Interval Data Management in Main Memory

A Dissertation

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee

by

George Christodoulou

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina
School of Engineering

Ioannina 2023

Advisory Committee:

¢ Nikos Mamoulis, Professor, Department of Computer Science and Engineering,

University of Ioannina (advisor)

* Panagiotis Vassiliadis, Professor, Department of Computer Science and Engi-

neering, University of loannina

e Panayiotis Tsaparas, Assoc. Professor, Department of Computer Science and

Engineering, University of loannina

Examining Committee:

* Nikos Mamoulis, Professor, Department of Computer Science and Engineering,

University of Ioannina (advisor)

* Panagiotis Vassiliadis, Professor, Department of Computer Science and Engi-

neering, University of loannina

* Panayiotis Tsaparas, Assoc. Professor, Department of Computer Science and

Engineering, University of loannina

* Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-

ing, University of loannina

* Panagiotis Bouros, Assistant Professor, Institute of Computer Science, Johannes

Gutenberg University Mainz

* Manolis Koubarakis, Professor, Department of Informatics and Telecommuni-

cations, National and Kapodistrian University of Athens

* Spiros Skiadopoulos, Professor, Department of Informatics and Telecommuni-

cations, University of the Peloponnese

DEDICATION

To my beloved family

ACKNOWLEDGEMENTS

First and foremost, I would like to express my graditude to my advisor, Nikos
Mamoulis, for the opportunity, the support, the guidance, and the patience he of-
fered me through all the time we have worked together. I would like to thank my
colleagues with whom we shared the lab through these years with our ups and
downs. I am deeply grateful to my family for their unconditional support on any
level that a human being can imagine. Their encouragement and faith in me were
eternal through all these years. I am also deeply grateful to Eirini who supported
and believed in me even when it defied common sense. Last but definitely not least, [
would like to warmly thank Panos Bouros for all the knowledge and advice he gave
me through the years. Panos shared his great experience in database systems and

made me change my perspective about my work.
George Christodoulou

August 2023, loannina

TABLE oF CONTENTS

List of Figures iv
List of Tables vi
List of Algorithms vii
Abstract viii
Extetoapévn Ilepindy xi
1 Introduction 1
1.1 Interval Indexing 2
1.2 Indexing Intervals for Transaction Time Temporal Databases 4
1.3 Dissertation Outline 7

2 Background and Definitions 9
3 Related Work 13
3.1 Valid-time indexing o oo 13
3.2 Transaction-time indexingo 0. 18
3.3 Otherrelated work 23

4 Indexing Intervals 25
41 HINT e 25
4.1.1 A comparison-free version of HINT 26

4.1.2 HINT™: indexing arbitrary intervals 30

£1.3 Setting m L e e 34

41.4 Updates o e 35

4.2 Optimizing HINT™ o o oo 36

6

4.2.1 Subdivisions and space decomposition 36

4.2.2 Handling data skewness and sparsity 39
4.2.3 Reducing cachemisses0 40
£.2.4 Updates e e e e e 42
4.3 Experimental Analysis o oo L oL, 42
4.3.1 Dataand queries e 42
4.3.2 Optimizing HINT/HINT™ 00000, 44
4.3.3 Index performance comparison 48
£.3.4 Updates e e 51
4.3.5 Interval Joins 52
4.4 Conclusions L e o4
Indexing for Allen’s algebra 64
5.1 Supporting Allen’s Algebra 0oL 66
5.1.1 Setup Optimized for G-OVERLAPS 66
5.1.2 One Setup for All. 72
5.1.3 Bottom-up Evaluation Approach 73
5.2 Experiments on Allen’s Algebra 73
5.2.1 Determining the Best Index Setup 74
5.2.2 Index Performance Comparison T4
5.3 Conclusions e 75
Indexing Intervals for Transaction Time Temporal Databases 80
6.1 Time-evolving HINT 81
6.1.1 Live and dead sub-partitions 0L, 81
6.1.2 Handling updates 0., 82
6.2 The LIT Hybrid Index 83
6.2.1 The LiveIndex Component 85
6.2.2 The DeadIndex Component 89
6.3 Indexing Record Attributes oo .. 91
6.3.1 The LiveIndex Component 92
6.3.2 The DeadIndex Component 93
6.4 Persistence and Recovery Lo o .. 94
6.5 Experimental Analysis o o oo 95

6.5.1 Setup e 95

6.5.2 Pure time-travel Querieso Lo o 96

6.5.3 Range time-travel Queries oL 102

6.5.4 Index Size e 107

6.6 Conclusions and Future Work 107

7 Conclusions and future work 109
7.1 Summary of Contributions00 ... 109
7.2 Directions for Future Work 110

Bibliography 112

LisT oF F1GURES

1.1 Example of a time-evolving table, 6
3.1 Example of an intervaltree 15
3.2 Exampleofa 1D-grid 16
3.3 Example of a periodindex 0. 17
3.4 2D mapping [1, 2] 19
3.5 Example of a timelineindex. 20
4.1 Hierarchical partitioning and assignment of [5,9] 28
4.2 Accessed partitions for query [5,9] 29
4.3 Avoiding redundant comparisons in HINT™ 31
4.4 Partition subdivisions in HINT™ (level £ =2) 37
4.5 Storage and indexing optimizations. L oL L. 41
4.6 Optimizing HINT™: query evaluation approaches 44
4.7 Optimizing HINT™: subdivisions and space decomposition 56

4.8 Optimizing HINT™: impact of handling skewness & sparsity and re-

ducing cache misses optimizations 57
4.9 Setting m: measured costs oo 58
4.10 Comparing throughputs, real datasets 58
4.11 Comparing throughputs, synthetic datasets 99
4.12 Mini-joins breakdown for partition-to-partition joins 60
4.13 Join processing breakdown: unindexed inputs 61
4.14 Join processing: unindexed inputso 0oL 62
4.15 G-OVERLAPS based interval joins, real datasets 63
5.1 Comparing HINT™ setups 75
5.2 Comparing throughputs on Allen’s algebra, real datasets 79

iv

6.1 Example of te-HINT 82
6.2 Overview of LIT 84
6.3 Livelndex: partitioning L o oo 87
6.4 Steps of dropping last level m of HINT (m=2) 91
6.5 Live and Dead space and queries 91
6.6 Live and Dead space A-partitioning 93
6.7 Persistence and recovery of LIT 94
6.8 Livelndex for LIT tuning; default query extent 97
6.9 Pure time-travel queries L Lo L o oL 101
6.10 Range time-travel queries Lo, 105

6.11 LIT: size growth over time 107

L.isT oF TABLES

11

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9

5.1

5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Comparison of interval indices

Table of notation L s
Necessary data and beneficial sort orders
Characteristics of real datasets
Parameters of synthetic datasets
Optimizing HINT: impact of the skewness & sparsity optimization (Sec-

tion 4.2.2), default parameters
Statistics and parameter setting
Comparing index size [MBs]
Comparing index time [sec]

Throughput [operations/sec], total cost [sec]

Supporting Allen’s algebra, setup optimized for G-OVERLAPS relationship
(Table 4.2) e

Allen’s algebra relationships, ‘One setup for all’

Characteristics of tested datasets
Query extents; default valuesinbold
Livelndex for LIT; time in secs, default query extents
Livelndex for LIT; in msecs; defaultextents
DeadIndex for LIT; timesinsecs v v v v v v v v v v ..
Pure time-travel queries: total update time [secs]
Pure time-travel queries: in secs; default extents
DeadIndex for a-LIT; timesinsecs« . v o v v v v v v ..

Range time-travel queries: total update time [secs]

vi

LisT oF ALGORITHMS

4.1 Assignment of an interval to partitions
4.2 Searching HINT
4.3 Searching HINT™ 0 e s et e

vii

ABSTRACT

George Christodoulou, Ph.D., Department of Computer Science and Engineering,
School of Engineering, University of loannina, Greece, 2023.
Interval Data Management in Main Memory.

Advisor: Nikos Mamoulis, Professor.

The management of intervals has been an active research area since databases were
invented. A popular direction of research is the indexing and retrieval of intervals,
finding a wide range of applications. Emerging and widely used systems are built
dependent on temporal and uncertain data. Many algorithms and indices have been
proposed, concentrated on a variety of queries. Most algorithms are either suboptimal
in space consumption or perform well only for specific query types. We need novel
and efficient in-memory indices for intervals, which can evaluate queries with high
performance.

In statistical and probabilistic databases [3], uncertain values are often approxi-
mated by confidence intervals. Real-world examples of uncertain values include tem-
perature values obtained from IoT devices or time-series. For such cases, it would be
more appropriate to record an observation using an interval range rather than a sin-
gle value. In data anonymization [4] attributes can be generalized to intervals. Stored
values can be replaced with semantically consistent but less precise alternatives in the
form of intervals. In this way, information from a private table, like the identity of
any individual to whom the released data refer cannot be recognized. In XML data
indexing techniques [5], the scope of an XML element can be modeled as an interval
defined by the positions of the starting and closing tag of the element.

Intervals are representations of value ranges. Quite often, these ranges represent
periods of time described as a tuple [start,end|. In a temporal database, an interval-
based data model can timestamp each tuple or attribute value with a validity time

interval. Along with valid time, an interval-based model can timestamp transaction

viil

time, which captures when a tuple is inserted and deleted from the database. We
index intervals in data structures so that we can efficiently evaluate different types of
queries. There are several query types over intervals, with the differentiation lying on
the specifications that shape the resulting set of intervals, or the context in which we
model data with an interval representation.

The topic of this dissertation is to study the problem of indexing and querying
a large collection of records, based on an interval attribute that characterizes each
object. We focus on the different aspects of temporal databases, as they form the most
significant application of interval data. The collection can be known before indexing
or evolve over time, which is common in temporal databases or streaming data. The
challenge is to find solutions which, can take advantage of modern hardware such as
large main memories, can handle traditional and on demand indexing of intervals,
and provide high performance for a wide variety of query types and predicates. In
this thesis, we study numerous problems and different scenarios which come down
to indexing and querying interval data.

In the first part, we propose HINT, a novel and efficient in-memory index for
large known collections of intervals, with a focus on range queries, which are a basic
component of many search and analysis tasks. Our index is suitable for valid-time
indexing in the context of temporal databases. HINT applies a hierarchical partitioning
approach, which assigns each interval to at most two partitions per level and has
controlled space requirements. We reduce the information stored at each partition to
the absolutely necessary by dividing the intervals in groups, based on whether they
begin inside or before the partition boundaries. In addition, our index includes storage
optimization techniques for the effective handling of data sparsity and skewness.

The second problem we study, is a more general version of HINT, so that with
the best trade-off in information storage, it will be able to handle queries with differ-
ent predicates. Intervals may satisfy more sophisticated relations than intersections,
which are based on Allen’s relationships [6] (e.g., find all intervals that are covered
by the query interval). The principles of HINT are useful for the retrieval of data
intervals based on Allen’s relationships, because the hierarchical partitioning applies
independently of the query type. We show how HINT can be tuned depending on
the data and can be efficiently used to process joins and queries based on Allen’s
relationships.

In the last part of this dissertation, we study the problem of transaction-time

indexing in the context of temporal databases, i.e., indexing versions of data in an
evolving database. Given the fact that the main memories of modern commodity are
large and cheap, we can afford to keep track of all versions of an evolving table
in memory. This raises the question of how to index such a table effectively. We
depart from the classic indexing approach, where both current (i.e., live) and past
(i.e., dead) data versions are indexed in the same data structure, and propose LIT, a
hybrid index, which decouples the management of the current and past states of the
indexed column. LIT includes optimized indexing modules for dead and live records,
which support efficient queries and updates, and gracefully combines them.

For the evaluation of our methods, we used multiple real and synthetic datasets
with different characteristics so that we can safely conclude the robustness of our
algorithms. The experiments showed that our algorithms are typically one order of
magnitude faster than existing methods on static or evolving data collections and

with multiple types of queries.

EXTETAMENH IIEPIAHWH

'ewpyrog Xptotodoviov, AA., Tunuo Mnyovixwy H/Y xor ITAnpogopixng, TToAvte-
yvLxy ZyoAy, Moavemotuto looavvivwy, 2023.

Avayetlplon Aedopévwy Ebpouvg atnv Kdpta Mynun .

EmpBAénwy: Nixog Mopoving, Kabnyntie.

H Sroxelpion twy Sedopévmwy eDpoLG €XEL ATTOTEAETEL VY EVEQYO TOUEN EQEVLVAG
amd otay epevpebnxay oL Bdoelg dedopévwy. Ml dnpogLtAng xatevbuvon €psvvoc
elvo 1 evpetnplaoy xot N avéxtnon SLaoTNLaTwy, Tov PBploxel éva YeYdAo Ttedio
eQOPUOYWY. 'Eva peydAo odvoro cuotudtwy Poociletol o ypovixd xaL SES0UEVH
pe avoxpLPeic tnég. IToAlol adydpLbpol xar evpetnoLa €xovy tpotabel, pe otdYO0 TNV
ATTAVTNOY SLAPOPW®Y TOTIWY EPWTNUATWY. O Tepltoadtepol aiydptbuol eivor eite un
BE€ATLOTOL WG TTPOG TNV XEMNOT XWEOL £{TE ATTOSLIOLY XOAG LOVO YLOL GUYKEXPLULEVOUG
TOTIOVG EPWTNUATWY. XOELALOUAOTE VEX XL KTTOSOTIXA EVPETNOLX GTNY KVELO UVAUY
Yt FESOUEVOL EHPOVG, TOL OTTOLOL LTTOPOVY VO EXTEAOVDY EQWTNUOTA LE VYNAY ATtHS00T,.
Xe aut)y ™ SLdaxTopLxy] OtatELPy), atoxevovue aTtny €pevva HebddwY evpeTnElooTg,
Ol OTTOLEC E(VOL EVEALXTEG, EYOLY YOUNAES OTTOLTNOELS YWOEOL XOL TTOPEYOLY LPYNAN
atOd00Y GTNY ATAVTINOCY EQWTNUATWY.

Ye ototiotixég o mhoavotixég Phoetg dedouévwy [3], dedouéva pe avoxpLPeic
TLpég ovyvd Tpooeyyilovtor e gdpy (Saotiuorta Tpoy). Hopadsiypota TEOyL.O-
TLXOU XOGUOL TWY GEGOUEVLY HE avoxpLPelg TLpég TeptAapBavouy petpnoetg Heppo-
xpaotiog Tov Aaufdvovtor amd cvoxevég IoT N xataypan xpovoostpwy. o Tétoleg
TEPLTTWOELG, Dot NTaY TTLO XATAAANAO VOU XOTAYPAPETOL YLD TTORATNENON XONOLLO-
TIOLWYTOG EVOL SLAOTNULOL TLUGY VT VLo ULOL LELOVOUEVT] TLUN 1 pLor oxoAovbior Topd-
LOLWY TLLOY. ZTNY OVWYLUOTONoY OeS0UEVWY [4], OL TLUES TWY YOEAXTNOLOTLXWY TWY
EYYOOPWY EVOG TVOXOL LTTOPOVY VO YEVIXELTOVY ot €VPY. O amobnxevpéveg TLpég
UTTOPOVY Vo ovTXOTAGTOHO0VY [LE ONUOCLOAOYLXA GUYETELS, OAAG ALYOTEQO axpLPelc

EVOANOXTIXEG AVATIOPUOTAOELS VTTO TNV LOPYN eVPoLS. Me avutdy Tov TpOTO, TTAN-

Xi

poopieg amd Tivoxeg pe evaiohnta dedopéva, OTWE N TALTOTNTA OTTOLOVINTTOTE
O TOUOL GTO OTTOLO AVUPEPOVTOL Tl OEDOUEVD, OEV UTTOPOVY YOI AVOYVWELGTOVY. 2TLG
TEYVLXES EVPETNPLOOYG Oedopévwy XML [5], To edpog evdg atoryeiov XML pmopel vo
unovteromoiniel wg éva e¥pog mov xabopiletal amd Tic BEoelg TG aEyLuNg xo NG
¥AElOLLOG ETLXETOG TOV GTOLYELOL.

[ToAD ovyVa, awTé Tor EHEY AVTLTTPOTHWTTEVOLY YPOVLXA OLACTUATO TTEQLYOAUUULEVOL
UE TNV LOPQN WLog TAELAS0S [o, []. Xe pta xpovixn Béoy dedopévwy, évo LovTéAo
dedopévwy Tov Boaolletar oe €bpn UTOPEL vau avTLoToLY({OEL TNV TLUY] EVOG YVWEL-
OUOTOG LE EVOL aVTLOTOLYO YPOVLXO VP0G Loybos. Extdg amd Tov xpdvo Loxdog, Eva
LOVTEAO pe Baom To b UTOPEL VoL YHEOXTNELOEL YPOVLXE TOY YPOVO GUYOAAXYTG,
oL oTToloVaTilEL TLG OTLYIES TTOU LD TTAELAS ELOAYETOL XOL OLOYQAPETOL ATTO TN
[Baiomn dedopévwy.

To Staotpota detxtodoTovvTaLl omd douég SeSopévwy Yo vo aEtoAoyniody aro-
J0TLXA dLAPOPOL TOTIOL EPWTNUATWY. YTTEAEYOLY APXETOL TOTTOL EPWTNUATWY TTAVL OE
OLOOTNUATO, UE TN OLEXPLOY TOUG Yo BEPLOXETOL GTOVG TTEPLOPLOU.OVS TTOL SLAUOPPL-
YOUY TO GUOYOAO TV SLHOTNUATWY TTOL TPOXVTTEL WG ETLOLUNTO aoTEAETU, 1] OTO
TA0{OLO UE TO OTTOLO LOVTEAOTTOLOVUE Tl SESOUEVOL LOG.

To Bépor avTNg TNG dLaTELPNG ELvaL Vou LEAETNGOVLIE TO TTEOPANUO TNG EVEETNELO-
oG RO TNG AVOLNTNONG OE L LEYOAN CLANOYY dedouévwy, Baotouévr o évar VP0G
0L YorpoxTNELlel xabe avtixeipevo. H cuAloyn umopel va eival yvwotn oLy) On-
utovpytor Tov gevpeTNElov N vo eEgAtybel pe Tov YpPdvo, xaTL To omoio cvynbileton oe
XOOVLXEG Baoelg dedouévwy 1] poég dedopévwy. H mpdxAnom eivarl vo Bpodue Adoelg
TTOL UTTOPOVY VO EXUETOAAELTOVY TO COYYPOVO LALXO, OGS UEYAAES XVPLEG UVNUEG,
Ol OTTOLEG VOU UTTOPOVY VO XELPLOTOVY TNY TTOPUSOCLAXT] XL TNV ELEALXTY] ELPETNEL-
00Y] TWY ELPWY XOL VO TIOPEXOLY LYNAY aTTOS00N YLow ULal EVEELX TTOLXLALOL TOTTWY
EQWTNUATWY.

Ye oty TN OLoTELBN, LEAETOVUE TTOAAG TTROPRANUOTO XOolL OLOUPOPETLYA TEVAPLOL
TTOL CUVIEOVTOL WLE TYV EVPETNELOOTN XOL TNY AVOLNTNOYN OESOUEVWY SLUCTNUATOY.
Y10 TTPWTO PEPOS, ALOYOAOVUAOTE e TN SLoyeipton Un LETOPAAGUEVLY (XOAGDS %ot
Boptopévwy) SLaotnudtwy T, ot Tpoteivovpe to HINT, éva véo xot amodotixd
EVPETNPLO OTNY XOELA UVTUT], LE EOTLOON OE EQWTNUOTO EVPOVG, TOL OTTOLOL ALTTOTEAOVY
Boownd otoxo g €pevvag. To HINT epoppdlel pLo tepopylxy] TEOGEYYLON EVPETN-
ploong, mov avoabétel xabe daotTnuor o€ To TOAD SVO dlopepiopata ova emtinedo

oL EYEL EAEYYOUEVEG OTTOLTNOELS YWPEOVL. Metvovpe Ty TANpogopio Tov amodn-

XEVOLPE YLOL TOL OESOUEVOL GTO EAAYLOTO, YwELLovTog Tor dedopéva oe ouades Baoet
TOL OV 7 aEYY Tovg Pploxetar evidg N exTOg amd Ta OpLar evog drapeplopatog. Emt-
TIAE0Y, TO EVPETNPELO HoG TTEPLAaUPBAveL Texvixég PBeAtiotomoinong amobnxevorng yLo
TNV ATTOTEASOUOTLXY] OLOYXELPLON CLOOLLIY XOL ACVUUETON XATOVEUNUEVWY GTOY XWOEO
OES0UEVWLV.

To dedtepo TPOBANUo oL peAeTOVUE elvor ptor Yevixevuévy €xdoon tov HINT,
ETOL WOTE UE TNV XATAAANAY pVOWLOY amobxevomg TANEOPOPLLY, Vor UTTOPEL Vou YEL-
OLOTEL EQWTNULOTO UE SLOPOPETLXOVS TTEPLOPLOUOVG. Tar e LTTOPEL VoL LxavOTTOLOVY
Lo eEelNTNUéveg OYETELS, OL OTtoleg TtepLlypdpovtol oty BifAtoypopio we AiyeBpo
Tou Allen [6] (7t.%. €0PEGN OAWY TWY EYYPOPWY TOL ETTXAADTTOVTOL ATTd TO EVPOG
Tov gpwTALatog). Ot apyég tov HINT eivor ypfolpeg yior TV avdxtnoy dedopé-
VWY ebpoLg Baoel Twv oxéocwy Tou Allen, xabwg 1 tepapyLxn Staipeor e@apurdleTorn
oveEdpTNTOL oTtd TOV TUTTO TOL EPWTNLOLTOG.

Y10 TpiTo (%0 TEAELTOLO) PEPOC AV TAS TNE BLaTELPAC, LEAETOVUE TO TEOPBANULOL TG
eLPETNPLOOYG BEGOUEVWY OTO TTAXLGLO XPOVOL CLUVAAAXYWY, SNAXDT TNV EVLPETN LGN
OEO0UEVWY LE TTOAATIAEG EXDOOELS OE ULoL OLVEYWS EEEALOGOUEYY [BGiom JESOUEVWLY.
Aedopévov OTL oL ®VPLEG UVNUES TWY GUYYPOVWY LTTOAOYLOTWY ELVOL UEYRAES %O
@bnvég, pmopodpe va emitpédovpe ™y amobnxevon OAwY Twy exddoewy evog eEe-
ALOGOUEVOL TTIVOXOL 0T UYNUY. AuTO O€Tel To €ENG epOTNUO: TG ONULOLPYNOOLILE
OTTOTEAECULOTLXA EVOL EVPETNPELO YLOL EVOY TETOLO Tlvoxo; Xe ovtibeon pe v xAo-
o TPOGEYYLON EVPETNPLAOTG, GTTOL TOoO oL TPEYovaes (dNAadY evepYéc) oo oL ot
ToAtéc (dnAadh avevepYéc) exddocelc dedopévwy cLVLTTEEYOLY oty (BLor Souy) dedo-
uwévwy, potelvovpue to LIT, éva vBptdind evpetnplo, mouv Egywpilet 0 dtayelpton Twv
EVEQY WY XOIL AVEVEQYWY XATOGTACEWY TWY dedopévwy. To LIT mepthopBaver texvinég
BeAtioTomoinong yLor TV amtodoTLXY] EVPETNELAOY], XOL VTTOGTNPELLEL ATTOTEAECULOTLUE
EQWTNUOTO AAADR XOL EVNULEQWOELS OTLG EXOOTELS TwY JEDOUEVWLY.

[Not ™v oLYOALXY] AELOAGYNOT OAWY TwY PeBOSWY pog, XENOLLOTIOLNOOUE TOAAL
TEOYRLOTIXG xot oLYDETIXE GUVOAQL BECOUEVWY UE TTOLXIAOL YHOOXTNELOTLXA, YOTE
VO [LTTOPOVUE VO CUUTIEQAVOVUE UE OOQAAELX TNV OELOTILOTIO TWY oAyoplBuwy pag.
To metpdpoto deiyvovy mwg ot aAydptbuol pog elvat, oty YeVLXY] TEQITTWOY)], Lo
TéEN peyéboug o ypNyopoL amd TG LTTAPYOLOES UEDBHBOVE OE GUANOYES OTOTIXWY

N €EEMOOOUEVWY FEOUEVMY KO LE SLOPOPETLXOVG TOTTOVS EQWTNUATWY.

CHAPTER 1

INTRODUCTION

1.1 Interval Indexing
1.2 Indexing Intervals for Transaction Time Temporal Databases

1.3 Dissertation Outline

A wide range of applications require managing large collections of intervals. In data
anonymization [4], attribute values are often generalized to value ranges. XML data
indexing techniques [5] encode label paths as intervals and evaluate path expres-
sions using containment relationships between the intervals. Several computational
geometry problems [7] (e.g., windowing) use interval search as a module. The in-
ternal states of window queries in Stream processors (e.g. Flink/Kafka) can be mod-
eled and managed as intervals [8]. The most popular use of intervals is time rep-
resentation in temporal databases [9, 10]; where each tuple has a wvalidity interval,
which captures the period of time that the tuple is wvalid in the modeled reality.
Temporal data management has been studied extensively for at least four decades
[9, 11, 12, 13, 10]. Temporal and multi-version data management re-gained interest
recently [14, 2, 15, 16, 17, 18, 19, 20, 21, 22], due to the increase of cheap storage that
makes it possible to track the versions of a database even in the main memory of a
commodity machine.

Temporal databases are a fundamental application of interval data because they are
specifically designed to manage and store time-varying data. Interval representations

can be used to model time in two ways [23]: valid time representations and transaction

1

time representations. The former captures the time during which a fact or event holds
true in the reality of an application, while the latter records the time when data were
recorded or modified in the database. In this dissertation, we study the indexing of
interval data, with a primary focus on addressing the unique challenges that arise
from different time modeling and different query types, and proposing novel solutions
for effective query processing and data retrieval.

Valid time indexing is essential for applications where the validity of data items
(e.g., records, attribute values) is limited to specific time intervals. (e.g., records, at-
tribute values) is limited to specific time intervals. Among the most common and
popular types of queries encountered in this domain are the range queries. These
queries aim to identify intervals that overlap in any way with a specified (time) range,
often employed in scenarios where historical trends, scheduling, or event detection
are of high importance. The predicate of this query is denoted as G-OVERLAPS. Range
queries are also known as pure timeslice/timerange queries in temporal databases
[24]. Although range queries are fundamental and very popular, previous work
has mainly focused on more expensive and complex queries, such as interval joins
[25, 26, 27, 28, 10, 29] or temporal aggregation [30, 31, 32, 33, 34]. For efficient range
queries over collections of intervals, classic data structures for managing intervals, like

the interval tree [35], are typically used.

1.1 Interval Indexing

To tackle the challenges of interval indexing, in the first part of this dissertation,
we introduce a new indexing method (HINT), a general-purpose index for intervals
in a static domain and can handle valid time data. HINT efficiently answers range
G-OVERLAPS queries, enabling fast retrieval of relevant intervals. Our approach lever-
ages optimization techniques and data structures designed to handle the temporal
nature of the data, enhancing query performance while keeping size efficiency. Sub-
sequently, to validate the superiority of our method, we conduct an extensive set
of experiments, comparing its performance against state-of-the-art techniques in the
domain of interval data indexing.

Intervals can involve more intricate relationships than simple intersections, making

it necessary to adopt advanced formalisms to capture these complex associations accu-

rately. Allen’s Algebra [6], introduced by James F. Allen in 1981, is a well-established
and widely used framework for characterizing relationships between intervals. This
model defines a set of 13 basic interval relations, also known as Allen’s predicates, that
describe the possible relationships between two intervals (e.g. "before”, “meets”). Rec-
ognizing the significance of these sophisticated interval relationships, the second part
of this dissertation focuses on extending and fine-tuning HINT to support queries
with Allen’s predicates. The objective is to efficiently answer queries that involve
Allen’s predicates, allowing for more complex interval data analysis. By leveraging
the capabilities of Allen’s Algebra, the indexing approach can handle queries that

go beyond basic intersections, facilitating more advanced interval data retrieval and

analytics.

Contribution In the first two chapters of this dissertation, focused on static inter-
val data, we propose a novel and general-purpose Hierarchical index for INTervals
(HINT), suitable for applications that manage large collections of intervals. HINT de-
fines a hierarchical decomposition of the domain and assigns each interval in S to at
most two partitions per level. If the domain is relatively small and discrete, our index
can evaluate G-OVERLAPS queries, requiring no comparisons at all. For the general case
where the domain is large and/or continuous, we propose a version of HINT, denoted
by HINT™, which limits the number of levels to m + 1 and greatly reduces the space
requirements. HINT™ conducts comparisons only for the intervals in the first and last
accessed partitions at the bottom levels of the index. Some of the unique and novel

characteristics of our index include:

¢ The intervals in each partition are further divided into groups, based on whether
they begin inside or before the partition. This division (1) cancels the need for
detecting and eliminating duplicate query results, (2) reduces the data accesses
to the absolutely necessary, and (3) minimizes the space needed for storing the

objects into the partitions.

* As we theoretically prove, the expected number of HINT™ partitions for which
comparisons are necessary is at most four. This guarantees fast retrieval times,

independently of the query extent and position.

¢ The optimized version of our index stores the intervals in all partitions at each
level sequentially and uses a dedicated array with just the ids of intervals there,

as well as links between non-empty partitions at each level. These optimizations

Table 1.1: Comparison of interval indices

Method query cost ‘ space ‘ updates ‘
Interval tree [35] medium low slow
Timeline index [13] medium | medium | slow
1D-grid medium |medium | fast
Period index [36] medium | medium fast
HINT/HINT™ (our work) low low fast

facilitate sequential access to the query results at each level, while avoiding

accessing unnecessary data.

* We propose a model for tuning the value of the parameter m for HINT™. Fur-
thermore, we include experiments which confirm the intuition behind our pro-

posed model.

* Our experimental evaluation on real and synthetic datasets shows that our in-
dex is typically one order of magnitude faster than the competition. Table 1.1

qualitatively compares HINT to previous work.

* We show the necessary additional comparisons and accesses on HINT™ for
each predicate in Allen’s algebra. In addition, we show that a different version
of HINT™ is directly suitable for processing queries using all Allen’s predicates,

while maintaining the excellent performance of HINT™ for G-OVERLAPS queries.

* We show that an index-based nested loops approach for G-OVERLAPS interval joins
that uses HINT™ to index the inner join input outperforms the state-of-the-art

join algorithm when the outer join input is relatively small.

1.2 Indexing Intervals for Transaction Time Temporal Databases

In transaction time temporal databases, the focus shifts from capturing the validity
of data in the application domain to recording the time at which data were inserted
or modified in the database. Unlike valid time, which represents when facts or events
are true in the reality of the application, transaction time represents when these facts
or events were captured or changed within the database system. Also, there is a

necessity of considering both, the temporal aspect and the accompanying attributes

during query processing. Each data entry is associated with a timestamp that reflects
the exact moment when the data were inserted, updated, or deleted in the database.
As new data arrive or existing data are modified, the corresponding timestamps are
updated to reflect these changes. When a data entry is firstly inserted the only known
timestamp is the starting point of its validity interval. Among the most common
encountered query types within this field are referred to as time-travel queries. These
queries are categorized into two main groups: pure timeslice/timerange queries, which are
the same as previously mentioned, and additionally, range timeslice/timerange queries,
that also include selection predicates on the non-temporal aspect of the data as well.

As an example, consider a database table 7', storing information about employees
of a company. The table has three attributes: ID, Name, and Salary. As the database
evolves over time, there are changes in the table, where records are inserted or deleted,
or attribute values of existing records are updated. Figure 1.1 shows some versions
of T, where, at time ¢, T is initialized to include two records; at time ¢;, a new record
(with ID=3) is inserted to T; at time t,, the Salary value of record 2 is updated;
and at time ¢3, record 1 is deleted and record 2 is updated. The evolution of 7' can
be seen as a stream (time-sequence) of events, also shown in the figure (bottom-
left). Insertions (deletions) are modeled by events of type start (end); each update
(i.e., value changes) is modeled by a deletion immediately followed by an insertion.
Finally, the figure (bottom-right) shows the validity intervals of the records and their
values in the Salary attribute, as flat line segments. The current time is denoted by
thow. We first focus on indexing for pure time travel queries, where the objective is
to retrieve the record versions that were valid at a given timepoint or timerange in
the past. In our running example (Figure 1.1), such a pure timepoint query ¢, is

2

“find all records in 7', which were valid at time ¢,” and the answer records are
(1, Smith, 50K) and (2, Black, 30K). Then, we study how our indexing scheme
can be extended to temporally index 7" with respect to a specific attribute 7" A, for
range time travel queries, that retrieve record versions r in 7' which were valid at
a given timepoint/timerange and their r.A satisfies a range query predicate. Such
a range-timepoint query ¢; is: “find all records in T, which were valid at time ¢,
and have Salary at most 32K.” Query ¢, is geometrically represented by the vertical
line segment starting at time ¢,; and retrieves the records, corresponding to the line

segments intersected by vertical segment starting at ¢, i.e., record (2, Black, 30K).

Another example is range-timerange query ¢»: “find all records in 7', which were valid

ID | Name | Salary ID | Name | Salary ID | Name | Salary ID | Name | Salary
1 Smith | 50K 1 Smith | 50K 1 Smith | 50K 2 Black [35K
2 Black | 30K 2 Black | 30K 2 Black | 35K 3 James | 45K
3 James | 40K 3 James | 40K
after t, after t; aftert, after t3
EventiD | Time | rID | rSalary | Event Salary 1 i |
! .
0 to 1 50K start E - E
1 to 2 30K start 50K ? !
2 t, 3 | 40K start i 3 (James) ‘_3%?me-§)
3 t, 2 30K end i 2(Black) 2{Black) '
4 t, 2 | 35K start 25K i : !
5 t, |1 |50k end E
6 |3 |40k end i
7 ty 3 45K start t T t, ta t(IqZ.s t, s thz.e'tnow
Events sequence Geometric representation

Figure 1.1: Example of a time-evolving table

anytime between ¢, s and ¢, . and have Salary between 25K and 43K,” modeled by
the rectangle in Figure 1.1. Again, the query results are the segments that intersect
the rectangle, namely (2, Black, 30K) valid in [, t2), (2, Black, 35K) valid in [ts, t,ow)s
and (3, James, 40K) valid in [t1,t3). Note that it is important to find the records and
their validity intervals in order to be able to distinguish between results corresponding
to different versions of the same record/entity (e.g., Black in the results of ¢o).

To address transaction time indexing, in the third (and last) part of this dis-
sertation, we propose a novel indexing solution tailored to fit the specifications of
the transaction time aspect of temporal databases. Our approach uses advanced data
structures and indexing techniques that facilitate fast retrieval while efficiently consid-
ering both temporal information and the associated attributes. By combining temporal
and attribute-based querying, our index forms a complete solution, useful in various

application domains.

Contribution We aim at the efficient support of updates in a continuously evolving
database, and target a much better performance in queries compared to the state-of-

the-art access methods for time-evolving data.

e We propose a LIT, a hybrid index, which indexes live records (i.e., those which

valid at t,,,), like (2, Black, 35K), by a different data structure compared to
dead records (i.e., those not currently valid), like (2, Black, 30K). Specifically,
LIT includes a Livelndex for the live records; Livelndex only needs to index
the begin time of the validity of each live record. For dead records we use a
DeadIndex, which includes their validity intervals with both starting and ending
timepoints. When a temporal record is created, it is added to LiveIndex; when
the record dies (i.e., deleted from the temporal table 7, or updated), it is deleted
from Livelndex and added to the DeadIndex. Given these operations, LiveIndex
supports fast temporal appends (i.e., add a new live record at the “temporal”
end of the index) and deletions, whereas DeadIndex needs only to support
insertions (anywhere in the time domain up to t,,,), but no deletions (since
past data versions are never deleted from a temporal DB). Both LiveIlndex and

DeadIndex gracefully adapt to the ever-evolving time domain.

* We implement, tune and test the best implementations of LiveIndex and DeadIn-
dex and compare LIT with in-memory versions of the state-of-the-art temporal
and multi-version indices [37, 13] on mixed workloads of queries and version

updates, showing that LIT is orders of magnitude faster.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we describe the
necessary background and useful definitions for our work. In Chapter 3, we review
related work and present in detail the characteristics and weaknesses of existing
methods.

In Chapter 4, we present HINT and its generalized HINT™ version, and analyze
their complexity. We focus primarily on the G-OVERLAPS relationship and optimizations
that boost the performance of HINT™. Then we focus on executing interval joins with
HINT. Last, we present our experimental analysis on real and synthetic data against
the state-of-the-art.

In Chapter 5 we discuss necessary changes to HINT™ for efficiently evaluating
selection queries under the Allen’s algebra relationships, and evaluate our method
experimentally.

In Chapter 6, we present LIT, our proposal for pure time-travel queries on

transaction-time databases and its extension so that it can index an attribute A of
the records besides their temporal validity intervals, in order to support range time-
travel queries. We conclude this chapter with a discussion about the integration of our
main-memory LIT in a DMBS that should support persistence and fault-tolerance
(recovery) and our experimental analysis. In conclusion, Chapter 7 summarizes the

contributions of this dissertation and provides a discussion about future work.

CHAPTER 2

BACKGROUND AND DEFINITIONS

In this chapter, we present the background and definitions that form the basis of
our research. We will take a closer look at the context that has shaped our study’s
foundation. By clarifying key terminologies and concepts, we aim to provide a better
understanding of the ideas we are going to explore through the rest of this disser-
tation. These insights will serve as a solid platform for our analysis on interval data
management.

In mathematics, an interval is a fundamental concept used to describe a continuous
range of numbers. There are various types of intervals, each with its own formal

definition. Here are the basic interval formal definitions:

Closed Interval A closed interval is a set of real numbers that includes both its
endpoints. It is denoted by [a, b], where a and b are the two endpoints of the interval,

and all numbers between @ and b including a and b themselves, belong to the interval.

Open Interval An open interval is a set of real numbers that includes all the numbers
between its endpoints but excludes the endpoints themselves. It is denoted by (a,b),

where “a” and “b” are the two endpoints, and all numbers between a and b (excluding

a and b) belong to the interval.

Half-Open or Half-Closed Interval A half-open interval is a set of real numbers
that includes one endpoint and excludes the other. There are two types of half-open
intervals:

a. Right Half-Open Interval: Denoted by [a,b), it includes a and all numbers

between a and b (excluding b).

b. Left Half-Open Interval: Denoted by (a, b], it includes b and all numbers between

a and b (excluding a).

Infinite Interval An interval can also be infinite when one or both of its endpoints
are not defined (positive or negative infinity). Denoted by (—oo,), it includes all
real numbers.

In our setting, without loss of generality, we assume that the validity interval of
a record is closed at both ends. Intervals are indexed by data structures in order
to efficiently evaluate different types of queries. There are several query types over
intervals, so different data structures may be needed for their efficient evaluation. We
model our problem as indexing a large collection S of objects (or records), based on
an interval attribute that characterizes each object. Hence, we model each object s € S
as a triple (s.id, s.st, s.end), where s.id is the object’s identifier (which can be used to
access any other attribute of the object), and [s.st, s.end] is the interval associated to

s. These query types can be described by the following definitions:

Stabbing queries (or pure timeslice queries in the context of temporal databases) ask
for the intervals in the database (or the objects associated with them), which include
a query value z. For example, interval [6,9] is a result for the query value = = 7.

(Note that the predicate can be considered as G-OVERLAPS)

Interval range queries (or pure timerange queries in the context of temporal databases)
retrieve intervals in a collection of intervals, which overlap (i.e., have at least one com-
mon value) with a given query interval z. For example, interval [6,9] is a result for
an interval range query with = = [3,7]. (Note that the predicate can be considered as

G-OVERLAPS)

Relationship G-OVERLAPS A G-OVERLAPS selection retrieves all intervals intersecting
query ¢ in any way.
Relationship EQUALS. An EQUALS selection retrieves all input intervals identical to query

q, i.e., with g.end = s.end and q.st = s.st.

Relationship STARTS. According to Allen’s algebra, a STARTS selection query reports
all intervals that start where ¢ does, i.e., with ¢.st = s.st, but outlive its end, i.e., with

g.end < s.end.

Relationship STARTED_BY. As an inverse to STARTS, a STARTED_BY selection retrieves all

intervals that again start at ¢.st but end before g.end.

Relationship FINISHES. This selection query returns all intervals that end exactly where

query ¢ does, i.e., with g.end = s.end, but start before ¢, i.e., with ¢.st > s.st.

Relationship FINISHED_BY. A FINISHED_BY selection inverses the second condition of

FINISHES, retrieving intervals with ¢.end = s.end and ¢.st < s.st.
Relationship MEETS. This selection query returns all intervals that start at q.end.
Relationship MET_BY. This selection query returns all intervals that end at g.st.

Relationship OVERLAPS. An OVERLAPS selection retrieves all non-disjoint intervals to

query ¢, which start after ¢q.st and end after q.end.

Relationship OVERLAPPED_BY. As inverse to OVERLAPS, the OVERLAPPED_BY selection re-

trieves all non-disjoint intervals to ¢ that start before ¢.st and end before q.end.

Relationship CONTAINS. This selection query returns all intervals, fully contained inside

the query interval ¢, i.e., with ¢.st < s.st A g.end > s.end.

Relationship CONTAINED_BY. This selection retrieves all intervals that fully contain q,

i.e., with ¢.st > s.st A q.end < s.end.
Relationship BEFORE. A BEFORE selection retrieves all intervals that start after q.

Relationship AFTER. An AFTER selection retrieves all intervals that end before q.

In a data modeling context, there are distinct time dimensions that can be con-
sidered to represent temporal aspects of the modeled reality and database records.
These time dimensions are “valid time” and “transaction time”, and they serve dif-

ferent purposes in capturing time-varying states and maintaining data in a database.

Valid Time (or Application Time) refers to the time during which a fact is true
in the modeled reality. It represents the temporal validity of the information being
stored in the database. For example, if we consider the fact “George was hired from
September 1, 2010, to March 30, 2012”, the valid time is the period between these
dates when George’s hiring status is considered valid. Furthermore, valid time is
supplied by the application and exists independently of whether the fact is recorded
in a database or not. Also, facts in the data model have valid time by definition.
Valid time can be bounded (limited within specific time intervals) or unbounded

(continuing indefinitely).

Transaction Time (or System Time) represents the time when a fact is present or

current in the database as stored data. It captures the temporal aspect of the database’s

changing state over time. In the same example, “George was hired from September 1,
2010, to March 30, 20127, although the transaction time is the period between when
this hiring information was inserted into the database (e.g., September 5, 2010) and
when it was deleted (e.g., April 2, 2012). The transaction time aspect is supplied
automatically by the DBMS. It has a duration from the insertion of a fact to its
deletion, allowing for multiple insertions and deletions of the same fact. Deletions in
transaction time are logical, meaning the fact remains in the database but is no longer
part of the database’s current state. When a new fact is inserted into the database, it
becomes part of the current state of the database, and it is associated with a specific
transaction time that marks the moment of insertion. This fact is now a version of
the data, representing the state of the database at that particular transaction time.
The activities in transaction time databases generate multiple versions of a fact or
record as it evolves over time. This organic versioning occurs due to the nature of how
data is inserted, updated, and deleted in the database, capturing the changes in the
database’s state at different points in time. As time progresses, the data in the database
may change. When a fact is deleted from the database, it remains logically present, but
it is no longer part of the current state. Instead, the deleted fact becomes a historical
version of the data. The version of the fact is associated with the transaction time
of deletion, effectively marking the end of its validity as part of the current database

state.

Pure timeslice/timerange query Given a query time point ¢.t or query time interval
[q.tstart, q.tend)], retrieve the records in all versions of 7" which were valid at ¢.t or

some time during [q.tstart, q.tend], respectively, together with their validity intervals.

Range timeslice/timerange query Given a query time point ¢.t or query time interval
[q.tstart,q.tend), an attribute A of T, and a range [q. Astart, q. Aend), retrieve the records
r in all versions of 7" which (1) were valid at ¢.time or some time during [q.start, g.end),
respectively, and (2) satisty ¢.Astart < r.A < q.Aend together with their validity

intervals.

CHAPTER 3

ReELATED WORK

3.1 Valid-time indexing
3.2 Transaction-time indexing

3.3 Other related work

In this chapter, we review related work on the queries that are relevant with our
work and developed under the specifications of (1) indexing valid time and (2) in-
dexing transaction time; we also briefly present other recent work on temporal data

management.

3.1 Valid-time indexing

Valid-time temporal databases store record versions which are valid during a well-
defined time interval [38]. This interval could refer to the past, the future, or may
start at some time in the past and finish in the future (for example, an activated
credit card which expires at some time in the future). The order by which records
in a valid-time database are inserted, deleted, or updated is not necessarily related to
the validity time of the records.

Managing valid-time records for the evaluation of time-travel queries can then be
considered as a case of indexing intervals (i.e., one-dimensional ranges), which is a

well-studied problem with lots of previous work [35, 39, 7, 36, 40].

13

Given a set of S of data intervals, the segment tree [7] sorts the distinct end-points
of all data intervals and creates a binary search tree for them. Each leaf v corresponds
to an elementary interval Int(v) defined by two consecutive distinct end-points in S.
Each non-leaf node interval Int(v) corresponds to the union of elementary intervals
in the subtree rooted at v. Each data interval s € S is assigned to nodes, such that
node v includes s iff s covers Int(v), but s does not cover the interval of v’s parent.
Hence, each data interval is assigned to logn nodes and the segment tree requires
O(nlogn) space. Given a query point g, the tree traverses the path of nodes whose
intervals include ¢ and reports all intervals in them (in O(logn + K) time).

The interval tree [35] defines a center point ¢, such that the data intervals strictly
before c are approximately as many as those strictly after c. Then, ¢ becomes the root
of the tree and all data intervals that include c are stored at the root. The left and
right subtrees of c are defined recursively. The intervals assigned to each node are
sorted based on their begin and based on their end-points (i.e., two sorted lists are
defined). Hence, the space complexity of the tree is O(n). Given a point query g, if
q < ¢, then the intervals in the begin-list of root c are accessed and reported until an
s with s.begin > c is found; the left subtree is then searched recursively. If ¢ > ¢, then
the intervals in the end-list of c are accessed in reverse order and reported until an
s with s.end < c is found; the left subtree is then searched recursively. Since at most
one non-result interval is accessed per node, the time complexity is O(logn+ K). The
tree can also be used to answer range queries at the same complexity. For example,
Figure 3.1 shows a set of 14 intervals s, ..., s14, which are assigned to 7 interval tree
nodes and a query interval ¢ = [¢.5t, ¢, end|. The domain point ¢ corresponding to the
tree’s root is contained in the query interval, hence all intervals in the root are reported
and both the left and right children of the root have to be visited recursively. Since
the left child’s point ¢, is before ¢.st, we access the END list from the end and report
results until we find an interval s for which s.end < ¢.st; then we access recursively
the right child of c;. This process is repeated symmetrically for the root’s right child
CR.

A disk-based version of the interval tree was proposed in [39]. In [39] the goal is to
manage efficiently intervals using a relational representation in a relational database
management system (RDBMS). The authors aim to use built-in composite indices
provided by the RDBMS for lower space complexity. The proposed data structure is

three-fold. The primary structure is not materialized physically. Instead, the other

S1

1 P 1
S !
’ : /&C-JST :{511 521 53} END ={SZI S3l sl}
Sy — ' S6

Ss . i i Sy

ST ={s, s4}! ! | ST ={s¢, s}

END ={ss, su} | ; END ={s,, S¢}

Sg —S%10 ! —

Sg S11 S13

END ={sg) Sg} END: ={s16, 511} END ={sy, 513}

ST ={s¢, 53} | ST={s10, $12} 1 1 ST={sy;, bus} 1 ST={sy}

1 .
CLL C Cr c g.end G Cr Cgg domain

Figure 3.1: Example of an interval tree

two parts of the structure are used to store information for the intervals. The second
part of the structure contains a list of lower bounds (L(W)) for intervals registered
at each node w. This information is represented using the relation (node,lower) in
the RDBMS, where node is the identifier and lower is the lower bound of the interval
associated with that node. The third part of the structure is linked to the second part
and contains the upper bounds in the same way. So, The RDBMS efficiently organizes
the two relations (node, lower) and (node, upper) using built-in composite indices
(e.g., B+-tree). These indices ensure efficient querying and retrieval of interval data.
The resulting relational schema and the composite indices yield a space complexity
of O(n/b) for n intervals, where b represents the branching factor of the tree. The
technique can be implemented using SQL Data Definition Language (DDL) statements
to create the necessary relations and indices in the RDBMS.

A simple and practical data structure for intervals is a 1D-grid, which divides the
domain into p partitions Py, P, ..., P,. The partitions are pairwise disjoint in terms of
their interval span and collectively cover the entire data domain D. Each interval is
assigned to all partitions that it overlaps with. Figure 3.2 shows 5 intervals assigned
to p = 4 partitions; s; goes to P, only, while s; goes to all four partitions. Given a
query ¢, the results can be obtained by accessing each partition P; that overlaps with
q. For each P; which is contained in q (i.e., q.st < P;.st A P.end < g.end), all intervals
in P, are guaranteed to overlap with ¢. For each P,, which overlaps with ¢, but is
not contained in ¢, we should compare each s; € P, with ¢ to determine whether

s; is a query result. If the interval of a query ¢ overlaps with multiple partitions,

max(s,.st,q.st) | P, ={s1,53,55}

| st ; o Py={sysyss)
i : >3 : : 5::4 E P3={55,54,55}
; 5 5 E L Py=1{55,54,55}
| PP P, i P,

Figure 3.2: Example of a 1D-grid

duplicate results may be produced. An efficient approach for handling duplicates is
the reference value method [41], which was originally proposed for rectangles but can
be directly applied for 1D intervals. For each interval s found to overlap with ¢ in a
partition P,, we compute v = max{s.st,q.st} as the reference value and report s only if
v € [P;.st, P.end]. Since v is unique, s is reported only in one partition. In Figure 3.2,
interval s4 is reported only in P, which contains value max{s,.st, ¢.st}.

The 1D-grid has two drawbacks. First, the duplicate results should be computed
and checked before being eliminated by the reference value. Second, if the collection
contains many long intervals, the index may grow large in size due to excessive repli-
cation which increases the number of duplicate results to be eliminated. In contrast,
1D-grid supports fast updates as the partitions are stored independently with no need
to organize the intervals in them.

Duplicate results can be avoided using the reference point technique [41] or after
dividing the data in each partition to classes based on whether they begin inside or
before the partition [42]. Data structures for multi-dimensional boxes, such as the
R-tree [43, 44], can also be used for 1D intervals. For example, a simple and dynamic
data structure for intervals is the 1D-grid, which divides the space into a number of
partitions, either uniformly or adaptively to the interval distribution. Each interval
is then assigned to all partitions that overlap with it. A point (or range) query q is
evaluated by accessing the partition(s) intersecting ¢ and reporting the intervals there
after conducting comparisons as necessary.

A data structure which considers both the values and the durations of the intervals
is the period index [36]. The period index is a self-adaptive structure based on domain
partitioning, specialized for G-OVERLAPS and duration queries. The time domain is split
into coarse partitions as in a 1D-grid and then each partition is divided hierarchically,
in order to organize the intervals assigned to the partition based on their positions
and durations. Figure 3.3 shows a set of intervals and how they are partitioned in a

period index. There are two primary partitions P, and P, and each of them is divided

Figure 3.3: Example of a period index

hierarchically to three levels. Each level corresponds to a duration length and each
interval is assigned to the level corresponding to its duration. The top level stores
intervals shorter than the length of a division there, the second level stores longer
intervals but shorter than a division there, and so on. Hence, each interval is assigned
to at most two divisions, except for intervals which are assigned to the bottom-most
level, which can go to an arbitrary number of divisions. During query evaluation, only
the divisions that overlap with the query interval are accessed; if the query carries a
duration predicate, the divisions that are shorter than the query duration are skipped.
For G-OVERLAPS queries, the period index performs in par with the interval tree and
the 1D-grid [36], so we also compare against this index in Section 4.3.

An alternative indexing approach is to map intervals to 2D points and then index
them by an off-the-shelf spatial data structure [45, 7]. Specifically, each data interval
s = [s.st,s.end) is mapped to point (s.st,s.end) in the D x D space, where D is the
domain of the interval endpoints. Figure 3.4 shows a number of intervals as points
in this 2D space. Since s.st < s.end for each interval s, the points are all above the
diagonal connecting points (0,0) and (D, D). Each point or range query becomes
a rectangular range query in the 2D space, having x- and y-projections [0, g.end|
and [q.start, D], respectively, as shown by the shaded rectangle in Figure 3.4. This
approach has been used in previous work on managing text document versions [1]
and temporal data [2].

Besides, recent research on indexing intervals does not address basic queries such
as stabbing or range queries, but more demanding operations such as temporal ag-
gregation [30, 32, 13] and interval joins [25, 26, 27, 28, 29, 46, 47].

Piatov et al. [34] present a collection of plane-sweeping algorithms to extend the
timeline index with other forms of temporal aggregation, such as aggregation over
fixed intervals, sliding window aggregates, and MIN/MAX aggregates. They apply
their methods on the Endpoint Index. The idea behind the Endpoint index is that

intervals can be mapped onto one-dimensional endpoints or events.

The lazy endpoint-based interval join algorithm by Piatov et al. [26] is based on
the Endpoint Index as well. An in-memory hash map manages the active tuples,
which is optimized for sequential reads of the entire map. However, in order to
reduce the number of scans on the active tuple map, they pre-allocate the space for
the active tuples. When an active tuple is removed from the list, the last inserted
active tuple takes its place. This requires the unrealistic assumption that all tuples
must be equal-sized.

Furthermore, Bouros and Mamoulis [27] proposed a forward-scan based plane
sweep algorithm for temporal joins. They group consecutively sweeped intervals such
that join results can be produced in batches in order to avoid redundant comparisons.
They also extend the grouping with a bucket index to further reduce the number of
comparisons. This work was extended for interval band joins and semi-joins evalua-

tion [48], [49]. More optimization techniques were proposed in [28].

Deficiencies of interval indices. Most interval indexing methods share a weakness:
the domain of the interval endpoints should be known apriori. If the data domain
grows (i.e., as in a temporal database), the partitions have to potentially be updated to
cover the new part of the domain and it might be necessary to change the assignments
of data intervals to partitions to maintain the good properties of the index. On the
other hand, the 2D point transformation approach [1] does not have this problem as
a 2D spatial index such as the R-tree can adapt to a growing domain. Still, the query
regions are relatively large and touch a large part of the 2D space, most of which
is sparsely populated. More importantly, all methods discussed in this section are
not appropriate for indexing live data versions in temporal databases, whose end is
unknown (i.e., equal to the ever-changing ¢,,,). Finally, data structures for intervals
are not designed for indexing another attribute at the same time; i.e., they are not

appropriate for the range time-travel queries discussed in the Chapter 1.

3.2 Transaction-time indexing

Transaction-time databases [50] manage the evolution history of a database. In Chap-
ter 1, we gave an example of such a database containing a table 7' with employees

records. Indexing transaction-time DBs is more challenging than valid-time DBs,

g.end

q.st

gst gend start

Figure 3.4: 2D mapping [1, 2]

since there are live records which are valid now, but we do not know their end-time.
These records comprise the current database state and may be changed or deleted
in the future, but we are not aware of the exact time for this. On the other hand,
dead records belong to past states for which we do know their end-time. Records (2,
Black, 30K) and (2, Black, 35K) in Figure 1.1 are examples of dead and live records,
having validity [t,t2) and [t2, thew), Tespectively. In fact, these two records correspond
to versions of the same record (employee Black). Versions of the same record cannot
temporally overlap.

Previous work on temporally indexing an evolving DB table extend current-state
indices to support search on all table versions. These indices do not only support
pure time travel queries, but also range time travel queries based on a search-key
attribute A (i.e., from all records r which were valid at some timestamp or period in
the past retrieve those for which v; < A < vy). To support such queries, they index
simultaneously the temporal versions of the records and their values on the search
key attribute A. These methods focus on minimizing disk I/O during search; their
main-memory versions are relatively slow in search and updates compared to the
interval indices reviewed in Sec. 3.1.

A more recent index for transaction-time DBs implemented in SAP HANA is the
Timeline index [13], which builds upon the Time index [51] and supports very fast
updates. The timeline index [13] is a general-purpose access method for temporal
(versioned) data, implemented in SAP-HANA. It keeps the endpoints of all intervals
in an event list, which is a table of (time,id,isStart) triples, where time is the value
of the start or end point of the interval, id is the identifier of the interval, and isStart
1 or 0, depending on whether time corresponds to the start or end of the interval,
respectively. The event list is sorted primarily by time and secondarily by isStart

(descending). In addition, at certain timestamps, called checkpoints, the entire set of

e
w
-0
D
S B P o)
(6]

€y 103

751 ; : 2
| 53 ‘55 *
ty t, t3 by tsty 1 ts Tty ti
(a) set of intervals

Checkpoint Index Event List
checkpt | intervals | ptr time id | isStart
C {s3} — t; Ss3 1
c, {s1,53,55} \ t, S 1
: \ ts | ss 1
ty Sy 0
ts S5 1

(b) timeline index

Figure 3.5: Example of a timeline index

active object-ids is materialized, that is the intervals that contain the checkpoint. For
each checkpoint, there is a link to the first triple in the event list for which isStart=0
and time is greater than or equal to the checkpoint, Figure 3.5(a) shows a set of five
intervals sy, ..., s; and Figure 3.5(b) exemplifies a timeline index for them.

To evaluate a time-travel query, we first need to find the largest checkpoint which
is smaller than or equal to ¢.st (e.g., ¢, in Figure 3.5) and initialize R as the active
interval set at the checkpoint (e.g., R = {s1, s3, s5}). Then, we scan the event list from
the position pointed by the checkpoint, until the first triple for which time > g.st,
and update R by inserting to it intervals corresponding to an ¢sStart = 1 event and
deleting the ones corresponding to a isStart = 0 triple (e.g., R becomes {s3,s5}).
When we reach g¢.st, all intervals in R are guaranteed query results and they are
reported. We continue scanning the event list until the first triple after ¢.end and we
add to the result the ids of all intervals corresponding to triples with isStart = 1
(e.g., so and sy).

The timeline index accesses more data and performs more comparisons than nec-
essary, during query evaluation. The index also requires a lot of extra space to store

the active sets of the checkpoints. Finally, ad-hoc updates are expensive because the

event list should be kept sorted.

Timeline index is a part of an important direction of work in temporal DBs, which
are general methods to model and organize temporal data. Salzberg et al.’s survey
[24] sheds light on the typical access patterns, oriented towards different query types,
which play a crucial role in handling temporal data efficiently. These patterns aid in
understanding how various index structures support these fundamental operations.

The time-split B-tree (TSB-tree) [52, 53] optimizes the storage of data on erasable
media like magnetic disks while migrating older data to another disk, which could be
magnetic or optical. The TSB-tree partitions data in nodes based on both transaction
time and attribute, while also separating current records from historical ones.

When a data page becomes full and contains fewer than a certain threshold of
distinct alive entries, the TSB-tree performs a split based on transaction time only.
This allows for more flexibility in choosing the split time, which can be the “time
of last update” rather than just the current time. This automatic migration of older
versions of records to a separate historical database ensures efficient management of
historical data without manual intervention.

This approach differs from vacuuming in systems like POSTGRES [54], which
requires a separate background process to find and remove dead records. Additionally,
the TSB-tree’s time splitting contrasts with methods that reserve optical pages for
immovable pages and maintain two addresses (magnetic and optical) for searching
contents.

During time splitting in the TSB-tree, the current page retains its existing contents,
while historical records are sequentially written to the optical disk. The new optical
disk address and the time of the split are recorded in the parent node of the TSB-
tree. The process only affects the node being split, the newly allocated node, and the
parent node (with occasional further splitting of a full parent). Regardless of whether
the new node is stored on an optical disk or not, a split is necessary since the node
is full and is receiving new data.

In [55], the authors describe how to convert an ephemeral B+-tree (where only
the new values are retained) into one where none of the old values of the B+- tree
are lost due to incoming updates. This is achieved by maintaining different versions
of the B+-tree such that when a version of the B+-tree is updated, it gives rise to a
new version of the B+-tree. Such a structure is referred to as fully persistent, because

all the versions can be accessed or updated.

Full-persistence is achieved by capturing the changes made to a node in the B+-
tree at the node itself without throwing away any of the old values. As updates come
in, information at a node grows, and hence the nodes are referred to as fat nodes. A
fat node in a fully-persistent B+-tree consists of a list with ordered pairs of a version
identifier and a pointer to an index block. Whenever a fat node is to be updated, a
new entry is made in its version block and a new index block pointed to by this entry
holds the updated information. Note that in order to be space efficient, a new version
of the B+-tree holds only the incremental changes. The versions are in partial order
which is maintained in a DAG called a version graph. A version graph is maintained
in conjunction with the versioned B+-tree data structure where an edge from node ¢
to node j exists if version j is obtained by updating version .

The MVBT (Multi-Version B-Tree) [37] introduces efficient support for updates.
Efficiently supporting updates involves node consolidation, a process that helps man-
age space utilization effectively.

One significant feature of the MVBT is its use of node-copying, a concept pro-
posed by Driscoll et al. [56]. Node-copying allows for more efficient handling of data
updates. The MVBT also prevents thrashing, which is an important consideration
to maintain the tree’s stability and performance. Similar to the persistent B-tree, the
MVBT utilizes a root structure. When the root performs a time-split, the sibling node
becomes the new root, and a new entry is added to the root, pointing to this new
root. If the root does a time-and-attribute split, the resulting tree gains an additional
level. Furthermore, if a child of the root becomes sparse and merges with its only
sibling, the newly merged node becomes the root of a new tree. When a data node
becomes full, a copy is made of all the “alive” records at the time the version makes
the update that causes the overflow. If the number of distinct records in the copy
exceeds a certain threshold, the copy is split into two nodes based on the attributes.

The MVBT takes a different approach from the persistent B-tree and does not
create fat nodes. Instead, during a split, they post information about the split to the
parent of the overflowing data node, which leads to the creation of new index entries
in the parent node to describe the split. If the split produces only one new data node,
the attribute used as the lower limit for the overflowing child is copied to a new index
entry. The old child pointer is then updated with the time of the copy as its end time,
while the new child pointer gets the split time as its start time. If the split results in

two new children, they both have the same start time, but one contains the attribute

of the overflowing child, and the other holds the attribute used for the attribute split.

As highlighted, most of the existing index structures were originally developed
in the mid-to-late ’90s with a primary focus on optimizing hard-disk efficiency.
Back then, minimizing the number of I/O operations for updates and queries was
paramount due to the limitations of hard-disk access speeds. Consequently, tree in-
dices over intervals or versions were commonly employed, complemented by diverse
clustering strategies for time and attribute values, as well as partial replication to
enhance overall efficiency.

Despite some proposals, like the MVBT [37], showcasing asymptotically optimal
I/0 behavior for specific temporal queries based on their well-defined objectives, it is
important to recognize that the landscape of data storage and processing has evolved
significantly since the *90s. Today, the predominant shift towards main-memory set-
tings has introduced new tradeoffs between access time, transfer speeds, and CPU
cost. As a result, the performance of these traditional index structures might not be
fully optimized in modern, memory-driven architectures.

Considering the previous work, further research is required to adapt and refine
existing index structures to suit the challenges and opportunities of main-memory
environments. Exploring innovative ways to leverage parallelization and distribution
techniques could lead to enhanced efficiency and improved performance. By enrich-
ing the study of temporal data organization with new methodologies and insights,
more effective and scalable solutions can be created that align with the current data

management landscape.

3.3 Other related work

Recent work in temporal databases studies the efficient evaluation of other queries,
besides time-travel selections. Temporal aggregation [30, 31, 32, 33, 34] computes aggre-
gates of valid record versions (e.g., total project funding) during a query time period
(e.g., from 3-23-2021 to 5-15-2023); the output is one value for each time interval in
the query period where the aggregate does not change. Temporal top-k queries [1, 16]
are a special case of temporal aggregation. A temporal join [27, 15, 57, 21] finds pairs
of record versions (in two different tables) whose validities temporally overlap and

they agree on the join key attribute.

In the Overlap Interval Partitioning (OIP) approach [25], the authors divide the
time domain into equal-sized granules, create partitions with increasing length that
span the entire time domain, and insert each tuple into the shortest partition into
which the tuple fits. The join is computed by identifying for each outer partition the
overlapping inner partitions which is very efficient. Although, a nested-loop is used
for joining the partitions with overlapping tuples.

Another partitioning based approach is the Disjoint Interval Partitioning (DIP)
[29]. The main idea behind DIP is to divide each of the two input relations into
partitions, such that each partition contains only disjoint intervals. In that way, every
partition of one input can be joined with all of the other without backtracking since
intervals in the same partition do not overlap. These approaches focus on reducing
the search space within a temporal join. Historical what-if queries compute the effect
that a change in a historical record value would have to the evolution of the database
[20].

Other recent related work includes the definition of new temporal semantics [14],
system optimizations in the implementation of temporal and multi-version databases
[2, 17, 19], temporal database benchmarking [18], and novel temporal integrity con-
straints [22]. Furthermore, Gutierrez et al. [58] presented a framework to incorporate
temporal reasoning into RDF. Bereta et al. [59] implemented valid time component
of stRDF and stSPARQL in Strabon. Telos [60], a knowledge representation language,
explicitly represents time, which can be crucial for modeling temporal aspects of in-
formation systems, such as scheduling and event sequencing.

Major DBMS providers include temporal capabilities into their database manage-
ment systems. IBM DB2 [61] supports both valid time (referred to as business time)
and transaction time (referred to as system time) tables. Queries can target both
aspects of the time. Teradata [62] and Oracle DBMS [63] have integrated temporal
features with special data types (e.g. PERIOD) and functions. Additionally, they have
added functionality for managing both valid time and transaction time. Originally,
PostgreSQL [64] introduced an external module that brought in a PERIOD data type
for intervals, along with Boolean predicates and functions. Later, the functionality
was integrated into the core of PostgreSQL [65], focusing on range types, designed
to represent generic intervals, including associated predicates, functions, and indices.
For example, GiST (Generalized Search Tree) is an extensible index which supports

querying range types.

CHAPTER 4

INDEXING INTERVALS

4.1 HINT
4.2 Optimizing HINT™
4.3 Experimental Analysis

4.4 Conclusions

In this chapter, we propose a novel and general-purpose Hierarchical index for IN-
Tervals (HINT), which is not suitable just for valid-time data in temporal databases,

but for any applications that manage large collections of intervals.

Outline The rest of the chapter is organized as follows. In Section 4.1, we present
HINT and its generalized HINT™ version and analyze their complexity. Optimizations
that boost the performance of HINT™ are presented in Section 4.2. We evaluate the
performance of HINT™ experimentally in Section 4.3 on real and synthetic data and

compare it to the state-of-the-art. Finally, Section 4.4 concludes the chapter.

4.1 HINT

In this section, we propose the Hierarchical index for INTervals or HINT, which de-
fines a hierarchical domain decomposition and assigns each interval to at most two

partitions per level. The primary goal of the index is to minimize the number of

25

Table 4.1: Table of notation

’ notation ‘ ‘ description

s.id, s.st, s.end identifier, start, end point of interval s

g = [g.-st,g.end] || query interval

prefiz(k,) k-bit prefix of integer «

Py ; i-th partition at level £ of HINT/HINT™

Py (Ppp) first (last) partition at level ¢ overlapping with ¢
PZ(,)i (PZIE) sub-partition of P, ; with originals (replicas)
Pﬁf" (PEO i”f Y) intervals in Pgii ending inside (after) Py ;

PZR'Z.""' (P, i“f) intervals in PKRii ending inside (after) Py ;

comparisons during query evaluation, while keeping the space requirements rela-
tively low, even when there are long intervals in the collection. HINT applies a smart
division of intervals in each partition into two groups, which avoids the production
and handling of duplicate query results and minimizes the number of accessed in-
tervals. In Section 4.1.1, we present a version of HINT, which avoids comparisons
overall during query evaluation, but it is not always applicable and may have high
space requirements. Section 4.1.2 presents HINT™, the general version of our index,
used for intervals in arbitrary domains. Last, Section 4.1.3 describes our analytical
model for setting the m parameter and Section 4.1.4 discusses updates. Table 4.1

summarizes the notation used in the paper.

41.1 A comparison-free version of HINT

We first describe a version of HINT, which is appropriate in the case of a discrete
and not very large domain D. Specifically, assume that the domain D wherefrom the
endpoints of intervals in S take value is [0, 2"—1]. We can define a regular hierarchical
decomposition of the domain into partitions, where at each level ¢ from 0 to m, there
are 2 partitions, denoted by array Py, ..., Py . Figure 4.1 illustrates the hierarchical
domain partitioning for m = 4.

Each interval s € S is assigned to the smallest set of partitions which collectively
define s. It is not hard to show that s will be assigned to at most two partitions per
level. For example, in Figure 4.1, interval [5,9] is assigned to one partition at level
¢ = 4 and two partitions at level ¢ = 3. The assignment procedure is described by
Algorithm 4.1. In a nutshell, for an interval [a, b], starting from the bottom-most level
¢, if the last bit of a (resp. b) is 1 (resp. 0), we assign the interval to partition P, (resp.

Pyp) and increase a (resp. decrease b) by one. We then update a and b by cutting-off

Algorithm 4.1 Assignment of an interval to partitions
Input : HINT index H, interval s

Output : updated H after indexing s

a + s.st; b+ s.end; > set masks to s endpoints
{ <+ m; > start at the bottom-most level
while / > 0 and ¢ < b do

if last bit of a is 1 then

add s to H.Ppq; > update partition

a+—a+1
end

if last bit of b is O then

add s to H.Pyy; > update partition
b+—b—-1
end
a+—a=2;b+—b=2 > cut-off last bit
0+—0—1; > repeat for previous level

end

their last bits (i.e., integer division by 2, or bitwise right-shift). If, at the next level,

a > b holds, indexing [a, b] is done.

Query evaluation

A selection query ¢ can be evaluated by finding at each level the partitions that
overlap with ¢. Specifically, the partitions that overlap with the query interval ¢ at
level ¢ are partitions Py prcfiz(t,q.sty 1O Prprefiz(t.gend), Where prefiz(k,z) denotes the
k-bit prefix of integer x. We call these partitions relevant to the query ¢. All intervals
in the relevant partitions are guaranteed to overlap with ¢ and intervals in none of
these partitions cannot possibly overlap with g. However, since the same interval s
may exist in multiple partitions that overlap with a query, s may be reported multiple
times in the query result.

We propose a technique that avoids the production and therefore, the need for
elimination of duplicates and, at the same time, minimizes the number of data ac-
cesses. For this, we divide the intervals in each partition F,; into two groups: originals

PP, and replicas PE. Group PP contains all intervals s € P; that begin at P, i.e.,

532

Puo |P4,1 |P4,2|P4,3 Py4 |P4,5 | Pu6 |P4,7 |P4,8 |P4,9 P4,10|P4,11 P4,12|P4,13 P4,141P4,15
| [[0101] | I | | | |

Figure 4.1: Hierarchical partitioning and assignment of [5, 9]

prefix(l,s.st) = i. Group sz- contains all intervals s € P,; that begin before F;;, i.e.,
prefiz(l, s.st) # i.! Each interval is added as original in only one partition of HINT.
For example, interval [5,9] in Figure 4.1 is added to P, Pf%, and PyY,.

Given a query ¢, at each level ¢ of the index, we report all intervals in the first
relevant partition P, (i.e., Pff U Pff). Then, for every other relevant partition P,
i > f, we report all intervals in P, and ignore P/i. This guarantees that no result is
missed and no duplicates are produced. The reason is that each interval s will appear
as original in just one partition, hence, reporting only originals cannot produce any
duplicates. At the same time, all replicas P/ in the first partitions per level ¢ that
overlap with ¢ begin before ¢ and overlap with ¢, so they should be reported. On the
other hand, replicas P/} in subsequent relevant partitions (i > f) contain intervals,
which are either originals in a previous partition F; j, j < 7 or replicas in Pff, so, they
can safely be skipped. Algorithm 4.2 describes the search algorithm using HINT.

For example, consider the hierarchical partitioning of Figure 4.2 and a query
interval ¢ = [5,9]. The binary representations of ¢.st and g.end are 0101 and 1001,
respectively. The relevant partitions at each level are shown in bold (blue) and dashed
(red) lines and can be determined by the corresponding prefixes of 0101 and 1001.
At each level ¢, all intervals (both originals and replicas) in the first partitions P ;
(bold/blue) are reported while in the subsequent partitions (dashed/red), only the

original intervals are.

Discussion. The version of HINT described above finds all query results, without

'Whether an interval s € P; is assigned to P, or PF is determined at insertion time (Algo-
rithm 4.1). At the first time Line 5 is executed, s is added as an original and in all other cases as a

replica. If Line 5 is never executed, then s is added as original the only time that Line 8 is executed.

Algorithm 4.2 Searching HINT

Input : HINT index H, query interval g
Output : set R of all intervals that overlap with ¢
R0

foreach level ¢ in H do
p < prefiz(l,q.st)
R+ R U{s.id|s € ’H.P& U H.Pﬁ}

while p < prefiz(¢, q.end) do
set p<—p+1

R« RU {s.id|s € H.PO}

end

end

return R

Figure 4.2: Accessed partitions for query [5, 9]

conducting any comparisons. This means that in each partition F;;, we only have to
keep the ids of the intervals that are assigned to F,; and do not have to store/replicate
the interval endpoints. In addition, the relevant partitions at each level are computed
by fast bit-shifting operations which are comparison-free. To use HINT for arbitrary
integer domains, we should first normalize all interval endpoints by subtracting the
minimum endpoint, in order to convert them to values in a [0,2™ — 1] domain (the
same transformation should be applied on the queries). If the required m is very large,
we can index the intervals based on their m-bit prefixes and support approximate

search on discretized data. Approximate search can also be applied on intervals in a

PO,O
%L##
P | P31 | P Py
| - 10
P3,O P3,1 | P3,2 | P3,3 P3,4 P3,5 P3,6 P3,7

| | _’;
Pa, |P41 P42|P43 |P4,4|P4,5 | Pu6 P,z |P4,8_LP4,9 P4,10|P4,11P4,12|P4,13 P4,14|P4,15
| I Y O B | | |

real-valued domain, after rescaling and discretization in a similar way.

4.1.2 HINT™: indexing arbitrary intervals

We now present a generalized version of HINT, denoted by HINT™, which can be used
for intervals in arbitrary domains. HINT™ uses a hierarchical domain partitioning
with m + 1 levels, based on a [0,2" — 1] domain D; each raw interval endpoint is

mapped to a value in D, by linear rescaling. The mapping function f(R — D) is f(x) =

z—min(x)
|~maac(:z:)fmin(ac)

(2™ —1)|, where min(z) and maz(x) are the minimum and maximum
interval endpoints in the dataset S, respectively. Each raw interval [s.st,s.end] is
mapped to interval [f(s.st), f(s.end)]. The mapped interval is then assigned to at
most two partitions per level in HINT™, using Algorithm 4.1.

For the ease of presentation, we will assume that the raw interval endpoints take
values in [0,2™ — 1], where m/ > m, which means that the mapping function f
simply outputs the m most significant bits of its input. As an example, assume that
m =4 and m’ = 6. Interval [21, 38] (=[0b010101,00100110]) is mapped to interval [5, 9]
(=]0b0101,001001]) and assigned to partitions P,5, P33, and Pj 4, as shown in Figure
4.1. So, in contrast to HINT, the set of partitions whereto an interval s is assigned in
HINT™ does not define s, but the smallest interval in the [0,2™ — 1] domain D, which
covers s. As in HINT, at each level ¢, we divide each partition F,; to Pﬁ?i and Pfi, to

avoid duplicate results.

Query evaluation using HINT™

For a query ¢, simply reporting all intervals in the relevant partitions at each level
(as in Algorithm 4.2) would produce false positives. Instead, comparisons to the
query endpoints may be required for the first and the last partition at each level that
overlap with ¢. Specifically, we can consider each level of HINT™ as a 1D-grid (see
Chapter 3) and go through the partitions at each level ¢ that overlap with ¢. For
the first partition P s, we verify whether s overlaps with ¢ for each interval s € P2,
and each s € PJ%. For the last partition P, we verify whether s overlaps with ¢
for each interval s € Pfj. For each partition P,; between P, and P, we report all
s € P, without any comparisons. As an example, consider the HINT™ index and the
query interval ¢ shown in Figure 4.3. The identifiers of the relevant partitions to ¢
are shown in the figure (and also some indicative intervals that are assigned to these
partitions). At level m = 4, we have to perform comparisons for all intervals in the

first relevant partitions P,5. In partitions Pjg,...,Pss, we just report the originals in

| ——
L (Pas PasiPar Pag Pas | |
T T =3 oot | | |
q

Figure 4.3: Avoiding redundant comparisons in HINT™

them as results, while in partition P9 we compare the start points of all originals
with ¢, before we can confirm whether they are results or not. We can simplify the

overlap tests at the first and the last partition of each level ¢ based on the following:

Lemma 4.1. At every level {, each s € PF, is a query result iff q.st < s.end. If | > f,
Y 0f query

each s € Py is a query result iff s.st < q.end.

Proof. For the first relevant partition P at each level /, for each replica s € P/,
s.st < q.st, so ¢.st < s.end suffices as an overlap test. For the last partition F,, if
[> f, for each original s € PZ, q.st < s.st, so s.st < q.end suffices as an overlap

test.]

Avoiding redundant comparisons in query evaluation

One of our most important findings in this study and a powerful feature of HINT™
is that at most levels, it is not necessary to do comparisons at the first and/or the
last partition. For instance, in the previous example, we do not have to perform
comparisons for partition Ps4, since any interval assigned to P; 4 should overlap with
P, s and the interval spanned by P, 5 is covered by ¢. This means that the start point of
all intervals in P; 4 is guaranteed to be before g.end (which is inside P479). In addition,
observe that for any relevant partition which is the last partition at an upper level and
covers Pj 4 (i.e., partitions { P2, P11, Pyo}), we do not have to conduct the s.st < g.end
tests as intervals in these partitions are guaranteed to start before P,y. The lemma

below formalizes these observations:

Lemma 4.2. If the first (resp. last) relevant partition for a query q at level ¢ (¢ < m) starts
(resp. ends) at the same value as the first (resp. last) relevant partition at level { + 1, then
for every first (resp. last) relevant partition P, (resp. P,;) at levels v < {, each interval
s € P, s (resp. s € P,) satisfies s.end > q.st (resp. s.st < q.end).

Proof. Let P.st (resp. P.end) denote the first (resp. last) domain value of partition P.
Consider the first relevant partition F, ; at level £ and assume that P ;.st = Py 5.5t.
Then, for every interval s € P, s, s.end > Py s.end, otherwise s would have been
allocated to Py, s instead of P, ;. Further, Py, s.end > q.st, since Ppyq s is the first
partition at level £+ 1 which overlaps with ¢. Hence, s.end > q.st. Moreover, for every
interval s € P,y with v < {, s.end > Py, .end holds, as interval P, ; covers interval
P, t; so, we also have s.end > ¢.st. Symmetrically, we prove that if Py;.end = Py ,.end,

then for each s € P,;,v </, s.st < q.end. O

We next focus on how to rapidly check the condition of Lemma 4.2. Essentially,
if the last bit of the offset f (resp. 1) of the first (resp. last) partition P, ; (resp. Fy;)
relevant to the query at level ¢ is O (resp. 1), then the first (resp. last) partition at
level ¢ — 1 above satisfies the condition. For example, in Figure 4.3, consider the last
relevant partition P,g at level 4. The last bit of [= 9 is 1; so, the last partition P;4 at
level 3 satisfies the condition and we do not have to perform comparisons in the last
partitions at level 3 and above.

Algorithm 4.3 is a pseudocode for the search algorithm on HINT™. The algo-
rithm accesses all levels of the index, bottom-up. It uses two auxiliary flag variables
compfirst and complast to mark whether it is necessary to perform comparisons at
the current level (and all levels above it) at the first and the last partition, respectively,
according to the discussion in the previous paragraph. At each level ¢, we find the
offsets of the relevant partitions to the query, based on the /-prefixes of ¢.st and ¢.end.
For the first position f = prefiz(q, st), the partitions holding originals and replicas
Pff and Pfff are accessed. The algorithm first checks whether f =, i.e., the first and
the last partitions coincide. In this case, if compfirst and complast are set, then we
perform all comparisons in P’ and apply the first observation in Lemma 4.1 to /.
Else, if only complast is set, we can safely skip the ¢.st < s.end comparisons; if only
compfist is set, regardless whether f = [, we just perform ¢.st < s.end comparisons
to both originals and replicas to the first partition. Finally, if neither compfirst nor

complast are set, we just report all intervals in the first partition as results. If we are

at the last partition P,; and [> f (Line 17) then we just examine P/} and apply just
the s.st < g.end test for each interval there, according to Lemma 4.1. Finally, for all
partitions in-between the first and the last one, we simply report all original intervals

there.

Complexity Analysis

Let n be the number of intervals in S. Assume that the domain is [0,2™ — 1], where

m’ > m. To analyze the space complexity of HINT™, we first prove the following;:

Lemma 4.3. The total number of intervals assigned at the lowest level m of HINT™ is

expected to be n.

Proof. Each interval s € S will go to zero, one, or two partitions at level m, based on
the bits of s.st and s.end at position m (see Algorithm 4.1); on average, s will go to

one partition. O

Using Algorithm 4.1, when an interval is assigned to a partition at a level ¢, the
interval is truncated (i.e., shortened) by 2"'~‘. Based on this, we analyze the space

complexity of HINT™ as follows.

Theorem 4.1. Let)\ be the average length of intervals in input collection S. The space
complexity of HINT™ is O(n - log,(2\%2 ™' +m 4 1)),

Proof. Based on Lemma 4.3, each s € S will be assigned on average to one partition
at level m and will be truncated by 2™ ~™. Following Algorithm 4.1, at the next
level m — 1, s is also be expected to be assigned to one partition (see Lemma 4.3)
and truncated by om'=m+1 and so on, until the entire interval is truncated (condition
a < b is violated at Line 3 of Algorithm 4.1). Hence, we are looking for the number
of levels whereto each s will be assigned, or for the smallest k& for which 2™ ™ +
gm'=mAl 4 ... 4 gm'=mHk=1 >)\ Solving the inequality gives k > log,(2'%82*~m'*m 4 1)

and the space complexity of HINT™ is O(n - k) O]

For the computational cost of queries in terms of conducted comparisons, in the
worst case, O(n) intervals are assigned to the first relevant partition P, ; at level m
and O(n) comparisons are required. To estimate the expected cost of query evaluation
in terms of conducted comparisons, we assume a uniform distribution of intervals to

partitions and random query intervals.

Lemma 4.4. The expected number of HINT™ partitions for which we have to conduct

comparisons is four.

Proof. At the last level of the index m, we definitely have to do comparisons in the
first and the last partition (which are different in the worst case). At level m — 1, for
each of the first and last partitions, we have a 50% chance to avoid comparisons,
due to Lemma 4.2. Hence, the expected number of partitions for which we have to
perform comparisons at level m — 1 is 1. Similarly, at level m — 2 each of the yet active
first/last partitions has a 50% chance to avoid comparisons. Overall, for the worst-
case conditions, where m is large and ¢ is long, the expected number of partitions,

for which we need to perform comparisons is 2 +1+0.5+0.25+ --- = 4. [

Theorem 4.2. The expected number of comparisons during query evaluation over HINT™
is O(n/2™).

Proof. For each query, we conduct comparisons at least in the first and the last rel-
evant partitions at level m. The expected number of intervals, in each of these two
partitions, is O(n/2™), considering Lemma 4.3 and assuming a uniform distribution
of the intervals in the partitions. In addition, due to Lemma 4.4, the number of
expected additional partitions that require comparisons is 2 and each of these two
partitions is expected to also hold at most O(n/2™) intervals, by Lemma 4.3 on the
levels above m and using the truncated intervals after their assignment to level m
(see Algorithm 4.1). Hence, ¢ is expected to be compared with O(n/2™) intervals in

total and the cost of each such comparison is O(1). O

4.1.3 Setting m

As shown in Section 4.1.2, the space requirements and the search performance of
HINT™ depend on the value of m. For large values of m, the cost of accessing compa-
rison-free results will dominate the computational cost of comparisons. We conduct
an analytical study for estimating m,,;: the smallest value of m, which is expected to
result in a HINT™ of search performance close to the best possible, while achieving
the lowest possible space requirements. Our study uses simple statistics namely, the
number of intervals n = |S|, the mean length), of data intervals and the mean length
Aq of query intervals. We assume that the endpoints and the lengths of intervals and

queries are uniformly distributed.

The overall cost of query evaluation consists of (1) the cost for determining the
relevant partitions per level, denoted by C,, (2) the cost of conducting comparisons
between data intervals and the query, denoted by C,,,,, and (3) the cost of accessing
query results in the partitions for which we do not have to conduct comparisons,
denoted by C,.. Cost C, is negligible, as the partitions are determined by a small
number m of bit-shifting operations. To estimate C,,,,, we need to estimate the number
of intervals in the partitions whereat we need to conduct comparisons and multiply
this by the expected cost f.,,, per comparison. To estimate C,.., we need to estimate
the number of intervals in the corresponding partitions and multiply this by the
expected cost [, of (sequentially) accessing and reporting one interval. S, and S,..
are machine-dependent and can easily be estimated by experimentation.

According to Algorithm 4.3, unless), is smaller than the length of a partition at
level m, there will be two partitions that require comparisons at level m, one partition
at level m — 1, etc. with the expected number of partitions being at most four (see
Lemma 4.4). Hence, we can assume that Cemp is practically dominated by the cost
of processing two partitions at the lowest level m. As each partition at level m is
expected to have n/2™ intervals (see Lemma 4.3), we have C., = Bemp - 1/2™. Then,
the number of accessed intervals for which we expect to apply no comparisons is
|Q| —2-n/2™, where |@)] is the total number of expected query results. Under this, we

have Cuee = Bace - (|Q] — 2 - n/2™). We can estimate |()| using the selectivity analysis

As+Aq

1%, where A is

for (multidimensional) intervals and queries in [66] as |Q]| = n -
the length of the entire domain with all intervals in S (i.e., A = maxyses s.end —
Mminycs s.5t).

With C.,,, and Cy., we now discuss how to estimate m,,. First, we gradually
increase m from 1 up to its max value m’ (determined by A), and compute the
expected cost Cepy + Cyee. For m = m/, HINT™ corresponds to the comparison-free
HINT with the lowest expected cost. Then, we select as m,,; the lowest value of m

for which C,,,, + C,.. converges to the cost of the m = m’ case.

4.1.4 Updates

We handle insertions to an existing HINT or HINT™ index by calling Algorithm 4.1
for each new interval s. Small adjustments are needed for HINT™ to add s to the

originals division at the first partition assignment, i.e., to P2, or P5,, and to the replicas

division for every other partition, i.e., to P}, or P/} Finally, we handle deletions using
tombstones, similarly to previous studies [67, 68] and recent indexing approaches
[69]. Given an interval s for deletion, we first search the index to locate all partitions
that contain s (both as original and as replica) and then, replace the id of s by a

special “tombstone” id, which signals the logical deletion.

4.2 Optimizing HINT"™

In this section, we discuss optimization techniques, which greatly improve the perfor-
mance of HINT™ (and HINT) in practice. First, we show how to reduce the number
of partitions in HINT™ where comparisons are performed and how to avoid accessing
unnecessary data. Next, we show how to handle very sparse or skewed data at each
level of HINT/HINT™. Another optimization is decoupling the storage of the inter-
val ids with the storage of interval endpoints in each partition. Finally, we revisit

updates under the prism of these optimizations.

4.2.1 Subdivisions and space decomposition

Recall that, at each level ¢ of HINT™, every partition P, is divided into Pfi (holding
originals) and P/ (holding replicas). We propose to further divide each Pg, into P,
and Pfi“f ‘. so that P, (resp. Pfi“f *) holds the intervals from P that end inside

(resp. after) partition P,;. Similarly, each P[is divided into P/i" and Pf;"f "

Queries that overlap with multiple partitions. Consider a query ¢, which overlaps
with a sequence of more than one partitions at level (. As already discussed, if we
have to conduct comparisons in the first such partition F; ¢, we should do so for all

intervals in P, and Pf%. By subdividing P7; and P/, we get the following lemma:

Lemma 4.5. If P, ; # P;; (1) each interval s in Py " UP/[%" overlaps with q iff s.end > q.st;

and (2) all intervals s in Pg;f " and Pfj‘f " surely overlap with q.
Proof. Follows directly from the fact that ¢ starts inside P, ; but ends after P ;. O

Hence, we need just one comparison for each interval in PZOJ%'” U PKR}", whereas we

. O R, , ,
can report all intervals P, ;" U P, /" as query results without any comparisons. As

already discussed, for all partitions F,; between F,; and F;;, we just report intervals

! ! O . On ol !
: D" P U Ry |
: # }P2’{n Poaft : 4 i
| | Ragpe < i : |
! 5 Py 1 5 PO U Pfgft{—_'
' P;o ' P;1 ' P,, ' P, '

Figure 4.4: Partition subdivisions in HINT™ (level ¢ = 2)

. , Ou . . .
in PZO;" UP,; 7t as results, without any comparisons, whereas for the last partition Py,

, . : : Oq
we perform one comparison per interval in Peolm U P,

Queries that overlap with a single partition. If the query ¢ overlaps only one
partition P, ; at level /, we can use following lemma to minimize the necessary com-

parisons:
Lemma 4.6. If P,y = P,; then

* each interval s in P@O;" overlaps with q iff s.st < g.end A q.st < s.end,
e each interval s in Pg;ft overlaps with q iff s.st < q.end,
* each interval s in PER}” overlaps with q iff s.end > q.st,

* all intervals in Pf;f " overlap with q.

Proof. All intervals s € PZO;f " end after ¢, so s.st < g.end suffices as an overlap test.

All intervals s € PER}" start before ¢, so s.st < g.end suffices as an overlap test. All

. Re
intervals s € P, ff " start before and end after ¢, so they are guaranteed results. O

Overall, the subdivisions help us to minimize the number of intervals in each
partition, for which we have to apply comparisons. Figure 4.4 shows the subdivisions
which are accessed by query ¢ at level £ = 2 of a HINT™ index. In partition P, = P,
all four subdivisions are accessed, but comparisons are needed only for intervals in
Py’» and Py". In Py 5, only the originals (in Py’;" and Pg 57") are accessed and reported
without any comparisons. Finally, in P,; = P» 3, only the originals (in PQ%'" and on, S

are accessed and compared to q.

Sorting the intervals in each subdivision

We can keep the intervals in each subdivision sorted, in order to reduce the number

of comparisons for queries that access them. For example, let us examine the last

Table 4.2: Necessary data and beneficial sort orders

’ subdivision H beneficial sorting ‘ necessary data ‘
P%’”L by s.st or by s.end | s.id,s.st,s.end
Pwaft by s.st s.1d, s.st
PZR;” by s.end s.id, s.end

R
P, l.“ft no sorting s.id

partition F; that overlaps with a query ¢ at a level /. If the intervals s in Pﬁm are
sorted on their start endpoint (i.e., s.st), we can simply access and report the intervals
until the first s € fli", such that s.st > g.end. Or, we can perform binary search to
find the first s € Pgi”, such that s.st > g.end and then scan and report all intervals
before s. Table 4.2 (second column) summarizes the sort orders for each of the four
subdivisions of a partition that can be beneficial in query evaluation. For a subdivision
Pfj”, intervals may have to be compared based on their start point (if P,; = Py), or
based on their end point (if P,; = P;;), or based on both points (if P,; = P,y = P,).
Hence, we choose to sort based on either s.st or s.end to accommodate two of these

aft

o Oape
three cases. For a subdivision P,*”*, intervals may have to be compared only based

on their start point (if P,; = P,;). For a subdivision Pﬁi”, intervals may have to be
. . . . Ra
compared only based on their end point (if P,; = P,). Last, for a subdivision P, """,

there is never any need to compare the intervals, so, no order provides any benefit.

Storage optimization

So far, we have assumed that each interval s is stored in the partitions whereto s is
assigned as a triplet (s.id, s.st,s.end). However, if we split the partitions into subdi-
visions, we do not need to keep all information of the intervals in them. Specifically,
for each subdivision ng", we may heed to use s.st and/or s.end for each interval

aft

; . . o ,
s € P2, while for each subdivision P, *’*, we may need to use s.st for each s € PO,

but we will never need s.end. From the intervals s of each subdivision P/%", we may

, . o R,
need s.end, but we will never use s.st. Finally, for each subdivision P,

, we just
have to keep the s.id identifiers of the intervals. Table 4.2 (third column) summarizes
the data that we need to keep from each interval in the subdivisions of each partition.
Since each interval s is stored as original just once in the entire index, but as replica
in possibly multiple partitions, space can be saved by storing only the necessary data,
especially if the intervals span multiple partitions. Note that even when we do not

apply the subdivisions, but just use P}, and P/ (as suggested in Section 4.1.2), we

do not need to store the start points s.st of all intervals in P/}, as they are never used

in comparisons.

4.2.2 Handling data skewness and sparsity

Data skewness and sparsity may cause many partitions to be empty, especially at the
lowest levels of HINT (i.e., large values of /). Recall that a query accesses a sequence
of multiple Pfi partitions at each level /. Since the intervals are physically distributed
in the partitions, this results into the unnecessary accessing of empty partitions and
may cause cache misses. We propose a storage organization where all Pfi divisions
at the same level ¢ are merged into a single table 7P and an auxiliary index is used
to find each non-empty division.? The auxiliary index locates the first non-empty
partition, which is greater than or equal to the (-prefix of ¢.st (i.e., via binary search
or a binary search tree). From thereon, the nonempty partitions which overlap with
the query interval are accessed sequentially and distinguished with the help of the
auxiliary index. Hence, the contents of the relevant P@’Ol-’s to each query are always
accessed sequentially. Figure 4.5(a) shows an example at level ¢ = 4 of HINT™. From
the total 2 = 16 P© partitions at that level, only 5 are nonempty (shown in grey
at the top of the figure): PY,, P, PO, P, PYys. All 9 intervals in them (sorted by
start point) are unified in a single table T as shown at the bottom of the figure (the
binary representations of the interval endpoints are shown). At the moment, ignore
the ids column for T at the right of the figure. The sparse index for T has one
entry per nonempty partition pointing to the first interval in it. For the query in the
example, the index is used to find the first nonempty partition P&, for which the
id is greater than or equal to the 4-bit prefix 0100 of ¢.st. All relevant non-empty
partitions P(;, PJ;, Py are accessed sequentially from T}, until the position of the
first interval of Pfs.

Searching for the first partition Py that overlaps with ¢ at each level can be
quite expensive when numerous nonempty partitions exist. To alleviate this issue, we
suggest adding to the auxiliary index, a link from each partition Py to the partition
Pﬁu at the level above, such that j is the smallest number greater than or equal

to i =+ 2, for which partition P?, . is not empty. Hence, instead of performing binary

17j

2For simplicity, we discuss this organization when a partition P, ; is divided into P, and P/%; the
same idea can be straightforwardly applied also when the four subdivisions discussed in Section 4.2.1

are used.

search at level £ — 1, we use the link from the first partition P}’ relevant to the query
at level ¢ and (if necessary) apply a linear search backwards starting from the pointed
partition PKO_L]- to identify the first non-empty partition PKO_L ; that overlaps with q.
Figure 4.5(b) shows an example, where each nonempty partition at level ¢ is linked
with the first nonempty partition with greater than or equal prefix at the level ¢ — 1
above. Given query example ¢, we use the auxiliary index to find the first nonempty
partition Py which overlaps with ¢ and also sequentially access Py and Pf%. Then,
we follow the pointer from P4?5 to P3074 to find the first nonempty partition at level 3,
which overlaps with ¢. We repeat this to get partition Py at level 2, which however

is not guaranteed to be the first one overlapping with ¢, so we go backwards to Pg;.

4.2.3 Reducing cache misses

At most levels of HINT™, no comparisons are conducted and the only operations are
processing the interval ids which qualify the query. In addition, even for the levels
¢ where comparisons are required, these are only restricted to the first and the last
partitions P, and Pf) that overlap with ¢ and no comparisons are needed for the
partitions that are in-between. Summing up, when accessing any (sub-)partition for
which no comparison is required, we do not need any information about the intervals,
except for their ids. Hence, in our implementation, for each (sub-)partition, we store
the ids of all intervals in it in a dedicated array (the ids column) and the interval
endpoints (wherever necessary) in a different array.® If we need the id of an interval
that qualifies a comparison, we can access the corresponding position of the ids
column. This storage organization greatly improves search performance by reducing
the cache misses, because for the intervals that do not require comparisons, we only
access their ids and not their interval endpoints. This optimization is orthogonal to
and applied in combination with the strategy in Section 4.2.2, i.e., we store all P°
divisions at each level / in a single table T, which is decomposed to a column that
stores the ids and another table for the endpoint data of the intervals. An example
of the ids column is shown in Figure 4.5(a). If, for a sequence of partitions at a
level, we do not have to perform any comparisons, we just access the sequence of the

interval ids that are part of the answer, which is implied by the position of the first

3Similar to the previous section, this storage optimization can be straightforwardly employed also

e e . . Oure i Rare
when a partition is divided into PO, P, */*, Pflin P, It

0001 01010110 1000 1101

Pi PLs|Pis P Fiig
query
. O O .
index for T T, = U Py ids column for T

0001 — [00010,01011] 9 1,0
0101\ [00011, 01001] J " %1 13 J '
0110 [01010, 01101] } s —» 52 } P

1000\ (01100, 11011]] 78

1101 [01100, 11101] | P2, 15 +pY,
[01101, 10001] . 3
[10001, 11001] J PZ, 24 } PO,
(11010, 11101]7 8271 ,
- P - P
[11011, 11011] [41 7 [l
(a) auxiliary index
01 ;’/ 1
@) O
P2,1 P2,3
000 100 11
By P, i
0091 01001 1000/ lﬂl
Pfl Pfspfﬁ Pfs P£13

query

(b) linking between levels

Figure 4.5: Storage and indexing optimizations

such partition (obtained via the auxiliary index). In this example, all intervals in Py
and Py are guaranteed to be query results without any comparisons and they can be
sequentially accessed from the ids column without having to access the endpoints of
the intervals. The auxiliary index guides the search by identifying and distinguishing
between partitions for which comparisons should be conducted (e.g., P%) and those

for which they are not necessary.

4.2.4 Updates

A version of HINT™ that uses all techniques from Sections 4.2.1-4.2.2, is optimized for
query operations. Under this premise, the index cannot efficiently support individual
updates, i.e., new intervals inserted one-by-one. Dealing with updates in batches will
be a better fit. This is a common practice for other update-unfriendly indices, e.g., the
inverted index in IR. Yet, for mixed workloads (i.e., with both queries and updates),
we adopt a hybrid setting where a delta index is maintained to digest the latest
updates as discussed in Section 4.1.4,% and a fully optimized HINT™, which is updated
periodically in batches, holds older data supporting deletions with tombstones. Both

indices are probed when a query is evaluated.

4.3 Experimental Analysis

We compare our hierarchical indexing, detailed in Sections 4.1 and 4.2 against the
interval tree [35] (code from [70]), the timeline index [13], the (adaptive) period index
[36], and a uniform 1D-grid. All indices were implemented in C++ and compiled using
gcc (v4.8.5) with -03. ® The tests ran on a dual Intel(R) Xeon(R) CPU E5-2630 v4
clocked at 2.20GHz with 384 GBs of RAM, running CentOS Linux.

4.3.1 Data and queries

We used 4 collections of real intervals, which have also been used in previous works;

Table 4.3 summarizes their characteristics. BOOKS [27] contains the periods of time in

o

“Small adjustments are applied for the P}", P, f

PN PZR;“‘, P, ™ subdivisions and the storage

optimizations.
SSource code available in https://github.com/pbour/hint.

https://github.com/pbour/hint

Table 4.3: Characteristics of real datasets

\ BOOKS \ WEBKIT \ TAXIS \ GREEND

Cardinality 2,312,602 | 2,347,346 |172,668,003| 110,115,441
Size [MBs] 27.8 28.2 2072 1321
Domain [sec] 31,507,200 | 461,829,284 | 31,768,287 | 283,356,410
Min duration [sec] 1 1 1 1

Max duration [sec] |31,406,400 | 461,815,512 | 2,148,385 | 59,468,008
Avg. duration [sec] | 2,201,320 | 33,206,300 758 15
Avg. duration [%] 6.98 7.19 0.0024 0.000005

Table 4.4: Parameters of synthetic datasets

‘ values (defaults in bold) ‘

32M, 64M,128M, 256M, 512M
10M, 50M, 100M, 500M, 1B
1.01, 1.1, 1.2, 1.4, 1.8
10K, 100K, 1M, 5M, 10M

‘ parameter

Domain length
Cardinality

a (interval length)

o (interval position)

2013 when books were lent out by Aarhus libraries (https://www.odaa.dk). WEBKIT
[27, 49, 25, 26] records the file history in the git repository of the Webkit project from
2001 to 2016 (https://webkit.org); the intervals indicate the periods during which a
file did not change. TAXIS [28] stores the time periods of taxi trips (pick-up and drop-
off timestamps) from NY City in 2013 (https://www1.nyc.gov/site/tlc/index.page).
GREEND [29, 71] records time periods of power usage from households in Aus-
tria and Italy from January 2010 to October 2014. BOOKS and WEBKIT contain
around 2M intervals each, which are quite long on average; TAXIS and GREEND
have over 100M short intervals.

We also generated synthetic collections to simulate different cases for the lengths
and the skewness of the input intervals. Table 4.4 shows the construction parameters
for the synthetic datasets and their default values. The domain of the datasets ranges
from 32M to 512M, which requires index level parameter m to range from 25 to 29 for
a comparison-free HINT (similar to the real datasets). The cardinality ranges from
10M to 1B. The lengths of the intervals were generated using the random.zipf(«)

function in the numpy library. They follow a zipfian distribution according to the

p(z) = % probability density function, where ¢ is the Riemann Zeta function. A

a
small value of a results in most intervals being relatively long, while a large value

results in the great majority of intervals having length 1. The positions of the middle

points of the intervals are generated from a normal distribution centered at the middle

bottom-up —<—
5 10 15 20 25 5 10 15 20 25

m m
Figure 4.6: Optimizing HINT™: query evaluation approaches

bottom-up —¢—

= 14000 ‘ ‘ ‘ = 10000 ‘ ‘ ‘
2 12000 Pt SN i:i 9000 m

£ 10000 vl A & §888 7 X

o) B 4 X

S 8000 | & 0V / X
oy = 5000 4 S
2, 6000 = 4000

< 4000 / 5 3000 *\
3 2000 top-down S 2000 'op-down |
= E 1000 |

point ;. of the domain. Hence, the middle point of each interval is generated by calling
numpy’s random.normalvariate(u, o). The greater the value of o the more spread the
intervals are in the domain.

On the real datasets, we applied queries uniformly distributed in the domain.
On the synthetic, the query positions follow the distribution of the data. In both
cases, the extent of the query intervals were fixed to a percentage of the domain size
(default 0.1%). At each test, we ran 10K random queries, in order to measure the
overall throughput. Measuring query throughput instead of average time per query
makes sense in applications or services that manage huge volumes of interval data
and offer a search interface to billions of users simultaneously (e.g., public historical

databases).

4.3.2 Optimizing HINT/HINT™

In our first set of experiments, we study the best setting for our hierarchical indexing.
Specifically, we compare the effectiveness of the two query evaluation approaches
discussed in Section 4.1.2 and investigate the impact of the optimizations described

in Section 4.2.

Query evaluation approaches on HINT™

We compare the straightforward top-down approach for evaluating queries on HINT™
that uses solely Lemma 4.1, against the bottom-up illustrated in Algorithm 4.3 which
additionally employs Lemma 4.2. Figure 4.6 reports the throughput of each approach
on BOOKS and TAXIS, while varying the number of levels m in the index. Due to lack

of space, we omit the results for WEBKIT and GREEND that follow exactly the same
trend with BOOKS and TAXIS, respectively. We observe that the bottom-up approach
significantly outperforms top-down for BOOKS while for TAXIS, this performance gap
is very small. As expected, bottom-up performs at its best for inputs that contain long
intervals which are indexed on high levels of the index, i.e., the intervals in BOOKS.
In contrast, the intervals in TAXIS are very short and so, indexed at the bottom level
of HINT™, while the majority of the partitions at the higher levels are empty. As a
result, top-down conducts no comparisons at higher levels. For the rest of our tests,

HINT™ uses the bottom-up approach (i.e., Algorithm 4.3).

Subdivisions and space decomposition

We next evaluate the subdivisions and space decomposition optimizations described
in Section 4.2.1 for HINT™. Note that these techniques are not applicable to our
comparison-free HINT as the index stores only interval ids. Figure 4.7 shows the
effect of the optimizations on BOOKS and TAXIS, for different values of m; simi-
lar trends were observed in WEBKIT and GREEND, respectively. The plots include
(1) a base version of HINT™, which employs none of the proposed optimizations,
(2) subs+sort+opt, with all optimizations activated, (3) subs+sort, which only sorts the
subdivisions (section 4.2.1) and (iv) subs+sopt, which uses only the storage optimiza-
tion for the subdivisions (Section 4.2.1). We observe that the subs+sort+opt version
of HINT™ is superior to all three other versions, on all tests. Essentially, the index
benefits from the sub+sort setting only when m is small, i.e., below 15, at the expense
of increasing the index time compared to base. In this case, the partitions contain a
large number of intervals and therefore, using binary search or scanning until the
first interval that does not overlap the query, will save on the conducted compar-
isons. On the other hand, the subs+sopt optimization significantly reduces the space
requirements of the index. As a result, the version incurs a higher cache hit ratio and
so, a higher throughput compared to base is achieved, especially for large values of
m, i.e., higher than 10. The subs+sort+opt version manages to combine the benefits
of both subs+sort and subs+sopt versions, i.e., high throughput in all cases, with low
space requirements. The effect in the performance is more pronounced in BOOKS
because of the long intervals and the high replication ratio. In view of these results,

HINT™ employs all optimizations from Section 4.2.1 for the rest of our experiments.

Table 4.5: Optimizing HINT: impact of the skewness & sparsity optimization (Sec-

tion 4.2.2), default parameters

throughput [queries/sec] index size [MBs]
dataset
original optimized original | optimized
BOOKS 12098 36173 3282 273
WEBKIT 947 39000 49439 337
TAXIS 2931 31027 10093 7733
GREEND 648 47038 57667 10131

Handling data skewness & sparsity and reducing cache misses

Table 4.5 tests the effect of the handling data skewness & sparsity optimization (Sec-
tion 4.2.2) on the comparison-free version of HINT (Section 4.1.1).% Observe that the
optimization has a great effect on both the throughput and the size of the index in
all four real datasets, because empty partitions are effectively excluded from query
evaluation and from the indexing process.

Figure 4.8 shows the effect of either or both of the data skewness & sparsity (Sec-
tion 4.2.2) and the cache misses optimizations (Section 4.2.3) on the performance of
HINT™ for different values of m. In all cases, the version of HINT™ which uses both
optimizations is superior to all other versions. As expected, the skewness & sparsity
optimization helps to reduce the space requirements of the index when m is large,
because there are many empty partitions in this case at the bottom levels of the in-
dex. At the same time, the cache misses optimization helps in reducing the number of
cache misses in all cases where no comparisons are needed. Overall, the optimized
version of HINT™ converges to its best performance at a relatively small value of
m, where the space requirements of the index are relatively low, especially on the
BOOKS and WEBKIT datasets which contain long intervals. For the rest of our ex-
periments, HINT™ employs both optimizations and HINT the data skewness & sparsity

optimization.

Tuning m

After demonstrating the merit of HINT™ optimizations, we now elaborate on how to
set the value of m and on the effectiveness of our analytical model from Section 4.1.3.
As we already discussed our model is based on the intuition that as m increases,
the cost of accessing comparison-free results dominates the computational cost of
the comparisons. Figure 4.9 confirms our intuition on BOOKS and TAXIS (the plots
for WEBKIT and GREEND exhibit exactly the same trend as BOOKS and TAXIS,
respectively). For different values of m and for 10K queries, we report the overall
time spend for comparisons between data intervals and query intervals, denoted by
Cemp » and the overall time spent to output results with no comparisons, denoted
by Cy... i.e., the time taken for simply accessing data intervals which are guaranteed
query results. We also include the total execution time, i.e., Ccpyp + Coce.

The plots clearly show the expected behaviour. For small values of m, the cost of
conducting comparisons dominates the total execution cost, because the partitions at
the bottom level m of the index have large extents and numerous intervals. As the
value of m increases, the fraction of the results collected from just accessing the con-
tents of partitions rises, increasing the C,.. cost. The optimal values m,,, (i.e., where
the total execution time is the lowest possible occur after C,.. exceeds C.,,,. In fact,
we notice that increasing m beyond m,, roughly eliminates the cost of comparisons
(Cemp =~ 0), because the partitions are much shorter than the query intervals, while
the total cost essentially equals the cost of simply accessing the intervals from the
comparison-free partitions.

To determine m,,;, our model in Section 4.1.3 selects the smallest m value for which
the index converges within 3% to its lowest estimated cost. Table 4.6 reports, for each
real dataset, m,,; (est.) and (2) m,, (exps), which brings the highest throughput in
our tests. Overall, our model estimates a value of m,, which is very close to the
experimentally best value of m. Despite a larger gap for WEBKIT, the measured
throughput for the estimated m,,; = 9 is only 5% lower than the best observed

throughput.

Table 4.6: Statistics and parameter setting

| index | parameter || BOOKS|WEBKIT | TAXIS | GREEND |

Period #levels 4 4 7 8
#coarse partitions 100 100 100 100
Timeline| #checkpoints 6000 6000 8000 8000
1D-grid #partitions 500 300 4000 | 30000
Mopt (est.) 9 9 16 16
Mopt (exps) 10 12 17 17
HINT™ |rep. factor k (est.)|| 6.09 8.98 1.98 1
rep. factor k (exps)|| 5.13 6.07 2.14 | 1.0013
avg. comp. part. || 3.226 3.538 3.856 2.937
no comp. results || 99.9% | 99.9% |99.8% | 99.3%

Discussion

Table 4.6 also shows the replication factor k of the index, i.e., the average number
of partitions in which every interval is stored, as predicted by our space complexity
analysis (see Theorem 4.1) and as measured experimentally. As expected, the repli-
cation factor is high on BOOKS, WEBKIT due to the large number of long intervals,
and low on TAXIS, GREEND where the intervals are very short and stored at the
bottom levels. Although our analysis uses simple statistics, the predictions are quite
accurate.

The next line of the table (avg. comp. part.) shows the average number of HINT™
partitions for which comparisons were conducted. Consistently to our analysis in
Section 4.1.2, all numbers are below 4, which means that the performance of HINT™
is very close to the performance of the comparison-free, but space-demanding HINT.
To further elaborate on the number of required comparisons, we last show the fraction
of the results produced by HINT™ without any comparisons. We observe that in all
datasets over 99% of the results are collected with no comparisons, which further

explains how HINT™ is able to match the performance of the comparison-free HINT.

4.3.3 Index performance comparison

Next, we compare the optimized versions of HINT and HINT™ against the previous
work competitors. We start with our tests on the real datasets. For HINT™, we set
m to the best value on each dataset, according to Table 4.6. Similarly, we set the

number of partitions for 1D-grid, the number of checkpoints for the timeline index,

5The cache misses optimization (Section 4.2.3) is only applicable to HINT™.

Table 4.7: Comparing index size [MBs]

] index H BOOKS \ WEBKIT \ TAXIS \ GREEND \

Interval tree 97 115 3125 2241
Period 210 217 2278 1262
Timeline 4916 5671 4203 2525
1D-grid 949 604 2165 1264
HINT 273 337 7733 10131
HINT™ 81 98 2039 1278

Table 4.8: Comparing index time [sec]

] index H BOOKS \ WEBKIT \ TAXIS \ GREEND \

Interval tree || 0.25 0.33 47.2 26.8
Period 1.15 1.35 76.9 46.4
Timeline 12.7 19.2 40.4 15.9
1D-grid 1.26 0.95 4.02 2.24
HINT 1.70 11.8 49.6 36.5
HINT™ 0.73 0.53 22.8 8.58

and the number of levels and number of coarse partitions for the period index (see
Table 4.6). Table 4.7 shows the sizes of each index in memory and Table 4.8 shows the
construction cost of each index, for the default query extent 0.1%. Regarding space,
HINT™ along with the interval tree and the period index have the lowest requirements
on datasets with long intervals (BOOKS and WEBKIT) and very similar to 1D-grid in
the rest. In TAXIS and GREEND where the intervals are indexed mainly at the bottom
level, the space requirements of HINT™ are significantly lower than our comparison-
free HINT due to limiting the number of levels. When compared to the raw data (see
Table 4.3), HINT™ is 2 to 3 times bigger for BOOKS and WEBKIT (which contain
many long intervals), and 1 time bigger for GREEND and TAXIS. These ratios are
smaller than the replication ratios k reported in Table 4.6, thanks to our storage
optimization (cf. Section 4.2.1). Due to its simplicity, 1D-grid has the lowest index
time across all datasets. Nevertheless, HINT™ is the runner up in most of the cases,
especially for the biggest inputs, i.e., TAXIS and GREEND, while in BOOKS and
WEBKIT, its index time is very close to the interval tree.

Figure 4.10 compares the query throughputs of all indices on queries of vari-
ous extents (as a percentage of the domain size). The first set of bars in each plot
corresponds to stabbing queries, i.e., queries of 0 extent. We observe that HINT and
HINT™ outperform the competition by almost one order of magnitude, across the

board. In fact, only on GREEND the performance for one of the competitors, i.e.,

1D-grid, comes close to the performance of our hierarchical indexing. Due to the
extremely short intervals in GREEND (see Table 4.3) the vast majority of the results
are collected from the bottom level of HINT/HINT™, which essentially resembles the
evaluation process in 1D-grid. Nevertheless, our indices are even in this case faster
as they require no duplicate elimination.

HINT™ is the best index overall, as it achieves the performance of HINT, requiring
less space, confirming the findings of our analysis in Section 4.1.2. As shown in
Table 4.7, HINT always has higher space requirements than HINT™; even up to an
order of magnitude higher in case of GREEND. What is more, since HINT™ offers
the option to control the occupied space in memory by appropriately setting the m
parameter, it can handle scenarios with space limitations. HINT is marginally better
than HINT™ only on datasets with short intervals (TAXIS and GREEND) and only
for selective queries. In these cases, the intervals are stored at the lowest levels of the
hierarchy where HINT™ typically needs to conduct comparisons to identify results,
but HINT applies comparison-free retrieval.

The next set of tests are on synthetic datasets. In each test, we fix all but one
parameters (domain size, cardinality, «, o, query extent) to their default values and
varied one (see Table 4.4). The value of m for HINT™, the number of partitions for 1D-
grid, the number of checkpoints for the timeline index and the number of levels/coarse
partitions for the period index are set to their best values on each dataset. The results,
shown in Figure 4.11, follow a similar trend to the tests on the real datasets. HINT
and HINT™ are always significantly faster than the competition, . Different to the real
datasets, 1D-grid is steadily outperformed by the other three competitors. Intuitively,
the uniform partitioning of the domain in 1D-grid cannot cope with the skewness of
the synthetic datasets. As expected the domain size, the dataset cardinality and the
query extent have a negative impact on the performance of all indices. Essentially,
increasing the domain size under a fixed query extent, affects the performance similar
to increasing the query extent, i.e., the queries become longer and less selective,
including more results. Further, the querying cost grows linearly with the dataset
size since the number of query results are proportional to it. HINT™ occupies around
8% more space than the raw data, because the replication factor £ is close to 1. In
contrast, as o grows, the intervals become shorter, so the query performance improves.
Similarly, when increasing o the intervals are more widespread, meaning that the

queries are expected to retrieve fewer results, and the query cost drops accordingly.

Table 4.9: Throughput [operations/sec], total cost [sec]

BOOKS
. operation
index total cost
queries ‘ insertions ‘ deletions
Interval tree 1,258 5,841 1,142 9.63
Period index 3,088 519,904 765 4.52
1D-grid 3,739 411,540 165 8.68
subs+sopt HINT™ || 14,390 | 2,405,228 2,201 1.14
HINT™ 40,311 | 3,680,457 5,928 0.41
TAXIS
operation
index - - - - total cost
queries ‘ insertions ‘ deletions
Interval tree 2,619 61,923 14,318 3.93
Period index 2,695 1,026,423 21,293 3.76
1D-grid 2,572 8,347,273 16,236 3.95
subs+sopt HINT™™ 8,774 4,407,743 71,122 71,122
HINT™ 28,596 | 6,745,622 90,460 0.36

4.3.4 Updates

We now test the efficiency of HINT™ in updates using both the update-friendly version
of HINT™ (Section 4.1.4), denoted by gpstsopc HINT™, and the hybrid setting for the
fully-optimized index from Section 4.2.4, denoted as HINT™. We index offline the first
90% of the intervals for each real dataset in batch and then execute a mixed workload
with 10K queries of 0.1% extent, 5K insertions of new intervals (randomly selected
from the remaining 10% of the dataset) and 1K random deletions. Table 4.9 reports
our findings for BOOKS and TAXIS; the results for WEBKIT and GREEND follow the
same trend. Note that we excluded Timeline since the index is designed for temporal
(versioned) data where updates only happen as new events are appended at the end
of the event list, and the comparison-free HINT, for which our tests have already
shown a similar performance to HINT™ with higher indexing/ storing costs. Also, all
indices handle deletions with “tombstones”. We observe that both versions of HINT™
outperform the competition by a wide margin. An exception arises on TAXIS, as the
short intervals are inserted in only one partition in 1D-grid. The interval tree has in
fact several orders of magnitude slower updates due to the extra cost of maintaining
the partitions in the tree sorted at all time. Overall, we also observe that the hybrid
HINT™ setting is the most efficient index as the smaller delta sups;sopd HINT™ handles

insertions faster than the 90% pre-filled gups4sope HINT™.

4.3.5 Interval Joins

The last experiment in the first part of our analysis investigates the applicability of
HINT™ to the evaluation of interval joins. In this operation, given two input datasets
R, S, the objective is to find all pairs of intervals (r,s),r € R,s € S, such that r
G-OVERLAPS with s.

When none of the R, S input collections are indexed, we employ the optFS algo-
rithm from [27, 28] to compute the R < S join. In what follows, we discuss how to
further enhance the performance of this approach by extending optFS towards two
directions. First, the study in [27, 28] considered a space-based partitioning (referred
to as “domain-based partitioning”) solely as a means for processing the join in paral-
lel. Here, we extend optFS to employ such a partitioning also for the single-threaded
computation. Second, a domain partition in [27, 28] from each input collection is split
into 3 sub-divisions; PY, Pfin and PTast (referred to as classes A, B and C, respec-
tively in [27, 28]). Sub-divisions P%n and P/t are identical to the ones considered
by HINT, while P consists of all intervals starting inside a partition, regardless where
they end, i.e., PY = P |J P},. We extend the domain-based partitioning to consider
all 4 sub-divisions introduced in Chapter 4.

Specifically, the unified R|JS domain is first split into & equally sized, non-
overlapping stripes; each stripe holds a partition for input R and one for S. An
interval s € S (resp. r € R) is assigned to the partition of the stripe that contains s.st
and replicated to the partitions of all other stripes it intersects. With this partition-
ing in place an R > S join is broken down into £ independent partition-to-partition
joins, i.e., R: Pp>x S : P, .., R: P, >S5 : P Next, in a similar fashion to HINT,
every domain partition P from each collection, is further divided into 4 sub-divisions
POin pOQast - pRin and PFart, With these subdivisions in place, we now break down
every partition-to-partition join into 16 smaller tasks, called mini-joins. Figure 4.12
illustrates this mini-joins breakdown. We next elaborate on the computation of every

mini-join type:

e The 3 original-to-original mini-joins R : P% 1 S : P9 R : POn pq § : PQart
and R : P9t pa S : PP have identical complexity to the original R > S join.
Therefore, these mini-joins are evaluated as normal, i.e., using the optimized

FS algorithm, optFS from [27, 28].

¢ The remaining original-to-original mini-join R : P%/ft pa S : PPt differs from

the previous case. By definition, a (r,s) pair of intervals in this case always
overlap, regardless where their start is located inside the corresponding stripe,
as they both span to the next stripe. Under this premise, R : P9t pq S : POest
is computed without conducting any comparisons, in a cross-product fashion;

we highlight this mini-join in pink color, in Figure 4.12.

e For the 4 original-to-replica mini-joins R : PY%n b S : PRin R POast pq § ¢ PHin,
R: PBinpq S PO and R : Pfin S : POart) a simplified (reduced) version of
optFS can be used. As every replica interval inside Pfin starts in a preceding
stripe, optFS only conducts forward scans to the P%n or P%ist sub-divisions
from the other input; no forward scans are needed for the original intervals. In
addition, if the grouping optimization is activated, the entire P is used as a

group. We highlight this mini-join type in blue, in Figure 4.12.

e Every interval in PRt gspans the entire range of the corresponding domain
stripe. Thus, such intervals intersect by definition with all intervals from the
other input that start inside the same stripe, i.e., the intervals stored inside
the PY%n» and PYJt sub-divisions. Hence, the 4 original-to-replicas mini-joins
R : P9 pq § : PRast R . POast pq § ¢ PRast R . PRast pq § @ P9 and R :
PPRast pq S : POest are computed as cross-products and we color them in pink in

Figure 4.12.

e Last, to avoid producing duplicate results, a join result (r, s) is reported only if
at least one of the involved intervals is not a replica, i.e., if it is not contained
inside a P®n or a PRt gsub-division. Under this premise, we never compute
the 4 replica-to-replica mini-joins R : P%n pq S : PRin R . Plin pq S PHare,
R : Plart pq S ¢ PRin and R : PRest pq S : PRest) shaded in orange color in

Figure 4.12.

The rationale is that if the outer dataset I is very small compared to the inner
dataset S, an index already available for S can be used to evaluate fast the join in an
index nested loops fashion. Hence, we show how HINT™ constructed for each of the
four real datasets can be used to evaluate joins where the outer relation is a random
sample of the same dataset. As part of the join process, we sort the outer dataset R in
order to achieve better cache locality between consecutive probes to the inner dataset

S. As a competitor, we used the state-of-the-art interval join algorithm [28], which

sorts both join inputs and applies a specialized sweeping algorithm optFS. Figure 4.15
shows the results for various sizes |R| of the outer dataset R. The results confirm our
expectation. For small sizes of |R|, HINT™ is able to outperform the algorithm of [28].
On the TAXIS dataset, in particular, HINT™ loses to [28] only when |R|/|S| > 50%.

4.4 Conclusions

We proposed a hierarchical index (HINT) for intervals, which has low space com-
plexity and minimizes the number of data accesses and comparisons during query
evaluation. Our experiments on real and synthetic datasets shows that HINT outper-
forms previous work by one order of magnitude in a wide variety of interval data

and query distributions.

Algorithm 4.3 Searching HINT™
Input : HINT™ index H, query interval ¢

Output : set R of intervals that overlap with ¢
compfirst < TRUFE; complast < TRUFE
R+ 0

for / =m to 0 do > bottom-up
f <« prefixz(l,q.st); | < prefiz(¢,q.end)

for:= f to [l do
if = f then > first overlapping partition

if : = and compfirst and complast then
R« RU{s.id|s € H.P{),q.st < s.end A s.st < q.end}

R« R U {s.id|s € H.P[},q.st < s.end}

end

else if i = and complast then
R« RU{s.id|s € H.P{), s.st < q.end}

R+ R U {s.id|s € H.PE}

end

else if compfirst then
| R« RU{s.id|s € H.P{, UH.P}: q.st < s.end}

end
else
| R+« “RU{s.id|s € H.P;, UH.P:
end
end
else if : = [and complast then > last partition, [> f
| R RU{s.d|s € H.P{, s.5t < q.end}
end
else > in-between or last (/ > f), no comparisons
| R+ RU{s.id|s € H.Py,
end
end
if f mod 2 =0 then > last bit of f is 0
| compfirst < FALSE
end
if [mod 2 =1 then > last bit of [is 1
| complast <+ FALSE
end
end

return R

Index time [sec] Index size [GBs]

Throughput [queries/sec]

BOOKS

12 : :
base —o—

10 subs+sort

g | subs+sopt —v—
subs+sort+sopt —>—

6

4

2

)

p—

O WhRrUOANINIXOO

5 10 15 20 25
m

Index time [sec] Index size [GBs]

Throughput [queries/sec]

TAXIS
30 : :
base ——
25 ¢ subs+sort
20 | subs+sopt —v—

subs+sort+sopt —>—

10 15 20 25
m

Figure 4.7: Optimizing HINT™: subdivisions and space decomposition

BOOKS TAXIS

12
subs+sort+sopt —>—
— 10 t subs+sort+sopt —>— p .
A skewness & sparsity —&— — 20 ¢ Skewness%spgrs1ty —a— 9
o 38 cache misses —e— = i Cat{: qmégses —o—
R 6 all optimizations —+— 7 - I5 | all optimizations —+— /
N 9
< Z 0
Z 4 5 L
[=) "g 5
B 2 — N
0 = 0 ‘
5 10 15 20 25
m
12 100
90 jg)
g 10 = 80 4
2 8 2 70 /)
2 o 60 g
£ o E 50
K 4 < 40
e < 30
= 2 220
10
0™ 0 ‘
5 10 15 20 25
m m
g ()
% 2000 < 25000
£ 30000 3
% 25000 % 20000
5 20000 < 15000
2 o]
£ 1O £ 10000 |
& 10000 5
2 5000 g 5000
= O : L . =~ O
5 10 15 20 25
m m

Figure 4.8: Optimizing HINT™: impact of handling skewness & sparsity and reducing

cache misses optimizations

Time [sec]

Throughput [queries/sec]

Throughput [queries/sec]

—

TAXIS

°
E
=
m m
Figure 4.9: Setting m: measured costs
BOOKS WEBKIT
10° 10°

10*
103 L
2

Throughput [queries/sec]

Al

10
stab 0.01 0.05 0.1 05 1 stab 0.01 0.05 0.1 05 1
query extent [%] query extent [%]
TAXIS GREEND
6 6
0 ‘ ‘ ‘ ‘ g 107 7 ‘ ‘ ‘
0’ 210t
0* | 210*)
0* | 2 10° |
&
0* | 2 10° |
=
o' = oo LR
stab 0.01 0.05 0.1 05 1 stab 0.01 0.05 0.1 05 1
query extent [%] query extent [%]

Figure 4.10: Comparing throughputs, real datasets

B 1

[|

, , , |
<t on [o\] — S —
S 2 2 2 2 ©
[09s/sor1onb] indy3noayy,
=TT =

[09s/sarronb] indy3noayy,

10M 50M 100M 500M 1B

32M 64M 128M 256M 512M

dataset cardinality

domain size

) <t o @\l —
() (e (e))
— — — — —

[09s/sor1onb] ndy3noayy,

M
M
) <t o g\l —
e} (e} S S e}
— — — - -

[09s/so1onb] indy3noayy,

IM 5M 10M
o (interval position)

100k

10k

*®
—

<,
—

1.2

1.1
a (interval length)

1.01

v <t (a8} (9] — S
S e} e} S (e} e}
— — — — — —

[09s/souonb] indy3noayy,

query extent [%]

Figure 4.11: Comparing throughputs, synthetic datasets

normal

normal

reduced

cross-product

P

R : PO St POurt

Lap s

Repra st

cross-product

P

reduced

cross-product

P

R : POt S POin

REPOsE s S Plok

R : POast g § : Plin

i

reduced

reduced

pruned

reported
in this

partition
.

pruned

Jreported
inthis
artition

2 .

P

RisPMy SpUs

RSP

R Phna S plia

R weas Dy

cross-product

cross-product

P

pruned

reported
in this
partition

"
S—
1

pruned

reported

in this

partition
.

P

o

RecpHa R G Ja

R : Pt pq 8 1 P

RPs oS phal

Figure 4.12: Mini-joins breakdown for partition-to-partition joins

partitioning sorting bucket indexing W= joining M——

BOOKS WEBKIT
300 ‘ ‘ ‘ 400
250 350
3 g 300
Z 200 < 250
£ 150 E 200
E 100 g 1O
o S 100
= =
50 50
0 2 4 0 0 1 2 3 4
10° 100 102 100 10 10 100 100 100 10
partitions [log] # partitions [log]
TAXIS GREEND
600
— 500 —_
3 3
£ 400 2
) o
£ 300 =
E 200 E;
=} o}
= 100 =
0 ‘1 ‘2 ‘3 ‘4 ‘5 6 0 ‘l ‘2 ‘3 ‘4 ‘5 6
10° 10! 10* 10° 10* 10° 10 10° 100 10 100 10" 10" 10
partitions [log] # partitions [log]

Figure 4.13: Join processing breakdown: unindexed inputs

Total time [sec]

Total time [sec]

120

100 |

80
60
40
20

600

500 |

400
300
200
100

BOOKS

optFS T
optFS+

A

025 05 075 1
IR}/IS]

TAXIS

optFS =1

optFS+ n—]

L

025 05 075 1
IR/IS]

Total time [sec]

Total time [sec]

250

200 ¢

150
100
50

WEBKIT

optFS T
optFS+

]

B

025 05 075
IR/IS]

GREEND

1

optFS 1
optFS+

025 05 075
IR/IS]

Figure 4.14: Join processing: unindexed inputs

1

Execution time [sec]

Execution time [sec]

BOOKS

2
10 HINT" —+—
optFS+
101 //
100 / g
10" S — —
0.1 051 5 10 2550
IRI/IS| [%]
TAXIS
3
10 i — —
HINT" —+—
5 optFS+ /
10 _/
101 /
10°
107! S — —
0.1 051 5 10 2550
IRI/IS| [%]

Execution time [sec]

Execution time [sec]

10°
10
10!
10

107!

WEBKIT

HINT" ——
optFS+

-

pes

A=

P

510 2550
IRY[S| [%]
GREEND

0.1 051

HINT" ——
optFS+

o

=

510 2550
IR/IS| [%]

0.1 051

Figure 4.15: G-OVERLAPS based interval joins, real datasets

CHAPTER DO

INDEXING FOR ALLEN’S ALGEBRA

5.1 Supporting Allen’s Algebra
5.2 Experiments on Allen’s Algebra

5.3 Conclusions

In this chapter, we generalize HINT to efficiently answer queries that involve Allen’s
predicates, allowing for more complex interval data analysis. The main challenge is to
optimize the index for all the query predicates, which access differently the relevant
partitions. Another challenge emerges from the increased information we need to
keep for each interval, because different endpoints are useful for answering different
query predicates. Our index is evaluated against the state-of-the-art solutions with
multiple real datasets. Our experiments show a small increase in storage consumption

but also a consistent lead in query throughput.

Outline The rest of the chapter is organized as follows. Section 5.1 discusses necessary
changes to HINT™ for efficiently evaluating selection queries under the Allen’s algebra
relationships, and Section 5.2 follows up with the experimental evaluation. Finally,

Section 5.3 concludes the chapter.

64

Table 5.1: Supporting Allen’s algebra, setup optimized for G-OVERLAPS relationship (Table 4.2)

’ q REL s ‘ definition H result set
if f=1, P[Ofi" 1 q.st = s.st A\ g.end = s.end}
q.st = s.st A\ o R
EQUALS g.end = s.end |lelse {s €Pp, ;ft 1 q.st =s. st} N {s € P,/ 1 g.end = s.end
. ‘A Ve if f =1, PZO;" qst—sst/\qend<send}U{s€ ;ft:q.st:s.st}
q.st = s.8 ”
STARTS g.end < s.end else {S €P, J‘th 1q.st= s.st} N {UW/ {{S € Pf‘l” i g.end < s.end} UP;‘?”}}
Ve if f =1, { P[O}" q.st = s.st \ q.end > s.end
q.st = s.st A else {s € P, }” q.st = s.st} U
STARTED_BY | g.end > s.end R; R;
{S € P, ;ft 1 q.st = s.st} N {UVZ’ {{va<i<l P, 'Li'n}U {s e Plin : g.end > S.end}}}}
Ve if f =1, sGPOi" : g.end = s.end A q.st > s.stp | sGPR'i” 1 g.end = s.end
.end = s.end N
FINISHES

q.st > s.st

else {s e pfiin . qend*send}ﬂ{Uw, {{86 P,“ft q.st > sst}UP,“f‘}}

.end = s.end N

Ve if f =1, {s S PZOZ“L 1 q.end = s.end N q.st < s.st}

else {s € Poi" 1 g.end = s. end} U

FINISHED_BY q.st < s.st
{{s € P " g.end = s. end}ﬂ{UW/ {{S € P,"“ q.st < s. st}U{vaQd P, ".ff}}}}
MEETS qg.end = s.st |VL: {s € “”’ U ““ft i g.end = s.st}
MET_BY q.st = s.end ||VL: {s S P[Of" UPp, pPE igst= s.end}
Ve if f=1,:s¢€ P f 1 q.st < s.st A g.end > s.st A\ g.end < s.end} U
st < s.st A €P, ;ff 1 q.st < s.st A g.end > s.st} .
OVERLAPS g.end > s.st A\ else {S € Pé,lm s g.end > s.st A g.end < s.end} U {S € P, “ft i g.end > s. st} U

qg.end < s.end

{{{SEPR“L 'q.end<s.end}UPfl‘lft}ﬂ{Uw/ {{SEP aft qst<sst}U{va<l<lP,“. t}}}}

Ve if f =1, Pof”‘ q.st > s.st A\ q.st < s.end A q.end > s.end} U

g5t > s.st A s € PER;" 1 q.st < s.end A\ g.end > s.end
st < s.end A Oin } {
OVERLAPPED_BY %.Senjiesilend else {s €P, v -5t > s.stAg.st <s. endp|Jis € P(Z f 1 q.st < s.end
{{{ Pe;” :q.st>s.st}U “”}ﬂ{uw/{{va<i<lPé}?ji”’}U{sGP,”L qend>send}}}}
Ve if f =1, { P, ;" 1 g.st < s.st A g.end > s.end

CONTAINS

q.st < s.st A\
g.end > s.end

Oin . Oin Oin .
else{sEPf qst<sst}U{va<l<l i }U s € Py™ :q.end > s.end r |J
{{SG aft qst<sst}U{va<l<l

CONTAINED_BY

q.st > s.st A\
g.end < s.end

vg;iff:l_{ Plofm qst>sst/\qend<send}U{s€Peojilft

sEPf‘” g.end < s.end UP Faft

else {{se “ft qst>sst}UPﬁ “ft}ﬂ{Uw,{{

:g.st > s.st} U

PRi" 1 q.end < s.end} U P},%‘;ft }}

BEFORE

g.end < s.st

Ve: {SGP [UP, l”ft qend<sst}U{UW>l {P mUP,

Y

AFTER

q.st > s.end

we: {s

PO”LUPR“L qst> send}U{Uva {PO”L PZ?’L”L}}

aft}} N {Uw' {{va<1<l P, L."}U {s S Pﬁfl” i q.end > s.end}}}

5.1 Supporting Allen’s Algebra

Table 5.1 (first two columns) summarizes the basic relationships of the algebra, each
denoted by ¢ REL s, where ¢ is the query interval and s, an interval in the input
collection §. Note that the G-OVERLAPS selection query from the previous sections
identifies every interval s non-disjoint to query ¢, i.e., a combination of all basic
algebra’s relationships besides BEFORE and AFTER.

We study selection queries on Allen’s relationships under two setups for our
hierarchical indexing. We focus on HINT™, which exhibits similar performance to
the comparison-free HINT but significant lower indexing costs, as our experiments

showed in Section 4.3.

5.1.1 Setup Optimized for G-OVERLAPS

We start off with the HINT™ setup from Chapter 4 (see Table 4.2), optimized for
the G-OVERLAPS selection. In what follows, we discuss how queries based on Allen’s
relationships can be evaluated without any structural changes to the index. Table 5.1

summarizes the set of intervals reported for each selection query.

Relationship EQUALS. An EQUALS selection determines all input intervals identical to
query ¢, i.e., with g.end = s.end and ¢.st = s.st. To answer such a query, we access
two specific index partitions; the first relevant P, ; at level ¢ and the last relevant Py,
at level (. ! Intuitively, these two partitions correspond to the first and last partition
where HINT™ would store the query interval ¢, respectively. We then distinguish
between two cases. If ¢ overlaps a single partition, i.e., if f = [, we need only the
intervals that both start and end inside this partition, i.e., the Pfjﬁ" subdivision. So,
we report set {s € P " : q.st = s.st A q.end = s.end}. Otherwise, if f # I, we report
results among the intervals that start in the first relevant partition (from Pf;f ") and end
in the last (from P;), i.e., set {s € Pg;ﬁ D q.st = s.st} N {s € P : q.end = s.end}.

Note that we cannot directly check ¢.end = s.end as Pf;f ' stores only s.st (and s.id).

Relationship STARTS. According to Allen’s algebra, a STARTS selection query reports
all intervals that start where ¢ does, i.e., with ¢.st = s.st, but outlive its end, i.e., with
g.end < s.end. By construction, HINT™ stores such intervals as originals in the first

relevant partition. We consider two cases for every index level /. If f = [, we report

!In the general case, ¢ # ¢ holds for levels ¢ and /'.

each interval in the Pf;’” subdivision that satisfies both query conditions and each
interval in Pf]?f " that satisfies only ¢.st = s.st; for the latter intervals, their s.end is
by construction after g.end. So, we report {s € ngﬁ'" tq.st = s.st Ag.end < s.end} |

{s € Pf;f fig.st = s.st}. In contrast, if f # [, the results can only come from the inter-

. . O,
vals that end after the first relevant partition at current level /, i.e., from P, ;. But, as

subdivisions Pg;f " store only s.st according to Table 4.2, we cannot directly check the
g.end < s.end condition. Instead, we rely on the replicas inside the last relevant parti-
tion at any index level. Intuitively, if an interval {s € Pf;f fig.st = s.st} is stored as
a replica in the last relevant partition [at a level ¢, which either (1) ends inside [(i.e.,
s € P,%") but after g.end or (2) outlives the partition (i.e., s € Plfjt‘l‘f ') then g.end < s.end

holds for s. The above sets are computed as |,/ {{s € P qend < s.end} | P}Z;‘f t}.

Relationship STARTED_BY. As an inverse to STARTS, a STARTED_BY selection deter-
mines all intervals that again start at ¢.st but end before g.end. Therefore, if f = I
holds at a level ¢/, we consider only the intervals that both start and end inside
the partition, reporting set {s € PE;” : .5t = s.st A g.end > s.end}. Otherwise, results
are found among all originals in f. For the Pf;" subdivision, we directly output
{se Pffi” :q.st = s.st} as their s.end is by construction before g.end. For the in-
tervals in s € Pf;ft with ¢.st = s.st, we apply a similar technique to STARTS for
checking the g.end > s.end condition. Intuitively, such an interval s will be reported
if it ends at any level /', either inside a partition ¢ with f < ¢ < [or in the last
relevant partition [but before g.end. For this purpose, we check if s is inside set
Uy {{UVf<i<l Pffi"} U{se Pfj” . g.end > s.end}}.

Relationship FINISHES. This selection query returns all intervals that end exactly where
query ¢ does, i.e., with g.end = s.end, but start before ¢, i.e., with ¢.st > s.st.
If ¢ overlaps a single partition (f = [) at a level ¢, we consider the intervals
that end in the last relevant partition I: {s € PZ” : g.end = s.end A q.st > s.st} |J
{s € P/i : q.end = s.end}. Otherwise (f # 1), only replicas that end inside parti-
tion [(Subdivision Pj}m) with g.end = s.end can be part of the results. To this
end, we face a similar challenge to STARTS/STARTED_BY as P;}i" does not store s.st
(see Table 4.2) to directly check ¢.st > s.st. The solution is to check if an interval
{s € P/i" : q.end = s.end} is contained in set |Jy, {{s € P?f}“ L q.st > s.st} U P?‘}“},
i.e., the intervals that either (1) start before ¢.st in the first relevant partition f at any

level ¢’ or (2) are stored in P?"}f ‘ and so, their start is by construction before ¢.st.

Relationship FINISHED_BY. A FINISHED_BY selection inverses the second condition of
FINISHES, determining intervals with g.end = s.end and ¢.st < s.st. Foralevel (,if f =1
we report the intervals that start and end inside the partition, and satisty both con-
ditions, i.e., set {s € Pﬁ"" : g.end = s.end A q.st < s.st}. Otherwise (f # 1), the results
are among all intervals that end in partition [, i.e., set {s € P} : q.end = s.end} |J
{s € P[i": q.end = s.end}. For the intervals from subdivision P, ¢.st < s.st holds
by construction while for Pfli" intervals, a direct check of the condition is not possible.
Instead, we check such an interval s against the set of intervals that start either (1) af-
ter ¢ in the first relevant partition at any level ¢’ or (2) inside the partitions in between
the first and the last relevant; set J,, {{s € P?f}“ D q.st < s.st} U {UVKM Pg‘;“}}.

Relationship MEETS. This selection query returns all intervals that start at g.end. Under
this, we report for each level /, all originals in the last relevant partition [that satisfy

L : o}
the g.end = s.st condition, i.e., set {5 c PP, qend = s.st}.

Relationship MET_BY. This selection query returns all intervals that end at g.st. To this
end, the results are among the intervals that end inside the first relevant partition f,

ie., set {s € P " |JP[im : q.st = s.end}, at each level (.

Relationship OVERLAPS. An OVERLAPS selection determines all non-disjoint intervals to
query ¢, which start after q.st and end after q.end. If q overlaps a single partition (f = 1)
at a level /, such intervals are found among the originals in the partition; for the Pf}"
subdivision all query conditions are checked, while for an s in Pg?]?f ‘. g.end < s.end
always holds. So, we report set {s € Pf;’" :q.5t < s.st A g.end > s.st A g.end < s.end}
U {3 € Pf;'f "ig.st < s.st A gend > s.st}. Otherwise, results are reported in two parts.
The first part is drawn from the originals in the last relevant partition at each level
l, i.e., {s € PE%'" :q.end > s.st A g.end < s.end} U {s € Pﬁ“ﬂ :q.end > s.st}. For the
second part, we consider the intervals that start before partition [and outlive g, i.e.,
set {{ s € Pfin:qend < s.end} |J P} t}. For every such interval s, g.end > s.st holds
by construction, but we need to check its start against ¢.st. As subdivisions P/ and
PéR“f * do not store s.st, we cannot directly check the ¢.st < s.st condition. Instead,

aft

we compare s against all P at any level ¢’ that (1) either start before ¢.st in the

first relevant partition f or (2) inside every partition in between f and [, i.e., set
O, Oq

UVZI {{S c Pl,fft : qst < S.St} U {UVf<i<l P[/th}}.

Relationship OVERLAPPED_BY. As inverse to OVERLAPS, the OVERLAPPED_BY selection de-

termines all non-disjoint intervals to ¢ that start before ¢.st and end before g.end.

If f = I, we draw the results from all intervals (both originals and replicas)
that end inside the partition; set {s € PE’OJ}'" L q.st > s.st Ag.st < s.end A g.end > s.end}
U{s € Py : q.st < s.end A q.end > s.end}. Otherwise, the results consist of two parts
for every level (. The first part includes again originals and replicas that end
inside the first relevant partition f, but now, condition g.end > s.end always
holds by construction. Hence, we report set {s € P " : q.st > s.st Aq.st < s.end}
{s € Pji" : q.st < s.end}. For the second part, we seek results among all inter-
vals that start before ¢, i.e., originals {s € Pffa“ :q.st > s.st} and replicas Pf;f '
for both sets ¢.st < s.end holds by construction as intervals outlive the first rele-
vant partition f. As neither of the Pg;f " and Pf;f " subdivisions maintains s.end,
we check g.end > s.end by determining the replicas at any index level ¢ that end
(1) either before the last relevant partition [or (2) inside [after g.end, i.e., set
Uy {{UVKKZ Pf}”} U {s € Pﬁ" :q.end > s.end}}.

Relationship CONTAINS. This selection query returns all intervals, fully contained in-
side the query interval ¢, i.e., with ¢.st < s.st A g.end > s.end. For every level /,
it f = [, ¢ can contain only intervals that both start and end in this partition, i.e.,
from subdivision Pj"; we report set {s € Pj" : q.st < s.st A q.end > s.end}. Other-
wise, the results are drawn from the original intervals in every partition from the
first relevant partition f to the last /; for the latter only originals that end inside
the partition are considered. Specifically, for the intervals in P’ subdivisions, we
report {s € Pg}” tq.st < s.st} {UVKKZ Pgii"} U{se PZ”L : g.end > s.end}; observe
how only one condition is checked for partitions f and [, while for every partition
i in between, all originals that end inside ¢ are directly output. In contrast, for all

aft

: . o L .
intervals in the P, subdivisions, we need to check the ¢q.end > s.end condition;

additionally, for every s € Pf;f " subdivision, we also check if ¢.st < s.st holds. As
Peo"f " subdivisions store only s.st, g.end < s.end is checked similarly to OVERLAPPED_BY,
i.e., using set |, {{UVf<i<l PZ,D”’;"} U{se Pﬁ" :g.end > s.end}}.

Relationship CONTAINED_BY. This selection determines all intervals that fully
contain ¢, i.e., with ¢.st > s.st A gend < s.end. For each level /, if
f = [, the result intervals are found among all subdivisions in the parti-
tion, reporting {s € Pf;’" :q.st > s.st Ag.end < s.end} | {s € PE]?” :q.st > s.st} U
{s € Pfir: qend < s.end} |JP/+"". In contrast, if f # I, the results are among the in-

tervals that (1) start before ¢.st, corresponding to set {s € Pf;f "ig.st > s.st} U Pf;ft’

Oa R, o)
and (2) end after g.end. As the P,”*’* or the P,"’* subdivisions do not store s.end, in
order to check the ¢q.end < s.end condition, we need to intersect the above candidates
set with the replicas at any level ¢ that either end inside the last relevant partition [

L . R,
or outlive it, i.e., set [J,, {{s € P},%;" cg.end < s.end} U P, lft}.

Relationship BEFORE. A BEFORE selection determines all intervals that start after q.
Such intervals are found at each level ¢ as originals either (1) inside the last relevant
partition [, if they satisfy ¢g.end < s.st, i.e., set {s € Pﬁ"" U Pﬁ“” :g.end < s.st} or (2)
inside every partition after [, i.e., set |J,,., {Pfj” UPKi“f t}. Note that replicas from

these partitions are ignored as they will only produce duplicate results.

Relationship AFTER. An AFTER selection determines all intervals that end before q.
Results are found at each level among the intervals which end inside either (1) the first
relevant partition f and satisfy ¢.st > s.end, i.e., set {s € Pi"JP/i" : q.st > s.end}
or (2) every partition before f, i.e., set [y, {ng” UP;?"}. Note that subdivisions

O(l L R(I : . .
P, and P, " are ignored to avoid duplicate results.

Table 5.2: Allen’s algebra relationships, ‘One setup for all’

q REL s definition H result set
if f=1, {s IS Of" 1 q.st = s.st A\ g.end = s.end}
qg.st = s.st N\ ’
EQUALS g.end = s.end else {s € P, ;jt : q.st = s.st A g.end = s. end}
Vﬂ:iff:l,{ P}" qst—sst/\qend<send}U{sE ;ft:q.st:s.st}
qg.st = s.st A\
STARTS qg.end < s.end else {s Sy ;f’ 1 q.st = s.st A\ g.end < s.end}
Ve if f =1, {SEP in . q.st = s.st A\ g.end > s.end
q.st = s.st A
STARTED_BY q.end > s.end else {s c PZ fm q.st = s. st} U {s eP “ft : q.st = s.st A\ q.end > s.end}
Ve if f =1, {s PZ " gend = s.end A q.st > s.st} U {S € PZRZM i g.end = s.end}
g.end = s.end A R ’
FINISHES q.st > s.st else {s € P, /" :qend = s.end A q.st > s.st}
Ve if f =1, {S € Ploli" 1 g.end = s.end N q.st < s.st
g.end = s.end N\ 0. R
FINISHED_BY q.st < s.st else {s € P/ " 1 qend= s.end} U {s € P)}" 1qend = s.end Ag.st < s.st}
X O
MEETS g.end = s.st Ve { O”‘ Up, “ft :g.end = s. st}
MET_BY q.st = s.end Ve { Po“‘ UPR“L q.st = s. end}
Ve if f =1, { PZO}” q.st < s.st A g.end > s.st A\ g.end < s.end} U
q.st < s.st A { P;ft'lZst<sst/\QEnd>sst
g.end > s.st A e
OVERLAPS g.end < s.end else P 1 g.end > s.st A g.end < s. end} U {8 IS 1; 1 g.end > s. st} U
s e Pé l’” 1 gq.st < s.st A g.end < s.end} U {s € P, l“ft 1g.st < s.st}
Ve if f=1,4s¢€ Poi" 1 gq.st > s.st Ag.st < s.end A g.end > s.end} U
q.st > s.st PZR}“ q.st < s.end N\ g.end > s.end}
q.st < s.end o R
OVERLAPPED_BY qg.end > s.end else {s €Pp, fm q.st > s.st A\ q.st < s.end} U {s € P, Figest < s.end} U
R
{ EP, ;ft 1 q.st > s.st A g.end > s. end} U {s € PZ’;f‘ : g.end > s.end}
Ve if f=1, {SEPO;" q.st < s.st A g.end > s.end
else sePlf”‘ qst<sst}U{s€P ;ft qst<sst/\qend>send}u
CONTAINS HASdSS S Uvscici P “ } U {8 €Uvsicici P 1 g.end > s.end} U
{s € PO”" 1 g.end > s.end
Ve if f =1, {SEP in qst>sst/\qend<send}U{s€ ;“ :q.st>s.st}U
q.st > s.st A\ ft
CONTAINED_BY qg.end < s.end {s S P f i g.end < s. end} Up,
else { €Pp, ;ft 1 q.st > s.st A g.end < s‘end} U {s € P, J‘}ft 1 g.end < s.end}
BEFORE g.end < s.st Ve {s € PO“‘ UPp laft 1 q.end < s,st} U {UW>L {PO.’M Up, i“ft }}
AFTER q.st > s.end Ve { PO”‘ UPRm q.st > s.end} U {U\ﬁ<f {PO”’ U PlRim }}

5.1.2 One Setup for All

The storage optimization discussed in Section 4.2.1 allows the G-OVERLAPS setup of
HINT™ to reduce the memory footprint of the index and improve cache locality. But
as an optimization technique tailored for the G-OVERLAPS relationship, it has a negative
impact on Allen’s algebra basic relationships. The key issue is that we cannot directly
check the conditions on s.end for the PPt and PRt subdivisions and on s.st for
PRin and PRast, Instead, we are forced to access extra partitions to implicitly conduct
these checks, e.g., the Pfj” and P;f‘l‘f " subdivisions in the last relevant partition [at
each index level ¢, for the STARTS relationship.

In view of this shortcoming, we next consider a subs+sort setup of HINT™ for
Allen’s algebra.? Essentially, no changes are required if query ¢ overlaps a single
partition (f =) at a level ¢ as all necessary information is available for the selection
conditions. Further, the computation of MEETS, MET_BY, BEFORE and AFTER queries re-
mains unchanged. Hence, in what follows, we discuss the necessary changes for the

rest of relationships in the f # [case.

Relationship EQUALS. We can now directly retrieve results from the first relevant
. o o . o .
partition f and the P, /" subdivision by checking both query conditions, i.e., we

report set {s € PZ?” 1 q.st = s.st A g.end = s.end}.

Relationship STARTS. With s.end in Pfjj‘f ‘, both query conditions can be directly
checked at each level ¢ and thus report {s € Pfj‘i“ 1 q.st = s.st A\ q.end < s.end}.

Relationship STARTED_BY. Similar to STARTS, we can directly check both condi-
tions for ngﬁf " in the first relevant partition f. We report { s € PE;” D q.st = s.st} U

{s € Pe(,);ft 1 q.st = s.st A\ q.end > s.end}, at each level.

Relationship FINISHES. With s.st in PZR/" subdivisions, we can directly check ¢.st > s.st

and report {s € P/i" : q.end = s.end A q.st > s.st}, at each level.

Relationship FINISHED_BY. Similar to FINISHES, we can directly check both con-
ditions on P/i" and thus, report at each level ¢, set {s € PO qend = s.end} |J
{3 € Pﬁi" cq.end = s.end N\ q.st < s.st}.

Relationship OVERLAPS. With s.st in subdivisions P,"" and PZR‘” ', we directly check

g.st < s.st for partition [. So, we report {s € Pff" 1 q.st < s.st A g.end < s.end}

2The cache misses and the skewness & sparsity optimizations are orthogonal and can be straight-

forwardly combined with the gpsysore HINT™ setup.

U {s € Pﬁ“f "ig.st < s.st} intervals at each level along with the set

{s € Pfl”” cq.end > s.st A\ g.end < s.end} U {5 € PZ““ :q.end > s.st}.

Relationship OVERLAPPED_BY. With s.end stored in Py ¢’ and P/¢', we can di-
rectly check g.end > s.end, reporting set {s € Pg;” :q.st > s.st Ag.end > s.end}
s € . q.end > s.en alon wit the intervals containe in
Pt qend dy along with the i 1 ined i
{s € Pf;” :q.8t > s.st N\ q.st < s.end} U {s € Pfj}" q.st < s.end}.

Relationship CONTAINS. With send in Pﬁo‘lf ' subdivisions, we
can directly check the g.end > s.end condition to output
{3 € Pf;ft :q.st < s.st A g.end > s.end} U {s € Uyseic ng” : g.end > s.end} along
with the set {s € Pf}" Dq.st < s.st} U {s € Pﬁm :g.end > s.end}

U {va cicl PEOZ?"} from P subdivisions at each level.

Relationship CONTAINED_BY. With s.end stored in both Pf]?f " and Pf;“ subdivisions,
we can now directly check the g.end < s.end condition at each level /, reporting the

intervals {s € Pﬁoj‘i“ . q.st > s.st A\ q.end < s.end} U {s € PER;” cq.end < s.end}.

5.1.3 Bottom-up Evaluation Approach

Both setups of HINT™ can benefit from the bottom-up approach in Section 4.1.2. The
idea is to determine the levels when the last bit of the first (last) relevant partition f
(1) are set to 1 or 0, for the first time. Due to lack of space, we discuss only STARTS for
the G-OVERLAPS setup as an example. Specifically, results are found among the original
intervals stored in the first relevant partition f up to the level where the last bit in f
is 1, for the first time. All originals in f at a higher level start by construction of the
index before ¢.st and thus, violate ¢.st = s.st. In addition, at levels after the one where
the last bit of [is O for the first time, g.end < s.end always holds for all s € Pﬁ".
Consider for example the query ¢ in Figure 4.3. Candidate results are contained only
as originals in P, 5, where the last bit of f =5 is 1. Also as the last bit of [is O at the

4th level, all P%~ intervals in Pso, P11, By satisty g.end < s.end.

5.2 [Experiments on Allen’s Algebra

For the second part of our experiments, we focus on selection queries under the basic

relationships of Allen’s algebra. We first compare the two alternative HINT™ setups

from Section 5.1 and then put the best setup against the competition. We extended
our code for all competitive indices in Section 4.3 to support Allen’s algebra. We ran

our tests on datasets BOOKS, WEBKIT, TAXIS and GREEND. Lastly, parameter m

and all other index parameters are set according to Table 4.6.

5.2.1 Determining the Best Index Setup

Figure 5.1 reports the throughputs achieved by the two HINT™ setups; results in
WEBKIT and GREEND are similar and therefore omitted due to lack of space. Note
that both setups adopt the bottom-up evaluation (Section 4.1.2) and employ the
skewness & sparsity and the cache misses optimizations (Sections 4.2.2 and 4.2.3). The
results back up our discussion in Section 5.1. The ‘one setup for all’ setup drastically
improves the performance of HINT™ for the majority of the queries. Essentially, the
G-OVERLAPS setup matches the performance of ‘one setup for all’ in the G-OVERLAPS
relationship, as expected, and in relationships where only one partition per level is
examined by both setups, without the need to indirectly check a condition, i.e., in
MEETS, MET_BY, BEFORE and AFTER. In the rest, ‘one setup for all’ is from one to several
orders of magnitude faster. For the rest of our analysis, HINT™ always operates under

‘one setup for all’.

5.2.2 Index Performance Comparison

Figure 5.2 compares the performance of all studied indices. The first 4 rows of plots
report the results for OVERLAPS, OVERLAPPED_BY, CONTAINS, CONTAINED_BY, while varying
the query extent, similar to Figure 4.10. Note that for CONTAINED_BY on TAXIS and
GREEND, we consider a different range of values because these datasets contain
significantly shorter intervals compared to BOOKS and WEBKIT. The last row of
plots reports the throughput on the rest of the relationships where the selection
queries essentially resemble typical stabbing queries, i.e., query overlaps either one
partition per level or only two overall specific partitions in EQUALS.

Overall, HINT™ exhibits the highest throughput for all queries based on Allen’s
algebra relationships, in line with the results in Figure 4.10. Its performance gap to the
competitor indices ranges from almost half to several orders of magnitude. Essentially,
the smallest performance gap are observed mainly in WEBKIT and GREEND where

the input intervals are very short.

HINT™ for G-OVERLAPS mmmmm HINT™ one setup

for all =™

BOOKS

107 ‘ ‘
B
2z 100
Q
£ | p [
Q 5 — _
i‘ 10 =
a 104, F [
=
2P
H

Ll AN 3 5‘3‘/ 3 Qﬁ/ D s PAPRN\ ¥ 0
S & ?85@9 Q\@; 63&9 W e PSQ@OQO@& ?}@9 & S
Cy S A\ Y
‘5 Q S QQ)Q‘ C/Oé
TAXIS

10 —
2 100 b 1 0 5=
2100 -]
5 4
= 10
=
&
&N
2
=
H

100
10! I I N W

N AN PP INPS DN MG\ g g\
L A L
ot O SV O
& SRS e &
OQQ) CO

Figure 5.1: Comparing HINT™ setups

5.3 Conclusions

We generalized HINT, which fully supports selection queries based on Allen’s rela-
tionships [72] between intervals, achieving consistently excellent performance inde-
pendently of the query predicate. Our experimental analysis on real and synthetic
datasets shows that HINT outperforms previous work by one order of magnitude in

a wide variety of interval data and query distributions.

Throughput [queries/sec] Throughput [queries/sec]

Throughput [queries/sec]

Interval tree Period index Timeline index m— 1D-grid ——
HINT™ one setup for all ===
BOOKS WEBKIT
OVERLAPS
10° — 10° —
10° [g 10°
&
10* =18 10*
=
10° | & 10°
o0
g
2 [15 2
10 = 10
10! 10!
0.01 0.05 0.1 0.5 1 0.01 0.05 0.1 0.5 1
query extent [%] query extent [%]
OVERLAPPED_BY
107 10°
6 - —_ [_
10 o - § 105
s 6
10 o e
% 10*
10* =
2 10°
10° | 1%
2 E
107 1=
10! 10"
0.01 0.05 0.1 0.5 1 0.01 0.05 0.1 0.5 1
query extent [%] query extent [%]
CONTAINS
10’ — 10’
B — 6
10° - § 10 - B
S 2 10 M
10° ¢ SR
Z 10
4
107 15
B 10°
10° | R
(((g 10
10 10'

0.01 0.05 0.1 0.5
query extent [%]

0.01

0.05 0.1 0.5 1
query extent [%]

Throughput [queries/sec]

Throughput [queries/sec]

Throughput [queries/sec]

CONTAINED_BY
5

10 10
_ - - - R e — m = m M
10 12 ot
8
o)
g | | — | 1
10° | =100
=
=y
on
10° } 18 102t
=
H
10! 10!
001 005 0.1 0.5 1 001 005 0.1 0.5 1
query extent [%] query extent [%]
rest
107 10° — -
6 _) 1
10 - %9 105 L
S5 - _ - O
10 ¢ u = ~
S 10t}
104 b S
= 3
a 10 F
10° 15
3 102
2 [= 3
10 ﬁ
101%%« S & & 101%5&%«& Y
RO I N 3 ot & P b O@ <
Q»OES %«g?’ (‘@9 $\‘5 ‘2&0/ $ &8’«/ é 909 KN (‘@0 $\‘5 ‘2&9/ $ S\Qﬁ ?§‘
<® Q\é < Qé
TAXIS GREEND
OVERLAPS
10° 10° ——— — —
10° M M B M g 100 F
10* F7 - AT M e
. 5
10° . = 10
2
102 F 1B 10
e
10' =10
10° 10°
001 005 0.1 0.5 1 001 005 0.1 0.5 1

query extent [%] query extent [%]

Throughput [queries/sec] Throughput [queries/sec]

Throughput [queries/sec]

10

10

10

10

10

10

10

10

10

10

10

10

OVERLAPPED_BY

query extent [%]

10°
fg 10°
=
,q:) 104
A=)
1§ 103
&0
S
g 2
£ 10
10"
001 005 0.1 0.5 1
query extent [%]
CONTAINS
10°
- - B 10°
— I '% 104
N z
= 10’
=
£
o 107
18
£ 10
10°
001 005 0. 0.5 1
query extent [%]
CONTAINED_BY
— 10’
] [I3 10°
= - - - 2 10
40O
ey
= 10t
=
£
= 10°
S
E 10
10!
0.0001 0.0005 0.001 0.05 0.01

0.01 0.05 0.1 0.5 1
query extent [%]
— I
[o
0.01 0.05 0.1 0.5 1
query extent [%]
0.0001 0.0005 0.001 0.05 0.01

query extent [%]

Throughput [queries/sec]

rest

10" — M |

ol T B a0 n g w0 g

i 11 é 100 b _

ot WA AT e A I Y |

CO RS e R £ o |

10% 2 o

10" | Foe

. 0

N 10
S o &t 2 S S S o
R 9 N > Q& & ¢

?»QQ g&?’QQ»Q é\% «3&9/ @\@Q/ Q« @Q\B %@KQ)O S ‘2&9 QQ)« é
5“ Q$ %& Q$

Figure 5.2: Comparing throughputs on Allen’s algebra, real datasets

CHAPTER O

INDEXING INTERVALS FOR TRANSACTION TIME

TEMPORAL D ATABASES

6.1 Time-evolving HINT

6.2 The LIT Hybrid Index

6.3 Indexing Record Attributes
6.4 Persistence and Recovery
6.5 Experimental Analysis

6.6 Conclusions and Future Work

In this chapter, we study the problem of transaction time indexing, i.e., indexing
versions of a database table in an evolving database. We propose LIT, a hybrid in-
dex, which decouples the management of the current and past states of the indexed
column. LIT includes optimized indexing modules for dead and live records, which
support efficient queries and updates, and gracefully combines them. We experimen-
tally show that LIT is orders of magnitude faster than the state-of-the-art temporal
indices that index live and dead versions simultaneously. In addition, we demonstrate
that LIT uses linear space to the number of record versions that it indexes, making

it suitable for main-memory temporal data management.

Outline The rest of the chapter is organized as follows. Section 6.1 proposes an

extension to HINT, to manage live and dead record versions in an ever-growing

80

time domain. In Section 6.2, we present LIT, the main proposal of this chapter for
pure time-travel queries. Section 6.3 discusses how LIT can be extended to index an
attribute A of the records besides their temporal validity intervals, in order to support
range time-travel queries. Section 6.4 discusses the integration of our main-memory
LIT in a DMBS that should support persistence and fault-tolerance (recovery). Section

6.5 includes our experimental analysis and, finally, Section 6.6 concludes the chapter.

6.1 Time-evolving HINT

A first attempt to define an efficient in-memory index for time-evolving tables is to
convert HINT [40], the state-of-the-art interval index, to a single data structure that
can handle both live and dead intervals (records). We call this data structure time-
evolving HINT (te-HINT). A te-HINT for pure time-travel queries extends HINT in two
directions. First, it includes both live and dead records, whereas HINT indexes only
intervals for which the end endpoint is immutable. Second, it supports an evolving
domain for the interval endpoints (i.e., an evolving time domain); the original HINT
requires a pre-defined domain. These differences require some structural changes
and new update operations in te-HINT, compared to HINT [40], which are described

next.

6.1.1 Live and dead sub-partitions

The first difference between te-HINT and HINT is the introduction of live partitions
in the former. Recall from Chapter 4 that in each partition P, at level ¢ of HINT, the
intervals are divided into two classes: the set of originals Pg?i which start inside the
domain range of P,; and the set of replicas P/%, which start before the domain of P;.
In te-HINT, we further classify each interval s € Py, as live original or dead original,
depending on whether its end time point is known; we denote the sub-partitions that
hold live and dead originals by Pff and PgiD, respectively. Similarly, we maintain
sub-partitions Pff and Pflp for the replicas of F;;. Dead intervals in ng or Pff’ are
immutable, which means that they persist in the partition and cannot move to other

partitions, whereas live intervals can be deleted or moved to other partitions.

- - E—
| 51 52 : Sq Sy, 5 S3 X %
| i o : . e e e e deces 4
: | 53 : S31 P | I
:Pe_’i R—— J-l—: . 0,0 : !
| 005 | : 00____1_| = 10 P ’
[| p 1 | | I | |

L Pro i P L Pio i Py L Poo i Pai i Poa i Pys
1, trow ty t thow ty 1o thow ty
(a) insert sy & 3 (b) delete s (c) insert s4

Figure 6.1: Example of te-HINT
6.1.2 Handling updates

There are two types of update events over time: either the creation of a new live
interval (as a result of an insertion/modification to the database), or the finalization

of an existing live interval (as a result of a deletion/modification to the database).

Insertion events. In the case where an insertion event arrives, i.e., a new [ive interval
s begins corresponding to a version of a record r, we insert s to te-HINT (in live sub-
partitions) using the insertion algorithm of HINT [40], assuming that the end time
point of s is the end of the current domain of te-HINT (i.e., a timepoint in the future),
called the horizon of te-HINT and denoted by ¢;. At the same time we insert an entry
(r.id, s.start) in an auxiliary key-value data structure H, ;4 stqr¢ that facilitates finding
a live interval in te-HINT given the corresponding record id. Figure 6.1(a) shows
a simple example of a 2-level te-HINT, holding interval s;, which corresponds to a
dead record, in partition Py, (sub-partition Pj’). Two new live intervals s, and s;

are created at t,,, and they are inserted to partition P, (sub-partition Pf? o)

Deletion events. When a deletion event arrives for record r carrying an s.end, i.e., an
existing live interval s is terminated and becomes dead, we need to remove s from the
live sub-partitions of te-HINT and add it to the appropriate dead partitions. For this,
we use H,.id—start tO Tetrieve s.start, using r.id, and we run the insertion algorithm of
HINT for s’ = [s.start,ty) to identify the partitions wherein s’ appears and remove
s' from the corresponding live sub-partitions. Subsequently, we use the insertion
algorithm again to add s = [s.start, s.end) to the relevant dead sub-partitions. Note
that some of the partitions identified by the deletion algorithm may differ from those
found by the insertion algorithm, because s # s’. As an example, assume that at
time 0, shown in Figure 6.1(b), a deletion event for live interval s, arrives, i.e.,

the record version corresponding to s, is deleted from the indexed table T'. After

finding s,.start using H, ;4 stare. the partitions (Pﬁf) where s is stored as live are
identified using interval [s.start,ty) and s, is removed from them, and, finally, s,

becomes [sy.start, tye,) and is re-inserted to te-HINT as dead (i.e., to partition Pﬁ?).

Domain Extension. te-HINT is initialized to have a single level (0) which includes a
single partition P, . The timespan [0,¢y) of the partition is small (e.g., one hour) and
depends on the application. In both insert and delete events, it may happen that the
current time point ¢,,, when the update takes place is beyond the current horizon ¢y
of te-HINT. Such an update triggers the extension of the (time) domain that te-HINT
covers. The easiest way to accommodate this extension is to double the domain (and
the horizon ty), by adding one more level to te-HINT (and repeat as necessary).
Specifically, we add a new level O to the index and add 1 to the identifiers of existing
levels (i.e., previous level 0 becomes level 1, level 1 becomes level 2, etc.). This does
not affect the identifiers and contents of existing partitions at each level ¢, but doubles
the number of possible partitions at ¢. Subsequently, we add all live intervals from all
partitions as live replicas to partition P, ;, except from those in old partition P, which
are moved to the new F . By this, we minimize the replication of live intervals and
also minimize the necessary updates when new events arrive. Essentially, live intervals
are moved only when there is a domain extension. Continuing the previous example,
assume that a new live interval s, is created at t,,, of Figure 6.1(c). Since t,,, is
greater than or equal to ¢y, as per the previous state of te-HINT (Figure 6.1(b)), ¢y is
doubled, one more level is added to te-HINT, and the current partitions are renamed
(i.e., previous Pyo now becomes P, etc.), without any change in their contents.
Existing live interval s3 is added to the new partition Pff. The new interval s, is

added using the insertion algorithm to Pl?f.

6.2 The LIT Hybrid Index

Capitalizing on the original HINT, te-HINT will deliver excellent performance on
pure time-travel queries, as shown in [40]. But, te-HINT will suffer from slow up-
dates, mainly due to the insertion (and transfer) of intervals to (and beween) multiple
partitions when record versions are initiated (terminated). In view of this shortcom-
ing, we design a hybrid index, termed LIT, which decouples the indexing of live and

dead versions. For now, we describe LIT for pure time-travel queries. Its extension

Update Events Queries

(ty,1,end) [g2.tstart,gz.tend]
(to,2,start) [g1.tstart,q1.tend]
(to,1,start) [go.tstart,qo.tend]
uerylive
Openlnterval | | Query QueryDead
Closelnterval
Live Dead
Index Index

InsertDeadInterval

: —— 1 —
.A—ﬁ : —h—
|

g.tend toon g.tstart qg.tend Tnow

Figure 6.2: Overview of LIT

for range time-travel queries will be discussed in Section 6.3.

Overview of LIT Figure 6.2 shows an overview of LIT, which comprises two com-
ponents; a LiveIndex denoted by Z;, storing all current record versions (indexed by
their start timepoint) and a DeadIndex, denoted by Zp, for the dead (i.e., past) record
versions (indexed by their validity intervals). Both components are dynamic, albeit
handling different updates. The stream of updates to the indexed table 7" is consumed
by the Livelndex Z;. Specifically, when a new record version is created (i.e., an in-
sertion to 71", the start point s.start = t,,, of its validity interval is inserted to Z;; this
event type has no impact on the DeadIndex Zp. On the other hand, when a record
version “dies” (i.e., a deletion from 7'), the corresponding entry is removed from Z,
and an entry is inserted to Zp for the dead record version. As already mentioned,
record updates are treated by terminating (i.e., “deleting”) the current (live) version
of the record and inserting a new version.

To evaluate a pure time-travel query ¢ = [¢.tstart, q.tend] both I, I need to be
probed. As the two components index disjoint sets of record versions, these probing
tasks are completely independent. Specifically, we probe the Livelndex 7;, using only
g.tend; every live record that started before g.tend is guaranteed to be part of the
query result. In contrast, the DeadIndex evaluates a typical interval range query to
find all dead record versions with a validity interval that overlaps ¢. In what follows,
we elaborate on the internals of the LIT components 7; and Zp, and describe their

key operations.

6.2.1 The Livelndex Component

The Livelndex Z;, offers three key operations. Specifically, Z; is updated to index a
new live record (Function Openlinterval) or updated to un-index a record version
that just died (Function Closelnterval). Z, also evaluates pure time-travel queries
(Function QueryLive). To efficiently implement these functions, Z;, defines an internal
identifier r.num for each live record version r in it. The num identifier is a serial
number that captures the order in which the version start timepoints were read from
the input stream of updates; num is used to (1) locate a live version to be deleted
from Z; when a delete event arrives for it, and (2) define an implicit order of the
live versions based on their start points, used to index them in 7;. Livelndex also
maintains an auxiliary hash table H, ;4 num. Which returns the internal num id, for

the live version of a given record id.

Data structures

We discuss three alternative data structures for Livelndex, aiming at both fast updates

and efficient time-travel queries. We experimentally compare them in Sec. 6.5.2.

Array. The first alternative is to use an append-only array to index live records in
sequential fashion. Updates can be efficiently handled in constant time, as follows.
Function Openlinterval simply appends an entry at the end of the array for a new
live record version, while Closelnterval, drops a tombstone on the existing entry
for a newly closed record version. This entry can be directly accessed using the
num of the record, which is obtained by probing the record id against H, ;4—num. TO
answer queries, the QueryLive function scans the dynamic array from its first entry,
comparing the start of every live record to g.tend while ignoring the tombstones. By
construction, the dynamic array stores the live records sorted by their num, which
means that the records are also implicitly sorted by their start, in increasing order.
Hence, QueryLive terminates the scan when the first record that started after ¢.tend

is accessed.

Search tree. A second alternative data structure for the Livelndex 7; is a search tree
(e.g., a Bf-tree), using num as the search key. With such a search tree in place, we
no longer need to lazy-update Z; when a record version dies. Instead, Closelnterval
probes the tree using the num identifier of the record (obtained from H, ;4 snum), and

then directly removes the corresponding entry. As a search tree typically supports

scanning its entries in the search key order, to answer a [q.tstart, q.tend| query, we
scan and report from the first entry until we find the first that has its start after

q.tend.

Enhanced hashmap. In terms of updating (Functions Openinterval and
Closelnterval), we generally expect the sorted array to outperform the search tree,
due to its simplicity. Querying efficiency depends on the characteristics of the input
stream; update-heavy workloads create a large amount of tombstones to the array,
rendering it slower than the search tree. In view of the above, we should consider
a data structure, which will exhibit competitive update time to the array and have
lower query time. To this end, we suggest using an enhanced hash table, similar to the
Gapless hashmap proposed in [26] or the java.util.LinkedHashMap in Java. Such
structures can handle insertions and deletions using num in constant time (typical for
hash tables), but also offer scan time linear to the number of contained entries, which
facilitates fast query processing. In particular, the Gapless hashmap uses a contigu-
ous memory area to store the elements. Insertions append new elements at the end
of this area, while deletions are handled by swapping the deleted element with the
last one and reducing the array size by one. Scanning is fast as it steps through the
contiguous storage area sequentially. Different to both the array and the search tree,
the hashmap does not maintain the entries sorted by their num, and therefore, a full

scan is required to answer time-travel queries.

Temporal partitioning of LiveIndex

Given a query, a LiveIndex implemented by any of the data structures in Section 6.2.1
would need to conduct comparisons for a large number of live versions (indepen-
dently of the underlying data structure), since there is no way to directly output
versions guaranteed to start before g.tend. In view of this, we propose a temporal par-
titioning of the Livelndex to boost time-travel queries. The key idea is to maintain Z;,
as a chain of temporal partitions or simply buffers, instead of a single one, such that all
num’s in a buffer are smaller than all num’s in the next buffer. Hence, the start points
of live record versions in a buffer are smaller than or equal to the start points of live
versions in the next buffer. For each query, only the buffers that may contain results
are accessed and even more importantly, comparisons are conducted only for the last

buffer. This partitioning of the Livelndex Z; is orthogonal to the data structure used

Hr.ld%num

Openlnterval(r.id=Bob) | 01: insert] Closelnterval(r.id=Bob)
t,0=360 | (Bob,980) _| Bob->980 | Cl:find(Bob)| i _399

now’

next num=980

02: insert
(980,360)

C2: findbuffer(980)

Querylive(qg.st, q,end=286)

On-top index (num->B;)
IE 712|945

154 Q1: scan&report(B,, i<286 div 100)

Q2: scan&compare(Bsgg gy 100)

C3: find&delete(980)

"""" ! C4:InsertDeadInterval IDzad
3.1 (Bob,360,380) ndex
- 99 100« 199 200+« 299 - - -
timespan timespan timespan timespan —
(a) duration-based
Hr,id%num
Openinterval(r.id=Bob) | 01:insert) Closelnterval(r.id=Bob)
t,0u=860 | (Bob,340) | Bob—>340 | Cl:find(Bob)|; ' _ggp
next num=340 02: insert
(340,860)
QueryLive(qg.st, q,end=286)
On-top index (start->B;)
’ 0 |34 |245|712\4Qx1:findbuffer(286)
Q2: scan&report(Bo,B1)
Q3: scan&compare(B,
C2: find&delete(340)
T ST T T T Setare” T TR T T T W Sstartt T T AT T T T Setart T T ! C3:InsertDeadInterval ID Zad
| b3 1 (Bob,860,982) ndex
0 99 100 199 200 299 300 399 — —
num num num num —

(b) capacity-based
Figure 6.3: Livelndex: partitioning

for each buffer.

Duration-based partitioning. An intuitive partitioning approach for Z;, is to consider
a duration constraint Dy. Under this, 7; essentially resembles a uniform 1D-grid of
equi-sized partitions, one for each buffer. A buffer B; contains the live entries that
started inside the [i- Dy, (i + 1)- D) range of time units. Given a [q.tstart, q.tend] time-
travel query, we first determine the bucket B.,, that contains the g.tend timestamp;
this can be done in constant time by a simple |g.tend/Dy| division. The records
inside the buffers before B.,, can be directly reported as results; by construction of
the Livelndex, these records started before g.tend. In contrast, comparisons against
q.tend are required for the live records inside the last B4, i.e., QueryLive handles
B.,q as if the LiveIndex comprised a single buffer. Regarding updates, inserting a
new live record version to Z; (Function Openinterval) is not significantly affected
by the above partitioning, as the new entry will be added to the last buffer, i.e.,
the one containing the most fresh records; extra action is required when D; time

units have already past and a new buffer needs to be created first. Closelnterval is

more challenging, as we need to fast determine the buffer which contains the start
of the dying record version. For this purpose, we define an auxiliary, lightweight
structure on top of the buffers. This structure stores a (num, ptr) entry for each buffer
B of 7;, where num is the lowest internal identifier of a live record version inside
B and ptr is a pointer to directly access B in the chain. Recall at this point, that
Livelndex is organized by num and so is its on-top structure, by construction. When
a version of record r.id dies, Closelnterval finds its num using H, ;4—snum. then binary-
searches the on-top structure using r.num and, lastly, follows the buffer pointer to
locate the entry for num inside the corresponding buffer B. After deleting the entry
from Z;, Closelnterval, forwards the dead version for insertion to Zp. Openlnterval
may update the on-top structure when the last buffer is full and a new is created.
Figure 6.3(a) exemplifies a duration-based partitioned Livelndex, with the necessary

steps taken for each of the Openlinterval, Closelnterval, and QueryLive operations.

Capacity-based partitioning. Duration-based partitioning may define unbalanced
buffers with respect to the number of contained entries, rendering unbalanced query
costs. An alternative partitioning approach that results in balanced partitions is to use
a capacity constraint (', allowing each buffer to hold at most C, entries. ! Different to
the duration-based partitioning discussed above, capacity-based partitioning can di-
rectly access the needed buffers during both types of updates. For Openlinterval, we
simply append the new live record version at the last buffer, while for Closelnterval,
a simple num/Cy, division exactly determines which buffer B contains the recently
deceased version. Note that if the last buffer is already full, Openlnterval will create
a new buffer B,.,, after the last one and simply append the new live version in B,.,,.

On the other hand, it is no longer possible to directly determine the B.,q buffer
for a [g.tstart,q.tend] query. In view of this, we define an on-top structure, which
stores a (st, ptr) entry for each buffer B of the Livelndex, where st is the lowest start
timepoint of a record version inside B and ptr is a pointer to directly access B. Note
that the on-top search structure is by construction sorted by version start and that it
may contain multiple entries for the same start. Hence, given a [q.tstart, q.tend] query,
QueryLive first binary-searches the on-top structure to identify the first buffer that
could contain g.tend and sets this as B.,q4. With B.,4, the function proceeds similarly
to the duration-based Livelndex, by directly reporting records inside every buffer

before B.,q and conducting comparisons against g.tend for B.,,. Lastly, besides up-

'For array structure, tombstones are not excluded when counting the contained records.

dating buffers, Openlinterval and Closelnterval also update accordingly the on-top
structure. Figure 6.3(b) illustrates a detailed example of the capacity-based partitioning

of LiveIndex and operations on it.

Optimizations

As the timeline evolves and live records die, buffers may become under-utilized or
even completely empty. To deal with this issue, reorganization can be employed for
both types of partitioning. For the duration-based Livelndex, such a sparsity issue
is expected to especially occur in the first (early) buffers. Hence, we could merge
adjacent sparse buffers into one and accordingly update also the on-top structure.”
To answer time-travel queries, an extra auxiliary structure is now needed to capture
the time-range covered by this new buffer, as the ¢.tend/D;, division can only work
for un-merged buffers. Intuitively, a second on-top structure maintaining the lowest
start inside a buffer will allow us to deal with several rounds of buffer merging.
For the capacity-based Livelndex, one solution would be to define a lower-bound for
the capacity of a buffer. When the capacity of a buffer drops below e.g., 50% of C},
we mark the buffer and merge it with either its predecessor or its follower (if one
of them is also marked), and then update accordingly the on-top structure. Finally,
similar to the duration-based Livelndex, a new on-top structure is again required, as
the num/C}, division no longer works. This new structure will hold the lowest num

inside a buffer, and will be binary searched by Closelnterval.

6.2.2 The Deadlndex Component

We now turn our focus on indexing dead record versions. Recall that these versions
were evicted from the Livelndex Z;, by the Closelnterval function, after their end was
read from the input stream. The DeadIndex Zj, offers two key operations. Specifically,
(1) Zp is updated to index a new dead record version (Function InsertDeadInterval)
and (2) it evaluates time-travel queries (Function QueryDead). As the timeline
evolves and new dead versions are added to Zp, its domain grows. Under this, a
straightforward solution for indexing dead record versions is the 2D point transfor-
mation approach from [1] as discussed in Section 3.1, where a 2D spatial index such

as the R-tree, can adapt to the growing domain.

2
The number of buffers to be merged can be seen as a tunable system parameter.

An alternative solution is to modify the state-of-the-art interval index HINT [40]
to adapt to a growing domain. Section 6.1.2 already discusses this in the context of
te-HINT. Implementing domain extension for a HINT DeadIndex is simpler, because
we do not have to deal with transfers of live intervals between buckets as in fe-HINT.
Instead, we only have to add one more level and double the horizon ¢y, as soon as we
cannot accommodate a newly inserted interval s having at least one of its endpoints
after ¢ty. As in te-HINT, after the expansion operation, the existing partitions are
renamed to reflect their new level, but their contents remain intact.

Increasing the number of levels in a HINT that implements 7 to a very large
number may negatively affect its search performance and size, as there could be far
too many partitions for the number of indexed intervals [40]. A naive approach to
reduce the number of HINT levels by one is to construct a new HINT with one less
level and insert all intervals in it. We propose a more efficient algorithm for deleting
the lowest level of HINT, which progressively moves intervals from the deleted level
to an appropriate partition above, while maintaining the HINT property (i.e., each
interval s should be assigned at the smallest set of partitions from all level that
define s). Each interval at level m (to be deleted) is stored in at most two level-
m partitions. Intervals that begin and end in exactly one partition F,,; are directly
moved to P,,_; ;-2 and no further action is needed. This is the case of s, in Figure
6.4(a) which is moved to P, in Figure 6.4(b). Intervals that begin in a P,,;, for an
odd i, are temporarily moved to P,,_1,-92; the same holds for intervals that end in a
Py, for an even i. For instance, s3 in Figure 6.4(a) is temporarily moved to partition
P, ; because it ends in P, ,, while s; is temporarily moved to both P, and P; ; (see
Figure 6.4(b)). Temporary partitions P,,_; ; at each level ¢ < m for an even j are set-
intersected with the next partition at the same level holding replicas, at the potential
of moving intervals to the previous level /—1 as finalized or temporary. Symmetrically,
temporary partitions P, ; at level ¢ for an odd j are set-intersected with the previous
partition P, ;_;. While there are temporary partitions at each level, intervals may
propagate upwards until their correct partition is found. For instance, intervals s;
and s4, which, after the deletion of level 2, were stored in (temporary) partitions P,
and P, ; at level 1 are eventually propagated at of level 0, as shown in the final
HINT at Figure 6.4(c). A pseudocode of the drop level algorithm is skipped due to
space constraints. Note that the same method can be used to delete the last level of
te-HINT.

S S S1 S5 $q Sy

(a) before level drop (b) level m drop (c) propagation and final HINT

Figure 6.4: Steps of dropping last level m of HINT (m = 2)
6.3 Indexing Record Attributes

We now discuss how to modify LIT and index record versions on a specific attribute
A for range time-travel queries, where not only a timepoint/range is specified but
also a selection predicate on A. We denote a LIT that indexes an attribute A (besides
time) by a-LIT.

Before describing a-LIT we discuss the requirements of a LiveIndex and a DeadIn-
dex in the presence of the attribute A. Figure 6.5 illustrates the information that
should be stored about live and dead record versions. As shown in Figure 6.5(a),
to be able to answer range time-travel queries against LiveIndex, we need for each
live version its start point and its A-value. So, the live version is a 2D point in the
time-A space. A range timer-travel query can then be modeled as a rectangular range
{[to, g-end], [q.Astart, q.Aend]} in the time- A space. Regarding the DeadIndex, we need
for each dead version its start, end and its A-value. Figure 6.5(b) illustrates some
dead versions in the time-A space and a range time-travel query, which is modeled

as a 2D rectangle, defined by the query bounds.

Aa Aa

q.Aend}-®&=-----76—+ g.Aend ——:——-I

.—:—.:k :*
e e— l_I 1
g.Astartf------_% a g.Astart|-——L_---d
o e T > : —
1 1 1

1 > 1 1 >
to g.tend thow Ty a.tstart g.tend thow
(a) Live space (b) Dead space

Figure 6.5: Live and Dead space and queries

6.3.1 The Livelndex Component

The Livelndex of a-LIT should index the start timepoints of the current record

versions and their values on A simultaneously.

2D space index. A natural approach to do so would be to use a native index for 2D
points (e.g., kd-tree, quadtree, R-tree). Besides the 2D-space index, we also need an
auxiliary structure H, ;i (start,4) that maps record ids to the start points of their live
versions and their A values. Otherwise, it would not be possible to find and remove
an indexed point from the 2D index, when the corresponding version dies (i.e.,
Closelnterval). Hence, the Openlinterval operation inserts the (start = t,,,,, A) entry
of a new live version to both the 2D index and H, ;4 (start,4). Operation Closelnterval
uses H,.iq—(start,4) t0 find the coordinates of the ending version in the 2D index,
searches and removes it, and relays the dead record version to DeadIndex. Finally,

QueryLive issues a 2D query to the 2D index to retrieve the qualifying live versions.

Use multiple pure time indices. Another indexing approach is to divide the do-
main of A into partitions (e.g., equi-width) and develop a Livelndex as described
in Section 6.2.1 for each partition. The data structures and temporal partitioning
methods are defined separately for each partition. The only difference is that the
mapping mechanism H, ;q_num Of record ids to num values should also capture the
A-partition identifier wherein a live version is located. By this, Closelnterval can
identify and delete a live version from the correct A-partition of the Livelndex. Fig-
ure 6.6(a) illustrates an A-partitioning of the live data space into four divisions (P A,
to PAs). For each of them, we can define a pure temporal Livelndex, as described
in Section 6.2.1. Given a range time-travel query, we use the selection predicate on
A to identify the partitions that overlap with the query range in the A-domain (i.e.,
PA,;, PA,, and PA; in Fig. 6.6(a)). If a partition is entirely covered by the A-range
of the query (e.g., partition PA,), we evaluate the temporal part of the query, as
described in Sec. 6.2.1. Otherwise (e.g., in PA; and PAj3), for each result obtained by
the Livelndex of the partition, we verify the A-predicate of the query. This verification
is applied for at most two A-partitions containing the query boundaries. Updates on
this A-partitioning approach are expected to be faster than updates on a 2D index,

due to the fast hashing mechanisms it incorporates.

Aa Aa

. | PA; —_— PAs
————— o > Aendlb - - o= =
g.Aend . | q T
(I Vt PAZ _I PAZ
g.Astartf- —*= _.0:3_.:; pA, GAstart]__ L - _ql_ PA,
PY : 1< | —
1 qtend t,o to aqtstart gtend g,

(a) Live space A-partitioning (b) Dead space A-partitioning
Figure 6.6: Live and Dead space A-partitioning

6.3.2 The DeadIndex Component

Now we turn to DeadIndex options for a-LIT. Like before, we can follow either a
pure geometric approach or apply an A-partitioning technique to take advantage of

the efficiency of pure time indices.

3D index. A straightforward approach is to index the line segments of the dead
space (see Fig. 6.5(b)) directly by a native 2D index for geometric objects (e.g., an
R-tree). However, such a method is not expected to perform well because some record
versions in temporal databases are long-lived and correspond to very long segments
that require large node MBRs, rendering the index inefficient. A more effective ap-
proach is to model each dead version as a 3D point (s.start, s.end,r.A) in the (time,
time, A) space, and index these points using a 3D index (e.g., a 3D R-tree). Fig-
ure 3.4(a) shows how this can be done for pure time intervals; the idea is to add
one more dimension for A. Every query in this 3D space is then modeled as a

([0, g.tend], [q.tstart, tpow], [q-Astart, q.Aend]) 3D box.

Use multiple pure time indices. Similar to the case of Livelndex, we may also
partition the domain of A to define a number of partitions, as shown in Figure 6.6(b).
For each partition (e.g., PA, to PA3), we use an optimized interval index, such as
the modified HINT to support domain extension, discussed in Section 6.2.2. Given a
range time-travel query, we first identify the A-partitions that overlap with the query
A-range (e.g., PA;, PAy, PA3) and then evaluate a pure time-travel query in each
such partition, verifying the A-predicate against its results if necessary (e.g., in PA;
and PA;).

Time-travel Queries Data Update Events Data Updates Log

[a1.tst, g1.tend, q1.Aend] (to,2,30K, start) (to,2,30K, start)
[a0.t, go.Ast, go.Aend] (to,1, 50K, start) (to,1, 50K, start)
Search
Search Update LIT
Recover after tg
LIT
Live Dead Backup
Index Index up totg
p— — LIT Backup
@O S —SP ——
O e— $ __ Recover
e thow

Figure 6.7: Persistence and recovery of LIT

6.4 Persistence and Recovery

LIT is a main-memory index that facilitates real-time analytics, high-performance
querying, and handling large volumes of rapidly changing temporal data. However,
since main memory is volatile, we should ensure durability and recoverability, after
power or system failures. Figure 6.7 illustrates how LIT is integrated into a temporal
database system, to support fault tolerance and recovery. For this, each update event
is written to a log file. In addition, a backup of LIT is taken periodically and written
to the hard disk for persistence and faster recovery. The backup is merely a dump
of the main memory data structures for LiveIndex and DeadIndex. Assuming that
the last checkpoint where the last backup has been taken is ¢z, to recover LIT at a
time t,,,,, > tp (e.g., due to a power failure at that time), we first load the backups of
LiveIndex and DeadIndex in main memory, then find the first event after ¢z in the
log file, and finally ingest all events after {5 to evolve Livelndex and DeadIndex to
their current state at t,,,. Since all states up to tp are captured by the LIT backup,
we can even “cleanup” the log file by removing all entries up to ¢z, to avoid searching

it.

Table 6.1: Characteristics of tested datasets

[] [maxisF | TAXISP | BIKES [FLIGHTS [WILDFIRES BOOKS
Cardinality 169290307 169290307 101472950 61328124 778410 2050707
K] Min duration 1 min 1 min 1 min 5 min 1 min 1 hour
é Max duration 5 hours 5 hours 7.5 months 12 hours 4 months 1 year
& Avg. duration 12 mins 12 mins 16 mins 2.5 hours 28 hours 67 days
% Description trip fare [USD] passengers count rider’s birth year departure delay [secs] number of books lent fire extent [acres]
i Type real integer integer real integer real
% Value range [2.5,235.5] [1,6] [1940, 2005] [0, 233400] [1,38] [0.0001, 606945]
@ Distribution normal zipfian normal zipfian zipfian zipfian

Table 6.2: Query extents; default values in bold

input query extent

stream temporal search-key

TAXIS-F 1, 6, 12, 18, 24 [hours] 3, 5, 10, 30, 50 [dollars]
TAXIS-P 1, 6, 12, 18, 24 [hours] 1, 2, 3, 4, 5 [passengers]
BIKES 1, 6, 12, 18, 24 [hours] 10, 20, 30, 40, 50 [years]

FLIGHTS 1, 2, 3, 4, 5 [days] 5, 10, 30, 60, 120 [mins]
WILDFIRES 1, 7, 14, 21, 30 [days] | 10, 50, 100, 500, 1000 [acres]
BOOKS 1, 7, 14, 21, 30 [days] 5, 10, 15, 20, 25 [books]

6.5 Experimental Analysis

We last present the results of our experimental analysis. All indices were implemented
in C++, compiled using gcc (v9.4.0) with flags -O3, -mavx, and -march=native.
The tests ran on a AMD Ryzen 9 CPU, clocked at 3.5GHz with 64 GB of RAM,
running Ubuntu 20.04.

6.5.1 Setup

Datasets. We experimented with 6 real-world temporal datasets which also include
a search-key attribute A; Table 6.1 summarizes their characteristics. TAXIS-F and
TAXIS-P contain the pick-up and drop-off timepoints of taxi trips (same intervals in
both datasets) in NYC from 2009. In TAXIS-F, A is the paid fare, and in TAXIS-P A
is the number of passengers. BIKES* contains the pick-up and drop-off timepoints of
bike rides in NYC from 2014 to 2021; the search-key A is the birth year of the rider.
FLIGHTS® contains the take-off and landing timepoints of flights recorded by the US
Transportation Department from 2013 to 2022, and the occurred departure delay.
BOOKS ¢ contains the periods of time when books were lent out by Aarhus libraries
in 2013, and the number of books during each period. WILDFIRES’ specfies when a
fire was discovered and when declared contained/controlled. As search-key A, we use
an estimate of the area burnt. BOOKS, WILDFIRES include objects with long validity

intervals, while in TAXIS, BIKES time intervals are extremely short; FLIGHTS lies in

3https://www1.nyc.gov/site/tlc/index.page
“https://citibikenyc.com/system-data

Shttps://www.bts.gov

Shttps://www.odaa.dk
"https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires

https://www1.nyc.gov/site/tlc/index.page
https://citibikenyc.com/system-data
https://www.bts.gov
https://www.odaa.dk
https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires

the middle of the spectrum. As search-key, we consider both real and integer values;
A’s domain varies from extremely small (TAXIS-P) to extremely large (WILDFIRES).

Last, the values of A follow either a normal or a Zipfian distribution.

Input streams. We created an event stream (workload) out of every dataset, by split-
ting each interval to an insert and a deletion event, and interleaving 10K queries.
Queries are positioned uniformly inside the active timeline, i.e., the period between
the start of the very first interval until current ¢,,,. The nature of the created
streams varies from extremely update-heavy for TAXIS, BIKES and FLIGHTS with
a 34000/1, 20000/1 and 13000/1 ratio of updates over queries, respectively, to mod-
erate for BOOKS and WILDFIRES, with a 410/1 and 156/1 ratio, respectively. We
considered two types of query extents; for pure time-travel queries, the extent of the
[q.tstart, g.tend] interval while for range time-travel queries, additionally the extent
of the [q.Astart,q.Aend] range. Table 6.2 lists the values for the query extents; the
defaults are in bold. In each test, we measure the update time (for some indices,

broken down to insert and delete time) and the query time.

6.5.2 Pure time-travel Queries

We start our evaluation with pure time-travel queries. As we ignore the search-key

A, we consider a single TAXIS stream.

Tuning LIT

We first investigate the most efficient structure and partitioning for the Livelndex,

and the most

LiveIndex: data structure. We implemented the alternative structures from Sec-
tion 6.2.1; STL C++ vector class was used for the append-only array, STL C++ or-
dered_map class (Red-Black tree) for the search tree and the Gapless hashmap from
[26] for the enhanced hashmap.8 Table 6.3 summarizes the results of our tests; for
the interest of space, we report only BOOKS and TAXIS, which contain long and
short intervals, respectively. The tests back up our intuition from Section 6.2.1. The
append-only array exhibits the best (lowest) update times due to its simplicity. The

enhanced hashmap however is always competitive, even for the update-heavy stream

8Source code was provided by the authors.

Table 6.3: Livelndex for LIT; time in secs, default query extents
TAXIS
q extent Append-only array Search tree Enhanced hashmap
[hours] || ins ‘ del ‘query‘ total || ins ‘ del ‘query‘ total || ins ‘ del ‘query‘ total

1 4.61|5.31| 409 |418.9| 18.6/29.3|0.001|47.90|| 5.10|7.32|0.011|12.43
6 4.61|5.31| 410 |419.9| 18.6/29.3|0.001|47.90|| 5.10|7.32|0.011|12.43
12 4.61|5.31| 409 |419.1|| 18.6|29.3|0.001|47.90|| 5.10|7.32|0.011|12.43
18 4.61|5.31| 411 |420.9| 18.6|29.3|0.001|47.90|| 5.10|7.32|0.011|12.43
24 4.61|5.31| 412 |421.9| 18.6/29.3|0.001|47.90|| 5.10|7.32|0.011|12.43

BOOKS

q extent Append-only array Search tree Enhanced hashmap

[days] ins ‘ del ‘query‘ total ins ‘ del ‘query‘ total ins ‘ del ‘query‘total
1 0.057|0.068| 14.4 |14.52| 0.336|0.967 | 38.0 |39.30|| 0.065|0.142| 6.41 |6.61
7 0.057|0.068| 14.8 |14.92|| 0.336|0.967 | 37.9 |39.20|| 0.065|0.142| 6.45 |6.65
14 0.057|0.068| 14.9 |14.93|| 0.336|0.967| 39.7 | 41.0 || 0.065|0.142 | 6.46 | 6.66
21 0.057|0.068| 15.2 |15.32|| 0.336|0.967 | 41.9 |43.20|| 0.065|0.142| 6.47 | 6.66
30 0.057|0.068| 15.6 |{15.72|| 0.336|0.967 | 42.8 |44.10|| 0.065|0.142| 6.43 | 6.63

duration-based capacity-based
2 2
10 ‘ ‘ BOOKS —e— 107 g
BIKES M—W——r
7 10! /—ARA A A e A TAXIS —v—" (! \%Mu L
2 HTHRIRAHHAA RN FLIGHTS —>— @ /WQW
= WILDFIRES =
Q 0¢— P Q 0 T~
g 10 S VS § 10 R PN
= 10 E 10
2 -2
10 : : 10
1 10 100 1000 10> 10> 10* 10° 10° 10" 10®
Dy [hours] Cy,

Figure 6.8: Livelndex for LIT tuning; default query extent

of TAXIS. The search tree on the other hand is outperformed by an order of mag-
nitude for both inserts and deletions. Regarding queries, the enhanced hashmap is
the most robust structure; the efficiency of the other two is affected by the nature of
the input stream and/or the length of the intervals. Update-heavy streams will incur
a large number of tombstones and significantly slow down the append-only array,
while long-lived intervals increase the size of Livelndex and slow down the search
tree. Overall, the enhanced hashmap offers the best trade-off between updates and
queries, exhibiting always the lowest total time. For the rest of our experiments, we

rely on the enhanced hashmap to store the Livelndex.

Livelndex: partitioning. We implemented both partitioning approaches from Sec-

Table 6.4: Livelndex for LIT; in msecs; default extents

input duration-based ‘ ‘ capacity-based

stream insert ‘ delete ‘ query ‘ total H insert ‘ delete ‘ query ‘ total

TAXIS 4653 | 7462 4 12121 5252 | 7418 | 11.4 | 12681
BIKES 5667 | 2358 5 8030 || 3305 | 4140 | 4.3 | 7449
FLIGHTS 3059 | 2018 4 5083 || 1742 | 2653 | 11.1 | 4405
WILDFIRES 27 33 3 63 23 27 2.8 | 52.8
BOOKS 83 270 | 352 | 706 || 82.6 | 204 | 319 | 606

Table 6.5: DeadIndex for LIT; times in secs

TAXIS
query extent 2D R-tree [1] HINT
[hours] insert ‘ query ‘ total | insert ‘ query ‘ total
69.7 | 3.21 | 72.9 | 8.43 | 0.28 | 8.71
6 69.7 | 156.5 | 85.2 | 8.43 | 1.54 | 9.97
12 69.7 | 29.8 | 99.5 | 8.43 | 2.96 | 11.4
18 69.7 | 44.3 | 114 | 8.43 | 3.39 | 11.8
24 69.7 | 59.2 | 128 | 8.43 | 6.20 | 14.6
BOOKS
query extent 2D R-tree [1] HINT
[days] insert ‘ query ‘ total | insert ‘ query ‘ total
1 0.63 | 459 | 46.5 | 0.15 | 0.27 | 0.42
7 0.63 | 47.8 | 48.6 | 0.15 | 1.05 | 1.20
14 0.63 | 51.2 | 51.8 | 0.15 | 1.86 | 2.01
21 0.63 | 55.2 | 55.7 | 0.15 1.74 | 1.89
30 0.63 | 59.1 | 59.7 | 0.15 | 2.96 | 3.11

tion 6.2.1. To determine the best value for the duration constraint D;, and the capac-
ity constraint C';,, we conducted the experiment in Figure 6.8 where the total time
(update plus query time) is reported, while varying D;, and C},. Note that as the value
of both constraints increases, the number of Livelndex buffers always drops. With the
best observed values for each input stream in place, we compare the two approaches
in Table 6.4, which also includes a runtime breakdown for each approach. We observe
that the capacity-based partitioning always outperforms the duration-based by 10%,
on average. For the rest of our analysis, as LiveIndex of LIT will use the capacity-
based partitioning; also, based on Figure 6.8’s experiment, we set C, = 10000 for all

streams.

DeadIndex. We compare HINT in the role of DeadIndex as discussed in Section 6.2.2,

Table 6.6: Pure time-travel queries: total update time [secs]

input LIT
Timeline || te-HINT

stream LiveIndex | DeadIndex ‘ total
TAXIS 12.3 1886 14.5 8.43 22.89
BIKES 10.4 357 7.93 5.13 13.06
FLIGHTS 4.08 526 4.68 3.01 7.69
WILDFIRES 0.05 0.38 0.07 0.04 0.11
BOOKS 0.19 349 0.49 0.14 0.63

Table 6.7: Pure time-travel queries: in secs; default extents

input stream
Component
TAXIS \ BIKES \ FLIGHTS | WILDFIRES | BOOKS
LIT: LiveIndex 0.157 | 0.005 | 0.011 0.001 0.371
LIT: DeadIndex 2.96 | 0.203 | 0.504 0.019 1.85

against the 2D transformation approach proposed in [1], powered by a 2D R-tree from
the highly optimized Boost.Geometry library.? Table 6.5 reports the insert time and
the query time for each Deadlndex approach, while varying the query extent. Due
to lack of space, we show again only the numbers for BOOKS and TAXIS. HINT
outperforms the 2D R-tree on computing pure time-travel queries by at least one
order of magnitude (usually two orders), while for ingesting dead records, the 2D R-
tree is competitive only in case of BOOKS, which contains significantly fewer updates
than TAXIS. In contrast, for the update-heavy TAXIS, the 2D R-tree is an order of
magnitude slower than HINT for indexing new dead records. In view of the above,

LIT will use HINT as its DeadIndex component for the rest of our analysis.

LIT against the competition

We now compare the LIT hybrid index against te-HINT (Section 6.1) and the state-
of-the-art Timeline index [13] for transactional DBs. Figure 6.9 (first row) reports
the total time (updates and queries) for each index to ingest the input streams, while
varying the query extent. Our tests clearly show that LIT is the most efficient index for
all input streams, followed in almost all cases by the Timeline index, while te-HINT
ranks last, with the exception of WILDFIRES. To better understand these results, the

second row of the figure reports the accumulated time over the 10K queries of the

9Benchmark in [73] showed that Boost.Geometry (https://www.boost.org) R-tree implementa-
tions outperform the libspatialindex library (https://libspatialindex.org/).

https://www.boost.org
https://libspatialindex.org/

stream and Table 6.6 reports the accumulated update time. The query costs of LIT
and te-HINT are always lower compared to those of Timeline; te-HINT is competitive
to LIT but in all cases slower. For updates, Table 6.6 shows the advantage of Timeline;
recall from Chapter 3 that Timeline is designed for the support of fast updates in
transaction-time DBs. Nevertheless, LIT is competitive to Timeline. Also, observe that
the total updating cost is almost equally divided in between the Livelndex and the
DeadIndex. In contrast, te-HINT is orders of magnitude slower than LIT and Timeline
in updates, mainly due to the high cost of moving intervals between partitions at
different levels, as the timeline evolves and deletion events arrive. Overall, LIT offers
the best tradeoff between updates and queries, resulting in the lowest total time, even

for update-heavy streams such as TAXIS and BIKES. Lastly, we provide a breakdown

Timeline [13] — te-HINT ——2 LIT (LiveIndex: enhanced hashmap,

capacity-based partitioning; DeadIndex: HINT) s

TAXIS
10* 10°
— 3011 [] M] 7 B [B [[
5 10 A))) § 102 +
& 2 —
10 ¢)
qé 1 g 101 3
5 1 5o
S 10° s 101
107! 107!
1 6 12 18 1 6 12 18 24
query extent [hours] query extent [hours]
BIKES
10° ‘ 10°
@102**T Il dl N Il = i e e e A
2 2
< 10"} o 10"
: £
= 10° = 10
8 5}
= 100} & 107
107 107
1 6 12 18 24 1 6 12 18 24

query extent [hours] query extent [hours]

Total time [secs] Total time [secs]

Total time [secs]

10
10
10
10

107

103
10
10
10

100

FLIGHTS
3

10

Query time [secs]

2 3 4 5 1 2 3 4 5
query extent [days] query extent [days]

WILDFIRES
1

10

Query time [secs]
—_
S

7 14 21 30 1 7 14 21 30
query extent [days] query extent [days]

BOOKS

10

10

10

Query time [secs]

10
7 14 21 30 1 7 14 21 30

query extent [days] query extent [days]
Figure 6.9: Pure time-travel queries

to the query time of LIT in Table 6.7.

6.5.3 Range time-travel Queries

We next switch gears and evaluate range time-travel queries, which include selections
on the search-key A. For a-LIT, we considered an equi-width partitioning of the A

domain in 6-7 partitions.

Tuning a-LIT
We first investigate the best setup for a-LIT.

Livelndex. We compared two alternative solutions for the Livelndex, following our
discussion in Section 6.3.1; a Boost 2D R-tree which directly indexes the start-A 2D
space and a series of pure Livelndices, one for each partition of the A domain. For the
interest of space, we had to omit the results of this comparison. Our tests showed that
the series of pure Livelndices solution always outperforms the 2D R-tree Livelndex,
both for updates and queries, even for the update-heavy streams, i.e., TAXIS and
BIKES.

DeadIndex. We implemented the two options discussed in Section 6.3.2, a 3D R-tree
which directly indexes both the validity interval of a dead version and its search-key
A, and a series of pure Deadlndices powered by HINT, one for each partition of
the A-domain. Table 6.8 reports the total update (insert) and query time for each
approach, while varying the search-key query extent; due to lack of space, we only
report the case of the TAXIS-F and BOOKS streams. The table clearly shows the
advantage of the multiple pure DeadIndices option in the role of the DeadIndex for
a-LIT. The 3D R-tree DeadIndex is always slower both for updating (insertions of
dead record versions) and querying. Especially in BOOKS, the performance gap rises
to at least one order of magnitude because the 3D R-tree querying struggles with the

long-live intervals.

a-LIT against competition

We compare a-LIT against two competitors. The first is a time-first baseline, which
directly employs the pure LIT and does not index the search-key. To answer a range

time-travel query ¢, this LIT (pure) first executes a pure time-travel query with

MVB-tree [37] ———1 LIT (pure) mmm—m

a-LIT (LiveIndex: enhanced hasmap, capacity-based partitions

on time, partitioning on A; DeadIndex: partitioning on A, HINT) =

TAXIS-F
10* 10° e
Z 10° M n M M 2
A 2 —
107 ¢ ®
£ E 10}
g 50
g 100 5’ 107 ¢
10" - 10" -
3 5 10 30 50 3 5 10 30 50
search-key query extent [dollars] search-key query extent [dollars]
10* 10° Fr————
— 30 — — — T iy 2 [
A 2 — 1
107 ¢ 10"
E £
= 10} 2 100 ¢
= 8
= 107} & 10"} I
107t - 102 -
1 6 12 18 24 1 6 12 18 24
temporal query extent [hours] temporal query extent [hours]
TAXIS-P
10* 10*
> 3 — M iy 3 . —
- 10° | o 10° |
= £
=10} 2 10"
s 5
= 100} & 10° h
10" - 10" -
1 2 3 4 5 1 2 3 4 5
search-key query extent [passengers] search-key query extent [passengers]
10° 10—
& 2 — 1
‘QE, 107 ¢ ,é 100 ¢
= 10} 2 100}
s 5
= 10° | & 10"
10" - 10 -
1 6 12 18 24 1 6 12 18 24

temporal query extent [hours]

temporal query extent [hours]

Total time [secs]

Total time [secs]

Total time [secs]

Total time [secs]

BIKES

|

|

10

40

|

search- key query extent [years]

]

|

1

18

temporal query extent [hours]

]

Query time [secs]

Query time [secs]

10°

107!

102

107

FLIGHTS

|

|

5

60

120

search-key query extent [hours]

1

1 2

|

4

temporal query extent [days]

]

Query time [secs]

Query time [secs]

10°

107!

102

107

fn

E—

10 20 30

search-key query extent [years]

i

E— |

]

temporal query extent [hours]

Il

5

10

120

search-key query extent [hours]

]

|
|

|

“g-“

temporal query extent [days]

Total time [secs]

Total time [secs]

Total time [secs]

Total time [secs]

10

p—
S
—_

p—
S
\]

10

p—
S

—
S
[\

WILDFIRES

107!

Query time [secs]
[
S
[\S)

I
W

I

10
10 100 500 1000
search-key query extent [acres]
107!
2 107
Q
2 107
=
o
- 107
1 7 14 21 30
temporal query extent [days]
BOOKS
10°
1g 10
2
— 0
1 1 10
f 12 10!
R
i T 10
L | 10—3
5 10 15 20 25
search-key query extent [books]
10"
3 10
: I £ 107
2
L |l @ -2
5 10
- 107
1 7 14 21 30

temporal query extent [days]

Ll

Il

100

500

1000

search-key query extent [acres]

Il

|

|

temporal query extent [days]

I

il

search-key query extent [books]

7
0

|

|
|

|

7

14

21
20
21

|

temporal query extent [days]

Figure 6.10: Range time-travel queries

Table 6.8: DeadIndex for a-LIT; times in secs

TAXIS-F
search-key 3D R-tree [1] multiple HINTSs
query extent [dollars] | insert ‘ query ‘ total | insert ‘ query ‘ total
3 81.9 | 40.6 | 123 | 9.48 | 0.49 | 9.97
5 81.9 | 40.5 | 122 | 9.48 | 0.51 | 9.99
10 81.9 | 40.6 | 123 | 9.48 | 0.40 | 9.88
30 81.9 | 40.6 | 123 | 9.48 | 0.41 | 9.89
50 81.9 | 40.5 | 122 | 9.48 | 0.41 | 9.89
BOOKS
search-key 3D R-tree [1] multiple HINTSs
query extent [books] | insert ‘ query ‘ total | insert ‘ query ‘ total
5 0.74 | 480 | 552 | 0.15 | 0.26 | 0.41
10 0.74 | 5.35 | 6.07 | 0.15 | 0.25 | 0.40
15 0.74 | 7.86 | 8.60 | 0.15 | 0.28 | 0.43
20 0.74 | 914 | 9.88 | 0.15 | 0.27 | 0.42
25 0.74 11.6 | 12.3 | 0.15 | 0.27 | 0.42

Table 6.9: Range time-travel queries: total update time [secs]

input stream || MVB-tree [37] | LIT (pure) | a-LIT
TAXIS-F(-P) 341 27.9 29.3
BIKES 57.8 15.7 16.5
FLIGHTS 61.6 8.76 9.89
WILDFIRES 0.28 0.12 0.14
BOOKS 1.86 0.85 0.87

[q.tstart, g.tend] and then, checks the attribute A of every intermediate result against
the [g.Astart,q.Aend] range. The second competitor is the state-of-the-art index for
multi-versioned DBs, MVB-tree [37]. The first and the third rows in Figure 6.10
report the total time of the indices, while varying the A-range of the query and the
temporal query extent, respectively. Observe that both LIT-based indices outperform
the MVB-tree, in all input streams and tests. The reason is the high cost of update
handling by the MVB-tree; the performance gap is larger for the TAXIS and BIKES
(update-heavy streams). As Table 6.9 shows, LIT (pure) and a-LIT capitalize on the
Livelndex to cope with updates. In fact the MVB-tree is competitive only in BOOKS;
this dataset has the smallest number of updates and queries significantly contribute to
the total time. a-LIT always outperforms LIT (pure) as expected in answering range

time-travel queries (second and fourth row in Figure 6.10), because LIT (pure) can-

not prune the search space using the search-key attribute. Overall, a-LIT exhibits a
good tradeoff between updating and querying, being able to efficiently handle both
update-heavy and moderate streams. Based on the our tests, we expect a even bigger

advantage over LIT (pure) for query-heavy streams.

6.5.4 Index Size

We conclude our analysis with the index size growth over time. Figure 13 plots LIT’s
size as a function of the percentage of the updates in each stream. Observe that LIT’s
space increases linearly with the number of updates, which makes it appropriate
for in-memory management of time-evolving data. A linear growth ensures that its
performance characteristics remain consistent. As the number of records increases,
the time complexity of index lookups remains relatively constant, allowing for con-
sistent and reliable query performance. Furthermore, as new records are added to
the database, the index can be updated in a predictable manner, making it easier
to maintain. Finally, the index can handle an increasing amount of data without a

significant drop in query performance, which makes it scalable.

10 ‘ ‘ :
BOOKS —o—

- M BIKES
@ 10° TAXIS —v—
= = FLIGHTS —»—
g 12 '+ oo%% WILDFIRES
210

10° ‘ —

10 30 50 70 100

updates [%] [log]

Figure 6.11: LIT: size growth over time

6.6 Conclusions and Future Work

In this chapter, we proposed LIT, a hybrid index for time-evolving databases, which
decouples the handling of current (live) record versions from the management of

past (dead) record versions. We studied options for implementing the live and dead

index components, focusing on minimizing the cost of index updates and queries. We
considered pure time-travel queries that retrieve active record versions at some time
point or period in the past, and range time-travel queries, which additionally apply
a selection predicate on a search-key attribute. Our tests unveil the best approaches
for handling live and dead record versions in LIT and shows that LIT is orders of
magnitude faster than temporal indices that index live and dead versions in the same
structure. LIT uses linear space to the number of record versions, which renders it

suitable for in-memory indexing of temporal data.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary of Contributions

7.2 Directions for Future Work

In conclusion, we present a summary of our significant contributions, along with

outlining potential paths for future research.

7.1 Summary of Contributions

In this dissertation we studied interval data management in main memory. Interval
data find many applications. Yet, as we showed the multiple use cases and query
operators were not sufficiently covered by the previous work in the area. Since in-
dexing plays a crucial role in performance, database systems have high demand for
fast in-memory implementations of indices with widely-used query operators.

In the first part of our work we analyzed the use case of indexing intervals with
valid time specifications. We proposed a hierarchical index (HINT) for intervals, which
has low space complexity and minimizes the number of data accesses and comparisons
during query evaluation. We introduced a division of intervals into groups depending
on how their endpoints match the partition boundaries, we theoretically proved that
the expected partitions for which comparisons are necessary is at most four, we

added further optimizations for fast retrieval times and we proposed a model for

109

tuning the value of the parameter m for HINT™. Our experimental evaluation on
real and synthetic datasets showed that HINT outperforms previous work by almost
one order of magnitude in a wide variety of interval data and query distributions.
Furthermore, we evaluated our methods for interval join. We conducted experiments
against the state-of-the-art and showed that for small sized datasets, HINT™ is able
to outperform the competition.

In the second part of our work, we extented our index so that it can answer
effieciently Allen’s predicates. We showed the necessary additional comparisons and
accesses on HINT™ for each predicate in Allen’s algebra. In addition, we showed
that a generalized version of HINT™ is directly suitable for processing queries us-
ing all Allen’s predicates, while maintaining the excellent performance of HINT™
for G-OVERLAPS queries. Our index fully supports selection queries based on Allen’s
relationships [72] between intervals, achieving consistently excellent performance in-
dependently of the query predicate.

In the third part of this dissertation we studied indexing for transaction-time
databases. We proposed LIT, a hybrid index for time-evolving data, which decouples
the handling of current (live) record versions from the management of past (dead)
record versions. We studied options for implementing the live and dead index compo-
nents, focusing on minimizing the cost of index updates and queries. We considered
pure time-travel queries that retrieve active record versions at some time point or pe-
riod in the past, and range time-travel queries, which additionally apply a selection
predicate on a search-key attribute. Our experimental evaluation unveiled the best
approaches for handling live and dead record versions in LIT and shows that LIT is
orders of magnitude faster than temporal indices that index live and dead versions
in the same structure. We also showed that LIT uses linear space to the number of

record versions, which renders it suitable for in-memory indexing of temporal data.

7.2 Directions for Future Work
In this section, we outline ideas for additional research. For future work, there are
several directions, on which we elaborate below:

Multiple Temporal Operators. Most proposed indices are specialized on one temporal

operator. Keeping a different index for each type of query is not affordable for a

DBMS in terms of tuning, maintenance and storage overhead. Different indices will
have different beneficial sortings, will possibly cause data replication and different
optimizations in general. All the commonly used operators, temporal aggregation,
time travel and temporal join should be supported by one index. Eventually, we plan
to generalize LIT to support all the commonly used operators so that it becomes a
versatile index capable of temporal database system integration. This direction will
have an impact on the information kept for the intervals and may lead to the use of

additional auxiliary indices for supporting the new operators.

Distributed Computation. Moreover, the big volumes of data may be distributed
among multiple physical locations. This makes exploring the integration of distributed
temporal indexing within the Apache Spark [74] an interesting research direction for
future work. The key-challenge is to align our algorithms of data partitioning with
Spark practices. First of all, we plan to prepare known collections of intervals with
labels of partitions (and groups) they would be assigned to if we would utilize a
HINT structure. Then the data will be organized with functions available in Spark
(e.q. groupBy) and grouped in Dataframes. This will ensure that our indexing will
be aligned with Spark’s data partitioning scheme. By utilizing Spark’s transforma-
tions, we can efficiently organize the indexed data into different computing nodes.
Next steps, contain optimizing query performance and maintaining the index in an

incremental manner, using Spark’s built-in functions and leveraging Spark Streaming.

Temporal Database Management System (DBMS) Design. Another direction for
future work is the integration of our algorithms in a DBMS like PostgreSQL. We plan
to add the algorithms and partitioning scheme of HINT in PostgreSQL by extending
the Generalized Search Tree. GiST is purely compatible with the query planner, op-
timizer, and execution engine of PostgreSQL, while being flexible and versatile. By
extending the capabilities of the GiST index with specialized GiST operator classes,
tailored extractors, and comparators designed for interval data, more efficient han-
dling of range interval queries can be achieved. Additionally, with the adoption of
PostgreSQL’s built-in interval partitioning mechanisms we plan to enable the logi-
cal organization of interval data into partitions, further optimizing data retrieval for

range interval queries.

BIBLIOGRAPHY

[1] L. H. U, N. Mamoulis, K. Berberich, and S. J. Bedathur, “Durable top-k search in
document archives,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10,
2010. ACM, 2010, pp. 555-566.

[2] W. Lu, Z. Zhao, X. Wang, H. Li, Z. Zhang, Z. Shui, S. Ye, A. Pan, and X. Du,
“A lightweight and efficient temporal database management system in TDSQL,”
Proc. VLDB Endow., vol. 12, no. 12, pp. 2035-2046, 2019.

[3] N. N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic databases,”
in VLDB, 2004, pp. 864—-875.

[4] P. Samarati and L. Sweeney, “Generalizing data to provide anonymity when
disclosing information (abstract),” in ACM PODS, 1998, p. 188.

[5] J. Min, M. Park, and C. Chung, “XPRESS: A queriable compression for XML
data,” in ACM SIGMOD, 2003, pp. 122-133.

[6] J. F. Allen, “An interval-based representation of temporal knowledge,” in IJCAI,
1981, pp. 221-226.

[7] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars, Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008.

[8] A. Awad, R. Tommasini, S. Langhi, M. Kamel, E. D. Valle, and S. Sakr, “D?IA:
user-defined interval analytics on distributed streams,” Information Systems, vol.
104, p. 101679, 2022.

[9] R. T. Snodgrass and I. Ahn, “Temporal databases,” Computer, vol. 19, no. 9, pp.
35-42, 1986.

112

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. H. Bohlen, A. Dignés, J. Gamper, and C. S. Jensen, “Temporal data manage-
ment - an overview,” in eBISS, 2017, pp. 51-83.

M. H. Bohlen, R. T. Snodgrass, and M. D. Soo, “Coalescing in temporal
databases,” in VLDB, 1996, pp. 180-191.

D. Gao, C. S. Jensen, R. T. Snodgrass, and M. D. Soo, “Join operations in temporal
databases,” VLDB]., vol. 14, no. 1, pp. 2-29, 2005.

M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Férber,
and N. May, “Timeline index: a unified data structure for processing queries on
temporal data in SAP HANA,” in ACM SIGMOD, 2013, pp. 1173-1184.

A. Dignés, B. Glavic, X. Niu, J. Gamper, and M. H. Béhlen, “Snapshot semantics
for temporal multiset relations,” Proc. VLDB Endow., vol. 12, no. 6, pp. 639-652,
2019. [Online]. Available: http://www.vldb.org/pvldb/vol12/p639-dignoes.pdf

K. Papaioannou, M. Theobald, and M. H. Bohlen, “Outer and anti joins in
temporal-probabilistic databases,” in 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 1EEE, 2019, pp.
1742-1745. [Online]. Available: https://doi.org/10.1109/ICDE.2019.00187

J. Gao, S. Sintos, P. K. Agarwal, and]J. Yang, “Durable top-k instant-
stamped temporal records with user-specified scoring functions,” in 37th
IEEE International Conference on Data Engineering, ICDE 2021, Chania, Greece,
April 19-22, 2021. 1EEE, 2021, pp. 720-731. [Online]. Available: https:
//doi.org/10.1109/ICDE51399.2021.00068

Z. Zhang, H. Hu, Z. Xue, C. Chen, Y. Yu, C. Fu, X. Zhou, and F. Li,
“SLIMSTORE: A cloud-based deduplication system for multi-version backups,”
in 37th IEEE International Conference on Data Engineering, ICDE 2021, Chania,
Greece, April 19-22, 2021. 1EEE, 2021, pp. 1841-1846. [Online]. Available:
https://doi.org/10.1109/ICDE51399.2021.00164

L. Bellomarini, M. Nissl, and E. Sallinger, “itemporal: An extensible generator of
temporal benchmarks,” in 38th IEEE International Conference on Data Engineering,
ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. 1EEE, 2022, pp. 2021—
2033. [Online]. Available: https://doi.org/10.1109/ICDE53745.2022.00197

http://www.vldb.org/pvldb/vol12/p639-dignoes.pdf
https://doi.org/10.1109/ICDE.2019.00187
https://doi.org/10.1109/ICDE51399.2021.00068
https://doi.org/10.1109/ICDE51399.2021.00068
https://doi.org/10.1109/ICDE51399.2021.00164
https://doi.org/10.1109/ICDE53745.2022.00197

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Bernhardt, S. Tamimi, T. Vincon, C. Knddler, F. Stock, C. Heinz, A. Koch,
and I. Petrov, “neodbms: In-situ snapshots for multi-version DBMS on
native computational storage,” in 38th IEEE International Conference on Data
Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12, 2022. IEEE,
2022, pp. 3170-3173. [Online]. Available: https://doi.org/10.1109/ICDE53745.
2022.00290

F. S. Campbell, B. S. Arab, and B. Glavic, “Efficient answering of historical
what-if queries,” in SIGMOD ’22: International Conference on Management of
Data, Philadelphia, PA, USA, June 12 - 17, 2022, Z. G. lves, A. Bonifati,
and A. E. Abbadi, Eds. ACM, 2022, pp. 1556-1569. [Online]. Available:
https://doi.org/10.1145/3514221.3526138

X. Hu, S. Sintos, J. Gao, P. K. Agarwal, and J. Yang, “Computing complex
temporal join queries efficiently,” in SIGMOD °22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, 7. G. lves,
A. Bonifati, and A. E. Abbadi, Eds. ACM, 2022, pp. 2076-2090. [Online].
Available: https://doi.org/10.1145/3514221.3517893

L. Bornemann, T. Bleifufs, D. V. Kalashnikov, F. Nargesian, F. Naumann, and
D. Srivastava, “Matching roles from temporal data: Why joe biden is not only
president, but also commander-in-chief,” Proc. ACM Manag. Data, vol. 1, no. 1,
pp- 65:1-65:26, 2023. [Online]. Available: https://doi.org/10.1145/3588919

C. S. Jensen and R. T. Snodgrass, “Temporal data management,” IEEE Trans.
Knowl. Data Eng., vol. 11, no. 1, pp. 36—44, 1999.

B. Salzberg and V. J. Tsotras, “Comparison of access methods for time-evolving
data,” ACM Comput. Surv., vol. 31, no. 2, pp. 158-221, 1999.

A. Dignés, M. H. Bohlen, and J. Gamper, “Overlap interval partition join,” in
ACM SIGMOD, 2014, pp. 1459-1470.

D. Piatov, S. Helmer, and A. Dignés, “An interval join optimized for modern
hardware,” in IEEE ICDE, 2016, pp. 1098-1109.

P. Bouros and N. Mamoulis, “A forward scan based plane sweep algorithm for

parallel interval joins,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1346-1357, 2017.

https://doi.org/10.1109/ICDE53745.2022.00290
https://doi.org/10.1109/ICDE53745.2022.00290
https://doi.org/10.1145/3514221.3526138
https://doi.org/10.1145/3514221.3517893
https://doi.org/10.1145/3588919

[28] P. Bouros, N. Mamoulis, D. Tsitsigkos, and M. Terrovitis, “In-memory interval
joins,” VLDB]., vol. 30, no. 4, 2021.

[29] F. Cafagna and M. H. Bohlen, “Disjoint interval partitioning,” VLDB]., vol. 26,
no. 3, pp. 447-466, 2017.

[30] N. Kline and R. T. Snodgrass, “Computing temporal aggregates,” in IEEE ICDE,
1995, pp. 222-231.

[31] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and B. Seeger, “Efficient
computation of temporal aggregates with range predicates,” in ACM PODS, 2001.

[32] B. Moon, I. F. V. Lépez, and V. Immanuel, “Efficient algorithms for large-scale
temporal aggregation,” IEEE TKDE, vol. 15, no. 3, pp. 744-759, 2003.

[33] Y. Tao, D. Papadias, and C. Faloutsos, “Approximate temporal aggregation,” in
Proceedings of the 20th International Conference on Data Engineering, ICDE 2004,
30 March - 2 April 2004, Boston, MA, USA, Z. M. Ozsoyoglu and S. B. Zdonik,
Eds., 2004, pp. 190-201.

[34] D. Piatov and S. Helmer, “Sweeping-based temporal aggregation,” in SSTD, 2017,
pp- 125-144.

[35] H. Edelsbrunner, “Dynamic rectangle intersection searching,” Institute for In-

formation Processing, Technical University of Graz, Austria, Tech. Rep. 47, 1980.

[36] A. Behrend, A. Dignos, J. Gamper, P. Schmiegelt, H. Voigt, M. Rottmann, and
K. Kahl, “Period index: A learned 2d hash index for range and duration queries,”
in SSTD, 2019, pp. 100-109.

[37] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An asymptotically
optimal multiversion b-tree,” VLDB J., vol. 5, no. 4, pp. 264-275, 1996.

[38] M. M. Moro and V. J. Tsotras, “Valid-time indexing,” in Encyclopedia of Database
Systems, Second Edition, L. Liu and M. T. Ozsu, Eds. Springer, 2018.

[39] H. Kriegel, M. Potke, and T. Seidl, “Managing intervals efficiently in object-
relational databases,” in VLDB, 2000, pp. 407-418.

[40] G. Christodoulou, P. Bouros, and N. Mamoulis, “HINT: A hierarchical index for
intervals in main memory,” in ACM SIGMOD, 2022, pp. 1257-1270.

[41]]J. Dittrich and B. Seeger, “Data redundancy and duplicate detection in spatial
join processing,” in IEEE ICDE, 2000, pp. 535-546.

[42] D. Tsitsigkos, K. Lampropoulos, P. Bouros, N. Mamoulis, and M. Terrovitis, “A
two-layer partitioning for non-point spatial data,” in 37th IEEE International
Conference on Data Engineering, ICDE 2021, Chania, Greece, April 19-22, 2021.
IEEE, 2021, pp. 1787-1798.

[43] A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in SIG-
MOD’84, Proceedings of Annual Meeting, Boston, Massachusetts, USA, June 18-21,
1984. ACM Press, 1984, pp. 47-57.

[44] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An efficient
and robust access method for points and rectangles,” in Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ,
USA, May 23-25, 1990. ACM Press, 1990, pp. 322-331.

[45] V. Gaede and O. Giinther, “Multidimensional access methods,” ACM Comput.
Surv., vol. 30, no. 2, pp. 170-231, 1998.

[46] M. W. Chekol, G. Pirro, and H. Stuckenschmidt, “Fast interval joins for temporal
SPARQL queries,” in ACM WWW, 2019, pp. 1148-1154.

[47] K. Zhu, G. H. L. Fletcher, N. Yakovets, O. Papapetrou, and Y. Wu, “Scalable
temporal clique enumeration,” in SSTD, 2019, pp. 120-129.

[48] P. Bouros, K. Lampropoulos, D. Tsitsigkos, N. Mamoulis, and M. Terrovitis,
“Band joins for interval data,” in EDBT, 2020, pp. 443—-446.

[49] P. Bouros and N. Mamoulis, “Interval count semi-joins,” in EDBT, 2018, pp.
425-428.

[50] M. M. Moro and V. J. Tsotras, “Transaction-time indexing,” in Encyclopedia of
Database Systems, Second Edition, L. Liu and M. T. Ozsu, Eds. Springer, 2018.

[51] R. Elmasri, G. T. J. Wuu, and Y. Kim, “The time index: An access structure
for temporal data,” in 16th International Conference on Very Large Data Bases,
August 13-16, 1990, Brisbane, Queensland, Australia, Proceedings, D. McLeod,
R. Sacks-Davis, and H. Schek, Eds. Morgan Kaufmann, 1990, pp. 1-12.
[Online]. Available: http://www.vldb.org/conf/1990/P001.PDF

http://www.vldb.org/conf/1990/P001.PDF

[52] D. B. Lomet and B. Salzberg, “Access methods for multiversion data,” in Pro-
ceedings of the 1989 ACM SIGMOD International Conference on Management of
Data, Portland, Oregon, USA. ACM Press, 1989, pp. 315-324.

[53] ——, “The performance of a multiversion access method,” in Proceedings of the
1990 ACM SIGMOD International Conference on Management of Data, Atlantic City,
USA, 1990, pp. 353-363.

[54] M. Stonebraker, “The design of the POSTGRES storage system,” in VLDB’87,
Proceedings of 13th International Conference on Very Large Data Bases, September
1-4, 1987, Brighton, England, 1987, pp. 289-300.

[55] S. Lanka and E. Mays, “Fully persistent b+-trees,” in Proceedings of the 1991
ACM SIGMOD International Conference on Management of Data, Denver, Colorado,
USA, 1991, pp. 426-435.

[56] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, “Making data structures
persistent,” J. Comput. Syst. Sci., vol. 38, no. 1, pp. 86—124, 1989.

[57] D. Piatov, S. Helmer, A. Dignds, and F. Persia, “Cache-efficient sweeping-based
interval joins for extended allen relation predicates,” VLDB]J., vol. 30, no. 3,
pp. 379-402, 2021.

[58] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman, “Introducing time into RDF,”
IEEE Trans. Knowl. Data Eng., vol. 19, no. 2, pp. 207-218, 2007. [Online].
Available: https://doi.org/10.1109/TKDE.2007.34

[59] K. Bereta, P. Smeros, and M. Koubarakis, “Representation and querying of valid
time of triples in linked geospatial data,” in The Semantic Web: Semantics and Big
Data, 10th International Conference, ESWC 2013, Montpellier, France, May 26-30,
2013. Proceedings, ser. Lecture Notes in Computer Science, P. Cimiano, 0. Corcho,
V. Presutti, L. Hollink, and S. Rudolph, Eds., vol. 7882. Springer, 2013, pp.
259-274. [Online]. Available: https://doi.org/10.1007/978-3-642-38288-8_18

[60] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis, “Telos: Representing
knowledge about information systems,” ACM Trans. Inf. Syst., vol. 8, no. 4, pp.
325-362, 1990. [Online]. Available: https://doi.org/10.1145/102675.102676

https://doi.org/10.1109/TKDE.2007.34
https://doi.org/10.1007/978-3-642-38288-8_18
https://doi.org/10.1145/102675.102676

[61] C. Saracco, M. Nicola, and L. Gandhi. (2012) A matter of time: Temporal
data management in db2 10. http://www.ibm.com/developerworks/data/library/

techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf.

[62] Teradata. (2014) Teradata database 14.10 - temporal table support. http://www.

info.teradata.com/eDownload.cfm?itemid=131540028.

[63] Oracle. (2016) Database development guide - temporal validity support. https:
//docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967.

[64] J. Davis. (2009) Online temporal postgresql reference. http://temporal.projects.

postgresql.org/reference.html.

[65] PostgreSQL Global Development Group. (2012) Documentation manual: Post-
gresql - range types. http://www.postgresql.org/docs/9.2/static/rangetypes.html.

[66] B. Pagel, H. Six, H. Toben, and P. Widmayer, “Towards an analysis of range
query performance in spatial data structures,” in ACM PODS, 1993, pp. 214—
221.

[67] D. B. Lomet, “Scheme for invalidating references to freed storage,” IBM J. Res.
Dev., vol. 19, no. 1, pp. 26-35, 1975.

[68] M. H. Overmars, The Design of Dynamic Data Structures, ser. Lecture Notes in

Computer Science. Springer, 1983, vol. 156.

[69] P. Ferragina and G. Vinciguerra, “The pgm-index: a fully-dynamic compressed
learned index with provable worst-case bounds,” Proc. VLDB Endow., vol. 13,
no. 8, pp. 1162-1175, 2020.

[70] E. Garrison, “A minimal c++ interval tree implementation,”

https://github.com/ekg/intervaltree.

[71] A. Monacchi, D. Egarter, W. Elmenreich, S. D’Alessandro, and A. M. Tonello,
“GREEND: an energy consumption dataset of households in italy and austria,”
in SmartGridComm, 2014, pp. 511-516.

[72] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun. ACM,
vol. 26, no. 11, pp. 832-843, 1983.

http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.info.teradata.com/eDownload.cfm?itemid=131540028
http://www.info.teradata.com/eDownload.cfm?itemid=131540028
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
http://temporal.projects.postgresql.org/reference.html
http://temporal.projects.postgresql.org/reference.html
http://www.postgresql.org/docs/9.2/static/rangetypes.html

[73] M. Loskot and A. Wulkiewicz, 2019, https://github.com/mloskot/spatial_index_benchmark.

[74] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets,” in 2nd USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud 10, Boston, MA, USA, June 22, 2010. USENIX

Association, 2010.

AUTHOR’S PUBLICATIONS

George Christodoulou, Panagiotis Bouros, Nikos Mamoulis, LIT: Lightning-fast

In-memory Temporal Indexing, submitted to SIGMOD 2024, Santiago, Chile

George Christodoulou, Efficient And Scalable Management Of Interval Data
in PhD Workshop in EDBT’23, loannina, Greece

George Christodoulou, Panagiotis Bouros, Nikos Mamoulis, HINT: A Hierar-
chical Interval Index for Allen Relationships in VLDBJ’ 23

George Christodoulou, Panagiotis Bouros, Nikos Mamoulis, HINT: A Hierar-
chical Index for Intervals in Main Memory in SIGMOD’22, Philadelphia,
USA

SHORT BIOGRAPHY

George Christodoulou was born in 1993. He received his diploma in Computer Sci-
ence and Engineering from the Computer Science and Engineering Department of
the University of Ioannina in 2017. He received his MSc in Computer Science with
specialization in software from the same department, supervised by Prof Mamoulis.
During his PhD studies, he went to Mainz (Germany) as an intern at the Institute
of Computer Science of the University of Mainz working with Prof. Bouros. Further-
more he went to Hong Kong as an intern at the Hong Kong University of Science and
Technology (HKUST)working with Prof. Papadias. His research interests include Data
Management, Query processing (Efficient Data Indexing and Retrieval on temporal

data) and Database Management System engines.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Interval Indexing
	Indexing Intervals for Transaction Time Temporal Databases
	Dissertation Outline

	Background and Definitions
	Related Work
	Valid-time indexing
	Transaction-time indexing
	Other related work

	Indexing Intervals
	HINT
	A comparison-free version of HINT
	HINTm: indexing arbitrary intervals
	Setting m
	Updates

	Optimizing HINTm
	Subdivisions and space decomposition
	Handling data skewness and sparsity
	Reducing cache misses
	Updates

	Experimental Analysis
	Data and queries
	Optimizing HINT/HINTm
	Index performance comparison
	Updates
	Interval Joins

	Conclusions

	Indexing for Allen's algebra
	Supporting Allen's Algebra
	Setup Optimized for G-OVERLAPS
	One Setup for All
	Bottom-up Evaluation Approach

	Experiments on Allen's Algebra
	Determining the Best Index Setup
	Index Performance Comparison

	Conclusions

	Indexing Intervals for Transaction Time Temporal Databases
	Time-evolving HINT
	Live and dead sub-partitions
	Handling updates

	The LIT Hybrid Index
	The LiveIndex Component
	The DeadIndex Component

	Indexing Record Attributes
	The LiveIndex Component
	The DeadIndex Component

	Persistence and Recovery
	Experimental Analysis
	Setup
	Pure time-travel Queries
	Range time-travel Queries
	Index Size

	Conclusions and Future Work

	Conclusions and future work
	Summary of Contributions
	Directions for Future Work

	Bibliography
	Author's Publications
	Short Biography

