoints of f3) remain connected in G \ C2, in contradiction to the fact that C2 is
a 4-cut of G. Thus, we have that (G \ C2)[X

′
1] is disconnected. This implies that an

edge from C2 is in G[X ′
1], and the only candidate is f4. Thus, we have that X ′

1 = X2

(and X ′
2 = X1), and so we have a situation like that depicted in Figure 5.10(c). But

then we have that C1 = {e1, e2, e3, e4} is a non-essential 4-cut, because the connected
components of G\C1 are Y1∪Y2 and Z1∪Z ′

1∪Z2∪Z ′
2, and there is no pair of vertices

in those components that are 4-edge-connected (because |∂(Z1)| = |∂(Z ′
1)| = |∂(Z2)| =

|∂(Z ′
2)| = 3). Thus, case (2) cannot be true. With the analogous argument we can

see that case (3) also cannot be true. (To see this, just switch the labels of edges e3

and e4.) Thus, only case (1) is true. Similarly, if we consider the three possibilities for
the collection F2 – i.e., either {{f1, f2}, {f3, f4}} ⊂ F2, or {{f1, f3}, {f2, f4}} ⊂ F2, or
{{f1, f4}, {f2, f3}} ⊂ F2 –, then we can see that only {{f1, f2}, {f3, f4}} ⊂ F2 can be
true.

Now consider a pair of edges {e5, e6} ∈ F1 \ {{e1, e2}, {e3, e4}}, and a pair of edges
{f5, f6} ∈ F2 \{{f1, f2}, {f3, f4}}. Then, Proposition 5.3 implies that {e1, e2, e5, e6} and
{f1, f2, f5, f6} are 4-cuts implied by C. Therefore, a repeated application of Lemma 5.5
implies that F6 = {{e1, e2}, {e3, e4}, {e5, e6}, {f1, f2}, {f3, f4}, {f5, f6}} is a collection
of pairs of edges that generates a collection C6 of 4-cuts. Lemma 5.13 implies that
F1 ∩ F2 = ∅, and therefore |F6| = 6. Then, Proposition 5.2 implies that C6 is a cyclic
family of 4-cuts.

For every i ∈ {1, 2, 3}, let pi = {e2i−1, e2i} and let qi = {f2i−1, f2i}. Now we will
demonstrate that there are i ∈ {1, 2, 3} and j ∈ {1, 2, 3}, such that pi and qj are
antipodal pairs of edges in C6. Let A,B,C,D be the corners of the square of the
crossing 4-cuts C1 and C2, as shown in Figure 5.11. Since G[X] is a corner of C1, we
have that the pair of edges {e5, e6} lies in G[Y] = B ∪C. Then, since the collection of
pairs of edges {{e1, e2}, {e3, e4}, {f1, f2}, {f3, f4}} generates a cyclic family of 4-cuts,
and can be extended into the collection F6, we have that the pair of edges {e5, e6}
lies entirely within B or C. Similarly, since G[X ′] is a corner of C2, we can infer
that the pair of edges {f5, f6} lies entirely within C or D. Thus, all the possible
configurations for the pairs of edges in F6 on the hexagon of the corners of C6 are
shown in Figure 5.11. There, we can see that, in either case, there are i ∈ {1, 2, 3}
and j ∈ {1, 2, 3}, such that pi and qj are antipodal pairs of edges in F6.

156

Now let C = pi∪qj. Then, by Lemma 5.19 we have that C is implied by C through
the pair of edges pi. But Lemma 5.18 implies that C does not imply C through the
pair of edges pi (because pi ∈ F1 and qj ∈ F2), a contradiction. Thus, our initial
assumption cannot be true, and therefore C1 and C2 do not cross.

e1

e2

e4

e3

f2f1 f4 f3

X Y

X’
Y’

C1

C2

(a)

X

X1X2

Y2

X1

f1

f2

Y1e1

e3

e2

e4

X2

e1e4

e3e2

Z2 Z2’ Z1 Z1’
f4 f3

(b)Y2f1

f2

Y1

Z1 Z1’
f3

Z2 Z2’
f4

(c)

e3e2

e4 e1

Figure 5.10: Companion figures to Lemma 5.20. (a) The square of the crossing 4-cuts C1

and C2. The sides of C1 are X and Y , and the sides of C2 are X ′ and Y ′. (b) We assume

that X is the corner of C1 in C1, and {{e1, e3}, {e2, e4}} ⊂ F1. X1 and X2 are the neighboring

corners of X in C1. Then, we have w.l.o.g. that f3 is a bridge of G[X1] and f4 is a bridge of

G[X2]. (c) We infer this situation, which contradicts the essentiality of C1.

We note that the condition of essentiality of both 4-cuts C1 and C2 in Lemma 5.20
cannot be removed without destroying the inference of the lemma. This is demon-
strated in Figure 5.12.

Lemma 5.21 (The essential quasi-isolated 4-cuts are replaceable). Let C be a collection
of 4-cuts of G, and let C be an essential quasi C-isolated 4-cut. Let x and y be two vertices

157

A p1

p3

q2

q1

p2

q3

p1

p2

q1 q2

p1

p3

q2

q1

q3

p2

B

CD

p1

q2

p3

q1

p2

q3

p1

q2

q3

q1

p2

p3

p1

q2

p3

q1

q3

p2

Figure 5.11: F = {p1, p2, q1, q2} is a collection of pairs of edges that generates a cyclic family

of 4-cuts C with corners A, B, C and D. We consider all the different ways in which C can

be expanded into a cyclic family of 4-cuts C6, where C6 is generated by the collection of pairs

of edges F ∪ {p3, q3}, under the restriction that p3 ∈ B ∪C and q3 ∈ C ∪D. The colors of the

corners of C6 correspond to the colors of the corners of the square that got expanded. Notice

that, in either case, we have that there are i, j ∈ {1, 2, 3} such that pi and qj are antipodal

pairs of edges in C6.

that are separated by C. Then, there is a collection of pairs of edges F with |F| > 2 that is
returned by Algorithm 16 on input C, such that F generates a 4-cut that separates x and
y.

Proof. Let C = {e1, e2, e3, e4}. Since C is quasi C-isolated, we may assume
w.l.o.g. that there is a pair of edges {e, e′} /∈ {{e1, e2}, {e3, e4}} such that F ′ =

{{e1, e2}, {e3, e4}, {e, e′}} generates a collection C ′ of 4-cuts implied by C. Since C is an
essential 4-cut, by Corollary 5.4 we have that C ′ cannot be a degenerate family of 4-
cuts. Therefore, by Lemma 5.9 we have that C ′ is a cyclic family of 4-cuts. Thus, there
is a partition {X1, X2, X} of V (G), such that E[X,X1] = {e1, e2}, E[X,X2] = {e3, e4}
and E[X1, X2] = {e, e′} (see Figure 5.13). Notice that the connected components of
G\C are X and X1∪X2. Thus, since x, y are separated by C , we may assume w.l.o.g.
that x ∈ X and y ∈ X1.

158

Let C ′ = {e1, e2, e, e′}. Since C ′ is generated by F ′, we have that C ′ is a 4-cut implied
by C. Let us suppose, for the sake of contradiction, that C ′ is implied by C through the
pair of edges {e1, e2}. Then, Lemma 5.14 implies that there is a collection F of pairs
of edges that is returned by Algorithm 16 on input C such that {{e1, e2}, {e, e′}} ⊆ F .
Since C is a quasi C-isolated 4-cut, we have that the collection of pairs of edges
F ′′ = {{e1, e2}, {e3, e4}} is returned by Algorithm 16 on input C. Since {e, e′} ̸= {e3, e4},
we have that F ≠ F ′′. But then, Lemma 5.13 implies that F∩F ′′ = ∅, in contradiction
to the fact that F ∩ F ′′ = {e1, e2}. Thus, we have shown that C ′ is not implied by C
through the pair of edges {e1, e2}. This further implies that C ′ /∈ C.

Since C ′ is nonetheless implied by C, we may assume w.l.o.g. that C ′ is implied by C
through the pair of edges {e1, e}. Then, Lemma 5.14 implies that there is a collection
F of pairs of edges with {{e1, e}, {e2, e′}} ⊂ F that is returned by Algorithm 16
on input C. Thus we have that |F| > 2, and F generates C ′. Notice that the 4-cut
C ′ = {e1, e2, e, e′} separates x and y. Thus, the proof is complete.

5.3 Using a DFS‐tree for some problems concerning 4‐cuts

In this section we present some applications of identifying 4-cuts on a DFS-tree. First,
there is a linear-time preprocessing, after which we can report the r-size of any 4-cut
in constant time (Lemma 5.22). Second, there is a linear-time preprocessing, after
which we can check the essentiality of any 4-cut in constant time (Proposition 5.4).
And third, given a parallel family of 4-cuts C, we can compute in linear time the
atoms of C (Proposition 5.5), as well as an oracle that can answer queries of the form
“given two vertices x and y, return a 4-cut from C that separates x and y, or determine
that no such 4-cut exists”, in constant time (Corollary 5.10).

Let G be a 3-edge-connected graph, and let r be a vertex of G. Consider the
following problems. Given a 4-cut C of G (as an edge-set), what is the size of the
side of C that does not contain r? Also, which endpoints of the edges in C lie in the
connected component of G \ C that contains r? We will show how we can answer
those questions in constant time, provided that we have computed a DFS-tree of G.
Given a 4-cut C of G, the number of vertices of the part of C that does not contain r

is called the r-size of C.
So let T be a DFS-tree of G with start vertex (root) r [63]. We identify the vertices

159

e1

e2

e3

e4
f1

f2g1
g2

f3
f4

h1 h2

h3 h4

Figure 5.12: This is a 3-edge-connected graph with 4-cuts: C1 = {e1, e2, e3, e4},
C2 = {e1, e2, f1, g1}, C3 = {e1, e2, f2, g2}, C4 = {e3, e4, f1, g1}, C5 = {e3, e4, f2, g2},
C6 = {f1, f2, g1, g2}, C7 = {f3, f4, g1, g2}, C8 = {f1, f2, f3, f4}, C9 = {e1, f2, h1, h2},
C10 = {e2, g2, h1, h2}, C11 = {f2, e3, h3, h4} and C12 = {g2, e4, h3, h4}. We have that
C3 is implied by {C9, C10}, C4 is implied by {C1, C2}, C5 is implied by {C11, C12},
and C6 is implied by {C7, C8}. Thus, C = {C1, C2, C7, C8, C9, C10, C11, C12} is a com-
plete collection of 4-cuts of this graph. If we apply Algorithm 16 on C, we will
get as a result the collections of pairs of edges F1 = {{e1, e2}, {f1, g1}, {e3, e4}},
F2 = {{f1, f2}, {g1, g2}, {f3, f4}}, F3 = {{e1, f2}, {e2, g2}, {h1, h2}}, and F4 =

{{f2, e3}, {g2, e4}, {h3, h4}}. Notice that F1 and F2 generate the cyclic families of 4-
cuts C1 = {C1, C2, C4} and C2 = {C6, C7, C8}, respectively. Since |C1| = 3, we have that
every 4-cut in C1 is C1-minimal. Similarly, every 4-cut contained in C2 is C2-minimal.
Thus, C1 is a C1-minimal 4-cut, and C8 is a C2-minimal 4-cut. However, we have that
C1 and C8 cross. Notice that C8 is not an essential 4-cut (because one of its sides
consists of the endpoints of e3, both of which have degree 3, and therefore they are
not 4-edge-connected with any other vertex of the graph). On the other hand, C1 is
an essential 4-cut (because e.g. the endpoints of e1 are 4-edge-connected). Thus, the
condition of essentiality of both 4-cuts in the statement of Lemma 5.20 cannot be
removed.

of G with their order of visit by the DFS. Thus, r = 1, and the last vertex visited by
G is n. For a vertex v ̸= r of G, we let p(v) denote the parent of v on T . (Thus, v is
a child of p(v).) For every two vertices u and v, we let T [u, v] denote the simple tree-
path from u to v. A vertex v is called an ancestor of u, if v lies on the tree-path T [r, u].
(Equivalently, u is a descendant of v.) The set of all descendants of v is denoted as

160

e1e2

e

e’

e3 e4

x

x1x2

C

C’

y

x

Figure 5.13: A depiction of the situation analyzed in Lemma 5.21.

T (v). (In particular, we have v ∈ T (v).) The number of descendants of v is denoted as
ND(v). In other words, ND(v) = |T (v)|. The ND values can be computed easily during
the DFS, because they satisfy the recursive formula ND(v) = ND(c1)+ · · ·+ND(ck)+1,
where c1, . . . , ck are the children of v. We can use the ND values in order to check the
ancestry relation in constant time. Specifically, given two vertices u and v, we have
that u is a descendant of v if and only if v ≤ u ≤ v + ND(v) − 1. Equivalently, we
have T (v) = {v, v + 1, . . . , v +ND(v)− 1}.

5.3.1 Computing the r‐size of 4‐cuts

Let C be a 4-cut of G. We will show how to answer each of the questions above
in constant time. To do this, we first consider the connected components of T \ C.
These are determined by the tree-edges in C. Notice that C must contain at least one
tree-edge (because otherwise G \ C remains connected through the tree-edges from
T). We distinguish the following cases.

First, let us consider the case that C contains only one tree-edge (u, p(u)). Then
the connected components of T \ C are T (u) and T (r) \ T (u). Thus, the r-size of C
is ND(u). Furthermore, for each non-tree edge (x, y) ∈ C , we can easily determine in
constant time which of x and y lies in T (u), and which lies in T (r) \ T (u).

Now let us consider the case that C contains exactly two tree-edges (u, p(u)) and
(v, p(v)). By Lemma 3.14 in Section 3.2 we have that one of u and v must be an
ancestor of the other. Thus, we may assume w.l.o.g. that v is a proper ancestor of u.
Then the connected components of T \C are given by T (u), T (v)\T (u), and T (r)\T (v).
Thus, the connected components of G \ C are given by the union of two of those

161

subtrees, plus the other subtree. Now we are guided by the fact that the endpoints of
the edges in C lie in different connected components of G\C. Thus, T (u)∪(T (r)\T (v))
lies in a distinct connected component of G \ C than T (v) \ T (v). (Because u ∈ T (u)

whereas p(u) ∈ T (v)\T (v), and v ∈ T (v)\T (u) whereas p(v) ∈ T (r)\T (v).) Therefore,
the connected components of G \C are given by T (u)∪ (T (r) \T (v)) and T (v) \T (u).
This implies that the r-size of C is ND(v)−ND(u). Furthermore, it is easy to determine
which endpoints of the edges in C lie in which connected components of G \ C.

Now let us consider the case that C contains exactly three tree-edges (u, p(u)),
(v, p(v)) and (w, p(w)). Then, by Lemma 3.14 in Section 3.2 we have that one of u, v
and w must be an ancestor of the other two. Thus, we may assume w.l.o.g. that w is
an ancestor of both u and v. Now there are two cases to consider: either u and v are
not related as ancestor and descendant, or one of u and v is an ancestor of the other.
Let us consider the first case first. Then the connected components of T \C are given
by T (u), T (v), T (w) \ (T (u) ∪ T (v)) and T (r) \ T (w). Then, in order to determine the
connected components of G \C , we are guided by the property that the endpoints of
the edges in C lie in different connected components of G \C. Thus, it is not difficult
to see that the connected components of G\C are given by T (u)∪T (v)∪ (T (r)\T (w))
and T (w)\ (T (u)∪T (v)). Thus, the r-size of C is ND(w)−ND(u)−ND(v). Also, given
an edge from C , it is easy to determine which endpoints of the edges in C lie in which
connected component of G \ C. Now let us consider the case that one of u and v is
an ancestor of the other. We may assume w.l.o.g. that v is an ancestor of u. Then we
can see as previously that the connected components of G\C are T (u)∪ (T (w)\T (v))
and (T (v) \ T (u)) ∪ (T (r) \ T (w)). Thus, the r-size of C is ND(u) + ND(w) − ND(v).
Furthermore, it is easy to determine which endpoints of the edges in C lie in the
connected component of G \ C that contains r.

In the case that C consists of four tree-edges we follow the same arguments as
previously. In each case, the connected components of G \ C are given by unions
and differences of five subtrees of T . Thus, given any vertex x, we can check in
constant time whether x belongs to the connected component of G \ C that contains
r. Furthermore, we can easily compute the r-size of C as previously.

The results of this section are summarized in the following.

Lemma 5.22. Let G be a 3-edge-connected graph, and let r be a vertex of G. Then there is
a linear-time preprocessing of G, such that we can answer queries of the form “given a 4-cut
C of G, determine the r-size of C” and “given a 4-cut C of G, determine the endpoints of

162

the edges in C that lie in the connected component of G \ C that contains r”, in constant
time.

5.3.2 Checking the essentiality of 4‐cuts

Here we provide an oracle for performing essentiality checks for 4-cuts of a 3-edge-
connected graph G. Specifically, after a linear-time preprocessing of G, if we are given
a 4-cut C of G (as an edge-set), we can determine in constant time whether C is an
essential 4-cut of G.

Proposition 5.4. Let G be a 3-edge-connected graph. We can preprocess G in linear time,
so that we can perform essentiality checks for 4-cuts of G in constant time.

Proof. First, we compute the 4-edge-connected components of G. This can be done
in linear time (see [36] or [50]). Then, for every 4-edge-connected component S

of G, we connect all vertices of S in a path, by introducing artificial edges in G.
Specifically, if x1, . . . , xk are the vertices in S, then we introduce the artificial edges
(x1, x2), (x2, x3), . . . , (xk−1, xk) into G. This takes O(n) time in total, where n is the
number of vertices of G. Let G′ be the resulting graph. (Thus, G′ is given by G, plus the
artificial edges we have introduced.) Then we perform the linear-time preprocessing
described in Proposition 6.1 on G′, so that we can answer connectivity queries for
pairs of vertices of G′, in the presence of at most four edge-failures, in constant time.

Now let C be a 4-cut of G. Let (x, y) be any edge in C. We claim that C is an
essential 4-cut of G if and only if x and y are connected in G′ \ C. To see this, let us
assume first that C is an essential 4-cut of G. This means that there are two vertices u
and v that are 4-edge-connected and lie in different connected components of G \C.
Then, by construction of G′, we have that u and v are connected in G′. This implies
that the two connected components of G \ C are connected in G′ \ C. (To be precise:
if X and Y are the connected components of G \ C , then there is at least one edge
between X and Y in G′ \ C.) Thus, G′ \ C is connected, and therefore x and y are
connected in G′ \ C. Conversely, suppose that x and y are connected in G′ \ C. Since
C is a 4-cut of G, we have that x and y are disconnected in G \ C. Let X and Y be
the connected components of G \ C. We may assume w.l.o.g. that x ∈ X and y ∈ Y .
Then, since x and y are connected in G′ \ C , there is a path P from x to y in G′ \ C.
Since this path starts from a vertex in X and ends in a vertex in Y , it must use an
edge (u, v) such that u ∈ X and v ∈ Y . The edge (u, v) does not exist in G (because

163

otherwise G\C would be connected). Thus, it is one of the artificial edges that we have
introduced. This means that u and v belong to the same 4-edge-connected component
of G. Thus, C separates a pair of 4-edge-connected vertices of G, and therefore it is
an essential 4-cut of G.

Thus, we can determine if C is an essential 4-cut of G, by simply checking whether
the endpoints of an edge in C are connected in G′ \C. Since C is a 4-element set, we
can perform this check in constant time, due to the preprocessing of G′ according to
Proposition 6.1.

5.3.3 Computing the atoms of a parallel family of 4‐cuts

Let C be a parallel family of 4-cuts. This implies that C has size O(n) (see, e.g., [24]).
Our goal is to show how to compute efficiently the collection atoms(C). That is, we want
to compute the partition P with the property that two vertices are separated by a set
in P if and only if they are separated by a 4-cut in C. Here we follow the idea in [36],
that computes the 4-edge connected components of a 3-edge-connected graph given
its collection of 3-cuts. [36] essentialy provides an algorithm to compute atom(C3cuts).
On a high level, the idea is to break the graph into two components according to
every 4-cut C ∈ C. Specifically, let C = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} be a 4-cut in
C. Then, let X and Y be the two connected components of G\C , and assume w.l.o.g.
that {x1, x2, x3, x4} ⊆ X and {y1, y2, y3, y4} ⊆ Y . Then we attach an auxiliary vertex y to
X , and the edges (x1, y), (x2, y), (x3, y), (x4, y). Similarly, we attach an auxiliary vertex
x to Y , and the edges (x, y1), (x, y2), (x, y3), (x, y4). The purpose of those auxiliary
vertices and edges is to simulate for each part X and Y the existence of the other
part, while maintaining the same connections. Let G′ denote the resulting graph; we
call this the result of splitting G according to C. Notice that V (G′) = V (G) ⊔ {x, y}.
The non-auxiliary vertices of G′ (that is, the vertices in V (G)) are called ordinary.
Now, if C is the unique 4-cut in C, then atoms(C) is given by the connected components
of G′. More precisely, we compute the two connected components X ′ and Y ′ of G′,
and we keep the collection of the ordinary vertices from each component (thus, we
get X and Y). If there are more 4-cuts in C, then we keep doing the same process,
this time splitting G′. Due to the parallelicity of C, we have that a 4-cut C ′ ∈ C with
C ′ ̸= C lies entirely within a connected component of G′. And due to the construction
of G′, we have that (the edge-set corresponding to) C ′ is a 4-cut of G′. Thus, it makes

164

sense to split G′ according to its 4-cut C ′. When no more splittings are possible (i.e.,
when we have used every 4-cut in C for a splitting), then we compute the connected
components of the final graph, and we collect the subsets of the ordinary vertices
from each connected component. Thus, we get atoms(C).

In order to prove the correctness of the above procedure, we need to formalize
the concept of splitting a graph according to a 4-cut. A key-concept that we will use
throughout is the quotient map to a split graph.

Definition 5.7 (Splitting a graph according to a 4-cut). Let G be a connected graph,
let C = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} be a 4-cut of G, and let X and Y be the two
sides of C. We may assume w.l.o.g. that {x1, x2, x3, x4} ⊆ X and {y1, y2, y3, y4} ⊆ Y .
Then we define the two split graphs GX and GY of G according to C as follows.
We introduce two auxiliary vertices xC and yC (that simulate the parts X and Y ,
respectively). Then the vertex set of GX is X ∪ {yC}, and the edge set of GX is
E(G[X]) ∪ {(x1, yC), (x2, yC), (x3, yC), (x4, yC)}. Similarly, the vertex set of GY is Y ∪
{xC}, and the edge set of GY is E(G[Y]) ∪ {(xC , y1), (xC , y2), (xC , y3), (xC , y4)}. (See
Figure 5.14 for an example.)

X is called the set of the ordinary vertices of GX , and Y is called the set of the
ordinary vertices of GY . Notice that GX and GY is the quotient graph that is formed
from G by shriking Y and X , respectively, into a single node. Then we also define the
quotient maps qX and qY from V (G) to V (GX) and V (GY), respectively. qX coincides
with the identity map on X , and it sends Y onto yC . (In other words, qX(v) = v for
every v ∈ X , and qX(v) = yC for every v ∈ Y .) Similarly, qY coincides with the identity
map on Y , and it sends X onto xC . (In other words, qY (v) = v for every v ∈ Y , and
qY (v) = xC for every v ∈ X.) These maps induce a natural correspondence between
edges of G and edges of GX and GY . Specifically, for every edge (u, v) of G, we let
qX((u, v)) := (qX(u), qX(v)) and qY ((u, v)) := (qY (u), qY (v)).4

The following lemma shows that the operation of splitting a graph according to
a 4-cut maintains families of parallel 4-cuts inside the split graphs.

4More precisely, since G is a multigraph, every edge e = (u, v) of G has a unique edge-identifier
i. Thus, we can consider this edge as a triple (u, v, i). Then qX maps (u, v, i) into (qX(u), qX(v), i), so
that, if qX(u) ̸= qX(v), then qX(e) is a unique edge of GX (i.e., it is not the image of any other edge
of G through qX). However, in order to keep our notation and our arguments simple, we will drop
this consideration, and we will keep considering the edges of G as pairs of vertices.

165

G

x1

x2

x3

x4

y1

y2

y3

y4

X Y

split

x1

x2

x3

x4

y1

y2

y3

y4

GX GY

yC xC

Figure 5.14: Splitting a graph G according to a 4-cut C = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}

with sides X and Y . We introduce two new auxiliary vertices xC and yC , that simulate the

parts X and Y , respectively.

Lemma 5.23. Let C be a 4-cut of G, let X and Y be the two sides of C, and let (GX , qX)

and (GY , qY) be the corresponding split graphs of G according to C, together with the
respective quotient maps. Then we have the following.

(a) Let C ′ be a 4-cut of G, distinct from C, that is parallel with C. Then one of qX(C ′)

and qY (C
′) contains at least one self-loop, and the other is a set of four edges.

(b) Let C ′ be as in (a), and suppose that qX(C
′) is a set of four edges (of GX). Then

qX(C
′) is a 4-cut of GX. Let X ′ and Y ′ be the sides of qX(C ′) in GX. Then q−1

X (X ′)

and q−1
X (Y ′) are the two sides of C ′ in G.

(c) Let C1 and C2 be two 4-cuts of G, distinct from C, that are parallel with C and
among themselves. Suppose that qX(C1) and qX(C2) are 4-cuts of GX. Then qX(C1)

and qX(C2) are two distinct parallel 4-cuts of GX.

Proof. By Definition 5.7, there are two auxiliary vertices xC and yC , such that V (GX) =

X ∪ {yC}, V (GY) = Y ∪ {xC}, qX coincides with the identity map on X and qX(Y) =

{yC}, and qY coincides with the identity map on Y and qY (X) = {xC}.
(a) Let X ′ and Y ′ be the two sides of C ′ in G. Then, since C and C ′ are parallel,

we have that one of X ′ and Y ′ lies entirely within X or Y . Thus, we may assume
w.l.o.g. that X ′ ⊂ X. (We have strict inclusion, because C ′ ̸= C.) Let (x, y) be an edge
in C ′. Then we may assume w.l.o.g. that x ∈ X ′ and y ∈ Y ′. Since X ′ ⊂ X , we have
qX(x) = x. If y ∈ X , then we have qX(y) = y. Otherwise, we have qX(y) = yC . Thus,
in either case we have qX(x) ̸= qX(y), and therefore qX((x, y)) is an edge of GX . This
shows that qX(C ′) is a set of four edges of GX .

166

On the other hand, let C ′ = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}, and let us assume
w.l.o.g. that {x1, x2, x3, x4} ⊆ X ′ and {y1, y2, y3, y4} ⊆ Y ′. Then, since X ′ ⊂ X , for
every i ∈ {1, 2, 3, 4} we have qY (xi) = xC . Since EG[X,Y] = C and C ̸= C ′, there must
be an i ∈ {1, 2, 3, 4} such that (xi, yi) /∈ EG[X,Y]. Thus, since xi ∈ X , we have yi /∈ Y ,
and therefore yi ∈ X. This implies that qY (yi) = xC , and therefore qY ((xi, yi)) is a
self-loop.

(b) Let X ′ and Y ′ be the two sides of C ′ in G. Then, since C and C ′ are parallel,
we have that one of X ′ and Y ′ lies entirely within X or Y . Since qX(C

′) is a set of
four edges of GX , by (a) we have that qY (C ′) contains at least one self-loop. Then, by
following the argument of (a), we have that it cannot be that one of X ′ and Y ′ lies
entirely within Y (because then we would have that qY (C ′) consists of four edges of
GY). Thus, one of X ′ and Y ′ lies entirely within X. Then, we may assume w.l.o.g.
that X ′ ⊂ X. This implies that Y ⊂ Y ′.

Now we will establish a correspondence between paths in G and paths in GX , that
satisfies some useful properties. Let P be a path in G with endpoints x and y. We
define a path P̃ in GX as follows. First, suppose that both x and y are in X. If P uses
edges only from G[X], then P̃ = P . Otherwise, let v1, (v1, v2), v2, . . . , (vk−1, vk), vk be a
maximal segment of P such that v1 ∈ X , {v2, . . . , vk−1} ⊆ Y , and vk ∈ X. (Notice that,
since P starts from X and ends in X , there must exist such a maximal segment of P ,
and it has k ≥ 3.) Then we replace this segment with v1, (v1, yC), yC , (yC , vk), vk. We
repeat this process until we arrive at a sequence P̃ of alternating vertices and edges
that does not use vertices from Y . Then we can see that P̃ is a path in GX from x

to y. Furthermore, P̃ has the following properties. First, every occurrence of a vertex
from X in P is maintained in P̃ . Second, every maximal segment of occurrences of
vertices from Y in P is replaced by a single occurrence of yC . Third, every occurrence
of an edge (z, w) such that not both z and w are in Y , is replaced by an occurrence of
(qX(z), qX(w)). And fourth, all the vertices and edges used by P̃ are essentially given
by the previous three properties.

Now suppose that one of x and y lies in X , and the other lies in Y . Then let
us suppose that x ∈ X and y ∈ Y (in the other case, we have a similar definition
and properties). Then, let w1, (w1, w2), w2, . . . , (wl−1, wl), wl be the final segment of P
that satisfies w1 ∈ X and {w2, . . . , wl} ⊆ Y . (Notice that, since P starts from X and
ends in Y , this is indeed the form of the final part of P , and it has l ≥ 2.) Then we
replace this segment with w1, (w1, yC), yC . Then, we perform the substitutions that we

167

described previously for segments of P of the form v1, (v1, v2), v2, . . . , (vk−1, vk), vk that
are maximal w.r.t. v1 ∈ X , {v2, . . . , vk−1} ⊆ Y , and vk ∈ X. Let P̃ be the result after we
have applied all those substitutions. Then we can see that P̃ is a path in GX from x

to yC . Furthermore, P̃ satisfies the four properties that we described previously (that
essentially define P̃).

Now let Y ′′ = qX(Y
′). (Thus, we have Y ′′ = (Y ′∩X)∪{yC}.) Notice that q−1

X (X ′) =

X ′ and q−1
X (Y ′′) = Y ′. We will show that qX(C ′) is a 4-cut of GX with sides X ′ and Y ′′.

First, notice that {X ′, Y ′′} constitutes a partition of V (GX), and EGX
[X ′, Y ′′] = qX(C

′).
Thus, it is sufficient to show that both X ′ and Y ′′ induce a connected subgraph of
GX\qX(C ′). We will derive this result as a consequence of the correspondence between
paths in G and paths in GX .

So let x and y be two vertices in X ′. Then, since X ′ is a connected component of
G\C ′, there is a path P from x to y in G\C ′ that uses vertices only from X ′. Thus, P̃
is a path from x to y that avoids the edges from qX(C

′) and uses vertices only from
X ′. This shows that X ′ induces a connected subgraph of GX \ qX(C ′).

Now let x and y be two vertices in Y ′′. Let us assume first that none of x and y is
yC . (Thus, we have that both x and y are in X.) Since Y ′ is a connected component
of G\C ′, there is a path P from x to y in G\C ′ that uses vertices only from Y ′. Then
P̃ is a path from x to y that uses vertices only from qX(Y

′) and avoids the edges from
qX(C

′). Now let us assume that one of x and y is yC , and the other is not. Then we
may assume w.l.o.g. that y = yC and x ∈ Y ′. Since x is a vertex in V (GX)\{yC}, notice
that x ∈ X. Now let y0 be a vertex in Y . Then, since Y ′ is a connected component
of G \ C ′ that contains Y , there is a path P from x to y0 in G \ C ′ that uses vertices
only from Y ′. Then P̃ is a path from x to yC that uses vertices only from q(Y ′) and
avoids the edges from qX(C

′). Thus, in either case we have that x and y are connected
in GX \ qX(C ′) through a path that uses vertices only from Y ′′. This shows that Y ′′

induces a connected subgraph of GX \ qX(C ′). Thus, we have that qX(C ′) is a 4-cut
of GX , with sides X ′ and Y ′′. Since we have q−1

X (X ′) = X ′ and q−1
X (Y ′′) = Y ′, this

completes the proof.
(c) Let X1 and Y1 be the sides of qX(C1) in GX , and let X2 and Y2 be the sides of

qX(C2) in GX . Then, by (b) we have that q−1
X (X1) and q−1

X (Y1) are the two sides of C1

in G, and q−1
X (X2) and q−1

X (Y2) are the two sides of C2 in G. Thus, since C1 and C2 are
distinct, we have {q−1

X (X1), q
−1
X (Y1)} ̸= {q−1

X (X2), q
−1
X (Y2)}, and therefore {X1, Y1} ̸=

{X2, Y2}. This means that qX(C1) and qX(C2) are distinct 4-cuts of GX . Since C1

168

and C2 are parallel 4-cuts of G, at least one of the intersections q−1
X (X1) ∩ q−1

X (X2),
q−1
X (X1) ∩ q−1

X (Y2), q−1
X (Y1) ∩ q−1

X (X2), q−1
X (Y1) ∩ q−1

X (Y2) is empty, and therefore at least
one of the inverse images q−1

X (X1 ∩ X2), q−1
X (X1 ∩ Y2), q−1

X (Y1 ∩ X2), q−1
X (Y1 ∩ Y2) is

empty. Since qX : G → GX is a surjective map, this implies that at least one of the
intersections X1 ∩X2, X1 ∩ Y2, Y1 ∩X2, Y1 ∩ Y2 is empty. This means that the 4-cuts
qX(C1) and qX(C2) are parallel.

Lemma 5.23 implies that if we have a parallel family C of 4-cuts, then we can
successively partition the graph according to all 4-cuts in C. This is made precise in
the following.

Definition 5.8 (Splitting a graph according to a parallel family of 4-cuts). Let G be a
connected graph, let C be a parallel family of 4-cuts of G, and let C be a 4-cut in C. Let
X and Y be the sides of C in G, and let (GX , qX) and (GY , qY) be the corresponding
split graphs, together with the respective quotient maps. Then, Lemma 5.23 implies
that qX maps some of the 4-cuts from C \ {C} into a collection CX of parallel 4-
cuts of GX , and qY maps the remaining 4-cuts from C \ {C} into a collection CY of
parallel 4-cuts of GY . Then we can repeat the same process into GX and GY , with the
collections of 4-cuts CX and CY , respectively. Let G1, . . . , Gk be the final split graphs
that we get, after we have completed this process. (We note that k = |C|+1.) For every
i ∈ {1, . . . , k}, we denote V (Gi) ∩ V (G) as Go

i , and we call it the set of the ordinary
vertices of Gi.

Every split graph Gi, for i ∈ {1, . . . , k}, comes together with the respective quotient
map qi : V (G) → V (Gi), that is formed by the repeated composition of the quotient
maps that we used in order to arrive at Gi. More precisely, let G′ be one of the split
graphs in {G1, . . . , Gk}. Then there is a sequence C1, . . . , Ct of 4-cuts from C, for a
t ≥ 1, and a sequence G′

0, . . . , G
′
t of graphs, such that G′

0 = G, G′
t = G′, and G′

i is
derived from the splitting of G′

i−1 according to Ci, for every i ∈ {1, . . . , t}. Then,
according to Definition 5.7, we get a quotient map q′i : V (G′

i−1) → V (G′
i) for every

i ∈ {1, . . . , t}, that corresponds to the splitting of G′
i−1 into G′

i according to Ci. Then
the composition q′t ◦ · · · ◦ q′1 is the quotient map from V (G) to V (G′).

Notice that the split graphs that we get in Definition 5.8 from a parallel family C
of 4-cuts depend on the order in which we use the 4-cuts from C in order to perform
the splittings. However, this order is irrelevant if we only care about deriving the
atoms of C, as shown in the following.

169

Lemma 5.24. Let G be a connected graph, let C be a parallel family of 4-cuts of G, and
let G1, . . . , Gk be the split graphs that we get from G by splitting it according to the 4-cuts
from C (in any order). Then atoms(C) = {Go

1, . . . , G
o
k}.

Proof. First, we note that when we use a 4-cut in order to split a graph G into two
graphs GX and GY , we have that {Go

X , G
o
Y } is a partition of V (G). Thus, since the

collection of graphs {G1, . . . , Gk} is formed by repeated splittings of G, we have that
{Go

1, . . . , G
o
k} is a partition of V (G).

Now let x and y be two vertices of G that belong to different sets in atoms(C).
Then there is a 4-cut C ∈ C that separates x and y. Thus, we may consider the first
4-cut C ∈ C that we used for the splittings and has the property that it separates x
and y. Then there is a sequence C1, . . . , Ct of 4-cuts from C, with t ≥ 0, that were
successively used in order to split G, until we arrived at a split graph G′ with the
property x, y ∈ V (G′), and it was time to split G′ using C. (We allow t = 0, because
this corresponds to the case that C is the first 4-cut from C that was used in order to
split G.) Let GX and GY be the two split graphs that we get by splitting G′ according
to C (more precisely: according to the image of C in G′ through the quotient map).
Then, since C is a 4-cut of G that separates x and y, as a consequence of Lemma 5.23
we have that (the image of) C separates x and y in G′. Thus, w.l.o.g., we may assume
that x is a vertex of GX , but not of GY , and y is a vertex of GY , but not of GX . Then,
we have that the graph in G1, . . . , Gk that contains x is either GX , or it is derived by
further splitting GX . Similarly, the graph in G1, . . . , Gk that contains y is either GY ,
or it is derived by further splitting GY . This implies that x and y belong to different
sets from {Go

1, . . . , G
o
k}.

Conversely, let x and y be two vertices that belong to different sets from
{Go

1, . . . , G
o
k}. Thus, there is a sequence C1, . . . , Ct of 4-cuts from C, with t ≥ 1, that led

to the separation of x and y into different split graphs. More precisely, there is a se-
quence C1, . . . , Ct of 4-cuts from C, with t ≥ 1, and a sequence of graphs G0, G1, . . . , Gt,
such that: (1) G0 = G, (2) Gi was derived from the splitting of Gi−1 according to Ci,
for every i ∈ {1, . . . , t}, and (3) Gt−1 contains both x and y, but Gt contains only one
of x and y. Due to (3), we may assume w.l.o.g. that x ∈ V (Gt) and y /∈ V (Gt). We
will show that Ct separates x and y in G. Let qi be the quotient map from V (Gi−1)

to V (Gi), for every i ∈ {1, . . . , t}, and let q0 be the identity map on V (G). Thus, by
(2) we have that qi−1(. . . q0(Ci) . . .) is a 4-cut of Gi−1, for every i ∈ {1, . . . , t}. Let
C ′

t = qt−1(. . . q0(Ct) . . .), and let X be the side of C ′
t in Gt−1 from which Gt is derived.

170

Then, by a repeated application of Lemma 5.23 we get that X ′ = q−1
1 (. . . q−1

t−1(X) . . .)

is one of the sides of Ct in G. Then, since x ∈ X , we have x ∈ X ′. (Because the
inverses of the quotient mappings maintain the vertices from V (G).) Since y /∈ V (Gt),
we have y /∈ X. We claim that y /∈ X ′. To see this, assume the contrary. Then, since all
graphs G0, . . . , Gt−1 contain y, we have that the only vertex z ∈ V (Gt−1) that satisfies
q−1
1 (. . . q−1

t−1(z) . . .) = y is z = y. But then, since y ∈ X ′ = q−1
1 (. . . q−1

t−1(X) . . .), this
implies that y ∈ X , a contradiction. This shows that y /∈ X ′. We conclude that Ct

separates x and y in G, and therefore x and y belong to different sets in atoms(C).

Thus, in order to compute the atoms of C, it is sufficient to split G according
to the 4-cuts in C, and then collect the sets of ordinary vertices of the split graphs.
In order to implement this idea efficiently, as in [36] we have to take care of three
things. First, given a 4-cut C in C, we need to know the distribution of the endpoints
of the edges of C in the connected components of G \ C. We want to achieve this
without explicitly computing the connected components of G \ C. Second, for every
4-cut that we process, we have to be able to determine the split graph that contains
it. And third, since every splitting removes the edges of a 4-cut and substitutes them
with new auxiliary edges, now given a new 4-cut C for splitting, we must know if
some of its edges correspond to auxiliary edges of the split graph (so that we have
to remove its auxiliary counterparts, and not the original edges of C). We solve these
problems by locating the 4-cuts from C on a DFS-tree rooted at r, and by processing
them in increasing order w.r.t. their r-size. By locating a 4-cut C on the DFS-tree
we can determine easily in constant time how the endpoints of the edges of C are
separated in the connected components of G \ C , according to Lemma 5.22. And by
processing the 4-cuts from C in increasing order w.r.t. their r-size, we can be certain
that whenever we process a 4-cut, this essentially lies within the split graph that
contains r, as shown in the following.

Lemma 5.25. Let G be a connected graph, let r be a vertex of G, and let C be a parallel
family of 4-cuts of G. Let C be a 4-cut of G that is not in C, such that C is parallel with
every 4-cut in C, and the r-size of C is at least as great as the maximum r-size of all 4-cuts
in C. Suppose that we split G according to the 4-cuts in C, and let (G′, q′) be the split graph
that contains r, together with the respective quotient map. Then q′(C) is a 4-cut of G′.

Proof. Let (G1, q1), . . . , (Gk, qk) be all the split graphs, together with the respective
quotient maps, that we get after splitting G according to the 4-cuts in C. (We note

171

that qi is a map from G to Gi, for every i ∈ {1, . . . , k}.) Then it is a consequence of
Lemma 5.23 that there is a unique (G′, q′) ∈ {(G1, q1), . . . , (Gk, qk)} such that q′(C)

is a 4-cut of G′ (because, in all other cases, we have that the image of C through a
quotient map contains at least one self-loop). By construction of the split graphs, we
have that {V (Gi) ∩ V (G) | i ∈ {1, . . . , k}} is a partition of V (G). Thus, there is only
one split graph that contains r. We will show that G′ is the graph that contains r. To
do this, we will use induction on the number of splittings that we had to perform in
order to reach the split graph in which C is mapped as a 4-cut.

As the base step of our induction, we can consider the case that no splittings took
place at all. In this case, we let the “quotient” map q′ be the identity map on V (G).
Then, it is obviously true that q′(C) is a 4-cut of G, and G is the “split” graph that
contains r. Now let us assume that we have performed t consecutive splittings, for
t ≥ 0, which resulted in a graph G0 with quotient map q0, with the property that
r ∈ V (G0) and q0(C) is a 4-cut of G0. Now suppose that we split G0 once more
according to a 4-cut C ′ ∈ C. Thus, we have that q0(C ′) is a 4-cut of G0, and let X and
Y be the two sides of q0(C ′). Let (GX , qX) and (GY , qY) be the resulting split graphs,
together with the respective quotient maps. Then there are two auxiliary vertices
xC′ and yC′ , such that V (GX) = X ∪ {yC′}, V (GY) = Y ∪ {xC′}, qX(Y) = {yC′} and
qY (X) = {xC′}. We may assume w.l.o.g. that r ∈ X. Thus, we have qY (r) = xC′.

Since q0(C) is a 4-cut of G0 that is parallel with q0(C
′), by Lemma 5.23 we have

one of qX(q0(C)) and qY (q0(C)) contains a self-loop, and the other is a set of four
edges. So let us suppose, for the sake of contradiction, that qX(q0(C)) contains a self-
loop. Then, Lemma 5.23 implies that qY (q0(C)) is a 4-cut of GY . Let X ′ and Y ′ be the
two sides of qY (q0(C)) (in GY). Then, Lemma 5.23 implies that q−1

Y (X ′) and q−1
Y (Y ′)

are the two sides of q0(C) (in G0). We may assume w.l.o.g. that q−1
Y (X ′) is the side of

q0(C) that contains r. This implies that xC′ ∈ X ′, and therefore q−1
Y (X ′) contains X.

Since C and C ′ are distinct 4-cuts of G, Lemma 5.23 implies that q0(C) and q0(C
′) are

distinct 4-cuts of G0. Thus, we cannot have q−1
Y (X ′) = X , and therefore we have that

q−1
Y (X ′) contains X as a proper subset. This implies that q−1

Y (Y ′) is a proper subset
of Y . By Lemma 5.23 we have that q−1

0 (X) and q−1
0 (Y) are the two sides of C ′ (in

G). Thus, since r ∈ X , we have that r ∈ q−1
0 (X), and therefore the r-size of C ′ is

|q−1
0 (Y)|. Similarly, by Lemma 5.23 we have that q−1

0 (q−1
Y (X ′)) and q−1

0 (q−1
Y (Y ′)) are

the two sides of C (in G). Thus, since r ∈ q−1
Y (X ′), we have that r ∈ q−1

0 (q−1
Y (X ′)),

and therefore the r-size of C is |q−1
0 (q−1

Y (Y ′))|. Since q−1
Y (Y ′) is a proper subset of

172

Y , we have that q−1
0 (q−1

Y (Y ′)) is a proper subset of q−1
0 (Y) (because q0 is a surjective

function). This implies that |q−1
0 (q−1

Y (Y ′))| < |q−1
0 (Y)|, in contradiction to the fact that

the r-size of C is at least as great as the r-size of C ′. This shows that qX(q0(C)) does
not contain a self-loop. Thus, by Lemma 5.23 we have that qX(q0(C)) is a 4-cut of
GX . This shows that, after t+ 1 splittings, C is mapped as a 4-cut to the split graph
that contains r. Thus, the lemma follows inductively.

Thus, if we process the 4-cuts from C in increasing order w.r.t. their r-size, then
we can be certain that every 4-cut C ∈ C that we process lies within the split graph
G′ that contains r. Therefore, it is sufficient to maintain only the quotient map to G′.
We use v′ to denote the image of a vertex v ∈ V (G) to G′, and we let C ′ denote the
translation of C within G′ through the quotient map. Thus, whenever we process a
4-cut C ∈ C, we translate the endpoints of every edge (x, y) ∈ C to their corresponding
vertices x′ and y′ in G′. Then we delete (x′, y′) from G′, and we substitute it with two
auxiliary edges (x′, yC) and (xC , y

′) (i.e., we create one copy of (x′, y′) for each of the
connected components of G′ \ C). Let (xC , y

′) be the copy of (x′, y′) that is contained
in the connected component of G′ \ C ′ that contains r. Then we update the pointer
of x to G′ as x′ ← xC .

The procedure for computing atoms(C) is shown in Algorithm 17. The proof of
correctness and linear complexity is given in Proposition 5.5. As a corollary of this
method for computing atoms(C), we can construct in linear time a data structure that
we can use in order to answer queries of the form “given two vertices x and y,
determine whether x and y are separated by a 4-cut in C, and, if yes, report a 4-cut
in C that separates them” in constant time. This is proved in Corollary 5.10. We note
that these results are essentially independent of the fact that we consider 4-cuts, and
so they generalize to any parallel family of cuts (of various cardinalities), provided
that there is a fixed upped bound on their number of edges.

Proposition 5.5. Algorithm 17 correctly computes the atoms of a parallel family of 4-cuts
C. Furthermore, it has a linear-time implementation.

Proof. By Lemma 5.24, it is sufficient to split the graph according to the 4-cuts in C,
and then return the sets of ordinary vertices of the split graphs. Since the vertex-sets
of the split graphs are pairwise disjoint, we can consider the collection of all of them
as a single graph G′. Thus, we can equivalently compute the connected components

173

Algorithm 17: Compute atoms(C) of a parallel family of 4-cuts C

1 sort the 4-cuts in C in increasing order w.r.t. their r-size
2 foreach vertex v do

// initialize the pointers of the vertices to the split graph that

contains r

3 set v′ ← v

4 end
5 let G′ ← G // we maintain throughout the collection of the split graphs

as a single graph G′

6 foreach C ∈ C do
7 let C = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}
8 determine the endpoints of the edges in C that are in the connected

component of G \ C that contains r; let those endpoints be y1, y2, y3, y4

9 remove the edges (x′
1, y

′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), (x

′
4, y

′
4) from G′

10 insert two new vertices xC and yC to G′

11 insert the edges (x′
1, yC), (x

′
2, yC), (x

′
3, yC), (x

′
4, yC) and

(xC , y
′
1), (xC , y

′
2), (xC , y

′
3), (xC , y

′
4) to G′

12 set x′
1 ← xC , x′

2 ← xC , x′
3 ← xC , x′

4 ← xC

13 end
14 compute the connected components S1, . . . , Sk of G′

15 foreach i ∈ {1, . . . , k} do
16 let S ′

i be the set of the ordinary vertices in Si

17 end
18 return S ′

1, . . . , S
′
k

of G′, and then return the sets of ordinary vertices of its connected components (see
Lines 14 and 16).

Let r be a vertex of G. Then Lemma 5.25 implies that if we use the 4-cuts from
C in increasing order w.r.t. their r-size for the splittings, then, every time we pick a
4-cut for the splitting, this is mapped as a 4-cut into the split graph that contains r.
Thus, it is sufficient to maintain throughout only the quotient map from V (G) to the
split graph that contains r. We denote this as v′, for every vertex v ∈ V (G).

Now let C = {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} be a 4-cut in C, and let us as-

174

sume w.l.o.g. that y1, y2, y3, y4 are the endpoints of the edges in C that lie in
the connected component of G \ C that contains r. Then we have that C ′ =

{(x′
1, y

′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), (x

′
4, y

′
4)} is a 4-cut of the split graph that contains r, and

Lemma 5.23(b) implies that y′1, y′2, y′3, y′4 are the endpoints of the edges in C ′ that
lie in the same side of C ′ as r. Now, in order to perform the splitting induced
by C , we introduce two new auxiliary vertices xC and yC to G′, we delete the
edges of C ′ from G′, we introduce the new edges (x′

1, yC), (x
′
2, yC), (x

′
3, yC), (x

′
4, yC)

and (xC , y
′
1), (xC , y

′
2), (xC , y

′
3), (xC , y

′
4) to G′, and we update the quotient map to the

split graph that contains r as x′
1 ← xC , x

′
2 ← xC , x

′
3 ← xC , x

′
4 ← xC . (The images of

y1, y2, y3, y4 into the split graph that contains r have not changed.) These are precisely
the operations that take place during the processing of every 4-cut C ∈ C during the
course of the for loop in Line 6. (We assume that the for loop in Line 6 processes
the 4-cuts in C in increasing order w.r.t. their r-size, according to the sorting that
took place in Line 1.)

Now it remains to argue about the complexity of Algorithm 17. First, after the
linear-time preprocessing described in Lemma 5.22, we have that the r-sizes of the
4-cuts in C can be computed in O(|C|) time in total. Since C is a parallel family of
4-cuts of G, it contains O(n) 4-cuts (see, e.g., [24]). Then, we can sort the 4-cuts
in C in increasing order w.r.t. their r-size using bucket-sort. Thus, Line 1 can be
performed in linear time. After the preprocessing described in Lemma 5.22, we can
also compute in constant time, for every 4-cut C ∈ C, the endpoints of the edges in
C that lie in the same connected component of G \ C that contains r. Thus, Line 8
incurs total cost O(n). In order to perform efficiently the deletions and insertions of
edges in Lines 9 and 11, respectively, we just process them in an off-line manner.
Thus, we first collect every insert_edge(x, y) query as a triple (x, y,+), and we collect
every delete_edge(x, y) query as (x, y,−). Furthermore, we also collect every edge
(x, y) of the original graph G as a triple (x, y,+); this corresponds to the initialization
in Line 5. Then we sort all those triples lexicographically (giving, e.g., priority to +).
Since their total number is O(m + |C|) = O(m + n), we can perform this sorting in
O(m+ n) time with bucket-sort. Let L be the resulting list of triples. Then, for every
maximal segment of L that consists of triples whose first two components coincide –
and so these correspond to insertions and deletions of the same edge (x, y) –, we just
determine whether the number of “pluses” dominates the number of “minuses” for
(x, y). If these values are equal, then we do not include the edge (x, y) in the final

175

graph G′. Otherwise, we create as many copies of (x, y) for G′, as is the difference
between the number of pluses and the number of minuses for (x, y). Thus, we can
create G′ in linear time in total. Therefore, the computation in Line 14 takes O(m+n)

time. Then, the for loop in Line 15 takes O(|V (G′)|) = O(n) time, because we can
easily check whether a vertex of G′ is auxiliary (by maintaining a bit that signifies it).
We conclude that Algorithm 17 has a linear-time implementation.

Corollary 5.10. Let C be a parallel family of 4-cuts of G. Then we can construct in linear
time a data structure of O(n) size that we can use in order to answer queries of the form
“given two vertices x and y, determine if x and y are separated by a 4-cut from C, and, if
yes, report a 4-cut from C that separates them” in constant time.

Proof. This is an easy consequence of the method that we use in order to compute the
atoms of C. First, by using Algorithm 17, we can compute the split graphs according
to C (w.r.t. an ordering of the 4-cuts from C in increasing order w.r.t. their r-size). By
Proposition 5.5, all these split graphs can be computed in linear time in total. Since
the split graphs are pairwise vertex-disjoint, we can consider the collection of them as
a graph G′ (whose connected components are the split graphs). Let C be a 4-cut from
C, and let xC and yC be the auxiliary vertices that were introduced due to the splitting
according to C. Then, we insert an artificial edge (xC , yC) to G′. We perform this for
all 4-cuts from C, and let G′′ denote the resulting graph. (Notice that |V (G′′)| = O(n)

and |E(G′′)| = O(m).) Then, for every 4-cut C ∈ C, we have that (xC , yC) is a bridge
of G′′, whose sides correspond to the connected components of G \C (if we keep the
ordinary vertices from each side). Notice that the 2-edge-connected components of G′′

are in a bijective correspondence with the split graphs of G. Thus, our construction is
as follows. First, we compute the tree T of the 2-edge-connected components of G′′.
Thus, the nodes of T are the split graphs of G, and the edges of T are the new artificial
edges of the form (xC , yC) that we have created, for every 4-cut C ∈ C. Finally, we
perform a DFS on T , and we keep the parent pointers p, the parent edges, the values
ND for all vertices, and a pointer from every parent edge to the 4-cut from C that
corresponds to it, and reversely. It is easy to see that this whole construction can be
completed in linear time and takes O(n) space.

Now, given two vertices x and y, and a query that asks for a 4-cut from C that
separates x and y, we first retrieve the nodes u and v of T that contain x and y,
respectively. If these coincide, then there is no 4-cut from C that separates x and y.

176

Otherwise, we first check whether u and v are related as ancestor and descendant.
If that is the case, let us assume w.l.o.g. that u is a descendant of v. Then, the 4-cut
from C that corresponds to the parent edge (u, p(u)) is a 4-cut that separates x and
y. Otherwise, if u and v are not related as ancestor and descendant, we may assume
w.l.o.g. that u is not the root of T . Then, the 4-cut from C that corresponds to the
parent edge (u, p(u)) is a 4-cut that separates x and y. Thus, we can see that in O(1)

time we can determine a 4-cut from C that separates x and y, or report that no such
4-cut exists.

As a concluding remark, we note that Proposition 5.5 and Corollary 5.10 hold for
general parallel families of cuts (even of mixed cardinalities), provided that there is
a fixed upper bound on their cardinality. This is because, in all the arguments in this
section, we did not rely in an essential way on the fact that we consider collections
of 4-cuts. Even Lemma 5.22, that concerns the computation of the r-size, and the
determining of the endpoints of the edges of a cut that lie in the same connected
component as r, holds for general collections of cuts (of bounded cardinality). This
is an easy combinatorial problem, that relies on the fact that, when we traverse a
tree-path, every time that we cross an edge that participates in a cut, we move to the
other side of the cut.

5.4 Computing the 5‐edge‐connected components

5.4.1 Overview

In this section we present the linear-time algorithm for computing the 5-edge-
connected components of a 3-edge-connected graph G. On a high level, the idea
is to collect enough 4-cuts of G so that: (1) the collection of those 4-cuts is sufficient
to provide the partition of G into its 5-edge-connected components, and (2) there is a
linear-time algorithm for computing the partition of V (G) induced by this collection.

Solving (1) and (2) simultaneously is a very complex problem. First of all, com-
puting a collection of 4-cuts of G that has O(|V (G)|) size and is enough in order to
provide the 5-edge-connected components, is in itself a highly non-trivial task. This
is because the number of all 4-cuts of G can be as high as Ω(|V (G)|2). Thus, we

177

must discover a structure in G that allows us to select enough 4-cuts for our purpose.
This seems very demanding, because, to the best of our knowledge, no linear-time
algorithm exists even for checking the existence of a 4-cut. Furthermore, even if we
had such a collection of 4-cuts, we are faced with problem (2), which is basically to
compute the atoms induced by this collection. We do not know how to do this in
linear time for general collections of 4-cuts. However, if the collection is a parallel
family of 4-cuts, then Proposition 5.5 establishes that we can compute its atoms in
linear time.

Our solution to both (1) and (2) is as follows. First, we solve (1) indirectly, by
computing a complete collection C of 4-cuts of G that has size O(|V (G)|). We note
that it is not even clear why such a collection should exist. A large part of this work
is devoted to establishing Theorem 5.3, which guarantees the existence of such a
collection, and also that it can be computed in linear time. Now, provided with C,
we basically have a compact representation of all 4-cuts of G. However, we cannot
expand all the implicating sequences of C in order to derive all 4-cuts of G, as this
could demand Ω(|V (G)|2) time. Instead, we apply Algorithm 16 on C, which implicitly
expands all the implicating sequences of C, and packs them into a set {F1, . . . ,Fk}
of collections of pairs of edges, that have the property that (i) they generate 4-cuts
implied by C, and (ii) every 4-cut implied by C is generated by at least one such
collection.

Now, a tempting idea would be to compute all Ci-minimal 4-cuts, for every i ∈
{1, . . . , k}, where Ci is the collection of 4-cuts generated by Fi. This is because the
collection of all Ci-minimal 4-cuts is a parallel family of 4-cuts, that provides the same
atoms as Ci (Corollary 5.7). According to Proposition 5.6, we can indeed compute
the Ci-minimal 4-cuts, for all i ∈ {1, . . . , k} such that Ci is a cyclic family of 4-cuts, in
linear time in total. However, we cannot use Algorithm 17 in order to compute the
atoms provided by the Ci-minimal 4-cuts, for every i ∈ {1, . . . , k} separately, because
this would take O(k|V (G)|) time in total, and k can be as large as Ω(|V (G)|). On
the other hand, we cannot compute the atoms provided by all Ci-minimal 4-cuts,
for all i ∈ {1, . . . , k} simultaneously, because there is no guaranteee that this is a
parallel family of 4-cuts. Thus, we have to carefully select enough Ci-minimal 4-cuts,
for every i ∈ {1, . . . , k}, so that (1) and (2) are satisfied simultaneously. This is still
a challenging task. A first step towards resolving it is to keep only the essential
Ci-minimal 4-cuts, for every i ∈ {1, . . . , k}. This is enough in order to provide the

178

e1

e2

e3

e4

f1 f3f2 f4

g1

g2

g3

g4

g7

g8 g6

g5

Figure 5.15: This is a 3-edge-connected graph with 4-cuts C1 = {e1, e2, e3, e4}, C2 =

{f1, f2, f3, f4}, D1 = {e1, f1, g1, g2}, D2 = {e2, f2, g1, g2}, D3 = {e1, f1, e2, f2}, E1 =

{e1, f3, g3, g4}, E2 = {e2, f4, g3, g4}, E3 = {e1, f3, e2, f4}, F1 = {e3, f3, g5, g6}, F2 =

{e4, f4, g5, g6}, F3 = {e3, f3, e4, f4}, G1 = {e3, f1, g7, g8}, G2 = {e4, f2, g7, g8} and G3 =

{e3, f1, e4, f2}. Thus, it is not difficult to see that C = {C1, C2, D1, D2, E1, E2, F1, F2, G1, G2}

is a complete collection of 4-cuts of this graph. If we apply Algorithm 16 on C, we

will get as a result the collections of pairs of edges F1 = {{e1, e2}, {e3, e4}}, F2 =

{{e1, e3}, {e2, e4}}, F3 = {{e1, e4}, {e2, e3}}, F4 = {{f1, f2}, {f3, f4}}, F5 = {{f1, f3}, {f2, f4}},

F6 = {{f1, f4}, {f2, f3}}, F7 = {{e1, f1}, {e2, f2}, {g1, g2}}, F8 = {{e1, f3}, {e2, f4}, {g3, g4}},

F9 = {{e3, f3}, {e4, f4}, {g5, g6}} and F10 = {e3, f1}, {e4, f2}, {g7, g8}}. Notice that

{{e1, e2}, {e3, e4}, {f1, f2}, {f3, f4}} is a collection of pairs of edges that generates a cyclic

family of 4-cuts of this graph, that includes C1 and C2. Thus, C1 and C2 are not isolated

4-cuts. Therefore, since all three partitions into pairs of edges of C1 and C2 are returned by

Algorithm 16 on input C, we have that C1 and C2 are quasi C-isolated 4-cuts. Notice that C1

and C2 are essential and cross.

5-edge-connected components. Furthermore, according to Lemma 5.20, this provides
a parallel family of 4-cuts. However, so far we have overlooked the fact that there may
be some collections of pairs of edges in {F1, . . . ,Fk} that have size 2, and yet can be
expanded into larger collections of pairs of edges that generate 4-cuts implied by C.
Then, the 4-cuts that are generated by such collections may cross with other such 4-
cuts. Furthermore, this can be true even if those 4-cuts are essential. (See Figure 5.15
for an example.) In this case Lemma 5.21 is very useful, because it establishes that
we can drop from our consideration those 4-cuts. Thus, it is sufficient to consider
only the essential C-isolated 4-cuts. By Corollary 5.6, these have the property that
they are parallel with every other essential 4-cut.

This is the general idea for computing the 5-edge-connected components in linear

179

time. Our result is summarized in Proposition 5.9. In order to establish this propo-
sition, we need to provide efficient algorithms for computing the minimal 4-cuts and
the essential isolated 4-cuts. We perform these tasks in Sections 5.4.2 and 5.4.3, re-
spectively. In Section 5.4.4 we describe the procedure for achieving both (1) and (2),
given a complete collection of 4-cuts.

Throughout this chapter, we assume that G is a 3-edge-connected graph, and all
graph-related elements refer to G. Also, we assume that we have performed the linear-
time preprocessings that are described in Lemma 5.22 and Proposition 5.4. (These
are for reporting the r-size and for testing the essentiality of 4-cuts in constant time.)

5.4.2 Computing the minimal 4‐cuts

Let C be a collection of 4-cuts of G, and let F be a collection of pairs of edges that is
returned by Algorithm 16 on input C. By Proposition 5.3, we have that F generates a
collection C ′ of 4-cuts implied by C. Suppose that C ′ is a cyclic family of 4-cuts. Then
we want to find all the C ′-minimal 4-cuts. Let us recall precisely what this means. Let
F = {p1, . . . , pk}, where k ≥ 3. Then, since F generates a cyclic family of 4-cuts, we
may assume w.l.o.g. that there is a partition {X1, . . . , Xk} of V (G) such that G[Xi] is
connected for every i ∈ {1, . . . , k}, and E[Xi, Xi+k1] = pi for every i ∈ {1, . . . , k}. Then
the collection of all C ′-minimal 4-cuts is {pi ∪ pi+k1 | i ∈ {1, . . . , k}}. Of course, the
problem is that we do not receive the collection F in such an orderly fashion, and
the number of all 4-cuts generated by F is Θ(k2), which can be as large as Ω(n2).

We propose the following method to compute the C ′-minimal 4-cuts. Suppose that
we have fixed a vertex r, and assume w.l.o.g. that r ∈ X1. If we knew at least one
of the two pairs of edges in F that are incident to X1 (i.e., either p1 or pk), then it
would be easy to find all the C ′-minimal 4-cuts. Specifically, suppose that we know
that p1 is incident to the corner of C ′ that contains r. Then we have that the 4-cuts
p1 ∪ p2, p1 ∪ p3, . . . , p1 ∪ pk are sorted in increasing order w.r.t. their r-size. Thus, if
we have sorted the collection of 4-cuts {p1 ∪ pi | i ∈ {2, . . . , k}} in increasing order
w.r.t. the r-size, then we can retrieve the sequence p1, p2, p3, . . . , pk, which is enough to
provide the C ′-minimal 4-cuts (i.e., by collecting the union of every pair of consecutive
elements in this sequence, plus pk ∪ p1).

Thus, the problem is how to identify one of the two pairs of edges in F that are
incident to the corner of C ′ that contains r. To do this, we start with any pair of edges

180

p ∈ F . Then, it is easy to see that the 4-cut p∪ pi in {p∪ pi | i ∈ {1, . . . , k} and pi ̸= p}
with the maximum r-size has the property that pi is a pair of edges incident to X1

(i.e., i is either 1 or k).
If we put those two ideas together, then we can see that Algorithm 18 computes,

simultaneously, all the C1-, . . . , Ct-minimal 4-cuts, for every set of collections of pairs of
edges F1, . . . ,Ft that generate the cyclic families of 4-cuts C1, . . . , Ct, respectively. The
analysis of Algorithm 18, as well as its proof of correctness, is given in Proposition 5.6.

Proposition 5.6. Let F1, . . . ,Ft be a set of collections of pairs of edges that generate the
cyclic families of 4-cuts C1, . . . , Ct. Then, the output of Algorithm 18 on input F1, . . . ,Ft

is the collection of all C1-, . . . , Ct-minimal 4-cuts. The running time of Algorithm 18 is
O(n+ |F1|+ · · ·+ |Ft|).

Proof. Let F = {p1, . . . , pk} be one of the collections of pairs of edges in {F1, . . . ,Ft}.
Since F generates a cyclic family C of 4-cuts, we may assume w.l.o.g. that there is a
partition {X1, . . . , Xk} of V (G), such that G[Xi] is connected for every i ∈ {1, . . . , k},
and E[Xi, Xi+k1] = pi for every i ∈ {1, . . . , k}. Then, the C-minimal 4-cuts are given
by {pi ∪ pi+k1 | i ∈ {1, . . . , k}}. Let r be any fixed vertex, and let us assume w.l.o.g.
that r ∈ X1.

Let p be any pair of edges in F . Thus, there is an i ∈ {1, . . . , k} such that p = pi.
Then, for every j ∈ {1, . . . , i − 1}, the two sides of the 4-cut pi ∪ pj are given by
Xj+1∪· · ·∪Xi and Xi+k1∪· · ·∪Xj. Thus, the r-size of pi∪pj is given by |Xj+1|+· · ·+|Xi|.
Also, for every j ∈ {i + 1, . . . , k}, the two sides of the 4-cut pi ∪ pj are given by
Xi+1∪· · ·∪Xj and Xj+k1∪· · ·∪Xi. Thus, the r-size of pi∪pj is given by |Xi+1|+· · ·+|Xj|.
Thus, if j ∈ {1, . . . , i − 1}, then the r-size of pi ∪ pj is maximized for j = 1. And if
j ∈ {i + 1, . . . , k}, then the r-size of pi ∪ pj is maximized for j = k. This shows that,
if we consider the collection of 4-cuts of the form {pi ∪ pj | j ∈ {1, . . . , k} \ {i}}, then
the 4-cut with the maximum r-size in this collection is either pi ∪ p1 or pi ∪ pk. In
either case, then, we receive one of the two pairs of edges in F that are incident to the
corner of C that contains r. This shows that the for loop in Line 3 correctly computes
a pair of edges qi ∈ Fi that is incident to the corner of Ci that contains r, for every
i ∈ {1, . . . , t}.

Now consider again the collection of pairs of edges F . Suppose that we have
determined that p1 is one of the pairs of edges in F that is incident to X1. Then, for
every i ∈ {2, . . . , k}, the two sides of p1∪pi are X2∪· · ·∪Xi and Xi+k1∪· · ·∪X1. Thus,

181

Algorithm 18: Compute all the C1-, . . . , Ct-minimal 4-cuts, for a given set
of collections of pairs of edges F1, . . . ,Ft that generate the cyclic families of
4-cuts C1, . . . , Ct, respectively
1 let r be any fixed vertex

2 let qi be a null pointer to a pair of edges in Fi, for every i ∈ {1, . . . , t}

3 foreach i ∈ {1, . . . , t} do

// find a pair of edges qi ∈ Fi that is incident to the corner of Ci that

contains r

4 let p be any pair of edges in Fi

5 let max← 0

6 foreach pair of edges q in Fi \ {p} do

7 let size be the r-size of the 4-cut p ∪ q

8 if size > max then

9 qi ← q

10 size← max

11 end

12 end

13 end

14 initialize P ← ∅

15 foreach i ∈ {1, . . . , t} do

16 foreach p ∈ Fi \ {qi} do

17 insert the pair (qi ∪ p, i) into P

18 end

19 end

20 sort P in increasing order w.r.t. the r-size of the first component of its elements

21 initializeM← ∅

22 initialize pi ← qi, for every i ∈ {1, . . . , t}

23 foreach pair (qi ∪ p, i) ∈ P do

24 insert the 4-cut pi ∪ p intoM

25 set pi ← p

26 end

27 foreach i ∈ {1, . . . , t} do insert the 4-cut pi ∪ qi intoM

28 returnM

182

the r-size of p1 ∪ pi is |X2|+ · · ·+ |Xi|. This shows that the 4-cuts p1 ∪ p2, . . . , p1 ∪ pk

are sorted in increasing order w.r.t. their r-size. Notice that, if we knew the sequence
of pairs of edges p1, . . . , pk then we could collect all C-minimal 4-cuts, by forming
the union of every two consecutive pairs of edges in this sequence, plus pk ∪ p1.
Thus, the idea is to collect the 4-cuts of the form {p1 ∪ pi | i ∈ {2, . . . , k}}, sort
them in increasing order w.r.t. their r-size, and then gather the sequence p2, . . . , pk

by taking the difference from p1. (The argument is similar if the pair of edges that
was determined to be incident to X1 is pk.)

In order to sort the collection {p1 ∪ pi | i ∈ {2, . . . , k}}, we use bucket-sort. This
takes O(n) time. However, we cannot apply this procedure separately for every col-
lection Fi, because otherwise we will need Ω(kn) time, and k can be as large as Ω(n).
Thus, we have to collect the 4-cuts from all those collections in a set P , and sort them
simultaneously with bucket-sort. In order to retrieve the information for every 4-cut
in P what is the collection of pairs of edges from which it was generated, we index
every 4-cut that we put in P with the index of the collection of pairs of edges from
which it was generated. This is implemented in Lines 14 to 20. Since we perform
the sorting with bucket-sort, this takes O(|F1| + · · · + |Ft| + n) time in total. Finally,
Lines 21 to 27 implement the idea that we explained above in order to collect all
Ci-minimal 4-cuts, for every i ∈ {1, . . . , t}.

It should be clear that the expression O(|F1| + · · · + |Ft| + n) dominates the total
running time. We only note that, given any 4-cut, we can easily compute its r-size in
O(1) time, according to the ancestry relation of the tree-edges that are contained in
it. This was explained in Section 5.3.1 (see Lemma 5.22).

5.4.3 Computing the essential isolated 4‐cuts

Let C be a complete collection of 4-cuts of G. We will provide an algorithm that
computes all the essential C-isolated 4-cuts. In other words, we want to compute all
the essential 4-cuts C ∈ C that have the property that there is no collection F of pairs
of edges with |F| > 2 that generates a collection C ′ of 4-cuts implied by C such that
C ∈ C ′. By Lemma 5.16, we have that every C-isolated 4-cut C has the property that
the three different partitions of C into pairs of edges are returned by Algorithm 16
on input C (∗). However, property (∗) is also satisfied by the quasi C-isolated 4-cuts.
Therefore, given that a 4-cut C ∈ C satisfies property (∗), we have to be able to

183

determine whether C is C-isolated or quasi C-isolated.
Since we actually care only about the essential 4-cuts, Lemma 5.17 is very useful

in this situation. Because Lemma 5.17 shows that every essential quasi C-isolated
4-cut shares a pair of edges with an essential C ′-minimal 4-cut, where C ′ is a cyclic
family of 4-cuts that is generated by a collection of pairs of edges that is returned
by Algorithm 16 on input C. The reason that this property is very useful, is that the
number of minimal 4-cuts that are extracted from the collections of pairs of edges
that are returned by Algorithm 16 is bounded by O(n) (if |C| = O(n)), and therefore
the search space for intersections of quasi C-isolated 4-cuts with other 4-cuts implied
by C is conveniently small.

Thus, our strategy for computing the essential C-isolated 4-cuts can be summarized
as follows. First, we collect the output F1, . . . ,Fk of Algorithm 16 on input C. Then,
we find all 4-cuts C ∈ C that satisfy property (∗): i.e., we collect all 4-cuts C ∈ C such
that all three partitions of C into pairs of edges are included in F1, . . . ,Fk. Then,
among those 4-cuts, we keep only the essential. Let C̃ be the resulting collection.
Thus, we have that all the essential C-isolated 4-cuts are contained in C̃. However,
the problem is that C̃ may also contain some quasi C-isolated 4-cuts, which we have
to identify in order to discard. For this purpose, we rely on Corollary 5.9 in the
following way. We apply Algorithm 18, in order to compute the collection M of all
the essential C ′-minimal 4-cuts, for every cyclic family of 4-cuts C ′ for which there
exists an i ∈ {1, . . . , k} such that C ′ is generated by Fi. Then, for every 4-cut C ∈ C̃,
and every 4-cut C ′ ∈M, we have to check whether C and C ′ share a pair of edges.

To perform this efficiently, for every 4-cut C ∈M, and every pair of edges p ⊂ C ,
we create a pair (p, ∗). Also, for every 4-cut C ∈ C̃, and every pair of edges p ⊂ C , we
create a pair (p, C). Now, we collect all those pairs (p, ∗) and (p, C) into a collection
P , which we sort in lexicographic order, giving priority to ∗. Then, we simply check,
for every pair (p, C) in P , whether it is preceded by a pair of the form (p, ∗). If that
is the case, then we know that C (which is a 4-cut in C̃) shares a pair of edges with a
C ′-minimal 4-cut, where C ′ is the cyclic family of 4-cuts that is generated by some Fi,
for an i ∈ {1, . . . , k}. Thus, Corollary 5.9 implies that C is a quasi C-isolated 4-cut.
Conversely, we can prove that, if C is an essential quasi C-isolated 4-cut, then there
is a pair of edges p ⊂ C such that (p, C) is preceded by (p, ∗) in P. Thus, we can
collect all the 4-cuts in C̃ that are provably not quasi C-isolated: these are precisely the
essential C-isolated 4-cuts. This procedure is shown in Algorithm 19. Its correctness

184

is established in Proposition 5.7.

185

Algorithm 19: Compute all the essential C-isolated 4-cuts, where C is a com-
plete collection of 4-cuts of G
1 compute the collections of pairs of edges F1, . . . ,Fk that are returned by

Algorithm 16 on input C

2 initialize a counter Count(C)← 0, for every C ∈ C

3 foreach i ∈ {1, . . . , k} do

4 if |Fi| = 2 then

5 let C be the 4-cut in C from which Fi is derived

6 set Count(C)← Count(C) + 1

7 end

8 end

9 initialize an empty collection C̃

10 foreach C ∈ C do

11 if Count(C) = 3 and C is an essential 4-cut of G then

12 insert C into C̃

13 end

14 end

15 compute the collectionM of all the essential Ci-minimal 4-cuts, for every

i ∈ {1, . . . , k} such that Fi generates a cyclic family Ci of 4-cuts

16 initialize an empty collection P

17 foreach C ∈M do

18 foreach ordered pair of edges p in C do

19 insert a pair (p, ∗) into P

20 end

21 end

22 foreach C ∈ C̃ do

23 foreach ordered pair of edges p in C do

24 insert a pair (p, C) into P

25 end

26 end

27 sort P in lexicographic order, giving priority to ∗

28 initialize an empty collection Q

29 foreach pair (p, C) ∈ P do

30 if the predecessor of (p, C) in P is (p, ∗) then

31 insert C into Q

32 end

33 end

34 return C̃ \ Q
186

Proposition 5.7. Let C be a complete collection of 4-cuts of G. Then, Algorithm 19
correctly computes the collection of all the essential C-isolated 4-cuts. The running time of
Algorithm 19 is O(n+ |C|).

Proof. Let F1, . . . ,Fk be the output of Algorithm 16 on input C. By Lemma 5.16,
we have that every C-isolated 4-cut C has the property that C ∈ C and all three
partitions of C into pairs of edges are contained in the set {F1, . . . ,Fk} (∗). Thus,
the first step is to find all C ∈ C that have this property. To do this, we first find all
Fi, for i ∈ {1, . . . , k}, that satisfy |Fi| = 2. If for an i ∈ {1, . . . , k} we have |Fi| = 2,
then by Lemma 5.15 we have that C =

⋃
Fi ∈ C. Thus, for the 4-cut C , we increase

the counter Count(C) by one (in Line 6), signifying that we have found one more
partition of C into pairs of edges within {F1, . . . ,Fk}. Thus, if for a 4-cut C ∈ C we
have Count(C) = 3, then we know that all partitions of C into pairs of edges are
contained in {F1, . . . ,Fk}, and so we insert this 4-cut into C̃ if it is essential (Line 12).
The purpose of C̃ is precisely to contain all the essential 4-cuts C ∈ C that satisfy
property (∗).

Let us provide a simple extension to Algorithm 16, in order to maintain the infor-
mation that Fi generates precisely the 4-cut C , whenever |Fi| = 2, for i ∈ {1, . . . , k}.
(This is needed in Line 5.) Let C = {e1, e2, e3, e4} ∈ C, and let us assume w.l.o.g.
that Fi = {{e1, e2}, {e3, e4}}. Let us also assume, w.l.o.g., that e1 < e2 and e3 < e4.
Then we have that Fi is derived (in Line 16 of Algorithm 16) from a connected
component S of the graph G that is generated internally by Algorithm 16 in Line 14.
Thus, we have that S contains at least two elements (C ′, (e1, e2)) and (C ′′, (e3, e4)),
for some 4-cuts C ′, C ′′ ∈ C. Since C ∈ C, Algorithm 16 also generates the elements
(C, (e1, e2)) and (C, (e3, e4)). By construction of G, we have that (C, (e1, e2)) is con-
nected with (C ′, (e1, e2)) in G, and (C, (e3, e4)) is connected with (C ′′, (e3, e4)) in G. Let
us suppose, for the sake of contradiction, that C ′ ̸= C. Then, let {x, y} be the pair of
edges such that C ′ = {e1, e2, x, y}, and let us assume w.l.o.g. that x < y. Then, we
have that Algorithm 16 generates the element (C ′, (x, y)), and this is connected with
(C ′, (e1, e2)) (see Line 8). Thus, (C ′, (x, y)) is also in S, and therefore Fi must also
contain {x, y} (see Line 16). Since C ′ ̸= C , we have that {x, y} ̸= {e3, e4}. And since
C ′ is a 4-cut, it is a 4-element set, and therefore {x, y} ̸= {e1, e2}. This implies that
|Fi| ≥ 3, a contradiction. Thus, we have that C ′ = C. Similarly, we have that C ′′ = C.
Thus, we can see that the only elements of S are (C, (e1, e2)) and (C, (e3, e4)). Thus,
whenever a connected component S of G contains precisely two elements of the form

187

(C, (e1, e2)) and (C, (e3, e4)), then we can simply associate with the collection of pairs
of edges that is derived from S (in Line 16) the information that it generates C.

Thus, when we reach Line 15, we can be certain that C̃ contains precisely all the
essential 4-cuts C ∈ C that satisfy property (∗). Now, among all the 4-cuts in C̃, we
have to identify and discard those that are quasi C-isolated. Then, by definition, we
will be left with the (essential) C-isolated 4-cuts. Let M be the collection of all the
essential Ci-minimal 4-cuts, for all i ∈ {1, . . . , k} such that Fi generates a cyclic family
Ci. Now, according to Corollary 5.9, in order to determine whether a 4-cut in C̃ is
quasi C-isolated, it is sufficient to check whether it intersects with a 4-cut in M in a
pair of edges. Thus, the idea is basically to break every 4-cut inM into all different
combinations of (ordered) pairs of edges, and then check, for every 4-cut C ∈ C̃,
whether C contains any of those pairs. If that is the case, then by Corollary 5.9
we have that C is quasi C-isolated; otherwise, by Corollary 5.9 we have that C is
C-isolated.

In order to perform this checking efficiently, we collect every pair of edges p that
is contained in a 4-cut inM, and then we form a pair (p, ∗). We demand that those
pairs are ordered (according to any total ordering of the edges). Thus, for every 4-cut
C inM, we have that C generates six pairs of the form (p, ∗). The symbol ∗ is simply
to signify that p is contained in a 4-cut inM. Now, we basically do the same for every
4-cut C in C̃: for every pair of edges p in C , we create a pair (p, C). Notice that here
we maintain the information, what is the 4-cut in C̃ from which (p, C) is derived.
Now, we collect all those pairs in a collection P , which we sort lexicographically (with
bucket-sort), giving priority to ∗. Thus, if there is a 4-cut C ∈ C̃ that contains a pair
of edges p which is shared by a 4-cut in M, then we have that the element (p, C)

is preceded by an element (p, ∗) in P. Moreover, we have that (p, ∗) is precisely the
predecessor of (p, C) in P. To see this, suppose the contrary. Then, we have that there
is a 4-cut C ′ ∈ C̃ with C ′ ̸= C that contains the pair of edges p. Let q = C ′ \ p. Since
C ′ ∈ C̃, we have that the collection of pairs of edges {p, q} is contained in {F1, . . . ,Fk}.
Let p′ = C \ p. Then, since C ∈ C̃, we have that the collection of pairs of edges {p, p′}
is contained in {F1, . . . ,Fk}. Since C ′ ̸= C , we have that {p, q} ̸= {p, p′}. Therefore,
Lemma 5.13 implies that {p, q} ∩ {p, p′} = ∅, a contradiction. Thus, we have that
there is no 4-cut C ′ ∈ C̃ with C ′ ̸= C that contains the pair of edges p. Therefore, the
predecessor of (p, C) in P is precisely (p, ∗). (We note that this is because we consider
the ordered pairs of edges that are produced by the pairs of edges that are contained

188

in the 4-cuts. Otherwise, (p, ∗) could be the predecessor of the predecessor of (p, C).)
Thus, we can infer that C shares a pair of edges with an essential Ci-minimal 4-cut,
for some i ∈ {1, . . . , k}. Thus, in Line 31 we insert C into the collection Q (which is
to contain all the essential quasi C-isolated 4-cuts). Conversely, if C does not have this
property, then obviously the predecessor of (p, C) in P cannot have the form (p, ∗),
for any pair of edges p ⊂ C. Thus, by Corollary 5.9 we infer that C is not a quasi
C-isolated 4-cut, and therefore, since C ∈ C̃, it must be an essential C-isolated 4-cut.
Thus, when we reach Line 34, Q contains precisely all the essential quasi C-isolated
4-cuts, and therefore we only have to return C̃ \ Q, because this is now the collection
of all the essential C-isolated 4-cuts.

To conclude the proof of correctness, we have to provide a method to compute
the collectionM. To do this, we perform for every i ∈ {1, . . . , k} the following check.
First of all, by Proposition 5.3 we can be certain that Fi generates a collection of 4-cuts
of G. Now, if |Fi| = 2, then i is ignored. If |Fi| > 3, then Proposition 5.2 implies that
Fi generates a cyclic family of 4-cuts, and so we keep i. If |Fi| = 3, then we compute
the three 4-cuts C1, C2 and C3, that are generated by Fi. If either of C1, C2, C3 is
essential, then Corollary 5.5 implies that Fi generates a cyclic family of 4-cuts, and
so we keep i. Otherwise, either Fi does not generate a cyclic family of 4-cuts, or, if it
does, all of its minimal 4-cuts are non-essential, and so we can ignore i. Now, let I be
the collection of all the indices that we have collected. Then, for every i ∈ I , we have
that Fi generates a cyclic family of 4-cuts. Thus, we can apply Algorithm 18 on the
collection {Fi | i ∈ I}, which will produce the collectionM′ of all Ci-minimal 4-cuts,
where Ci is the cyclic family of 4-cuts generated by Fi, for i ∈ I. Then, we only keep
fromM′ the essential 4-cuts, and so we compute the collectiomM.

Now let us provide the time-bounds for the non-trivial steps of Algorithm 19.
First, by Proposition 5.3 we have that Line 1 takes O(n + |C|) time. Furthermore,
Proposition 5.3 ensures that |F1|+· · ·+|Fk| = O(|C|). In order to check the essentiality
in Line 11, we rely on the assumption we have made at the beginning of this section:
that is, we have completed the linear-time preprocessing of the graph that is described
in Proposition 5.4, so that we can check the essentiality of any 4-cut in O(1) time.
Thus, the for loop in Line 10 takes O(|C|) time in total. By Proposition 5.6, we can
compute the collection M′ of all the Ci-minimal 4-cuts, for every i ∈ I , in O(n +∑

i∈I |Fi|) = O(n + |F1| + · · · + |Fk|) = O(n + |C|) time. Notice that the size of M′ is
O(|F1|+ · · ·+ |Fk|) = O(|C|), and there are O(|C|) essentiality checks that are involved

189

in the computation of M. Finally, notice that the size of P is O(|C|), and therefore
Line 27 takes O(n+ |C|) time if we perform the sorting with bucket-sort. Also, we can
compute the set difference C̃ \Q in Line 34 with bucket-sort. Thus, the total running
time of Algorithm 19 is O(n+ |C|).

5.4.4 Computing enough 4‐cuts in order to derive the 5‐edge‐

connected components

Let C be a complete collection of 4-cuts of G. Then, Algorithm 20 shows how we can
extract a parallel collection C ′ of 4-cuts from C, that contains enough 4-cuts in order
to separate all pairs of vertices x, y with λ(x, y) = 4. The proof of correctness is given
in Proposition 5.8.

Algorithm 20: Generate a parallel collection of 4-cuts from a complete col-
lection C of 4-cuts, that contains enough 4-cuts in order to separate all pairs
of vertices x, y with λ(x, y) = 4

1 compute the collections of pairs of edges F1, . . . ,Fk that are returned by
Algorithm 16 on input C

2 compute the collectionM of all the essential Ci-minimal 4-cuts, where Ci is
the cyclic family of 4-cuts that is generated by Fi, for some i ∈ {1, . . . , k}

3 compute the collection ISO of the essential C-isolated 4-cuts
4 returnM∪ ISO

Proposition 5.8. Let C be a complete collection of 4-cuts of G. Then, the output of
Algorithm 20 on input C is a parallel family C ′ of 4-cuts such that: for every pair of vertices
x, y of G with λ(x, y) = 4, there is a 4-cut in C ′ that separates x and y. The running time
of Algorithm 20 is O(n+ |C|).

Proof. Let F1, . . . ,Fk be the collections of pairs of edges that are returned by Algo-
rithm 16 on input C. Then, by Proposition 5.3 we have that Fi generates a collection
of 4-cuts implied by C, for every i ∈ {1, . . . , k}. Thus, let Ci be the collection of 4-cuts
generated by Fi, for every i ∈ {1, . . . , k}. By Proposition 5.3, we also have that every
4-cut implied by C is contained in Ci, for some i ∈ {1, . . . , k}. Thus, since C is a
complete collection of 4-cuts, we have that every 4-cut of G is contained in some Ci,
for an i ∈ {1, . . . , k}. Let C ′ be the output of Algorithm 20 on input C. Let also M

190

and ISO be the collections that are constructed in Lines 2 and 3, respectively, on
input C. Notice that every 4-cut in ISO is an essential isolated 4-cut, because C is a
complete collection of 4-cuts (and therefore it implies all the 4-cuts of G).

Now let x, y be a pair of vertices of G with λ(x, y) = 4. This means that there is
a 4-cut C of G that separates x and y. By definition, C is an essential 4-cut. Since C

is a 4-cut of G, there is an i ∈ {1, . . . , k} such that C ∈ Ci. Thus, we can distinguish
two cases: either (1) there is an i ∈ {1, . . . , k} such that C ∈ Ci and |Fi| > 2 , or (2)
for every i ∈ {1, . . . , k} such that C ∈ Ci we have that |Fi| = 2. Let us consider case
(1) first. Thus, there is an i ∈ {1, . . . , k} such that C ∈ Ci and |Fi| > 2. Then, since
C is an essential 4-cut in Ci, by Corollary 5.5 we have that Ci is a cyclic family of
4-cuts. Then, since C separates x and y and λ(x, y) = 4, by Lemma 5.12 we have that
there is an essential Ci-minimal 4-cut C ′ that separates x and y. Then, we have that
C ′ ∈M, and therefore C ′ ∈ C ′.

Now let us consider case (2). Thus, we have that, for every i ∈ {1, . . . , k} such that
C ∈ Ci, we have |Fi| = 2. Let us consider an i ∈ {1, . . . , k} such that C ∈ Ci (we have
already shown that such an i exists). Then, we have that |Fi| = 2. Thus, Lemma 5.15
implies that C ∈ C. Then, by Lemma 5.14 we have that every partition F ′ of C into
pairs of edges is contained in some Fj , for j ∈ {1, . . . , k}. Then we have that C ∈ Cj ,
and therefore |Fj| = 2. This implies that F ′ = Fj. This shows that all partitions of
C into pairs of edges are contained in the output of Algorithm 16 on input C. Thus,
we can distinguish two cases: either (2.1) C is a C-isolated 4-cut, or (2.2) C is a quasi
C-isolated 4-cut. In case (2.1), we have that C ∈ ISO (because C is essential). In case
(2.2), we can evoke Lemma 5.21: this implies that there is a t ∈ {1, . . . , k} such that
|Ft| > 2 and Ct contains a 4-cut C ′ that separates x and y. By definition, we have that
C ′ is an essential 4-cut. Thus, Corollary 5.5 implies that Ct is a cyclic family of 4-cuts.
Therefore, since C ′ ∈ Ct separates x and y (which are 4-edge-connected), Lemma 5.12
implies that there is an essential Ct-minimal 4-cut C ′′ that separates x and y. Thus,
we have that C ′′ ∈ M, and therefore C ′′ ∈ C ′. Thus, we have shown that, for every
pair of vertices x, y of G with λ(x, y) = 4, there is a 4-cut in C ′ that separates x and y.

Now we will show that C ′ is a parallel collection of 4-cuts. Let C,C ′ be two distinct
4-cuts in C ′. If at least one of C,C ′ is in ISO, then it is an essential isolated 4-cut, and
so Corollary 5.6 implies that it is parallel with every other essential 4-cut. Thus, let
us assume that both C and C ′ are inM. Then there are i, j ∈ {1, . . . , k} such that C
is a Ci-minimal 4-cut, and C ′ is a Cj-minimal 4-cut. If i = j, then Lemma 5.11 implies

191

that C and C ′ are parallel 4-cuts. Otherwise, since both C and C ′ are essential 4-cuts,
Lemma 5.20 implies that C and C ′ are parallel. Thus, we have shown that C ′ is a
parallel collection of 4-cuts.

Finally, let us consider the running time of Algorithm 20. By Proposition 5.3, we
have that Line 1 takes time O(n + |C|), and the output F1, . . . ,Fk has size O(|F1| +
· · · + |Fk|) = O(|C|). Then, we can implement Line 2 with the same idea as Line 15
of Algorithm 19 (see the proof of Proposition 5.7). This will take O(n + |C|) time,
provided that we have made the linear-time preprocessing on G that is described in
Proposition 5.4, in order to be able to perform essentiality checks in O(1) worst-case
time per 4-cut. Finally, by Proposition 5.7, we have that Line 3 takes time O(n+ |C|).
We conclude that the running time of Algorithm 20 is O(n+ |C|).

5.4.5 The algorithm

The full algorithm for computing the 5-edge-connected components of a 3-edge-
connected graph in linear time is shown in Algorithm 21. The proof of correctness is
given in Proposition 5.9.

Algorithm 21: Compute the 5-edge-connected components of a 3-edge-
connected graph G

1 compute the partition P4 of the 4-edge-connected components of G
2 compute a complete collection C of 4-cuts of G
3 compute the output C ′ of Algorithm 20 on input C
4 compute the partition P5 = atoms(C ′)
5 return P4 refined by P5

Proposition 5.9. Algorithm 21 correctly computes the 5-edge-connected components of a
3-edge-connected graph. Furthermore, it has a linear-time implementation.

Proof. Let P4, C, C ′, and P5, be as defined in Lines 1, 2, 3, and 4, respectively. Let P
be the output of Algorithm 21. Notice that P is a partition of the vertex set of G. We
will show that, for every pair of vertices x, y of G, we have λ(x, y) < 5 if and only if x
and y are separated by P. So let x, y be a pair of vertices of G with λ(x, y) < 5. Since
G is 3-edge-connected, we have that either λ(x, y) = 3, or λ(x, y) = 4. If λ(x, y) = 3,

192

then x and y lie in different 4-edge-connected components of G. Thus, x and y are
separated by P4, and therefore they are separated by P , since P is a refinement of
P4. Now let us assume that λ(x, y) = 4. Then, Proposition 5.8 implies that there is a
4-cut C ∈ C ′ that separates x and y. Thus, x and y are separated by P5 = atoms(C ′),
and therefore they are separated by P , since P is a refinement of P5. Thus, for every
pair of vertices x, y of G with λ(x, y) < 5, we have that x and y are separated by
P. Conversely, every pair of vertices that are separated by P , are separated by either
P4 or P5, and therefore they are separated by either a 3-cut or a 4-cut of G, and
therefore they are not 5-edge-connected. This shows that P is the collection of the
5-edge-connected components of G.

By previous work, we know that Line 1 can be implemented in linear time (see [36]
or [50]). By Theorem 5.3, we have that a complete collection C of 4-cuts of G with size
O(n) can be computed in linear time (in Line 2). Thus, by Proposition 5.8 we have that
the output C ′ of Algorithm 20 on input C can be computed in O(n+ |C|) = O(n) time.
Furthermore, by Proposition 5.8 we have that C ′ is a parallel family of 4-cuts. Thus, by
Proposition 5.5 we have that the computation of atoms(C ′) can be performed in O(n)

time. Finally, the common refinement of P4 and P5 can be computed in O(n) time
with bucket-sort, since these are partitions of V (G). We conclude that Algorithm 21
has a linear-time implementation.

We note that this method for computing the 5-edge-connected components is also
useful for constructing a data structure that has the same functionality as a partial
Gomory-Hu tree that retains all connectivities up to 5 [41]. Specifically, we have the
following.

Corollary 5.11. Given a 3-edge-connected graph G with n vertices, there is a linear-time
preprocessing of G that constructs a data structure of size O(n), such that, given two 4-
edge-connected vertices x and y of G, we can determine in O(1) time a 4-cut of G that
separates x and y, or report that no such 4-cut exists.

Proof. This is a consequence of the fact that Algorithm 21 computes a parallel family
C of 4-cuts of G, with the property that every two 4-edge-connected vertices that are
separated by a 4-cut of G, are also separated by a 4-cut from C. Then, we can apply
Corollary 5.10 on C.

193

5.5 Computing a complete collection of 4‐cuts

The purpose of this chapter is to provide a summary of the methods that we use in
order to establish Theorem 5.3. Let G be a 3-edge-connected graph. The idea is to
classify the 4-cuts of G on a DFS-tree, in order to make it easy for us to compute
enough of them efficiently. This results in several algorithms, each of which specializes
in computing a specific type of 4-cuts. In this section we provide our classification of
4-cuts, down to all the subcases, and we provide an overview of the methods that we
use in order to handle each case. We also provide figures with detailed captions, that
we consider an organic part of our exposition. The complete analysis, the proofs and
the algorithms, are given in the chapters that follow (in Sections 5.6, 5.7 and 5.8). We
conclude with a technical result (in Section 5.5.4), that we will need in the following
chapters. Throughout this chapter we assume familiarity with the DFS-based concepts
that we defined in Section 3.1.

5.5.1 A typology of 4‐cuts on a DFS‐tree

Let r be a vertex of G, and let T be a DFS-tree of G rooted at r. Initially, we classify
the 4-cuts of G according to the number of tree-edges that they contain. Thus, we
distinguish Type-1, Type-2, Type-3 and Type-4 4-cuts, depending on whether they
contain one, two, three or four tree-edges, respectively. Notice that there are no 4-cuts
that consist entirely of non-tree edges, because the removal of any set of non-tree
edges is insufficient to disconnect the graph, due to the existence of T .

We found that it is very difficult to compute enough Type-4 4-cuts directly. Thus,
we use an idea from [50], in order to reduce the case of those 4-cuts to the previous
cases. Specifically, we first establish the following result.

Proposition 5.10. Let G be a 3-edge-connected graph with n vertices, and let T be a
DFS-tree of G. Then there is a linear-time algorithm that computes a collection C of 4-cuts
of G, that has size O(n) and implies the collection of all 4-cuts of G that contain at least
one back-edge w.r.t. T .

We establish Proposition 5.10 by essentially following the framework of classifica-
tion and the techniques of [36] for computing all 3-cuts of a 3-edge-connected graph
(although we have to extend the concepts and techniques significantly). However, for
Type-4 4-cuts, it seems extremely complicated to apply the framework of [36]. Thus,

194

here we rely on the reduction used by [50]. In more detail, [50] also provided a
linear-time algorithm for computing all 3-cuts of a 3-edge connected graph, by using
techniques very similar to [36] for the case where there is at least one back-edge in
the 3-cut. Contrary to [36], however, they do not deal directly with the 3-cuts that
consist of three tree-edges. Instead, they show how to reduce the case of 3-cuts that
consist of three tree-edges to the previous cases. They do this through a “contraction”
technique that works as follows. First, we remove all the tree-edges from G, and we
compute the connected components of the resulting graph. Then we shrink every
connected component into a single node, and we re-insert the tree-edges that join
different nodes. This results in a graph Q that is 3-edge-connected; its k-cuts, for
k ≥ 3, coincide with those of G that consist only of tree-edges, and its number of
edges is at most 2/3 that of G. Thus, we can reduce the computation of k-cuts to Q.
We believe that it is important to formalize and prove this result.

Definition 5.9 (Contracted Graph). Let G be a connected graph, and let T be a
spanning tree of G. Let C1, . . . , Ck be the connected components of G\E(T). Now we
have a function q : V (G) → {C1, . . . , Ck} (the quotient map), that maps every vertex
of G to the connected component of G \E(T) that contains it. This function induces
naturally a map between edges of G, and edges between the connected components
of G \ E(T). Specifically, given an edge e = (x, y) of G, we let q(e) = (q(x), q(y)).5

Then we define the contracted (quotient) graph Q as follows. The vertex set of Q is
{C1, . . . , Ck}, and the edge set of Q consists of all edges of the form q(e), where e is
a tree-edge of T that connects two different connected components of G \ E(T).

Lemma 5.26 (Implicit in [50]). Let k ≥ 3 be an integer, let G be a k-edge-connected
graph with n vertices and m edges, let T be a spanning tree of G, let Q be the resulting
contracted graph of the connected components of G \ E(T), and let q be the corresponding
quotient map. Then Q is k-edge-connected and it has at most 2m/k edges. Furthermore,
let k′ ≥ k be a positive integer. Then, a k′-element subset C of E(T) is a k′-cut of G if
and only if q(C) is a k′-cut of Q.

Proof. It is easy to bound the number of edges of Q. First, since G is k-edge-connected,
every vertex of G has degree at least k. The sum of the degrees of all vertices is 2m.

5To be more precise, the image of e = (x, y) through q should be an edge q(e) (possibly a self-loop)
with endpoints q(x) and q(y), associated with a unique identifier that signifies that q(e) is derived from
e. This is because another edge e′ = (x′, y′) of G may also satisfy that (q(x), q(y)) = (q(x′), q(y′)), but
we want to distinguish between q(e) and q(e′).

195

Thus, we have kn ≤ 2m, and therefore n ≤ 2m/k. By construction, Q has at most
|E(T)| = n− 1 edges. Thus, the number of edges of Q is bounded by 2m/k.

The remaining part of the lemma follows essentially from a correspondence be-
tween paths of G and paths of Q. Specifically, let P be a path from x to y in G.
Then there is a contracted path P̃ from q(x) to q(y) in Q with the property that, for
every tree-edge e used by P such that e connects two different connected components
of G \ E(T), there is an instance of q(e) in P̃ . Furthermore, these are all the edges
that appear in P̃ . We note that P̃ is formed by contracting every part of P that lies
entirely within a connected component z of G\E(T) into z (viewed as a vertex of Q).
Conversely, for every path P ′ in Q, there is a path P in G such that P̃ = P ′ (which
is formed basically by expanding every vertex z that is used by P ′ into a path within
z).

This explains why Q is k-edge-connected. To see this, let C be a set of less than k

edges of Q, and let u and v be two vertices of Q. (Recall that, by definition, we have
that u and v are connected components of G \ E(T).) Then let x be a vertex of G in
u, and let y be a vertex of G in v. Then, since G is k-edge-connected, we have that
G \ q−1(C) is connected, and therefore there is a path P from x to y in G \ q−1(C).
Then, P̃ is a path from q(x) to q(y) in Q \C , and therefore u and v are connected in
Q \ C. This shows that no set of less than k edges of Q is sufficient to disconnect Q
upon removal. This means that Q is k-edge-connected.

Now let k′ ≥ k be an integer, and let C be a k′-cut of G that consists only of
tree-edges. We will show that q(C) is k-cut of Q. First, we have to show that q(C) is
well-defined (i.e., it is a set of edges of Q). So let e be an edge in C. Then, since C is
a k′-cut of G, we have that the endpoints of e lie in different connected components
of G \ C. Therefore, since C ⊆ E(T), we have that the endpoints of e lie in different
connected components of G\E(T). This shows that q(e) is an edge of Q. Now we will
show that Q \ q(C) is disconnected. So let us suppose, for the sake of contradiction,
that Q\q(C) is connected. Since C is a k′-cut of G, we have that G\C is disconnected.
Thus, there are vertices x and y of G \ C that lie in different connected components
of G \C. Since Q \ q(C) is connected, there is a path P ′ from q(x) to q(y) in Q \ q(C).
Then there is a path P in G such that P̃ = P ′. This implies that P avoids all the
edges from C , and therefore it is a path in G \ C. Furthermore, the start of P is in
the connected component of G \ E(T) that contains x, and the end of P is in the
connected component of G \ E(T) that contains y. There is a path Px in G \ E(T)

196

from x to the start of P . Similarly, there is a path Py in G \ E(T) from the end of P
to y. Now, since C ⊆ E(T), the concatenation Px + P + Py is a path in G \ C from x

to y. But this contradicts the fact that x and y are disconnected in G \C. This shows
that Q \ q(C) is disconnected. Finally, let C ′ be a proper subset of C. We will show
that Q \ q(C ′) is connected. So let u and v be two vertices of Q. Then there is a vertex
x of G in u, and there is a vertex y of G in v. Since C is a k-cut of G, we have that
G \ C ′ is connected. Thus, there is path P from x to y in G \ C ′. Then, P̃ is a path
from q(x) to q(y) in Q \ q(C ′). This shows that u and v are connected in Q \ C ′. Due
to the generality of u and v in Q, this shows that Q \C ′ is connected. Thus, we have
that q(C) is a k-cut of Q.

Conversely, let C be a k′-element subset of E(T) such that q(C) is a k′-cut of Q.
We will show that C is a k′-cut of G. First, we will show that G \ C is disconnected.
So let us suppose, for the sake of contradiction, that G \C is connected. Since q(C) is
a k′-cut of Q, we have that Q \ q(C) is disconnected. Thus, there are vertices u and v

of Q such that u and v are disconnected in Q \ q(C). Now let x be a vertex in u, and
let y be a vertex in v. Then, since G \C is connected, there is a path P from x to y in
G \ C. But then P̃ is a path from q(x) to q(y) in Q \ q(C), contradicting the fact that
u and v are not connected in Q \ q(C). This shows that G \ C is disconnected. Now
let C ′ be a proper subset of C. We will show that G \C ′ is connected. So let x and y

be two vertices of G. Since q(C) is a k′-cut of Q, we have that Q \ q(C ′) is connected.
Thus, there is a path P ′ from q(x) to q(y) in Q \ q(C ′). Then, there is a path P in
G such that P̃ = P ′. This implies that P is a path in G \ C ′. Furthermore, P starts
from a vertex in the connected component of G \E(T) that contains x, and ends in a
vertex in the connected component of G \E(T) that contains y. Then there is a path
Px in G \E(T) from x to the start of P . Furthermore, there is a path Py in G \E(T)

from the end of P to y. Then, since C ′ ⊆ E(T), the concatenation Px + P + Py is a
path from x to y in G \ C ′. Due to the generality of x and y in G, this shows that
G \ C ′ is connected. We conclude that C is a k′-cut of G.

Now, given Proposition 5.10, we show how to derive Theorem 5.3 by a repeated
application of Lemma 5.26.

Theorem 5.3. Let G be a 3-edge-connected graph with n vertices. There is a linear-time
algorithm that computes a complete collection of 4-cuts of G with size O(n).

Proof. Let us assume that G has at least two vertices, because otherwise there is

197

nothing to show. We define a sequence of graphs G0, G1, G2, . . . as follows. First, G0 =

G. Now suppose that Gi is defined, for some i ≥ 0, and that it has at least two vertices.
Let Ti be an arbitrary DFS-tree of Gi. Then we let Gi+1 be the contracted graph of Gi

w.r.t. Ti, and we let qi be the corresponding quotient map (see Definition 5.9). Let N be
the largest index such that GN has at least two vertices. Since G0 is 3-edge-connected,
Lemma 5.26 implies that G0, G1, . . . , GN is a sequence of 3-edge-connected graphs.
Let ni = |V (Gi)| and mi = |E(Gi)|, for every i ∈ {0, . . . , N}. By construction, we have
m1 ≤ n − 1. Then, Lemma 5.26 implies that mi ≤ n(2

3
)i−1, for every i ∈ {1, . . . , N}.

Since Gi is a 3-edge-connected graph, for every i ∈ {0, . . . , N}, we have ni ≤ mi. This
implies that ni ≤ n(2

3
)i−1, for every i ∈ {1, . . . , N}.

Now, for every i ∈ {0, . . . , N}, we apply Proposition 5.10 in order to derive, in
O(mi + ni) time, a collection Ci of 4-cuts of Gi, that has size O(ni) and implies all the
4-cuts of Gi that contain at least one back-edge w.r.t. Ti. Notice that this whole process
takes time O(m0+n0)+ · · ·+O(mN +nN) = O(m0+ · · ·+mN) = O(m+n

∑N
i=1(

2
3
)i−1) =

O(m+n). Let i be an index in {0, . . . , N − 1}. By Lemma 5.26 we have that q−1
i (Ci+1)

is a collection of 4-cuts of Gi. Furthermore, by repeated application of Lemma 5.26
we have that C ′i+1 = q−1

0 (q−1
1 (. . . q−1

i (Ci+1) . . .)) is a collection of 4-cuts of G.
Now let C be the collection C0 ∪ C ′1 ∪ · · · ∪ C ′N . Notice that, for every i ∈ {1, . . . , N},

we can construct Ci in time O(i|Ci|) = O(ni(2
3
)i−1). Thus, the collection C can be

constructed in time O(n
∑N

i=1 i(
2
3
)i−1) = O(n). We have that C is a collection of 4-cuts

of G. We claim that every 4-cut of G is implied by C.
So let C be a 4-cut of G. If C contains at least one back-edge w.r.t. T0, then by

construction of C0 (due to Proposition 5.10) we have that C0 implies C. Therefore,
C also implies C (since C0 ⊆ C). Otherwise, suppose that C consists only of tree-
edges from T0. Then, by Lemma 5.26 we have that q0(C) is a 4-cut of G1. Now, if
q0(C) contains at least one back-edge w.r.t. T1, then by construction of C1 (due to
Proposition 5.10) we have that C1 implies q0(C). This means that there is a sequence
C1, . . . , Ck of 4-cuts from C1, and a sequence p1, . . . , pk+1 of pairs of edges of G1, such
that Ci = pi∪ pi+1 for every i ∈ {1, . . . , k}, and p1∪ pk+1 = q0(C) (Definition 5.4). Now
consider the sequence q−1

0 (C1), . . . , q
−1
0 (Ck). Then this is a sequence of 4-cuts from C ′1.

Furthermore, we have q−1
0 (Ci) = q−1

0 (pi) ∪ q−1
0 (pi+1) for every i ∈ {1, . . . , k}, and C =

q−1
0 (q0(C)) = q−1

0 (p1 ∪ pk+1) = q−1
0 (p1)∪ q−1

0 (pk+1). This shows that q−1
0 (C1), . . . , q

−1
0 (Ck)

is an implicating sequence of C ′1 that demonstrates that C is implied from C ′1. Thus,
C implies C (since C ′1 ⊆ C).

198

Otherwise, suppose that q0(C) consists only of tree-edges from T1. Then, let t

be the maximum index in {0, . . . , N} such that qt′(qt′−1(. . . q0(C) . . .)) consists only
of tree-edges from Tt′+1, for every t′ ∈ {0, . . . , t}. Then, Lemma 5.26 implies that
C ′ = qt(qt−1(. . . q0(C) . . .)) is a 4-cut of Gt+1. Furthermore, since C ′ consists only
of tree-edges from Tt+1, Lemma 5.26 implies that qt+1(C

′) is a 4-cut of Gt+2. Due
to the maximality of t, we have that qt+1(C

′) must contain at least one back-
edge w.r.t. Tt+2. Then, by construction of Ct+2 (due to Proposition 5.10), we have
that Ct+2 implies qt+1(C

′). This means that there is a sequence C1, . . . , Ck of 4-
cuts from Ct+2, and a sequence p1, . . . , pk+1 of pairs of edges of Gt+2, such that
Ci = pi ∪ pi+1 for every i ∈ {1, . . . , k}, and p1 ∪ pk+1 = qt+1(C

′). Now consider the
sequence q−1

0 (q−1
1 (. . . q−1

t+1(C1) . . .)), . . . , q
−1
0 (q−1

1 (. . . q−1
t+1(Ck) . . .)). Then, it is not dif-

ficult to see that this is an implicating sequence of C ′t+2, that demonstrates that
q−1
0 (q−1

1 (. . . q−1
t+1(qt+1(C

′)) . . .)) = C is implied from C ′t+2. Thus, C implies C (since
C ′t+2 ⊆ C).

The purpose of everything that follows is to establish Proposition 5.10. The case
of Type-1 4-cuts is the easiest one. So let C be a Type-1 4-cut of G, let (u, p(u))
be the tree-edge that is contained in C , and let e1, e2, e3 be the back-edges that are
contained in C. Then, by removing C from G, we have that each of the subtrees T (u)
and T (r) \ T (u) of T remains connected (see Figure 5.16). Thus, these are the two
connected components of G\C , and therefore the back-edges in C are all the non-tree
edges that connect T (u) with T (r)\T (u). Notice that these are precisely the back-edges
in B(u). Thus, we have B(u) = {e1, e2, e3}. Therefore, it is easy to identify all Type-1
4-cuts: we only have to check, for every vertex u ̸= r, whether bcount(u) = 3, and, if
yes, we mark {(u, p(u)), e1, e2, e3} as a 4-cut, where e1, e2, e3 are the three back-edges
that leap over u. In order to find e1, e2 and e3, it is sufficient to maintain three distinct
back-edges from B(u), for every vertex u ̸= r. The low1, low2 and low3 edges of u are
sufficient for this purpose. By Proposition 3.2, we can have those edges computed
for all vertices ̸= r, in linear time in total. Thus, all Type-1 4-cuts can be computed
in linear time in total. Notice that every one of them corresponds to a unique vertex
u ̸= r. Thus, the total number of Type-1 4-cuts is O(n).

199

r
u p(u)

e1

e2

e3

Figure 5.16: A Type-1 4-cut of the form {(u, p(u)), e1, e2, e3}, where e1, e2, e3 are back-edges.

In this case, we have B(u) = {e1, e2, e3}.

5.5.2 Type‐2 4‐cuts

Now we consider the case of Type-2 4-cuts. Let C be a Type-2 4-cut, and let (u, p(u))
and (v, p(v)) be the tree-edges that are contained in C. Then Lemma 3.14 implies
that u and v are related as ancestor and descendant. So let us assume w.l.o.g. that
u is a descendant of v. Then, Lemma 5.28 shows that there are three distinct cases
to consider (see Figure 5.17): either (1) B(v) = B(u) ⊔ {e1, e2}, or (2) B(v) ⊔ {e1} =
B(u) ⊔ {e2}, or (3) B(u) = B(v) ⊔ {e1, e2}, where e1 and e2 are the back-edges in C.
We call the 4-cuts in those cases Type-2i, Type-2ii, and Type-2iii, respectively.

All Type-2i and Type-2iii 4-cuts can be computed explicitly in linear time, and
their total number is O(n). On the other hand, the number of Type-2ii 4-cuts can
be as high as Ω(n2), and so we cannot compute all of them in linear time. Instead,
we compute only a collection of O(n) Type-2ii 4-cuts, so that the rest of them are
implied from this collection. The Type-2ii 4-cuts are particularly interesting, because
their existence is basically the reason that we can have Ω(n2) 4-cuts of Type-2 and
Type-3. More precisely, we show that every Type-3 4-cut that we have not explicitly
computed, is implied by the collection of Type-3 4-cuts that we have computed, plus
that of the Type-2ii 4-cuts that we have computed.

First, let us consider the Type-2i 4-cuts. So let {(u, p(u)), (v, p(v)), e1, e2} be a 4-cut
such that u is a descendant of v and B(v) = B(u)⊔{e1, e2}. Then, Lemma 5.30 shows
that there are basically three different cases for the back-edges e1 and e2. That is, e1
and e1 are either (1) the first and second leftmost edges of v, or (2) the first leftmost
and rightmost edges of v, or (3) the first and the second rightmost edges of v. In
either case, by Lemma 5.31 we have that u is uniquely determined by v and e1, e2:
that is, u is the lowest proper descendant of v that has M(u) = M(B(v) \ {e1, e2}).

200

u p(u)
r

v p(v)

e1

e2

B(u) = B(v)\{e1,e2}

u p(u)
r

v p(v)

e1

e2

B(u)\{e1} = B(v)\{e2}

u p(u)
r

v p(v)

e1

e2

B(u)\{e1,e2} = B(v)

(a)

(b)

(c)

Figure 5.17: All different cases for Type-2 4-cut of the form {(u, p(u)), (v, p(v)), e1, e2}, where

u is a descendant of v. In (a) we have B(v) = B(u) ⊔ {e1, e2}. In (b) we have B(v) ⊔ {e1} =

B(u) ⊔ {e2}. In (c) we have B(v) ⊔ {e1, e2} = B(u).

Thus, the idea is basically to compute all three different values M(B(v) \ {e1, e2}), for
all different cases (1), (2) and (3). Then, we can precisely determine u in every one of
those cases, and then we apply Lemma 5.29 in order to verify that we indeed have a
4-cut. Thus, by Proposition 5.11 we have that we can compute all Type-2i 4-cuts in
linear time. Notice that their number is O(n).

Now let us consider the Type-2iii 4-cuts. So let {(u, p(u)), (v, p(v)), e1, e2} be a 4-
cut such that u is a descendant of v and B(u) = B(v) ⊔ {e1, e2}. Then Lemma 5.39
shows that e1 and e2 are completely determined by u: i.e., these are the high1 and
high2 edges of u. Then, by Lemma 5.40 we have that v is either the greatest or the
second-greatest proper ancestor of u with M(v) = M(B(u)\{e1, e2}). This shows that
the number of Type-2iii 4-cuts is O(n). By Proposition 5.13, we can compute all of

201

them in linear time in total.
Finally, let us consider the Type-2ii 4-cuts. So let {(u, p(u)), (v, p(v)), e1, e2} be

a 4-cut such that u is a descendant of v and B(v) ⊔ {e1} = B(u) ⊔ {e2}. Then,
Lemma 5.34 shows that e1 is the high1 edge of u, and e2 is either the first leftmost
or the first rightmost edge of v. Thus, there are two different cases to consider for
the back-edge in B(v) \ B(u). Let us assume that we have fixed a case for the back-
edge e ∈ B(v) \ B(u) (e.g., let e be the first leftmost edge of v). As we can see
in Figure 5.18, the number of proper descendants u of v with the property that
B(v) ⊔ {e′} = B(u) ⊔ {e} can be Ω(n), and this can be true for Ω(n) vertices v. Thus,
the idea is to properly select one such vertex u, for every vertex v, for every one of
the two choices for the back-edge e. Thus, we compute O(n) Type-2ii 4-cuts in total.
Furthermore, we can show that one such selection, for every v and e, is enough to
produce a collection of Type-2ii 4-cuts that implies all Type-2ii 4-cuts. We denote
the vertex u that we select as lowestU(v, e). As its name suggests, this is the lowest
u that has the property that u is a proper descendant of v and there is a back-
edge e′ such that B(v) ⊔ {e′} = B(u) ⊔ {e}. The reason for selecting this vertex, is
that it is convenient to compute. Specifically, for technical reasons we distinguish
two cases: either M(u) = M(B(u) \ {ehigh(u)}), or M(u) ̸= M(B(u) \ {ehigh(u)}). In
the first case, by Lemma 5.37 we have that u is either the lowest or the second-
lowest proper descendant of v such that M(u) = M(B(v) \ {e}). In the second case,
by Lemma 5.38 we have that u is the lowest proper descendant of v such that
M(u) ̸= M(B(u)\{ehigh(u)}) = M(B(v)\{e}). With this information, Proposition 5.12
establishes that we can compute in linear time a collection C of O(n) Type-2ii 4-
cuts that implies all Type-2ii 4-cuts. More precisely, every Type-2ii 4-cut of the form
{(u, p(u)), (v, p(v)), e1, e2}, where B(v) ⊔ {e1} = B(u) ⊔ {e2}, is implied by C through
{(u, p(u)), e1} (or equivalently, through {(v, p(v)), e2}). This is an important property
that allows us also to compute a collection of O(n) Type-3 4-cuts, that, together with
C, implies all Type-3 4-cuts.

5.5.3 Type‐3 4‐cuts

Let C be a Type-3 4-cut, and let (u, p(u)), (v, p(v)) and (w, p(w)) be the tree-edges in
C. We may assume w.l.o.g. that u > v > w. Then, Lemma 3.14 implies that w is a
common ancestor of u and v. Thus, we distinguish two cases: either (1) u and v are

202

u1 p(u1)
r

u2

e1

e2

p(u2) v

e

p(v)u3

e3

p(u3)

B(u1)\{e1} = B(u2)\{e2} = B(u3)\{e3} = B(v)\{e}

Figure 5.18: With this figure we can see why there can be Ω(n2) Type-2ii 4-cuts in a graph

with n vertices. Any of the pairs of edges {(v, p(v)), e}, {(u1, p(u1)), e1}, {(u2, p(u2)), e2} and

{(u3, p(u3)), e3} forms a 4-cut with any of the rest. For example, {(u1, p(u1)), (v, p(v)), e1, e}

and {(u2, p(u2)), (u3, p(u3)), e2, e3} are two 4-cuts in this figure.

not related as ancestor and descendant, or (2) u and v are related as ancestor and
descendant. In case (1), we call C a Type-3α 4-cut. In case (2), we call C a Type-3β
4-cut. Both of these cases are much more involved than the case of Type-2 4-cuts,
but the case of Type-3β 4-cuts is the most challenging.

5.5.3.1 Type‐3α 4‐cuts

Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3α 4-cut, where w is a common
ancestor of u and v. Then Lemma 5.41 implies that either (i) e ∈ B(u) ∪ B(v) and
B(w) ⊔ {e} = B(u) ⊔ B(v), or (ii) B(w) = (B(u) ⊔ B(v)) ⊔ {e} (see Figure 5.19). In
case (i), C is called a Type-3αi 4-cut. In case (ii), C is called a Type-3αii 4-cut. We
treat those cases differently.

Type‐3αi 4‐cuts

Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αi 4-cut, where w is a common
ancestor of u and v. Then we have e ∈ B(u) ∪ B(v) and B(w) ⊔ {e} = B(u) ⊔ B(v).
We may assume w.l.o.g. that e ∈ B(u). Then Lemma 5.43 implies that e = ehigh(u).
By Lemma 5.42 we have that one of u and v is a descendant of the low1 child of
M(w), and the other is a descendant of the low2 child of M(w). Either of those cases
can be true, regardless of whether e is in B(u) or B(v). So let us assume that u is a
descendant of the low1 child c1 of M(w), and v is a descendant of the low2 child c2

of M(w). Then Lemma 5.44 implies that v is the lowest proper descendant of w with

203

B(u)\{e}

w p(w)
r

w p(w)
r

w p(w)
r

u
p(u)

u

u

p(u)

p(u)

v
p(v)

v

v

p(v)

p(v)

e

e

e

B(v)

B(u)

B(v)\{e}

B(u)

B(v)

(a)

(b)

Figure 5.19: The two different cases of a Type-3α 4-cut {(u, p(u)), (v, p(v)), (w, p(w)), e}. In

(a) we have e ∈ B(u) ∪ B(v) and B(w) ⊔ {e} = B(u) ⊔ B(v). Although this implies that e is

either in B(u) or in B(v), these cases are symmetric. In (b) we have B(w) = (B(u)⊔B(v))⊔{e}.

M(v) = M(w, c2).
Concerning the higher endpoint of e, we distinguish two cases, depending on

whether M(u) = M(B(u) \ {ehigh(u)}) or M(u) ̸= M(B(u) \ {ehigh(u)}). In the first
case, we can compute all such 4-cuts in linear time, because Lemma 5.45 implies
that u is either the lowest or the second-lowest proper descendant of w such that
M(u) = M(w, c1). Thus, given w, we have that v is completely determined, and there
are only two options for u. This implies that the number of those 4-cuts is O(n), and
by Proposition 5.14 we can compute all of them in linear time in total.

In the case where M(u) ̸= M(B(u)\{ehigh(u)}), the number of 4-cuts can be Ω(n2),
as shown in Figure 5.20. This is because, although for fixed w we have that v is

204

determined, there may be Ω(n) options for u, and this may be true for Ω(n) vertices
w. Then the idea is basically the same as that for computing the Type-2ii 4-cuts: we
only select a proper u for every w. Specifically, we select the lowest proper descendant
u of w such that M(u) ̸= M(B(u) \ {ehigh(u)}) = M(w, c1). It turns out that this is
sufficient, in the sense that the 4-cuts of this type that we compute, are able to imply,
together with the collection of Type-2ii 4-cuts that we have computed, all 4-cuts of
this type. This result is given in Proposition 5.15.

After this procedure, we may simply reverse the roles of u and v. Thus, we assume
that the descendant u of w that has e ∈ B(u) is a descendant of the low2 child of
M(w), and v is a descendant of the low1 child of M(w). Then we follow a similar
procedure to compute all 4-cuts of this type. The arguments are essentially the same.

w p(w)
r

u1

v
p(v)

e1

B(v)

u2 p(u2) u3

p(u1)

e2

p(u3)

e3

B(u1)\{e1} = B(u2)\{e2} = B(u3)\{e3}

Figure 5.20: With this figure we can see why the number of Type-3αi 4-cuts can be Ω(n2).

For a particular w, there may be a sequence (u1, v), (u2, v), . . . of Ω(n) pairs of vertices,

and a corresponding sequence of back-edges e1, e2, . . . , such that ei ∈ B(ui) and B(w) =

(B(ui) \ {ei}) ⊔B(v), for every i = 1, 2, . . . – and this can be true for Ω(n) vertices w. In this

example, we have that Ci = {(ui, p(ui)), (v, p(v)), (w, p(w)), ei} is a 4-cut, for every i ∈ {1, 2, 3}.

We have ei = ehigh(ui) for every i ∈ {1, 2, 3}, M(u2) ∈ T (u2) \ T (u1), M(u3) ∈ T (u3) \ T (u2),

andM(B(u3)\{e3}) = M(B(u2)\{e2}) = M(B(u1)\{e1}) ∈ T (u1). This implies thatM(u3) ̸=

M(B(u3) \ {ehigh(u3)}) and M(u2) ̸= M(B(u2) \ {ehigh(u2)}). Notice that it is enough to have

computed the collection C = {{(u1, p(u1)), (u2, p(u2)), e1, e2}, {(u2, p(u2)), (u3, p(u3)), e2, e3}}

of Type-2ii 4-cuts, and the 4-cut C3. Then, C1 and C2 are implied from C ∪ {C3}.

Type‐3αii 4‐cuts

Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αii 4-cut, where w is a common

205

ancestor of u and v. Then we have B(w) = (B(u) ⊔ B(v)) ⊔ {e}. Let e = (x, y). Then
there are various cases to consider, according to the relation of x with u and v.
Specifically, by Lemma 5.50 we have the following cases (see Figure 5.21 for cases
(1)-(3), and Figure 5.22 for case (4)).

(1) x is an ancestor of both u and v.

(2) x is an ancestor of u, but not an ancestor of v.

(3) x is an ancestor of v, but not an ancestor of u.

(4) x is neither an ancestor of u nor an ancestor of v.

In any case, Lemma 5.51 implies that u and v are uniquely determined by w, and
therefore the number of all Type-3αii 4-cuts is O(n). Furthermore, in any case we
have y = l(x).

Now, in case (1), by Lemma 5.53 we have that x = M(w), one of u and v is a
descendant of the low1 child c1 of M̃(w), and the other is a descendant of the low2
child c2 of M̃(w). Since these cases are symmetric, we may assume w.l.o.g. that u
is a descendant of c1 and v is a descendant of c2. Then Lemma 5.53 implies that
M(u) = M(w, c1) and M(v) = M(w, c2). Then, by Lemma 5.51 we can determine
precisely u and v. Thus, by Proposition 5.16 we can compute all those 4-cuts in
linear time in total.

Notice that cases (2) and (3) are essentially the same (to see this, just switch the
labels of u and v). So let us consider case (2). Then by Lemma 5.50 we have that one
of x and v is a descendant of the low1 child c1 of M(w), and the other is a descendant
of the low2 child c2 of M(w). Thus, w.l.o.g. we may assume that x is a descendant
of c1 and v is a descendant of c2. Then Lemma 5.54 implies that x = M(w, c1),
M(u) = M(w, c′1) and M(v) = M(w, c2), where c′1 is the low1 child of M(w, c1). Then,
by Lemma 5.51 we can determine precisely u and v. Thus, by Proposition 5.17 we
can compute all those 4-cuts in linear time in total.

Now let us consider case (4). According to Lemma 5.50, this case is further sub-
divided into the following two cases (see Figure 5.22).

(4.1) Two of {u, v, x} are descendants of the low1 child of M(w) and the other
is a descendant of the low2 child of M(w), or reversely: two of {u, v, x} are
descendants of the low2 child of M(w) and the other is a descendant of the
low1 child of M(w).

206

w p(w)
r

u
p(u)

v
p(v)

e

B(u)

B(v)

(a) M(w)

~M(w)

c2

c1
M(w,c1)

M(w,c2)

w p(w)
r

u
p(u)

v
p(v)

e

B(u)

B(v)

(b)
M(w)

c2

c1
M(w,c’1)

M(w,c2)

c’1

M(w,c1)

w p(w)
r

u
p(u)

v
p(v)

e

B(u)

B(v)

(c)
M(w)

c2

c1
M(w,c1)

M(w,c’1)
c’1

M(w,c2)

Figure 5.21: (a)-(c) correspond to cases (1)-(3) of Lemma 5.50. These are the cases in which
the higher endpoint of e is related as ancestor and descendant with either u or v. In (a), the

higher endpoint of e is an ancestor of both u and v. c1 and c2 are the low1 and low2 children

of M̃(w) (not necessarily in that order). We have M(u) = M(w, c1) and M(v) = M(w, c2).

In (b), the higher endpoint of e is an ancestor of u, but not of v. c1 and c2 are the low1

and low2 children of M(w) (not necessarily in that order). We have M(u) = M(w, c′1) and

M(v) = M(w, c2), where c′1 is the low1 child of M(w, c1). In (c), the higher endpoint of e is

an ancestor of v, but not of u. We note that cases (b) and (c) are essentially equivalent; to see

this, just switch the labels of u and v.

(4.2) There is a permutation σ of {1, 2, 3} such that u is a descendant of the
lowσ1 child of M(w), v is a descendant of the lowσ2 child of M(w), and x is a

207

descendant of the lowσ3 child of M(w).

w p(w)
r

u
p(u)

v
p(v)

e

B(u)

B(v)

(b)
M(w)

c2

c1
M(w,c’1)

M(w,c2)

w
r

u
p(u)

v
p(v)

e

B(u)

B(v)

(c)
M(w)

c2

c1
M(w,c1)

M(w,c2)

c3 p(w)

c’1M(w,c1)

c’2

M(w,c’2)

w
r

u
p(u)

v
p(v)

e

B(u)

B(v)

(a)
M(w)

c’2

c’1
M(w,c’1)

M(w,c’2)

c1M(w,c1)

p(w)c2
M(w,c2)

M(w,c3)

Figure 5.22: (a) and (b) correspond to case (4.1) of Lemma 5.50, and (c) corresponds to

case (4.2) of Lemma 5.50. These are the cases in which the higher endpoint of e is not related

as ancestor and descendant with u and v. In (a), we get all the different possibilities for case

(4.1.1) of Lemma 5.55 by swapping the labels c′1, c′2. In (b), we get all the different possibilities

for cases (4.1.2) and (4.1.3) of Lemma 5.55 by swapping the labels c1, c2 and c′1, c
′
2. In (c),

we get all the different possibilities for case (4.2) of Lemma 5.50 by permuting the labels c1,

c2 and c3.

Let us consider case (4.1) first. Let c1 be the low1 child of M(w), and let c2 be the

208

low2 child of M(w). Let us assume that two of {u, v, x} are descendants of c1, and the
other is a descendant of c2. (The reverse case is treated similarly.) Now let c′1 be the
low1 child of M(w, c1), and let c′2 be the low2 child of M(w, c1). Then Lemma 5.55
implies that we have the following three subcases.

(4.1.1) u and v are descendants of c1, and x is a descendant of c2.

(4.1.2) u and x are descendants of c1, and v is a descendant of c2.

(4.1.3) v and x are descendants of c1, and u is a descendant of c2.

In case (4.1.1) we have M(u) = M(w, c′1) and M(v) = M(w, c′2) (or reversely),
and x = M(w, c2). In case (4.1.2) we have M(u) = M(w, c′1) and x = M(w, c′2) (or
reversely), and M(v) = M(w, c2). And in case (4.1.3) we have M(v) = M(w, c′1) and
x = M(w, c′2) (or reversely), and M(u) = M(w, c2).

Thus, we have to consider all the different possibilities (which are O(1) in total), in
order to find all 4-cuts of this type. In either case, by Lemma 5.51 we can determine
precisely u and v. Thus, by Proposition 5.18 we can compute all those 4-cuts in linear
time in total.

Finally, let us consider case (4.2). Let c1, c2 and c3 be the low1, low2 and low3
children of M(w), respectively. Thus, there is a permutation σ of {1, 2, 3} such that
u is a descendant of cσ(1), v is a descendant of cσ(2) and x is a descendant of cσ(3).
By Lemma 5.56 we have that M(u) = M(w, cσ(1)), M(v) = M(w, cσ(2)) and x =

M(w, cσ(3)). Thus, we consider all the different combinations for σ, and in each case
we can determine precisely u and v by Lemma 5.51. Proposition 5.19 establishes that
we can compute all those 4-cuts in linear time in total.

5.5.3.2 Type‐3β 4‐cuts

Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3β 4-cut of G, where u is a de-
scendant of v, and v is a descendant of w. Then Lemma 5.2 implies that e is the
unique back-edge with the property that {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut of
G. Thus, we say that (u, v, w) induces the 4-cut C. Whenever we say that a triple of
vertices (u, v, w) induces a 4-cut, we always assume that u is a proper descendant of
v, and v is a proper descendant of w.

Since C is a Type-3β 4-cut, Lemma 5.57 implies that there are four distinct cases
to consider (see Figure 5.23):

209

(1) e ∈ B(u) ∩ B(v) ∩ B(w) and B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}).

(2) e ∈ B(w), e /∈ B(v) ∪ B(u), and B(v) = B(u) ⊔ (B(w) \ {e}).

(3) e ∈ B(u), e /∈ B(v) ∪ B(w), and B(v) = (B(u) \ {e}) ⊔ B(w).

(4) e ∈ B(v) and B(v) = (B(u) ⊔ B(w)) ⊔ {e}.

For technical reasons, we make a distinction into Type-3βi and Type-3βii 4-cuts.
In case (1) we have B(w) \ {e} ⊂ B(v) \ {e}, and therefore M(B(w) \ {e}) is a

descendant of M(B(v) \ {e}). If M(B(w) \ {e}) ̸= M(B(v) \ {e}), then we say that C
is a Type-3βi 4-cut. Otherwise, we say that C is a Type-3βii 4-cut.

In case (2) we have B(w)\{e} ⊂ B(v), and thereforeM(B(w)\{e}) is a descendant
of M(v). If M(B(w)\{e}) ̸= M(v), then we say that C is a Type-3βi 4-cut. Otherwise,
we say that C is a Type-3βii 4-cut.

In case (3) we have B(w) ⊂ B(v), and therefore M(w) is a descendant of M(v). If
M(w) ̸= M(v), then we say that C is a Type-3βi 4-cut. Otherwise, we say that C is a
Type-3βii 4-cut.

In case (4) we have B(w) ⊂ B(v) \ {e}, and therefore M(w) is a descendant of
M(B(v) \ {e}). If M(w) ̸= M(B(v) \ {e}), then we say that C is a Type-3βi 4-cut.
Otherwise, we say that C is a Type-3βii 4-cut.

In each of those cases, the Type-3βi 4-cuts are easier to compute than the respective
Type-3βii 4-cuts. This is because we have more information in order to determine
(some possible values of) u and w given v. More specifically, given v, we have that
one of u and w is completely determined, and only the other may vary, but only in
a very orderly manner. For Type-3βii 4-cuts, many possible combinations of pairs u
and w may exist, given v, and this makes things much more complicated.

When we consider case (4) of Lemma 5.57, in either Type-3βi or Type-3βii 4-cuts,
we perceive a distinct difficulty (which is significantly more involved for Type-3βii
4-cuts). This is because the back-edge e leaps over v, which is “between” u and w

(i.e., v is an ancestor of u, but also a descendant of w). This forces us to distinguish
several subcases, by considering the different possibilities for the higher or the lower
endpoint of e. (Whereas, in the previous cases, we have some predetermined options
for e, which then allow us to compute either u or w.) In some of those subcases, we
cannot even identify beforehand the endpoints of e, and we can only retrieve them
after having first computed both u and w (see Lemma 5.67).

210

u p(u)

B(u)\{e}

(a)
v p(v) w p(w)

r

B(w)\{e}

e

u p(u)

B(u)

(b)
v p(v) w p(w)

r

B(w)\{e}

e

u p(u)

B(u)\{e}

(c)
v p(v) w p(w)

r

B(w)

e

u p(u)

B(u)

(d)
v p(v) w p(w)

r

B(w)

e

Figure 5.23: All different cases of Type-3β 4-cuts. (a)-(d) correspond to cases (1)-(4) of

Lemma 5.57. In (a) we have e ∈ B(u)∩B(v)∩B(w) and B(v)\{e} = (B(u)\{e})⊔(B(w)\{e}).

In (b) we have e ∈ B(w), e /∈ B(v) ∪ B(u), and B(v) = B(u) ⊔ (B(w) \ {e}). In (c) we have

e ∈ B(u), e /∈ B(v) ∪ B(w), and B(v) = (B(u) \ {e}) ⊔ B(w). In (d) we have e ∈ B(v) and

B(v) = (B(u) ⊔B(w)) ⊔ {e}.

Type‐3βi 4‐cuts

First, let us consider case (1) of Lemma 5.57. Then by Lemma 5.58 we have
that u is the lowest proper descendant of v with M(u) = M(v, c), where c is either
the low1 or the low2 child of M(v). Furthermore, we have that e is the low edge

211

of u, and M(w) = M(v). Also, w satisfies bcount(w) = bcount(v) − bcount(u) + 1.
Thus, since M(w) = M(v), we have that w is completely determined by this property
(because the vertices with the same M point have distinct bcount). Then, notice that
the number of those 4-cuts is O(n) (because u and w are completely determined by
v). Proposition 5.20 shows that we can compute all of them in linear time in total.

Now let us consider case (2) of Lemma 5.57. The number of those 4-cuts can be
Ω(n2), as shown in Figure 5.24, and so we only compute a subcollection of them,
that, together with the collection of Type-2ii 4-cuts that we have computed, implies
all 4-cuts of this kind. Specifically, let c1 and c2 be the low1 and low2 child of M(v),
respectively. Then by Lemma 5.60 we have that u is the lowest proper descendant
of v such that M(u) = M(v, c2). Also, we have that w is an ancestor of low(u) and
M(w) ̸= M(B(w) \ {e}) = M(v, c1). Then, Lemma 5.61 implies that it is sufficient
to have computed the greatest ancestor w′ of low(u) for which there is a back-edge
e′ ∈ B(w′) such that M(w′) ̸= M(B(w′) \ {e′}) = M(v, c1). Thus, for every vertex v,
there is only a specific pair of vertices u and w that we have to check, and so the
number of 4-cuts that we will collect is O(n). Proposition 5.21 establishes that this
collection, plus that of the Type-2ii 4-cuts that we have computed, is enough in order
to imply all 4-cuts of this kind. Furthermore, we can compute all of them in linear
time in total.

u p(u)

B(u)

v p(v)
r

B(w1)\{e1} = B(w2)\{e2}= B(w3)\{e3}

M(v)

M(B(w1)\{e1})
M(B(w2)\{e2})
M(B(w3)\{e3})

w1 p(w1) w2 p(w2) w3 p(w3)

e1 e2 e3

Figure 5.24: Here we have that {(u, p(u)), (v, p(v)), (wi, p(wi)), ei} is a 4-cut, for every

i ∈ {1, 2, 3}. This example shows why the number of Type-3βi 4-cuts that satisfy (2) of

Lemma 5.57 can be Ω(n2). For a particular v, we can have Ω(n) vertices w such that B(v) =

B(u)⊔ (B(w)\{e}), for a vertex u and a back-edge e, and this can be true for Ω(n) vertices v.

However, notice that it is sufficient to have computed only {(u, p(u)), (v, p(v)), (w1, p(w1)), e1}

and the Type-2ii 4-cuts {(w1, p(w1)), (w2, p(w2)), e1, e2} and {(w2, p(w2)), (w3, p(w3)), e2, e3},

because the remaining 4-cuts are implied from this selection.

212

Now let us consider case (3) of Lemma 5.57. Let c1 and c2 be the low1 and the
low2 child of M(v), respectively. Then by Lemma 5.63 we have that w is the greatest
proper ancestor of v such that M(w) = M(v, c1). Here we distinguish two cases for
u, depending on whether M(u) = M(B(u) \ {e}), or M(u) ̸= M(B(u) \ {e}). In any
case, by Lemma 5.63 we have that e is the high edge of u. Now, in the first case, we
can compute all such 4-cuts explicitly. This is because by Lemma 5.63 we have that
M(B(u)\{ehigh(u)}) = M(v, c2), and by Lemma 5.64 we have that u is either the lowest
or the second-lowest proper descendant of v with this property. Thus, there are only
O(n) 4-cuts in this case (because, given v, there is only one candidate w, and at most
two candidates u). In the case M(u) ̸= M(B(u) \ {e}), the number of 4-cuts can be
Ω(n2), as shown in Figure 5.25. However, it is sufficient to consider only the lowest
proper descendant u′ of v that satisfies M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = M(v, c2),
according to Lemma 5.65. Thus, in any case, we compute O(n) 4-cuts in total, and
Proposition 5.22 establishes that these, together with the collection of Type-2ii 4-
cuts that we have computed, are enough in order to imply all 4-cuts of this kind.
Furthermore, this computation can be performed in linear time in total.

B(u1)\{e1} = B(u2)\{e2} = B(u3)\{e3}

u1 p(u1) u2 p(u2) u3 p(u3) v p(v) w p(w)
r

e1 e2 e3

M(v)

M(w)

B(w)

Figure 5.25: Here we have that {(ui, p(ui)), (v, p(v)), (w, p(w)), ei} is a 4-cut, for every

i ∈ {1, 2, 3}. This example shows why the number of Type-3βi 4-cuts that satisfy (3)

of Lemma 5.57 can be Ω(n2). For a particular v, we can have Ω(n) vertices u such

that B(v) = (B(u) \ {e}) ⊔ B(w), for a vertex w and a back-edge e, and this can be

true for Ω(n) vertices v. However, notice that it is sufficient to have computed only

{(u3, p(u3)), (v, p(v)), (w, p(w)), e3} and the Type-2ii 4-cuts {(u1, p(u1)), (u2, p(u2)), e1, e2} and

{(u2, p(u2)), (u3, p(u3)), e2, e3}, because the remaining 4-cuts are implied from this selection.

Notice that ei = ehigh(ui), for i ∈ {1, 2, 3}, M(u2) ∈ T (u2) \ T (u1), M(u3) ∈ T (u3) \ T (u2), and

M(B(u1) \ {e1}) = M(B(u2) \ {e2}) = M(B(u3) \ {e3}).

Finally, let us consider case (4) of Lemma 5.57. This branches into several subcases.
First, we distinguish two cases, depending on whether M(v) ̸= M(B(v) \ {e}) or

213

M(v) = M(B(v) \ {e}). In the first case, by Lemma 3.9 we have that e is either eL(v)
or eR(v). Then, by Lemma 5.68, we know precisely u and w: that is, u is the lowest
proper descendant of v such that M(u) = M(v, c2), and w is the greatest proper
ancestor of v such that M(w) = M(v, c1), where c1 and c2 are the low1 and low2
children of M(B(v) \ {e}), respectively. Thus, the number of all 4-cuts of this kind
is O(n), and Proposition 5.23 shows that we can compute all of them in linear time
in total. The case that M(v) = M(B(v) \ {e}) is more involved, because we cannot
immediately determine the back-edge e. Thus, we first determine u and w according to
Lemma 5.69 and Lemma 5.70, by considering all the different cases of Lemma 5.69.
Notice that the total number of pairs of u and w that we check are O(1) for a given
v. Then e can be determined by Lemma 5.67. Thus, the number of all such 4-cuts is
O(n), and Proposition 5.24 shows that we can compute all of them in linear time in
total.

Type‐3βii 4‐cuts

In the case of Type-3βii 4-cuts, given a vertex v, there may be many pairs of u
and w such that (u, v, w) induces a 4-cut, for any of the cases (1)-(4) of Lemma 5.57.
For all those cases, we follow a common strategy. First, we define a set U(v), for
every vertex v, that contains some candidates u with the property that there may
exist a w such that (u, v, w) induces a 4-cut of the type we consider. Then, for every
u ∈ U(v), we determine a w (if it exists) such that (u, v, w) induces a 4-cut. We make
sure that the selection of 4-cuts that we have computed in each case is enough to
imply, together with the collection of Type-2ii 4-cuts that we have computed, all 4-
cuts of the kind that we consider. Since the general strategy is the same, there are a
lot of similarities in all those cases on a high level. In particular, the sets U(v) that
we define in each particular case have similar definitions, satisfy similar properties,
and can be computed with similar methods. However, each particular case presents
unique challenges, and demands special care in order to ensure correctness. Thus,
we distinguish between Type-3βii-1, Type-3βii-2, Type-3βii-3 and Type-3βii-4 4-cuts,
depending on whether they satisfy (1), (2), (3) or (4) of Lemma 5.57, respectively.

Type‐3βii‐1 4‐cuts

214

For the case of Type-3βii-1 4-cuts, we define the set U1(v), for every vertex v ̸= r,
as a segment of H(high1(v)) that consists of the proper descendants of v that have low
enough low point in order to be possible to participate in a triple of vertices (u, v, w)
that induces a Type-3βii-1 4-cut. The sets U1(v) have total size O(n), and they have
the property that, if there is a w such that (u, v, w) induces a Type-3βii-1 4-cut, then
u ∈ U1(v) (Lemma 5.73). By Lemma 5.76, we can compute all sets U1(v) in linear time
in total. Given v and u ∈ U1(v), by Lemma 5.78 we have that there is at most one w

such that (u, v, w) induces a Type-3βii-1 4-cut: i.e., w is the greatest proper ancestor
of v with M(w) = M(v) and w ≤ low2(u). Thus, the number of all Type-3βii-1 4-cuts
is O(n). Proposition 5.25 shows that we can compute all of them in linear time in
total.

Type‐3βii‐2 4‐cuts

According to Lemma 5.79, if a triple of vertices (u, v, w) induces a Type-3βii-2
4-cut, then the back-edge e of this 4-cut is either eL(w) or eR(w). Here we discuss
the case where e = eL(w). The arguments for the case e = eR(w) are similar. For
convenience, we distinguish two cases, depending on whether L1(w) is a descendant
of high(v).

First, we consider the case that L1(w) is not a descendant of high(v). The number
of 4-cuts of this kind can be Ω(n2), and so we do not compute all of them explicitly.
Instead, we compute a subcollection of O(n) of them with the property that, together
with the collection of Type-2ii 4-cuts that we have computed, it implies all 4-cuts of
this kind. To do this, we define two sets, W (v) and U2(v), for every vertex v ̸= r.
The set W (v) contains all candidates w with the property that there may exist a u

such that (u, v, w) induces a Type-3βii-2 4-cut, and U2(v) contains all candidates u

with the property that there may exist a w such that (u, v, w) induces a Type-3βii-2
4-cut (see Lemma 5.84). We do not explicitly compute the sets W (v), but only the
greatest and the lowest vertices that are contained in them (denoted as firstW(v) and
lastW(v), respectively). The sets U2(v) have total size O(n), and by Lemma 5.88 we
can compute all of them in linear time in total. Then, given v and u ∈ U2(v), it is
sufficient to compute the greatest w such that (u, v, w) induces a Type-3βii-2 4-cut,
according to Lemma 5.85. Thus, we compute a collection of O(n) 4-cuts of this kind,
which, together with the collection of Type-2ii 4-cuts that we have computed, implies

215

all 4-cuts of this kind. This result is summarized in Proposition 5.26.
Now we consider the case where L1(w) is a descendant of high(v). By Lemma 5.90

we have that w is uniquely determined by u and v. Lemma 5.90 motivates the
definition of the sets W̃ (v), that contain all possible candidates w with the property
that there may exist a u such that (u, v, w) induces a 4-cut of this kind. By Lemma 5.91
we have that the total size of those sets is O(n). By Lemma 5.93, we can compute all of
them in linear time in total. Then, by Lemma 5.94 we have that, if (u, v, w) induces a 4-
cut of this kind, then u belongs to S(v), and bcount(u) = bcount(v)−bcount(w)+1. Here
we can exploit the fact that all vertices in S(v) have different bcount (see Lemma 5.95).
Thus, for every w ∈ W̃ (v), we have that u is uniquely determined by the properties
u ∈ S(v) and bcount(u) = bcount(v)− bcount(w)+1. Then, Proposition 5.27 establishes
that we can compute all such 4-cuts in linear time in total. Notice that their total
number is bounded by O(n).

Type‐3βii‐3 4‐cuts

For the case of Type-3βii-3 4-cuts, we define the set U3(v), for every vertex v ̸= r,
as a segment of H̃(high(v)) that consists of proper descendants of v that have low
enough low point in order to be possible to participate in a triple of vertices (u, v, w)
that induces a Type-3βii-3 4-cut. The set U3(v) does not contain all possible candidates
u with the property that there may exist a w such that (u, v, w) induces a Type-3βii-
3 4-cut. However, by Lemma 5.97 we have that, if (u, v, w) is a triple of vertices
that induces a Type-3βii-3 4-cut, then (ũ, v, w) also has this property, where ũ is
the greatest vertex in U3(v). This is very useful, because the total number of triples
(u, v, w) that induce a Type-3βii-3 4-cut can be Ω(n), and this can be true for Ω(n)
vertices v. (Thus, the actual number of Type-3βii-3 4-cuts can be Ω(n2).) The sets
U3(v) have total size O(n), and Lemma 5.99 establishes that we can compute all of
them in linear time in total. Given v and u ∈ U3(v), by Lemma 5.100 we have that
there is at most one w such that (u, v, w) induces a Type-3βii-3 4-cut: i.e., w is the
greatest proper ancestor of v such that M(w) = M(v) and w ≤ low(u). Thus, the
number of all Type-3βii-3 4-cuts that we compute is O(n). Proposition 5.28 shows
that we can compute this selection in linear time in total, and this has the property
that, together with the collection of Type-2ii 4-cuts that we have computed, it implies
all Type-3βii-3 4-cuts.

216

Type‐3βii‐4 4‐cuts

In the case of Type-3βii-4 4-cuts we distinguish four different subcases, depending
on the location of the endpoints of the back-edge e. Specifically, we consider the cases:

1. M(B(v) \ {e}) ̸= M(v) and high1(v) > high(u).

2. M(B(v) \ {e}) ̸= M(v) and high1(v) = high(u).

3. M(B(v) \ {e}) = M(v) and high1(v) > high(u).

4. M(B(v) \ {e}) = M(v) and high1(v) = high(u).

In Case 1 we know precisely the back-edge e: i.e., we have e = ehigh(v) (due to
high1(v) > high(u), as a consequence of Lemma 5.101). Here there may be several
vertices v for which there is a specific pair of vertices u and w such that (u, v, w)
induces a 4-cut of this kind. That is, we may have two distinct v and v′ such that
(u, v, w) and (u, v′, w) induce a 4-cut of this kind. Here we define a collection of vertices
V (v), for every vertex v, that has the property that, if there is a triple of vertices (u, v, w)
that induces a 4-cut of this kind, then, for every v′ ∈ V (v), we have that (u, v′, w) also
induces a 4-cut of this kind (see Lemma 5.110). Furthermore, if two vertices v and
v′ belong to the same such collection, then {(v, p(v)), (v′, p(v′)), ehigh(v), ehigh(v′)} is a
Type-2ii 4-cut (as a consequence of Lemma 5.105). This is very useful in order to
establish that it is sufficient to have computed only a selection of O(n) size of those
4-cuts, so that the rest of them are implied from this selection, plus the collection of
Type-2ii 4-cuts that we have computed.

Now the idea is to pick one representative vertex from every one of the collections
of vertices V ; thus, we form a collection of vertices V. Then, for every vertex v ∈ V , we
construct a set U1

4 (v), that is a subset of S̃2(v), and consists of proper descendants u of
v that have low enough low point in order to be possible to participate in a triple of the
form (u, v, w) that induces a 4-cut of the kind that we consider (see Lemma 5.110).
The sets U1

4 (v) have total size O(n), and by Lemma 5.109 we can compute all of them
in linear time in total (for the specific selection of representatives V). Then, given
v ∈ V and u ∈ U1

4 (v), Lemma 5.111 implies that there is at most one w such that
(u, v, w) induces a 4-cut of the kind that we consider. Thus, we compute a selection

217

of O(n) 4-cuts of this kind. Proposition 5.29 establishes that we can compute this
selection in linear time in total, and this is enough in order to imply, together with
the collection of Type-2ii 4-cuts that we have computed, all 4-cuts of this kind.

In Case 2, we have that either e = eL(v) or e = eR(v), as a consequence of M(B(v)\
{e}) ̸= M(v) (see Lemma 3.9). Then we only consider the case that e = eL(v), because
the other case is treated with similar arguments and methods. Then we define the
set U2

4 (v), for every vertex v that has the potential to participate in a triple of vertices
(u, v, w) that induces a 4-cut of this kind. The sets U2

4 (v), for all vertices v for which
they are defined, have total size O(n), and Lemma 5.114 shows that we can compute
all of them in linear time in total. Then Lemma 5.116 shows that if we have a
triple of vertices (u, v, w) that induces a 4-cut of the kind that we consider, then
u ∈ U2

4 (v). By Lemma 5.117 we have that w is uniquely determined by u and v. Then
Proposition 5.30 shows that we can compute all 4-cuts of this kind, in linear time in
total.

In Case 3 we again know precisely the back-edge e, due to high1(v) > high(u).
Then we follow the same idea as in Case 2 (by properly defining the sets U3

4 (v)), and
Proposition 5.31 establishes that we can compute all 4-cuts of this kind in linear time
in total.

In Case 4, the conditions M(B(v) \ {e}) = M(v) and high1(v) = high(u) are not
sufficient in order to determine the endpoints of e. However, we can follow the same
idea as previously if we assume that the lower endpoint of e is distinct from high(u). In
this case, we define the sets U4

4 (v) appropriately, as those segments of S(v) that contain
enough vertices u that have the potential to participate in a triple (u, v, w) that induces
a 4-cut of this kind. The total size of all sets U4

4 (v) is O(n), and by Lemma 5.126
we can compute all of them in linear time in total. Then, by Lemma 5.127 we have
that if (u, v, w) is a triple of vertices that induces a 4-cut of the kind that we consider,
then either u ∈ U4

4 (v), or u is the predecessor of the greatest vertex of U4
4 (v) in S(v).

Furthermore, Lemma 5.128 shows that w is either the greatest or the second-greatest
proper ancestor of v such that M(w) = M(v) and w ≤ low(u). Thus, the total number
of triples that we have to check is O(n). Proposition 5.32 establishes that we can
compute all 4-cuts of this kind in linear time in total.

Finally, it remains to consider the case where the lower endpoint of e coincides with
high(u). Since we are in Case (4) of Lemma 5.57, we have B(v) = (B(u)⊔B(w))⊔{e}.
This implies that e /∈ B(u), and therefore e ̸= ehigh(u). This means that e and ehigh(u)

218

are two distinct back-edges that have the same lower endpoint. If we could eliminate
this possibility, then we could revert to any of the previous cases of 4-cuts that we
have considered. The idea is precisely that: we compute a “4-cut equivalent” graph, in
which there is a DFS-tree with the property that no two back-edges that correspond
to edges of the original graph can have the same lower endpoint. To do this, we split
every vertex z that has at least two incoming back-edges of the form (x, z) and (y, z),
into two vertices z1 and z2 that are connected with five multiple edges (z1, z2). We
make z2 the parent of z1, and z1 inherits the back-edge (x, z) (in the form (x, z1)),
whereas z2 inherits the remaining incoming back-edges to z. We continue this process
until no more such splittings are possible. We show that the 4-cuts of the original
graph are in a bijective correspondence with the 4-cuts of the resulting graph, and we
show how to construct it in linear time. Thus, it is sufficient to perform one more pass
on the resulting graph, of all the algorithms that we have developed for computing
4-cuts. (Or we may perform this computation directly on the resulting graph from
the start.) Then we translate the computed 4-cuts to those of the original graph. We
conclude with a post-processing step, that eliminates repetitions of 4-cuts.

5.5.4 Min‐max vertex queries

As we saw in the preceding section, in order to implement the algorithms in the fol-
lowing chapters we need an oracle for answering min-max vertex queries. Specifically,
at various places we have to answer queries of the form “find the lowest (resp., the
greatest) vertex that is greater (resp., lower) than a particular vertex, and belongs to a
specific collection of vertices”. More precisely, we are given a collection W1, . . . ,Wk of
pairwise disjoint sets of vertices, and a set of N queries of the form q(i, z) ≡ “given an
index i ∈ {1, . . . , k} and a vertex z, find the greatest (resp., the lowest) vertex w ∈ Wi

such that w ≤ z (resp., w ≥ z)”. We can answer all those queries simultaneously, in
O(n+N) time in total. The idea is to sort the vertices in the sets W1, . . . ,Wk properly
– in increasing or decreasing order –, depending on whether the queries ask for the
greatest or the lowest vertex, respectively. Then we also sort the queries in the same
order (w.r.t. the vertices that appear in them). Now we can basically answer all the
queries for which the answer lies in a specific collection W , independently of the
others, by simply traversing the list W and the list of the queries whose answer lies
in W . The precise procedure is shown in Algorithm 22, and the explication as well

219

as the proof of correctness is given in Lemma 5.27. It is straightforward to modify
Algorithm 22 appropriately, so that we get an algorithm for answering the reverse
type of queries (i.e., those that ask for the lowest vertex that is greater than another
vertex), with or without equality.

Lemma 5.27. Let W1, . . . ,Wk be a collection of pairwise disjoint sets of vertices. Let
q(i1, z1), . . . , q(iN , zN) be a set of queries of the form q(i, z) ≡“ given an index i ∈ {1, . . . , k}
and a vertex z, find the greatest vertex w ∈ Wi such that w ≤ z”. Then, Algorithm 22
answers all those queries in O(n+N) time.

Proof. The idea is basically to collect all queries of the form q(i, ·), for every i ∈
{1, . . . , k}, and then process them simultaneously with the list Wi. More precicely,
we first sort all Wi, for i ∈ {1, . . . , k}, in decreasing order. Since the sets of vertices
W1, . . . ,Wk are pairwise disjoint, we have that |W1| + · · · + |Wk| = O(n). Thus, all
these sortings can be performed in O(n) time in total with bucket-sort. Then, for
every i ∈ {1, . . . , k}, we collect in a list Q(i) all tuples of the form (z, t), such that
it = i and zt = z. In other words, if the t-th query q(it, zt) has it = i, then Q(i)

contains the entry (zt, t). Then we sort the lists Q(i) in decreasing order w.r.t. the first
component of the tuples that are contained in them. This can be done in O(n + N)

time in total with bucket-sort.
Now, in order to answer a query q(i, z), we have to traverse the list Wi, until we

reach the first w ∈ Wi that has w ≤ z (since Wi is sorted in decreasing order). If
we performed this process for every individual query, we would possibly make an
excessive amount of steps in total, because each time we would process the list Wi

from the beginning. Thus, the idea in sorting the queries too, is that we can pick
up the search from the last entry of Wi that we accessed. Therefore, we process the
entries in Q(i) in order, for every index i ∈ {1, . . . , k}. Since the first components of
the tuples in Q(i) are vertices in decreasing order, it is sufficient to start the search
in Wi from the last entry that we accessed. The second component of every tuple
(z, t) in Q(i) is a pointer to the corresponding query that is being answered (i.e., this
corresponds to the t-th query, q(it, zt)).

It is easy to see that this is the procedure that is implemented by Algorithm 22.
The for loop in Line 13 takes O(n + N) time in total, because it traverses the entire
list of the queries, and possibly the entire lists W1, . . . ,Wk. Thus, Algorithm 22 runs
in O(n+N) time.

220

Algorithm 22: Given a collection W1, . . . ,Wk of pairwise disjoint sets of ver-
tices, answer a set of queries q(i1, z1), . . . , q(iN , zN), where q(it, zt), for every
t ∈ {1, . . . , N}, asks for the greatest vertex w ∈Wit such that w ≤ zt.

// W1, . . . ,Wk is a collection of pairwise disjoint sets of vertices

1 foreach i ∈ {1, . . . , k} do

2 sort Wi in decreasing order

3 end

4 foreach i ∈ {1, . . . , k} do

5 initialize Q(i)← ∅

6 end

7 foreach t ∈ {1, . . . , N} do

8 insert a tuple (zt, t) into Q(it)

9 end

// Q(i) contains a tuple of the form (z, t) if and only if the query q(it, zt) has

it = i and zt = z. The first component of a tuple in Q(i) stores the vertex of

the respective query, and the second component stores a pointer to the query.

The information, that we have to search in the set Wi for the answer to this

query, is given precisely by the index i of this bucket of tuples

10 foreach i ∈ {1, . . . , k} do

11 sort Q(i) in decreasing order w.r.t. the first component of its elements

12 end

13 foreach i ∈ {1, . . . , k} do

14 let w be the first element of Wi

15 let p be the first element of Q(i)

16 while p ̸= ⊥ do

17 let p = (z, t)

18 while w ̸= ⊥ and w > z do

19 w ← nextWi(w)

20 end

21 the answer to q(it, zt) is w

22 p← nextQ(i)(p)

23 end

24 end

221

5.6 Computing Type‐2 4‐cuts

Throughout this section, we assume that G is a 3-edge-connected graph with n vertices
and m edges. All graph-related elements (e.g., vertices, edges, cuts, etc.) refer to G.
Furthermore, we assume that we have computed a DFS-tree T of G rooted at a vertex
r.

Lemma 5.28. Let u, v be two vertices such that v is a proper ancestor of u with v ̸= r.
Then there exist two distinct back-edges e1, e2 such that {(u, p(u)), (v, p(v)), e1, e2} is a
4-cut if and only if either (1) B(v) = B(u) ⊔ {e1, e2}, or (2) B(v) ⊔ {e1} = B(u) ⊔ {e2},
or (3) B(u) = B(v) ⊔ {e1, e2}.

Proof. (⇒) Let C = {(u, p(u)), (v, p(v)), e1, e2}. First we will show that e1 and e2 are
back-edges in B(u) ∪ B(v). So let us suppose the contrary. Then we may assume
w.l.o.g. that e1 /∈ B(u)∪B(v). Let e1 = (x, y). Then e1 /∈ B(u)∪B(v) means that neither
u nor v lies on the tree-path T [x, y). This implies that the tree-path T [x, y) remains
intact in G \C. But then we have that the endpoints of e1 remain connected in G \C ,
in contradiction to the fact that C is a 4-cut of G. This shows that e1 ∈ B(u) ∪ B(v).
Similarly, we can show that e2 ∈ B(u) ∪ B(v).

Since C is a 4-cut of G, we have that G′ = G \ {(u, p(u)), (v, p(v))} is connected.
We define the three parts X = T (u), Y = T (v)\T (u), and Z = T (r)\T (v). Notice that
these parts remain connected in G′.

Suppose first that both e1 and e2 leap over v. Let us suppose, for the sake of
contradiction, that there is a back-edge e = (x, y) from X to Y . Then e leaps over
u, but not over v. Thus, e /∈ {e1, e2}. But then we have that u is connected with
p(u) in G′ \ {e1, e2} through the path T [u, x], (x, y), T [y, p(u)], contradicting the fact
that C is a 4-cut of G. This means that there is no back-edge in B(u) \ B(v), and
therefore B(u) ⊆ B(v). Now let us suppose, for the sake of contradiction, that there
is a back-edge e = (x, y) that leaps over v, does not leap over u, and is distinct
from e1 and e2. Since e leaps over v, but not over u, we have that it is a back-edge
from Y to Z. But then, since e /∈ {e1, e2}, we have that v is connected with p(v) in
G′ \ {e1, e2} through the path T [v, x], (x, y), T [y, p(v)], contradicting the fact that C is
a 4-cut of G. This means that e1 and e2 are the only edges in B(v) \ B(u), and so
we have B(v) = B(u) ∪ {e1, e2}. Notice that it cannot be that both e1 and e2 are in
B(u), because otherwise we have B(v) = B(u), in contradiction to the fact that G is
3-edge-connected. Now let us suppose, for the sake of contradiction, that one of e1, e2

222

is in B(u). We may assume w.l.o.g. that e1 is in B(u). Since C is a 4-cut of G, we
have that G′ \ e2 is connected. In particular, v is connected with p(v) in G′ \ e2. There
are two possible ways in which this can be true: either (i) there is a back-edge from
Y to Z in G′ \ e2, or (ii) there is a back-edge from Y to X , and a back-edge from
X to Z , in G′ \ e2. Case (i) is rejected, because the only back-edge that leaps over v
but not over u is e2. Case (ii) is rejected, because B(u) ⊂ B(v) (and so there is no
back-edge from X to Y). Since neither of (i) and (ii) can be true, we have arrived
at a contradiction. Thus, we have that neither of e1, e2 can be in B(u), and so it is
correct to write B(v) = B(u) ⊔ {e1, e2}.

Now let us suppose that only one of e1, e2 leaps over v. Then we may assume
w.l.o.g. that e1 /∈ B(v) and e2 ∈ B(v). Since each one of e1, e2 leaps over either u

or v, we have that e1 ∈ B(u). Since e1 ∈ B(u) \ B(v), we have that e1 is back-edge
from X to Y . Now let us suppose, for the sake of contradiction, that there is also
another back-edge e = (x, y) from X to Y (i.e., e ̸= e1). Notice that, since e2 ∈ B(v),
it is impossible that e = e2. But now we have that u remains connected with p(u) in
G′ \{e1, e2} through the path T [u, x], (x, y), T [y, p(u)], contradicting the fact that C is a
4-cut of G. Thus we have that e1 is the only back-edge from X to Y . Since e2 ∈ B(v),
we have that e2 is either a back-edge from X to Z , or a back-edge from Y to Z. Let us
suppose, for the sake of contradiction, that e2 is a back-edge from X to Z. Since C is a
4-cut of G, we have that G′ \e1 is connected. In particular, u is connected with p(u) in
G′ \ e1. There are two possible ways for this to be true: either (i) there is a back-edge
from X to Y in G′ \ e1, or (ii) there is a back-edge from X to Z , and a back-edge
from Z to Y in G′ \ e1. Case (i) is rejected, since e1 is the only back-edge from X to
Y . Thus, (ii) implies that there is a back-edge e = (x, y) from Y to Z in G′ \ e1. Since
e2 is a back-edge from X to Z , we have that e /∈ {e1, e2}. But then v is connected
with p(v) in G′ \ {e1, e2} through the path T [v, x], (x, y), T [y, p(v)], contradicting the
fact that C is a 4-cut of G. Thus we have that e2 is not a back-edge from X to Z , and
therefore it is a back-edge from Y to Z. Similarly, we can show that e2 is the unique
back-edge from Y to Z. Thus far we have that e1 ∈ B(u) \B(v) and e2 ∈ B(v) \B(u),
and both e1 and e2 are unique with this property. Now, since e1 is the only back-edge
in B(u)\B(v), we have that B(u)\{e1} ⊆ B(v). And since e2 is the only back-edge in
B(v)\B(u), we have that B(v)\{e2} ⊆ B(u). Now let e be a back-edge in B(u)⊔{e2}.
Then, either e = e1, or e ∈ B(v). Thus we get B(u)⊔ {e2} ⊆ B(v)⊔ {e1}. Similarly, we
get the reverse inclusion, and so we have B(u) ⊔ {e2} = B(v) ⊔ {e1}.

223

Finally, let us suppose that neither of e1, e2 leaps over v. Then, since each one of
e1, e2 leaps over either u or v, we have that {e1, e2} ⊆ B(u). Notice that both e1 and e2

are back-edges from X to Y . Now we can argue as above, in order to establish that
e1 and e2 are the only back-edges from X to Y . Thus, the remaining back-edges in
B(u) must also be in B(v). Again, arguing as above, we can establish that there is no
back-edge from Y to Z. Thus, all the back-edges in B(v) are also in B(u). Thus we
have B(u) \ {e1, e2} ⊆ B(v), and B(v) ⊆ B(u). Therefore, since {e1, e2} ⊆ B(u) \B(v),
we have that B(v) ⊔ {e1, e2} = B(u).

(⇐) Let C = {(u, p(u)), (v, p(v)), e1, e2}. Since the graph is 3-edge-connected, we
have that G′ = G \ {(u, p(u)), (v, p(v))} is connected. We define the three parts X =

T (u), Y = T (v) \ T (u), and Z = T (r) \ T (v). Notice that these parts are connected
in G′. Now it is easy to see that either of (1), (2), or (3), implies that C is a 4-cut
of G: (1) means that e1 and e2 are the only back-edges from Y to Z , and there are
no back-edges from X to Y ; (2) means that e1 is the only back-edge from X to Y ,
and e2 is the only back-edge from Y to Z; and (3) means that e1 and e2 are the only
back-edges from X to Y , and there are no back-edges from Y to Z. In either case, we
can see that Y becomes disconnected from the rest of the graph in G \ C , but G \ C ′

remains connected for every proper subset C ′ of C.

Based on Lemma 5.28, we distinguish three different cases for Type-2 4-cuts of
the form {(u, p(u)), (v, p(v)), e1, e2}, where v is ancestor of u and e1, e2 are back-edges:
either (1) B(v) = B(u) ⊔ {e1, e2}, or (2) B(v) ⊔ {e1} = B(u) ⊔ {e2}, or (3) B(u) =

B(v) ⊔ {e1, e2}. We show how to find all 4-cuts in cases (1) and (3) in linear time,
in Sections 5.6.1 and 5.6.3, respectively. The 4-cuts in case (2) cannot be computed
in linear time, since there can be Ω(n2) of them. Instead, we calculate only a specific
selection of O(n) of them, so that the rest of them are implied from this selection. We
show how we can handle this case in Section 5.6.2.

5.6.1 The case B(v) = B(u) ⊔ {e1, e2}

Lemma 5.29. Let u and v be two vertices such that v is a proper ancestor of u with v ̸= r.
Then there exist two back-edges e1 and e2 such that B(v) = B(u) ⊔ {e1, e2} if and only if
bcount(v) = bcount(u) + 2 and high1(u) < v.

Proof. (⇒) bcount(v) = bcount(u) + 2 is an immediate consequence of B(v) = B(u) ⊔
{e1, e2}. Now let (x, y) be a back-edge in B(u). Then B(v) = B(u) ⊔ {e1, e2} implies

224

that (x, y) is a back-edge in B(v), and therefore y is a proper ancestor of v, and
therefore y < v. Due to the generality of (x, y) ∈ B(u), this implies that high1(u) < v.

(⇐) Since u is a common descendant of v and high1(u), we have that v and high1(u)
are related as ancestor and descendant. Thus, high1(u) < v implies that high1(u) is a
proper ancestor of v. Now let (x, y) be a back-edge in B(u). Then x is a descendant
of u, and therefore a descendant of v. Furthermore, y is an ancestor of high1(u), and
therefore a proper ancestor of v. This shows that (x, y) ∈ B(v), and therefore we have
B(u) ⊆ B(v). Now bcount(v) = bcount(u) + 2 implies that |B(v) \ B(u)| = 2, and so
there are two back-edges e1, e2 such that B(v) = B(u) ⊔ {e1, e2}.

Lemma 5.30. Let u and v be two vertices such that v is a proper ancestor of u with
v ̸= r, and there exist two back-edges e1 = (x1, y1) and e2 = (x2, y2) such that B(v) =

B(u) ⊔ {e1, e2}. Then, neither of x1, x2 is a descendant of u, and one of the following is
true:

(1) L1(v) = L2(v), x1 = x2 = L1(v) and {y1, y2} = {l1(L1(v)), l2(L1(v))}

(2) L1(v) ̸= L2(v), {x1, x2} = {L1(v), L2(v)} and {y1, y2} = {l1(L1(v)), l1(L2(v))}

(3) {x1, x2} = {L1(v), R1(v)} and {y1, y2} = {l1(L1(v)), l1(R1(v))}

(4) R1(v) = R2(v), x1 = x2 = R1(v) and {y1, y2} = {l1(R1(v)), l2(R1(v))}

(5) R1(v) ̸= R2(v), {x1, x2} = {R1(v), R2(v)} and {y1, y2} = {l1(R1(v)), l1(R2(v))}

Proof. Let us suppose, for the sake of contradiction, that at least one of x1, x2 is a
descendant of u. We may assume w.l.o.g. that x1 is a descendant of u. Then, since
(x1, y1) ∈ B(v), we have that y1 is a proper ancestor of v, and therefore it is a proper
ancestor of u. But this implies that (x1, y1) ∈ B(u), a contradiction. Thus we have
that neither of x1, x2 is a descendant of u.

Now let (x′
1, y

′
1), . . . , (x

′
k, y

′
k) be the back-edges in B(v) sorted in increasing order

w.r.t. their higher endpoint. (Notice that L1(v) = x′
1, L2(v) = x′

2, R1(v) = x′
k, and

R2(v) = x′
k−1.) Let i, j ∈ {1, . . . , k} be two indices such that i ≤ j. Suppose that x′

i and
x′
j are descendants of u. Since we have x′

i ≤ · · · ≤ x′
j , this implies that all x′

i, . . . , x
′
j are

descendants of u. Furthermore, since (x′
i, y

′
i), . . . , (x

′
j, y

′
j) are back-edges in B(v), we

have that y′i, . . . , y′j are proper ancestors of v, and therefore they are proper ancestors
of u. This shows that all the back-edges (x′

i, y
′
i), . . . , (x

′
j, y

′
j) are in B(u). Now, since

B(v) = B(u) ⊔ {e1, e2}, we have that only two back-edges in B(v) are not in B(u).

225

Therefore, e1 and e2 can either be (i) (x′
1, y

′
1) and (x′

2, y
′
2), or (ii) (x′

1, y
′
1) and (x′

k, y
′
k),

or (iii) (x′
k−1, y

′
k−1) and (x′

k, y
′
k). Thus we get that (1)-(5) is an exhaustive list for the

different combinations for x1 and x2.
Suppose first that L1(v) = L2(v) and x1 = x2 = L1(v). Let us suppose, for the

sake of contradiction, that l3(L1(v)) < v. Then this means that there are at least three
different back-edges (L1(v), z1), (L1(v), z2), (L1(v), z3) in B(v). Since x1 = L1(v) is not
a descendant of u, we have that these three back-edges are in B(v) \ B(u). But this
contradicts B(v) = B(u)⊔{e1, e2}. Thus we have that l3(L1(v)) ≥ v. Since e1, e2 ∈ B(v),
we have that y1 < v and y2 < v. Thus we get {y1, y2} = {l1(L1(v)), l2(L1(v))}.

Now suppose that L1(v) ̸= L2(v) and {x1, x2} = {L1(v), L2(v)}. We may assume
w.l.o.g. that x1 = L1(v) and x2 = L2(v). Let us suppose, for the sake of contradic-
tion, that l2(L1(v)) < v. This implies that there are at least two different back-edges
(L1(v), z1) and (L1(v), z2) in B(v). Since x1 = L1(v) is not a descendant of u, we
have that there are at least three back-edges in B(v) \ B(u) (these being (L1(v), z1),
(L1(v), z2), and (L2(v), y2)), a contradiction. Thus we have l2(L1(v)) ≥ v, and so
y1 = l1(L1(v)), since (x1, y1) ∈ B(v). Similarly, we can show that y2 = l1(L2(v)).

With similar arguments we get the results for y1 and y2 for the cases {x1, x2} =
{L1(v), R1(v)} and {x1, x2} = {R1(v), R2(v)} (whether R1(v) = R2(v) or R1(v) ̸=
R2(v)).

Lemma 5.31. Let u and v be two vertices such that v is a proper ancestor of u with v ̸= r,
and there exist two back-edges e1 and e2 such that B(v) = B(u) ⊔ {e1, e2}. Then u is the
lowest proper descendant of v that has M(u) = M(B(v) \ {e1, e2}).

Proof. First we observe that M(u) = M(B(v) \ {e1, e2}), as an immediate consequence
of B(u) = B(v) \ {e1, e2}. Thus we may consider the lowest proper descendant u′ of
v that has M(u′) = M(B(v) \ {e1, e2}). Let us suppose, for the sake of contradiction,
that u′ ̸= u. Then, since M(u′) = M(u) and u′ is lower than u, we have that u′ is a
proper ancestor of u, and Lemma 3.2 implies that B(u′) ⊆ B(u). Since the graph is
3-edge-connected, this can be strengthened to B(u′) ⊂ B(u). Thus there is a back-
edge (x, y) ∈ B(u) \B(u′). Then, we have that x is a descendant of u, and therefore a
descendant of u′. Furthermore, B(v) = B(u) ⊔ {e1, e2} implies that (x, y) ∈ B(v), and
therefore y is a proper ancestor of v. But then y is also a proper ancestor of u′, and
so (x, y) ∈ B(u′), a contradiction. We conclude that u is the lowest proper descendant
of v with M(u) = M(B(v) \ {e1, e2}).

226

Now the idea to find all 4-cuts of the form {(u, p(u)), (v, p(v)), e1, e2}, where v

is a proper ancestor of u with B(v) = B(u) ⊔ {e1, e2}, is the following. According
to Lemma 5.30, there are three different cases for the back-edges e1 and e2: either
{e1, e2} = {eL1(v), eL2(v)}, or {e1, e2} = {eL1(v), eR1(v)}, or {e1, e2} = {eR1(v), eR2(v)}.
We consider all these cases in turn. For every one of those cases, we seek the low-
est proper descendant u of v that satisfies M(u) = M(B(v) \ {e1, e2}), according to
Lemma 5.31. Then we can check whether we have a 4-cut using the criterion provided
by Lemma 5.29. This procedure is shown in Algorithm 23. The proof of correctness
is given in Proposition 5.11.

Algorithm 23: Compute all 4-cuts of the form {(u, p(u)), (v, p(v)), e1, e2}, where
v is an ancestor of u and B(v) = B(u) ⊔ {e1, e2}

1 foreach vertex v ̸= r do
2 compute MLL(v)←M(B(v) \ {eL1(v), eL2(v)})
3 compute MLR(v)←M(B(v) \ {eL1(v), eR1(v)})
4 compute MRR(v)←M(B(v) \ {eR1(v), eR2(v)})

5 end
6 let u be the lowest proper descendant of v such that M(u) = MLL(v)

7 if bcount(v) = bcount(u) + 2 and high1(u) < v then
8 mark {(u, p(u)), (v, p(v)), eL1(v), eL2(v)} as a 4-cut
9 end

10 let u be the lowest proper descendant of v such that M(u) = MLR(v)

11 if bcount(v) = bcount(u) + 2 and high1(u) < v then
12 mark {(u, p(u)), (v, p(v)), eL1(v), eR1(v)} as a 4-cut
13 end
14 let u be the lowest proper descendant of v such that M(u) = MRR(v)

15 if bcount(v) = bcount(u) + 2 and high1(u) < v then
16 mark {(u, p(u)), (v, p(v)), eR1(v), eR2(v)} as a 4-cut
17 end

Proposition 5.11. Algorithm 23 correctly computes all 4-cuts of the form
{(u, p(u)), (v, p(v)), e1, e2}, where v is an ancestor of u and B(v) = B(u) ⊔ {e1, e2}.
Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), e1, e2} be a 4-cut such that u is a descen-

227

dant of v and B(v) = B(u) ⊔ {e1, e2}. Then, Lemma 5.30 implies that either
{e1, e2} = {eL1(v), eL2(v)}, or {e1, e2} = {eL1(v), eR1(v)}, or {e1, e2} = {eR1(v), eR2(v)}.
By Lemma 5.31, we have that u is the lowest proper descendant of v such that
M(u) = M(B(v) \ {e1, e2}). Lemma 5.29 implies that bcount(v) = bcount(u) + 2 and
high1(u) < v. Thus, we can see that C will be marked in Line 8, or 12, or 16.

Conversely, suppose that a 4-element set C = {(u, p(u)), (v, p(v)), e′1, e′2} is marked
by Algorithm 23 in Line 8, or 12, or 16. In either case, we have that u is a proper de-
scendant of v such that bcount(v) = bcount(u)+2 and high1(u) < v. Thus, Lemma 5.29
implies that there are two back-edges e1 and e2 such that B(v) = B(u) ⊔ {e1, e2}.
Lemma 5.30 implies that the higher endpoints of e1 and e2 are not descendants of
u. Thus, if S is a subset of B(v) that contains either e1 or e2, then we have that
M(S) ̸= M(u). To see this, suppose the contrary. Then, w.l.o.g. we may assume that
e1 = (x, y) ∈ S, and M(S) = M(u). Then we have that x is a descendant of M(S),
and therefore a descendant of M(u), and therefore a descendant of u. Furthermore,
since e1 ∈ B(v), we have that y is a proper ancestor of v, and therefore a proper
ancestor of u. This shows that (x, y) ∈ B(u), a contradiction. Thus, we have that
M(S) ̸= M(u). Now, since B(v) = B(u) ⊔ {e1, e2}, Lemma 5.30 implies that either
{e1, e2} = {eL1(v), eL2(v)}, or {e1, e2} = {eL1(v), eR1(v)}, or {e1, e2} = {eR1(v), eR2(v)}.
Let us assume that {e1, e2} = {eL1(v), eL2(v)} (the other cases are similar). Then, if
C is marked in Line 8, we have that {e′1, e′2} = {e1, e2}, and so it is correct to mark
C as a 4-cut. Now, if {eL1(v), eR1(v)} ̸= {e1, e2}, then we have that M(u) ̸= MLR(v)

(because B(v)\{eL1(v), eR1(v)} contains either e1 or e2), and therefore C is not marked
in Line 12. Similarly, if {eR1(v), eR2(v)} ̸= {e1, e2}, then we have that M(u) ̸= MRR(v),
and therefore C is not marked in Line 16. This shows that C is indeed a 4-cut of G.

Now we will show that Algorithm 23 runs in linear time. By Proposition 3.6,
we have that the values M(B(v) \ {eL1(v), eL2(v)}), M(B(v) \ {eL1(v), eR1(v)}) and
M(B(v) \ {eR1(v), eR2(v)}) can be computed in linear time in total, for all vertices
v ̸= r. Thus, the for loop in Line 1 can be performed in linear time. In order to
compute the u in Lines 6, 10 and 14, we use Algorithm 22. Specifically, let us discuss
the implementation of Line 6 (the argument for Lines 10 and 14 is similar). Then, for
every vertex v ̸= r, we generate a query q(M−1(MLL(v)), v). This query will return the
lowest vertex u with M(u) = MLL(v) that is greater than v. Notice that M(u) = MLL(v)

implies that M(u) is a common descendant of u and v, and therefore u and v are
related as ancestor and descendant. Thus, u is the lowest proper descendant of v

228

that satisfies M(u) = MLL(v). Then, since the number of all those queries is O(n),
Algorithm 22 can answer them in O(n) time in total, according to Lemma 5.27. This
shows that Algorithm 23 runs in linear time.

5.6.2 The case B(v) ⊔ {e1} = B(u) ⊔ {e2}

Let {(u, p(u)), (v, p(v)), e1, e2} be a Type-2 4-cut such that e1 ∈ B(u) and e2 ∈ B(v).
Then, by Lemma 5.28 we have that B(u) ⊔ {e2} = B(v) ⊔ {e1}, and we call this a
Type-2ii 4-cut. Our goal in this section is to prove that we can compute enough
such 4-cuts in linear time, so that the rest of them are implied from the collection
we have computed. For a precise statement of our result, see Proposition 5.12. The
Type-2ii 4-cuts are the most significant Type-2 4-cuts, because their existence is the
reason why we may have a quadratic number of 4-cuts overall. This will become clear
in the following sections, where we will see that there are some subtypes of 4-cuts
whose number can be quadratic, but they are involved in an implicating sequence
with Type-2ii 4-cuts, and so we can compute in linear time a subcollection of them
that implies them all.

The following two lemmata establish conditions under which we have a Type-2ii
4-cut.

Lemma 5.32. Let u and v be two vertices ̸= r such that u is a proper descendant of
v with bcount(u) = bcount(v). Suppose that there is a back-edge e ∈ B(v) such that
M(B(u) \ {ehigh(u)}) = M(B(v) \ {e}). Then B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}.

Proof. Let (x, y) be a back-edge in B(v)\{e}. Then x is a descendant ofM(B(v)\{e}),
and therefore a descendant of M(B(u) \ {ehigh(u)}), and therefore a descendant of u.
Furthermore, y is a proper ancestor of v, and therefore a proper ancestor of u. This
shows that (x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(v) \ {e}, this implies that
B(v) \ {e} ⊆ B(u). Since e ∈ B(v) and bcount(u) = bcount(v), this implies that there is
a back-edge e′ ∈ B(u) such that B(v) \ {e} = B(u) \ {e′}. If we assume that e ∈ B(u),
then we have e′ = e, and therefore B(v) = B(u), contradicting the fact that the graph
is 3-edge-connected. Similarly, we have e′ /∈ B(v). Thus, B(v) \ {e} = B(u) \ {e′}
implies that B(v) ⊔ {e′} = B(u) ⊔ {e}, and e′ is the unique back-edge in B(u) \B(v).

Let us suppose, for the sake of contradiction, that e′ ̸= ehigh(u). Since e′ is the
unique back-edge in B(u) \ B(v), this implies that ehigh(u) ∈ B(v). Therefore, high(u)
is a proper ancestor of v. Now let (x, y) be a back-edge in B(u). Then we have that x

229

is a descendant of u, and therefore a descendant of v. Furthermore, y is an ancestor
of high(u), and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to
the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(v). But this contradicts the
fact that there is a back-edge in B(u) \B(v). This shows that e′ = ehigh(u). Therefore,
we have B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}.

Lemma 5.33. Let u and v be two vertices such that v is a proper ancestor of u with v ̸= r.
Then there exist two distinct back-edges e1 and e2 such that B(v) ⊔ {e1} = B(u) ⊔ {e2} if
and only if bcount(v) = bcount(u) and high2(u) < v.

Proof. (⇒) bcount(v) = bcount(u) is an immediate consequence of B(v)⊔{e1} = B(u)⊔
{e2}. Now let (x1, y1), . . . , (xk, yk) be the back-edges in B(u) sorted in decreasing order
w.r.t. their lower endpoint. (Thus, we have highi(u) = yi, for every i ∈ {1, . . . , k}.) Let
i ∈ {1, . . . , k}. If (xi, yi) ∈ B(v), then yi is a proper ancestor of v. This implies that every
yj with j ∈ {i, . . . , k} is also a proper ancestor of v, which implies that (xj, yj) ∈ B(v)

(since all of x1, . . . , xk are descendants of v). Thus, we cannot have (x1, y1) ∈ B(v), for
otherwise we would have B(u) ⊆ B(v), in contradiction to B(v) ⊔ {e1} = B(u) ⊔ {e2}
and e1 ̸= e2. Since B(v) ⊔ {e1} = B(u) ⊔ {e2} implies that only one back-edge from
B(u) is not in B(v), we thus have that (x2, y2) ∈ B(v), and so high2(u) < v.

(⇐) Let (x1, y1), . . . , (xk, yk) be the back-edges in B(u) sorted in decreasing order
w.r.t. their lower endpoint. Then high2(u) < v implies that (x2, y2) ∈ B(v). Therefore,
with the same argument that we used above we can infer that {(x2, y2), . . . , (xk, yk)} ⊆
B(v). If we had that (x1, y1) ∈ B(v), then bcount(v) = bcount(u) would imply that
B(v) = B(u), in contradiction to the fact that the graph is 3-edge-connected. Thus
we have that e1 = (x1, y1) is the only back-edge in B(u) that is not in B(v). Then,
bcount(v) = bcount(u) implies that there must be exactly one back-edge e2 in B(v) that
is not in B(u). Thus we get B(v) ⊔ {e1} = B(u) ⊔ {e2}.

The following lemma characterizes the back-edges that participate in a Type-2ii
4-cut.

Lemma 5.34. Let u and v be two vertices such that v is a proper ancestor of u with v ̸= r,
and there exist two distinct back-edges e1 and e2 such that B(v) ⊔ {e1} = B(u) ⊔ {e2}.
Then we have e1 = (highD1(u), high1(u)) and either (1) e2 = (L1(v), l1(L1(v))), or (2)

e2 = (R1(v), l1(R1(v))).

Proof. The fact that e1 = (highD1(u), high1(u)) has essentially been proved in the proof
of Lemma 5.33. Now let (x1, y1), . . . , (xk, yk) be the back-edges in B(v) sorted in

230

increasing order w.r.t. their higher endpoint. (Then we have x1 = L1(v) and xk =

R1(v).) Let i, j ∈ {1, . . . , k} be two indices such that i ≤ j. If both (xi, yi) and (xj, yj)

are in B(u), then we have that both xi and xj are descendants of u. This implies that all
of xi, . . . , xj are descendants of u, and therefore all the back-edges (xi, yi), . . . , (xj, yj)

are in B(u) (since all of y1, . . . , yk are proper ancestors of u). Since B(v) ⊔ {e1} =

B(u)⊔{e2} implies that exactly one back-edge in B(v) is not in B(u) (and that is e2),
we thus have that the higher endpoint of e2 is either L1(v) or R1(v).

Let us consider the case that e2 = (L1(v), y), for some vertex y. Let us suppose, for
the sake of contradiction, that l2(L1(v)) < v. Then there exist at least two back-edges
of the form (L1(v), z1) and (L1(v), z2) that are in B(v). Since e2 /∈ B(u), we have that
L1(v) cannot be a descendant of u (for otherwise, since y is a proper ancestor of v,
we would have that e2 ∈ B(u)). Thus we have that none of (L1(v), z1) and (L1(v), z2)

is in B(u), in contradiction to the fact that there is only one back-edge in B(v)\B(u).
This shows that l2(L1(v)) ≥ v. Since e2 ∈ B(v), we have y < v, and so y must be
l1(L1(v)). The case that e2 = (R1(v), z), for some vertez z, is treated with a similar
argument.

Let u and v be two vertices such that u is a proper descendant of v with B(v)⊔{e} =
B(u)⊔{e′}, where e and e′ are two distinct back-edges. This implies that B(v)\{e′} =
B(u) \ {e}, and therefore M(B(v) \ {e′}) = M(B(u) \ {e}). By Lemma 5.34, we have
e = ehigh(u). Furthermore, B(v)⊔ {e} = B(u)⊔ {e′} implies that bcount(v) = bcount(u).
Then, we let lowestU(v, e′) denote the lowest proper descendant u′ of v such that
ehigh(u

′) /∈ B(v), e′ /∈ B(u′), M(B(u′) \ {ehigh(u′)}) = M(B(v) \ {e′}), and bcount(u′) =

bcount(v).

Lemma 5.35. Let u and v be two vertices such that u = lowestU(v, e), where e is a
back-edge in B(v). Then B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}.

Proof. By definition, we have that u is a proper descendant of v such that ehigh(u) /∈
B(v), e /∈ B(u), M(B(u) \ {ehigh(u)}) = M(B(v) \ {e}), and bcount(u) = bcount(v). Let
(x, y) be a back-edge in B(v)\{e}. Then x is a descendant ofM(B(v)\{e}) = M(B(u)\
{ehigh(u)}), and therefore a descendant of u. Furthermore, y is a proper ancestor of
v, and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). Due to the
generality of (x, y) ∈ B(v)\{e}, this implies that B(v)\{e} ⊆ B(u). Since ehigh(u) /∈ B(v),
this can be strengthened to B(v) \ {e} ⊆ B(u) \ {ehigh(u)}. Since bcount(v) = bcount(u),

231

this implies that B(v) \ {e} = B(u) \ {ehigh(u)}. Since ehigh(u) /∈ B(v) and e /∈ B(u), this
implies that B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}.

Lemma 5.36. Let u and v be two vertices such that u is a proper descendant of v with
B(v)⊔{e} = B(u)⊔{e′}, where e and e′ are two distinct back-edges. Let u′ = lowestU(v, e′).
If u′ ̸= u, then B(u′) ⊔ {ehigh(u)} = B(u) ⊔ {ehigh(u′)}.

Proof. Since B(v)⊔ {e} = B(u)⊔ {e′}, we have B(v) \ {e′} = B(u) \ {e}, and therefore
M(B(v) \ {e′}) = M(B(u) \ {e}). By Lemma 5.34, we have e = ehigh(u). Furthermore,
B(v) ⊔ {e} = B(u) ⊔ {e′} implies that bcount(v) = bcount(u). Thus, it makes sense to
consider the lowest proper descendant u′ of v such that ehigh(u′) /∈ B(v), e′ /∈ B(u′),
M(B(u′) \ {ehigh(u′)}) = M(B(v) \ {e′}), and bcount(u′) = bcount(v). By definition, we
have u′ = lowestU(v, e′).

Let us assume that u′ ̸= u. Lemma 5.35 implies that B(v)⊔{ehigh(u′)} = B(u′)⊔{e′}.
From this we infer that B(v) \ {e′} = B(u′) \ {ehigh(u′)}. Since B(v) \ {e′} = B(u) \
{ehigh(u)}, this implies that B(u′) \ {ehigh(u′)} = B(u) \ {ehigh(u)}. If we assume that
ehigh(u

′) ∈ B(u), then we get ehigh(u) = ehigh(u
′) and B(u′) = B(u), in contradiction to

the fact that the graph is 3-edge-connected. Similarly, we cannot have ehigh(u) ∈ B(u′).
Thus, B(u′) \ {ehigh(u′)} = B(u) \ {ehigh(u)} implies that B(u′) ⊔ {ehigh(u)} = B(u) ⊔
{ehigh(u′)}.

The following two lemmata show how we can determine the vertex u =

lowestU(v, e). They correspond to two distinct cases, depending on whether M(u) =

M(B(u) \ {ehigh(u)}), or M(u) ̸= M(B(u) \ {ehigh(u)}).

Lemma 5.37. Let u and v be two vertices such that u = lowestU(v, e), where e is a
back-edge in B(v). Suppose that M(u) = M(B(u) \ {ehigh(u)}). Then u is either the lowest
or the second-lowest proper descendant of v such that M(u) = M(B(v) \ {e}).

Proof. Let z = M(B(v) \ {e}). Since u = lowestU(v, e), we have that M(B(u) \
{ehigh(u)}) = z. Since M(u) = M(B(u) \ {ehigh(u)}), this implies that M(u) = z. Now
let us suppose, for the sake of contradiction, that u is neither the lowest nor the
second-lowest proper descendant of v such that M(u) = z. This means that there are
two proper descendants u′ and u′′ of v, such that u > u′ > u′′ and M(u′) = M(u′′) = z.
Then we have that z is a common descendant of u, u′ and u′′, and therefore u,
u′ and u′′ are related as ancestor and descendant. Thus, u > u′ > u′′ implies that
u is a proper descendant of u′, and u′ is a proper descendant of u′′. Then, since

232

M(u) = M(u′) = M(u′′), Lemma 3.2 implies that B(u′′) ⊆ B(u′) ⊆ B(u). Since the
graph is 3-edge-connected, this can be strengthened to B(u′′) ⊂ B(u′) ⊂ B(u). Thus,
there is a back-edge (x, y) ∈ B(u′)\B(u′′), and a back-edge (x′, y′) ∈ B(u)\B(u′). Since
(x, y) ∈ B(u′) and B(u′) ⊂ B(u), we have that (x, y) ∈ B(u). And since (x′, y′) /∈ B(u′)

and (x, y) ∈ B(u′), we have (x, y) ̸= (x′, y′). Thus, (x, y) and (x′, y′) are two distinct
back-edges in B(u). We have that x is a descendant of u, and therefore a descendant
of u′′. Thus, y cannot be a proper ancestor of v, because otherwise it is a proper
ancestor of u′′, and therefore (x, y) ∈ B(u′′). This shows that (x, y) /∈ B(v). Simi-
larly, x′ is a descendant of u, and therefore a descendant of u′. Thus, y′ cannot be
a proper ancestor of v, because otherwise it is a proper ancestor of u′, and therefore
(x′, y′) ∈ B(u′). This shows that (x′, y′) /∈ B(v). Since u = lowestU(v, e), Lemma 5.35
implies that B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}. This implies that there is only one back-
edge in B(u)\B(v). But this contradicts the fact that (x, y) and (x′, y′) are two distinct
back-edges in B(u)\B(v). Thus, we conclude that u is either the lowest or the second-
lowest proper descendant of v such that M(u) = M(B(v) \ {e}).

Lemma 5.38. Let u and v be two vertices such that u = lowestU(v, e), where e is a
back-edge in B(v). Suppose that M(u) ̸= M(B(u) \{ehigh(u)}). Then u is the lowest proper
descendant of v such that M(u) ̸= M(B(u) \ {ehigh(u)}) = M(B(v) \ {e}).

Proof. Let z = M(B(v) \ {e}). Since u = lowestU(v, e), we have that M(B(u) \
{ehigh(u)}) = z. Now let us suppose, for the sake of contradiction, that u is not
the lowest proper descendant of v such that M(u) ̸= M(B(u) \ {ehigh(u)}) = z.
This means that there is a proper descendant u′ of v, such that u > u′ and
M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = z. Then we have that z is a common descendant
of u and u′, and therefore u and u′ are related as ancestor and descendant. Thus,
u > u′ implies that u is a proper descendant of u′.

Let us suppose, for the sake of contradiction, that ehigh(u) ∈ B(u′). This implies
that high(u) is a proper ancestor of u′. Let (x, y) be a back-edge in B(u). Then x is a
descendant of u, and therefore a descendant of u′. Furthermore, y is an ancestor of
high(u), and therefore a proper ancestor of u′. This shows that (x, y) ∈ B(u′). Due to
the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(u′). Since M(u) ̸= M(B(u)\
{ehigh(u)}) = z, we have that the higher endpoint of ehigh(u) is not a descendant of z.
Similarly, sinceM(u′) ̸= M(B(u′)\{ehigh(u′)}) = z, we have that the higher endpoint of
ehigh(u

′) is not a descendant of z. Furthermore, ehigh(u′) is the only back-edge in B(u′)

233

with this property. Since ehigh(u) ∈ B(u′), this implies that ehigh(u′) = ehigh(u). Now let
(x, y) be a back-edge in B(u′). Then, if (x, y) = ehigh(u

′), we have that (x, y) = ehigh(u) ∈
B(u). Otherwise, we have that x is a descendant of z, and therefore a descendant of
u. Furthermore, y is a proper ancestor of u′, and therefore a proper ancestor of u.
This shows that (x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(u′), this implies that
B(u′) ⊆ B(u). Thus, we have B(u′) = B(u), in contradiction to the fact that the graph
is 3-edge-connected. This shows that ehigh(u) /∈ B(u′).

Let us suppose, for the sake of contradiction, that ehigh(u′) ∈ B(u). Since M(u′) ̸=
M(B(u′) \ {ehigh(u′)}) = z, we have that the higher endpoint of ehigh(u

′) is not a
descendant of z. Since M(u) ̸= M(B(u) \ {ehigh(u)}) = z, we have that ehigh(u) is the
only back-edge in B(u) with the property that its higher endpoint is not a descendant
of z. Thus, since ehigh(u′) ∈ B(u), we have that ehigh(u) = ehigh(u

′). But this implies that
ehigh(u) ∈ B(u′), a contradiction. Thus, we have ehigh(u

′) /∈ B(u).
Let us suppose, for the sake of contradiction, that ehigh(u′) ∈ B(v). This implies

that high(u′) is a proper ancestor of v. Since u = lowestU(v, e), by Lemma 5.35 we
have that B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}. This implies that e is the only back-edge
in B(v) that is not in B(u). Since ehigh(u

′) /∈ B(u) and ehigh(u
′) ∈ B(v), this implies

that e = ehigh(u
′). Now let (x, y) be a back-edge in B(u′). Then, x is a descendant of

u′, and therefore a descendant of v. Furthermore, y is an ancestor of high(u′), and
therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality
of (x, y) ∈ B(u′), this implies that B(u′) ⊆ B(v). Conversely, let (x, y) be a back-edge
in B(v). If (x, y) = e, then e = ehigh(u

′) ∈ B(u′). Otherwise, x is a descendant of
M(B(v) \ {e}) = z, and therefore a descendant of u′. Furthermore, y is a proper
ancestor of v, and therefore a proper ancestor of u′. This shows that (x, y) ∈ B(u′).
Due to the generality of (x, y) ∈ B(v), this implies that B(v) ⊆ B(u′). Thus, we have
B(u′) = B(v), in contradiction to the fact that the graph is 3-edge-connected. This
shows that ehigh(u′) /∈ B(v).

Let us suppose, for the sake of contradiction, that e ∈ B(u′). Since u = lowestU(v, e),
by Lemma 5.35 we have that B(v)⊔{ehigh(u)} = B(u)⊔{e}. This implies that e /∈ B(u).
The lower endpoint of e is a proper ancestor of v, and therefore a proper ancestor of
u. Thus, since e /∈ B(u), we have that the higher endpoint of e is not a descendant
of u. This implies that the higher endpoint of e is not a descendant of z either. Since
M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = z, we have that ehigh(u′) is the only back-edge in
B(u′) whose higher endpoint is not a descendant of z. Since e ∈ B(u′), this shows

234

that ehigh(u′) = e. But this implies that ehigh(u′) ∈ B(v), a contradiction. Thus, we have
e /∈ B(u′).

Now let (x, y) be a back-edge in B(u′) \ {ehigh(u′)}. Then x is a descendant of
z, and therefore a descendant of u. Furthermore, y is a proper ancestor of u′, and
therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). Due to the generality
of (x, y) ∈ B(u′) \ {ehigh(u′)}, this implies that B(u′) \ {ehigh(u′)} ⊆ B(u). And since
ehigh(u) /∈ B(u′), this can be strengthened to B(u′) \ {ehigh(u′)} ⊆ B(u) \ {ehigh(u)}.
Since u = lowestU(v, e), by Lemma 5.35 we have that B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}.
This implies that B(u) \ {ehigh(u)} = B(v) \ {e}. Thus, we have B(u′) \ {ehigh(u′)} ⊆
B(v) \ {e}. Conversely, let (x, y) be a back-edge in B(v) \ {e}. Then x is a descendant
of z, and therefore a descendant of u′. Furthermore, y is a proper ancestor of v,
and therefore a proper ancestor of u′. This shows that (x, y) ∈ B(u′). Due to the
generality of (x, y) ∈ B(v) \ {e}, this implies that B(v) \ {e} ⊆ B(u′). And since
ehigh(u

′) /∈ B(v), this can be strengthened to B(v) \ {e} ⊆ B(u′) \ {ehigh(u′)}. Thus, we
have B(v) \ {e} = B(u′) \ {ehigh(u′)}. This implies that bcount(v) = bcount(u′). Thus,
we have that u′ is a proper descendant of v such that ehigh(u′) /∈ B(v), e /∈ B(u′),
M(B(u′) \ {ehigh(u′)}) = M(B(v) \ {e}), and bcount(v) = bcount(u′). But since u′ is
lower than u, we have a contradiction to the minimality of u = lowestU(v, e).

Thus, we conclude that u is the lowest proper descendant of v such that M(u) ̸=
M(B(u) \ {ehigh(u)}) = M(B(v) \ {e}).

Proposition 5.12. Algorithm 24 computes a collection C of Type-2ii 4-cuts, such that every
Type-2ii 4-cut of the form {(u, p(u)), (v, p(v)), e1, e2}, where B(v) ⊔ {e1} = B(u) ⊔ {e2},
is implied by C through the pair of edges {(u, p(u)), e1}. Furthermore, Algorithm 24 has a
linear-time implementation.

Proof. First, we observe that all 4-element sets marked by Algorithm 24 are Type-2ii
4-cuts. To see this, notice that the markings take place in Lines 16, 20, 24, 28, 32, or
36. In Lines 16 and 28, we have that u = uhighL(v) or u = uhighR(v), respectively, and so
u is a proper descendant of v such that M(B(u) \ {ehigh(u)}) = M(B(v) \ {e}), where
e = eL(v) or e = eR(v), respectively, and bcount(u) = bcount(v). Thus, Lemma 5.32
implies that B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}, and therefore Lemma 5.28 implies that
{(u, p(u)), (v, p(v)), ehigh(u), e} is a Type-2ii 4-cut. In Lines 20, 24, 32, and 36, we have
that u = uL(v), u = prevM(uL(v)), u = uR(v), or u = prevM(uR(v)), respectively, and
so u is also a proper descendant of v. Furthermore, since the conditions in Lines 19,

235

Algorithm 24: Compute a collection of Type-2ii 4-cuts, which implies all
Type-2ii 4-cuts
1 foreach vertex v ̸= r do
2 compute ML(v) = M(B(v) \ {eL(v)}) and MR(v) = M(B(v) \ {eR(v)})

3 end
4 foreach vertex u ̸= r do
5 compute Mhigh(u) = M(B(u) \ {ehigh(u)})

6 end
7 foreach vertex v ̸= r do
8 compute the lowest proper descendant u of v with M(u) ̸= Mhigh(u) = ML(v); denote this

vertex as uhighL(v)

9 compute the lowest proper descendant u of v with M(u) ̸= Mhigh(u) = MR(v); denote
this vertex as uhighR(v)

10 compute the lowest proper descendant u of v with M(u) = ML(v); denote this vertex as
uL(v)

11 compute the lowest proper descendant u of v with M(u) = MR(v); denote this vertex as
uR(v)

12 end
13 foreach vertex v ̸= r do
14 let u← uhighL(v)

15 if bcount(u) = bcount(v) then
16 mark {(u, p(u)), (v, p(v)), ehigh(u), eL(v)} as a Type-2ii 4-cut
17 end
18 let u← uL(v)

19 if Mhigh(u) = ML(v) and bcount(u) = bcount(v) then
20 mark {(u, p(u)), (v, p(v)), ehigh(u), eL(v)} as a Type-2ii 4-cut

21 end
22 let u← prevM(u)

23 if Mhigh(u) = ML(v) and bcount(u) = bcount(v) then
24 mark {(u, p(u)), (v, p(v)), ehigh(u), eL(v)} as a Type-2ii 4-cut

25 end
26 let u← uhighR(v)

27 if bcount(u) = bcount(v) then
28 mark {(u, p(u)), (v, p(v)), ehigh(u), eR(v)} as a Type-2ii 4-cut
29 end
30 let u← uR(v)

31 if Mhigh(u) = MR(v) and bcount(u) = bcount(v) then
32 mark {(u, p(u)), (v, p(v)), ehigh(u), eR(v)} as a Type-2ii 4-cut

33 end
34 let u← prevM(u)

35 if Mhigh(u) = MR(v) and bcount(u) = bcount(v) then
36 mark {(u, p(u)), (v, p(v)), ehigh(u), eR(v)} as a Type-2ii 4-cut

37 end

38 end

236

23, 31, or 35, respectively, are satisfied, we have that M(B(u) \ {ehigh(u)}) = M(B(v) \
{e}), where e = eL(v) or e = eR(v), and bcount(u) = bcount(v). Thus, Lemma 5.32
implies that B(v) ⊔ {ehigh(u)} = B(u) ⊔ {e}, and therefore Lemma 5.28 implies that
{(u, p(u)), (v, p(v)), ehigh(u), e} is a Type-2ii 4-cut. Thus, the collection C of 4-element
sets marked by Algorithm 24 is a collection of Type-2ii 4-cuts.

Now let {(u, p(u)), (v, p(v)), e1, e2} be a Type-2ii 4-cut. Then we may assume
w.l.o.g. that u is a proper descendant of v, and B(v) ⊔ {e1} = B(u) ⊔ {e2}. This
implies that B(u) \{e1} = B(v) \{e2}, and therefore M(B(u) \{e1}) = M(B(v) \{e2}).
Furthermore, we have e1 ̸= e2, and B(u) ⊔ {e2} = B(v) ⊔ {e1} implies that
bcount(v) = bcount(u). By Lemma 5.34 we have that e1 = ehigh(u). Thus, it makes
sense to consider the lowest proper descendant u′ of v such that ehigh(u′) /∈ B(v),
e2 /∈ B(u′), M(B(u′) \ {ehigh(u′)}) = M(B(v) \ {e2}) and bcount(u′) = bcount(v). In
other words, we have that u′ = lowestU(v, e2) is defined. Then, Lemma 5.35 im-
plies that {(u′, p(u′)), (v, p(v)), ehigh(u

′), e2} is also a Type-2ii 4-cut. We will show that
{(u′, p(u′)), (v, p(v)), ehigh(u

′), e2} is marked by Algorithm 24.
By Lemma 5.34 we have that either e2 = eL(v), or e2 = eR(v). Let us assume that

e2 = eL(v) (the argument for e2 = eR(v) is similar). If M(u′) ̸= M(B(u′) \ {ehigh(u′)}),
then Lemma 5.38 implies that u′ is the lowest proper descendant of v such that
M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = M(B(v) \ {eL(v)}). Thus, we have u′ = uhighL(v) (see
Line 8), and therefore {(u′, p(u′)), (v, p(v)), ehigh(u

′), eL(v)} will be marked in Line 16.
On the other hand, if M(u′) = M(B(u′) \ {ehigh(u′)}), then Lemma 5.37 implies that u′

is either the lowest or the second-lowest proper descendant of v such that M(u′) =

M(B(v) \ {eL(v)}). Thus, we have that either u′ = uL(v) or u′ = prevM(uL(v)) (see
Line 10), and therefore {(u′, p(u′)), (v, p(v)), ehigh(u

′), eL(v)} will be marked in either
Line 20 or Line 24.

Let us rephrase our result so far in a more succinct notation. let v ̸= r be a vertex
and let ẽ be a back-edge in B(v), such that there is a Type-2ii 4-cut of the form
{(u, p(u)), (v, p(v)), e, ẽ}, where u is a proper descendant of v. Then, we may consider
the lowest proper descendant u′ of v such that there is a Type-2ii 4-cut of the form
{(u′, p(u′)), (v, p(v)), e′, ẽ}. Let C(v, ẽ) denote {(u′, p(u′)), (v, p(v)), e′, ẽ}. Then, we have
basically shown that C(v, ẽ) ∈ C. We denote u′ as U(v, ẽ). Notice that, by Lemma 5.34,
we have e′ = ehigh(u

′).
Now, let C = {(u, p(u)), (v, p(v)), e, ẽ} be a Type-2ii 4-cut such that u is a proper

descendant of v and B(u) ⊔ {ẽ} = B(v) ⊔ {e}. If C ∈ C, then we have that C implies

237

C through any partition of C into pairs of edges. So let us suppose that C /∈ C. By
Lemma 5.34, we have e = ehigh(u). Now consider the 4-cut C1 = C(v, ẽ) ∈ C, and let
u1 = U(v, ẽ). Then we have C1 = {(u1, p(u1)), (v, p(v)), ehigh(u1), ẽ} and B(u1) ⊔ {ẽ} =
B(v) ⊔ {ehigh(u1)}. Since C /∈ C, we have u ̸= u1. Thus, Lemma 5.36 implies that
B(u) ⊔ {ehigh(u1)} = B(u1) ⊔ {ehigh(u)}. Notice that u and u1 are related as ancestor
and descendant. (To see this, consider any back-edge (x, y) ∈ B(u) \ {ehigh(u)} =

B(u1) \ {ehigh(u1)}. Then we have that x is a common descendant of u and u1, and
therefore u and u1 are related as ancestor and descendant.) Therefore, Lemma 5.28
implies that C ′

1 = {(u, p(u)), (u1, p(u1)), e, ehigh(u1)} is a Type-2ii 4-cut. If C ′
1 ∈ C,

then we have that C is implied by C through the pair of edges {(u, p(u)), e}, since
{C1, C

′
1} ⊆ C. So let us suppose that C ′

1 /∈ C.
Due to the mimimality of u1, we have u1 < u. Thus, u is a proper descen-

dant of u1. Therefore, we can consider the 4-cut C2 = C(u1, ehigh(u1)), and let
u2 = U(u1, ehigh(u1)). Then we have C2 = {(u2, p(u2)), (u1, p(u1)), ehigh(u2), ehigh(u1)}
and B(u2) ⊔ {ehigh(u1)} = B(u1) ⊔ {ehigh(u2)}. Since C1 /∈ C, we have u ̸= u2. Thus,
Lemma 5.36 implies that B(u)⊔{ehigh(u2)} = B(u2)⊔{ehigh(u)}. Therefore, Lemma 5.28
implies that C ′

2 = {(u, p(u)), (u2, p(u2)), e, ehigh(u2)} is a Type-2ii 4-cut. If C ′
2 ∈ C, then

C is implied by C through the pair of edges {(u, p(u)), e}, since {C1, C2, C
′
2} ⊆ C.

Otherwise, we can proceed in the same manner, and eventually this process must ter-
minate, because we consider a proper descendant u1 of v, then a proper descendant
u2 of u1, and so on. Termination implies that we will have arrived at a sequence
of 4-cuts C1, C2, . . . , Ck, C

′
k in C, such that C1 = {(u1, p(u1)), (v, p(v)), ehigh(u1), ẽ},

Ci = {(ui, p(ui)), (ui−1, p(ui−1)), ehigh(ui), ehigh(ui−1)} for every i ∈ {2, . . . , k}, and
C ′

k = {(u, p(u)), (uk, p(uk)), e, ehigh(uk)}. Thus, C is implied by C through the pair
of edges {(u, p(u)), e}.

It remains to establish the linear complexity of Algorithm 24. First, Proposition 3.4
implies that we can compute the edges eL(v) and eR(v), for all vertices v ̸= r, in linear
time in total. Also, Proposition 3.3 implies that we can compute the edges ehigh(u), for
all vertices u ̸= r, in linear time in total. Then, by Proposition 3.6 we can compute
the values M(B(v) \ {eL(v)}) and M(B(v) \ {eR(v)}), for all vertices v ̸= r, in linear
time in total. Thus, the for loop in Line 1 can be performed in linear time. Similarly,
the for loop in Line 4 can also be performed in linear time. In order to compute the
vertices uhighL(v) and uhighR(v) in Lines 8 and 9, respectively, we use Algorithm 22.
Specifically, for every vertex x, let M−1

high(x) denote the set of all vertices u ̸= r such

238

that M(u) ̸= M(B(u) \ {ehigh(u)}) = x. Then, if x and y are two distinct vertices,
we have that the sets M−1

high(x) and M−1
high(y) are disjoint. Now let v ̸= r be a vertex,

and let x = M(B(v) \ {eL(v)}). Then we generate a query q(M−1
high(x), v). This is

to return the lowest vertex u such that u ∈ M−1
high(x) and u > v. This implies that

M(B(u) \ {ehigh(u)}) = x = M(B(v) \ {eL(v)}), and therefore we have that x is a
common descendant of u and v, and therefore u and v are related as ancestor and
descendant. Then, u > v implies that u is a proper descendant of v. Thus, we have
that u is the lowest proper descendant of v such that u ∈ M−1

high(x), and therefore
u = uhighL(v). Since the number of all those queries is O(n), Algorithm 22 can answer
all of them in linear time in total, according to Lemma 5.27. Similarly, we can compute
all vertices uhighR(v), for v ̸= r, in linear time in total. Also, we can similarly compute
the vertices uL(v) and uR(v) in Lines 10 and 11, respectively, in linear time in total.
We conclude that Algorithm 25 runs in linear time.

5.6.3 The case B(u) = B(v) ⊔ {e1, e2}

Lemma 5.39. Let u and v be two vertices such that v is a proper ancestor of u with v ̸= r.
Then there exist two distinct back-edges e1, e2 such that B(u) = B(v)⊔{e1, e2} if and only if:
bcount(u) = bcount(v)+2 and M(B(u)\{e1, e2}) = M(v), where e1 = (highD1(u), high1(u))
and e2 = (highD2(u), high2(u)) (or reversely).

Proof. (⇒) bcount(u) = bcount(v) + 2 and M(B(u) \ {e1, e2}) = M(v) are immediate
consequences of B(u) = B(v) ⊔ {e1, e2}. Now let (x1, y1), . . . , (xk, yk) be all the back-
edges in B(u) sorted in decreasing order w.r.t. their lower endpoint. (We note that
(xi, yi) = (highDi(u), highi(u)), for every i ∈ {1, . . . , k}.) Let i ∈ {1, . . . , k} be an index
such that (xi, yi) ∈ B(v). Then yi is a proper ancestor of v, and therefore yi < v. This
implies that every yj , for j ∈ {i, . . . , k}, has yj < v. Since yj is a proper ancestor of u
and u is a descendant of v, this implies that yj is a proper ancestor of v. Thus we have
that all back-edges (xi, yi), . . . , (xk, yk) are in B(v), since all x1, . . . , xk are descendants
of v. Since B(v) = B(u) \ {e1, e2}, we have that exactly two back-edges in B(u) are
not in B(v) (i.e., e1 and e2). Thus we have {e1, e2} = {(x1, y1), (x2, y2)}.
(⇐) Let e1 = (highD1(u), high1(u)) and e2 = (highD2(u), high2(u)). We have that
M(B(u) \ {e1, e2}) is a descendant of M(u), and therefore M(v) is a descendant
of M(u). Thus, since v is an ancestor of u, by Lemma 3.2 we have that B(v) ⊆
B(u). Since bcount(u) = bcount(v) + 2, this implies that there exist two back-edges

239

e′1, e
′
2 ∈ B(u) \ B(v) such that B(u) = B(v) ⊔ {e′1, e′2}. By the ⇒ direction we have

{e′1, e′2} = {e1, e2}.

Lemma 5.40. Let u and v be two vertices such that v is a proper ancestor of u and
B(u) = B(v) ⊔ {e1, e2}, for two back-edges e1, e2. Then v is either the greatest or the
second-greatest proper ancestor of u with M(v) = M(B(u) \ {e1, e2}).

Proof. First, by Lemma 5.39 we have that M(v) = M(B(u) \ {e1, e2}). Thus, we may
consider the greatest proper ancestor v′ of u with M(v′) = M(B(u)\{e1, e2}). If v′ = v,
then we are done. Otherwise, let us suppose, for the sake of contradiction, that v′ ̸= v

and v is not the second-greatest proper ancestor of u with M(v) = M(B(u) \ {e1, e2}).
Then there is a proper descendant v′′ of v that is a proper ancestor of v′, such that
M(v′′) = M(B(u) \ {e1, e2}). Since M(v′) = M(v′′) = M(v), by Lemma 3.2 we have
that B(v) ⊆ B(v′′) ⊆ B(v′). This can be strengthened to B(v) ⊂ B(v′′) ⊂ B(v′), since
the graph is 3-edge-connected. This implies that there is a back-edge e ∈ B(v′′)\B(v)

and a back-edge e′ ∈ B(v′) \ B(v′′). Then neither of e and e′ is in B(v), but both of
them are in B(v′).

Now let (x, y) be a back-edge in B(v′). Then we have that y is a proper ancestor of
v′, and therefore a proper ancestor of u. Furthermore, x is a descendant of M(v′), and
therefore it is a descendant of M(B(u) \ {e1, e2}) (since M(v) = M(B(u) \ {e1, e2})),
and therefore a descendant of u. This shows that (x, y) is in B(u), and thus we have
B(v′) ⊆ B(u). In particular, we have that both e and e′ are in B(u). But since none of
them is in B(v), by B(u) = B(v)⊔{e1, e2} we have that {e, e′} = {e1, e2}. Now let (x, y)
be a back-edge in B(u). If (x, y) = e1 or (x, y) = e2, then (x, y) ∈ B(v′). Otherwise,
B(u) = B(v) ⊔ {e1, e2} implies that (x, y) ∈ B(v), and therefore B(v) ⊆ B(v′′) ⊆ B(v′)

implies that (x, y) ∈ B(v′). This shows that B(u) ⊆ B(v′). Thus we have B(v′) = B(u),
in contradiction to the fact that the graph is 3-edge-connected. Thus, we have that v
is the second-greatest proper ancestor of u with M(v) = M(B(u) \ {e1, e2}).

Now we can describe the method to compute all 4-cuts of the form
{(u, p(u)), (v, p(v)), e1, e2}, where v is an ancestor of u and B(u) = B(v) ⊔ {e1, e2}.
The idea is to find, for every vertex u, a good candidate proper ancestor v of u that
may provide such a 4-cut. According to Lemma 5.40, v must be either the greatest
or the second-greatest proper ancestor of u that satisfies M(v) = M(B(u) \ {e1, e2}),
where ei is the highi-edge of u, for i ∈ {1, 2}. Then, if such a v exists, we can simply
apply Lemma 5.39 in order to check whether u and v satisfy B(u) = B(v) ⊔ {e1, e2}.

240

This procedure is implemented in Algorithm 25. The proof of correctness and linear
complexity is given in Proposition 5.13.

Algorithm 25: Compute all 4-cuts of the form {(u, p(u)), (v, p(v)), e1, e2}, where
v is an ancestor of u and B(u) = B(v) ⊔ {e1, e2}

1 foreach vertex u ̸= r do
2 let ei(u)← (highDi(u), highi(u)), for i ∈ {1, 2}
3 compute M(B(u) \ {e1(u), e2(u)})

4 end
5 foreach vertex u ̸= r do
6 let v be the greatest proper ancestor of u such that

M(v) = M(B(u) \ {e1(u), e2(u)})
7 if bcount(u) = bcount(v) + 2 then
8 mark {(u, p(u)), (v, p(v)), e1(u), e2(u)} as a 4-cut
9 end

10 let v ← prevM(v)

11 if v is an ancestor of u and bcount(u) = bcount(v) + 2 then
12 mark {(u, p(u)), (v, p(v)), e1(u), e2(u)} as a 4-cut
13 end

14 end

Proposition 5.13. Algorithm 25 computes all 4-cuts of the form {(u, p(u)), (v, p(v)), e1, e2},
where v is an ancestor of u and B(u) = B(v) ⊔ {e1, e2}. Furthermore, it has a linear-time
implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), e1, e2} be a 4-cut such that u is a descen-
dant of v and B(u) = B(v) ⊔ {e1, e2}. Then Lemma 5.39 implies that {e1, e2} =

{ehigh1(u), ehigh2(u)} and bcount(u) = bcount(v) + 2. Furthermore, Lemma 5.40 implies
that v is either the greatest or the second-greatest proper ancestor of u such that
M(v) = M(B(u) \ {e1, e2}). Thus, it is clear that, if v is the greatest proper ancestor
of u with M(v) = M(B(u) \ {e1, e2}), then C will be marked in Line 8. Otherwise,
we have that v is the predecessor of v′ in M−1(M(v)), where v′ is the greatest proper
ancestor of u such that M(v′) = M(B(u) \ {e1(u), e2(u)}). Thus, C will be marked in
Line 12.

Conversely, let C = {(u, p(u)), (v, p(v)), e1, e2} be a 4-element set that is marked

241

in Line 8 or 12. In either case, we have that v is a proper ancestor of u such that
M(v) = M(B(u)\{ehigh1(u), ehigh2(u)}) and bcount(u) = bcount(v)+2. Thus, Lemma 5.39
implies that B(u) = B(v)⊔{ehigh1(u), ehigh2(u)}, and therefore C is correctly marked as
a 4-cut.

Now we will show that Algorithm 25 runs in linear time. By Proposition 3.6 we
have that the values M(B(u) \ {ehigh1(u), ehigh2(u)}) can be computed in linear time
in total, for all vertices u ̸= r. Thus, the for loop in Line 1 is performed in linear
time. In order to compute the vertex v in Line 6, we use Algorithm 22. Specifically,
let u ̸= r be a vertex, and let x = M(B(u) \ {ehigh1(u), ehigh2(u)}). Then we generate a
query q(M−1(x), u). This returns the greatest vertex v such that M(v) = x and v < u.
Notice that, since M(v) = x, we have that M(v) is a common descendant of u and v,
and therefore u and v are related as ancestor and descendant. Then, v < u implies
that v is a proper ancestor of u. Thus, we have that v is the greatest proper ancestor
of u such that M(v) = M(B(u) \ {ehigh1(u), ehigh2(u)}). Since the number of all those
queries is O(n), Algorithm 22 can answer all of them in linear time in total, according
to Lemma 5.27. We conclude that Algorithm 25 runs in linear time.

5.7 Computing Type‐3α 4‐cuts

Throughout this section, we assume that G is a 3-edge-connected graph with n vertices
and m edges. All graph-related elements (e.g., vertices, edges, cuts, etc.) refer to G.
Furthermore, we assume that we have computed a DFS-tree T of G rooted at a vertex
r.

Lemma 5.41. Let u, v, w be three vertices ̸= r such that w is a common ancestor of {u, v},
and u, v are not related as ancestor and descendant. Then there is a back-edge e such that
{(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut if and only if either (i) e ∈ B(u) ∪ B(v) and
B(w) ⊔ {e} = B(u) ⊔ B(v), or (ii) B(w) = (B(u) ⊔ B(v)) ⊔ {e}.

Proof. (⇒) Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e}. Since w is a common ancestor of
{u, v}, and u, v are not related as ancestor and descendant, we have that the subtrees
T (u) and T (v), and the tree-paths T [p(u), w] and T [p(v), w], remain intact in G \ C.
Let e = (x, y). Since C is a 4-cut and e is a back-edge in C , by Lemma 3.14 we have
that e is either in B(u), or in B(v), or in B(w).

242

Let us assume first that e ∈ B(u). Then x is a descendant of u, and therefore it
cannot be a descendant of v (since u and v are not related as ancestor and descendant).
Thus we have e /∈ B(v). Now let us assume, for the sake of contradiction, that
e ∈ B(w). Since C is a 4-cut, we have that G′ = G \ {(u, p(u)), (v, p(v)), (w, p(w))} is
connected. In particular, u is connected with p(u) in G′. Suppose first that there is
a back-edge (x′, y′) ∈ B(u) such that y′ ∈ T [p(u), w]. Then u is still connected with
p(u) in G′ \ e, contradicting the fact that C is a 4-cut of G. Thus, every back-edge
(x′, y′) ∈ B(u) must satisfy that y′ is a proper ancestor of w. Similarly, we have that
every back-edge (x′, y′) ∈ B(v) must satisfy that y′ is a proper ancestor of w. Thus,
since u is connected with p(u) in G′, there must exist a back-edge (x′, y′) ∈ B(w)

such that x′ is not a descendant of u or v. In particular, (x′, y′) ̸= e. But now, by
removing e from G′, we can see that w remains connected with p(w) through the path
T [w, x′], (x′, y′), T [y′, p(w)], in contradiction to the fact that C is a 4-cut of G. This shows
that e /∈ B(w). Now it is not difficult to see that every back-edge in (B(u)\{e})∪B(v)

must be in B(w), for otherwise C is not a 4-cut of G. And conversely, every back-edge
in B(w) must be in (B(u) \ {e}) ∪B(v), for otherwise C is not a 4-cut of G. Thus we
have shown that B(w)⊔ {e} = B(u)⊔B(v). Similarly, if we assume that e ∈ B(v), we
can use the analogous argument to show that B(w)⊔ {e} = B(u)⊔B(v). In any case,
we observe that we cannot have that e is both in B(u) ∪ B(v) and in B(w) (∗).

Now let us assume that e ∈ B(w). Then, by (∗) we have that e /∈ B(u)∪B(v). Now
let (x′, y′) be a back-edge in B(u). Let us assume, for the sake of contradiction, that
y′ ∈ T [p(u), w]. Then notice that u is connected with p(u) in the graph G \C through
the path T [u, x′], (x′, y′), T [y′, p(u)], in contradiction to the fact that C is a 4-cut of
G. Thus we have that y′ is a proper ancestor of w, and therefore (x′, y′) ∈ B(w).
This shows that B(u) ⊆ B(w). Similarly, we have B(v) ⊆ B(w) using the analogous
argument. This shows that B(u)∪B(v) ⊆ B(w). Since e cannot be in B(u)∪B(v), this
is strengthened to B(u) ∪B(v) ⊆ B(w) \ {e}. Conversely, let (x′, y′) be a back-edge in
B(w)\{e}. Let us assume that (x′, y′) /∈ B(u). This implies that x′ is not a descendant
of u (for otherwise we would have (x′, y′) ∈ B(u), because y′ is a proper ancestor of w,
and therefore a proper ancestor of u). Let us suppose, for the sake of contradiction,
that x′ is not a descendant of v. But then we have that w is connected with p(w) in
G \ C through the path T [w, x′], (x′, y′), T [y′, p(w)], contradicting the fact that C is a
4-cut of G. Thus we have that x′ is a descendant of v, and therefore (x′, y′) ∈ B(v)

(since y′ is a proper ancestor of w, and therefore a proper ancestor of v). This means

243

that B(w) \ {e} ⊆ B(u)∪B(v), and therefore we have B(w) \ {e} = B(u)∪B(v). Since
e ∈ B(w) \ (B(u) ∪ B(v)), this implies that B(w) = (B(u) ∪ B(v)) ⊔ {e}.

Finally, notice that the expression “B(u) ∪ B(v)” can be strengthened to “B(u) ⊔
B(v)” everywhere, because u and v are not related as ancestor and descendant.

(⇐) In the following, we let G′ denote the graph G\{(u, p(u)), (v, p(v)), (w, p(w))}.
In every case, we will first show that all 3-set subsets of {(u, p(u)), (v, p(v)), (w, p(w)), e}
are not 3-cuts of G. Then we will show that G′ \ e is disconnected.

Let us assume first that there is a back-edge e ∈ B(u) ∪ B(v) such that B(w) ⊔
{e} = B(u) ⊔ B(v). We may assume w.l.o.g. that e ∈ B(u). Then we have that
e /∈ B(v) and e /∈ B(w). Let e = (x, y). Then this means that x is a descendant of
u and y is a proper ancestor of u. Since u and v are not related as ancestor and
descendant, we have that x is not a descendant of v. Therefore, the tree-path T [x, u]

remains intact in G′. Since e /∈ B(w), we have that y cannot be a proper ancestor of
w (because otherwise we would have (x, y) ∈ B(w), since x is a descendant of u, and
therefore a descendant of w). Thus we have that u remains connected with p(u) in
G′ through the path T [u, x], (x, y), T [y, p(u)], and so {(u, p(u)), (v, p(v)), (w, p(w))} is
not a 3-cut of G. Since e /∈ B(v) ∪ B(w), we have that the tree-path T [x, y] remains
intact in G \ {(v, p(v)), (w, p(w)), e}. Thus, the endpoints of e remain connected in
G \ {(v, p(v)), (w, p(w)), e}, and so {(v, p(v)), (w, p(w)), e} is not a 3-cut of G. Since the
graph is 3-edge-connected, we have that there is a back-edge (x′, y′) ∈ B(v). Since u

and v are not related as ancestor and descendant, we have that the tree-paths T [x′, v]

and T [p(v), y′] remain intact in G \ {(u, p(u)), (v, p(v)), e}. Thus, v remains connected
with p(v) in G \ {(u, p(u)), (v, p(v)), e} through the path T [v, x′], (x′, y′), T [y′, p(v)], and
therefore {(u, p(u)), (v, p(v)), e} is not a 3-cut of G. Since w is a proper ancestor of u, we
have that w does not lie on the tree-path T [x, u]. And since y is not a proper ancestor
of w, we have that y lies on the tree-path T [p(u), w]. Thus, u remains connected with
p(u) in G\{(u, p(u)), (w, p(w)), e} through the path T [u, x], (x, y), T [y, p(u)]. This shows
that {(u, p(u)), (w, p(w)), e} is not a 3-cut of G.

Now suppose that we remove e from G′. Consider the four parts A = T (u), B =

T (v), C = T (w) \ (T (u) ∪ T (v)) an D = T (r) \ T (w). Observe that these parts are
connected in G′ \e. Now, the only ways in which u can remain connected with p(u) in
G′ \ e are: (1) there is a back-edge from A to C , or (2) there is back-edge from A to D

and a back-edge from D to C , or (3) there is a back-edge from A to D, a back-edge
from D to B, and a back-edge from B to C. Possibility (1) is precluded from the

244

fact that B(u) \ {e} ⊆ B(w). Possibility (2) is precluded from the fact that B(w) ⊂
B(u)⊔B(v) (i.e., there is no back-edge from C to D). And possibility (3) is precluded
from B(v) ⊂ B(w) (i.e., there is no back-edge from B to C). Thus, we conclude that
u is not connected with p(u) in G′ \e, and so {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut
of G.

Now let us assume that there is a back-edge e = (x, y) such that B(w) =

(B(u) ⊔ B(v)) ⊔ {e}. Then we have that e /∈ B(u) ∪ B(v). This implies that x is
not a descendant of u (because otherwise we would have (x, y) ∈ B(u), since y is
a proper ancestor of w, and therefore a proper ancestor of u). Similarly, we have
that x is not a descendant of v. Thus, the tree-path T [x,w] remains intact in G′.
Furthermore, the tree-path T [y, p(w)] remains intact in G′. This implies that w re-
mains connected with p(w) in G′ through the path T [w, x], (x, y), T [y, p(w)]. Therefore,
{(u, p(u)), (v, p(v)), (w, p(w))} is not a 3-cut of G. Since e /∈ B(u) ∪B(v), we have that
neither u nor v lies on the tree-path T [x, y]. Thus, the endpoints of e remain connected
in G \ {(u, p(u)), (v, p(v)), e}, and so {(u, p(u)), (v, p(v)), e} is not a 3-cut of G. Now
consider the graph G \ {(u, p(u)), (w, p(w)), e}. Since G is 3-edge-connected, we have
that there is a back-edge (x′, y′) ∈ B(v). Then, B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies
that (x′, y′) ∈ B(w) and (x′, y′) ̸= e. Since u and v are not related as ancestor and
descendant, we have that x′ is not a descendant of u (because otherwise, x′ would
be a common descendant of u and v). Thus, u does not lie on the tree-path T [x′, w].
Furthermore, we have that y′ is a proper ancestor of w. Thus, w remains connected
with p(w) in G \ {(u, p(u)), (w, p(w)), e}, through the path T [w, x′], (x′, y′), T [y′, p(w)].
This shows that {(u, p(u)), (w, p(w)), e} is not a 3-cut of G. Similarly, we can show
that {(v, p(v)), (w, p(w)), e} is not a 3-cut of G.

Now suppose that we remove e from G′. Consider the four parts A = T (u), B =

T (v), C = T (w) \ (T (u) ∪ T (v)) an D = T (r) \ T (w). Observe that these parts are
connected in G′ \ e. Now, the only ways in which w can remain connected with p(w)

in G′\e are: (1) there is a back-edge from C to D, or (2) there is back-edge from C to A
and a back-edge from A to D, or (3) there is a back-edge from C to B and a back-edge
from B to D. Possibility (1) is precluded from the fact that B(w) \ {e} = B(u)⊔B(v).
Possibility (2) is precluded from the fact that B(u) ⊂ B(w) (i.e., there is no back-edge
from A to C). And possibility (3) is precluded from B(v) ⊂ B(w) (i.e., there is no
back-edge from B to C). Thus, we conclude that w is not connected with p(w) in
G′ \ e, and so {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut of G.

245

According to Lemma 5.41, we distinguish two types of Type-3α 4-cuts: Type-
3αi and Type-3αii. In both cases, the 4-cuts that we consider have the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, and u, v

are not related as ancestor and descendant. In the case of Type-3αi 4-cuts, we have
that e ∈ B(u) ⊔ B(v) and B(w) ⊔ {e} = B(u) ⊔ B(v). In Type-3αii 4-cuts, we have
e ∈ B(w) \ (B(u) ⊔ B(v)) and B(w) = (B(u) ⊔B(v)) ⊔ {e}.

5.7.1 Type‐3αi 4‐cuts

Lemma 5.42. Let u, v, w be three vertices such that w is a common ancestor of {u, v},
and u, v are not related as ancestor and descendant. Suppose that there is a back-edge
e ∈ B(u) ⊔ B(v) such that {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut. Then, either u is
a descendant of the low1 child of M(w) and v is a descendant of the low2 child of M(w),
or reversely.

Proof. By the conditions of the lemma, we have that {(u, p(u)), (v, p(v)), (w, p(w)), e}
is a Type-3αi 4-cut, and by Lemma 5.41 we have that B(w) ⊔ {e} = B(u) ⊔ B(v).

First we will show that both u and v are descendants of M(w). Since u and v

are not related as ancestor and descendant, we have that either none of them is an
ancestor of M(w), or one of them is an ancestor of M(w), but the other is not related
with M(w) as ancestor or descendant. Suppose for the sake of contradiction that the
second case is true, and assume w.l.o.g. that u is an ancestor of M(w). This implies
that v is not related as ancestor and descendant with M(w). Since the graph is 3-
edge-connected, we have that |B(v)| ≥ 2. And since all back-edges in B(v) are also
in B(w), except possibly e, we have that there is a back-edge (x, y) ∈ B(v) ∩ B(w).
But then we have that x is a descendant of both v and M(w), which implies that
v and M(w) are related as ancestor and descendant, a contradiction. Thus, we have
that none of u and v is an ancestor of M(w). The same argument also shows that it
cannot be the case that one of u and v is not related as ancestor and descendant with
M(w). Thus we have that both u and v are proper descendants of M(w).

Now let us assume, for the sake of contradiction, that M(w) has less than two
children. This implies that there is at least one back-edge of the form (M(w), y) in
B(w), for a vertex y with y < w. Then B(w)⊔{e} = B(u)⊔B(v) implies that e /∈ B(w),
and therefore e ̸= (M(w), y). But then, since both u and v are descendants of M(w),
we have that {(u, p(u)), (v, p(v)), (w, p(w)), e} cannot be a 4-cut, since w is connected

246

with p(w) through the path T [w,M(w)], (M(w), y), T [y, p(w)], a contradiction. This
shows that M(w) has at least two children. Furthermore, the same argument shows
that there is no back-edge of the form (M(w), y) in B(w). Let c1 and c2 be the low1
and low2 children of M(w), respectively.

Now let us assume, for the sake of contradiction, that u is neither a descendant
of c1 nor a descendant of c2. We may assume w.l.o.g. that v is not a descendant of c1
(because otherwise we have that v is not a descendant of c2, and we can reverse the
roles of c1 and c2 in the following). Since there is no back-edge of the form (M(w), y)

in B(w), we have that there are at least two back-edges (x1, y1), (x2, y2) ∈ B(w) such
that x1 is a descendant of c1 and x2 is a descendant of c2. Since neither u nor v

is a descendant of c1, we have that {(u, p(u)), (v, p(v)), (w, p(w)), e} cannot be a 4-
cut, since w is connected with p(w) through the path T [w, x1], (x1, y1), T [y1, p(w)], a
contradiction. Thus we have shown that u is either a descendant of c1 or a descendant
of c2. A similar argument shows that v is either a descendant of c1 or a descendant
of c2. Furthermore, the same argument shows that it cannot be the case that both u

and v are descendants of c1, or that both of them are descendants of c2. Thus the
lemma follows.

In the following, we will assume w.l.o.g. that the back-edge of the Type-3αi 4-
cuts that we consider leaps over u. Furthermore, we will consider the case that u
is a descendant of the low1 child of M(w). The other case is treated similarly. Also,
throughout this section we let e(u) denote the back-edge ehigh(u).

Lemma 5.43. Let u, v, w be three vertices such that w is a common ancestor of {u, v}, and
u, v are not related as ancestor and descendant. Suppose that there is a back-edge e ∈ B(u)

such that {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut. Then e = (highD1(u), high1(u)).
Furthermore, suppose that u is a descendant of the low1 child c of M(w). Then M(B(u) \
{e}) = M(w, c).

Proof. By Lemma 5.41 we have that B(w) = (B(u)\{e})⊔B(v). Let (x1, y1), . . . , (xk, yk)

be the list of the back-edges that leap over u sorted in decreasing order w.r.t. their
lower endpoint, so that (x1, y1) = (highD1(u), high1(u)). Let us assume, for the sake
of contradiction, that e = (xi, yi), for some i ∈ {2, . . . , k}. Since u is a descendant of
w, we have that xi is also a descendant of w. But since e /∈ B(w), we cannot have
that yi is a proper ancestor of w. But then we have that (xj, yj) /∈ B(w), for any
j ∈ {1, . . . , i}, since yj is a descendant of yi. Since i > 1, this means that there are at

247

least two back-edges in B(u) \ B(w), in contradiction to B(w) = (B(u) \ {e}) ⊔ B(v).
Thus we have that e = (x1, y1).

Now let (x, y) ∈ B(w) be a back-edge such that x is a descendant of c. By B(w) =

(B(u) \ {e}) ⊔ B(v) we have that either (x, y) ∈ B(u) \ {e}, or (x, y) ∈ B(v). By
Lemma 5.42 we have that v is a descendant of the low2 child of M(w), and so the
second case is impossible (because otherwise we would have that x is a descendant
of the low2 child of M(w)). Thus we have that (x, y) ∈ B(u) \ {e}. Conversely, let
(x, y) be a back-edge in B(u) \ {e}. Then by B(w) = (B(u) \ {e})⊔B(v) we have that
(x, y) ∈ B(w). And since u is a descendant of c, we have that x is also a descendant
of c. Thus we have shown that B(u) \ {e} = {(x, y) ∈ B(w) | x is a descendant of c},
and so we get M(B(u) \ {e}) = M(w, c).

Note 5.3. Notice that the argument in the proof of Lemma 5.43 works independently
of the fact that c is the low1 child of M(w). In other words, we could have assumed
that u is a descendant of the low2 child c of M(w). In this case, Lemma 5.42 would
imply that v is a descendant of the low1 child of M(w), and we would still get
M(B(u) \ {e}) = M(w, c) with the same argument.

Lemma 5.44. Let u, v, w be three vertices ̸= r, such that w is a proper ancestor of {u, v},
and u, v are not related as ancestor and descendant. Let c1 and c2 be the low1 and low2
children of M(w), respectively. Suppose that {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a 4-
cut, and let us assume that u is a descendant of c1. Then v is the lowest vertex with
M(v) = M(w, c2) that is a proper descendant of w.

Proof. Since {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a 4-cut, by Lemma 5.41 we have
that B(w) = (B(u)\{e(u)})⊔B(v). By Lemma 5.42 we have that v is a descendant of
c2. Let S = {(x, y) ∈ B(w) | x is a descendant of c2}. Then we have M(w, c2) = M(S).
Now let (x, y) be a back-edge in B(v). By B(w) = (B(u) \ {e(u)})⊔B(v) we have that
(x, y) ∈ B(w). And since v is a descendant of c2, we have (x, y) ∈ S. Conversely, let
(x, y) be a back-edge in S. Then by B(w) = (B(u)\{e(u)})⊔B(v) we have that either
(x, y) ∈ B(u) \ {(e(u))} or (x, y) ∈ B(v). But since x is a descendant of c2, it cannot be
the case that x is a descendant of u, because u is a descendant of c1. Thus we have
(x, y) ∈ B(v). This shows that S = B(v), and so we get M(w, c2) = M(v).

Now let us assume, for the sake of contradiction, that there is a proper ancestor
v′ of v with M(v′) = M(w, c2), which is also a proper descendant of w. Then, since
M(v′) = M(v), Lemma 3.2 implies that B(v′) ⊆ B(v). Now let (x, y) be a back-edge

248

in B(v). Then, as previously, we have (x, y) ∈ B(w). Thus, y is proper ancestor of
w, and therefore a proper ancestor of v′. Furthermore, x is a descendant of v, and
therefore a descendant of v′. This shows that (x, y) ∈ B(v′). Due to the generality
of (x, y) ∈ B(v), this implies that B(v) ⊆ B(v′). But then we get B(v′) = B(v), in
contradiction to the fact that the graph is 3-edge-connected. Thus, v is the lowest
proper descendant of w such that M(v) = M(w, c2).

Here we distinguish two cases of Type-3αi 4-cuts, depending on whetherM(B(u)\
{e(u)}) = M(u) orM(B(u)\{e(u)}) ̸= M(u). In the first case, we show how to compute
all such 4-cuts in linear time. In the second case, the number of 4-cuts can be Ω(n2).
However, we show how to compute a collection of such 4-cuts in linear time, so that
the rest of them are implied by this collection, plus that computed by Algorithm 24.
A vertex u such that M(B(u) \ {e(u)}) = M(u) is called a “special” vertex.

5.7.1.1 The case where M(B(u) \ {ehigh(u)}) = M(u)

Lemma 5.45. Let w, v be two vertices ̸= r such that w is a proper ancestor of v. Then
there is at most one vertex u such that: u is a special vertex, it is a proper descendant of
w, and {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a Type-3α 4-cut. If that is the case, assume
w.l.o.g. that u is a descendant of the low1 child c of M(w). Then u is either the lowest or
the second-lowest proper descendant of w such that M(u) = M(w, c).

Proof. Let u be proper descendant of w such that u is a special vertex and
{(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a Type-3α 4-cut (∗). By Lemma 5.41 we have
that B(w) = (B(u) \ {e(u)})⊔B(v). By Lemma 5.42 we may assume w.l.o.g. that u is
a descendant of the low1 child c of M(w), and v is a descendant of the low2 child of
M(w). By Lemma 5.43 we have that M(B(u) \ {e(u)}) = M(w, c). Since u is a special
vertex, we have M(u) = M(B(u) \ {e(u)}). Thus, M(B(u) \ {e(u)}) = M(w, c) implies
that M(u) = M(w, c).

Now let us assume, for the sake of contradiction, that there is another ver-
tex u′ such that: u′ is a special vertex, it is a proper descendant of w, and
{(u′, p(u′)), (v, p(v)), (w, p(w)), e(u′)} is a Type-3α 4-cut. Then, since v is a descen-
dant of the low2 child of M(w), by Lemma 5.42 we have that u′ is a descendant
of c. Thus, u′ satisfies the same properties as u. This implies that M(u′) = M(w, c).
Since u is an ancestor of M(u) = M(w, c) and u′ is an ancestor of M(u′) = M(w, c),
we have that u and u′ are related as ancestor and descendant (because they have a

249

common descendant). Let us assume w.l.o.g. that u′ is a proper ancestor of u. Then,
since M(u) = M(u′), Lemma 3.2 implies that B(u′) ⊆ B(u). Since the graph is 3-
edge-connected, this can be strengthened to B(u′) ⊂ B(u). Thus, there is a back-edge
(x, y) in B(u) \ B(u′). This implies that x is a descendant of u, and therefore a de-
scendant of u′. Thus, y cannot be a proper ancestor of u′. Therefore, since y and u′

are related as ancestor and descendant (since they have x as a common descendant),
we have that y is a descendant of u′. Thus, since u′ is a proper descendant of w,
we have that y cannot be a proper ancestor of w, and so (x, y) /∈ B(w). Thus, since
(x, y) ∈ B(u), B(w) = (B(u) \ {e(u)}) ⊔ B(v) implies that (x, y) = e(u). Now, since
B(u′) ⊂ B(u), we have e(u′) ∈ B(u). Since (x, y) /∈ B(u′), we have e(u′) ̸= (x, y). Also,
we have e(u′) /∈ B(w) (since B(w) = (B(u′) \ {e(u′)}) ⊔ B(v), and B(u′) ∩ B(v) = ∅,
because u′ and v are descendants of different children of M(w), and therefore they
are not related as ancestor and descendant). Thus B(u) \ B(w) contains at least two
back-edges, in contradiction to B(w) = (B(u) \ {e(u)}) ⊔ B(v). This shows that u is
unique in satisfying property (∗).

Now let us suppose, for the sake of contradiction, that there are two distinct
vertices u′ and u′′ that are lower than u, they are proper descendants of w, and
satisfy M(u′) = M(u′′) = M(u). Then we have that all u, u′, u′′ are related as ancestor
and descendant. We may assume w.l.o.g. that u′′ < u′. Thus, we have that u′′ is
a proper ancestor of u′, and u′ is a proper ancestor of u. Then, by Lemma 3.2
we have B(u′′) ⊆ B(u′) ⊆ B(u). Since the graph is 3-edge-connected, this can be
strengthened to B(u′′) ⊂ B(u′) ⊂ B(u). Thus, there is a back-edge (x, y) ∈ B(u)\B(u′),
and a back-edge (x′, y′) ∈ B(u′) \ B(u′′). Since (x, y) ∈ B(u), we have that x is a
descendant of u, and therefore a descendant of u′. Thus, since (x, y) /∈ B(u′), it
cannot be that y is a proper ancestor of u′. Similarly, since (x′, y′) ∈ B(u′) \ B(u′′),
it cannot be that y′ is a proper ancestor of u′′. Since both u′ and u′′ are proper
descendants of w, this implies that neither y nor y′ is a proper ancestor of w. Thus,
(x, y) /∈ B(w) and (x′, y′) /∈ B(w). Since (x, y) /∈ B(u′) and (x′, y′) ∈ B(u′), we have
(x, y) ̸= (x′, y′). And since (x′, y′) ∈ B(u′) and B(u′) ⊂ B(u), we have (x′, y′) ∈ B(u).
But then (x, y) and (x′, y′) are two distinct back-edges in B(u)\B(w), in contradiction
to B(w) = ((B(u) \ {e(u)}) ⊔ B(v) (which implies that B(u) \ B(w) consists of e(u)).
This shows that u is either the lowest or the second-lowest proper descendant of w
such that M(u) = M(w, c).

250

Lemma 5.45 gives enough information to be able to compute efficiently all 4-cuts
of the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is common ancestor of {u, v},
u, v are not related as ancestor and descendant, e ∈ B(u), and u is a special vertex.

This method is shown in Algorithm 26, for the case where u is a descendant
of the low1 child of M(w). The case where u is a descendant of the low2 child of
M(w) is treated similarly, by simply changing the roles of c1 and c2 in Lines 6 and 7,
respectively. (I.e., we set “c1 ← low2 child of M(w)” and “c2 ← low1 child of M(w)”.)
The proof of correctness and linear complexity is given in Proposition 5.14.

Lemma 5.46. Let u, v, w be three vertices such that w is a common ancestor of {u, v}, and
u, v are not related as ancestor and descendant. Then, there is a back-edge e ∈ B(u) such
that {(u, p(u)), (v, p(v)), (w, p(w)), e} is a Type-3αi 4-cut if and only if: high2(u) < w,
high1(v) < w, and bcount(w) = bcount(u) + bcount(v)− 1.

Proof. (⇒) Since {(u, p(u)), (v, p(v)), (w, p(w)), e} is a Type-3αi 4-cut where e ∈ B(u),
we have that B(w)⊔ {e} = B(u)⊔B(v). This implies that bcount(w) + 1 = bcount(u) +
bcount(v), from which we infer that bcount(w) = bcount(u)+ bcount(v)− 1. Let (x, y) be
a back-edge in B(v). Then B(w)⊔ {e} = B(u)⊔B(v) implies that (x, y) ∈ B(w)⊔ {e}.
Since B(u) ∩ B(v) = ∅, we have that (x, y) ̸= e. Thus, we have (x, y) ∈ B(w). This
implies that y is a proper ancestor of w, and therefore y < w. Due to the generality
of (x, y) ∈ B(v), this implies that high1(v) < w. Now let us suppose, for the sake of
contradiction, that high2(u) ≥ w. This implies that the high1 and the high2 edges of u
are not in B(w). But e ∈ B(u) and B(w)⊔{e} = B(u)⊔B(v) imply that precisely one
back-edge from B(u) is not in B(w), a contradiction. Thus, we have high2(u) < w.
(⇐) Since v is a common descendant of high1(v) and w, we have that high1(v) and
w are related as ancestor and descendant. Thus, high1(v) < w implies that high1(v)
is a proper ancestor of w. Similarly, we have that high2(u) is a proper ancestor of w.
Now, let (x, y) be a back-edge in B(v). Then, x is a descendant of v, and therefore
a descendant of w. Furthermore, y is an ancestor of high1(v), and therefore a proper
ancestor of w. This shows that (x, y) ∈ B(w). Due to the generality of (x, y) ∈ B(v),
this implies that B(v) ⊆ B(w).

Now let (x1, y1), . . . , (xk, yk) be the list of the back-edges in B(u) sorted in decreas-
ing order w.r.t. their lower endpoint, so that we have (x1, y1) = e(u). Let i be an index
in {2, . . . , k}. Then, we have that xi is a descendant of u, and therefore a descendant
of w. Furthermore, we have that yi ≤ high2(u), and therefore yi is an ancestor of

251

high2(u), and therefore yi is a proper ancestor of w. This shows that (xi, yi) ∈ B(w).
Thus, we have shown that B(u) \ {e(u)} ⊆ B(w).

Since u and v are not related as ancestor and descendant, we have that B(u) ∩
B(v) = ∅ (because otherwise, if there existed a back-edge in B(u) ∩ B(v), we would
have that its higher endpoint would be a common descendant of both u and v). Thus,
we have (B(u)\{e(u)})⊔B(v) ⊆ B(w). Therefore, bcount(w) = (bcount(u)−1)+bcount(v)
implies that (B(u)\{e(u)})⊔B(v) = B(w). Since B(u)∩B(v) = ∅, we have that e(u) /∈
B(v), and therefore (B(u) \ {e(u)}) ⊔ B(v) = B(w) implies that e(u) /∈ B(w). Thus,
(B(u)\{e(u)})⊔B(v) = B(w) and e(u) /∈ B(v) imply that B(u)⊔B(v) = B(w)⊔{e(u)}.
Thus, by Lemma 5.41 we have that {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a Type-3αi
4-cut.

Proposition 5.14. Algorithm 26 correctly computes all 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, e ∈ B(u),
and u is a special vertex. Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αi 4-cut where w is a
common ancestor of u and v, u is a special vertex, and e ∈ B(u). Let c1 and c2 be the
low1 and the low2 child of M(w), respectively. Lemma 5.42 implies that either u is a
descendant of c1 and v is a descendant of c2, or reversely. So let us assume w.l.o.g.
that u is a descendant of c1. Then Lemma 5.44 implies that v is the lowest proper
descendant of w such that M(v) = M(w, c2). Lemma 5.43 implies that e = ehigh(u).
Lemma 5.46 implies that bcount(w) = bcount(u) + bcount(v) − 1, high2(u) < w and
high1(v) < w. If we have that u is the lowest proper descendant of w such that
M(u) = M(w, c1), then we can see that C will be marked in Line 12. Otherwise, by
Lemma 5.45 we have that u is the second-lowest proper descendant of w such that
M(u) = M(w, c1). This implies that u = prevM(u′), where u′ is the lowest proper
descendant of w such that M(u′) = M(w, c1). Thus, C will be marked in Line 16.

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} be a 4-element set that is
marked in Line 12 or 16. Then, in either case we have bcount(w) = bcount(u) +
bcount(v) − 1, high2(u) < w and high1(v) < w. Furthermore, in either case we have
M(u) = M(w, c1) and M(v) = M(w, c2). Therefore, Lemma 3.12 implies that u and
v are not related as ancestor and descendant. Thus, Lemma 5.46 implies that C is
indeed a Type-3αi 4-cut.

252

Algorithm 26: Compute all Type-3αi 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v},
e ∈ B(u), and u is a special vertex.

1 foreach vertex w ̸= r such that M(w) has at least two children do
2 compute M(w, c1) and M(w, c2), where c1 and c2 are the low1 and low2

children of M(w), respectively

3 end
// the case where u is a descendant of the low1 child of M(w); for the

other case, simply reverse the roles of c1 and c2

4 foreach vertex w ̸= r do
5 if M(w) has less than two children then continue
6 let c1 ← low1 child of M(w)

7 let c2 ← low2 child of M(w)

8 if M(w, c1) = ⊥ or M(w, c2) = ⊥ then continue
9 let u be the lowest proper descendant of w such that M(u) = M(w, c1)

10 let v be the lowest proper descendant of w such that M(v) = M(w, c2)

11 if u is a special vertex and bcount(w) = (bcount(u)− 1) + bcount(v) and
high2(u) < w and high1(v) < w then

12 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} as a 4-cut
13 end
14 u← prevM(u)

15 if u is a special vertex and bcount(w) = (bcount(u)− 1) + bcount(v) and
high2(u) < w and high1(v) < w then

16 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} as a 4-cut
17 end

18 end

Now we will argue about the complexity of Algorithm 26. By Proposition 3.5
we have that the values M(w, c1) and M(w, c2) can be computed in linear time in
total, for all vertices w ̸= r such that M(w) has at least two children, where c1

and c2 are the low1 and low2 children of M(w) respectively. Thus, Line 1 can be
performed in linear time. The vertices u and v in Lines 9 and 10 can be computed
with Algorithm 22. Specifically, whenever we reach Line 9, we generate a query

253

q(M−1(M(w, c1)), w). This will return the lowest vertex u with M(u) = M(w, c1) and
u > w. Since M(u) = M(w, c1) implies that M(u) is a common descendant of u and
w, we have that u and w are related as ancestor and descendant. Thus, u > w implies
that u is a proper descendant of w. Thus, u is the lowest proper descendant of w such
that M(u) = M(w, c1). We generate the analogous query to get v. Since the number of
all those queries is O(n), Algorithm 22 can answer all of them in O(n) time, according
to Lemma 5.27. We conclude that Algorithm 26 runs in linear time.

5.7.1.2 The case where M(B(u) \ {ehigh(u)}) ̸= M(u)

Lemma 5.47. Let u and u′ be two distinct vertices ̸= r such that M(u) ̸= M(B(u) \
{e(u)}) = M(B(u′) \ {e(u′)}) ̸= M(u′). Then, e(u) /∈ B(u′) and e(u′) /∈ B(u). Further-
more, if high2(u) = high2(u′), then B(u) ⊔ {e(u′)} = B(u′) ⊔ {e(u)}.

Proof. Let us assume w.l.o.g. that u′ < u. Since the graph is 3-edge-connected, we
have that |B(u′)| > 1. Thus, there is a back-edge (x, y) ∈ B(u′) \ {e(u′)}. Then, we
have that x is a descendant of M(B(u′) \ {e(u′)}) = M(B(u) \ {e(u)}), and therefore a
descendant ofM(u), and therefore a descendant of u. Thus, x is a common descendant
of u′ and u, and therefore u and u′ are related as ancestor and descendant. Thus,
u′ < u implies that u′ is a proper ancestor of u.

Let us suppose, for the sake of contradiction, that e(u′) ∈ B(u). Then, since
M(u′) ̸= M(B(u′)\{e(u′)}), we have that the higher endpoint of e(u′) is not a descen-
dant of M(B(u′) \ {e(u′)}), and therefore it is not a descendant of M(B(u) \ {e(u)}).
Furthermore, sinceM(u) ̸= M(B(u)\{e(u)}), we have that the higher endpoint of e(u)
is not a descendant of M(B(u) \ {e(u)}), and that this is the only back-edge in B(u)

with this property. Thus, since e(u′) ∈ B(u), we have that e(u) = e(u′). This implies
that high1(u) = high1(u′). Thus, since u′ is a proper ancestor of u, by Lemma 3.3 we
have that B(u) ⊆ B(u′). Since the graph is 3-edge-connected, this can be strengthened
to B(u) ⊂ B(u′). Thus, there is a back-edge (x, y) ∈ B(u′) \ B(u). Since e(u′) ∈ B(u)

and (x, y) /∈ B(u), we have that (x, y) ̸= e(u′). Thus, we have (x, y) ∈ B(u′) \ {e(u′)},
and therefore x is a descendant of M(B(u′) \ {e(u′)}) = M(B(u) \ {e(u)}), and there-
fore a descendant of M(u). Furthermore, y is a proper ancestor of u′, and therefore
a proper ancestor of u. This shows that (x, y) ∈ B(u), a contradiction. Thus, we have
shown that e(u′) /∈ B(u). This implies that e(u′) ̸= e(u).

Let us suppose, for the sake of contradiction, that e(u) ∈ B(u′). Then, since

254

M(u′) ̸= M(B(u′)\{e(u′)}), we have that the higher endpoint of e(u′) is not a descen-
dant of M(B(u′) \ {e(u′)}), and therefore it is not a descendant of M(B(u) \ {e(u)}).
Furthermore, we have that e(u′) is the only back-edge in B(u′) with this property.
Now, since M(u) ̸= M(B(u) \ {e(u)}), we have that the higher endpoint of e(u) is not
a descendant of M(B(u) \ {e(u)}). Since e(u) ∈ B(u′), this implies that e(u) = e(u′), a
contradiction. Thus, we have shown that e(u) /∈ B(u′).

Now let (x, y) be a back-edge in B(u)\{e(u)}. Then, x is a descendant ofM(B(u)\
{e(u)}) = M(B(u′) \ {e(u′)}), and therefore a descendant of M(u′). Furthermore, y is
an ancestor of high2(u) = high2(u′), and therefore a proper ancestor of u′. This shows
that (x, y) ∈ B(u′). Due to the generality of (x, y) ∈ B(u) \ {e(u)}, this implies that
B(u) \ {e(u)} ⊆ B(u′). And since e(u′) /∈ B(u), this can be strengthened to B(u) \
{e(u)} ⊆ B(u′)\{e(u′)}. Conversely, let (x, y) be a back-edge in B(u′)\{e(u′)}. Then x

is a descendant of M(B(u′) \ {e(u′)}) = M(B(u) \ {e(u)}), and therefore a descendant
of M(u). Furthermore, y is a proper ancestor of u′, and therefore a proper ancestor of
u. This shows that (x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(u′) \ {e(u′)}, this
implies that B(u′) \ {e(u′)} ⊆ B(u). And since e(u) /∈ B(u′), this can be strengthened
to B(u′) \ {e(u′)} ⊆ B(u) \ {e(u)}. Thus, we have B(u) \ {e(u)} = B(u′) \ {e(u′)}. Since
e(u′) /∈ B(u) and e(u) /∈ B(u′), this implies that B(u) ⊔ {e(u′)} = B(u′) ⊔ {e(u)}.

Lemma 5.48. Let u, v, w be three vertices ̸= r such that w is a common ancestor of
{u, v}, and u, v are not related as ancestor and descendant. Suppose that u is a non-
special vertex such that {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a Type-3αi 4-cut. Let c be
the child of M(w) that is an ancestor of u, and let u′ be the lowest non-special vertex
such that M(B(u′) \ {e(u′)}) = M(w, c) and u′ is a proper descendant of w. Then,
{(u′, p(u′)), (v, p(v)), (w, p(w)), e(u′)} is a Type-3αi 4-cut.

Proof. By Lemma 5.42 we have that u is a descendant of a child c of M(w). Then, by
Lemma 5.43 we have that M(B(u) \ {e(u)}) = M(w, c). Thus, since u is a non-special
vertex that is a proper descendant of w, it makes sense to consider the lowest non-
special vertex u′ such that M(B(u′)\{e(u′)}) = M(w, c) and u′ is a proper descendant
of w. If u′ = u, then by assumption we have that {(u′, p(u′)), (v, p(v)), (w, p(w)), e(u′)}
is a Type-3αi 4-cut. So let us assume that u′ < u. Notice that M(w, c) is a common
descendant of u′ and u, and therefore u′ and u are related as ancestor and descendant.
Thus, u′ < u implies that u′ is a proper ancestor of u.

Since {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a Type-3αi 4-cut, we have that B(w) =

255

(B(u)\{e(u)})⊔B(v). Let (x, y) be a back-edge in B(u)\{e(u)}. Then, x is a descendant
ofM(B(u)\{e(u)}), and therefore a descendant ofM(w, c), and therefore a descendant
of M(B(u′) \ {e(u′)}), and therefore a descendant of M(u′). Furthermore, B(w) =

(B(u) \ {e(u)})⊔B(v) implies that (x, y) ∈ B(w), and therefore y is a proper ancestor
of w, and therefore a proper ancestor of u′. This shows that B(u)\{e(u)} ⊆ B(u′). Since
Lemma 5.47 implies that e(u′) /∈ B(u), this can be strengthened to B(u) \ {e(u)} ⊆
B(u′) \ {e(u′)}. Conversely, let (x, y) be a back-edge in B(u′) \ {e(u′)}. Then x is a
descendant ofM(B(u′)\{e(u′)}), and therefore a descendant ofM(w, c), and therefore
a descendant ofM(B(u)\{e(u)}), and therefore a descendant ofM(u). Furthermore, y
is a proper ancestor of u′, and therefore a proper ancestor of u. This shows that B(u′)\
{e(u′)} ⊆ B(u). Since Lemma 5.47 implies that e(u) /∈ B(u′), this can be strengthened
to B(u′) \ {e(u′)} ⊆ B(u) \ {e(u)}. Thus, we have B(u) \ {e(u)} = B(u′) \ {e(u′)}.
Therefore, B(w) = (B(u) \ {e(u)})⊔B(v) implies that B(w) = (B(u′) \ {e(u′)})⊔B(v).

Let us suppose, for the sake of contradiction, that e(u′) ∈ B(v). Then, the higher
endpoint of e(u′) is a common descendant of u′ and v, and therefore u′ and v are
related as ancestor and descendant. Therefore, since u′ is an ancestor of u, but u
and v are not related as ancestor and descendant, we have that u′ is an ancestor
of both u and v. Since the graph is 3-edge-connected, we have that |B(v)| > 1.
Thus, there is a back-edge (x, y) ∈ B(v) \ {e(u′)}. Then, x is a descendant of v, and
therefore a descendant of u′. Furthermore, B(w) = (B(u) \ {e(u)}) ⊔ B(v) implies
that (x, y) ∈ B(w), and therefore y is a proper ancestor of w, and therefore a proper
ancestor of u′. This shows that (x, y) ∈ B(u′), in contradiction to (the disjointness of
the sets in) B(w) = (B(u′) \ {e(u′)}) ⊔ B(v). Thus, we have e(u′) /∈ B(v). Therefore,
B(w) = (B(u′) \ {e(u′)}) ⊔ B(v) implies that B(w) ⊔ {e(u′)} = B(u) ⊔ B(v). Thus, by
Lemma 5.41 we have that {(u′, p(u′)), (v, p(v)), (w, p(w)), e(u′)} is a Type-3αi 4-cut.

Lemma 5.49. Let u, v, w be three vertices ̸= r such that w is a common ancestor of {u, v},
and u, v are not related as ancestor and descendant. Suppose that u is a non-special vertex
and C = {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} is a Type-3αi 4-cut. Then, every other Type-
3αi 4-cut C ′ of the form {(u′, p(u′)), (v, p(v)), (w, p(w)), e(u′)}, where u′ is a non-special
vertex that is a proper descendant of w, is implied by C and some Type-2ii 4-cuts that are
computed by Algorithm 24.

Proof. Since C is a Type-3αi 4-cut where w is a common ancestor of {u, v}, we
have B(w) ⊔ {e(u)} = B(u) ⊔ B(v). This implies that B(u) \ {e(u)} = B(w) \ B(v).

256

Similarly, for the 4-cut C ′ we have B(u′) \ {e(u′)} = B(w) \ B(v). Thus, we have
B(u) \ {e(u)} = B(u′) \ {e(u′)}. Notice that we cannot have e(u) ∈ B(u′), because
otherwise we would have B(u) = B(u′), in contradiction to the fact that the graph
is 3-edge-connected. Similarly, we cannot have e(u′) ∈ B(u). Thus, B(u) \ {e(u)} =

B(u′)\{e(u′)} implies that B(u)⊔{e(u′)} = B(u′)⊔{e(u)}. Then, Lemma 5.28 implies
that C ′′ = {(u, p(u)), (u′, p(u′)), e(u), e(u′)} is a Type-2ii 4-cut. Notice that C ′ is implied
by C and C ′′ through the pair of edges {(u′, p(u′)), e(u′)}. Let C be the collection of
4-cuts computed by Algorithm 24. Then, by Proposition 5.12 we have that C ′′ is
implied by C through the pair of edges {(u′, p(u′)), e(u′)}. Thus, by Lemma 5.7 we
have that C ′ is implied by C ∪ {C} through the pair of edges {(u′, p(u′)), e(u′)}.

Proposition 5.15. Algorithm 27 computes a collection C of Type-3αi 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, u is a non-
special vertex, and e ∈ B(u), and it runs in linear time. Furthermore, let C ′ be the
collection of Type-2ii 4-cuts computed by Algorithm 24. Then, every Type-3αi 4-cut of
the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, u is a
non-special vertex, and e ∈ B(u) is implied by C ∪ C ′.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} be a 4-element set that is marked
in Line 25. Then we have that u and v are proper descendants of w such that
bcount(w) = (bcount(u) − 1) + bcount(v), high2(u) < w and high1(v) < w. Furthermore,
we have that u and v are not related as ancestor and descendant. Thus, Lemma 5.46
implies that there is a back-edge e ∈ B(u) such that {(u, p(u)), (v, p(v)), (w, p(w)), e}
is a Type-3αi 4-cut. By Lemma 5.43, this implies that e = e(u). Thus, C is indeed a
4-cut. Let C be the collection of all 4-cuts marked in Line 25.

Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αi 4-cut such that w is a com-
mon ancestor of {u, v}, u is a non-special vertex, and e ∈ B(u). Let c1 and c2 be the
low1 and low2 children of M(w), respectively. Lemma 5.42 implies that either u is a
descendant of c1 and v is a descendant of c2, or u is a descendant of c2 and v is a de-
scendant of c1. Let us assume that u is a descendant of c1. Then, Lemma 5.44 implies
that v is the lowest proper descendant of v such that M(v) = M(w, c2). Lemma 5.43
implies that M(B(u) \ {e(u)}) = M(w, c1). Thus, we may consider the lowest proper
descendant u′ of w that is a non-special vertex such thatM(B(u′)\{e(u′)}) = M(w, c1).
Then, Lemma 5.48 implies that C ′ = {(u′, p(u′)), (v, p(v)), (w, p(w)), e(u′)} is a Type-
3αi 4-cut. Then, Lemma 5.46 implies that bcount(w) = (bcount(u′) − 1) + bcount(v),

257

Algorithm 27: Compute a collection of Type-3αi 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, u is
a non-special vertex, and e ∈ B(u), so that all Type-3αi 4-cuts of this form
are implied from this collection, plus that of the Type-2ii 4-cuts computed
by Algorithm 24
1 foreach vertex u ̸= r do

2 compute M(B(u) \ {e(u)})

3 end

4 foreach vertex x do

5 initialize a collection Ũ(x)← ∅

6 end

7 foreach vertex u ̸= r do

8 let x←M(B(u) \ {e(u)})

9 if M(u) ̸= x then

10 insert u into Ũ(x)

11 end

12 end

// Ũ(x) contains all non-special vertices u with M(B(u) \ {e(u)}) = x

13 foreach vertex w ̸= r such that M(w) has at least two children do

14 compute M(w, c1) and M(w, c2), where c1 and c2 are the low1 and low2 children

of M(w), respectively

15 end

// the case where u is a descendant of the low1 child of M(w); for the other

case, simply reverse the roles of c1 and c2

16 foreach vertex w ̸= r do

17 if M(w) has less than two children then continue

18 let c1 ← low1 child of M(w)

19 let c2 ← low2 child of M(w)

20 if M(w, c1) = ⊥ or M(w, c2) = ⊥ then continue

21 let u be the lowest proper descendant of w in Ũ(M(w, c1))

22 let v be the lowest proper descendant of w such that M(v) = M(w, c2)

23 if u and v are related as ancestor and descendant then continue

24 if bcount(w) = (bcount(u)− 1)+ bcount(v) and high2(u) < w and high1(v) < w then

25 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u)} as a 4-cut

26 end

27 end

258

high2(u′) < w and high1(v) < w. Thus, notice that C ′ will be marked in Line 25, and
therefore C ′ ∈ C. Now, if C ′ = C , then it is trivially true that C is implied by C.
Otherwise, by Lemma 5.49 we have that C is implied by C ′ ∪ {C ′}. Thus, we have
that C is implied by C ∪ C ′.

Now we will argue about the complexity of Algorithm 27. By Proposition 3.6 we
have that the values M(B(u) \ {e(u)}) can be computed in linear time in total, for
all vertices u ̸= r. Thus, the for loop in Line 1 can be performed in linear time. By
Proposition 3.5, we have that the values M(w, c1) and M(w, c2) can be computed in
linear time in total, for all vertices w ̸= r such that M(w) has at least two children,
where c1 and c2 are the low1 and low2 children of M(w). Thus, the for loop in
Line 13 can be performed in linear time. The vertices u and v in Lines 21 and 22
can be computed with Algorithm 22. Specifically, whenever we reach Line 21, we
generate a query q(Ũ(M(w, c1)), w), which returns the lowest vertex u in Ũ(M(w, c1))

such that u > w. u ∈ Ũ(M(w, c1)) implies that M(B(u) \ {e(u)}) = M(w, c1), and
therefore we have that M(w, c1) is a common descendant of u and w, and therefore
u and w are related as ancestor and descendant. Thus, u > w implies that u is a
proper descendant of w. Thus, u is the lowest proper descendant of w that lies in
Ũ(M(w, c1)). Since the sets Ũ are disjoint, and the total number of those queries is
O(n), Lemma 5.27 implies that Algorithm 22 can answer all those queries in O(n)

time in total. Similarly, the vertices v in Line 22 can be computed in O(n) time in
total. We conclude that Algorithm 27 runs in linear time.

5.7.2 Type‐3αii 4‐cuts

We will distinguish the Type-3αii 4-cuts according to the following.

Lemma 5.50. Let u, v, w be three vertices ̸= r such that w is a common ancestor of
{u, v}, and u, v are not related as ancestor and descendant. Suppose that there is a back-edge
e = (x, y) such that B(w) = (B(u) ⊔ B(v)) ⊔ {e}. Then we have the following cases (see
also Figure 5.21).

1. x is an ancestor of both u and v. In this case, x = M(w). Furthermore, u is
a descendant of the low1 child of M̃(w) and v is a descendant of the low2 child of
M̃(w), or reversely.

2. x is an ancestor of u, but not an ancestor of v. In this case, x is a descendant of
the low1 child of M(w) and v is a descendant of the low2 child of M(w), or reversely.

259

3. x is an ancestor of v, but not an ancestor of u. In this case, x is a descendant
of the low1 child of M(w) and u is a descendant of the low2 child of M(w), or
reversely.

4. x is neither an ancestor of u nor an ancestor of v. In this case, we have the
following two subcases.

4.1 Two of {u, v, x} are descendants of the low1 child of M(w) and the other is
a descendant of the low2 child of M(w), or reversely: two of {u, v, x} are
descendants of the low2 child of M(w) and the other is a descendant of the low1
child of M(w).

4.2 There is a permutation σ of {1, 2, 3} such that u is a descendant of the lowσ1 child
of M(w), v is a descendant of the lowσ2 child of M(w), and x is a descendant
of the lowσ3 child of M(w).

In cases 4.1, 4.2 we have l2(x) ≥ w and low(c1(x)) ≥ w (if c1(x) ̸= ⊥).

In all cases 1− 4, we have y = l1(x).

Proof. Before we consider the four cases in turn, we will show thatM(w) is the nearest
common ancestor of {u, v, x}. The fact that M(w) is an ancestor of x is an obvious
consequence of (x, y) ∈ B(w). Now, since the graph is 3-edge-connected, neither B(u)

nor B(v) is empty. Thus there are back-edges (x′, y′) ∈ B(u) and (x′′, y′′) ∈ B(v).
Then B(w) = (B(u)⊔B(v))⊔{e} implies that (x′, y′) ∈ B(w) and (x′′, y′′) ∈ B(w), and
therefore M(w) is a common ancestor of {x′, x′′}. Since x′ is a descendant of u and
x′′ is a descendant of v, we have that M(w) is related as ancestor and descendant
with both u and v. But since u, v are not related as ancestor and descendant, M(w)

must be an ancestor of both u and v. Thus far we have that M(w) is a common
ancestor of {u, v, x}. Now let us suppose, for the sake of contradiction, that M(w)

is not the nearest common ancestor of {u, v, x}. This means that there is a proper
descendant c of M(w) that is a common ancestor of {u, v, x}. Now let (x′, y′) be a
back-edge in B(w). Then B(w) = (B(u) ⊔B(v)) ⊔ {e} implies that either x′ = x, or x′

is a descendant of u, or x′ is a descendant of v. In any case, x′ is a descendant of c.
But due to the generality of (x′, y′) ∈ B(w), this shows that M(w) is a descendant of c,
a contradiction. Thus we have that M(w) is the nearest common ancestor of {u, v, x}.

Furthermore, we will show that u and v are proper descendants of M(w). Other-
wise, let us assume w.l.o.g. that u is not a proper descendant of M(w). Since M(w)

260

is an ancestor of u, this means that u = M(w). Now, since x is a descendant of M(w),
it is also a descendant of u. And since y is a proper ancestor of w, it is also a proper
ancestor of u. But then we have (x, y) ∈ B(u), contradicting (the disjointness of the
union in) B(w) = (B(u) ⊔ B(v)) ⊔ {e}.

(1) Suppose that x is an ancestor of both u and v. Then, since M(w) is the nearest
common ancestor of {u, v, x}, we have that x = M(w). Furthermore, since u and v

are proper descendants of M(w), we have u ̸= x and v ̸= x. Let S = {(x′, y′) ∈ B(w) |
x′ ̸= M(w)}. Then we have M̃(w) = M(S). We will show that M̃(w) is the nearest
common ancestor of {u, v}. Let (x′, y′) be a back-edge in S. Then (x′, y′) ∈ B(w)\{e},
and so B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies that x′ is either a descendant of u or a
descendant of v. This implies that x′ is a descendant of nca(u, v). Due to the generality
of (x′, y′) ∈ S, we have that M(S) is a descendant of nca(u, v). Conversely, let (x′, y′)

be a back-edge in B(u) and let (x′′, y′′) be a back-edge in B(v) (such back-edges exist,
because the graph is 3-edge-connected). Then B(w) = (B(u)⊔B(v))⊔{e} implies that
x′ and x′′ are in S, and so M(S) is a common ancestor of x′ and x′′. Then, since x′ is
a descendant of u and x′′ is a descendant of v, we have that M(S) is related to both u

and v as ancestor and descendant. But since u and v are not related as ancestor and
descendant, we have that M(S) is an ancestor of both u and v. Thus, since M(S) is a
descendant of nca(u, v), we have that M(S) is the nearest common ancestor of {u, v}.

Since u and v are not related as ancestor and descendant, we have that there are
children c1 and c2 of M(S) such that u is a descendant of c1 and v is a descendant
of c2. Then, since B(u) and B(v) are non-empty and B(u) ∪ B(v) ⊂ B(w), we have
that low(c1) < w and low(c2) < w. Now let us suppose, for the sake of contradiction,
that there is also another child c of M(w) that has low(c) < w (i.e., c /∈ {c1, c2}). Then
neither u nor v is a descendant of c. Then low(c) < w implies that there is a back-edge
(x′, y′) such that x′ is a descendant of c and y is a proper ancestor of w. Since c is a
descendant ofM(S), which is a descendant ofM(w), we thus have that (x′, y′) ∈ B(w).
Then B(w) = (B(u)⊔B(v))⊔{e} implies that either (x′, y′) ∈ B(u)∪B(v), or (x′, y′) = e.
The case (x′, y′) = e is rejected, because x′ is a descendant of c, but c is not an
ancestor of either u or v (whereas x is an ancestor of both u and v). Thus, we have
(x′, y′) ∈ B(u) ∪ B(v), which implies that either x′ is a descendant of u, or x′ is a
descendant of v. But this contradicts the fact that x′ is a descendant of c (which is
not related as ancestor and descendant with either u or v). Thus we have that c1 and
c2 are the only children of M(S) that have low(ci) < w, for i ∈ {1, 2}, and so these

261

must coincide with the low1 and the low2 children of M(S) (not necessarily in that
order).

(2) Suppose that x is an ancestor of u, but not an ancestor of v. Then, since M(w)

is a common ancestor of {u, v, x}, we have that x is a proper descendant of M(w)

(otherwise x would be an ancestor of v). Since v is also a proper descendant of M(w),
we have that both x and v are descendants of children of M(w). Furthermore, since
u is a descendant of x, we have that u is a descendant of the same child of M(w) as
x.

Let us suppose, for the sake of contradiction, that x and v are descendants of the
same child c of M(w). Let (x′, y′) be a back-edge in B(w). Then B(w) = (B(u) ⊔
B(v))⊔{e} implies that either x′ = x, or x′ is a descendant of u, or x′ is a descendant
of v. In either case, we have that x′ is a descendant of c. Due to the generality of
(x′, y′), this means that M(w) is a descendant of c, a contradiction. Thus, x and v

are descendants of different children of M(w). Let c1 be the child of M(w) that is
an ancestor of x, and let c2 be the child of M(w) that is an ancestor of v. Then the
existence of the back-edge (x, y) implies that low(c1) < w. And the fact that the graph
is 3-edge-connected implies that B(v) ≠ ∅, which further implies that low(c2) < w,
due to B(v) ⊂ B(w).

Now let us suppose, for the sake of contradiction, that there is another child c of
M(w) (i.e., with c /∈ {c1, c2}) that has low(c) < w. Then neither v nor x (and therefore
neither u) is a descendant of c. Then low(c) < w implies that there is a back-edge
(x′, y′) such that x′ is a descendant of c and y is a proper ancestor of w. Since c is a
descendant ofM(w), we thus have that (x′, y′) ∈ B(w). Then B(w) = (B(u)⊔B(v))⊔{e}
implies that either x′ = x, or x′ is a descendant of u, or x′ is a descendant of v. But
this contradicts the fact that x′ is a descendant of c (which is not related as ancestor
and descendant with either x, or u, or v). Thus we have that c1 and c2 are the only
children of M(w) that have low(ci) < w, for i ∈ {1, 2}, and so these must coincide
with the low1 and the low2 children of M(w) (not necessarily in that order).

(3) The argument for this case is analogous to that for case (2).
(4) Suppose that x is neither an ancestor of u nor an ancestor of v. Then, since

M(w) is a common ancestor of {u, v, x}, we have that x is a proper descendant of
M(w) (otherwise x would be an ancestor of both u and v). Let us assume first that
u and v are descendants of the same child c1 of M(w). Then we cannot have that x
is also a descendant of c1, because M(w) is the nearest common ancestor of {u, v, x}

262

(and therefore we would have that M(w) is a descendant of c1). So let c2 be the child
of M(w) that is an ancestor of x. Now we can argue as in (2), in order to demonstrate
that c1 and c2 are the only children of M(w) with low(ci) < w, for i ∈ {1, 2}, and so
these must coincide with the low1 and the low2 children of M(w) (not necessarily in
that order).

Now let us assume that u and v are not descendants of the same child of M(w).
Let c1 be the child of M(w) that is an ancestor of u, and let c2 be the child of M(w)

that is an ancestor of v. If we assume that x is a descendant of either c1 or c2, then
we can argue as in (2), in order to demonstrate that c1 and c2 are the only children of
M(w) with low(ci) < w, for i ∈ {1, 2}, and so these must coincide with the low1 and
the low2 children of M(w) (not necessarily in that order). So let us assume that x is
neither a descendant of c1, nor a descendant of c2, and let c3 be the child of M(w)

that is an ancestor of x. Then we can argue as in (2) in order to demonstrate that
c1, c2 and c3 are the only children of M(w) with low(ci) < w, for i ∈ {1, 2, 3}, and
so these must coincide with the low1, the low2, and the low3 children of M(w) (not
necessarily in that order).

Since (x, y) ∈ B(w), we have that e is a back-edge in B(x) whose lower endpoint
is lower than w. Now let us suppose, for the sake of contradiction, that there is one
more back-edge e′ = (x′, y′) ∈ B(x) such that y′ < w. Then B(w) = (B(u)⊔B(v))⊔{e}
implies that either e′ ∈ B(u), or e′ ∈ B(v), or e′ = e. The last case is rejected by
assumption. If e′ ∈ B(u), then x′ is a descendant of u. Therefore, x and u are related
as ancestor and descendant, since they have x′ as a common descendant. Then, since
x is not an ancestor of u, we have that x is a descendant of u. But since y is a proper
ancestor of w, it is also a proper ancestor of u, and therefore (x, y) ∈ B(u), which is
impossible. Thus, the case e′ ∈ B(u) is rejected. Similarly, the case e′ ∈ B(v) is also
rejected. But then there are no viable options left, and so we are led to a contradiction.
This shows that e = (x, y) is the unique back-edge in B(x) ∩ B(w). Thus, we have
e = (x, l1(x)), and we have l2(x) ≥ w and low(c1(x)) ≥ w (if c1(x) ̸= ⊥).

Finally, let us suppose, for the sake of contradiction, that there is a back-edge of the
form (x, y′) ∈ B(w) such that (x, y′) ̸= (x, y). Then, B(w) = (B(u)⊔B(v))⊔{e} implies
that either (x, y′) ∈ B(u) or (x, y′) ∈ B(v). This implies that x is a descendant of u
or v, respectively. Thus, since y is a proper ancestor of w, we have that (x, y) ∈ B(u)

or (x, y) ∈ B(v), respectively, in contradiction to (the disjointness in) B(w) = (B(u) ⊔
B(v))⊔{e}. This shows that (x, y) is the only back-edge with higher endpoint x such

263

that y is a proper ancestor of w. Let us suppose, for the sake of contradiction, that
y ̸= l1(x). Then there is a back-edge (x, y′) ̸= (x, y) such that y′ ≤ y. Since x is a
common descendant of y and y′, we have that y and y′ are related as ancestor and
descendant. Thus, y′ ≤ y implies that y′ is an ancestor of y, and therefore y′ is a
proper ancestor of w, a contradiction. Thus, we have y = l1(x).

Lemma 5.51. Let u, v, w be three vertices ̸= r such that w is a common ancestor of {u, v}
and u, v are not related as ancestor and descendant. If there is a back-edge e such that
B(w) = (B(u) ⊔B(v)) ⊔ {e}, then u is the lowest proper descendant of w in M−1(M(u)).
Similarly, v is the lowest proper descendant of w in M−1(M(v)).

Proof. We will provide the argument for u, since that for v is similar. Let us suppose,
for the sake of contradiction, that there is a proper descendant u′ of w with M(u′) =

M(u) such that u′ is lower than u. Then we have that u′ is a proper ancestor of u, and
Lemma 3.2 implies that B(u′) ⊆ B(u). This can be strengthened to B(u′) ⊂ B(u), since
the graph is 3-edge-connected. Thus, there is a back-edge (x, y) ∈ B(u)\B(u′). Then x

is a descendant of M(u), and therefore a descendant of M(u′). Thus, it cannot be that
y is a proper ancestor of u′, for otherwise we would have (x, y) ∈ B(u′). This implies
that y cannot be a proper ancestor of w, for otherwise it would be a proper ancestor of
u′. Thus we have that (x, y) /∈ B(w). But this contradicts B(w) = (B(u)⊔B(v))⊔ {e},
which implies that B(u) ⊂ B(w). Thus we have that u is the lowest proper descendant
of w in M−1(M(u)).

Lemma 5.52. Let u, v, w be three vertices ̸= r such that w is a common ancestor of {u, v}
and u, v are not related as ancestor and descendant. Then there is a back-edge e such that
B(w) = (B(u) ⊔ B(v)) ⊔ {e} if and only if bcount(w) = bcount(u) + bcount(v) + 1 and
high1(u) < w and high1(v) < w.

Proof. (⇒) bcount(w) = bcount(u) + bcount(v) + 1 is an immediate consequence of
B(w) = (B(u) ⊔ B(v)) ⊔ {e}. Now let (x, y) be a back-edge in B(u). Then B(w) =

(B(u)⊔B(v))⊔{e} implies that (x, y) is in B(w), and therefore y is a proper ancestor
of w, and therefore y < w. Due to the generality of (x, y) ∈ B(u), this shows that
high1(u) < w. Similarly, we get high1(v) < w.

(⇐) Let (x, y) be a back-edge in B(u). Then, x is a descendant of u, and therefore
a descendant of w. Furthermore, y is a proper ancestor of u. Thus, since y and
w have u as a common descendant, we have that y and w are related as ancestor

264

and descendant. Since (x, y) ∈ B(u), we have that y is an ancestor of high1(u), and
therefore y ≤ high1(u). Thus, high1(u) < w implies that y is a proper ancestor of w.
This shows that (x, y) ∈ B(w). Due to the generality of (x, y) ∈ B(u), this implies
that B(u) ⊆ B(w). Similarly, we have B(v) ⊆ B(w). Since u and v are not related
as ancestor and descendant, we have B(u) ∩ B(v) = ∅. Thus, B(u) ⊔ B(v) ⊆ B(w).
Now bcount(w) = bcount(u) + bcount(v) + 1 implies that |B(w) \ (B(u) ⊔ B(v))| = 1,
and so there is a back-edge e such that B(w) \ (B(u) ⊔B(v)) = {e}. This means that
B(w) = (B(u) ⊔ B(v)) ⊔ {e}.

First, we consider case (1) of Lemma 5.50.

Lemma 5.53. Let case (1) of Lemma 5.50 be true. Then l1(M(w)) < w, l2(M(w)) ≥ w,
and e = (M(w), l1(M(w))). Let c1 and c2 be the low1 and low2 children of M̃(w),
respectively. Assume w.l.o.g. that u is a descendant of c1 and v is a descendant of c2. Then
M(u) = M(w, c1) and M(v) = M(w, c2).

Proof. Since x = M(w) and (x, y) is a back-edge in B(w), we have that l1(M(w)) < w.
Let us suppose, for the sake of contradiction, that l2(M(w)) < w. Then there is a
back-edge (x, y′) ̸= (x, y) such that (x, y′) ∈ B(w). Since u is a descendant of c1 and
v is a descendant of c2, we have that x is not a descendant of either u or v. Thus,
(x, y) and (x, y′) are two distinct back-edges that leap over w and none of them is
in B(u) or B(v). This contradicts the fact that B(w) = (B(u) ⊔ B(v)) ⊔ {e}, which
implies that exactly one back-edge in B(w) is not in B(u)∪B(v). Thus, we have that
l2(M(w)) ≥ w. Since e = (M(w), y) satisfies y < w, we have that y = l1(M(w)).

Now we will provide the arguments for u, since those for v are similar. Let S =

{(x′, y′) ∈ B(w) | x′ is a descendant of c1}. Then M(S) = M(w, c1). Let (x′, y′) be a
back-edge in B(u). Then B(w) = (B(u)⊔B(v))⊔{e} implies that (x′, y′) ∈ B(w). Since
x′ is a descendant of u and u is a descendant of c1, we have that x′ is a descendant
of c1. Thus we have (x′, y′) ∈ S. Due to the generality of (x′, y′) ∈ B(u), this shows
that M(u) is a descendant of M(S). Conversely, let (x′, y′) be a back-edge in S. Then
we have that x′ is a descendant of c1 and y′ is a proper ancestor of w. Furthermore,
B(w) = (B(u)⊔B(v))⊔{e} implies that either x′ = x, or x′ is a descendant of u, or x′

is a descendant of v. The case x′ = x is rejected, because x = M(w). Also, x′ cannot
be a descendant of v, for otherwise x′ would be a descendant of c2. Thus x′ is a
descendant of u. Then, since y′ is a proper ancestor of w, we infer that (x′, y′) ∈ B(u).

265

Due to the generality of (x′, y′) ∈ S, this shows that M(S) is a descendant of M(u).
This concludes the proof that M(u) = M(w, c1).

According to Lemma 5.53, we can compute all 4-cuts in case (1) of Lemma 5.50
as follows. First, we only have to consider those w ̸= r such that l1(M(w)) < w

and M̃(w) has at least two children. In this case, let c1 and c2 be the low1 and low2
children of M̃(w). Then we compute M(w, c1) and M(w, c2). If none of M(w, c1)

and M(w, c2) is ⊥, then, according to Lemma 5.51, we have that u is the lowest
proper descendant of w that has M(u) = M(w, c1), and v is the lowest proper descen-
dant of w that has M(v) = M(w, c2). Then, according to Lemma 5.52, we have that
{(u, p(u)), (v, p(v)), (w, p(w)), (M(w), l1(M(w)))} is a 4-cut if and only if high(u) < w,
high(v) < w, and bcount(w) = bcount(u) + bcount(v) + 1. The procedure for computing
those 4-cuts is given in Algorithm 28. The proof of correctness and linear complexity
is given in Proposition 5.16.

Proposition 5.16. Algorithm 28 correctly computes all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, and e satis-
fies (1) of Lemma 5.50. Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αii 4-cut, where w is a
common ancestor of {u, v}, and e satisfies (1) of Lemma 5.50. Then, Lemma 5.53
implies that e = (M(w), l1(M(w))). Furthermore, let c1 and c2 be the low1 and low2
children of M̃(w), respectively. Then w.l.o.g. we have that M(u) = M(w, c1) and
M(v) = M(w, c2). Then, Lemma 5.51 implies that u is the lowest proper descendant
of w with M(u) = M(w, c1), and v is the lowest proper descendant of w with M(v) =

M(w, c2). Lemma 5.52 implies that bcount(w) = bcount(u)+ bcount(v)+1, high1(u) < w

and high1(v) < w. Thus, all conditions are satisfied for C to be marked in Line 22.
Conversely, suppose that a 4-element set C = {(u, p(u)), (v, p(v)), (w, p(w)), e(w)}

is marked in Line 22. Then we have that u and v are descendants of w such that
bcount(w) = bcount(u) + bcount(v) + 1, high1(u) < w and high1(v) < w. Since M(u) =

M(w, c1) and M(v) = M(w, c2), where c1 and c2 are different children of M(w),
by Lemma 3.12 we have that u and v are not related as ancestor and descendant.
Therefore, Lemma 5.52 implies that there is a back-edge e such that B(w) = (B(u)⊔
B(v)) ⊔ {e}. Since l1(M(w)) < w, we have that (M(w), l1(M(w))) is a back-edge in
B(w). Since u and v are proper descendants of M(w), we have that this back-edge

266

Algorithm 28: Compute all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v},
and e satisfies (1) of Lemma 5.50.

1 foreach vertex w ̸= r do
2 if l1(M(w)) < w then
3 let e(w) = (M(w), l1(M(w)))

4 compute M̃(w)

5 end

6 end
7 foreach vertex w ̸= r do
8 if M̃(w) has at least two children then
9 let c1 and c2 be the low1 and low2 children of M̃(w)

10 compute M(w, c1) and M(w, c2)

11 end

12 end
13 foreach vertex w ̸= r do
14 if l1(M(w)) ≥ w then continue
15 if M̃(w) has less than two children then continue
16 let c1 ← low1 child of M̃(w)

17 let c2 ← low2 child of M̃(w)

18 if low(c1) ≥ w or low(c2) ≥ w then continue
19 let u be the lowest proper descendant of w such that M(u) = M(w, c1)

20 let v be the lowest proper descendant of w such that M(v) = M(w, c2)

// u and v are not related as ancestor and descendant

21 if bcount(w) = bcount(u) + bcount(v) + 1 and high1(u) < w and high1(v) < w

then
22 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(w)} as a 4-cut
23 end

24 end

does not belong to B(u)∪B(v). Thus, e = (M(w), l1(M(w))), and therefore C is indeed
a Type-3αii 4-cut.

Now we will argue about the complexity of Algorithm 28. By Proposition 3.5, we

267

have that the values M̃(w) can be computed in linear time in total, for all vertices
w ̸= r (see the first paragraph in Section 3.6). Thus, the for loop in Line 1 can be
performed in linear time. By Proposition 3.5 we have that the values M(w, c1) and
M(w, c2) can be computed in linear time in total, for all vertices w ̸= r such that M̃(w)

has at least two children, where c1 and c2 are the low1 and low2 children of M̃(w),
respectively. Thus, the for loop in Line 7 can be performed in linear time. In order to
compute the vertices u and v in Lines 19 and 20, respectively, we use Algorithm 22.
Specifically, whenever we reach Line 19, we generate a query q(M−1(M(w, c1)), w).
This will return the lowest vertex u with M(u) = M(w, c1) such that u > w. Since
M(u) = M(w, c1) is a common descendant of u and w, we have that u and w are related
as ancestor and descendant. Thus, u > w implies that u is a proper descendant of w.
Thus, u is the lowest vertex with M(u) = M(w, c1) such that u is a proper descendant
of w. Since the number of all those queries is O(n), Algorithm 22 can compute them
in linear time in total, according to Lemma 5.27. The same is true for the queries for
v in Line 20. We conclude that Algorithm 28 has a linear-time implementation.

Now we consider case (2) of Lemma 5.50. Notice that due to the symmetry between
cases (2) and (3) of Lemma 5.50, case (3) essentially coincides with case (2) (after
switching the labels of u and v), and thus we do not have to provide a different
algorithm for case (3).

Lemma 5.54. Let case (2) of Lemma 5.50 be true. Let c1 and c2 be the low1 and
low2 children of M(w), respectively. Assume w.l.o.g. that x is a descendant of c1 and v

is a descendant of c2. Then e = (M(w, c1), l1(M(w, c1))). Let S = {(x′, y′) ∈ B(w) |
x′ is a descendant of the low1 child of x}. Then M(u) = M(S) and M(v) = M(w, c2).

Proof. First we will show that e = (M(w, c1), l1(M(w, c1))). Let (x′, y′) be a back-edge
in B(w) such that x′ is a descendant of c1. Then B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies
that either (x′, y′) = e, or (x′, y′) ∈ B(u), or (x′, y′) ∈ B(v). Only the last case is rejected,
since v is a descendant of c2, and thus it cannot be an ancestor of x′. Thus we have
that the nearest common ancestor of x and M(u) is an ancestor of x′. Due to the
generality of (x′, y′) ∈ B(w) with x′ a descendant of c1, this shows that the nearest
common ancestor of x and M(u) is an ancestor of M(w, c1). Conversely, if (x′, y′) is a
back-edge such that either (x′, y′) = e or (x′, y′) ∈ B(u), then x′ is a descendant of c1,
and B(w) = (B(u) ⊔B(v)) ⊔ {e} implies that (x′, y′) ∈ B(w). Thus, x′ is a descendant
of M(w, c1), and so the nearest common ancestor of x and M(u) is a descendant of

268

M(w, c1). This shows that M(w, c1) = nca{x,M(u)}. Since x is an ancestor of u, it is
also an ancestor of M(u), and so nca{x,M(u)} = x. This shows that x = M(w, c1).
Since (x, y) ∈ B(w), we have that l1(M(w, c1)) < w. Now let us suppose, for the sake
of contradiction, that l2(M(w, c1)) < w. Then there is a back-edge (x, y′) ̸= (x, y) such
that y′ < w, and thus we have (x, y′) ∈ B(w). Notice that since (x, y) /∈ B(u), it cannot
be the case that x is a descendant of u. Furthermore, x cannot be a descendant of v,
because v is a descendant of c2 whereas x is a descendant of c1. Thus, none of (x, y)
and (x, y′) is in B(u) or B(v). But this contradicts B(w) = (B(u)⊔B(v))⊔ {e}, which
implies that there is only one back-edge in B(w) that is not in B(u) or B(v). This
shows that l2(M(w, c1)) ≥ w. Thus, since y < w, we have that y = l1(M(w, c1)).

Now we will provide the arguments for u, since those for v are basically given
in the proof of Lemma 5.53. Since (x, y) ∈ B(w), it cannot be the case that x = u,
for otherwise we would have that (x, y) ∈ B(u), contradicting (the disjointness of the
union in) B(w) = (B(u)⊔B(v))⊔{e}. Thus, u is a proper descendant of x. Let c be the
child of x that is an ancestor of u. Then, since B(u) is non-empty and B(u) ⊂ B(w),
we have that low(c) < w. Now let us suppose, for the sake of contradiction, that there
is also another child c′ of x that has low(c′) < w (i.e., c′ ̸= c). This means that there
is a back-edge (x′, y′) such that x′ is a descendant of c′ and y′ is a proper ancestor of
w. Then B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies that either x′ = x, or x′ is a descendant
of u, or x′ is a descendant of v. x′ = x is rejected, since x′ is a descendant of c′.
Furthermore, x′ cannot be a descendant of v, because this would imply that x and
v are related as ancestor and descendant, contradicting the fact that x and v are
descendants of different children of M(w). Thus we have that x′ is a descendant of
u, and therefore a descendant of c, a contradiction. Thus c is the unique child of x
that satisfies low(c) < w, and so it must be the low1 child of x.

Now let (x′, y′) be a back-edge in B(u). Then we have that x′ is a descendant of
u, and therefore a descendant of the low1 child of x. Furthermore, B(w) = (B(u) ⊔
B(v)) ⊔ {e} implies that (x′, y′) ∈ B(w). This shows that (x′, y′) ∈ S. Due to the
generality of (x′, y′) ∈ B(u), this implies that B(u) ⊆ S. Conversely, let (x′, y′) be a
back-edge in S. Then (x′, y′) is in B(w), and so B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies
that either x′ = x, or x′ is a descendant of u, or x′ is a descendant of v. Since x′ is a
descendant of the low1 child of x, the only viable option is that x′ is a descendant of
u. Since y′ is a proper ancestor of w, it is also a proper ancestor of u. This shows that
(x′, y′) ∈ B(u). Due to the generality of (x′, y′) ∈ S, this implies that S ⊆ B(v). Thus

269

we have shown that B(u) = S, and so M(u) = M(S) is derived.

According to Lemma 5.54, we can compute all 4-cuts in case (2) of Lemma 5.50
as follows. First, we only have to consider those w ̸= r such that M(w) has at least
two children. In this case, let c1 and c2 be the low1 and low2 children of M(w), respec-
tively. Then we compute M(w, c1) and M(w, c2). If none of M(w, c1) and M(w, c2)

is ⊥, then we keep considering w only if l1(M(w, c1)) < w and M(w, c1) has at least
one child. In this case, let c′1 be the low1 child of M(w, c1). Then, we have that
e = (M(w, c1), l1(M(w, c1))), and, according to Lemma 5.51, we have that u is the
lowest proper descendant of w that has M(u) = M(w, c′1), and v is the lowest proper
descendant of w that has M(v) = M(w, c2). Then, according to Lemma 5.52, we have
that {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut if and only if high(u) < w, high(v) < w,
and bcount(w) = bcount(u) + bcount(v) + 1. The procedure for computing those 4-cuts
is given in Algorithm 29. The proof of correctness and linear complexity is given in
Proposition 5.17.

Proposition 5.17. Algorithm 29 correctly computes all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, and e satis-
fies (2) of Lemma 5.50. Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αii 4-cut where w is a
common ancestor of u and v, and e satisfies (2) of Lemma 5.50. Let us also assume
that the higher endpoint x of e is a descendant of the low1 child of M(w) (the other
case, where x is a descendant of the low2 child of M(w), is treated similarly). Let c1
and c2 be the low1 and low2 children of M(w), respectively. Furthermore, let c′1 be the
low1 child of M(w, c1). Then Lemma 5.54 implies that e = (M(w, c1), l1(M(w, c1))),
M(u) = M(w, c′1) and M(v) = M(w, c2). Then, Lemma 5.51 implies that u is the
lowest proper descendant of w with M(u) = M(w, c′1), and v is the lowest proper
descendant of w with M(v) = M(w, c2). Finally, Lemma 5.52 implies that bcount(w) =
bcount(u)+ bcount(v)+ 1, high1(u) < w and high1(v) < w. Thus, we have that C will be
marked in Line 22.

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a 4-element set that is
marked in Line 22. Then we have that u and v are descendants of w such that
bcount(w) = bcount(u) + bcount(v) + 1, high1(u) < w and high1(v) < w. We will show
that the comment in Line 20 is true: i.e., u and v are not related as ancestor and
descendant. This is a consequence of the fact that M(u) = M(w, c′1), M(v) = M(w, c2),

270

Algorithm 29: Compute all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v},
and e satisfies (2) of Lemma 5.50.

// We assume that the higher endpoint of e is a descendant of the low1
child of M(w); the other case is treated similarly, by reversing the

roles of c1 and c2

1 foreach vertex w ̸= r do
2 if M(w) has less than two children then continue
3 let c1 ← low1 child of M(w)

4 let c2 ← low2 child of M(w)

5 compute M(w, c1) and M(w, c2)

6 if M(w, c1) = ⊥ or l1(M(w, c1)) ≥ w or M(w, c1) has no children then
continue

7 let e(w)← (M(w, c1), l1(M(w, c1)))

8 let c′1 ← low1 child of M(w, c1)

9 compute M(w, c′1)

10 end
11 foreach vertex w ̸= r do
12 if M(w) has less than two children then continue
13 let c1 ← low1 child of M(w)

14 let c2 ← low2 child of M(w)

15 if low(c1) ≥ w or low(c2) ≥ w then continue
16 if l1(M(w, c1)) ≥ w or M(w, c1) has no children then continue
17 let c′1 ← low1 child of M(w, c1)

18 if low(c′1) ≥ w then continue
19 let u be the lowest proper descendant of w such that M(u) = M(w, c′1)

20 let v be the lowest proper descendant of w such that M(v) = M(w, c2)

// u and v are not related as ancestor and descendant

21 if bcount(w) = bcount(u) + bcount(v) + 1 and high1(u) < w and high1(v) < w

then
22 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(w)} as a 4-cut
23 end

24 end

271

and c′1 is a descendant of the low1 child c1 of M(w), whereas c2 is the low2 child
of M(w). Thus, Lemma 3.12 implies that u and v are not related as ancestor and
descendant. Therefore, Lemma 5.52 implies that there is a back-edge e such that
B(w) = (B(u) ⊔ B(v)) ⊔ {e}. Since we have that l1(M(w, c1)) < w, we have that the
back-edge e(w) = (M(w, c1), l1(M(w, c1))) is in B(w). Since M(u) is a proper descen-
dant of M(w, c1), we have that e(w) /∈ B(u). And since M(v) = M(w, c2), we have that
e(w) /∈ B(v). Thus, e = e(w), and therefore C is indeed a Type-3αii 4-cut.

Now we will argue about the complexity of Algorithm 29. For every w ̸= r such
that M(w) has at least two children, we have to compute M(w, c1) and M(w, c2),
where c1 and c2 are the low1 and low1 children of M(w). By Proposition 3.5 this
can be done in linear time in total, for all such vertices w. Then, for every such w, if
M(w, c1) ̸= ⊥ andM(w, c1) has at least one child, we have to computeM(w, c′1), where
c′1 is the low1 child of M(w, c1). Again, by Proposition 3.5, all these calculations take
linear time in total. Thus, the for loop in Line 1 can be performed in linear time. In
order to compute the vertices u and v in Lines 19 and 20, we can use Algorithm 22,
as explained e.g. in the proof of Proposition 5.16. According to Lemma 5.27, all
these computations take O(n) time in total. We conclude that Algorithm 29 has a
linear-time implementation.

Now we consider case (4.1) of Lemma 5.50.

Lemma 5.55. Let case (4.1) of Lemma 5.50 be true. Let c1 be the low1 child of M(w),
and let c2 be the low2 child of M(w). Let us assume that two of {u, v, x} are descendants
of c1. Let c′1 and c′2 be the low1 and the low2 child of M(w, c1), respectively. Then we have
the following three cases.

(1) u and v are descendants of c1, and x is a descendant of c2. Then we have
M(u) = M(w, c′1) and M(v) = M(w, c′2) (or reversely). Furthermore, we have
(x, y) = (M(w, c2), l1(M(w, c2))).

(2) u and x are descendants of c1, and v is a descendant of c2. Then we have
M(u) = M(w, c′1) and (x, y) = (M(w, c′2), l1(M(w, c′2))) (or M(u) = M(w, c′2) and
(x, y) = (M(w, c′1), l1(M(w, c′1)))). Furthermore, we have M(v) = M(w, c2).

(3) v and x are descendants of c1, and u is a descendant of c2. Then we have
M(v) = M(w, c′1) and (x, y) = (M(w, c′2), l1(M(w, c′2))) (or M(v) = M(w, c′2) and
(x, y) = (M(w, c′1), l1(M(w, c′1)))). Furthermore, we have M(u) = M(w, c2).

272

Proof. Let us consider case (1) first. Let S = {(x′, y′) ∈ B(w) |
x′ is a descendant of c1}. Then we have M(S) = M(w, c1). Let (x′, y′) be a back-edge
in B(w). Then, B(w) = (B(u)⊔B(v))⊔{e} implies that either (x′, y′) ∈ B(u)⊔B(v) or
(x′, y′) = (x, y). The case (x′, y′) = (x, y) is rejected, because x′ is a descendant of c1,
whereas x is a descendant of c2 (and c1, c2 are not related as ancestor and descendant).
Thus, we have (x′, y′) ∈ B(u)⊔B(v). Due to the generality of (x′, y′) ∈ S, this implies
that S ⊆ B(u) ⊔ B(v). Conversely, let (x′, y′) ∈ B(u). Then x′ is a descendant of u,
and therefore a descendant of c1. Furthermore, B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies
that (x′, y′) ∈ B(w). Thus, we have (x′, y′) ∈ S. Due to the generality of (x′, y′) ∈ B(u),
this implies that B(u) ⊆ S. Similarly, we can show that B(v) ⊆ S. Thus, we have
S ⊆ B(u)⊔B(v). Since B(u)⊔B(v) ⊆ S, this can be strengthened to S = B(u)⊔B(v).
Therefore, M(S) is an ancestor of both M(u) and M(v). Let us suppose, for the sake
of contradiction, that M(u) = M(S). Then, M(u) is an ancestor of M(v), and there-
fore u is an ancestor of M(v). Thus, M(v) is a common descendant of v and u, in
contradiction to the fact that u and v are not related as ancestor and descendant.
Thus, we have that M(u) is a proper descendant of M(S). Similarly, we can show
that M(v) is a proper descendant of M(S).

Let us suppose, for the sake of contradiction, that there is a back-edge of the form
(M(S), z) in S. Then, since S = B(u) ⊔ B(v), we have that either (M(S), z) ∈ B(u),
or (M(S), z) ∈ B(v). The first case implies that M(S) is a descendant of M(u), and
therefore M(S) = M(u) (since M(S) is an ancestor of M(u)), which is impossible.
Thus, the case (M(S), z) ∈ B(u) is rejected. Similarly, we can reject (M(S), z) ∈ B(v).
Therefore, there are no viable options left, and so we have arrived at a contradiction.
This shows that there is no back-edge of the form (M(S), z) in S. Thus, there are
at least two back-edges (x1, y1) and (x2, y2) in S such that x1 is a descendant of the
low1 child c′1 of M(S), and x2 is a descendant of the low2 child c′2 of M(S). Since
S = B(u) ⊔ B(v), we have that (x1, y1) ∈ B(u) ⊔ B(v) and (x2, y2) ∈ B(u) ⊔ B(v).
Notice that we cannot have that both (x1, y1) ∈ B(u) and (x2, y2) ∈ B(u), because this
would imply that M(u) is an ancestor of nca{x1, x2} = M(S), and so M(S) = M(u)

(since M(S) is an ancestor of M(u)), which is impossible. Similarly, it cannot be that
both (x1, y1) and (x2, y2) are in B(v). Thus, we have that one of (x1, y1) and (x2, y2)

is in B(u), and the other is in B(v). Let us assume w.l.o.g. that (x1, y1) ∈ B(u) and
(x2, y2) ∈ B(v). This implies that M(u) is an ancestor of x1, and M(v) is an ancestor
of x2. Since x1 is a common descendant of c′1 and M(u), we have that c′1 and M(u)

273

are related as ancestor and descendant. Similarly, since x2 is a common descendant
of c′2 and M(v), we have that c′2 and M(v) are related as ancestor and descendant.

Now let S1 = {(x′, y′) ∈ B(w) | x′ is a descendant of c′1}. Then we have M(S1) =

M(w, c′1). Let (x′, y′) be a back-edge in S1. Then, x′ is a descendant of c′1, and therefore
a descendant of M(S). Thus, since (x′, y′) ∈ B(w), we have that (x′, y′) ∈ S. Since
S = B(u) ⊔ B(v), this implies that either (x′, y′) ∈ B(u) or (x′, y′) ∈ B(v). Let us
suppose, for the sake of contradiction, that (x′, y′) ∈ B(v). Then, x′ is a descendant of
M(v). Thus, we have that x′ is a common descendant of c′1 and M(v), and therefore
c′1 and M(v) are related as ancestor and descendant. Since M(v) is related as ancestor
and descendant with c′2, but c′1 and c′2 are not related as ancestor and descendant
(because they have the same parent), we have that M(v) is an ancestor of both c′1

and c′2. This implies that M(v) is an ancestor of nca{c′1, c′2} = M(S), and therefore
M(S) = M(v) (since M(S) is an ancestor of M(v)), which is impossible. Thus, the
case (x′, y′) ∈ B(v) is rejected, and so we have (x′, y′) ∈ B(u). Due to the generality
of (x′, y′) ∈ S1, this implies that S1 ⊆ B(u). Conversely, let (x′, y′) be a back-edge in
B(u). Then S = B(u) ⊔ B(v) implies that (x′, y′) ∈ S. Thus, since there is no back-
edge of the form (M(S), z) in S, we have that x′ is a descendant of a child c of M(S).
Let us suppose, for the sake of contradiction, that c ̸= c′1. Since (x′, y′) ∈ B(u), we
have that x′ is a descendant of M(u). Thus, since x′ is a common descendant of c
and M(u), we have that c and M(u) are related as ancestor and descendant. Since
M(u) is related as ancestor and descendant with c′1, but c and c′1 are not related as
ancestor and descendant (since they have the same parent), we have that M(u) is a
common ancestor of c′1 and c, and thusM(u) is an ancestor of nca{c, c′1} = M(S). Since
M(S) is an ancestor of M(u), this implies that M(S) = M(u), which is impossible.
Thus, we have that c = c′1, and therefore x′ is a descendant of c′1. Furthermore, since
(x′, y′) ∈ B(w), we have that (x′, y′) ∈ S1. Due to the generality of (x′, y′) ∈ B(u),
this implies that B(u) ⊆ S1. Thus, since S1 ⊆ B(u), we have that S1 = B(u). This
implies that M(S1) = M(u), and therefore M(w, c′1) = M(u). Similarly, we can show
that M(w, c′2) = M(v).

Now let S ′ = {(x′, y′) ∈ B(w) | x′ is a descendant of c2}. Notice that M(w, c2) =

M(S ′), and (x, y) ∈ S ′. Let us suppose, for the sake of contradiction, that there is a
back-edge (x′, y′) in S ′ such that (x′, y′) ̸= (x, y). Then, B(w) = (B(u) ⊔ B(v)) ⊔ {e}
implies that (x′, y′) ∈ B(u) ⊔ B(v), and therefore (x′, y′) ∈ S. This implies that x′ is a
descendant of c1, which is impossible, since x′ is a descendant of c2 (and c1, c2 are not

274

related as ancestor and descendant). Thus, we have that S ′ = {(x, y)}, and therefore
M(S ′) = x, and therefore M(w, c2) = x. Lemma 5.50 implies that (x, y) = (x, l1(x)),
and so e = (M(w, c2), l1(M(w, c2))).

The arguments for cases (2) and (3) are similar to those we have used for case
(1).

Based on Lemma 5.55, we can compute all Type-3αii 4-cuts that satisfy (4.1) of
Lemma 5.50 as follows. First, it is sufficient to consider only those w ̸= r such that
M(w) has at least two children. Let c1 and c2 be the low1 and low2 children of M(w).
Let {(u, p(u)), (v, p(v)), (w, p(w)), (x, y)} be a 4-cut that satisfies (4.1) of Lemma 5.50,
where u and v are both descendants of w, and (x, y) is the back-edge in B(w)\(B(u)⊔
B(v)). Then there are six different possibilities:

(1) u and v are descendants of c1, and x is a descendant of c2.

(2) u and x are descendants of c1, and v is a descendant of c2.

(3) v and x are descendants of c1, and u is a descendant of c2.

(4) u and v are descendants of c2, and x is a descendant of c1.

(5) u and x are descendants of c2, and v is a descendant of c1.

(6) v and x are descendants of c2, and u is a descendant of c1.

Notice that cases (2)-(3) and (5)-(6) are equivalent from an algorithmic perspective,
because the names of the variables do not matter (i.e., the names of u and v can be
exchanged). Thus, the possible cases that we have to consider are reduced to four.

First, we may have that two of the vertices from {u, v, x} are descendants of c1, and
the other is a descendant of c2. In this case, we need to have computed M(w, c′1) and
M(w, c′2), where c′1 and c′2 are the low1 and low2 children of M(w, c1). Furthermore,
we need to have computed M(w, c2). Now, we may have that both u and v are
descendants of c1, and x is a descendant of c2. In this case, we have that M(u) =

M(w, c′1) and M(v) = M(w, c′2) (or reversely), and (x, y) = (M(w, c2), l1(M(w, c2))).
Otherwise, we have that both u and x are descendants of c1, and v is a descendant of
c2. Then, we have that either M(u) = M(w, c′1) and (x, y) = (M(w, c′2), l1(M(w, c′2))),
or M(u) = M(w, c′2) and (x, y) = (M(w, c′1), l1(M(w, c′1))). In either case, we have
M(v) = M(w, c2). On the other hand, we may have that two of the vertices from

275

{u, v, x} are descendants of c2, and the other is a descendant of c1. This case is treated
similarly (we just reverse the roles of c1 and c2). The process that we follow in order
to compute all those 4-cuts is shown in Algorithm 30. The proof of correctness and
linear complexity is given in Proposition 5.18.

Proposition 5.18. Algorithm 30 correctly computes all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, and e satis-
fies (4.1) of Lemma 5.50. Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αii 4-cut, where w is a
common ancestor of {u, v}, and e satisfies (4.1) of Lemma 5.50. Let the higher end-
point of e be x, and let us assume that two of {u, v, x} are descendants of the low1
child c1 of M(w), and the other is a descendant of the low2 child c2 of M(w).
(The other case is treated similarly, by reversing the roles of c1 and c2.) Let c′1

be the low1 child of M(w, c1), and let c′2 be the low2 child of M(w, c1). The pos-
sible cases here are: (1) u and v are descendants of c1, or (2) u and x are de-
scendants of c1, or (3) v and x are descendants of c1. We note that case (3) can
be subsumed by case (2) (by exchanging the names of u and v), and thus we
may ignore it. In case (1), Lemma 5.55 implies (w.l.o.g.) that M(u) = M(w, c′1),
M(v) = M(w, c′2) and e = (M(w, c2), l1(M(w, c2))). Then, by Lemma 5.51 we have
that u is the lowest proper descendant of w that has M(u) = M(w, c′1), and v is the
lowest proper descendant of w that has M(v) = M(w, c′2). Furthermore, according
to Lemma 5.52, we have that bcount(w) = bcount(u) + bcount(v) + 1, high(u) < w and
high(v) < w. Thus, C will be marked in Line 11. In case (2), Lemma 5.55 implies
that either M(u) = M(w, c′1), e = (M(w, c′2), l1(M(w, c′2))) and M(v) = M(w, c2), or
M(u) = M(w, c′2), e = (M(w, c′1), l1(M(w, c′1))) and M(v) = M(w, c2). Thus, the same
argument as before implies that C will be marked in Line 16 or 21, respectively.

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), (x, y)} be a 4-element set that is
marked in Line 11, or 16, or 21. Suppose first that C is marked in Line 11. Then we
have (x, y) = (M(w, c2), l1(M(w, c2))), bcount(w) = bcount(u)+bcount(v)+1, high(u) < w

and high(v) < w. Furthermore, we have M(u) = M(w, c′1) and M(v) = M(w, c′2), and
therefore we can use a similar argument as in the proof of Lemma 3.12 in order
to show that u and v are not related as ancestor and descendant. (The argument
hinges on the fact that c′1 and c′2 are different children of the same vertex, and w is an
ancestor of both u and v.) Thus, Lemma 5.52 implies that there is a back-edge e such

276

Algorithm 30: Compute all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v},
and e satisfies (4.1) of Lemma 5.50.

// We consider the case in which two vertices from {u, v, x} are

descendants of the low1 child of M(w) and the other is a descendant

of the low2 child of M(w), where x is the higher endpoint of e; the

other case is treated similarly, by reversing the roles of c1 and c2

below

1 foreach vertex w ̸= r do
2 if M(w) has less than two children then continue
3 let c1 and c2 be the low1 and low2 children of M(w)

4 if M(w, c1) = ⊥ or M(w, c2) = ⊥ then continue
5 if M(w, c1) has less than two children then continue
6 let c′1 and c′2 be the low1 and low2 children of M(w, c1)

7 if M(w, c′1) = ⊥ or M(w, c′2) = ⊥ then continue
8 let u be the lowest proper descendant of w that has M(u) = M(w, c′1)

9 let v be the lowest proper descendant of w that has M(v) = M(w, c′2)

10 if high(u) < w and high(v) < w and bcount(w) = bcount(u) + bcount(v) + 1

then
11 mark {(u, p(u)), (v, p(v)), (w, p(w)), (M(w, c2), l1(M(w, c2)))} as a

Type-3αii 4-cut

12 end
13 let u be the lowest proper descendant of w that has M(u) = M(w, c′1)

14 let v be the lowest proper descendant of w that has M(v) = M(w, c2)

15 if high(u) < w and high(v) < w and bcount(w) = bcount(u) + bcount(v) + 1

then
16 mark {(u, p(u)), (v, p(v)), (w, p(w)), (M(w, c′2), l1(M(w, c′2)))} as a

Type-3αii 4-cut

17 end
18 let u be the lowest proper descendant of w that has M(u) = M(w, c′2)

19 let v be the lowest proper descendant of w that has M(v) = M(w, c2)

20 if high(u) < w and high(v) < w and bcount(w) = bcount(u) + bcount(v) + 1

then
21 mark {(u, p(u)), (v, p(v)), (w, p(w)), (M(w, c′1), l1(M(w, c′1)))} as a

Type-3αii 4-cut

22 end

23 end

277

that B(w) = (B(u)⊔B(v))⊔{e}. SinceM(w, c2) ̸= ⊥, we have that there is a back-edge
(x′, y′) ∈ B(w) such that x′ is a descendant of c2. Thus, we have (x′, y′) /∈ B(u)∪B(v)

(because otherwise, we would have that x′ is a descendant of either M(u) or M(v),
and therefore a descendant of either M(w, c′1) orM(w, c′2), and therefore a descendant
of c1). Thus, we have that (x′, y′) = e, and that this is the only back-edge in B(w) that
stems from T (c2). Thus, we have e = (M(w, c2), l1(M(w, c2))), and therefore e = (x, y).
This shows that C is indeed a Type-3αii 4-cut. With similar arguments we can show
that, if C is marked in Lines 16 or 21, then C is a Type-3αii 4-cut.

Now we will argue about the complexity of Algorithm 30. Notice that for every
w ̸= r such that M(w) has at least two children, we have to compute the values
M(w, c1) and M(w, c2), where c1 and c2 are the low1 and low2 children of M(w).
According to Proposition 3.5, these computations take linear time in total, for all
such vertices w. Then, if M(w, c1) ̸= ⊥ and M(w, c1) has at least two children, we
have to compute the values M(w, c′1) and M(w, c′2), where c′1 and c′2 are the low1 and
low2 children ofM(w, c1). According to Proposition 3.5, these computation take linear
time in total, for all such vertices w. Finally, the vertices u and v in Lines 8, 9, 13,
14, 18 and 19, can be computed with Algorithm 22, as explained e.g. in the proof of
Proposition 5.16. According to Lemma 5.27, all these computations take O(n) time
in total. We conclude that Algorithm 30 has a linear-time implementation.

Now we consider case (4.2) of Lemma 5.50.

Lemma 5.56. Let case (4.2) of Lemma 5.50 be true. Let c1, c2, and c3, be the low1,
low2, and low3 children of M(w) (not necessarily in that order). Let us assume that u is a
descendant of c1, v is a descendant of c2, and x is a descendant of c3. Then M(u) = M(w, c1),
M(v) = M(w, c2), and e = (M(w, c3), l1(M(w, c3))).

Proof. Let S1 = {(x′, y′) ∈ B(w) | x′ is a descendant of c1}. Then, M(w, c1) = M(S1).
Let (x′, y′) be a back-edge in B(u). Then x′ is a descendant of u, and therefore a
descendant of c1. Furthermore, B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies that (x′, y′) ∈
B(w). Thus, we have (x′, y′) ∈ S1. This implies that x′ is a descendant of M(S1).
Due to the generality of (x′, y′) ∈ B(u), this implies that M(u) is a descendant of
M(S1). Conversely, let (x′, y′) be a back-edge in S1. Then (x′, y′) ∈ B(w), and so
B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies that either (x′, y′) ∈ B(u), or (x′, y′) ∈ B(v), or
(x′, y′) = (x, y). Since x′ is a descendant of c1, we have that x′ cannot be a descendant
of either c2 or c3. Thus, the cases (x′, y′) ∈ B(v) and (x′, y′) = (x, y) are rejected.

278

(Because (x′, y′) ∈ B(v) would imply that x′ is a descendant of v, and therefore a
descendant of c2; and x′ = x would imply that x′ is a descendant of c3.) Thus, we
are left with the case (x′, y′) ∈ B(u). This implies that x′ is a descendant of M(u).
Due to the generality of (x′, y′) ∈ S1, this implies that M(S1) is a descendant of M(u).
Since M(u) is a descendant of M(S1), this shows that M(u) = M(S1), and therefore
M(u) = M(w, c1). Similarly, we can show that M(v) = M(w, c2).

Now let S3 = {(x′, y′) ∈ B(w) | x′ is a descendant of c3}. Then, M(w, c3) = M(S3).
We obviously have (x, y) ∈ S3, and so x is a descendant of M(S3). Let us suppose,
for the sake of contradiction, that there is a back-edge (x′, y′) ∈ S3 such that (x′, y′) ̸=
(x, y). Then we have that (x′, y′) ∈ B(w), and so B(w) = (B(u) ⊔ B(v)) ⊔ {e} implies
that either (x′, y′) ∈ B(u), or (x′, y′) ∈ B(v), or (x′, y′) = (x, y). The last case is
rejected by assumption. If (x′, y′) ∈ B(u), then we have that x′ is a descendant of
u, and so u and c3 are related as ancestor and descendant (since they have x′ as a
common descendant). Since u is not a descendant of c3, we have that u is a proper
ancestor of c3, and therefore an ancestor of M(w). But this is impossible, since u

is a descendant of c1. Thus, the case (x′, y′) ∈ B(u) is rejected. Similarly, the case
(x′, y′) ∈ B(v) is also rejected. But then there are no viable options left, and so we
have a contradiction. Thus, we have that (x, y) is the only back-edge in S3, and so
M(S3) = x. By Lemma 5.50, we have that e = (x, l1(x)).

In order to compute all Type-3αii 4-cuts that satisfy (4.2) of Lemma 5.50, we can
apply the information provided by Lemma 5.56 as follows. First, we notice that we
need to process only those vertices w ̸= r such that M(w) has at least three children.
Let c1, c2 and c3 be the low1, the low2 and the low3 child of M(w). We assume that we
have M(w, c1) ̸= ⊥, M(w, c2) ̸= ⊥ and M(w, c3) ̸= ⊥. First, we find the lowest proper
descendant u of w that has M(u) = M(w, c1), and the lowest proper descendant v
of w that has M(v) = M(w, c2) (this is according to Lemma 5.51). Then we check
whether high(u) < w, high(v) < w, and bcount(w) = bcount(u)+bcount(v)+1, in order to
establish with the use of Lemma 5.52 that we indeed have a Type-3αii 4-cut. If that
is the case, then we know that the back-edge of this 4-cut is (M(w, c3), l1(M(w, c3))).
Otherwise, we find the lowest proper descendant u of w that has M(u) = M(w, c1),
and the lowest proper descendant v of w that has M(v) = M(w, c3), and we perform
the same checks. The back-edge in this case is (M(w, c2), l1(M(w, c2))). Finally, we find
the lowest proper descendant u of w that has M(u) = M(w, c2), and the lowest proper

279

descendant v of w that has M(v) = M(w, c3). Again, we perform the same checks; the
back-edge in this case is (M(w, c1), l1(M(w, c1))). The procedure for finding all those
4-cuts is shown in Algorithm 31. The proof of correctness and linear complexity is
given in Proposition 5.19.

Proposition 5.19. Algorithm 31 correctly computes all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v}, and e satis-
fies (4.2) of Lemma 5.50. Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3αii 4-cut, where w is a
common ancestor of {u, v}, and e satisfies (4.2) of Lemma 5.50. Let x be the higher
endpoint of e, and let c1, c2 and c3 be the low1, low2 and low3 children of M(w),
respectively. Let us suppose first that u is a descendant of c1, v is a descendant of
c2, and x is a descendant of c3. Then Lemma 5.56 implies that M(u) = M(w, c1),
M(v) = M(w, c2) and e = (M(w, c3), l1(M(w, c3))). Then, Lemma 5.51 implies that
u is the lowest proper descendant of w such that M(u) = M(w, c1), and v is the
lowest proper descendant of w such that M(v) = M(w, c2). Lemma 5.52 implies that
bcount(w) = bcount(u) + bcount(v) + 1, high(u) < w and high(v) < w. Thus, C will
be marked in Line 8. Similarly, if we assume that u is a descendant of c1, v is a
descendant of c3, and x is a descendant of c2, or that u is a descendant of c2, v is a
descendant of c3, and x is a descendant of c1, then we have that C will be marked
in Line 13, or 18, respectively. (The other cases that we have tacitly ignored, e.g., the
case where u is a descendant of c2 and v is a descendant of c1, are basically subsumed
in the cases that we considered; to see this, just exchange the names of the variables
u and v.)

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), (x, y)} be a 4-element set that is
marked in Line 8, or 13, or 18. Let us suppose first that C is marked in Line 8.
Then we have (x, y) = (M(w, c3), l1(M(w, c3))), bcount(w) = bcount(u) + bcount(v) + 1,
high(u) < w and high(v) < w. Furthermore, since M(u) = M(w, c1) and M(v) =

M(w, c2), and c1, c2 are different children of M(w), Lemma 3.12 implies that u and
v are not related as ancestor and descendant. Thus, Lemma 5.52 implies that there
is a back-edge e such that B(w) = (B(u) ⊔ B(v)) ⊔ {e}. Then, since M(w, c3) ̸= ⊥,
we have that there is a back-edge (x′, y′) ∈ B(w) such that x′ is a descendant of c3.
Then, we have (x′, y′) /∈ B(u) ∪ B(v) (because otherwise, we would have that x′ is
a descendant of either M(u) or M(v), and therefore a descendant of either M(w, c1)

280

Algorithm 31: Compute all Type-3αii 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a common ancestor of {u, v},
and e satisfies (4.2) of Lemma 5.50.

1 foreach vertex w ̸= r do
2 if M(w) has less than three children then continue
3 let c1, c2 and c3 be the low1, low2 and low3 children of M(w)

4 if either of M(w, c1), M(w, c2) or M(w, c3) is ⊥ then continue
5 let u be the lowest proper descendant of w such that M(u) = M(w, c1)

6 let v be the lowest proper descendant of w such that M(v) = M(w, c2)

7 if high(u) < w and high(v) < w and bcount(w) = bcount(u) + bcount(v) + 1

then
8 mark {(u, p(u)), (v, p(v)), (w, p(w)), (M(w, c3), l1(M(w, c3)))} as a

Type-3αii 4-cut

9 end
10 let u be the lowest proper descendant of w such that M(u) = M(w, c1)

11 let v be the lowest proper descendant of w such that M(v) = M(w, c3)

12 if high(u) < w and high(v) < w and bcount(w) = bcount(u) + bcount(v) + 1

then
13 mark {(u, p(u)), (v, p(v)), (w, p(w)), (M(w, c2), l1(M(w, c2)))} as a

Type-3αii 4-cut

14 end
15 let u be the lowest proper descendant of w such that M(u) = M(w, c2)

16 let v be the lowest proper descendant of w such that M(v) = M(w, c3)

17 if high(u) < w and high(v) < w and bcount(w) = bcount(u) + bcount(v) + 1

then
18 mark {(u, p(u)), (v, p(v)), (w, p(w)), (M(w, c1), l1(M(w, c1)))} as a

Type-3αii 4-cut

19 end

20 end

281

or M(w, c2), and therefore a descendant of either c1 or c2, which is impossible). This
implies that (x′, y′) = e, and that (x′, y′) is the only back-edge in B(w) that stems
from T (c3). Thus, we have that e = (M(w, c3), l1(M(w, c3))), and therefore e = (x, y).
This shows that C is indeed a Type-3αii 4-cut. Similarly, if we have that C is marked
in Line 13 or 18, then we can use a similar argument in order to show that C is a
Type-3αii 4-cut.

Now we will argue about the complexity of Algorithm 31. According to Proposi-
tion 3.5, we can compute the values M(w, c1), M(w, c2) and M(w, c3) in linear time
in total, for every vertex w ̸= r such that M(w) has at least three children, where
c1, c2 and c3 are the low1, low2 and low3 children of M(w), respectively. The values
u and v in Lines 5, 6, 10, 11, 15 and 16, can be computed with Algorithm 22, as
explained e.g. in the proof of Proposition 5.16. According to Lemma 5.27, all these
computations take O(n) time in total. We conclude that Algorithm 31 runs in linear
time.

5.8 Computing Type‐3β 4‐cuts

Throughout this section, we assume that G is a 3-edge-connected graph with n vertices
and m edges. All graph-related elements (e.g., vertices, edges, cuts, etc.) refer to G.
Furthermore, we assume that we have computed a DFS-tree T of G rooted at a vertex
r.

Lemma 5.57. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v and v is a
proper ancestor of u, and let e be a back-edge. Then C ′ = {(u, p(u)), (v, p(v)), (w, p(w)), e}
is a 4-cut if and only if one of the following is true. (See Figure 5.23.)

(1) e ∈ B(u) ∩ B(v) ∩ B(w) and B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e})

(2) e ∈ B(w), e /∈ B(v) ∪ B(u), and B(v) = B(u) ⊔ (B(w) \ {e})

(3) e ∈ B(u), e /∈ B(v) ∪ B(w), and B(v) = (B(u) \ {e}) ⊔ B(w)

(4) e ∈ B(v) and B(v) = (B(u) ⊔ B(w)) ⊔ {e}

Proof. (⇒) Consider the parts A = T (u), B = T (v) \ T (u), C = T (w) \ T (v), and
D = T (r) \ T (w). Observe that every one of those parts remains connected in G \

282

{(u, p(u)), (v, p(v)), (w, p(w))}. Since C ′ is a 4-cut, by Lemma 3.14 we have that e ∈
B(u) ∪ B(v) ∪ B(w).

Let us suppose, first, that e ∈ B(u) ∩ B(v) ∩ B(w). This means that e connects A
and D. Thus, since C ′ is a 4-cut, we have that A and D must be disconnected in
G \ C ′, and so e is the unique back-edge that connects A and D. Furthermore, since
e connects A and D, notice that there is no back-edge from A to B, or from B to
C , or from C to D, for otherwise u would be connected with p(u), or v would be
connected with p(v), or w would be connected with p(w), respectively, in G \ C ′, in
contradiction to the fact that C ′ is a 4-cut of G. Let e′ be a back-edge in B(v) \ {e}.
Then this can be a back-edge from A to C , or from B to D. The first case implies
that e′ is in B(u), and the second case implies that e′ is in B(w). This shows that
B(v) \ {e} ⊆ B(u)∪B(w), which implies that B(v) \ {e} ⊆ (B(u) \ {e})∪ (B(w) \ {e}).
Conversely, let e′ be a back-edge in (B(u)∪B(w))\{e}. Then this is either a back-edge
from A to C (if e′ ∈ B(u)\{e}), or from B to D (if e′ ∈ B(w)\{e}). Thus we have that
(B(u)∪B(w))\{e} ⊆ B(v), which implies that (B(u)\{e})∪ (B(w)\{e}) ⊆ B(v)\{e}.
We infer that B(v) \ {e} = (B(u) \ {e}) ∪ (B(w) \ {e}). Now let e′ be a back-edge
in B(u) \ {e}. Then this can only be a back-edge from A to C. Thus, e′ cannot
be in B(w) \ {e}, because all the back-edges in B(w) have their lower endpoint
in D. Thus we have (B(u) \ {e}) ∩ (B(w) \ {e}) = ∅, and so it is proper to write
B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}) (case (1)).

From now on, let us suppose that e /∈ B(u) ∩ B(v) ∩ B(w). We will show that
e belongs to exactly one of B(u), B(v), or B(w). So let us suppose, for the sake of
contradiction, that this is not true. Then there are three possible cases to consider:
either (I) e ∈ B(u) ∩ B(v) and e /∈ B(w), or (II) e ∈ B(u) ∩ B(w) and e /∈ B(v), or
(III) e ∈ B(v) ∩ B(w) and e /∈ B(u). Suppose that (I) is true. Then e is either from
A to C , or from A to D. The second case is rejected since e /∈ B(w). Thus, e connects
A and C. Since C ′ is a 4-cut of G, we have that e is the only back-edge from A to
C. Furthermore, we have that there are no back-edges from B to C , or from C to D.
Thus, C becomes disconnected from the rest of the graph in G\{(v, p(v)), (w, p(w)), e},
in contradiction to the fact that C ′ is a 4-cut of G. This shows that (I) cannot be true.
Now suppose that (II) is true. Since e ∈ B(u)∩B(w), we have that e must be a back-
edge from A to D. But this contradicts e /∈ B(v). Thus, (II) cannot be true. Finally,
suppose that (III) is true. Then e ∈ B(v) ∩ B(w) implies that e either connects A

and D, or B and D. The first case is rejected, since e /∈ B(u). Thus, e connects B

283

and D. Since C ′ is a 4-cut of G, we have that e is the only back-edge from B to D.
Furthermore, we have that there are no back-edges from A to B, or from B to C.
Thus, B becomes disconnected from the rest of the graph in G\{(u, p(u)), (v, p(v)), e},
in contradiction to the fact that C ′ is a 4-cut of G. This shows that (III) cannot be
true. Since all cases (I)-(III) lead to a contradiction, we have that e belongs to exactly
one of B(u), B(v), or B(w).

Now suppose that e ∈ B(w). Since e /∈ B(u)∪B(v), we have that e connects C and
D. Since C ′ is a 4-cut, we have that e is the only back-edge that connects C and D.
Furthermore, there are no back-edges from A to B, or from B to C. Now let e′ be
a back-edge in B(v). Then e′ is either a back-edge in B(u), or it connects B and D.
Thus we have that e′ ∈ B(u)∪(B(w)\{e}). This shows that B(v) ⊆ B(u)∪(B(w)\{e}).
Conversely, let e′ be a back-edge in B(u) ∪ (B(w) \ {e}). If e′ ∈ B(u), then e′ is also
in B(v), because there is no back-edge from A to B. And if e′ ∈ B(w) \ {e}, we
have that e′ ∈ B(v) because e is the only back-edge from C to D. This shows that
B(u)∪(B(w)\{e}) ⊆ B(v), and so we have B(v) = B(u)∪(B(w)\{e}). Let us suppose,
for the sake of contradiction, that there is a back-edge in B(u) ∩ B(w). Then this is
a back-edge from A to D. Since there is no back-edge from A to B, we have that
B(u) ⊆ B(v). Since the graph is 3-edge-connected, we have that B(u) ̸= B(v). Thus,
there is a back-edge in B(v) \ B(u). Since there are no back-edges from B to C , this
must be a back-edge from B to D. Since e is the unique back-edge from C to D, we
have that there must be at least one back-edge from A to C , because otherwise C

becomes disconnected from the rest of the graph in G \ {(v, p(v)), (w, p(w)), e}. But
the existence of back-edges from A to D, from B to D, and from A to C , (and the
fact that e is a back-edge from C to D), implies that all parts A-D remain connected
in G \C ′, a contradiction. This shows that B(u)∩B(w) = ∅, and therefore it is correct
to write B(v) = B(u) ⊔ (B(w) \ {e}) (case (2)).

Now suppose that e ∈ B(u). Since e /∈ B(v)∪B(w), we have that e connects A and
B. Since C ′ is a 4-cut, we have that e is the only back-edge that connects A and B.
Furthermore, there are no back-edges from B to C , or from C to D. Now let e′ be a
back-edge in B(v). Then e′ is either a back-edge in B(u), or a back-edge from B to
C , or a back-edge from B to D. The case that e′ connects B and C is forbidden, and
so e′ is either in B(u) or in B(w). This shows that B(v) ⊆ B(u) ∪ B(w), which can
be strengthened to B(v) ⊆ (B(u) \ {e}) ∪ B(w), since e /∈ B(v). Conversely, let e′ be a
back-edge in (B(u) \ {e})∪B(w). If e′ ∈ B(u) \ {e}, then e′ is in B(v), because e is the

284

only back-edge from A to B. And if e′ ∈ B(w), then we have e′ ∈ B(v), because there
are no back-edges from C to D. This shows that (B(u)\{e})∪B(w) ⊆ B(v), and thus
we have B(v) = (B(u)\{e})∪B(w). Now let us suppose, for the sake of contradiction,
that there is a back-edge in B(u)∩B(w). Then this is a back-edge from A to D. Since e
the only back-edge from A to B and there is no back-edge from B to C , we have that
there must exist a back-edge from B to D, because otherwise B becomes disconnected
from the rest of the graph in G \ {(u, p(u)), (v, p(v)), e}, contradicting the fact that C ′

is a 4-cut of G. Since the graph is 3-edge-connected, we have that B(w) ̸= B(v). Thus,
since there are no back-edges from C to D or from B to C , we have that there must
exist a back-edge from A to C. But now, since there is a back-edge from A to D, a
back-edge from B to D, and a back-edge from A to C , (and e is a back-edge from A

to B), we have that all parts A-D remain connected in G \ C ′, a contradiction. Thus
we have that B(u) ∩ B(w) = ∅, and so it correct to write B(v) = (B(u) \ {e}) ⊔ B(w)

(case (3)).
Finally, let us suppose that e ∈ B(v). Since e /∈ B(u)∪B(w), we have that e connects

B and C. Since C ′ is a 4-cut, we have that e is the only back-edge that connects B
and C. Furthermore, there are no back-edges from A to B, or from C to D. Now let
e′ be a back-edge in B(v) \ {e}. Then e′ is either a back-edge in B(u), or a back-edge
from B to C , or a back-edge from B to D. The case that e′ is a back-edge from B

to C is rejected, since e is the only back-edge with this property. Thus we have that
e′ is either in B(u) or in B(w). This shows that e′ ∈ B(u) ∪ B(w), and so we have
B(v) \ {e} ⊆ B(u) ∪ B(w). This is equivalent to B(v) ⊆ (B(u) ∪ B(w)) ⊔ {e}, since
e /∈ B(u) ∪ B(w). Conversely, let e′ be a back-edge in B(u) ∪ B(w). If e′ ∈ B(u), then,
since there is no back-edge from A to B, we have that e′ ∈ B(v). And if e′ ∈ B(w),
then, since there is no back-edge from C to D, we have that e′ ∈ B(v). This shows
that B(u) ∪ B(w) ⊆ B(v), which can be strengthened to (B(u) ∪ B(w)) ⊔ {e} ⊆ B(v),
since e ∈ B(v) and e /∈ B(u) ∪ B(w). Thus we have that B(v) = (B(u) ∪ B(w)) ⊔ {e}.
Now let us suppose, for the sake of contradiction, that B(u) ∩ B(w) ̸= ∅. Then there
exists at least one back-edge from A to D. Since there is no back-edge from A to B,
and e is the only back-edge from B to C , we have that there must exist a back-edge
from B to D, because otherwise B would become disconnected from the rest of the
graph in G \ {(u, p(u)), (v, p(v)), e}, in contradiction to the fact that C ′ is a 4-cut of G.
Furthermore, since there is no back-edge from C to D, and e is the only back-edge
from B to C , we have that there must exist a back-edge from A to C , because otherwise

285

C would become disconnected from the rest of the graph in G\{(v, p(v)), (w, p(w)), e},
in contradiction to the fact that C ′ is a 4-cut of G. But now, since there is a back-edge
from A to D, and a back-edge from B to D, and a back-edge from A to C , (and e is
a back-edge from B to C), we have that all parts A-D remain connected in G \ C ′,
a contradiction. Thus we have that B(u) ∩ B(w) = ∅, and so it is correct to write
B(v) = (B(u) ⊔ B(w)) ⊔ {e} (case (4)).

(⇐) We have to show that G \ C ′ is disconnected in every one of cases (1)-(4),
but G \ C ′′ is connected for every proper subset C ′′ of C ′. Since the graph is 3-
edge-connected, it is sufficient to prove that no 3-element subset of C ′ is a 3-cut of G.
Furthermore, since the graph is 3-edge-connected, we have that |B(u)| > 1, |B(v)| > 1

and |B(w)| > 1. Consider the parts A = T (u), B = T (v) \ T (u), C = T (w) \ T (v),
and D = T (r) \ T (w). Observe that every one of those parts remains connected in
G\{(u, p(u)), (v, p(v)), (w, p(w))}. Notice that there are six different types of back-edges
that connect the parts A-D: back-edges from A to B, from A to C , from A to D, from
B to C , from B to D, and from C to D. Notice that such a back-edge is contained
either in B(u), or in B(v), or in B(w) (or in intersections or unions between those
sets).

Suppose first that (1) is true. Then, since e ∈ B(u)∩B(w), we have that e connects
A and D. The disjointness of the union in B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e})
implies that e is the only back-edge in B(u) ∩ B(w), and so it is the only back-edge
from A to D. Let e′ be a back-edge in B(u) \ {e}. Then, since e′ ∈ B(u), we have that
e′ is either from A to B, or from A to C , or from A to D. The latter case is rejected,
since we have that e is the only back-edge with this property. The case that e′ is from
A to B is rejected, because B(u) \ {e} ⊆ B(v). Thus, e′ is a back-edge from A to C.
Let e′′ be a back-edge in B(w)\{e}. Then, since e′′ ∈ B(w), we have that e′′ is either a
back-edge from A to D, or from B to D, or from C to D. The case that e′′ is from A

to D is rejected, because e is the only back-edge with this property. And the case that
e′′ is from C to D is rejected, since we have B(w)\{e} ⊆ B(v). Thus, e′′ is a back-edge
from B to D. Since B(v)\{e} = (B(u)\{e})⊔ (B(w)\{e}) and e ∈ B(u)∩B(v)∩B(w),
we have exhausted all possibilities for the back-edges that connect the parts A-D.

Now we have collected enough information to see why C ′ is a 4-cut of G. The only
different types of back-edges that connect the parts A-D are: at least one back-edge
e′ from A to C , at least one back-edge e′′ from B to D, and e is the unique back-
edge from A to D. In this situation, observe that, if we remove C ′ from G, then G

286

becomes disconnected into the connected components A∪C and B∪D. If we remove
{(u, p(u)), (v, p(v)), e} from G, then there remains a path A

e′−→ C
(w,p(w))−−−−−→ D, and so

this is not a 3-cut of G (because the endpoints of e remain connected). If we remove
{(u, p(u)), (w, p(w)), e} from G, then there remains a path A

e′−→ C
(p(v),v)−−−−→ B

e′′−→ D,
and so this is not a 3-cut of G (because the endpoints of e remain connected). If
we remove {(v, p(v)), (w, p(w)), e} from G, then there remains a path A

(u,p(u))−−−−→ B
e′′−→

D, and so this is not a 3-cut of G (because the endpoints of e remain connected).
Finally, if we remove {(u, p(u)), (v, p(v)), (w, p(w))} from G, then there remains a path
C

e′−→ A
e−→ D

e′′−→ B, and so this is not a 3-cut of G (because all parts A-D remain
connected). Thus, we have that C ′ is a 4-cut of G.

Now suppose that (2) is true. Then, since e ∈ B(w) and e /∈ B(u) ∪B(v), we have
that e connects C and D. B(v) = B(u) ⊔ (B(w) \ {e}) implies that B(w) \ {e} ⊆ B(v),
and therefore e is the unique back-edge from C to D (because all other back-edges in
B(w) lie in B(v)). Notice that B(u)∩ (B(w)\{e}) = ∅ and e /∈ B(u), implies that there
is no back-edge in B(u)∩B(w). Let e′ be a back-edge in B(u). Then e′ is either from
A to B, or from A to C , or from A to D. The latter case is rejected, because there is
no back-edge in B(u)∩B(w). The case that e′ is from A to B is also rejected, because
e′ ∈ B(v). Thus, e′ is a back-edge from A to C. Let e′′ be a back-edge in B(w) \ {e}.
Then e′′ is either a back-edge from A to D, or from B to D, or from C to D. The
latter case is rejected, because e is the only back-edge with this property. The case
that e′′ is from A to D is rejected, since there is no back-edge in B(u) ∩ B(w). Thus,
e′′ is a back-edge from B to D. Since B(v) = B(u) ⊔ (B(w) \ {e}, we have exhausted
all different combinations for back-edges that connect the parts A-D.

Now we have collected enough information to see why C ′ is a 4-cut of G. The only
different types of back-edges that connect the parts A-D are: at least one back-edge
e′ from A to C , at least one back-edge e′′ from B to D, and e is the unique back-edge
from C to D. In this situation, observe that, if we remove C ′ from G, then G becomes
disconnected into the connected components A ∪ C and B ∪D. Then we can argue
as before, in order to show that no 3-element subset of C ′ is a 3-cut of G. Thus, we
have that C ′ is a 4-cut of G.

Now suppose that (3) is true. Then, since e ∈ B(u) and e /∈ B(v) ∪B(w), we have
that e connects A and B. B(v) = (B(u) \ {e}) ⊔ B(w) implies that B(u) \ {e} ⊆ B(v),
and therefore e is the unique back-edge from A to B (because all other back-edges
in B(u) lie in B(v)). Notice that (B(u) \ {e}) ∩ B(w) = ∅ and e /∈ B(w), implies that

287

there is no back-edge in B(u) ∩ B(w). Let e′ be a back-edge in B(u) \ {e}. Then e′

is either from A to B, or from A to C , or from A to D. The latter case is rejected,
because there is no back-edge in B(u)∩B(w). The case that e′ is from A to B is also
rejected, because e is the unique back-edge with this property. Thus, e′ is a back-edge
from A to C. Let e′′ be a back-edge in B(w). Then e′′ is either a back-edge from A

to D, or from B to D, or from C to D. The latter case is rejected, because we have
B(w) ⊆ B(v), and therefore all back-edges in B(w) lie in B(v). The case that e′′ is
from A to D is rejected, since there is no back-edge in B(u) ∩ B(w). Thus, e′′ is a
back-edge from B to D. Since B(v) = (B(u) \ {e}) ⊔ B(w), we have exhausted all
different combinations for back-edges that connect the parts A-D.

Now we have collected enough information to see why C ′ is a 4-cut of G. The only
different types of back-edges that connect the parts A-D are: at least one back-edge
e′ from A to C , at least one back-edge e′′ from B to D, and e is the unique back-edge
from A to B. In this situation, observe that, if we remove C ′ from G, then G becomes
disconnected into the connected components A ∪ C and B ∪D. Then we can argue
as before, in order to show that no 3-element subset of C ′ is a 3-cut of G. Thus, we
have that C ′ is a 4-cut of G.

Finally, suppose that (4) is true. Then, since e ∈ B(v) and e /∈ B(u) ∪ B(w), we
have that e connects B and C. Since B(v) = (B(u) ⊔ B(w)) ⊔ {e}, we have that all
back-edges in B(v), except e, are either in B(u) or in B(w). Therefore, e is the unique
back-edge from B to C. Since B(u) ∩ B(w) = ∅, we have that there is no back-edge
from A to D. Let e′ be a back-edge in B(u). Then e′ is either from A to B, or from
A to C , or from A to D. The latter case is rejected, because there is no back-edge
in B(u) ∩ B(w). The case that e′ is from A to B is also rejected, because e ∈ B(v).
Thus, e′ is a back-edge from A to C. Let e′′ be a back-edge in B(w). Then e′′ is
either a back-edge from A to D, or from B to D, or from C to D. The latter case is
rejected, because we have B(w) ⊆ B(v). The case that e′′ is from A to D is rejected,
since there is no back-edge in B(u) ∩ B(w). Thus, e′′ is a back-edge from B to D.
Since B(v) = (B(v) ⊔ B(w)) ⊔ {e}, we have exhausted all different combinations for
back-edges that connect the parts A-D.

Now we have collected enough information to see why C ′ is a 4-cut of G. The only
different types of back-edges that connect the parts A-D are: at least one back-edge
e′ from A to C , at least one back-edge e′′ from B to D, and e is the unique back-edge
from B to C. In this situation, observe that, if we remove C ′ from G, then G becomes

288

disconnected into the connected components A ∪ C and B ∪D. Then we can argue
as before, in order to show that no 3-element subset of C ′ is a 3-cut of G. Thus, we
have that C ′ is a 4-cut of G.

We distinguish two types of Type-3β 4-cuts – Type-3βi and Type-3βii – depending
on whether the M points of v and w (after the removal of e) coincide. The Type-3βi
4-cuts have the following classification, corresponding to the cases in Lemma 5.57.

1. e ∈ B(u) ∩B(v) ∩B(w), B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}) and M(B(v) \ {e}) ̸=

M(B(w) \ {e})

2. e ∈ B(w), e /∈ B(u) ∪B(v), B(v) = B(u) ⊔ (B(w) \ {e}) and M(v) ̸= M(B(w) \ {e})

3. e ∈ B(u), e /∈ B(v) ∪B(w), B(v) = (B(u) \ {e}) ⊔B(w) and M(v) ̸= M(w)

4. e ∈ B(v), B(v) = (B(u) ⊔B(w)) ⊔ {e} and M(B(v) \ {e}) ̸= M(w)

The Type-3βii 4-cuts are classified as the Type-3βi 4-cuts above, the only difference
being that the inequalities are replaced with equalities in each case.

The Type-3βi 4-cuts are easier to handle. This is because, given v, we have enough
information to find u and w relatively easily. On the other hand, for Type-3βii 4-cuts
we have to apply more sophisticated methods, because it is not straightforward what
are the possible u and w that may induce with v a 4-cut of this type. The general
idea to compute those 4-cuts is basically to calculate a set of candidates u, for each
v, that may induce with v and a w a 4-cut of the desired kind. The search space for
w, given v, is known, but not computed (in most cases). Then, given v and u, we can
relatively easily determine a w that may induce a desired 4-cut with u and v. Then
we apply a criterion in order to check that we indeed get a 4-cut. The remaining
4-cuts (if it is impossible to compute all of them in linear time), are implied from the
collection we have computed, plus that returned by Algorithm 24.

5.8.1 Type‐3βi 4‐cuts

5.8.1.1 Case (1) of Lemma 5.57

Lemma 5.58. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v

is a proper ancestor of u, and there is a back-edge e such that e ∈ B(u) ∩ B(v) ∩ B(w),
B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}), and M(B(v) \ {e}) ̸= M(B(w) \ {e}). Then
e = (lowD(u), low(u)), high(u) < v, low2(u) ≥ w, and M(w) = M(v). Furthermore,

289

M(u) = M(v, c), where c is either the low1 or the low2 child of M(w). Finally, u is the
lowest proper descendant of v that has M(u) = M(v, c).

Proof. Since B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}) and e ∈ B(v) ∩ B(u) ∩ B(w), we
have that B(u) ⊆ B(v) and B(w) ⊆ B(v). Let (x, y) be a back-edge in B(u). Then
B(u) ⊆ B(v) implies that (x, y) ∈ B(v), and therefore y is a proper ancestor of v, and
therefore y < v. Due to the generality of (x, y) ∈ B(u), this implies that high(u) < v.

The disjoint union in B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}), and the fact that
e ∈ B(u) ∩ B(w), implies that B(u) and B(w) intersect only at e. Let us suppose, for
the sake of contradiction, that low2(u) < w. Let (x, y) be the low2 back-edge of u. Then
x is a descendant of u, and therefore a descendant of v, and therefore a descendant
of w. Since (x, y) is a back-edge, we have that x is a descendant of y. Thus, x is a
common descendant of y and w, and therefore y and w are related as ancestor and
descendant. Since y = low2(u) and low2(u) < w, we have that y < w, and so y is a
proper ancestor of w. This shows that (x, y) ∈ B(w). Now let (x′, y′) be the low1 back-
edge of u. Then we have low1(u) ≤ low2(u), and therefore y′ ≤ y. Since y < w, this
implies that y′ < w. But then we can show as previously that (x′, y′) ∈ B(w), and so
B(u)∩B(w) contains at least two back-edges (i.e., (x, y) and (x′, y′)), a contradiction.
Thus, we have that low2(u) ≥ w. This implies that only the low1 back-edge of u may
be in B(w), and so we have that e is the low1 back-edge of u.

Now we will show that M(w) = M(v). Since e ∈ B(u) ∩ B(w), we have that the
higher endpoint of e is a descendant of both u and M(w). Thus, u and M(w) are
related as ancestor and descendant. Let us suppose, for the sake of contradiction, that
M(w) is a descendant of u. Since the graph is 3-edge-connected, there is a back-edge
(x, y) ∈ B(w) \ {e}. Then, we have that x is a descendant of M(w), and therefore a
descendant of u. Furthermore, y is a proper ancestor of w, and therefore a proper
ancestor of v, and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). But
this contradicts the disjointness of the union in B(v)\{e} = (B(u)\{e})⊔(B(w)\{e}),
which implies that there is at most one back-edge in B(u) ∩ B(w). This shows that
M(w) is a proper ancestor of u. Now, since B(w) ⊆ B(v), we have that M(w) is
a descendant of M(v). Conversely, let (x, y) be a back-edge in B(v). If (x, y) = e,
then we have that (x, y) ∈ B(w), and therefore x is a descendant of M(w). Otherwise,
B(v)\{e} = (B(u)\{e})⊔(B(w)\{e}) implies that either (x, y) ∈ B(u) or (x, y) ∈ B(w).
If (x, y) ∈ B(u), then x is a descendant of u, and therefore a descendant of M(w).
And if (x, y) ∈ B(w), then x is a descendant of M(w). Thus, in either case we have

290

that x is a descendant of M(w). Due to the generality of (x, y) ∈ B(v), this shows that
M(v) is a descendant of M(w). Thus, we have M(w) = M(v).

Since B(u) ⊆ B(v), we have that M(u) is a descendant of M(v). Let us suppose,
for the sake of contradiction, that M(u) = M(v). Then, since u is a proper descendant
of v, Lemma 3.2 implies that B(v) ⊆ B(u). Therefore, B(u) ⊆ B(v) implies that
B(u) = B(v), in contradiction to the fact that the graph is 3-edge-connected. Thus,
we have that M(u) ̸= M(v), and therefore M(u) is a proper descendant of M(v). Let
c be the child of M(v) that is an ancestor of M(u).

Let us suppose, for the sake of contradiction, that c is neither the low1 nor the
low2 child of M(v). Let e = (x, y). Since e ∈ B(u), we have that x is a descendant of
M(u), and therefore a descendant of c. Furthermore, we have e ∈ B(v). Thus, y is a
proper ancestor of v, and therefore a proper ancestor of M(v), and therefore a proper
ancestor of c. This shows that e ∈ B(c). Since e ∈ B(w), we have that y is a proper
ancestor of w, and therefore y < w. Thus, since e ∈ B(c), we have that low(c) ≤ y < w.
Let c1 and c2 be the low1 and the low2 child of M(v), respectively. Since c is neither
c1 nor c2, we have that low(c1) ≤ low(c2) ≤ low(c) < w. Now let (x′, y′) be a back-
edge in B(c1) such that y′ = low(c1). Then, x′ is a descendant of c1, and therefore a
descendant of M(v), and therefore a descendant of M(w), and therefore a descendant
of w. Furthermore, since (x′, y′) is a back-edge, y′ is an ancestor of x′. Thus, since x′

is a common descendant of y′ and w, we have that y′ and w are related as ancestor
and descendant. Then, y′ = low(c1) < w implies that y′ is a proper ancestor of w. This
shows that (x′, y′) ∈ B(w). Since x is a descendant of c, and x′ is a descendant of c1, and
c ̸= c1, we have that x ̸= x′ (because otherwise x would be a common descendant of c
and c1, and so c and c1 would be related as ancestor and descendant, which is absurd).
Thus, (x′, y′) ∈ B(w) can be strengthend to (x′, y′) ∈ B(w)\{e}. This implies that x′ is
a descendant of M(B(w) \ {e}). Thus, M(B(w) \ {e}) is an ancestor of a descendant
of c1. Similarly, we can show that M(B(w) \ {e}) is an ancestor of a descendant
of c2. Since c1 and c2 are not related as ancestor and descendant, this implies that
M(B(w) \ {e}) is an ancestor of nca{c1, c2} = M(v) = M(w). Since M(B(w) \ {e})
is a descendant of M(w), this implies that M(B(w) \ {e}) = M(w) = M(v). Since
B(v)\{e} = (B(u)\{e})⊔ (B(w)\{e}), we have B(w)\{e} ⊆ B(v)\{e}, and therefore
M(B(w)\{e}) is a descendant of M(B(v)\{e}), which is a descendant of M(v). Thus,
since M(B(w)\{e}) = M(v), we have M(B(w)\{e}) = M(B(v)\{e}), in contradiction
to the assumption of the lemma. Thus, we have that c is either the low1 or the low2

291

child of M(v).
Let us suppose, for the sake of contradiction, that there is a proper descendant u′ of

v, that is lower than u and hasM(u′) = M(v, c). Then, sinceM(u′) = M(u) and u′ < u,
we have that u′ is a proper ancestor of u, and Lemma 3.2 implies that B(u′) ⊆ B(u).
Since the graph is 3-edge-connected, this can be strengthened to B(u′) ⊂ B(u). Thus,
there is a back-edge (x, y) ∈ B(u) \ B(u′). Then, x is a descendant of M(u) = M(u′).
Furthermore, B(u) ⊆ B(v) implies that (x, y) ∈ B(v), and therefore y is a proper
ancestor of v, and therefore a proper ancestor of u′. This shows that (x, y) ∈ B(u′),
a contradiction. Thus, we have that u is the lowest proper descendant of v that has
M(u) = M(v, c).

Lemma 5.58 provides enough information to guide us into the search for all Type-
3βi 4-cuts that satisfy (1) of Lemma 5.57. According to Lemma 5.58, we have to find,
for every vertex v ̸= r, the lowest proper descendant u of v that has M(u) = M(v, c),
where c is either the low1 or the low2 child of M(v). Then, w should satisfy that
M(w) = M(v) and bcount(w) = bcount(v) − bcount(u) + 1. We note that this w, if it
exists, is unique, because it has the sameM point as v. Then, once we collect the triple
u, v, w we apply the criterion provided by Lemma 5.59, in order to check that we
indeed get a 4-cut. This procedure is shown in Algorithm 32. The proof of correctness
and linear complexity is given in Proposition 5.20.

Lemma 5.59. Let v ̸= r be a vertex such that M(v) has a child c. Let u be a proper
descendant of u such that M(u) is a descendant of c, and let w be a proper ancestor of v
such that M(w) = M(v). Then there is a back-edge e ∈ B(u) ∩ B(v) ∩ B(w) such that
B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}) if and only if: high(u) < v, w ≤ low2(u), and
bcount(v) = bount(u) + bcount(w)− 1.

Proof. (⇒) bcount(v) = bount(u)+bcount(w)−1 is an immediate consequence of B(v)\
{e} = (B(u)\{e})⊔(B(w)\{e}) and e ∈ B(u)∩B(v)∩B(w). Since B(u)\{e} ⊆ B(v)\{e}
and e ∈ B(u) ∩ B(v), we have that B(u) ⊆ B(v). This implies that high(u) < v

(because every back-edge (x, y) ∈ B(u) must have y < v). Since B(u)∩B(w) ̸= ∅ and
w is a proper ancestor of u, we have that the low-edge of u is in B(w). And since
(B(u) \ {e})∩ (B(w) \ {e}) = ∅ and e ∈ B(u)∩B(w), we have that the low-edge of u is
precisely e. Then, since (B(u) \ {e}) ∩ (B(w) \ {e}) = ∅ and u is a proper descendant
of w, we have that no back-edge e′ in B(u) \ {e} has lower point that is lower than
w (because this would imply that e′ ∈ B(w)). This implies that low2(u) ≥ w.

292

(⇐) Let (x, y) be a back-edge in B(u). Then, x is a descendant of M(u), and therefore
a descendant of c, and therefore a descendant of M(v), and therefore a descendant of
v. Furthermore, since (x, y) is a back-edge, y is an ancestor of x. Thus, x is a common
descendant of v and y, and therefore v and y are related as ancestor and descendant.
Since (x, y) ∈ B(u), we have that y is an ancestor of high(u), and therefore y ≤ high(u).
Thus, high(u) < v implies that y < v, and therefore y is a proper ancestor of v. This
shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u), this implies that
B(u) ⊆ B(v). Since w is a proper ancestor of v with M(w) = M(v), by Lemma 3.2
we have that B(w) ⊆ B(v).

Let us suppose, for the sake of contradiction, that B(w)∩B(v) = ∅. Then, B(u) ⊆
B(v) and B(w) ⊆ B(v) imply that B(u) ⊔ B(w) ⊆ B(v), and therefore bcount(u) +
bcount(w) ≤ bcount(v), in contradiction to bcount(v) = bcount(u) + bcount(w)− 1. Thus,
we have that B(w) ∩ B(v) ̸= ∅.

Let e = (x, y) be a back-edge in B(u) such that y = low1(u). Let us suppose, for the
sake of contradiction, that e /∈ B(w). Consider a back-edge (x′, y′) ∈ B(u) \ {(x, y)}.
Then, we have that y′ ≥ low2(u). Thus, low2(u) ≥ w implies that y′ ≥ w. This implies
that y′ cannot be a proper ancestor of w, and therefore (x′, y′) /∈ B(w). Due to the
generality of (x′, y′) ∈ B(u) \ {e}, this implies that B(w)∩ (B(u) \ {e}) = ∅. Therefore,
since e /∈ B(w), we have that B(w) ∩ B(u) = ∅, a contradiction. Thus, we have that
e ∈ B(w). Furthermore, since low2(u) ≥ w, this is the only back-edge in B(u) that is
also in B(w).

Thus, since B(u) ⊆ B(v), B(w) ⊆ B(v), B(u) ∩ B(w) = {e} and bcount(v) =

bcount(u) + bcount(w)− 1, we have that B(v) = ((B(u) \ {e})⊔ (B(w) \ {e}))⊔ {e}, and
therefore B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}).

Proposition 5.20. Algorithm 32 correctly computes all Type-3βi 4-cuts that satisfy (1) of
Lemma 5.57. Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βi 4-cut such that w is a
proper ancestor of v, and v is a proper ancestor of u, where the back-edge e satisfies
(1) of Lemma 5.57. Then, by Lemma 5.58 we have that M(u) = M(v, c), where c

is either the low1 or the low2 child of M(v). Let us assume that c is the low1 child
of M(v) (the other case is treated similarly). Then, Lemma 5.58 implies that u is
the lowest proper descendant of v such that M(u) = M(v, c), e = (lowD(u), low(u)),

293

Algorithm 32: Compute all Type-3βi 4-cuts that satisfy (1) of Lemma 5.57

1 foreach vertex v ̸= r do
2 let c1 be the low1 child of M(v)

3 let c2 be the low2 child of M(v)

4 compute M(v, c1) and M(v, c2)

5 end
6 initialize an array A of size m

7 foreach vertex x ̸= r do
8 let c1 be the low1 child of x
9 let c2 be the low2 child of x

10 foreach z ∈M−1(x) do
11 set A[bcount(z)]← z

12 end
13 foreach v ∈M−1(x) do

// consider the case where u is a descendant of the low1 child of

x; the other case is treated similarly, by substituting c1 with

c2

14 let u be the lowest proper descendant of v with M(u) = M(v, c1)

15 let w ← A[bcount(v)− bcount(u) + 1]

16 if w ̸= ⊥ and w < v and high(u) < v and w ≤ low2(u) then
17 mark {(u, p(u)), (v, p(v)), (w, p(w)), (lowD(u), low(u))} as a 4-cut

18 end

19 end
20 foreach z ∈M−1(x) do
21 set A[bcount(z)]← ⊥
22 end

23 end

294

and M(w) = M(v). Lemma 5.59 implies that bcount(w) = bcount(v) − bcount(u) + 1,
high(u) < v and w ≤ low2(u).

Now, when the for loop in Line 7 processes x = M(v), we will eventually reach
the for loop in Line 13, because v ∈ M−1(x). Notice that when we reach Line 14
when the for loop in Line 13 processes v, we have that the variable “u” is assigned
precisely u. Now consider the variable “w” in Line 15. We claim that the bcount(v)−
bcount(u) + 1 entry of the array A is precisely w. To see this, observe that the for
loop in Line 10 has processed w (because M(w) = M(v)), and at some point inserted
into the bcount(v) − bcount(u) + 1 entry of A the value w. But then, this entry was
not altered afterwards, because Lemma 3.7 implies that all vertices with the same M
point have different bcount values (since our graph is 3-edge-connected). Thus, the
variable “w” in Line 15 holds the value w, and therefore C will be marked in Line 17,
since all the conditions to reach this line are satisfied.

Conversely, suppose that a 4-element set C = {(u, p(u)), (v, p(v)), (w, p(w)), (x, y)}
is marked in Line 17. Then, we have that (x, y) = (lowD(u), low(u)), u is a proper
descendant of v,M(u) is a descendant of the low1 child ofM(v), w is a proper ancestor
of v withM(w) = M(v) (due to w < v in Line 16), bcount(w) = bcount(v)−bcount(u)+1,
high(u) < v and w < low2(u). Thus, Lemma 5.59 implies that there is a back-edge
e ∈ B(u) ∩ B(v) ∩ B(w) such that B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}). Since
B(u) ∩ B(w) ̸= ∅ and w is a proper ancestor of u, we have that the low-edge of u is
in B(w). And since (B(u) \ {e}) ∩ (B(w) \ {e}) = ∅, we have that the low-edge of u is
precisely e. Thus, C is indeed a 4-cut (that satisfies (1) of Lemma 5.57).

Now we will argue about the complexity of Algorithm 32. By Proposition 3.5, we
have that the values M(v, c1) and M(v, c2) can be computed in linear time in total, for
all vertices v ̸= r, where c1 and c2 are the low1 and low2 children of M(v). Thus, the
for loop in Line 1 can be performed in linear time. In order to compute u in Line 14,
we use Algorithm 22. Specifically, whenever we reach this line, we generate a query
q(M−1(M(v, c1)), v). This returns the lowest vertex u with M(u) = M(v, c1) such that
u > v. Since M(u) = M(v, c1) implies that M(u) is a common descendant of v and
u, we have that v and u are related as ancestor and descendant. Thus, u > v implies
that u is a proper descendant of v. Therefore, we have that u is the lowest proper
descendant of v such that M(u) = M(v, c1). Since the number of all those queries is
O(n), by Lemma 5.27 we have that Algorithm 22 answers all of them in linear time
in total. It is easy to see that the remaining operations of Algorithm 32 take O(n)

295

time in total. We conclude that Algorithm 32 runs in linear time.

5.8.1.2 Case (2) of Lemma 5.57

Lemma 5.60. Let u, v, w be three vertices ≠ r such that w is proper ancestor of v, v is
a proper ancestor of u, and there is a back-edge e ∈ B(w) such that e /∈ B(v) ∪ B(u),
B(v) = B(u) ⊔ (B(w) \ {e}), and M(v) ̸= M(B(w) \ {e}). Then w is an ancestor of
low(u), M(w) ̸= M(v), M(B(w) \ {e}) ̸= M(w), and e is either (L1(w), l(L1(w))) or
(R1(w), l(R1(w))). Furthermore, let c1 be the low1 child of M(v), and let c2 be the low2
child of M(v). Then M(B(w) \ {e}) = M(v, c1), and u is the lowest proper descendant of
v such that M(u) = M(v, c2).

Proof. Let us suppose, for the sake of contradiction, that w is not an ancestor of
low(u). B(v) = B(u) ⊔ (B(w) \ {e}) implies that B(u) ⊆ B(v). Thus, the low-edge
of u is in B(v). This implies that low(u) is a proper ancestor of v. Then, since v is
a common descendant of low(u) and w, we have that low(u) and w are related as
ancestor and descendant. Since w is not an ancestor of low(u), this implies that w is a
proper descendant of low(u). Now let (x′, y′) be the low-edge of u. Then we have that
x′ is a descendant of u, and therefore a descendant of w. Furthermore, y′ = low(u) is a
proper ancestor of w. This shows that (x′, y′) ∈ B(w). But since B(u)∩(B(w)\{e}) = ∅,
this implies that (x′, y′) = e, contradicting the fact that e /∈ B(u). This shows that w
is an ancestor of low(u).

Let e = (x, y). Since e ∈ B(w), we have that y is a proper ancestor of w, and
therefore a proper ancestor of v. Thus, since e /∈ B(v), we have that x cannot be a
descendant of M(v). Since M(w) is an ancestor of x, this implies that M(w) cannot
be a descendant of M(v), and therefore M(w) ̸= M(v). Since B(w) \ {e} ⊆ B(v), we
have that M(B(w) \ {e}) is a descendant of M(v). Thus, since M(w) cannot be a
descendant of M(v), we have M(w) ̸= M(B(w) \ {e}). By Lemma 3.9, this implies
that either e = eL(w) or e = eR(w).

B(v) = B(u) ⊔ (B(w) \ {e}) implies that B(u) ⊆ B(v), and therefore M(u) is a
descendant of M(v). Thus, since M(u) is a common descendant of u and M(v), we
have that u and M(v) are related as ancestor and descendant. Let us suppose, for the
sake of contradiction, that u is not proper descendant of M(v). Then, u is an ancestor
of M(v). Let (x′, y′) be a back-edge in B(v). Then x′ is a descendant of M(v), and
therefore a descendant of u. Furthermore, y′ is a proper ancestor of v, and therefore

296

a proper ancestor of u. This shows that (x′, y′) ∈ B(u). Due to the generality of
(x′, y′) ∈ B(v), this implies that B(v) ⊆ B(u). But B(v) = B(u) ⊔ (B(w) \ {e}) implies
that B(u) ⊆ B(v), and therefore we have B(u) = B(v), in contradiction to the fact that
the graph is 3-edge-connected. This shows that u is a proper descendant of M(v).

Let us suppose, for the sake of contradiction, that there is a back-edge of the form
(M(v), z) in B(v). Then, B(v) = B(u) ⊔ (B(w) \ {e}) implies that either (M(v), z) ∈
B(u), or (M(v), z) ∈ B(w) \ {e}. The first case is rejected, because it implies that
M(v) is a descendant of u. Thus, we have (M(v), z) ∈ B(w) \ {e}. This implies that
M(v) is a descendant of M(B(w) \ {e}). But B(v) = B(u) ⊔ (B(w) \ {e}) implies that
B(w)\{e} ⊆ B(v), and thereforeM(B(w)\{e}) is a descendant ofM(v), and therefore
we haveM(v) = M(B(w)\{e}), contradicting one of the assumptions in the statement
of the lemma. Thus, we have that there is no back-edge of the form (M(v), z) in B(v).
This implies that low(c1) < v and low(c2) < v, where c1 and c2 is the low1 and the
low2 child of M(v), respectively.

Let us suppose, for the sake of contradiction, that there is a back-edge (x′, y′) ∈
B(w) \ {e} such that x′ is not a descendant of c1. B(v) = B(u) ⊔ (B(w) \ {e}) implies
that (x′, y′) ∈ B(v). Thus, since there is no back-edge of the form (M(v), z) in B(v), we
have that x′ is a descendant of a child c of M(v). We have that y′ is a proper ancestor
of v, and therefore a proper ancestor of M(v), and therefore a proper ancestor of c.
This shows that (x′, y′) ∈ B(c). Thus, we have low(c) < w. Since c ̸= c1, we have that
low(c1) ≤ low(c). Thus, low(c) < w implies that low(c1) < w. This means that there is
a back-edge (x′′, y′′) ∈ B(c1) such that y′′ < w. Then x′′ is a descendant of M(v), and
therefore a descendant of v, and therefore a descendant of w. Furthermore, since x′′

is a common descendant of y′′ and w, we have that y′′ and w are related as ancestor
and descendant. Thus, y′′ < w implies that y′′ is a proper ancestor of w. This shows
that (x′′, y′′) ∈ B(w). Since x′′ is a descendant ofM(v) and y′′ is a proper ancestor of v,
we also have that (x′′, y′′) ∈ B(v). Thus, e /∈ B(v) implies that (x′′, y′′) ̸= e. Therefore,
(x′′, y′′) ∈ B(w) can be strengthened to (x′′, y′′) ∈ B(w) \ {e}. This implies that x′′ is
a descendant of M(B(w) \ {e}). Since (x′, y′) ∈ B(w) \ {e}, we also have that x′ is
a descendant of M(B(w) \ {e}). This implies that M(B(w) \ {e}) is an ancestor of
nca{x′, x′′}. Since x′ and x′′ are descendants of different children of M(v), we have
that nca{x′, x′′} = M(v). But then we have that M(B(w) \ {e}) is an ancestor of M(v),
and therefore we have M(B(w) \ {e}) = M(v), since B(v) = B(u) ⊔ (B(w) \ {e})
implies that M(B(w) \ {e}) is a descendant of M(v). This contradicts the assumption

297

M(B(w) \ {e}) ̸= M(v) in the statement of the lemma. Thus, we have that all back-
edges in B(w) \ {e} have their higher endpoint in T (c1).

Since low(c2) < v, we have that there is a back-edge (x′, y′) ∈ B(c2) such that y′ < v.
Then, x′ is a descendant of c2, and therefore a descendant of M(v), and therefore a
descendant of v. Thus, since x′ is a common descendant of y′ and v, we have that y′

and v are related as ancestor and descendant, and therefore y′ < v implies that y′ is a
proper ancestor of v. This shows that (x′, y′) ∈ B(v). Thus, B(v) = B(u)⊔ (B(w)\{e})
implies that either (x′, y′) ∈ B(u), or (x′, y′) ∈ B(w) \ {e}. The second case is rejected,
since all back-edges in B(w)\{e} have their higher endpoint in T (c1). Thus, (x′, y′) ∈
B(u). This implies that x′ is a descendant of u. Since u is a proper descendant of
M(v), we have that u is a descendant of a child c of M(v). Then, we have that x′ is a
descendant of c2 (by assumption) and also a descendant of c (since it is a descendant
of u). Thus, we have that c and c2 are related as ancestor and descendant. Therefore,
since they have the same parent, they must coincide. In other words, we have c = c2.

Let S1 = {(x′, y′) ∈ B(v) | x′ is a descendant of c1}. Then, M(S1) = M(v, c1). Let
(x′, y′) be a back-edge in S1. Then (x′, y′) ∈ B(v), and therefore B(v) = B(u)⊔ (B(w)\
{e}) implies that either (x′, y′) ∈ B(u), or (x′, y′) ∈ B(w) \ {e}. Let us suppose, for the
sake of contradiction, that (x′, y′) ∈ B(u). Then, x′ is a descendant of u, and therefore
a descendant of c2. Thus, x′ is a common descendant of c1 and c2, and therefore c1

and c2 are related as ancestor and descendant, which is impossible. Thus, the case
(x′, y′) ∈ B(u) is rejected, and so we have (x′, y′) ∈ B(w) \ {e}. Due to the generality
of (x′, y′) ∈ S1, this implies that S1 ⊆ B(w) \ {e}. Conversely, let (x′, y′) be a back-
edge in B(w) \ {e}. Then, we have shown that x′ is a descendant of c1. Furthermore,
B(v) = B(u)⊔(B(w)\{e}) implies that (x′, y′) ∈ B(v). This shows that (x′, y′) ∈ S1. Due
to the generality of (x′, y′) ∈ B(w) \ {e}, this implies that B(w) \ {e} ⊆ S1. Thus, since
S1 ⊆ B(w) \ {e}, we have S1 = B(w) \ {e}. This implies that M(S1) = M(B(w) \ {e}),
and therefore M(v, c1) = M(B(w) \ {e}).

Let S2 = {(x′, y′) ∈ B(v) | x′ is a descendant of c2}. Then, M(S2) = M(v, c2).
Let (x′, y′) be a back-edge in S2. Then (x′, y′) ∈ B(v), and therefore B(v) = B(u) ⊔
(B(w) \ {e}) implies that either (x′, y′) ∈ B(u), or (x′, y′) ∈ B(w) \ {e}. The case
(x′, y′) ∈ B(w) \ {e} is rejected, because it implies that (x′, y′) ∈ S1 (and obviously we
have S1 ∩ S2 = ∅). Thus, we have (x′, y′) ∈ B(u). Due to the generality of (x′, y′) ∈ S2,
this implies that S2 ⊆ B(u). Conversely, let (x′, y′) be a back-edge in B(u). Then,
x′ is a descendant of u, and therefore a descendant of c2. Furthermore, B(v) =

298

B(u) ⊔ (B(w) \ {e}) implies that (x′, y′) ∈ B(v). This shows that (x′, y′) ∈ S2. Due to
the generality of (x′, y′) ∈ B(u), this implies that B(u) ⊆ S2. Thus, since S2 ⊆ B(u),
we have S2 = B(u). This implies that M(S2) = M(u), and therefore M(v, c2) = M(u).

Let us suppose, for the sake of contradiction, that there is a proper descendant u′

of v that is lower than u and such that M(u′) = M(v, c2). Then, since M(u′) = M(u)

and u′ < u, we have that u′ is a proper ancestor of u, and Lemma 3.2 implies
that B(u′) ⊆ B(u). Since the graph is 3-edge-connected, this can be strengthened to
B(u′) ⊂ B(u). Thus, there is a back-edge (x′, y′) ∈ B(u)\B(u′). Then, x′ is a descendant
of u, and therefore a descendant of u′. Furthermore, B(v) = B(u)⊔(B(w)\{e}) implies
that (x′, y′) ∈ B(v), and therefore y′ is a proper ancestor of v, and therefore a proper
ancestor of u′. This shows that (x′, y′) ∈ B(u′), a contradiction. Thus, we have that u
is the lowest proper descendant of v such that M(u) = M(v, c2).

Lemma 5.61. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is
a proper ancestor of u, and there is a back-edge e ∈ B(w) such that e /∈ B(v) ∪ B(u),
B(v) = B(u) ⊔ (B(w) \ {e}), and M(v) ̸= M(B(w) \ {e}). Let c1 be the low1 child
of M(v), and let w′ be the greatest ancestor of low(u) with the property that there is a
back-edge e′ ∈ B(w′) such that M(w′) ̸= M(B(w′) \ {e′}) = M(v, c1). Then, we have that
e′ /∈ B(v)∪B(u), B(v) = B(u)⊔(B(w′)\{e′}) and M(v) ̸= M(B(w′)\{e′}). Furthermore,
if w′ ̸= w, then B(w) ⊔ {e′} = B(w′) ⊔ {e}.

Proof. By Lemma 5.60 we have that w is an ancestor of low(u),M(B(w)\{e}) ̸= M(w),
and M(B(w) \ {e}) = M(v, c1). Thus, we may consider the greatest ancestor w′ of
low(u) with the property that there is a back-edge e′ ∈ B(w′) such that M(w′) ̸=
M(B(w′) \ {e′}) = M(v, c1). We may assume that w′ ̸= w, because otherwise there is
nothing to show. Thus we have w′ > w. Notice that B(v) = B(u)⊔(B(w)\{e}) implies
that B(u) ⊆ B(v), and therefore the low-edge of u is in B(v). This implies that low(u)
is a proper ancestor of v, and therefore w′ is also a proper ancestor of v.

Let us suppose, for the sake of contradiction, that the higher endpoint of e′ is
a descendant of M(B(w′) \ {e′}). Let (x, y) be a back-edge in B(w′). If (x, y) = e′,
then x is a descendant of M(B(w′) \ {e′}). Otherwise, if (x, y) ̸= e′, then we have
that (x, y) ∈ B(w′) \ {e′}, and therefore x is a descendant of M(B(w′) \ {e′}). Thus,
in any case we have that x is a descendant of M(B(w′) \ {e′}). Due to the generality
of (x, y) ∈ B(w′), this implies that M(w′) is a descendant of M(B(w′) \ {e′}). But we
have B(w′) \ {e′} ⊆ B(w′), and therefore M(B(w′) \ {e′}) is a descendant of M(w′),

299

and therefore M(B(w′) \ {e′}) = M(w′), a contradiction. This shows that the higher
endpoint of e′ is not a descendant of M(B(w′) \ {e′}). Similarly, we can see that the
higher endpoint of e is not a descendant of M(B(w) \ {e}).

Since v is a common descendant of w and w′, we have that w and w′ are related as
ancestor and descendant. Thus, w′ > w implies that w′ is a proper descendant of w.
Let (x, y) be a back-edge in B(w)\{e}. Then x is a descendant of M(B(w)\{e}), and
therefore a descendant of M(v, c1), and therefore a descendant of v, and therefore a
descendant of w′. Furthermore, y is a proper ancestor of w, and therefore a proper
ancestor of w′. This shows that (x, y) ∈ B(w′). Since x is a descendant of M(B(w) \
{e}) = M(B(w′) \ {e′}), we have that x is not the higher endpoint of e′, and therefore
(x, y) ≠ e′. Thus, (x, y) ∈ B(w′) can be strengthened to (x, y) ∈ B(w′)\{e′}. Due to the
generality of (x, y) ∈ B(w)\{e}, this implies that B(w)\{e} ⊆ B(w′)\{e′}. Conversely,
let (x, y) be a back-edge in B(w′) \ {e′}. Then x is a descendant of M(B(w′) \ {e′}),
and therefore a descendant ofM(v, c1), and therefore a descendant of v. Furthermore,
y is a proper ancestor of w′, and therefore a proper ancestor of v. This shows that
(x, y) ∈ B(v). Then, B(v) = B(u) ⊔ (B(w) \ {e}) implies that either (x, y) ∈ B(u), or
(x, y) ∈ B(w) \ {e}. The case (x, y) ∈ B(u) is rejected, because w′ is an ancestor of
low(u) (and therefore there is no back-edge in B(u) whose lower endpoint is low
enough to be a proper ancestor of w). Thus, we have (x, y) ∈ B(w) \ {e}. Due to the
generality of (x, y) ∈ B(w′) \ {e′}, this implies that B(w′) \ {e′} ⊆ B(w) \ {e}. Thus,
since we have showed the reverse inclusion too, we have that B(w′)\{e′} = B(w)\{e}.
Then, B(v) = B(u) ⊔ (B(w) \ {e}) implies that B(v) = B(u) ⊔ (B(w′) \ {e′}).

Let us suppose, for the sake of contradiction, that e ∈ B(w′). Then, since e ∈ B(w)

and B(w′)\{e′} = B(w)\{e}, we have that e = e′ and B(w′) = B(w), which contradicts
the fact that the graph is 3-edge-connected. Thus, e /∈ B(w′). Similarly, we have
e′ /∈ B(w). Thus, B(w′) \ {e′} = B(w) \ {e} implies that B(w′) ⊔ {e} = B(w) ⊔ {e′}.
Since w′ is an ancestor of low(u), we have B(u)∩B(w′) = ∅. In particular, this implies
that e′ /∈ B(u). Therefore, B(v) = B(u) ⊔ (B(w′) \ {e′}) implies that e′ /∈ B(u) ∪ B(v).
M(B(w′) \ {e′}) = M(v, c1) implies that M(B(w′) \ {e′}) is a descendant of c1, and
therefore a proper descendant of M(v). Thus, M(v) ̸= M(B(w′) \ {e′}).

Now we have collected enough information in order to show how to compute
a collection of Type-3βi 4-cuts that satisfy (2) of Lemma 5.57, so that all 4-cuts
of this type are implied by this collection, plus that returned by Algorithm 24.

300

Based on Lemma 5.61, it is sufficient to compute all Type-3βi 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, such that e satisfies (2) of Lemma 5.57, where w is
the greatest ancestor of low(u) such that M(w) ̸= M(B(w) \ {e}) = M(v, c1), where
c1 is the low1 child of M(v). By Lemma 5.60 we have that either e = eL(w), or
e = eR(w). Thus, we distinguish two cases, depending on whether e = eL(w) or
e = eR(w). By Lemma 5.60, we have that u is the lowest proper descendant of v such
that M(u) = M(v, c2), where c2 is the low2 child of M(v). Thus, given v ̸= r, we know
exactly what are the u and w thay may possibly induce a 4-cut with v. We use the
criterion provided by Lemma 5.62 in order to check whether we get a 4-cut from v,
u and w. The whole procedure is shown in Algorithm 33. The proof of correctness
and linear complexity is given in Proposition 5.21.

Lemma 5.62. Let v ̸= r be a vertex such that M(v) has at least two distinct children c1

and c2. Let w be a proper ancestor of v with the property that M(w) ̸= M(v) and there is a
back-edge e such that M(B(w)\{e}) is a descendant of c1, and let u be a proper descendant
of v such that M(u) is a descendant of c2. Suppose that high(u) < v, and bcount(v) =

bcount(u) + bcount(w)− 1. Then, e /∈ B(u) ∪B(v) and B(v) = B(u) ⊔ (B(w) \ {e}).

Proof. Let (x, y) be a back-edge in B(u). Then x is a descendant of u, and therefore a
descendant of v. Since (x, y) is a back-edge, we have that x is a descendant of y. Thus,
x is a common descendant of v and y, and therefore v and y are related as ancestor
and descendant. Since (x, y) ∈ B(u), we have that y is an ancestor of high(u), and
therefore y ≤ high(u). Thus, high(u) < v implies that y < v, and therefore y is a proper
ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u),
this implies that B(u) ⊆ B(v).

Let (x, y) be a back-edge in B(w) \ {e}. Then x is a descendant of M(B(w) \ {e}),
and therefore a descendant of c1, and therefore a descendant of M(v). Furthermore,
y is a proper ancestor of w, and therefore a proper ancestor of v. This shows that
(x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(w)\{e}, this implies that B(w)\{e} ⊆
B(v).

Let us suppose, for the sake of contradiction, that there is a back-edge (x, y) ∈
B(u) ∩ (B(w) \ {e}). Then x is a descendant of both M(u) and M(B(w) \ {e}), and
therefore a descendant of both c2 and c1. This implies that c1 and c2 are related as
ancestor and descendant, which is absurd. Thus, we have that B(u)∩(B(w)\{e}) = ∅.

Then, since B(u) ⊆ B(v) and B(w) \ {e} ⊆ B(v) and B(u) ∩ (B(w) \ {e}) = ∅ and

301

bcount(v) = bcount(u) + bcount(w)− 1, we have that B(v) = B(u) ⊔ (B(w) \ {e}).
Let us suppose, for the sake of contradiction, that e ∈ B(u). Let x be the higher

endpoint of e. Notice thatM(w) = nca{x,M(B(w)\{e})}. Since e ∈ B(u), we have that
x is a descendant of M(u), and therefore a descendant of c2. Since M(B(w) \ {e}) =
M(v, c1), we have that M(B(w) \ {e}) is a descendant of c1. Thus, we have that
nca{x,M(B(w)\{e})} = M(v), in contradiction to the assumptionM(w) ̸= M(v). This
shows that e /∈ B(u). Thus, B(v) = B(u)⊔(B(w)\{e}) implies that e /∈ B(u)∪B(v).

Proposition 5.21. Algorithm 33 computes a collection C of Type-3βi 4-cuts that satisfy
(2) of Lemma 5.57, and it runs in linear time. Furthermore, every Type-3βi 4-cut that
satisfies (2) of Lemma 5.57 is implied by C∪C ′, where C ′ is the collection of Type-2ii 4-cuts
returned by Algorithm 24.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} be a 4-element set that is marked
in Line 22. Then we have that bcount(v) = bcount(u) + bcount(w) − 1, M(w) ̸= M(v)

and high(u) < v. Since M(u) = M(v, c2) we have that M(u) is a descendant of c2.
Since w ∈ WL(M(v, c1)) we have that M(B(w) \ {eL(w)}) = M(v, c1), and therefore
M(B(w) \ {eL(w)}) is a descendant of c1. We have that u is a proper descendant of v,
and therefore high(u) < v implies that high(u) is a proper ancestor of v. This implies
that low(u) is also a proper ancestor of v, and therefore w being an ancestor of low(u)
implies that w is a proper ancestor of v. Thus, all the conditions of Lemma 5.62 are
satisfied, and therefore we have that eL(w) /∈ B(u) ∪B(v) and B(v) = B(u) ⊔ (B(w) \
{eL(w)}). Since M(B(w) \ {eL(w)}) is a descendant of c1, we have that M(B(w) \
{eL(w)}) ̸= M(v). Thus, we have that C is a Type-3βi 4-cut, that satisfies (2) of
Lemma 5.57. So let C be the collection of all 4-cuts marked in Line 22.

Now let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βi 4-cut such that w is an
ancestor of v, and v is an ancestor of u, and e satisfies (2) of Lemma 5.57. Let c1 and c2

be the low1 and low2 children ofM(v), respectively. Then, Lemma 5.60 implies that w
is an ancestor of low(u), M(w) ̸= M(B(w)\{e}) = M(v, c1), and u is the lowest proper
descendant of v such that M(u) = M(v, c2). Thus, we may consider the greatest
ancestor w′ of low(u) with the property that there is a back-edge e′ ∈ B(w′) such
that M(w′) ̸= M(B(w′) \ {e′}) = M(v, c1). Since M(w′) ̸= M(B(w′) \ {e′}), Lemma 3.9
implies that either e′ = eL(w

′) or e′ = eR(w
′). Let us assume that e′ = eL(w

′). (The other
case is treated similarly.) Then, Lemma 5.61 implies that eL(w′) /∈ B(u) ∪ B(v) and
B(v) = B(u)⊔(B(w′)\{eL(w′)}). Thus, C ′ = {(u, p(u)), (v, p(v)), (w′, p(w′)), eL(w

′)} is a

302

Algorithm 33: Compute a collection of Type-3βi 4-cuts that satisfy (2) of
Lemma 5.57, so that all of them are implied by this collection, plus that
returned by Algorithm 24

// We deal with the case that the back-edge of the 4-cut is eL(w); the

other case is treated similarly

1 foreach vertex w ̸= r do
2 compute M(B(w) \ {eL(w)})

3 end
4 foreach vertex x do
5 let WL(x) be the collection of all w ̸= r such that

M(w) ̸= M(B(w) \ {eL(w)}) = x

6 end
7 foreach vertex v ̸= r do
8 if M(v) has at least two children then
9 let c1 be the low1 child of M(v)

10 let c2 be the low2 child of M(v)

11 compute M(v, c1) and M(v, c2)

12 end

13 end
14 foreach vertex v ̸= r do
15 if M(v) has less than two children then continue
16 let c1 be the low1 child of M(v)

17 let c2 be the low2 child of M(v)

18 if low(c1) ≥ v or low(c2) ≥ v then continue
19 let u be the lowest proper descendant of v such that M(u) = M(v, c2)

20 let w be the greatest ancestor of low(u) such that w ∈ WL(M(v, c1))

21 if M(w) ̸= M(v) and high(u) < v and bcount(v) = bcount(u) + bcount(w)− 1

then
22 mark {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} as a 4-cut
23 end

24 end

303

4-cut that satisfies (2) of Lemma 5.57. Furthermore, since M(B(w′) \ {e′}) = M(v, c1),
we have that M(B(w′) \ {e′}) is a descendant of c1, and therefore M(B(w′) \ {e′}) ̸=
M(v). Thus, C ′ is a Type-3βi 4-cut. Then, Lemma 5.60 implies that M(w′) ̸= M(v).
Since, eL(w′) /∈ B(u)∪B(v) and B(v) = B(u)⊔ (B(w′) \{eL(w′)}), we have bcount(v) =
bcount(u)+bcount(w)−1. Furthermore, we have B(u) ⊆ B(v), and therefore high(u) < v

(because the lower endpoints of all back-edges in B(u) are proper ancestors of v).
Thus, all the conditions are satisfied for C ′ to be marked in Line 22, and therefore
we have C ∈ C. Now, if C ′ = C , then there is nothing to show. Otherwise, we have
w′ ̸= w, and therefore Lemma 5.61 implies that B(w) ⊔ {eL(w′)} = B(w′) ⊔ {e}.
Thus, Lemma 5.28 implies that C ′′ = {(w, p(w)), (w′, p(w′)), e, eL(w

′)} is a Type-2ii
4-cut. Notice that C is implied by C ′ and C ′′ through the pair of edges {(w, p(w)), e}.
By Proposition 5.12 we have that C ′′ is implied by C ′ through the pair of edges
{(w, p(w)), e}, where C ′ is the collection of Type-2ii 4-cuts computed by Algorithm 24.
Therefore, by Lemma 5.7 we have that C is implied by C ′ ∪ {C ′}. This shows that
C ∪ C ′ implies all Type-3βi 4-cuts that satisfy (2) of Lemma 5.57.

Now we will argue about the complexity of Algorithm 33. By Proposition 3.6 we
have that the values M(B(w) \ {eL(w)}) can be computed in linear time in total, for
all vertices w ̸= r. Thus, the for loop in Line 1 can be performed in linear time. By
Proposition 3.5 we have that the values M(v, c1) and M(v, c2) can be computed in
linear time in total, for all vertices v ̸= r such that M(v) has at last two children,
where c1 and c2 are the low1 and low2 children of M(v). Thus, the for loop in
Line 7 can be performed in linear time. In order to compute the vertex u in Line 19
we use Algorithm 22. Specifically, whenever we reach Line 19, we generate a query
q(M−1(M(v, c2)), v). This will return the lowest vertex u with M(u) = M(v, c2) such
that u > v. Since M(u) = M(v, c2), we have that M(u) is a common descendant
of v and u, and therefore v and u are related as ancestor and descendant. Thus,
u > v implies that u is a proper descendant of v, and therefore we have that u is
the greatest proper descendant of v such that M(u) = M(v, c2). Similarly, in order
to compute the vertex v in Line 20 we use Algorithm 22. Specifically, whenever we
reach Line 20, we generate a query q′(WL(M(v, c1)), low(u)). This is to return the
greatest w in WL(M(v, c1)) such that w ≤ low(u). Since w ∈ WL(M(v, c1)), we have
thatM(B(w)\{eL(w)}) = M(v, c1). This implies thatM(v, c1) is a common descendant
of v and w, and therefore v and w are related as ancestor and descendant. Notice that,
since we have reached Line 20, we have that u in Line 19 satisfies M(u) = M(v, c2).

304

This implies that low(u) < v. To see this, let (x, y) be a back-edge in B(v) such that
x is a descendant of c2. (Such a back-edge exists, because low(c2) < v, since we have
passed the check in Line 18.) Then x is a descendant of M(v, c2), and therefore a
descendant of M(u). Furthermore, y is a proper ancestor of v, and therefore a proper
ancestor of u. This shows that (x, y) ∈ B(u). Therefore, since low(u) ≤ y and y is a
proper ancestor of v, we have low(u) < v. Furthermore, we have that low(u) is an
ancestor of y, and therefore an ancestor of v. Then, since v is a common descendant
of low(u) and w, we have that low(u) and w are related as ancestor and descendant,
and then w ≤ low(u) implies that w is an ancestor of low(u). Thus, w is the greatest
ancestor of low(u) such that w ∈ WL(M(v, c1)). Now, since the total number of all q′

queries is O(n), and since the sets WL are pairwise disjoint, by Lemma 5.27 we have
that Algorithm 22 can answer all those queries in linear time in total. We conclude
that Algorithm 33 runs in linear time.

5.8.1.3 Case (3) of Lemma 5.57

Lemma 5.63. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is
a proper ancestor of u, and there is a back-edge e ∈ B(u) such that e /∈ B(v) ∪ B(w),
B(v) = (B(u) \ {e}) ⊔ B(w), and M(v) ̸= M(w). Then e = (highD(u), high(u)) and
high2(u) < v. Furthermore, let c1 and c2 be the low1 and low2 child of M(v), respectively.
Then, M(B(u) \ {ehigh(u)}) = M(v, c2), and w is the greatest proper ancestor of v such
that M(w) = M(v, c1).

Proof. B(v) = (B(u) \ {e}) ⊔ B(w) and e /∈ B(v) imply that all back-edges in B(u),
except e, are in B(v). Let us suppose, for the sake of contradiction, that ehigh(u) ∈ B(v).
This implies that high(u) is a proper ancestor of v. Let (x, y) be a back-edge in B(u).
Then x is a descendant of u, and therefore a descendant of v. Furthermore, y is an
ancestor of high(u), and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v).
Due to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(v), in contradiction to
the fact that e ∈ B(u)\B(v). This shows that ehigh(u) /∈ B(v), and therefore e = ehigh(u).
Since B(u) \ {e} ⊆ B(v), we have that the high2 back-edge of B(u) is in B(v), and
therefore high2(u) is a proper ancestor of v, and therefore high2(u) < v.

B(v) = (B(u) \ {e}) ⊔ B(w) implies that B(w) ⊆ B(v), and therefore M(w) is
a descendant of M(v). Thus, since M(v) ̸= M(w), we have that M(w) is a proper
descendant of M(v). Let c be the child of M(v) that is an ancestor of M(w). Let (x, y)

305

be a back-edge in B(w). Then x is a descendant of M(w), and therefore a descendant
of c, and therefore a descendant of M(v). Furthermore, y is a proper ancestor of v,
and therefore a proper ancestor of M(v), and therefore a proper ancestor of c. This
shows that (x, y) ∈ B(c). Since y is a proper ancestor of w, we have y < w. Thus,
since (x, y) ∈ B(c), we have low(c) ≤ y < w.

Let us suppose, for the sake of contradiction, that c ̸= c1. Since low(c1) ≤ low(c),
low(c) < w implies that low(c1) < w. Thus, there is a back-edge (x, y) ∈ B(c1) such
that y < w. Then, x is a descendant of c1, and therefore a descendant of M(v), and
therefore a descendant of v, and therefore a descendant of w. Since (x, y) is a back-
edge, we have that x is a descendant of y. Thus, x is a common descendant of w and
y, and therefore w and y are related as ancestor and descendant. Then, since y < w,
we have that y is a proper ancestor of w. This shows that (x, y) ∈ B(w). This implies
that x is a descendant of M(w), and therefore x is a descendant of c. Thus, x is a
common descendant of c and c1, and therefore c and c1 are related as ancestor and
descendant, which is absurd. Thus, we have that c = c1.

B(v) = (B(u)\{e})⊔B(w) implies that B(u)\{e} ⊆ B(v), and therefore M(B(u)\
{e}) is a descendant of M(v). Let us suppose, for the sake of contradiction, that
M(B(u) \ {e}) = M(v). Let (x, y) be a back-edge in B(w). Then B(v) = (B(u) \ {e})⊔
B(w) implies that (x, y) ∈ B(v). Therefore, x is a descendant of M(v), and therefore
a descendant of M(B(u) \ {e}), and therefore a descendant of u. Furthermore, y is a
proper ancestor of v, and therefore a proper ancestor of u. This shows that (x, y) ∈
B(u). Since (x, y) ∈ B(w) and e /∈ B(w), we have that (x, y) ̸= e. Therefore, (x, y) ∈
B(u) can be strengthened to (x, y) ∈ B(u) \ {e}. But then we have a contradiction
to (the disjointness of the union in) B(v) = (B(u) \ {e}) ⊔ B(w). This shows that
M(B(u) \ {e}) ̸= M(v), and therefore M(B(u) \ {e}) is a proper descendant of M(v).
So let c′ be the child of M(v) that is an ancestor of M(B(u) \ {e}).

Let (x, y) be a back-edge in B(u) \ {e}. Then x is a descendant of M(B(u) \ {e}),
and therefore a descendant of c′. Furthermore, B(v) = (B(u) \ {e}) ⊔ B(w) implies
that (x, y) ∈ B(v), and therefore y is a proper ancestor of v, and therefore a proper
ancestor of M(v), and therefore a proper ancestor of c′. This shows that (x, y) ∈ B(c′).
Since y is a proper ancestor of v, we have y < v. Thus, since (x, y) ∈ B(c′), we have
low(c′) ≤ y < v.

Let us suppose, for the sake of contradiction, that there is a back-edge of the form
(M(v), z) in B(v). Then B(v) = (B(u) \ {e}) ⊔ B(w) implies that either (M(v), z) ∈

306

B(u) \ {e}, or (M(v), z) ∈ B(w). The first case implies that M(v) is a descendant of
M(B(u) \ {e}), and therefore a descendant of c′, which is a absurd. The second case
implies that M(v) is a descendant of M(w), and therefore a descendant of c1, which
is also absurd. This shows that there is no back-edge of the form (M(v), z) in B(v).
Thus, Lemma 3.13 implies that low(c2) < v.

Let us suppose, for the sake of contradiction, that c′ ̸= c2. Since low(c2) < v,
there is a back-edge (x, y) ∈ B(c2) such that y < v. Then, x is a descendant of c2,
and therefore a descendant of M(v), and therefore a descendant of v. Since (x, y) is a
back-edge, we have that x is a descendant of y. Thus, since x is a common descendant
of both v and y, we have that v and y are related as ancestor and descendant. Thus,
y < v implies that y is a proper ancestor of v. This shows that (x, y) ∈ B(v). Then,
B(v) = (B(u)\{e})⊔B(w) implies that either (x, y) ∈ B(u)\{e}, or (x, y) ∈ B(w). The
first case implies that x is a descendant of M(B(u) \ {e}), and therefore a descendant
of c′, which is absurd, since x is a descendant of c2 (and c′, c2 are not related as
ancestor and descendant, since they have the same parent and c′ ̸= c2). The second
case implies that x is a descendant of M(w), and therefore a descendant of c1, which
is absurd, since x is a descendant of c2 (and c1, c2 are not related as ancestor and
descendant, since they have the same parent). There are no viable options left, and
so we have arrived at a contradiction. This shows that c′ = c2.

Let S1 = {(x, y) ∈ B(v) | x is a descendant of c1}. Then, M(S1) = M(v, c1). Let
(x, y) be a back-edge in S1. Then, (x, y) ∈ B(v), and therefore B(v) = (B(u) \ {e}) ⊔
B(w) implies that either (x, y) ∈ B(u) \ {e}, or (x, y) ∈ B(w). Let us suppose, for the
sake of contradiction, that (x, y) ∈ B(u)\{e}. Then x is a descendant ofM(B(u)\{e}),
and therefore a descendant of c2. Thus, x is a common descendant of c1 and c2, and
so c1 and c2 are related as ancestor and descendant, which is absurd. Thus, the case
(x, y) ∈ B(u) \ {e} is rejected, and so we have (x, y) ∈ B(w). Due to the generality of
(x, y) ∈ S1, this implies that S1 ⊆ B(w). Conversely, let (x, y) be a back-edge in B(w).
Then, x is a descendant of M(w), and therefore a descendant of c1, and therefore a
descendant of M(v). Furthermore, y is a proper ancestor of w, and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v), and so we have (x, y) ∈ S1. Due to the
generality of (x, y) ∈ B(w), this implies that B(w) ⊆ S1. Thus, since S1 ⊆ B(w), we
have S1 = B(w), and therefore M(S1) = M(w), and therefore M(v, c1) = M(w).

Let S2 = {(x, y) ∈ B(v) | x is a descendant of c2}. Then, M(S2) = M(v, c2). Let
(x, y) be a back-edge in S2. Then, (x, y) ∈ B(v), and therefore B(v) = (B(u) \ {e}) ⊔

307

B(w) implies that either (x, y) ∈ B(u) \ {e}, or (x, y) ∈ B(w). Let us suppose, for
the sake of contradiction, that (x, y) ∈ B(w). Then x is a descendant of M(w), and
therefore a descendant of c1. Thus, x is a common descendant of c1 and c2, and so
c1 and c2 are related as ancestor and descendant, which is absurd. Thus, the case
(x, y) ∈ B(w) is rejected, and so we have (x, y) ∈ B(u) \ {e}. Due to the generality of
(x, y) ∈ S2, this implies that S2 ⊆ B(u) \ {e}. Conversely, let (x, y) be a back-edge in
B(u) \ {e}. Then, x is a descendant of M(B(u) \ {e}), and therefore a descendant of
c2. Furthermore, since B(v) = (B(u) \ {e}) ⊔ B(w), we have that (x, y) ∈ B(v). This
shows that (x, y) ∈ S2. Due to the generality of (x, y) ∈ B(u) \ {e}, this implies that
B(u) \ {e} ⊆ S2. Thus, since S2 ⊆ B(u) \ {e}, we have S2 = B(u) \ {e}, and therefore
M(S2) = M(B(u) \ {e}), and therefore M(v, c2) = M(B(u) \ {e}).

Let us suppose, for the sake of contradiction, that there is a proper ancestor
w′ of v that is greater than w and has M(w′) = M(v, c1). Since M(w′) = M(w)

and w′ > w, we have that w′ is a proper descendant of w, and Lemma 3.2 implies
that B(w) ⊆ B(w′). Since the graph is 3-edge-connected, this can be strengthend to
B(w) ⊂ B(w′). This implies that there is a back-edge (x, y) ∈ B(w′) \ B(w). Then,
x is a descendant of M(w′), and therefore a descendant of M(v, c1), and therefore a
descendant of v. Furthermore, y is a proper ancestor of w′, and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Then, B(v) = (B(u)\{e})⊔B(w) implies
that either (x, y) ∈ B(u) \ {e}, or (x, y) ∈ B(w). The case (x, y) ∈ B(w) is rejected
(since (x, y) ∈ B(w′) \ B(w)), and therefore (x, y) ∈ B(u) \ {e}. This implies that x is
a descendant of M(B(u) \ {e}) = M(v, c2), and therefore a descendant of c2. But then
we have that x is a descendant of both c2 and c1, and therefore c1 and c2 are related
as ancestor and descendant, which is absurd. This shows that w is the greatest proper
ancestor of v that has M(w) = M(v, c1).

We distinguish two cases for the Type-3βi 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where u is a descendant of v, v is a descen-
dant of w, and e satisfies (3) of Lemma 5.57: either M(u) = M(B(u) \ {e}), or
M(u) ̸= M(B(u) \ {e}). In the first case, we can compute all such 4-cuts explicitly.
In the second case, we compute only a subcollection C of them, so that the rest are
implied by C ∪ C ′, where C ′ is the collection of Type-2ii 4-cuts that are computed by
Algorithm 24. Our result is summarized and proved in Proposition 5.22.

The reason that the 4-cuts in the first case can be computed explicitly is the

308

following.

Lemma 5.64. Let u, v, w be three vertices ̸= r such that u is a proper descendant of v, v

is a proper descendant of w, and B(v) = (B(u) \ {e}) ⊔ B(w), where e is a back-edge in
B(u) such that e /∈ B(v). Suppose that M(u) = M(B(u) \{e}). Then u is either the lowest
or the second-lowest proper descendant of v in M−1(M(u)).

Proof. Let us suppose, for the sake of contradiction, that u is neither the lowest
nor the second-lowest proper descendant of v in M−1(M(u)). This means that there
are two proper descendants u′ and u′′ of v, such that u > u′ > u′′ and M(u′) =

M(u′′) = M(u). Since M(u) = M(u′) = M(u′′), we have that u, u′ and u′′ are related
as ancestor and descendant, and therefore u > u′ > u′′ implies that u is a proper
descendant of u′, and u′ is a proper descendant of u′′. Then, Lemma 3.2 implies that
B(u′′) ⊆ B(u′) ⊆ B(u). Since the graph is 3-edge-connected, this can be strengthened
to B(u′′) ⊂ B(u′) ⊂ B(u). Thus, there is a back-edge (x, y) ∈ B(u) \ B(u′), and a
back-edge (x′, y′) ∈ B(u′) \B(u′′). Since (x, y) ∈ B(u), we have that x is a descendant
of M(u), and therefore a descendant of u′. Thus, since (x, y) /∈ B(u′), we have that
y is not a proper ancestor of u′. This implies that y is not a proper ancestor of v
either, and therefore (x, y) /∈ B(v). Similarly, since (x′, y′) ∈ B(u′) \ B(u′′), we have
that y′ is not a proper ancestor of u′′, and therefore not a proper ancestor of v,
and therefore (x′, y′) /∈ B(v). Notice that both (x, y) and (x′, y′) are in B(u) (since
B(u′′) ⊂ B(u′) ⊂ B(u)). Furthermore, since (x′, y′) ∈ B(u′) and (x, y) /∈ B(u′), we
have that (x, y) ̸= (x′, y′). Thus, (x, y) and (x′, y′) are two distinct back-edges in B(u)

that are not in B(v). But this contradicts the fact B(v) = (B(u) \ {e}) ⊔ B(w), which
implies that e is the only back-edge from B(u) that is not in B(v). This shows that u
is either the lowest or the second-lowest proper descendant of v in M−1(M(u)).

In the case whereM(u) ̸= M(B(u)\{e}), we consider the lowest proper descendant
u′ of v that satisfiesM(u′) ̸= M(B(u′)\{ehigh(u′)}) = M(B(u)\{e}). Then, the following
shows that we still get a Type-3βi 4-cut with v and w.

Lemma 5.65. Let u, v, w be three vertices ̸= r such that w is a proper ancestor of v, v is
a proper ancestor of u, and there is a back-edge e ∈ B(u) such that e /∈ B(v) ∪ B(w) and
B(v) = (B(u) \ {e}) ⊔ B(w). Suppose that M(u) ̸= M(B(u) \ {e}). Let u′ be the lowest
proper descendant of v such that M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = M(B(u) \ {e}). Then
we have ehigh(u

′) /∈ B(v) ∪B(w) and B(v) = (B(u′) \ {ehigh(u′)}) ⊔B(w). Furthermore, if
u′ ̸= u, then B(u) ⊔ {ehigh(u′)} = B(u′) ⊔ {e}.

309

Proof. By the proof of Lemma 5.63, we have e = ehigh(u). (This result does not rely on
the supposition M(w) ̸= M(v), which is included in the statement of Lemma 5.63.)
Thus, it makes sense to consider the lowest proper descendant u′ of v that satisfies
M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = M(B(u) \ {e}). If u′ = u, then there is nothing to
show. So let us assume that u′ ̸= u. Then, due to the minimality of u′, we have u′ < u.
Since M(B(u′)\{ehigh(u′)}) = M(B(u)\{e}), we have that M(B(u)\{e}) is a common
descendant of u and u′. Therefore, u and u′ are related as ancestor and descendant,
and then u′ < u implies that u′ is a proper ancestor of u.

Since M(u′) ̸= M(B(u′) \ {ehigh(u′)}), we have that ehigh(u′) is the only back-edge in
B(u′) whose higher endpoint is not a descendant of M(B(u′) \ {ehigh(u′)}). Similarly,
since M(u) ̸= M(B(u) \ {e}), we have that e is the only back-edge in B(u) whose
higher endpoint is not a descendant of M(B(u) \ {e}).

Let (x, y) be a back-edge in B(u′)\{ehigh(u′)}. Then x is a descendant of M(B(u′)\
{ehigh(u′)}), and therefore a descendant of M(B(u) \ {e}), and therefore a descendant
of M(u). Furthermore, y is a proper ancestor of u′, and therefore a proper ancestor
of u. This shows that (x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(u′) \ {ehigh(u′)},
this implies that B(u′) \ {ehigh(u′)} ⊆ B(u). Since the higher endpoint of e is not a
descendant ofM(B(u)\{e}) = M(B(u′)\{ehigh(u′)}), we have that e /∈ B(u′)\{ehigh(u′)}.
Thus, B(u′) \ {ehigh(u′)} ⊆ B(u) can be strengthened to B(u′) \ {ehigh(u′)} ⊆ B(u) \ {e}.
Conversely, let (x, y) be a back-edge in B(u)\{e}. Then x is a descendant of M(B(u)\
{e}), and therefore a descendant of M(B(u′) \ {ehigh(u′)}), and therefore a descendant
of M(u′). Furthermore, B(v) = (B(u) \ {e}) ⊔ B(w) implies that (x, y) ∈ B(v), and
therefore y is a proper ancestor of v, and therefore a proper ancestor of u′. This
shows that (x, y) ∈ B(u′). Due to the generality of (x, y) ∈ B(u) \ {e}, this implies
that B(u) \ {e} ⊆ B(u′). Since the higher endpoint of ehigh(u′) is not a descendant
of M(B(u′) \ {ehigh(u′)}) = M(B(u) \ {e}), we have that ehigh(u′) /∈ B(u) \ {e}. Thus,
B(u) \ {e} ⊆ B(u′) can be strengthened to B(u) \ {e} ⊆ B(u′) \ {ehigh(u′)}.

Thus, we have shown that B(u) \ {e} = B(u′) \ {ehigh(u′)}. Then, notice that we
cannot have e ∈ B(u′) or ehigh(u

′) ∈ B(u), because otherwise we get B(u) = B(u′),
in contradiction to the fact that the graph is 3-edge-connected. Thus, B(u) \ {e} =

B(u′) \ {ehigh(u′)} implies that B(u) ⊔ {ehigh(u′)} = B(u′) ⊔ {e}. Furthermore, since
B(v) = (B(u) \ {e}) ⊔ B(w) and B(u) \ {e} = B(u′) \ {ehigh(u′)}, we infer that B(v) =

(B(u′) \ {ehigh(u′)}) ⊔B(w).
Since the graph is 3-edge-connected, we have |(B(u′)| > 1. Thus, there is a back-

310

edge (x, y) ∈ B(u′)\{ehigh(u′)}. Then we have that x is a descendant of u′, and therefore
a descendant of v, and therefore a descendant of w. Thus, since (B(u′) \ {ehigh(u′)})∩
B(w) = ∅, we have that y is not a proper ancestor of w. Since (x, y) is a back-edge, x is
a descendant of y. Thus, x is a common descendant of y and w, and therefore y and
w are related as ancestor and descendant. Thus, since y is not a proper ancestor of
w, we have that y is a descendant of w, and therefore y ≥ w. Since (x, y) ∈ B(u′), we
have that high1(u′) ≥ y, and therefore high1(u′) ≥ w. This implies that ehigh(u′) /∈ B(w)

(because the lower endpoint of ehigh(u′) is not low enough to be a proper ancestor of
w). Then, B(v) = (B(u′) \ {ehigh(u′)}) ⊔ B(w) implies that ehigh(u′) /∈ B(v) ∪ B(w).

Lemma 5.66. Let v ̸= r be a vertex such that M(v) has at least two children. Let u be
a proper descendant of v such that M(B(u) \ {ehigh(u)}) is a proper descendant of M(v),
and let w be a proper ancestor of v such that M(w) is a proper descendant of M(v).
Suppose that M(u) and M(w) are not related as ancestor and descendant, high2(u) < v,
and bcount(u) = bcount(v) − bcount(w) + 1. Then, ehigh(u) /∈ B(v) ∪ B(w) and B(v) =

(B(u) \ {ehigh(u)}) ⊔ B(w).

Proof. Let (x, y) be a back-edge in B(u)\{ehigh(u)}. Then, x is a descendant ofM(B(u)\
{ehigh(u)}), and therefore a descendant of M(v), and therefore a descendant of v.
Since (x, y) is a back-edge, x is a descendant of y. Thus, x is a common descendant
of y and v, and therefore y and v are related as ancestor and descendant. Since
(x, y) ∈ B(u) \ {ehigh(u)}, we have that y is an ancestor of high2(u), and therefore
y ≤ high2(u). Thus, since high2(u) < v, we have that y is a proper ancestor of v. This
shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u)\{ehigh(u)}, this implies
that B(u) \ {ehigh(u)} ⊆ B(v).

Let (x, y) be a back-edge in B(w). Then, x is a descendant ofM(w), and therefore a
descendant of M(v). Furthermore, y is a proper ancestor of w, and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(w),
this implies that B(w) ⊆ B(v).

Let us suppose, for the sake of contradiction, that B(u)∩B(w) ̸= ∅. Then there is
a back-edge (x, y) ∈ B(u) ∩ B(w). This implies that x is a descendant of both M(u)

and M(w), and therefore M(u) and M(w) are related as ancestor and descendant. A
contradiction. Thus, we have that B(u) ∩ B(w) = ∅.

Now, since B(u) \ {ehigh(u)} ⊆ B(v), B(w) ⊆ B(v) and B(u) ∩ B(w) = ∅, we have
that (B(u) \ {ehigh(u)}) ⊔ B(w) ⊆ B(v). Then, bcount(u) = bcount(v) − bcount(w) + 1

311

implies that (B(u) \ {ehigh(u)}) ⊔ B(w) = B(v). Since B(u) ∩ B(w) = ∅, we have that
ehigh(u) /∈ B(w). Thus, (B(u) \ {ehigh(u)}) ⊔ B(w) = B(v) implies that ehigh(u) /∈ B(v),
and so we have ehigh(u) /∈ B(v) ∪ B(w).

Proposition 5.22. Algorithm 34 computes a collection C of Type-3βi 4-cuts that satisfy
(3) of Lemma 5.57, and it runs in linear time. Furthermore, every Type-3βi 4-cut that
satisfies (3) of Lemma 5.57 is implied by C∪C ′, where C ′ is the collection of Type-2ii 4-cuts
returned by Algorithm 24.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)} be a 4-element set that is marked
in Lines 18, or 22, or 26. Then we have that bcount(v) = bcount(u)+bcount(w)−1 and
high2(u) < v. Furthermore, w is a proper ancestor of v such that M(w) is a proper
descendant of c1 (since M(w) = M(v, c1)). In Lines 15 and 20, it is clear that u is
a proper descendant of v such that M(B(u) \ {ehigh(u)}) is a proper descendant of
c2. Then, in Line 24, we still have that M(B(u) \ {ehigh(u)}) is a proper descendant
of M(v), and now u is even greater than previously. Furthermore, since M(u) =

M(B(u)\{ehigh(u)}) and M(B(u)\{ehigh(u)}) = M(v, c2), we have that u is an ancestor
of M(v, c2), and therefore u is still a proper descendant of v. Thus, all the conditions
of Lemma 5.66 are satisfied, regardless of whether C is marked in Line 18, or 22, or
26, and therefore we have that ehigh(u) /∈ B(v) ∪ B(w) an B(v) = (B(u) \ {ehigh(u)}) ⊔
B(w). Thus, C is indeed a 4-cut that satisfies (3) of Lemma 5.57. Furthermore, since
M(w) = M(v, c1), we have that M(w) is a proper descendant of M(v), and therefore
M(w) ̸= M(v). This implies that C is a Type-3αi 4-cut. Thus, the collection C of all
4-element sets that are marked in Lines 18 or 22 is a collection of Type-3βi 4-cuts
that satisfy (3) of Lemma 5.57.

Now let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βi 4-cut, where w is a
proper ancestor of v, and v is a proper ancestor of u, and e satisfies (3) of Lemma 5.57.
Let c1 and c2 be the low1 and low2 children of M(v), respectively. Then Lemma 5.63
implies that e = ehigh(u), high2(u) < v, M(B(u) \ {e}) = M(v, c2), and w is the greatest
proper ancestor of v that has M(w) = M(v, c1). Furthermore, since C satisfies (3) of
Lemma 5.57, we have that B(v) = (B(u)\{e})⊔B(w), which implies that bcount(v) =
bcount(u) + bcount(w)− 1.

First, suppose thatM(u) = M(B(u)\{ehigh(u)}). Then, by Lemma 5.64 we have that
u is either the lowest or the second-lowest proper descendant of v such that M(u) =

312

Algorithm 34: Compute a collection of Type-3βi 4-cuts that satisfy (3) of
Lemma 5.57, so that all of them are implied by this collection, plus that
returned by Algorithm 24

1 foreach vertex u ̸= r do
2 compute M(B(u) \ {ehigh(u)})

3 end
4 foreach vertex v ̸= r do
5 if M(v) has at least two children then
6 let c1 be the low1 child of M(v)

7 let c2 be the low2 child of M(v)

8 compute M(v, c1) and M(v, c2)

9 end

10 end
11 foreach vertex v ̸= r do
12 if M(v) has less than two children then continue
13 let c1 be the low1 child of M(v)

14 let c2 be the low2 child of M(v)

15 let u be the lowest proper descendant of v that has
M(u) ̸= M(B(u) \ {ehigh(u)}) = M(v, c2)

16 let w be the greatest proper ancestor of v that has M(w) = M(v, c1)

17 if high2(u) < v and bcount(v) = bcount(u) + bcount(w)− 1 then
18 mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)} as a 4-cut
19 end
20 let u be the lowest proper descendant of v that has

M(u) = M(B(u) \ {ehigh(u)}) = M(v, c2)

21 if high2(u) < v and bcount(v) = bcount(u) + bcount(w)− 1 then
22 mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)} as a 4-cut
23 end
24 u← prevM(u)

25 if high2(u) < v and bcount(v) = bcount(u) + bcount(w)− 1 then
26 mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)} as a 4-cut
27 end

28 end

313

M(B(u) \ {ehigh(u)}) = M(v, c2). Thus, notice that C will be marked in Line 22 or 26,
respectively, and therefore C ∈ C. So let us assume that M(u) ̸= M(B(u) \ {ehigh(u)}).

Now, it makes sense to consider the lowest proper descendant u′ of v that has
M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = M(v, c2). If u′ = u, then notice that C satis-
fies enough conditions to be marked in Line 18, and therefore C ∈ C. Otherwise,
Lemma 5.65 implies that ehigh(u′) /∈ B(v)∪B(w) and B(v) = (B(u′)\{ehigh(u′)})⊔B(w).
Therefore, C ′ = {(u′, p(u′)), (v, p(v)), (w, p(w)), ehigh(u

′)} is a 4-cut that satisfies (3) of
Lemma 5.57. Furthermore, since M(w) = M(v, c1), we have that M(w) ̸= M(v),
and therefore C ′ is a Type-3βi 4-cut. Then, since u′ is the lowest proper descen-
dant of v that has M(u′) ̸= M(B(u′) \ {ehigh(u′)}) = M(v, c2), we have that C ′ will
be marked in Line 18, and therefore C ′ ∈ C. Furthermore, Lemma 5.65 implies
that B(u) ⊔ {ehigh(u′)} = B(u′) ⊔ {ehigh(u)}, and therefore Lemma 5.28 implies that
C ′′ = {(u, p(u)), (u′, p(u′)), ehigh(u), ehigh(u

′)} is a Type-2ii 4-cut. Observe that C is im-
plied by C ′ and C ′′ through the pair of edges {(u, p(u)), ehigh(u)}. According to Proposi-
tion 5.12, we have that C ′′ is implied by C ′ through the pair of edges {(u, p(u)), ehigh(u)},
where C ′ is the collection of Type-2ii 4-cuts computed by Algorithm 24. Then, by
Lemma 5.7 we have that C is implied by C ′ ∪ {C ′}. Thus, we have shown that all
Type-3βi 4-cuts that satisfy (3) of Lemma 5.57 are implied by C ∪ C ′.

Now we will argue about the complexity of Algorithm 34. By Proposition 3.6 we
have that the values M(B(u) \ {ehigh(u)}) can be computed in linear time in total, for
all vertices u ̸= r. Thus, the for loop in Line 1 can be performed in linear time. By
Proposition 3.5 we have that the values M(v, c1) and M(v, c2) can be computed in
linear time in total, for all vertices v ̸= r such thatM(v) has at least two children, where
c1 and c2 are the low1 and low2 children of M(v). Thus, the for loop in Line 4 can be
performed in linear time. The vertices u and w in Lines 15, 20 and 16 can be computed
with the use of Algorithm 22. Specifically, for every vertex x, we compute the collection
U(x) of all vertices u ̸= r such that M(u) ̸= M(B(u) \ {ehigh(u)}) = x. Then, the U sets
are pairwise disjoint, and we can compute them easily in O(n) time, once we have
computed all M(B(u) \ {ehigh(u)}) values. Now, when we reach Line 15, we generate
a query q(U(M(v, c2)), v). This is to return the lowest vertex u in U(M(v, c2)) that
has u > v. Since u ∈ U(M(v, c2)), we have that M(B(u) \ {ehigh(u)}) = M(v, c2). This
implies that M(v, c2) is a common descendant of u and v, and therefore u and v are
related as ancestor and descendant. Thus, u > v implies that u is a proper descendant
of v, and therefore we have that u is the lowest proper descendant of v such that

314

M(u) ̸= M(B(u)\{ehigh(u)}) = M(v, c2). Since the number of all those queries is O(n),
Lemma 5.27 implies that Algorithm 22 can compute all of them in linear time in total.
Similarly, we can have the answers for the w vertices in Line 16 and the u vertices
in Line 20 in O(n) time in total. We conclude that Algorithm 34 has a linear-time
implementation.

5.8.1.4 Case (4) of Lemma 5.57

For the Type-3βi 4-cuts that satisfy (4) of Lemma 5.57, we distinguish two cases,
depending on whether M(v) ̸= M(B(v) \ {e}) or M(v) = M(B(v) \ {e}). In the first
case, by Lemma 3.9 we have that e is either eL(v) or eR(v). By Lemma 5.68 below,
we know precisely how to locate u and w: u is the lowest proper descendant of v
such that M(u) = M(v, c2), and w is the greatest proper ancestor of v such that
M(w) = M(w, c1), where c1 and c2 are the low1 and low2 children of M(B(v) \ {e}),
respectively. Thus, the procedure for computing all Type-3βi 4-cuts that satisfy (4)

of Lemma 5.57 and M(v) ̸= M(B(v) \ {e}) is shown in Algorithm 35. The proof of
correctness and linear complexity is given in Proposition 5.23.

In the second case, we first determine u and w according to Lemma 5.69 and
Lemma 5.70 (by considering all the different cases), and then e is uniquely de-
termined by the relation B(v) = (B(u) ⊔ B(w)) ⊔ {e}. We use the criterion pro-
vided by Lemma 5.71 in order to check whether we indeed have a 4-cut. Thus, the
procedure for computing all Type-3βi 4-cuts that satisfy (4) of Lemma 5.57 and
M(v) = M(B(v) \ {e}) is shown in Algorithm 36. The proof of correctness is given
in Proposition 5.24.

Let u, v, w be three vertices ̸= r. Then we let e(u, v, w) denote the pair (XorDesc(u)⊕
XorDesc(v)⊕XorDesc(w),XorAnc(u)⊕XorAnc(v)⊕XorAnc(w)). (We note that e(u, v, w)
is not necessarily an edge of the graph.)

Lemma 5.67. Let u, v, w be three vertices ̸= r such that there is a back-edge e ∈ B(v)

with B(v) = (B(u) ⊔ B(w)) ⊔ {e}. Then e = e(u, v, w).

Proof. Let e = (x, y). Then B(v) = (B(u) ⊔ B(v)) ⊔ {e} implies that XorDesc(v) =

XorDesc(u)⊕XorDesc(w)⊕x and XorAnc(v) = XorAnc(u)⊕XorAnc(w)⊕y. This implies
that x = XorDesc(u) ⊕ XorDesc(v) ⊕ XorDesc(w) and y = XorAnc(u) ⊕ XorAnc(v) ⊕
XorAnc(w).

315

Lemma 5.68. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a
proper ancestor of u, and there is a back-edge e ∈ B(v) such that B(v) = (B(u)⊔B(w))⊔{e}
and M(B(v)\{e}) ̸= M(w). Suppose that M(v) ̸= M(B(v)\{e}). Let c1 and c2 be the low1
and low2 children of M(B(v) \ {e}), respectively. Then, u is the lowest proper descendant
of v such that M(u) = M(v, c2), and w is the greatest proper ancestor of v such that
M(w) = M(v, c1).

Proof. Let z = M(B(v) \ {e}). Notice that, since M(v) ̸= M(B(v) \ {e}), we have that
the higher endpoint of e is not a descendant of z.

Since B(v) = (B(u)⊔B(w))⊔{e}, we have B(w) ⊆ B(v) \ {e}, and therefore M(w)

is a descendant of M(B(v) \ {e}) = z. Since by assumption we have that M(w) ̸= z,
this implies that M(w) is a proper descendant of z. Let c be the child of z that is an
ancestor of M(w). Let us suppose, for the sake of contradiction, that c ̸= c1. Let (x, y)
be a back-edge in B(w). Then x is a descendant of M(w), and therefore a descendant
of c. Furthermore, y is a proper ancestor of w, and therefore a proper ancestor of v,
and therefore a proper ancestor of M(v), and therefore a proper ancestor of z, and
therefore a proper ancestor of c. This shows that (x, y) ∈ B(c), and therefore we have
low(c) ≤ y. Since y is a proper ancestor of w, we have y < w. Thus, low(c) ≤ y implies
that low(c) < w. Now, since c1 is the low1 child of z, we have low(c1) ≤ low(c), and
therefore low(c1) < w. This implies that there is a back-edge (x′, y′) ∈ B(c1) such that
y′ < w. Then we have that x′ is a descendant of c1, and therefore a descendant of z,
and therefore a descendant of v, and therefore a descendant of w. Since (x′, y′) is a
back-edge, we have that x′ is a descendant of y′. Thus, x′ is a common descendant
of y′ and w, and therefore y′ and w are related as ancestor and descendant. Thus,
y′ < w implies that y′ is a proper ancestor of w. This shows that (x′, y′) ∈ B(w), and
therefore we have that x′ is a descendant of M(w), and therefore a descendant of c.
Thus, x′ is a common descendant of c and c1, and therefore c and c1 are related as
ancestor and descendant. But this is impossible, since c and c1 are supposed to be
distinct children of z. Thus, we have c = c1.

Since B(v) = (B(u)⊔B(w))⊔ {e}, we have B(u) ⊆ B(v) \ {e}, and therefore M(u)

is a descendant of M(B(v) \ {e}) = z. Let us suppose, for the sake of contradiction,
that M(u) = z. Let (x, y) be a back-edge in B(w). Then B(v) = (B(u) ⊔ B(w)) ⊔ {e}
implies that (x, y) ∈ B(v) \ {e}, and therefore x is a descendant of M(B(v) \ {e}) = z,
and therefore a descendant of M(u). Furthermore, y is a proper ancestor of w, and
therefore a proper ancestor of v, and therefore a proper ancestor of u. This shows

316

that (x, y) ∈ B(u), in contradiction to the fact that B(u) ∩ B(w) = ∅. Thus, we have
that M(u) is a proper descendant of z. Let c′ be the child of z that is an ancestor of
M(u).

Let us suppose, for the sake of contradiction, that c′ is neither c1 nor c2. Let (x, y)
be a back-edge in B(u). This implies that x is a descendant of M(u), and therefore
a descendant of c′. Then B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that (x, y) ∈ B(v).
Then, y is a proper ancestor of v, and therefore a proper ancestor of M(v), and
therefore a proper ancestor of z, and therefore a proper ancestor of c′. This shows
that (x, y) ∈ B(c′), and therefore low(c′) ≤ y. Since y is a proper ancestor of v, we
have y < v. Thus, low(c′) ≤ y implies that low(c′) < v. Since c′ is neither c1 nor c2,
we have that low(c2) ≤ low(c′), and therefore low(c2) < v. This implies that there is a
back-edge (x, y) ∈ B(c2) such that y < v. Then x is a descendant of c2, and therefore
a descendant of z, and therefore a descendant of v. Since (x, y) is a back-edge, we
have that x is a descendant of y. Thus, x is a common descendant of v and y, and
therefore v and y are related as ancestor and descendant. Thus, y < v implies that y is
a proper ancestor of v. This shows that (x, y) ∈ B(v). Then, B(v) = (B(u)⊔B(w))⊔{e}
implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. Let us suppose first
that (x, y) ∈ B(u). Then x is a descendant of M(u), and therefore a descendant of c′.
But then x is a common descendant of c2 and c′, which is impossible (since c2 and
c′ are two distinct children of z). Now let us suppose that (x, y) ∈ B(w). Then x is
a descendant of M(w), and therefore a descendant of c1. But then x is a common
descendant of c1 and c2, which is impossible (since c1 and c2 are two distinct children
of z). The case (x, y) = e is also rejected, because the higher endpoint of e is not a
descendant of z. Thus, there are no viable options left, and so we have arrived at a
contradiction. This shows that c′ is either c1 or c2.

Let us suppose, for the sake of contradiction, that c′ = c1. Now let (x, y) be a back-
edge in B(v) \ {e}. Then B(v) = (B(u) ⊔B(w)) ⊔ {e} implies that either (x, y) ∈ B(u)

or (x, y) ∈ B(w). If (x, y) ∈ B(u), then x is a descendant of M(u), and therefore a
descendant of c1. If (x, y) ∈ B(w), then x is a descendant of M(w), and therefore a
descendant of c1. In either case, then, we have that x is a descendant of c1. Due to
the generality of (x, y) ∈ B(v) \ {e}, this implies that M(B(v) \ {e}) is a descendant of
c1. But this is impossible, because c1 is a child of z = M(B(v) \ {e}). Thus, we have
c′ ̸= c1, and therefore we infer that c′ = c2.

Let S1 = {(x, y) ∈ B(v) | x is a descendant of c1}. Then M(S1) = M(v, c1). Let

317

(x, y) be a back-edge in S1. Then x is a descendant of c1 and (x, y) ∈ B(v). B(v) =

(B(u) ⊔ B(w)) ⊔ {e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e.
Since the higher endpoint of e is not a descendant of z, the case (x, y) = e is rejected.
Let us suppose, for the sake of contradiction, that (x, y) ∈ B(u). Then x is a descendant
of M(u), and therefore a descendant of c2. Thus, x is a common descendant of c1
and c2, and therefore c1 and c2 are related as ancestor and descendant. But this is
absurd, and therefore the case (x, y) ∈ B(u) is rejected. Thus, we are left with the
case (x, y) ∈ B(w). Due to the generality of (x, y) ∈ S1, this implies that S1 ⊆ B(w).
Conversely, let (x, y) be a back-edge in B(w). Then x is a descendant of M(w), and
therefore a descendant of c1. Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that
(x, y) ∈ B(v). This shows that (x, y) ∈ S1. Due to the generality of (x, y) ∈ B(w), this
implies that B(w) ⊆ S1. Since we have shown the reverse inclusion too, we infer that
B(w) = S1. This implies that M(w) = M(S1), and therefore M(w) = M(v, c1).

Let S2 = {(x, y) ∈ B(v) | x is a descendant of c2}. Then M(S2) = M(v, c2). Let
(x, y) be a back-edge in S2. Then x is a descendant of c2 and (x, y) ∈ B(v). B(v) =

(B(u) ⊔ B(w)) ⊔ {e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) =

e. Since the higher endpoint of e is not a descendant of z, the case (x, y) = e is
rejected. The case (x, y) ∈ B(w) is also rejected, because this implies that (x, y) ∈ S1

(whereas the sets S1 and S2 are disjoint, since c1 and c2 are not related as ancestor
and descendant). Thus, we are left with the case (x, y) ∈ B(u). Due to the generality
of (x, y) ∈ S2, this implies that S2 ⊆ B(u). Conversely, let (x, y) be a back-edge in
B(u). Then x is a descendant ofM(u), and therefore a descendant of c2. Furthermore,
B(v) = (B(u)⊔B(w))⊔{e} implies that (x, y) ∈ B(v). This shows that (x, y) ∈ S2. Due
to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ S2. Since we have shown
the reverse inclusion too, we infer that B(u) = S2. This implies that M(u) = M(S2),
and therefore M(u) = M(v, c2).

Let us suppose, for the sake of contradiction, that u is not the lowest proper de-
scendant of v such thatM(u) = M(v, c2). This means that there is a proper descendant
u′ of v such that u′ < u and M(u′) = M(u). This implies that u′ is a proper ancestor
of u, and therefore Lemma 3.2 implies that B(u′) ⊆ B(u). Since the graph is 3-edge-
connected, this can be strengthened to B(u′) ⊂ B(u). Thus, there is a back-edge
(x, y) ∈ B(u)\B(u′). Then B(v) = (B(u)⊔B(w))⊔{e} implies that (x, y) ∈ B(v). Since
(x, y) ∈ B(u), we have that x is a descendant of M(u) = M(u′). Since (x, y) ∈ B(v),
we have that y is a proper ancestor of v, and therefore a proper ancestor of u′. This

318

shows that (x, y) ∈ B(u′), a contradiction. Thus, we have shown that u is the lowest
proper descendant of v in M−1(M(u)).

Let us suppose, for the sake of contradiction, that w is not the greatest proper
ancestor of v such that M(w) = M(v, c1). This means that there is a proper ancestor
w′ of v such that w′ > w and M(w′) = M(w). This implies that w′ is a proper
descendant of w, and therefore Lemma 3.2 implies that B(w) ⊆ B(w′). Since the
graph is 3-edge-connected, this can be strengthened to B(w) ⊂ B(w′). Thus, there is
a back-edge (x, y) ∈ B(w′)\B(w). Since (x, y) ∈ B(w′), we have that x is a descendant
of M(w′) = M(w), and therefore a descendant of c1, and therefore a descendant of
z, and therefore a descendant of M(v). Furthermore, we have that y is a proper
ancestor of w′, and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v).
Then B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w),
or (x, y) = e. The case (x, y) ∈ B(w) is rejected, since (x, y) ∈ B(w′) \ B(w). The case
(x, y) ∈ B(u) implies that x is a descendant of M(u), and therefore a descendant of
c2. But this is absurd, since x is a descendant of c1 (and c1, c2 cannot have a common
descendant). The case (x, y) = e is also rejected, because the higher endpoint of e is
not a descendant of z. Thus, there are no viable options left, and so we have arrived
at a contradiction. This shows that w is the greatest proper ancestor of v such that
M(w) = M(v, c1).

Lemma 5.69. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a
proper ancestor of u, and there is a back-edge e ∈ B(v) such that B(v) = (B(u)⊔B(w))⊔{e}
and M(B(v) \ {e}) ̸= M(w). Suppose that M(v) = M(B(v) \ {e}). Let c1, c2 and c3 be
the low1, the low2 and the low3 child of M(v), respectively. Then we have that either (w.1)
M(w) = M(v, c1), or (w.2) M(w) = M(v, c′1), where c′1 is the low1 child of M(v, c1).
Furthermore, we have that either (u.1) M(u) = M(v, c2), or (u.2) M(u) = M(v, c′′1), where
c′′1 is the low1 child of M(v, c2), or (u.3) M(u) = M(v, c′′2), where c′′2 is the low2 child of
M(v, c2), or (u.4) M(u) = M(v, c3).

Proof. Since B(v) = (B(u) ⊔ B(w)) ⊔ {e}, we have B(w) ⊆ B(v), and therefore M(w)

is a descendant of M(v). Since M(v) = M(B(v) \ {e}) and M(B(v) \ {e}) ̸= M(w),
we have M(v) ̸= M(w). Therefore, M(w) is a proper descendant of M(v). Let c

be the child of M(v) that is an ancestor of M(w). Let us suppose, for the sake of
contradiction, that c ̸= c1. Let (x, y) be a back-edge in B(w). Then x is a descendant
of M(w), and therefore a descendant of c. Furthermore, y is a proper ancestor of w,

319

and therefore a proper ancestor of v, and therefore a proper ancestor of M(v), and
therefore a proper ancestor of c. This shows that (x, y) ∈ B(c), and therefore we have
low(c) ≤ y. Since y is a proper ancestor of w, we have y < w. Thus, low(c) ≤ y implies
that low(c) < w. Now, since c1 is the low1 child of M(v), we have low(c1) ≤ low(c), and
therefore low(c1) < w. This implies that there is a back-edge (x′, y′) ∈ B(c1) such that
y′ < w. Then we have that x′ is a descendant of c1, and therefore a descendant of
M(v), and therefore a descendant of v, and therefore a descendant of w. Since (x′, y′)

is a back-edge, we have that x′ is a descendant of y′. Thus, x′ is a common descendant
of y′ and w, and therefore y′ and w are related as ancestor and descendant. Thus,
y′ < w implies that y′ is a proper ancestor of w. This shows that (x′, y′) ∈ B(w), and
therefore we have that x′ is a descendant of M(w), and therefore a descendant of c.
Thus, x′ is a common descendant of c and c1, and therefore c and c1 are related as
ancestor and descendant. But this is impossible, since c and c1 are supposed to be
distinct children of M(v). Thus, we have c = c1.

Since B(v) = (B(u) ⊔ B(w)) ⊔ {e}, we have B(u) ⊆ B(v), and therefore M(u) is a
descendant of M(v). Let us suppose, for the sake of contradiction, that M(u) = M(v).
Let (x, y) be a back-edge in B(w). Then B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that
(x, y) ∈ B(v), and therefore x is a descendant of M(v), and therefore a descendant of
M(u). Furthermore, y is a proper ancestor of w, and therefore a proper ancestor of v,
and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u), in contradiction
to the fact that B(u) ∩B(w) = ∅. Thus, we have that M(u) is a proper descendant of
M(v). Let c′ be the child of M(v) that is an ancestor of M(u).

Let us suppose, for the sake of contradiction, that c′ is neither c1, nor c2, nor c3.
Let (x, y) be a back-edge in B(u). Then x is a descencant of M(u), and therefore a
descendant of c′. Furthermore, B(v) = (B(u)⊔B(w))⊔ {e} implies that (x, y) ∈ B(v),
and therefore y is a proper ancestor of M(v), and therefore a proper ancestor of c′.
This shows that (x, y) ∈ B(c′), and therefore low(c′) ≤ y. Since (x, y) ∈ B(v), we have
that y is a proper ancestor of v, and therefore y < v. Thus, low(c′) ≤ y implies that
low(c′) < v. Now, since c′ is neither c1, nor c2, nor c3, we have low(c1) ≤ low(c2) ≤
low(c3) ≤ low(c′) < v. Since low(c2) < v, there is a back-edge (x, y) ∈ B(c2) such that
y < v. Then x is a descendant of c2, and therefore a descendant ofM(v), and therefore
a descendant of v. Since (x, y) is a back-edge, we have that x is a descendant of y. Thus,
x is a common descendant of v and y, and therefore v and y are related as ancestor
and descendant. Then, y < v implies that y is a proper ancestor of y. This shows

320

that (x, y) ∈ B(v). Then B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that either (x, y) ∈ B(u),
or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is rejected, because it implies
that x is a descendant of M(u), and therefore a descendant of c′, and therefore c′

and c2 have x as a common descendant, which is absurd. The case (x, y) ∈ B(w)

is also rejected, because it implies that x is a descendant of M(w), and therefore a
descendant of c1, and therefore c1 and c2 have x as a common descendant, which is
absurd. Thus, the only viable option is (x, y) = e. Now, since low(c3) < v, there is a
back-edge (x′, y′) ∈ B(c3) such that y′ < v. We can follow the same reasoning as for
(x, y), in order to infer that (x′, y′) = e. But then we have x′ = x, and therefore x is
a common descendant of c2 and c3, which is impossible. This shows that c′ is either
c1, or c2, or c3.

Let us suppose, for the sake of contradiction, that c′ = c1. Let (x, y) be a back-
edge in B(v) \ {e}. Then B(v) = (B(u)⊔B(w))⊔ {e} implies that either (x, y) ∈ B(u),
or (x, y) ∈ B(w). If (x, y) ∈ B(u), then x is a descendant of M(u), and therefore a
descendant of c1. If (x, y) ∈ B(w), then x is a descendant of M(w), and therefore a
descendant of c1. In any case, then, we have that x is a descendant of c1. Due to the
generality of (x, y) ∈ B(v) \ {e}, this implies that M(B(v) \ {e}) is a descendant of c1.
But this is impossible, because by assumption we have M(B(v) \ {e}) = M(v), and
c1 is a child of M(v). This shows that c′ ̸= c1. Thus, we have that either c′ = c2, or
c′ = c3.

Let (x, y) be a back-edge in B(w). Then x is a descendant ofM(w), and therefore a
descendant of c1. Furthermore, B(v) = (B(u)⊔B(w))⊔{e} implies that (x, y) ∈ B(v).
This shows that x is a descendant of M(v, c1). Due to the generality of (x, y) ∈ B(w),
this implies that M(w) is a descendant of M(v, c1). If M(w) = M(v, c1), then we get
(w.1). So let us assume that M(w) is a proper descendant of M(v, c1). Then there is a
back-edge (x1, y1) ∈ B(v), such that x1 is a descendant of c1, but not a descendant of
M(w). Since x1 is a descendant of c1, it cannot be a descendant of c2 or c3, and therefore
it cannot be a descendant of M(u). Thus, we have (x1, y1) /∈ B(u). And since x1 is
not a descendant of M(w), we have (x1, y1) /∈ B(w). Then B(v) = (B(u)⊔B(w))⊔{e}
implies that (x1, y1) = e.

Now, since M(w) is a proper descendant of M(v, c1), we have that M(w) is a
descendant of a child c̃ of M(v, c1). Let c′1 be the low1 child of M(v, c1). Let us
suppose, for the sake of contradiction, that c̃ ̸= c′1. Let (x, y) be a back-edge in B(w).
Then x is a descendant of M(w), and therefore a descendant of c̃. Furthermore,

321

B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that (x, y) ∈ B(v), and therefore y is a proper
ancestor of v, and therefore a proper ancestor ofM(v), and therefore a proper ancestor
of c1, and therefore a proper ancestor of M(v, c1), and therefore a proper ancestor of
c̃. This shows that (x, y) ∈ B(c̃), and therefore low(c̃) ≤ y. Since y is a proper ancestor
of w, we have y < w. Therefore, low(c̃) ≤ y implies that low(c̃) < w. Since c̃ ̸= c′1

and c′1 is the low1 child of M(v, c1), we have low(c′1) ≤ low(c̃) < w. This implies that
there is a back-edge (x, y) ∈ B(c′1) such that y < w. Then x is a descendant of c′1,
and therefore a descendant of M(v, c1), and therefore a descendant of v. Since (x, y)

is a back-edge, we have that x is a descendant of y. Thus, x is a common descendant
of v and y, and therefore v and y are related as ancestor and descendant. Since w

is a proper ancestor of v, we have w < v. Then, y < w implies that y < v, and
therefore we have that y is a proper ancestor of v. This shows that (x, y) ∈ B(v).
Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(u) is rejected, because it implies that x is a descendant
of M(u), and therefore a descendant of either c2 or c3, whereas x is a descendant of
c1. The case (x, y) ∈ B(w) is also rejected, because it implies that x is a descendant
of M(w), and therefore a descendant of c̃, whereas x is a descendant of c′1. Thus, we
are left with the case (x, y) = e. Since e ∈ B(v), we have that x is a descendant of
v, and therefore a descendant of w. Since (x, y) is a back-edge, we have that x is a
descendant of y. Thus, x is a common descendant of w and y, and therefore w and
y are related as ancestor and descendant. Then, y < w implies that y is a proper
ancestor of w. But this shows that (x, y) ∈ B(w), in contradiction to the fact that
e /∈ B(w). This shows that c̃ = c′1.

Let us suppose, for the sake of contradiction, that the higher endpoint of e is a
descendant of c′1. Let (x, y) be a back-edge in B(v) such that x is a descendant of c1.
Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(u) is rejected, because it implies that x is a descendant
ofM(u), and therefore a descendant of either c2 or c3, whereas x is a descendant of c1.
Now, if (x, y) ∈ B(w), then x is a descendant of M(w), and therefore a descendant of
c′1. And if (x, y) = e, then by supposition we have that x is a descendant of c′1. In either
case, then, we have that x is a descendant of c′1. Due to the generality of (x, y) ∈ B(v)

such that x is a descendant of c1, this implies that M(v, c1) is a descendant of c′1. But
this is impossible, since c′1 is a child of M(v, c1). This shows that the higher endpoint
of e is not a descendant of c′1.

322

Now let S = {(x, y) ∈ B(v) | x is a descendant of c′1}. Then we have M(S) =

M(v, c′1). Let (x, y) be a back-edge in S. Then we have that x is a descendant of c′1
and (x, y) ∈ B(v). Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or
(x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is rejected, because it implies that x
is a descendant of M(u), and therefore a descendant of either c2 or c3, whereas x is a
descendant of c′1, and therefore a descendant of M(v, c1), and therefore a descendant
of c1. The case (x, y) = e is also rejected, because we have shown that the higher
endpoint of e is not a descendant of c′1. Thus, we are left with (x, y) ∈ B(w). Due
to the generality of (x, y) ∈ S, this shows that S ⊆ B(w). Conversely, let (x, y) be a
back-edge in B(w). Then x is a descendant of M(w), and therefore a descendant of
c′1. Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that (x, y) ∈ B(v). This shows
that (x, y) ∈ S. Due to the generality of (x, y) ∈ B(w), this implies that B(w) ⊆ S.
Since we have showed the reverse inclusion too, we infer that B(w) = S. This implies
that M(w) = M(S), and therefore M(w) = M(v, c′1). Thus, we have established (w.2).

Now, let us first consider the case that c′ = c3 (this is the shortest one). Let (x, y) be
a back-edge in B(u). Then x is a descendant of M(u), and therefore a descendant of
c3. Furthermore, B(v) = (B(u)⊔B(w))⊔ {e} implies that (x, y) ∈ B(v), and therefore
y is a proper ancestor of v, and therefore a proper ancestor of M(v), and therefore
a proper ancestor of c3. This shows that (x, y) ∈ B(c3), and therefore low(c3) ≤ y.
Since y is a proper ancestor of v, we have y < v. Therefore, low(c3) ≤ y implies that
low(c3) < v. Then, we have low(c2) ≤ low(c3) < v. This implies that there is a back-edge
(x, y) ∈ B(c2) such that y < v. Then x is a descendant of c2, and therefore a descendant
of M(v), and therefore a descendant of v. Since (x, y) is a back-edge, we have that x is
a descendant of y. Thus, x is a common descendant of v and y, and therefore v and y

are related as ancestor and descendant. Then, y < v implies that y is a proper ancestor
of v. This shows that (x, y) ∈ B(v). Then B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that
either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is rejected,
because it implies that x is a descendant of M(u), and therefore a descendant of c3,
whereas x is a descendant of c2. The case (x, y) ∈ B(w) is also rejected, because it
implies that x is a descendant of M(w), and therefore a descendant of c1, whereas x
is a descendant of c2. Thus, (x, y) = e is the only viable option. This implies that the
higher endpoint of e is a descendant of c2.

Now let S3 = {(x, y) ∈ B(v) | x is a descendant of c3}. Then we have M(S3) =

M(v, c3). Let (x, y) be a back-edge in S3. Then x is a descendant of c3 and (x, y) ∈ B(v).

323

Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(w) is rejected, because it implies that x is a descendant
of M(w), and therefore a descendant of c1, whereas x is a descendant of c3. The
case (x, y) = e is also rejected, because we have shown that the higher endpoint of
e is a descendant of c2. Thus, (x, y) ∈ B(u) is the only acceptable option. Due to
the generality of (x, y) ∈ S3, this implies that S3 ⊆ B(u). Conversely, let (x, y) be a
back-edge in B(u). Then x is a descendant of M(u), and therefore a descendant of
c3. Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that (x, y) ∈ B(v). This shows
that (x, y) ∈ S3. Due to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ S3.
Since we have shown the reverse inclusion too, we infer that B(u) = S3. This implies
that M(u) = M(S3), and therefore M(u) = M(v, c3). Thus, we get (u.4).

So let us assume that c′ = c2 (which is the only case left). Let (x, y) be a back-
edge in B(u). Then x is a descendant of M(u), and therefore a descendant of c2.
Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that (x, y) ∈ B(v). This shows that
x is a descendant of M(v, c2). Due to the generality of (x, y) ∈ B(u), this implies that
M(u) is a descendant of M(v, c2). Now, if M(u) = M(v, c2), then we get (u.1). So let
us assume that M(u) is a proper descendant of M(v, c2). Then there is a child c′′ of
M(v, c2) that is an ancestor of M(u).

Let c′′1 be the low1 child of M(v, c2), and let c′′2 be the low2 child of M(v, c2).
Let us suppose, for the sake of contradiction, that c′′ is neither the low1 nor the
low2 child of M(v, c2). Let (x, y) be a back-edge in B(u). Then x is a descendant of
M(u), and therefore a descendant of c′′. Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e}
implies that (x, y) ∈ B(v), and therefore y is a proper ancestor of v, and therefore a
proper ancestor of M(v), and therefore a proper ancestor of M(v, c2), and therefore
a proper ancestor of c′′. This shows that (x, y) ∈ B(c′′), and therefore low(c′′) ≤ y.
Since y is a proper ancestor of v, we have y < v. Therefore, low(c′′) ≤ y implies
that low(c′′) < v. Therefore, we have low(c′′1) ≤ low(c′′) < v. This implies that there
is a back-edge (x, y) ∈ B(c′′1) such that y < v. Then x is a descendant of c′′1 , and
therefore a descendant of M(v, c2), and therefore a descendant of v. Since (x, y) is
a back-edge, we have that x is a descendant of y. Thus, x is a common descendant
of v and y, and therefore v and y are related as ancestor and descendant. Then,
y < v implies that y is a proper ancestor of v. This shows that (x, y) ∈ B(v). Then
B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(u) is rejected, because it implies that x is a descendant

324

of M(u), and therefore a descendant of c′′, whereas x is a descendant of c′′1. The
case (x, y) ∈ B(w) is also rejected, because it implies that x is a descendant of M(w),
and therefore a descendant of c1, whereas x is a descendant of c′′1 , and therefore a
descendant of M(v, c2), and therefore a descendant of c2. Thus, (x, y) = e is the only
acceptable option, and thus the higher endpoint of e is a descendant of c′′1. Similarly,
since c′′ is neither c′′1 nor c′′2 , we have that low(c′′2) ≤ low(c′′) < v, and therefore we can
show with the same argument that the higher endpoint of e is a descendant of c′′2 ,
which is absurd. Thus, our initial supposition cannot be true, and therefore we have
that c′′ is either c′′1 or c′′2.

Now let us suppose, for the sake of contradiction, that the higher endpoint of e is
a descendant of c′′. Let (x, y) be a back-edge in B(v) such that x is a descendant of c2.
Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(w) is rejected, because it implies that x is a descendant
of M(w), and therefore a descendant of c1, whereas x is a descendant of c2. Thus, we
have that either (x, y) ∈ B(u), or (x, y) = e. If (x, y) ∈ B(u), then x is a descendant
of M(u), and therefore a descendant of c′′. If (x, y) = e, then by supposition we have
that x is a descendant of c′′. In either case, then, we have that x is a descendant of c′′.
Due to the generality of (x, y) ∈ B(v) such that x is a descendant of c2, this implies
that M(v, c2) is a descendant of c′′. But this is impossible, because c′′ is a child of
M(v, c2). Thus, we have that the higher endpoint of e is not a descendant of c′′.

Now let S ′ = {(x, y) ∈ B(v) | x is a descendant of c′′}. Then we have M(S ′) =

M(v, c′′). Let (x, y) be a back-edge in S ′. Then x is a descendant of c′′ and (x, y) ∈ B(v).
Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(w) is rejected, because it implies that x is a descendant of
M(w), and therefore a descendant of c1, whereas x is a descendant of c′′, and therefore
a descendant of M(v, c2), and therefore a descendant of c2. The case (x, y) = e is also
rejected, because we have shown that the higher endpoint of e is not a descendant
of c′′. Thus, (x, y) ∈ B(u) is the only acceptable option. Due to the generality of
(x, y) ∈ S ′, this implies that S ′ ⊆ B(u). Conversely, let (x, y) be a back-edge in B(u).
Then x is a descendant of M(u), and therefore a descendant of c′′. Furthermore,
B(v) = (B(u)⊔B(w))⊔{e} implies that (x, y) ∈ B(v). This shows that (x, y) ∈ S ′. Due
to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ S ′. Since we have shown
the reverse inclusion too, we infer that B(u) = S ′. This implies that M(u) = M(S ′),
and therefore M(u) = M(v, c′′). Thus, if c′′ = c′′1 , then we get (u.2). And if c′′ = c′′2 ,

325

then we get (u.3).

Lemma 5.70. Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a
proper ancestor of u, and there is a back-edge e ∈ B(v) such that B(v) = (B(u)⊔B(w))⊔{e}
and M(B(v) \ {e}) ̸= M(w). Suppose that M(v) = M(B(v) \ {e}). Then u is the lowest
proper descendant of v in M−1(M(u)). In case (w.1) of Lemma 5.69 we have that w is
either the greatest or the second-greatest proper ancestor of v in M−1(M(w)). In case (w.2)
of Lemma 5.69 we have that w is the greatest proper ancestor of v in M−1(M(w)).

Proof. Let us suppose, for the sake of contradiction, that u is not the lowest proper
descendant of v in M−1(M(u)). This means that there is a proper descendant u′ of v
such that u′ < u and M(u′) = M(u). This implies that u′ is a proper ancestor of u, and
then Lemma 3.2 implies that B(u′) ⊆ B(u). Since the graph is 3-edge-connected, this
can be strengthened to B(u′) ⊂ B(u). Thus, there is a back-edge (x, y) ∈ B(u) \B(u′).
Then x is a descendant of M(u) = M(u′). Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e}
implies that (x, y) ∈ B(v), and therefore y is a proper ancestor of v, and therefore a
proper ancestor of u′. But this shows that (x, y) ∈ B(u′), a contradiction. Thus, u is
the lowest proper descendant of v in M−1(M(u)).

Let c1, c2 and c3 be the low1, low2 and low3 children of M(v), respectively. Then
Lemma 5.69 implies that M(u) is either a descendant of c2 or a descendant of c3.
In either case, then, we have that no descendant of M(u) can be a descendant of
c1. Furthermore, Lemma 5.69 implies that either (w.1) M(w) = M(v, c1), or (w.2)
M(w) = M(v, c′1), where c′1 is the low1 child of M(v, c1).

Let us assume first that (w.1) is true. That is, we have M(w) = M(v, c1). Let us
suppose, for the sake of contradiction, that w is neither the greatest nor the second-
greatest proper ancestor of v in M−1(M(w)). This means that there are proper an-
cestors w′ and w′′ of v such that w′′ > w′ > w and M(w′′) = M(w′) = M(w). This
implies that w′′ is a proper descendant of w′, and w′ is a proper descendant of
w. Then, Lemma 3.2 implies that B(w) ⊆ B(w′) ⊆ B(w′′). Since the graph is 3-
edge-connected, this can be strengthened to B(w) ⊂ B(w′) ⊂ B(w′′). Thus, there
are back-edges (x, y) ∈ B(w′) \ B(w) and (x′, y′) ∈ B(w′′) \ B(w′). Then x is a de-
scendant of M(w′) = M(w), and therefore a descendant of M(v, c1), and therefore a
descendant of v. Furthermore, y is a proper ancestor of w′, and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Then B(v) = (B(u)⊔B(w))⊔{e} implies
that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is

326

rejected, because it implies that x is a descendant of M(u), and therefore it is not a
descendant of c1, whereas x is a descendant of M(v, c1), and therefore a descendant
of c1. The case (x, y) ∈ B(w) is rejected because (x, y) ∈ B(w′) \ B(w). Thus, the
only viable option is (x, y) = e. Then, with the same argument we can show that
(x′, y′) = e, and therefore we have (x, y) = (x′, y′). But this contradicts the fact that
(x, y) ∈ B(w′) and (x′, y′) /∈ B(w′). Thus, we have shown that w is either the greatest
or the second-greatest proper ancestor of v in M−1(M(w)).

Now let us assume that (w.2) is true. That is, we haveM(w) = M(v, c′1), where c′1 is
the low1 child ofM(v, c1). Let us suppose, for the sake of contradiction, that the higher
endpoint of e is a descendant of c′1. Let (x, y) be a back-edge in B(v) such that x is a
descendant of c1. Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or
(x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is rejected, because it implies that x
is a descendant of M(u), and therefore it is not a descendant of c1, whereas we have
that x is a descendant of c1. Thus, we have that either (x, y) ∈ B(w) or (x, y) = e. If
(x, y) ∈ B(w), then x is a descendant of M(w), and therefore a descendant of M(v, c′1),
and therefore a descendant of c′1. If (x, y) = e, then by supposition we have that x
is a descendant of c′1. In either case, then, we have that x is a descendant of c′1. Due
to the generality of (x, y) ∈ B(v) such that x is a descendant of c1, this implies that
M(v, c1) is a descendant of c′1. But this is impossible, because c′1 is a child of M(v, c1).
Thus, we have that the higher endpoint of e is not a descendant of c′1.

Now let us suppose, for the sake of contradiction, that w is not the greatest proper
ancestor of v in M−1(M(w)). This means that there is a proper ancestor w′ of v

such that w′ > w and M(w′) = M(w) = M(v, c′1). This implies that w′ is a proper
descendant of w, and therefore Lemma 3.2 implies that B(w) ⊆ B(w′). Since the graph
is 3-edge-connected, this can be strengthened to B(w) ⊂ B(w′). Thus, there is a back-
edge (x, y) ∈ B(w′) \B(w). Then x is a descendant of M(w′) = M(w) = M(v, c′1), and
therefore a descendant of v. Furthermore, y is a proper ancestor of w′, and therefore a
proper ancestor of v. This shows that (x, y) ∈ B(v). Then B(v) = (B(u)⊔B(w))⊔ {e}
implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u)

is rejected, because it implies that x is a descendant of M(u), and therefore it is not a
descendant of c1, whereas x is a descendant ofM(v, c′1), and therefore a descendant of
c′1, and therefore a descendant of M(v, c1), and therefore a descendant of c1. The case
(x, y) = e is also rejected, because we have shown that the higher endpoint of e is not
a descendant of c′1, whereas x is a descendant of M(v, c′1), and therefore a descendant

327

of c′1. Thus, (x, y) ∈ B(w) is the only viable option left. But this contradicts the fact
that (x, y) ∈ B(w′) \ B(w). Thus, we conclude that w is the greatest proper ancestor
of v in M−1(M(w)).

Lemma 5.71. Let u, v, w be three vertices ̸= r such that u is a proper descendant of v,
and v is a proper descendant of w. Suppose that (1) M(u) and M(w) are descendants of
M(v) that are not related as ancestor and descendant, (2) high(u) < v, and (3) bcount(v) =
bcount(u)+bcount(w)+1. Then there is a back-edge e such that B(v) = (B(u)⊔B(w))⊔{e}.

Proof. Let (x, y) be a back-edge in B(u). Then x is a descendant ofM(u), and therefore
a descendant of M(v), and therefore a descendant of v. Furthermore, y is an ancestor
of high(u), and therefore y ≤ high(u). Then, high(u) < v implies that y < v. Since
(x, y) is a back-edge, we have that x is a descendant of y. Thus, x is a common
descendant of v and y, and therefore v and y are related as ancestor and descendant.
Then, y < v implies that y is a proper ancestor of v. This shows that (x, y) ∈ B(v).
Due to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(v). Let (x, y) be a
back-edge in B(w). Then x is a descendant of M(w), and therefore a descendant of
M(v). Furthermore, y is a proper ancestor of w, and therefore a proper ancestor of
v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(w), this implies
that B(w) ⊆ B(v). Let us suppose, for the sake of contradiction, that B(u)∩B(w) ̸= ∅.
Then there is a back-edge (x, y) ∈ B(u)∩B(w). This implies that x is a descendant of
both M(u) and M(w), contradicting the fact that M(u) and M(w) are not related as
ancestor and descendant. Thus, we have B(u) ∩ B(w) = ∅. Now, since B(u) ⊆ B(v),
B(w) ⊆ B(v), B(u) ∩ B(w) = ∅, and bcount(v) = bcount(u) + bcount(w) + 1, we infer
that there is a back-edge e such that B(v) = (B(u) ⊔ B(w)) ⊔ {e}.

Proposition 5.23. Algorithm 35 correctly computes all Type-3βi 4-cuts that satisfy (4) of
Lemma 5.57 and M(v) ̸= M(B(v)\{e}). Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βi 4-cut, where w is a
proper ancestor of v, v is a proper ancestor of u, e satisfies (4) of Lemma 5.57 and
M(v) ̸= M(B(v) \ {e}). Since M(v) ̸= M(B(v) \ {e}), Lemma 3.9 implies that either
e = eL(v) or e = eR(v). Let us assume that e = eL(v) (the other case is treated
similarly). Let c1 be the low1 child of M(B(v) \ {eL(v)}), and let c2 be the low2 child
ofM(B(v)\{eL(v)}). Then Lemma 5.68 implies that u is the lowest proper descendant
of v such that M(u) = M(v, c2), and w is the greatest proper ancestor of v such that

328

Algorithm 35: Compute all Type-3βi 4-cuts that satisfy (4) of Lemma 5.57
and M(v) ̸= M(B(v) \ {e})

1 foreach vertex v ̸= r do
2 compute M(B(v) \ {eL(v)}) and M(B(v) \ {eR(v)})

3 end
4 foreach vertex v ̸= r do
5 if M(B(v) \ {eL(v)}) has at least two children then
6 let c1 be the low1 child of M(B(v) \ {eL(v)})
7 let c2 be the low2 child of M(B(v) \ {eL(v)})
8 compute M(v, c1) and M(v, c2)

9 end
10 if M(B(v) \ {eR(v)}) has at least two children then
11 let c1 be the low1 child of M(B(v) \ {eR(v)})
12 let c2 be the low2 child of M(B(v) \ {eR(v)})
13 compute M(v, c1) and M(v, c2)

14 end

15 end
16 foreach vertex v ̸= r do
17 if M(B(v) \ {eL(v)}) has at least two children then
18 let c1 be the low1 child of M(B(v) \ {eL(v)})
19 let c2 be the low2 child of M(B(v) \ {eL(v)})
20 let u be the lowest proper descendant of v such that M(u) = M(v, c2)

21 let w be the greatest proper ancestor of v such that M(w) = M(v, c1)

22 if high(u) < v and bcount(v) = bcount(u) + bcount(w) + 1 then
23 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
24 end

25 end
26 if M(B(v) \ {eR(v)}) has at least two children then
27 let c1 be the low1 child of M(B(v) \ {eR(v)})
28 let c2 be the low2 child of M(B(v) \ {eR(v)})
29 let u be the lowest proper descendant of v such that M(u) = M(v, c2)

30 let w be the greatest proper ancestor of v such that M(w) = M(v, c1)

31 if high(u) < v and bcount(v) = bcount(u) + bcount(w) + 1 then
32 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
33 end

34 end

35 end

329

M(w) = M(v, c1). Since (4) of Lemma 5.57 is satisfied, we have B(v) = (B(u)⊔B(w))⊔
{e}. This implies that bcount(v) = bcount(u)+ bcount(w)+1. Furthermore, this implies
that B(u) ⊆ B(v), and therefore high(u) < v (because the lower endpoint of every
back-edge in B(u) is a proper ancestor of v). Lemma 5.67 implies that e = e(u, v, w).
Thus, C will be marked in Line 23.

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} be a 4-element set that
is marked in Line 23 or 32. Let us assume that C is marked in Line 23 (the other
case is treated similarly). Then we have that u is a proper descendant of v such
that M(u) = M(v, c2) and w is a proper ancestor of v such that M(w) = M(v, c1),
where c1 and c2 are the low1 and low2 children of M(B(v) \ {eL(v)}), respectively.
Then we have that both M(u) and M(w) are descendants of M(v). Furthermore,
M(u) is a descendant of c1 and M(w) is a descendant of c2. Thus, M(u) and M(w)

are not related as ancestor and descendant. Then, we also have that high(u) < v

and bcount(v) = bcount(u)+ bcount(w)+ 1. Thus, all the conditions of Lemma 5.71 are
satisfied, and therefore we have B(v) = (B(u)⊔B(w))⊔{e}. Then, Lemma 5.67 implies
that e = e(u, v, w). Thus, C is a 4-cut that satisfies (4) of Lemma 5.57. Therefore, C
is correctly marked in Line 23 as a 4-cut.

Now will argue about the complexity of Algorithm 35. By Proposition 3.6, we have
that the values M(B(v) \ {eL(v)}) and M(B(v) \ {eR(v)}) can be computed in linear
time in total, for every vertex v ̸= r. Thus, the for loop in Line 1 can be performed
in linear time. Proposition 3.5 implies that all values M(v, c1) and M(v, c2) can be
computed in linear time in total, for every vertex v ̸= r such that M(B(v) \ {eL(v)})
(resp., M(B(v) \ {eR(v)})) has at least two children, where c1 and c2 are the low1 and
low2 children of M(B(v) \ {eL(v)}) (resp., M(B(v) \ {eR(v)})). Thus, the for loop in
Line 4 can be performed in linear time. The vertices u and w in Lines 20, 21, 29 and
30 can be computed in linear time in total with Algorithm 22 (see e.g. the proof of
Proposition 5.21, on how we generate the queries that provide the vertices u and w).
We conclude that Algorithm 35 runs in linear time.

Proposition 5.24. Algorithm 36 correctly computes all Type-3βi 4-cuts that satisfy (4) of
Lemma 5.57 and M(v) = M(B(v)\{e}). Furthermore, it has a linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βi 4-cut, where w is a
proper ancestor of v, v is a proper ancestor of u, e satisfies (4) of Lemma 5.57 and
M(v) = M(B(v) \ {e}). We will use the notation that is introduced in Lines 2, 3 and

330

Algorithm 36: Compute all Type-3βi 4-cuts that satisfy (4) of Lemma 5.57
and M(v) = M(B(v) \ {e})

1 foreach vertex v ̸= r do
2 let c1(v), c2(v) and c3(v) denote the low1, low2 and low3 children of M(v), respectively
3 let c′1(v) denote the low1 child of M(v, c1)

4 let c′′1(v) and c′′2(v) denote the low1 and low2 children of M(v, c2), respectively

5 end
6 foreach vertex v ̸= r do

// case (w.1) of Lemma 5.69

7 let w be the greatest proper ancestor of v such that M(w) = M(v, c1(v))

8 if w ̸= ⊥ then
// case (u.1) of Lemma 5.69

9 let u be the lowest proper descendant of v such that M(u) = M(v, c2(v))

10 if high(u) < v and bcount(v) = bcount(u) + bcount(w) + 1 then
11 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
12 end

// case (u.2) of Lemma 5.69

13 let u be the lowest proper descendant of v such that M(u) = M(v, c′′1(v))

14 if high(u) < v and bcount(v) = bcount(u) + bcount(w) + 1 then
15 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
16 end

// case (u.3) of Lemma 5.69

17 let u be the lowest proper descendant of v such that M(u) = M(v, c′′2(v))

18 if high(u) < v and bcount(v) = bcount(u) + bcount(w) + 1 then
19 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
20 end

// case (u.4) of Lemma 5.69

21 let u be the lowest proper descendant of v such that M(u) = M(v, c3(v))

22 if high(u) < v and bcount(v) = bcount(u) + bcount(w) + 1 then
23 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
24 end

25 end
26 w ← prevM(w)

27 if w ̸= ⊥ and w is a proper ancestor of v then
28 perform the same steps as in Lines 9 to 24

29 end
// case (w.2) of Lemma 5.69

30 let w be the greatest proper ancestor of v such that M(w) = M(v, c′1(v))

31 if w ̸= ⊥ then
32 perform the same steps as in Lines 9 to 24

33 end

34 end 331

4: i.e., c1(v) is the low1 child of M(v), c2(v) is the low2 child of M(v), c3(v) is the low3
child of M(v), c′1(v) is the low1 child of M(v, c1), c′′1(v) is the low1 child of M(v, c2),
and c′′2(v) is the low2 child of M(v, c2). (We note that some of those values may be
null.)

Then, according to Lemma 5.69, we have two cases for w: either (w.1) M(w) =

M(v, c1(v)), or (w.2)M(w) = M(v, c′1(v)). Furthermore, we have four cases for u: either
(u.1) M(u) = M(v, c2(v)), or (u.2) M(u) = M(v, c′′1(v)), or (u.3) M(u) = M(v, c′′2(v)),
or (u.4) M(u) = M(v, c3(v)). By Lemma 5.70, we have that u, in any case, is the
lowest proper descendant of v with the respective property. Furthermore, w in case
(w.2) is the greatest proper ancestor of v with this property, whereas in case (w.1)
it is either the greatest or the second-greatest proper ancestor of v. Thus, there are
twelve distinct cases in total.

Since C satisfies (4) of Lemma 5.57, we have that B(v) = (B(u)⊔B(w))⊔{e}. This
implies that bcount(v) = bcount(u)+bcount(w)+1. Furthermore, we have B(u) ⊆ B(v),
and therefore high(u) < v (because the lower endpoint of every back-edge in B(u) is
a proper ancestor of v). By Lemma 5.67 we have e = e(u, v, w). Thus, it is clear that,
if w satisfies (w.1) and is the greatest proper ancestor of v with this property, or it
satisfies (w.2), then the condition in Line 8 or Line 31 will be satisfied, and therefore
C will be marked at some point between Lines 9 to 24. Otherwise, we have that w
satisfies (w.1) and is the second-greatest proper ancestor of v with this property. So
let w′ be the greatest proper ancestor of v that satisfies M(w′) = M(v, c1(v)). Then
we have w = prevM(w′), because prevM(w′) is the lowest vertex in M−1(M(w′)) that
is greater than w′. Thus, Line 27 will be satisfied, and therefore C will be marked at
some point between Lines 9 to 24.

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} be a 4-element set that
is marked at some point between Lines 9 to 24, where we have entered the condition
in Line 8, or 27, or 31. Then, in either case, we have the following facts. First, u
is a proper descendant of v, and w is a proper ancestor of v. Second, M(w) is a
descendant of c1(v), and M(u) is a descendant of either c2(v) or c3(v). Thus, both
M(w) and M(u) are descendants of M(v), but they are not related as ancestor and
descendant. And third, we have high(u) < v and bcount(v) = bcount(u)+bcount(w)+1.
Thus, all the conditions of Lemma 5.71 are satisfied, and therefore we have that there
is a back-edge e such that B(v) = (B(u) ⊔ B(w)) ⊔ {e}. Then Lemma 5.67 implies
that e = e(u, v, w). Thus, C is a 4-cut that satisfies (4) of Lemma 5.57, and therefore

332

it is correctly marked as a 4-cut.
Now we will argue about the complexity of Algorithm 36. For every vertex

v ̸= r, we generate queries for computing M(v, c1(v)), M(v, c2(v)) and M(v, c3(v))

(for those of c1(v), c2(v) and c3(v) that exist). By Proposition 3.5, we can have the
answer to all those queries in linear time in total. Then, for every v ̸= r such that
M(v, c1(v)) ̸= ⊥ and c′1(v) ̸= ⊥, we generate a query for computing M(v, c′1(v)). Sim-
ilarly, if M(v, c2(v)) ̸= ⊥, then we generate queries for computing M(v, c′′1(v)) and
M(v, c′′2(v)) (for those of c′′1(v) and c′′2(v) that exist). According to Proposition 3.5, all
those queries can be answered in linear time in total. We keep pointers from every
vertex v to all its respective values that were computed (i.e., a pointer to M(v, c1(v)),
a pointer to M(v, c′′1(v)), etc.). In order to get the vertices u and w throughout (e.g.,
in Line 7 and Line 9), we first collect all the queries for those vertices, and we make
appropriate use of Algorithm 22. The way to do this (and the guarantee of cor-
rectness) has been already explained in previous algorithms (e.g., in the proof of
Proposition 5.21). By Lemma 5.27, we can have the answer to all those queries in
linear time in total. It is easy to see that all other operations in Algorithm 36 take
O(n) time in total. We conclude that Algorithm 36 runs in linear time.

5.8.2 Type‐3βii 4‐cuts

5.8.2.1 Type‐3βii‐1 4‐cuts

Now we consider case (1) of Lemma 5.57.
Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a proper

ancestor of u, and there is a back-edge e ∈ B(u)∩B(v)∩B(w) such that B(v) \ {e} =
(B(u) \ {e}) ⊔ (B(w) \ {e}) and M(B(v) \ {e}) = M(B(w) \ {e}). By Lemma 5.57, we
have that C = {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut; we call this a Type-3βii-1
4-cut.

The following lemma provides some useful information concerning this type of
4-cuts.

Lemma 5.72. Let u, v, w be three vertices such that (u, v, w) induces a Type-3βii-1 4-cut,
and let e be the back-edge of the 4-cut induced by (u, v, w). Then e = (lowD(u), low(u)).
Furthermore, low(u) < w, low2(u) ≥ w, high(u) = high(v), w is an ancestor of high(v)
and M(w) = M(v). Finally, if u′ is a vertex such that u ≥ u′ ≥ v and high(u′) = high(v),
then u′ is an ancestor of u.

333

Proof. Since (u, v, w) induces a Type-3βii-1 4-cut, we have that e ∈ B(u)∩B(v)∩B(w).
Since e ∈ B(w), we have that the lower endpoint of e is strictly lower than w. And
since e ∈ B(u), we have that low(u) is at least as low as the lower endpoint of e. This
shows that low(u) < w.

Let us suppose, for the sake of contradiction, that low2(u) < w. Let (x, y) be a
back-edge in B(u) such that y = low2(u). Then x is a descendant of u, and therefore a
descendant of v, and therefore a descendant of w. Since (x, y) is a back-edge, we have
that x is a descendant of y. Thus, x is a common descendant of w and y, and therefore
w and y are related as ancestor and descendant. Since y = low2(u) and low2(u) < w,
we have y < w. This implies that y is a proper ancestor of w. This shows that (x, y) ∈
B(w). With the same argument, we have that the low-edge of u is also in B(w). Since
(u, v, w) induces a Type-3βii-1 4-cut, we have B(v) \ {e} = (B(u) \ {e})⊔ (B(w) \ {e}).
Since e ∈ B(u) ∩ B(w), this implies that there is only one back-edge in B(u) ∩ B(w),
a contradiction. Thus, we have w ≤ low2(u). Furthermore, since e ∈ B(u) ∩ B(w), we
have that e is the only back-edge in B(u) whose lower endpoint is low enough to be
lower than w, and therefore e is the low-edge of u.

Since B(v) \{e} = (B(u) \{e})⊔ (B(w) \{e}) and e ∈ B(u)∩B(v), we have B(u) ⊆
B(v). This implies that high(v) ≥ high(u). Let us suppose, for the sake of contradiction,
that high(v) > high(u). Let (x, y) be a back-edge in B(v) such that y = high(v). Then
y > high(u), and therefore (x, y) /∈ B(u). Thus, B(v) \ {e} = (B(u) \ {e})⊔ (B(w) \ {e})
implies that (x, y) ∈ B(w). Then we have that y is a proper ancestor of w, and
therefore y < w. But we have w ≤ low(u) ≤ high(u) < high(v) = y, a contradiction.
This shows that high(u) = high(v).

Since both w and high(v) are ancestors of v, we have that w and high(v) are related
as ancestor and descendant. Now let us suppose, for the sake of contradiction, that
w is a proper descendant of high(v). Let (x, y) be a back-edge in B(u) such that
y = high(u). Then, since high(u) = high(v), we have that y = high(v), and therefore
y is a proper ancestor of w. But since y = high(u), this implies that low2(u) < w, a
contradiction. This shows that w is an ancestor of high(v).

Since B(w) \ {e} ⊆ B(v) \ {e} and e ∈ B(v) ∩ B(w), we have that B(w) ⊆ B(v).
This implies that M(w) is a descendant of M(v). Since e ∈ B(u), we have that M(u)

is an ancestor of the higher endpoint of e. Furthermore, since e ∈ B(w), we have
that M(w) is an ancestor of the higher endpoint of e. Thus, since M(u) and M(w)

have a common descendant, they are related as ancestor and descendant. Since u

334

is an ancestor of M(u), this implies that M(w) and u are also related as ancestor
and descendant. Let us suppose, for the sake of contradtion, that M(w) is not an
ancestor of u. Then we have that M(w) is a proper descendant of u. Since the graph
is 3-edge-connected, we have that there is a back-edge (x, y) ∈ B(w) \ {e}. Then x is
a descendant of M(w), and therefore a descendant of u. Furthermore, y is a proper
ancestor of w, and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u).
But then we have (x, y) ∈ (B(u) \ {e}) ∩ (B(w) \ {e}), a contradiction. Thus, we have
that M(w) is an ancestor of u, and therefore an ancestor of M(u). Now let (x, y) be
a back-edge in B(v). If (x, y) = e, then e ∈ B(w), and therefore x is a descendant of
M(w). Otherwise, since B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}), we have that either
(x, y) ∈ B(u) \ {e}, or (x, y) ∈ B(w) \ {e}. If (x, y) ∈ B(u) \ {e}, then x is a descendant
of u, and therefore x is a descendant of M(w). If (x, y) ∈ B(w) \ {e}, then M(w) is an
ancestor of x. Thus, in every case we have that M(w) is an ancestor of x. Due to the
generality of (x, y) ∈ B(v), this shows that M(w) is an ancestor of M(v). Thus, since
M(w) is a descendant of M(v), we infer that M(w) = M(v).

Now let u′ be a vertex such that u ≥ u′ ≥ v and high(u′) = high(v). Since u is a
descendant of v and u ≥ u′ ≥ v, we have that u′ is also a descendant of v. Furthermore,
since u ≥ u′, we have that either u′ is an ancestor of u, or it is not related as ancestor
and descendant with u. Now let us suppose, for the sake of contradiction, that u′

is not an ancestor of u. Then u′ is not related as ancestor and descendant with u.
Let (x, y) be a back-edge in B(u′) with y = high(u′). Then x is a descendant of u′,
and therefore a descendant of v. Thus, y = high(u′) = high(v) implies that (x, y) is
in B(v). Since u′ is not related as ancestor and descendant with u, we have that x
is not a descendant of u. Thus, (x, y) /∈ B(u). This implies that e ̸= (x, y), and thus
B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}) implies that (x, y) ∈ B(w), and therefore
y is a proper ancestor of w. But y = high(v) and high(v) is a descendant of w, a
contradiction. This shows that u′ is an ancestor of u.

We will provide a method to compute all Type-3βii-1 4-cuts in linear time. The
idea is to compute, for every vertex v, a set U1(v) of proper descendants u of v that
have the potential to participate in a triple (u, v, w) that induces a Type-3βii-1 4-cut.
(These sets have the property that their total size is O(n).) Then, for every u ∈ U1(v),
we search for all w with M(w) = M(v) that may participate in a triple (u, v, w) that
induces a Type-3βii-1 4-cut. (In fact, we can show that such a w, if it exists, is unique.)

335

It is sufficient to restrict our search to w withM(w) = M(v), according to Lemma 5.72.
Now let v ̸= r be a vertex with nextM(v) ̸= ⊥. Let S be the segment of H(high(v))

that contains v and is maximal w.r.t. the property that its elements are related as
ancestor and descendant (i.e., we have S = S(v)). Then we let U1(v) denote the
collection of all vertices u ∈ S such that either (1) u is a proper descendant of v with
nextM(v) > low2(u) ≥ lastM(v), or (2) u is the lowest proper descendant of v in S such
that low2(u) ≥ nextM(v).

Lemma 5.73. Let (u, v, w) be a triple of vertices that induces a Type-3βii-1 4-cut. Then
u ∈ U1(v).

Proof. Since (u, v, w) induces a Type-3βii-1 4-cut, we have that u is a proper descen-
dant of v, and by Lemma 5.72 we have high(u) = high(v). Let u′ be a vertex such that
u ≥ u′ ≥ v and high(u′) = high(v). Then Lemma 5.72 implies that u′ is an ancestor of
u. This shows that u and v belong to a segment of H(high(v)) with the property that
its elements are related as ancestors and descendants. Thus, we have u ∈ S(v).

By Lemma 5.72 we have that w is a proper ancestor of v withM(w) = M(v). Thus,
nextM(v) ̸= ⊥ and w ≤ nextM(v). Now, if u satisfies nextM(v) > low2(u) ≥ lastM(v),
then u satisfies enough conditions to be in U1(v). Otherwise, if nextM(v) > low2(u) ≥
lastM(v) is not true, then either low2(u) ≥ nextM(v) or low2(u) < lastM(v). Since
lastM(v) ≤ w, the case low2(u) < lastM(v) is rejected by Lemma 5.72 (because this
ensures that low2(u) ≥ w, and we have that w ≥ lastM(v)). Thus we have low2(u) ≥
nextM(v).

Now let us suppose, for the sake of contradiction, that there is a vertex u′ ∈ S(v)

that is a proper descendant of v, it is lower than u, and satisfies low2(u
′) ≥ nextM(v).

This implies that u′ is a proper ancestor of u (because all vertices in S(v) are related
as ancestor and descendant). Now let (x, y) be a back-edge in B(u). Then x is a
descendant of u, and therefore a descendant of u′. Furthermore, y is an ancestor of
high(u) = high(u′), and therefore it is a proper ancestor of u′. This shows that (x, y) ∈
B(u′), and therefore we have B(u) ⊆ B(u′). This can be strengthened to B(u) ⊂ B(u′),
since the graph is 3-edge-connected. Thus, there is a back-edge (x, y) ∈ B(u′) \B(u).
Then, x is a descendant of u′, and therefore a descendant of v. Furthermore, y is an
ancestor of high(u′), and therefore it is a proper ancestor of v (since high(u′) = high(v)).
This shows that (x, y) ∈ B(v). Since (u, v, w) induces a Type-3βii-1 4-cut, we have
B(v) \ {e} ⊆ B(u) ∪ B(w) and e ∈ B(u) ∩ B(v) ∩ B(w), where e is the back-edge of

336

the 4-cut induced by (u, v, w). Since (x, y) ∈ B(v) and (x, y) /∈ B(u), this implies that
(x, y) ̸= e and (x, y) ∈ B(w). Thus, since low2(u

′) ≥ nextM(v) and w ≤ nextM(v), we
have that (x, y) = (lowD1(u

′), low1(u
′)), and (x, y) is the only back-edge in B(u′) whose

lower endpoint is lower than w. Now, since e ∈ B(u), we have that the higher endpoint
of e is a descendant of u, and therefore a descendant of u′. Then, since e ∈ B(w), we
have that the lower endpoint of e is a proper ancestor of w, and therefore a proper
ancestor of v, and therefore a proper ancestor of u′. This shows that e ∈ B(u′). But
we have that (x, y) is the only back-edge in B(u′) whose lower endpoint is lower than
w, and therefore (x, y) = e, a contradiction. We conclude that u is the lowest vertex
in S(v) that is a proper descendant of v with low2(u) ≥ nextM(v). Thus, u satisfies
enough conditions to be in U1(v).

Lemma 5.74. Let v and v′ be two vertices ̸= r such that nextM(v) ̸= ⊥ and nextM(v′) ̸= ⊥.
Suppose that v′ is a proper descendant of v with high(v′) = high(v). Then nextM(v′) <

lastM(v).

Proof. Since high(v′) = high(v) and v′ is a proper descendant of v, by Lemma 3.3 we
have that B(v′) ⊆ B(v). Since the graph is 3-edge-connected, this can be strengthened
to B(v′) ⊂ B(v). This implies that M(v′) is a descendant of M(v). Since high(v′) =

high(v), Lemma 3.7 implies that M(v′) ̸= M(v) (for otherwise we would have B(v′) =

B(v)). Thus, M(v′) is a proper descendant of M(v).
Now let w be a proper ancestor of v with M(w) = M(v), and let w′ be a proper

ancestor of v′ with M(w′) = M(v′). Then nextM(v) ≥ w ≥ lastM(v) and nextM(v′) ≥
w′ ≥ lastM(v′). Let us suppose, for the sake of contradiction, that w ≤ w′. Since
w is an ancestor of v, it is also an ancestor of v′. Thus, w and w′ have v′ as a
common descendant, and therefore they are related as ancestor and descendant.
Since w ≤ w′, this implies that w is an ancestor of w′. Let us suppose, for the sake of
contradiction, that w′ is a descendant of v. This implies that w′ is a proper descendant
of high(v) = high(v′). Now let (x, y) be a back-edge in B(v′). Then x is a descendant
of M(v′) = M(w′). Furthermore, y is an ancestor of high(v′), and therefore a proper
ancestor of w′. This shows that (x, y) ∈ B(w′), and thus we have B(v′) ⊆ B(w′).
Conversely, since M(v′) = M(w′) and w′ is a proper ancestor of v′, Lemma 3.2 implies
that B(w′) ⊆ B(v′). Thus we have B(v′) = B(w′), a contradiction. This shows that w′

is not a descendant of v. Since w′ and v have v′ as a common descendant, we have
that w′ and v are related as ancestor and descendant. Thus, w′ is a proper ancestor of

337

v. Therefore, M(v) = M(w) is a descendant of w′. Thus, since w is an ancestor of w′

and M(w) is a descendant of w′, by Lemma 3.1 we have that M(w) is a descendant
of M(w′). But M(w) = M(v) and M(w′) = M(v′), and so we have a contradiction to
the fact that M(v′) is a proper descendant of M(v). This shows that w > w′. Due to
the generality of w and w′, we conclude that lastM(v) > nextM(v′).

Lemma 5.75. Let v and v′ be two vertices with nextM(v) ̸= ⊥ and nextM(v′) ̸= ⊥, such
that S(v′) = S(v) and v′ is a proper descendant of v. If U1(v

′) = ∅, then U1(v) = ∅. If
U1(v

′) ̸= ∅, then the lowest vertex in U1(v) (if it exists) is greater than, or equal to, the
greatest vertex in U1(v

′).

Proof. First, let us suppose that there is a vertex u in U1(v). We will show that u
is a proper descendant of v′. So let us suppose, for the sake of contradiction, that
u is not a proper descendant of v′. Since u ∈ U1(v), we have u ∈ S(v). Thus, since
v′ ∈ S(v′) = S(v), we have that u and v′ are related as ancestor and descendant.
Then, since u is not a proper descendant of v′, we have that u is an ancestor of v′.
Since u and v′ are in S(v), we have high(u) = high(v) = high(v′). Thus, Lemma 3.3
implies that B(v′) ⊆ B(u). Since nextM(v) ̸= ⊥ and nextM(v′) ̸= ⊥ and v′ is a proper
descendant of v, Lemma 5.74 implies that nextM(v′) < lastM(v). Let w = nextM(v′).
Since M(w) = M(v′) and w is a proper ancestor of v′, Lemma 3.2 implies that
B(w) ⊆ B(v′). Thus, we have B(w) ⊆ B(u). Since the graph is 3-edge-connected,
we have |B(w)| ≥ 2. Notice that the lower endpoint of every back-edge in B(w) is
lower than w, and therefore lower than lastM(v). Thus, B(w) ⊆ B(u) implies that
low2(u) < lastM(v), contradicting the fact that u ∈ U1(v). This shows that u is a proper
descendant of v′.

Now let us suppose, for the sake of contradiction, that U1(v
′) = ∅ and U1(v) ̸= ∅.

Let u be a vertex in U1(v). Then we have shown that u is a proper descendant of v′.
Since u ∈ U1(v), we have u ∈ S(v), and therefore u ∈ S(v′). Furthermore, we have
low2(u) ≥ lastM(v). By Lemma 5.74 we have nextM(v′) < lastM(v). This implies that
low2(u) ≥ nextM(v′). Thus, we can consider the lowest proper descendant u′ of v′ in
S(v′) that satisfies low2(u

′) ≥ nextM(v′). But then we have u′ ∈ U1(v
′), a contradiction.

This shows that, if U1(v
′) = ∅, then U1(v) = ∅.

Now let us assume that U1(v) ̸= ∅. This implies that U1(v
′) ̸= ∅. Let u be a

vertex in U1(v), and let u′ be a vertex in U1(v
′). We have shown that u is a proper

descendant of v′. Since u ∈ U1(v), we have u ∈ S(v) = S(v′). Furthermore, we have

338

low2(u) ≥ lastM(v). By Lemma 5.74 we have nextM(v′) < lastM(v). This implies that
low2(u) ≥ nextM(v′). Since u′ ∈ U1(v

′), we have that either (1) low2(u
′) < nextM(v′),

or (2) u′ is the lowest vertex in S(v′) that is a proper descendant of v′ such that
low2(u

′) ≥ nextM(v′). Case (2) implies that u′ ≤ u (due to the minimality of u′). So let us
assume that case (1) is true. Let us suppose, for the sake of contradiction, that u ≤ u′.
Since u ∈ S(v) and u′ ∈ S(v′) and S(v) = S(v′), we have that u and u′ are related as
ancestor and descendant. Thus, u ≤ u′ implies that u is an ancestor of u′. Furthermore,
we have that u and u′ have the same high point. Thus, Lemma 3.3 implies that
B(u′) ⊆ B(u). This implies that low2(u) ≤ low2(u

′). But we have low2(u) ≥ nextM(v′)

and low2(u
′) < nextM(v′), a contradiction. This shows that case (1) implies too that

u′ ≤ u. Due to the generality of u ∈ U1(v) and u′ ∈ U1(v
′), this implies that the lowest

vertex in U1(v) (if it exists) is greater than, or equal to, the greatest vertex in U1(v
′).

Based on Lemma 5.75, we can provide an efficient algorithm for computing the sets
U1(v), for all vertices v ̸= r such that nextM(v) ̸= ⊥. The computation takes place on
segments of H(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant. Specifically, let v ̸= r be a vertex such that nextM(v) ̸= ⊥.
Then we have that U1(v) ⊂ S(v). In other words, U1(v) is a subset of the segment
of H(high(v)) that contains v and is maximal w.r.t. the property that its elements are
related as ancestor and descendant. So let z1, . . . , zk be the vertices of S(v), sorted in
decreasing order. Then, we have that v = zi, for an i ∈ {1, . . . , k}. By definition, U1(v)

contains every vertex u in {z1, . . . , zi−1} such that either nextM(v) > low2(u) ≥ lastM(v),
or u is the lowest vertex in this set such that low2(u) ≥ nextM(v).

As an implication of Lemma 3.3, we have that the vertices in {z1, . . . , zi−1} are
sorted in increasing order w.r.t. their B set, and therefore they are sorted in decreasing
order w.r.t. their low2 point. In other words, we have B(z1) ⊆ · · · ⊆ B(zi−1), and
therefore low2(z1) ≥ · · · ≥ low2(zi−1). Thus, it is sufficient to process the vertices from
{z1, . . . , zi−1} in reverse order, in order to find the first vertex u that has low2(u) ≥
lastM(v). Then, we keep traversing this set in reverse order, and, as long as the low2

point of every vertex u that we meet is lower than nextM(v), we insert u into U1(v).
Then, once we reach a vertex with low2 point no lower than nextM(v), we also insert
it into U1(v), and we are done.

Now, if there is a proper ancestor v′ of v in S(v) such that high(v′) = high(v), then
we have that S(v) = S(v′). If nextM(v′) ̸= ⊥, then we have that U1(v

′) is defined. Then

339

we can follow the same process as above in order to compute U1(v
′). Furthermore,

according to Lemma 5.75, it is sufficient to start from the greatest element of U1(v)

(i.e., the one that was inserted last into U1(v)). In particular, if U1(v) = ∅, then it
is certain that U1(v

′) = ∅, and therefore we are done. Otherwise, we just pick up
the computation from the greatest vertex in U1(v). In order to perform efficiently
those computations, we first compute, for every vertex x, the collection S(x) of the
segments of H(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant. For every vertex x, this computation takes O(|H(x)|) time
using Algorithm 10, according to Lemma 3.22. Since every vertex ̸= r participates in
exactly one set of the form H(x), we have that the total size of all S(x), for all vertices
x, is O(n). Then it is sufficient to process separately all segments of S(x), for every
vertex x, as described above, by starting the computation each time from the first
vertex v of the segment that satisfies nextM(v) ̸= ⊥. The whole procedure is shown
in Algorithm 37. The result is formally stated in Lemma 5.76.

Lemma 5.76. Algorithm 37 correctly computes the collections of vertices U1(v), for all
v ̸= r with nextM(v) ̸= ⊥. Furthermore, it has a linear-time implementation.

Proof. This was discussed in the main text, in the three paragraphs above Algo-
rithm 37. It is easy to see that Algorithm 37 implements precisely the idea that we
described in those paragraphs.

Now we will show how to use the sets U1 in order to compute all Type-3βii-1
4-cuts.

Corollary 5.12. Let (u, v, w) and (u, v, w′) be two triples of vertices that induce a Type-
3βii-1 4-cut. Then w = w′.

Proof. By Lemma 5.72 we have that the 4-cuts induced by (u, v, w) and (u, v, w′)

have the same back-edge (that is, (lowD(u), low(u))). Thus, Lemma 5.2 implies that
w = w′.

According to Corollary 5.12, for every u ∈ U1(v), where v ̸= r is a vertex with
nextM(v) ̸= ⊥, there is at most one w such that (u, v, w) induces a Type-3βii-1 4-cut.
Thus, the idea is to process all u ∈ U1(v), in order to find the w in M−1(M(v)) (if it
exists) such that (u, v, w) induces a 4-cut.

Given a w such that M(w) = M(v) and w < v, the following lemma provides a
criterion in order to check whether (u, v, w) induces a 4-cut.

340

Algorithm 37: Compute the sets U1(v), for all vertices v such that nextM(v) ̸=

⊥

1 foreach vertex x do
2 compute the collection S(x) of the segments of H(x) that are maximal

w.r.t. the property that their elements are related as ancestor and
descendant

3 end
4 foreach v ̸= r such that nextM(v) ̸= ⊥ do
5 set U1(v)← ∅
6 end
7 foreach vertex x do
8 foreach segment S ∈ S(x) do
9 let v be the first vertex in S

10 while v ̸= ⊥ and nextM(v) = ⊥ do
11 v ← nextS(v)
12 end
13 if v = ⊥ then continue
14 let u← prevS(v)
15 while v ̸= ⊥ do
16 while u ̸= ⊥ and low2(u) < lastM(v) do
17 u← prevS(u)
18 end
19 while u ̸= ⊥ and low2(u) < nextM(v) do
20 insert u into U1(v)

21 u← prevS(u)

22 end
23 if u ̸= ⊥ then
24 insert u into U1(v)

25 end
26 v ← nextS(v)
27 while v ̸= ⊥ and nextM(v) = ⊥ do
28 v ← nextS(v)
29 end

30 end

31 end

32 end
341

Lemma 5.77. Let u, v, w be three vertices ̸= r such that u is a proper descendant of v, v is a
proper descendant of w, high(u) = high(v), M(w) = M(v), w ≤ low2(u), low(u) < w, and
bcount(v) = bcount(u) + bcount(w)− 1. Then there is a back-edge e ∈ B(u)∩B(v)∩B(w)

such that B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}).

Proof. Since u is a descendant of v such that high(u) = high(v), Lemma 3.3 implies
that B(u) ⊆ B(v). Since w is an ancestor of v such that M(w) = M(v), Lemma 3.2
implies that B(w) ⊆ B(v). Since w ≤ low2(u), we have that there is at most one
back-edge in B(u) that may also be in B(w) (i.e., the low-edge of u). Let (x, y) be a
back-edge in B(u) such that y = low(u). Then x is a descendant of u, and therefore
a descendant of v, and therefore a descendant of w. Since (x, y) is a back-edge, we
have that x is a descendant of y. Thus, x is a common descendant of w and y, and
therefore w and y are related as ancestor and descendant. Then, y = low(u) < w

implies that y is a proper ancestor of w. This shows that (x, y) ∈ B(w). Therefore,
we have that the low-edge e of u is in B(w). Furthermore, since low(u) < w < v,
the same argument shows that e ∈ B(v). Now, since B(u) ⊆ B(v), B(w) ⊆ B(v),
B(u) ∩ B(w) = {e}, e ∈ B(v) and bcount(v) = bcount(u) + bcount(w)− 1, we have that
B(v) \ {e} = (B(u) \ {e}) ⊔ (B(w) \ {e}).

Lemma 5.78. Let (u, v, w) be a triple of vertices that induces a Type-3βii-1 4-cut. Then
w is the greatest proper ancestor of v with M(w) = M(v) and w ≤ low2(u).

Proof. Let us suppose, for the sake of contradiction, that there is a proper ancestor
w′ of v such that M(w′) = M(v), w′ ≤ low2(u), and w′ > w. Then we have that
M(w′) = M(w), and so w′ is related as ancestor and descendant with w. Since w′ > w,
we have that w′ is a proper descendant of w. Thus, Lemma 3.2 implies that B(w) ⊆
B(w′). Since the graph is 3-edge-connected, this can be strengthened to B(w) ⊂ B(w′).
Similarly, since w′ is a proper ancestor of v with M(w′) = M(v), we get B(w′) ⊂ B(v).
Now, since B(w) ⊂ B(w′), there is a back-edge (x, y) ∈ B(w′) \ B(w). Since B(w′) ⊂
B(v), we have that (x, y) ∈ B(v). Since (u, v, w) induces a Type-3βii-1 4-cut, we have
that B(v)\{e} = (B(u)\{e})⊔ (B(w)\{e}) and e ∈ B(u)∩B(v)∩B(w), where e is the
back-edge of the 4-cut induced by (u, v, w). Thus, (x, y) ∈ B(v) implies that either (1)
(x, y) = e, or (2) (x, y) ∈ B(u), or (3) (x, y) ∈ B(w). Case (3) is immediately rejected,
because (x, y) ∈ B(w′) \ B(w). Thus, (1) is also rejected (since e ∈ B(w)). Therefore,
only (2) can be true. Then, since low2(u) ≥ w′ and (x, y) ∈ B(w′), we have that
(x, y) = (lowD(u), low(u)). But then Lemma 5.72 implies that e = (lowD(u), low(u)), a

342

contradiction. This shows that w is the greatest proper ancestor of v with M(w) =

M(v) and w ≤ low2(u).

Lemma 5.78 suggests the following algorithm in order to find all Type-3βii-1
4-cuts: for every vertex v ̸= r such that nextM(v) ̸= ⊥, and every u ∈ U1(v), find
the greatest proper ancestor w of v such that M(w) = M(v) and low2(u) ≥ w, and
then check whether (u, v, w) induces a Type-3βii-1 4-cut using Lemma 5.77. This
procedure is shown in Algorithm 38. The proof of correctness and linear complexity
is given in Proposition 5.25.

Algorithm 38: Compute all Type-3βii-1 4-cuts

1 foreach vertex v ̸= r such that nextM(v) ≠ ⊥ do
2 compute the set U1(v)

3 end
4 foreach vertex v ̸= r such that nextM(v) ≠ ⊥ do
5 foreach u ∈ U1(v) do
6 let w be the greatest proper ancestor of v such that w ≤ low2(u) and

M(w) = M(v)

7 if low(u) < w and bcount(v) = bcount(u) + bcount(w)− 1 then
8 mark {(u, p(u)), (v, p(v)), (w, p(w)), (lowD(u), low(u))} as a 4-cut

9 end

10 end

11 end

Proposition 5.25. Algorithm 38 computes all Type-3βii-1 4-cuts. Furthermore, it has a
linear-time implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βii-1 4-cut, where w is a
proper ancestor of v, and v is a proper ancestor of u. Then we have B(v)\{e} = (B(u)\
{e}) ⊔ (B(w) \ {e}), and therefore bcount(v) = bcount(u) + bcount(w)− 1. Lemma 5.72
implies that e = (lowD(u), low(u)) and low(u) < w. Lemma 5.73 implies that u ∈ U1(v).
Lemma 5.78 implies that w be the greatest proper ancestor of v such that w ≤ low2(u)

and M(w) = M(v). Thus, C satisfies all the conditions to be marked in Line 8.
Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), (lowD(u), low(u))} be a 4-element

set that is marked in Line 8. Since u ∈ U1(v), we have that u is a proper descendant

343

of v with high(u) = high(v). Since w is derived in Line 6, we have that w is a proper
ancestor of v with M(w) = M(v) and w ≤ low2(u). Since the condition in Line 7 is
satisfied, we have low(u) < w and bcount(v) = bcount(u) + bcount(w)− 1. Thus, all the
conditions of Lemma 5.77 are satisfied, and therefore we have that there is a back-
edge e such that e ∈ B(u)∩B(v)∩B(w) and B(v)\{e} = (B(u)\{e})⊔(B(w)\{e}). By
the proof of Lemma 5.72, we have e = (lowD(u), low(u)) (this result is independent
of the condition M(B(w) \ {e}) = M(B(v) \ {e}) that is implicit in the statement of
this lemma). Thus, we have that C is a 4-cut that satisfies (1) of Lemma 5.57.

Now we will argue about the complexity of Algorithm 38. By Lemma 5.76 we have
that the sets U1(v) can be computed in linear time in total, for all vertices v ̸= r such
that nextM(v) ̸= ⊥. Thus, the for loop in Line 1 can be performed in linear time. In
order to compute the vertex w in Line 6 we use Algorithm 22. Specifically, whenever
we reach Line 6, we generate a query of the form q(M−1(M(v)),min{p(v), low2(u)}).
This is to return the greatest w in M−1(M(v)) such that w ≤ p(v) and w ≤ low2(u).
Since M(w) = M(v), w ≤ p(v) implies that w is a proper ancestor of v. Thus, w is
the greatest proper ancestor of v with M(w) = M(v) such that w ≤ low2(u). Since the
number of all those queries is O(n), Lemma 5.27 implies that they can be answered
in linear time in total, using Algorithm 22. We conclude that Algorithm 38 runs in
linear time.

5.8.2.2 Type‐3βii‐2 4‐cuts

Now we consider case (2) of Lemma 5.57.
Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a proper

ancestor of u, and there is a back-edge e ∈ B(w) such that e /∈ B(v) ∪ B(u), B(v) =

B(u) ⊔ (B(w) \ {e}) and M(v) = M(B(w) \ {e}). By Lemma 5.57, we have that
{(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut, and we call this a Type-3βii-2 4-cut.

The following lemma provides some useful information concerning this type of
4-cuts.

Lemma 5.79. Let u, v, w be three vertices such that (u, v, w) induces a Type-3βii-2 4-cut,
and let e be the back-edge of the 4-cut induced by (u, v, w). Then e is either (L1(w), l(L1(w)))

or (R1(w), l(R1(w))). Furthermore, high(u) = high(v), M(w) ̸= M(B(w) \ {e}), w is an
ancestor of high(v), low(v) < w and w ≤ low(u). Finally, if u′ is a vertex such that
u ≥ u′ ≥ v and high(u′) = high(v), then u′ is an ancestor of u.

344

Proof. Since (u, v, w) induces a Type-3βii-2 4-cut, we have that B(v) = B(u)⊔ (B(w)\
{e}), M(v) = M(B(w) \ {e}), e ∈ B(w) and e /∈ B(v) ∪ B(u). Let us suppose, for
the sake of contradiction, that both (L1(w), l(L1(w))) and (R1(w), l(R1(w))) are back-
edges in B(v). Then nca(L1(w), R1(w)) is a descendant of M(v), which means that
M(w) is a descendant of M(v). Since M(w) is an ancestor of M(B(w) \ {e}) and
M(B(w) \ {e}) = M(v), we have that M(w) is an ancestor of M(v). Thus we have
that M(w) = M(v). Since w is an ancestor of v, this implies that B(w) ⊆ B(v),
which implies that e ∈ B(v), a contradiction. Thus we have that at least one of
(L1(w), l(L1(w))) and (R1(w), l(R1(w))) is not in B(v). Due to B(v) = B(u) ⊔ (B(w) \
{e}), we have that e is the only back-edge in B(w) that cannot be in B(v), and
therefore this coincides with either (L1(w), l(L1(w))) or (R1(w), l(R1(w))). Observe
that in the argument that we used we arrived at a contradiction from M(w) = M(v).
Thus, M(w) ̸= M(v), and therefore M(w) ̸= M(B(w) \ {e}).

Now let (x, y) be a back-edge in B(u). Then B(v) = B(u) ⊔ (B(w) \ {e}) implies
that (x, y) ∈ B(v), and therefore y ≤ high(v). Due to the generality of (x, y) ∈ B(u),
this shows that high(u) ≤ high(v). Now let us suppose, for the sake of contradiction,
that there is a back-edge (x, y) in B(v) such that y > high(u). This implies that
(x, y) /∈ B(u). Thus, B(v) = B(u) ⊔ (B(w) \ {e}) implies that (x, y) ∈ B(w), which
implies that y < w. Then y > high(u) implies that high(u) < w. Now let (x′, y′) be a
back-edge in B(u). Then x′ is a descendant of u, and therefore a descendant of v, and
therefore a descendant of w. Furthermore, we have y′ ≤ high(u) < w. Since (x′, y′) is a
back-edge, we have that x′ is a descendant of y′. Thus, x′ is a common descendant of
y′ and w, and therefore y′ and w are related as ancestor and descendant, and therefore
y′ < w implies that y′ is a proper ancestor of w. This shows that (x′, y′) ∈ B(w), which
is impossible, since B(u)∩B(w) = ∅. Thus we have that every back-edge (x, y) ∈ B(v)

has y ≤ high(u), and therefore high(v) ≤ high(u). This shows that high(u) = high(v).
Since both w and high(v) are ancestors of v, we have that w and high(v) are related

as ancestor and descendant. Now let us suppose, for the sake of contradiction, that
w is a proper descendant of high(v). Let (x, y) be a back-edge in B(u) such that
y = high(u). Then, since high(u) = high(v), we have that y = high(v), and therefore
y is a proper ancestor of w. Furthermore, x is a descendant of u, and therefore a
descendant of w. Thus we have (x, y) ∈ B(w), contradicting B(u) ∩ B(w) = ∅. This
shows that w is an ancestor of high(v).

Since u is a descendant of w such that B(u)∩B(w) = ∅, we have that low(u) ≥ w.

345

Since B(w) \ {e} is not empty, B(v) = B(u) ⊔ (B(w) \ {e}) implies that there is a
back-edge (x, y) ∈ B(v) ∩ B(w), and therefore y < w, and therefore low(v) < w.

Now let u′ be a vertex such that u ≥ u′ ≥ v and high(u′) = high(v). Since u is a
descendant of v and u ≥ u′ ≥ v, we have that u′ is also a descendant of v. Furthermore,
since u ≥ u′, we have that either u′ is an ancestor of u, or it is not related as ancestor
and descendant with u. Now let us suppose, for the sake of contradiction, that u′ is
not an ancestor of u. Then u′ is not related as ancestor and descendant with u. Let
(x, y) be a back-edge in B(u′) with y = high(u′). Then x is a descendant of u′, and
therefore a descendant of v. Thus, y = high(u′) = high(v) implies that (x, y) is in B(v).
Since u′ is not related as ancestor and descendant with u, we have that x is not a
descendant of u. Thus, (x, y) /∈ B(u). Now B(v) = B(u) ⊔ (B(w) \ {e}) implies that
(x, y) ∈ B(w) \ {e}, and therefore y is a proper ancestor of w. But y = high(v) and
high(v) is a descendant of w, a contradiction. This shows that u′ is an ancestor of
u.

According to Lemma 5.79, if a triple of vertices (u, v, w) induces a Type-3βii-2 4-
cut, then the back-edge e of this 4-cut is either (L1(w), l(L1(w))) or (R1(w), l(R1(w))).
In the following we will show how to handle the case where e = (L1(w), l(L1(w))).
To be specific, we will provide an algorithm that computes a collection of Type-
3βii-2 4-cuts of the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where e = (L1(w), l(L1(w))),
so that all 4-cuts of this form are implied from this collection, plus that returned
by Algorithm 24. The algorithms, the propositions and the arguments for the case
e = (R1(w), l(R1(w))) are similar. Thus, in this section, for every triple (u, v, w) that
we consider that induces a Type-3βii-2 4-cut, we assume that e = eL(w).

For convenience, we distinguish two cases of Type-3βii-2 4-cuts. First, we have the
case where L1(w) is not a descendant of high(v). In this case, we compute only a sub-
collection of the 4-cuts, which, together with the collection of Type-2ii 4-cuts returned
by Algorithm 24, implies all the Type-3βii-2 4-cuts of this type (see Proposition 5.26).
Then we have the case where L1(w) is a descendant of high(v). In this case we can
compute all those Type-3βii-2 4-cuts in linear time explicitly (see Proposition 5.27).

The case where L1(w) is not a descendant of high(v)

Let (u, v, w) be a triple of vertices that induces a Type-3βii-2 4-cut, and let e be

346

the back-edge of this 4-cut. Then we have e ∈ B(w) and M(B(w) \ {e}) = M(v).
Furthermore, by Lemma 5.79 we have that M(w) ̸= M(B(w) \ {e}). Now, for every
vertex v ̸= r, let W (v) be the collection of all vertices w ̸= r such that: (1) M(B(w) \
{eL(w)}) ̸= M(w), (2) M(B(w) \ {eL(w)}) = M(v), and (3) L1(w) is not a descendant
of high(v). In particular, if W (v) ̸= ∅, then we define firstW(v) = max(W (v)) and
lastW(v) = min(W (v)).

Lemma 5.80. Let v and w be two vertices such that w ∈ W (v). Then w is a proper
ancestor of high(v).

Proof. Since w ∈ W (v), we have that M(B(w)\{eL(w)}) = M(v). Since the graph is 3-
edge-connected, there is a back-edge (x, y) ∈ B(w) \ {eL(w)}. Thus, x is a descendant
of M(B(w) \ {eL(w)}) = M(v), and therefore a descendant of v, and therefore a
descendant of high(v). Since (x, y) ∈ B(w), we have that x is a descendant of w. Thus,
x is a common descendant of high(v) and w, and therefore high(v) and w are related
as ancestor and descendant.

Now let us suppose, for the sake of contradiction, that w is not a proper ancestor
of high(v). Thus, we have that w is a descendant of high(v). Then, since L1(w) is a
descendant of w, we have that L1(w) is a descendant of high(v), in contradiction to
the fact that w ∈ W (v). This shows that w is a proper ancestor of high(v).

We will show how to compute the values firstW(v) and lastW(v), for all vertices v.
With those values we can determine in constant time whether W (v) ̸= ∅, for a vertex
v, by simply checking whether firstW(v) ̸= ⊥. First, for every vertex x, we let W0(x)

denote the list of all vertices w ̸= r with M(w) ̸= M(B(w) \ {eL(w)}) = x, sorted in
decreasing order. Notice that, for every vertex v ̸= r, we have W (v) ⊆ W0(M(v)). Now
we have the following.

Lemma 5.81. Let v be a vertex such that W (v) ̸= ∅. Then lastW(v) is the last entry in
W0(M(v)).

Proof. Let w = lastW(v), and let w′ be the last entry in W0(M(v)). Thus, we have
w′ ≤ w. Let us suppose, for the sake of contradiction, that w′ ̸= w. Since w = lastW(v),
we have that w is the lowest vertex in W0(M(v)) such that L1(w) is not a descendant
of high(v). Thus, since w′ ̸= w, we have that L1(w

′) is a descendant of high(v). Since
w ∈ W0(M(v)), we have that M(v) = M(B(w) \ {eL(w)}) ̸= M(w). Thus, eL(w) is
the only back-edge in B(w) whose higher endpoint (i.e., L1(w)) is not a descendant

347

of M(v). Similarly, since w′ ∈ W0(M(v)), we have that eL(w′) is the only back-edge
in B(w′) whose higher endpoint (i.e., L1(w

′)) is not a descendant of M(v). Notice
that M(B(w) \ {eL(w)}) = M(B(w′) \ {eL(w′)}) = M(v). This implies that M(v) is a
common descendant of w and w′, and therefore w and w′ are related as ancestor and
descendant. Thus, w′ ≤ w implies that w′ is an ancestor of w.

Since w = lastW(v), by Lemma 5.80 we have that w is a proper ancestor of
high(v). Now let (x, y) = eL(w

′). This implies that x = L1(w
′). Then we have that

x is a descendant of high(v), and therefore a descendant of w. Furthermore, y is a
proper ancestor of w′, and therefore a proper ancestor of w. This shows that (x, y) ∈
B(w). Since (x, y) = eL(w

′), we have that x is not a descendant of M(v). Thus, since
(x, y) is a back-edge in B(w) such that x is not a descendant of M(v), we have that
(x, y) = eL(w). But this contradicts the fact that L1(w) is not a descendant of high(v).
We conclude that w′ = w.

Lemma 5.82. Let v and v′ be two vertices with M(v′) = M(v) such that v′ is a proper
ancestor of v. Suppose that firstW(v′) ̸= ⊥. Then firstW(v) ̸= ⊥, and firstW(v′) ≤
firstW(v).

Proof. Let w = firstW(v′). Then we have that M(w) ̸= M(B(w) \ {eL(w)}) = M(v′)

and L1(w) is not a descendant of high(v′). Since v′ ̸= v and the graph is 3-edge-
connected, we have that B(v) ̸= B(v′). Thus, since v is a proper descendant of v′ with
M(v) = M(v′), Lemma 3.6 implies that v′ is an ancestor of high(v). Since high(v′) is a
proper ancestor of v′, this implies that high(v′) is a proper ancestor of high(v). Thus,
since L1(w) is not a descendant of high(v′), we have that L1(w) is not a descendant of
high(v). This shows that w ∈ W (v), and therefore firstW(v) ̸= ⊥ and firstW(v) ≥ w.

Using the information provided by Lemmata 5.81 and 5.82, we can provide an
efficient algorithm for computing the values firstW(v) and lastW(v), for all vertices v.
First, for every vertex x, we collect all vertices w ̸= r such that M(w) ̸= M(B(w) \
{eL(w)}) = x into a list W0(x), and we have W0(x) sorted in decreasing order. The
computation of the values M(B(w) \ {eL(w)}), for all w ̸= r, takes linear time in total,
according to Proposition 3.6. Then, the construction of the listsW0(x) takes O(n) time
in total, using bucket-sort. Now, for every vertex v ̸= r, it is sufficient to check the last
entry w in W0(M(v)) in order to see if w = lastW(v), according to Lemma 5.81. Since
M(w) ̸= M(B(w) \ {eL(w)}) = M(v), we have that w ∈ W (v) if and only if L1(w) is
not a descendant of high(v). So this can be easily checked in constant time.

348

In order to compute the values firstW, we traverse the lists M−1(x) and W0(x)

simultaneously, for every vertex x. To be specific, let v ̸= r be a vertex. Then, if w =

firstW(v) exists, we have that w ∈ W0(M(v)). (Notice that v itself lies in M−1(M(v)).)
Then, by Lemma 5.80 we have that w is a proper ancestor of high(v), and therefore a
proper ancestor of v. Thus, it is sufficient to reach the greatest w′ in W0(M(v)) that is
a proper ancestor of v. Then, as long as w′ does not satisfy the property that L1(w

′)

is not a descendant of high(v), we keep traversing the list W0(M(v)). Eventually we
will reach w. Now, if there is a proper ancestor v′ of v with M(v′) = M(v) such that
firstW(v′) ̸= ⊥, then by Lemma 5.82 we have that firstW(v′) ≤ firstW(v). Thus, it
is sufficient to pick up the search for firstW(v′) in W0(M(v′)) from the last entry in
W0(M(v′)) that we accessed. This procedure for computing the values firstW(v) and
lastW(v), for all vertices v, is shown in Algorithm 39. Our result is summarized in
Lemma 5.83.

Lemma 5.83. Algorithm 39 correctly computes the values firstW(v) and lastW(v), for all
vertices v, in total linear time. If for a vertex v we have W (v) = ∅, then firstW(v) = ⊥.

Recall that, for every vertex x, we let H(x) denote the list of all vertices v ̸= r such
that high(v) = x, sorted in decreasing order. Then, for every vertex v ̸= r, we let S(v)
denote the segment of H(high(v)) that contains v and is maximal w.r.t. the property
that its elements are related as ancestor and descendant. Furthermore, we let U(v)

denote the subsegment of S(v) that contains all the proper descendants of v. Now,
for every vertex v such that W (v) ̸= ∅, we let U2(v) be the collection of all u ∈ U(v)

such that: either (1) firstW(v) > low(u) ≥ lastW(v), or (2) u is the lowest vertex in
U(v) such that low(u) ≥ firstW(v).

Lemma 5.84. Let (u, v, w) be a triple of vertices that induces a Type-3βii-2 4-cut, where
L1(w) is not a descendant of high(v). Then u ∈ U2(v) and w ∈ W (v).

Proof. Let e be the back-edge in the 4-cut induced by (u, v, w). Due to our assumption
in this subsection, we have that e = eL(w). Furthermore, we have M(B(w) \ {e}) =
M(v), and Lemma 5.79 implies that M(w) ̸= M(B(w) \ {e}). Thus, since L1(w) is not
a descendant of high(v), w satisfies all the conditions to be in W (v).

Since (u, v, w) induces a Type-3βii-2 4-cut, Lemma 5.79 implies that high(u) =

high(v). In other words, we have u ∈ H(high(v)). Now let u′ be a vertex such that
u ≥ u′ ≥ v and u′ ∈ H(high(v)). This means that we have high(u′) = high(v), and

349

Algorithm 39: Compute the values firstW(v) and lastW(v), for all vertices
v ̸= r

1 foreach vertex w ̸= r do
2 compute the value M(B(w) \ {eL(w)})
3 end
4 foreach vertex x do
5 let W0(x) be the list of all vertices w ̸= r with

M(w) ̸= M(B(w) \ {eL(w)}) = x, sorted in decreasing order
6 let M−1(x) be the list of all vertices v ̸= r with M(v) = x, sorted in

decreasing order

7 end
8 foreach vertex v do
9 let firstW(v)← ⊥ and lastW(v)← ⊥

10 end
11 foreach vertex v ̸= r do
12 let w be the last entry in W0(M(v))

13 if L1(w) is not a descendant of high(v) then
14 set lastW(v)← w

15 end

16 end
17 foreach vertex x do
18 let v be the first entry in M−1(x)

19 let w be the first entry in W0(x)

20 while v ̸= ⊥ do
21 while w ̸= ⊥ and w ≥ v do
22 w ← nextW0(x)(w)

23 end
24 while w ̸= ⊥ and L1(w) is a descendant of high(v) do
25 w ← nextW0(x)(w)

26 end
27 if w ̸= ⊥ then
28 set firstW(v)← w

29 end
30 v ← nextM(v)

31 end

32 end
350

therefore Lemma 5.79 implies that u′ is an ancestor of u. This shows that u ∈ S(v).
Since u is a proper descendant of v, this implies that u ∈ U(v).

Since w ∈ W (v), we have that w ≥ lastW(v). By Lemma 5.79 we have w ≤
low(u). Thus, w ≥ lastW(v) implies that low(u) ≥ lastW(v). If low(u) < firstW(v),
then by definition we have u ∈ U2(v), and the proof is complete. Otherwise, we have
low(u) ≥ firstW(v). Let us suppose, for the sake of contradiction, that there is a vertex
u′ ∈ U(v) that is lower than u and satisfies low(u′) ≥ firstW(v). Since u′ ∈ U(v),
we have that u′ is a proper descendant of v, and so we have u′ > v. Furthermore,
since u′ ∈ U(v), we have that high(u′) = high(v). Then, since high(u′) = high(v) and
u > u′ > v, by Lemma 5.79 we have that u′ is an ancestor of u. Thus, since high(u′) =

high(v) = high(u), by Lemma 3.3 we have that B(u) ⊆ B(u′). Since the graph is 3-
edge-connected, this can be strengthened to B(u) ⊂ B(u′). Thus, there is a back-edge
(x, y) ∈ B(u′) \ B(u). Then x is a descendant of u′, and therefore a descendant of
v. Furthermore, y is an ancestor of high(u′) = high(v), and therefore it is a proper
ancestor of v. This shows that (x, y) ∈ B(v). Then, since (u, v, w) induces a Type-
3βii-2 4-cut, we have that B(v) = B(u)⊔ (B(w)\{e}). Since (x, y) /∈ B(u), this implies
that (x, y) ∈ B(w) \ {e}. Since w ∈ W (v), we have that w ≤ firstW(v). But we have
supposed that low(u′) ≥ firstW(v). This implies that low(u′) ≥ w, which implies that
y ≥ w (since (x, y) ∈ B(u′), and therefore low(u′) ≤ y). This means that y cannot be
a proper ancestor of w, in contradiction to the fact that (x, y) ∈ B(w). This shows
that u is the lowest vertex in U(v) that has low(u) ≥ firstW(v). Thus, by definition, we
have u ∈ U2(v).

Lemma 5.85. Let (u, v, w) be a triple of vertices that induces a Type-3βii-2 4-cut, where
L1(w) is not a descendant of high(v). Let w′ be the greatest vertex in W (v) that has
w′ ≤ low(u). Then (u, v, w′) also induces a Type-3βii-2 4-cut. Furthermore, if w′ ̸= w,
then B(w) ⊔ {eL(w′)} = B(w′) ⊔ {eL(w)}.

Proof. By the assumption throughout this subsection, we have that the back-edge in
the 4-cut induced by (u, v, w) is e = eL(w). By Lemma 5.84 we have that w ∈ W (v),
and by Lemma 5.79 we have that w ≤ low(u). Thus, we may consider the greatest
vertex w′ inW (v) that has w′ ≤ low(u). We will assume that w′ ̸= w, because otherwise
there is nothing to show.

Let (x, y) be a back-edge in B(w′) \ {eL(w′)}. Since w′ ∈ W (v), we have M(B(w′) \
{eL(w′)}) = M(v). This implies that x is a descendant of M(v). Furthermore, since

351

w′ ∈ W (v), by Lemma 5.80 we have that w′ is a proper ancestor of high(v), and
therefore a proper ancestor of v. This implies that y is a proper ancestor of v. Thus
we have that (x, y) ∈ B(v). Since w′ ≤ low(u), we have that B(u) ∩ B(w′) = ∅. Thus,
we have that (x, y) /∈ B(u), and therefore B(v) = B(u) ⊔ (B(w) \ {e}) implies that
(x, y) ∈ B(w) \ {e}. Due to the generality of (x, y) ∈ B(w′) \ {eL(w′)}, this shows that
B(w′) \ {eL(w′)} ⊆ B(w) \ {eL(w)}. Conversely, let (x, y) be a back-edge in B(w) \ {e}.
Since w ∈ W (v), we have that M(B(w) \ {e}) = M(v). This implies that x is a
descendant of M(v), and therefore a descendant of v, and therefore a descendant of
high(v). Since w′ ∈ W (v), by Lemma 5.80 we have that w′ is a proper ancestor of
high(v). Thus, we have that x is a descendant of w′. Since w and w′ are both in W (v),
Lemma 5.80 implies that they are both proper ancestors of high(v). Thus, w and w′ are
related as ancestor and descendant. Due to the maximality of w′, we have that w′ > w,
and therefore w′ is a proper descendant of w. Then, since (x, y) ∈ B(w), we have that y
is a proper ancestor of w, and therefore a proper ancestor of w′. Since x is a descendant
of w′, this shows that (x, y) ∈ B(w′). Since w′ ∈ W (v), we have that the higher endpoint
of eL(w′) is not a descendant of high(v). Thus, since x is a descendant of high(v), we
have that (x, y) ̸= eL(w

′), and therefore (x, y) ∈ B(w′)\{eL(w′)}. Thus we have shown
that B(w′) \ {eL(w′)} = B(w) \ {e}. This implies that B(v) = B(u) ⊔ (B(w) \ {e}) is
equivalent to B(v) = B(u)⊔(B(w′)\{eL(w′)}), and therefore, by Lemma 5.57, (u, v, w′)

induces a 4-cut. By definition, this is a Type-3βii-2 4-cut.
Let us suppose, for the sake of contradiction, that eL(w′) = eL(w). Then, since

B(w′) \ {eL(w′)} = B(w) \ {e}, we have that B(w′) = B(w), in contradiction to the
fact that the graph is 3-edge-connected. Thus, we have eL(w

′) ̸= eL(w). Therefore,
B(w′) \ {eL(w′)} = B(w) \ {e} implies that B(w) ⊔ {eL(w′)} = B(w′) ⊔ {eL(w)}.

Lemma 5.86. Let v and v′ be two vertices with W (v) ̸= ∅ and W (v′) ̸= ∅ such that v is
a proper ancestor of v′ and high(v) = high(v′). Then lastW(v) > firstW(v′).

Proof. Let w and w′ be two vertices such that w ∈ W (v) and w′ ∈ W (v′). Then it
is sufficient to show that w > w′ (because lastW(v) = min(W (v)) and firstW(v′) =

max(W (v′))). So let us suppose, for the sake of contradiction, that w ≤ w′. Since v is
a proper ancestor of v′ with high(v) = high(v′), Lemma 3.3 implies that B(v′) ⊆ B(v).
This implies that M(v′) is a descendant of M(v). But we cannot have that M(v′) =

M(v), because the graph is 3-edge-connected (and otherwise, high(v) = high(v′) would
imply B(v) = B(v′), by Lemma 3.7). Thus, M(v′) is a proper descendant of M(v).

352

Notice that we cannot have w = w′, because w ∈ W (v) and w′ ∈ W (v′) imply that
M(B(w)\{eL(w)}) = M(v) and M(B(w′)\{eL(w′)}) = M(v′) (and we showed that we
cannot have M(v) = M(v′)). Thus, we have w < w′. Since w ∈ W (v), by Lemma 5.80
we have that w is an ancestor of high(v), and therefore a proper ancestor of v, and
therefore a proper ancestor of v′. And since w′ ∈ W (v′), by Lemma 5.80 we have
that w′ is an ancestor of high(v′), and therefore a proper ancestor of v′. Thus, v′ is a
common descendant of w and w′, and therefore w and w′ are related as ancestor and
descendant. Thus, w < w′ implies that w is a proper ancestor of w′.

Since w ∈ W (v), we have that M(B(w) \ {eL(w)}) = M(v). Let us suppose, for the
sake of contradiction, that all back-edges in B(w)\{eL(w)} have their higher endpoint
in T (M(v′)). (We note that B(w) \ {eL(w)} is not empty, since the graph is 3-edge-
connected.) Then we have that M(v′) is an ancestor of M(B(w) \ {eL(w)}) = M(v),
contradicting the fact that M(v′) is a proper descendant of M(v). This shows that
there is at least one back-edge (x, y) ∈ B(w)\{eL(w)} such that x is not a descendant
of M(v′). Since M(B(w) \ {eL(w)}) = M(v), we have that x is a descendant of M(v).
Therefore, x is a descendant of v, and therefore a descendant of high(v) = high(v′).
Thus, it cannot be the case that (x, y) = eL(w

′) (because w′ ∈ W (v′) implies that
L1(w

′) is not a descendant of high(v′)). Now, since x is a descendant of high(v′), and
high(v′) is a descendant of w′ (by Lemma 5.80), we have that x is a descendant of
w′. Furthermore, y is a proper ancestor of w, and therefore a proper ancestor of w′.
This shows that (x, y) ∈ B(w′). But since (x, y) ̸= eL(w

′), we have that (x, y) ∈ B(w′)\
{eL(w′)}. Thus, since w′ ∈ W (v′), we have that M(B(w′) \ {eL(w′)}) = M(v′), and
therefore x is a descendant of M(v′), contradicting the fact that x is not a descendant
ofM(v′). We conclude that w > w′. Due to the generality of w ∈ W (v) and w′ ∈ W (v′),
this implies that lastW(v) > firstW(v′).

Lemma 5.87. Let v and v′ be two vertices with W (v) ̸= ∅ and W (v′) ̸= ∅ such that v′ is
a proper descendant of v. Suppose that v and v′ belong to the same segment S of H(high(v))
that is maximal w.r.t. the property that its elements are related as ancestor and descendant.
If U2(v

′) = ∅, then U2(v) = ∅. If U2(v) ̸= ∅, then the lowest vertex in U2(v) is at least as
great as the greatest vertex in U2(v

′).

Proof. Let us suppose, for the sake of contradiction, that there is a vertex u ∈ U2(v),
but U2(v

′) is empty. Since u ∈ U2(v) we have that u ∈ S, and therefore u is related
as ancestor and descendant with v′. Let us suppose, for the sake of contradiction,

353

that u is an ancestor of v′. Since W (v′) ̸= ∅, there is a vertex w ∈ W (v′). This implies
that M(B(w) \ {eL(w)}) = M(v′). Since the graph is 3-edge-connected, we have that
|B(w)| > 1. Thus, there is a back-edge (x, y) ∈ B(w) \ {eL(w)}. Then we have that
x is a descendant of M(B(w) \ {eL(w)}), and therefore a descendant of M(v′), and
therefore a descendant of v′, and therefore a descendant of u. Furthermore, we have
that y is a proper ancestor of w. Since w ∈ W (v′), by Lemma 5.80 we have that w
is an ancestor of high(v′) = high(v). Since u ∈ U2(v), we have that high(u) = high(v).
Thus, we have that y is a proper ancestor of w, which is an ancestor of high(u), which
is a proper ancestor of u. Since x is a descendant of u, this shows that (x, y) ∈ B(u).
Therefore, low(u) ≤ y. Since (x, y) ∈ B(w), we have that y is a proper ancestor of w, and
therefore y < w. Thus, low(u) ≤ y implies that low(u) < w. Now, Lemma 5.86 implies
that firstW(v′) < lastW(v). Thus, since w ≤ firstW(v′), we have that w < lastW(v).
But then low(u) < w implies that low(u) < lastW(v), in contradiction to u ∈ U2(v).
Thus, our last supposition cannot be true, and therefore we have that u is a proper
descendant of v′.

Now let us gather the information we have concerning u. We know that u is a
proper descendant of v′, and it belongs to S. Furthermore, since u ∈ U2(v) we have
that low(u) ≥ lastW(v), and by Lemma 5.86 we have that lastW(v) > firstW(v′). This
implies that low(u) ≥ firstW(v′). Thus, we can consider the lowest proper descen-
dant u′ of v′ in S that has low(u′) ≥ firstW(v′), and so U2(v

′) cannot be empty. A
contradiction. Thus, we have shown that U2(v

′) = ∅ implies that U2(v) = ∅.
Now let us assume that U2(v) ̸= ∅. This implies that U2(v

′) ̸= ∅. Let u be any
vertex in U2(v), and let u′ be any vertex in U2(v

′). Let us suppose, for the sake of
contradiction, that u < u′. Since u ∈ U2(v), we have that u ∈ S. And since u′ ∈ U2(v

′),
we have that u′ ∈ S. Thus, u and u′ are related as ancestor and descendant. Therefore,
u < u′ implies that u is a proper ancestor of u′. Since u′ ∈ U2(v

′), we have that
either low(u′) < firstW(v′), or u′ is the lowest proper descendant of v′ in S such that
low(u′) ≥ firstW(v′).

Let us suppose, first, that low(u′) < firstW(v′). Since u is an ancestor of u′ with
high(u) = high(u′) (since u and u′ are in S), by Lemma 3.3 we have that B(u′) ⊆ B(u).
This implies that low(u) ≤ low(u′). Therefore, low(u′) < firstW(v′) implies that
low(u) < firstW(v′). Lemma 5.86 implies that firstW(v′) < lastW(v). Therefore, we
have low(u) < lastW(v), in contradiction to the fact that u ∈ U2(v). Thus, our last
supposition cannot be true, and therefore we have that u′ is the lowest proper de-

354

scendant of v′ in S such that low(u′) ≥ firstW(v′). Now, since u ∈ U2(v), we can argue
as above in order to establish that u is a proper descendant of v′ (the argument above
did not make use of the assumption U2(v

′) = ∅, and so it can be applied here too).
But then, since u is a proper descendant of v′ in S such that u < u′, the minimality of
u′ implies that low(u) < firstW(v′), and so we can arrive again at low(u) < lastW(v), in
contradiction to u ∈ U2(v). This shows that u ≥ u′. Due to the generality of u ∈ U2(v),
this implies that the lowest vertex in U2(v) is at least as great as u′. And due to the
generality of u′ ∈ U2(v

′), this implies that the lowest vertex in U2(v) is at least as great
as the greatest vertex in U2(v

′).

Based on Lemma 5.87, we can provide an efficient algorithm for computing the
sets U2(v), for all vertices v ≠ r such that W (v) ̸= ∅. The computation takes place on
segments of H(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant. Specifically, let v ̸= r be a vertex such that W (v) ̸= ∅.
Then we have that U2(v) ⊂ S(v). In other words, U2(v) is a subset of the segment
of H(high(v)) that contains v and is maximal w.r.t. the property that its elements are
related as ancestor and descendant. So let z1, . . . , zk be the vertices of S(v), sorted in
decreasing order. Then, we have that v = zi, for an i ∈ {1, . . . , k}. By definition, U2(v)

contains every vertex u in {z1, . . . , zi−1} such that either firstW(v) > low(u) ≥ lastW(v),
or u is the lowest vertex in this set such that low(u) ≥ firstW(v). As an implication of
Lemma 3.5, we have that the vertices in {z1, . . . , zi−1} are sorted in decreasing order
w.r.t. their low point. Thus, it is sufficient to process the vertices from {z1, . . . , zi−1} in
reverse order, in order to find the first vertex u that has low(u) ≥ lastW(v). Then, we
keep traversing this set in reverse order, and, as long as the low point of every vertex
u that we meet is lower than firstW(v), we insert u into U2(v). Then, once we reach
a vertex with low point no lower than firstW(v), we also insert it into U2(v), and we
are done.

Now, if there is a proper ancestor v′ of v in S(v) such that high(v′) = high(v), then
we have that S(v) = S(v′). If W (v′) ̸= ∅, then we have that U2(v

′) is defined. Then
we can follow the same process as above in order to compute U2(v

′). Furthermore,
according to Lemma 5.87, it is sufficient to start from the greatest element of U2(v)

(i.e., the one that was inserted last into U2(v)). In particular, if U2(v) = ∅, then it
is certain that U2(v

′) = ∅, and therefore we are done. Otherwise, we just pick up
the computation from the greatest vertex in U2(v). In order to perform efficiently

355

those computations, first we compute, for every vertex x, the collection S(x) of the
segments of H(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant. For every vertex x, this computation takes O(|H(x)|) time
using Algorithm 10, according to Lemma 3.22. Since every vertex ̸= r participates
in exactly one set of the form H(x), we have that the total size of all S(x), for all
vertices x, is O(n). Then it is sufficient to process separately all segments of S(x), for
every vertex x, as described above, by starting the computation each time from the
first vertex v of the segment that satisfies W (v) ̸= ∅. The whole procedure is shown
in Algorithm 40. The result is formally stated in Lemma 5.88.

Lemma 5.88. Algorithm 40 correctly computes the sets U2(v), for all vertices v ̸= r such
that W (v) ̸= ∅. Furthermore, it runs in linear time.

Proof. The idea behind Algorithm 40 and its correctness has been discussed in the
main text above. It is easy to see that Algorithm 40 runs in O(n) time, provided that
we have computed the vertices firstW(v) and lastW(v) for every vertex v (if they exist).
This can be achieved in linear time according to Lemma 5.83. Thus, Algorithm 40
has a linear-time implementation.

Lemma 5.89. Let u, v, w be three vertices such that u ∈ U2(v), w ∈ W (v), w ≤ low(u),
and bcount(v) = bcount(u) + bcount(w) − 1. Then, eL(w) /∈ B(u) ∪ B(v), and B(v) =

B(u) ⊔ (B(w) \ {eL(w)}).

Proof. Since u ∈ U2(v) we have that u is a proper descendant of v with high(u) =

high(v). Thus, Lemma 3.3 implies that B(u) ⊆ B(v). Since w ∈ W (v), we have that
M(B(w) \ {eL(w)}) = M(v). Now let (x, y) be a back-edge in B(w) \ {eL(w)}. Then, x
is a descendant of M(B(w) \ {eL(w)}) = M(v). Furthermore, y is a proper ancestor
of w. Since w ∈ W (v), by Lemma 5.80 we have that w is an ancestor of high(v).
This implies that y is a proper ancestor of high(v), and therefore a proper ancestor
of v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(w) \ {eL(w)},
this implies that B(w) \ {eL(w)} ⊆ B(v). Let (x, y) be a back-edge in B(u). Then
low(u) ≤ y, and therefore w ≤ low(u) implies that w ≤ y. Thus, y cannot be a proper
ancestor of w, and therefore (x, y) /∈ B(w). Due to the generality of (x, y) ∈ B(u),
this shows that B(u) ∩ B(w) = ∅. Now, since B(u) ⊆ B(v) and B(w) \ {eL(w)} ⊆
B(v) and B(u) ∩ B(w) = ∅ and bcount(v) = bcount(u) + bcount(w) − 1, we have that
B(v) = B(u) ⊔ (B(w) \ {eL(w)}). Furthermore, since B(u) ∩ B(w) = ∅, we have that

356

Algorithm 40: Compute the sets U2(v), for all vertices v such that W (v) ̸= ∅

1 let V be the collection of all vertices v such that W (v) ̸= ∅
2 foreach vertex x do
3 compute the collection S(x) of the segments of H(x) that are maximal

w.r.t. the property that their elements are related as ancestor and
descendant

4 end
5 foreach v ∈ V do
6 set U2(v)← ∅
7 end
8 foreach vertex x do
9 foreach segment S ∈ S(x) do
10 let v be the first vertex in S

11 while v ̸= ⊥ and v /∈ V do
12 v ← nextS(v)
13 end
14 if v = ⊥ then continue
15 let u← prevS(v)
16 while v ̸= ⊥ do
17 while u ̸= ⊥ and low(u) < lastW(v) do
18 u← prevS(u)
19 end
20 while u ̸= ⊥ and low(u) < firstW(v) do
21 insert u into U2(v)

22 u← prevS(u)

23 end
24 if u ̸= ⊥ then
25 insert u into U2(v)

26 end
27 v ← nextS(v)
28 while v ̸= ⊥ and v /∈ V do
29 v ← nextS(v)
30 end

31 end

32 end

33 end
357

eL(w) /∈ B(u), and therefore B(v) = B(u)⊔(B(w)\{eL(w)}) implies that eL(w) /∈ B(v).
Thus, we have eL(w) /∈ B(u) ∪ B(v).

Let C3βii2 denote the collection of all Type-3βii-2 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(w)}, such that u is a descendant of v, v is a descen-
dant of w, and L1(w) is not a descendant of high(v). Now we are ready to describe
the algorithm for computing a collection C of enough 4-cuts in C3βii2, so that all 4-cuts
in C3βii2 are implied from this collection, plus that computed by Algorithm 24. So let
(u, v, w) be a triple of vertices that induces a 4-cut C ∈ C3βii2. Then, by Lemma 5.84 we
have that u ∈ U2(v) and w ∈ W (v), and by Lemma 5.79 we have that w ≤ low(u). Now
let w′ be the greatest vertex in W (v) that satisfies w′ ≤ low(u). Then, by Lemma 5.85
we have that (u, v, w′) also induces a 4-cut C ′ ∈ C3βii2. Furthermore, if w′ ̸= w, then
Lemma 5.85 implies that B(w) ⊔ {eL(w′)} = B(w′) ⊔ {eL(w)}. Thus, we have that C
is implied by C ′, plus some Type-2ii 4-cuts that are computed by Algorithm 24 (see
Proposition 5.26). Thus, it is sufficient to have computed, for every vertex v such
that W (v) ̸= ∅, and every u ∈ U2(v), the greatest proper ancestor w of v that satisfies
w ≤ low(u), and then check if the triple (u, v, w) induces a Type-3βii-2 4-cut. This
procedure is shown in Algorithm 41. Our result is summarized in Proposition 5.26.

Proposition 5.26. Algorithm 41 computes a collection of 4-cuts C ⊆ C3βii2, and it runs
in linear time. Furthermore, let C ′ be the collection of Type-2ii 4-cuts computed by Algo-
rithm 24. Then, every 4-cut in C3βii2 is implied by C ∪ C ′.

Proof. Let {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} be a 4-set that is marked in Line 14.
This implies that w ∈ W0(M(v)). Thus, we have that M(w) ̸= M(B(w) \ {eL(w)}) =
M(v). Furthermore, since the condition in Line 13 is satisfied, we have that L1(w)

is not a descendant of high(v). This shows that w ∈ W (v). Then, we also have that
u ∈ U2(v), and w is a proper ancestor of v, w ≤ low(u) and bcount(v) = bcount(u) +
bcount(w)−1. Thus, Lemma 5.89 implies that eL(w) /∈ B(u)∪B(v) and B(v) = B(u)⊔
(B(w) \ {eL(w)}). In other words, we have that {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} is
a Type-3βii-2 4-cut. Thus, since L1(w) is not a descendant of high(v), we have that this
4-cut is in C3βii2. This shows that the collection C of 4-sets marked by Algorithm 41
is a collection of 4-cuts such that C ⊆ C3βii2.

According Proposition 3.6, we can compute the values M(B(w) \ {eL(w)}), for all
vertices w ̸= r, in total linear time. Thus, the for loop in Line 1 can be performed in
linear time. Then, the construction of the lists W0(x) in Line 4 can be performed in

358

Algorithm 41: Compute a collection of Type-3βii-2 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(w)}, where u is a descendant of v, v is a de-
scendant of w, and L1(w) is not a descendant of high(v), so that all Type-3βii-2
4-cuts of this form are implied from this collection, plus that of the Type-2ii
4-cuts returned by Algorithm 24

1 foreach vertex w ̸= r do
2 compute M(B(w) \ {eL(w)})

3 end
4 foreach vertex x do
5 let W0(x) be the list of all vertices w ̸= r such that

M(w) ̸= M(B(w) \ {eL(w)}) = x, sorted in decreasing order

6 end
7 foreach vertex v do
8 compute the set U2(v)

9 end
10 foreach vertex v such that U2(v) ̸= ∅ do
11 foreach u ∈ U2(v) do
12 let w be the greatest proper ancestor of v in W0(M(v)) such that

w ≤ low(u) and w ≤ firstW(v)

13 if bcount(v) = bcount(u) + bcount(w)− 1 and L1(w) is not a descendant of
high(v) then

14 mark {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} as a Type-3βii-2 4-cut

15 end

16 end

17 end

359

O(n) in total, for all vertices x, with bucket-sort. (Notice that all these lists are pairwise
disjoint.) The sets U2(v), for all vertices v such that W (v) ̸= ∅, can be computed in
linear time in total, according to Lemma 5.88. For the remaining vertices v, we let
U2(v) ← ∅. Thus, the for loop in Line 7 can be performed in linear time. It remains
to show how we can compute all w in Line 12. For this, we can use Algorithm 22.
More specifically, for every vertex v such that U2(v) ̸= ∅, and for every u ∈ U2(v),
we generate a query q(W0(M(v)),min{p(v), low(u), firstW(v)}). This is to return the
greatest w ∈ W0(M(v)) such that w ≤ p(v), w ≤ low(u) and w ≤ firstW(v). Since
w ∈ W0(M(v)), we have that M(B(w) \ {eL(w)}) = M(v), and therefore w is an
ancestor of M(v). Thus, M(v) is a common descendant of w and v, and therefore w

and v are related as ancestor and descendant. Thus, w ≤ p(v) implies that w is a proper
ancestor of v. Therefore, w is the greatest proper ancestor of v in W0(M(v)) such that
w ≤ low(u) and w ≤ firstW(v). Since the total size of the U2 sets is O(n), we can
answer all those queries in O(n) time using Algorithm 22 according to Lemma 5.27.
Thus, we can see that Algorithm 41 runs in linear time.

Now let (u, v, w) be a triple of vertices that induces a 4-cut C ∈ C3βii2. This means
that C is a Type-3βii-2 4-cut such that L1(w) is not a descendant of high(v). Therefore,
Lemma 5.84 implies that u ∈ U2(v) and w ∈ W (v). Furthermore, Lemma 5.79 implies
that w ≤ low(u). So let w′ be the greatest vertex in W (v) such that w′ ≤ low(u). Then,
Lemma 5.85 implies that (u, v, w′) induces a 4-cut C ′ ∈ C3βii2. This implies that
B(v) = B(u)⊔ (B(w′) \ {eL(w′)}), and therefore bcount(v) = bcount(u) + bcount(w′)− 1.
Since w′ ∈ W (v) we have w′ ∈ W0(M(v)) and w′ ≤ firstW(v).

In what follows, let w̃ = firstW(v). Now let w′′ be the greatest proper ancestor of
v in W0(M(v)) such that w′′ ≤ low(u) and w′′ ≤ w̃. We will show that w′ = w′′. By
Lemma 5.80 we have that w̃ is a proper ancestor of high(v). Since w̃ ∈ W0(M(v))

and w′′ ∈ W0(M(v)), we have that M(v) is a common descendant of w̃ and w′′, and
therefore w̃ and w′′ are related as ancestor and descendant. Thus, w′′ ≤ w̃ implies
that w′′ is an ancestor of w̃. Now let us suppose, for the sake of contradiction, that
w′′ /∈ W (v). Since w′′ ∈ W0(M(v)), this implies that L1(w

′′) is a descendant of high(v)
(because otherwise w′′ would satisfy all the conditions to be in W (v)). Since w′′ ∈
W0(M(v)), we have M(v) = M(B(w′′) \ {eL(w′′)}) ̸= M(w′′). Thus, eL(w′′) is the only
back-edge in B(w′′) whose higher endpoint is not a descendant of M(v). Similarly,
since w̃ ∈ W0(M(v)), we have that eL(w̃) is the only back-edge in B(w̃) whose higher
endpoint is not a descendant of M(v). Now let (x, y) = eL(w

′′). Then x = L1(w
′′) is a

360

descendant of high(v), and therefore a descendant of w̃. Furthermore, y is a proper
ancestor of w′′, and therefore a proper ancestor of w̃. This shows that (x, y) ∈ B(w̃).
But since the higher endpoint of (x, y) is not a descendant of M(v), we have that
(x, y) = eL(w̃), contradicting the fact that L1(w̃) is not a descendant of high(v) (which
is implied by w̃ ∈ W (v)). Thus, we have w′′ ∈ W (v), which is a strengthening of
the condition w′′ ∈ W0(M(v)). Thus, w′′ is the greatest vertex in W (v) such that
w′′ ≤ low(u), and so we have w′′ = w′.

Now, since w′ ∈ W (v), we have that L1(w
′) is not a descendant of high(v).

And since w′ = w′′, we have that w′ will be the value of the variable “w” when
we reach Line 12 during the processing of v and u. Thus, the 4-cut induced by
(u, v, w′) satisfies all the conditions to be marked in Line 14, and therefore we have
that C ′ ∈ C. If w′ = w, then we have that C = C ′, and thus it is trivially true
that C is implied by C. So let us assume that w′ ̸= w. Then, Lemma 5.85 im-
plies that B(w) ⊔ {eL(w′)} = B(w′) ⊔ {eL(w)}. Since both w and w′ are in W (v),
we have that M(B(w) \ {eL(w)}) = M(B(w′) \ {eL(w′)}) = M(v). Thus, M(v) is a
common descendant of w and w′. Therefore, since the maximality of w′ (w.r.t. to
w′ ≤ low(u) and w′ ∈ W (v)) implies that w′ > w, we have that w′ is a proper
descendant of w. Thus, since B(w) ⊔ {eL(w′)} = B(w′) ⊔ {eL(w)}, Lemma 5.28 im-
plies that C ′′ = {(w, p(w)), (w′, p(w′)), eL(w), eL(w

′)} is a Type-2ii 4-cut. Since C =

{(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} and C ′ = {(u, p(u)), (v, p(v)), (w′, p(w′)), eL(w
′)},

notice that C is implied by C ′ and C ′′ through the pair of edges {(w, p(w)), eL(w)}. Let
C ′ be the collection of Type-2ii 4-cuts computed by Algorithm 24. Then, by Proposi-
tion 5.12 we have that C ′′ is implied by C ′ through the pair of edges {(w, p(w)), eL(w)}.
Thus, by Lemma 5.7 we have that C is implied by C ∪ C ′.

The case where L1(w) is a descendant of high(v)

Lemma 5.90. Let (u, v, w) be a triple of vertices that induces a Type-3βii-2 4-cut, where
L1(w) is a descendant of high(v). Then w is the greatest ancestor of high(v) such that
M(w) ̸= M(B(w) \ {eL(w)}) = M(v) and w ≤ low(u).

Proof. Let e be the back-edge in the 4-cut induced by (u, v, w). By the assumption
we have made for the 4-cuts in this subsection, we have that e = eL(w). Then, by
Lemma 5.79 we have that w is an ancestor of high(v), M(w) ̸= M(B(w) \ {eL(w)}) =

361

M(v) and w ≤ low(u). Now let us suppose, for the sake of contradiction, that there is an
ancestor w′ of high(v) withM(w′) ̸= M(B(w′)\{eL(w′)}) = M(v) and w′ ≤ low(u), such
that w′ > w. Since w′ and w have high(v) as a common descendant, they are related
as ancestor and descendant. Thus, w′ > w implies that w′ is a proper descendant of
w.

Since L1(w) is a descendant of high(v), we have that the higher endpoint of eL(w)
is a descendant of high(v), and therefore a descendant of w′. Furthermore, the lower
endpoint of eL(w) is a proper ancestor of w, and therefore a proper ancestor of w′.
This shows that eL(w) ∈ B(w′). Since M(w) ̸= M(B(w) \ {eL(w)}) = M(v), we have
that eL(w) is the only back-edge in B(w) whose higher endpoint is not a descendant
of M(v). Similarly, since M(w′) ̸= M(B(w′) \ {eL(w′)}) = M(v), we have that eL(w′)

is the only back-edge in B(w′) whose higher endpoint is not a descendant of M(v).
Thus, since eL(w) ∈ B(w′), we have eL(w) = eL(w

′).
Since (u, v, w) induces a Type-3βii-2 4-cut, we have that B(v) = B(u) ⊔ (B(w) \

{eL(w)}). This implies that B(w)\{eL(w)} = B(v)\B(u). Now let (x, y) be a back-edge
in B(w). If (x, y) = eL(w), then (x, y) ∈ B(w′). Otherwise, B(w)\{eL(w)} = B(v)\B(u)

implies that (x, y) ∈ B(v). Therefore, x is a descendant of v, and therefore a descendant
of high(v), and therefore a descendant of w′. Furthermore, y is a proper ancestor of
w, and therefore a proper ancestor of w′. This shows that (x, y) ∈ B(w′). Conversely,
let (x, y) be a back-edge in B(w′). If (x, y) = eL(w

′), then (x, y) ∈ B(w). Otherwise,
M(B(w′) \ {eL(w′)}) = M(v) implies that x is a descendant of M(v), and therefore a
descendant of v. Furthermore, y is a proper ancestor of w′, and therefore a proper
ancestor of high(v), and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v).
Since w′ ≤ low(u), we have that B(u) ∩B(w′) = ∅ (because no back-edge in B(u) has
low enough lower endpoint in order to leap over w′). Thus, we have (x, y) /∈ B(u),
and therefore (x, y) ∈ B(v) \ B(u). Since B(w) \ {eL(w)} = B(v) \ B(u), this implies
that (x, y) ∈ B(w). Thus, we have that B(w′) = B(w), in contradiction to the fact that
the graph is 3-edge-connected. We conclude that w is the greatest ancestor of high(v)
such that M(w) ̸= M(B(w) \ {eL(w)}) = M(v) and w ≤ low(u).

Lemma 5.90 motivates the following definition. Let v be a vertex ̸= r. Then we
let W̃ (v) denote the collection of all vertices w such that w is an ancestor of high(v),
L1(w) is a descendant of high(v), and M(w) ̸= M(B(w) \ {eL(w)}) = M(v). Then,
Lemma 5.90 implies that, if there is a triple of vertices (u, v, w) that induces a Type-

362

3βii-2 4-cut such that L1(w) is a descendant of high(v), then w ∈ W̃ (v). Thus, the sets
W̃ (v) can guide us into the search for such 4-cuts.

Lemma 5.91. Let v and v′ be two distinct vertices ̸= r. Then W̃ (v) ∩ W̃ (v′) = ∅.

Proof. If M(v) ̸= M(v′), then obviously W̃ (v) ∩ W̃ (v′) = ∅. (Because every vertex
w ∈ W̃ (v) has M(B(w)\{eL(w)}) = M(v), and every vertex w′ ∈ W̃ (v′) has M(B(w′)\
{eL(w′)}) = M(v′).) Thus, we may assume that M(v) = M(v′).

Now let us suppose, for the sake of contradiction, that W̃ (v) ∩ W̃ (v′) ≠ ∅. Since
v ̸= v′, we may assume w.l.o.g. that v > v′. Therefore, since v and v′ have M(v) =

M(v′) as a common descendant, we have that v is a proper descendant of v′. Let w be
a vertex in W̃ (v) ∩ W̃ (v′). Then, since w ∈ W̃ (v), we have that L1(w) is a descendant
of high(v). Furthermore, since w ∈ W̃ (v′), we have that w is an ancestor of high(v′).
Notice that, since M(w) ̸= M(B(w) \ {eL(w)}) = M(v), we have that L1(w) (i.e., the
higher endpoint of eL(w)) is not a descendant of M(v). Since v′ is a proper ancestor
of v with M(v′) = M(v), by Lemma 3.2 we have that B(v′) ⊆ B(v).

Let us suppose, for the sake of contradiction, that high(v) is a proper ancestor of
v′. Let (x, y) be a back-edge in B(v). Then x is a descendant of v, and therefore a
descendant of v′. Furthermore, y is an ancestor of high(v), and therefore a proper
ancestor of v′. This shows that (x, y) ∈ B(v′). Due to the generality of (x, y) ∈ B(v),
this implies that B(v) ⊆ B(v′). Thus, B(v′) ⊆ B(v) implies that B(v) = B(v′), in
contradiction to the fact that the graph is 3-edge-connected. Thus, we have that
high(v) is not a proper ancestor of v′. Since high(v) is a proper ancestor of v, and
v′ is also an ancestor of v, we have that high(v) and v′ are related as ancestor and
descendant. Thus, since high(v) is not a proper ancestor of v′, we have that high(v) is
a descendant of v′.

Now, since L1(w) is a descendant of high(v), it is a descendant of v′. Furthermore,
since w is an ancestor of high(v′), we have that w is a proper ancestor of v′. Therefore,
the lower endpoint of eL(w) is a proper ancestor of v′ (since it is a proper ancestor of
w). This shows that eL(w) ∈ B(v′), and therefore L1(w) is a descendant of M(v′). But
L1(w) is not a descendant of M(v), in contradiction to the fact that M(v′) = M(v).
Thus, we conclude that W̃ (v) ∩ W̃ (v′) = ∅.

Lemma 5.92. For every vertex x, let L̃(x) be the list of all w such that M(w) ̸=
M(B(w) \ {eL(w)}) = x, sorted in decreasing order. Let v be a vertex such that M(v) = x

363

and W̃ (v) ̸= ∅. Let w = max(W̃ (v)). Then, w is the greatest vertex in L̃(x) such that
w ≤ high(v). Furthermore, W̃ (v) is a segment of L̃(x).

Proof. By definition of W̃ (v), we have that w = max(W̃ (v)) is an ancestor of high(v),
and therefore w ≤ high(v). Now let us suppose, for the sake of contradiction, that there
is a vertex w′ ∈ L̃(x) with w′ > w, such that w′ ≤ high(v). Since M(B(w′) \{eL(w′)}) =
M(B(w) \ {eL(w)}) = x, we have that w′ and w have x as a common descendant.
Thus, w′ and w are related as ancestor and descendant. Therefore, w′ > w implies
that w′ is a proper descendant of w.

Since w′ ∈ L̃(x), we have that M(B(w′) \ {eL(w′)}) = x = M(v). Thus, since
M(B(w′)\{eL(w′)}) is a descendant of w′ and M(v) is a descendant of v, we have that
w′ and v have x as a common descendant, and therefore they are related as ancestor
and descendant. Thus, since w′ ≤ high(v) and high(v) is an ancestor of v, we have that
w′ is an ancestor of v. Thus, since w′ and high(v) have v as a common descendant, we
have that w′ is related as ancestor and descendant with high(v). Therefore, w′ ≤ high(v)
implies that w′ is an ancestor of high(v). Since w = max(W̃ (v)) and w′ > w, we have
that w′ /∈ W̃ (v). Thus, since w′ is an ancestor of high(v), we have that L1(w

′) is not
a descendant of high(v) (because this is the only condition that prevents w′ to be in
W̃ (v)). Notice that, since M(w′) ̸= M(B(w′) \ {eL(w′)}) = x, we have that L1(w

′) (i.e.,
the higher endpoint of eL(w′)) is not a descendant of x.

Since w ∈ W̃ (v), we have that L1(w) is a descendant of high(v). Thus, eL(w) ̸=
eL(w

′). Since L1(w) is a descendant of high(v), we have that L1(w) is a descendant of
w′. And since the lower endpoint of eL(w) is a proper ancestor of w, we have that the
lower endpoint of eL(w) is a proper ancestor of w′. This shows that eL(w) ∈ B(w′).
Notice that, since M(w) ̸= M(B(w)\{eL(w)}) = x, we have that L1(w) (i.e., the higher
endpoint of eL(w)) is not a descendant of x. Since eL(w) ̸= eL(w

′) and eL(w) ∈ B(w′),
we have that eL(w) ∈ B(w′) \ {eL(w′)}. Thus, B(w′) \ {eL(w′)} contains a back-edge
whose higher endpoint is not a descendant of x, and thereforeM(B(w′)\{eL(w′)}) ̸= x,
a contradiction. Thus, we have shown that there is no vertex w′ ∈ L̃(x) with w′ > w,
such that w′ ≤ high(v). This shows that w is the greatest vertex in L̃(x) such that
w ≤ high(v).

By definition, we have that W̃ (v) ⊆ L̃(x). (Since L̃(x) contains every vertex w

such that M(w) ̸= M(B(w) \ {eL(w)}) = M(v).) Now let us suppose, for the sake of
contradiction, that W̃ (v) is not a segment of L̃(x). Since w = max(W̃ (v)), this means
that there are w′ and w′′ in L̃(x), with w > w′ > w′′, such that w′ /∈ W̃ (v) and w′′ ∈

364

W̃ (v). Since w,w′, w′′ ∈ L̃(x), we have thatM(B(w)\{eL(w)}) = M(B(w′)\{eL(w′)}) =
M(B(w′′) \ {eL(w′′)}) = x. Thus, {w,w′, w′′} have x as a common descendant, and
therefore all three of them are related as ancestor and descendant. Thus, w > w′ > w′′

implies that w is a proper descendant of w′, and w′ is a proper descendant of w′′.
Since w ∈ W̃ (v), we have that w is an ancestor of high(v). This implies that w′

is also an ancestor of high(v). Thus, since w′ ∈ L̃(x) and w′ /∈ W̃ (v), we have that
L1(w

′) is not a descendant of high(v). Now, since w′′ ∈ W̃ (v), we have that L1(w
′′)

is a descendant of high(v). Thus, eL(w′) ̸= eL(w
′′). Since L1(w

′′) is a descendant of
high(v) and w′ is an ancestor of high(v), we have that L1(w

′′) is a descendant of w′.
Furthermore, the lower endpoint of eL(w′′) is a proper ancestor of w′′, and therefore
a proper ancestor of w′. This shows that eL(w′′) ∈ B(w′). As previously, notice that
eL(w

′′) is not a descendant of x (since M(w′′) ̸= M(B(w′′) \ {eL(w′′)}) = x). Since
eL(w

′) ̸= eL(w
′′) and eL(w

′′) ∈ B(w′), we have that eL(w′′) ∈ B(w′) \ {eL(w′)}. Thus,
B(w′) \ {eL(w′)} contains a back-edge whose higher endpoint is not a descendant of
x, and therefore M(B(w′) \ {eL(w′)}) ̸= x – in contradiction to w′ ∈ L̃(x). Thus, we
conclude that W̃ (v) is a segment of L̃(x).

Algorithm 42 shows how we can compute all sets W̃ (v), for all v ̸= r, in total linear
time. The idea is to find, for every vertex v, the greatest w that has M(w) ̸= M(B(w)\
{eL(w)}) = M(v) and w ≤ high(v). According to Lemma 5.92, if W̃ (v) ̸= ∅, then this
w must satisfy w ∈ W̃ (v) (i.e., it also has that L1(w) is a descendant of high(v)). Then,
still according to Lemma 5.92, we have that W̃ (v) is a segment of the decreasingly
sorted list that consists of all vertices w′ with M(w′) ̸= M(B(w′) \ {eL(w′)}) = M(v).
Thus, we keep traversing this list, and we greedily insert as many vertices as we can
into W̃ (v), until we reach a w′ that no longer satisfies that L1(w

′) is a descendant of
high(v). The full proof of correctness and linear complexity of Algorithm 42 is given
in Lemma 5.93. The proof of linear complexity relies on Lemma 5.91: i.e., the sets
in {W̃ (v) | v is a vertex ̸= r} are pairwise disjoint.

Lemma 5.93. Algorithm 42 correctly computes the sets W̃ (v), for all vertices v ̸= r.
Furthermore, it has a linear-time implementation.

Proof. It should be clear that, when we reach Line 8, we have that L̃(x), for every
vertex x, is the decreasingly sorted list of all vertices w that have M(w) ̸= M(B(w) \
{eL(w)}) = x. The idea in the for loop in Line 13 is to process all vertices v ̸= r in
a bottom-up fashion. Then, for every vertex v ̸= r, we start searching in L̃(M(v)) for

365

Algorithm 42: Compute the sets W̃ (v), for all v ̸= r

1 compute M(B(w) \ {eL(w)}), for every w ̸= r

2 initialize an empty list L̃(x)← ∅, for every vertex x

3 for w ← n to w = 2 do
4 if M(w) ̸= M(B(w) \ {eL(w)}) then
5 insert w into L̃(M(B(w) \ {eL(w)}))
6 end

7 end
// L̃(x) contains all vertices w with M(w) ̸= M(B(w) \ {eL(w)}) = x,

sorted in decreasing order, for every vertex x

8 initialize an array currentVertex[x], for every vertex x

9 foreach vertex x do
10 let currentVertex[x]← first element of L̃(x)
11 end
12 initialize W̃ (v)← ∅, for every vertex v ̸= r

13 for v ← n to v = 2 do
14 let x←M(v)

15 let w ← currentVertex[x]
16 while w > high(v) do
17 w ← nextL̃(x)(w)

18 end
19 while w ̸= ⊥ and L1(w) is a descendant of high(v) do
20 insert w into W̃ (v)

21 w ← nextL̃(x)(w)

22 end
23 currentVertex[x]← w

24 end

366

the greatest vertex w that has w ≤ high(v) (see the while loop in Line 16). This search
for this w starts from the last vertex that we accessed in L̃(M(v)). This is ensured
by the use of variable currentVertex[x] (where x = M(v)), which we use in order to
initialize w in Line 15, and then we update currentVertex[x] in Line 23. We only have
to explain why this is sufficient.

First, we have that, if v′ and v are two vertices with M(v′) = M(v) and v′ < v, then
high(v′) is an ancestor of high(v). To see this, suppose the contrary. SinceM(v′) = M(v),
we have that v′ and v have M(v) as a common descendant. Therefore, v′ < v implies
that v′ is a proper ancestor of v. Then, since high(v′) is a proper ancestor of v′, we have
that high(v′) is a proper ancestor of v. Thus, since high(v) is also a proper ancestor
of v, we have that high(v′) and high(v) are related as ancestor and descendant. Then,
since high(v′) is not an ancestor of high(v), it must be a proper descendant of high(v).
This implies that high(v′) > high(v). Since v′ is a proper ancestor of v with M(v′) =

M(v), Lemma 3.2 implies that B(v′) ⊆ B(v). This implies that high(v) ≥ high(v′), a
contradiction. Therefore, we have indeed that high(v′) is an ancestor of high(v). This
implies that high(v′) ≤ high(v).

Now we can see inductively that W̃ (v) is computed correctly by the for loop in
Line 13, for every vertex v ̸= r. We use induction on the number of times that a
vertex v with M(v) = x is processed, for every fixed x. The first time that the for
loop in Line 13 processes a vertex v with M(v) = x, we begin the search for vertices
w ∈ W̃ (v) from the beginning of L̃(x) (due to the initialization of currentVertex[x] in
Line 10). The while loop in Line 16 traverses the list L̃(x), until it reaches a vertex w

such that w ≤ high(v). Thus, this is the greatest vertex in L̃(x) such that w ≤ high(v).
According to Lemma 5.92, if W̃ (v) ̸= ∅, then w = max(W̃ (v)). Since w ∈ L̃(x) and
w ≤ high(v), it is sufficient to check whether L1(w) is a descendant of high(v). If
that is the case, then we correctly insert w into W̃ (v), in Line 20. Furthermore, by
Lemma 5.92 we have that W̃ (v) is a segment of L̃(x). Thus, since w is the leftmost
element of this segment, it is sufficient to keep traversing L̃(x), and keep inserting all
the vertices that we meet into W̃ (v), until we meet a vertex that is provably no longer
in W̃ (v). Since L̃(x) is sorted in decreasing order, all the vertices w′ that we meet
have w′ ≤ w ≤ high(v). Thus, the only reason that may prevent such a w′ to be in
W̃ (v), is that L1(w

′) is not a descendant of high(v). This shows that the while loop in
Line 19 will correctly compute W̃ (v). Then, in Line 23 we set “currentVertex[x]← w”.
This implies that the next time that we meet a vertex v′ that has M(v′) = x, we

367

will start the search for W̃ (v′) from the last entry w of L̃(x) that we accessed while
processing v. This is sufficient for the following reasons. First, since the for loop in
Line 13 processes the vertices in a bottom-up fashion, we have that the next v′ with
M(v′) = x that it will process is a proper ancestor of v. Thus, as shown above, we
have that high(v′) ≤ high(v). Then, the search from L̃(x) will be picked up from the
vertex w that is either the greatest that satisfies w ≤ high(v), or it is the lowest in
W̃ (v). In the first case, it is sufficient to start the search in L̃(x) for W̃ (v′) from w. In
the second case, we note that by Lemma 5.91 we have that W̃ (v) ∩ W̃ (v′) = ∅. Thus,
no vertex that is greater than w can be in W̃ (v′): because no vertex in W̃ (v) is in
W̃ (v′), and by Lemma 5.92 we have that the greatest vertex in W̃ (v) is the greatest
vertex w′ in L̃(x) that has w′ ≤ high(v). Thus, with the same argument that we used
for v we can see that W̃ (v′) will be correctly computed, and the same is true for any
future vertex v′′ with M(v′′) = x that we will meet. This demonstrates the correctness
of Algorithm 42.

By Proposition 3.6, we have that the values M(B(w) \ {eL(w)}), for all vertices
w ̸= r, can be computed in linear time in total. Thus, Line 1 can be performed in
linear time. All other steps take O(n) time in total. In particular, observe that, in the
worst case, the for loop in Line 13 may have to traverse the entire lists M−1(x) and
L̃(x), for all vertices x. Still, since all lists M−1(x) are pairwise disjoint, and all lists
L̃(x) are pairwise disjoint, we have that the for loop in Line 13 takes O(n) time. Thus,
Algorithm 42 runs in linear time.

Lemma 5.94. A triple of vertices (u, v, w) induces a Type-3βii-2 4-cut, where L1(w)

is a descendant of high(v), if and only if: (1) u is a proper descendant of v, (2) u

and v belong to a segment of H(high(v)) that is maximal w.r.t. the property that all its
elements are related as ancestor and descendant, (3) w ∈ W̃ (v), (4) w ≤ low(u), and (5)

bcount(v) = bcount(u) + bcount(w)− 1.

Proof. (⇒) Due to the convention we have made in this subsection, we have that
the back-edge in the 4-cut induced by (u, v, w) is eL(w). Since (u, v, w) induces a
Type-3βii-2 4-cut, by definition we have that u is a proper descendant of v. Let
u′ be a vertex such that u ≥ u′ ≥ v and high(u′) = high(v). Then, Lemma 5.79
implies that u′ is an ancestor of u. Thus, the segment from u to v in H(high(v))
consists of vertices that are related as ancestor and descendant (since all of them
are ancestors of u). This implies (2). Lemma 5.90 implies that w is an ancestor of

368

high(v) and M(w) ̸= M(B(w) \ {eL(w)}) = M(v). By assumption we have that L1(w)

is a descendant of high(v). Thus, w satisfies all the conditions to be in W̃ (v). (4)
is an implication of Lemma 5.79. (5) is an immediate implication of the fact that
B(v) = B(u) ⊔ (B(w) \ {eL(w)}).

(⇐) (2) implies that high(u) = high(v). Since by (1) we have that u is a proper
descendant of v, Lemma 3.3 implies that B(u) ⊆ B(v). Let (x, y) be a back-edge in
B(w) \ {eL(w)}. Since w ∈ W̃ (v), we have that M(B(w) \ {eL(w)}) = M(v). Thus,
since (x, y) ∈ B(w) \ {eL(w)}, we have that x is a descendant of M(B(w) \ {eL(w)}),
and therefore a descendant of M(v). Furthermore, y is a proper ancestor of w, and
therefore a proper ancestor of high(v) (since w ∈ W̃ (v) implies that w is an ancestor of
high(v)). This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(w)\{eL(w)},
this implies that B(w) \ {eL(w)} ⊆ B(v). Let (x, y) be a back-edge in B(u). Then
we have low(u) ≤ y. Therefore, w ≤ low(u) implies that w ≤ y. Thus, y cannot
be a proper ancestor of w, and therefore (x, y) /∈ B(w). Due to the generality of
(x, y) ∈ B(u), this implies that B(u) ∩ B(w) = ∅. Thus, since B(u) ⊆ B(v) and
B(w)\{eL(w)} ⊆ B(v) and B(u)∩B(w) = ∅ and bcount(v) = bcount(u)+ bcount(w)−1,
we have that B(v) = B(u) ⊔ (B(w) \ {eL(w)}). Thus, (u, v, w) induces a Type-3βii-2
4-cut.

Lemma 5.95. Let u and v be two distinct vertices with high(u) = high(v) that are related
as ancestor and descendant. Then, bcount(u) ̸= bcount(v).

Proof. We may assume w.l.o.g. that v is a proper ancestor of u. Then, since high(u) =
high(v), Lemma 3.3 implies that B(u) ⊆ B(v). Thus, if we suppose that bcount(u) =
bcount(v), then we have that B(u) = B(v), in contradiction to the fact that the graph
is 3-edge-connected. This shows that bcount(u) ̸= bcount(v).

Now we will show how to compute all Type-3βii-2 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(w)}, where B(v) = B(u) ⊔ (B(w) \ {eL(w)}) and
L1(w) is a descendant of high(v). So let (u, v, w) be a triple of vertices that in-
duces a 4-cut of this form. Then, by Lemma 5.94 we have that w ∈ W̃ (v), and
u ∈ S(v) (i.e., u belongs to the segment of H(high(v)) that contains v and is max-
imal w.r.t. the property that all its elements are related as ancestor and descen-
dant). Thus, given v and w ∈ W̃ (v), it is sufficient to find all u ∈ S(v) that provide
a triple (u, v, w) that induces a 4-cut of this form. By Lemma 5.94 we have that
bcount(v) = bcount(u)+ bcount(w)− 1. Then, Lemma 5.95 implies that u is the unique

369

vertex in S(v) that has bcount(u) = bcount(v)− bcount(w)+ 1. Thus, the idea is to pro-
cess separately all segments of H(x) that are maximal w.r.t. the property that their
elements are related as ancestor and descendant, for every vertex x. Let S be such a
segment. Then, we store the bcount values for all vertices in S. (By Lemma 5.95, all
these are distinct.) Then, for every v ∈ S such that W̃ (v) ̸= ∅, and every w ∈ W̃ (v),
we seek the unique u in S that has bcount(u) = bcount(v) − bcount(w) + 1, and, if it
exists, then we check whether all conditions in Lemma 5.94 are satisfied, in order
to have that (u, v, w) induces a 4-cut of the desired form. This procedure is shown
in Algorithm 43. The proof of correctness and linear complexity is given in Proposi-
tion 5.27.

Proposition 5.27. Algorithm 43 correctly computes all Type-3βii-2 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(w)}, where B(v) = B(u) ⊔ (B(w) \ {eL(w)}) and L1(w)

is a descendant of high(v). Furthermore, it has a linear-time implementation.

Proof. For every vertex x, let S(x) be the collection of the segments of H(x) that
are maximal w.r.t. the property that their elements are related as ancestor and de-
scendant. Let {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} be a Type-3βii-2 4-cut such that
B(v) = B(u) ⊔ (B(w) \ {eL(w)}) and L1(w) is a descendant of high(v). Lemma 5.94
implies that u and v belong to the same segment S of S(high(v)), w ∈ W̃ (v), w ≤ low(u),
and bcount(v) = bcount(u)+bcount(w)−1. Let x = high(v). Then, during the processing
of S ∈ S(x) (in the for loop in Line 8), we will eventually reach Line 14 for this partic-
ular w (during the for loop in Line 13). We will show that the bcount(v)−bcount(w)+1

entry of the A array is precisely u. Notice that the entries of A are filled with vertices in
Line 10, for every segment S ∈ S(x), for every vertex x. And then, after the processing
of S, the entries of A that were filled with vertices are set again to null in Line 21. Thus,
when we reach Line 13, we have that the non-null entries of A contain vertices from S.
More precisely, for every z ∈ S, we have that A[bcount(z)] = z. Thus, since all vertices
in S are related as ancestor and descendant and have the same high point, Lemma 5.95
implies that A[bcount(z)] = z, for every z ∈ S, when the for loop in Line 9 is completed
(during the processing of S); and also, we have A[c] = ⊥, if there is no vertex z ∈ S

with bcount(z) = c. Therefore, since bcount(v) = bcount(u)+bcount(w)−1, we have that
bcount(u) = bcount(v)− bcount(w) + 1, and therefore A[bcount(v)− bcount(w) + 1] = u.
Thus, when we reach Line 14, we have that the variable “u” contains the value u, and
so the 4-cut {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} will be correctly marked in Line 16

370

Algorithm 43: Compute all Type-3βii-2 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(w)}, where B(v) = B(u) ⊔ (B(w) \ {eL(w)})

and L1(w) is a descendant of high(v)

1 compute the set W̃ (v), for every vertex v ̸= r

2 for every vertex x, let H(x) be the list of all vertices z with high(z) = x, sorted
in decreasing order

3 foreach vertex x do
4 compute the collection S(x) of the segments of H(x) that are maximal

w.r.t. the property that their elements are related as ancestor and
descendant

5 end
6 initialize an array A of size m

7 foreach vertex x do
8 foreach S ∈ S(x) do
9 foreach z ∈ S do
10 set A[bcount(z)]← z

11 end
12 foreach v ∈ S do
13 foreach w ∈ W̃ (v) do
14 let u← A[bcount(v)− bcount(w) + 1]

15 if u ̸= ⊥ and u is a proper descendant of v and w ≤ low(u) then
16 mark {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} as a Type-3βii-2

4-cut

17 end

18 end

19 end
20 foreach z ∈ S do
21 set A[bcount(z)]← ⊥
22 end

23 end

24 end

371

(since the condition in Line 15 is satisfied).
Conversely, whenever the condition in Line 15 is satisfied, we have that: (1) u is a

proper descendant of v, (2) u and v belong to a segment of H(high(v)) that is maximal
w.r.t. the property that all its elements are related as ancestor and descendant, (3)
w ∈ W̃ (v), (4) w ≤ low(u), and (5) bcount(v) = bcount(u) + bcount(w) − 1. Thus,
Lemma 5.94 implies that {(u, p(u)), (v, p(v)), (w, p(w)), eL(w)} is a Type-3βii-2 4-cut
such that B(v) = B(u) ⊔ (B(w) \ {eL(w)}) and L1(w) is a descendant of high(v).
Therefore, it is correct to mark it in Line 16.

Now let us establish the linear-time complexity of Algorithm 43. First, by
Lemma 5.93 we have that Line 1 has a linear-time implementation. In particular,
Lemma 5.91 implies that the total size of all sets W̃ (v), for v ̸= r, is O(n). Then, by
Lemma 3.22 we have that the collections S(x), for every vertex x, can be computed
in linear time in total. Thus, the for loop in Line 3 has a linear-time implementation.
Finally, the for loop in Line 7 is completed in linear time, precisely because all seg-
ments in the collection {S ∈ S(x) | x is a vertex } are pairwise disjoint, and so they
have total size O(n), and the sets W̃ (v), for all v ̸= r, have total size O(n).

5.8.2.3 Type‐3βii‐3 4‐cuts

Now we consider case (3) of Lemma 5.57.
Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a

proper ancestor of u, and there is a back-edge e ∈ B(u) such that e /∈ B(v) ∪ B(w),
B(v) = (B(u) \ {e}) ⊔ B(w) and M(w) = M(v). By Lemma 5.57, we have that
C = {(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut, and we call this a Type-3βii-3 4-cut.

The following lemma provides some useful information concerning this type of
4-cuts.

Lemma 5.96. Let (u, v, w) be a triple of vertices that induces a Type-3βii-3 4-cut, and let
e be the back-edge of this 4-cut. Then e = (highD(u), high(u)). Furthermore, low(u) ≥ w

and high(u) ̸= high2(u) = high(v). Finally, if u′ is a vertex such that u ≥ u′ ≥ v and either
high(u′) = high(v) or high2(u′) = high(v), then u′ is an ancestor of u.

Proof. Since (u, v, w) induces a Type-3βii-3 4-cut, we have that e ∈ B(u), e /∈ B(v) ∪
B(w), and B(v) = (B(u) \ {e}) ⊔ B(w) (∗). This implies that e is the only back-edge
in B(u) that is not in B(v). Now let (x1, y1), . . . , (xk, yk) be all the back-edges in
B(u) sorted in decreasing order w.r.t. their lower endpoint, so that we have (xi, yi) =

372

(highDi(u), highi(u)), for every i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k} be an index such that
(xi, yi) ∈ B(v). Then we have that yi is a proper ancestor of v. This implies that all
yj , with j ∈ {i, . . . , k} are proper ancestors of v. Furthermore, we have that all xj , for
j ∈ {1, . . . , k}, are descendants of u, and therefore all of them are descendants of v.
This shows that all the back-edges (xi, yi), . . . , (xk, yk) are in B(v). Thus, we cannot
have that (x1, y1) ∈ B(v), because otherwise we would have B(u) ⊆ B(v). Since e

is the unique back-edge in B(u) \ B(v), this shows that e = (x1, y1), and therefore
e = (highD(u), high(u)). Furthermore, this argument also shows that y2 ̸= y1, and
therefore high2(u) ̸= high(u).

Since e = (highD(u), high(u)) and B(u)\{e} ⊆ B(v) (and B(u)\{e} contains at least
one back-edge, since the graph is 3-edge-connected), we have that (x2, y2) ∈ B(v), and
therefore high(v) ≥ high2(u). Conversely, let (x, y) be a back-edge in B(v) such that
y = high(v). We can use a similar argument as above, in order to conclude that, if
high(v) < w, then B(v) ⊆ B(w). But this is impossible to be the case, since there are
back-edges from B(u) in B(v), and we have B(u) ∩ B(w) = ∅. Thus, we have that
(x, y) /∈ B(w). Then B(v) = (B(u) \ {e}) ⊔B(w) implies that (x, y) ∈ B(u) \ {e}. Since
e = (highD(u), high(u)) and high2(u) ̸= high(u), this implies that y2 ≥ y. Thus we have
high2(u) ≥ high(v). This shows that high(v) = high2(u).

Let us suppose, for the sake of contradiction, that low(u) < w. Consider a back-
edge (x, y) ∈ B(u) such that y = low(u). Then x is a descendant of u, and therefore a
descendant of v, and therefore a descendant of w. Furthermore, since low(u) < w, we
have that y is a proper ancestor of w (because y and w are related as ancestor and
descendant, since both of them are ancestors of u). This shows that (x, y) ∈ B(w).
But this contradicts B(u) ∩ B(w) = ∅, which is a consequence of (∗). Thus we have
shown that low(u) ≥ w.

Now let u′ be a vertex with u ≥ u′ ≥ v such that there is a back-edge (x, y) ∈ B(u′)

with y = high(v) (notice that this includes the cases high(u′) = high(v) and high2(u′) =

high(v)). Since u is a descendant of v, u ≥ u′ ≥ v implies that u′ is a descendant of v.
Then, x is a descendant of v. Thus, since y = high(v), we have that (x, y) ∈ B(v). Since
(u, v, w) induces a Type-3βii-3 4-cut, by definition we have that w is a proper ancestor
of v with M(w) = M(v). Then, Lemma 3.6 implies that high(v) is a descendant of w.
Thus, y = high(v) is not a proper ancestor of w, and therefore (x, y) /∈ B(w). Thus,
B(v) = (B(u) \ {e}) ⊔ B(w) implies that (x, y) ∈ B(u). Then we have that x is a
common descendant of u and u′, and therefore u and u′ are related as ancestor and

373

descendant. Thus, u ≥ u′ implies that u′ is an ancestor of u.

Recall that, for every vertex x, we let H̃(x) denote the list of all vertices z such that
either high1(z) = x or high2(z) = x, sorted in decreasing order. For every vertex v ̸= r,
let S̃1(v) denote the segment of H̃(high(v)) that contains v and is maximal w.r.t. the
property that its elements are related as ancestor and descendant. Then, for every
vertex v ̸= r with nextM(v) ̸= ⊥, we let U3(v) denote the collection of all u ∈ S̃1(v)

such that: (1) u is a proper descendant of v, (2) high1(u) ̸= high2(u) = high1(v), (3)
low(u) ≥ lastM(v), and (4) either low(u) < nextM(v), or u is the lowest vertex in S̃1(v)

that satisfies (1), (2) and low(u) ≥ nextM(v).

Lemma 5.97. Let (u, v, w) be a triple of vertices that induces a Type-3βii-3 4-cut. Then
U3(v) ̸= ∅, and let ũ be the greatest vertex in U3(v). Then, if u /∈ U3(v), we have that
(ũ, v, w) induces a Type-3βii-3 4-cut, and B(ũ) ⊔ {ehigh(u)} = B(u) ⊔ {ehigh(ũ)}.

Proof. Let u′ be a vertex in H̃(high(v)) such that u ≥ u′ ≥ v. Since u′ ∈ H̃(high(v)), we
have that either high1(u′) = high(v) or high2(u′) = high(v). Thus, since (u, v, w) induces
a Type-3βii-3 4-cut, by Lemma 5.96 we have that u′ is an ancestor of u. This implies
that all vertices from u to v in H̃(high(v)) are related as ancestor and descendant (since
all of them are ancestors of u). This shows that u ∈ S̃1(v). Since (u, v, w) induces a
Type-3βii-3 4-cut, we have that u is a proper descendant of v. Furthermore, by
Lemma 5.96 we have that high1(u) ̸= high2(u) = high1(v), and low(u) ≥ w ≥ lastM(v).
Thus, if low(u) < nextM(v), then we have u ∈ U3(v). Otherwise, we have low(u) ≥
nextM(v), and therefore we have U3(v) ̸= ∅, because we can consider the lowest vertex
ũ ∈ S̃1(v) that is a proper descendant of v and satisfies high1(ũ) ̸= high2(ũ) = high1(v)
and low(ũ) ≥ nextM(v).

This shows that U3(v) ̸= ∅. Furthermore, this shows that, if u /∈ U3(v), then we can
define ũ as previously, and we have ũ < u (due to the minimality of ũ), and therefore
ũ is a proper ancestor of u (since both ũ and u are in S̃1(v), and therefore they are
related as ancestor and descendant). Now we will show that ũ is the greatest vertex in
U3(v). Notice that low(ũ) ≥ nextM(v), and every other vertex u′ ∈ U3(v) (except ũ, that
is) satisfies low(u′) < nextM(v). So let us suppose, for the sake of contradiction, that ũ
is not the greatest vertex in U3(v). Thus, there is a vertex u′ ∈ U3(v) such that u′ > ũ.
Since both u′ and ũ are in S̃1(v), this implies that u′ is a proper descendant of ũ. Now
let (x, y) be a back-edge in B(u′) such that y = low(u′). Then x is a descendant of u′,
and therefore a descendant of ũ. We also have y = low(u′) < nextM(v) ≤ low(ũ). Since

374

(x, y) is a back-edge, we have that y is an ancestor of x. Furthermore, we have that
low(ũ) is an ancestor of ũ, and therefore an ancestor of u′, and therefore an ancestor
of x. Thus, x is a common descendant of y and low(ũ), and therefore y and low(ũ)
are related as ancestor and descendant, and therefore y is a proper ancestor of low(ũ)
(since y < low(ũ)). Since x is a descendant of ũ, this implies that (x, y) ∈ B(ũ). But y
is lower than low(ũ), a contradiction. This shows that ũ is the greatest vertex in U3(v).

Now let us assume that u /∈ U3(v). Let us suppose, for the sake of contradiction,
that ehigh(ũ) = ehigh(u). Then, since ũ is an ancestor of u, by Lemma 3.3 we have
B(u) ⊆ B(ũ). This can be strengthened to B(u) ⊂ B(ũ), since the graph is 3-edge-
connected. Thus, there is a back-edge (x, y) ∈ B(ũ) \ B(u). In particular, we have
(x, y) ̸= ehigh(u) = ehigh(ũ). Since ũ ∈ U3(v), we have high2(ũ) = high(v). Thus, since
(x, y) ̸= ehigh(ũ), we have that y is an ancestor of high2(ũ) = high(v), and therefore it is a
proper ancestor of v. Furthermore, x is a descendant of ũ, and therefore a descendant
of v. This shows that (x, y) ∈ B(v). Then, since (u, v, w) induces a Type-3βii-3 4-cut,
we have B(v) = (B(u) \ {ehigh(u)})⊔B(w). Thus, since (x, y) ∈ B(v) and (x, y) /∈ B(u),
we have (x, y) ∈ B(w). But we have low(ũ) ≥ nextM(v), and therefore low(ũ) ≥ w,
and therefore y ≥ w (since (x, y) ∈ B(ũ) implies that y ≥ low(ũ)). Thus, y cannot be
a proper ancestor of w, a contradiction. This shows that ehigh(ũ) ̸= ehigh(u).

Now let us suppose, for the sake of contradiction, that ehigh(ũ) ∈ B(u). Since
ũ ∈ U3(v), we have high1(ũ) ̸= high2(ũ) = high(v). This implies that the lower endpoint
of ehigh(ũ) is greater than high(v). Since high1(u) ̸= high2(u) = high(v), we have that
ehigh(u) is the only back-edge in B(u) whose lower endpoint is greater than high(v).
Thus, since ehigh(ũ) ∈ B(u), we have ehigh(ũ) = ehigh(u), a contradiction. This shows
that ehigh(ũ) /∈ B(u). Similarly, we can show that ehigh(u) /∈ B(ũ).

Now let (x, y) be a back-edge in B(ũ) \ {ehigh(ũ)}. Then we have that x is a de-
scendant of ũ, and therefore a descendant of v. Furthermore, since ũ ∈ U3(v), we
have high2(ũ) = high1(v), and therefore y is an ancestor of high1(v). This shows
that (x, y) ∈ B(v). Then, B(v) = (B(u) \ {ehigh(u)}) ⊔ B(w) implies that either
(x, y) ∈ B(u) \ {ehigh(u)}, or (x, y) ∈ B(w). The case (x, y) ∈ B(w) is rejected, since
low(ũ) ≥ nextM(v) ≥ w. Thus, we have (x, y) ∈ B(u) \ {ehigh(u)}. Due to the generality
of (x, y) ∈ B(ũ) \ {ehigh(ũ)}, this shows that B(ũ) \ {ehigh(ũ)} ⊆ B(u) \ {ehigh(u)}. Con-
versely, let (x, y) be a back-edge in B(u) \ {ehigh(u)}. Then we have that x is a descen-
dant of u, and therefore a descendant of ũ. Furthermore, we have (x, y) ∈ B(v), and
therefore y is a proper ancestor of v, and therefore a proper ancestor of ũ. This shows

375

that (x, y) ∈ B(ũ). Since (x, y) ∈ B(u) and ehigh(ũ) /∈ B(u), we have (x, y) ̸= ehigh(ũ).
Thus, (x, y) ∈ B(ũ) \ {ehigh(ũ)}. Due to the generality of (x, y) ∈ B(u) \ {ehigh(u)},
this shows that B(u) \ {ehigh(u)} ⊆ B(ũ) \ {ehigh(ũ)}. Thus, we have shown that
B(ũ) \ {ehigh(ũ)} = B(u) \ {ehigh(u)}.

Then, since ehigh(ũ) /∈ B(u) and ehigh(u) /∈ B(ũ), we have B(ũ) ⊔ {ehigh(u)} = B(u) ⊔
{ehigh(ũ)}. Furthermore, since B(v) = (B(u)\{ehigh(u)})⊔B(w), we have B(v) = (B(ũ)\
{ehigh(ũ)}) ⊔ B(w). Finally, since high1(ũ) ̸= high2(ũ) = high(v), we have high1(ũ) >

high(v), and therefore ehigh(ũ) /∈ B(v). Then, by Lemma 5.57, we conclude that (ũ, v, w)
induces a Type-3βii-3 4-cut.

Lemma 5.98. Let v and v′ be two vertices with nextM(v) ̸= ⊥ and nextM(v′) ̸= ⊥,
such that v′ is a proper descendant of v with high(v) = high(v′) and S̃1(v) = S̃1(v

′). If
U3(v

′) = ∅, then U3(v) = ∅. If U3(v
′) ̸= ∅, then the lowest vertex in U3(v) (if it exists) is

greater than, or equal to, the greatest vertex in U3(v
′).

Proof. Since high(v) = high(v′) and v′ is a proper descendant of v, by Lemma 3.3 we
have that B(v′) ⊆ B(v). Since the graph is 3-edge-connected, this can be strengthened
to B(v′) ⊂ B(v). This implies that M(v′) is a descendant of M(v). Since high(v) =

high(v′), we cannot have M(v′) = M(v), because otherwise Lemma 3.7 implies that
B(v′) = B(v). Thus, we have thatM(v′) is a proper descendant ofM(v). Since lastM(v)

is an ancestor of M(v) and nextM(v′) is an ancestor of M(v′), we have that lastM(v)

and nextM(v′) are related as ancestor and descendant. Let us suppose, for the sake
of contradiction, that nextM(v′) is a descendant of lastM(v). Since M(v′) is a proper
descendant ofM(v) andM(lastM(v)) = M(v), there is a back-edge (x, y) ∈ B(lastM(v))

such that x is not a descendant ofM(v′). Then, we have that x is a descendant ofM(v),
and therefore a descendant of v, and therefore a descendant of high(v) = high(v′). By
Lemma 3.8, we have that high(v′) is a descendant of nextM(v′). Therefore, since x is
a descendant of high(v′), we have that x is a descendant of nextM(v′). Furthermore,
y is a proper ancestor of lastM(v), and therefore a proper ancestor of nextM(v′). This
shows that (x, y) ∈ B(nextM(v′)). But x is not a descendant ofM(v′) = M(nextM(v′)), a
contradiction. Thus, we have that nextM(v′) is not a descendant of lastM(v). Therefore,
since lastM(v) and nextM(v′) are related as ancestor and descendant, we have that
nextM(v′) is a proper ancestor of lastM(v).

Let us suppose, for the sake of contradiction, that U3(v
′) = ∅ and U3(v) ̸= ∅.

Let u be a vertex in U3(v). Let us suppose, for the sake of contradiction, that u

376

is not a proper descendant of v′. Since u ∈ U3(v), we have u ∈ S̃1(v). Since v′ is
also in S̃1(v), this implies that u and v′ are related as ancestor and descendant.
Thus, since u is not a proper descendant of v′, we have that u is an ancestor of v′.
Let (x, y) be a back-edge in B(v′) such that y = low(v′). Lemma 3.2 implies that
B(nextM(v′)) ⊆ B(v′). Thus, we have that low(v′) is an ancestor of low(nextM(v′)),
and therefore a proper ancestor of nextM(v′). Since nextM(v′) is a proper ancestor
of lastM(v), this implies that low(v′) is a proper ancestor of lastM(v). Now, since
(x, y) ∈ B(v′), we have that x is a descendant of v′, and therefore a descendant of
u. Furthermore, y = low(v′) is a proper ancestor of lastM(v), and therefore a proper
ancestor of v, and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u).
But then we have that low(u) ≤ low(v′) < lastM(v), in contradiction to the fact that
u ∈ U3(v). Thus, we have that u is a proper descendant of v′. Then, since u ∈ U3(v),
we have that high1(u) ̸= high2(u) = high(v) = high(v′). Furthermore, we have that
low(u) ≥ lastM(v), and therefore low(u) ≥ nextM(v′). This implies that U3(v

′) is not
empty (because we can consider the lowest proper descendant u′ of v′ in S̃1(v

′) = S̃1(v)

such that high1(u′) ̸= high2(u′) = high1(v′) and low(u′) ≥ nextM(v′)). This contradicts
our supposition that U3(v

′) ̸= ∅. Thus, we have shown that U3(v
′) = ∅ implies that

U3(v) = ∅.
Now let us assume that U3(v) ̸= ∅. This implies that U3(v

′) is not empty. Let us
suppose, for the sake of contradiction, that there is a vertex u ∈ U3(v) that is lower
than the greatest vertex u′ in U3(v

′). Since u ∈ U3(v) and u′ ∈ U3(v
′), we have u ∈ S̃1(v)

and u′ ∈ S̃1(v
′), respectively. Thus, since S̃1(v) = S̃1(v

′), this implies that u and u′ are
related as ancestor and descendant. Thus, since u is lower than u′, we have that u is
a proper ancestor of u′. Let us suppose, for the sake of contradiction, that low(u′) is a
proper ancestor of nextM(v′). Then, since nextM(v′) is a proper ancestor of lastM(v),
we have that low(u′) is a proper ancestor of lastM(v). Now let (x, y) be a back-edge in
B(u′) such that y = low(u′). Then x is a descendant of u′, and therefore a descendant
of u. Furthermore, y is a proper ancestor of lastM(v), and therefore a proper ancestor
of v, and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). Thus, we
have low(u) ≤ y < lastM(v), in contradiction to the fact that u ∈ U3(v). Thus, our last
supposition is not true, and therefore we have that low(u′) is not a proper ancestor
of nextM(v′). Thus, since u′ ∈ U3(v

′), we have that low(u′) ≥ nextM(v′), and u′ is the
lowest vertex in S̃1(v

′) with high1(u′) ̸= high2(u′) = high1(v′) that has this property (∗).
Now we will trace the implications of u ∈ U3(v). First, we have that u ∈ S̃1(v) =

377

S̃1(v
′). Then, we have high1(u) ̸= high2(u) = high1(v) = high1(v′). Furthermore, we have

that low(u) ≥ lastM(v), and therefore low(u) > nextM(v′) (since nextM(v′) is a proper
ancestor of lastM(v)). Finally, we can show as above that u is a proper descendant of
v′ (the proof of this fact above did not rely on U3(v

′) = ∅). But then, since u is lower
than u′, we have a contradiction to (∗). Thus, we have shown that every vertex in
U3(v) is at least as great as the greatest vertex in U3(v

′). In particular, this implies that
the lowest vertex in U3(v) is greater than, or equal to, the greatest vertex in U3(v

′).

Based on Lemma 5.98, we can provide an efficient algorithm for computing the
sets U3(v), for all vertices v ̸= r such that nextM(v) ̸= ⊥. The computation takes
place on segments of H̃(x) that are maximal w.r.t. the property that their elements
are related as ancestor and descendant. Specifically, let v ̸= r be a vertex such that
nextM(v) ̸= ⊥. Then we have U3(v) ⊂ S̃1(v). In other words, U3(v) is a subset of
the segment of H̃(high1(v)) that contains v and is maximal w.r.t. the property that
its elements are related as ancestor and descendant. So let z1, . . . , zk the vertices of
S̃1(v), sorted in decreasing order. Then, we have that v = zi, for an i ∈ {1, . . . , k}. By
definition, U3(v) contains every vertex u in {z1, . . . , zi−1} such that either high1(u) ̸=
high2(u) = high1(v) and nextM(v) > low(u) ≥ lastM(v), or u is the lowest vertex in this
set with high1(u) ̸= high2(u) = high1(v) and low(u) ≥ nextM(v). As an implication of
Lemma 3.24, we have that the vertices in {z1, . . . , zi−1} are sorted in decreasing order
w.r.t. their low point. Thus, it is sufficient to process the vertices from {z1, . . . , zi−1} in
reverse order, in order to find the first vertex u that has low(u) ≥ lastM(v). Then, we
keep traversing this set in reverse order, and, as long as the low point of every vertex
u that we meet is lower than nextM(v), we insert u into U3(v), provided that it satisfies
high1(u) ̸= high2(u) = high1(v). Then, once we reach a vertex with low point no lower
than nextM(v), we keep traversing this set in reverse order, until we meet one more
u that satisfies high1(u) ̸= high2(u) = high1(v), which we also insert into U3(v), and we
are done.

Now, if there is a proper ancestor v′ of v in S̃1(v) such that high1(v′) = high1(v), then
we have that S̃1(v

′) = S̃1(v). If nextM(v′) ̸= ⊥, then we have that U3(v
′) is defined. Then

we can follow the same process as above in order to compute U3(v
′). Furthermore,

according to Lemma 5.98, it is sufficient to start from the greatest element of U3(v)

(i.e., the one that was inserted last into U3(v)). In particular, if U3(v) = ∅, then it is
certain that U3(v

′) = ∅, and therefore we are done. Otherwise, we just pick up the

378

computation from the greatest vertex in U3(v). In order to perform efficiently those
computations, first we compute, for every vertex x, the collection S(x) of the segments
of H̃(x) that are maximal w.r.t. the property that their elements are related as ancestor
and descendant. For every vertex x, this computation takes O(|H̃(x)|) time, according
to Lemma 3.23. Since every vertex participates in at most two sets of the form H̃(x),
we have that the total size of all S(x), for all vertices x, is O(n). Then it is sufficient
to process separately all segments of S(x), for every vertex x, as described above, by
starting the computation each time from the first vertex v of the segment that satisfies
nextM(v) ̸= ⊥ and high1(v) = x. The whole procedure is shown in Algorithm 44. The
result is formally stated in Lemma 5.99.

Lemma 5.99. Algorithm 44 correctly computes the sets U3(v), for all vertices v ̸= r such
that nextM(v) ̸= ⊥. Furthermore, it runs in O(n) time.

Proof. This was basically given in the main text, in the two paragraphs above Algo-
rithm 44.

Lemma 5.100. Let (u, v, w) be a triple of vertices such that u ∈ U3(v). Then, (u, v, w)

induces a Type-3βii-3 4-cut if and only if: (1) w is the greatest proper ancestor of v such
that M(w) = M(v) and w ≤ low(u), and (2) bcount(v) = bcount(u) + bcount(w)− 1.

Proof. (⇒) By definition of Type-3βii-3 4-cuts, we have that w is a proper ancestor
of v with M(w) = M(v). Furthermore, we have B(v) = (B(u) \ {e}) ⊔ B(w), where
e is the back-edge of the 4-cut induced by (u, v, w). This implies that bcount(v) =

bcount(u) + bcount(w)− 1. Lemma 5.96 implies that w ≤ low(u).
Now let us suppose, for the sake of contradiction, that there is a proper ancestor

w′ of v with w′ > w such that M(w′) = M(v) and w′ ≤ low(u). Since M(w′) = M(w)

and w′ > w, we have that w′ is a proper descendant of w, and Lemma 3.2 implies
that B(w) ⊆ B(w′). Since the graph is 3-edge-connected, this can be strengthened to
B(w) ⊂ B(w′). Thus, there is a back-edge (x, y) ∈ B(w′) \B(w). Then we have that x
is a descendant of M(w′) = M(v). Furthermore, we have that y is a proper ancestor
of w′, and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Then, since
(x, y) /∈ B(w), B(v) = (B(u) \ {e}) ⊔B(w) implies that (x, y) ∈ B(u) \ {e}. Since y is a
proper ancestor of w′, we have that y < w′. Then, w′ ≤ low(u) implies that y < low(u),
in contradiction to (x, y) ∈ B(u). This shows that w is the greatest proper ancestor of
v such that M(w) = M(v) and w ≤ low(u).

379

Algorithm 44: Compute the sets U3(v), for all vertices v ̸= r such that
nextM(v) ̸= ⊥

1 foreach vertex x do

2 compute the collection S(x) of the segments of H̃(x) that are maximal w.r.t. the

property that their elements are related as ancestor and descendant

3 end

4 foreach vertex v ̸= r such that nextM(v) ̸= ⊥ do

5 set U3(v)← ∅

6 end

7 foreach vertex x do

8 foreach segment S ∈ S(x) do

9 let v be the first vertex in S

10 while v ̸= ⊥ and (high1(v) ̸= x or nextM(v) = ⊥) do

11 v ← nextS(v)

12 end

13 if v = ⊥ then continue

14 let u← prevS(v)

15 while v ̸= ⊥ do

16 while u ̸= ⊥ and low(u) < lastM(v) do

17 u← prevS(u)

18 end

19 while u ̸= ⊥ and low(u) < nextM(v) do

20 if high1(u) ̸= high2(u) and high2(u) = x then

21 insert u into U3(v)

22 end

23 u← prevS(u)

24 end

25 while u ̸= ⊥ and (high1(u) = high2(u) or high2(u) ̸= x) do

26 u← prevS(u)

27 end

28 if u ̸= ⊥ then

29 insert u into U3(v)

30 end

31 v ← nextS(v)

32 while v ̸= ⊥ and (high1(v) ̸= x or nextM(v) = ⊥) do

33 v ← nextS(v)

34 end

35 end

36 end

37 end

380

(⇐) Since u ∈ U3(v), we have that u is a proper descendant of v with high1(u) ̸=
high2(u) = high(v). Let (x, y) be a back-edge in B(u) \ {ehigh(u)}. Then, we have that
x is a descendant of u, and therefore a descendant of v. Furthermore, we have that
y ≤ high2(u) = high(v), and therefore y < v. Since (x, y) is a back-edge, we have that
x is a descendant of y. Thus, x is a common descendant of v and y, and therefore v

and y are related as ancestor and descendant. Thus, y < v implies that y is a proper
ancestor of v. Therefore, since x is a descendant of v, we have (x, y) ∈ B(v). Due to the
generality of (x, y) ∈ B(u) \ {ehigh(u)}, this implies that B(u) \ {ehigh(u)} ⊆ B(v). Since
w is a proper ancestor of v with M(w) = M(v), Lemma 3.2 implies that B(w) ⊆ B(v).
Let (x, y) be a back-edge in B(w). Then we have that y is a proper ancestor of w,
and therefore y < w. Thus, w ≤ low(u) implies that y < low(u). Therefore, we cannot
have (x, y) ∈ B(u). This shows that B(u) ∩ B(w) = ∅.

Thus, since B(u) \ {ehigh(u)} ⊆ B(v) and B(w) ⊆ B(v) and B(u) ∩ B(w) = ∅ and
bcount(v) = bcount(u) + bcount(w)− 1, we have that B(v) = (B(u) \ {ehigh(u)}) ⊔ B(w).
Furthermore, since B(u) ∩ B(w) = ∅, we have that ehigh(u) /∈ B(w), and therefore
B(v) = (B(u) \ {ehigh(u)}) ⊔ B(w) implies that ehigh(u) /∈ B(v) ∪ B(w). Thus, since
M(w) = M(v), we have that (u, v, w) induces a Type-3βii-3 4-cut.

Now we are ready to describe the algorithm for computing a collection of enough
Type-3βii-3 4-cuts, so that the rest of them are implied from this collection, plus that
computed by Algorithm 24. So let (u, v, w) be a triple of vertices that induces a Type-
3βii-3 4-cut. Then, Lemma 5.97 implies that either u ∈ U3(v), or (ũ, v, w) induces a
Type-3βii-3 4-cut, where ũ is the greatest vertex in U3(v). Furthermore, if u /∈ U3(v),
then B(u)⊔{ehigh(ũ)} = B(ũ)⊔{ehigh(u)}. Thus, if u /∈ U3(v), then it is sufficient to have
computed the 4-cut C induced by (ũ, v, w), because then the one induced by (u, v, w)

is implied by C , plus some Type-2ii 4-cuts that are computed by Algorithm 24 (see
Proposition 5.28). Now, if u ∈ U3(v), then by Lemma 5.100 we have that w is the
greatest proper ancestor of v such that w ≤ low(u) and M(w) = M(v). Thus, we can
use Algorithm 22 in order to get w from v and u.

The full procedure for computing enough Type-3βii-3 4-cuts is shown in Algo-
rithm 45. The proof of correctness and linear complexity is given in Proposition 5.28.

Proposition 5.28. Algorithm 45 computes a collection C of Type-3βii-3 4-cuts, and it
runs in O(n) time. Furthermore, let C ′ be the collection of Type-2ii 4-cuts computed by
Algorithm 24. Then, every Type-3βii-3 4-cut is implied by C ∪ C ′.

381

Algorithm 45: Compute a collection of Type-3βii-3 4-cuts, so that all Type-
3βii-3 4-cuts are implied from this collection, plus that of the Type-2ii 4-cuts
returned by Algorithm 24

1 foreach vertex v ̸= r such that nextM(v) ≠ ⊥ do
2 compute U3(v)

3 end
4 foreach vertex v ̸= r such that nextM(v) ≠ ⊥ do
5 foreach u ∈ U3(v) do
6 let w be the greatest proper ancestor of v such that w ≤ low(u) and

M(w) = M(v)

7 if bcount(v) = bcount(u) + bcount(w)− 1 then
8 mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)} as a Type-3βii-3 4-cut
9 end

10 end

11 end

Proof. When we reach Line 8, notice that the following conditions are true. (1) u ∈
U3(v), (2) w is the greatest proper ancestor of v such that w ≤ low(u) and M(w) =

M(v), and (3) bcount(v) = bcount(u) + bcount(w)− 1. Thus, Lemma 5.100 implies that
(u, v, w) induces a Type-3βii-3 4-cut. By Lemma 5.96, we have that the back-edge in
this 4-cut is ehigh(u). Thus, it is correct to mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)}
as a Type-3βii-3 4-cut. This shows that the collection C of the 4-element sets marked
by Algorithm 45 is a collection of Type-3βii-3 4-cuts.

According to Lemma 5.99, the computation of all sets U3(v), for all vertices v ̸= r

such that nextM(v) ̸= ⊥, can be performed in O(n) time in total, using Algorithm 44.
Thus, the for loop in Line 1 can be performed in O(n) time. In particular, this implies
that the total size of all U3 sets is O(n). It remains to explain how to compute the w

in Line 6, for every vertex u ∈ U3(v), for every vertex v ̸= r such that nextM(v) ̸= ⊥.
For this purpose, we can simply use Algorithm 22. First, we let M−1(x), for every
vertex x, be the collection of all vertices w such that M(w) = x. Thus, if x ̸= x′, then
M−1(x) ∩M−1(x′) = ∅. Then, for every vertex v ̸= r such that nextM(v) ̸= ⊥, and
every vertex u ∈ U3(v), we generate a query q(M−1(M(v)),min{low(u), p(v)}). This
is to return the greatest w that has M(w) = M(v), w ≤ low(u) and w ≤ p(v). In

382

particular, since M(w) = M(v) and w ≤ p(v), we have that w is a proper ancestor of
v. Thus, the w returned is the greatest proper ancestor of v with M(w) = M(v) such
that w ≤ low(u). The number of all those queries is bounded by the total size of the
U3 sets, which is bounded by O(n). Thus, Lemma 5.27 implies that all these queries
can be answered in O(n) time in total.

Now let (u, v, w) be a triple of vertices that induces a Type-3βii-3 4-cut C. If
u ∈ U3(v), then by Lemma 5.100 we have that w is uniquely determined by u and
v, and therefore C has been marked at some point in Line 8. So let us assume that
u /∈ U3(v). Then, Lemma 5.97 implies that (ũ, v, w) induces a Type-3βii-3 4-cut C ′,
where ũ is the greatest vertex in U3(v). Thus, C ′ ∈ C. Furthermore, Lemma 5.97
implies B(u)⊔{ehigh(ũ)} = B(ũ)⊔{ehigh(u)}. Thus, by Lemma 5.28 we have that C ′′ =

{(u, p(u)), (ũ, p(ũ)), ehigh(u), ehigh(ũ)} is a Type-2ii 4-cut. By Lemma 5.96, we have that
the 4-cuts induced by (u, v, w) and (ũ, v, w) are {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(u)}
and {(ũ, p(ũ)), (v, p(v)), (w, p(w)), ehigh(ũ)}, respectively. Notice that C is implied by C ′

and C ′′ through the pair of edges {(u, p(u)), ehigh(u)}. According to Proposition 5.12,
we have that C ′′ is implied by C ′ through the pair of edges {(u, p(u)), ehigh(u)}. Thus,
by Lemma 5.7 we have that C is implied by C ∪ C ′.

5.8.2.4 Type‐3βii‐4 4‐cuts

Now we consider case (4) of Lemma 5.57.
Let u, v, w be three vertices ̸= r such that w is proper ancestor of v, v is a

proper ancestor of u, and there is a back-edge e ∈ B(v) such B(v) = (B(u) ⊔
B(w)) ⊔ {e} and M(B(v) \ {e}) = M(w). By Lemma 5.57, we have that C =

{(u, p(u)), (v, p(v)), (w, p(w)), e} is a 4-cut, and we call this a Type-3βii-4 4-cut.
The following lemma provides some useful information concerning this type of

4-cuts.

Lemma 5.101. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, and
let e be the back-edge in the 4-cut induced by (u, v, w). Then w ≤ low(u), and either
high1(v) = high(u), or high1(v) > high(u) and high2(v) = high(u). If high1(v) ̸= high(u),
then e = ehigh(v).

Proof. Since (u, v, w) induces a Type-3βii-4 4-cut, we have that B(v) = (B(u)⊔B(w))⊔
{e}, where e is the back-edge in the 4-cut induced by (u, v, w). This implies that
B(u) ∩ B(w) = ∅. Since low(u) and w have u as a common descendant, we have that

383

low(u) and w are related as ancestor and descendant. Let us suppose, for the sake
of contradiction, that low(u) < w. Then, we have that low(u) is a proper ancestor of
w. Let (x, y) be a back-edge in B(u) such that y = low(u). Then x is a descendant of
u, and therefore a descendant of w. Furthermore, y is a proper ancestor of w. This
shows that (x, y) ∈ B(w), in contradiction to the fact that B(u)∩B(w) = ∅. This shows
that low(u) ≥ w.

Now let us assume that high1(v) ̸= high(u). (If high1(v) = high(u), then there is
nothing further to show.) Since B(u) ⊆ B(v), we have that high1(v) ≥ high(u). Thus,
high1(v) ̸= high(u) implies that high1(v) > high(u). Let (x, y) be a back-edge in B(v)

such that y > high(u). Then, B(v) = (B(u) ⊔ B(w)) ⊔ {e} implies that either (x, y) ∈
B(u), or (x, y) ∈ B(w), or (x, y) = e. Since y > high(u), the case (x, y) ∈ B(u) is rejected.
Furthermore, since w ≤ low(u) ≤ high(u) < y, the case (x, y) ∈ B(w) is rejected too.
Thus, we have (x, y) = e. Therefore, since high1(v) > high(u), we have that e = high(v).

Now let (x′, y′) be a back-edge in B(v) such that y′ = high2(v) and (x′, y′) ̸= e. Then
we cannot have y′ > high(u), because otherwise we would conclude as previously that
(x′, y′) = e, which is impossible. Thus, we have y′ ≤ high(u). Let us suppose, for the
sake of contradiction, that y′ < high(u). Since B(v) = (B(u)⊔B(w))⊔{e}, we have that
the high-edge of B(u) is in B(v). Thus, there is a back-edge (x′′, y′′) in B(v) such that
y′′ = high(u). Then we have high1(v) > y′′ > high2(v), which contradicts the definition
of the high2 point. Thus, we conclude that high2(v) = high(u).

Lemma 5.102. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such
that high1(v) ̸= high(u). Let u′ be a vertex in H̃(high2(v)) such that u ≥ u′ ≥ v. Then u′

is an ancestor of u.

Proof. Since (u, v, w) induces a Type-3βii-4 4-cut, we have that u is a descendant of
v. Thus, u ≥ u′ ≥ v implies that u′ is also a descendant of v. Since high1(v) ̸= high(u),
by Lemma 5.101 we have that high2(v) = high(u) and e = ehigh(v), where e is the
back-edge in the 4-cut induced by (u, v, w).

Since u′ ∈ H̃(high2(v)), we have that either high1(u′) = high2(v), or high2(u′) =

high2(v). In either case then, there is a back-edge (x, y) ∈ B(u) such that y = high2(v).
Then, we have that x is a descendant of u′, and therefore a descendant of v. Furher-
more, y = high2(v) is a proper ancestor of v. This shows that (x, y) ∈ B(v). Since
(u, v, w) induces a Type-3βii-4 4-cut, by Lemma 5.101 we have that w ≤ low(u).
Then, we have that w ≤ low(u) ≤ high(u) = high2(v) = y. This implies that y cannot

384

be a proper ancestor of w, and therefore we have that (x, y) /∈ B(w). Since (u, v, w)

induces a Type-3βii-4 4-cut, we have that B(v) = (B(u) ⊔ B(w)) ⊔ {e}. Thus, since
(x, y) ∈ B(v) and (x, y) /∈ B(w), we have that either (x, y) ∈ B(u), or (x, y) = e.

Let us suppose, for the sake of contradiction, that (x, y) = e. Since e = ehigh(v),
we have that y = high1(v). Since high1(v) ̸= high(u) and high(u) = high2(v), we have
that high1(v) ̸= high2(v). But then y = high1(v) contradicts the fact that y = high2(v).
This shows that (x, y) ̸= e. Thus, we have that (x, y) ∈ B(u). This implies that x is a
common descendant of u and u′. Thus, we have that u and u′ are related as ancestor
and descendant. Then, u ≥ u′ implies that u′ is an ancestor of u.

Lemma 5.103. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such
that M(B(v) \ {e}) ̸= M(v), where e is the back-edge in the 4-cut induced by (u, v, w).
Let u′ be a vertex in H(high1(v)) such that u ≥ u′ ≥ v. Then u′ is an ancestor of u.

Proof. Since (u, v, w) induces a Type-3βii-4 4-cut, we have that u is a descendant
of v. Thus, u ≥ u′ ≥ v implies that u′ is also a descendant of v. Lemma 5.101
implies that either high1(v) = high(u), or high2(v) = high(u). In any case, then, since
high2(v) ≤ high1(v), we have that high(u) ≤ high1(v).

Since u′ ∈ H(high1(v)), we have that high(u′) = high1(v). Thus, there is a back-
edge (x, y) ∈ B(u) such that y = high1(v). Then, we have that x is a descendant of
u′, and therefore a descendant of v. Furhermore, y = high1(v) is a proper ancestor
of v. This shows that (x, y) ∈ B(v). Since (u, v, w) induces a Type-3βii-4 4-cut, by
Lemma 5.101 we have that w ≤ low(u). Then, we have that w ≤ low(u) ≤ high(u) ≤
high1(v) = y. This implies that y cannot be a proper ancestor of w, and therefore
we have that (x, y) /∈ B(w). Since (u, v, w) induces a Type-3βii-4 4-cut, we have that
B(v) = (B(u)⊔B(w))⊔{e}. Thus, since (x, y) ∈ B(v) and (x, y) /∈ B(w), we have that
either (x, y) ∈ B(u), or (x, y) = e. If (x, y) ∈ B(u), then we have that x is a common
descendant of u and u′. Thus, u and u′ are related as ancestor and descendant. Then,
u ≥ u′ implies that u′ is an ancestor of u. So let us assume that (x, y) /∈ B(u). This
implies that (x, y) = e.

Let us suppose, for the sake of contradiction, that u′ is not an ancestor ofM(v) (∗).
Since e = (x, y) ∈ B(u′) ∩ B(v), we have that x is a descendant of both u′ and M(v).
Thus, u′ and M(v) are related as ancestor and descendant. Then, since u′ is not an
ancestor of M(v), we have that u′ is a proper descendant of M(v). Let c be the child
of M(v) that is an ancestor of u′. Since M(B(v) \ {e}) ̸= M(v), we have that e is the

385

only back-edge in B(v) whose higher endpoint is not a descendant of M(B(v) \ {e}).
Furthermore, since M(B(v) \ {e}) ̸= M(v), we have that M(B(v) \ {e}) is a proper
descendant of M(v). Let c′ be the child of M(v) that is an ancestor of M(B(v) \ {e}).

Let (x′, y′) be a back-edge in B(v). Then, if (x′, y′) = e, we have that (x′, y′) = (x, y),
and therefore x′ is a descendant of u′, and therefore a descendant of c. Otherwise, if
(x′, y′) ̸= e, then we have that (x′, y′) ∈ B(v) \ {e}, and therefore x′ is a descendant of
M(B(v)\{e}), and therefore a descendant of c′. This shows that there is no back-edge
of the form (M(v), z) ∈ B(v). Let us suppose, for the sake of contradiction, that c = c′.
Then, the previous argument shows that all back-edges in B(v) stem from T (c′), and
therefore M(v) is a descendant of c′, which is absurd. Thus, we have that c ̸= c′.

Since the graph is 3-edge-connected, we have that |B(u′)| > 1. Thus, there is a
back-edge (x′, y′) ∈ B(u′) \ {e}. Since u′ is a descendant of v with high(u′) = high1(v),
by Lemma 3.3 we have that B(u′) ⊆ B(v). Thus, (x′, y′) ∈ B(u′) implies that
(x′, y′) ∈ B(v). Then, since (x′, y′) ̸= e, we have that (x′, y′) ∈ B(v) \ {e}, and there-
fore x′ is a descendant of M(B(v) \ {e}), and therefore a descendant of c′. But since
(x′, y′) ∈ B(u′), we have that x′ is a descendant of u′, and therefore a descendant of
c. Thus, x′ is a common descendant of c and c′, and therefore c and c′ are related as
ancestor and descendant, which is absurd. Thus, starting from (∗), we have arrived
at a contradiction. This shows that u′ is an ancestor of M(v).

Since B(v) = (B(u) ⊔ B(w)) ⊔ {e}, we have that B(u) ⊆ B(v), and therefore M(u)

is a descendant of M(v). Since u′ is an ancestor of M(v), this implies that M(u) is
a descendant of u′. Thus, M(u) is a common descendant of u and u′, and therefore
u and u′ are related as ancestor and descendant. Thus, u ≥ u′ implies that u′ is an
ancestor of u.

Lemma 5.104. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such
that high1(v) = high(u) and y ̸= high1(v), where y is the lower endpoint of the back-edge
in the 4-cut induced by (u, v, w). Let u′ be a vertex in H(high1(v)) such that u ≥ u′ ≥ v.
Then u′ is an ancestor of u.

Proof. Let e = (x, y) be the back-edge in the 4-cut induced by (u, v, w). Since (u, v, w)
induces a Type-3βii-4 4-cut, we have that u is a descendant of v. Thus, u ≥ u′ ≥ v

implies that u′ is also a descendant of v. Since u′ ∈ H(high1(v)), we have high(u′) =

high1(v). This implies that there is a back-edge (x′, y′) ∈ B(u′) such that y′ = high1(v).
Then, x′ is a descendant of u′, and therefore a descendant of v. Furthermore, y =

386

high1(v) is a proper ancestor of v. This shows that (x′, y′) ∈ B(v). Since (u, v, w)

induces a Type-3βii-4 4-cut, by Lemma 5.101 we have w ≤ low(u). Thus, we have
w ≤ low(u) ≤ high(u) = high1(v) = y′. This implies that y′ cannot be a proper ancestor
of w, and therefore we have (x′, y′) /∈ B(w). Since (u, v, w) induces a Type-3βii-4 4-cut,
we have B(v) = (B(u)⊔B(w))⊔{e}. Thus, since (x′, y′) ∈ B(v) and (x′, y′) /∈ B(w), we
have that either (x′, y′) ∈ B(u), or (x′, y′) = e. The case (x′, y′) = e is rejected, because
it implies that y′ = y, contradicting the fact that y′ = high1(v) and y ̸= high1(v). Thus,
we have (x′, y′) ∈ B(u). This implies that x′ is a descendant of u. Thus, x′ is a common
descendant of u and u′, and therefore u and u′ are related as ancestor and descendant.
Since u ≥ u′, this implies that u′ is an ancestor of u.

Here, we distinguish the following four different cases, depending on the location
of the endpoints of the back-edge e:

1. M(B(v) \ {e}) ̸= M(v) and high1(v) > high(u).

2. M(B(v) \ {e}) ̸= M(v) and high1(v) = high(u).

3. M(B(v) \ {e}) = M(v) and high1(v) > high(u).

4. M(B(v) \ {e}) = M(v) and high1(v) = high(u).

The case where M(B(v) \ {e}) ̸= M(v) and high1(v) > high(u)

Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such that
M(B(v) \ {e}) ̸= M(v) and high1(v) > high(u), where e is the back-edge in the 4-
cut induced by (u, v, w). Then, by Lemma 5.101 we have high1(v) ̸= high2(v) and
e = ehigh(v).

Let v ̸= r be a vertex such that high1(v) ̸= high2(v) andM(B(v)\{ehigh(v)}) ̸= M(v).
Then, we let V (v) denote the collection of all vertices v′ ̸= r such that high1(v′) ̸=
high2(v′) = high2(v) and M(B(v)\{ehigh(v)}) = M(B(v′)\{ehigh(v′)}) ̸= M(v′). (We note
that v ∈ V (v).) If a vertex v ̸= r does not satisfy high1(v) ̸= high2(v) and M(B(v) \
{ehigh(v)}) ̸= M(v), then we let V (v) = ∅.

Lemma 5.105. Let v and v′ be two distinct vertices such that v′ ∈ V (v). Then, B(v) ⊔
{ehigh(v′)} = B(v′) ⊔ {ehigh(v)}.

387

Proof. Since v′ ∈ V (v), we have high1(v) ̸= high2(v) = high2(v′) ̸= high1(v′) and M(v) ̸=
M(B(v) \ {ehigh(v)}) = M(B(v′) \ {ehigh(v′)}) ̸= M(v′). Since high1(v) ̸= high2(v), we
have high1(v) > high2(v). Similarly, we have high1(v′) > high2(v′). Furthermore, ehigh(v)
is the unique back-edge in B(v) whose lower endpoint is high1(v), and ehigh(v

′) is the
unique back-edge in B(v′) whose lower endpoint is high1(v′).

Let (x, y) be a back-edge in B(v) such that y = high2(v). Then we have that x is a
descendant of v. Furthermore, since (x, y) ∈ B(v)\{ehigh(v)} andM(B(v)\{ehigh(v)}) =
M(B(v′) \ {ehigh(v′)}), we have that x is a descendant of M(B(v′) \ {ehigh(v′)}), and
therefore a descendant ofM(v′), and therefore a descendant of v′. Thus, x is a common
descendant of v and v′, and therefore we have that v and v′ are related as ancestor
and descendant. Thus, we may assume w.l.o.g. that v′ is a proper ancestor of v.

Let us suppose, for the sake of contradiction, that ehigh(v′) ∈ B(v). Then, since
high1(v′) > high2(v′) = high2(v), we have that ehigh(v) = ehigh(v

′). This implies that
high1(v′) = high1(v). Thus, since v′ is a proper ancestor of v, Lemma 3.3 implies
that B(v) ⊆ B(v′). Since the graph is 3-edge-connected, this can be strengthened to
B(v) ⊂ B(v′). Thus, there is a back-edge (x, y) ∈ B(v′) \ B(v). Then y is a proper
ancestor of v′, and therefore a proper ancestor of v. Thus, x cannot be a descendant
of v. Since M(v′) is an ancestor of x, this implies that M(v′) cannot be a descendant
of v. Let (x′, y′) be a back-edge in B(v). Then, x′ is a descendant of v. Furthermore,
B(v) ⊆ B(v′) implies that (x′, y′) ∈ B(v′), and therefore x′ is a descendant of M(v′).
Thus, x′ is a common descendant of v and M(v′), and therefore v and M(v′) are
related as ancestor and descendant. Since M(v′) is not a descendant of v, this implies
that M(v′) is a proper ancestor of v. Let c be the child of M(v′) that is an ancestor of
v. Since ehigh(v

′) ∈ B(v), we have that the higher endpoint of ehigh(v′) is a descendant
of v, and therefore a descendant of c. Now let (x′, y′) be a back-edge in B(v′). If
(x′, y′) = ehigh(v

′), then we have that x′ is a descendant of c. If (x′, y′) ̸= ehigh(v
′), then

we have (x′, y′) ∈ B(v′) \ {ehigh(v′)}, and therefore x is a descendant of M(B(v′) \
{ehigh(v′)}) = M(B(v) \ {ehigh(v)}), and therefore a descendant of v, and therefore a
descendant of c. Thus, in either case we have that x′ is a descendant of c. Due to the
generality of (x′, y′) ∈ B(v′), this implies that M(v′) is a descendant of c. But this is
absurd, since c is a child of M(v′). This shows that ehigh(v′) /∈ B(v).

Notice that we cannot have ehigh(v) ∈ B(v′). (Because otherwise, since high1(v) >
high2(v) = high2(v′), we would have ehigh(v) = ehigh(v

′), contradicting the fact that
ehigh(v

′) /∈ B(v).) Now let (x, y) be a back-edge in B(v) \ {ehigh(v)}. Then x is

388

a descendant of v, and therefore a descendant of v′. Furthermore, y is an an-
cestor of high2(v) = high2(v′), and therefore a proper ancestor of v′. This shows
that (x, y) ∈ B(v′). Due to the generality of (x, y) ∈ B(v) \ {ehigh(v)}, this implies
that B(v) \ {ehigh(v)} ⊆ B(v′). And since ehigh(v

′) /∈ B(v), this can be strengthened
to B(v) \ {ehigh(v)} ⊆ B(v′) \ {ehigh(v′)}. Conversely, let (x, y) be a back-edge in
B(v′) \ {ehigh(v′)}. Then, x is a descendant of M(B(v′) \ {ehigh(v′)}), and therefore
a descendant of M(B(v) \ {ehigh(v)}), and therefore a descendant of M(v). Further-
more, y is an ancestor of high2(v′) = high2(v), and therefore a proper ancestor of v.
This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(v′) \ {ehigh(v′)},
this implies that B(v′) \ {ehigh(v′)} ⊆ B(v). And since ehigh(v) /∈ B(v′), this can be
strengthened to B(v′) \ {ehigh(v′)} ⊆ B(v) \ {ehigh(v)}. Thus, we have shown that
B(v) \ {ehigh(v)} = B(v′) \ {ehigh(v′)}. Since ehigh(v) /∈ B(v′) and ehigh(v

′) /∈ B(v), this
implies that B(v) ⊔ {ehigh(v′)} = B(v′) ⊔ {ehigh(v)}.

Lemma 5.106. Let v and v′ be two distinct vertices such that v′ ∈ V (v). Then, v and
v′ belong to the same segment of H̃(high2(v)) that is maximal w.r.t. the property that its
elements are related as ancestor and descendant.

Proof. Since v′ ∈ V (v), we have that M(v) ̸= M(B(v) \ {ehigh(v)}) = M(B(v′) \
{ehigh(v′)}) ̸= M(v′) and high1(v) ̸= high2(v) = high2(v′) ̸= high1(v′). Thus, both v

and v′ belong to H̃(high2(v)). Furthermore, we have that M(B(v) \ {ehigh(v)}) =

M(B(v′) \ {ehigh(v′)}) is a common descendant of M(v) and M(v′), and therefore
a common descendant of v and v′. Thus, v and v′ are related as ancestor and descen-
dant. We may assume w.l.o.g. that v is a proper descendant of v′. This implies that
v > v′.

Let us suppose, for the sake of contradiction, that v and v′ do not belong to a
segment of H̃(high2(v)) with the property that its elements are related as ancestor and
descendant. Since H̃ is sorted in decreasing order, this means that there is a vertex
v′′ ∈ H̃(high2(v)) such that v > v′′ > v′, and v′′ is not an ancestor of v. Notice that,
since v > v′′ > v′ and v is a descendant of v′, we have that v′′ is also a descendant of
v′.

Since v′′ ∈ H̃(high2(v)) we have that either high1(v′′) = high2(v), or high2(v′′) =

high2(v). Thus, in either case, there is a back-edge (x, y) in B(v′′) such that y =

high2(v). Then, we have that x is a descendant of v′′, and therefore a descendant
of v′. Furthermore, we have y = high2(v) = high2(v′), and therefore y is a proper

389

ancestor of v′. This shows that (x, y) ∈ B(v′). Notice that we cannot have that x is
a descendant of v (because otherwise, x is a common descendant of v and v′′, and
therefore v and v′′ are related as ancestor and descendant, which is impossible, since
v′′ < v and v′′ is not an ancestor of v). This implies that (x, y) /∈ B(v). Thus, we
have (x, y) ∈ B(v′) \B(v). Lemma 5.105 implies that B(v′) \B(v) = {ehigh(v′)}. Thus,
(x, y) = ehigh(v

′). But y = high2(v) = high2(v′) and high2(v′) ̸= high1(v′), a contradiction.
This shows that v and v′ belong to a segment of H̃(high2(v)) with the property that
its elements are related as ancestor and descendant, and so they belong to a maximal
such segment.

Let v ̸= r be a vertex such that high1(v) ̸= high2(v) andM(B(v)\{ehigh(v)}) ̸= M(v).
We let W̃ (v) denote the collection of all ancestors w of high2(v) such that M(w) =

M(B(v) \ {ehigh(v)}). We also let f̃irstW(v) := max(W̃ (v)) and l̃astW(v) := min(W̃ (v)).
(If W̃ (v) = ∅, then we let f̃irstW(v) := ⊥ and l̃astW(v) := ⊥.)

Lemma 5.107. The values f̃irstW(v) and l̃astW(v) can be computed in linear time in total,
for all vertices v ̸= r.

Proof. Let v ̸= r be a vertex. If M(B(v) \ {ehigh(v)}) = M(v) or high1(v) = high2(v),
then by definition we have W̃ (v) = ∅, and therefore f̃irstW(v) = ⊥ and l̃astW(v) = ⊥.
So let us assume that M(B(v) \ {ehigh(v)}) ̸= M(v) and high1(v) ̸= high2(v).

Let x = M(B(v) \ {ehigh(v)}). Then, notice that W̃ (v) consists of all vertices w with
M(w) = x that are ancestors of high2(v). Let w = lastM(x). If w > high2(v), then
we have W̃ (v) = ∅, because this implies that every vertex w′ with M(w′) = x has
w′ > high2(v), and therefore it cannot be an ancestor of high2(v). Now suppose that
w ≤ high2(v). We have that x is a common descendant of w and v, and therefore w

and v are related as ancestor and descendant. Then w ≤ high2(v) implies that w < v,
and therefore w is an ancestor of v. Then, since v is a common descendant of w and
high2(v), we have that w and high2(v) are related as ancestor and descendant. Thus,
w ≤ high2(v) implies that w is an ancestor of high2(v). Thus, we have w ∈ W̃ (v),
and since l̃astW(v) = min(W̃ (v)), we have l̃astW(v) = w. Thus, l̃astW(v) can be easily
computed in constant time, for every vertex v.

If we have established that l̃astW(v) ̸= ⊥, then, in order to compute f̃irstW(v), we
use Algorithm 22. Specifically, we generate a query of the form q(M−1(x), high2(v)).
This is to return the greatest w with M(w) = M(B(v) \ {ehigh(v)}) such that w ≤
high2(v). Then we can show as previously that w is an ancestor of high2(v), and

390

therefore we have that w is the greatest ancestor of high2(v) such thatM(w) = M(B(v)\
{ehigh(v)}). Thus, we have w = f̃irstW(v). Since the number of all those queries is
O(n), Lemma 5.27 implies that Algorithm 22 can compute all of them in O(n) time
in total.

Let v ̸= r be a vertex such that high1(v) ̸= high2(v) andM(B(v)\{ehigh(v)}) ̸= M(v).
Let S̃ be the segment of H̃(high2(v)) that contains v and is maximal w.r.t. the property
that all its elements are related as ancestor and descendant (i.e., S̃ = S̃2(v)). Then,
U1
4 (v) is the collection of all vertices u ∈ S̃ such that: (1) u is a proper descendant of

v with high(u) = high2(v), (2) low(u) ≥ l̃astW(v), and (3) either low(u) < ˜firstW(v), or
u is the lowest vertex in S̃ that satisfies (1), (2) and low(u) ≥ f̃irstW(v).

Lemma 5.108. Let v and v′ be two vertices ̸= r such that v′ is a proper descendant of
v with high1(v) ̸= high2(v) = high2(v′) ̸= high1(v′), M(B(v) \ {ehigh(v)}) ̸= M(v) and
M(B(v′) \ {ehigh(v′)}) ̸= M(v′). Let us assume that v and v′ belong to the same segment S̃
of H̃(high2(v)) that is maximal w.r.t. the property that its elements are related as ancestor
and descendant. Let us further assume that v′ /∈ V (v), W̃ (v) ̸= ∅ and W̃ (v′) ̸= ∅. If
U1
4 (v

′) = ∅, then U1
4 (v) = ∅. If U1

4 (v) ̸= ∅, then the lowest vertex in U1
4 (v) is greater than,

or equal to, the greatest vertex in U1
4 (v

′).

Proof. First we will show that M(B(v) \ {ehigh(v)}) is a proper ancestor of v′, and
f̃irstW(v′) is a proper ancestor of l̃astW(v).

Since high1(v) ̸= high2(v) = high2(v′) ̸= high1(v′), M(B(v) \ {ehigh(v)}) ̸= M(v),
M(B(v′)\{ehigh(v′)}) ̸= M(v′), and v′ /∈ V (v), we have M(B(v)\{ehigh(v)}) ̸= M(B(v′)\
{ehigh(v′)}) (because this is the only condition that prevents v′ from being in V (v)).

Since high1(v) ̸= high2(v), we have that high1(v) > high2(v), and ehigh(v) is the
unique back-edge in B(v) whose lower endpoint is high1(v). Similarly, we have that
high1(v′) > high2(v′), and ehigh(v

′) is the unique back-edge in B(v′) whose lower end-
point is high1(v′).

Now let (x, y) be a back-edge in B(v′) such that y = high2(v′). Then, x is a de-
scendant of v′, and therefore a descendant of v. Furthermore, y = high2(v′) = high2(v),
and therefore y is a proper ancestor of v. This shows that (x, y) ∈ B(v). Since
high2(v) ̸= high1(v), we have that (x, y) ̸= ehigh(v). This implies that x is a descen-
dant of M(B(v) \ {ehigh(v)}). Thus, we have that x is a common descendant of v′ and
M(B(v)\{ehigh(v)}). This shows that v′ andM(B(v)\{ehigh(v)}) are related as ancestor
and descendant.

391

Let us suppose, for the sake of contradiction, that M(B(v) \ {ehigh(v)}) is not a
proper ancestor of v′. Then we have that M(B(v) \ {ehigh(v)}) is a descendant of v′.
Let (x, y) be a back-edge in B(v) \ {ehigh(v)}. Then x is a descendant of M(B(v) \
{ehigh(v)}), and therefore a descendant of v′. Furthermore, y is a proper ancestor
of v, and therefore a proper ancestor of v′. This shows that (x, y) ∈ B(v′). Due to
the generality of (x, y) ∈ B(v) \ {ehigh(v)}, this implies that B(v) \ {ehigh(v)} ⊆ B(v′).
Notice that, if ehigh(v′) ∈ B(v), then, since high1(v′) > high2(v′) = high2(v), we have
that ehigh(v′) = ehigh(v). Thus, whether ehigh(v′) ∈ B(v) or ehigh(v′) /∈ B(v), we infer that
B(v) \ {ehigh(v)} ⊆ B(v′) can be strengthened to B(v) \ {ehigh(v)} ⊆ B(v′) \ {ehigh(v′)}.
Conversely, let (x, y) be a back-edge in B(v′)\{ehigh(v′)}. Then x is a descendant of v′,
and therefore a descendant of v. Furthermore, y is an ancestor of high2(v′) = high2(v),
and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the
generality of (x, y) ∈ B(v′) \ {ehigh(v′)}, this implies that B(v′) \ {ehigh(v′)} ⊆ B(v).
As previously, we can argue that B(v′) \ {ehigh(v′)} ⊆ B(v) can be strengthened to
B(v′) \ {ehigh(v′)} ⊆ B(v) \ {ehigh(v)}. Thus, we have shown that B(v′) \ {ehigh(v′)} =

B(v) \ {ehigh(v)}, and therefore we have M(B(v′) \ {ehigh(v′)}) = M(B(v) \ {ehigh(v)}), a
contradiction. This shows that M(B(v) \ {ehigh(v)}) is a proper ancestor of v′.

Now let w be a vertex in W̃ (v), and let w′ be a vertex in W̃ (v′). Then we have that
w is an ancestor of high2(v), and w′ is an ancestor of high2(v′). Thus, since high2(v) =
high2(v′), we have that w and w′ have a common descendant, and therefore they are
related as ancestor and descendant. Let us suppose, for the sake of contradiction,
that w′ is not a proper ancestor of w. Then we have that w′ is a descendant of w.
Since w ∈ W̃ (v), we have that M(w) = M(B(v) \ {ehigh(v)}). And since w′ ∈ W̃ (v′),
we have that M(w′) = M(B(v′) \ {ehigh(v′)}). Since M(B(v) \ {ehigh(v)}) is a proper
ancestor of v′, and v′ is an ancestor of M(B(v′) \ {ehigh(v′)}), we have that M(w) is a
proper ancestor of M(w′). Thus, there is a back-edge (x, y) ∈ B(w) such that x is not
a descendant of M(w′). Then, x is a descendant of M(w), and therefore a descendant
of M(B(v) \ {ehigh(v)}), and therefore a descendant of v, and therefore a descendant
of high2(v) = high2(v′), and therefore a descendant of w′ (since w′ ∈ W̃ (v′) implies
that w′ is an ancestor of high2(v′)). Furthermore, we have that y is a proper ancestor
of w, and therefore a proper ancestor of w′. This shows that (x, y) ∈ B(w′). But this
implies that x is a descendant of M(w′), a contradiction. This shows that w′ is a
proper ancestor of w. Due to the generality of w′ ∈ W̃ (v′), this implies that f̃irstW(w′)

is a proper ancestor of w. And due to the generality of w ∈ W̃ (v), this implies that

392

f̃irstW(v′) is a proper ancestor of l̃astW(v).
Now let us suppose, for the sake of contradiction, that there is a vertex u ∈ U1

4 (v),
and U1

4 (v
′) = ∅. Since u ∈ U1

4 (v), we have that u ∈ S̃. Thus, since v′ ∈ S̃, we have
that u and v′ are related as ancestor and descendant. Let us suppose, for the sake
of contradiction, that u is not a descendant of v′. Then, we have that u is a proper
ancestor of v′. Let (x, y) be a back-edge in B(v′) such that y = low(v′). Then, x is
a descendant of v′, and therefore a descendant of u. Furthermore, y is an ancestor
of high2(v′) = high2(v), and therefore a proper ancestor of v, and therefore a proper
ancestor of u (since u ∈ U1

4 (v) implies that u is a proper descendant of v). This shows
that (x, y) ∈ B(u).

We have that M(f̃irstW(v′)) = M(B(v′) \ {ehigh(v′)}) and M(B(v′) \ {ehigh(v′)}) is
a descendant of M(v′). Thus, M(f̃irstW(v′)) is a descendant of M(v′). Furthermore,
since f̃irstW(v′) is an ancestor of high2(v′), we have that f̃irstW(v′) is a proper ancestor
of v′. Thus, Lemma 3.2 implies that B(f̃irstW(v′)) ⊆ B(v′), and therefore low(v′) <

f̃irstW(v′). Thus, since y = low(v′), we have y < f̃irstW(v′), and therefore y < l̃astW(v)

(since f̃irstW(v′) < l̃astW(v)). Since (x, y) ∈ B(u), we have that low(u) ≤ y, and
therefore low(u) < l̃astW(v). But this contradicts the fact that low(u) ≥ l̃astW(v) (which
is an implication of u ∈ U1

4 (v)). This shows that u is a descendant of v′. Since high(u) =
high2(v) = high2(v′) ̸= high1(v′), we have that u ̸= v′. Thus, u is a proper descendant
of v′. Thus, we have the following facts: u ∈ S̃, u is a proper descendant of v′,
high(u) = high2(v) = high2(v′), and low(u) ≥ l̃astW(v) > f̃irstW(v′). But this implies
that U1

4 (v
′) ̸= ∅ (because we can consider the lowest u that has those properties). A

contradiction. This shows that if U1
4 (v

′) = ∅, then U1
4 (v) = ∅.

Now let us assume that U1
4 (v) ̸= ∅. This implies that U1

4 (v
′) ̸= ∅. Let us suppose,

for the sake of contradiction, that there is a vertex u ∈ U1
4 (v) that is lower than the

greatest vertex u′ in U1
4 (v

′). Since u ∈ U1
4 (v), we have that u ∈ S̃. Since u′ ∈ U1

4 (v
′) we

have that u′ ∈ S̃. This implies that u and u′ are related as ancestor and descendant.
Thus, since u is lower than u′, we have that u is a proper ancestor of u′.

Let us suppose, for the sake of contradiction, that low(u′) is a proper ancestor
of f̃irstW(v′). Then, since f̃irstW(v′) is a proper ancestor of l̃astW(v), we have that
low(u′) is a proper ancestor of l̃astW(v). Now let (x, y) be a back-edge in B(u′) such
that y = low(u′). Then x is a descendant of u′, and therefore a descendant of u.
Furthermore, y is a proper ancestor of l̃astW(v), and therefore a proper ancestor of
high2(v), and therefore a proper ancestor of v, and therefore a proper ancestor of u.

393

This shows that (x, y) ∈ B(u). Thus, we have low(u) ≤ y < l̃astW(v), in contradiction
to the fact that u ∈ U1

4 (v). Thus, our last supposition is not true, and therefore we
have that low(u′) is not a proper ancestor of f̃irstW(v′).

Since u′ ∈ U1
4 (v

′), we have that u′ is a descendant of v′, and therefore a descendant
of high2(v′), and therefore a descendant of f̃irstW(v′). Thus, u′ is a common descendant
of low(u′) and f̃irstW(v′), and therefore low(u′) and f̃irstW(v′) are related as ancestor
and descendant. Thus, since low(u′) is not a proper ancestor of f̃irstW(v′), we have
that low(u′) is a descendant of f̃irstW(v′), and therefore low(u′) ≥ f̃irstW(v′). Therefore,
since u′ ∈ U1

4 (v
′), we have that u′ is the lowest proper descendant of v′ in S̃ such that

high(u′) = high2(v′) and low(u′) ≥ f̃irstW(v′) (∗).
Now we will trace the implications of u ∈ U1

4 (v). First, we have that u ∈ S̃. Then,
we have high(u) = high2(v) = high2(v′). Furthermore, we have that low(u) ≥ l̃astW(v),
and therefore low(u) > f̃irstW(v′) (since f̃irstW(v′) is a proper ancestor of l̃astW(v)).
Finally, we can show as above that u is a proper descendant of v′ (the proof of this
fact above did not rely on U1

4 (v
′) = ∅). But then, since u is lower than u′, we have

a contradiction to (∗). Thus, we have shown that every vertex in U1
4 (v) is at least as

great as the greatest vertex in U1
4 (v

′). In particular, this implies that the lowest vertex
in U1

4 (v) is greater than, or equal to, the greatest vertex in U1
4 (v

′).

Due to the similarity of the definitions of the U2 and the U1
4 sets, and the similarity

between Lemmata 5.87 and 5.108, we can use a similar procedure as Algorithm 40
in order to compute all U1

4 sets in linear time. This is shown in Algorithm 46. Our
result is summarized in Lemma 5.109.

Lemma 5.109. Let V be a collection of vertices such that:

(1) For every v ∈ V, we have v ̸= r and M(B(v) \ {ehigh(v)}) ̸= M(v) and high1(v) ̸=
high2(v).

(2) For every v, v′ ∈ V with v ̸= v′, we have v′ /∈ V (v).

(3) For every v ∈ V, we have W̃ (v) ̸= ∅, and the vertices f̃irstW(v) and l̃astW(v) are
computed.

Then, Algorithm 46 correctly computes the sets U1
4 (v), for all vertices v ∈ V. Furthermore,

on input V, Algorithm 46 runs in linear time.

394

Algorithm 46: Compute all sets U1
4 (v), for a collection of vertices V that

satisfies the properties described in Lemma 5.109
1 foreach vertex x do

2 compute the collection S(x) of the segments of H̃(x) that are maximal w.r.t. the

property that their elements are related as ancestor and descendant

3 end

4 foreach vertex v ∈ V do

5 set U1
4 (v)← ∅

6 end

7 foreach vertex x do

8 foreach segment S ∈ S(x) do

9 let v be the first vertex in S

10 while v ̸= ⊥ and (v /∈ V or high2(v) ̸= x) do

11 v ← nextS(v)

12 end

13 if v = ⊥ then continue

14 let u← prevS(v)

15 while v ̸= ⊥ do

16 while u ̸= ⊥ and low(u) < l̃astW(v) do

17 u← prevS(u)

18 end

19 while u ̸= ⊥ and low(u) < f̃irstW(v) do

20 if high(u) = x then

21 insert u into U1
4 (v)

22 end

23 u← prevS(u)

24 end

25 while u ̸= ⊥ and high(u) ̸= x do

26 u← prevS(u)

27 end

28 if u ̸= ⊥ then

29 insert u into U1
4 (v)

30 end

31 v ← nextS(v)

32 while v ̸= ⊥ and (v /∈ V or high2(v) ̸= x) do

33 v ← nextS(v)

34 end

35 end

36 end

37 end

395

Proof. The proof is the same as that of Lemma 5.88 (which is given in the main text,
in the two paragraphs right above Algorithm 40). Notice that the difference between
Algorithm 40 and Algorithm 46 is that the second algorithm has a different set V of
vertices for which the U1

4 sets are defined, and the occurrences of “firstW” and “lastW”
are replaced with “f̃irstW” and “l̃astW”, respectively. Now we can use the argument
of Lemma 5.88, by just replacing the references to Lemma 5.87 with references to
Lemma 5.108.

Lemma 5.110. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such
that M(B(v) \ {e}) ̸= M(v) and high1(v) > high(u), where e is the back-edge in the 4-cut
induced by (u, v, w). Then u ∈ U1

4 (v). Furthermore, for every v′ ∈ V (v) we have that
(u, v′, w) is a triple of vertices that induces a Type-3βii-4 4-cut.

Proof. Since high1(v) > high(u), by Lemma 5.101 we have that high(u) = high2(v). Now
let u′ be a vertex with u ≥ u′ ≥ v such that u′ ∈ H̃(high2(v)). Since high1(v) ̸= high(u),
Lemma 5.102 implies that u′ is an ancestor of u. Thus, we have that u and v belong
to the same segment S̃ of H̃(high2(v)) that is maximal w.r.t. the property that its
elements are related as ancestor and descendant.

Since (u, v, w) induces a Type-3βii-4 4-cut, we have that w is a proper ancestor of v
withM(w) = M(B(v)\{e}). By Lemma 5.101 we have that e = ehigh(v) and w ≤ low(u).
Since high1(v) > high(u) and high(u) = high2(v), we have that high1(v) ̸= high2(v). Since
w is a proper ancestor of v with w ≤ low(u) ≤ high(u) = high2(v), we have that w is
an ancestor of high2(v). This shows that w ∈ W̃ (v), and therefore w ≤ f̃irstW(v). Since
w ≤ low(u) and l̃astW(v) ≤ w, we have l̃astW(v) ≤ low(u). Now, if low(u) < f̃irstW(v),
then u satisfies enough conditions to be in U1

4 (v). Otherwise, let us assume that
low(u) ≥ f̃irstW(v).

Let us suppose, for the sake of contradiction, that u is not the lowest vertex in S̃

that is a proper descendant of v such that high(u) = high2(v) and low(u) ≥ f̃irstW(v).
Then, there is a vertex u′ ∈ S̃ that is a proper descendant of v such that u′ < u,
high(u′) = high2(v) and low(u′) ≥ f̃irstW(v). Since both u and u′ are in S̃, we have that
u and u′ are related as ancestor and descendant. Thus, u′ < u implies that u′ is a
proper ancestor of u. Now let (x, y) be a back-edge in B(u). Then, x is a descendant
of u, and therefore a descendant of u′. Furthermore, since high(u) = high2(v), we have
that y is a proper ancestor of v, and therefore a proper ancestor of u′. This shows that
(x, y) ∈ B(u′). Due to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(u′).

396

Conversely, let (x, y) be a back-edge in B(u′). Then x is a descendant of u′, and
therefore a descendant of v. Furthermore, y is an ancestor of high(u′) = high2(v), and
therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Since (u, v, w) induces
a Type-3βii-4 4-cut, we have that B(v) = (B(u) ⊔ B(w)) ⊔ {e}. This implies that
either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. Since y ≥ low(u′) ≥ f̃irstW(v) ≥
w, we have that (x, y) cannot be in B(w). Since high1(v) ̸= high2(v), we have that
high1(v) > high2(v). Thus, since e = ehigh(v) and high1(v) > high2(v) = high(u′), we have
that e /∈ B(u′). Thus, (x, y) ∈ B(u) is the only viable option. Due to the generality
of (x, y) ∈ B(u′), this implies that B(u′) ⊆ B(u). Thus, we have B(u′) = B(u), in
contradiction to the fact that the graph is 3-edge-connected. This shows that u is the
lowest vertex in S̃ that is a proper descendant of v such that high(u) = high2(v) and
low(u) ≥ f̃irstW(v). Thus, u satisfies enough conditions to be in U1

4 (v).
Since high1(v) ̸= high2(v) and M(B(v) \ {ehigh(v)}) ̸= M(v), we have that v ∈ V (v).

Now let v′ be a vertex in V (v) such that v′ ̸= v. Then, by Lemma 5.105 we have
B(v) ⊔ {ehigh(v′)} = B(v′) ⊔ {ehigh(v)}. This implies that B(v) \ {ehigh(v)} = B(v′) \
{ehigh(v′)}. Also, B(v) = (B(u) ⊔ B(w)) ⊔ {ehigh(v)} implies that B(v) \ {ehigh(v)} =

B(u) ⊔ B(w). Thus, we infer that B(v′) \ {ehigh(v′)} = B(u) ⊔ B(w), and therefore
B(v′) = (B(u) ⊔ B(w)) ∪ {ehigh(v′)}.

Since v′ ∈ V (v), we have high1(v′) ̸= high2(v′) = high2(v). This implies that
high1(v′) > high2(v′), and therefore high1(v′) > high(u) (since high2(v′) = high(u)).
Thus, we cannot have ehigh(v

′) ∈ B(u). Furthermore, since w ≤ low(u) ≤ high(u) =

high2(v) = high2(v′) < high1(v′), we have that ehigh(v
′) /∈ B(w). Thus, B(v′) =

(B(u)⊔B(w))∪{ehigh(v′)} can be strengthened to B(v′) = (B(u)⊔B(w))⊔{ehigh(v′)}. Fi-
nally, since v′ ∈ V (v), we have thatM(B(v′)\{ehigh(v′)}) = M(B(v)\{ehigh(v)}) = M(w).
Thus, we conclude that (u, v′, w) induces a Type-3βii-4 4-cut.

Lemma 5.111. Let (u, v, w) be a triple of vertices such that high1(v) ̸= high2(v), M(B(v)\
{ehigh(v)}) ̸= M(v) and u ∈ U1

4 (v). Then, (u, v, w) induces a Type-3βii-4 4-cut if and only
if: bcount(v) = bcount(u) + bcount(w) + 1, and w is the greatest proper ancestor of v with
M(w) = M(B(v) \ {ehigh(v)}) such that w ≤ low(u).

Proof. (⇒) Since (u, v, w) induces a Type-3βii-4 4-cut, we have B(v) = (B(u)⊔B(w))⊔
{e}, where e is the back-edge in the 4-cut induced by (u, v, w). Thus, we get bcount(v) =
bcount(u) + bcount(w) + 1. Since high1(v) ̸= high2(v) we have high1(v) > high2(v). Since
u ∈ U1

4 (v) we have high(u) = high2(v). This implies that high1(v) > high(u). Thus,

397

by Lemma 5.101 we have e = ehigh(v). Since (u, v, w) induces a Type-3βii-4 4-cut,
we have M(w) = M(B(v) \ {e}). Thus, M(w) = M(B(v) \ {ehigh(v)}). Furthermore,
Lemma 5.101 implies that w ≤ low(u).

Now let us suppose, for the sake of contradiction, that there is an ancestor w′ of
v with w′ > w, such that M(w′) = M(B(v) \ {ehigh(v)}) and w′ ≤ low(u). Then, we
have that v is a common descendant of w and w′, and therefore w and w′ are related
as ancestor and descendant. Thus, w′ > w implies that w′ is a proper descendant
of w. Then, since M(w′) = M(w), Lemma 3.2 implies that B(w) ⊆ B(w′). Since the
graph is 3-edge-connected, this can be strengthened to B(w) ⊂ B(w′). Thus, there is
a back-edge (x, y) ∈ B(w′) \ B(w). Then, we have that x is a descendant of M(w′),
and therefore a descendant of M(B(v) \ {ehigh(v)}), and therefore a descendant of
M(v). Furthermore, we have that y is a proper ancestor of w′, and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Then, B(v) = (B(u)⊔B(w))⊔{e} implies
that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is
rejected, since y < w′ ≤ low(u). Furthermore, the case (x, y) = e is rejected, since
e = ehigh(v), and high1(v) > high(u) ≥ low(u) (but y < w′ ≤ low(u)). Thus, we have
(x, y) ∈ B(w), which is impossible, since (x, y) ∈ B(w′)\B(w). This shows that w is the
greatest proper ancestor of v with M(w) = M(B(v) \ {ehigh(v)}) such that w ≤ low(u).

(⇐) We have to show that there is a back-edge e such that B(v) = (B(u)⊔B(w))⊔
{e}, and M(w) = M(B(v) \ {e}).

Since w ≤ low(u), we have B(u) ∩ B(w) = ∅ (because, if there existed a back-edge
in B(u) ∩B(w), its lower endpoint would be lower than w, and therefore lower than
low(u), which is impossible). Let (x, y) be a back-edge in B(u). Since u ∈ U1

4 (v), we
have that u is a proper descendant of v with high(u) = high2(v). Thus, (x, y) ∈ B(u)

implies that x is a descendant of v. Furthermore, since y ∈ B(u), we have that y is an
ancestor of high(u) = high2(v), and therefore a proper ancestor of v. This shows that
(x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(v).

Let (x, y) be a back-edge in B(w). Then, x is a descendant of M(w) = M(B(v) \
{ehigh(v)}), and therefore a descendant of v. Furthermore, y is a proper ancestor of
w, and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the
generality of (x, y) ∈ B(w), this implies that B(w) ⊆ B(v).

Since high1(v) ̸= high2(v), we have high1(v) > high2(v). Then, since u ∈ U1
4 (v), we

have high(u) = high2(v), and therefore high1(v) > high(u), and therefore we cannot
have ehigh(v) ∈ B(u) (because the lower endpoint of ehigh(v) is greater than high(u)).

398

Furthermore, since w ≤ low(u) ≤ high(u) = high2(v) < high1(v), we have ehigh(v) /∈ B(w)

(because the lower endpoint of ehigh(v) is greater than w).
Thus, we have B(u) ⊆ B(v), B(w) ⊆ B(v), and the sets B(u), B(w), and {ehigh(v)}

are mutually disjoint. Thus, bcount(v) = bcount(u) + bcount(w) + 1 implies that B(v) =

(B(u)⊔B(w))⊔{ehigh(v)}. By assumption, we have M(w) = M(B(v) \ {ehigh(v)}). This
shows that (u, v, w) induces a Type-3βii-4 4-cut.

Algorithm 47: Compute a collection of Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is an ancestor of v, v is an ancestor of
u, M(B(v) \ {e}) ̸= M(v) and high1(v) ̸= high(u), such that all 4-cuts of this form
are implied from this collection plus that returned by Algorithm 24

1 select a representative vertex for every non-empty set in
{V (v) | v is a vertex ̸= r}; call this vertex a “marked” vertex

// If V (v) ̸= ∅, for a vertex v ̸= r, then the representative vertex of

V (v) is a vertex v′ ∈ V (v), and so it has M(B(v′) \ {ehigh(v′)}) ̸= M(v′)

and high2(v′) ̸= high1(v′)
2 foreach marked vertex v do
3 if W̃ (v) ̸= ∅ then
4 compute the set U1

4 (v)

5 end

6 end
7 foreach marked vertex v do
8 foreach u ∈ U1

4 (v) do
9 let w be the greatest proper ancestor of v such that

M(w) = M(B(v) \ {ehigh(v)}) and w ≤ low(u)
10 if bcount(v) = bcount(u) + bcount(w) + 1 then
11 mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v)} as a Type-3βii-4 4-cut

12 end

13 end

14 end

Proposition 5.29. Algorithm 47 computes a collection C of Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where M(B(v) \ {e}) ≠ M(v) and high1(v) ̸= high(u).

399

Let C ′ be the collection of Type-2ii 4-cuts returned by Algorithm 24. Then, every Type-
3βii-4 4-cut of the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where M(B(v) \ {e}) ̸= M(v)

and high1(v) ̸= high(u) is implied by C ∪ C ′. Finally, Algorithm 47 has a linear-time
implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v)} be a 4-element set that is marked
in Line 11. Then we have that v is a marked vertex, and therefore it has M(B(v) \
{ehigh(v)}) ̸= M(v) and high2(v) ̸= high1(v). We also have that u ∈ U1

4 (v), w is the
greatest proper ancestor of v such that M(w) = M(B(v) \ {ehigh(v)}) and w ≤ low(u),
and bcount(v) = bcount(u)+bcount(w)+1. Thus, all the conditions of Lemma 5.111 are
satisfied, and therefore we have that (u, v, w) induces a Type-3βii-4 4-cut. Let e be the
back-edge in the 4-cut induced by (u, v, w). Since u ∈ U1

4 (v) we have high(u) = high2(v).
Therefore, high2(v) ̸= high1(v) implies that high(u) ̸= high1(v). Thus, Lemma 5.101
implies that e = ehigh(v). Therefore, we have that C is the Type-3βii-4 4-cut induced
by (u, v, w). So let C be the collection of all Type-3βii-4 4-cuts marked in Line 11.

Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βii-4 4-cut, where w is a proper
ancestor of v, v is a proper ancestor of u,M(B(v)\{e}) ̸= M(v) and high1(v) ̸= high(u).
Since high1(v) ̸= high(u), Lemma 5.101 implies that high1(v) > high(u) and e = ehigh(v).
Thus, Lemma 5.110 implies that u ∈ U1

4 (v). Since u ∈ U1
4 (v)we have high(u) = high2(v).

Therefore, high1(v) > high(u) implies that high1(v) ̸= high2(v). Thus, Lemma 5.111
implies that bcount(v) = bcount(u)+bcount(w)+1, and w is the greatest proper ancestor
of v such that M(w) = M(B(v) \ {ehigh(v)}) and w ≤ low(u). Thus, if v is one of the
marked vertices, then C satisfies enough conditions to be marked in Line 11, and
therefore C ∈ C. So let us assume that v is not one of the marked vertices.

Since high1(v) ̸= high2(v) and M(B(v) \ {ehigh(v)}) ̸= M(v), we have that V (v) ̸=
∅. Let v′ be the marked vertex that was picked as a representative of V (v) in
Line 1. Then, Lemma 5.110 implies that (u, v′, w) induces a Type-3βii-4 4-cut C ′.
Then, since v′ ∈ V (v) we have high1(v′) ̸= high2(v′) = high2(v) = high(u) and
M(B(v′) \ {ehigh(v′)}) ̸= M(v′). Then, since high1(v′) ̸= high(u), Lemma 5.101 im-
plies that the back-edge in the 4-cut induced by (u, v′, w) is ehigh(v′), and high1(v′) >
high(u). Then, Lemma 5.110 implies that u ∈ U1

4 (v
′), and Lemma 5.111 implies that

bcount(v′) = bcount(u) + bcount(w) + 1, and w is the greatest proper ancestor of v′

such that M(w) = M(B(v′) \ {ehigh(v′)}) and w ≤ low(u). Thus, C ′ satisfies enough
conditions to be marked in Line 11, and therefore C ′ ∈ C.

Since v′ ∈ V (v) and v′ ̸= v, Lemma 5.105 implies that B(v) ⊔ {ehigh(v′)} = B(v′) ⊔

400

{ehigh(v)}. Then, Lemma 5.28 implies that C ′′ = {(v, p(v)), (v′, p(v′)), ehigh(v), ehigh(v′)}
is a Type-2ii 4-cut. Since C = {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v)} and C ′ =

{(u, p(u)), (v′, p(v′)), (w, p(w)), ehigh(v′)}, notice that C is implied by C ′ and C ′′ through
the pair of edges {(v, p(v)), ehigh(v)}. Let C ′ be the collection of Type-2ii 4-cuts com-
puted by Algorithm 24. By Proposition 5.12 we have that C ′′ is implied by C ′ through
the pair of edges {(v, p(v)), ehigh(v)}. Thus, by Lemma 5.7 we have that C is implied
by C ′ ∪ {C ′} through the pair of edges {(v, p(v)), ehigh(v)}. Therefore, C is implied by
C ′ ∪ C.

Now we will argue about the complexity of Algorithm 47. By Proposition 3.6, the
values M(B(v) \ {ehigh(v)}) can be computed in linear time in total, for all vertices
v ̸= r. Then, for every vertex v ̸= r such that high1(v) ̸= high2(v) and M(B(v) \
{ehigh(v)}) ̸= M(v), we generate a triple (v, high2(v),M(B(v) \ {ehigh(v)})). Let L be the
collection of all those triples. Then we sort L lexicographically w.r.t. the second and
the third component of its elements. We note that this sorting can be performed in
O(n) time with bucket-sort. Then, every V set corresponds to a segment of L that
is maximal w.r.t. the property that its elements coincide in their second and their
third components. Then, we just pick a triple from every such segment, we extract
its first component v, and we mark it, in order to get a marked representative of the
corresponding V set. Thus, the collection of the marked vertices in Line 1 can be
constructed in linear time.

By Lemma 5.107 we have that the vertices f̃irstW(v) and l̃astW(v) can be computed
in linear time in total, for all marked vertices v. Then, by Lemma 5.109 we have that
the sets U1

4 (v) can be computed in linear time in total, for all marked vertices v. Thus,
the for loop in Line 2 can be performed in linear time.

In order to compute the vertex w in Line 9 we use Algorithm 22. Specifi-
cally, whenever we reach Line 9, we generate a query of the form q(M−1(M(B(v) \
{ehigh(v)})),min{p(v), low(u)}). This is to return the greatest vertex w with M(w) =

M(B(v)\{ehigh(v)}) such that w ≤ min{p(v), low(u)}. SinceM(B(v)\{ehigh(v)}) = M(w)

is a common descendant of w and v, we have that w and v are related as ances-
tor and descendant. Then, w ≤ min{p(v), low(u)} implies that w ≤ p(v), and there-
fore w is a proper ancestor of v. Thus, w is the greatest proper ancestor of v with
M(w) = M(B(v)\{ehigh(v)}) such that w ≤ low(u). Now, since the number of all those
queries is O(n), Lemma 5.27 implies that Algorithm 22 can answer all of them in
O(n) time in total. We conclude that Algorithm 47 runs in linear time.

401

The case where M(B(v) \ {e}) ̸= M(v) and high1(v) = high(u)

In this case, by Lemma 3.9 we have that either e = eL(v) or e = eR(v). In this
subsection, we will focus on the case e = eL(v). Thus, whenever we consider a triple
of vertices (u, v, w) that induces a Type-3βii-4 4-cut, such that M(B(v) \ {e}) ̸= M(v)

and high1(v) = high(u), we assume that e = eL(v), where e is the back-edge in the
4-cut induced by (u, v, w). We will show how to compute all 4-cuts of this type in
linear time. The algorithms and the arguments for the case e = eR(v) are similar.

For every vertex v ̸= r, we let WL(v) denote the collection of all proper ancestors
w of v such that M(w) = M(B(v)\{eL(v)}). We also let firstWL(v) := max(WL(v)) and
lastWL(v) := min(WL(v)). (If WL(v) = ∅, then we let firstWL(v) := ⊥ and lastWL(v) :=

⊥.)

Lemma 5.112. For all vertices v ̸= r, the values firstWL(v) and lastWL(v) can be computed
in total linear time.

Proof. First, we need to have the values M(B(v) \ {eL(v)}) computed, for all vertices
v ̸= r. According to Proposition 3.6, this can be achieved in linear time in total. Now,
in order to compute lastWL(v), we just need to know whether w = lastM(M(B(v) \
{eL(v)})) is a proper ancestor of v. If that is the case, then we set lastWL(v) ← w.
Otherwise, lastWL(v) is left to be ⊥. Then, for every vertex v ̸= r, we have that
firstWL(v) is the greatest proper ancestor w of v that has M(w) = M(B(v) \ {eL(v)}).
Thus, we can compute all firstWL values using Algorithm 22. Specifically, let v ̸= r

be a vertex, and let x = M(B(v) \ {eL(v)}). Then we generate a query of the form
q(M−1(x), p(v)). This query returns the greatest vertex w inM−1(x) that has w ≤ p(v).
Since w ∈M−1(x), we have thatM(w) = M(B(v)\{eL(v)}). Thus,M(w) is an ancestor
of M(v), and therefore w is an ancestor of M(v). Therefore, M(v) is a common
descendant of w and v, and so w and v are related as ancestor and descendant. Then,
w ≤ p(v) implies that w is a proper ancestor of v. This shows that w is the greatest
proper ancestor of v such that w ∈ M−1(x). In other words, w = firstWL(v). By
Lemma 5.27 we have that all these queries can be answered in O(n) time in total.

Now let v ̸= r be a vertex such that M(B(v) \ {eL(v)}) ̸= M(v), and let S be the
segment of H(high1(v)) that contains v and is maximal w.r.t. the property that all its
elements are related as ancestor and descendant (i.e., S = S(v)). Then, we let U2

4 (v)

402

denote the collection of all vertices u ∈ S such that: (1) u is a proper descendant of
v, (2) low(u) ≥ lastWL(v), and (3) either low(u) < firstWL(v), or u is the lowest vertex
in S that satisfies (1), (2) and low(u) ≥ firstWL(v).

Lemma 5.113. Let v and v′ be two vertices such that v′ is a proper descendant of v

with high1(v) = high1(v′), M(B(v) \ {eL(v)}) ̸= M(v) and M(B(v′) \ {eL(v′)}) ̸= M(v′).
Suppose that WL(v) ̸= ∅, WL(v

′) ̸= ∅, and both v and v′ belong to the same segment S of
H(high1(v)) that is maximal w.r.t. the property that its elements are related as ancestor and
descendant. If U2

4 (v
′) = ∅, then U2

4 (v) = ∅. If U2
4 (v) ̸= ∅, then the lowest vertex in U2

4 (v)

is greater than, or equal to, the greatest vertex in U2
4 (v

′).

Proof. First we will show that M(B(v) \ {eL(v)}) is a proper ancestor of M(B(v′) \
{eL(v′)}), and firstWL(v

′) is a proper ancestor of lastWL(v).
Since v′ is a proper descendant of v such that high1(v′) = high1(v), Lemma 3.3

implies that B(v′) ⊆ B(v). Since the graph is 3-edge-connected, we have that |B(v′)| >
1. Thus, there is a back-edge (x, y) ∈ B(v′) \ {eL(v)}. Then, since B(v′) ⊆ B(v), we
have that (x, y) ∈ B(v). Since (x, y) ̸= eL(v), this can be strengthened to (x, y) ∈
B(v) \ {eL(v)}. This implies that x is a descendant of M(B(v) \ {eL(v)}). Thus, we
have that x is a common descendant of v′ and M(B(v) \ {eL(v)}), and therefore v′

and M(B(v) \ {eL(v)}) are related as ancestor and descendant.
IfM(B(v)\{eL(v)}) is a proper ancestor of v′, then we have thatM(B(v)\{eL(v)})

is a proper ancestor of M(B(v′) \ {eL(v′)}), since M(B(v′) \ {eL(v′)}) is a descendant
of M(v′), and therefore a descendant of v′. So let us assume that M(B(v) \ {eL(v)}) is
a descendant of v′. Let (x, y) be a back-edge in B(v) \ {eL(v)}. Then, we have that x
is a descendant of M(B(v) \ {eL(v)}), and therefore a descendant of v′. Furthermore,
we have that y is a proper ancestor of v, and therefore a proper ancestor of v′. This
shows that (x, y) ∈ B(v′). Due to the generality of (x, y) ∈ B(v) \ {eL(v)}, this shows
that B(v) \ {eL(v)}) ⊆ B(v′). Then, since B(v) \ {eL(v)} ⊆ B(v′) ⊆ B(v) and B(v) ̸=
B(v′) (since the graph is 3-edge-connected), we have that B(v) \ {eL(v)} = B(v′).
This implies that M(B(v) \ {eL(v)}) = M(v′). Since M(B(v′) \ {eL(v′)}) ̸= M(v′),
we have that M(B(v′) \ {eL(v′)}) is a proper descendant of M(v′). Therefore, since
M(B(v) \ {eL(v)}) = M(v′), we have that M(B(v′) \ {eL(v′)}) is a proper descendant
of M(B(v) \ {eL(v)}).

Now let w be a vertex in WL(v), and let w′ be a vertex in WL(v
′). Then we have

that M(w) = M(B(v) \ {eL(v)}) and M(w′) = M(B(v′) \ {eL(v′)}). Thus, we have that

403

M(w′) is a proper descendant ofM(w), and therefore a proper descendant of w. Thus,
since M(w′) is a common descendant of w′ and w, we have that w′ and w are related
as ancestor and descendant. Let us suppose, for the sake of contradiction, that w′ is
not a proper ancestor of w. Then, w′ is a descendant of w. Since M(w′) is a proper
descendant ofM(w), there is a back-edge (x, y) in B(w) such that x is not a descendant
of M(w′). Then, we have that x is a descendant of M(w) = M(B(v) \ {eL(v)}), and
therefore a descendant of v, and therefore a descendant of high1(v) = high1(v′), and
therefore a descendant of v′, and therefore a descendant of w′. Furthermore, we have
that y is a proper ancestor of w, and therefore a proper ancestor of w′. This shows
that (x, y) ∈ B(w′), and therefore x is a descendant of M(w′), a contradiction. Thus,
we have that w′ is a proper ancestor of w. Due to the generality of w′ ∈ WL(v

′),
this implies that firstWL(v

′) is a proper ancestor of w. And due to the generality of
w ∈ WL(v), this implies that firstWL(v

′) is a proper ancestor of lastWL(v).
Now let us suppose, for the sake of contradiction, that there is a vertex u ∈ U2

4 (v),
and U2

4 (v
′) = ∅. Since u ∈ U2

4 (v), we have that u ∈ S. Thus, since v′ ∈ S, we have
that u and v′ are related as ancestor and descendant. Let us suppose, for the sake
of contradiction, that u is not a proper descendant of v′. Then, we have that u is an
ancestor of v′. Since WL(v

′) ̸= ∅, we let w′ = firstWL(v
′). Let (x, y) be a back-edge in

B(w′) such that y = low(w′). Then, x is a descendant M(w′) = M(B(v′) \ {eL(v′)}),
and therefore a descendant of M(v′), and therefore a descendant of v′, and therefore
a descendant of u. Furthermore, y is a proper ancestor of w′, and therefore a proper
ancestor of v′. Thus, since x is a descendant of v′, this shows that (x, y) ∈ B(v′).
Therefore, y is an ancestor of high1(v′) = high1(v), and therefore a proper ancestor of
v, and therefore a proper ancestor of u (since u ∈ U2

4 (v) implies that u is a proper
descendant of v). Thus, since x is a descendant of u, this shows that (x, y) ∈ B(u).
Since y = low(w′) and w′ = firstWL(v

′), we have that y < firstWL(v
′), and therefore

y < lastWL(v) (since firstWL(v
′) is a proper ancestor of lastWL(v)). Since (x, y) ∈ B(u),

we have that low(u) ≤ y, and therefore low(u) < lastWL(v). But this contradicts the
fact that low(u) ≥ lastWL(v) (which is an implication of u ∈ U2

4 (v)). Thus, our last
supposition is not true, and therefore u is a proper descendant of v′. Thus, we have
the following facts: u ∈ S, u is a proper descendant of v′, and low(u) ≥ lastWL(v) >

firstWL(v
′). But this implies that U2

4 (v
′) ̸= ∅ (because we can consider the lowest u that

has those properties). A contradiction. This shows that if U2
4 (v

′) = ∅, then U2
4 (v) = ∅.

Now let us assume that U2
4 (v) ̸= ∅. This implies that U2

4 (v
′) ̸= ∅. Let us suppose, for

404

the sake of contradiction, that there is a vertex u ∈ U2
4 (v) that is lower than the greatest

vertex u′ in U2
4 (v

′). Since u ∈ U2
4 (v), we have that u ∈ S. Since u′ ∈ U2

4 (v
′) we have

that u′ ∈ S. This implies that u and u′ are related as ancestor and descendant. Thus,
since u is lower than u′, we have that u is a proper ancestor of u′. Let us suppose, for
the sake of contradiction, that low(u′) is a proper ancestor of firstWL(v

′). Then, since
firstWL(v

′) is a proper ancestor of lastWL(v), we have that low(u′) is a proper ancestor
of lastWL(v). Now let (x, y) be a back-edge in B(u′) such that y = low(u′). Then x

is a descendant of u′, and therefore a descendant of u. Furthermore, y is a proper
ancestor of lastWL(v), and therefore a proper ancestor of v, and therefore a proper
ancestor of u. This shows that (x, y) ∈ B(u). Thus, we have low(u) ≤ y < lastWL(v),
in contradiction to the fact that u ∈ U2

4 (v). Thus, our last supposition is not true, and
therefore we have that low(u′) is not a proper ancestor of firstWL(v

′).
Since u′ ∈ U2

4 (v
′), we have that u′ is a proper descendant of v′, and therefore a

proper descendant of firstWL(v
′). Thus, u′ is a common descendant of low(u′) and

firstWL(v
′), and therefore low(u′) and firstWL(v

′) are related as ancestor and descen-
dant. Thus, since low(u′) is not a proper ancestor of firstWL(v

′), we have that low(u′) is
a descendant of firstWL(v

′), and therefore low(u′) ≥ firstWL(v
′). Thus, since u′ ∈ U2

4 (v
′),

we have that u′ is the lowest vertex in S that is a proper descendant of v′ such that
low(u′) ≥ firstWL(v

′) (∗).
Now we will trace the implications of u ∈ U2

4 (v). First, we have that u ∈ S.
Furthermore, we have that low(u) ≥ lastWL(v), and therefore low(u) > firstWL(v

′)

(since firstWL(v
′) is a proper ancestor of lastWL(v)). Finally, we can show as above

that u is a proper descendant of v′ (the proof of this fact above did not rely on
U2
4 (v

′) = ∅). But then, since u is lower than u′, we have a contradiction to (∗). Thus,
we have shown that every vertex in U2

4 (v) is at least as great as the greatest vertex
in U2

4 (v
′). In particular, this implies that the lowest vertex in U2

4 (v) is greater than, or
equal to, the greatest vertex in U2

4 (v
′).

Due to the similarity of the definitions of the U2 and the U2
4 sets, and the similarity

between Lemmata 5.87 and 5.113, we can use a similar procedure as Algorithm 40
in order to compute all U2

4 sets in linear time. This is shown in Algorithm 48. Our
result is summarized in Lemma 5.114.

Lemma 5.114. Let V be the collection of all vertices v ̸= r such that M(B(v)\{eL(v)}) ̸=
M(v) and WL(v) ̸= ∅, and suppose that the vertices firstWL(v) and lastWL(v) are computed

405

Algorithm 48: Compute the sets U2
4 (v), for all vertices v ̸= r such that

M(B(v) \ {eL(v)}) ≠ M(v) and WL(v) ̸= ∅

1 let V be the collection of all vertices v ̸= r such that M(B(v) \ {eL(v)}) ̸= M(v) and

WL(v) ̸= ∅

2 foreach vertex x do

3 compute the collection S(x) of the segments of H(x) that are maximal w.r.t. the

property that their elements are related as ancestor and descendant

4 end

5 foreach v ∈ V do

6 set U2
4 (v)← ∅

7 end

8 foreach vertex x do

9 foreach segment S ∈ S(x) do

10 let v be the first vertex in S

11 while v ̸= ⊥ and v /∈ V do

12 v ← nextS(v)

13 end

14 if v = ⊥ then continue

15 let u = prevS(v)

16 while v ̸= ⊥ do

17 while u ̸= ⊥ and low(u) < lastWL(v) do

18 u← prevS(u)

19 end

20 while u ̸= ⊥ and low(u) < firstWL(v) do

21 insert u into U2
4 (v)

22 u← prevS(u)

23 end

24 if u ̸= ⊥ then

25 insert u into U2
4 (v)

26 end

27 v ← nextS(v)

28 while v ̸= ⊥ and v /∈ V do

29 v ← nextS(v)

30 end

31 end

32 end

33 end
406

for every v ∈ V. Then, Algorithm 48 correctly computes the sets U2
4 (v), for all vertices

v ∈ V, in total linear time.

Proof. The proof is the same as that of Lemma 5.88 (which is given in the main text,
in the two paragraphs right above Algorithm 40). Notice that the difference between
Algorithm 40 and Algorithm 48 is that the second algorithm has a different set V of
vertices for which the U2

4 sets are defined, and the occurrences of “firstW” and “lastW”
are replaced with “firstWL” and “lastWL”, respectively. Now we can use the argument
of Lemma 5.88, by just replacing the references to Lemma 5.87 with references to
Lemma 5.113.

Lemma 5.115. Let v ̸= r be a vertex such that M(B(v) \ {eL(v)}) ̸= M(v), and let u be
a proper descendant of v with high(u) = high(v). Then, eL(v) /∈ B(u).

Proof. Since u is a proper descendant of v with high(u) = high(v), Lemma 3.3 implies
that B(u) ⊆ B(v). This implies that M(u) is a descendant of M(v). Thus, since M(u)

is a common descendant of u and M(v), we have that u and M(v) are related as
ancestor and descendant.

Let us suppose, for the sake of contradiction, that u is not a proper descendant
of M(v). Thus, we have that u is an ancestor of M(v). Let (x, y) be a back-edge in
B(v). Then, x is a descendant of M(v), and therefore a descendant of u. Furthermore,
y is a proper ancestor of v, and therefore a proper ancestor of u. This shows that
(x, y) ∈ B(u). Due to the generality of (x, y) ∈ B(v), this implies that B(v) ⊆ B(u).
Thus, B(u) ⊆ B(v) implies that B(u) = B(v), in contradiction to the fact that the
graph is 3-edge-connected. This shows that u is a proper descendant of M(v).

Now let us suppose, for the sake of contradiction, that u is an ancestor of L1(v)

(i.e., the higher endpoint of eL(v)). Then, since u is a proper descendant of M(v), we
cannot have M(v) = L1(v). Thus, L1(v) is a proper descendant of M(v). So let c be
the child of M(v) that is an ancestor of L1(v). Then, since M(B(v) \ {eL(v)}) ̸= M(v),
we have that eL(v) is the unique back-edge in B(v) whose higher endpoint is a
descendant of c. Now, since u is an ancestor of L1(v) and a proper descendant of
M(v), we have that u is also a descendant of c. Since the graph is 3-edge-connected,
we have that |B(u)| > 1. Thus, there is a back-edge (x, y) ∈ B(u) \ {eL(v)}. Then, x is
a descendant of u, and therefore a descendant of v. Furthermore, y is an ancestor of
high(u) = high(v), and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v).
Since (x, y) ̸= eL(v), this can be strengthened to (x, y) ∈ B(v)\{eL(v)}. Thus, we have

407

that in B(v)\{eL(v)} there is still a back-edge whose higher endpoint is a descendant
of c (i.e., (x, y)), which is impossible. We conclude that u is not an ancestor of L1(v),
and therefore eL(v) /∈ B(u).

Lemma 5.116. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, with
back-edge eL(v), such that M(B(v) \ {eL(v)}) ̸= M(v) and high1(v) = high(u). Then
u ∈ U2

4 (v).

Proof. Since (u, v, w) induces a 4-cut, we have that u is a proper descendant of v. Let
u′ be a vertex such that u ≥ u′ ≥ v and high(u′) = high(u). Since high1(v) = high(u), this
implies that high(u′) = high1(v), and therefore u′ ∈ H(high1(v)). Then, since (u, v, w)

induces a Type-3βii-4 4-cut with back-edge eL(v) such thatM(B(v)\{eL(v)}) ̸= M(v),
by Lemma 5.103 we have that u′ is an ancestor of u. This shows that u and v belong
to a segment S of H(high1(v)) that is maximal w.r.t. the property that its elements are
related as ancestor and descendant.

Since (u, v, w) induces a Type-3βii-4 4-cut with back-edge eL(v), we have that w is
a proper ancestor of v withM(w) = M(B(v)\{eL(v)}). Thus, sinceM(B(v)\{eL(v)}) ̸=
M(v), we have that w ∈ WL(v), and therefore w ≥ lastWL(v). By Lemma 5.101, we
have that w ≤ low(u), and therefore lastWL(v) ≤ low(u). Thus, if low(u) < firstWL(v),
then u satisfies enough conditions to be in U2

4 (v). So let us assume that low(u) ≥
firstWL(v).

Let us suppose, for the sake of contradiction, that u is not the lowest vertex in S

that is a proper descendant of v such that low(u) ≥ firstWL(v). Then, there is a vertex
u′ in S that is lower than u, it is a proper descendant of v, and has low(u′) ≥ firstWL(v).
Since both u and u′ are in S, they are related as ancestor and descendant. Thus, since
u′ is lower than u, we have that u′ is a proper ancestor of u. Since both u and u′ are
in S, we have that high(u) = high(u′). Thus, Lemma 3.3 implies that B(u) ⊆ B(u′).
Now let (x, y) be a back-edge in B(u′). Then x is a descendant of u′, and therefore a
descendant of v. Furthermore, y is an ancestor of high(u′), and therefore an ancestor
of high(v) (because u′ ∈ S, and therefore high(u′) = high(v)), and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Since (u, v, w) induces a Type-3βii-4
4-cut with back-edge eL(v), we have that B(v) = (B(u) ⊔ B(w)) ⊔ {eL(v)}. Thus,
(x, y) ∈ B(v) implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = eL(v). Since
y ≥ low(u′) ≥ firstWL(v) ≥ w, we have that y cannot be a proper ancestor of w, and
so the case (x, y) ∈ B(w) is rejected. Then, since u′ is a proper descendant of v with

408

high(u′) = high(v), Lemma 5.115 implies that eL(v) /∈ B(u′). Therefore (x, y) ̸= eL(v).
Thus, since (x, y) ∈ B(w) is rejected, the only viable option is (x, y) ∈ B(u). Due to the
generality of (x, y) ∈ B(u′), this implies that B(u′) ⊆ B(u). Thus, since B(u) ⊆ B(u′),
we have that B(u′) = B(u), in contradiction to the fact that the graph is 3-edge-
connected. Thus, we have that u is the lowest vertex in S that is a proper descendant
of v such that low(u) ≥ firstWL(v). This means that u satisfies enough conditions to
be in U2

4 (v).

Lemma 5.117. Let (u, v, w) be a triple of vertices such that eL(v) /∈ B(u), M(B(v) \
{eL(v)}) ̸= M(v) and u ∈ U2

4 (v). Then, (u, v, w) induces a Type-3βii-4 4-cut with back-
edge eL(v) if and only if: bcount(v) = bcount(u) + bcount(w) + 1, and w is the greatest
proper ancestor of v with M(w) = M(B(v) \ {eL(v)}) such that w ≤ low(u).

Proof. (⇒) Since (u, v, w) induces a Type-3βii-4 4-cut with back-edge eL(v), we have
that B(v) = (B(u)⊔B(w))⊔{eL(v)}. Thus, we get bcount(v) = bcount(u)+bcount(w)+1.
Furthermore, we have M(w) = M(B(v) \ {eL(v)}) (since eL(v) is the back-edge of the
4-cut induced by (u, v, w)). By Lemma 5.101, we have w ≤ low(u).

Now let us suppose, for the sake of contradiction, that there is a proper ancestor
w′ of v with M(w′) = M(B(v) \ {eL(v)}) and w′ > w, such that w′ ≤ low(u). Then,
since M(w) = M(B(v) \ {eL(v)}) and M(w′) = M(B(v) \ {eL(v)}), we have that
M(B(v) \ {eL(v)}) is a common descendant of w and w′, and therefore w and w′

are related as ancestor and descendant. Thus, w′ > w implies that w′ is a proper
descendant of w. Since w′ is a proper descendant of w withM(w′) = M(w), Lemma 3.2
implies that B(w) ⊆ B(w′). This can be strengthened to B(w) ⊂ B(w′), since the graph
is 3-edge-connected. Thus, there is a back-edge (x, y) ∈ B(w′) \ B(w). Then, x is a
descendant of M(w′), and therefore a descendant of M(B(v) \ {eL(v)}), and therefore
a descendant of v. Furthermore, y is a proper ancestor of w′, and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Since B(v) = (B(u) ⊔ B(w)) ⊔ {eL(v)},
this implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = eL(v). The case
(x, y) ∈ B(u) is rejected, since y < w′ and w′ ≤ low(u), and therefore y < low(u). The
case (x, y) = eL(v) is also rejected, because M(B(v) \ {eL(v)}) ̸= M(v), and therefore
the higher endpoint of eL(v) is not a descendant of M(B(v) \ {eL(v)}) (= M(w′)).
Thus, we have that (x, y) ∈ B(w), a contradiction. This shows that w is the greatest
proper ancestor of v with M(w) = M(B(v) \ {eL(v)}) such that w ≤ low(u).

(⇐) We have to show that B(v) = (B(u)⊔B(w))⊔{eL(v)}, and M(w) = M(B(v) \

409

{eL(v)}). Since w ≤ low(u), we have that B(u) ∩ B(w) = ∅ (because, if there existed a
back-edge in B(u) ∩ B(w), its lower endpoint would be lower than low(u), which is
impossible).

Let (x, y) be a back-edge in B(u). Since u ∈ U2
4 (v), we have that u is a proper

descendant of v with high(u) = high1(v). Thus, (x, y) ∈ B(u) implies that x is a
descendant of v. Furthermore, we have that y is an ancestor of high(u) = high1(v),
and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the
generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(v).

Let (x, y) be a back-edge in B(w). Then, x is a descendant of M(w) = M(B(v) \
{eL(v)}), and therefore a descendant of v. Furthermore, y is a proper ancestor of
w, and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the
generality of (x, y) ∈ B(w), this implies that B(w) ⊆ B(v).

Since M(B(v) \ {eL(v)}) ̸= M(v), we have that the higher endpoint of eL(v) is
not a descendant of M(B(v) \ {eL(v)}). Since M(B(v) \ {eL(v)}) = M(w), this implies
that eL(v) /∈ B(w). By assumption, we have eL(v) /∈ B(u). Therefore, we have eL(v) /∈
B(u) ∪ B(w).

Thus, we have B(u) ⊆ B(v), B(w) ⊆ B(v), and B(u)∩B(w) = ∅. This implies that
B(u)⊔B(v) ⊆ B(v). Therefore, since bcount(v) = bcount(u)+bcount(w)+1, we have that
there is a back-edge e, such that B(v) = (B(u)⊔B(w))⊔{e}. Since eL(v) /∈ B(u)∪B(w),
this implies that e = eL(v). By assumption, we have M(w) = M(B(v) \ {eL(v)}).

Proposition 5.30. Algorithm 49 correctly computes all Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(v)}, where u is a descendant of v, v is a descendant of
w, M(B(v) \ {eL(v)}) ̸= M(v) and high1(v) = high(u). Furthermore, it has a linear-time
implementation.

Proof. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut with back-
edge eL(v) such that M(B(v) \ {eL(v)}) ̸= M(v) and high1(v) = high(u). By the def-
inition of Type-3βii-4 4-cuts, this implies that eL(v) /∈ B(u). Then, by Lemma 5.116
we have that u ∈ U2

4 (v). Then, by Lemma 5.117 we have that w is the greatest
proper ancestor of v with M(w) = M(B(v) \ {eL(v)}) such that w ≤ low(u). This
implies that w ∈ WL(v). Thus, since M(B(v) \ {eL(v)}) ̸= M(v) and WL(v) ̸= ∅,
we have that v is in the collection V , computed in Line 1. Then, notice that

410

Algorithm 49: Compute all Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), eL(v)}, where u is a proper descendant of v,
v is a proper descendant of w, M(B(v) \ {eL(v)}) ̸= M(v) and high1(v) = high(u)

1 let V be the collection of all vertices v ̸= r such that M(B(v) \ {eL(v)}) ̸= M(v)

and WL(v) ̸= ∅
2 foreach v ∈ V do
3 compute U2

4 (v)

4 end
5 foreach v ∈ V do
6 foreach u ∈ U2

4 (v) do
7 let w be the greatest proper ancestor of v with

M(w) = M(B(v) \ {eL(v)}) such that w ≤ low(u)
8 if bcount(v) = bcount(u) + bcount(w) + 1 and eL(v) /∈ B(u) then
9 mark {(u, p(u)), (v, p(v)), (w, p(w)), eL(v)} as a Type-3βii-4 4-cut

10 end

11 end

12 end

411

{(u, p(u)), (v, p(v)), (w, p(w)), eL(v)} (i.e., the 4-cut induced by (u, v, w)) will be cor-
rectly marked by Algorithm 49 in Line 9.

Conversely, suppose that a 4-element set {(u, p(u)), (v, p(v)), (w, p(w)), eL(v)} is
marked by Algorithm 49 in Line 9. Then we have that: (1) v is a vertex such
that M(B(v) \ {eL(v)}) ̸= M(v) (due to v ∈ V), (2) u ∈ U2

4 (v), (3) w is the great-
est proper ancestor of v such that M(w) = M(B(v) \ {eL(v)}) and w ≤ low(u), and (4)

bcount(v) = bcount(u) + bcount(w) + 1 and eL(v) /∈ B(u). Thus, Lemma 5.117 implies
that {(u, p(u)), (v, p(v)), (w, p(w)), eL(v)} is a Type-3βii-4 4-cut. Since u ∈ U2

4 (v), we
have that high1(v) = high(u).

Now we will show that Algorithm 49 has a linear-time implementation. First, by
Proposition 3.6, we can compute M(B(v) \ {eL(v)}) for all vertices v ̸= r, in total
linear time. By Lemma 5.112, we have that the values firstWL(v) and lastWL(v) can
be computed in linear time in total, for all vertices v ̸= r. Then, we can check in
constant time whether WL(v) ̸= ∅, for a vertex v ̸= r, by simply checking whether
e.g. firstWL(v) ̸= ⊥. Thus, the set V in Line 1 can be computed in linear time. By
Lemma 5.114, we have that the sets U2

4 (v) can be computed in total linear time, for
all vertices v ∈ V , using Algorithm 48. Thus, the for loop in Line 3 can be performed
in linear time. In particular, we have that the total size of all U2

4 sets is O(n).
It remains to show how to find the vertex w in Line 7. To do this, we use Al-

gorithm 22. Specifically, let v be a vertex in V , let u be a vertex in U2
4 (v), and let

x = M(B(v) \ {eL(v)}). Then we generate a query q(M−1(x),min{low(u), p(v)}). This
is to return the greatest vertex w such that M(w) = M(B(v)\{eL(v)}) and w ≤ low(u)
and w ≤ p(v). Since M(w) = M(B(v) \ {eL(v)}), we have that M(w) is a descendant
of M(v), and therefore a descendant of v. Thus, M(w) is a common descendant of v
and w, and therefore v and w are related as ancestor and descendant. Thus, w ≤ p(v)

implies that w is a proper ancestor of v, and so w is the greatest proper ancestor of
v such that M(w) = M(B(v) \ {eL(v)}) and w ≤ low(u). Now, using Algorithm 22 we
can answer all those queries in total linear time, according to Lemma 5.27. Thus, the
for loop in Line 5 can be performed in linear time. We conclude that Algorithm 49
runs in linear time.

The case where M(B(v) \ {e}) = M(v) and high1(v) > high(u)

412

Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such that
M(w) = M(B(v)\{e}) = M(v) and high1(v) > high(u), where e is the back-edge in the
4-cut induced by (u, v, w). Then, by Lemma 5.101 we have that high1(v) ̸= high2(v) =
high(u), and e = ehigh(v). Furthermore, by Lemma 5.101 we have that w ≤ low(u). Since
high1(v) ̸= high2(v), we have that high2(v) < high1(v). Thus, since low(u) ≤ high(u) =
high2(v) < high1(v), we have w ≤ high2(v) < high1(v). Since M(w) = M(v), this implies
that w is an ancestor of high2(v), and a proper ancestor of high1(v).

Now let v ̸= r be a vertex such that high1(v) ̸= high2(v) and lastM(v) ≤ high2(v). We
let ñextM(v) denote the greatest proper ancestor w of high1(v) such thatM(w) = M(v).

Lemma 5.118. Let v ̸= r be a vertex such that high1(v) ̸= high2(v) and lastM(v) ≤
high2(v). Then ñextM(v) is either nextM(v) or nextM(nextM(v)).

Proof. Since high1(v) ̸= high2(v), we have that high2(v) < high1(v). Thus, since high1(v)
and high2(v) are both ancestors of v, we have that high2(v) is a proper ancestor of
high1(v). Since lastM(v) and v have the same M point, we have that lastM(v) is related
as ancestor and descendant with v. Due to the minimality of lastM(v) in M−1(M(v)),
this implies that lastM(v) is an ancestor of v. Thus, since v is a common descendant of
high2(v) and lastM(v), we have that high2(v) and lastM(v) are related as ancestor and
descendant. Thus, lastM(v) ≤ high2(v) implies that lastM(v) is an ancestor of high2(v).
Therefore, lastM(v) is a proper ancestor of high1(v). This shows that ñextM(v) ̸= ⊥.

Now suppose that ñextM(v) ̸= nextM(v). By Lemma 3.6 we have that nextM(v) is
an ancestor of high1(v). Thus, ñextM(v) ̸= nextM(v) implies that nextM(v) = high1(v).
By definition, nextM(nextM(v)) is the greatest proper ancestor of nextM(v) that has the
same M point with v. Thus, since nextM(v) = high1(v), we have that nextM(nextM(v))

is the greatest proper ancestor of high1(v) that has the same M point as v. In other
words, nextM(nextM(v)) = ñextM(v).

Now let S be the segment of H̃(high2(v)) that contains v and is maximal w.r.t. the
property that all its elements are related as ancestor and descendant (i.e., we have
S = S̃2(v)). Then, we let U3

4 (v) denote the collection of all vertices u ∈ S such that:
(1) u is a proper descendant of v with high(u) = high2(v), (2) low(u) ≥ lastM(v), and
(3) either low(u) < ñextM(v), or u is the lowest vertex in S that satisfies (1), (2) and
low(u) ≥ ñextM(v).

Lemma 5.119. Let v and v′ be two vertices ̸= r such that v′ is a proper descendant of v
with high1(v) ̸= high2(v) = high2(v′) ̸= high1(v′). Let w and w′ be two vertices such that

413

M(w) = M(v), M(w′) = M(v′), and both w and w′ are ancestors of high2(v) = high2(v′).
Then w′ is a proper ancestor of w.

Proof. Let (x, y) be a back-edge in B(v′) such that y = high2(v′). Then x is a descendant
of v′, and therefore a descendant of v. Furthermore, y = high2(v′) = high2(v) is a proper
ancestor of v. This shows that (x, y) ∈ B(v), and therefore x is a descendant of M(v).
Thus, since x is a common descendant of M(v) and v′, we have that M(v) and v′ are
related as ancestor and descendant.

Let us suppose, for the sake of contradiction, that M(v) is not a proper ancestor
of v′. Then we have that M(v) is a descendant of v′. We have that high1(v′) and v are
related as ancestor and descendant, since both have v′ as a common descendant. Let us
suppose, for the sake of contradiction, that high1(v′) is not a proper ancestor of v. Then
we have that high1(v′) is a descendant of v. Now consider a back-edge (x, y) ∈ B(v)

such that y = high1(v). Then we have that x is a descendant of M(v), and therefore
a descendant of v′. Furthermore, y is a proper ancestor of v, and therefore a proper
ancestor of v′. This shows that (x, y) ∈ B(v′). Since high1(v) is a proper ancestor of
v and high1(v′) is a descendant of v, we have that high1(v′) is a proper descendant
of high1(v), and therefore high1(v′) > high1(v). Since (x, y) ∈ B(v′), this implies that
high2(v′) ≥ high1(v). Since high2(v′) = high2(v), this implies that high2(v) ≥ high1(v),
and therefore high2(v) = high1(v). But this contradicts high2(v) ̸= high1(v). This shows
that our last supposition cannot be true, and therefore we have that high1(v′) is a
proper ancestor of v.

Now let (x, y) be a back-edge in B(v′). Then x is a descendant of v′, and therefore
a descendant of v. Furthermore, y is an ancestor of high1(v′), and therefore a proper
ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(v′),
this implies that B(v′) ⊆ B(v). Conversely, let (x, y) be a back-edge in B(v). Then x is
a descendant of M(v), and therefore a descendant of v′. Furthermore, y is a proper
ancestor of v, and therefore a proper ancestor of v′. This shows that (x, y) ∈ B(v′).
Due to the generality of (x, y) ∈ B(v), this implies that B(v) ⊆ B(v′). Thus we have
B(v′) = B(v), in contradiction to the fact that the graph is 3-edge-connected. This
shows that M(v) is a proper ancestor of v′.

Now let w and w′ be two vertices such that M(w) = M(v), M(w′) = M(v′),
and both w and w′ are ancestors of high2(v) = high2(v′). Then w and w′ are related
as ancestor and descendant. Let us suppose, for the sake of contradiction, that w′

is not a proper ancestor of w. Then we have that w′ is a descendant of w. Since

414

M(v) = M(w) is a proper ancestor of v′, there is a back-edge (x, y) ∈ B(w) such that
x is not a descendant of v′. Then, x is a descendant of M(w) = M(v), and therefore a
descendant of v, and therefore a descendnant of high2(v), and therefore a descendant
of w′. Furthermore, y is a proper ancestor of w, and therefore a proper ancestor of
w′. This shows that (x, y) ∈ B(w′). But we have that M(w′) = M(v′), and therefore
x must be a descendant of M(v′), and therefore a descendant of v′. This contradicts
the fact that x is not a descendant of v′. Thus, we have that w′ is a proper ancestor
of w.

Lemma 5.120. Let v and v′ be two vertices ̸= r such that high1(v) ̸= high2(v) = high2(v′) ̸=
high1(v′), lastM(v) ≤ high2(v), lastM(v′) ≤ high2(v′), v′ is a proper descendant of v, and
both v and v′ belong to the same segment S̃ of H̃(high2(v)) that is maximal w.r.t. the property
that all its elements are related as ancestor and descendant (i.e., we have S̃ = S̃(v) = S̃(v′)).
If U3

4 (v
′) = ∅, then U3

4 (v) = ∅. If U3
4 (v) ̸= ∅, then the lowest vertex in U3

4 (v) is at least as
great as the greatest vertex in U3

4 (v
′).

Proof. Notice that, since lastM(v) ≤ high2(v) and lastM(v′) ≤ high2(v′), we have that
both ñextM(v) and ñextM(v′) are well-defined. Furthermore, Lemma 5.119 implies
that ñextM(v′) is a proper ancestor of lastM(v).

Let us suppose, for the sake of contradiction, that U3
4 (v

′) = ∅ and U3
4 (v) ̸= ∅.

Let u be a vertex in U3
4 (v). Let us suppose, for the sake of contradiction, that u is

not a proper descendant of v′. Since u ∈ U3
4 (v), we have that u ∈ S̃. Thus, since

v′ ∈ S̃, we have that u and v′ are related as ancestor and descendant. Since u is
not a proper descendant of v′, we have that u is an ancestor of v′. Let (x, y) be
a back-edge in B(v′) such that y = low(v′). Lemma 3.4 implies that low(v′) is a
proper ancestor of ñextM(v′). Thus, since ñextM(v′) is a proper ancestor of lastM(v),
we have that low(v′) is a proper ancestor of lastM(v). Now, since (x, y) ∈ B(v′), we
have that x is a descendant of v′, and therefore a descendant of u. Furthermore,
y = low(v′) is a proper ancestor of lastM(v), and therefore a proper ancestor of v,
and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). But then we
have that low(u) ≤ y = low(v′) < lastM(v), in contradiction to the fact that u ∈ U3

4 (v).
Thus, our last supposition is not true, and therefore u is a proper descendant of
v′. Then, since u ∈ U3

4 (v), we have that high(u) = high2(v) = high2(v′). Furthermore,
we have that low(u) ≥ lastM(v), and therefore low(u) ≥ ñextM(v′). This implies that
U3
4 (v

′) is not empty (because we can consider the lowest proper descendant u′ of v′ in

415

S̃(v′) = S̃(v) such that high(u′) = high2(v′) and low(u′) ≥ ñextM(v′)). This contradicts
our supposition that U3

4 (v
′) ̸= ∅. Thus, we have shown that U3

4 (v
′) = ∅ implies that

U3
4 (v) = ∅.
Now let us assume that U3

4 (v) ̸= ∅. This implies that U3
4 (v

′) is not empty. Let us
suppose, for the sake of contradiction, that there is a vertex u ∈ U3

4 (v) that is lower
than the greatest vertex u′ in U3

4 (v
′). Since u ∈ U3

4 (v), we have that u ∈ S̃. Since
u′ ∈ U3

4 (v
′) we have that u′ ∈ S̃. This implies that u and u′ are related as ancestor

and descendant. Thus, since u is lower than u′, we have that u is a proper ancestor
of u′. Let us suppose, for the sake of contradiction, that low(u′) is a proper ancestor
of ñextM(v′). Then, since ñextM(v′) is a proper ancestor of lastM(v), we have that
low(u′) is a proper ancestor of lastM(v). Now let (x, y) be a back-edge in B(u′) such
that y = low(u′). Then x is a descendant of u′, and therefore a descendant of u.
Furthermore, y is a proper ancestor of lastM(v), and therefore a proper ancestor of v,
and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). Thus, we have
low(u) ≤ y = low(u′) < lastM(v), in contradiction to the fact that u ∈ U3

4 (v). Thus,
our last supposition is not true, and therefore we have that low(u′) is not a proper
ancestor of ñextM(v′).

Since u′ ∈ U3
4 (v

′), we have that u′ is a proper descendant of v′, and therefore a
proper descendant of ñextM(v′). Thus, since u′ is a common descendant of low(u′) and
ñextM(v′), we have that low(u′) and ñextM(v′) are related as ancestor and descendant.
Therefore, since low(u′) is not a proper ancestor of ñextM(v′), we have that low(u′) is
a descendant of ñextM(v′), and therefore low(u′) ≥ ñextM(v′). Thus, since u′ ∈ U3

4 (v
′),

we have that u′ is the lowest proper descendant of v′ in S̃ with high(u′) = high2(v′)
and low(u′) ≥ ñextM(v′) (∗).

Now we will trace the implications of u ∈ U3
4 (v). First, we have that u ∈ S̃. Then,

we have high(u) = high2(v) = high2(v′). Furthermore, we have that low(u) ≥ lastM(v),
and therefore low(u) > ñextM(v′) (since ñextM(v′) is a proper ancestor of lastM(v)).
Finally, we can show as above that u is a proper descendant of v′ (the proof of this
fact above did not rely on U3

4 (v
′) = ∅). But then, since u is lower than u′, we have

a contradiction to (∗). Thus, we have shown that every vertex in U3
4 (v) is at least as

great as the greatest vertex in U3
4 (v

′). In particular, this implies that the lowest vertex
in U3

4 (v) is greater than, or equal to, the greatest vertex in U3
4 (v

′).

Due to the similarity of the definitions of the U3 and the U3
4 sets, and the similarity

416

between Lemmata 5.98 and 5.120, we can use a similar procedure as Algorithm 44
in order to compute all U3

4 sets in linear time. This is shown in Algorithm 50. Our
result is summarized in Lemma 5.121.

Lemma 5.121. Algorithm 50 correctly computes the sets U3
4 (v), for all vertices v ̸= r such

that ñextM(v) ̸= ∅. Furthermore, it runs in linear time.

Proof. The proof here is similar as that of Lemma 5.99 (which was given in the main
text, in the two paragraphs above Algorithm 44). The differences are the following.
First, the set V of the vertices for which the sets U3

4 are defined is given by all vertices
v ̸= r such that high1(v) ̸= high2(v) and ñextM(v) ̸= ⊥. Due to Lemma 5.118, it is easy
to collect all those vertices in O(n) time. I.e., we have to check, for every vertex v ̸= r

with high1(v) ̸= high2(v), whether nextM(v) is a proper ancestor of high1(v). If that is
the case, then ñextM(v) = nextM(v). Otherwise, ñextM(v) = nextM(nextM(v)) (which
may be null). Second, here we process the vertices v in their S̃2(v) segment (instead
of the S̃1(v)). Thus, in Lines 11 and 33, we check whether v satisfies high2(v) = x

(where x is the vertex for which we process the H̃(x) list). And third, we have
that every u ∈ U3

4 (v) satisfies high1(u) = high2(v). Thus, in Lines 21 and 26 we
have the appropriate condition (where is it checked whether high1(u) = x). Then
the proof follows the same reasoning as in Lemma 5.99. The main difference in the
argument here is that every reference to Lemma 5.98 is replaced with a reference to
Lemma 5.120.

Lemma 5.122. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such
that high1(v) > high(u) and M(B(v) \ {ehigh(v)}) = M(v). Then u ∈ U3

4 (v).

Proof. Since high1(v) > high(u), Lemma 5.101 implies that high2(v) = high(u). Thus, we
may consider the segment S̃ of H̃(high2(v)) from u to v. Let u′ be a vertex in S̃. Then,
we have that u ≥ u′ ≥ v, and therefore Lemma 5.102 implies that u′ is an ancestor of
u. Thus, we have that all elements of S̃ are related as ancestor and descendant (since
all of them are ancestors of u). Since high1(v) > high(u), Lemma 5.101 implies that
e = ehigh(v), where e is the back-edge in the 4-cut induced by (u, v, w). Furthermore,
Lemma 5.101 implies that w ≤ low(u). Thus, since low(u) ≤ high(u) = high2(v), we
have that w ≤ high2(v). Then, since (u, v, w) induces a Type-3βii-4 4-cut, we have
M(w) = M(B(v) \ {e}) = M(v), and therefore ñextM(v) is defined (and it is greater
than, or equal to, w). Also, we have w ≥ lastM(v), and therefore low(u) ≥ lastM(v).

417

Algorithm 50: Compute the sets U3
4 (v), for all vertices v ̸= r such that

high1(v) ̸= high2(v) and ñextM(v) ̸= ⊥

1 let V be the collection of all vertices v ̸= r such that high1(v) ̸= high2(v) and ñextM(v) ̸= ⊥
2 foreach vertex x do
3 compute the collection S(x) of the segments of H̃(x) that are maximal w.r.t. the property

that their elements are related as ancestor and descendant

4 end
5 foreach v ∈ V do
6 set U3

4 (v)← ∅
7 end
8 foreach vertex x do
9 foreach segment S ∈ S(x) do
10 let v be the first vertex in S

11 while v ̸= ⊥ and (high2(v) ̸= x or v /∈ V) do
12 v ← nextS(v)

13 end
14 if v = ⊥ then continue
15 let u← prevS(v)
16 while v ̸= ⊥ do
17 while u ̸= ⊥ and low(u) < lastM(v) do
18 u← prevS(u)
19 end
20 while u ̸= ⊥ and low(u) < ñextM(v) do
21 if high1(u) = x then
22 insert u into U3

4 (v)

23 end
24 u← prevS(u)

25 end
26 while u ̸= ⊥ and high1(u) ̸= x do
27 u← prevS(u)

28 end
29 if u ̸= ⊥ then
30 insert u into U3

4 (v)

31 end
32 v ← nextS(v)
33 while v ̸= ⊥ and (high2(v) ̸= x or v /∈ V) do
34 v ← nextS(v)

35 end

36 end

37 end

38 end
418

Thus, if low(u) < ñextM(v), then u satisfies enough conditions to be in U3
4 (v). So let

us assume that low(u) ≥ ñextM(v).
Let us suppose, for the sake of contradiction, that u is not the lowest vertex in

S̃ that is a proper descendant of v such that high(u) = high2(v), low(u) ≥ lastM(v)

and low(u) ≥ ñextM(v). Then, there is a vertex u′ in S̃, that is a proper ancestor of
u and a proper descendant of v, such that high(u′) = high2(v), low(u′) ≥ lastM(v) and
low(u′) ≥ ñextM(v). Since (u, v, w) induces a Type-3βii-4 4-cut, we have that B(v) =

(B(u) ⊔ B(w)) ⊔ {e}. Now let (x, y) be a back-edge in B(u). Then x is a descendant
of u, and therefore a descendant of u′. Furthermore, B(v) = (B(u) ⊔ B(w)) ⊔ {e}
implies that (x, y) ∈ B(v), and therefore y is a proper ancestor of v, and therefore
a proper ancestor of u′. This shows that (x, y) ∈ B(u′). Due to the generality of
(x, y) ∈ B(u), this shows that B(u) ⊆ B(u′). Conversely, let (x, y) be a back-edge
in B(u′). Then we have that x is a descendant of u′, and therefore a descendant of
v. Furthermore, y is an ancestor of high(u′) = high2(v), and therefore it is a proper
ancestor of v. This shows that (x, y) ∈ B(v). Then, B(v) = (B(u)⊔B(w))⊔{e} implies
that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(w)

is rejected, since y = low(u′) ≥ ñextM(v) ≥ w. Furthermore, since e = ehigh(v) and
high1(v) > high(u) and high(u) = high2(v) = high(u′), we cannot have ehigh(v) ∈ B(u′),
and therefore the case (x, y) = e is also rejected. Thus, we have that (x, y) ∈ B(u).
Due to the generality of (x, y) ∈ B(u′), this shows that B(u′) ⊆ B(u). Thus, we have
B(u) = B(u′), in contradiction to the fact that the graph is 3-edge-connected. Thus,
we have shown that u is the lowest vertex in S̃ that is a proper descendant of v such
that high(u) = high2(v), low(u) ≥ lastM(v) and low(u) ≥ ñextM(v). We conclude that u
satisfies enough conditions to be in U3

4 (v).

Lemma 5.123. Let (u, v, w) be a triple of vertices such that high1(v) > high(u), M(B(v)\
{ehigh(v)}) = M(v) and u ∈ U3

4 (v). Then, (u, v, w) induces a Type-3βii-4 4-cut if and only
if: bcount(v) = bcount(u) + bcount(w) + 1, and w is the greatest proper ancestor of v with
M(w) = M(v) such that w ≤ low(u).

Proof. (⇒) Since (u, v, w) induces a Type-3βii-4 4-cut, we have B(v) = (B(u)⊔B(w))⊔
{e}, where e is the back-edge in the 4-cut induced by (u, v, w). Thus, we get bcount(v) =
bcount(u)+bcount(w)+1. Since high1(v) > high(u), by Lemma 5.101 we have e = ehigh(v).
Furthermore, Lemma 5.101 implies that w ≤ low(u). Since (u, v, w) induces a Type-
3βii-4 4-cut, we have M(w) = M(B(v)\{e}). Thus, since M(B(v)\{ehigh(v)}) = M(v),

419

we have M(w) = M(v).
Now let us suppose, for the sake of contradiction, that there is a proper ancestor w′

of v with M(w′) = M(v) and w′ ≤ low(u), such that w′ > w. Then, since M(v) = M(w)

and M(v) = M(w′), we have that M(v) is a common descendant of w and w′, and
therefore w and w′ are related as ancestor and descendant. Thus, w′ > w implies
that w′ is a proper descendant of w. Since w′ is a proper descendant of w with
M(w′) = M(w), Lemma 3.2 implies that B(w) ⊆ B(w′). This can be strengthened
to B(w) ⊂ B(w′), since the graph is 3-edge-connected. Thus, there is a back-edge
(x, y) ∈ B(w′) \ B(w). Then, x is a descendant of M(w′) = M(v). Furthermore, y
is a proper ancestor of w′, and therefore a proper ancestor of v. This shows that
(x, y) ∈ B(v). Since B(v) = (B(u) ⊔B(w)) ⊔ {e}, this implies that either (x, y) ∈ B(u),
or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(u) is rejected, since y < w′ and
w′ ≤ low(u), and therefore y < low(u). The case (x, y) = e is also rejected, because
e = ehigh(v), and high1(v) > high(u) ≥ low(u) ≥ w′. Thus, we have that (x, y) ∈ B(w),
a contradiction. This shows that w is the greatest proper ancestor of v with M(w) =

M(v) such that w ≤ low(u).
(⇐) We have to show that there is a back-edge e such that B(v) = (B(u)⊔B(w))⊔

{e}, and M(w) = M(B(v) \ {e}).
Since M(B(v) \ {ehigh(v)}) = M(v) and M(w) = M(v), we have that M(w) =

M(B(v) \ {ehigh(v)}). Since high1(v) > high(u), we have that ehigh(v) /∈ B(u). And since
w ≤ low(u) ≤ high(u) < high1(v), we have that ehigh(v) /∈ B(w). Furthermore, since
w ≤ low(u), we have that B(u) ∩ B(w) = ∅ (because, if there existed a back-edge in
B(u) ∩ B(w), its lower endpoint would be lower than low(u), which is impossible).
This shows that the sets B(u), B(w) and {ehigh(v)} are pairwise disjoint.

Let (x, y) be a back-edge in B(u). Since u ∈ U3
4 (v), we have that u is a proper

descendant of v with high(u) = high2(v). Thus, (x, y) ∈ B(u) implies that x is a
descendant of v. Furthermore, we have that y is an ancestor of high(u) = high2(v),
and therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the
generality of (x, y) ∈ B(u), this implies that B(u) ⊆ B(v).

Let (x, y) be a back-edge in B(w). Then, x is a descendant of M(w) = M(v),
and therefore a descendant of v. Furthermore, y is a proper ancestor of w, and
therefore a proper ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality
of (x, y) ∈ B(w), this implies that B(w) ⊆ B(v).

Thus, we have B(u) ⊆ B(v), B(w) ⊆ B(v), ehigh(v) ∈ B(v), and the sets B(u), B(w)

420

and {ehigh(v)} are pairwise disjoint. Thus, (B(u) ⊔ B(v)) ⊔ {ehigh(v)} ⊆ B(v). Since
bcount(v) = bcount(u)+bcount(w)+1, this implies that B(v) = (B(u)⊔B(w))⊔{ehigh(v)}.
By assumption we have M(B(v) \ {ehigh(v)}) = M(v). Therefore, since M(w) = M(v),
we have M(w) = M(B(v) \ {ehigh(v)}).

Algorithm 51: Compute all Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where M(B(v) \ {e}) = M(v) and
high1(v) > high(u)

1 let V be the collection of all vertices v ̸= r such that
M(B(v) \ {ehigh(v)}) = M(v), high1(v) ̸= high2(v) and lastM(v) ≤ high2(v)

2 foreach v ∈ V do
3 compute U3

4 (v)

4 end
5 foreach v ∈ V do
6 foreach u ∈ U3

4 (v) do
7 let w be the greatest proper ancestor of v with M(w) = M(v) such that

w ≤ low(u)
8 if bcount(v) = bcount(u) + bcount(w) + 1 and high1(v) > high(u) then
9 mark {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v)} as a Type-3βii-4 4-cut

10 end

11 end

12 end

Proposition 5.31. Algorithm 51 correctly computes all Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where u is a descendant of v, v is a descendant of w,
M(B(v) \ {e}) = M(v) and high1(v) > high(u). Furthermore, it has a linear-time imple-
mentation.

Proof. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut with back-
edge e such thatM(B(v)\{e}) = M(v) and high1(v) > high(u). Since high1(v) > high(u),
by Lemma 5.101 we have that high1(v) ̸= high2(v) and e = ehigh(v). Then, by
Lemma 5.122 we have that u ∈ U3

4 (v). This implies that lastM(v) ≤ high2(v), and
therefore v belongs to the collection V computed in Line 1. Then, by Lemma 5.123
we have that bcount(v) = bcount(u) + bcount(w) + 1, and w is the greatest proper

421

ancestor of v with M(w) = M(v) such that w ≤ low(u). Then, notice that
{(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v))} (i.e., the 4-cut induced by (u, v, w)) will be cor-
rectly marked by Algorithm 51 in Line 9.

Conversely, suppose that a 4-element set {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v)} is
marked by Algorithm 51 in Line 9. Then we have that: (1)M(B(v)\{ehigh(v)}) = M(v),
(2) u ∈ U3

4 (v), (3) w is the greatest proper ancestor of v such that M(w) = M(v) and
w ≤ low(u), and (4) bcount(v) = bcount(u)+bcount(w)+1 and high1(v) > high(u). Thus,
Lemma 5.123 implies that {(u, p(u)), (v, p(v)), (w, p(w)), ehigh(v)} is a Type-3βii-4 4-cut.

Now we will show that Algorithm 51 has a linear-time implementation. Computing
the valuesM(B(v)\{ehigh(v)}), for all vertices v ̸= r, takes linear time in total, according
to Proposition 3.6. Thus, the computation of the collection of vertices V in Line 1 can
be performed in linear time. By Lemma 5.121, we have that the sets U3

4 (v) can be
computed in linear time, for all vertices v ∈ V , using Algorithm 50. Thus, the for loop
in Line 3 can be performed in linear time. In particular, we have that the total size of
all sets U3

4 is O(n). In order to find the vertex w in Line 7, we can use Algorithm 22.
Specifically, let v and u be two vertices such that v ∈ V and u ∈ U3

4 (v). Then we
generate a query q(M−1(M(v)),min{low(u), p(v)}). This returns the greatest w such
that M(w) = M(v) and w ≤ low(u) and w ≤ p(v). Thus, we have that w is the greatest
proper ancestor of v such that M(w) = M(v) and w ≤ low(u). Since the number of all
those queries is O(n), Lemma 5.27 implies that all of them can be answered in linear
time in total, using Algorithm 22. We conclude that Algorithm 51 has a linear-time
implementation.

The case where M(B(v) \ {e}) = M(v) and high1(v) = high(u)

Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut such that
M(B(v) \ {e}) = M(v). Then, since M(w) = M(B(v) \ {e}), we have M(w) = M(v).

Now let v ̸= r be a vertex such that nextM(v) ̸= ⊥. Then we let U4
4 (v) denote the

collection of all vertices u ∈ S(v) such that: (1) u is a proper descendant of v, (2)
low(u) ≥ lastM(v), and (3) either low(u) < nextM(v), or u is the lowest vertex in S(v)

that satisfies (1) and low(u) ≥ nextM(v).

Lemma 5.124. Let v and v′ be two vertices ̸= r with nextM(v) ≠ ⊥ and nextM(v′) ̸= ⊥,
such that v′ is a proper descendant of v with high1(v) = high1(v′). Then, nextM(v′) is a

422

proper ancestor of lastM(v).

Proof. Let (x, y) be a back-edge in B(v′) such that and y = high1(v′). Then, we have
that x is a descendant of v′, and therefore a descendant of v. Furthermore, since
high1(v′) = high1(v), we have that y is a proper ancestor of v. This shows that (x, y) ∈
B(v). Thus, we have that M(v) is an ancestor of x. Therefore, since x is a common
descendant of v′ and M(v), we have that v′ and M(v) are related as ancestor and
descendant.

Let us suppose, for the sake of contradiction, that M(v) is not a proper ancestor
of v′. Then, we have that M(v) is a descendant of v′. Let (x, y) be a back-edge in
B(v′). Then x is a descendant of v′, and therefore a descendant of v. Furthermore,
y is an ancestor of high1(v′) = high1(v), and therefore a proper ancestor of v. This
shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(v′), this implies that
B(v′) ⊆ B(v). Conversely, let (x, y) be a back-edge in B(v). Then, x is a descendant
of M(v), and therefore a descendant of v′. Furthermore, y is a proper ancestor of
v, and therefore a proper ancestor of v′. This shows that (x, y) ∈ B(v′). Due to the
generality of (x, y) ∈ B(v), this implies that B(v) ⊆ B(v′). Thus we have B(v′) = B(v),
in contradiction to the fact that the graph is 3-edge-connected. This shows that M(v)

is a proper ancestor of v′.
Let w and w′ be two vertices such thatM(w) = M(v),M(w′) = M(v′), w ≤ nextM(v)

and w′ ≤ nextM(v′). Then, Lemma 3.6 implies that w is an ancestor of high1(v) and w′

is an ancestor of high1(v′). Thus, since high1(v) = high1(v′), we have that w and w′ have
a common descendant, and therefore they are related as ancestor and descendant.

Let us suppose, for the sake of contradiction, that w′ is not a proper ancestor of w.
Then, we have that w′ is a descendant of w. SinceM(w) = M(v) is a proper ancestor of
v′, there is a back-edge (x, y) in B(w) such that x is not a descendant of v′. Therefore,
x is not a descendant of M(v′) = M(w′). Since x is a descendant of M(v), we have
that x is a descendant of v, and therefore a descendant of high1(v) = high1(v′), and
therefore a descendant of w′. Furthermore, y is a proper ancestor of w, and therefore
a proper ancestor of w′. This shows that (x, y) ∈ B(w′). But this implies that x is a
descendant ofM(w′) = M(v′), a contradiction. This shows that w′ is a proper ancestor
of w. Due to the generality of w′ and w, this implies that nextM(v′) is a proper ancestor
of lastM(v).

Lemma 5.125. Let v and v′ be two vertices ̸= r with nextM(v) ̸= ⊥ and nextM(v′) ̸= ⊥,

423

such that v′ is a proper descendant of v, high1(v) = high1(v′), and both v and v′ belong to
the same segment S of H(high1(v)) that is maximal w.r.t. the property that all its elements
are related as ancestor and descendant (i.e., we have S = S(v) = S(v′)). If U4

4 (v
′) = ∅,

then U4
4 (v) = ∅. If U4

4 (v) ̸= ∅, then the lowest vertex in U4
4 (v) is at least as great as the

greatest vertex in U4
4 (v

′).

Proof. By Lemma 5.124, we have that nextM(v′) is a proper ancestor of lastM(v).
Let us suppose, for the sake of contradiction, that U4

4 (v
′) = ∅ and U4

4 (v) ̸= ∅.
Let u be a vertex in U4

4 (v). Let us suppose, for the sake of contradiction, that u is
not a proper descendant of v′. Since u ∈ U4

4 (v), we have that u ∈ S. Thus, since
v′ ∈ S, we have that u and v′ are related as ancestor and descendant. Since u is
not a proper descendant of v′, we have that u is an ancestor of v′. Let (x, y) be
a back-edge in B(v′) such that y = low(v′). Lemma 3.4 implies that low(v′) is a
proper ancestor of nextM(v′). Thus, since nextM(v′) is a proper ancestor of lastM(v),
we have that low(v′) is a proper ancestor of lastM(v). Now, since (x, y) ∈ B(v′), we
have that x is a descendant of v′, and therefore a descendant of u. Furthermore,
y = low(v′) is a proper ancestor of lastM(v), and therefore a proper ancestor of v,
and therefore a proper ancestor of u. This shows that (x, y) ∈ B(u). But then we
have low(u) ≤ y = low(v′) < lastM(v), in contradiction to the fact that u ∈ U4

4 (v).
Thus, our last supposition is not true, and therefore u is a proper descendant of
v′. Then, since u ∈ U4

4 (v), we have high(u) = high1(v) = high1(v′). Furthermore, we
have low(u) ≥ lastM(v), and therefore low(u) ≥ nextM(v′). This implies that U4

4 (v
′)

is not empty (because we can consider the lowest proper descendant u′ of v′ in
S(v′) = S(v) such that high(u′) = high1(v′) and low(u′) ≥ nextM(v′)). This contradicts
our supposition that U4

4 (v
′) ̸= ∅. Thus, we have shown that U4

4 (v
′) = ∅ implies that

U4
4 (v) = ∅.
Now let us assume that U4

4 (v) ̸= ∅. This implies that U4
4 (v

′) is not empty. Let us
suppose, for the sake of contradiction, that there is a vertex u ∈ U4

4 (v) that is lower
than the greatest vertex u′ in U4

4 (v
′). Since u ∈ U4

4 (v), we have u ∈ S. Since u′ ∈ U4
4 (v

′)

we have u′ ∈ S. This implies that u and u′ are related as ancestor and descendant.
Thus, since u is lower than u′, we have that u is a proper ancestor of u′. Let us
suppose, for the sake of contradiction, that low(u′) is a proper ancestor of nextM(v′).
Then, since nextM(v′) is a proper ancestor of lastM(v), we have that low(u′) is a proper
ancestor of lastM(v). Now let (x, y) be a back-edge in B(u′) such that y = low(u′). Then
x is a descendant of u′, and therefore a descendant of u. Furthermore, y is a proper

424

ancestor of lastM(v), and therefore a proper ancestor of v, and therefore a proper
ancestor of u. This shows that (x, y) ∈ B(u). Thus, we have low(u) ≤ y < lastM(v), in
contradiction to the fact that u ∈ U4

4 (v). Thus, our last supposition is not true, and
therefore we have that low(u′) is not a proper ancestor of nextM(v′).

Since u′ ∈ U4
4 (v

′), we have that u′ is a proper descendant of v′, and therefore
a proper descendant of nextM(v′). Thus, u′ is a common descendant of low(u′) and
nextM(v′), and therefore low(u′) and nextM(v′) are related as ancestor and descendant.
Thus, since low(u′) is not a proper ancestor of nextM(v′), we have that low(u′) is a
descendant of nextM(v′), and therefore low(u′) ≥ nextM(v′). Thus, since u′ ∈ U4

4 (v
′),

we have that u′ is the lowest proper descendant of v′ in S with high(u′) = high1(v′)
such that low(u′) ≥ nextM(v′) (∗).

Now we will trace the implications of u ∈ U4
4 (v). First, we have u ∈ S. Then,

we have high(u) = high1(v) = high1(v′). Furthermore, we have low(u) ≥ lastM(v),
and therefore low(u) > nextM(v′) (since nextM(v′) is a proper ancestor of lastM(v)).
Finally, we can show as above that u is a proper descendant of v′ (the proof of this
fact above did not rely on U4

4 (v
′) = ∅). But then, since u is lower than u′, we have

a contradiction to (∗). Thus, we have shown that every vertex in U4
4 (v) is at least as

great as the greatest vertex in U4
4 (v

′). In particular, this implies that the lowest vertex
in U4

4 (v) is greater than, or equal to, the greatest vertex in U4
4 (v

′).

Due to the similarity of the definitions of the U1 and the U4
4 sets, and their prop-

erties described in Lemmata 5.75 and 5.125, respectively, we can compute all U4
4 sets

with a procedure similar to Algorithm 37. This is shown in Algorithm 52. Our result
is summarized in Lemma 5.126.

Lemma 5.126. Algorithm 52 correctly computes the sets U4
4 (v), for all vertices v ̸= r such

that nextM(v) ̸= ⊥. Furthermore, it has a linear-time implementation.

Proof. The argument is almost identical to that provided for Lemma 5.76 in the main
text (in the three paragraphs above Algorithm 37). The only difference is that here
we care about the low point of the vertices u (and not for their low2 point). This
does not affect the analysis of correctness, because the computation is performed in
segments of H(x) that are maximal w.r.t. the property that their elements are related
as ancestor and descendant, and therefore all vertices in those segments are sorted in
decreasing order w.r.t. their low point.

425

Algorithm 52: Compute the sets U4
4 (v), for all vertices v ̸= r such that

nextM(v) ̸= ⊥

1 foreach vertex x do
2 compute the collection S(x) of the segments of H(x) that are maximal

w.r.t. the property that their elements are related as ancestor and
descendant

3 end
4 foreach v ̸= r such that nextM(v) ̸= ⊥ do
5 set U4

4 (v)← ∅
6 end
7 foreach vertex x do
8 foreach segment S ∈ S(x) do
9 let v be the first vertex in S

10 while v ̸= ⊥ and nextM(v) = ⊥ do
11 v ← nextS(v)
12 end
13 if v = ⊥ then continue
14 let u = prevS(v)
15 while v ̸= ⊥ do
16 while u ̸= ⊥ and low(u) < lastM(v) do
17 u← prevS(u)
18 end
19 while u ̸= ⊥ and low(u) < nextM(v) do
20 insert u into U4

4 (v)

21 u← prevS(u)

22 end
23 if u ̸= ⊥ then
24 insert u into U4

4 (v)

25 end
26 v ← nextS(v)
27 while v ̸= ⊥ and nextM(v) = ⊥ do
28 v ← nextS(v)
29 end

30 end

31 end

32 end
426

Lemma 5.127. Let (u, v, w) be a triple of vertices that induces a Type-3βii-4 4-cut, such
that high1(v) = high(u) and M(B(v) \ {e}) = M(v), where e is the back-edge in the 4-cut
induced by (u, v, w). Suppose that the lower endpoint of e is distinct from high1(v). Then
U4
4 (v) ̸= ∅, and let ũ be the greatest vertex in U4

4 (v). If u /∈ U4
4 (v), then u is the predecessor

of ũ in H(high1(v)).

Proof. Since high1(v) = high(u) and u is a proper descendant of v, we may consider
the segment S of H(high1(v)) from u to v. Let u′ be a vertex in S. Due to the sorting
of H(high1(v)), we have u ≥ u′ ≥ v. Thus, since the lower endpoint of e is distinct
from high1(v), Lemma 5.104 implies that u′ is an ancestor of u. Thus, we have that all
elements of S are related as ancestor and descendant (since all of them are ancestors
of u), and therefore S ⊆ S(v). Since (u, v, w) induces a Type-3βii-4 4-cut, we have
M(w) = M(B(v)\{e}). Therefore, sinceM(B(v)\{e}) = M(v), we haveM(w) = M(v).
Since w is a proper ancestor of v, this implies that nextM(v) ̸= ⊥, and w ≤ nextM(v).

By Lemma 5.101 we have w ≤ low(u), and therefore lastM(v) ≤ low(u). Thus, if
low(u) < nextM(v), then u satisfies enough conditions to be in U4

4 (v). Otherwise, we
have low(u) ≥ nextM(v), and therefore U4

4 (v) is not empty, because we can consider
the lowest proper descendant u′ of v in S(v) such that low(u′) ≥ nextM(v). So let ũ
be the greatest vertex in U4

4 (v). Let us suppose, for the sake of contradiction, that
u /∈ U4

4 (v), and u is not the predecessor of ũ in H(high1(v)).
Since u is a proper descendant of v in S(v) such that low(u) ≥ nextM(v), we

have that there is a proper descendant u′ of v in S(v) that is lower than u and has
low(u′) ≥ nextM(v) (because this is the only condition that prevents u from being in
U4
4 (v)). Thus, we may consider the lowest vertex u′ that has this property. Then, we
have that u′ ∈ U4

4 (v), and every other vertex u′′ ∈ U4
4 (v) satisfies low(u′′) < nextM(v).

Let us suppose, for the sake of contradiction, that u′ is not the greatest vertex in
U4
4 (v). Then there is a vertex u′′ ∈ U4

4 (v) such that u′′ > u′. Since u′ ∈ U4
4 (v) and

u′′ ∈ U4
4 (v), we have u′ ∈ S(v) and u′′ ∈ S(v). Therefore, u′′ > u′ implies that u′′ is a

proper descendant of u′. Furthermore, we have high(u′) = high1(v) = high(u′′). Thus,
Lemma 3.3 implies that B(u′′) ⊆ B(u′). This implies that low(u′) ≤ low(u′′). But we
have low(u′) ≥ nextM(v) and low(u′′) < nextM(v), a contradiction. This shows that u′

is indeed the greatest vertex in U4
4 (v), and therefore we have u′ = ũ.

Let ũ′ be the predecessor of ũ in H(high1(v)). Then, since ũ is lower than u, and u is
neither ũ nor ũ′, we have u > ũ′ > ũ. Thus, since u and ũ are in S(v), we have that ũ′ is
also in S(v) (because S(v) is a segment of H(high1(v))). Thus, ũ′ is related as ancestor

427

and descendant with both u and ũ. Therefore, we have that u is a proper descendant
of ũ′, and ũ′ is a proper descendant of ũ. Then, since high(u) = high(ũ′) = high(ũ),
Lemma 3.3 implies that B(u) ⊆ B(ũ′) ⊆ B(ũ). Since the graph is 3-edge-connected,
this can be strengthened to B(u) ⊂ B(ũ′) ⊂ B(ũ).

Let (x, y) be a back-edge in B(ũ). Then we have that x is a descendant of ũ,
and therefore a descendant of v. Since ũ ∈ S(v), we have high(ũ) = high1(v). Thus,
since (x, y) ∈ B(ũ), we have that y is an ancestor of high(ũ) = high1(v), and therefore
y is a proper ancestor of v. This shows that (x, y) ∈ B(v). Since (u, v, w) induces
a Type-3βii-4 4-cut, we have B(v) = (B(u) ⊔ B(w)) ⊔ {e}. This implies that either
(x, y) ∈ B(u), or (x, y) ∈ B(w), or (x, y) = e. The case (x, y) ∈ B(w) is rejected, since
y ≥ low(ũ) ≥ nextM(v) ≥ w. Thus, we have that either (x, y) ∈ B(u) or (x, y) = e. Due
to the generality of (x, y) ∈ B(ũ), this implies that B(ũ) ⊆ B(u) ⊔ {e}. Thus, we have
B(u) ⊂ B(ũ′) ⊂ B(ũ) ⊆ B(u) ⊔ {e}. But this implies that bcount(u) < bcount(ũ′) <

bcount(ũ) ≤ bcount(u) + 1, which is impossible (because those numbers are integers).
Thus, we conclude that either u ∈ U4

4 (v), or u is the predecessor of ũ in H(high1(v)).

Lemma 5.128. Let (u, v, w) be a triple of vertices such that u is a proper descendant
of v, v is a proper descendant of w, and M(w) = M(v). Then there is a back-edge e

such that B(v) = (B(u) ⊔ B(w)) ⊔ {e} if and only if: (1) high(u) < v, (2) bcount(v) =
bcount(u) + bcount(w) + 1, and (3) w is either the greatest or the second-greatest proper
ancestor of v such that M(w) = M(v) and w ≤ low(u).

Proof. (⇒) B(v) = (B(u)⊔B(w))⊔{e} implies that B(u) ⊆ B(v). Let (x, y) be a back-
edge in B(u). Then B(u) ⊆ B(v) implies that (x, y) ∈ B(v), and therefore y is a proper
ancestor of v, and therefore y < v. Due to the generality of (x, y) ∈ B(u), this implies
that high(u) < v. (2) is an immediate consequence of B(v) = (B(u) ⊔B(w)) ⊔ {e}.

Let us suppose, for the sake of contradiction, that low(u) < w. Let (x, y) be a
back-edge in B(u) such that y = low(u). Then x is a descendant of u, and therefore a
descendant of v, and therefore a descendant of w. Since (x, y) is a back-edge, we have
that x is a descendant of y. Thus, x is a common descendant of w and y, and therefore
w and y are related as ancestor and descendant. Then, y = low(u) < w implies that
y is a proper ancestor of w. But this shows that (x, y) ∈ B(w), in contradiction to
B(u) ∩ B(w) = ∅. This shows that low(u) ≥ w.

Thus, it makes sense to consider the greatest proper ancestor w′ of v such that

428

M(w′) = M(v) and w′ ≤ low(u). If w = w′, then we are done. Otherwise, we can also
consider the second-greatest proper ancestor w′′ of v such that M(w′′) = M(v) and
w′′ ≤ low(u).

Let us suppose, for the sake of contradiction, that w is neither w′ nor w′′. Thus,
we have w < w′′ < w′. Then, since M(w) = M(w′′) = M(w′), we have that w is a
proper ancestor of w′′, w′′ is a proper ancestor of w′, and Lemma 3.2 implies that
B(w) ⊆ B(w′′) ⊆ B(w′). Since the graph is 3-edge-connected, this can be strengthened
to B(w) ⊂ B(w′′) ⊂ B(w′). Notice that, since w′ ≤ low(u), we have B(u) ∩ B(w′) = ∅
(because the lower endpoint of every back-edge in B(u) is not low enough to be a
proper ancestor of w′).

Let (x, y) be a back-edge in B(w′). Then x is a descendant of M(w′), and therefore
a descendant of M(v), and therefore a descendant of v. Furthermore, y is a proper
ancestor of w′, and therefore y is a proper ancestor of v. This shows that (x, y) ∈ B(v).
Then B(v) = (B(u)⊔B(w))⊔{e} implies that either (x, y) ∈ B(u), or (x, y) ∈ B(w), or
(x, y) = e. The case (x, y) ∈ B(u) is rejected, because B(u)∩B(w′) = ∅. Thus, we have
that either (x, y) ∈ B(w), or (x, y) = e. Due to the generality of (x, y) ∈ B(w′), this
implies that B(w′) ⊆ B(w)⊔{e}. Thus, we have B(w) ⊂ B(w′′) ⊂ B(w′) ⊆ B(w)⊔{e}.
But this implies that bcount(w) < bcount(w′′) < bcount(w′) ≤ bcount(w) + 1, which is
impossible (because those number are integers).

Thus, we have that w is either the greatest or the second-greatest proper ancestor
of v such that M(w) = M(v) and w ≤ low(u).

(⇐) Let (x, y) be a back-edge in B(u). Then x is a descendant of u, and therefore
a descendant of v. Furthermore, y is an ancestor of high(u), and therefore y ≤ high(u),
and therefore y < v (due to (1)). Since (x, y) is a back-edge, we have that x is a
descendant of y. Thus, x is a common descendant of v and y, and therefore v and
y are related as ancestor and descendant. Then, y < v implies that y is a proper
ancestor of v. This shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(u),
this implies that B(u) ⊆ B(v).

Let (x, y) be a back-edge in B(w). Then x is a descendant of M(w) = M(v).
Furthermore, y is a proper ancestor of w, and therefore a proper ancestor of v. This
shows that (x, y) ∈ B(v). Due to the generality of (x, y) ∈ B(w), this implies that
B(w) ⊆ B(v). Since w ≤ low(u), we infer that B(u) ∩ B(w) = ∅ (because the lower
endpoint of every back-edge in B(u) is not low enough to be a proper ancestor of w).

Now, since B(u) ⊆ B(v), B(w) ⊆ B(v), B(u)∩B(w) = ∅, and bcount(v) = bcount(u)+

429

bcount(w) + 1, we infer that there is a back-edge e such that B(v) = (B(u) ⊔ B(w)) ⊔
{e}.

Proposition 5.32. Algorithm 53 computes a collection of Type-3βii-4 4-cuts, which includes
all Type-3βii-4 4-cuts of the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is a proper
ancestor of v, v is a proper ancestor of u, M(B(v) \ {e}) = M(v), high1(v) = high(u),
and the lower endpoint of e is distinct from high1(v). Furthermore, it has a linear-time
implementation.

Proof. Let C = {(u, p(u)), (v, p(v)), (w, p(w)), e} be a Type-3βii-4 4-cut such that w is
a proper ancestor of v, v is a proper ancestor of u, M(B(v) \ {e}) = M(v), high1(v) =
high(u), and the lower endpoint of e is distinct from high1(v). Lemma 5.67 implies that
e = e(u, v, w). Since C is a Type-3βii-4 4-cut, we have B(v) = (B(u)⊔B(w))⊔{e} and
M(B(v) \ {e}) = M(w). Since M(B(v) \ {e}) = M(v), this implies that M(w) = M(v).
Since the lower endpoint of e is distinct from high1(v), Lemma 5.127 implies that
U4
4 (v) is not empty, and either u ∈ U4

4 (v), or u is the predecessor of ũ in H(high1(v)),
where ũ is the greatest vertex in U4

4 (v). Thus, we have u ∈ Ũ4
4 (v). By Lemma 5.128

we have that bcount(v) = bcount(u) + bcount(w) + 1, and w is either the greatest or the
second-greatest proper ancestor of v such that M(w) = M(v) and w ≤ low(u). Thus, if
w is the greatest proper ancestor of v such that M(w) = M(v) and w ≤ low(u), then C

satisfies enough conditions to be marked in Line 20. Otherwise, let w′ be the greatest
proper ancestor of v such that M(w′) = M(v) and w′ ≤ low(u). Consider the vertex
w′′ = nextM(w′). Then we have w′′ < w′ and M(w′′) = M(w′). Thus, w′′ is a proper
ancestor of w′, and therefore w′′ is a proper ancestor of v with w′′ < w′ ≤ low(u). Since
w′′ is the greatest vertex with M(w′′) = M(w′) that is lower than w′, this means that
w′′ is the second-greatest proper ancestor of v with M(w′′) = M(v) and w′′ ≤ low(u).
Thus, we have w = w′′, and therefore C satisfies enough condition to be marked in
Line 24.

Conversely, let C = {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} be a 4-element set that
is marked in Line 20 or 24. In either case, we have that u is in Ũ4

4 (v). This means that
either u ∈ U4

4 (v), or u is the predecessor of ũ in H(high1(v)), where ũ is the greatest
vertex in U4

4 (v). Then, since u ∈ H(high1(v)), we have high(u) = high1(v), and therefore
high(u) < v. If u ∈ U4

4 (v), then by definition we have that u is a proper descendant of
v. Otherwise, since the condition in Line 11 is satisfied (during the processing of v),
we have that u is a proper descendant of v.

430

Algorithm 53: Compute all Type-3βii-4 4-cuts of the form
{(u, p(u)), (v, p(v)), (w, p(w)), e}, where w is an ancestor of v, v is an an-
cestor of u, M(B(v) \ {e}) = M(v), high1(v) = high(u), and the lower endpoint
of e is distinct from high1(v)

1 foreach v ̸= r such that nextM(v) ̸= ⊥ do
2 compute U4

4 (v)

3 end
4 foreach v ̸= r such that nextM(v) ̸= ⊥ do
5 let Ũ4

4 (v)← U4
4 (v)

6 end
7 foreach v ̸= r such that nextM(v) ̸= ⊥ do
8 if U4

4 (v) ̸= ∅ then
9 let ũ be the greatest vertex in U4

4 (v)

10 let u be the predecessor of ũ in H(high1(v))
11 if u ̸= ⊥ and u is a proper descendant of v then
12 insert u into Ũ4

4 (v)

13 end

14 end

15 end
16 foreach v ̸= r such that nextM(v) ̸= ⊥ do
17 foreach u ∈ Ũ4

4 (v) do
18 let w be the greatest proper ancestor of v with M(w) = M(v) such that

w ≤ low(u)
19 if bcount(v) = bcount(u) + bcount(w) + 1 then
20 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut
21 end
22 w ← nextM(w)

23 if bcount(v) = bcount(u) + bcount(w) + 1 then
24 mark {(u, p(u)), (v, p(v)), (w, p(w)), e(u, v, w)} as a 4-cut

25 end

26 end

27 end

431

Let us suppose first that C is marked in Line 20. Then we have bcount(v) =

bcount(u)+bcount(w)+1, and w is the greatest proper ancestor of v withM(w) = M(v)

and w ≤ low(u). Thus, all the conditions of Lemma 5.128 are satisfied, and so we have
that there is a back-edge e such that B(v) = (B(u) ⊔B(w)) ⊔ {e}. Then Lemma 5.67
implies that e = e(u, v, w). Thus, Lemma 5.57 implies that C is a Type-3β 4-cut.

Now let us suppose that C is marked in Line 24. Let w′ be the greatest proper
ancestor of v with M(w′) = M(v) and w′ ≤ low(u). Then we have w = nextM(w′). This
means that w is the greatest vertex with M(w) = M(w′) and w < w′. This implies
that w is a proper ancestor of w′, and therefore a proper ancestor of v. Furthermore,
we have w < w′ ≤ low(u). This shows that w is the second-greatest proper ancestor
of v such that M(w) = M(v) and w ≤ low(u). Since we have met the condition in
Line 23, we have bcount(v) = bcount(u) + bcount(w) + 1. Thus, all the conditions of
Lemma 5.128 are satisfied, and so we have that there is a back-edge e such that
B(v) = (B(u) ⊔ B(w)) ⊔ {e}. Then Lemma 5.67 implies that e = e(u, v, w). Thus,
Lemma 5.57 implies that C is a Type-3β 4-cut.

Now we will argue about the complexity of Algorithm 53. By Lemma 5.126 we
have that the sets U4

4 (v) can be computed in linear time in total, for all vertices v ̸= r

such that nextM(v) ̸= ⊥. Thus, the for loop in Line 1 can be performed in linear
time. In particular, we have that the total size of all U4

4 sets is O(n). Thus, the for
loop in Line 7 takes O(n) time. In order to compute the vertex w in Line 18, we use
Algorithm 22. We have showed previously how to generate the appropriate queries
that provide w (see e.g., the proof of Proposition 5.31). Since the number of all those
queries is O(n) (because it is bounded by the total size of all sets of the form Ũ4

4 (v)),
by Lemma 5.27 we have that Algorithm 22 can answer all of them in O(n) time. We
conclude that Algorithm 53 runs in linear time.

According to Proposition 5.32, Algorithm 53 computes all Type-3βii-4 4-cuts of
the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where u is a descendant of v, v is a descen-
dant of w, M(B(v) \ {e}) = M(v), high1(v) = high(u), and the lower endpoint of e is
distinct from high1(v). It remains to show how to compute all such 4-cuts in the case
where the lower endpoint of e is high1(v). For this case, we cannot use directly any
of our techniques so far, because these rely on the fact that u and v belong to the
same segment of H(high1(v)) or H̃(high2(v)) that is maximal w.r.t. the property that
its elements are related as ancestor and descendant. However, in this particular case,

432

this is not necessarily true. (See Figure 5.26 for an example.)

u p(u) v p(v)

e

B(u)

r
w p(w)

u1

u2

u3 e’
high(u)=
high(v)=
high(u1)

M(v)

Figure 5.26: In this example we have that {(u, p(u)), (v, p(v)), (w, p(w)), e} is a Type-3βii-4
4-cut, such that M(v) = M(B(v) \ {e}), high1(v) = high1(u) and the lower endpoint of e is

high1(v). Notice that u /∈ S(v), because u1 and u2 also have high1(u1) = high1(u2) = high1(v).

(I.e., u does not belong to a segment of H(high1(v)) that contains v and has the property

that its elements are related as ancestor and descendant.) Also, it is not necessarily true that

high2(u) = high2(v), because we may have high2(u) < high1(u), whereas high2(v) = high1(v).

However, even if we have high2(u) = high2(v), then u /∈ S̃(v), since high2(u3) = high2(v) =

high1(v). Thus, in this situation we cannot use the same techniques that we used so far in

order to compute the Type-3βii 4-cuts.

Notice that, if such a 4-cut exists, then we have that there are two distinct back-
edges with the same lower endpoint: i.e., the back-edge e, and one of the back-edges
in B(u) whose lower endpoint is high(u) = high1(v). Thus, if we had the property that
no two back-edges have the same lower endpoint, then this case would not arise.
We basically rely on this observation. Thus, we will perform the computation on
a different – but “4-cut-equivalent” – graph, that has a DFS-tree in which no two
back-edges that correspond to edges of the original graph can have the same lower
endpoint. We construct this graph through repeated application of the following

433

vertex-splitting operation.

Definition 5.10 (Vertex Splitting). Let v be a vertex of G, and let (E1, E2) be an
ordered bipartition of ∂(v). Let G′ be the graph that is formed from G by replacing v

with two vertices v1 and v2, and by inserting five multiple edges of the form (v1, v2),
one edge (v1, z) for every z such that there is an edge (v, z) ∈ E1, and one edge (v2, z)
for every z such that there is an edge (v, z) ∈ E2. Then, G′ is called the graph that is
derived from G by splitting v at (E1, E2) as v1 and v2. (See Figure 5.27.)

We also define the corresponding mapping of edges f : E(G)→ E(G′) as follows.
If (x, y) is an edge of G such that none of x, y is v, then f((x, y)) = (x, y). Otherwise,
if, say, x = v, then (x, y) belongs to one of the sets E1 or E2. If (x, y) ∈ E1, then
f((x, y)) = (v1, y). Otherwise, f((x, y)) = (v2, y).6

v

z

z’

w

w’

v1

z

z’

v2

w

w’

Figure 5.27: Splitting a vertex v at (E1, E2) as v1 and v2, where E1 = {(v, z), . . . , (v, z′)} and

E2 = {(v, w), . . . , (v, w′)}.

A graph G′ that is derived from G by splitting a vertex maintains all 4-cuts, as
shown in the following.

Lemma 5.129. Let G′ be the graph that is derived from G by splitting a vertex v at
(E1, E2) as v1 and v2, and let f : E(G) → E(G′) be the corresponding mapping of edges.
Then, G′ is 3-edge-connected. Furthermore, if C is a 4-cut of G, then f(C) is a 4-cut of
G′. Conversely, if C ′ is a 4-cut of G′, then none of the edges in C ′ has the form (v1, v2),
and f−1(C ′) is a 4-cut of G.

6A more precise definition of f would require that it maintains the unique identifiers of the multiple
edges. For the sake of simplicity, however, we omit this consideration from the definition and from
the arguments that follow.

434

Proof. In order to prove this lemma, we establish a correspondence between paths in
G and paths in G′. This basically works by replacing every part of a path in G that
passes from v, with a part in G′ that passes from v1 or v2. More precisely, we define
the correspondence as follows.

Let P = x1, e1, x2, . . . , ek−1, xk be a path in G. We perform the following substitu-
tions.

• If x1 = v, then e1 has the form (v, z), and we have that either e1 ∈ E1 or e1 ∈ E2.
If e1 ∈ E1, then we replace the part x1, e1 in P with v1, (v1, z). Otherwise, if
e1 ∈ E2, then we replace the part x1, e1 in P with v2, (v2, z).

• If xk = v, then ek−1 has the form (z, v), and we have that either ek−1 ∈ E1 or
ek−1 ∈ E2. If ek−1 ∈ E1, then we replace the part ek−1, v in P with (z, v1), v1.
Otherwise, if ek−1 ∈ E2, then we replace the part ek−1, v in P with (z, v2), v2.

• If there is a part ei, v, ei+1 in P , for some i ∈ {1, . . . , k − 2}, then we have that
the edge ei has the form (z, v), the edge ei+1 has the form (v, z′), and there are
four different cases to consider, depending on whether ei and ei+1 are in E1

or E2. If ei ∈ E1 and ei+1 ∈ E1, then we replace the part (z, v), v, (v, z′) with
(z, v1), v1, (v1, z

′). If ei ∈ E1 and ei+1 ∈ E2, then we replace the part (z, v), v, (v, z′)
with (z, v1), v1, (v1, v2), v2, (v2, z

′). If ei ∈ E2 and ei+1 ∈ E1, then we replace the
part (z, v), v, (v, z′) with (z, v2), v2, (v2, v1), v1, (v1, z

′). And if ei ∈ E2 and ei+1 ∈ E2,
then we replace the part (z, v), v, (v, z′) with (z, v2), v2, (v2, z

′).

We denote the resulting sequence as P ′. Observe the following facts.

1. P ′ is a path in G′.

2. Every occurrence of a vertex x ̸= v in P is maintained in P ′.

3. Every occurrence of v in P , is substituted with either v1, or v2, or v1, (v1, v2), v2,
or v2, (v2, v1), v1.

4. Every occurrence of an edge e in P , is substituted with f(e).

5. Every part e, v, e′ in P (where e and e′ are edges), is substituted
with either f(e), v1, f(e

′), or f(e), v2, f(e
′), or f(e), v1, (v1, v2), v2, f(e

′), or
f(e), v2, (v2, v1), v1, f(e

′).

435

Conversely, let Q = x1, e1, x2, . . . , ek−1, xk be a path in G′. We perform the following
substitutions.

• If xi is v1 or v2, and xi+1 is not v1 or v2, for some i ∈ {1, . . . , k − 2}, then xi, ei

is replaced with v, (v, xi+1).

• If xi is v1 or v2, and xi−1 is not v1 or v2, for some i ∈ {2, . . . , k− 1}, then ei−1, xi

is replaced with (xi−1, v), v.

• Every maximal segment of the form vi, (vi, vj), vj , for i, j ∈ {1, 2}, is replaced
with v.

We denote the resulting sequence as Q̃. (Notice that after performing simultane-
ously the above substitutions, there may appear some segments of the form v, v, v,
We replace those maximal segments with v, so that we indeed have a path. For ex-
ample, Q may contain the segment v1, (v1, v2), v2, (v2, z), where z /∈ {v1, v2}. Then we
replace this segment with v, (v, z) in Q̃.) Observe the following facts.

1. Q̃ is a path in G.

2. Every occurrence of a vertex x /∈ {v1, v2} in Q is maintained in Q̃.

3. Every occurrence of v1 or v2 in Q, is substituted with v.

4. Every occurrence of an edge e ̸= (v1, v2) in Q, is substituted with f−1(e).

Now it is easy to see why G′ is connected. Let x and y be two distinct vertices in
G′, none of which is either v1 or v2. Then, since G is connected, there is a path P in
G from x to y. Then, P ′ is a path in G′ from x to y, and so x and y are connected
in G′. The existence of the edges of the form (v1, v2) in G′ shows that v1 and v2 are
connected in G′. Finally, since {E1, E2} is a bipartition of ∂(v), we have that both E1

and E2 are non-empty. So let (v, z) be an edge in E1. Then, there is an edge of the
form (v1, z) in G′, and so v1 is connected with the vertices in G′\{v1, v2}. Furthermore,
let (v, z) be an edge in E2. Then, there is an edge of the form (v2, z) in G′, and so v2

is connected with the vertices in G′ \ {v1, v2}. This shows that G′ is connected.
Now let us suppose, for the sake of contradiction, that G′ is not 3-edge-connected.

This means that there is a k-edge cut C of G′, for some k ≤ 2. This implies that the
endpoints of any edge in C are not connected in G′ \C. Thus, we have that no edge
of the form (v1, v2) is contained in C (because there are five edges of this form, and

436

so all of them must be removed in order to disconnect v1 from v2). Thus, the set of
edges f−1(C) is defined. Then, since G is 3-edge-connected, we have that G \ f−1(C)

is connected (since |f−1(C)| = |C| ≤ 2). Since C is a k-edge cut of G′, we have that
G′ \ C consists of two connected components S1 and S2. Let x be a vertex in S1 and
let y be a vertex in S2. If x ∈ {v1, v2} then we let x′ denote v; otherwise, if x /∈ {v1, v2},
then we let x′ denote x. Similarly, if y ∈ {v1, v2}, then we let y′ denote v; otherwise,
if y /∈ {v1, v2}, then we let y′ denote y. Then, since G \ f−1(C) is connected, we have
that there is a path P in G \ f−1(C) from x′ to y′. Then, the path P ′ in G′ avoids
the edges in C , and demonstrates that x and y are connected in G′ \ C. (To see this,
distinguish the following cases. If none of x and y is in {v1, v2}, then P ′ is a path
from x to y, and the contradiction is clear. If, say, x is v1, then P ′ is a path from either
v1 or v2; but this distinction has no effect, since the existence of the edges of the form
(v1, v2) implies that v1 is connected with v2 in G′ \ C. The same holds if x is v2, or if
y is either v1 or v2.) Thus, we have arrived at a contradiction. This shows that G′ is
3-edge-connected.

Now let C be a 4-cut of G. This implies that G \ C is split into two connected
components S1 and S2, but G \ C ′ is connected for every proper subset C ′ of C. Let
x be a vertex in S1, and let y be a vertex in S2. Then, there is no path from x to y

in G \ C. Let us suppose, for the sake of contradiction, that x′ and y′ are connected
in G′ \ f(C), where we let x′ denote v1 if x = v, or x if x ̸= v; and similarly, we let
y′ denote v1 if y = v, or y if y ̸= v. Then there is a path Q in G′ \ f(C) from x′ to
y′. Consider the path Q̃ in G. First, observe that Q̃ is a path in G \ C (since Q is
a path in G′ \ f(C)). Furthermore, notice that Q̃ is a path from x to y. But this is
impossible, since x and y are not connected in G \ C. Thus, we have that G′ \ f(C)

is disconnected. Now let C ′ be a proper subset of C. Let us suppose, for the sake of
contradiction, that G′ \ f(C ′) is disconnected. Then, let x and y be two vertices that
are not connected in G′ \ f(C ′). Notice that it cannot be that both x and y are in
{v1, v2}, because there are five edges of the form (v1, v2), whereas |f(C ′)| = |C ′| < 4.
If none of x and y is either v1 or v2, then there is a path P from x to y in G \C ′, and
therefore there is a path P ′ from x to y in G′ \ f(C ′), which is impossible. Thus, one
of x and y is either v1 or v2. Let us assume w.l.o.g. that x = v1. Then we have that
y /∈ {v1, v2}, and so there is a path P from v to y in G \C ′, and therefore P ′ is a path
from either v1 or v2 to y in G′ \ f(C ′), which is also impossible (since v1 is connected
with v2 in G′ \ f(C ′), but v1 is not connected with y in G′ \ f(C ′)). Thus, we have that

437

G′ \ f(C ′) is also connected. Since this is true for every proper subset C ′ of C , this
shows that f(C) is a 4-cut of G′.

Conversely, let C be a 4-cut of G′. This implies that the endpoints of every edge
in C are disconnected in G′ \C. Thus, since |C| = 4, we have that C contains no edge
of the form (v1, v2) (since there are five of them in G′), and v1 is connected with v2

in G′ \ C. Thus, f−1(C) is a set of four edges of G. Let us suppose, for the sake of
contradiction, that G \ f−1(C) is connected. Since C is a 4-cut of G′, there are two
vertices x and y that are disconnected in G′ \C. Let x′ denote v if x ∈ {v1, v2}, and x

if x /∈ {v1, v2}. Similarly, let y′ denote v if y ∈ {v1, v2}, and y if y /∈ {v1, v2}. Then, since
G \ f−1(C) is connected, there is a path P from x′ to y′ in G \ f−1(C). Then, observe
that P ′ is a path in G′, that avoids the edges in C. Furthermore, if x′ = x and y′ = y,
then P ′ is a path from x to y, which is impossible, since x and y are disconnected in
G′ \ C. Otherwise, let us assume w.l.o.g. that x′ = v. Then, P ′ is a path from either
v1 or v2 to y, which demonstrates that x is connected with y in G′ \ C (since v1 is
connected with v2 in G′ \ C). This is impossible. Thus, we have that G \ f−1(C) is
disconnected. Now, since C is a 4-cut of G′, we have that G′\C ′ is connected, for every
proper subset C ′ of C. Let us suppose, for the sake of contradiction, that G \ f−1(C ′)

is disconnected, for a proper subset C ′ of C. Then, there are two vertices x and y of G
that are disconnected in G\ f−1(C ′). If x = v, let x′ denote v1; otherwise, let x′ denote
x. Similarly, if y = v, let y′ denote v1; otherwise, let y′ denote y. Then, since G′ \C ′ is
connected, we have that there is a path Q from x′ to y′ in G′ \C ′. Then, observe that
Q̃ is a path from x to y in G \ f−1(C ′), in contradiction to our supposition. Thus, we
have that G \ f−1(C ′) is connected. Since this is true for every proper subset C ′ of C ,
this shows that f−1(C) is a 4-cut of G.

Now the idea is to repeatedly split vertices on T , so that the resulting DFS-tree has
the property that no two back-edges that correspond to back-edges of the original
graph can have the same lower endpoint. So let v be a vertex, and let (x1, v), . . . , (xk, v)

be all the incoming back-edges to v. We may assume that v ̸= r (because this is
sufficient for our purposes). If k = 1, then there is nothing to do, because there is only
one back-edge whose lower endpoint is v. Otherwise, let (c1, v), . . . , (ct, v) be the parent
edges of the children of v (if it has any), and let (v, y1), . . . , (v, yl) be the back-edges
that stem from v. Then, we have ∂(v) = {(x1, v), . . . , (xk, v)} ∪ {(c1, v), . . . , (ct, v)} ∪
{(v, y1), . . . , (v, yl)} ∪ {(v, p(v))}. Let E1 = {(x1, v)} ∪ {(c1, v), . . . , (ct, v)}, and let E2 =

438

∂(v)\E1. Then, we split v at P = (E1, E2) as v1 and v2, while maintaining the DFS-tree
structure (see Figure 5.28). To be specific, we detach v from T , and we introduce the
vertices v1 and v2 that replace v, such that v2 = p(v1). Then, v1 inherits the children of
v and the back-edge (x1, v) (as (x1, v1)), and v2 inherits the remaining edges from ∂(v).
Thus, we introduce the parent edges (c1, v1), . . . , (ct, v1), four back-edges of the form
(v1, v2) (because we already have (v1, v2) as a parent edge), we set p(v2)← p(v) (where
p(v) was the parent of v before its deletion), and we also put back the remaining back-
edges from ∂(v) as (x2, v2), . . . , (xk, v2) and (v2, y1), . . . , (v2, yl). We refer to Figure 5.28
for a depiction of this process.

v=v1

p(v)

y1

yl

c1 c2
ct

x1

x2

xk

v1

p(v2) (=p(v))

y1

yl

c1 c2
ct

x1

x2

xk

v2

v1

p(v3) (=p(v))

y1

yl

c1 c2
ct

x1

x2

xk

v3

v2

split v1

split v2

Figure 5.28: Splitting a vertex v on a DFS-tree, so that the number of back-edges with

lower endpoint v is reduced by one. With green are shown the target back-edges (incoming

to v) that we want to separate w.r.t. their lower endpoint. With red is shown the back-edge

that was separated from the rest and is now unique with the property of having the lower

endpoint that it has. With orange are shown the five multiple edges that join the two vertices

into which the vertex was split. We note that one of those multiple edges is a tree-edge, and

the rest are back-edges.

In this way, we have achieved the following things. First, we have maintained a
DFS-tree for the graph that is derived from G by splitting v at P , and second, we
have effectively reduced the number of back-edges with lower endpoint v by one (i.e.,
now all of these, except one, have v2 as their lower endpoint). Now, if k > 2, then we

439

continue this process, by splitting v2, until eventually we have separated the back-
edges with lower endpoint v into back-edges with different lower endpoints. Then,
we continue this process for all vertices ̸= r. Let G′ be the resulting graph, and let
T ′ be the corresponding DFS-tree. Notice that, by Lemma 5.129, all 4-cuts of G that
contain at least one back-edge (w.r.t. T) whose lower endpoint is not r, correspond
to 4-cuts of G′ that also have at least one back-edge (w.r.t. T ′). Thus, we can compute
all Type-3βii-4 4-cuts of G of the form {(u, p(u)), (v, p(v)), (w, p(w)), e}, where u is a
descendant of v, v is a descendant of w, M(B(v)\{e}) = M(v), high1(v) = high(u), and
the lower endpoint of e is high1(v), by simply computing all 4-cuts of G′ that contain
three tree-edges and one back-edge, using the algorithms that we have developed so
far (since our analysis covers all cases, except this one, which may only arise due to
the existence of at least two back-edges with the same lower endpoint).

It remains to show how we can efficiently perform all those splittings in linear
time in total. This can be done easily, because it is essentially sufficient to determine
the final vertices and the edges of G′, and the parent relation of the vertices of G′.
Then we may run a DFS with start vertex r, in order to assign a DFS numbering,
determine the back-edges, and compute the DFS parameters that we need.

Let us describe in detail how to construct the vertices and the edges of the final
graph G′. First, for every vertex v, let in(v) denote the number of incoming back-
edges to v. Then, for every vertex v ̸= r such that in(v) > 1, we will perform in(v)− 1

splittings of v. This will substitute v with in(v) copies of it, which we denote as
v1, v2, . . . , vin(v). Every one of the vertices v1, . . . , vin(v) will be used in order to inherit
one of the incoming back-edges to v. For every i ∈ {1, . . . , in(v) − 1}, we create five
multiple edges of the form (vi, vi+1); one of these edges will be the parent edge of
vi. Among the in(v) copies of v, we let v1 inherit the children edges of v, and we let
vin(v) inherit the outgoing back-edges from v and the parent edge (v, p(v)) (if v ̸= r).
Thus, let c be a child of v. Then the parent edge of c is replaced with (cin(c), v1) if
in(c) > 1, or with (c, v1) otherwise. Now let e1, . . . , ein(v) be the list of the incoming
back-edges to v. Let i be an index in {1, . . . , in(v)}, and let ei = (x, v). Then ei is
replaced with (xin(x), vi) if in(x) > 1, or with (x, vi) otherwise. It is not difficult to see
that this construction can be completed in linear time.

440

CHAPTER 6

CONNECTIVITY QUERIES UNDER 4 EDGE
FAILURES

6.1 Introduction

6.2 E′ contains zero tree‐edges

6.3 E′ contains one tree‐edge

6.4 E′ contains two tree‐edges

6.5 E′ contains three tree‐edges

6.6 E′ contains four tree‐edges

6.7 The data structure

6.1 Introduction

Our goal in this chapter is to prove the following.

Proposition 6.1. Let G be a connected graph with n vertices and m edges. Then there is
a data structure with size O(n), that we can use in order to answer connectivity queries in
the presence of at most four edge-failures in constant time. Specifically, given an edge-set E ′

with |E ′| ≤ 4, and two vertices x and y, we can determine whether x and y are connected
in G \ E ′ in O(1) time. The data structure can be constructed in O(m+ n) time.

Let G be a connected graph, and let T be a rooted spanning tree of G. Let E ′ be
a set of edges of G, and let k be the number of tree-edges in E ′. Then T \ E ′ is split

441

into k+1 connected components. Every connected component of T \E ′ is a subtree of
T , and the connectivity in G \E ′ can be reduced to the connectivity of those subtrees
as follows. Let x and y be two vertices of G, let C1 be the connected component of
T \E ′ that contains x, and let C2 be the connected component of T \E ′ that contains
y. Then we have that x and y are connected in G \ E ′ if and only if C1 and C2 are
connected in G \ E ′. In particular, since C1 and C2 are subtrees of the rooted tree T ,
we can consider the roots r1 and r2 of C1 and C2 as representatives of C1 and C2,
respectively. Then, we have that x and y are connected in G \E ′ if and only if r1 and
r2 are connected in G \ E ′. Thus, the connectivity relation of G \ E ′ can be captured
by the connectivity relation of the roots of the connected components of T \ E ′ in
G \ E ′. In order to capture this connectivity relation, we introduce the concept of a
connectivity graph for G \ E ′.

Definition 6.1. Let T be a fixed rooted spanning tree of G, and let E ′ be a set of
edges of G. Let {C1, . . . , Ck} be the set of the connected components of T \E ′. Thus,
for every i ∈ {1, . . . , k}, Ci is a rooted subtree of T , and let ri be its root. Then, a
connectivity graph for G \ E ′ is a graph R with vertex set {r̄i | i ∈ {1, . . . , k}} such
that: for every i, j ∈ {1, . . . , k}, ri is connected with rj in G \ E ′ if and only if r̄i is
connected with r̄j in R.

We allow a connectivity graph R for G \ E ′ to be a multigraph. (The important
thing is that it captures the connectivity relation of the roots of the connected compo-
nents of T \E ′.) In particular, if we shrink every connected component of T \E ′ with
root z into a node z̄, then the quotient graph of G \ E ′ that we get is a connectivity
graph for G \ E ′. The main challenge is to compute a connectivity graph for G \ E ′

without explicitly computing the connected components of T \ E ′. We can achieve
this if we assume that T is a DFS-tree of the graph. Then, with a creative use of the
DFS-concepts that we defined in Section 3, we can determine enough edges of G \E ′

between the connected components of T \E ′, so that we can construct a connectivity
graph for G \ E ′ in constant time, if |E ′| ≤ 4.

We distinguish five different cases, depending on the number of tree-edges con-
tained in E ′. Then, for each case, we consider all the different possibilities for the
edges from E ′ on T (i.e., all the different topologies of their endpoints w.r.t. the an-
cestry relation). In order to reduce the number of cases considered, we will use the
following three facts (which we make precise and prove in the following paragraphs).

442

First, if we have established that the endpoints of a tree-edge e in E ′ remain connected
in G \ E ′, then it is sufficient to set E ′ ← E ′ \ {e}, and then revert to the previous
case, where the number of tree-edges is that of E ′ minus 1 (see Lemma 6.2). Second,
if there are at least two tree-edges in E ′ that are not descendants of other tree-edges
in E ′, then we can handle the subtrees induced by those tree-edges separately, by
reverting to previous cases (see Lemma 6.3). And third, if for a tree-edge (u, p(u)) in
E ′ we have that G \ E ′ contains no back-edges that leap over u, then we can handle
the subtree induced by this tree-edge separately from the rest of the tree, by reverting
to previous cases (see Lemma 6.4).

In the following, we assume that T is a fixed DFS-tree of G with root r. All
connectivity graphs refer to this tree. First, we will need the following technical
lemma.

Lemma 6.1. Let E ′ be a set of edges, and let E ′′ be a subset of E ′ that contains all the
back-edges from E ′, and has the property that no tree-edge from E ′ \E ′′ is related as ancestor
and descendant with a tree-edge from E ′′. Let U be the collection of the higher endpoints of
the tree-edges in E ′′, and let z and z′ be two vertices in U ∪{r}. Suppose that z and z′ are
connected in G \ E ′′. Then z and z′ are connected in G \ E ′.

Proof. Since z and z′ are connected in G\E ′′, there is a path P from z to z′ in G\E ′′.
If P does not use any tree-edge from E ′ \ E ′′, then we have that P is a path in
G \E ′, and therefore z and z′ are connected in G \E ′. So let us assume that P uses a
tree-edge from E ′ \ E ′′. Let C be the connected component of T \ E ′ that contains r.
Then, we claim that P has the form P1 +Q+ P2, where P1 is path from z to a vertex
w ∈ C that does not use any tree-edge from E ′ \ E ′′, Q is a path from w to a vertex
w′ ∈ C (that uses tree-edges from E ′ \ E ′′), and P2 is a path from w′ to z′ that does
not use any tree-edge from E ′ \ E ′′ (∗). This implies that P1 is a path from z to w

in G \ E ′, and P2 is a path from w′ to z′ in G \ E ′. Then, since w and w′ lie in the
same connected component of T \ E ′, we have that there is a path Q′ from w to w′

in G \ E ′. Thus, P1 +Q′ + P2 is a path from z to z′ in G \ E ′, and therefore we have
that z and z′ are connected in G \ E ′.

Now we will prove (∗). Let U ′ be the collection of the higher endpoints of the
tree-edges in E ′ \ E ′′. Then, we have that no vertex from U is related as ancestor
and descendant with a vertex from U ′. Now let (v, p(v)) be the first occurrence of a
tree-edge from E ′ \ E ′′ that is used by P , and let (v′, p(v′)) be the last occurrence of

443

a tree-edge from E ′ \ E ′′ that is used by P . Then, since P starts from z and visits
v, Lemma 3.18 implies that P contains a subpath from an ancestor w of nca{z, v} to
v, and let w be the first vertex visited by P with this property. Let P1 be the initial
part of P from z to the first occurrence of w. Then, we have that P1 does not use
any tree-edge from E ′ \ E ′′. Notice that there is no u ∈ U such that u is an ancestor
of w, because otherwise we would have that u is an ancestor of v. Also, there is no
u′ ∈ U ′ such that u′ is an ancestor of w, because otherwise u′ would be an ancestor
of z. Thus, there is no tree-edge from E ′ on the tree-path T [r, w]. Similarly, since P

visits v′ and ends in z′, Lemma 3.18 implies that P contains a subpath from v′ to an
ancestor w′ of nca{v′, z′}, and let w′ be the last vertex visited by P with this property.
Let P2 be the final part of P from the last occurrence of w′ to z′. Then, we have
that P2 does not use any tree-edge from E ′ \ E ′′. Again, we can see that there is no
tree-edge from E ′ on the tree-path T [r, w′]. Now we can consider the part Q of P
from the first occurrence of w to the last occurrence of w′, and the proof is complete,
because P = P1 +Q+ P2, and the endpoints of Q lie in the connected component of
T \ E ′ that contains r.

Lemma 6.2. Let E ′ be a set of edges, and let (u, p(u)) and (v, p(v)) be two distinct tree-
edges in E ′. Suppose that u, p(u) and v are connected in G\E ′. Let E ′′ = E ′ \{(u, p(u))},
and let R′ be a connectivity graph for G \ E ′′. Then, R′ ∪ {(ū, v̄)} is a connectivity graph
for G \ E ′.

Proof. Let (u1, p(u1)), . . . , (uk, p(uk)) be the tree-edges in E ′, where u1 = u. Let E ′′ =

E ′ \ {(u, p(u))}, and let R′ be a connectivity graph for G \ E ′′. Then we have that
V (R′) = {ū2, . . . , ūk, r̄}. Let R be the graph with V (R) = V (R′) ∪ {ū} and E(R) =
E(R′) ∪ {(ū, v̄)}. We will show that R is a connectivity graph for G \ E ′.

Let z and z′ be two vertices in {u2, . . . , uk, r}. First, suppose that z and z′ are
connected in G \ E ′. Then, since E ′′ ⊂ E ′, we have that z and z′ are connected in
G \ E ′′. Thus, z̄ and z̄′ are connected in R′, and therefore they are connected in R.
Conversely, suppose that z̄ and z̄′ are connected in R. Then, it is easy to see that z̄
and z̄′ are connected in R′. This implies that z and z′ are connected in G \E ′′. Thus,
there is a path P from z to z′ in G \E ′′. If P does not use the edge (u, p(u)), then P

is a path in G \ E ′, and therefore z and z′ are connected in G \ E ′. Otherwise, since
u and p(u) are connected in G \ E ′, there is a path Q from u to p(u) in G \ E ′ that
avoids the edge (u, p(u)). Now replace every occurrence of (u, p(u)) in P with Q, and

444

let P ′ be the resulting path. Then, we have that P ′ is a path from z to z′ in G \ E ′.
This shows that z and z′ are connected in G \ E ′.

Now let z be a vertex in {u2, . . . , uk, r}. First, suppose that u and z are connected in
G\E ′. Then, since E ′′ ⊂ E ′, we have that u and z are connected in G\E ′′. Furthermore,
since u and v are connected in G \E ′, we have that u and v are connected in G \E ′′.
Thus, v and z are connected in G \ E ′′, and therefore v̄ and z̄ are connected in R′.
Thus, the existence of the edge (ū, v̄) in R implies that ū and z̄ are connected in R.
Conversely, suppose that ū and z̄ are connected in R. Then, since (ū, v̄) is the only
edge of R that is incident to ū, we have that v̄ is connected with z̄ in R through a
path that avoids ū. Therefore, v̄ is connected with z̄ in R′. Thus, we have that v and
z are connected in G \E ′′. So let P be a path from v to z in G \E ′′. Since u and p(u)

are connected in G \E ′, we have that there is a path Q from u to p(u) in G \E ′. Now,
if P uses the edge (u, p(u)), then we replace every occurrence of (u, p(u)) in P with
the path Q. Let P ′ be the resulting path. Then, P ′ is a path from v to z in G \ E ′,
and therefore v is connected with z in G \ E ′. Therefore, since u is connected with v

in G \ E ′, we have that u is connected with z in G \ E ′.
Thus, we have shown that, for every pair of vertices z and z′ in {u1, . . . , uk, r}, we

have that z and z′ are connected in G \E ′ if and only if z̄ and z̄′ are connected in R.
This means that R is a connectivity graph for G \ E ′.

Lemma 6.3. Let E ′ be a set of edges, and let (u, p(u)) be a tree-edge in E ′ with the
property that no tree-edge in E ′ is a proper ancestor of (u, p(u)). Let E1 be the set of the
tree-edges in E ′ that are descendants of (u, p(u)), plus the back-edges in E ′, and let E2

be the set of the tree-edges in E ′ that are not descendants of (u, p(u)), plus the back-edges
in E ′. Let R1 be a connectivity graph for G \ E1, and let R2 be a connectivity graph for
G \ E2. Then, R1 ∪R2 is a connectivity graph for G \ E ′.

Proof. Let (u1, p(u1)), . . . , (ut, p(ut)) be the tree-edges in E1, and let
(v1, p(v1)), . . . , (vs, p(vs)) be the tree-edges in E2. (Notice that we may have s = 0, in
which case the conclusion of the lemma follows trivially.) Then, we have that all
vertices in {u1, . . . , ut} are descendants of u, and none of the vertices in {v1, . . . , vs}
is related as ancestor and descendant with u. This implies that no vertex from
{u1, . . . , ut} is related as ancestor and descendant with a vertex from {v1, . . . , vs}.
Let R1 be a connectivity graph for G \ E1, and let R2 be a connectivity graph for
G \ E2. Then we have that V (R1) = {ū1, . . . , ūt, r̄} and V (R2) = {v̄1, . . . , v̄s, r̄}. Let

445

R = R1 ∪R2. We will show that R is a connectivity graph for G \ E ′.
Let z and z′ be two vertices in {u1, . . . , ut, r}. First, suppose that z and z′ are

connected in G \ E ′. Then, since E1 ⊆ E ′, we have that z and z′ are connected
in G \ E1. This implies that z̄ and z̄′ are connected in R1. Therefore, z̄ and z̄′ are
connected in R. Conversely, suppose that z̄ and z̄′ are connected in R. Since z̄ and z̄′

are connected in R and are both in {u1, . . . , ut, r}, it is easy to see that z̄ and z̄′ are
connected in R1. This implies that z and z′ are connected in G\E1. Then, Lemma 6.1
implies that z and z′ are connected in G \ E ′.

With the analogous argument we can show that, if z and z′ are two vertices in
{v1, . . . , vs, r}, then z and z′ are connected in G \E ′ if and only if they are connected
in R.

Now let z be a vertex in {u1, . . . , ut}, and let z′ be a vertex in {v1, . . . , vs}. First,
suppose that z and z′ are connected in G \ E ′. Then there is a path P from z to z′

in G \ E ′. By Lemma 3.18, we have that P passes from an ancestor w of nca{z, z′}.
Notice that there is no i ∈ {1, . . . , t} such that ui is an ancestor of w, because otherwise
we would have that ui is an ancestor of z′. Similarly, there is no i ∈ {1, . . . , s} such
that vi is an ancestor of w, because otherwise we would have that vi is an ancestor
of z. Thus, there is no tree-edge from E ′ on the tree-path T [w, r], and therefore w is
connected with r in G \E ′. Thus, both z and z′ are connected with r in G \E ′. Since
E1 ⊆ E ′, we have that z is connected with r in G\E1. This implies that z̄ is connected
with r̄ in R1, and therefore z̄ is connected with r̄ in R. Similarly, since E2 ⊂ E ′, we
have that z′ is connected with r in G \ E2. This implies that z̄′ is connected with r̄

in R2, and therefore z̄′ is connected with r̄ in R. Thus, we infer that z̄ is connected
with z̄′ in R.

Conversely, suppose that z̄ and z̄′ are connected in R. Since z̄ ∈ V (R1) and
z̄′ ∈ V (R2), this implies that z̄ is connected with r̄ in R1, and z̄′ is connected with r̄

in R2. Therefore, z is connected with r in G\E1, and z′ is connected with r in G\E2.
Then, Lemma 6.1 implies that z is connected with r in G \ E ′, and z′ is connected
with r in G \ E ′. Therefore, z is connected with z′ in G \ E ′.

Thus, we have shown that, for every pair of vertices z and z′ in
{u1, . . . , ut, v1, . . . , vs, r}, we have that z and z′ are connected in G \ E ′ if and
only if z̄ and z̄′ are connected in R. Since the tree-edges in E ′ are given by
{(u1, p(u1)), . . . , (ut, p(ut)), (v1, p(v1)), . . . , (vs, p(vs))}, this means that R is a connec-
tivity graph for G \ E ′.

446

Lemma 6.4. Let E ′ be a set of edges, and let (u, p(u)) be a tree-edge in E ′ with the
property that B(u) \ E ′ = ∅. Let E1 be the set of the tree-edges in E ′ that are proper
descendants of (u, p(u)), plus the back-edges in E ′, and let E2 be the set of the tree-edges in
E ′ that are not descendants of (u, p(u)), plus the back-edges in E ′. Let R1 be a connectivity
graph for G\E1, and let R2 be a connectivity graph for G\E2. Let R′

1 be the graph that is
derived from R1 by replacing every occurrence of r̄ with ū. Then, R′

1 ∪R2 is a connectivity
graph for G \ E ′.

Proof. Let (u1, p(u1)), . . . , (ut, p(ut)) be the tree-edges in E1, and let
(v1, p(v1)), . . . , (vs, p(vs)) be the tree-edges in E2. (We note that u /∈
{u1, . . . , ut, v1, . . . , vs}, and both t and s may be 0.) Then, we have that all
vertices in {u1, . . . , ut} are proper descendants of u, and no vertex from {v1, . . . , vs} is
a descendant of u. Now let R1, R′

1, R2, and R be as in the statement of the lemma.
We will show that R is a connectivity graph for G \ E ′.

Since V (R1) = {ū1, . . . , ūt, r̄} and V (R2) = {v̄1, . . . , v̄s, r̄}, we have that V (R1) ∩
V (R2) = {r̄}. This implies that V (R′

1) ∩ V (R2) = ∅. Therefore, it is easy to see that
no vertex from {ū1, . . . , ūt, ū} is connected with a vertex from {v̄1, . . . , v̄s, r̄} in R.

Now let z be a vertex in {u1, . . . , ut, u} and let z′ be a vertex in {v1, . . . , vs, r}. Let
us suppose, for the sake of contradiction, that z is connected with z′ in G \E ′. Then
there is a path P from z to z′ in G \ E ′. Lemma 3.18 implies that P passes from an
ancestor w of nca{z, z′}. We have that z is a common descendant of w and u. Thus,
u and w are related as ancestor and descendant. But u cannot be an ancestor of w,
because otherwise it would be an ancestor of z′. Thus, we have that u is a proper
descendant of w. Since P starts from a descendant of u and reaches a proper ancestor
of u, by Lemma 3.19 we have that P must either use a back-edge that leaps over u,
or it passes from the tree-edge (u, p(u)). But both of these cases are impossible, since
B(u) \E ′ = ∅ and (u, p(u)) ∈ E ′. This shows that z is not connected with z′ in G \E ′.

Now let z and z′ be two vertices in {u1, . . . , ut}. First, suppose that z and z′ are
connected in G\E ′. Then, since E1 ⊂ E ′, we have that z and z′ are connected in G\E1.
This implies that z̄ and z̄′ are connected in R1, and therefore they are connected in
R′

1, and therefore they are connected in R. Conversely, suppose that z̄ and z̄′ are
connected in R. Then, we have that z̄ and z̄′ are connected in R′

1, and therefore they
are connected in R1. This implies that there is a path P from z to z′ in G \ E1. If
P does not use a tree-edge from E ′

2 = E2 ∪ {(u, p(u))}, then we have that P is a
path in G \ E ′, and this shows that z is connected with z′ in G \ E ′. Otherwise, let

447

us suppose that P uses a tree-edge from E ′
2. Then we claim that P has the form

P1 + (u, p(u)) + Q + (p(u), u) + P2, where P1 is a path from z to u that does not use
tree-edges from E ′

2, Q is a path from p(u) to p(u) that may use tree-edges from E ′
2,

and P2 is a path from u to z′ that does not use tree-edges from E ′
2 (∗). This implies

that P1 is a path from z to u in G \E ′, and P2 is a path from u to z′ in G \E ′. Thus,
P1+P2 is a path from z to z′ in G \E ′, and therefore z is connected with z′ in G \E ′.

Now we will prove (∗). Let (v, p(v)) be the first occurrence of a tree-edge from
E ′

2 in P . Then, since P starts from z, by Lemma 3.18 we have that P passes from
an ancestor w of nca{z, v}. Then, we have that z is a common descendant of u and
w, and therefore u and w are related as ancestor and descendant. Notice that we
cannot have that u is a proper ancestor of w, because this would imply that u is a
proper ancestor of v (and we have that either v ∈ {v1, . . . , vs}, or v = u). Thus, u is a
descendant of w. Then, since P starts from a descendant of u and reaches a proper
ancestor of u (which is either w or p(u)), by Lemma 3.19 we have that P must either
use a back-edge from B(u), or the tree-edge (u, p(u)), before it leaves the subtree
of u. Since P is a path in G \ E1 and E1 contains all the back-edges from E ′ and
B(u) \ E ′ = ∅, the only viable option is that P uses the tree-edge (u, p(u)) in order
to leave the subtree of u. Thus, there is a part P1 of P from z to u that lies entirely
within the subtree of u. In particular, we have that P1 does not use a tree-edge from
E ′

2. Similarly, by considering the last occurrence of a tree-edge from E ′
2 in P , we can

show that there is a part P2 of P from u to z′ that does not use a tree-edge from E ′
2.

This establishes (∗).
Now let z be a vertex in {u1, . . . , ut}. First, suppose that u and z are connected in

G \ E ′. Then there is a path P from u to z in G \ E ′. Since E1 ⊂ E ′, we have that
P is a path from u to z in G \ E1. We have that there is no tree-edge from E1 on
the tree-path T [r, u]. Thus, T [r, u] + P is a path from r to z in G \ E1, and therefore
r is connected with z in G \ E1. This implies that r̄ is connected with z̄ in R1, and
therefore ū is connected with z̄ in R′

1. Thus, ū is connected with z̄ in R. Conversely,
suppose that ū is connected with z̄ in R. This implies that ū is connected with z̄ in
R′

1, and therefore r̄ is connected with z̄ in R1. This implies that r is connected with z

in G\E1. Thus, there is a path P from r to z in G\E1. Since r is a proper ancestor of
u and z is a descendant of u, Lemma 3.19 implies that P must either use a back-edge
from B(u), or the tree-edge (p(u), u), and then it finally lies entirely within the subtree
of u. Thus, since E1 contains all the back-edges from E ′ and B(u) \ E ′ = ∅, we have

448

that P eventually passes from the tree-edge (p(u), u), and stays within the subtree of
u. Thus, we have that u is connected with z in G \ E1, through a path P ′ that lies
entirely within the subtree of u. This implies that P ′ does not use tree-edges from
E2. Thus, P ′ is a path from u to z in G \ E ′, and therefore u is connected with z in
G \ E ′.

Now let z and z′ be two vertices in {v1, . . . , vs, r}. First, suppose that z and z′

are connected in G \ E ′. Then, since E2 ⊂ E ′, we have that z and z′ are connected
in G \ E2. This implies that z̄ is connected with z̄′ in R2. Thus, we have that z̄ is
connected with z̄′ in R. Conversely, suppose that z̄ and z̄′ are connected in R. Then
we have that z̄ and z̄′ are connected in R2. This implies that z and z′ are connected
in G \ E2. Thus, there is a path P from z to z′ in G \ E2. If P does not use any
tree-edge from E ′

1 = E1 ∪ {(u, p(u))}, then P is a path in G \ E ′, and therefore z and
z′ are connected in G \ E ′. So let us assume that P uses a tree-edge from E ′

1. Then
we claim that P has the form P1 + Q + P2, where P1 is a path from z to p(u) that
does not use tree-edges from E ′

1, Q is a path from p(u) to p(u) (that uses tree-edges
from E1), and P2 is a path from p(u) to z′ that does not use tree-edges from E ′

1 (∗∗).
This implies that P1 + P2 is a path from z to z′ in G \ E ′, and therefore z and z′ are
connected in G \ E ′.

Now we will prove (∗∗). Since P uses a tree-edge from E ′
1, we may consider the

first occurrence (u′, p(u′)) of an edge from E ′
1 that is used by P . Then, we have that

u′ is a descendant of u. Since P starts from z, Lemma 3.18 implies that P contains
a subpath from z to u′ that passes from an ancestor w of nca{z, u′}, and let w be the
first vertex visited by P with this property. Let P ′ be the initial part of P from z to
the first occurrence of w. Then we have that P ′ does not use any tree-edge from E ′

1.
Since u′ is a descendant of u but z is not, we have that nca{z, u′} is a proper ancestor
of u, and therefore w is a proper ancestor of u. Then, Lemma 3.19 implies that the
part of P from w to u′ must either use the tree-edge (u, p(u)), or a back-edge that
leaps over u. Since P is a path in G \E2 and E2 contains all the back-edges from E ′

and B(u) \ E ′ = ∅, we infer that the part of P from w to u′ must use the tree-edge
(u, p(u)) in order to enter the subtree of u. Now let P ′′ be the part of P from the first
occurrence of w to the first occurrence of p(u) that is followed by (u, p(u)). Then, we
have that P1 = P ′ +P ′′ is a path from z to p(u) that does not use any tree-edge from
E ′

1. Similarly, since P ends in z′, we can show that the final part of P is a subpath P2

that starts from p(u) and ends in z′. We let Q denote the middle part of P (i.e., the

449

one between P1 and P2), and this establishes (∗∗).
Thus, we have shown that, for any two vertices z and z′ in

{u1, . . . , ut, u, v1, . . . , vs, r}, we have that z is connected with z′ in G \ E ′ if and
only if z̄ is connected with z̄′ in R. This means that R is a connectivity graph for
G \ E ′.

Given a set of edges E ′ with |E ′| ≤ 4, we will show how to construct a connectivity
graph R for G\E ′. We distinguish five cases, depending on the number of tree-edges
in E ′. Whenever possible, we use Lemmata 6.2, 6.3 and 6.4, in order to revert to
previous cases. This simplifies the analysis a lot, because the number of cases that
may appear is very large. If A and B are two subtrees of T , we use (A,B) to denote
the set of the back-edges that connect A and B.

6.2 E ′ contains zero tree‐edges

In this case, T \ E ′ is connected, and therefore G \ E ′ is also connected. Thus, we
know that every connectivity query in G \ E ′ is positive. (The connectivity graph R
of G \ E ′ consists of a single vertex r̄.)

6.3 E ′ contains one tree‐edge

Let (u, p(u)) be the tree-edge contained in E ′. The connected components of T \
{(u, p(u))} are A = T (u) and B = T (r) \ T (u). Thus, R consists of the vertices {ū, r̄}.
We can see that A is connected with B in G \ E ′ if and only if there is a back-
edge in B(u) \ E ′. Since E ′ contains at most three back-edges, it is sufficient to have
collected at most four back-edges of B(u) in a set B4(u), and then check whether
B4(u) \ E ′ = ∅. We may pick the four lowest low-edges of u in order to build B4(u),
since these are easy to compute. (I.e., B4(u) consists of the non-null lowi-edges of u,
for all i ∈ {1, 2, 3, 4}.) If B4(u) \ E ′ ̸= ∅, then we add the edge (ū, r̄) to R. Otherwise,
ū is disconnected from r̄ in R.

450

6.4 E ′ contains two tree‐edges

Let (u, p(u)) and (v, p(v)) be the two tree-edges contained in E ′. Then we have that
R consists of the vertices {ū, v̄, r̄}. Let us assume w.l.o.g. that u > v. Suppose that u
and v are not related as ancestor and descendant. Then, we set E1 = E ′ \ {(u, p(u))}
and E2 = E ′ \{(v, p(v))}. Each of the sets E1 and E2 contains only one tree-edge, and
therefore we can revert to the previous case in order to build a connectivity graph R1

and R2 for G\E1 and G\E2, respectively. Then, by Lemma 6.3 we have that R1∪R2

is a connectivity graph for G \E ′. So let us assume that the two tree-edges in E ′ are
related as ancestor and descendant. Since u > v, this implies that u is a descendant
of v. Let A = T (u), B = T (v) \ T (u), and C = T (r) \ T (v).

First, we will check whether there is a back-edge from A to B in G \E ′. Since E ′

contains at most two back-edges, we have that (A,B) \ E ′ ̸= ∅ if and only if at least
one of the three highest high-edges of u is not in E ′ and has its lower endpoint in
B. In other words, (A,B) \ E ′ ̸= ∅ if and only if the highi-edge of u (exists, and) is
not in E ′, and highi(u) ∈ B, for some i ∈ {1, 2, 3}. If that is the case, then we know
that u is connected with p(u) in G \ E ′. Thus, we add the edge (ū, v̄) to R. Then we
can set E ′ ← E ′ \ {(u, p(u))}, and revert to the previous case (where E ′ contains one
tree-edge), according to Lemma 6.2.

Otherwise, we have that all the back-edges in B(u) \ E ′ (if there are any), have
their lower endpoint in C. In this case, we have that there is a back-edge from
A to C if and only if B(u) \ E ′ ̸= ∅. Since E ′ contains at most two back-edges,
we have that B(u) \ E ′ ̸= ∅ if and only if at least one of the lowi-edges of u, for
i ∈ {1, 2, 3}, (exists and) does not lie in E ′. If we have that B(u) \ E ′ = ∅, then we
know that A is not connected with the rest of the graph in G \ E ′. Thus, we can set
E ′ ← E ′\{(u, p(u))} and revert to the previous case (where E ′ contains one tree-edge),
according to Lemma 6.4.

Thus, let us assume that there is a back-edge between A and C in G\E ′. Then we
add the edge (ū, r̄) to R. Now it remains to check whether there is a back-edge from B

to C in G\E ′. Since we assume that there is no back-edge from A to B in G\E ′, we can
distinguish three possibilities: either (1) no edge from E ′ is in (A,B), or (2) precisely
one edge e from E ′ is in (A,B), or (3) both the back-edges e and e′ from E ′ are in
(A,B). In case (1), we have that B(u) ⊆ B(v). Thus, there is a back-edge from B to C

in G\E ′ if and only if bcount(v)−bcount(u) > |E ′∩(B(v)\B(u))|. We note that it is easy

451

to compute |E ′ ∩ (B(v) \B(u))|: we simply count how many back-edges from E ′ leap
over v but not over u. Now, in case (2) we have B(u)\{e} ⊆ B(v). Thus, there is a back-
edge from B to C in G\E ′ if and only if bcount(v)−bcount(u)+1 > |E ′∩(B(v)\B(u))|.
Finally, in case (3) we have B(u) \ {e, e′} ⊆ B(v), and E ′ contains no back-edge
from B(v) \ B(u). Thus, there is a back-edge from B to C in G \ E ′ if and only if
bcount(v)− bcount(u)+2 > 0. We note that it is easy to determine which case (1)− (3)

applies: we simply count how many back-edges from E ′ (if E ′ contains back-edges)
leap over u, but not over v. If we have determined that there is a back-edge from B

to C in G \ E ′, then we add the edge (v̄, r̄) to R.

6.5 E ′ contains three tree‐edges

Let (u, p(u)), (v, p(v)) and (w, p(w)) be the three tree-edges contained in E ′. Then we
have that R consists of the vertices {ū, v̄, w̄, r̄}. Let us assume w.l.o.g. that u > v > w.
We may also assume that one of the three tree-edges in E ′ is an ancestor of the other
two. Otherwise, we can use Lemma 6.3 in order to revert to the previous case (where
E ′ contains two tree-edges), because then there are at least two tree-edges in E ′ with
the property that no tree-edge in E ′ is a proper ancestor of them.

Thus, since one of the three tree-edges in E ′ is an ancestor of the other two and
w < v < u, we have that w is a common ancestor of u and v. Now there are two cases
to consider: either (1) u and v are not related as ancestor and descendant, or (2) u

and v are related as ancestor and descendant. Since u > v, in case (2) we have that v
is an ancestor of u.

6.5.1 u and v are not related as ancestor and descendant

Let A = T (u), B = T (v), C = T (w) \ (T (u) ∪ T (v)), and D = T (r) \ T (w).
If there is no back-edge in G\E ′ that connects A, or B, or A∪B∪C , with the rest

of the graph in G \E ′, then we can use Lemma 6.4 in order to revert to the previous
case (where E ′ contains two tree-edges). Every one of those conditions is equivalent
to [bcount(u) = 0 or B(u) = {e}, where e is the back-edge in E ′], or [bcount(v) = 0 or
B(v) = {e}, where e is the back-edge in E ′], or [bcount(w) = 0 or B(w) = {e}, where
e is the back-edge in E ′], respectively, and so we can check them easily in constant
time.

452

Otherwise, if there is a back-edge that connects A with C in G\E ′, or a back-edge
that connects B with C in G\E ′, then we add the edge (ū, w̄), or (v̄, w̄), respectively, to
R. Then we set E ′ ← E ′\{(u, p(u))}, or E ′ ← E ′\{(v, p(v))}, respectively, and we revert
to the previous case (where E ′ contains two tree-edges) according to Lemma 6.2.
Notice that there is a back-edge that connects A with C in G \ E ′ if and only if:
either (i) high1(u) ∈ C and the high1-edge of u is not in E ′, or (ii) high2(u) ∈ C and
the high2-edge of u is not in E ′. Similarly, we can easily check whether there is a
back-edge that connects B with C in G \ E ′.

So let us assume that none of the above is true. This means that, in G\E ′, there is
a back-edge from A to D, a back-edge from B to D, no back-edge from A to C , and no
back-edge from B to C. Then, we add the edges (ū, r̄) and (v̄, r̄) to R. Now it remains
to determine whether there is a back-edge from C to D in G \ E ′. Suppose first that
E ′ contains a back-edge e, that connects either A and C , or B and C. Then, there is a
back-edge from C to D in G \E ′ if and only if bcount(w) > bcount(u) + bcount(v)− 1.
(This is because B(u) ⊔ B(v) ⊆ B(w) ⊔ {e} in this case.) Thus, if this condition is
satisfied, then we add the edge (w̄, r̄) to R. Now, let us assume that E ′ contains a
back-edge from C to D. Then, there is a back-edge from C to D in G \E ′ if and only
if bcount(w) − 1 > bcount(u) + bcount(v). Thus, if this condition is satisfied, then we
add the edge (w̄, r̄) to R. Finally, let us assume that the back-edge in E ′ (if it contains
a back-edge) does not connect A and C , or B and C , or C and D. Then, there is
a back-edge from C to D in G \ E ′ if and only if bcount(w) > bcount(u) + bcount(v).
Thus, if this condition is satisfied, then we add the edge (w̄, r̄) to R.

6.5.2 v is an ancestor of u

Let A = T (u), B = T (v) \ T (u), C = T (w) \ T (v), and D = T (r) \ T (w).
If there is no back-edge in G \ E ′ that connects A, or A ∪ B, or A ∪ B ∪ C , with

the rest of the graph in G \E ′, then we can use Lemma 6.4 in order to revert to the
previous case (where E ′ contains either one or two tree-edges). Every one of those
conditions is equivalent to [bcount(u) = 0 or B(u) = {e}, where e is the back-edge in
E ′], or [bcount(v) = 0 or B(v) = {e}, where e is the back-edge in E ′], or [bcount(w) = 0

or B(w) = {e}, where e is the back-edge in E ′], respectively, and so we can check
them easily in constant time.

If in G \ E ′ there is a back-edge that connects A and B, then we add the edge

453

(ū, v̄) to R. Then we set E ′ ← E ′ \ {(u, p(u))}, and we revert to the previous case
(where E ′ contains two tree-edges) according to Lemma 6.2. Notice that there is a
back-edge in G \E ′ that connects A and B if and only if: either (i) high1(u) ∈ B and
the high1-edge of u is not in E ′, or (ii) high2(u) ∈ B and the high2-edge of u is not in
E ′. Thus, we can easily check this condition in constant time.

So let us assume that there is no back-edge that connects A and B in G \ E ′. If
in G \E ′ there is a back-edge that connects A and C , and a back-edge that connects
A and D, then the parts C and D are connected in G \ E ′ through the mediation of
A. Thus, we add the edge (w̄, r̄) to R, we set E ′ ← E ′ \ {(w, p(w))}, and we revert
to the previous case (where E ′ contains two tree-edges) according to Lemma 6.2.
Since there is no back-edge that connects A and B in G \ E ′, notice that there is a
back-edge in G \E ′ that connects A and C if and only if: either (i) high1(u) ∈ C and
the high1-edge of u is not in E ′, or (ii) high2(u) ∈ C and the high2-edge of u is not in
E ′. Also, there is a back-edge in G \ E ′ that connects A and D if and only if: either
(i) low1(u) ∈ D and the low1-edge of u is not in E ′, or (ii) low2(u) ∈ D. Thus, we can
easily check those conditions in constant time.

So let us assume that none of the above is true. Thus, there are two cases to
consider in G\E ′: either (1) there is a back-edge from A to C , but no back-edge from
A to D, or (2) there is a back-edge from A to D, but no back-edge from A to C.

Let us consider case (1) first. Then, we add the edge (ū, w̄) to R. First, we will
determine whether there is a back-edge from B to D in G \ E ′. Since there is no
back-edge from A to D in G \ E ′, notice that there is a back-edge from B to D in
G \ E ′ if and only if: either low1(v) ∈ D and the low1-edge of v is not in E ′, or
low2(v) ∈ D and the low2-edge of v is not in E ′. Thus, we can check in constant time
whether there is a back-edge from B to D in G\E ′. If we have determined that there
is no back-edge from B to D in G \ E ′, then, since we have supposed that there is a
back-edge in B(w)\E ′, we have that there is a back-edge from C to D in G\E ′ (since
(A,D) \ E ′ = (B,D) \ E ′ = ∅). This implies that w remains connected with p(w) in
G\E ′. Thus, we add the edge (w̄, r̄) to R, we set E ′ ← E ′ \{(w, p(w))}, and we revert
to the previous case (where E ′ contains two tree-edges) according to Lemma 6.2. So
let us suppose that there is a back-edge from B to D in G \ E ′. Then, we add the
edge (v̄, r̄) to R. Now it remains to determine if (B,C) \ E ′ ̸= ∅ or (C,D) \ E ′ ̸= ∅.
Notice that either of those cases implies that G \ E ′ is connected.

We have B(u) = (A,B)∪(A,C)∪(A,D), B(v) = (A,C)∪(A,D)∪(B,C)∪(B,D) and

454

B(w) = (A,D)∪(B,D)∪(C,D). Thus, we have N = bcount(w)−bcount(v)+bcount(u) =
|(C,D)|− |(B,C)|+ |(A,B)|+ |(A,D)| and s = SumAnc(w)−SumAnc(v)+SumAnc(u) =
SumAnc((C,D)) − SumAnc((B,C)) + SumAnc((A,B)) + SumAnc((A,D)), where we let
SumAnc(S), for a set S of back-edges, be the sum of the lower endpoints of the
back-edges in S.

Here we distinguish two cases: either (1.1) the back-edge in E ′ (if it exists) does not
lie in (A,B)∪ (A,D), or (1.2) the back-edge e in E ′ (exists and) lies in (A,B)∪ (A,D).
(It is easy to determine in constant time which case applies.)

First, let us consider case (1.1). Then we have N = |(C,D)| − |(B,C)| and s =

SumAnc((C,D)) − SumAnc((B,C)). Here we distinguish two cases: either (1.1.1) the
back-edge in E ′ (if it exists) does not lie in (C,D) ∪ (B,C), or (1.1.2) E ′ contains a
back-edge e that lies in (C,D)∪(B,C). (Again, it is easy to determine in constant time
which case applies.) So let us consider case (1.1.1) first. Thus, if we have N ̸= 0, then
at least one of (C,D) and (B,C) is not empty, and therefore G\E ′ is connected. Thus,
it is sufficient to add one more edge to R in order to make it connected (e.g., we may
add (w̄, r̄)). Otherwise, suppose that N = 0. Then we have |(C,D)| = |(B,C)|. Since
the lower endpoint of every back-edge in (C,D) is lower than the lower endpoint of
every back-edge in (B,C), this implies that s = SumAnc((C,D))−SumAnc((B,C)) < 0

if and only if (C,D) ̸= ∅ (and (B,C) ̸= ∅). Thus, it is sufficient to add e.g. the edge
(w̄, r̄) to R if and only if s < 0.

Now let us consider case (1.1.2). Let z be the lower endpoint of e. First, suppose
that e ∈ (C,D). Thus, if N > 1, then (C,D) \ E ′ is not empty, and therefore G \ E ′

is connected. Similarly, if N < 1, then (B,C) is not empty, and therefore G \ E ′ is
connected. Thus, in those cases, it is sufficient to add one more edge to R in order
to make it connected (e.g., we may add (w̄, r̄)). Otherwise, suppose that N = 1. Then
we have |(C,D)| = |(B,C)| + 1. Thus, if |(B,C)| = 0, then we have (C,D) = {e},
and therefore s coincides with z. Otherwise, if |(B,C)| > 0, then, since the lower
endpoint of every back-edge in (C,D) is lower than the lower endpoint of every
back-edge in (B,C), we have that s = SumAnc((C,D))− SumAnc((B,C)) < z. Thus, it
is sufficient to add e.g. the edge (w̄, r̄) to R if and only if s < z. Now let us suppose
that e ∈ (B,C). Thus, if N > −1, then (C,D) is not empty, and therefore G \ E ′ is
connected. Similarly, if N < −1, then (B,C) \E ′ is not empty, and therefore G \E ′ is
connected. Thus, in those cases, it is sufficient to add one more edge to R in order to
make it connected (e.g., we may add (w̄, r̄)). Otherwise, suppose that N = −1. Then

455

we have |(C,D)| + 1 = |(B,C)|. Thus, if |(C,D)| = 0, then we have (B,C) = {e},
and therefore s coincides with −z. Otherwise, if |(C,D)| > 0, then, since the lower
endpoint of every back-edge in (C,D) is lower than the lower endpoint of every
back-edge in (B,C), we have that s = SumAnc((C,D))− SumAnc((B,C)) < −z. Thus,
it is sufficient to add e.g. the edge (w̄, r̄) to R if and only if s < −z.

Now let us consider case (1.2). Then, since there is no back-edge from A to B in
G\E ′, and no back-edge from A to D in G\E ′, we have that one of (A,B) and (A,D)

coincides with {e}, and the other is empty. Then, we have N = |(C,D)| − |(B,C)|+1

and s = SumAnc((C,D)) − SumAnc((B,C)) + SumAnc({e}). Thus, if we have N ̸= 1,
then at least one of (C,D) and (B,C) is not empty, and therefore G \E ′ is connected.
Thus, it is sufficient to add one more edge to R in order to make it connected (e.g., we
may add (w̄, r̄)). Otherwise, suppose that N = 1. Then we have |(C,D)|−|(B,C)| = 0.
Since the lower endpoint of every back-edge in (C,D) is lower than the lower endpoint
of every back-edge in (B,C), this implies that SumAnc((C,D))−SumAnc((B,C)) < 0 if
and only if (C,D) ̸= ∅ (and (B,C) ̸= ∅). Thus, it is sufficient to add e.g. the edge (w̄, r̄)
to R if and only if s < SumAnc({e}). (Notice that it is easy to compute SumAnc({e}):
this is just the (DFS number of the) lower endpoint of e.)

Now let us consider case (2). Then, we add the edge (ū, r̄) to R. Now, if there is
a back-edge that connects B and C in G \ E ′, then we add the edge (v̄, w̄) to R, we
set E ′ ← E ′ \ {(v, p(v)}, and we revert to the previous case (where E ′ contains two
tree-edges) according to Lemma 6.2. Notice that, since there is no back-edge from A

to C in G \ E ′, this condition is equivalent to: either high1(v) ∈ C and the high1-edge
of v is not in E ′, or high2(v) ∈ C and the high1-edge of v is not in E ′. Thus, we can
easily check whether there is a back-edge that connects B and C in G\E ′, in constant
time.

Now let us assume that there is no back-edge that connects B and C in G \ E ′.
Then, if there is a back-edge that connects B and D in G\E ′ (∗), then we have that A
and B remain connected in G\E ′ through the mediation of D. Thus, we add the edge
(ū, v̄) to R, we set E ′ ← E ′ \ {(u, p(u))}, and we revert to the previous case (where E ′

contains two tree-edges) according to Lemma 6.2. In order to check condition (∗),
i.e., whether there is a back-edge that connects B and D in G \ E ′, we distinguish
the following cases. First, suppose that the back-edge in E ′ (if it exists), is neither
in B(u) nor in B(v). Then, since all the back-edges in B(u) connect A and D, and
since all the back-edges in B(v) connect either A and D or B and D, we have that

456

(∗) is true if and only if bcount(v) > bcount(u). Now, suppose that the back-edge e in
E ′ is in B(u), but not in B(v). Then, all the back-edges in B(u), except e, connect
A and D, and all back-edges in B(v) connect either A and D or B and D. Thus,
we have that (∗) is true if and only if bcount(v) ≥ bcount(u). Now, suppose that the
back-edge e in E ′ is in both B(u) and B(v). Then, we have that all the back-edges
in B(u), except possibly e, connect A and D, and all the back-edges in B(v), except
possibly e, connect A and D or B and D. Thus, we have that (∗) is true if and only if
bcount(v) > bcount(u). Finally, suppose that the back-edge e in E ′ is in B(v), but not
in B(u). Then, all the back-edges in B(u) connect A and D, and all the back-edges
in B(v), except possibly e, connect A and D or B and D. Thus, we have that (∗) is
true if and only if bcount(v) > bcount(u) + 1. Thus, we can easily check whether there
is a back-edge that connects B and D in G \ E ′, in constant time.

Finally, suppose that neither of the above two is the case (i.e., we have (B,C)\E ′ =

∅ and (B,D) \ E ′ = ∅). Then we only have to check whether there is a back-edge
in G \ E ′ that connects C and D. We distinguish the following cases: either (2.1) E ′

contains a back-edge e ∈ (C,D), or (2.2) E ′ contains a back-edge e ∈ (A,C)∪(B,C), or
(2.3) none of the previous is true. (Notice that it is easy to determine in constant time
which case holds.) In case (2.1) we have B(w) = (A,D) ∪ ((C,D) \ {e}) ∪ {e}. Thus,
there is a back-edge from C to D in G \ E ′ if and only if bcount(w) > bcount(u) + 1.
In case (2.2) we have B(w) = (B(v) \ {e})∪ (C,D), and e ∈ B(v) \ (C,D). Thus, there
is a back-edge from C to D in G \E ′ if and only if bcount(w) > bcount(v)− 1. In case
(2.3) we have B(w) = B(v) ∪ (C,D) and e /∈ (C,D). Thus, there is a back-edge from
C to D in G \E ′ if and only if bcount(w) > bcount(v). Thus, in either of those cases, if
we determine that there is a back-edge from C to D in G \E ′, then we add the edge
(w̄, r̄) to R.

6.6 E ′ contains four tree‐edges

Let (u, p(u)), (v, p(v)), (w, p(w)) and (z, p(z)) be the tree-edges that are contained in
E ′. Then we have that R consists of the vertices {ū, v̄, w̄, z̄, r̄}. We may assume w.l.o.g.
that u > v > w > z. Suppose that there are at least two distinct edges (u′, p(u′)) and
(v′, p(v′)) in E ′ with the property that no edge in E ′ is a proper ancestor of them. Let
E1 be the subset of E ′ that consists of the descendants of (u′, p(u′)), and let E2 be the

457

subset of E ′ that consists of the non-descendants of (u′, p(u′)). Then, we have that
(v′, p(v′)) /∈ E1, and (u′, p(u′)) /∈ E2. Thus, we can construct connectivity graphs R1

and R2 for G \ E1 and G \ E2, respectively, by reverting to the previous cases. Then,
by Lemma 6.3, we have that R1 ∪R2 is a connectivity graph for G \ E ′.

Thus, we may assume that one of the tree-edges in E ′ is an ancestor of the other
three, because otherwise we can construct the graph R by reverting to the previous
cases. Then, since u > v > w > z, we have that z is a common ancestor of all vertices
in {u, v, w}. Now, there are four cases to consider: either (1) no two vertices in {u, v, w}
are related as ancestor and descendant, or (2) only two among {u, v, w} are related as
ancestor and descendant, or (3) one of {u, v, w} is an ancestor of the other two, but
the other two are not related as ancestor and descendant, or (4) every two vertices in
{u, v, w} are related as ancestor and descendant.

In case (2), we can either have that w is an ancestor of v (and u is not related
as ancestor and descendant with w and v), or v is an ancestor of u (and w is not
related as ancestor and descendant with u and v). Both of these cases can be handled
with essentially the same argument (it is just that the roles of w, v and u in the first
case are exchanged with v, u and w, respectively, in the second case), and so we will
assume w.l.o.g. that v is an ancestor of u in this case. In cases (3) and (4), we have
that the ancestry relation between the vertices in {u, v, w} is fixed by the assumption
u > v > w. Thus, in case (3) we have that w is an ancestor of both v and u (but u, v
are not related as ancestor and descendant), and in case (4) we have that w is an
ancestor of v, and v is an ancestor of u.

In any case, notice that there are no back-edges in E ′ (since we have assumed
that |E ′| ≤ 4, and therefore E ′ consists of four tree-edges).

6.6.1 No two vertices in {u, v, w} are related as ancestor and de‐

scendant

Let A = T (u), B = T (v), C = T (w), D = T (z)\(T (u)∪T (v)∪T (w)) and E = T (r)\T (z).
If we have that either high1(u) = ⊥, or high1(v) = ⊥, or high1(w) = ⊥, then there

is no back-edge in G \ E ′ that connects A, or B, or C , respectively, with the rest of
the graph. Therefore, we can use Lemma 6.4 in order to revert to the previous case
(where E ′ contains three tree-edges).

Otherwise, if we have that either high1(u) ∈ D, or high1(v) ∈ D, or high1(w) ∈ D,

458

then we have that A is connected with D, or B is connected with D, or C is connected
with D, respectively, through a back-edge in G\E ′. Therefore, we add the edge (ū, z̄),
or (v̄, z̄), or (w̄, z̄), respectively, toR, we set E ′ ← E ′\{(u, p(u))}, or E ′ ← E ′\{(v, p(v))},
or E ′ ← E ′ \ {(w, p(w))}, respectively, and we revert to the previous case (where E ′

contains three tree-edges), according to Lemma 6.2.
Thus, let us assume that high1(u) ∈ E, and high1(v) ∈ E, and high1(w) ∈ E. Then,

we add the edges (ū, r̄), (v̄, r̄) and (w̄, r̄) to R. Now, if D is connected with the rest
of the graph in G \ E ′, then this can only be through a back-edge that starts from
D and ends in E (since high1(u) ∈ E and high1(v) ∈ E and high1(w) ∈ E, implies
that (A,D) = (B,D) = (C,D) = ∅). Then, the existence of a back-edge in (D,E) is
equivalent to the condition bcount(z) > bcount(u) + bcount(v) + bcount(w). Thus, if this
condition is satisfied, then we add the edge (z̄, r̄) to R.

6.6.2 w and v are not related as ancestor and descendant, and v

is an ancestor of u

Let A = T (u), B = T (v)\T (u), C = T (w), D = T (z)\(T (v)∪T (w)) and E = T (r)\T (z).
If we have that either high1(u) = ⊥, or high1(w) = ⊥, then there is no back-edge

in G \E ′ that connects A, or C , respectively, with the rest of the graph. Therefore, we
can use Lemma 6.4 in order to revert to the previous case (where E ′ contains three
tree-edges).

Otherwise, if we have that either high1(u) ∈ B, or high1(w) ∈ D, then we have
that A is connected with B, or C is connected with D, respectively, through a back-
edge in G \ E ′. Therefore, we add the edge (ū, v̄), or (w̄, z̄), respectively, to R, we
set E ′ ← E ′ \ {(u, p(u))}, or E ′ ← E ′ \ {(w, p(w))}, respectively, and we revert to the
previous case (where E ′ contains three tree-edges), according to Lemma 6.2.

Similarly, if we have high1(u) ∈ D and low1(u) ∈ E, then we have that A is
connected with both D and E, through back-edges in G \ E ′. Therefore, we add the
edge (z̄, r̄) to R, we set E ′ ← E ′\{(z, p(z))}, and we revert to the previous case (where
E ′ contains three tree-edges), according to Lemma 6.2.

So let us assume that none of the above holds. This means that high1(w) ∈ E, and
either (1) high1(u) ∈ D and low1(u) ∈ D, or (2) high1(u) ∈ E.

Let us consider case (1) first. Then we add the edges (w̄, r̄) and (ū, z̄) to R, and it
remains to determine the connectivity between B and D with the rest of the graph.

459

First, we check whether there is a back-edge that stems from B and ends in
either D or E. This is equivalent to checking whether bcount(v) > bcount(u) (since
high1(u) ∈ D implies that B(u) ⊆ B(v)). If we have bcount(v) = bcount(u), then we
have that B is isolated from the rest of the graph in G \ E ′. Thus, it remains to
determine whether D is connected with E through a back-edge. This is equivalent to
the condition bcount(z) > bcount(w) (since low1(u) /∈ E implies that B(u) ∩ B(z) = ∅,
and then high1(w) ∈ E implies that B(w) ⊆ B(z)). Thus, if this is satisfied, then we
add the edge (z̄, r̄) to R.

Otherwise, suppose that bcount(v) > bcount(u). Let us assume, first, that low(v) ∈ D.
Then we have that B(v) = B(u) ⊔ (B,D). Thus, there is a back-edge from B to D,
and therefore we add the edge (v̄, z̄) to R. Then we set E ′ ← E ′ \ {(v, p(v))}, and
we revert to the previous case (where E ′ contains three tree-edges), according to
Lemma 6.2. Now let us assume that low(v) ∈ E. Then, since low(u) ∈ D, we have
that there is a back-edge from B to E. Thus, we insert the edge (v̄, r̄) to R. Now it
remains to determine whether (B,D) ̸= ∅ or (D,E) ̸= ∅. Notice that either of those
cases implies that G \ E ′ is connected (because R already contains the edges (ū, z̄),
(w̄, r̄) and (v̄, r̄), and either of those cases implies that we have to add the edge (v̄, z̄)
or (z̄, r̄), respectively). Since high1(u) ∈ D and low1(u) ∈ D, we have B(u) = (A,D),
B(v) = (A,D)∪(B,D)∪(B,E), and B(z) = (B,E)∪(C,E)∪(D,E). Since high1(w) ∈ E,
we have B(w) = (C,E). Thus, we have the following:

• bcount(u) = |(A,D)|.

• bcount(v) = |(A,D)|+ |(B,D)|+ |(B,E)|.

• bcount(w) = |(C,E)|.

• bcount(z) = |(B,E)|+ |(C,E)|+ |(D,E)|.

This implies that N = bcount(z) − bcount(w) − bcount(v) + bcount(u) = |(D,E)| −
|(B,D)|. Also, we have s = SumAnc(z) − SumAnc(w) − SumAnc(v) + SumAnc(u) =

SumAnc((D,E)) − SumAnc((B,D)). Now, if N ̸= 0, then at least one of (D,E) and
(B,D) is not empty, and therefore G\E ′ is connected. Thus, it is sufficient to add one
more edge to R in order to make it connected (e.g., we may add (v̄, z̄)). Otherwise,
we have |(D,E)| = |(B,D)|. Then, since the lower endpoint of every back-edge in
(D,E) is lower than the lower endpoint of every back-edge in (B,D), we have that

460

s < 0 if and only if |(D,E)| > 0 (and |(B,D)| > 0). Thus, we add one more edge to
R in order to make it connected (e.g., (v̄, z̄)), if and only if s < 0.

Now let us consider case (2). Then we add the edges (w̄, r̄) and (ū, r̄) to R. Since
high1(u) ∈ E, we have that there is a back-edge from B to D if and only if high1(v) ∈ D.
In this case, we add the edge (v̄, z̄) to R, we set E ′ ← E ′ \ {(v, p(v))}, and we revert
to the previous case (where E ′ contains three tree-edges), according to Lemma 6.2.
So let us suppose that high1(v) ∈ E. In this case, it may be that there is a back-edge
from B to E. Since high1(u) ∈ E and high1(v) ∈ E, the existence of a back-edge from
B to E is equivalent to bcount(v) > bcount(u). If that is the case, then we have that A
is connected with B in G \ E ′ through the mediation of E. Thus, we add the edge
(ū, v̄) to R, we set E ′ ← E ′ \ {(u, p(u))}, and we revert to the previous case (where E ′

contains three tree-edges), according to Lemma 6.2. So let us assume that there is no
back-edge from B to E. Since high1(u) ∈ E and high1(v) ∈ E, this implies that B is
isolated from the rest of the graph in G \E ′. Then, it remains to check whether there
is a back-edge from D to E. Since high1(u) ∈ E and high1(w) ∈ E (and B(v) = B(u)),
we have that B(z) = B(u)⊔B(w). Thus, there is a back-edge from D to E if and only
if bcount(z) > bcount(u) + bcount(w). In this case, we simply add the edge (z̄, r̄) to R.

6.6.3 w is an ancestor of both u and v, and {u, v} are not related

as ancestor and descendant

Let A = T (u), B = T (v), C = T (w)\(T (u)∪T (v)), D = T (z)\T (w), and E = T (r)\T (z).
If we have that either high1(u) = ⊥, or high1(v) = ⊥, then there is no back-edge in

G \ E ′ that connects A, or B, respectively, with the rest of the graph. Therefore, we
can use Lemma 6.4 in order to revert to the previous case (where E ′ contains three
tree-edges).

Otherwise, if we have that either high1(u) ∈ C , or high1(v) ∈ C , then we have that
A is connected with C , or B is connected with C , respectively, through a back-edge
in G \ E ′. Therefore, we add the edge (ū, w̄), or (v̄, w̄), respectively, to R. Then we
set E ′ ← E ′ \ {(u, p(u))}, or E ′ ← E ′ \ {(v, p(v))}, respectively, and we revert to the
previous case (where E ′ contains three tree-edges), according to Lemma 6.2.

Similarly, if we have that either high1(u) ∈ D and low1(u) ∈ E, or high1(v) ∈ D

and low1(v) ∈ E, then we have that D remains connected with E in G \ E ′, through
the mediation of A or B, respectively. Therefore, we add the edge (z̄, r̄) to R, we set

461

E ′ ← E ′ \ {(z, p(z))}, and we revert to the previous case (where E ′ contains three
tree-edges), according to Lemma 6.2. Also, if we have that M(z) ∈ D, then D is
connected with E through a back-edge in G\E ′. Therefore, we add the edge (z̄, r̄) to
R, we set E ′ ← E ′ \ {(z, p(z))}, and we revert to the previous case (where E ′ contains
three tree-edges), according to Lemma 6.2.

Thus, we may assume that none of the above is true. Therefore, we have that
M(z) /∈ D, and there are four possibilities to consider: either (1) high1(u) ∈ D,
low1(u) ∈ D, high1(v) ∈ D and low1(v) ∈ D, or (2) high1(u) ∈ D, low1(u) ∈ D,
high1(v) ∈ E and low1(v) ∈ E, or (3) high1(u) ∈ E, low1(u) ∈ E, high1(v) ∈ D and
low1(v) ∈ D, or (4) high1(u) ∈ E, low1(u) ∈ E, high1(v) ∈ E and low1(v) ∈ E. In either
of those cases, the problem will be to determine whether C is connected with either
D or E through back-edges.

Let us consider case (1) first. In this case, we add the edges (ū, z̄) and (v̄, z̄) to
R. If we have low1(w) ∈ D, then there are no back-edges from C to E. Thus, in
order to check whether there is a back-edge from C to D, it is sufficient to check
whether bcount(w) > bcount(u) + bcount(v) (because high1(u) ∈ D and high1(v) ∈ D

imply that B(u) ∪ B(v) ⊆ B(w); this can be strengthened to B(u) ⊔ B(v) ⊆ B(w),
since u and v are not related as ancestor and descendant). If that is the case, then
we add the edge (w̄, z̄) to R. (Otherwise, there is nothing to do.) On the other hand,
if we have low1(w) ∈ E, then there is a back-edge from C to E (since low1(u) ∈ D

and low1(v) ∈ D). Thus, we add the edge (w̄, r̄) to R. Now it remains to determine
whether there is a back-edge that connects C with D. We claim that this is equivalent
to checking whether bcount(w) > bcount(u) + bcount(v) + bcount(z). To see this, first
notice that B(u) ⊔ B(v) ⊆ B(w) (since high1(u) ∈ D and high1(v) ∈ D). We also have
that (B(u)∪B(v))∩B(z) = ∅ (since low1(u) ∈ D and low1(v) ∈ D). We also have B(z) ⊆
B(w) (since M(z) /∈ D). This shows that B(u) ⊔ B(v) ⊔ B(z) ⊆ B(w). Finally, notice
that B(w)\ (B(u)∪B(v)∪B(z)) contains precisely the back-edges that connect C with
D. Thus, it is sufficient to check whether bcount(w) > bcount(u)+bcount(v)+bcount(z).
If that is the case, then we add the edge (w̄, z̄) to R.

Now let us consider case (2). In this case, we add the edges (ū, z̄) and (v̄, r̄) to
R. Now we have to determine whether there is a back-edge from C to D, or from
C to E. We claim that there is a back-edge from C to E if and only if M(z) ∈ C.
The necessity is obvious (since M(z) /∈ D). To see the sufficiency, notice that, since
low1(u) ∈ D, we have that all back-edges in B(z) have their higher endpoint either

462

in B, or in C , or in D. The last case is rejected, since M(z) /∈ D. If all the back-
edges in B(z) have their higher endpoint in B, then M(z) ∈ B. Thus, if we have
M(z) ∈ C , then at least one back-edge in B(z) must stem from C. Thus, if we
have M(z) ∈ C , then we add the edge (w̄, r̄) to R. Now it remains to determine
whether there is a back-edge from C to D. Notice that B(w) can be partitioned
into: the back-edges in B(u) (since high1(u) ∈ D), the back-edges in B(v) (since
high1(v) ∈ E), the back-edges from C to D, and the back-edges from C to E. Since
low1(u) ∈ D and M(z) /∈ D, we have (C,E) = B(z)\B(v). Thus, in order to determine
whether there is a back-edge from C to D, it is sufficient to check whether bcount(w) >
bcount(u)+bcount(v)+(bcount(z)−bcount(v)) = bcount(u)+bcount(z). If that is the case,
then we add the edge (w̄, z̄) to R. (Otherwise, there is nothing to do.) On the other
hand, if M(z) /∈ C , then we know that there is no back-edge from C to E. Thus, in
order to determine whether there is a back-edge from C to D, it is sufficient to check
whether bcount(w) > bcount(u) + bcount(v). If that is the case, then we add the edge
(w̄, z̄) to R. Case (3) is treated with a similar argument.

Finally, let us consider case (4). In this case, we add the edges (ū, r̄) and (v̄, r̄) to R.
Then, notice that there is a back-edge from C to D if and only if high1(w) ∈ D (since
high1(u) ∈ E and high1(v) ∈ E). If that is the case, then we add the edge (w̄, z̄) to R,
we set E ′ ← E ′ \ {(w, p(w))}, and we revert to the previous case (where E ′ contains
three tree-edges), according to Lemma 6.2. Otherwise, all the back-edges in B(w)

that stem from C (if there are any), end in E. Thus, in order to determine whether
such a back-edge exists, we simply check whether bcount(w) > bcount(u) + bcount(v)
(because B(u) ⊔B(v) ⊆ B(w)). If that is the case, then we add the edge (w̄, r̄) to R.

6.6.4 w is an ancestor of v, and v is an ancestor of u

Let A = T (u), B = T (v)\T (u), C = T (w)\T (v), D = T (z)\T (w), and E = T (r)\T (z).
If we have that either high1(u) ∈ B, or M(z) ∈ D, then we have that A is connected

with B, or D is connected with E, respectively, through a back-edge. Thus, we insert
the edge (ū, v̄), or (z̄, r̄), respectively, to R. Then we set E ′ ← E ′ \ {(u, p(u))}, or
E ′ ← E ′ \ {(z, p(z))}, respectively, and we revert to the previous case (where E ′

contains three tree-edges), according to Lemma 6.2.
If we have that either high1(u) ∈ C and low1(u) ∈ D, or high1(u) ∈ D and low1(u) ∈

E, then we have that C is connected with D, or D is connected with E, respectively,

463

through the mediation of A. Thus, we insert the edge (w̄, z̄), or (z̄, r̄), respectively,
to R. Then we set E ′ ← E ′ \ {(w, p(w))}, or E ′ ← E ′ \ {(z, p(z))}, respectively, and
we revert to the previous case (where E ′ contains three tree-edges), according to
Lemma 6.2.

So let us assume that neither of the above is true. (In particular, we haveM(z) /∈ D,
and therefore B(z) = (A,E)∪ (B,E)∪ (C,E).) Then there are four cases to consider.
Either (1) high1(u) ∈ C and low1(u) ∈ C , or (2) high1(u) ∈ C and low1(u) ∈ E, or (3)
high1(u) ∈ D and low1(u) ∈ D, or (4) high1(u) ∈ E and low1(u) ∈ E.

Let us consider case (1) first. Then we add the edge (ū, w̄) to R. Notice that
high1(v) ∈ C. Thus, there are three different cases to consider. Either (1.1) low1(v) ∈ C ,
or (1.2) low1(v) ∈ D, or (1.3) low1(v) ∈ E. Let us consider case (1.1). Then, there is a
back-edge from B to C if and only if bcount(v) > bcount(u). If that is the case, then we
add the edge (v̄, w̄) to R, we set E ′ ← E ′ \ {(v, p(v))}, and we revert to the previous
case (where E ′ contains three tree-edges), according to Lemma 6.2. Otherwise, we
have that B is isolated from the rest of the graph in G \ E ′. It remains to determine
whether C is connected with D or E. If bcount(z) = 0, then there is no back-edge
from C to E. Then, since low(v) ∈ C , we have that B(w) = (C,D). Thus, there is a
back-edge from C to D if and only if bcount(w) > 0. If that is the case, then we add
the edge (w̄, z̄) to R (and we are done). So let us assume that bcount(z) > 0. Then,
since M(z) /∈ D and low(v) ∈ C , we have that M(z) ∈ C. Thus, there is a back-edge
from C to E, and so we add the edge (w̄, r̄) to R. Since M(z) ∈ C and low(v) ∈ C , we
have that B(z) = (C,E). Furthermore, we have B(w) = (C,D) ∪ (C,E). Thus, there
is a back-edge from C to D if and only if bcount(w) > bcount(z). If that is the case,
then we add the edge (w̄, z̄) to R.

Now let us consider case (1.2). This means that B is connected with D with a
back-edge, and so we add the edge (v̄, z̄) to R. Notice that high1(w) ∈ D. Thus, there
are two cases to consider. Either (1.2.1) low1(w) ∈ D, or (1.2.2) low1(w) ∈ E. Let us
consider case (1.2.1). Then, since M(z) /∈ D, we have that there are no back-edges
from D to E, and therefore B(z) = ∅ (since low(w) ∈ D). This means that E is isolated
from the rest of the graph in G \E ′. Thus, we can use Lemma 6.4 in order to revert
to the previous case (where E ′ contains three tree-edges). Now let us consider case
(1.2.2). Then there is a back-edge from C to E, and so we add the edge (w̄, r̄) to
R. Thus far, R contains the edges (ū, w̄), (v̄, z̄) and (w̄, r̄). It remains to determine
whether (B,C) ̸= ∅ or (C,D) ̸= ∅. Observe that either of those cases implies that G\E ′

464

is connected, and therefore it is sufficient to add one more edge to R in order to make
it connected (e.g., we may add (v̄, w̄)). Since high1(u) ∈ C and low1(u) ∈ C , we have
B(u) = (A,C). Then, since low1(v) ∈ D, we have B(v) = (A,C) ∪ (B,C) ∪ (B,D). We
also have B(w) = (B,D)∪ (C,D)∪ (C,E), and B(z) = (C,E) (since M(z) /∈ D). Thus,
we have the following:

• bcount(u) = |(A,C)|.

• bcount(v) = |(A,C)|+ |(B,C)|+ |(B,D)|.

• bcount(w) = |(B,D)|+ |(C,D)|+ |(C,E)|.

• bcount(z) = |(C,E)|.

This implies that N = bcount(w) − bcount(z) − bcount(v) + bcount(u) = |(C,D)| −
|(B,C)|. Furthermore, we have s = SumAnc(w) − SumAnc(z) − SumAnc(v) +

SumAnc(u) = SumAnc((C,D)) − SumAnc((B,C)). Thus, if N ̸= 0, then at least
one of (C,D) and (B,C) is not empty, and therefore it is sufficient to add e.g.
(v̄, w̄) to R in order to make it connected. Otherwise, if N = 0, then we have
|(C,D)| = |(B,C)|. Then, since the lower endpoint of every back-edge in (C,D)

is lower than the lower endpoint of every back-edge in (B,C), we have that
s = SumAnc((C,D))− SumAnc((B,C)) < 0 if and only if (C,D) ̸= ∅ (and (B,C) ̸= ∅).
Thus, in the case N = 0, we add the edge (v̄, w̄) to R if and only if s < 0.

Now let us consider case (1.3). Then, there is a back-edge from B to E, and so we
add the edge (v̄, r̄) to R. Now there are two cases to consider. Either (1.3.1) high1(w) ∈
D, or (1.3.2) high1(w) ∈ E. Let us consider case (1.3.1). Then, since low1(u) ∈ C , we
have that the high1-edge of w either stems from B or from C. If the high1-edge of
w stems from B, then we have that D and E remain connected in G \ E ′ through
the mediation of B. Thus, we add the edge (z̄, r̄) to R, we set E ′ ← E ′ \ {(z, p(z))},
and we revert to the previous case (where E ′ contains three tree-edges), according to
Lemma 6.2. Otherwise, if the high1-edge of w stems from C , then we have that this is a
back-edge from C toD. Thus, we add the edge (w̄, z̄) toR, we set E ′ ← E ′\{(w, p(w))},
and we revert to the previous case (where E ′ contains three tree-edges), according
to Lemma 6.2. Now let us consider case (1.3.2). In this case, we have that D is
isolated from the rest of the graph in G \E ′, and therefore z̄ should be isolated in R.
Furthermore, all the back-edges in B(w) that stem from C (if there are any), end in
E. If M(z) ∈ C , then there is a back-edge from C to E. Thus, we add the edge (w̄, r̄)

465

to R, and we are done, because now R has enough edges to make the vertices ū, v̄, w̄
and r̄ connected. Otherwise, let us assume that M(z) /∈ C. Then there is no back-edge
from C to E. Since high(w) ∈ E, there is no back-edge from B to D, or from C to D.
Notice that we have B(u) = (A,C), B(v) = (A,C)∪(B,C)∪(B,E) and B(w) = (B,E).
Thus, there is a back-edge from B to C , if and only if bcount(v) > bcount(u)+bcount(w).
If that is the case, then we add the edge (v̄, w̄) to R. Thus, we have exhausted all
possibilities for case (1.3).

Now let us consider case (2). Then, we have that A is connected with both C and
E in G \E ′, and so we add the edges (ū, w̄) and (ū, r̄) to R. First, we check whether
there is back-edge from B to E. Such a back-edge exists if and only if there is a back-
edge (x, y) ∈ B(v) \ B(u) such that y ≤ p(z). Thus, we can determine the existence
of such a back-edge in constant time, using the data structure from Lemma 3.20
(we assume that we have performed the linear-time preprocessing that is required
in order to build this data structure). If there is a back-edge from B to E, then we
have that A and B are connected in G\E ′ through the mediation of E. Thus, we add
the edge (ū, v̄) to R, we set E ′ ← E ′ \ {(u, p(u))}, and we revert to the previous case
(where E ′ contains three tree-edges), according to Lemma 6.2. Otherwise, suppose
that there is no back-edge from B to E. Then, we check whether there is a back-edge
(x, y) ∈ B(v)\B(u) such that y ≤ p(w). (Again, we can perform this check in constant
time using Lemma 3.20.) If that is the case, then, since there is no back-edge from B

to E, we have that (x, y) is a back-edge from B to D. Otherwise, we have that there
is no back-edge from B to D. So here we can distinguish in constant time two cases:
either (2.1) there is a back-edge from B to D, or (2.2) there is no back-edge from B

to D.
Let us consider case (2.1). Then, we add the edge (v̄, z̄) to R. We will determine

whether there is a back-edge from A to D, or a back-edge from B to C , or a back-edge
from C to D. Notice that, in either of those cases, we have that G \ E ′ is connected,
and so it is sufficient to return a connected graph R. Otherwise, we have that R is
a connectivity graph for G \ E ′. (It is irrelevant whether there is a back-edge from
C to E, because this does not add any new connectivity information, since we know
that the parts C and E are connected in G \ E ′ through the mediation of A.) Since
high1(u) ∈ C , we have that B(u) = (A,C)∪(A,D)∪(A,E). Since there is no back-edge
from B to E, we have that B(v) = (A,C) ∪ (A,D) ∪ (A,E) ∪ (B,C) ∪ (B,D) and
B(w) = (A,D) ∪ (A,E) ∪ (B,D) ∪ (C,D) ∪ (C,E). And since M(z) /∈ D and there is

466

no back-edge from B to E, we have that B(z) = (A,E) ∪ (C,E). Thus, we have the
following:

• bcount(u) = |(A,C)|+ |(A,D)|+ |(A,E)|.

• bcount(v) = |(A,C)|+ |(A,D)|+ |(A,E)|+ |(B,C)|+ |(B,D)|.

• bcount(w) = |(A,D)|+ |(A,E)|+ |(B,D)|+ |(C,D)|+ |(C,E)|.

• bcount(z) = |(A,E)|+ |(C,E)|.

This implies that bcount(z)− bcount(w) + bcount(v)− bcount(u) = |(B,C)| − |(C,D)| −
|(A,D)|. Thus, if we have that bcount(z)−bcount(w)+bcount(v)−bcount(u) ̸= 0, then at
least one of (B,C), (C,D) or (A,D) is not empty. Thus, it suffices to return a connected
graph R. Otherwise, suppose that bcount(z) − bcount(w) + bcount(v) − bcount(u) = 0.
Then we have that |(B,C)| = |(C,D)| + |(A,D)|. Consider the value SumAnc(z) −
SumAnc(w)+SumAnc(v)−SumAnc(u) = SumAnc(B,C)−SumAnc(C,D)−SumAnc(A,D).
If we have that |(B,C)| = 0, then we also have that |(C,D)|+|(A,D)| = 0, and therefore
SumAnc(B,C)−SumAnc(C,D)−SumAnc(A,D) = 0. Otherwise, if |(B,C)| > 0, then we
have that SumAnc(B,C) > SumAnc(C,D)+SumAnc(A,D), because |(B,C)| = |(C,D)|+
|(A,D)| and the lower endpoint of every back-edge in (B,C) is greater than, or equal
to, w, whereas the lower endpoint of every back-edge in (C,D)∪ (A,D) is lower than
w. This implies that SumAnc(B,C)−SumAnc(C,D)−SumAnc(A,D) > 0. Thus, we have
shown that |(B,C)| > 0 if and only if SumAnc(B,C)−SumAnc(C,D)−SumAnc(A,D) >

0. Thus, if bcount(z)−bcount(w)+bcount(v)−bcount(u) = 0, then it is sufficient to check
whether SumAnc(z) − SumAnc(w) + SumAnc(v) − SumAnc(u) > 0. If that is the case,
then we only have to add one more edge to R in order to make it connected (e.g.,
(ū, z̄)). Otherwise, we have that all of the sets (A,D), (B,C) and (C,D) are empty,
and R is already a connectivity graph for G \ E ′.

Now let us consider case (2.2). Since there is no back-edge from B to E or from B

to D, it remains to check whether there is a back-edge from B to C. Since high1(u) ∈ C ,
we have that B(u) ⊆ B(v). Thus, there is a back-edge in B(v) \ B(u) (and therefore
a back-edge from B to C), if and only if bcount(v) > bcount(u). If that is the case,
then we add the edge (v̄, w̄) to R. Then we set E ′ ← E ′ \ {(v, p(v))}, and we revert
to the previous case (where E ′ contains three tree-edges), according to Lemma 6.2.
Otherwise, let us assume that B(v) = B(u). This implies that B is isolated from the
rest of the graph in G\E ′. Now it remains to determine whether there is a back-edge

467

from A to D, or from C to D. Since B(v) = B(u), this is equivalent to high1(w) ∈ D.
If that is the case, then at least one of (A,D) and (C,D) is not empty. Thus, we have
that the parts A, C , D and E, are connected in G \ E ′. Therefore, it is sufficient to
add the edge (ū, z̄) to R, in order to have a connectivity graph for G \E ′. Otherwise,
if high1(w) /∈ D, then R is already a connectivity graph for G \ E ′.

Now let us consider case (3). Then we add the edge (ū, z̄) to R. Since high1(u) ∈ D,
we have that, if high1(v) ∈ C , then there is a back-edge from B to C. Then, we add
the edge (v̄, w̄) to R, we set E ′ ← E ′ \ {(v, p(v))}, and we revert to the previous
case (where E ′ contains three tree-edges), according to Lemma 6.2. So let us assume
that high1(v) /∈ C. Here we distinguish two cases: either (3.1) low(v) ∈ D, or (3.2)

low(v) ∈ E.
Let us consider case (3.1). Then we have that B(v) = (A,D) ∪ (B,D). Thus, we

have that there is a back-edge from B to D if and only if bcount(v) > bcount(u). If
that is the case, then we have that A remains connected with B in G \ E ′ through
the mediation of D. Thus, we add the edge (ū, v̄) to R, we set E ′ ← E ′ \ {(u, p(u))},
and we revert to the previous case (where E ′ contains three tree-edges), according
to Lemma 6.2. So let us assume that there is no back-edge from B to D. Thus,
B is isolated from the rest of the graph in G \ E ′. Now it remains to determine
whether there is a back-edge from C to D, or from C to E. We distinguish two cases:
(3.1.1) low(w) ∈ D, or (3.1.2) low(w) ∈ E. Let us consider case (3.1.1). Then, we have
that B(w) = (A,D) ∪ (C,D). Thus, there is a back-edge from (C,D) if and only if
bcount(w) > bcount(u). If that is the case, then we simply add the edge (w̄, z̄) to R.
Now let us consider case (3.1.2). Then, since low(v) ∈ D and M(z) /∈ D, we have that
there is a back-edge from C to E. Thus, we add (w̄, r̄) to R. Notice that we have
B(z) = (C,E), and B(w) = (A,D) ∪ (C,D) ∪ (C,E). Thus, there is a back-edge from
C to D if and only if bcount(w) > bcount(u) + bcount(z). If that is the case, then we
add the edge (w̄, z̄) to R.

Now let us consider case (3.2). Then, since low(u) ∈ D, there is a back-edge from
B to E. Thus, we add the edge (v̄, r̄) to R. If M(z) ∈ C , then there is a back-
edge from C to E, and therefore B and C remain connected in G \ E ′ through the
mediation of E. Thus, we add the edge (v̄, w̄) to R, we set E ′ ← E ′ \ {(v, p(v))},
and we revert to the previous case (where E ′ contains three tree-edges), according
to Lemma 6.2. So let us suppose that M(z) /∈ C. Then it remains to determine
whether there is a back-edge from B to D, or from C to D. Since high1(u) ∈ D

468

and low1(u) ∈ D, we have B(u) = (A,D). Since M(z) /∈ C and low(v) ∈ E, we have
that B(z) = (B,E). Furthermore, we have B(v) = (A,D) ∪ (B,D) ∪ (B,E). Thus,
there is a back-edge from B to D if and only if bcount(v) > bcount(u) + bcount(z).
If that is the case, then we add the edge (v̄, z̄) to R. Since M(z) /∈ C , we have that
B(w) = (A,D) ∪ (B,D) ∪ (B,E) ∪ (C,D). Thus, there is a back-edge from C to D if
and only if bcount(w) > bcount(v). If that is the case, then we add the edge (w̄, z̄) to
R.

Now let us consider case (4). Then there is a back-edge from A to E, and so we
add the edge (ū, r̄) to R. If we have that high1(v) ∈ C , then B is connected with C

in G \ E ′, and so we add the edge (v̄, w̄) to R. Then we set E ′ ← E ′ \ {(v, p(v))},
and we revert to the previous case (where E ′ contains three tree-edges), according
to Lemma 6.2. Thus, we may assume that high1(v) /∈ C. Then there are two cases to
consider: either (4.1) high1(v) ∈ D, or (4.2) high1(v) ∈ E.

Now let us consider case (4.1). Then there is a back-edge from B to D, and
so we add the edge (v̄, z̄) to R. Now we distinguish three cases, depending on the
location of M(z). Since M(z) /∈ D, we have that either (4.1.1) M(z) ∈ A, or (4.1.2)

M(z) ∈ B, or (4.1.3) M(z) ∈ C. Let us consider case (4.1.1). Then we have that
B(v) = (A,E) ∪ (B,D). Furthermore, there is no back-edge from C to E. Thus, it
remains to determine whether there is a back-edge from C to D. Notice that we
have B(w) = (C,D) ∪ (B,D) ∪ (A,E). Thus, (C,D) = B(w) \ B(v). Thus, there is a
back-edge from C to D, if and only if bcount(w) > bcount(v). In this case, we simply
add the edge (w̄, z̄) to R. Now let us consider case (4.1.2). This implies that there is
a back-edge from B to E, and therefore A and B are connected in G \ E ′ through
the mediation of E. Thus, we add the edge (ū, v̄) to R, we set E ′ ← E ′ \ {(u, p(u))},
and we revert to the previous case (where E ′ contains three tree-edges), according
to Lemma 6.2. Now let us consider case (4.1.3). This implies that there is a back-
edge from C to E, and so we add the edge (w̄, r̄) to R. It remains to determine
whether there is a back-edge from B to E, or a back-edge from C to D. Notice that
either case implies that G \ E ′ is connected. Thus, we only need to check whether
(B,E)∪(C,D) ̸= ∅. Since high1(u) ∈ E, we have that B(u) = (A,E). Since high1(v) ∈ D,
we have that B(v) = (A,E)∪ (B,D)∪ (B,E). Furthermore, we have B(w) = (A,E)∪
(B,D) ∪ (B,E) ∪ (C,D) ∪ (C,E), and B(z) = (A,E) ∪ (B,E) ∪ (C,E). Thus, we have
the following:

• |B(u)| = |(A,E)|.

469

• |B(v)| = |(A,E)|+ |(B,D)|+ |(B,E)|.

• |B(w)| = |(A,E)|+ |(B,D)|+ |(B,E)|+ |(C,D)|+ |(C,E)|.

• |B(z)| = |(A,E)|+ |(B,E)|+ |(C,E)|.

This implies that |B(z)|−|B(w)|+|B(v)|−|B(u)| = |(B,E)|−|(C,D)|. Thus, if we have
that bcount(z)− bcount(w) + bcount(v)− bcount(u) ̸= 0, then we can be certain that one
of (B,E) and (C,D) is not empty, and therefore G\E ′ is connected. Thus, it suffices to
add either (v̄, r̄) or (w̄, z̄) to R, in order to make it connected. Otherwise, if |(B,E)|−
|(C,D)| = 0, then we must use other means in order to determine whether one of
(B,E) and (C,D) is non-empty. For this purpose, we consider the values SumAnc
of those sets. Thus, we have that SumAnc(B,E) − SumAnc(C,D) = SumAncB(z) −
SumAncB(w)+SumAncB(v)−SumAncB(u). Then, if both (B,E) and (C,D) are empty,
we have that SumAnc(B,E) − SumAnc(C,D) = 0. Otherwise, since (B,E) and (C,D)

have the same number of back-edges, and since the lower endpoints of all back-edges
in (B,E) are lower than the lower endpoints of all back-edges in (C,D), we have
that SumAnc(B,E) − SumAnc(C,D) < 0. Thus, we have that both (B,E) and (C,D)

are non-empty if and only if SumAnc(B,E) − SumAnc(C,D) < 0. If that is the case,
then it is sufficient to return a connected graph R.

Now let us consider case (4.2). Since high1(u) ∈ E, we have that B(u) ⊆ B(v). And
since high1(v) ∈ E, we have that B(v) = B(u) ⊔ (B,E). Thus, there is a back-edge
from B to E if and only if bcount(v) > bcount(u). If that is the case, then we have that
A is connected with B in G \E ′ through the mediation of E. Thus, we add the edge
(ū, v̄) to R, we set E ′ ← E ′ \ {(u, p(u))}, and we revert to the previous case (where E ′

contains three tree-edges), according to Lemma 6.2. So let us assume that there is no
back-edge from B to E. This implies that B is isolated from the remaining parts in
G\E ′. Now, sinceM(z) /∈ D, we have that either (4.2.1) M(z) ∈ A, or (4.2.2) M(z) ∈ C.
(The case M(z) ∈ B is rejected, since (B,E) = ∅.) Let us consider case (4.2.1). Then,
there is no back-edge from C to E, and it just remains to determine whether there is
a back-edge from C to D. We have that B(u) = (A,E) and B(w) = (A,E) ∪ (C,D).
Thus, there is a back-edge from C to D if and only if bcount(w) > bcount(u). If that is
the case, then we simply add the edge (w̄, z̄) to R. Now let us consider case (4.2.2).
In this case, there is a back-edge from C to E, and so we add the edge (w̄, r̄) to R. It
remains to determine whether there is a back-edge from C to D. Since high1(u) ∈ E

470

and high1(v) ∈ E, we have that there is a back-edge from C to D if and only if
high1(w) ∈ D. If that is the case, then we simply add the edge (w̄, z̄) to R.

6.7 The data structure

According to the preceding analysis, in order to be able to answer connectivity queries
in the presence of at most four edge-failures in constant time, it is sufficient to have
computed the following items:

• A DFS-tree of the graph rooted at a vertex r.

• The values ND(v), bcount(v), M(v) and SumAnc(v), for all vertices v ̸= r.

• The low1, low2, low3, low4, high1, high2 and high3 edges of v, for every vertex v ̸= r.

• The data structure in Lemma 3.20 for answering back-edge queries.

Thus, we need O(n) space to store all these items, and the results of Section 3 imply
that we can compute all of them in linear time in total.

Finally, let us describe how to answer the queries. First, given the set of edges E ′

that failed (with |E ′| ≤ 4), we build a connectivity graph R of G\E ′, by going through
the case analysis that is described in the preceding sections. This takes O(1) time in
total. Now let x and y be the two query vertices. Then we determine the root of the
connected component of T \ E ′ that contains x. This is given either by the largest
higher endpoint of the tree-edges in E ′ that is an ancestor of x, or by r if there is no
tree-edge in E ′ whose higher endpoint is an ancestor of x. Thus, retrieving this root
takes O(1) time. Then we do the same for the other query vertex too, and let r1 and
r2 be the two roots that we have gathered. Then we have that x is connected with y

in G \E ′ if and only if r̄1 is connected with r̄2 in R. Since the connected components
of R can be computed in O(1) time, we can have the answer in constant time.

471

CHAPTER 7

CONNECTIVITY QUERIES UNDER VERTEX
FAILURES

7.1 Introduction

7.2 Preliminaries

7.3 The algorithm for vertex failures

7.1 Introduction

In this chapter we deal with the following problem. Given an undirected graph G with
n vertices and m edges, and a fixed integer d⋆ (d⋆ ≪ n), the goal is to construct a data
structure D that can be used in order to answer connectivity queries in the presence
of at most d⋆ vertex-failures. More precisely, given a set of vertices F , with |F | ≤ d⋆,
we must be able to efficiently derive an oracle from D, which can efficiently answer
queries of the form “are the vertices x and y connected in G\F ?”. In this problem, we
want to simultaneously optimize the following parameters: (1) the construction time
of D (preprocessing time), (2) the space usage of D, (3) the time to derive the oracle
from D given F (update time), and (4) the time to answer a connectivity query in
G\F . This problem is very well motivated; it has attracted the attention of researchers
for more than a decade now, and it has many interesting variations. For more details,
we refer to [26] and [49].

472

7.1.1 Previous work

Despite being extensively studied, it is only very recently that an almost optimal so-
lution was provided by Long and Saranurak [49]. Specifically, they provided a deter-
ministic algorithm that has Ô(m)+Õ(d⋆m) preprocessing time, uses O(m log∗ n) space,
and has Ô(d2) update time and O(d) query time.1 This improves on the previous best
deterministic solution by Duan and Pettie [26], that has O(mn logn) preprocessing
time, uses O(d⋆m logn) space, and has O(d3 log3 n) update time and O(d) query time.
We note that there are more solutions to this problem, that optimize some param-
eters while sacrifising others (e.g., in the solution of Pilipczuk et al. [55], there is
no dependency on n in the update time, but this is superexponential in d⋆, and the
preprocessing time is O(mn222

O(d⋆)
)). We refer to Table 1 in reference [49] for more

details on the best known (upper) bounds for this problem. We also refer to Theorem
1.2 in [49] for a summary of known (conditional) lower bounds, that establish the
optimality of [49].

7.1.2 Our contribution

The bounds that we mentioned are the best known for a deterministic solution. In
practice, one would prefer the solution of Long and Saranurak [49], because that of
Duan and Pettie [26] has preprocessing time O(mn logn), which can be prohibitively
slow for large enough graphs. However, the solution in [49] is highly complicated,
and it seems very difficult to be implemented efficiently. This is a huge gap between
theory and practice. Furthermore, the (hidden) dependence on n in the time-bounds
of [49] is not necessarily optimal if we assume that d⋆ is a constant for our problem.
We note that this is a problem with various parameters, and thus it is very difficult
to optimize all of them simultaneously.

Considering that this is a fundamental connectivity problem, we believe that it is
important to have a solution that is relatively simple to describe and analyze, compares

1The symbol Ô hides subpolynomial (i.e. no(1)) factors, and Õ hides polylogarithmic factors. The
hidden expressions in the time-bounds are not specified by the authors in their overview. Also, the
description for the log∗ n function that appears in the space complexity is that it “can be substituted
with any slowly growing function”. One thing that is explicitly stated, however, is that the hidden
subpolynomial factors are worse than polylogarithmic. We must emphasize that the difficulty in stating
the precise bounds is partly due to there being various trade-offs in the functions involved, and is
partly indicative of the complexity of the techniques that are used.

473

very well with the best known bounds (even improves them in some respects), opens a
new direction to settle the complexity of the problem, and can be readily implemented
efficiently.

In this chapter, we exhibit a solution that has precisely those characteristics. We
present a deterministic algorithm that has preprocessing time O(d⋆m logn), uses space
O(d⋆m logn), and has O(d4 logn) update time and O(d) query time.2 Our approach is
arguably the simplest that has been proposed for this problem. The previous solutions
rely on sophisticated tree decompositions of the original graph. Here, instead, we
basically rely on a single DFS-tree, and we simply analyze its connected components
after the removal of a set of vertices. It turns out that there is enough structure to
allow for an efficient solution (see Section 7.3.2).

Table 7.1: Comparison of the best-known deterministic bounds. We note that m

can be replaced with m̄ = min{m, d⋆n}, using the sparsification of Nagamochi and
Ibaraki [51]. The data structure of Pilipczuk et al. does not support an update phase,
but answers queries directly, given a set of (at most d⋆) failed vertices and two query
vertices.

Preprocessing Space Update Query

Pilipczuk et al. [55] O(22
O(d⋆)

mn2) O(22
O(d⋆)

m) − O(22
O(d⋆)

)

Duan and Pettie [26] O(mn logn) O(d⋆m logn) O(d3 log3 n) O(d)

Long and Saranurak [49] Ô(m) + Õ(d⋆m) O(m log∗ n) Ô(d2) O(d)

This chapter O(d⋆m logn) O(d⋆m logn) O(d4 logn) O(d)

The bounds that we provide compare very well with the previous best, especially
considering the simplicity of our approach. (See Tables 8.1 and 8.2.) In fact, as we
can see in Table 8.1, our solution is the best choice for implementations, considering
that the algorithm of Long and Saranurak is very difficult to be implemented within
the claimed time-bounds. Furthermore, if we assume that d⋆ is a constant (d⋆ ≥ 4),
then, as we can see in Table 8.2, our algorithm provides some trade-offs, that improve
the state of the art in some respects.

2The log factors in the space usage and the time for the updates can be improved with the use of
more sophisticated 2D-range-emptiness data structures, such as those in [13].

474

Table 7.2: Comparison of the best-known deterministic bounds, when d⋆ is a fixed
(small) constant. Although the algorithm of Pilipczuk et al. has the best space and
query-time bounds, it has very large preprocessing time. Our solution has the best
preprocessing time, and also better update time compared to the solutions of [26]
and [49]. Furthermore, our space usage is almost linear.

Preprocessing Space Update Query

Pilipczuk et al. [55] O(mn2) O(m) − O(1)

Duan and Pettie [26] O(mn logn) O(m logn) O(log3 n) O(1)

Long and Saranurak [49] Ô(m) + Õ(m) O(m log∗ n) Ô(1) O(1)

This chapter O(m logn) O(m logn) O(logn) O(1)

Finally, the data structure that we provide is flexible with respect to d⋆: it can be
adapted to increases and decreases, in time and space that are almost proportional
to the change in d⋆ and the size of the graph (see Corollary 7.2). We do not know if
any of the previous solutions has this property. It is a natural question whether we
can efficiently update the data structure so that it can handle more failures (or less,
and thereby free some space). As far as we know, we are the first to take notice of
this aspect of the problem.

7.2 Preliminaries

We assume that the reader is familiar with standard graph-theoretical terminology
(see, e.g., [20]). The notation that we use is also standard. Since we deal with con-
nectivity under vertex failures, it is sufficient to consider simple graphs as input to our
problem (because the existence of parallel edges does not affect the connectivity rela-
tion). However, during the update phase, we construct a multigraph that represents
the connectivity relationship between some connected components after removing the
failed vertices (Definition 7.1). The parallel edges in this graph are redundant, but
they may be introduced by the algorithm that we use, and it would be costly to check
for redundancy throughout.

475

It is also sufficient to assume that the input graph G is connected. Because, oth-
erwise, we can initialize a data structure on every connected component of G; the
updates, for a given set of failures, are distributed to the data structures on the con-
nected components, and the queries for pairs of vertices that lie in different connected
components of G are always false. We use G to denote the input graph throughout;
n and m denote its number of vertices and edges, respectively. For any two integers
x, y, we use the interval notation [x, y] to denote the set {x, x + 1, . . . , y}. (If x > y,
then [x, y] = ∅.)

Finally, we note that this chapter is self-contained. In particular, the “low” points
that we consider throughout this chapter have a different meaning than those intro-
duced in Section 3.1.

7.2.1 DFS‐based concepts

Let T be a DFS-tree of G, with start vertex r [63]. We use p(v) to denote the parent
of every vertex v ̸= r in T (v is a child of p(v)). For any two vertices u, v, we let
T [u, v] denote the simple tree path from u to v on T . For every two vertices u and
v, if the tree path T [r, u] uses v, then we say that v is an ancestor of u (equivalently,
u is a descendant of v). In particular, a vertex is considered to be an ancestor (and
also a descendant) of itself. It is very useful to identify the vertices with their order
of visit during the DFS, starting with r ← 1. Thus, if v is an ancestor of u, we have
v < u. For any vertex v, we let T (v) denote the subtree rooted at v, and we let ND(v)

denote the number of descendants of v (i.e., ND(v) = |T (v)|). Thus, we have that
T (v) = [v, v+ND(v)−1], and therefore we can check the ancestry relation in constant
time. Two children c and c′ of a vertex v are called consecutive children of v (in this
order), if c′ is the minimum child of v with c′ > c. Notice that, in this case, we have
T (c) ∪ T (c′) = [c, c′ +ND(c′)− 1].

A DFS-tree T has the following extremely convenient property: the endpoints of
every non-tree edge of G are related as ancestor and descendant on T [63], and so
we call those edges back-edges. Our whole approach is basically an exploitation of this
property, which does not hold in general rooted spanning trees of G (unless they are
derived from a DFS traversal, and only then [63]). To see why this is relevant for
our purposes, consider what happens when we remove a vertex f ̸= r from T . Let
c1, . . . , ck be the children of f in T . Then, the connected components of T \f are given

476

by T (c1), . . . , T (ck) and T (r) \ T (f). A subtree T (ci), i ∈ {1, . . . , k}, is connected with
the rest of the graph in G \ f if and only if there is a back-edge that stems from T (ci)

and ends in a proper ancestor of f . Now, this problem has an algorithmically elegant
solution. Suppose that we have computed, for every vertex v ̸= r, the lowest proper
ancestor of v that is connected with T (v) through a back-edge. We denote this vertex
as low(v). Then, we may simply check whether low(ci) < f , in order to determine
whether T (ci) is connected with T (r) \ T (f) in G \ f .

We extend the concept of the low points, by introducing the lowk points, for any
k ∈ N. These are defined recursively, for any vertex v ̸= r, as follows. low1(v) coin-
cides with low(v). Then, supposing that we have defined lowk(v) for some k ∈ N,
we define lowk+1(v) as min({y | ∃ a back-edge (x, y) such that x ∈ T (v) and y <

v} \ {low1(v), . . . , lowk(v)}). Notice that lowk(v) may not exist for some k ∈ N (and
this implies that lowk′(v) does not exist, for any k′ > k). If, however, lowk(v) exists,
then lowk′(v), for any k′ < k, also exists, and we have low1(v) < low2(v) < · · · < lowk(v).
Notice that the existence of lowk(v) implies that there is a back-edge (x, lowk(v)), where
x is a descendant of v.

Proposition 7.1. Let T be a DFS-tree of a simple graph G, and assume that the adjacency
list of every vertex of G is sorted in increasing order w.r.t. the DFS numbering. Suppose also
that, for some k ∈ {0, . . . , n− 1}, we have computed the low1, . . . , lowk points of all vertices
(w.r.t. T), and the set {low1(v), . . . , lowk(v)} is stored in an increasingly sorted array for
every v ̸= r. Then we can compute the lowk+1 points of all vertices in O(n log(k+1)) time.3

Proof. For every v ̸= r, let lowArray(v) be the array that contains {low1(v), . . . , lowk(v)}
in increasing order, plus one more entry which is null. Now we process the vertices
in a bottom-up fashion (e.g., in reverse DFS order). We will make sure that, when
we start processing a vertex, the low1, . . . , lowk+1 points of its children are correctly
computed (∗).

The processing of a vertex v ̸= r is done as follows. First, we perform a binary
search within the first k + 1 entries of the adjacency list of v, in order to find the
smallest vertex that is greater than lowk(v); if it exists, we insert it in the k+1 entry of
lowArray(v). Now we process the children of v. For every child c of v, if the k+1 entry
of lowArray(v) is null, then we perform a binary search in lowArray(c), in order to find
the smallest vertex that is greater than lowk(v) and lower than v. If it exists, then we

3We make the convention that log(1) = 1, so that the time to compute the low1 points is O(n).

477

insert it in the k+1 entry of lowArray(v). Otherwise, if the k+1 entry of lowArray(v) is
not null, then we perform a binary search in lowArray(c), in order to find the smallest
vertex y that is greater than lowk(v) and lower than the k+1 entry of lowArray(v). If it
exists, then we replace the vertex at the k+1 entry of lowArray(v) with y. Notice that,
for the processing of v, we need O((1 + nChildenv) log(k+1)) time, where nChildenv is
the number of children of v. Thus, the whole algorithm takes O(n log(k+1)) time in
total.

Now we have to argue about the correctness of this procedure. Suppose that (∗) is
true for a vertex v right when we start processing it. (If v is a leaf, then (∗) is trivially
true.) Let us also suppose that lowk(v) is exists, because otherwise lowk+1(v) does not
exist and we are done. Consider the segment y1, . . . , yk+1 of the first k+1 entries of the
adjacency list of v. Then, notice that lowk+1(v) ≤ yk+1 (where we let this inequality be
trivially true if yk+1 is null). This is because low1(v) is at least as low as y1, therefore
low2(v) is at least as low as y2, and so on. Thus, if lowk+1(v) exists in the adjacency
list of v, it coincides with the lowest among y1, . . . , yk+1 that is greater than lowk(v).
Otherwise, after the search in the adjacency list of v, we just have that the k+1 entry
of lowArray(v) (if it is not null) contains a vertex that is greater than lowk+1(v). Now
we check the lowi points of the children of v, for i ∈ {1, . . . , k + 1}. (By (∗), these are
correctly computed, and they are stored in the lowArray arrays.) First, we notice, as
previously, that lowk+1(v) is at least as low as the k + 1 entry in lowArray(c), for any
child c of v. Thus, if there is a child c of v such that lowArray(c) contains lowk+1(v),
then this is precisely the smallest vertex in lowArray(c) that is greater than lowk(v),
and we correctly insert it in the k + 1 entry of lowArray(v).

We conclude that, when we finish processing v, either the k+1 entry of lowArray(v)
is null (from which we infer that lowk+1(v) does not exist), or it contains a vertex that
is greater than lowk(v), but at least as low as any of the first k + 1 entries of the
adjacency list of v that are greater than lowk(v), or the first k+ 1 low points of any of
its children that are greater than lowk(v). Thus, lowk+1(v) has been correctly computed
in the k + 1 entry of lowArray(v).

Corollary 7.1. For any k ∈ {1, . . . , n− 1}, the low1, . . . , lowk points of all vertices can be
computed in O(m+ kn log k) time.

Proof. An immediate appplication of Proposition 7.1: we first sort the adjacency lists of
all vertices with bucket-sort, and then we just compute the low1, . . . , lowk points, for all

478

vertices, in this order. This will take time O(m+n)+O(n log 1+n log 2+· · ·+n log k) =
O(m+ kn log k).

7.3 The algorithm for vertex failures

7.3.1 Initializing the data structure

We will need the following ingredients in order to be able to handle at most d⋆ failed
vertices.

(i) A DFS-tree T of G rooted at a vertex r. The values ND and depth (w.r.t. T)
must be computed for all vertices. We identify the vertices of G with the DFS
numbering of T .

(ii) A level-ancestor data structure on T .

(iii) A 2D-range-emptiness data structure on the set of the back-edges of G w.r.t. T .

(iv) The lowi points of all vertices, for every i ∈ {1, . . . , d⋆}.

(v) For every i ∈ {1, . . . , d⋆}, a DFS-tree Ti of T rooted at r, where the adjacency
lists of the vertices are given by their children lists sorted in increasing order
w.r.t. the lowi point.

(vi) For every i ∈ {1, . . . , d⋆}, a 2D-range-emptiness data structure on the set of the
back-edges of G w.r.t. Ti.

The depth value in (i) refers to the depths of the vertices in T . This is defined for
every vertex v as the size of the tree path T [r, v]. (Thus, e.g., depth(r) = 1.) It takes
O(n) additional time to compute the depth values during the DFS.

The level-ancestor data structure in (ii) is used in order to answer queries of the
form QueryLA(v, δ) ≡ “return the ancestor of v that lies at depth δ”. We use those
queries in order to find the children of vertices that are ancestors of other vertices.
(I.e., given that u is a descendant of v, we want to know the child of v that is an
ancestor of u.) For our purposes, it is sufficient to use the solution in Section 3 of [10],
that preprocesses T in O(n logn) time so that it can answer level-ancestor queries in
(worst-case) O(1) time.

479

The 2D-range-emptiness data structure in (iii) is used in order to answer queries
of the form 2D_range([X1, X2]× [Y1, Y2]) ≡ “is there a back-edge (x, y) with x ∈ [X1, X2]

and y ∈ [Y1, Y2]?”.4 We can use a standard implementation for this data structure,
that has O(m logn) space and preprocessing time complexity, and can answer a query
in (worst-case) O(logn) time (see, e.g., Section 5.6 in [19]). The m factor here is
unavoidable, because the number of back-edges can be as large as m−n+1. However,
we note that we can improve the logn factor in the space and the query time if we
use a more sophisticated solution, such as [13].

The low1, . . . , lowd⋆ points of all vertices can be computed in O(m + d⋆n log d⋆) =
O(m+ d⋆n logn) time (Corollary 7.1). We obviously need O(d⋆n) space to store them.

For (v), we just perform d⋆ DFS’s on T , starting from r, where each time we use
a different arrangement of the children lists of T as adjacency lists. This takes O(d⋆n)

time in total, but we do not need to actually store the trees. (In fact, the parent pointer
is the same for all of them.) What we actually need here is the DFS numbering of the
i-th DFS traversal, for every i ∈ {1, . . . , d⋆}, which we denote as DFSi. We keep those
DFS numberings stored, and so we need O(d⋆n) additional space. The usefulness of
performing all those DFS’s will become clear in Section 7.3.4. Right now, we only
need to mention that, for every i ∈ {1, . . . , d⋆}, the ancestry relation in Ti is the same
as that in T . Thus, the low1, . . . , lowd⋆ points for all vertices w.r.t. Ti are the same as
those w.r.t. T .

The 2D-range-emptiness data structures in (vi) are used in order to answer queries
of the form 2D_range_i([X1, X2] × [Y1, Y2]) ≡ “is there a back-edge (x, y) with x ∈
[X1, X2] and y ∈ [Y1, Y2]?”, where the endpoints of the query rectangle refer to the DFSi
numbering, for i ∈ {1, . . . , d⋆}. Since the ancestry relation is the same for Ti and T , we
have that the queries 2D_range([X1, X2]× [Y1, Y2]) and 2D_range_i([X1, X2]i × [Y1, Y2]i)

are equivalent, where the i index below the brackets means that we have translated
the endpoints in the DFSi numbering.

The construction of the 2D-range-emptiness data structures w.r.t. the DFS-trees
T1, . . . , Td⋆ takes O(d⋆m logn) time in total. In order to keed those data structures
stored, we need O(d⋆m logn) space. Thus, the construction and the storage of the
2D-range-emptiness data structures dominate the space-time complexity overall.

It is easy to see that the list of data structures from (i) to (vi) is flexible w.r.t. d⋆.
4The input to 2D_range is just the endpoints X1, X2, Y1, Y2 of the query rectangle; we use brackets

around them, and the symbol ×, just for readability.

480

Thus, if d⋆ increases by 1, then we need to additionally compute the lowd⋆+1 points
of all vertices, the Td⋆+1 DFS-tree, and the corresponding 2D-range-emptiness data
structure. Computing the lowd⋆+1 points takes O(n log(d⋆ + 1)) = O(n logn) time, and
demands an additional O(n) space, assuming that we have sorted the adjacency lists
of G in increasing order, and that we have stored the low1, . . . , lowd⋆ points, for every
vertex, in an increasingly sorted array (see Proposition 7.1).

Corollary 7.2. Suppose that we have initialized our data structure for some d⋆, and we want
to get a data structure for d⋆ + k. Then we can achieve this in O(km logn) time, using
extra O(km logn) space.

If d⋆ decreases by k, then we just have to discard the lowd⋆−k+1, . . . , lowd⋆ points,
the Td⋆−k+1, . . . , Td⋆ DFS-trees, and the corresponding 2D-range-emptiness data struc-
tures. This will free O(km logn) space.

7.3.2 The general idea

Let F be a set of failed vertices. Then T \ F may consist of several connected com-
ponents, all of which are subtrees of T . It will be necessary to distinguish two types
of connected components of T \ F . Let C be a connected component of T \ F . If no
vertex in F is a descendant of C , then C is called a hanging subtree of T \F . Otherwise,
C is called an internal component of T \F . (See Figure 7.1 for an illustration.) Observe
that, while the number of connected components of T \ F may be as large as n − 1

(even if |F | = 1), the number of internal components of T \ F is at most |F |. This is
an important observation, that allows us to reduce the connectivity of G \ F to the
connectivity of the internal components.

More precisely, we can already provide a high level description of our strategy
for answering connectivity queries between pairs of vertices. Let x, y be two vertices
of G \ F . Suppose first that x belongs to an internal component C1 and y belongs
to an internal component C2. Then it is sufficient to know whether C1 and C2 are
connected in G \ F . Otherwise, if either x or y lies in a hanging subtree C , then we
can substitute C with any internal component that is connected with C in G \ F . If
no such internal component exists, then x and y are connected in G \ F if and only
if they lie in the same hanging subtree.

Thus, after the deletion of F from G, it is sufficient to make provisions so as to
be able to efficiently answer the following:

481

r

f1

f2

f3

f5=p(f6)

f6

f1

f2

f3

f5

f6

f4

f4

C1

C2

C3

C4

H3

(a)

(b)

H2
H1

Figure 7.1: (a) A set of failed vertices F = {f1, . . . , f6} on a DFS-tree T , and (b) the corre-

sponding F-forest, which shows the parentF relation between failed vertices. Notice that T \F

is split into several connected components, but there are only four internal components, C1,

C2, C3 and C4. The hanging subtrees of T \ F are shown with gray color (e.g., H1, H2 and

H3). The internal components C2 and C3 remain connected in G \ F through a back-edge

that connects them directly. C1 and C4 remain connected through the hanging subtree H3 of

f6. We have ∂(C1) = {f1}, ∂(C2) = {f2}, ∂(C3) = {f3, f4} and ∂(C4) = {f5}. Notice that f6
is the only failed vertex that is not a boundary vertex of an internal component, and it has

parentF (f6) = p(f6).

(1) Given a vertex x, determine the connected component of T \ F that contains x.

(2) Given two internal components C1 and C2 of T \ F , determine whether C1 and
C2 are connected in G \ F .

(3) Given a hanging subtree C of T \ F , find an internal component of T \ F that
is connected with C in G \F , or report that no such internal component exists.

Actually, the most difficult task, and the only one that we provide a preprocessing
for (during the update phase), is (2). We explain how to perform (1) and (3) during

482

the process of answering a query, in Section 7.3.5. An efficient solution for (2) is
provided in Section 7.3.4.

The general idea is that, since there are at most d = |F | internal components of
T \F , we can construct a graph with O(d) nodes, representing the internal components
of T \F , that captures the connectivity relation among them in G\F (see Lemma 7.5).
This is basically done with the introduction of some artificial edges between the (rep-
resentatives of the) internal components. In the following subsection, we state some
lemmata concerning the structure of the internal components, and their connectivity
relationship in G \ F .

7.3.3 The structure of the internal components

We will use the roots of the connected components of T \F (viewed as rooted subtrees
of T) as representantives of them. Now we introduce some terminology and notation.
If C is a connected component of T \ F , we denote its root as rC . If C is a hanging
subtree of T \ F , then p(rC) = f is a failed vertex, and we say that C is a hanging
subtree of f . If C,C ′ are two distinct connected components of T \ F such that rC′

is an ancestor of rC , then we say that C ′ is an ancestor of C. Furthermore, if v is a
vertex not in C such that v is an ancestor (resp., a descendant) of rC , then we say
that v is an ancestor (resp., a descendant) of C. If C is an internal component of
T \ F and f is a failed vertex such that p(f) ∈ C , then we say that f is a boundary
vertex of C. The collection of all boundary vertices of C is denoted as ∂(C). Notice
that any vertex b ∈ ∂(C) has the property that there is no failed vertex on the tree
path T [p(b), rC]. Conversely, a failed vertex b such that there is no failed vertex on the
tree path T [p(b), rC] is a boundary vertex of C. Thus, if b1, . . . , bk is the collection of
all the boundary vertices of C , then C = T (rC) \ (T (b1) ∪ · · · ∪ T (bk)).

The following lemma is a collection of properties that are satisfied by the internal
components.

Lemma 7.1. Let C be an internal component of T \ F . Then:

(1) Either rC = r, or p(rC) ∈ F .

(2) For every vertex v that is a descendant of C, there is a unique boundary vertex of C
that is an ancestor of v.

483

(3) Let f1, . . . , fk be the boundary vertices of C, sorted in increasing order. Then C is the
union of the following subsets of consecutive vertices: [rC , f1 − 1], [f1 +ND(f1), f2 −
1], . . . , [fk−1+ND(fk−1), fk−1], [fk+ND(fk), rC +ND(rC)−1]. (We note that some
of those sets may be empty.)

Proof. (1) If rC ̸= r, then p(rC) is defined. Since rC is the root of a connected compo-
nent of T \ F , we have that rC /∈ F . If p(rC) /∈ F , then rC is connected with p(rC) in
T \F through the parent edge (rC , p(rC)), contradicting the fact that rC is the root of
a connected component of T \ F . Thus, p(rC) ∈ F .

(2) Since v is a descendant of C , we have that v /∈ C and v is a descendant of rC .
Since v is a descendant of rC , we have that all vertices on the tree path T [v, rC] are
ancestors of v. (Notice that only a vertex on T [v, rC] can be both an ancestor of v and
a boundary vertex of C , because all other ancestors of v are lower than rC .) Since
v /∈ C , there must exist at least one failed vertex on T [v, rC]. Take the lowest such
failed vertex b. Then we have that none of the vertices on the tree path T [p(b), rC] is a
failed vertex, and so p(b) is connected with rC in T \F , and therefore b is a boundary
vertex of C.

Now let us suppose, for the sake of contradiction, that there is another vertex b′

on T [v, rC] that is a boundary vertex of C. Since b is the lowest with this property, we
have that b′ is a proper descendant of b. Since b′ ∈ ∂(C), we have that there cannot be
a failed vertex on the tree path T [p(b′), rC], contradicting the fact that b ∈ T [p(b′), rC].
Thus, we have that b is the unique vertex in ∂(C) that is an ancestor of v.

(3) The subtree rooted at rC consists of the vertices in [rC , rC +ND(rC)− 1]. Since
f1, . . . , fk are the boundary vertices of C , we have that C = T (rC)\(T (f1)∪· · ·∪T (fk)).
Therefore, C = [rC , rC +ND(rC)−1]\ ([f1, f1+ND(f1)−1]∪· · ·∪ [fk, fk+ND(fk)−1]).
Thus, since f1, . . . , fk are sorted in increasing order, we have C = [rC , f1 − 1] ∪ [f1 +

ND(f1), f2 − 1] ∪ · · · ∪ [fk−1 +ND(fk−1), fk − 1] ∪ [fk +ND(fk), rC +ND(rC)− 1].

We represent the ancestry relation between failed vertices using a forest which we
call the failed vertex forest (F-forest, for short). The F-forest consists of the following
two elements. First, for every failed vertex f , there is a pointer parentF (f) to the
nearest ancestor of f (in T) that is also a failed vertex. If there is no ancestor of f
that is a failed vertex, then we let parentF (f) = ⊥. And second, every failed vertex f

has a pointer to its list of children in the F-forest.
The F-forest can be easily constructed in O(d2) time: we just have to find, for every

484

failed vertex f , the maximum failed vertex f ′ that is a proper ancestor of f ; then we
set parentF (f) = f ′, and we append f to the list of the children of f ′ in the F-forest.

The next lemma shows how we can check in constant time whether a failed vertex
belongs to the boundary of an internal component, and how to retrieve the root of
this component.

Lemma 7.2. A failed vertex f is a boundary vertex of an internal component if and only if
parentF (f) ̸= p(f). Now let f be a boundary vertex of an internal component C. Then, if
parentF (f) exists, we have that the root of C is the child of parentF (f) that is an ancestor
of f . Otherwise, the root of C is r.

Proof. Let C be an internal component such that f ∈ ∂(C). Then there is no failed
vertex on the tree path T [p(f), rC]. In particular, p(f) ̸= parentF (f). Conversely, sup-
pose that parentF (f) ̸= p(f). (We can reject the case f = r, because then none of the
expressions parentF (f), p(f) is defined.) If parentF (f) is not defined, then there is no
failed vertex on the tree path T [p(f), r] (i.e., on the path of the ancestors of f), and
therefore f is a boundary vertex of the internal component with root r. Otherwise,
if parentF (f) is defined, then we have that p(f) cannot be a failed vertex (because
otherwise we would have parentF (f) = p(f), because parentF (f) is the nearest proper
ancestor of f that is a failed vertex). Thus, p(f) belongs to a connected component
of T \ F , to which f is a boundary vertex.

Now let f be a boundary vertex of an internal component C. This means that
there is no failed vertex on the tree path T [p(f), rC]. If parentF (f) exists, then it must
be a proper ancestor of rC . Thus, rC ̸= r, and therefore, by Lemma 7.1(1), we have
that p(rC) is a failed vertex. Since parentF (f) is the nearest ancestor of f that is a
failed vertex, we thus have that parentF (f) = p(rC), and therefore rC is the child of
parentF (f) that is an ancestor of f . Otherwise, if parentF (f) does not exist, this implies
that there is no failed vertex on the tree path T [p(f), r]. Thus, f is a boundary vertex
of the internal component with root r.

Thus, according to Lemma 7.2, if f is a boundary vertex of an internal component
C with rC ̸= r, we can retrieve rC in constant time using a level-ancestor query: i.e.,
we ask for the ancestor of f (in T) whose depth equals that of parentF (f) + 1. We
may use this fact throughout without mention.

The following lemma shows that there are two types of edges that determine the
connectivity relation in G \ F between the connected components of T \ F .

485

Lemma 7.3. Let e be an edge of G\F whose endpoints lie in different connected components
of T \F . Then e is a back-edge and either (i) both endpoints of e lie in internal components,
or (ii) one endpoint of e lies in a hanging subtree H, and the other endpoint lies in an
internal component C that is an ancestor of H.

Proof. Let e = (x, y), let C be the connected component of T \ F that contains x, and
let C ′ be the connected component of T \ F that contains y. We have that e cannot
be a tree-edge, because otherwise x and y would be connected in T \ F . Thus, e is a
back-edge. Since x, y are the endpoints of a back-edge, they are related as ancestor
and descendant. We may assume w.l.o.g. that rC > rC′. We will show that this implies
that x is a descendant of y. So let us suppose, for the sake of contradiction, that x
is an ancestor of y. Since y ∈ C ′, we have that y is a descendant of rC′. Since x is
an ancestor of y that does not lie in C ′, we have that x does not lie on the tree path
T [y, rC′]. Thus, x is a proper ancestor of rC′ , and so x < rC′. Since x ∈ C , we have
that x ≥ rC . Thus, we have rC ≤ x < rC′ , which contradicts the assumption rC > rC′.
Thus, we have shown that x is a descendant of y. Now, since y does not lie in C , we
have that y cannot lie on the tree path T [x, rC]. Therefore, since y is an ancestor of x,
it must be a proper ancestor of rC . And since y ∈ C ′, we have that y is a descendant
of rC′. Therefore, rC is a descendant of rC′.

Thus we have shown that C is a descendant of C ′. This implies that C ′ cannot
be a hanging subtree of T \ F . To see this, suppose the contrary. Since rC′ is a
proper ancestor of rC , we have that rC′ is an ancestor of p(rC). (p(rC) is defined,
precisely because rC has a proper ancestor, and therefore rC ̸= r.) Notice that p(rC)
is a failed vertex (otherwise, rC would be connected with p(rC) through the parent
edge (rC , p(rC)), contradicting the fact that rC is the root of a connected component
of T \ F). But then we have that r′C is an ancestor of a failed vertex, contradicting
our supposition that C ′ is a hanging subtree of T \ F . We conclude that, among C

and C ′, only C can be a hanging subtree of T \ F .

Corollary 7.3. Let C,C ′ be two distinct connected components of T \ F that are connected
with an edge e of G \ F . Assume w.l.o.g. that rC′ < rC. Then C ′ is an ancestor of C.

Proof. Lemma 7.3 implies that e is a back-edge. Let e = (x, y), and assume w.l.o.g.
that x is a descendant of y. We know that either x ∈ C and y ∈ C ′, or reversely. Let
us suppose, for the sake of contradiction, that x ∈ C ′ (and thus y ∈ C). This implies
that x is a descendant of rC′. Thus, x is a common descendant of rC′ and y. This

486

implies that rC′ and y are related as ancestor and descendant. We have that y cannot
be a descendant of rC′ , because this would imply that y ∈ T [rC′ , x] (but y lies outside
of C ′). Thus, we have that y is a proper ancestor of rC′ , and therefore y < rC′. Since
rC′ < rC , this implies that y < rC , and therefore y cannot be a descendant of rC –
contradicting the fact that y ∈ C.

Thus we have shown that x ∈ C and y ∈ C ′. x ∈ C implies that x is a descendant
of rC . Thus, x is a common descendant of rC and y. This implies that rC and y

are related as ancestor and descendant. We have that y cannot be a descendant of
rC , because this would imply y ∈ T [rC , x] (but y lies outside of C). Thus, rC is a
descendant of y. Also, y ∈ C ′ implies that y is a descendant of rC′. Thus, we conclude
that rC is a descendant of rC′.

The following lemma provides an algorithmically useful criterion to determine
whether a connected component of T \F – a hanging subtree or an internal component
– is connected with an internal component of T \ F through a back-edge.

Lemma 7.4. Let C,C ′ be two connected components of T \ F such that C ′ is an internal
component that is an ancestor of C, and let b be the boundary vertex of C ′ that is an ancestor
of C. Then there is a back-edge from C to C ′ if and only if there is a back-edge from C

whose lower end lies in [rC′ , p(b)].

Proof. First, let us explain the existence of b. Since C ′ is an ancestor of C , we have
that rC′ is an ancestor of rC . Therefore, Lemma 7.1(2) implies that there is a unique
boundary vertex b of C ′ that is an ancestor of rC . Thus, b is an ancestor of C.

(⇒) Let e = (x, y) be a back-edge from C to C ′, and assume w.l.o.g. that x lies in
C. Since e is a back-edge, we have that either x is a descendant of y, or reversely. Let
us suppose, for the sake of contradiction, that y is a descendant of x. Since x ∈ C ,
we have that x ≥ rC . Since y is a descendant of x, we have that y > x. Thus, y > rC .
Since (x, y) is a back-edge from C to C ′ and x ∈ C , we have that y ∈ C ′. This implies
that there must be a failed vertex on the tree path T [y, x]. (Otherwise, y would be
connected with x, and therefore C ′ would be connected with C , which is absurd.)
Let f be the maximum failed vertex on the tree path T [y, x]. Then, the connected
component of T \F that contains y has a child of f as a root. But this root is rC′ , and
therefore we have rC′ > f > x ≥ rC , in contradiction to the assumption that C ′ is an
ancestor of C. Thus we have shown that x is a descendant of y. Since y is an ancestor
of x that does not lie in C , we have that y does not lie on the tree path T [x, rC], and

487

therefore it must be a proper ancestor of rC . Thus, since y ∈ C ′, we have that y lies
on the tree path T [p(b), rC′]. This implies that y ∈ [rC′ , p(b)].

(⇐) Let e = (x, y) be a back-edge from C whose lower end lies in [rC′ , p(b)]. We
may assume w.l.o.g. that x ∈ C. Thus, we have that y ∈ [rC′ , p(b)], and that y is an
ancestor of x. Since x ∈ C , we have that x is a descendant of rC . Since b is an ancestor
of C , we have that b is an ancestor of rC . Thus, x is a descendant of b, and therefore
a descendant of p(b). This means that the tree path T [p(b), rC′] consists of ancestors
of x. Thus, since y is an ancestor of x with y ∈ [rC′ , p(b)], we have that y ∈ T [p(b), rC′].
Since b is a boundary vertex of C ′, we have that all vertices on the tree path T [p(b), rC′]

lie in C ′. In particular, we have y ∈ C ′.

Definition 7.1. Let R be a multigraph where V (R) is the set of the roots of the
internal components of T \ F , and E(R) satisfies the following three properties:

(1) For every back-edge connecting two internal components C and C ′, there is an
edge (rC , rC′) in R.

(2) Let H be a hanging subtree of a failed vertex f , and let C1, . . . , Ck be the internal
components that are connected with H through a back-edge. (By Lemma 7.3,
all of C1, . . . , Ck are ancestors of H.) Assume w.l.o.g. that Ck is an ancestor of
all C1, . . . , Ck−1. Then R contains the edges (rC1 , rCk

), (rC2 , rCk
), . . . , (rCk−1

, rCk
).

(3) Every edge of R is given by either (1) or (2), or it is an edge of the form (rC , rC′),
where C,C ′ are two internal components that are connected in G \ F .

Then R is called a connectivity graph of the internal components of T \ F . The edges
of (1) and (2) are called Type-1 and Type-2, respectively.

The following lemma shows that this graph captures the connectivity relationship
of the internal components of T \ F in G \ F .

Lemma 7.5. Let R be a connectivity graph of the internal components of T \ F . Then,
two internal components C,C ′ of T \ F are connected in G \ F if and only if rC , rC′ are
connected in R.

Proof. (⇒) Let C,C ′ be two internal components of T \ F that are connected in
G \ F . This means that there is a sequence C1, . . . , Ck of pairwise distinct connected
components of T \ F , and a sequence of back-edges e1, . . . , ek−1, such that: C1 = C ,

488

Ck = C ′, and ei connects Ci and Ci+1, for every i ∈ {1, . . . , k − 1}. By Lemma 7.3, we
have that, for every i ∈ {1, . . . , k− 1}, either (1) Ci and Ci+1 are internal components
that are related as ancestor and descendant, or (2) one of Ci, Ci+1 is a hanging subtree,
and the other is an internal component that is an ancestor of it.

Let i be an index in {1, . . . , k − 1}. If (1) is true, then there is a Type-1 edge
(rCi

, rCi+1
) in R. If (2) is true, then one of Ci, Ci+1 is a hanging subtree. Let us

assume that Ci is a hanging subtree. Since there is a back-edge connecting Ci with
Ci+1, we may consider the lowest internal component C̃ that is an ancestor of Ci and
is connected with it through a back-edge. If Ci+1 = C̃ , then we imply nothing at this
point. Otherwise, we have that R contains the Type-2 edge (rCi+1

, rC̃). Now, since C1

is an internal component, we have that Ci ̸= C1, and therefore Ci−1 is defined. By
Lemma 7.3, we have that Ci−1 is also an internal component, that is connected with
Ci through a back-edge. Again, if Ci−1 = C̃ , then we imply nothing at this point.
Otherwise, we have that R contains the Type-2 edge (rCi−1

, rC̃). Thus, there are three
possibilities to consider: either Ci−1 = C̃ and Ci+1 ̸= C̃ , or Ci−1 ̸= C̃ and Ci+1 = C̃ ,
or Ci−1 ̸= C̃ and Ci+1 ̸= C̃. In any case, we can see that rCi−1

is connected with rCi+1

in R – either directly, or through rC̃ . Similarly, if we assume that Ci+1 is a hanging
subtree (and Ci is an internal component), then we have that rCi

is connected with
rCi+2

in R.
From all this we infer that, if Ci(1), . . . , Ci(t) is the subsequence of C1, . . . , Ck that

consists of the internal components, then rCi(1)
, . . . , rCi(t)

are connected in R. In par-
ticular, we have that rC and rC′ are connected in R.

(⇐) Let e = (rC , rC′) be an edge of R. If e is a Type-1 edge, then there is a back-
edge that connects C and C ′ in G \ F . Otherwise, there is a hanging subtree of T \ F
that is connected with both C and C ′ in G \ F (through back-edges). In any case,
we have that C,C ′ are connected in G \ F . Since this is true for any edge of R, we
conclude that, if rC , rC′ are two vertices connected in R, then C,C ′ are connected in
G \ F .

7.3.4 Handling the updates: construction of a connectivity graph

for the internal components of T \ F

Given a set of failed vertices F , with |F | = d ≤ d⋆, we will show how we can construct
a connectivity graph R for the internal components of T \ F , using O(d4) calls to

489

2D-range-emptiness queries. Recall that V (R) is the set of the roots of the internal
components of T \ F .

Algorithm 54 shows how we can find all Type-1 edges of R. The idea is basically
to perform 2D-range-emptiness queries for every pair of internal components, in
order to determine the existence of a back-edge that connects them. More precisely,
we work as follows. Let C be an internal component of T \ F . Then it is sufficient
to check every ancestor component C ′ of C , in order to determine whether there is
a back-edge from C to C ′ (see Corollary 7.3). Let f1, . . . , fk be the boundary vertices
of C , sorted in increasing order. Let also f ′ be the boundary vertex of C ′ that is an
ancestor of C , and let I = [rC′ , p(f ′)]. Then we perform 2D-range-emptiness queries
for the existence of a back-edge on the rectangles [rC , f1−1]× I, [f1+ND(f1), f2−1]×
I, . . . , [fk+ND(fk), rC+ND(rC)−1]×I. We know that there is a back-edge connecting
C and C ′ if and only if at least one of those queries is positive (see Lemma 7.1(3)
and Lemma 7.4). If that is the case, then we add the edge (rC , rC′) to R.

Observe that the total number of 2D-range-emptiness queries that we perform is
O(d2), because every one of them corresponds to a triple (C, f, C ′), where C,C ′ are
internal components, C ′ is an ancestor of C , and f is a boundary vertex of C , or rC .
And if C1, . . . , Ck are all the internal components of T \ F , then the number of those
triples is bounded by (|∂(C1)|+1)·d+· · ·+(|∂(Ck)|+1)·d = (|∂(C1)|+· · ·+|∂(Ck)|+k)·d ≤
(d+ k) · d ≤ (d+ d) · d = O(d2).

Proposition 7.2. Algorithm 54 correctly computes all Type-1 edges to construct a connec-
tivity graph for the internal components of T \ F . The running time of this algorithm is
O(d2 logn).

Proof. First, we need to provide a method to efficiently iterate over the collection of the
internal components and their boundary vertices (Lines 1 and 2), and then we have
to prove that the while loop in Line 5 is sufficient to access all internal components
that are ancestors of C. Then, the correctness and the O(d2 logn) time-bound follow
from the analysis above (in the main text).

Every internal component C of T \F is determined by its root rC . By Lemma 7.1(1),
we have that either rC = r, or p(rC) is a failed vertex. If rC = r then C has no ancestor
internal components, and therefore we may ignore this case. So let p(rC) = f be a
failed vertex. Then, by Lemma 7.2, the boundary vertices of C are given by the
children of f in the F-forest that are descendants (in T) of rC .

490

Algorithm 54: Compute all Type-1 edges to construct a connectivity graph
R for the internal components of T \ F

1 foreach internal component C of T \ F do
2 let f1, . . . , fk be the boundary vertices of C , sorted in increasing order
3 // process every internal component C ′ that is an ancestor of C

4 set f ′ ← p(rC)

5 while f ′ ̸= ⊥ do
6 if p(f ′) ̸= parentF (f ′) then
7 let C ′ be the internal component of T \ F with f ′ ∈ ∂(C ′)

8 set I ← [rC′ , p(f ′)]

9 if at least one of the following queries is positive:
10 2D_range([rC , f1 − 1]× I)

11 2D_range([f1 +ND(f1), f2 − 1]× I)

12 . . .

13 2D_range([fk−1 +ND(fk−1), fk − 1]× I)

14 2D_range([fk +ND(fk), rC +ND(rC)− 1]× I) then
15 add the Type-1 edge (rC , rC′) to R
16 end

17 end
18 f ′ ← parentF (f ′)

19 end

20 end

Thus, we may work as follows. First, we sort the children of every failed vertex
f in the F-forest in increasing order. This takes O(d log d) time in total. Then, for
every failed vertex f , we traverse its list of children L (in the F-forest) in order. For
every maximal segment S of L that consists of descendants of the same child c of f
in T , we know that either c is the root of an internal component with boundary S,
or c ∈ F . (For every f ′ ∈ L that we meet, we can use a level-ancestor query to find
in constant time the child of f in T that is an ancestor of f ′.) Thus, Lines 1 and 2
need O(d log d) time in total.

Now let C be an internal component with rC ̸= r. Then we have that p(rC) is a
failed vertex. Now let C ′ be an internal component that is a proper ancestor of C.

491

This means that rC′ is a proper ancestor of rC , and therefore rC′ is an ancestor of
f = p(rC). Then, by Lemma 7.1(2) we have that there is a boundary vertex b of C ′

that is an ancestor of f (in T). Since the set of failed vertices that are ancestors of f
(in T) coincide with the set of ancestors of f in the F-forest, we have that the while
loop in Line 5 will eventually reach b. Then we can retrieve C ′ (more precisely: rC′)
in constant time using Lemma 7.2. The purpose of Line 6 is to apply the criterion
of Lemma 7.2, in order to check whether f ′ is a boundary vertex of an internal
component.

The construction of Type-2 edges is not so straightforward. For every failed vertex
f , and every two internal components C and C ′, such that C is an ancestor of f and
C ′ is an ancestor of C , we would like to know whether there is a hanging subtree of
f , from which stem a back-edge e with an endpoint in C and a back-edge e′ with
an endpoint in C ′. The straightforward way to determine this is the following. Let b
(resp., b′) be the boundary vertex of C (resp., C ′) that is an ancestor of f . Then, for
every hanging subtree of f with root c, we perform 2D-range-emptiness queries on
the rectangles [c, c +ND(c)− 1]× [rC , p(b)] and [c, c +ND(c)− 1]× [rC′ , p(b′)]. If both
queries are positive, then we know that C and C ′ are connected in G \F through the
hanging subtree with root c.

Obviously, this method is not efficient in general, because the number of hanging
subtrees of f can be very close to n. However, it is the basis for our more efficient
method. The idea is to perform a lot of those queries at once, for large batches of
hanging subtrees. More specifically, we perform the queries on consecutive hanging
subtrees of f (i.e., their roots are consecutive children of f), for which we know
that the answer is positive on C ′ (i.e., for every one of those subtrees, there certainly
exists a back-edge that connects it with C ′). In order for this idea to work, we have
to rearrange properly the lists of children of all vertices. (Otherwise, the hanging
subtrees of f that are connected with C ′ through a back-edge may not be consecutive
in the list of children of f .) In effect, we maintain several DFS trees (specifically: d⋆),
and several 2D-range-emptiness data structures, one for every different arrangement
of the children lists.

Let us elaborate on this idea. Let H be a hanging subtree of f that connects some
internal components, and let C ′ be the lowest one among them (i.e., the one that is
an ancestor of all the others). Then we have that the lower ends of all back-edges

492

that stem from H and end in ancestors of C ′ are failed vertices that are ancestors
of C ′. Thus, since there are at most d failed vertices in total, we have that at least
one among low1(rH), . . . , lowd(rH) is in C ′. In other words, rH is one of the children
of f whose lowi point is in C ′, for some i ∈ {1, . . . , d}. Now, assume that for every
i ∈ {1, . . . , d⋆}, we have a copy of the list of the children of f sorted in increasing
order w.r.t. the lowi point; let us call this list Li(f), and let it be stored in way that
allows for binary search w.r.t. the lowi point. Then, for every internal component
C that is an ancestor of f , we can find the segment Si(C) of Li(f) that consists of
the children of f whose lowi point lies in C , by searching for the leftmost and the
righmost child in Li(f) whose lowi point lies in [rC , p(b)], where b is the boundary
vertex of C that is an ancestor of f .

Now let i ∈ {1, . . . , d} be such that lowi(rH) ∈ C ′. Then we have that rH ∈ Si(C
′).

Furthermore, we have that every child of f that lies in Si(C
′) and is the root of a

hanging subtree H ′ of f has the property that H ′ is also connected with C ′ through
a back-edge. Thus, we would like to be able to perform 2D-range-emptiness queries
as above on the subset S of Si(C

′) that consists of roots of hanging subtrees, in order
to determine the connectivity (in G \ F) of C ′ with all internal components C that
are ancestors of f and descendants of C ′. We could do this efficiently if we had the
guarantee that S consists of large segments of consecutive children of f . We can
accommodate for that during the preprocessing phase: for every i ∈ {1, . . . , d⋆}, we
perform a DFS of T , starting from r, where the adjacency list of every vertex v is
given by Li(v).5 Let Ti be the resulting DFS tree, and let DFSi be the corresponding
DFS numbering. Then, with the DFS numbering of Ti, we initialize a data structure
2D_range_i, for answering 2D-range-emptiness queries for back-edges w.r.t. Ti in
subrectangles of [1, n]× [1, n].

Now let us see how everything is put together. Let H be a hanging subtree of f
that connects two internal components C1 and C2, and let b1 and b2 be the boundary
vertices of C1 and C2, respectively, that are ancestors of f . Let C ′ be the lowest
internal component that is connected through a back-edge with H. Then there is
an i ∈ {1, . . . , d} such that lowi(rH) ∈ C ′. Let S be the maximal segment of Si(C

′)

that contains rH and consists of roots of hanging subtrees, let L be the minimum
of S and let R be the maximum of S.6 Then the 2D-range-emptiness queries on

5I.e., it is necessary that the vertices in the adjacency list of v appear in the same order as in Li(v).
6Notice that, due to the construction of Ti, we have that DFSi(L) and DFSi(R) are also the minimum

493

[L,R+ND(R)− 1]i× [rC1 , p(b1)]i and [L,R+ND(R)− 1]i× [rC2 , p(b2)]i with 2D_range_i
are both positive, and so we will add the edges (rC1 , rC′) and (rC2 , rC′) in R. This
will maintain in R the information that C ′, C1 and C2, are connected with the same
hanging subtree of f .

The algorithm that constructs enough Type-2 edges to make R a connectivity
graph of the internal components of T \ F is given in Algorithm 55. The proof of
correctness and time complexity is given in Proposition 7.3.

Proposition 7.3. Algorithm 55 computes enough Type-2 edges to construct a connectivity
graph R for the internal components of T \F (supposing that R contains all Type-1 edges).
The running time of this algorithm is O(d4 logn).

Proof. By definition, it is sufficient to prove the following: for every failed vertex f ,
and every hanging subtree H of f , let C ′ be the lowest internal component that is
connected with H through a back-edge; then, for every internal component C ̸= C ′

that is connected with H through a back-edge, there is an edge (rC , rC′) added to R.
And conversely: that these are all the Type-2 edges that are added to R, and that
any other edge (rC , rC′) that is added to R with Algorithm 55 has the property that
C and C ′ are connected with the same hanging subtree through back-edges.

So let f be a failed vertex, let H be a hanging subtree of f , and let C ′ be the lowest
internal component that is connected with H through a back-edge. Let us assume that
f /∈ ∂(C ′). (Otherwise, there is no internal component C that is an ancestor of H and
a descendant of C ′, and therefore H does not induce any Type-2 edges.) Let C ̸= C ′

be an internal component that is connected with H through a back-edge. Since C ′

is the lowest internal component that is connected with H through a back-edge, by
the analysis above (in the main text) we have that there is an i ∈ {1, . . . , d} such that
lowi(rH) ∈ C ′. Thus, we may consider the maximal segment S of Li(f) that contains
rH and consists of roots of hanging subtrees whose lowi point is in C ′. Let L and R

be the minimum and the maximum, respectively, of S. By construction of Ti, we have
that S is sorted in increasing order w.r.t. the DFSi numbering. Thus, the interval
[L,R + ND(R) − 1]i consists of the descendants of the vertices in S in Ti. Since the
vertices in Ti have the same ancestry relation as in T , we have that the set DFSi(S)
consists of children of f in Ti that are roots of hanging subtrees with lowi in C ′.

Now let f ′′ be the boundary vertex of C that is an ancestor of f . Then we also

and the maximum, respectively, of DFSi(S).

494

Algorithm 55: Compute enough Type-2 edges to construct a connectivity
graph for the internal components of T \ F

1 foreach failed vertex f do
2 // process all pairs of internal components that are ancestors of f

3 set f ′ ← parentF (f)
4 while f ′ ̸= ⊥ do
5 let C ′ be the internal component with f ′ ∈ ∂(C ′)

6 // skip the following if C ′ does not exist, and go immediately to

Line 26

7 foreach i ∈ {1, . . . , d} do
8 let Si be the collection of all maximal segments of Li(f) that consist

of roots of hanging subtrees with their lowi point in C ′

9 end
10 // process all internal components C that are ancestors of f and

descendants of C ′

11 set f ′′ ← f

12 while f ′′ ̸= f ′ do
13 let C be the internal component with f ′′ ∈ ∂(C)

14 // skip the following if C does not exist, and go immediately

to Line 24

15 // check if C is connected with C ′ through at least one hanging

subtree of f

16 foreach i ∈ {1, . . . , d} do
17 foreach S ∈ Si do
18 let L← min(S) and R← max(S)
19 if 2D_range_i([L,R +ND(R)− 1]i × [rC , p(f

′′)]i) = true then
20 add the Type-2 edge (rC , rC′) to R

21 end

22 end

23 end
24 f ′′ ← parentF (f ′′)

25 end
26 f ′ ← parentF (f ′)

27 end

28 end 495

have that f ′′ is the boundary vertex of C that is an ancestor of rH (since f = p(rH)).
Thus, Lemma 7.4 implies that there is a back-edge from H to [rC , p(f

′′)]. Therefore,
there is also a back-edge (w.r.t. Ti) from DFSi(H) to [DFSi(rC),DFSi(p(f ′′))]. This
implies that the 2D-range query in Line 19 is true, and therefore the Type-2 edge
(rC , rC′) will be correctly added to R. It is not difficult to see that the converse is also
true: whenever the 2D-range query in Line 19 is true, we can be certain that there is
a hanging subtree of f that is connected through a back-edge with both C ′ and C.

Let us analyze the running time of Algorithm 55. First, we will provide a method
to implement Line 8, i.e., how to find, for every internal component C ′ that is an
ancestor of f , and every i ∈ {1, . . . , d}, the collection Si of the maximal segments
of Li(f) that consist of roots of hanging subtrees whose lowi points lie in C ′. There
are many ways to do this, but for the sake of simplicity we will provide a relatively
straightforward method that incurs total cost O(d3 + d2 logn). The idea is to collect
the children of f , at the beginning of the for loop in Line 1, that are ancestors of
failed vertices. To do this, we collect the failed vertices f1, . . . , fk that are children of
f in the F-forest, and then we perform a level-ancestor query (in T) for every fi to
find the child ci of f that is an ancestor of fi. Then we keep d copies, C1, . . . , Cd, of the
collection {c1, . . . , ck}. (We note that some ci, cj , for i, j ∈ {1, . . . , k} with i ̸= j, may
coincide. We ignore those repetitions.) For every i ∈ {1, . . . , d}, we let Ci be sorted in
increasing order w.r.t. the lowi points. Now, at the beginning of the for loop in Line 7,
we can use binary search to find in O(logn) time the (endpoints of the) segment S
of Li(f) that consists of all children of f with their lowi point in C ′. Let L and R

be the minimum and the maximum, respectively, of S. Then we traverse the list Ci,
and, for every c ∈ Ci that we meet, we check whether c is in S. (This is done by
simply checking whether L ≤ c ≤ R.) If that is the case, then we collect the (possibly
empty) subsegment [L, c − 1] (i.e., the pair of its endpoints), and we remove [L, c]

from S (i.e., we set L ← c + 1). We repeat this process while traversing Ci until we
reach its end, and finally we collect the (possibly empty) remainder of S (i.e., the pair
of its endpoints). The collection of the non-empty subsegments we have gathered is
precisely Si.

The cost of this method is as follows. For every failed vertex f , we need time
analogous to its number of children in the F-forest to create the collection {c1, . . . , ck}.
Then we make d copies of this collection, and we perform a sorting in every one of
them. This takes time O(d · k log k), where k is the number of children of f in the

496

F-forest. Since this is performed for every failed vertex, it incurs total cost O(d2 log d).
Now, for every failed vertex f , and every internal component C ′ that is an ancestor
of f , we need O(logn) time to find the segment S, as described above. This is how
we get an additional O(d2 logn) cost in total. Now, for this f and C ′, and for every
i ∈ {1, . . . , d}, we have to traverse the list Ci as above (while performing operations
that take constant time). Since the size of Ci equals the number of children of f in
the F-forest, this incurs cost O(d3) in total.

By the analysis above, we have that the total cost of Line 8 is O(d3 + d2 logn).7

Thus, it remains to upper bound the times that the 2D-range queries in Line 19 are
performed. To do this, we introduce the following notation. Let f be a failed vertex,
and let C denote the collection of the internal components that are ancestors of f .
Then, for every C ′ ∈ C, and every i ∈ {1, . . . , d}, we let Si(C ′) denote the collection
of the maximal segments of Li(f) that consist of roots of hanging subtrees of f

whose lowi point lies in C ′. Then we can see that the number of 2D-range queries in
Line 19 during the processing of f (during the outer for loop in Line 1) is precisely∑

C′∈C
∑

C

∑
i∈{1,...,d} |Si(C ′)| (∗), where the second sum is indexed over the internal

components C that are ancestors of f and descendants of C ′.
Now fix an i ∈ {1, . . . , d}. For every C ′ ∈ C, let Si(C

′) denote the the maximal
segment of Li(f) that consists of children of f whose lowi point lies in C ′. Notice
that every segment in Si(C ′) is contained entirely within Si(C

′). Since the internal
components in C are pairwise disjoint, we have that the segments in {Si(C

′) | C ′ ∈ C}
are pairwise disjoint, and therefore their total number is bounded by |C| ≤ d. Since
the number of failed vertices is d, the number of childen of f that are ancestors of
failed vertices is at most d. It is precisely the existence of those children that may
force the segments in {Si(C

′) | C ′ ∈ C} to be partitioned further in order to get⋃
{Si(C ′) | C ′ ∈ C}. But every such child breaks the segment Si(C

′), for a C ′ ∈ C, into
at most two subsegments. (Recall the analysis above that concerns the implementation
of Line 8.) Thus, the segments in {Si(C

′) | C ′ ∈ C} must be partitioned at most d
times in order to get

⋃
{Si(C ′) | C ′ ∈ C}. Thus, we have

∑
C′∈C |Si(C ′)| ≤ d+d = O(d).

This implies that
∑

i∈{1,...,d}
∑

C′∈C |Si(C ′)| = O(d2), and therefore the expression (∗)
can be bounded by O(d3). Since this is true for every failed vertex f , we can bound

7In RAM machines with O(logn) word size, we can use van Emde Boas trees in order to perform
the binary searches above as predecessor/successor queries, and so we can reduce the “logn” factor to
“log logn”.

497

the number of the 2D-range queries in Line 19 by O(d4).

7.3.5 Answering the queries

Assume that we have constructed a connectivity graph R for the internal components
of T \ F , and that we have computed its connected components. Thus, given two
internal components C and C ′, we can determine in constant time whether C and
C ′ are connected in G \ F , by simply checking whether rC and rC′ are in the same
connected component of R (see Lemma 7.5).

Now let x, y be two vertices in V (G) \ F . In order to determine whether x, y are
connected in G\F , we try to substitute x, y with roots of internal components of T \F ,
and then we reduce the query to those roots. Specifically, if x (resp., y) belongs to an
internal component C of T \F , then the connectivity between x, y is the same as that
between rC , y (resp., x, rC). Otherwise, if x (resp., y) belongs to a hanging subtree H

of T \F , then we try to find an internal component that is connected with H through
a back-edge. If such an internal component C exists, then we can substitute x (resp.,
y) with rC . Otherwise, x, y are connected in G \ F if and only if they belong to the
same hanging subtree of T \ F . This idea is shown in Algorithm 56.

Proposition 7.4. Given two vertices x, y in V (G) \ F , Algorithm 56 correctly determines
whether x, y are connected in G \ F . The running time of Algorithm 56 is O(d).

Proof. To prove correctness, we only have to deal with the case that x lies in a hanging
subtree H of T \ F (Line 6). In this case, we simply have to check whether there is
an edge in G \F that connects H with another connected component of T \F . Thus,
according to Lemma 7.3, we have to check whether H is connected with an internal
component of T \ F through a back-edge. If such an internal component exists, let
C be the lowest among them. Since p(rH) is a failed vertex and the number of failed
vertices that are ancestors of H is bounded by d, we have that there is at least one
i ∈ {1, . . . , d} such that lowi(rH) lies in C. Thus, the connectivity query for x, y in G\F
is equivalent to that for lowi(rH), y. Since lowi(rH) belongs to the internal component
C , eventually the algorithm will terminate, and it will produce the correct result.

Otherwise, if there is no internal component that is connected with H through a
back-edge, then H is a connected component of G\F , and so y is connected with x in
G \F if and only if y also lies within H. Now, if the for loop in Line 8 has exhausted

498

Algorithm 56: query(x, y)

1 if x lies in an internal component C and y lies in an internal component C ′ then
2 if rC is connected with rC′ in R then return true
3 return false

4 end
5 // at least one of x, y lies in a hanging subtree

6 if x lies in a hanging subtree H then
7 // check whether H is connected with an internal component through a

back-edge

8 for i ∈ {1, . . . , d} do
9 if lowi(rH) ̸= ⊥ and lowi(rH) /∈ F then
10 return query(lowi(rH), y)

11 end

12 end
13 // there is no internal component that is connected with H in G \ F
14 if y lies in H then return true
15 return false

16 end
17 return query(y, x)

the search and either lowd(rH) does not exist, or lowd(rH) is a failed vertex, then we
can be certain that there is no back-edge that connects H with the rest of the graph
G \ F .

Now we will establish the O(d) time-bound. First, given a vertex x /∈ F , we can
determine the connected component of T \ F that contains x by finding the nearest
failed vertex f that is an ancestor of x. This is done in O(d) time by finding the
maximum failed vertex that is an ancestor of x. If no such vertex exists, then x

belongs to the internal component with root r. Otherwise, the root of the connected
component C of T \ F that contains x is given by the child of f that is an ancestor
of x. This child is determined in constant time with a level-ancestor query for the
ancestor of x whose depth equals depth(f) + 1. Now, given the root rC of a connected
component C of T \ F , we can determine in O(d) time whether C is an internal
component or a hanging subtree of T \F by checking whether there is a failed vertex

499

that is a descendant of rC . Finally, we can perform the search in Line 8 in O(d) time,
if we have the list of failed vertices sorted in increasing order. (We can have this done
with an extra cost of O(d log d) during the update phase.) Then, we can easily check
in O(d) time whether there is an i ∈ {1, . . . , d} such that lowi(rC) ∈ F , because the
list low1(rC), . . . , lowd(rC) is also sorted in increasing order.

500

CHAPTER 8

ON MAXIMAL k-EDGE-CONNECTED
SUBGRAPHS OF UNDIRECTED GRAPHS

8.1 Introduction

8.2 Preliminaries

8.3 The decomposition tree of the maximal k‐edge‐connected subgraphs

8.4 Maintaining the decomposition tree after insertions

8.5 Data structures for trees and cactuses

8.6 Improved data structures for trees and cactuses

8.7 Sparse certificates for the maximal k‐edge‐connected subgraphs

8.8 Computing the maximal k‐edge‐connected subgraphs

8.9 A fully dynamic algorithm for maximal k‐edge‐connectivity

8.10 Conclusions

8.1 Introduction

A dynamic graph algorithm aims to maintain the solution of a given problem after
each update faster than recomputing it from scratch. An algorithm is fully dynamic if
it supports both insertions and deletions of edges, while it is incremental (resp. decre-
mental) if it only supports insertions (resp. deletions) of edges. In this chapter, we are

501

particularly interested in providing algorithms for maintaining the maximal k-edge-
connected subgraphs in dynamic graphs.

Determining or testing various notions of edge connectivity of undirected graphs,
as well as computing edge-connected components or subgraphs, is a fundamental
graph problem, and indeed k-edge connectivity has received much attention in the
literature due to its importance in applications. As a matter of fact, finding the
maximal k-edge-connected subgraphs of a graph is of significant interest in sev-
eral areas, such as in the field of databases, social networks, graph visualization
etc. [5, 11, 15, 14, 48, 62, 68, 70] (some of those papers refer to the maximal k-edge-
connected subgraphs as k-edge-connected components).

The problem of computing maximal k-edge-connected subgraphs appears to be
harder than computing k-edge-connected components. In more detail, it is known
how to compute the k-edge-connected components in linear time for k ≤ 4 [63,
67, 36, 50]. On the other hand, linear-time bounds for computing the maximal k-
edge-connected subgraphs are known only in the trivial case k ≤ 2, simply because
in these cases the k-edge-connected components coincide with the maximal k-edge-
connected subgraphs. As mentioned in [16], the maximal 3-edge-connected subgraphs
can be computed with a simple-minded algorithm in O(mn) time in the worst case.
Henzinger et al. [42] provided a deterministic algorithm for computing the maximal
k-edge-connected subgraphs, for constant k, that runs in O(n2 logn) time. Chechik et
al. [16] presented an algorithm with running time O(kO(k)(m+n logn)

√
n) (O(m

√
n)

for k = 3), which improves the bound of [42] for sparse graphs. Forster et al. [29]
gave a Las Vegas randomized algorithm for computing the maximal k-edge-connected
subgraphs in O(km log2 n+k3n

√
n logn) expected running time. Recently, Nalam and

Saranurak [53] provided a randomized algorithm for computing the maximal k-edge-
connected subgraphs in weighted undirected graphs in Õ(m · min{m3/4, n4/5}) time.
Also, very recently, Saranurak and Yuan [61] gave a deterministic O(m+n1+o(1))-time
algorithm for computing the maximal k-edge-connected subgraphs of an undirected
graph, for any k = logo(1) n. To achieve this result, Saranurak and Yuan [61] provide a
black-box reduction to any decremental algorithm for answering k-edge-connectivity
queries, and then they apply the fully dynamic algorithm of Jin and Sun [46]. In the
special case of planar graphs, Holm et al. [44] showed how to compute the maximal
3-edge-connected subgraphs in O(n) time.

502

8.1.1 Overview of our results

In this chapter we present several new results on maximal k-edge-connected sub-
graphs of undirected graphs. In particular, we provide the following results.

(1) A general framework for maintaining the maximal k-edge-connected subgraphs
upon insertions of edges or vertices, by successively partitioning the graph into
its k-edge-connected components. This defines a decomposition tree, which can
be maintained by using algorithms for the incremental maintenance of the k-
edge-connected components as black boxes at every level of the tree. As an
application of our new framework, we provide two algorithms for the incre-
mental maintenance of the maximal 3-edge-connected subgraphs, which con-
stitute the main results of this article. These algorithms allow for vertex and
edge insertions, interspersed with queries asking whether two vertices belong to
the same maximal 3-edge-connected subgraph, and provide a trade-off between
time- and space-complexity. The first algorithm has O(mα(m,n) + n2 log2 n) to-
tal running time and uses asymptotically optimal O(n) space, where m is the
number of edge insertions and queries, and n is the total number of vertices
inserted starting from an empty graph. The second algorithm improves the total
running time to O(mα(m,n)+n2α(n, n)) (i.e., almost optimal for dense graphs)
at the expense of using O(n2) space. We note that those are the first incremental
algorithms for this problem, and thus provide significant improvements over
recomputing the maximal 3-edge-connected subgraphs after every insertion.

(2) Building up on results from Benczúr and Karger [8], we provide efficient con-
structions of (almost) sparse spanning subgraphs that have the same maximal
k-edge-connected subgraphs as the original graph. We refer to such subgraphs
as k-certificates. These are useful in speeding up computations involving the
maximal k-edge-connected subgraphs in dense undirected graphs. In particu-
lar, we use those certificates to speed up the computation of the maximal k-
edge-connected subgraphs. As another application of our k-certificates, we use
them to provide a fully dynamic algorithm for maintaining information about
the maximal k-edge-connected subgraphs for fixed k. Using the sparsification
technique of Eppstein et al. [27], we show the existence of a fully dynamic al-
gorithm with update times that are independent of the number of edges and
with constant time for maximal k-edge-connected subgraph queries.

503

(3) Finally, we give a simple reduction for the computation of the maximal k-edge-
connected subgraphs to fully dynamic mincut. By using Thorup’s fully dynamic
mincut algorithm [66], we obtain a deterministic algorithm that computes the
maximal k-edge-connected subgraphs in O(m+kO(1)n

√
n logO(1) n) time, for k =

logO(1) n.

We believe that our main technical contribution is given by (1). To achieve this
result, we provide a structural characterization of the maximal 3-edge-connected sub-
graphs of an undirected graph by introducing a decomposition tree T into maximal
3-edge-connected subgraphs, and show how to maintain it efficiently under edge and
vertex insertions. T is a rooted tree whose root corresponds to the whole graph G and
is defined recursively by computing the (subgraphs induced by the) k-edge-connected
components, for k ∈ {1, 2, 3}, of the graphs of the previous level. We proceed recur-
sively in this decomposition until we reach a graph that is 3-edge-connected, which
is a maximal 3-edge-connected subgraph of G (and a leaf of T). Therefore, the nodes
of T correspond to subgraphs of G, and the parent relation is given by (vertex) set
inclusion. (See Section 8.3.3, and also Figure 8.2.)

Although maintaining the entire tree T may seem more challenging than main-
taining only the maximal 3-edge-connected subgraphs, we show that it is in fact easier
to maintain the decomposition tree. This is because T contains enough information
to facilitate its efficient update after new insertions to G, as its nodes corresponds to
all successive partitions of G into k-edge-connected components, for k ∈ {1, 2, 3}. In
fact, if a new edge e is inserted to G, then we only have to locate the deepest subgraph
N on T that contains the endpoints of e, and all changes to T due to this insertion
apply to the subtree of N . However, we do not explicitly maintain the correspondence
between nodes of T and subgraphs of G, as this would require as much as Ω(mn)

space (where m is the number of edges and n is the number of vertices of G), and
a much worse time to maintain T during a sequence of insertions. Instead, we as-
sociate with the nodes of T some data structures that represent the interconnections
between the 2- and 3-edge-connected components of the subgraphs that (abstractly)
correspond to the nodes of T . To be more precise, we associate to every node of T
that corresponds to a connected component C of its parent (a representation of) the
tree of the 2-edge-connected components of C; and to every node of T that corre-
sponds to a 2-edge-connected component of its parent, we associate (a representation
of) the cactus of its 3-edge-connected components. All this information reveals to be

504

useful for maintaining our tree decomposition with the help of previous incremental
approaches [35, 59, 58, 69]. We describe in detail, in Sections 8.5 and 8.6, how we
can augment the previous incremental approaches with enough information to suit
our purposes.

Notice that in the bounds provided in (1), there is a trade-off between space- and
time-complexity. The second algorithm is more time-efficient (at least asymptotically),
due to the following two reasons. First, we find a way to use the more sophisticated
data structures of La Poutré [58], in order to efficiently maintain the 2- and 3-edge-
connected components of the graphs in the various levels of T . Secondly, we use
an alternative and more intriguing method for answering nearest common ancestor
and level ancestor queries, that are needed in the algorithm for maintaining T . This
method relies on the structure of those queries (i.e., they are not completely arbitrary
but they depend on modifications already made on T). However, in order to facilitate
the efficient answering of those queries, we pay an extra O(n2) in space. In any case,
the n2 factor in the time-bound of both algorithms is an inherent bottleneck of the
basic procedure that we use, for any sequence of insertions, and a lower bound on
the worst-case time for a single insertion (see Figure 8.1 and Algorithm 57).

Both our algorithms can efficiently answer queries concerning the maximal 3-edge-
connected subgraphs in asymptotically optimal time, plus the time to perform one or
two calls to a find operation in an underlying disjoint set union (DSU) data structure
[64] that maintains the vertex sets of the maximal 3-edge-connected subgraphs. (For
the details on this DSU data structure, see Section 8.4.) For instance, given two query
vertices x and y, we can report whether x and y belong to the same maximal 3-
edge-connected subgraph using two calls to a find operation, or given a query vertex
x we can report the maximal 3-edge-connected subgraph that contains x in time
proportional to its size plus a call to a find operation. (See Section 8.10.)

We note that these algorithms can be seen as applications of a more general
framework for maintaining the maximal k-edge-connected subgraphs, by relying
on algorithms that maintain the k-edge-connected components. We think that it is
possible that one can develop a similar framework for maintaining the maximal k-
vertex-connected subgraphs, by relying on efficient algorithms for maintaining the
k-vertex-connected components. (In particular, for the case k = 3, one may rely on
the algorithms of [7, 57] for maintaining the 3-vertex-connected components.)

For (2), we show that it is sufficient to compute (a superset of) all the edges

505

whose endpoints lie in different maximal k-edge-connected subgraphs. Benczúr and
Karger [8] provide efficient algorithms that achieve this. From those algorithms we
get two different constructions for spanning subgraphs that have the same maximal k-
edge-connected subgraphs as the original graph, and there is a trade-off between the
time complexity and the size of the output subgraph. Following the terminology of [1],
we call such a subgraph a k-certificate. Then, we have a linear-time algorithm for
computing a k-certificate with O(kn logn) edges, and an O(m log2 n)-time algorithm
for computing a k-certificate with O(kn) edges (where m and n denote the number of
edges and vertices of the graph, respectively). A key component in those algorithms is
the certificates for k-edge connectivity of Nagamochi and Ibaraki [51]. For the details,
see Section 8.7. We believe that it is an interesting question whether a k-certificate
of O(kn) size can be computed in linear time. This would be trivial if we had a
linear-time algorithm for computing the maximal k-edge-connected subgraphs of a
graph, but it is still an open problem whether this can be done for k ≥ 3. Thus,
we have to perform the construction of the certificates without explicitly computing
the maximal k-edge-connected subgraphs, and this seems to be a challenging task.
Then, we give two applications of our k-certificates. First, we use them to speed up
previous algorithms for computing the maximal k-edge-connected subgraphs in dense
undirected graphs. Furthermore, we apply our k-certificates within the sparsification
technique of Eppstein et al. [27] to give a fully dynamic algorithm for maintaining
information about the maximal k-edge-connected subgraphs for fixed k. This way, we
achieve update times that are independent of the number of edges and constant time
for maximal k-edge-connected subgraph queries. For the details, see Section 8.9.

Finally, for (3), we repeatedly find and remove all k′-edge cuts, for k′ < k. For this
purpose, we can rely on the fully dynamic min-cut algorithm of Thorup (Theorem 26

in [66]). Thus, we use this algorithm in order to successively find and remove all k′-
edge cuts, for k′ < k, until we are left with the maximal k-edge-connected subgraphs.
This is how we get a deterministic O(m + kO(1)n

√
npolylog(n))-time algorithm for

computing the maximal k-edge-connected subgraphs of a graph with m edges and n

vertices, for k = logO(1) n. This algorithm is described in Section 8.8.

506

8.1.2 Organization

The rest of the chapter is organized as follows. First, we provide some preliminaries
in Section 8.2. We describe our decomposition tree of the maximal 3-edge-connected
subgraphs in Section 8.3.3. This can be seen as an application of a general frame-
work for maintaining the maximal k-edge-connected subgraphs by using algorithms
for maintaining the k-edge-connected components, which is described in Sections
8.3.1 and 8.3.2. The details on maintaining the decomposition tree of the maximal
3-edge-connected subgraphs under insertions of new edges and vertices is given in
Section 8.4. In Sections 8.5 and 8.6 we present efficient implementations for the
data structures that are associated with the nodes of the decomposition tree, in or-
der to efficiently update it. In Section 8.7 we present constructions of sparse certifi-
cates for maximal k-edge-connected subgraphs. From this we derive a deterministic
O(m + kO(k)n

√
n logn)-time algorithm for computing the maximal k-edge-connected

subgraphs. In Section 8.8 we provide an O(m + kO(1)n
√
npolylog(n)) deterministic

algorithm for computing the maximal k-edge-connected subgraphs, using Thorup’s
fully dynamic mincut algorithm. Section 8.9 presents our fully dynamic algorithm for
maximal k-edge-connected subgraphs. We conclude in Section 8.10 with suggestions
for further applications of our decomposition tree.

8.2 Preliminaries

In the sequel, we assume that the reader is familiar with standard graph terminolo-
gies, as presented e.g. in [18, 20, 52]. For the sake of completeness, we provide some
definitions and state some results that will be used throughout concerning the struc-
ture of the 2- and 3-edge-connected components in undirected graphs. Consider the
quotient graph Qk of G that is formed by shrinking every k-edge-connected com-
ponent into a single vertex, maintaining all inter-connection edges and discarding
self-loops. Then the quotient map ν : V (G) → V (Qk) induces a natural correspon-
dence between the edges of Qk and some edges of G: that is, for every edge (u, v) of
Qk, there is an edge (x, y) ∈ E(G) such that ν(x) = u and ν(y) = v. Now, for k = 2,
we have that Q2 is a tree T . The nodes of T correspond to the 2-edge-connected
components of G, and the edges of T correspond to the bridges of G. Now let C be
a 2-edge-connected component of G. Then we have that G[C] is 2-edge-connected,

507

and every k-edge-connected component of G that lies in C , for k ≥ 2, is also a k-
edge-connected component of G[C]. For k = 3, the quotient graph Q3 of G[C] is a
cactus S (that is, a connected graph in which every edge belongs to a unique cycle)
[21, 35, 59]. The nodes of S correspond to the 3-edge-connected components of G[C]

and the 2-edge cuts of Q3 correspond to the 2-edge cuts of G[C]. (We note that these
properties generalize to the cactus of the minimum cuts of an undirected graph [22].)

Now let us consider how the insertion of a new edge (x, y) to G affects its k-edge-
connected components, for k ≤ 3. (In general, observe that the edge-connectivity for
any pair of vertices increases at most by one.) We distinguish four different cases,
depending on whether λ(x, y) ∈ {0, 1, 2} or λ(x, y) ≥ 3, prior to the insertion of (x, y).

(1) If λ(x, y) = 0, then x and y belong to two different connected components C1

and C2, respectively. Thus the only change that occurs is that λ(u, v) = 1, for
any two vertices u ∈ C1 and v ∈ C2.

(2) If λ(x, y) = 1, then x and y belong to the same connected component C , and lie
in two different 2-edge-connected components X and Y , respectively. Let T be
the tree of the 2-edge-connected components of G[C], and let P = X1, . . . , Xk

be the simple path on T with endpoints X and Y (i.e., we have X1 = X and
Xk = Y). Then, after inserting (x, y), we have λ(u, v) ≥ 2, for any pair of vertices
u, v ∈ X1 ∪ · · · ∪Xk, and λ(u, v) stays the same for any other pair of vertices. In
particular, this implies that X1∪ · · ·∪Xk is a new 2-edge-connected component.
Now, for every edge (Xi, Xi+1), i ∈ {1, . . . , k− 1}, of T , let (xi, yi) be the edge of
G that corresponds to (Xi, Xi+1), and let (x, y) = (y0, xk) (this is for notational
convenience). Then, for every i ∈ {1, . . . , k}, we have yi−1, xi ∈ Xi, and the
remaining changes in the k-edge-connected components of G, after inserting
(x, y), are given by supposing that we introduce a virtual edge (yi−1, xi) to G;
thus they are described sufficiently in the following two cases.

(3) If λ(x, y) = 2, then x and y belong to the same 2-edge-connected component
C , and lie in two different 3-edge-connected components of G[C]. Let S be the
cactus of the 3-edge-connected components of G[C]. Then, after inserting (x, y),
we have that at least X , and Y are now united into a larger 3-edge-connected
component (together with some other nodes of S). To describe precisely the
nodes of S that get united into a new 3-edge-connected component, we introduce
the concept of the cycle-path on S connecting X and Y . Let Z1, . . . , Zk be a simple

508

path on S with Z1 = X and Zk = Y . Then the cycle-path Q connecting X and
Y on S is the set of nodes consisting of X , Y , and all Zi, i ∈ {2, . . . , k − 1},
such that the edges (Zi−1, Zi), (Zi, Zi+1) belong to different cycles of S. (Notice
that this definition is independent of the choice of the simple path Z1, . . . , Zk.)
Then, after inserting (x, y), all the nodes of Q are merged into a new maximal 3-
edge-connected component. The edge-connectivity between any pair of vertices
u and v, not both of which lie in nodes of Q, stays the same. Observe that the
new cactus of the 3-edge-connected components of G[C] is given by S where
we have “squeezed” every cycle c that contains two consecutive nodes Z and W

of Q, by merging Z and W into a new node U . (If Z and W are not connected
with an edge on S, then the squeezing of c at Z and W produces two new cycles
that meet at U .)

(4) If λ(x, y) ≥ 3, then all the k-edge-connected components of G, for k ≤ 3, stay
the same [23].

8.3 The decomposition tree of the maximal k‐edge‐connected sub‐

graphs

In this section we provide a general framework for maintaining the maximal k-
edge-connected subgraphs of an undirected graph upon insertions of edges or ver-
tices. This framework relies on a structural characterization of the maximal k-edge-
connected subgraphs that is derived from the repeated decomposition of the graph
into its k-edge-connected components. Thus we get a decomposition tree, which can
be maintained by using any algorithm for the incremental maintenance of the k-edge-
connected components (that satisfies some properties) as a black box. We provide a
concrete application of this framework: two algorithms for maintaining the maximal
3-edge-connected subgraphs. These algorithms provide a trade-off between time- and
space-bounds, because they rely on different algorithms for maintaining the 3-edge-
connected components, and they utilize the structure of the decomposition tree in
different ways.

509

8.3.1 A general framework for maintaining the k‐edge‐connected

subgraphs

In what follows we let “k-ecc” mean “k-edge-connected component”. We will not
distinguish between the vertex set of a k-ecc and the subgraph induced by it. Let G be
an undirected multigraph withm edges and n vertices. We consider the decomposition
tree T of the maximal k-edge-connected subgraphs of G, which is a rooted tree whose
nodes correspond to subgraphs of G. It is defined recursively as follows. (1) The root
of T corresponds to G. (2) Every node of T that corresponds to a k-edge-connected
subgraph of G is a leaf. (3) The children of every node N of T that is not a leaf
correspond to the k-eccs of the subgraph of G corresponding to N . This completes
the recursive definition of T . Observe that the size of T is O(n), because the leaves of
T correspond precisely to the maximal k-edge-connected subgraphs of G (which are
at most n), and every node of T is either a leaf or it has at least two children.

We observe that T has the following useful property.

Property 8.1. Let G be an undirected graph, and consider the quotient graph Q that is
formed by shrinking a maximal k-edge-connected subgraph of G into a single vertex. Then
Q has the same decomposition tree into maximal k-edge-connected subgraphs as G.

We use this decomposition tree because we want to maintain the maximal k-edge-
connected subgraphs of G while new edges or vertices are inserted to it. The definition
using successive partitions into k-edge-connected components is convenient, because
every maximal k-edge-connected subgraph lies entirely within a k-edge-connected
component, and we can utilize algorithms for the incremental maintenance of the
k-edge-connected components (that satisfy some properties) in order to maintain the
decomposition tree under new insertions.

Now let us describe the changes that take place in T after a new edge is inserted
to G. Suppose a new edge e = (x, y) is inserted to G. Let X and Y be the maximal
k-edge-connected subgraphs of G that contain x and y, respectively. If X = Y , there
is nothing to do. Otherwise, we find the nearest common ancestor N of X and Y on
T , and perform the insertion of e to N . Observe that N is the deepest node of T that
contains both x and y. It is sufficient to perform the insertion of e to N , because N

is separated from its siblings by a k′-edge cut, for some k′ < k, and this does not
change even if we insert e to N . Thus, all changes in T after the insertion of e to G

take place in the subtree of N . If x and y do not become k-edge-connected in N , then

510

no change takes place in T . Otherwise, some k-eccs of N get merged into a larger
k-ecc. If all vertices of N become k-edge-connected, then N becomes a leaf node.
Otherwise, we have to find its children that correspond to the k-eccs of N that get
merged, and substitute them with a single child that corresponds to the bigger k-ecc
that is formed. Then we have to push down to the new child all the edges that have
their endpoints in different k-eccs that got merged. In effect, we re-insert those edges
to the child of N that represents the new k-ecc that is formed. This completes the
recursive description of the changes that take place in T after inserting a new edge
to G.

In order to efficiently maintain the decomposition tree, we will have to attach more
information to it. We discuss this in the following section, where we use as a black box
any algorithm that maintains the k-edge-connected components (and satisfies some
conditions). In any case, it is interesting to note - and it is essential in proving our
time bounds - that the number of edge insertions that can affect the decomposition
tree, in any sequence of edges insertions, is O(kn). This is formally stated and proved
in Theorem 8.1.

Lemma 8.1. [1] Let G be a graph with n vertices and m edges, such that every
maximal k-edge-connected subgraph of G is trivial. Then m ≤ (k − 1)(n− 1).

Theorem 8.1. Let k ≥ 3, and let G0 = (V,E0) be an empty graph with n vertices
and no edges (E0 = ∅). Let e1, . . . , em be a sequence of edges joining vertices of V , and
define Ei = {e1, . . . , ei} and Gi = (V,Ei), for i = 1, . . . ,m. Then, |{i ∈ {1, . . . ,m} |
ei joins two different maximal k-edge-connected subgraphs of Gi−1}| ≤ k(n− 1).

Proof. We proceed by induction on the number n of vertices. For n = 1, the theorem
trivially holds, as there are no possible edge insertions. Assume that the theorem
holds for every graph with at most n vertices, for some n ≥ 1. Given an empty graph
with n+ 1 vertices, we will show that at most kn edges can affect the decomposition
tree during any sequence e1, . . . , em of edge insertions.

Let ℓ, 0 ≤ ℓ ≤ m − 1, be the lowest index such that Gℓ+1 = (V,Eℓ+1) contains a
non-trivial maximal k-edge-connected subgraph (i.e., Gi = (V,Ei), 0 ≤ i ≤ ℓ contain
only trivial maximal k-edge-connected subgraphs). If no such index ℓ exists, then
the final graph Gm has only trivial maximal k-edge-connected subgraphs and the
theorem holds by Lemma 8.1. Otherwise, let S be the non-trivial maximal k-edge-
connected subgraph that appears in Gℓ+1 after the edge eℓ+1 has been inserted to Gℓ,

511

and let S contain d vertices (d ≥ 2) and t edges. Note that eℓ+1 must necessarily be
in S. Let S ′ = S \ eℓ+1: then S ′ has d ≥ 2 vertices and t− 1 edges, and contains only
trivial maximal k-edge-connected subgraphs. By Lemma 8.1 applied to S ′, we have
t− 1 ≤ (k − 1)(d− 1), and therefore t ≤ (k − 1)(d− 1) + 1.

Now let us consider the quotient graph of Gℓ+1/S that is formed by contracting S

into one single vertex. This quotient graph has ℓ+1− t edges and (n+1)−d+1 = n−
d+2 ≤ n vertices (since d ≥ 2). Since we are contracting a maximal k-edge.connected
subgraph, the quotient graph has exactly the same decomposition tree as Gℓ+1. By
induction, there are at most k((n− d + 2)− 1)− (ℓ + 1− t) = kn− kd + k − ℓ− 1 + t

new edges that can be added to the quotient graph and affect its decomposition tree.
This number is at most kn − ℓ − d + 1 (since t is at most kd − k − d + 2). Since we
have already added ℓ + 1 edges to the initial graph, we have that, in total, at most
kn − d + 2 edges can affect the decomposition tree. The fact that d ≥ 2 yields the
desired result.

8.3.2 Maintaining the decomposition tree

In order to be able to update T after a new insertion to the graph, we need a k-edge-
connected components algorithm that satisfies the following properties. The algorithm
works on an incremental graph G and maintains a unique label for every k-ecc of G.
Furthermore, it supports the following two operations.

1. When a new edge is inserted to G, return the labels of the k-eccs of G that get
merged due to this insertion, the label of the new k-ecc that is formed, and the
set of the interconnection edges between those k-eccs that get merged.

2. Given a collection of vertex-disjoint graphs G1, . . . , Gt, join the underlying data
structures that the algorithm uses for those graphs into a new data structure
for the graph G = G1 ∪ · · · ∪Gt.

We call an algorithm (plus the underlying data structure) that supports these oper-
ations an “incremental k-edge-connected components algorithm” (or “a data structure
for maintaining the k-edge-connected components”).

Now suppose that we are equipped with an incremental k-edge-connected com-
ponents algorithm. In order to efficiently maintain the decomposition tree T , we

512

associate with every non-leaf node N a data structure for maintaining the k-edge-
connected components. Furthermore, for every k-ecc of N , we have a two-way cor-
respondence between its label maintained by the data structure and the child of N
that corresponds to it. Now suppose that an edge e is inserted to N . Then we use
operation (1) in order to find the labels C1, . . . , Ct of the k-eccs of N that get merged
due to the insertion of e. If there is only one such k-ecc returned, there is nothing to
do. If all the k-eccs of N are returned, then we make N a leaf node. Otherwise, we
get from those labels the corresponding children of N , we merge those children into
a new child, and we establish a two-way correspondence between this child and the
new k-ecc of N that is formed. Furthermore, we retrieve the associated data struc-
tures of the children of N that get merged, we join them into a new data structure
using operation (2), and we associate the new data structure with the new child of
N . Finally, we insert the interconnection edges between C1, . . . , Ct that we got from
operation (1) into the new child of N . This completes the recursive description of
the update of T using an incremental k-edge-connected components algorithm as a
black box.

We will describe two different methods with which we can perform the merging
of nodes of T , with a trade-off in time- and space-complexity. The first method is
the simplest one. Let N be a node of T , and let C1, . . . , Ct be the children of N that
we have to merge. Then we will use the node with the greatest number of children
among C1, . . . , Ct as the new node in which C1, . . . , Ct get merged. So let C be a node
among C1, . . . , Ct with maximum number of children. Then we discard all nodes in
{C1, . . . , Ct}\{C}, and we redirect the parent pointer of their children to C. Since this
involves at most n nodes at every level, and a parent pointer can be redirected at most
logn times, we get at most O(n logn) redirections of parent pointers at every level,
and O(n2 logn) redirections in total. In the second method we maintain all nodes of
T (possibly in a “deactivated” mode) throughout the sequence of all insertions, and
thus we may need as much as Ω(n2) space (since there are at most O(n) insertions
that can affect the decomposition tree). The idea is to use a disjoint-set union data
structure DSUi [64] on the nodes of level i of the tree, for all i ≥ 1. In order to merge
nodes at level i we unite all of them using DSUi and we choose one of them as the
representative. We consider the representative to be an active node, in the sense that
we can use its parent pointer to move to level i − 1, whereas the parent pointer of
the other nodes that got united will never be used again. Thus, in order to access

513

the parent of a node N at level i, we use findi−1(parent(N)), where parent denotes
the parent pointer in T , and findi−1 is the find operation of DSUi−1. Notice that this
approach has the advantage that it does not explicitly redirect the parent pointers.
Using an optimal implementation for DSUi [64], we can perform any sequence of m
operations findi or unitei in O(mα(m,n)) time in total. Since at most n unite operations
can take place at each level, we have an O(nα(n, n)) time-bound at every level for the
mergings, and an O(n2α(n, n)) time-bound in total.

We note that the n2 expression in the time-bound is an inherent bottleneck of
this approach for maintaining the maximal k-edge-connected subgraphs, for any
k ≥ 3. In order to demonstrate this, let us introduce some concepts. We call the
edges that connect two different maximal k-edge-connected subgraphs of a graph
k-interconnection edges. Then we partition the k-interconnection edges into levels as
follows. If an edge participates in a k′-edge cut of the graph, for k′ < k, we define the
level of this edge to be 1. Now suppose that we have defined all d-level edges, for some
d ≥ 1. Then an edge that participates in a k′-edge cut of (a connected component
of) the graph that remains after we remove all d′-level edges, for d′ ≤ d, is assigned
level d + 1. Now we observe that our method for updating the decomposition tree
explicitly maintains the levels of the k-interconnection edges (because every d-level
k-interconnection edge is essentially maintained in the associated data structure of
a node of depth d of the decomposition tree). There are sequences of insertions of
edges in which Ω(n) insertions may force Ω(n) edges to change their level, and thus
we need at least Ω(n2) time in total to maintain the decomposition tree. An example
for k = 3 is shown in Figure 8.1. (This generalizes easily to any k > 3.)

8.3.3 The decomposition tree of the maximal 3‐edge‐connected

subgraphs

Here we apply the framework outlined in the previous section for the special case
k = 3. We focus on the case k = 3 for the following reasons. (1) There exist very
efficient/asymptotically optimal algorithms for the incremental maintenance of the 3-
edge-connected components that we can use for maintaining the decomposition tree
for the case k = 3. (2) Although there exist very efficient algorithms for maintaining
also the 4- and 5-edge-connected components [25, 23], and they seem applicable in
our framework, they involve a lot of technicalities and it would be very tedious to

514

2

1

4

3

6

5

𝑖 −2

𝑖 − 3

𝑖

𝑖 − 1

𝑛

𝑛 − 1

. . .

. . .

Figure 8.1: An example of a sequence of insertions that can force Ω(n) 3-
interconnection edges to increase their level by one Ω(n) times. The sequence
of insertions, starting from the empty graph with vertices in {1, . . . , n} is
(1, 2), (1, 2), (3, 1), (3, 2), (4, 2), (4, 3), . . . , (i, i−2), (i, i−1), . . . , (n, n−2), (n, n−1). After
the insertion of (i, i−1), we have that (i, i−1) and (i, i−2) are the only 1-level edges,
and the level of the other edges (1, 2), . . . , (i − 1, i − 2) increases by one. Note that
{1, . . . , i− 1} is a 3-edge-connected component at this point, whereas all the maximal
3-edge-connected subgraphs are trivial.

show how to extend them in order to apply them for our purposes. For k > 5 we
are not even aware of any efficient incremental algorithms that we could apply.1 (3)
The case k = 3 is the simplest one to consider. And yet, even here, we have to extend
appropriately the existing data structures and algorithms, and this involves various
technicalities.

For the case k = 3 we incorporate the algorithms of [35, 59, 58, 69], for main-
taining the 3-eccs, in the decomposition tree. Thus, since these algorithms basically
maintain the 2-eccs of the 1-eccs, and the 3-eccs of the 2-eccs, we augment the decom-
position tree with more levels in order to capture the decomposition into all k′-eccs,
for k′ ≤ 3. To be more precise, we consider the decomposition tree T of the maximal
3-edge-connected subgraphs of G that is formed by repeatedly removing all 1- and
2-edge cuts. The nodes of T correspond to subgraphs of G. First, the root of T corre-
sponds to the entire graph. If G is 3-edge-connected, then this is the only node of T ,
and the decomposition is over. Otherwise, the children of the root correspond to the
connected components of G, which we call 1-ecc nodes. Then the children of every
1-ecc node correspond to its 2-edge-connected components, and we call them 2-ecc
nodes. Finally, the children of every 2-ecc node correspond to its 3-edge-connected
components and we call them 3-ecc nodes. Now, if a 3-ecc node corresponds to a 3-

1The fully dynamic algorithm of Jin and Sun [46] seems very difficult to be usable in our framework,
because it does not explicitly maintain the k-edge-connected components.

515

edge-connected subgraph of G, then it is a leaf of T , and a maximal 3-edge-connected
subgraph of G. Otherwise, it becomes the root of a subtree of T that is produced re-
cursively with the same procedure. In this way, we compute the decomposition tree
T of the maximal 3-edge-connected subgraphs of G. (See Figure 8.2 for an example.)

𝑥1

𝑥2
𝑥3 𝑦3

𝑦1

𝑦2

𝑦4𝑥4

𝑥5 𝑦5

𝑧1

𝑧2

root

1-ecc node

2-ecc node

𝑥1

𝑥2
𝑥3 𝑦3

𝑦1

𝑦2

𝑦4𝑥4

𝑥5 𝑦5

𝑧1

𝑧2

3-ecc nodes

1-ecc node

𝑥1

𝑥2
𝑥3

𝑥4

𝑥5

𝑦3

𝑦1

𝑦2

𝑦4

𝑦5

2-ecc nodes

3-ecc nodes

decomposition tree 𝒯

Figure 8.2: The decomposition tree T of the graph G of Figure 2.1. Notice the cor-
respondence between the nodes of T and some subgraphs of G. The leaves of T
(coloured in black) correspond to the maximal 3-edge-connected subgraphs of G.

Observe that the size of T is O(n),2 since the children of every node N of T
correspond to subgraphs of the graph corresponding to N that partition its vertex set
(and although some nodes have only one child, by construction this child must have
at least two children or two grandchildren, unless it is a leaf). For convenience, and
since no ambiguity arises, we identify every node of T with the subgraph of G that
corresponds to it. (We do not maintain this correspondence explicitly in any data
structure, as this would be impractically expensive in terms of space (and therefore
time). It is only a conceptual convention that we make, and we will use it extensively
in the sequel.) Furthermore, since T is rooted, we let the nodes of T be partitioned

2However, in order to efficiently maintain T after the insertion of new edges to G, we may have to
attach more information to T , so that its total size will be O(n2). (See Section 8.4.2.)

516

into levels according to their depth, where the level of the root is 0. Thus we may
speak of a subgraph of G at some level of T . Observe that T contains 3k levels, for
some k ≥ 0, and that every maximal 3-edge-connected subgraph of G is contained at
some level 3k′, for k′ ≤ k, as a leaf. It is useful to note that T satisfies the following.

Property 8.2. If we shrink a maximal 3-edge-connected subgraph of G into a single vertex,
then the decomposition tree of the resulting graph is given again by T .

Now we will give a high-level description of the changes that T undergoes when
a new edge (x, y) is inserted to G. Theorem 8.1 implies that at most 3n− 3 insertions
of edges may affect the decomposition tree, in any sequence of edge insertions, where
n is the total number of vertices inserted. By Property 8.2, we have that a newly
inserted edge can affect the decomposition tree only if its endpoints lie in different
maximal 3-edge-connected subgraphs of G. Thus we consider the nearest common
ancestor N of the maximal 3-edge-connected subgraphs of G that contain x and y.
This corresponds to the deepest node in the decomposition tree that contains both x

and y, and it should be clear that the insertion of (x, y) affects only the decomposition
of N . We distinguish three different cases, depending on whether (1) N is the root or
a 3-ecc node, or (2) N is a 1-ecc node, or (3) N is a 2-ecc node. The whole procedure
is summarized in Algorithm 57.

517

Algorithm 57: Update the decomposition tree T after inserting the edge (x, y) to

the graph G

1 procedure insert(x, y)

2 begin
3 X ← the leaf of T that contains x
4 Y ← the leaf of T that contains y
5 N ← the nearest common ancestor of X and Y on T
6 C1 ← the child of N that contains x
7 C2 ← the child of N that contains y
8 if N is the root of T or a 3-ecc node then
9 merge C1 and C2 into a new 1-ecc node

10 end
11 else if N is a 1-ecc node then
12 T ← the tree of the 2-edge-connected components of N
13 X1, . . . , Xk ← the path on T with endpoints C1 and C2

14 foreach i ∈ {1, . . . , k − 1} do
15 (xi, yi)← the edge of N that corresponds to (Xi, Xi+1) of T
16 end
17 (y0, xk)← (x, y)

18 foreach i ∈ {1, . . . , k} do
19 Si ← the cactus of the 3-edge-connected components of Xi

20 D(i,1), . . . , D(i,t(i)) ← the cycle-path on Si with endpoints the 3-ecc of Xi that
contains yi−1 and the 3-ecc of Xi that contains xi

21 merge3ecc(D(i,1), . . . , D(i,t(i)))

22 end
23 merge all X1, . . . , Xk into a new 2-ecc node of T

24 end
25 else if N is a 2-ecc node then
26 S ← the cactus of the 3-edge-connected components of N
27 D1, . . . , Dk ← the cycle-path on S with endpoints C1 and C2

28 if V (S) = {D1, . . . , Dk} then
29 R← the grandparent of N on T
30 if N is the only 2-ecc of R then condense the subtree of R into R

31 else condense all the proper descendants of N into a new 3-ecc node

32 end
33 else
34 merge3ecc(D1, . . . , Dk)

35 insert(x, y)

36 end

37 end

38 end

518

Algorithm 58: merge the children D1, . . . , Dk of a 2-ecc node X

1 procedure merge3ecc(D1, . . . , Dk)

2 begin
3 for i ∈ {1, . . . , k} do
4 if Di is a leaf of T then
5 let D′

i, D′′
i and D′′′

i be a new 1-ecc, 2-ecc and 3-ecc node,
respectively, where D′

i, D′′
i and D′′′

i correspond to the same graph
as Di

6 parent(D′′′
i)← D′′

i

7 parent(D′′
i)← D′

i

8 parent(D′
i)← Di

9 end

10 end
11 S ← the cactus of the 3-edge-connected components of X
12 E ← the edge set of S[D1 ∪ · · · ∪Dk]

13 merge all D1, . . . , Dk into a new 3-ecc node
14 foreach edge e in E do
15 insert(e)

16 end

17 end

8.3.3.1 N is the root or a 3‐ecc node

In this case (x, y) joins two different connected components C1 and C2 of N , and so
it becomes a bridge of N that connects them. Thus we only have to merge C1 and C2

into a new 1-ecc node (see Fig. 8.3).

8.3.3.2 N is a 1‐ecc node

In this case (x, y) joins two different 2-edge-connected components C1 and C2 of N .
Without loss of generality, assume that x ∈ C1 and y ∈ C2. Let T be tree of the 2-edge-
connected components of N , and let P = X1, . . . , Xk be the path on T with endpoints
C1 and C2. (Thus we have X1 = C1 and Xk = C2.) Then the vertices that are contained
in X1, . . . , Xk become 2-edge-connected, and for every pair of vertices not both of
which belong to X1 ∪ · · · ∪Xk the edge-connectivity remains the same. Furthermore,

519

x y

x y

N

x

y

x

y

Figure 8.3: Here we show the changes to the decomposition tree on the insertion of the

edge (x, y). The nearest common ancestor N of (the maximal 3-edge-connected subgraphs

that contain) x and y is a 3-ecc node. Therefore, we need to know the two children of N that

contain x and y; then we retrieve the associated trees, join them properly with (an equivalent

of) the edge (x, y), and then we merge the two nodes. Finally, we associate with it the new tree

that has been formed. In this figure, the middle graphs show the decomposition of the graph

into 3-edge-connected components at every level. Also, in the decomposition trees, we can see

the trees associated with the nodes we have to merge and the tree associated with the merged

node. (The new edge (x, y) is stored inside this tree.) The 3-edge-connected components are

highlighted with pink colour. Lower intensity signifies greater depth in the decomposition

tree.

for every i ∈ {1, . . . , k− 1}, let (xi, yi) be the bridge of N that corresponds to the edge
(Xi, Xi+1) of P , and let also (x, y) = (y0, xk) (this is for notational convenience). Then,
every pair of edges in {(xi, yi) | i ∈ {1, . . . , k−1}}∪{(x, y)} is a 2-edge cut of N . Thus
we have to merge all 2-ecc nodes X1, . . . , Xk into a new 2-ecc node C , and no change
takes place on T outside the subtree of C.

Now we have to consider the changes that possibly take place in the subtree of C.
For every i ∈ {1, . . . , k}, let Si be the cactus of the 3-edge-connected components of Xi,
and let Qi be the cycle-path on Si with endpoints the 3-ecc of Xi that contains yi−1 and
the 3-ecc of Xi that contains xi. Let also D(i,1), . . . , D(i,t(i)) be the subgraphs of Xi that
correspond to the nodes of Q. Then, the vertices that are contained in D(i,1), . . . , D(i,t(i))

520

become 3-edge-connected; furthermore, for every pair of vertices of Xi not both of
which lie in D(i,1)∪· · ·∪D(i,t(i)) the edge-connectivity remains the same. Thus we have
to merge all D(i,1), . . . , D(i,t(i)) into a new 3-ecc node Di; furthermore, no change in
the subtree of Xi takes place outside the subtree of Di. Now we have to consider the
graphs D(i,1), . . . , D(i,t(i)) as the connected components of the new graph Di. However,
in order to maintain the decomposition subtree of Di on T , we have to take care of
two things. First, some graphs D(i,j), for j ∈ {1, . . . , t(i)}, might be leaves (prior to the
insertion of (x, y)). This means that they are 3-edge-connected subgraphs, and so we
have to include them in the subtree of Di by expanding their corresponding nodes
on T with the addition of three intermediary nodes. And secondly, there might exist
edges in Xi that connect some of D(i,1), . . . , D(i,t(i)). (Note that these edges correspond
naturally to those of Si that connect the nodes of Qi.) These edges are now included in
Di, and so we have to consider their effect on the decomposition subtree of Di. Thus,
in order to capture fully the effect on T of the insertion of (x, y), we have to re-insert
those edges to G. Observe that these edges constitute parts of 1- or 2-edge cuts of Di,
and so they will be re-inserted only once in order to perform the insertion of (x, y).
However, their re-insertion may force other edges of G, that lie in graphs on deeper
levels, to be re-inserted to G. Nevertheless, the nearest common ancestor involved
in each such re-insertion will either be a 3-ecc or a 1-ecc node. As a consequence,
we note that no new maximal 3-edge-connected subgraphs will be formed after the
insertion of (x, y) to G. Figure 8.4 is an example of this case.

We refer to the three step process of (a) merging all D(i,1), . . . , D(i,t(i)) into a single
node Di, (b) expanding every node D(i,j) that is a leaf, for j ∈ {1, . . . , t(i)}, with the ad-
dition of three intermediary nodes, and (c) re-inserting into G the inter-edges between
the subgraphs D(i,1), . . . , D(i,t(i)) of Xi, as merging the 3-ecc nodes D(i,1), . . . , D(i,t(i)) into
Di. This procedure is shown in Algorithm 58. (The variable “parent” in Lines 6, 7
and 8 denotes the parent relation of T .)

8.3.3.3 N is a 2‐ecc node

In this case (x, y) joins two different 3-edge-connected components C1 and C2 of N .
We note that this is the only case in which the formation of new maximal 3-edge-
connected subgraphs of G may take place (by merging together smaller maximal
3-edge-connected subgraphs of G). Let S be cactus of the 3-edge-connected com-
ponents of N , and let Q = X1, . . . , Xk be the cycle-path on S with endpoints C1

521

x y

x y

yx x y

yxx y

Figure 8.4: Here we insert the edge (x, y) to the graph. This joins two different 2-edge-

connected components (at the first decomposition level), which lie in the tree T associated

with the nearest common ancestor of x and y. The path of those 2-eccs on T consists of three

nodes, which we have to merge. So first we have to retrieve their associated cactuses (which

are shown in this figure), to merge some of their nodes using merge3ecc, and then to join

them on a new cactus using (essentially) the edges of the cycle. Here we can see the effect

of merge3ecc on the three cactuses. With gray are shown the nodes that we have to merge.

The resulting three cactuses get joined on their gray (compressed) nodes along the edges of

the triangle, one of which is (essentially) the new one, and the other two lay on a higher

level (inside the tree T of the 2-eccs). Thus, those two edges got pushed down one level. Also

notice that the height of the decomposition tree increased.

and C2. Then the vertices that are contained in X1, . . . , Xk become 3-edge-connected,
and for every pair of vertices not both of which belong to X1 ∪ · · · ∪ Xk the edge-
connectivity remains the same. Thus, if Q contains all the nodes of S, then N becomes
3-edge-connected. Therefore, if N prior to the insertion of (x, y) was the only 2-edge-
connected component of its grandparent R on T , then this means that R becomes
3-edge-connected, and so its subtree on T is condensed into R. Otherwise, all the
proper descendants of N are condensed into a new single 3-ecc node of T , which
corresponds to the new maximal 3-edge-connected subgraph that has been formed.

Now suppose that Q does not contain all the nodes of S. Then we have to perform

522

a merging of the 3-ecc nodes X1, . . . , Xk into a new node D, and then repeat the
insertion of the edge (x, y). Let X and Y be the maximal 3-edge-connected subgraphs
of G that contain x and y, respectively. Then the nearest common ancestor of X and
Y on T is a descendant of D, and it can either be a 3-ecc node or a 1-ecc node (in
which case we are work as previously), or a 2-ecc node again. In the last case, either
the formation of a new maximal 3-edge-connected subgraph of G will take place (and
we are done), or we will have to merge again some 3-ecc nodes of T into a new node
and then repeat the insertion of (x, y). Observe that, eventually, this process must
terminate, since every time that we have to merge some 3-ecc nodes into a new node,
we leave some of their siblings on the same level, and then the computation involves
only the subtree of the new node.

Figure 8.5 is a simple example of this case, where the whole graph becomes
3-edge-connected.

x

x

y

y

N

N

x y

Figure 8.5: This is a simple example where the insertion of a new edge (x, y)makes the whole
graph 3-edge-connected. This happens immediately, because the nearest common ancestor N

of x and y is a 2-ecc node, where the associated cactus is the cycle-path connecting the nodes

that contain x and y. Thus we merge all leaves of N , we discard the whole subtree N , and

assign as a child of N the new maximal 3-edge-connected subgraph that has been formed.

Notice that the parent of N has only one child, and the parent of the parent of N has again

only one child. Thus, we replace the grandparent of N with the child of N , and we discard

N , its parent, and its grandparent.

523

8.4 Maintaining the decomposition tree after insertions

As seen in Algorithms 57 and 58, in order to efficiently update T after inserting
an edge (x, y) to G, we have to provide efficient implementations for the following
procedures:

(1) Find the leaves X and Y of T that contain x and y, respectively.

(2) Find the nearest common ancestor N of X and Y on T .

(3) Find the grandchild of N that contains a particular vertex v ∈ N . (This is needed
in Line 20 of Algorithm 57, in order to find the 3-eccs of Xi that contain yi−1

and xi.)

(4) Merge sets of nodes of T (lying on the same level) into a new single node.

(5) Find the nodes of T that have to get merged, and the inter-connection edges
between the subgraphs that correspond to them.

We will provide two different solutions for this set of procedures. In Section 8.4.1
we rely on the ideas and the data structures of [35, 59, 69], in order to provide an algo-
rithm that uses O(n) space and runs in O(n2 log2 n+mα(m,n)) time, for any sequence
of m edge and n vertex insertions. In Section 8.4.2 we rely on [59] and [58], in order
to provide an algorithm that uses O(n2) space and runs in O(n2α(n, n) +mα(m,n))

time, for any sequence of m edge and n vertex insertions. We note that the first algo-
rithm is more readily amenable to implementations. The second algorithm, although
it is asymptotically more time-efficient, it uses the sophisticated data structures of [58]
(summarized and expanded in Section 8.6), and it may be less efficient than the first
algorithm in practice.

In both algorithms we use the same solution for (1): an optimal disjoint set union
data structure DSU3ecs [64], that operates on V (G), and uses as representatives the
leaves of T (which correspond bijectively to the maximal 3-edge-connected subgraphs
of G). DSU3ecs supports the operations find3ecs(x) and unite3ecs(x, y). find3ecs(x) re-
turns a pointer to the maximal 3-edge-connected subgraph of G that contains x,
and unite3ecs(x, y) unites the sets of vertices of the maximal 3-edge-connected sub-
graphs of G that contain x and y. DSU3ecs uses O(n) space, and it can perform any
sequence of m operations find3ecs and unite3ecs in O(mα(m,n)) time in total [64]. (Thus
we get this expression in the time-bounds of both algorithms.)

524

Furthermore, for (5) we rely on data structures associated with the nodes of T ,
that represent trees or cactuses. In particular, recall that (the graph corresponding
to) every 1-ecc node X is a connected component of (the graph corresponding to)
its parent, and the children of X correspond to its 2-edge-connected components.
Thus, we associate with every 1-ecc node a data structure that represents the tree
of its 2-edge-connected components. This data structure is used in order to find the
children of X that we have to merge (in Line 13 of Algorithm 57), and the inter-
connection edges between (the graphs that correspond to) those children (in Line
15 of Algorithm 57). Similarly, every 2-ecc node X has an associated data structure
that represents the cactus of its 3-edge-connected components. This data structure is
used in order to find the children of X that we have to merge (in Lines 20 and 27 of
Algorithm 57), and the inter-connection edges between (the graphs that correspond
to) those children (in Line 12 of Algorithm 58). More details about the operations
supported by these data structures will be given in Section 8.4.1.

Finally, we note that the O(n2) expression in the time-bounds of both algorithms
is a bottleneck in their total running time. In fact, Lines 34 and 35 of Algorithm 57
and Line 15 of Algorithm 58 may create a sequence of recursive calls, so that, even
for a single edge insertion, we may have to perform O(n2) re-insertions of already
inserted edges. However, since by Theorem 8.1 there are only O(n) edge insertions
that can affect the decomposition tree, and every re-insertion (performed internally
by the algorithm) can only affect deeper levels than before, and there can be only
O(n) levels in the decomposition tree, we have that any sequence of edge insertions
to G can initiate at most O(n2) calls to procedure insert of Algorithm 57.

8.4.1 An O(n2 log2 n+mα(m,n))‐time algorithm for the incremental

maintenance of T

An efficient solution for (2) is to use the top-trees data structure of Alstrup et al. [6].
With this data structure we can perform nearest common ancestor queries in dynamic
trees with n nodes in amortized O(logn) time per query. Furthermore, with top-trees
we can also answer level ancestor queries within the same time-bounds. Thus we can
solve (3) efficiently with a query for the d+ 2 level ancestor of V , where V is the leaf
of T that contains v, and d is the level of N . (We may assume that every node of T
has an attribute for its level on T .)

525

The merging of nodes in (4) can be performed by redirecting the parents of the
children of the nodes with the least number of children to the node with the most
number of children (breaking ties arbitrarily), and then discarding these nodes. (We
may assume that every node of T has an attribute for its number of children.) In
other words, suppose that we have to merge the nodes X1, . . . , Xk, where X1 has the
greatest number of children among X1, . . . , Xk. Then we redirect the parents of the
children of X2, . . . , Xk to X1, and then we discard X2, . . . , Xk (and all the information
associated with them). Since the nodes of every level of T are O(n), this procedure
ensures that at most O(n logn) redirections can take place in total in every level.
However, for every such redirection, a deletion and an insertion of an edge of T must
take place, and this takes O(logn) amortized time using the top-trees. Thus we get an
O(n log2 n) time-bound for every level of T , and since there are at most O(n) levels
in T , we get the O(n2 log2 n) time-bound in total.

Now, for (5), we assume, as above, that every 1-ecc node has an associated data
structure that represents the tree of its 2-edge-connected components, and every 2-
ecc node has an associated data structure that represents the cactus of its 3-edge-
connected components. We use the associated data structures for the trees of the
2-edge-connected components in order to be able to perform efficiently the following.
In Line 13 of Algorithm 57, we access the associated data structure T of N , in order
to find its children X1, . . . , Xk that we have to merge in Line 23. Thus we assume that
the data structure for trees supports the operation compressPath(T, x, y), which, given a
pointer T to a tree, and pointers x and y to nodes of this tree, it finds the simple path
P that connects these nodes on the tree, returns pointers to the nodes of P and the
edges of P , and then merges all nodes of P into a new node and also returns a pointer
to this node. We assume that the nodes and the edges of T have some information
associated with them. Specifically, since every edge e of T corresponds essentially to a
bridge of N , and this bridge is an edge (x, y) of G, we let e point to the edge (x, y) of G.
This information is needed for Lines 15 and 20. Furthermore, since every node v of
T corresponds essentially to a child V of N , we let v point to V . This is used precisely
in order to find the children X1, . . . , Xk of N that we have to merge. Conversely, every
child of N must point to its corresponding node of T , in order to be able to find the
endpoints of the path on T that we have to find with the call to compressPath. Finally,
since we may have to merge some children of the root or of a 3-ecc node in Line 9
of Algorithm 57, we also have to link the associated (representations of the) trees

526

of those children, with the addition of an edge that corresponds to the one that has
been (re-)inserted to G. Specifically, suppose that an edge (x, y) is (re-)inserted to G,
and that the nearest common ancestor N of X and Y is the root or a 3-ecc node,
where X and Y are the leaves of T that contain x and y, respectively. Let C1 and C2

the the children of N that contain x and y, respectively. Then, in Line 9, we have to
merge C1 and C2 into a new 1-ecc node C. Now, the data structure associated with C

must represent a tree that is formed by linking the tree represented by the associated
data structure to C1 with the tree represented by the associated data structure to
C2, through the addition of an edge e = (u, v) with endpoints corresponding to the
children of C1 and C2 that contain x and y, respectively. (These children of C1 and
C2 can be found with a query for the d + 2 level ancestors of X and Y , respectively,
where d is the level of N .) Furthermore, since e corresponds essentially to (x, y), the
associated information to e must be a pointer to (x, y). Thus, the data structure for
trees must support the operation joinTrees(T1, T2, (u, v)), which, given a pointer T1 to
a (representation of a) tree T̃1, a pointer T2 to a (representation of a) tree T̃2, a pointer
u to a node ũ of T̃1, a pointer v to a node ṽ of T̃2, and some extra information to be
associated with the edge (ũ, ṽ), links the trees T̃1 and T̃2 through the addition of the
edge (ũ, ṽ).

The associated data structures for the cactuses of the 3-edge-connected compo-
nents of 2-ecc nodes are used to perform the analogous operations that are performed
by the data structures for trees. Specifically, in Lines 20 and 27 of Algorithm 57, we
access the associated data structure for the 3-edge-connected components of a node
X of T , in order to find its children that we have to merge later on (with a call to pro-
cedure merge3ecc). Thus we assume that the data structure for cactuses supports the
operation compressCyclePath(S, x, y), which, given a pointer S to a cactus, and pointers
x and y to nodes of this cactus, it finds the cycle-path Q on S with endpoints these
nodes, it returns pointers to the nodes of Q and the edges of S between the nodes
of Q, and then merges all nodes of Q into a new node and also returns a pointer
to this node. We assume that the nodes and the edges of S have some information
associated with them. Specifically, since every edge e of S corresponds essentially to
an edge of X , and this edge is an edge (x, y) of G, we let e point to (x, y). This infor-
mation is needed for Line 12 of Algorithm 58. Furthermore, since every node v of S
corresponds essentially to a child V of X , we let v point to V . This is used precisely
in order to find the children of X that we have to merge. Conversely, every child of

527

X must point to its corresponding node of S, in order to be able to find the end-
points of the cycle-path on S that we have to find with the call to compressCyclePath.
Finally, since we may have to merge the children X1, . . . , Xk of the 1-ecc node N in
Line 23 of Algorithm 57, we also have to link the associated (representations of the)
cactuses of those children, with the addition of a cycle that corresponds to the one
that has been formed by the (re-)insertion of (x, y) to G. Specifically, when we merge
X1, . . . , Xk into a new 2-ecc node X , the associated cactus of X must be that which is
formed by joining the cactuses associated with X1, . . . , Xk with a cycle corresponding
to D1, . . . , Dk, where Di, for i ∈ {1, . . . , k}, is the new 3-ecc node that has been formed
by merging D(i,1), . . . , D(i,t(i)) through the call merge3ecc in Line 21. Furthermore, the
edges of the new cactus that correspond to the edges (D1, D2), . . . , (Dk−1, Dk), (Dk, D1)

of X , must correspond to the edges (x1, y1), . . . , (xk−1, yk−1), (y, x). This information
is needed in Line 12 of Algorithm 58. Thus, the data structure for cactuses must
support the operation joinCactuses(S1, . . . , Sk, (d1, d2), . . . , (dk, d1)), which, given point-
ers S1, . . . , Sk to (representations of) cactuses S̃1, . . . , S̃k, pointers d1, . . . , dk to nodes
d̃1, . . . , d̃k of S̃1, . . . , S̃k, respectively, and some extra information to be associated with
the edges (d̃1, d̃2), . . . , (d̃k, d̃1), links the cactuses S̃1, . . . , S̃k through the addition of the
cycle (d̃1, d̃2), . . . , (d̃k, d̃1).

In Section 8.5 we provide efficient implementations for the associated data struc-
tures for trees and cactuses. These implementations use size O(n) for a collection
of trees or cactuses with n nodes, and can perform any sequence of operations in
O(n logn) time in total. We use a data structure for trees in every 3k + 1 level of
the tree, and a data structure for cactuses in every 3k + 2 level of the tree. Since the
number of nodes of the trees (of the 2-eccs) or of the cactuses (of the 3-eccs) that
correspond to the nodes of every level of T can be at most n, and there are at most
O(n) levels on T , we thus have that the operations in the associated data structures
can take time O(n2 logn) in total for any sequence of edge insertions to G.

Finally, Algorithm 59 shows how we can handle the insertion of a new vertex v to
G. We simply introduce three new nodes C , C ′, and C ′′ (an 1-ecc node, a 2-ecc node,
and a 3-ecc node, respectively), that correspond to v, and we set parent(C) ← root,
parent(C ′)← C , and parent(C ′′)← C ′. Since the leaf of T that contains v is C ′′, we also
set the representative find3ecs(v)← C ′′. We also associate a (representation of a) trivial
tree to C , and a (representation of a) trivial cactus to C ′. The DSU data structure
and the data structures in Section 8.5 allow for new node insertions, and the same

528

time-bounds hold (where n is interpreted as the total number of vertices that will
have been inserted to G at the moment we estimate the time that it took to perform
all the operations of the algorithm so far).

Algorithm 59: Update the decomposition tree T after inserting a new vertex
v to the graph G

1 procedure insert(v)

2 begin
3 let C , C ′ and C ′′ be a new 1-ecc, 2-ecc and 3-ecc node, respectively
4 parent(C)← root of T
5 parent(C ′)← C

6 parent(C ′′)← C ′

7 let the representative of v in DSU3ecs be C ′′

8 initialize a new trivial tree T , and associate it with C

9 initialize a new trivial cactus S, and associate it with C ′

10 end

8.4.2 An O(n2α(n, n)+mα(m,n))‐time algorithm for the incremen‐

tal maintenance of T

Now we will describe a more time-efficient algorithm to handle insertions to the graph.
(This algorithm, however, uses O(n2) space.) First, we can handle the operations in
(5) exactly as we did in Section 8.4.1, although here we use the more sophisticated
data structures for trees and cactuses that are described in Section 8.6. The imple-
mentations given in Section 8.6 use size O(n) for a collection of trees or cactuses with
n nodes, and can perform any sequence of operations in O(nα(n, n)) time in total.
Since we use a data structure for trees in every 3k + 1 level, and a data structure for
cactuses in every 3k+ 2 level, and there are at most O(n) levels in T , we thus we get
the O(n2α(n, n)) expression in the total time-bound .

To perform the merging of nodes in (4) we use an optimal disjoint set union data
structure DSUi [64], on every level i of T , that operates on the node set of that level
and uses as representatives nodes on that level that we consider to be “active”. The
function of an active node is to represent all the nodes that have been merged with it;
initially, all nodes of T are active, and, throughout, the parent pointer on T exists only

529

for the active nodes. DSUi supports the operations findi(x) and unitei(x, y). findi(x)
returns a pointer to the active node that has been merged with x, and unitei(x, y)
merges the sets of nodes that are represented by the active nodes x and y, and sets as
representative one of x or y (while deactivating the other). Thus, in order to find the
parent of an active node X of T on level i, we use findi−1(parent(X)). DSUi uses O(n)

space, and it can perform any sequence ofm operations findi and unitei in O(mα(m,n))

time in total [64].
To perform efficiently the operations (2) and (3), we basically maintain, for every

inter-connection edge e = (x, y) of G (that is, for every edge e whose endpoints, at
the time of its insertion, lie in different maximal 3-edge-connected subgraphs of G),
two paths of T whose nodes contain an endpoint of e, that start from the leaves of T
that contain x and y, and go up until at least their nearest common ancestor. In order
to achieve this, we augment the information associated with T as follows. For every
node Z of T we associate a linked list LZ , where every element of LZ corresponds
to an endpoint of an inter-connection edge that lies in an ancestor of Z. Thus, the
existence of those lists means that we may need as much as O(n2) space (since the
number of inter-connection edges can be at most O(n), and the number of levels of
T is O(n)). Every element of LZ is a pointer that points to an element of LC , for
some child C of Z. Also, every element of LZ has a pointer to Z (so that we can find
in constant time the node in whose associated list this pointer lies). Thus we may
say that a pointer of LZ lies in Z. Finally, for every inter-connection edge e = (x, y),
we maintain two pointers ex and ey, that point to the elements of a list LZ , for some
node Z that contains both x and y.

Now we work as follows. Let e = (x, y) be an edge that is inserted to G for the
first time. (I.e., this is the first time that we call insert(e) of Algorithm 57. Notice,
of course, that an edge e′ = (x, y) may have previously been inserted to G, since we
allow for multiple edges. But now we consider e as a new insertion. Furthermore,
we can easily determine whether insert(e) is the first time we call insert on e, by
using a flag every time we call insert from Line 35 of Algorithm 57 or Line 15 of
Algorithm 13, in order to signify that this is a re-insertion.) First we find the leaves
X and Y of T that contain x and y, respectively, by calling find3ecs(x) and find3ecs(y),
respectively. Suppose that X ̸= Y (for otherwise there is nothing to do). Then we
crawl up the tree, starting from X and Y , by following the parents alternatingly,
marking all the nodes that we meet, and keeping them in a stack in order to unmark

530

them later. When we meet a node N that is already marked, we have that this is the
nearest common ancestor of X and Y on T , and we unmark all the nodes that we
traversed. Now we start again from X , and we follow the parents until we reach N .
For every node Z that we traverse, including N , we append a new pointer Z(e,x) to
LZ . If Z = X , then we let Z(e,x) point to null. Otherwise, let C be the child of Z that
we traversed before reaching Z; then we let Z(e,x) point to C(e,x). We repeat the same
process starting from Y . Finally, we let ex point to N(e,x) and we let ey point to N(e,y).
Observe that this process may need as many as O(n) calls to the parent function,
and O(n) pointer manipulation operations. Thus, since the total number of first-time
edge insertion in any sequence of edge insertions is O(n), and every call to the parent
function involves a call to findi, for some i, the total cost of this process in the running
time of the algorithm is O(n2α(n, n)).

Now suppose that we re-insert an edge e = (x, y). Then we can find the nearest
common ancestor of the leaves X and Y of T that contain x and y, respectively, by
following the path of pointers starting from ex and ey, and moving on to deeper
levels in parallel, until we reach two pointers that lie on two nodes C and D that
have not got merged together, in which case the common parent of C and D is the
nearest common ancestor of X and Y on T . Then, since C and D will have to get
merged, we let ex point to C(e,x) and ey point to D(e,y), in order to avoid traversing
the same path of pointers again. Since the total number of edges that can affect the
decomposition tree, in any sequence of edge insertions, is O(n), and every time an
edge is re-inserted it is moved into deeper levels, observe that the total cost of this
process in the running time of the algorithm is O(n2α(n, n)). Now suppose that we
want to find the grandchild of N that contains x. (We can follow the analogous
procedure in order to find the grandchild of N that contains y.) Then we can use the
pointer N(e,x) stored in LN . This points to a pointer C(e,x) in LC , for a node C that
is merged with a child C ′ of N . And then C(e,x) points to D(e,x) in LD, for a node D

that is merged with a child D′ of C ′. Thus we can find D in constant time, and then
we can find D′ with a call findi(D), where i is the level of D. Again, since there can
be at most O(n2) re-insertions of edges, the total cost of this process in the running
time of the algorithm is O(n2α(n, n)).

All the data structures with which T is equipped (the DSU data structures, and
the associated data structures for trees and cactuses), allow for new node insertions,
and the same time-bounds hold. Thus, the insertion of new vertices to G is performed

531

as shown in Algorithm 59.

8.5 Data structures for trees and cactuses

To maintain the decomposition tree of the maximal 3-edge-connected subgraphs, we
will need the following two data structures, which we may use as black boxes in the
algorithm. They operate on collections of trees and cactuses, respectively. We assume
that there is some information associated with every edge of every tree or cactus 3.

The first is a data structure that works on a collection of trees and supports the
following operations.

• compressPath(T, x, y). Given a tree T and nodes x and y on T , this operation
finds the simple path P that connects x and y on T and compresses it into a
new node z (converting T into a smaller tree). Furthermore, it returns pointers
to all nodes and (information associated with the) edges on P , as well as to
the new node z. Finally, if (u, v) was an edge of T , prior to the call of this
operation, with u /∈ P and v ∈ P , then (u, z) (in the new tree) must contain the
same information that was previously associated with (u, v).

• joinTrees(T1, T2, (x, y)). Given two trees T1, T2 and nodes x ∈ T1 and y ∈ T2, this
operation links the trees T1 and T2 by introducing a new edge (x, y).

The second data structure works on a collection of cactuses and supports the
following operations.

• compressCyclePath(S, x, y). Given a cactus S and nodes x and y on S, this op-
eration finds the “cycle-path” P that connects x and y on S. It compresses all
nodes on P into a new node z by properly squeezing the involved cycles. Fur-
thermore, it returns pointers to all nodes on P , to all (information associated
with the) edges that connect pairs of those nodes (if there are any), as well as
to the new node z. Finally, if (u, v) was an edge of S, prior to the call of this
operation, with u /∈ P and v ∈ P , then (u, z) (in the new cactus) must contain
the same information that was previously associated with (u, v).

3For our algorithm, this information is a pointer to an edge of the original graph (whose maximal
3-edge-connected subgraphs we want to maintain).

532

• joinCactuses(S1, . . . , Sk, (x1, x2), . . . , (xk, x1)). Given a collection of cactuses
S1, . . . , Sk and nodes xi ∈ Si, i ∈ {1, . . . , k}, this operation links the cactuses
S1, . . . , Sk into a larger cactus by introducing the edges (x1, x2), . . . , (xk, x1)

(which induce a new cycle).

In Sections 8.5.1 and 8.5.2, we provide implementations for data structures
maintaining trees and cactuses where we can perform any sequence of operations
in O(n logn) time, assuming that the total number of nodes is at most n. To achieve
this time-bound, we will draw ideas from [35], [59], and [69]. Using these datastruc-
tures, we spend an additional O(n2 logn) time for the incremental maintenance of
the decomposition tree. To see this, recall that we use representations for the trees of
the 2-edge-connected components at levels 3k + 1 of the decomposition tree (where
0 ≤ k < n), and representations for the cactuses of the 3-edge-connected components
at levels 3k + 2 (where 0 ≤ k < n). Then, every operation compressPath, joinTrees,
compressCyclePath and joinCactuses is performed on structures on the same level.
Since there are O(n) levels on which these operations may be performed, and the
total number of nodes at any level is O(n), we get the O(n2 logn) time bound.

In Section 8.6, we use the more sophisticated implementations for those data
structures provided by [58], in order to get a O(nα(n, n))-time bound for perform-
ing any sequence of operations on trees or cactuses (on the same level), which gives
O(n2α(n, n)) in the total time bound of the algorithm for maintaining the decompo-
sition tree.

8.5.1 An implementation for trees

(a) Representation
An idea is to represent the trees as rooted trees. For every node x we let p(x)

denote its parent (if x is the root, we leave p(x) undefined). Also, every node x

has a pointer x.edge to the edge (x, p(x)) that connects x with its parent. We use a
DSU data structure to perform mergings of nodes. The DSU data structure supports
the operations find(x) and unite(x, y). Thus, in order to access the parent of node
x we actually use find(p(x)) (although we will not write this explicitly in what follows).

(b) Operations

533

We execute compressPath(T, x, y) as follows. We start from x and y, and we alter-
natingly climb up the tree following the parents, marking all nodes that we traverse,
until we meet an already marked node z. (This ensures that we traverse at most 2d−1
nodes, where d is the number of nodes of the simple path connecting x and y.) Then
there are two possibilities: either (1) z = x or z = y, or (2) z is neither x nor y. In the
first case, assuming w.l.o.g. that z = y, the path that we have to compress consists
of the nodes x, p(x), p(p(x)), . . . , y. In the second case, the path consists of two parts:
x, p(x), . . . , z and y, p(y), . . . , z. In case (1) we work as follows. We start from x; we
retrieve the edge (x, p(x)) (using the pointer stored in x), we call unite(x, p(x)), setting
as representative of the new set p(x), and we repeat, until we reach z = y. In case (2)
we work as in case (1) twice, starting from both x and y, until we reach z each time.

The joinTrees(T1, T2, (x, y)) operation works as follows. First, we determine which
of T1, T2 is smaller (w.r.t. its number of nodes). This can be done easily if we
maintain for every tree an attribute size indicating the number of its nodes. Assume
w.l.o.g. that the smallest tree is T1 (or that its size is equal to that of T2). Then we
reroot T1 at x, and we set p(x) ← y, x.edge ← (x, y), and T2.size ← T2.size + T1.size.
The rerooting of T1 at x is performed as follows. First we find the path P connecting
x with the root r of T1, by following the parents. Then we process the nodes of P in
reverse order, starting from r until we reach x (which we do not process), and we
simply hand over the information of every child to its parent. To be precise, let v be
a node that we process, and let u be the node on P that has p(u) = v. Then we set
p(v)← u and v.edge← u.edge.

(c) Analysis
For convenience in the time analysis, we may use a simple implementation for

the DSU data structure which performs all unions in O(n logn) time and every find
in O(1) worst-case time. Now, the total time it takes to perform any sequence of
compressPath operations is O(n logn). This is because, every time compressPath(T, x, y)
is performed, it takes O(|P |) time to find the simple path P that connects x and
y, using O(|P |) calls to the find operation. Then we merge the nodes of P (thereby
deleting them essentially), so they will not be traversed again. Thus, the total time
to find all paths, in all compressPath calls, is O(n). Therefore, the time bound for all
compressPath operations is dominated by that for performing the mergings (using the
union operation), and thus it is O(n logn).

534

When we perform a joinTrees operation on two trees, we may have to reroot the
smallest tree T , which means that we may have to traverse all of its nodes. This
takes O(|T |) time and uses O(|T |) calls to find. However, a node can only be accessed
during a rerooting (that is, it may lie on the smallest tree) at most O(logn) times
(because the trees are subsequently joined to produce a bigger tree whose size is at
least twice that of the smallest). Thus, we need at most O(n logn) steps to perform all
rerootings, using at most O(n logn) calls to the find operation. Thus, the total time,
for any sequence of compressPath and joinTrees operations, is at most O(n logn).

8.5.2 An implementation for cactuses

(a) Representation
In order to efficiently determine the cycle-path connecting two nodes of a cactus,

we represent the cactus as a rooted tree with “real nodes” and “cycle nodes”. Every
real node corresponds to a cactus node, and every cycle node corresponds to a cycle.
Thus, for every cactus S, there is a cactus tree T on the set of real and cycle nodes
corresponding to S, which is formed by adding edges corresponding to the incidence
relation of the real nodes to the cycle nodes. Specifically, there is an edge (x,C) in
T , where x is a real node and C is a cycle node, if and only if the cactus node
corresponding to x lies on the cactus cycle corresponding to C. We root this tree on
an arbitrary real node. Thus, the parent of a real node (different from the root) is a
cycle node, and the parent of a cycle node is a real node. The parent of a (real or
cycle) node v is denoted as p(v). We use a DSU data structure to perform mergings
of real nodes. This data structure supports find(x) and unite(x, y), Thus, in order to
access the parent of a cycle node C , we use find(p(C)).

In order to retrieve the information associated with the cactus edges and to effi-
ciently perform the “cycle-squeezing” operation, we use doubly-linked circular lists
to represent the cycles of the cactuses. Specifically, for every cycle C of a cactus, there
is a doubly-linked circular list L consisting of as many nodes as there are in C. The
nodes of L correspond to the nodes of C and are ordered accordingly. Every node
x of L has pointers x.left and x.right to its neighboring nodes, and pointers x.leftEdge
and x.rightEdge to the respective cactus edges.

Finally, we have the following correspondence between the nodes of the cactus
trees and the nodes of the circular lists. Let x be a real node of a cactus tree with

535

parent C. Then C corresponds to a cactus cycle and therefore to a circular list
L. Then we have a pointer for x to its corresponding node on L, and vice versa.
Furthermore, p(C) also corresponds to a node on L, but we do not keep a pointer
from p(C) to this node (because it cannot be uniquely determined from p(C), as
this can be the parent of many cycle nodes). Instead, we have a pointer from
C to the node of L corresponding to p(C). For notational convenience, we may
use the same name to denote a real node and its corresponding circular list node.
Also, for a cycle node C , we may denote the circular list node pointed to by C as p(C).

(b) Operations

compressCyclePath

To perform compressCyclePath(S, x, y) we work as follows. First, we determine the
cycle-path P connecting x and y. To do this, we work on the cactus tree associated
with S; we start from x and y, and we alternatingly climb up the tree following the
parents, marking all the nodes that we traverse, until we meet an already marked
node z. Then there are two possibilities: either (1) z = x or z = y, or (2) z is neither x
nor y. In the first case, assuming w.l.o.g. that z = x, P is given by the real nodes on
the ascended path starting from x. In the second case, P is given by two parts: by the
real nodes on the path starting from x and ending in z, and by the real nodes on the
path starting from y and ending in z. (Note that z can be either a cycle node or a real
node.) In case (1), assuming w.l.o.g. that z = x, let u1, C1, . . . , Ck, uk+1, where u1 = x

and uk+1 = y, be the cycle-path connecting x and y, including the cycles nodes that
are connected with every two consecutive real nodes. Then we only have to perform
the operations squeezeCycle(ui, ui+1, Ci), for every i ∈ {1, . . . , k}, successively. In case
(2), we work as in case (1) for every one of the two parts that form P . Furthermore,
in the case that z is a cycle node, we also have to perform squeezeCycle(u, v, z), where
u and v are the second-last nodes of the two parts that form P . In particular, let
u1, C1, . . . , uk, z and v1, C

′
1, . . . , vl, z, where u1 = x and v1 = y, be the two paths that

we ascended, starting from x and y, respectively. Then, in addition to all operations
squeezeCycle(ui, ui+1, Ci), for every i ∈ {1, . . . , k−1}, and squeezeCycle(vi, vi+1, C

′
i), for

every i ∈ {1, . . . , l − 1}, we also have to perform squeezeCycle(uk, vl, z).
Now let us describe in detail the operation squeezeCycle(u, v, C), where u and v

are real nodes connected with a cycle node C. (Intuitively, we want this operation to

536

“squeeze” the cycle C by merging its two nodes u and v.) We distinguish two cases,
depending on whether (i) u and v are related as ancestor and descendant, or (ii) u

and v are siblings on the rooted cactus tree (the later occurs in case (2) above, when
z is a cycle node).

(i) u and v are related as ancestor and descendant
We may assume w.l.o.g. that v is an ancestor of u. Thus we have p(u) = C and

p(C) = v. We distinguish three cases, depending on whether u has no siblings, or
u is the leftmost or rightmost child of C (to be defined shortly), or neither of the
previous two cases holds. First, if u has no siblings, then we simply return the two
edges that connect u and v, we discard the cycle C , and we merge u and v, setting as
representative of the union v. To return the two edges we use the pointer from u to
the node in the circular list corresponding to C (let us call it u again). Then the two
edges are precisely u.leftEdge and u.rightEdge. Now let us consider the case that u is
the leftmost or rightmost child of C. This is determined by checking whether u.left or
u.right, respectively, is the node pointed to by C (which essentially corresponds to v).
So let us assume that u.left = v (the case that u.right = v is treated analogously). The
first thing to do is to return the edge that connects u and v. This is simply u.leftEdge.
Then we discard the node u from the circular list and we update it accordingly. That
is, we set u.right.left ← v, v.right ← u.right, and v.rightEdge ← u.rightEdge. Finally, we
merge u and v (the real nodes on the cactus tree), setting as representative of the
union v.

Now we consider the third case. That is, we have that u.left ̸= v and u.right ̸= v.
(Notice that, in this case, there is no cactus edge connecting u and v.) Now the first
thing to do is to determine the smallest segment of the circular list L corresponding
to C that contains u and v. To achieve this efficiently, we start from u and v, and we
alternatingly follow the left pointers, marking all the nodes that we traverse, until
we meet an already marked node z. Then we have that either z = v or z = u. Let us
assume that z = v (the other case is treated analogously). Now we update the cactus
tree as follows. Let P be the internal path on L connecting u and v following the left
pointers starting from u (that is, P = u.left, u.left.left, . . . , v.right). We introduce a new
cycle node C ′, and we let C ′ be the parent of all the real nodes that correspond to
nodes of P . The parent of C ′ is set to be v, and we introduce a new circular list node
ṽ, corresponding to v on the cycle C ′. Thus, there is a pointer from C ′ to ṽ. Now

537

we detach P from L and we attach it appropriately to the circular list corresponding
to C ′. This is done by setting v.right.left ← ṽ, ṽ.right ← v.right, u.left.right ← ṽ, and
ṽ.left ← u.left. To maintain the cactus edges, we also set ṽ.rightEdge ← v.rightEdge
and ṽ.leftEdge ← u.leftEdge. In the list L we simply discard u and we update L

accordingly. That is, we set u.right.left ← v and v.right ← u.right. Again, to maintain
the cactus edge, we also set v.rightEdge ← u.rightEdge. Finally, we merge u and v

(the real nodes on the cactus tree), setting as representative of the union v.

(ii) u and v are related as siblings
Let us assume first that (the circular list nodes corresponding to) u and v are

neighbors. This means that either u.left = v or u.right = v. Suppose that u.left = v (the
other case is treated similarly). First we return u.leftEdge: the edge that connects u

and v. Then we discard u from the circular list and we update it accordingly. That
is, we set v.right ← u.right, u.right.left ← v, and v.rightEdge ← u.rightEdge. Finally, we
merge u and v (on the cactus tree), setting as representative of the union v.

Now suppose that u and v are not neighbors. This means that u.left ̸= v and
u.right ̸= v. (Notice that, in this case, there is no cactus edge connecting u and v.) Let
C be the common parent of u and v, and let w = p(C). Let also L be the circular list
corresponding to C , and denote as w the node of L pointed to by C. Now the first
thing to do is to determine the smallest part of L that contains u and v. To achieve
this efficiently, we start from u and v, and we alternatingly follow the left pointers,
marking all the nodes that we traverse, until we meet an already marked node z.
Then we have that either z = v or z = u. Let us assume that z = v (the other case is
treated analogously). Let P be the internal path on L connecting u and v following
the left pointers starting from u (that is, P = u.left, u.left.left, . . . , v.right). Here we
have that either w /∈ P or w ∈ P . If w /∈ P , then we work precisely as in the second
paragraph of case (ii) above. So let us assume that w ∈ P . Then we introduce a
new cycle node C ′, we let C ′ be the parent of all the real nodes that correspond to
nodes of P \w, and we let C ′ point to w. Then we introduce a new circular list node
ṽ (corresponding to the node that will be formed by merging u and v), we let C
point to ṽ, and we attach the segment L \ (P ∪ {u, v}) of L to ṽ. Again, this is done
precisely as in the second paragraph of case (ii) above. Furthermore, we discard the
circular list node u, and we properly update the list corresponding to C ′. That is, we
set v.right← u.right, u.right.left← v, and v.rightEdge← u.rightEdge. Finally, we let the

538

parent of C be v, and we merge u and v (the real nodes on the cactus tree), setting
as representative of the union v.

joinCactuses

To perform joinCactuses(S1, . . . , Sk, (x1, x2), . . . , (xk, x1)), we first have to find the
largest (w.r.t. its number of nodes) cactus among S1, . . . , Sk. This can be done easily
if we keep for every cactus an attribute size, signifying its number of nodes. Now let
us assume, w.l.o.g., that one of the cactuses with the greatest size is Sk. Then we
have to do two things: to reroot the cactuses S1, . . . , Sk−1 on their nodes that are to
be connected on a new cycle, and then to form the cycle (x1, x2), . . . , (xk, x1).

Let us describe how to perform a rerooting of a cactus S at a node x ∈ S. We
assume that x is not the root of the cactus tree of S (for otherwise there is nothing
to do). First we find the path on the cactus tree that connects x with the root by
following the parents. This has the form u1, C1, . . . , Ct−1, ut, where u1, . . . , ut are real
nodes with u1 = x, and C1, . . . , Ct−1 are cycle nodes. Then we process this path in
reverse order, and for every triple (u,C, v), where u, v are real nodes and C is a cycle
node, we do the following. (Due to reverse processing, notice that we have p(v) = C

and p(C) = u.) Let L be the circular list corresponding to C. Then we simply change
the pointer of C , so that it points to the node of L corresponding to v, and we
reverse the parent relation between the nodes of (u,C, v). (Thus, we set p(u) ← C

and p(C)← v.) Finally, we update the status of x so that it is recognized as the root.
Thus we may assume that the cactus tree of every Si, i ∈ {1, . . . , k − 1},

is rooted at xi. Now we introduce a new cycle node C , and we set the par-
ent of every xi, i ∈ {1, . . . , k − 1}, to be C , and the parent of C to be xk.
Then we introduce new circular list nodes x̃1, . . . , x̃k, pointers between xi and
x̃i (in both directions), for every i ∈ {1, . . . , k − 1}, and we let C point to x̃k.
All nodes x̃i are linked in a circular structure according to their ordering on
the new cycle. That is, we set x̃i.left ← x̃i−1, for i ∈ {2, . . . , k}, x̃1.left ← x̃k,
x̃i.right ← x̃i+1, for i ∈ {1, . . . , k − 1}, and x̃k.right ← x̃1. Furthermore, we fix the
pointers to the newly introduced edges. That is, we set x̃i.leftEdge ← (xi−1, xi), for
i ∈ {2, . . . , k}, x̃1.leftEdge ← (xk, x1), x̃i.rightEdge ← (xi, xi+1), for i ∈ {1, . . . , k − 1},
and x̃k.rightEdge ← (xk, x1). Finally, we set Sk.size ← S1.size + · · · + Sk−1.size, and the
description of joinCactuses(S1, . . . , Sk, (x1, x2), . . . , (xk, x1)) is complete.

539

(c) Analysis
First, if we use a simple implementation for the DSU data structure which performs

all unions in O(n logn) time and every find in O(1) worst-case time, we can argue
as in the analysis for the data structure for trees, that the total time it takes to
find and merge all cycle-path during any sequence of compressCyclePath operations
is O(n logn). Thus we only have to consider the total time it takes to perform all
squeezeCycle operations. Recall that squeezeCycle(u, v, C) has to find the smallest
segment P of the circular list corresponding to C that contains u and v (all other
operations of squeezeCycle(u, v, C) take O(1) time in total). This is performed in
O(|P |) time, and then P forms a new circular list on its own (plus at most one more
node). We say that the two new cycles into which C was squeezed are formed by C.
(Thus, we may observe that after any repeated application of squeezeCycle operations
on C and on cycles formed by C , we have that all cycles formed by C form a cactus.)
We overload our terminology by saying that a node of a cycle formed by C is also
a node of C. Now we may argue as follows. Fix a cycle C of size k and a node
x ∈ C. Then we observe that in any sequence of squeezeCycle operations on C or
on cycles formed by C , x can be part of the smallest segment (on a circular list)
explored by squeezeCycle at most O(log k) times. Thus, the total time to perform any
sequence of squeezeCycle operations on C or on cycles formed by C is O(k log k). Now
observe that the cycles are introduced into the collection of cactuses by the operation
joinCactuses; and that once a cycle has been introduced, it can only get squeezed to
form smaller cactuses. Thus, let k1, . . . , kt be the sizes of all cycles that have been
introduced in the data structure by the operation joinCactuses. Then we have that
the total time to perform all squeezeCycle operations is O(k1 log k1 + · · ·+ kt log kt) =
O(k1 logn + · · · + kt logn) = O((k1 + · · · + kt) logn) = O(n logn), since ki = O(n), for
every i ∈ {1, . . . , t}, and k1 + · · ·+ kt = O(n).

When we perform a joinCactuses operation on some cactuses, we may have to
reroot the smallest ones, which means that we may have to access all of their nodes.
However, we can argue as in the analysis of the data structure for trees, in order to
show that the total time-bound for all rerootings is O(n logn). All the other operations
performed in joinCactuses take time analogous to the number of the cactuses involved.
Since the total size of all cycles that we can introduce (while maintaining a collection
of cactuses on n nodes) is O(n), this shows that the total time for any sequence of
joinCactuses operations is O(n logn).

540

8.6 Improved data structures for trees and cactuses

Here we provide data structures and algorithms for the operations compressPath,
joinTrees, compressCyclePath and joinCactuses, on collections of trees and cactuses
with at most n nodes, with time bounds better than O(n logn). To be precise, any
sequence of m operations on collections of trees or cactuses with at most n nodes can
be performed in O((n+m)α(m,n)) time in total. The analysis for this time bound is
essentially contained in [59] and [58]; our own additions in the algorithms of [59]
and [58] involve only a worst-case O(1) calls to some DSU operations and a worst-case
O(1) pointer manipulations, for every operation performed. Also, the arguments that
establish correctness are sufficiently contained in the description of the algorithms.

Now, to achieve this time bound, we will basically use the data structures provided
by La Poutré et al. [59], [58], with some minor additions to suit our purposes. These
data structures rely on the so-called “fractionally rooted trees” (FRT), introduced in
[58]. In the next section we give a brief overview of the operations supported by
FRTs. Then we describe the implementations for collections of trees and cactuses. We
only give as many details of the data structures and algorithms of [59] and [58] as
are needed in order to show where our own additions fit in and establish our results.

8.6.1 Fractionally rooted trees

The FRT data structure operates on a forest F equipped with a partition of its edges
such that the classes corresponding to this partition induce subtrees of F . Before we
describe the operations supported by FRT, we introduce some terminology. We say
that a node x of F belongs to an edge class if it is incident to at least one edge of
that class. Also, we say that an edge class intersects a path P if P contains at least
one edge of that class. Now let x, y be two nodes of a tree of F , and let P be the
simple path that connects them. We call a node z on P a boundary node of P if it is
either one of x, y or it is incident to two edges of P which belong to different classes.
A boundary edge set for a boundary node z on P is a set of (0, 1 or 2) edges incident
to z, one from each edge class to which z belongs and which intersects P . (We do
not demand that the edges in a boundary edge set for z lie on P ; however, one of
their endpoints must be z.) A boundary list for P is a list consisting of the boundary
nodes of P , where each boundary node has a sublist that contains a boundary edge
set for it on P . Now let L be a list of nodes where each node has a sublist of edges.

541

We say that an edge class occurs in L, or that L contains an edge class, if there is an
edge of that class in some sublist of L. The edge classes of L are precisely those that
occur in it. A joining list J is a list of nodes with sublists of edges such that the union
of the classes occurring in J induces some subtree in F . (We note that this is always
the case for a boundary list of a path.) In addition, the nodes in J must be the nodes
belonging to at least two edge classes occurring in J , and the sublist for each node
contains an edge for each class in J to which this node belongs. (Thus we have that
a boundary list of a path is a joining list if we remove the endpoints of the path from
the list.)

Now the operations supported by FRT are the following.

• link(x, y). Let x, y be two nodes lying on different trees of F . Then join the two
trees by introducing a new edge (x, y) in the FRT data structure.

• boundary(x, y). Let x, y be two nodes lying on the same tree of F . Then return
a boundary list for the simple path with endpoints x and y.

• joinclasses(J). Let J be a joining list. Then join all the edge classes of which
an edge occurs in the list.

We say that a call boundary(x, y) is essential if there are at least two different
edge classes that intersect the simple path that connects x and y. (Equivalently, a call
boundary(x, y) is essential if the boundary list that it provides contains more than two
nodes.)

By [58], we have the following result.

Theorem 8.2. (Theorem 9.2 in [58]) There is an implementation of fractionally rooted
trees with the following guarantee. Suppose that we start with an empty forest, and we
perform n insertions of nodes and m operations link, boundary, and joinclasses, where
every essential call of boundary is immediately followed by joinclasses on a joining list
that contains all the edge classes that occur in the list provided by boundary. Then all these
operations can be performed in total O((n+m)α(m,n)) time.

8.6.2 An implementation for trees

(a) Representation

542

For the operations compressPath and joinTrees on collections of trees, we essen-
tially use the solution of La Poutré for the incremental maintenance of the 2-edge-
connected components in general graphs with asymptotically optimal time complexity
[58].

Thus we represent the collection of trees C as a forest F , which is implemented
as an FRT data structure. Every tree T ∈ C corresponds to a tree TFRT of F . The
edges of F are partitioned into edge classes, where every edge class induces a subtree
of F . Some edges of F are called bridges and belong to singleton classes which are
called quasi classes. All other edge classes are called real. There is an one-to-one
correspondence between the edges of a tree T ∈ C and the bridges of TFRT. Thus
every edge of TFRT that is a bridge contains a pointer to its corresponding edge on
T . Every node x of TFRT belongs to at most one real class. For every node x that
belongs to a real class, we maintain an edge xassoc of that class. By shrinking the
subtrees that are induced by the real classes into single nodes, we get a natural
isomorphism between T and TFRT. (The idea here is that the subtrees induced by the
real classes correspond to maximal sets of nodes that got merged due to the operation
compressPath.) Thus, every node x ∈ T corresponds to a subset S of TFRT, and we
associate x with a node xFRT of S; conversely, every node in S is associated with
x. To implement the later, we use a DSU data structure DSUF on the nodes of F ,
where the representatives of the sets are nodes of the trees of C. DSUF supports the
operations findF and uniteF . Thus, in order to find which node of C corresponds to
a node u of F , we use findF (u). DSUF (and every other DSU data structure in the
sequel) is implemented using rooted trees, with path compression and union by size,
thus achieving the asymptotically optimal time complexity [64].

We can summarize the above properties as follows.

Property 8.3. Let x, y be two nodes of a tree T ∈ C, and let P be the simple path on T

that connects x and y. Let also P̃ be the simple path on TFRT that connects xFRT and yFRT.
Then there is an one-to-one correspondence between the edges of P and the edges of P̃ that
are bridges. This correspondence is compatible with that between the nodes of T and the nodes
of TFRT. In other words, for every bridge (u, v) on P̃ , there is an edge (findF (u), findF (v))
on P .

(b) Operations
compressPath

543

Let x and y be two distinct nodes of a tree T ∈ C, and let P be the simple path on
T that connects x and y. To perform compressPath(T, x, y) we work as follows. First
we call boundary(xFRT, yFRT) to obtain a boundary list L for the simple path P̃ that
connects xFRT and yFRT on TFRT. According to Property 8.3, in order to retrieve the
edges of P , it is sufficient to identify the edges of P̃ that are bridges. Since bridges
belong to singleton (quasi) classes, we have that every bridge of P̃ must lie in the
sublist of some node in L. Thus we can retrieve the bridges of P̃ by scanning the
sublists of L. (Incidentally, we note here that the efficiency of the operation boundary
lies in the fact that it only computes boundary nodes and corresponding edge classes,
without always traversing the entire path.) Furthermore, using again Property 8.3,
we can retrieve the nodes of P using the operation findF of DSUF on the endpoints
of every bridge of P̃ .

Now, for every node u in L that is incident to a real class, we append uassoc to the
sublist of u. This is to ensure that the real class to which u belongs will get joined
to all classes that occur in L. (Because there is a possibility that the edge classes to
which u belongs and that intersect P̃ are quasi classes, and so L does not contain
any edge from the real edge class to which u belongs.) If either xFRT or yFRT still has
only one edge in its sublist, then it is removed from L. (This is to ensure that L is
a joining list.) If L is non-empty, then we call joinclasses(L). Otherwise, we have that
xFRT and yFRT are connected with a bridge (xFRT, yFRT) on TFRT. Then we just change
the status of (xFRT, yFRT) so that it is no longer marked as a bridge, and we convert
the quasi class that contains (xFRT, yFRT) to a real class. We let the associated edge of
every node on P̃ be any edge on P̃ . (For this purpose, we may keep in a variable etemp

the edge that was in the boundary edge set of xFRT after the call boundary(xFRT, yFRT);
so now we set uassoc ← etemp for every node u on P̃ .) We introduce a new node z on T

that replaces the entire path P , and we let zFRT be any node on P̃ . Finally, we unite
all nodes on P̃ using DSUF , and we let z be the representative of the resulting set.
This completes the description of compressPath, which is summarized in Algorithm 60.

joinTrees

Let T1 and T2 be two distinct trees of C, and let x ∈ T1 and y ∈ T2. Then
joinTrees(T1, T2, (x, y)) is performed by simply calling link(xFRT, yFRT), where
(xFRT, yFRT) is marked as a bridge and the corresponding singleton edge class is
marked as a quasi class. Finally we let (xFRT, yFRT) point to (x, y). (See Algorithm 61.)

544

Algorithm 60: compressPath(T, x, y)

1 P ← ∅ // the set of nodes of the simple path on T that connects x and y

2 E ← ∅ // the set of edges of T to be returned

3 L← boundary(xFRT, yFRT)

4 let etemp be the edge in the sublist of xFRT in L

5 foreach node u in L do
6 foreach edge e in the sublist of u do
7 if e is a bridge then
8 ẽ← edge of T pointed to by e

9 E ← E ∪ {ẽ}
// let e = (z1, z2)

10 x1 ← findF (z1)
11 x2 ← findF (z2)
12 P ← P ∪ {x1, x2}

13 end

14 end
15 if uassoc ̸= ∅ then append uassoc to the sublist of u
16 if the sublist of u contains only one edge then remove u from L

17 end
18 if L ̸= ∅ then joinclasses(L)

19 else
20 unmark (xFRT, yFRT) as a bridge
21 mark {(xFRT, yFRT)} as a real class

22 end
23 foreach node u in L ∪ {xFRT, yFRT} do set uassoc ← etemp

24 let z be a new node on T that replaces the path P

25 unite all nodes in L ∪ {xFRT, yFRT} using DSUF ; let z be the representative
26 set zFRT ← xFRT

27 return {P, E , z}

545

Algorithm 61: joinTrees(T1, T2, (x, y))

1 link(xFRT, yFRT)

2 mark (xFRT, yFRT) as a bridge
3 mark {(xFRT, yFRT)} as a quasi class
4 make (xFRT, yFRT) point to (x, y)

8.6.3 An implementation for cactuses

(a) Representation
Following [58], we represent the cactuses with a data structure that generalizes

the concept of the tree of cycles. Recall that the tree of cycles of a cactus is the graph
that represents the incidence relation of the nodes of the cactus to its cycles [35], [59].
By the definition of the cactus, we have that this graph is a tree. Now we generalize
the tree of cycles as follows.

• We partition the cactus S into subcactuses. Based on this partition, we have
the graph T that represents the incidence relation of the nodes of S to the
subcactuses. (Again, we have that T is a tree.)

• We allow T to be extended with extra nodes, that serve as copies of the nodes of
S. However, we demand that the resulting graph is also a tree. All nodes of T
that serve as copies of the same node of S are said to belong to the same cluster.
(Thus, the set of clusters is a partition of the set of nodes of T that correspond
to nodes of S.)

We call this type of representation of a cactus S a tree of cactuses. See Figure 8.6
for an example of this kind of representation. (We note that, contrary to the tree of
cycles, a tree-of-cactuses representation of a cactus is not unique.) We distinguish two
types of nodes in a tree of cactuses: those that correspond to the nodes of S, and they
are called real nodes, and those that correspond to the subcactuses of S, and they are
called cactus nodes. Thus we have a correspondence between the nodes of S and the
real nodes of a tree-of-cactuses representation T of S. Furthermore, we may speak
of the nodes of a cactus node C , and by that we mean the nodes of the subcactus of
S that corresponds to C.

In our implementation, every node of S has a pointer to a unique corresponding
node on T ; whenever no confusion arises, we will denote these two nodes with the

546

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

1

2

3

4

5

7

6a

6b
9b

15

11

10

9a

12

13

14

1

2

16

5

7 11

8

9

12

13

14

15

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

(A)

(B)

(C)

8

1

2

3

4

5

7

6a

6b
9b 11

10

9a

12

13

14

8

1

2

16b

16a

5

7

16c

16e
9b 11

16d

9a

12

13

14

8

15

15

Figure 8.6: An example of a tree-of-cactuses representation of a cactus. The square nodes
are the cactus nodes. In figures A and C we can see the corresponding subcactuses of some

cactus nodes. The edges that belong to the same edge class are painted with the same colour.

The edges in black colour constitute singleton edge classes. We can see that some real nodes

correspond to the same nodes of the cactus (and thus they belong to the same cluster). For

example, real nodes 6a and 6b, in figure A, correspond to node 6 of the cactus. In figure B

we can see an intermediate step of the call compressCyclePath(4, 10): this is where we have to

determine the path on the tree that connects 4 and 10. In figure C we can see the result of

this call. The nodes 4, 3, 6 and 10 were merged into a new node, which is called 16. Observe

that, in order to determine that 6 was also part of the cycle path connecting 4 and 10, we were

guided by the associated data structure of an intermediary cactus node. Notice also that the

operation compressCyclePath does not affect the structure of the tree of cactuses, but only its

edge classes, the names of its real nodes, and the associated data structures of the involved

cactus nodes.

547

same symbol. Conversely, every node of T has a pointer to its corresponding node
on S. Specifically, to maintain the later correspondence we use a DSU data structure
DSUcls on the real nodes of T whose sets coincide with the clusters. This data structure
supports the operations findcls and unitecls. Every cluster has a representative real node
z in it, which can be found with a call findcls(x) on any node x in this cluster. Then
we only need to maintain the pointer of z to its corresponding node on S. Finally,
every edge (x,C), where x is a real node and C is a cactus node, has pointers to its
endpoints x and C.

Now let T be a tree of cactuses of a cactus S. We equip the set of edges of T with
the following equivalence relation. If (x,C1) and (x,C2) are two edges of T , where x

is a real node and C1, C2 are two cactus nodes, then (x,C1) and (x,C2) are equivalent.
Furthermore, if (x,C) and (x′, C ′) are two edges of T , where x and x′ belong to the
same cluster and C,C ′ are cactus nodes, then (x,C) and (x′, C ′) are equivalent. It
should be clear that this is indeed an equivalence relation, and that its equivalence
classes induce subtrees of T . Thus, on a set of trees of cactuses (representing a set of
cactuses), each one equipped with its respective equivalence relation, we can perform
the operations of an FRT data structure. Furthermore, it should also be clear that
every node x (in a non-trivial tree of cactuses) belongs to a unique edge class, and
we associate to x an edge xassoc of that class.

Before we describe how we can use the FRT operations to perform
compressCyclePath and joinCactuses, let us give an overview of what is involved
in using a tree-of-cactuses representation T of a cactus S in order to determine cycle
paths on S. So let x, y be two nodes of S. Let also Q be the cycle path on S connecting
x and y, and let P = z1, C1, . . . , Ck−1, zk be the simple path on T with endpoints x and
y, where z1 = x, zk = y, and C1, . . . , Ck−1 are the intermediary cactus nodes. Then
we have that Q consists of (the nodes of S that correspond to) all the real nodes on
P , plus (the nodes of S that correspond to) some nodes w1, . . . , wt that are incident
to the cactuses C1, . . . , Ck−1. The nodes w1, . . . , wt are precisely those that appear on
the cycle paths of the subcactuses of S corresponding to C1, . . . , Ck−1 that form part
of Q. Thus, in order to determine w1, . . . , wt, we are guided by some data structures
associated with C1, . . . , Ck−1 that represent cactuses. (See also Figure 8.6.) For this
purpose we use the data structures of [59], that represent the cactuses as rooted
trees of cycles equipped with circular split-find structures. (These representations are
used to solve the problem of the incremental maintenance of the 3-edge-connected

548

components of 2-edge-connected graphs in asymptotically optimal time. We will not
give a full exposition of this representation here, but later on we will describe how
to augment it in order to facilitate the retrieval of the cactus edges.) Furthermore,
in order to retrieve the edges of S that connect any pair of consecutive nodes on Q,
we use precisely the data structures associated with C1, . . . , Ck−1, as the information
concerning the cactus edges is stored in the intermediary cactuses.

Now we recall that a circular split-find data structure operates on a collection of
circular lists, where every list is related with a representative element, and supports
the operations find and split. find(x) on a list node x returns the representative of the
list containing x. split(x, y) on two distinct nodes x and y of the same list creates two
new circular lists, consisting of the nodes from x (resp. y) and up to - but excluding -
y (resp. x), following the same direction in both cases (e.g., the left one), and relates
each new list with a representative element. [56] provides an implementation for the
circular split-find problem, where we can perform m operations split and find on a
collection of circular lists on n element in O(n+mα(m,n)) time in total.

In the tree-of-cycles representation of cactuses used by [59], the circular lists
correspond to the cycles of the cactus. Specifically, let C be a cycle of a cactus. Then,
for every node x of C , there is an element repr(x,C) that corresponds to the edge
(x,C) of the tree of cycles. Now, the circular list corresponding to C consists precisely
of the elements repr(x,C), for every node x of C , ordered in the same way in which
the nodes of C occur on C.

(We note that, in order to retrieve x or C from an element repr(x,C), we use a find
operation on a DSU data structure that operates on the collection of all repr elements.
In fact, we use two different DSU data structures: one for retrieving the node x from
an element repr(x,C), and one for retrieving C from repr(x,C). However, we will not
mention explicitly those DSU data structures, because with an optimal implementation
[64] they do not affect the asymptotical time bounds.)

Now we have to augment the information on the circular lists, in order to be able
to return the cactus edges that connect consecutive nodes on cycle paths on a cactus.
To achieve this, we simply store four pointers left, right, leftEdge and rightEdge on every
repr element. Specifically, let C be a cycle of the cactus, and suppose that we have a
specific orientation of its nodes (that is, a way to determine, given two consecutive
nodes x and y on C , which one is on the left and which one is on the right). Now
let x and y be two consecutive nodes of C , where x is on the left of y. Then we have

549

repr(y, C).left = repr(x,C), repr(x,C).right = repr(y, C), repr(y, C).leftEdge = (x, y) and
repr(x,C).rightEdge = (x, y).

Finally, for every edge (x,C) on a tree of cactuses, where x is a real node and C is
a cactus node, we have a pointer from (x,C) to the node in the associated structure
of C that corresponds to x, and reversely. (To be more precise, in order to maintain
the reverse correspondence we use a DSU data structure that operates internally
on the nodes of the tree of cycles representing C. This is because the operations
on this data structure merge nodes into larger sets from time to time; and thus we
maintain representatives of those sets, and pointers from those representatives to
their corresponding nodes on the tree of cactuses. However, we will not mention
explicitly the calls to this DSU data structure in what follows, since they do not affect
the asymptotical time complexity overall.)

(b) Operations
compressCyclePath

To perform compressCyclePath(S, x, y) (with x ̸= y), we first have to determine the
cycle path connecting x and y on S. Let us use the same symbols, x and y, to denote
the real nodes on the tree-of-cactuses representation T of S that correspond to x and
y, respectively. As we noted in subsection (a), we have to determine two things: first,
the simple path P = z1, C1, . . . , Ck−1, zk on T that connects x and y, where z1 = x,
zk = y, and C1, . . . , Ck−1 are the intermediary cactus nodes, and second, the real
nodes w1, . . . , wt that are incident to some of the cactuses C1, . . . , Ck−1 and that have
to get merged too with the other nodes. The property that characterizes the nodes
w1, . . . , wt can be explained as follows. For every edge (z, C) on P , where z is a real
node and C is a cactus node, we let z̃ denote the node in the associated tree of cycles
of C that is pointed to by (z, C) (and corresponds essentially to z, and to any other
node in the cluster of z). Now suppose that, for some i ∈ {1, . . . , k − 1}, (zi, Ci) and
(Ci, zi+1) belong to different edge classes. Then z̃i and z̃i+1 are different nodes of (the
associated structure to) C , and so we have to find and merge the cycle path on C

with endpoints z̃i and z̃i+1 (and also return the cactus edges that connect consecutive
nodes on this path). The nodes on this cycle path are a subset of w1, . . . , wt; and with
this procedure, applied to all i ∈ {1, . . . , k − 1}, we get precisely all w1, . . . , wt.

Now we notice that it is sufficient to determine only the subset of cactuses
C1, . . . , Ck−1 that consists of all Ci, i ∈ {1, . . . , k − 1}, such that (zi, Ci) and (Ci, zi+1)

550

belong to different edge classes. (This is because, if (zi, Ci) and (Ci, zi+1) belong to the
same edge class, then zi and zi+1 correspond to the same node of S, and therefore no
real nodes incident to Ci will be involved, and no operations on the associated data
structure of Ci will have to be performed.) We can determine those cactuses with a
call boundary(x, y) on T , by discarding the nodes x and y from the resulting boundary
list L. (Observe that the intermediary real nodes of P will not appear in L, since all
the edges that they are incident to belong to the same edge class.) Let D1, . . . , Dl

be the nodes that appear in L. Then, for every i ∈ {1, . . . , l}, there is an a(i) such
that Di = Ca(i). Now, for every i ∈ {1, . . . , l}, Di contains a sublist in L consisting
of two edges (z′i1 , Di) and (z′i2 , Di), such that (z′i1 , Di) and (za(i), Ca(i)) (resp. (z′i2 , Di)

and (Ca(i), za(i)+1)) belong to the same edge class. This implies that z′i1 corresponds
to the same node as za(i), and z′i2 corresponds to the same node as za(i)+1. Thus, the
node (in the associated data structure) of Di pointed to by (z′i1 , Di) (resp. (z′i2 , Di)) is
precisely the node that is pointed to by (za(i), Ca(i)) (resp. (Ca(i), za(i)+1)), and so we
can get z̃a(i) (resp. z̃a(i)+1) from this pointer.

Now, for every i ∈ {1, . . . , l}, we have to do the following things: (1) determine
the cycle path on Di whose nodes we have to merge, (2) find the cactus edges that
connect consecutive nodes on this path, (3) find the corresponding nodes on the tree of
cactuses T , and (4) merge the nodes on this path and properly update the associated
data structure of Di. Let z1 and z2 be nodes on Di that are the endpoints of the cycle
path we have to determine. (We recall that z1 and z2 are given by the pointers stored
in (z′i1 , Di) and (z′i2 , Di).) We will not provide the details on how to determine this
path (i.e., how to perform (1)), as these can be found in [59]. (In particular, we use the
procedure TreePath3 in [59].) To perform (2), we use the pointers that we introduced
in the repr elements of the circular split-find data structures. To be more precise, once
we have determined the cycle path that connects z1 and z2, we then have to perform
a split operation on every cycle involved in this path. (For the full details of what
is involved in this step, see the procedure AdjustCycles in [59].) So let C be a cycle
that we have to split on nodes u1 and u2. (We have that u1 and u2 are nodes on the
cycle path connecting z1 and z2.) Then we check whether repr(u1, C).left = repr(u2, C)

or repr(u1, C).right = repr(u2, C), or both. If either case holds, we have to return
repr(u1, C).leftEdge or repr(u1, C).rightEdge, or both, respectively. For (3) we simply
use the pointer of every node on the cycle path to the corresponding edge of T . (In
particular, notice that for z1 and z2 we will get edges that belong to the same edge

551

classes as (z′i1 , Di) and (z′i2 , Di), respectively. Every other edge (w,Di) that we get,
belongs to a different edge class, and provides one of the extra nodes w1, . . . , wt that we
have to merge (and which cannot be derived simply from the call boundary).) Finally,
we will only provide the details to (4) that have to do with the additional information
that we have attached to the associated data structure of C; for the rest, we refer again
to [59]. We first have to ensure that the pointers of the repr elements of the circular
lists are updated correctly after the splittings. So let C be a cycle that we split on nodes
u1 and u2. Then repr(u1, C) and repr(u2, C) are assigned to different circular lists; let
us call them L1 and L2, respectively. Suppose that L1 contains more that one element
(for otherwise there is nothing to do for repr(u1, C)). Then, one of repr(u1, C).left,
repr(u1, C).right has been assigned to L1, and the other one has been assigned to L2.
Assume w.l.o.g. that repr(u1, C).left has been assigned to L1 (i.e., the same list that
repr(u1, C) has been assigned to). Then we must set repr(u1, C).right← repr(u2, C).right
and repr(u1, C).rightEdge ← repr(u2, C).rightEdge. The other case for repr(u1, C) and
the analogous cases for repr(u2, C) are treated similarly. To conclude (4), we note that
the correspondence between the nodes of (the associated data structure to) Di and
the edges of the tree of cactuses T is maintained, because, although the nodes of the
cycle path on Di that connects z1 and z2 got merged, this was done using a DSU data
structure internal to the associated data structure to Di. Thus we only have to make
sure that, in order to access the node in an associated tree of cycles that corresponds
to an edge of the tree of cactuses, we first perform a find on the node pointed to by
this edge, using the internal DSU data structure. Algorithm 62 shows the operations
that are performed in the associated data structure of Di.

Thus, from the internal operations on the associated structure of every cactus
node Di, i ∈ {1, . . . , l}, we get a collection of edges (wi,1, Di), . . . , (wi,ki , Di) that we
include in the edge sublist of Di in L. Furthermore, from the edges {(wi,j, Di) | i ∈
{1, . . . , l}, j ∈ {1, . . . , ki}} we get the nodes of the cycle path on S that connects x

and y, by using the pointer from every (wi,j, Di) to wi,j , and then the pointer from
findcls(wi,j) to the corresponding node of S.

To conclude compressCyclePath(S, x, y) we call joinclasses(L), we return a pointer to
a new node z that takes the place of all the nodes on the cycle path on S connecting
x and y, we merge all wi,j , i ∈ {1, . . . , l}, j ∈ {1, . . . , ki} into a larger cluster (using the
DSUcls data structure), and we let z point to the representative of this cluster, and
reversely. The operation compressCyclePath(S, x, y) is summarized in Algorithm 63.

552

Algorithm 62: updateCactus(D, z1, z2)

// compress the cycle path on D that connects z1 and z2 using the

associated data structure; return the set of cactus edges that connect

consecutive nodes on this path, and a list of edges on the tree of

cactuses that contains D that correspond to the nodes of this path

1 E ← ∅ // the set of cactus edges to be returned

2 edgelist← ∅ // the list of corresponding edges to be returned

3 find the cycle path P = {u1, . . . , uk} of D that connects z1 and z2 // for this

step we refer to [59]

4 foreach i ∈ {1, . . . , k − 1} do
5 let C be the cycle that contains ui and ui+1

6 if repr(ui, C).left = repr(ui+1, C) then
7 E ← E ∪ repr(ui, C).leftEdge
8 end
9 if repr(ui, C).right = repr(ui+1, C) then
10 E ← E ∪ repr(ui, C).rightEdge
11 end

12 end
13 foreach u ∈ {u1, . . . , uk} do
14 get the edge (ũ, D) that is pointed to by u

15 edgelist← edgelist ∪ {(ũ, D)}

16 end
17 merge the nodes on P and properly update the data structure // again, for

this step we refer to [59]

18 fix the pointers left, right, leftEdge and rightEdge of the repr elements, as
described in the text

19 return {E , edgelist}

joinCactuses

To perform joinCactuses(S1, . . . , Sk, (x1, x2), . . . , (xk, x1)), we have to link the nodes
x1, . . . , xk in a new cycle. Thus we introduce a new cactus node C (that will be
made to correspond to the new cycle) and the edges (x1, C), . . . , (xk, C), by perform-

553

Algorithm 63: compressCyclePath(S, x, y)

1 P ← ∅ // the set of nodes of the cycle path on S that connects x and y

2 E ← ∅ // the set of edges of S to be returned

3 L← boundary(x, y)

4 remove x and y from L

5 foreach node C in L do
6 let (z1, C) and (z2, C) be the two edges in the sublist of C in L

7 let z̃1 be the node pointed to by (z1, C) in the associated data structure of
C

8 let z̃2 be the node pointed to by (z2, C) in the associated data structure of
C

9 {E0, edgelist} ← updateCactus(C, z̃1, z̃2)

10 E ← E ∪ E0
11 foreach edge (w,C) in edgelist do
12 get w using the pointer from (w,C)

13 get the node u of S that corresponds to w, using the pointer of
findcls(w)

14 P ← P ∪ {u}

15 end
16 append edgelist to the sublist of C in L

17 end
18 joinclasses(L)

19 let z be a new node on S substituting the cycle path P

20 merge all the real nodes that appear as endpoints of the edges in the sublists
of L using DSUcls; let z̃ be the representative

21 make z point to z̃ and z̃ to z

22 return {P, E , z}

ing link(x1, C), . . . , link(xk, C). This links all the trees of cactuses corresponding to
S1, . . . , Sk to C , and produces a larger tree of cactuses. For every x ∈ {x1, . . . , xk}
that has an associated edge xassoc, we put (x,C) in the edge class of xassoc by a call
of joinclasses. If an x ∈ {x1, . . . , xk} does not have an associated edge, then (x,C)

constitutes a new edge class of its own, and the associated edge of x is set to be

554

xassoc ← (x,C).
Then we have to construct the associated data structure to the cactus node C.

This must be a rooted tree of cycles which contains only one cycle C̃ with nodes
corresponding to x1, . . . , xk, in this order. Let x̃1, . . . , x̃k be the nodes of C̃ that corre-
spond to x1, . . . , xk, respectively. We root the tree arbitrarily to any one of x̃1, . . . , x̃k.
Then we construct the circular list corresponding to C̃. The nodes of this list are
the elements repr(x̃1, C̃), . . . , repr(x̃k, C̃), in this order. The pointers left and right on
the repr elements are easy to fix. Also, we set repr(x̃i, C̃).leftEdge ← (xi−1, xi), for ev-
ery i ∈ {2, . . . , k}, repr(x̃1, C̃).leftEdge ← (xk, x1), repr(x̃i, C̃).rightEdge ← (xi, xi+1), for
every i ∈ {1, . . . , k − 1}, and repr(x̃k, C̃).rightEdge ← (xk, x1). (This is to be able to
retrieve the real cactus edges.) The construction of the associated data structure to C

is shown in Algorithm 65.
Finally, in order to establish the correspondence between the tree of cycles

associated with C and the tree of cactuses which contains C , for every i ∈ {1, . . . , k}
we have a pointer from (xi, C) to x̃i, and reversely. (This is to be able to find the
node within the cactus C that corresponds to xi, and conversely.) The procedure
joinCactuses is summarized in Algorithm 64.

8.7 Sparse certificates for the maximal k‐edge‐connected subgraphs

In this section we discuss constructions of (almost) sparse subgraphs that have the
same maximal k-edge-connected subgraphs as the original graph. Following the ter-
minology of [1], we define a k-certificate of a graph to be a spanning subgraph that
has the same maximal k-edge-connected subgraphs as the original graph.4

Using results from Benczúr and Karger [8], we show that (1) in linear time we
can construct a k-certificate of O(kn logn) size, and (2) in O(m log2 n) time we can
construct a k-certificate of O(kn) size. Thus, by combining (1) and (2), we can construct
a k-certificate of O(kn) size in O(m + kn log3 n) time. This is a result analogous to
[51], which provides certificates for the k-edge-connected components. In fact, we use

4This definition can be extended, in order to include objects such as a graph G′ from which “we can
derive easily” the maximal k-edge-connected subgraphs of the original graph once we have computed
those of G′. However, the definition we provided here is enough for our purposes.

555

Algorithm 64: joinCactuses(S1, . . . , Sk, (x1, x2), . . . , (xk, x1))

1 introduce a new cactus node C

2 foreach x ∈ {x1, . . . , xk} do link(x,C)

3 foreach x ∈ {x1, . . . , xk} do let {(x,C)} constitute a new edge class
4 foreach x ∈ {x1, . . . , xk} do
5 if xassoc ̸= ∅ then
6 let L be a singleton list consisting of x
7 let the sublist of x be {xassoc, (x,C)}
8 joinclasses(L)

9 end
10 else xassoc ← (x,C)

11 end
12 perform initialize_cycle(C, x1, . . . , xk, (x1, x2), . . . , (xk, x1)), and collect the

corresponding nodes {x̃1, . . . , x̃k}
13 foreach i ∈ {1, . . . , k} do
14 make (xi, C) point to x̃i and x̃i point to (xi, C)

15 end

Algorithm 65: initialize_cycle(C, x1, . . . , xk, (x1, x2), . . . , (xk, x1))

1 create nodes x̃1, . . . , x̃k and C̃

2 create a tree of cycles consisting of the edges (x̃1, C̃), . . . , (x̃k, C̃)

3 root the tree at x̃1

4 create the elements repr(x̃1, C̃), . . . , repr(x̃k, C̃)

5 initialize a circular split-find data structure on the elements
repr(x̃1, C̃), . . . , repr(x̃k, C̃) (in this order), and associated it with C̃ // here

we refer to [59]

6 fix the pointers left, right, leftEdge and rightEdge of the repr elements as
described in the text

7 return {x̃1, . . . , x̃k}

the following concept from [51] (defined formally in [52]): a forest decomposition with
t forests of a graph G is a collection of forests F1, . . . , Ft, such that F1 is a spanning
forest of G, and Fi is a spanning forest of G \ (F1 ∪ · · · ∪ Fi−1), for i ∈ {2, . . . , t}. We

556

also note that (1) is used by Saranurak and Yuan [61] in their O(m + n1+o(1))-time
algorithm for computing the k-edge-connected subgraphs of an undirected graph, for
any k = logo(1) n.

Let G be a graph. An edge of G whose endpoints lie in different maximal k-
edge-connected subgraphs of G is called a k-interconnection edge of G. Algorithm 66
describes an algorithm for computing a k-certificate of G.

Algorithm 66: Compute a certificate for the maximal k-edge-connected
subgraphs of G

1 let E ′ be a set of edges of G that contains all its k-interconnection edges
2 compute a forest decomposition F of G \ E ′ with k forests
3 return F ∪ E ′

Lemma 8.2. Algorithm 66 outputs a certificate for the maximal k-edge-connected subgraphs
of G.

Proof. If we remove all the k-interconnection edges from G, then the connected com-
ponents of the resulting graph coincide with the maximal k-edge-connected subgraphs
of G. Let S be a maximal k-edge-connected subgraph of G and let E ′ be a set of edges
of G that contains all its k-interconnection edges. Then [S, S̄] = ∅ in G\E ′. Now let H
be the set of all edges of E ′ that are contained in S. Then the set FS of all the edges
of F that are contained in S \ H is a forest decomposition of S \ H with k forests5

(precisely because S, and therefore S \H , is disconnected from the rest of the graph
in G \ E ′). Thus, we know from the sparsification paper of Eppstein et al. [27] that
FS (considered as a graph) is a strong certificate6 for the k-edge-connectivity of S \H.
Thus, FS ∪ H is a strong certificate for the k-edge-connectivity of (S \ H) ∪ H = S.
But S is k-edge-connected, and so F ∪ E ′ ⊇ FS ∪ H contains enough edges of S to
maintain it as a k-edge-connected subgraph of F ∪E ′. Since F ∪E ′ is a subgraph of
G, we thus have that its maximal k-edge-connected subgraphs coincide with those of
G.

Corollary 8.1. Let A be an algorithm that, given a graph G with m edges and n vertices,
computes in T (m,n) time a subset E ′ of E(G) with S(m,n) size that contains all its

5more precisely: it either coincides with S \H , or it has k forests
6For any graph property P , and graph G, a strong certificate for G is a graph G′ on the same vertex

set such that, for any graph H , G ∪H has property P if and only if G′ ∪H has the property.

557

k-interconnection edges. Then we can construct a k-certificate of G with O(kn + S(m,n))

size in O(m+ n+ T (m,n)) time.

Proof. First we apply algorithm A in order to compute a subset E ′ of E(G) with size
S(m,n) that contains all its k-interconnection edges. This takes T (m,n) time. Then
we apply Algorithm 66: we remove E ′ from G, we compute a forest decomposition
F of G \ E ′ with k forests, and we return F ∪ E ′. Using [51], the computation of F
takes time O(m+ n). The output has size O(kn+ S(m,n)). Correctness is guaranteed
by Lemma 8.2.

In the following discussion we refer to Section 8 of [8]. (Note that in [8] the k-
interconnection edges are called k-weak edges, and the maximal k-edge-connected
subgraphs are called k-strong components.) In [8], they prove that a forest decompo-
sition with at least 4k logn forests contains all the k-interconnection edges of a graph.
Since this decomposition can be computed in linear time using the MA-ordering al-
gorithm of Nagamochi and Ibaraki [51], by Corollary 8.1 we get result (1): we can
construct a k-certificate of size O(kn logn) in linear time.

Alternatively, [8] defines the strength of an edge e, denoted by ke, as the largest
k′ such that e lies entirely within a maximal k′-edge-connected subgraph. Then the
k-interconnection edges are precisely those whose strength is less than k. [8] provides
an O(m log2 n)-time algorithm that assigns a value k̃e to every edge e, such that k̃e ≤ ke

and
∑

e∈E 1/k̃e = O(n). Now we consider the set E ′ of all edges e that have k̃e < k.
Observe that E ′ contains all the k-interconnection edges, since k̃e ≤ ke for every edge
e. Then we have that O(n) =

∑
e∈E 1/k̃e ≥

∑
e∈E′ 1/k̃e >

∑
e∈E′ 1/k = |E ′|/k. Thus, E ′

has size O(kn). Therefore, by Corollary 8.1 we get immediately our result (2): we can
construct a k-certificate of size O(kn) in O(m log2 n) time.

8.8 Computing the maximal k‐edge‐connected subgraphs

Let G be an undirected multigraph with m edges and n vertices, and let k > 2 be a
fixed integer. Our k-certificates developed in Section 8.7 can be immediately applied
to compute the maximal k-edge-connected subgraphs of G. In particular, we first
observe that we can apply the local search routine of Chechik et al. [16] (Lemma 5.1)
into the framework of Forster et al. [29] (Lemma 7.2), so that we get a deterministic

558

O(km log2 n + (kO(k) + kO(1) logn)n
√
n)-time algorithm for computing the maximal

k-edge-connected subgraphs of an undirected graph. By the result of the previous
section, we can compute in O(m + kn log3 n) time a k-certificate of O(kn) size. More
precisely, the certificate has O(min{m, kn}) size, since, by construction, it is a subgraph
of the original graph. Now we can apply the deterministic variant of the Forster et
al. algorithm on this certificate, and thus we get the following.

Theorem 8.3. There is an O(m+ (kO(k) + kO(1) logn)n
√
n)-time algorithm for computing

the maximal k-edge-connected subgraphs of an undirected graph.

Note that for constant k ≥ 3, the time-bound provided by Theorem 8.3 is O(m+

n
√
n logn), which improves the randomized bound of O(m log2 n+ n

√
n logn) given

by Forster et al. [29]. Similarly, by applying the O(km log2 n + k3n
√
n logn)-time

algorithm of Forster et al. [29] on our k-certificate we obtain our next result.

Theorem 8.4. There is a randomized Las Vegas algorithm for computing the maximal
k-edge-connected subgraphs of an undirected graph that has O(m + k3n3/2 logn) expected
running time.

We next describe another algorithm to compute the maximal k-edge-connected
subgraphs of an undirected graph G. We can do that by repeatedly removing any
k′-edge cut from G, for k′ < k, until there are no more k′-edge cuts in the graph
for k′ < k. Then the connected components of the resulting graph coincide with the
maximal k-edge-connected subgraphs of G. The best known deterministic algorithm
for computing a k′-edge cut of an undirected multigraph, for k′ < k, or concluding
that the graph is k-edge-connected, is given by Gabow [31], and it runs in O(m +

k2n log(n/k)) time. Thus the total running time of this algorithm would be bounded
by O(mn+ k2n2 log(n/k)).

To improve this bound, we reduce the time that it takes to successively find a min-
cut with k′-edges (for k′ < k). To speed this up, we repeatedly compute a min-cut
of a graph and store enough information to facilitate the search for further cuts. To
accomplish this task, we rely on Thorup’s fully dynamic min-cut algorithm [66]. This
algorithm supports edge insertions and deletions in Õ(

√
n) time per update, and it

maintains a min-cut of size up to k−1, for any fixed k (polylogarithmic on the number
of vertices). It also demands an additional O(m+ n) time to initialize the underlying
data structure on a sparse certificate of k-edge-connectivity for G [51]. (Thus, this

559

algorithm maintains dynamically both a sparse certificate for G, using sparsification
by Eppstein et al. [27], and a min-cut of size up to k − 1 of this certificate.)

Now we can use the fully dynamic min-cut algorithm of [66] on each connected
component C of G as follows. As long as there is a k′-edge cut [S, S̄] of C , for some
k′ < k, we remove the edges of [S, S̄] from C , and then we select two arbitrary
vertices x ∈ S and y ∈ S̄, and we reconnect the two resulting components S and
S̄ by adding k multiple edges between x and y. Thus, the reconnection of the two
components S and S̄ with k multiple edges ensures that all k′-edge cuts, for k′ < k,
are maintained in each component after the removal of [S, S̄], and that these are all
the k′-edge cuts that may appear now in C. Eventually all components of G will
become k-edge-connected. In the meantime, we collect all the edge-cuts that we find,
in every connected component of G, and in the end we remove all of them from
G. It should be clear that the connected components of the resulting graph coincide
with the maximal k-edge-connected subgraphs of G. Observe that every search for a
k′-edge cut, for k′ < k, on some connected component of G, is immediately followed
by k′ deletions and k insertions of edges. Furthermore, the total number of these cuts
is O(n). Thus, the total running time of this algorithm is Õ(m+kO(1)n

√
n). To provide

a more refined analysis, we give a lower bound of the dependency of the complexity
of this algorithm on k and on the number of log factors involved. To do that, we note
that Thorup’s algorithm uses a greedy tree packing of the sparse certificate using
k7 log4 n trees, and it maintains it using Frederickson’s dynamic minimum spanning
tree algorithm [30]. Thus, for every k′-edge cut that we find, the cost of the deletions
and insertions that follow is at least Ω(k8

√
n log4 n), and the total complexity of the

algorithm is at least Ω(m+ k8n
√
n log4 n). This yields the following.

Theorem 8.5. Let k = logO(1) n. Then there is an O(m+ kO(1)n
√
n logO(1) n)-time algo-

rithm for computing the maximal k-edge-connected subgraphs of an undirected graph.

We remark here that the O(m+ n1+o(1)) time bound of Saranurak and Yuan [61]
requires that k = logo(1) n, while the bounds in Theorems 8.3 and 8.4 hold for any
k, and the bound of Theorem 8.5 holds for any k = logO(1) n. As another remark,
we note that for constant k the bound provided by Theorem 8.5 is slightly worse
than the bound of Theorem 8.3, since there are more log factors involved. However,
the time-bound in Theorem 8.5 has polynomial dependency on k (whereas that of
Theorem 8.3 has exponential dependency on k). Also, we believe that the algorithm

560

of Theorem 8.5 can still be relevant, as any future improvement in the time bounds
for a fully dynamic min-cut algorithm implies improved time bounds for computing
the maximal k-edge-connected subgraphs.

We end this section by listing in Table 8.1 the previously known best time bounds
for computing the maximal k-edge-connected subgraphs. The new results obtained
in this section are described in Table 8.2.

Table 8.1: Previous best time bounds for computing the maximal k-edge-connected
subgraphs.

Algorithm Time Type Note

Chechik et al. [16] O(kO(k)(m+ n logn)
√
n) Det. k ∈ N

Henzinger et al. [42] O(n2 logn) Det. k = O(1)

Forster et al. [29] O(k3n
√
n logn+ km log2 n) Las Vegas Rand. k ∈ N

Saranurak and Yuan [61] O(m+ n1+o(1)) Det. k = logo(1) n

Table 8.2: Improved time bounds for computing the maximal k-edge-connected sub-
graphs obtained in this section.

Algorithm Time Type Note

This chapter (Theorem 8.3) O(m+ (kO(k) + kO(1) logn)n
√
n) Det. k ∈ N

This chapter (Theorem 8.4) O(m+ k3n
√
n logn) Las Vegas Rand. k ∈ N

This chapter (Theorem 8.5) O(m+ kO(1)n
√
n logO(1) n) Det. k = logO(1) n

8.9 A fully dynamic algorithm for maximal k‐edge‐connectivity

In this section we describe our fully dynamic algorithm for maintaining information
about the maximal k-edge-connected subgraphs of a dynamic graph.In more detail,
we wish to maintain an undirected graph G = (V,E) throughout an intermixed
sequence of the following operations:

insert(x, y): Add edge (x, y) to G;

561

delete(x, y): Remove edge (x, y) from G (the operation assumes that (x, y) is
in G);

max-k-edge(x, y): Return true if vertices x and y are in the same maximal k-edge-
connected subgraph of G, and false otherwise.

Before stating our bounds, let us review some simple minded approaches for the
problem. In Section 8.7 we showed that the maximal k-edge-connected subgraphs can
be computed in time O(m + n

√
n logn) (for constant k). Note that if we recompute

from scratch the maximal k-edge-connected subgraphs after each update, max-k-
edge queries can be answered in constant time. This yields a simple algorithm that
implements insert and delete operations in time O(m + n

√
n logn) and max-k-edge

queries in constant time. On the other side, one could simply do no extra work
during insert and delete operations, but then answering a max-k-edge query would
require recomputing the maximal k-edge-connected subgraphs from scratch, yielding
constant time per update and Õ(m + n

√
n) time per query. We next show how to

implement insert and delete operations in better Õ(n
√
n) time, while still keeping the

running time for max-k-edge queries constant. To achieve our improved bounds, we
exploit the sparsification technique of Eppstein et al. [27]. We start with the following
definition.

Definition 8.1. Let k ≥ 3 be a fixed integer. Given an undirected graph G = (V,E)

with m edges and n vertices, a sparse certificate of maximal k-edge-connectivity for G is
a graph G′ defined on the same vertex set as G such that the following holds:

(i) G′ has O(n) edges;

(ii) For any graph H , any two vertices are in the same maximal k-edge-connected
subgraph of G′∪H if and only if they are in the same maximal k-edge-connected
subgraph in G ∪H.

The following lemma provides a sufficient condition for inferring that a k-certificate
is a sparse certificate of maximal k-edge-connectivity.

Lemma 8.3. Let G be an undirected graph, and let C be a k-certificate of G with O(n)

edges that contains all the k-interconnection edges of G. Then C is a sparse certificate of
maximal k-edge-connectivity for G.

562

Proof. Condition (i) of Definition 8.1 is satisfied. It remains to establish condition
(ii). Since C is a k-certificate of G, it is a subgraph of G that has the same maximal
k-edge-connected subgraphs as G. Let Q be the quotient graph that is formed by
shrinking every maximal k-edge-connected subgraph of C into a single vertex. Then,
since C contains all the k-interconnection edges of G, by Property 8.1 we have that
Q has the same decomposition tree into maximal k-edge-connected subgraphs as G.
Thus, the changes that this tree undergoes after inserting all the vertices and edges of
H into G, are the same as if inserting them to C. Thus, C ∪H has the same maximal
k-edge-connected subgraphs as G∪H. This shows that condition (ii) is satisfied too.
Therefore C is a sparse certificate of maximal k-edge-connectivity for G.

Corollary 8.2. Let G = (V,E) be an undirected graph with m edges and n vertices. A
sparse certificate of maximal k-edge-connectivity for G can be computed in time O(m log2 n).

Proof. In Section 8.7 we show that we can construct a k-certificate C of G with O(n)

edges in time O(m log2 n). Furthermore, this k-certificate has the property that it
contains all the k-interconnection edges of G. Thus, Lemma 8.3 implies that C is a
sparse certificate of maximal k-edge-connectivity for G.

We are now ready to apply the sparsification framework of Eppstein et al. [27]:

Theorem 8.6 ([27]). Let k ≥ 3 be a fixed integer, let f(n,m) be the time required to
compute a sparse certificate of maximal k-edge-connectivity, and let g(n,m) the time required
to compute the maximal k-edge-connected subgraphs. Then we can build a fully dynamic data
structure that can handle insert and delete operations in time O(f(n,O(n)) + g(n,O(n)))

and max-k-edge queries in constant time.

From Corollary 8.2 we have f(m,n) = O(m log2 n). From [16] we have g(m,n) =

O(m
√
n) for k ∈ {3, 4}, and g(m,n) = O((m + n logn)

√
n) for fixed k > 4. (The

improved time-bounds for k = 4 are derived by using either of the algorithms of
[36, 50] for computing 3-edge cuts in linear time.) By fitting those bounds into
Theorem 8.6 we obtain:

Theorem 8.7. Let G = (V,E) be an undirected graph with n vertices. Then we can
build a fully dynamic data structure that can handle insert and delete operations in time
O(n
√
n), for k ∈ {3, 4}, and in time O(n

√
n logn), for fixed k > 4, so that it can answer

max-k-edge queries in constant time.

563

Also, for k = logo(1) n, by [61] we have g(m,n) = O(m + n1+o(1)), so now Theo-
rem 8.6 gives:

Theorem 8.8. Let G = (V,E) be an undirected graph with n vertices, and let k = logo(1) n.
Then we can build a fully dynamic data structure that can handle insert and delete operations
in time O(n log2 n+ n1+o(1)), so that it can answer max-k-edge queries in constant time.

8.10 Conclusions

We presented two algorithms for maintaining a decomposition tree structure of the
maximal 3-edge-connected subgraphs of a graph. The first algorithm uses O(n) space
and can handle any sequence of m edge insertions and n vertex insertions in total
time O(n2 log2 n+mα(m,n)). The second algorithm uses O(n2) space and can handle
any sequence of m edge insertions and n vertex insertions in total time O(n2α(n, n)+

mα(m,n)).
We note that one can use this data structure to efficiently answer interspersed

queries concerning the maximal 3-edge-connected subgraphs, such as:

• Given vertices x and y, report whether x and y belong to the same maximal
3-edge-connected subgraph (using two calls to a DSU-find operation)

• Find the maximal 3-edge-connected subgraph that contains x, in time analogous
to its size (plus a call to a DSU-find operation)

• Report the size (the number of vertices or edges) of the maximal 3-edge-
connected subgraph that contains x in constant time (plus a call to a DSU-find
operation)

• Return all maximal 3-edge-connected subgraphs in time analogous to their size

• Return the number of all maximal 3-edge-connected subgraphs in constant time

The methods used in this algorithm extend previous work in maintaining the
2- and 3-edge-connected components [35, 59, 69], and may prove useful in solving
other similar problems. For instance, it seems possible that we can add more levels to
the decomposition tree, and rely on previous work for maintaining the 4- and 5-edge-
connected components, in order to maintain the maximal 4- and 5-edge-connected

564

subgraphs (by properly adjusting the data structures and algorithms in [23, 25]).
Furthermore, it seems that any improvement in maintaining the k-edge-connected
components, for any constant k, would imply (under some conditions) that this so-
lution can be plugged in to our framework for maintaining the decomposition tree,
in order to maintain the maximal k-edge-connected subgraphs (with time-bounds
analogous to those provided in this chapter). It seems possible that this framework
could also be useful for maintaining the maximal k-vertex-connected subgraphs, by
relying on efficient algorithms for maintaining the k-vertex-connected components
(such as those described in [7, 57], for the case k = 3).

We also showed that we can construct (almost) sparse certificates for them max-
imal k-edge-connected subgraphs. Our result implies that the difficulty in designing
efficient algorithms for computing the maximal k-edge-connected subgraphs lies es-
sentially in sparse graphs, and we can use it in order to speed up the running time
of already known algorithms. In particular, by using the algorithm by Chechik et
at. [16], we get an O(m+ kO(k)n

√
n logn)-time algorithm for computing the maximal

k-edge-connected subgraphs in undirected graphs.
We believe that it is an interesting question whether a k-certificate of O(n) size can

be computed in linear time. This would be trivial if we had a linear-time algorithm
for computing the maximal k-edge-connected subgraphs of a graph, but it is still
an open problem whether this can be done for k ≥ 3. Thus, we have to perform
the construction of the certificates without explicitly computing the maximal k-edge-
connected subgraphs, and this seems to be a challenging task.

565

BIBLIOGRAPHY

[1] Anders Aamand, Adam Karczmarz, Jakub Lacki, Nikos Parotsidis, Peter M. R.
Rasmussen, and Mikkel Thorup. Optimal decremental connectivity in non-sparse
graphs. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming, ICALP 2023,
July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 6:1–6:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.
org/10.4230/LIPIcs.ICALP.2023.6, doi:10.4230/LIPICS.ICALP.2023.6.

[2] Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol
Saranurak, and Ohad Trabelsi. Breaking the cubic barrier for all-pairs max-flow:
Gomory-hu tree in nearly quadratic time. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 -
November 3, 2022, pages 884–895. IEEE, 2022. doi:10.1109/FOCS54457.2022.

00088.

[3] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF < APSP?
gomory-hu tree for unweighted graphs in almost-quadratic time. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Den-
ver, CO, USA, February 7-10, 2022, pages 1135–1146. IEEE, 2021. doi:

10.1109/FOCS52979.2021.00112.

[4] Amir Abboud, Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. All-
pairs max-flow is no harder than single-pair max-flow: Gomory-hu trees in
almost-linear time. In 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 2204–
2212. IEEE, 2023. doi:10.1109/FOCS57990.2023.00137.

[5] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Linear-time enumeration of
maximal k-edge-connected subgraphs in large networks by random contraction.

566

https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://doi.org/10.4230/LIPICS.ICALP.2023.6
https://doi.org/10.1109/FOCS54457.2022.00088
https://doi.org/10.1109/FOCS54457.2022.00088
https://doi.org/10.1109/FOCS52979.2021.00112
https://doi.org/10.1109/FOCS52979.2021.00112
https://doi.org/10.1109/FOCS57990.2023.00137

In Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors,
22nd ACM International Conference on Information and Knowledge Management,
CIKM’13, San Francisco, CA, USA, October 27 - November 1, 2013, pages 909–
918. ACM, 2013. doi:10.1145/2505515.2505751.

[6] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup.
Maintaining information in fully dynamic trees with top trees. ACM Trans.
Algorithms, 1(2):243–264, 2005. doi:10.1145/1103963.1103966.

[7] Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected
components with spqr-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/

BF01961541.

[8] András A. Benczúr and David R. Karger. Randomized approximation schemes
for cuts and flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015.
doi:10.1137/070705970.

[9] Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In
Gaston H. Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000:
Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,
April 10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer Science,
pages 88–94. Springer, 2000. doi:10.1007/10719839_9.

[10] Michael A. Bender and Martin Farach-Colton. The level ancestor problem sim-
plified. Theor. Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

[11] Endre Boros, Konrad Borys, Vladimir Gurvich, and Gábor Rudolf. Generating
3-vertex connected spanning subgraphs. Discret. Math., 308(24):6285–6297,
2008. URL: https://doi.org/10.1016/j.disc.2007.11.067, doi:10.1016/J.DISC.
2007.11.067.

[12] Adam L. Buchsbaum, Loukas Georgiadis, Haim Kaplan, Anne Rogers,
Robert Endre Tarjan, and Jeffery R. Westbrook. Linear-time algorithms for dom-
inators and other path-evaluation problems. SIAM J. Comput., 38(4):1533–1573,
2008. doi:10.1137/070693217.

[13] Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range
searching on the ram, revisited. In Proceedings of the 27th ACM Symposium on
Computational Geometry,, pages 1–10, 2011. doi:10.1145/1998196.1998198.

567

https://doi.org/10.1145/2505515.2505751
https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1007/BF01961541
https://doi.org/10.1007/BF01961541
https://doi.org/10.1137/070705970
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1016/j.disc.2007.11.067
https://doi.org/10.1016/J.DISC.2007.11.067
https://doi.org/10.1016/J.DISC.2007.11.067
https://doi.org/10.1137/070693217
https://doi.org/10.1145/1998196.1998198

[14] Lijun Chang and Zhiyi Wang. A near-optimal approach to edge connectivity-
based hierarchical graph decomposition. Proc. VLDB Endow., 15(6):1146–1158,
2022. URL: https://www.vldb.org/pvldb/vol15/p1146-chang.pdf, doi:10.14778/
3514061.3514063.

[15] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.
Efficiently computing k-edge connected components via graph decomposition. In
Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2013, New York, NY, USA, June 22-27, 2013, pages 205–216. ACM, 2013.
doi:10.1145/2463676.2465323.

[16] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Veronika Loitzen-
bauer, and Nikos Parotsidis. Faster algorithms for computing maximal 2-
connected subgraphs in sparse directed graphs. In Philip N. Klein, editor, Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1900–1918.
SIAM, 2017. doi:10.1137/1.9781611974782.124.

[17] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear
time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022, pages 612–623. IEEE,
2022. doi:10.1109/FOCS54457.2022.00064.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.
mit.edu/books/introduction-algorithms.

[19] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars.
Computational geometry: algorithms and applications, 3rd Edition. Springer, 2008.
URL: https://www.worldcat.org/oclc/227584184.

[20] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

[21] Yefim Dinitz. The 3-edge-components and a structural description of all 3-edge-
cuts in a graph. In Ernst W. Mayr, editor, Graph-Theoretic Concepts in Computer

568

https://www.vldb.org/pvldb/vol15/p1146-chang.pdf
https://doi.org/10.14778/3514061.3514063
https://doi.org/10.14778/3514061.3514063
https://doi.org/10.1145/2463676.2465323
https://doi.org/10.1137/1.9781611974782.124
https://doi.org/10.1109/FOCS54457.2022.00064
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://www.worldcat.org/oclc/227584184

Science, 18th International Workshop, WG ’92, Wiesbaden-Naurod, Germany, June
19-20, 1992, Proceedings, volume 657 of Lecture Notes in Computer Science, pages
145–157. Springer, 1992. doi:10.1007/3-540-56402-0_44.

[22] Yefim A. Dinic, Alexander V. Karzanov, and Michael V Lomonosov. On the
structure of the system of minimum edge-cuts in a graph. Studies in Discrete
Optimization, pages 290–306, 1976.

[23] Yefim Dinitz and Ronit Nossenson. Incremental maintenance of the 5-edge-
connectivity classes of a graph. In Magnús M. Halldórsson, editor, Algorithm
Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm Theory, Bergen,
Norway, July 5-7, 2000, Proceedings, volume 1851 of Lecture Notes in Computer
Science, pages 272–285. Springer, 2000. doi:10.1007/3-540-44985-X_25.

[24] Yefim Dinitz and Zeev Nutov. A 2-level cactus model for the system of minimum
and minimum+1 edge-cuts in a graph and its incremental maintenance. In
Frank Thomson Leighton and Allan Borodin, editors, Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995,
Las Vegas, Nevada, USA, pages 509–518. ACM, 1995. doi:10.1145/225058.225268.

[25] Yefim Dinitz and Jeffery R. Westbrook. Maintaining the classes of 4-edge-
connectivity in a graph on-line. Algorithmica, 20(3):242–276, 1998. doi:

10.1007/PL00009195.

[26] Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex
failures. SIAM J. Comput., 49(6):1363–1396, 2020. doi:10.1137/17M1146610.

[27] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Spar-
sification - a technique for speeding up dynamic graph algorithms. J. ACM,
44(5):669–696, 1997. doi:10.1145/265910.265914.

[28] Lisa Fleischer. Building chain and cactus representations of all minimum cuts
from hao-orlin in the same asymptotic run time. J. Algorithms, 33(1):51–72, 1999.
URL: https://doi.org/10.1006/jagm.1999.1039, doi:10.1006/JAGM.1999.1039.

[29] Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Computing and testing small connectivity
in near-linear time and queries via fast local cut algorithms. In Shuchi Chawla,

569

https://doi.org/10.1007/3-540-56402-0_44
https://doi.org/10.1007/3-540-44985-X_25
https://doi.org/10.1145/225058.225268
https://doi.org/10.1007/PL00009195
https://doi.org/10.1007/PL00009195
https://doi.org/10.1137/17M1146610
https://doi.org/10.1145/265910.265914
https://doi.org/10.1006/jagm.1999.1039
https://doi.org/10.1006/JAGM.1999.1039

editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2046–2065.
SIAM, 2020. doi:10.1137/1.9781611975994.126.

[30] Greg N. Frederickson. Data structures for on-line updating of minimum
spanning trees, with applications. SIAM J. Comput., 14(4):781–798, 1985.
doi:10.1137/0214055.

[31] Harold N. Gabow. A matroid approach to finding edge connectivity and packing
arborescences. J. Comput. Syst. Sci., 50(2):259–273, 1995. URL: https://doi.
org/10.1006/jcss.1995.1022, doi:10.1006/JCSS.1995.1022.

[32] Harold N. Gabow. The minset-poset approach to representations of graph con-
nectivity. ACM Trans. Algorithms, 12(2):24:1–24:73, 2016. doi:10.1145/2764909.

[33] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a
special case of disjoint set union. J. Comput. Syst. Sci., 30(2):209–221, 1985.
doi:10.1016/0022-0000(85)90014-5.

[34] Zvi Galil and Giuseppe F. Italiano. Reducing edge connectivity to vertex con-
nectivity. SIGACT News, 22(1):57–61, 1991. doi:10.1145/122413.122416.

[35] Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected com-
ponents of a graph on-line. SIAM J. Comput., 22(1):11–28, 1993. doi:

10.1137/0222002.

[36] Loukas Georgiadis, Giuseppe F. Italiano, and Evangelos Kosinas. Computing
the 4-edge-connected components of a graph in linear time. In Petra Mutzel,
Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on
Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference),
volume 204 of LIPIcs, pages 47:1–47:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.47, doi:
10.4230/LIPICS.ESA.2021.47.

[37] Loukas Georgiadis, Evangelos Kipouridis, Charis Papadopoulos, and Nikos
Parotsidis. Faster computation of 3-edge-connected components in digraphs. In
Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January

570

https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.1137/0214055
https://doi.org/10.1006/jcss.1995.1022
https://doi.org/10.1006/jcss.1995.1022
https://doi.org/10.1006/JCSS.1995.1022
https://doi.org/10.1145/2764909
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1145/122413.122416
https://doi.org/10.1137/0222002
https://doi.org/10.1137/0222002
https://doi.org/10.4230/LIPIcs.ESA.2021.47
https://doi.org/10.4230/LIPICS.ESA.2021.47
https://doi.org/10.4230/LIPICS.ESA.2021.47

22-25, 2023, pages 2489–2531. SIAM, 2023. URL: https://doi.org/10.1137/1.
9781611977554.ch96, doi:10.1137/1.9781611977554.CH96.

[38] Loukas Georgiadis and Evangelos Kosinas. Linear-time algorithms for com-
puting twinless strong articulation points and related problems. In Yixin Cao,
Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algo-
rithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China
(Virtual Conference), volume 181 of LIPIcs, pages 38:1–38:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.
ISAAC.2020.38, doi:10.4230/LIPICS.ISAAC.2020.38.

[39] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961. arXiv:https:

//doi.org/10.1137/0109047, doi:10.1137/0109047.

[40] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338–355, 1984. doi:10.1137/0213024.

[41] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient al-
gorithms for computing all low s-t edge connectivities and related problems. In
Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eigh-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 127–136. SIAM, 2007. URL:
http://dl.acm.org/citation.cfm?id=1283383.1283398.

[42] Monika Henzinger, Sebastian Krinninger, and Veronika Loitzenbauer. Find-
ing 2-edge and 2-vertex strongly connected components in quadratic time. In
Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speck-
mann, editors, Automata, Languages, and Programming - 42nd International Col-
loquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, vol-
ume 9134 of Lecture Notes in Computer Science, pages 713–724. Springer, 2015.
doi:10.1007/978-3-662-47672-7_58.

[43] Monika Rauch Henzinger and David P. Williamson. On the number of small
cuts in a graph. Inf. Process. Lett., 59(1):41–44, 1996. doi:10.1016/0020-0190(96)
00079-8.

571

https://doi.org/10.1137/1.9781611977554.ch96
https://doi.org/10.1137/1.9781611977554.ch96
https://doi.org/10.1137/1.9781611977554.CH96
https://doi.org/10.4230/LIPIcs.ISAAC.2020.38
https://doi.org/10.4230/LIPIcs.ISAAC.2020.38
https://doi.org/10.4230/LIPICS.ISAAC.2020.38
http://arxiv.org/abs/https://doi.org/10.1137/0109047
http://arxiv.org/abs/https://doi.org/10.1137/0109047
https://doi.org/10.1137/0109047
https://doi.org/10.1137/0213024
http://dl.acm.org/citation.cfm?id=1283383.1283398
https://doi.org/10.1007/978-3-662-47672-7_58
https://doi.org/10.1016/0020-0190(96)00079-8
https://doi.org/10.1016/0020-0190(96)00079-8

[44] Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, Eva Rotenberg,
and Piotr Sankowski. Contracting a planar graph efficiently. In Kirk Pruhs
and Christian Sohler, editors, 25th Annual European Symposium on Algorithms,
ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages
50:1–50:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL:
https://doi.org/10.4230/LIPIcs.ESA.2017.50, doi:10.4230/LIPICS.ESA.2017.50.

[45] John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected
components. SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

[46] Wenyu Jin and Xiaorui Sun. Fully dynamic s-t edge connectivity in subpolyno-
mial time (extended abstract). In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
861–872. IEEE, 2021. doi:10.1109/FOCS52979.2021.00088.

[47] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A nearly optimal
all-pairs min-cuts algorithm in simple graphs. In 62nd IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February
7-10, 2022, pages 1124–1134. IEEE, 2021. doi:10.1109/FOCS52979.2021.00111.

[48] Yuan Li, Guoren Wang, Yuhai Zhao, Feida Zhu, and Yubao Wu. Towards k-
vertex connected component discovery from large networks. World Wide Web,
23(2):799–830, 2020. URL: https://doi.org/10.1007/s11280-019-00725-6, doi:
10.1007/S11280-019-00725-6.

[49] Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-
failure connectivity oracles. In 63rd IEEE Annual Symposium on Foundations of
Computer Science, FOCS, pages 1002–1010, 2022. doi:10.1109/FOCS54457.2022.

00098.

[50] Wojciech Nadara, Mateusz Radecki, Marcin Smulewicz, and Marek Sokolowski.
Determining 4-edge-connected components in linear time. In Petra Mutzel, Ras-
mus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on
Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference),
volume 204 of LIPIcs, pages 71:1–71:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.71, doi:
10.4230/LIPICS.ESA.2021.71.

572

https://doi.org/10.4230/LIPIcs.ESA.2017.50
https://doi.org/10.4230/LIPICS.ESA.2017.50
https://doi.org/10.1137/0202012
https://doi.org/10.1109/FOCS52979.2021.00088
https://doi.org/10.1109/FOCS52979.2021.00111
https://doi.org/10.1007/s11280-019-00725-6
https://doi.org/10.1007/S11280-019-00725-6
https://doi.org/10.1007/S11280-019-00725-6
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.4230/LIPIcs.ESA.2021.71
https://doi.org/10.4230/LIPICS.ESA.2021.71
https://doi.org/10.4230/LIPICS.ESA.2021.71

[51] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding
a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica,
7(5&6):583–596, 1992. doi:10.1007/BF01758778.

[52] Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connec-
tivity, volume 123 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2008. doi:10.1017/CBO9780511721649.

[53] Chaitanya Nalam and Thatchaphol Saranurak. Maximal k-edge-connected sub-
graphs in weighted graphs via local random contraction. In Nikhil Bansal and
Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
183–211. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch8, doi:
10.1137/1.9781611977554.CH8.

[54] Seth Pettie, Thatchaphol Saranurak, and Longhui Yin. Optimal vertex connec-
tivity oracles. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 -
24, 2022, pages 151–161. ACM, 2022. doi:10.1145/3519935.3519945.

[55] Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk,
and Alexandre Vigny. Algorithms and data structures for first-order logic with
connectivity under vertex failures. In 49th International Colloquium on Automata,
Languages, and Programming, ICALP, volume 229 of LIPIcs, pages 102:1–102:18,
2022. doi:10.4230/LIPIcs.ICALP.2022.102.

[56] Johannes A. La Poutré. Dynamic Graph Algorithms and Data Structures. Ph.D.
thesis, Utrecht University, The Netherlands, September 1991.

[57] Johannes A. La Poutré. Maintenance of triconnected components of graphs
(extended abstract). In Werner Kuich, editor, Automata, Languages and Pro-
gramming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17,
1992, Proceedings, volume 623 of Lecture Notes in Computer Science, pages 354–
365. Springer, 1992. doi:10.1007/3-540-55719-9_87.

[58] Johannes A. La Poutré. Maintenance of 2- and 3-edge-connected compo-
nents of graphs II. SIAM J. Comput., 29(5):1521–1549, 2000. doi:10.1137/

S0097539793257770.

573

https://doi.org/10.1007/BF01758778
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1137/1.9781611977554.ch8
https://doi.org/10.1137/1.9781611977554.CH8
https://doi.org/10.1137/1.9781611977554.CH8
https://doi.org/10.1145/3519935.3519945
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1007/3-540-55719-9_87
https://doi.org/10.1137/S0097539793257770
https://doi.org/10.1137/S0097539793257770

[59] Johannes A. La Poutré, Jan van Leeuwen, and Mark H. Overmars. Maintenance
of 2- and 3-edge- connected components of graphs I. Discret. Math., 114(1-
3):329–359, 1993. doi:10.1016/0012-365X(93)90376-5.

[60] Mihai Puatracscu and Mikkel Thorup. Planning for fast connectivity updates. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007),
October 20-23, 2007, Providence, RI, USA, Proceedings, pages 263–271. IEEE
Computer Society, 2007. doi:10.1109/FOCS.2007.54.

[61] Thatchaphol Saranurak andWuwei Yuan. Maximal k-edge-connected subgraphs
in almost-linear time for small k. In Inge Li Gørtz, Martin Farach-Colton, Si-
mon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium
on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands,
volume 274 of LIPIcs, pages 92:1–92:9. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ESA.2023.92, doi:
10.4230/LIPICS.ESA.2023.92.

[62] Heli Sun, Jianbin Huang, Yang Bai, Zhongmeng Zhao, Xiaolin Jia, Fang He,
and Yang Li. Efficient k-edge connected component detection through an early
merging and splitting strategy. Knowl. Based Syst., 111:63–72, 2016. URL: https:
//doi.org/10.1016/j.knosys.2016.08.006, doi:10.1016/J.KNOSYS.2016.08.006.

[63] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146–160, 1972. doi:10.1137/0201010.

[64] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J.
ACM, 22(2):215–225, 1975. doi:10.1145/321879.321884.

[65] Robert Endre Tarjan. A class of algorithms which require nonlinear time to
maintain disjoint sets. J. Comput. Syst. Sci., 18(2):110–127, 1979. doi:10.1016/

0022-0000(79)90042-4.

[66] Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91–127, 2007. URL:
https://doi.org/10.1007/s00493-007-0045-2, doi:10.1007/S00493-007-0045-2.

[67] Yung H. Tsin. Yet another optimal algorithm for 3-edge-connectivity. J. Discrete
Algorithms, 7(1):130–146, 2009. URL: https://doi.org/10.1016/j.jda.2008.04.
003, doi:10.1016/J.JDA.2008.04.003.

574

https://doi.org/10.1016/0012-365X(93)90376-5
https://doi.org/10.1109/FOCS.2007.54
https://doi.org/10.4230/LIPIcs.ESA.2023.92
https://doi.org/10.4230/LIPICS.ESA.2023.92
https://doi.org/10.4230/LIPICS.ESA.2023.92
https://doi.org/10.1016/j.knosys.2016.08.006
https://doi.org/10.1016/j.knosys.2016.08.006
https://doi.org/10.1016/J.KNOSYS.2016.08.006
https://doi.org/10.1137/0201010
https://doi.org/10.1145/321879.321884
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1016/0022-0000(79)90042-4
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/S00493-007-0045-2
https://doi.org/10.1016/j.jda.2008.04.003
https://doi.org/10.1016/j.jda.2008.04.003
https://doi.org/10.1016/J.JDA.2008.04.003

[68] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Ling Chen. Enumerating
k-vertex connected components in large graphs. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019,
pages 52–63. IEEE, 2019. doi:10.1109/ICDE.2019.00014.

[69] Jeffery R. Westbrook and Robert Endre Tarjan. Maintaining bridge-connected
and biconnected components on-line. Algorithmica, 7(5&6):433–464, 1992. doi:
10.1007/BF01758773.

[70] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. I/O ef-
ficient ECC graph decomposition via graph reduction. VLDB J., 26(2):275–
300, 2017. URL: https://doi.org/10.1007/s00778-016-0451-4, doi:10.1007/

S00778-016-0451-4.

575

https://doi.org/10.1109/ICDE.2019.00014
https://doi.org/10.1007/BF01758773
https://doi.org/10.1007/BF01758773
https://doi.org/10.1007/s00778-016-0451-4
https://doi.org/10.1007/S00778-016-0451-4
https://doi.org/10.1007/S00778-016-0451-4

AUTHOR’S PUBLICATIONS

1. Computing the 5-Edge-Connected Components in Linear Time. Evangelos Kosi-
nas. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024.

2. 2-Fault-Tolerant Strong Connectivity Oracles. Loukas Georgiadis, Evangelos
Kosinas, and Daniel Tsokaktsis. In SIAM Symposium on Algorithm Engineering
and Experiments (ALENEX), 2024.

3. Connectivity Queries under Vertex Failures: Not Optimal, but Practical. Evan-
gelos Kosinas. In European Symposium on Algorithms (ESA), 2023.

4. On 2-Strong Connectivity Orientations of Mixed Graphs and Related Problems.
Loukas Georgiadis, Dionysios Kefallinos, and Evangelos Kosinas. In Interna-
tional Workshop on Combinatorial Algorithms (IWOCA), 2023.

5. Computing the 4-Edge-Connected Components of a Graph: An Experimental
Study. Loukas Georgiadis, Giuseppe F. Italiano, and Evangelos Kosinas. In Eu-
ropean Symposium on Algorithms (ESA), 2022.

6. Computing the 4-Edge-Connected Components of a Graph in Linear Time.
Loukas Georgiadis, Giuseppe F. Italiano, and Evangelos Kosinas. In European
Symposium on Algorithms (ESA), 2021.

7. Computing Vertex-Edge Cut-Pairs and 2-Edge Cuts in Practice. Loukas Geor-
giadis, Konstantinos Giannis, Giuseppe F. Italiano, and Evangelos Kosinas. In
International Symposium on Experimental Algorithms (SEA), 2021.

8. Linear-Time Algorithms for Computing Twinless Strong Articulation Points and
Related Problems. Loukas Georgiadis and Evangelos Kosinas. In International
Symposium on Algorithms and Computation (ISAAC), 2020.

SHORT BIOGRAPHY

In 2017 I graduated with a B.Sc. from the Dept. of Mathematics of the University
of Ioannina. In 2021 I received an M.Sc. from the Dept. of Computer Science and
Engineering of the University of Ioannina. I am very interested in the design of
efficient algorithms and data structures for various graph-related problems.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Objective
	Overview of our results
	Computing the 4-edge-connected components
	Computing the 5-edge-connected components
	Connectivity queries under four edge failures
	Connectivity queries under vertex failures
	On computing the maximal k-edge-connected subgraphs

	Organization

	Preliminaries
	Basic graph terminology
	Partitions and atoms
	Edge-connectivity and k-edge-connected components
	Maximal k-edge-connected subgraphs
	Notation

	Concepts defined on a DFS Tree
	Basic definitions
	low and high edges
	Maximum points, leftmost and rightmost edges

	Properties of the DFS parameters
	Computing the low-edges
	Computing the high-edges
	Computing the leftmost and the rightmost edges
	Computing the maximum points
	Pointer-machine algorithms for some DFS parameters
	Computing all M(v)
	Computing all M"0365M(v), Mlow1(v) and Mlow2(v)
	Computing all lowM(v) and lowMD(v)
	Computing all L1(v), L2(v), R1(v) and R2(v)

	Two lemmata concerning paths
	An oracle for back-edge queries
	Segments of vertices that have the same high point

	Computing the 4-Edge-Connected Components in Linear Time
	Introduction
	3-cuts on a DFS tree
	Type-1 3-cuts
	Type-2 3-cuts
	Type-3 3-cuts

	Computing all 3-cuts of a 3-edge-connected graph
	Computing Type-1 3-cuts
	Computing Type-2 3-cuts
	The upper case
	The lower case

	Computing Type-3 3-cuts

	Computing the 4-edge-connected components
	Reducing the computation to 3-edge-connected graphs
	Splitting a 3-edge-connected graph according to its 3-cuts

	Testing 4-edge connectivity
	The upper case
	The lower case

	Computing the 5-Edge-Connected Components
	Introduction
	Problem definition
	Related work
	Our contribution
	Technical overview
	Reduction to 3-edge-connected graphs
	Computing enough 4-cuts of a 3-edge-connected graph
	Unpacking the implicating sequences of a complete collection of 4-cuts
	Cyclic families of 4-cuts, and minimal 4-cuts
	Isolated and quasi-isolated 4-cuts
	The full algorithm

	Organization of this chapter

	Properties of 4-cuts in 3-edge-connected graphs
	The structure of crossing 4-cuts of a 3-edge-connected graph
	Implied 4-cuts, and cyclic families of 4-cuts
	Properties of cyclic families of 4-cuts
	Generating the implied 4-cuts
	Isolated and quasi-isolated 4-cuts
	Some additional properties satisfied by the output of Algorithm 16

	Using a DFS-tree for some problems concerning 4-cuts
	Computing the r-size of 4-cuts
	Checking the essentiality of 4-cuts
	Computing the atoms of a parallel family of 4-cuts

	Computing the 5-edge-connected components
	Overview
	Computing the minimal 4-cuts
	Computing the essential isolated 4-cuts
	Computing enough 4-cuts in order to derive the 5-edge-connected components
	The algorithm

	Computing a complete collection of 4-cuts
	A typology of 4-cuts on a DFS-tree
	Type-2 4-cuts
	Type-3 4-cuts
	Type-3 4-cuts
	Type-3 4-cuts

	Min-max vertex queries

	Computing Type-2 4-cuts
	The case B(v)=B(u){e1,e2}
	The case B(v){e1}=B(u){e2}
	The case B(u)=B(v){e1,e2}

	Computing Type-3 4-cuts
	Type-3i 4-cuts
	The case where M(B(u){ehigh(u)})= M(u)
	The case where M(B(u){ehigh(u)})=M(u)

	Type-3ii 4-cuts

	Computing Type-3 4-cuts
	Type-3i 4-cuts
	Case (1) of Lemma 5.57
	Case (2) of Lemma 5.57
	Case (3) of Lemma 5.57
	Case (4) of Lemma 5.57

	Type-3ii 4-cuts
	Type-3ii-1 4-cuts
	Type-3ii-2 4-cuts
	Type-3ii-3 4-cuts
	Type-3ii-4 4-cuts

	Connectivity Queries under 4 Edge Failures
	Introduction
	E' contains zero tree-edges
	E' contains one tree-edge
	E' contains two tree-edges
	E' contains three tree-edges
	u and v are not related as ancestor and descendant
	v is an ancestor of u

	E' contains four tree-edges
	No two vertices in {u,v,w} are related as ancestor and descendant
	w and v are not related as ancestor and descendant, and v is an ancestor of u
	w is an ancestor of both u and v, and {u,v} are not related as ancestor and descendant
	w is an ancestor of v, and v is an ancestor of u

	The data structure

	Connectivity Queries under Vertex Failures
	Introduction
	Previous work
	Our contribution

	Preliminaries
	DFS-based concepts

	The algorithm for vertex failures
	Initializing the data structure
	The general idea
	The structure of the internal components
	Handling the updates: construction of a connectivity graph for the internal components of TF
	Answering the queries

	On Maximal k-Edge-Connected Subgraphs of Undirected Graphs
	Introduction
	Overview of our results
	Organization

	Preliminaries
	The decomposition tree of the maximal k-edge-connected subgraphs
	A general framework for maintaining the k-edge-connected subgraphs
	Maintaining the decomposition tree
	The decomposition tree of the maximal 3-edge-connected subgraphs
	N is the root or a 3-ecc node
	N is a 1-ecc node
	N is a 2-ecc node

	Maintaining the decomposition tree after insertions
	An O(n2log2 n + m(m,n))-time algorithm for the incremental maintenance of T
	An O(n2(n,n) + m(m,n))-time algorithm for the incremental maintenance of T

	Data structures for trees and cactuses
	An implementation for trees
	An implementation for cactuses

	Improved data structures for trees and cactuses
	Fractionally rooted trees
	An implementation for trees
	An implementation for cactuses

	Sparse certificates for the maximal k-edge-connected subgraphs
	Computing the maximal k-edge-connected subgraphs
	A fully dynamic algorithm for maximal k-edge-connectivity
	Conclusions

	Bibliography
	Author's Publications
	Short Biography

