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ABSTRACT

Christos Spatharis, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of Ioannina, Greece, 2023.
Deep Reinforcement Learning and Generative Adversarial Modeling in Traffic Appli-
cations.
Advisor: Konstantinos Blekas, Professor.

Artificial intelligence (AI) has brought significant transformations in various do-
mains of everyday life, revolutionizing human-machine interactions. Intelligent agents,
the fundamental components of AI systems, have the ability to perceive, reason, and
act in their environment to achieve specific goals. Ranging from simple rule-based
systems to complex deep learning models, these agents can be trained using a va-
riety of learning schemes falling under the broader umbrella of machine learning
(ML). One influential sub-field of ML that has gained considerable attention is rein-
forcement learning (RL). RL focuses on training intelligent agents to make sequential
decisions by interacting with an environment, drawing inspiration from trial-and-
error learning observed in humans and animals. Another ML technique, known as
imitation learning (IL), combines supervised learning and RL principles by learning
from expert demonstrations.

This dissertation explores the application of both RL and IL techniques in the
context of traffic applications, addressing the significant challenges of (a) congestion
management and (b) trajectory modeling. Traffic applications play a vital role in mod-
ern society, as they encompass a wide range of systems and technologies aimed at
managing and optimizing the behavior and the navigation of vehicles including var-
ious modes of transportation such as ground vehicles, roadway systems, air vehicles,
and sea vessels. Congestion occurs when the demand for shared resources exceeds
supply, leading to reduced efficiency of the overall system. Trajectory modeling in-
volves analyzing and predicting expert behaviors based on historical demonstrated
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data. These challenges are not limited to the traffic domain but may also be extended
to other fields where similar optimization and decision-making problems arise. This
PhD is separated in three parts where the following problems are studied: (a) urban
traffic navigation, (b) air traffic management, and (c) aircraft trajectory prediction.

In the first part, the aim is to create efficient multi-agent systems for controlling
and navigating fleets of vehicles in unsignalized large-scale urban road networks
with complex scenarios and noise. By employing multi-agent reinforcement learning
(MARL) techniques, the study seeks to navigate vehicles safely, preventing collisions,
and minimizing traveling time. The proposed research contributes to the advancement
of intelligent traffic management systems by utilizing RL techniques to optimize traffic
flow and reduce congestion in urban areas.

The second part focuses on tackling congestion problems in the aviation domain,
particularly focusing on the demand and capacity balance (DCB) problem in air
traffic management (ATM). By employing MARL schemes and leveraging hierarchical
frameworks, the study seeks to minimize flight delays, optimize airspace utilization,
and reduce fuel consumption and operating costs. The cooperative behavior of the
involved flights is enabled to achieve more efficient use of the airspace and enhance
overall performance of the multi-agent system.

The final part studies generative models and trajectory modeling techniques in
the aviation domain. Trajectory prediction is of an utmost importance for congestion
management, and IL techniques offer a promising approach by training agents to im-
itate expert behaviors. Multi-modal imitation learning can further enhance trajectory
prediction by capturing various behavioral patterns exhibited during flight execution.
By leveraging expert data and modeling distinct patterns, the proposed approach
improves the accuracy and robustness of trajectory prediction systems, leading to en-
hanced air traffic management, optimized route planning, and safer and more efficient
flights.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Χρήστος Σπαθάρης, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική
Σχολή, Πανεπιστήμιο Ιωαννίνων, 2023.
Βαθιά Ενισχυτική Μάθηση και Παραγωγική Ανταγωνιστική Μοντελοποίηση για Εφαρ-
μογές Διαχείρισης και Ελέγχου Ροής Κυκλοφορίας.
Επιβλέπων: Κωνσταντίνος Μπλέκας, Καθηγητής.

Η τεχνητή νοημοσύνη (ΤΝ) έχει επιφέρει σημαντικές αλλαγές σε διάφορους το-
μείς της καθημερινής ζωής, φέρνοντας επανάσταση στις αλληλεπιδράσεις ανθρώ-
που-μηχανής. Οι ευφυείς πράκτορες, που αποτελούν τα θεμελιώδη συστατικά των
συστημάτων ΤΝ, έχουν την ικανότητα να αντιλαμβάνονται, να συλλογίζονται και
να ενεργούν στο περιβάλλον τους για να επιτύχουν συγκεκριμένους στόχους. Από
απλά συστήματα βασισμένα σε κανόνες μέχρι πολύπλοκα μοντέλα βαθιάς μάθησης,
οι ευφυείς μπορούν να εκπαιδευτούν χρησιμοποιώντας μια ποικιλία τεχνικών μά-
θησης που εμπίπτουν στο ευρύτερο πεδίο της μηχανικής μάθησης. Ενα σημαντικό
υποπεδίο της μηχανικής μάθησης που έχει αντλήσει σημαντική προσοχή, είναι η
ενισχυτική μάθηση. Η ενισχυτική μάθηση επικεντρώνεται στην εκπαίδευση ευφυών
πρακτόρων για τη λήψη διαδοχικών αποφάσεων αλληλεπιδρώντας με ένα περιβάλ-
λον, αντλώντας έμπνευση από τη μάθηση δοκιμής και σφάλματος που παρατηρείται
σε ανθρώπους και ζώα. Μια άλλη τεχνική μηχανικής μάθησης, γνωστή και ως μάθηση
μέσω μίμησης, συνδυάζει την εποπτευόμενη μάθηση και τις αρχές της ενισχυτικής
μάθησης μαθαίνοντας από τις επιδείξεις ειδικών.

Η παρούσα διατριβή διερευνά την εφαρμογή τόσο των τεχνικών ενισχυτικής μά-
θησης όσο και αυτών της μάθησης μέσω μίμησης στο πλαίσιο των εφαρμογών κυ-
κλοφορίας, αντιμετωπίζοντας τις σημαντικές προκλήσεις της (α) διαχείρισης συμφό-
ρησης και (β) μοντελοποίησης τροχιάς. Οι εφαρμογές της κυκλοφορίας διαδραμα-
τίζουν ζωτικό ρόλο στη σύγχρονη κοινωνία, καθώς περιλαμβάνουν ένα ευρύ φάσμα
συστημάτων και τεχνολογιών που αποσκοπούν στη διαχείριση και βελτιστοποίηση

xv



της συμπεριφοράς και της πλοήγησης των οχημάτων, συμπεριλαμβανομένων των
διαφόρων τύπων μεταφοράς, όπως τα οχήματα εδάφους, τα οδικά συστήματα, τα
εναέρια οχήματα και τα θαλάσσια σκάφη. Η συμφόρηση συμβαίνει όταν η ζήτηση
για διαμοιραζόμενους πόρους υπερβαίνει την προσφορά, οδηγώντας σε μειωμένη
αποτελεσματικότητα του συνολικού συστήματος. Η μοντελοποίηση της τροχιάς πε-
ριλαμβάνει την ανάλυση και την πρόβλεψη συμπεριφορών από ειδικούς με βάση
ιστορικά δεδομένα παραδειγμάτων. Αυτές οι προκλήσεις δεν περιορίζονται στον
τομέα της κυκλοφορίας, αλλά μπορούν επίσης να επεκταθούν και σε άλλους τομείς
όπου προκύπτουν παρόμοια προβλήματα βελτιστοποίησης και λήψης αποφάσεων.
Το παρόν διδακτορικό χωρίζεται σε τρία μέρη όπου μελετώνται τα ακόλουθα προ-
βλήματα: (α) πλοήγηση αστικής κυκλοφορίας, (β) διαχείριση εναέριας κυκλοφορίας,
και (γ) πρόβλεψη τροχιάς αεροσκαφών.

Στο πρώτο μέρος, ο στόχος είναι να δημιουργηθούν αποτελεσματικά πολυπρα-
κτορικά συστήματα για τον έλεγχο και την πλοήγηση στόλων οχημάτων σε μη ση-
ματοδοτούμενα μεγάλης κλίμακας αστικά οδικά δίκτυα με σύνθετα σενάρια και
θόρυβο. Με τη χρήση τεχνικών πολυπρακτορικής ενισχυτικής μάθησης, η μελέτη
επιδιώκει να πλογήσει με ασφάλεια τα οχήματα, αποτρέποντας τις συγκρούσεις
και ελαχιστοποιώντας τον χρόνο ταξιδιού. Η προτεινόμενη έρευνα συμβάλλει στην
πρόοδο των ευφυών συστημάτων διαχείρισης της κυκλοφορίας με τη χρήση τεχνι-
κών ενισχυτικής μάθησης για τη βελτιστοποίηση της ροής της κυκλοφορίας και τη
μείωση της συμφόρησης στις αστικές περιοχές.

Το δεύτερο μέρος επικεντρώνεται στην αντιμετώπιση των προβλημάτων συμφό-
ρησης στον τομέα των αερομεταφορών, με ιδιαίτερη έμφαση στο πρόβλημα ισορρο-
πίας μεταξύ ζήτησης και χωρητικότητας στην διαχείριση του εναέριας κυκλοφορίας.
Χρησιμοποιώντας πολυπρακτορικά συστήματα ενισχυτικής μάθησης και αξιοποιώ-
ντας ιεραρχικές δομές, η μελέτη επιδιώκει να ελαχιστοποιήσει τις καθυστερήσεις
των πτήσεων, να βελτιστοποιήσει τη χρήση του εναέριου χώρου και να μειώσει την
κατανάλωση καυσίμων και το λειτουργικό κόστος. Η συνεργατική συμπεριφορά των
εμπλεκόμενων πτήσεων επιτρέπει την αποτελεσματικότερη χρήση του εναέριου χώ-
ρου και την ενίσχυση της συνολικής διαχείρισης του πολυπρακτορικού συστήματος.

Το τελευταίο μέρος μελετά παραγωγικά μοντέλα μάθησης και τεχνικές μοντελο-
ποίησης τροχιών στον εναέριο τομέα. Η πρόβλεψη τροχιάς είναι υψίστης σημασίας
για τη διαχείριση της συμφόρησης και οι τεχνικές μάθησης μέσω μίμησης προσφέ-
ρουν μια πολλά υποσχόμενη προσέγγιση εκπαιδεύοντας πράκτορες με σκοπό να μι-
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μηθούν τις συμπεριφορές των ειδικών. Η πολυτροπική μάθηση μέσω μίμησης μπορεί
να ενισχύσει περαιτέρω την πρόβλεψη της τροχιάς, αναλύοντας διάφορα πρότυπα
συμπεριφοράς που εμφανίζονται κατά την εκτέλεση των πτήσεων. Αξιοποιώντας
τα δεδομένα των ειδικών και μοντελοποιώντας διαφορετικά μοτίβα, η προτεινόμενη
προσέγγιση βελτιώνει την ακρίβεια και την ευρωστία των συστημάτων πρόβλεψης
τροχιάς, οδηγώντας σε βελτιωμένη διαχείριση της εναέριας κυκλοφορίας, βελτιστο-
ποιημένο σχεδιασμό διαδρομών και ασφαλέστερες και αποδοτικότερες πτήσεις.
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CHAPTER 1

INTRODUCTION

1.1 Artificial intelligent agents

1.2 Traffic applications

1.3 Thesis contributions

1.4 Structure of the dissertation

Artificial intelligence (AI) has emerged as a technology that brings enormous
changes in the every-day life, revolutionizing various fields and reshaping the

way we interact with machines. In today’s world, AI is ubiquitous, from self-driving
cars and medical applications, to recommendation systems and personal assistance,
and much more. At its core, AI seeks to develop intelligent agents that can perceive,
reason, and act in their environment to achieve specific goals.

1.1 Artificial intelligent agents

Machine learning (ML) is a sub-field of AI that plays a fundamental role in enabling
intelligent agents to learn and adapt from data [1]. AI encompasses the broader con-
cept of creating intelligent systems that can simulate human-like intelligence, while
ML focuses on algorithms and techniques that allow these systems to automatically
learn and improve from experience (data), i.e. without being explicitly programmed
via training. Using ML algorithms, intelligent agents are able to process huge amounts
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of data, extract patterns, and make sequential decisions based on their knowledge.
This synergy between ML and AI empowers intelligent agents to become more au-
tonomous, adaptive, and capable of tackling complex tasks in diverse domains.

Figure 1.1: Intelligent agents acting on a shared environment.

Intelligent agents (Fig. 1.1) are the building blocks of AI systems. They are capable
of perceiving their environment through sensors, processing the information, and
taking actions in order to achieve desirable outcomes. Methodologically, they can
range from simple rule-based systems to complex deep learning models. Various
learning schemes can be utilized in order to train intelligent agents, which fall under
the broader umbrella of ML. Specifically, a basic taxonomy may include the following:
supervised learning, unsupervised learning and reinforcement learning.

A multi-agent system (MAS) is a group of autonomous, interacting entities sharing
an environment, which they perceive with sensors and act with actuators. It provides
an alternative to a centralized system controlled by a single agent, when achieving
centralized control might be either costly or non-viable. Besides, the potential benefits
from MAS include:

• computational speed-up due to parallel processing,

• enhanced robustness as the neighboring agents may take on the task of a mal-
functioning agent,

• more effective policies due to the use of coordination mechanisms, allowing to
maximize a common goal without having a centralized system,
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• a way to decompose a complex task into sub-tasks, thus allowing the system to
handle larger problems by adding more agents and scale quickly, and

• reduced learning cycles due to communication and information sharing.

Supervised learning is a ML approach where the algorithm learns from labeled
training data: input examples accompanied with their corresponding target labels.
The goal is to build a predictive model that can accurately generalize and make pre-
dictions on unseen data. This type of learning has been prevalent in various applica-
tions, such as image recognition, spam detection, medical diagnosis, natural language
processing, and sentiment analysis. Supervised learning is commonly associated with
discriminative modeling, where the primary objective is to classify or predict the la-
bels of new, unseen data points based on the learned patterns and relationships from
the labeled training set.

On the other hand, unsupervised learning is a ML approach where the model
learns from unlabeled data (i.e. without target labels). The objective is to discover
hidden patterns, structures, or relationships within the data. Unsupervised learning
finds applications in clustering, anomaly detection, dimensionality reduction, and rec-
ommendation systems. By analyzing the inherent structure of the data, unsupervised
learning algorithms can group similar data points, identify outliers, reduce the com-
plexity of high-dimensional data, and uncover hidden patterns. This type of learning
is often associated with generative modeling, where the aim is to figure out the un-
derlying probability distribution of the input data. Unsupervised learning algorithms
can be used to generate new samples that resemble the characteristics of the original
data distribution in tasks such as data synthesis and data augmentation.

Generative modeling includes approaches like generative adversarial networks
(GANs), variational autoencoders (VAEs) and diffusion models. It focuses on cap-
turing the underlying data distribution and generating new samples that mimic the
training data. Discriminative modeling, conversely, aims to learn the decision bound-
ary that best separates different classes, solving accurately classification and prediction
tasks.

Another influential sub-field of ML that has gained more and more attention
especially during the last two decades is reinforcement learning (RL). It focuses on
training intelligent agents to make sequential decisions based on their interactions
with the environment, and draws inspiration from how humans and animals learn
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by trial and error. In RL, an agent learns to maximize a reward function by taking
actions in an environment. Through repeated exploration and feedback in the form
of reward or penalty, the agent can gradually improve its decision-making capabilities
and optimize its behavior.

This learning framework has found significant success in various domains, in-
cluding robotics, gaming, autonomous vehicles, finance, and resource management.
RL has been used to teach agents to perform complex tasks, achieve superhuman
performance in games (e.g. Go, chess and Atari), and optimize resource allocation,
among others. Its flexibility and ability to learn from experience make it a powerful
technique for tackling real-world problems.

Imitation learning (IL), also known as learning from demonstrations, is another
ML technique that lies at the intersection of supervised learning and reinforcement
learning. It leverages the principles of supervised learning by learning from expert
demonstrations, where the expert actions are the label to the input states. The con-
nection with RL arises from the interactions of the imitator within an environment.
In inverse reinforcement learning (IRL) - which is a sub-field of imitation learning -
the agent learns from expert demonstrations by extracting the expert policy, and then
fine-tunes its behavior through typical RL methods. This allows IL to benefit from
both schemes by combining the efficiency of supervised learning and the adaptability
of RL to deal with complex real-world tasks.

Moreover, IL can be particularly useful when it is difficult to design a reward
function for a RL problem. This technique has found applications in various fields,
including robotics, autonomous driving, and trajectory modeling. For example, IL
can be used in robotics to teach robots how to perform complex tasks by observing
human demonstrations, while in autonomous driving, it can help train self-driving
cars to navigate safely and efficiently by learning from the behavior of expert drivers.

Multi‐modal learning constitutes a new type of learning that has made its appear-
ance over the last years. It refers to the process of training models to understand and
process information from multiple modalities, such as text, images, audio, and video.
By combining different types of data, multi-modal learning aims to capture deeper
representations of the underlying information. As an instance, in image captioning,
multi-modal modeling could be used to generate descriptive captions by understand-
ing both some visual content of an image and a textual information. Additionally,
multi-modal training can be used in cases with data that belong to multiple clusters
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following different patterns, where the goal is to identify their distinct modalities.
This can provide valuable insights into the underlying factors driving the different
behaviors observed in the data. For example, in transportation planning, identifying
different clusters of trajectories can help optimize route planning, resource allocation,
and traffic management strategies for each specific modality. Multi-modal learning
allows models to leverage the specific information present in different modalities,
leading to more robust and accurate predictions.

1.2 Traffic applications

Traffic applications play a vital role in modern society, as they encompass a wide
range of systems and technologies aimed at managing and optimizing the behavior
and the navigation of vehicles including various modes of transportation such as
ground vehicles, roadway systems, air vehicles, and sea vessels. However, two of the
major challenges are congestion management and trajectory modeling. Congestion occurs
when the demand for road space exceeds its capacity, leading to delays, increased
travel times, and reduced overall efficiency. Trajectory modeling involves the analysis
and prediction of vehicle movements based on historical and real-time data.

Both problems are not only very significant in the traffic domain, but also they
are applicable in a general-purpose manner and can be relevant in various domains
where similar challenges arise. These problems are characterized by the need to op-
timize movements, predict patterns, and make informed decisions based on available
data. For instance, in logistics and supply chain management, congestion can occur
in distribution centers, warehouses, or ports, impacting the flow of goods and caus-
ing delays. By applying congestion management strategies and leveraging trajectory
modeling techniques, it is possible to optimize the movement of goods, streamline
operations, and reduce bottlenecks.

1.2.1 Congestion management

Congestion problems pose a significant challenge in everyday life concerning var-
ious fields, including transportation networks, communication networks, and re-
source management. As communities continue to grow and urban areas become more
densely populated, congestion becomes a considerable trouble for individuals, busi-
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Figure 1.2: Congestion problems in urban and aviation domains.

nesses, and overall economic productivity.
In urban road networks, congestion has become an inconvenient issue in many

cities. Traffic congestion not only leads to frustration and stress for drivers, but also
results in significant economic costs due to increased fuel consumption and traveling
time. Traditional traffic management systems with hard-coded rules have limited
adaptability in dynamically changing traffic conditions and fail to optimize the traffic
flow in complex scenarios. This is where RL could offer a convenient platform for
flexible solutions and play a key role to smart cities and future plans of societies.

In the context of urban traffic congestion, RL algorithms can be utilized in order to
develop intelligent traffic management systems that will guide the autonomous vehi-
cles through roads and intersections without creating bottlenecks and hindering the
traffic flow. By using RL, traffic management systems can learn either from historical
traffic data or real-time sensor information, which can be then utilized to make data-
driven decisions and reduce the congested situations and the traveling time. Such
systems will be able to identify traffic patterns, forecast bottlenecks, and adjust the
strategies of the participating autonomous vehicles to eliminate congestion. Through
optimization of the traffic flow, the traveling time can be significantly reduced, leading
to reduced fuel consumption, while also promoting safer driving behaviors.

The motivation of the research study of this application is to create efficient multi-
agent systems that can simultaneously serve a society of intelligent agents to control
and navigate fleets of vehicles inside unsignalized urban road networks with complex
scenarios under the presence of noise. Effectively dealing with these problems can
lead to better utilization of the multi-agent system’s resources and prevent undesired
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congested situations. This can be achieved by devising multi-agent reinforcement
learning (MARL) techniques, aiming to navigate the vehicles safely (i.e. without col-
lisions) and reduce their traveling time.

Similarly, congestion problems may also arise in the aviation domain, where over-
crowded airspace sectors require the enforcement of delays to flights in order to avoid
hazardous situations. Inevitably, imposing delays gives rise to problems concerning
additional operating costs, extended work hours for the operators, and frustration for
the passengers. Formally, when the demand for an airspace sector exceeds its maxi-
mum capacity, then it results in congested areas known as hotspots, and this ends up
forming the demand and capacity balance (DCB) problem.

The motivation of studying this problem is to design MARL schemes that are
based on the co-operation of the involved flights, so as to minimize the imposed
delays, which will eventually lead to more efficient use of the airspace, and reduce
the fuel consumption and the operating costs. In addition, this interesting problem
allows to address state abstraction representational issues in the structure of the RL
agents through the use of hierarchical frameworks, which enable effective planning
and exploration with improved generalization.

1.2.2 Trajectory modeling

Figure 1.3: Trajectory modeling of long-distance flights.

It is apparent that congestion problems demand the development of effective solu-
tions to optimize resource allocation, enhance efficiency, and minimize disruptions. In
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cases of autonomous vehicles (air, land, or water), accurate trajectory prediction plays
a key role in congestion management. By designing generative models that allow the
construction of future plans with trajectories, decision-makers can proactively identify
potential congested areas, mitigate bottlenecks, and optimize resource allocation. Tra-
jectory modeling enables efficient routing, and coordination, thereby reducing delays,
improving resource utilization, and enhancing the overall system performance.

Specifically in the aviation domain, one of the critical aspects of congestion man-
agement is to accurately predict aircraft trajectories. Modeling trajectories before the
operation can reduce significantly the imposed delays, and optimize the airspace uti-
lization. IL techniques offer a promising approach to tackle the trajectory prediction
problem, by training intelligent agents to imitate expert pilot behaviors by observ-
ing them flying the aircraft from an origin to a destination airport. An important
issue that must be taken into consideration is that in real-world applications the
resulting trajectories usually present various behavioral patterns during execution.
In this direction, multi-modal imitation learning can provide advantageous solutions
since it not only tries to generate trajectories, but also identify the modalities of the
demonstrated examples.

The aircraft trajectory prediction problem is challenging due to various factors such
as airspace constraints, weather conditions, hidden information from the companies
and the presence of multiple modalities for executing the same task. This leverages
the motivation for studying this task and trying to offer improved solutions. Tra-
ditional trajectory prediction methods often rely on simplified mathematical models
and heuristics, which may not be able to capture the complexity of real-world flights.
IL schemes with modular multi-modal characteristics may overcome these barriers
by leveraging expert data that cover a multitude of actual situations.

Using modular multi-modal imitation learning in aircraft trajectory prediction can
help the modeling process due to the complex and diverse nature of aircraft trajecto-
ries. Thus, we can capture and model the distinct patterns and behaviors exhibited by
different clusters of trajectories, in different flight phases. Also, the accuracy and ro-
bustness of aircraft trajectory prediction systems can be significantly improved. This,
in turn, can enhance air traffic management, optimize route planning, and contribute
to safer and more efficient flights.
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1.3 Thesis contributions

Figure 1.4: The research focus of this dissertation in relation to other fields.

In light of the above, this thesis lies in the intersection of the aforementioned fields
of research, as shown in the Venn diagram presented in Fig. 1.4. The primary aim
is to focus on the study and implementation of innovative learning strategies and
algorithmic RL-based methodologies in order to develop advanced and robust in-
telligent entities, designed as either single-agent or multi-agent systems, which are
aimed at addressing the complex challenges that arise in traffic applications. The
research direction involves analyzing and understanding the dynamics of traffic sys-
tems, including factors such as traffic flow, congestion patterns, and the behavior
of individual entities. These intelligent agents will possess the capability to adapt
and make informed decisions to optimize traffic flow, reduce congestion, improve
transportation efficiency, and finally enhance overall human safety and create more
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sustainable transportation networks. In addition, this dissertation aims to be a sig-
nificant step towards addressing complex problems that arise in traffic domains and
mostly making novel RL algorithms applicable to many real world traffic applications.

More specifically, the focus is on developing reinforcement learning algorithms for
intelligent agents that deal with the following problems:

• Urban traffic navigation

• Air traffic management

• Aircraft trajectory prediction

The first two problems concern the resolution of congestion problems in their
respective domains. Specifically, in the urban environment we deal with the navigation
of autonomous vehicles in unsignalized roads, and in the aviation domain we tackle
the problem of demand-capacity in the utilization of airspace usage. In the third
problem, we focus on intelligent agents capable of imitating historical expert flight
data, in order to predict the future evolution of new trajectories.

The contributions of this thesis can be divided into three subsections addressing
contributions to methodology and the general application area they belong to.

p Methodological contributions

4 It adopts a methodological approach and a modeling perspective that are
consistently applied to address the various problems encountered, ensuring
the development of robust and effective solutions. Given the inherent com-
plexity of each problem, the primary objective throughout the thesis was
to establish a structured framework for problem-solving and enable a sys-
tematic analysis of the issues at hand. Regardless of the specific problems
under consideration, significant efforts were initially dedicated to captur-
ing the fundamental elements of each problem and establishing a clear and
coherent structure. This approach facilitated thorough analysis and exper-
imentation, ultimately leading to the generation of reliable and meaningful
results. By employing these approaches, the proposed methodologies were
rigorously and systematically executed, thereby minimizing potential bias
and maximizing the potential for discovering innovative and practical so-
lutions.
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4 In all the research problems addressed in this thesis, large-scale big-data
have been employed to train the intelligent agents. More specifically, for
the aviation domain, real-world historical aircraft trajectories from flights
over Europe have been utilized. Additionally, for the urban traffic man-
agement, real-world road networks and sensor data are obtained through
the well-known SUMO (Simulator of Urban MObility) traffic simulation
package, which is designed to handle large-scale traffic scenarios. The uti-
lization of large amounts of data has allowed intelligent agents to acquire
profound insights, make informed decisions, and adapt dynamically to
various scenarios. One of the goals of this thesis was the integration of
large-scale big data in training intelligent agents in order to facilitate the
development of highly accurate predictive models. Furthermore, efficient
learning algorithms and modelling schemes were used for learning agents
from experiences and leverage this knowledge to anticipate future trends,
make accurate forecasts, and mitigate potential risks.

p Contributions in the area of congestion management

3 To coordinate multiple vehicles in large-scale unsignalized traffic networks,
the notion of route-agents is introduced which alleviates the complexities
and constraints associated with treating each vehicle as an independent
agent. Much effort has been made to design appropriate intelligent agents
with rich explanatory state spaces and well-defined reward functions. Deep
MARL structures and learning schemes are described with the aim to guide
and serve efficiently and safely vehicles in complex traffic scenarios.

3 It encourages and supports research to allow learning agents of deep MARL
structures to automatically reuse knowledge and allow knowledge general-
ization. Under this prism, learned agents are able to operate in unknown
traffic scenarios with much higher volumes of traffic and duration and in-
creased stochasticity, and simultaneously reach comparable performance
level of that was achieved during training.

3 A general-purpose multi-agent hierarchical reinforcement learning frame-
work is introduced that addresses various levels of abstraction in state
and action spaces, either individually or simultaneously. Being focused on
a real-world congestion problem, a comprehensive experimental study is
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described.

p Contributions in the area of trajectory modeling

3 The challenging problem of aircraft trajectory modeling and prediction
was addressed using a collection of real-world flight trajectories data. An
apprenticeship learning framework is used that allows the construction of
optimal policies that manage to imitate demonstrated trajectories. Leverag-
ing historical data, the method is capable of learning to mimic a uni-modal
expert behavior and generate trajectories close to the original. In addition,
it adopts an informative agent state representation that encompasses a rich
feature space that affects significantly the learning and imitation process.

3 An efficient generative trajectory modeling scheme is proposed that com-
bines both modular and multi-modal characteristics in an imitation learn-
ing structure. The method allows processing a large amount of data by
initially splitting the data into modules that correspond to different flight
phases. Then, multi-modal imitation learning algorithms are employed in-
dependently at each phase in order to predict the modality, and the evolu-
tion of the aircraft trajectory. Finally, all these components are connected
to form full trajectories between origin-destination airport pairs.

1.4 Structure of the dissertation

The rest of this dissertation is organized as follows.
In Chapter 2, an overview of the preliminary concepts and techniques in ML is

provided. This chapter serves as a foundation for understanding the subsequent chap-
ters and their applications in the thesis’ examined problems. The chapter begins by
introducing the concept of ML and explores GANs which are powerful frameworks for
training generative models. Then, it transitions to RL that is concerned with training
intelligent agents to make sequential decisions, and markov decision process (MDP)
which provide a mathematical framework for modeling sequential decision-making
under uncertainty. Moreover, details are given about deep reinforcement learning
(DRL), which combines RL with deep neural networks and prominent algorithms in
that field, such as deep Q-networks (DQN), are being discussed. Finally, the chapter
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concludes with a comprehensive analysis of IL, that leverages expert demonstrations
to train models that imitate expert behaviors.

Chapter 3 explores the problem of autonomous navigation of multiple vehicles in
traffic networks consisting of multiple urban roads with unsignalized intersections.
To deal with it, the previous problem is formulated as a deep MARL framework,
and the notion of route-agents is introduced as the building block of the MAS. A
value function approximation scheme is constructed through a weighted combination
of two neural networks that serves as the decision mechanism for the proposed
route-agents. Experiments are conducted on SUMO simulator, which is a widely used
traffic simulator that plays a crucial role in transportation research and congestion
management.

Chapter 4 presents an extension of the research work of the previous chapter for
navigating autonomous vehicles in large-scale real-world scenarios with unsignal-
ized intersections. The problem is tackled by employing an advanced DRL method
that leverages a rich state space and a well-defined reward function in order to en-
able route-agents to navigate their corresponding vehicles safely and rapidly to their
destination. Furthermore, a very important discovery is that the learned policies of
route-agents can be exploited and re-used in unknown scenarios through the concept
of transfer learning. To assess the performance of the proposed method, large-scale
urban road networks (e.g. center of Athens) are used, and the approach is compared
with standard car-following models that are part of the SUMO simulator. Simultane-
ously, the generalization capabilities of the method are also tested according to the
reuse of the learned policies in unknown stochastic environments.

Chapter 5 discusses the problem of demand-capacity balance in the air traffic man-
agement. This challenge is being faced at the pre-tactical stage of operations (i.e.
before flights take-off) by imposing delays to flights that are predicted to partici-
pate in future congested air sectors. The aforementioned problem is formulated as
a hierarchical multi-agent markov decision process (HMAMDP), and a hierarchical
reinforcement learning (HRL) method is proposed towards resolving it. The experi-
ments are conducted using a real-world dataset containing flights above Spain, from
Barcelona to Madrid.

Chapter 6 introduces the trajectory prediction problem in the aviation domain
and proposes a solution though the prism of IRL. Specifically, the framework of
apprenticeship learning is utilized to leverage an expert dataset of historical flown tra-
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jectories from Barcelona to Madrid. To train the method, an informative state space
is created using RBF kernel functions for the features, and the training procedure
shifted between an IRL step to extract the expert reward function and an RL step to
solve the full MDP. The proposed method is tested on a real-world dataset and its
performance is evaluated against the expert pilots.

Chapter 7 tackles the trajectory prediction problem by proposing a modular
multi-modal IL framework, which begins by segmenting aircraft trajectories into sub-
trajectories corresponding to flight phases. Afterwards, state-of-the-art multi-modal
IL algorithms are employed to identify the modalities and learn a mixture of policies
per flight phase, towards predicting the evolution of the aircraft trajectory. The effi-
ciency of the proposed framework is evaluated in the trajectory modeling task using
a real-world dataset consisting of flown trajectories between Paris and Istanbul.

Finally, Chapter 8 summarizes this dissertation and draws directions for future
research work.
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CHAPTER 2

PRELIMINARIES

2.1 Generative adversarial modeling

2.2 Reinforcement learning

2.3 Imitation learning

This chapter discusses the core concepts that form the foundation of this thesis and
provides a comprehensive overview of several fundamental topics. It begins by

introducing the basics of each concept, laying a solid ground for understanding their
principles and applications. As it progresses, it explores step-by-step more advanced
methodologies associated with these topics, ensuring a thorough comprehension of
these complex techniques and their relevance to the thesis.

2.1 Generative adversarial modeling

2.1.1 Game theory

The inspiration of Generative Adversarial Network (GAN) comes from the zero-sum
games in game theory [2]. Game theory is a branch of mathematics and economics
that studies the strategic decision-making process in competitive situations. A zero-
sum game is defined as a non-cooperative game in which two parties are strictly
opposed to each other, where the gains of one party are bound to bring losses of the

15



other party, and the gains and losses of both parties add up to zero [3]. Examples
of zero-sum games include chess, where a win for one player translates to a loss for
the other. The study of zero-sum games helps shed light on strategies, equilibria, and
optimal decision-making in competitive scenarios. In the field of generative learn-
ing, game theory can be applied to develop adversarial frameworks. For instance,
GANs leverage the competitive dynamics between a generator and a discriminator to
learn the underlying data distribution and generate new samples. The insights from
game theory contribute to the design and training of generative models, leading to
advancements in artificial intelligence and machine learning.

2.1.2 Artificial neural networks

The artificial neural networks, also known as neural networks (NN), are inspired by the
human brain and developed in order to imitate the way that the biological neurons
communicate with each other [4]. NNs consist of interconnected computational units
called neurons, organized into layers. The information flows through these layers,
with each neuron performing a weighted sum of its inputs, applying an activation
function, and passing the output to the next layer.

A popular type of NN is the multi-layer perceptron (MLP) [5] which is a fully
connected feed-forward network that consists of an input layer, one or more hid-
den layers, and an output layer. Each layer comprises multiple neurons, which are
connected to other neurons in the network with weighted edges.

One of the key concepts of MLPs is the activation function, which introduces non-
linearity into the network and allows the model to learn complex relationships about
the data. Some of the most popular activation functions used in MLPs include the
sigmoid function, hyperbolic tangent (tanh) function, and rectified linear unit (ReLU)
function.

Typically, to train an MLP, the backpropagation algorithm is employed, which fine-
tunes the weights of the network based on the error between the predicted and actual
outputs, aiming to minimize a loss function. In addition to backpropagation, various
optimizers have been proposed to update the network’s weights, such as stochastic
gradient descent (SGD), Adam [6], and RMSprop.

Training a ML model typically involves partitioning the dataset into training, val-
idation and test sets. The training data are used to update the network’s parameters,
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while the validation set is used to monitor the model’s performance and prevent
unwanted situations (e.g. overfitting). Moreover, regularization techniques like L1 or
L2 regularization, dropout, data augmentation, and early stopping can be employed
to improve generalization.

MLPs have achieved remarkable results in a wide range of applications, including
image and speech recognition, natural language processing, and time series analysis.
Their ability to model complex relationships, and learn from the given data has made
them the back-bone of the field of deep learning (DL).

2.1.3 Generative models

Autoregressive networks

Autoregressive networks is a generative modeling approach that focuses on generating
data sequentially. This type of models aims to capture the conditional probability dis-
tribution of each data element given its predecessors. In other words, auto-regressive
generative models define a distribution over sequences using the chain rule for con-
ditional probability, where in each step the next sequence element is predicted given
the previous elements. This allows the model to progressively generate the entire
sequence. Well-known examples of auto-regressive models are the recurrent neural
networks (RNN), the long short-term memory (LSTM) networks and the transform-
ers.

Autoencoders

Figure 2.1: The architecture of autoencoder.

Autoencoder (AE) [7] is a popular type of generative model that takes high-
dimensional data and compresses them into a small representation using neural
network structures. It can be seen as a compression algorithm, in which the data

17



compression and decompression are realized by neural network self-learning. Any
AE contains two types of networks: an encoder and a decoder. The encoder con-
sists of a bunch of layers that take the input data and compress it down to a small
demonstration, which has fewer dimensions. This low (or compressed) demonstra-
tion of input data is called a bottleneck. The decoder takes that bottleneck and tries
to reconstruct the input data (see Figure 2.1). The AE calculates the reconstruction
loss between encoder input and decoder output and its objective function is mathe-
matically defined as:

LAE =
1

n

∑
i

[xi − f(θ)(g(ϕ)(xi))]2 (2.1)

where g(ϕ) represents the encoder network, f(θ) represents the decoder network, xi
represents the input data, ϕ, and θ represents the network parameters.

Variational Autoencoders (VAEs)

Figure 2.2: The architecture of variational autoencoder.

Variational Autoencoder (VAE) [8] is another widely used likelihood-based gen-
erative model. It includes a probabilistic encoder network (parameterized by ϕ), a
probabilistic decoder (or generative) network (parameterized by θ) and loss func-
tions. The probabilistic encoder q0(z|x) (also called latent variable generative model)
embeds a data sample x into discrete latent variables, denoted by z, and the proba-
bilistic decoder network pθ(z|x) reconstructs the input sample based on the discrete
latent vector z, without massive input data loss (see Figure 2.2).The cost function of
the VAE is defined as:

LV AE = Eq0(z|x)[logpθ(xz)]−DKL[(q0(zx)||pθ(z)] (2.2)

where q0 and pθ represent the parameterize distributions for VAE probabilistic encoder-
decoder.
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2.1.4 Generative adversarial networks

Figure 2.3: The architecture of generative adversarial networks.

GANs [9] (Fig. 2.3) are a class of DL models that build upon the foundation of
MLPs and have revolutionized the field of generative modeling. They aim at estimat-
ing an unknown true distribution, denoted as pr, by training a model on samples
taken from that distribution. GANs are based on an architecture that consists of two
NNs with competing objectives: a generator network G, and a discriminator network
D.

The discriminator is a classifier that is trained to distinguish between samples
drawn from the true distribution and samples generated by the generator. Its objective
is to accurately identify if a given sample comes from the true distribution or not.
On the other hand, the generator is trained to produce samples that would trick
the discriminator into categorizing them as if they were originated from the true
distribution. Hence, its goal is to generate realistic samples that are indistinguishable
from real data.

The generator takes as input a noise vector z ∼ p(z) drawn from a noisy prior
distribution (e.g. Gaussian or uniform) and generates a sample x = G(z). The dis-
criminator takes as input both generated samples from the generator’s distribution,
pg, and real samples from the true distribution, pr, and outputs a probability D(x)
that the sample x is real. The primary objective of the generator is to replicate the
true data distribution (pr) by generating data that closely resemble real data, while
the discriminator is trained to differentiate between those data. Hence, the generator
and the discriminator compete against each other in a min-max game which can be
formulated as:
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min
G
max
D

Ex∼pr [logD(x)]− Ez∼pz [log(1−D(Gθ(z)))] (2.3)

The objective function of Eq. 2.3 is equivalent to minimizing the Jensen-Shannon
(JS) divergence between pr and pg distributions. As each player in this min-max
game independently optimizes its own objective function, the goal becomes to find
a Nash equilibrium [10]. In game theory, a Nash equilibrium refers to a solution in
a non-cooperative game involving two or more players, where no player can benefit
by changing their strategy. In other words, it represents a stable state where each
player’s strategy is optimal given the strategies of the other players.

Training a GAN can be highly challenging in practice due to the nature of reach-
ing a Nash equilibrium when dealing with non-convex objective functions and high-
dimensional parameter spaces [11]. GANs commonly encounter two issues: vanishing
gradients and mode collapse. Vanishing gradients refer to the problem where the gradi-
ents used to update the networks become extremely small, hindering the optimization
process and the convergence of the training. Mode collapse is another common prob-
lem, where the generator fails to produce a diverse range of samples and instead
focuses on only a limited set of outputs. For instance, when the task is to generate
images with numbers, mode collapse could occur in case the generator consistently
generates only few specific numbers, neglecting the rest.

Algorithm 1 summarizes the training process of GANs.
Algorithm 1: GAN algorithm
Input: Training data X , noise vector z, learning rate α, number of training
iterations for generator (NG) and discriminator (ND)
Initialize generator G and discriminator D with random weights
for i← 1 to NG do

for j ← 1 to ND do
Sample real data batch x ∼ X

Sample noise vector batch z ∼ N (0, 1)

Generate fake data batch G(z) using generator G
Update discriminator D using gradient descent:
θd ← θd − α · ∇θd

[
1
m

∑m
i=1 log(D(x(i))) + 1

m

∑m
i=1 log(1−D(G(z(i))))

]
Sample noise vector batch z ∼ N (0, 1)

Update generator G using gradient descent:
θg ← θg − α · ∇θg

[
1
m

∑m
i=1 log(1−D(G(z(i))))

]
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2.1.5 Variants of GANs

Wasserstein GANs

Both vanishing gradients and mode collapse are obstacles that hinder the GAN model
from capturing the full complexity and diversity of the real distribution. To address
these issues, Arjovsky et al. [12] presented a variant of GANs, known as the Wasser-
stein GAN (WGAN). The key idea behind WGAN is to minimize the Earth-Mover or
Wasserstein distance between the true distribution (pr) and the generated distribution
(pg), replacing the JS divergence. This approach aims to overcome the issue of vanish-
ing gradients by utilizing an objective function that is continuously differentiable and
provides smoother gradient compared to the vanilla GAN objective. By minimizing
the Wasserstein distance, WGAN encourages a more stable training process and can
potentially improve the quality and diversity of the generated samples.

Intuitively, Wasserstein distance can be seen as the minimum work needed in
order to transform one distribution into another. In this context, “work” refers to
the product of the mass of the distribution that needs to be moved and the distance
it needs to be moved. Moreover, it provides a measure of dissimilarity between two
distributions by quantifying the effort required to redistribute the mass from one to
match the other. Mathematically, it is formulated as:

D(pr, pg) = inf
γ∈Π(pr,pg)

E(x,y)∼γ∥x− y∥ = inf
γ∈Π(pr,pg)

∑
(x,y)

∥x− y∥γ(x, y), (2.4)

where Π(pr, pg) denotes the set of all possible joint probability distributions with
marginals pr and pg. However, the equation for the Wasserstein distance is highly
intractable. By utilizing the Kantorovich-Rubinstein duality [13], Eq. 2.4 can be sim-
plified as:

D(pr, pg) = sup
∥f∥L≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)], (2.5)

where the supremum is taken over all functions f that are 1-Lipschitz. For a
function to be 1-Lipschitz, the following constraint must hold:

|f(x1)− f(x2)| ≤ |x1 − x2| (2.6)

Hence, to compute the Wasserstein distance between distributions pr and pg , we
need to find the 1-Lipschitz function f that minimizes Eq. 2.5. An approximation of
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f can be obtained by training a neural network with weights w. In the case of WGAN,
the parameterized function fw corresponds to the discriminator Dw. The discriminator
used in WGAN - in contrast to vanilla GAN- does not have an activation function
after its output layer, and its output is no longer a probability, but a scalar value that
indicates “how real” a generated sample is.

Formally, the objective of WGAN is represented as a min-max game between
discriminator and generator such as:

min
G
max
D∈F

Ex̃∼pg [D(x̃)]− Ex∼pr [D(x)], (2.7)

where F is the set of 1-Lipschitz functions. To enforce that the discriminator is a 1-
Lipschitz function, the original WGAN paper [12] introduces a simplistic way to apply
the constraint. Specifically, it performs weight clipping to ensure that the weights w of
the discriminator are within a range [−c, c], where c is a hyperparameter. Algorithm
2 summarizes the training procedure of WGANs.
Algorithm 2: Wasserstein GAN algorithm
Input: Training data X , noise vector dimension z, learning rate α, number of
training iterations for generator (NG) and discriminator (ND)
Initialize generator G and discriminator D with random weights
for i← 1 to NG do

for j ← 1 to ND do
Sample real data batch x ∼ X

Sample noise vector batch z ∼ N (0, 1)

Generate fake data batch G(z) using generator G
Update discriminator D using gradient ascent:
θc ← θc + α · ∇θc

[
1
m

∑m
i=1D(x(i))− 1

m

∑m
i=1D(G(z(i)))

]
Clip weights of discriminator D in a range [−c, c]

Sample noise vector batch z ∼ N (0, 1)

Update generator G using gradient descent:
θg ← θg − α · ∇θg

[
1
m

∑m
i=1D(G(z(i)))

]
WGAN with gradient penalty

Nevertheless, the authors of WGAN acknowledge that using weight clipping to enforce
the Lipschitz constraint is not the optimal solution. They have observed that setting
a large clipping parameter can make it challenging to achieve convergence, while a
small clipping parameter may result in vanishing gradients.
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Gulrajani et al. [14] introduced an extension to WGAN, called Wasserstein GAN
with gradient penalty (WGAN-GP), which presents an alternative approach for en-
forcing the Lipschitz constraint on the discriminator, eliminating the weight clipping.
A differentiable function is considered 1-Lipschitz if and only if the norm of its gra-
dients is at most one (1) everywhere. In other words, it encourages the discriminator
to be locally Lipschitz continuous by ensuring that the gradients are not too large.

Moreover, they show that interpolated points between the real and the generated
data have a gradient norm of at most one (1). Hence, they modify the objective
function of WGAN (Eq. 2.7), and instead of weight clipping, they penalize the model
if the gradient norm of the weights of the discriminator deviates from one (1):

min
G
max
D∈F

Ex̃∼pg [D(x̃)]− Ex∼pg [D(x)] + λEx̂∼px̂ [(∥∇x̂D(x̂)∥2 − 1)2], (2.8)

where λ is the gradient penalty coefficient. Moreover, px̂ is the distribution of the
interpolated data under x̂ = ϵx + (1 − ϵ)x̃, for x ∼ pr and x̃ ∼ pg, where ϵ ∈ [0, 1].
Algorithm 3 presents the training process of WGANs with gradient penalty.
Algorithm 3: Wasserstein GAN with gradient penalty algorithm
Input: Training data X , noise vector dimension z, learning rate α, number of
training iterations for generator (NG) and discriminator (ND)
Initialize generator G and discriminator D with random weights
for i← 1 to NG do

for j ← 1 to ND do
Sample real data batch x ∼ X

Sample noise vector batch z ∼ N (0, 1)

Generate fake data batch G(z) using generator G
Compute interpolated samples x̂ by sampling uniformly between x
and G(z)
Compute discriminator outputs for real and fake samples:
D(x)← D(x) D(G(z))← D(G(z))

Compute gradient penalty: ĝ ← ∇x̂D(x̂)

Compute penalty term p← λ · (∥ĝ∥2 − 1)2

Update discriminator D using gradient ascent with penalty:
θd ← θd + α ·

[
1
m

∑m
i=1D(x(i))− 1

m

∑m
i=1D(G(z(i)))

]
+ p

Sample noise vector batch z ∼ N (0, 1)

Update generator G using gradient descent:
θg ← θg − α · 1

m

∑m
i=1D(G(z(i)))
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InfoGAN

InfoGAN [15] is another interesting variant of GANs that provides additional latent
information into the generator. Its main objective is to learn to disentangle and in-
terpret representations of data. In vanilla GANs, the generator maps a random noise
vector to generated samples, however, this latent space lacks any explicit structure or
semantic meaning. On the other hand, InfoGAN addresses this limitation by maximiz-
ing the mutual information between a fixed small subset of the GAN’s noise variables
and the observations.

To achieve this, InfoGAN introduces a “latent code” in the input of the generator.
The latent code captures specific attributes or characteristics of the generated samples.
For example, in the case of face image generation, the latent code could represent
attributes like facial expressions, glasses, or hair color.

The generator G takes as input both a noise vector z and a latent code c and
produces a generated sample x. The discriminator D, on the other hand, aims to dis-
tinguish between real samples x and generated samples G(z, c). The objective remains
the same as in vanilla GANs, i.e. to simultaneously train G and D with competing
objectives so as G generates samples that can trick D.

In addition to the vanilla GAN’s loss, InfoGAN introduces a term that maximizes
the mutual information between the latent code c and the generated sample x. This
is done to encourage the generator to learn meaningful representations in the latent
space. Formally, the mutual information I(c;G(z, c)) is maximized by minimizing the
following objective:

min
G
max
D

Ex∼pr [logD(x)]− Ez∼pz [log(1−D(Gθ(z, c)))]− λI(c;Gθ(z, c)), (2.9)

where λ is a hyperparameter that weights the contribution of the mutual information
term in the objective of GAN.

However, in practice, maximizing directly the mutual information I(c;G(z, c)) is
very hard, as it demands access to the posterior P (c|x). Instead, InfoGAN employs
an auxiliary network Q in order to estimate it. The Q network takes as input the
generated sample x and predicts the latent code c. By minimizing the divergence
between the true distribution of c and Q(c|x), a lower bound of the mutual information
can be obtained.

By incorporating latent codes, InfoGAN enables the disentanglement of specific
attributes. This allows for better control over the generated samples by manipulating
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the values of the latent code, and makes InfoGAN applicable in various domains,
including image editing, style transfer, and data augmentation. Furthermore, Info-
GAN’s ability to learn without labeled data makes it valuable in scenarios where
labeled examples are limited or expensive to obtain.

2.1.6 Diffusion models

Unlike GANs, diffusion models [16] do not depend on adversarial processes to gen-
erate outputs. Diffusion models generate data based on non-equilibrium thermody-
namics. To generate synthetic samples mimicking real ones, diffusion models rely on
the inversion of an additive noise process. The model takes as input a noisy image
composed of white noise and image content, and generates progressively less noisy
versions of it until reaching the desired noiseless output

More specifically, diffusion models are composed of two separate stages: the for-
ward and reverse diffusion processes. The forward diffusion process is responsible
for the addition of Gaussian noise to a given sample, while the backward diffusion
process is the reconstruction of a sample from a noisier sample. Diffusion models
operate on a series of time steps, where an increased time step indicates another ad-
dition of Gaussian noise. This process is treated as a Markov Chain, where the sample
at time step t only depends on the sample from time step t− 1. The forward process
is fixed, however, the model attempts to learn the necessary operations to perform
on a given sample at time step t to reconstruct the sample at t − 1. Once training is
complete, the model should be able to generate a sample similar to those within the
original distribution from complete Gaussian noise.

2.2 Reinforcement learning

Reinforcement learning (RL) [17] is a field of the ML that focuses on training agents
to learn by interacting with their environment though a trial-and-error process. It
offers an alternative to supervised learning without using annotated data, but only
a reward function that indicates good or bad behavior. Learning can take longer
since typically no demonstrations of good behavior are given and the environment is
completely unknown.

RL agent is an entity of a stochastic environment that uses sensors to perceive its

25



Figure 2.4: The basic reinforcement learning scheme.

state and takes appropriate actions. As a result, these actions along with the dynamics
of the environment, cause a transition into a new state. The quality of the transitions
is being evaluated by a scalar reward, and the goal of the agent is to maximize the
cumulative reward. A general scheme of the interaction between the agent and the
environment is depicted in Fig. 2.4.

2.2.1 Markov decision process

Markov Decision Processes (MDPs) are mathematical models that represent decision-
making problems under uncertainty, while maintaining the fundamental Markovian
property. This property states that the future state depends only on the current state
and action, and is independent of the history of states and actions that led to the
current state.

Typically, an MDP can be defined by a 5−tupleM = {S,A, T ,R, γ}:

• S is the state space, which can be either discrete or continuous

• A is the action space, which can be either discrete or continuous

• T : S × A → S is the transition function, which defines a probability distribu-
tion over reaching the next state s′ ∈ S given the current state s ∈ S and the
executed action a ∈ A

• R : S × A → R is the reward function, which yields a scalar value for the
executed action a ∈ A at state s ∈ S

• γ ∈ (0, 1) is a discount factor that weights future rewards
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The rewards are short-term reinforcement signals, given as feedback after the
agent has taken an action which led to the transition into a new state. Summing all
future rewards and discounting them would lead to the return, G:

Gt = Rt+1 + γRt+2 + ... =
∞∑
k=0

γkRt+1+k (2.10)

The decision mechanism of an agent is guided by the policy, π, which defines a
conditional distribution P(a ∈ A|s ∈ S) and can be either deterministic or stochastic.
In a deterministic policy, π : S → A, states are mapped directly to actions and π(s)

denotes the action to be taken in state s. On the other hand, a stochastic policy,
π : S → P(A), maps states to action selection probabilities.

One of the key concepts in RL is the use of value functions to represent the expected
cumulative reward an agent can receive from a given state or state-action. The state
value function, V (s), is a measurement of how good it is for the agent to be in state s
under the current policy π. It is defined as the expected cumulative reward obtained
if the agent starts from state s and follows its policy, π, thereafter:

V π(s) = Eπ [Gt|St = s] = Eπ
[

∞∑
k=0

γkRt+1+k|St = s

]
(2.11)

Another important concept is the action value function, or Q-function, Qπ(s, a), that
defines the expected cumulative reward starting from state s, executing action a and
continuing according to the policy π:

Qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ
[

∞∑
k=0

γkRt+1+k|St = s, At = a

]
(2.12)

According to Bellman equations [18], the value function can be decomposed into
two parts: the immediate reward plus the discounted future value function. If the
reward and the transition functions are known, then Eq. 2.11, 2.12 can be re-written
as:

V π(s) = E[Gt|St = s]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= E[Rt+1 + γ(Rt+2 + γRt+3 + . . . )|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γV π(st+1)|St = s]

(2.13)
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Qπ(s, a) = E[Rt+1 + γQπ(st+1, at+1)|St = s, At = a] (2.14)

At this point, the ultimate goal can be defined as finding an optimal state-value
function:

V ∗(s) = max
π

Qπ(s) (2.15)

or, more importantly, an optimal action-value function:

Q∗(s) = max
π

Qπ(s) (2.16)

For this to be possible, a partial ordering over policies and value functions should
be defined:

π ≥ π′ ⇐⇒ Vπ(s) ≥ V ′
π(s), ∀s ∈ S (2.17)

According to [17], for any MDP there exists an optimal policy π∗ that is better
than or equal to all other policies, i.e. ∃π∗ : π∗ ≥ π, ∀π.

In case that the values for all the state-action pairs of an MDP are known, then
we could simply pick the policy which yields the highest value for all states and
actions. To obtain the optimal policy, π∗(s, a), we could assign probability one (1) for
the action that has the maximum value for Q∗ and zero (0) for every other action as:

π∗(a|s) =

1 if a = argmaxa∈AQ∗(s, a)

0 otherwise
(2.18)

2.2.2 Q‐learning

Q-learning [19] is a model-free RL algorithm that allows an agent to learn an optimal
policy in a MDP through trial and error.

In the aforementioned MDP framework, Q-learning aims to learn the optimal
action-value function Q(s, a). The Q-learning algorithm uses a table, often referred
to as a Q-table, to store and update the estimated values of Q(s, a) for each state-
action pair (s, a). Initially, the Q-table is initialized with arbitrary values or zeros. The
agent then interacts with the environment, observing states, taking actions, receiving
rewards, and transitioning to the new states.

The Q-learning update rule is based on the Bellman equation, which states that
the optimal value of Q(s, a) is equal to the immediate reward plus the discounted
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value of the best action to take in the next state. The update rule can be written as
follows:

Qπ(st, at) = Qπ(st, at) + η
[
rt + γmax

a
Qπ(st+1, a)−Qπ(st, at)

]
, (2.19)

where η is the learning rate that weights the contribution of new knowledge compared
to the existing estimation, and the max operator represents the maximum value of Q
for all possible actions in the next state.

By repeatedly applying the Q-learning update rule while interacting with the
environment, the Q-table gradually converges towards the optimal values of Q∗(s, a)

for each state-action pair. Once the agent has learned the optimal Q-values, it can
construct an optimal policy by choosing the action with the highest Q-value in each
state.

2.2.3 Deep reinforcement Learning

Q-learning, in its traditional form, becomes inapplicable to complex state spaces due
to the curse of dimensionality and its inability to efficiently explore and represent
high-dimensional spaces. As the number of states increases exponentially, the tabular
representation of Q-values becomes infeasible.

Nowadays, deep reinforcement learning (DRL) techniques are utilized in cases of
continuous and/or complex state spaces, so as to model efficiently the Q-function. In
these settings, the Q-function is considered as a parameterized function, Q(s, a; θ),
where θ denotes the set of unknown model parameters that must be tuned.

Neural networks constitute an architecture for modeling complex functions and
can be used in order to estimate the Q-function. These type of networks, called
Deep Q-Networks (DQN) [20], provide a mechanism that successfully combines the
Q-learning with the use of deep neural networks. The parameters θ of the function
approximator can be found using optimizers by minimizing the temporal-difference
(TD) loss at every time step t:

Lt(θi) = E(yt −Q(st, at; θi))2 (2.20)

yt = rt + γmax
a

Q(st+1, a; θi−1) (2.21)
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In Equation 2.20, yt is the TD target, yt−Q(st, at; θi−1) refers to the TD error and
θi, θi−1 are the network parameters at iteration i and i− 1 respectively. The TD target
is obtained by keeping the previous network parameters, θi−1, fixed.

The DQN algorithm is a model-free approach as it directly tackles the problem
without explicitly knowing the dynamics of the environment. Additionally, DQN is an
off-policy method as it learns a greedy policy, while utilizing an ϵ-greedy scheme to
ensure sufficient exploration of the state space. However, one drawback of employing
a neural network approximator is its training instability in the context of reinforce-
ment learning. This instability arises from two the correlations among consecutive
observations and the sensitivity of the policy to small changes in Q-values.

To improve stability and prevent the network from chasing a moving TD target,
DQN introduces a separate target network with parameters θ′. This network is a copy
of the main network, and its parameters are updated periodically with the weights
of the main network. The target Q-values in Eq. 2.21 are computed using the target
network, providing a more consistent target for the DQN update.

DQN also incorporates an experience replay, where past experiences Et = (st, at, rt, st+1)

are stored in a replay memory. To update the parameters of the DQN, a mini-batch
of these tuples is randomly sampled from the replay memory. This approach ensures
that the neural network is not trained on consecutive observations, which helps to
avoid strong correlations between samples and reduces variance between updates.

By combining deep neural networks, experience replay, and target networks, DQN
has achieved remarkable success in various domains. Its ability to handle high-
dimensional state spaces and learn from raw sensory inputs has made DQN a signif-
icant advancement in the field of RL.

Double deep Q‐network

While in many tasks DQN algorithm achieves human-level performance, there are still
occasions that it performs poorly. The primary reason for the under-performance is its
tendency to overestimate the Q-values. This overestimation arises from the positive
bias caused by the max operator used in Q-learning and DQN update rules (Eq.
2.19, 2.20), which yields the maximum Q-value as an approximation of the expected
optimal Q-value.

In order to address this problem, Hasselt [21] proposed the Double Q-Learning
framework, which decouples the evaluation and selection process by adopting a dou-
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ble estimator approach. This approach involves two Q-functions, QA and QB , where
QA is updated with values from QB , while QB is updated with values from QA. In
Double Q-Learning the update rule for the Q-values (Eq. 2.19) becomes:

QA(st, at) = QA(st, at) + η

[
rt + γQB(st+1, argmax

at
QA(st+1, at))−QA(st, at)

]
(2.22)

QB(st, at) = QB(st, at) + η

[
rt + γQA(st+1, argmax

at
QB(st+1, at))−QB(st, at)

]
(2.23)

An improved version of DQN in combination with double Q-learning, called Double
Deep Q-Network (DDQN) [22], uses two identical neural networks in order to prevent
the model from overestimating the Q-values. The idea behind DDQN is similar to
that of double Q-learning, i.e. to decompose the max operation in the target into
action selection and action evaluation. The two networks used in DDQN scheme are
described as: the evaluation (online) network (θi) that evaluates the greedy policy, and
the target network (θ̂i) that is used to estimate its value. Following this architecture,
the target value is replaced with the weights of the target network θ̂i in the update
rule:

max
a

Qπ(st+1, at; θi) −→ Qπ(st+1, argmax
at

Qπ(st+1, at; θi); θ̂i) (2.24)

As a result, the update rule for DDQN is defined as:

yt = rt + γQ(st+1, argmax
at

Q(st+1, at; θi); θ̂i) (2.25)

Instead of introducing an additional network, the target network in DDQN is the
perfect candidate to be utilized as the second Q-function approximator. This means
that the weights from the i-th iteration are employed to evaluate the greedy policy,
while the weights from the previous iteration are utilized to estimate its value. The
update rule in DDQN remains unchanged, with the modification being the adjustment
of the target as follows:

yt = rt + γQ(st+1, argmax
at

Q(st+1, at; θi); θi−1) (2.26)

Finally, it is important to note that in both DQN and DDQN, the target network
relies on the parameters from the previous iteration (i−1). However, for generalization
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purposes, the target network can utilize parameters from any previous iteration (i−k).
This allows flexibility in choosing which past iteration’s parameters to use for the
target network. Additionally, the parameters of the target network are periodically
updated by making copies of the parameters from the online (main) network. This
ensures that the target network remains synchronized with the latest updates of the
online network throughout the training process.

2.2.4 Hierarchical reinforcement learning

Hierarchical reinforcement learning (HRL) extends the RL framework by introducing
a hierarchical structure that decomposes tasks into subtasks, allowing for more ef-
ficient and scalable decision-making. Hierarchical markov decision process (HMDP)
constitutes an extension of the traditional MDP framework that addresses the chal-
lenge of managing complex decision-making problems by decomposing them into
multiple levels of abstraction.

In HRL, the environment is organized into a hierarchy of tasks, where each task
represents a specific objective to be achieved. The tasks are arranged in a tree-like
structure, with higher-level tasks representing more abstract and long-term goals, and
lower-level tasks representing more specific and short-term objectives. The actions
taken at each level influence the progression towards achieving the goals at higher
levels.

Mathematically, a HMDP can be represented as a 7-tupleM = {L,S,A, T ,R, ϕ, γ},
where:

• L is a set of abstraction levels

• S l is the state space at abstract level l (state abstraction)

• Al is the action space at abstract level l (temporal abstraction)

• Tl : S l × Al → S l is the transition function for the abstract level l, which defines
a probability distribution over reaching the next state s′ ∈ S l given the current
state s ∈ S l and the executed action a ∈ Al

• Rl : S l × Al → R is the reward function for the abstraction level l, which yields
a scalar value for the executed action a ∈ Al at state s ∈ S l
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• ϕ is an abstraction function that maps states of abstract level l to the states of
the previous abstract level

• γ ∈ (0, 1) is a discount factor that weights future rewards

The hierarchical structure introduces two types of policies: high-level policies and
low-level policies. A high-level policy operates at the higher level of the hierarchy
and selects subtasks to be executed. A low-level policy operates within a subtask and
selects actions to execute based on the current state. In other words, the high-level
policy determines the subtask, and the low-level policy selects actions to accomplish
that subtask. The interaction between the high and low levels enables the agent to
make decisions at different levels of granularity, allowing for more efficient exploration
and exploitation of the environment.

2.2.5 Multi‐agent reinforcement learning

RL has been successful in single-agent scenarios, however many real-world problems
involve multiple agents that interact and influence other agents. This is where multi-
agent reinforcement learning (MARL) comes into play. MARL extends RL to settings
with multiple interacting agents, enabling them to learn how to cooperate, compete,
or negotiate in complex environments.

A multi-agent markov decision process (MAMDP) is a framework used to model
decision-making problems involving multiple autonomous agents in a shared envi-
ronment. It extends the concept of traditional MDP, where a single agent interacts
with an environment and makes decisions to maximize its own expected rewards, to
a setting where multiple agents coexist and interact with each other and the environ-
ment. In MARL, the agents interact with the environment simultaneously and their
actions may have interdependencies and influence the state transitions and rewards
for other agents. The goal of each agent in a MARL system is to maximize its own
and global expected cumulative rewards, taking into account the actions and policies
of other agents.

Formally, a MAMDP can be described as a 6-tupleM = {AG,S,A, T ,R, γ} which
comprises the following constituents:

• AG is a society of agents Ai, i = 1 . . . N
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• S is the state space shared by all agents. Each agent may has observe its local
state si or the shared state s

• Ai is the set of actions of each agent Ai. The local action of each agent is denoted
as ai, and the global action as a = a1 × · · · × aN

• T : S × A → S is the transition function, which defines a probability distribution
over reaching the next state s′ ∈ S given the current state s ∈ S and the executed
joint action a ∈ A

• Ri : S × A → R is the reward function for each agent Ai, which yields a scalar
value for the executed action ai ∈ A at state si ∈ S

• γ ∈ (0, 1) is a discount factor that weights future rewards

Ultimately, MARL serves as a framework that enables agents to make simultaneous
transitions in a multi-agent environment. It can be sequentially described as follows:
At each time step, every agent Ai observes a local state si (or the shared state s), and
executes its action ai, at the same time with all the other agents. The joint action a
from all agents causes the transition to a new state s′ ∼ P (s′|s, a), and the environment
yields a reward Ri(si, ai) to each agent. As in the single-agent MDP case, the goal
of every agent is to solve the MAMDP, which can be achieved by finding a policy,
πi ∈ Πi : S → Ai, that selects optimal sequential actions for the agent in order to
maximize its discounted expected cumulative reward.

2.3 Imitation learning

A primary obstacle in utilizing traditional RL approaches is the necessity of creating
a well-defined description of the task in hand. The formulation of RL problem under
the MDP framework requires the definition of a reward function that evaluates the
“goodness” of the states and actions. Defining this reward function can be challenging,
as it is often difficult to determine what constitutes an optimal reward for the task.

Imitation learning (IL) is a valuable technique when it becomes difficult to manu-
ally design a reward function, but there are available demonstrations from expert(s)
performing the desired task. In this approach, an agent tries to behave optimally
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by mimicking the expert demonstrations. There are three primary subfields of im-
itation learning: behavioral cloning (BC), inverse reinforcement learning (IRL) and
adversarial imitation learning (AIL).

2.3.1 Behavioral cloning

BC [23, 24] is the simplest form of IL that involves the agent learning an expert policy
through supervised learning. In this approach, expert demonstrations, consisting of
state-action pairs, are utilized as samples, with the states serving as input and actions
as target output.

The goal of BC is to learn a policy, π, which maps states s to actions a for each
state-action pair in the dataset of the expert demonstrations. The policy can be ap-
proximated using a NN trained on the expert dataset by minimizing the mean squared
error between expert and estimated actions.

While this method can provide solutions in some cases, it can also suffer from
compounding errors that accumulate rapidly, causing the agent to diverge from its
intended trajectory and end up in unexplored states where the expert’s behavior is
unknown.

2.3.2 Inverse reinforcement learning

Figure 2.5: Differences between RL and IRL.

Rather than learning a mapping between expert states and actions through su-
pervised learning, IRL offers a more general approach by trying to discover the
underlying reward function, which explains the behavior of the experts [25]. Gener-
ally, the reward function specifies the goals of the experts and, as such, learning the
reward function can be understood as learning the objectives of the experts towards
solving the task in-hand. Once the reward function has been discovered, it can then
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be applied to estimate the expert policy using RL approaches. Figure 2.5 depicts the
differences in the procedures of RL and IRL.

Typically, the IRL problem is formulated as a MDP where the reward function is
unknown, thus is denoted as MDP\R. The rest of the settings remain the same as
the MDP definition of section 2.2.1.

In the context of IRL, it is presumed that the experts act in accordance with an
underlying expert policy πE , while the agent adheres to a stochastic policy πθ that is
parameterized by weights θ. The agent observes the experts’ behavior in the form of
trajectories given a dataset of expert demonstrations, TE = (Ti)

N
i , where each Ti is an

expert trajectory. IRL’s objective is to find an estimate of the reward function that can
most effectively explain the experts’ observed behavior.

In general, IRL algorithms discover the unknown reward function via an itera-
tive learning process which switches between two phases: (1) estimating the reward
function, and (2) solving an RL problem using that reward function. Specifically, the
MDP\R is initially solved to acquire the reward function, and then the full MDP is
solved using this estimation of the reward. This process is repeated until the agent’s
policy that can best explain the expert demonstrations is discovered. However, IRL’s
problem definition is “ill-posed”, because multiple reward functions can explain the
same expert behavior.

Feature expectation matching

In feature expectation matching, the reward function can be modeled using any approx-
imator (linear, NNs, and so on). In the simplest case, it is assumed to be a linear
model over the feature vector of states, ϕ(s), such as:

Rw(s, a) = wTϕ(s, a) = w1ϕ1(s, a) + w2ϕ2(s, a) + · · ·+ wnϕn(s, a), (2.27)

where w is a vector of linear coefficients of size equal to the dimensions of the feature
space. The IRL process is focused on determining the proper weight vector in order
to shape the expert’s behavior.

Given the definition of value function in Eq. 2.11 and the reward function in Eq.
2.27, the value of a policy can be re-formulated as:
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V π(s) = E

[
∞∑
t=0

γtRw(st, at)

]

= E

[
∞∑
t=0

γtwTϕ(st, at)

]

= wTE

[
∞∑
t=0

γtϕ(st, at)

] (2.28)

The expert trajectories can be seen as walks through the state space made by the
experts. These are guided by an expert (“true”) reward function, R∗(s) = w∗Tϕ(s, a),
assumed linear on ϕ(s, a). In order to estimate the linear weights, one can use the
feature expectations [25], which are the expected discounted accumulated feature values:

µ(π) = E

[
∞∑
t=0

γtϕ(st, at)

]
(2.29)

The feature expectations can be seen as a representation of the policy and they
can be utilized to compute the similarity between a generated policy and the expert
policy. The expectation E[·] is taken by sampling random state trajectories according
to the current policy, π. On the other hand, the experts’ feature expectations µE is
calculated by its empirical estimate over the available M expert trajectories of the
training set:

µ(πE) =
1

M

M∑
i=1

∞∑
t=0

γtϕ(sit, a
i
t) (2.30)

Abbeel et al. [25], showed that the linear weights w can be obtained by minimizing
the distance between vectors of feature expectations µ(π) and µ(πE). Hence, for a given
threshold ϵ, the IRL problem becomes finding a policy πθ that satisfies the following
inequality:

∥µ(πE)− µ(πθ)∥2 ≤ ϵ (2.31)

Maximum entropy IRL

Even though matching the feature expectations results into finding a policy πθ that is
similar to the expert policy πE , there can still exist multiple solutions that explain the
same expert behavior. Ziebart et al. [26] proposed the maximum entropy IRL approach
by introducing an additional constraint to discover the best solution. The principle
of maximum entropy [27] states that in the absence of prior knowledge, the most
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unbiased probability distribution is the one with the maximum entropy. Applied to
IRL, this principle encourages policies that explore a wide range of actions and states,
avoiding excessive bias towards specific behaviors. Generally, the entropy of a policy
is a measure of its randomness or uncertainty and is defined as:

H(πθ) = −
∑
(s,a)

πθ(a|s) log πθ(a|s) (2.32)

Under the maximum entropy IRL settings, the policy πθ is a distribution over
trajectories, i.e. p(T ) where T ∼ πθ. Ziebart et al. [26] suggested that when considering
distributions over trajectories that match with the experts’ feature expectations, the
optimal choice is the distribution that has the maximum entropy. Thus, the objective
of maximum entropy IRL is to find a policy πθ that satisfies the following:

max
θ

H(p) = max
θ

∑
T∼πθ

p(T ) log p(T ) (2.33)

subject to

∥µ(πE)− µ(πθ)∥2 ≤ ϵ, (2.34)∑
T∼πθ

p(T ) = 1, (2.35)

p(T ) > 0,∀T (2.36)

The first constraint (Eq. 2.34) refers to the feature expectation matching, while
the other two (Eq. 2.35 and 2.36) ensure that p is a probability distribution. To
capture the agent’s policy πθ, maximum entropy IRL uses a softmax function to
assign probabilities to actions based on their associated values, which are determined
by the action-value function Q(s, a). The softmax policy can be expressed as:

πθ(a|s) =
eQ(s,a)∑
a e

Q(s,a)
(2.37)

2.3.3 Generative adversarial imitation learning

An alternative perspective on the IRL problem was presented in [25], where the au-
thors demonstrated that the IRL problem can be formulated as a problem of matching
occupancy measures. In this framework, the goal is to match the probability distri-
butions of the states visited by an expert and, thus, the agent can learn to imitate the
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expert’s behavior and perform the same tasks. The occupancy measure ρ of the policy
πθ(a|s) can be defined as:

ρπ(s, a) = πθ(a|s)
∞∑
t=0

γtP(st = s|πθ) (2.38)

Generative Adversarial Imitation Learning (GAIL) [28] reformulated the IRL
problem, by using the occupancy measure matching in conjunction with the max-
imum entropy principal [26]. Specifically, the new objective is to learn a policy that
minimizes the difference between the agent’s and the expert’s occupancy measures,
along with a regularizing term to account for entropy. Formally, this objective is
stated as:

min
πθ∈Π

d(ρπθ(s, a), ρπE(s, a))− λH(πθ) , (2.39)

where d(.) is the distance between the occupancy measures of the policy and the
expert, λ is a weighting factor and H(πθ) is the entropy of policy πθ. In GAIL, the
Jensen-Shannon divergence is used as the distance function d(.), and the optimum is
met when this divergence is minimized.

Figure 2.6: The architecture of generative adversarial imitation learning.

GAIL (Fig. 2.6) follows the GAN structure that comprises two neural networks: a
generator network, Gθ, and a discriminator network, Dw. The generator produces
samples that should follow the true data distribution, while the discriminator is
trained to distinguish between the generated samples and the samples from the true
data distribution.

In GAIL, the generator network follows an actor-critic architecture and models
the conditional policy πθ(a|s). On the other hand, the discriminator network, Dw,
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is trained to separate expert and generated state-action samples, by outputting a
probability that a given state-action sample comes from the true data distribution. Ιn
order to update the policy, GAIL uses a policy gradient method such as Trust Region
Policy Optimization (TRPO) [29] or Proximal Policy Optimization (PPO) [30] and as
a reward it utilizes the output signal from the discriminator. The formal objective of
GAIL is defined as:

min
πθ
max
D

Eπθ [logDw(s, a)] + EπE [log(1−Dw(s, a))]− λH(πθ) (2.40)

According to this, the discriminator is trained by maximizing Eq. 2.40 with re-
spect to the parameters w using Adam optimizer, while the generator is trained by
minimizing with respect to the parameters θ using a TRPO or PPO step which con-
currently maximizes the entropy of the policy (H(πθ)). Moreover, it is a common
strategy to initialize the policy’s weights with BC, and then use GAIL to refine them
through the adversarial training process. BC provides an initial policy that is likely
to be close to the expert’s behavior, which can help GAIL to converge faster and
produce better policies. Algorithm 4 specifies the training process of GAIL.

Algorithm 4: GAIL algorithm
Input: Expert trajectories TE , number of number of iterations N , learning rate
α, discriminator iterations per generator iteration ND, number of samples K
Initialize the policy weights θ using BC and discriminator weights w
randomly
for i← 1 to N do

while not enough samples in generator’s buffer do
Generate trajectories Ti ∼ πθi

for j ← 1 to k do
Sample expert state-action pairs (se, ae) ∼ TE

Sample policy state-action pairs (sp, ap) ∼ Ti

Update discriminator D using gradient descent:
w ← w − α · ∇w

[
1
K

∑K
k=1 log(D(s

(k)
e , a

(k)
e )) + 1

K

∑K
k=1 log(1−D(s

(k)
p , a

(k)
p ))

]
Sample policy state-action pairs (sp, ap) ∼ Ti

Update policy π using gradient ascent with TRPO/PPO:
θ ← θ + α · ∇θ

[
1
K

∑K
k=1 log(1−D(s

(k)
p , a

(k)
p ))

]
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CHAPTER 3

MULTI-AGENT DEEP REINFORCEMENT
LEARNING FOR TRAFFIC CONGESTION

MANAGEMENT

3.1 Overview

3.2 Related work

3.3 Problem setting and the notion of route agent

3.4 Multi‐agent deep reinforcement learning structure

3.5 Simulation results

3.6 Summary

In this chapter, an advanced deep multi-agent reinforcement learning approachis proposed for handling autonomous navigation of multiple vehicles in traffic
networks consisting of road segments with unsignalized intersections. A key feature
of the proposed method is the utilization of route-agents as the building block of the
multi-agent system, which represent the possible routes that each vehicle can follow.
This enables transfer learning and the re-usability of learned policies across different
vehicles.
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3.1 Overview

Autonomous driving constitutes a challenging environment for tasks such as percep-
tion, prediction and control [31, 32, 33, 34, 35]. In urban environments, the man-
agement of traffic and the autonomous navigation of vehicles are crucial problems
and present interesting research and practical applications. It is expected that au-
tonomous vehicles will exhibit intelligent behavior, including situational awareness,
optimal path planning, and precise control, as they navigate urban areas to reach
their destinations [36]. These vehicles will operate within traffic networks, guided by
centralized and coordinated systems that prioritize safety and efficiency.

This chapter addresses a major challenge in autonomous driving, which is the
traffic control and navigation of multiple vehicles in urban areas with unsignalized
intersections. Unsignalized intersections are traffic intersections where there are no
traffic signals or signs, and all directions have equal priority. In this scenario, vehicles
enter a controlled traffic network and are automatically guided by the system to their
pre-defined paths towards their destinations. Moreover, the system needs to handle a
diverse range of vehicles, including passenger cars, buses, and trucks, simultaneously.
Each vehicle has to select a driving policy from the available options that correspond
to all possible routes. Subsequently, it executes a sequence of actions, such as levels of
velocity, to navigate the road segments and intersections successfully, aiming to reach
its destination without getting stuck, or causing collisions and deadlocks with other
vehicles.

The task of autonomous navigation of multiple vehicles is formulated as a deep
multi-agent reinforcement learning framework, which aims to train joint route-agents’
policies and enable them to reconcile conflicting decisions. The framework utilizes a
rich state space comprising features of the vehicles, as well as predictive information
on the traffic flow at intersections, conveniently represented as a compact collision
matrix. A value function approximation scheme is used through a combined weighted
architecture consisting of two neural networks: a DQN for the vehicles’ features and a
convolutional neural network (CNN) connected to a DQN dealing with the predictive
information. Additionally, the learning process incorporates the double Q-learning
scheme, which enhances exploration within the search space, resulting in more robust
and stable solutions.

Furthermore, a carefully designed reward function is introduced, with the objec-
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tive of constructing policies that exhibit optimal navigation behavior, allowing vehicles
to reach their destinations efficiently and safely. The proposed method has been eval-
uated through experiments conducted on both artificial and real urban road networks
generated using the SUMO simulation environment [37]. The results demonstrate the
effectiveness of the approach in successfully resolving traffic conflicts and congestion
problems.

This chapter is organized as follows. In Section 3.2, a small literature on the
research topic of autonomous driving is presented. The proposed collaborative multi-
agent deep reinforcement learning scheme is described in Section 3.4. In Section
3.5 various simulated results are provided in order to evaluate the efficiency of the
proposed method considering different scenarios, while Section 3.6 provides a brief
summary of the chapter.

3.2 Related work

The literature in the field of autonomous vehicle control focuses on addressing con-
gestion problems in traffic networks with intersections from various perspectives. One
area of particular interest is the utilization of MAS, which has gathered significant
attention.

Most of the research studies in this domain focus on controlling intersections
using traffic lights. In some early works [38, 39], the authors presented a MARL
algorithm which allowed global communication between traffic light agents in order
to minimize the waiting time of vehicles in urban environments. Moreover, in [40] the
problem of traffic signal control is formulated as a stochastic game where the agents
employ distributed versions of the Q-Learning algorithm. A traffic control system
using wireless senor networks has been proposed in [41] that gathers information
from the wireless network and achieves real time adaptive traffic control improving
the coordination between neighboring traffic lights.

A MARL framework is introduced in [42] that creates an efficient traffic signal
control policy which minimizes the average delay, congestion and likelihood of inter-
section cross-blocking. Another study [43] employs the actor-critic framework to im-
plement multi-crossroads traffic signal intelligent control. Additionally, the authors in
[44] developed a collaborative reinforcement learning algorithm that uses Q-Learning
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with a Boltzmann action selection scheme, and in [45] a cooperative mechanism be-
tween agents based on max-plus algorithm [46] is introduced, in order to achieve
coordination between neighboring traffic lights. An integrated network of adaptive
traffic signal controllers was introduced in [47], where the agent could either learn
independently or according to the other neighboring agents. Also, another work in
[48] proposes the use of a cooperative multi-agents with DQN for solving the prob-
lem of adaptive traffic signal control, where the neighboring agents share information
about their latest action. Finally, many recent works [49, 50, 51, 52] approach the
traffic signal control problem using DRL methods.

A new perspective has recently arisen in the literature by considering vehicles as
intelligent agents instead of the traffic lights, aiming at offering safe navigation and
reduced traveling time. These works specifically examine the behavior and decision-
making of individual vehicles when navigating through intersection scenarios. One
such methodology was presented in [53] where the authors formulated the inter-
section navigation as an optimization problem. They considered driverless vehicles
as agents to be controlled by an intersection controller. In [54] a hierarchical policy
gradient method is proposed to train the network with semi-markov decision process
(SMDP) with temporal abstraction in traffic light passing scenarios. Furthermore, in
[55] a deep deterministic policy gradient (DDPG) [56] algorithm is presented where
sensor data is the state and the agent is demonstrated that was capable of driving
efficiently.

In another study [57], a DRL approach is utilized for autonomous navigation and
obstacle avoidance in self-driving cars. The input to the system consists of image
data captured by sensors, which are then processed to determine the appropriate
acceleration and orientation of the vehicle. Similarly, in [58], the asynchronous ad-
vantage actor-critic (A3C) [59] framework is employed for learning vehicle control.
However, in this case, the control is learned solely based on RGB images captured by
a forward-facing camera. Moreover, in [60] deep recurrent Q-networks are used to
train a vehicle to cross an intersection with three other (human) vehicles by adjusting
its acceleration after a negotiation process.

A DQN approach is used in [61] to steer a vehicle in a 3D physics simulation re-
lying solely on camera image input, while in [62] the authors addressed the problem
of autonomous traversing though an urban partially non-controlled stop-sign inter-
section by using DDPG and hierarchical approaches. Furthermore, [63] employed a

44



DQN to navigate a single vehicle-agent through occluded intersections, and in [64]
a multi-objective deep reinforcement learning variant of thresholded lexicographic
Q-learning is developed for the task of urban driving and collision avoidance on
multi-lane roads and intersections. Finally, in a recent study [65] the authors take
advantage of the concept of connected and automated vehicles in order to establish
communication and information sharing between the vehicles. They implement a car
following model which is centralized and can learn driving behaviors to improve
travel efficiency at signalized intersections.

From another perspective, the works in [66, 67] deal with the problem of stochastic
shortest path by maximizing the probability of arriving at the destination on time.
They propose a multi-agent route guidance system, where the infrastructure agents
are responsible for guiding the agent vehicles based on their intentions.

Summarizing, the research literature of learning autonomous vehicles to navigate
through unsignalized intersections is fairly new and promising. Previous works on
this area present four (4) main limitations:

• They use signalized intersections or traffic lights to facilitate the management of
the traffic.

• Assume a single agent that learns to pass an intersection and avoids collision
with other human controlled vehicles.

• Create multi-agent approaches of limited capabilities mainly due to the reason
that they consider vehicles as agents.

• Deal with less complex environments that contain a limited number of inter-
sections.

In the present study, a compact multi-agent methodology is implemented that
aims at addressing all these issues and offering more robust solutions.

3.3 Problem setting and the notion of route agent

The objective of this work is for a fleet of vehicles to navigate through urban road
networks with one or more unsignalized intersections and co-operate with each other
in order to provide safety, while simultaneously trying to minimize the traveling time.
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Figure 3.1: An example of a traffic zone with four route-agents that correspond to
four paths. Every route-agent simultaneously controls more than one vehicles that
follow the same path.

Traffic networks consisting of numerous roads that are connected with multiple
intersections, constitute the basic environment for this study. Figure 3.1 gives an
example of a traffic networks with two unsignalized intersections. This study considers
as agents the various pre-defined routes (or paths) of the traffic network, called route-
agents, that vehicles can select to follow in order to reach their destinations. Each
route-agent models the driving behavior of any vehicle that follows the corresponding
route by controlling its velocity. Vehicles that are simultaneously located on the same
route and therefore are served by the same route-agent, take different actions (velocity
values) according to their individual state.

Figure 3.1 illustrates an instance of a traffic zone consisting of four (4) intersec-
tions. In that snapshot, there are 13 vehicles that follow four (4) routes and thus are
served by four (4) route-agents, correspondingly. Specifically, route-agent 1 controls
simultaneously the three (3) green vehicles (v1, v2, v3), route-agent 2 controls the four
(4) cyan vehicles (v4, v5, v6, v7), and so on. According to the examined scenario, the
vehicles sequentially enter the traffic zone from any of the entrance lanes (referred
to as “entrance points”) in order to be automatically navigated to their destination.
Vehicles appear at the entrance points according to a pre-defined arrival rate. It is
also assumed that vehicles are served immediately without any delay. Then, an agent
identification process takes place that assigns an agent to every vehicle based on its
specific route, i.e. a sequence of roads that the vehicle will cross in order to reach its
destination. The corresponding route-agent will be activated and will guide the vehicle
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in an optimal way.
Since the traffic network can be separated into several routes, the proposed scheme

establishes a multi-agent framework assuming a group of route-agents that act to-
gether and try to resolve the scenario. The role of intersections is to coordinate route-
agents and distribute information to all vehicles traveling towards them. Solving a
traffic scenario means that the society of route-agents should learn to accomplish their
goal within a sequence of actions and cooperate with each other for collective success,
as well as to make decisions within limited local observations.

3.4 Multi‐agent deep reinforcement learning structure

The task of autonomous navigation of multiple vehicles in a traffic network with
unsignalized intersections is formulated under a collaborative multi-agent framework.
The MAMDP is employed for modeling the agents and a weighted deep reinforcement
learning scheme is proposed for solving it. A detailed description of the MAMDP
framework has been presented in Chapter 2.2.5. The following sub-sections describe
the state space, action space, the construction of the reward function and the proposed
algorithm for tackling the problem.

3.4.1 State space with individual and predictive information

The state space should contain as many informative variables as possible in order
to describe the environment. For this purpose, a unified state space, S = S(1)

⋃
S(2),

which comprises two components is designed. The first component, S(1), encapsulates
individual information of the examined, or ego vehicle, while the second component,
S(2), encompasses information pertaining to the anticipated traffic flow at the inter-
sections. In particular:

• Individual state S(1) :

– Current velocity of the ego vehicle (vel)

– Distance of the ego vehicle from the next visiting intersection’s center
(inter_dist)

– Velocity of the front vehicle (if any) in the same lane (fveh_vel)
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– Distance of the ego vehicle from the front vehicle (if any) in the same lane
(fveh_dist)

• Predictive state S(2): a predictive matrix that displays the estimated traffic flow
in the next intersection that the ego vehicle will pass though.

Figure 3.2: An example of the collision matrix generation mechanism.

The collision matrix is constructed by mapping the intersection’s traffic to a matrix of
size determined by the intersection’s geometry (i.e., number of lanes of the crossing
roads). Each vehicle can occupy a single cell within the matrix, and assuming a
constant velocity for all nearby vehicles (equivalent to their current velocity), the
matrix cells are populated with relevant values derived from the trajectories of these
vehicles. Moreover, it is assumed by the ego vehicle that every other vehicle moves
in a straight line at a constant velocity, thereby it possesses limited knowledge about
them. All the cells within the matrix that encompass the intended path of the ego
vehicle inside the intersection are assigned a value of minus one (-1). In the event of
a potential collision with another vehicle (i.e., where their trajectories are anticipated
to intersect), the corresponding cells in the matrix are assigned a value of minus five
(-5) to differentiate it from the non-collision scenario (−1). The remaining cells in the
matrix are assigned a value that quantifies the frequency of visits by other vehicles
during the time it takes for the ego vehicle to traverse the intersection.

Figure 3.2 presents an example of the creation of the collision matrix. In this case,
the collision matrix is structured as a 6×6 grid, where each row and column represents
a lane traversing the intersection. Note that for the vertical lanes there are only two
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possible columns that correspond to valid positions. The ego vehicle, depicted in
purple color, follows a straight-line trajectory while crossing the intersection. Thus,
all the cells corresponding to the third column of the matrix will be set to minus one
(-1). However, as it is estimated, the ego vehicle will collide with three vehicles: the
yellow track on the right, the middle lane green car on the left and the left down
lane cyan car. Therefore, the 1st, 4th and 6th position of the 3rd column will take
the value minus five (-5), so as to denote undesired situations.

In an attempt to emulate realistic scenarios, the ego vehicle possesses incomplete
information regarding the behavior of other vehicles. Specifically, it simplistically as-
sumes that the other vehicles will travel across the intersection in a straight line,
disregarding any potential turns (either right or left) as suggested by their respective
routes (unknown to the ego vehicle). In the above example, this situation arises with
the yellow track on the right and the green car in the left middle lane. Based on this
assumption, both vehicles will cross the intersection without turning and hence will
fill the rows (1st and 6th, respectively) of the matrix horizontally. On the other hand,
when a vehicle passes through a position-cell of the matrix that is different from the
ego vehicle’s path, then a frequency counter is increased by one in that position.

3.4.2 Action space

The choice of the action space is a crucial aspect of an RL agent. In this study, the agent
governs the velocity of the vehicle, which serves as the action to be controlled. Four
(4) possible levels of velocity are chosen as actions, denoted as A = {15, 20, 25, 30}
(measured in m/sec).

Initially, when a vehicle enters from an “entrance point” within the traffic network,
it adopts the lowest velocity value of 15 m/sec as the initial action. Subsequently, at
each time step, the agent selects an action (velocity) based on the policy it adheres
to. Afterwards, at every time step, the agent takes an action (velocity) according to
the policy it follows, and then a low-level controller handles the transition from the
current velocity to the desired velocity.

It must be noted that the low-level controller might take some time to reach the
desired velocity of the agent. This “delay” in action is correlated with the acceleration
of each vehicle type, which is set according to the SUMO simulator’s standards.
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3.4.3 Reward function

The proposed reward function is designed to eliminate the collisions and minimize
the traveling time among vehicles inside the urban road network. It is formulated as
follows:

R(s, a) =


+L , if it reaches goal
−L , if it collides

r(s, a) , otherwise

(3.1)

Initially, it is evaluated whether the ego vehicle has reached a terminal state. If
it has, then the agent gets a positive reward of L when it successfully reaches the
destination or a penalty of −L in the event of a collision. In any other scenario,
the following are considered: a) whether or not the distance from the front vehicle
(fveh_dist) is lower than a threshold value safe_dist (set to 50 m), and b) whether
(C = −1) or not (C = 1) the vehicle is estimated to participate in a collision while
traversing the next intersection. There are two possible circumstances:

• The front vehicle is far enough i.e. fveh_dist > safe_dist. Then, the (positive
or negative) size of the received reward depends on the vehicle’s velocity in a
way of promoting higher velocities:

r(s, a) = C ∗ β1 ∗
vel

vel_max (3.2)

where vel_max = 30 m/s denotes the maximum allowed velocity and β1 is a
coefficient set to three (3).

• In the opposite case, where the front vehicle is near, i.e. fveh_dist < safe_dist,
a negative reward is always received that depends both on the vehicle’s velocity
and the magnitude of the distance with the front vehicle:

r(s, a) = −(β2 +
vel

velmax
) ∗ (safe_dist− fveh_dist) (3.3)

where the value of β2 depends on the collision situation: β2 = 1 if C = 1 and
β2 = 2 if C = −1.

3.4.4 Algorithmic description

For approximating the Q-value function a weighted scheme of two neural networks
is introduced:
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• A simple DQN that captures the ego vehicle’s individual state information S(1).

• A combined architecture of a CNN with a DDQN responsible for handling the
produced collision matrix of the predictive state S(2). The purpose of the CNN is
to extract features from the collision matrix that will be passed to the DDQN in
order to select the appropriate action.

Both networks output an action among the four (4) possible levels of velocity.
Then, the Q-value function is calculated as:

Q(s, a) = µ QDQN (s
(1), a) + (1− µ)QDDQN (s

(2), a) (3.4)

where QDQN (.) and QDDQN (.) denotes the outputs of the two neural networks, while
µ ∈ [0, 1] is a positive parameter that shows their level of contribution to the decision
making mechanism of the system.

Algorithm 5 describes the learning process of the proposed method.
Algorithm 5: Combinatorial DRL architecture for autonomous navigation
Input: number of iterations N , learning rate η, discount factor γ, episodes
until update of target network Nu, scenario’s duration T
Create the DQN, and CNN/DDQN networks for every route-agent
Initialize two replay buffers for every route-agent (one for each network)
for i← 1 to N do

while t < T do
for every vehicle i found currently in the traffic zone do

Identify the corresponding route-agent j
Obtain the individual state s(1)i,t
Construct the collision matrix to get the predictive state s(2)i,t
Obtain the Q-values from the DQN with input s(1)i,t
Obtain the Q-values from the CNN/DDQN with input s(2)i,t
Calculate the final Q-values according to eq. 3.4 and select an
action based on ϵ-greedy strategy
Move to next state and receive a reward (Eq. 3.1)
Save the experiences into the replay buffers of the corresponding
DQN and CNN/DDQN route-agent

Update the main networks with batches sampled from the replay
buffers

Update the target networks every Nu episodes
Store the learned route-agents’ policies
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3.5 Simulation results

3.5.1 SUMO simulation environment

SUMO (Simulation of Urban MObility) is an open-source microscopic traffic simu-
lation software developed by the German Aerospace Center (DLR) and the Institute
of Transportation Systems at the University of Karlsruhe. It provides a platform for
simulating and analyzing traffic flow in urban environments. SUMO is widely used
in the field of transportation research, urban planning, and traffic engineering.

SUMO allows users to model complex urban traffic scenarios and simulate vari-
ous aspects of traffic behavior, such as vehicle movement, lane changing, and traffic
signal control. The simulation can be customized to reflect real-world conditions, in-
cluding road networks, traffic flows, and various vehicle types. It supports a range
of traffic simulation models, including car-following models, lane-changing models,
and microscopic traffic flow models.

SUMO provides the option to create artificial scenarios via an editor, or select areas
from Google Maps and transform it to SUMO scenario. Through the SUMO editor
package there can be modified a variety of options about the traffic network, such as
the number of intersections, number of roads, roads’ length, maximum allowed veloc-
ity, and several vehicles’ characteristics (type, vehicle, maximum velocity, maximum
acceleration and arrival rate).

3.5.2 Data description

(a) Artificial map (b) Real-world map

Figure 3.3: Snapshots of the artificial scenario and the real-world map of Devonshire
street, Florida.
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Figure 3.4: The non-symmetrical design of intersections in the real-world scenario.

The proposed deep multi-agent reinforcement learning framework was evaluated
on three (3) different traffic scenarios (Table 3.1):

• an artificial scenario (Fig. 3.3(a)) with two (2) intersections, where each road is
two-way and has a single lane,

• two (2) real-world scenarios (Fig. 3.3(b)) created by choosing a specific road
map in California (Devonshire Street) with two intersections and road segments
with multiple lanes and non-symmetrically design (see Fig. 3.4). These scenar-
ios differ on traffic volume they cover (ie., duration and number of vehicles).

Table 3.1: Description of the scenarios used in the experimental study.

Scenario # vehicles
Duration

(min)

#routes

(agents)

Distance

(km)

Longest

Route (km)

Artificial
300

(228 cars, 48 buses, 24 trucks)
20 18 2.8 0.600

Real_15
225

(171 cars, 36 buses, 18 trucks)
15 30 7.2 1.725

Real_30
450

(342 cars, 72 buses, 36 trucks)
30 30 7.2 1.725

Table 3.1 provides a detailed description of these scenarios. To be as close as pos-
sible to real traffic scenarios, all cases included several types of common vehicles, such
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as passenger cars, buses and trucks, with a frequency of 75/15/10, correspondingly.
However, it must be indicated that all these types are treated with the same manner,
since the route-agents are not specialized in any of them.

In all cases the safety checks performed by SUMO are turned off, while the traffic
lights and the priority rules have been removed from the intersections. Furthermore,
we devised a deterministic rule for the vehicles reaching the last road segment by
setting the maximum allowed velocity (30m/s) until finishing their route and reaching
their destination.

3.5.3 Implementation details

This section provides: (a) implementation details about the NNs and their training,
and (b) metrics for evaluating the accuracy of the methods.

The simple DQN, which is responsible for the ego vehicle’s individual state, con-
sists of one hidden layer with 100 ReLU hidden units and an output layer with
four (4) neurons equal to the possible actions. On the other hand, the second neural
network employs a CNN to deal with the collision matrix. The input matrix passes
through eight (8) convolutional filters of size 3 × 3, then down-sampled using 2 × 2

max-pooling and flattened into a vector. This vector is then passed through a DDQN
network with a hidden layer of 200 neurons and an output layer of four (4) neurons
that correspond to the available actions.

Regarding the selection of the action from the agent, a weighted combination of
the outputs of the two networks is employed as described in Eq. 3.4. Several values
were applied to the parameter µ in the range [0.3, 0.7] during the experimentation, but
without observing any significant effect on the performance. Hence this parameter is
set to µ = 0.5 in order to provide equality between the two networks.

Two copies of the original DQN and DDQN networks are used as target networks
to improve training stability. During the learning process, these twin nets update their
weights every five (5) episodes with the current weights of the original networks (hard
update). Furthermore, both networks use batches of size 2500 while two experience
replay buffers are maintained, one for every network, of size 15000 each. The training
is performed at the end of each episode and the optimization is being conducted by
Adam optimizer.

Additionally, an ϵ-greedy exploration-exploitation scheme is used, which consists
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of 15000 episodes for training in the case of Artificial and Real_15 scenarios, com-
posed of 13000 episodes for exploration and another 2000 episodes for exploitation.
Due to the higher complexity of the Real_30 scenario, more exploration is needed,
hence 20000 learning episodes are considered (18000 for exploration and 2000 for
exploitation). The probability of ϵ is initially set to 0.9 and is diminished by 0.01
every 150 steps until it reaches a threshold where it is set to zero (0) thereafter. The
learning rate was set to η = 0.001 and the discount factor γ = 0.99.

The episodes are considered terminated when all vehicles have left the traffic
map. It must be noted that during training, when two or more vehicles collide, the
episode does not terminate, but rather the involved vehicles are removed from the
road network. This allows the method to gather more experiences for the replay
buffers and reduce the number of training episodes.

The following three (3) metrics are used for measuring the performance of the
proposed method:

• Average traveling time: mean time (in s) for the vehicles to reach their desti-
nations

• Average velocity: mean velocity (in m/s) of all vehicles

• Collisions: total number of collisions during the episode

3.5.4 Results and robustness analysis

A comparison between the proposed method and two (2) car-following models of
SUMO is provided in this section. Specifically, the proposed method’s performance
is evaluated against the default Krauss model and the well-known Intelligent Driver
Model (IDM). The Krauss model is a spatial continuous car-following model, where
the examined vehicle keeps a certain distance with the leading vehicle by computing
a safe velocity between them, while the IDM aims at reaching the desired velocity
by accelerating or braking depending on the current vehicle’s velocity, as well as the
position and velocity of the front vehicle.

Table 3.2 presents the comparative results between the three (3) methods applied
to three (3) scenarios in terms of the statistics (mean value and standard deviation)
of the evaluation metrics: average traveling time, average velocity and number of collisions.
The proposed multi-agent approach outperforms significantly the other two models
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Table 3.2: Comparative statistical results of the proposed method against two SUMO’s
default models in terms of three criteria.

Scenarios Our method Krauss IDM
Average traveling time (sec)

Artificial 15.87 ± 0.13 57.83 ± 0.78 66.92 ± 0.65

Real_15 34.40 ± 0.56 63.61 ± 2.61 101.08 ± 0.75

Real_30 35.15 ± 0.90 66.68 ± 0.32 110.33 ± 0.85

Average velocity (m/sec)
Artificial 26.61 ± 0.24 13.40 ± 0.99 9.62 ± 1.97

Real_15 25.82 ± 0.53 20.34 ± 1.26 13.02 ± 0.30

Real_30 25.18 ± 0.80 19.18 ± 0.34 11.97 ± 0.28

Number of collisions

Artificial 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Real_15 0.00 ± 0.00 3.00 ± 1.23 1.00 ± 0.71

Real_30 0.00 ± 0.00 6.60 ± 0.54 1.40 ± 0.55

in all cases. It always manages to solve successfully the scenarios obtaining solutions
with no collisions, in contrast to the rest two methods which fail in both real-world
scenarios. Moreover, it provides qualitatively better solutions and improved policies.
The reported results on average traveling time and velocity show the efficiency of the
method to offer much faster navigation and boost the highest velocity. This also
demonstrates the effectiveness of the proposed reward function and the compact Q-
function approximation scheme.

Moreover, in Fig. 3.5 the learning curves of the proposed method are provided,
as received during training in terms of the average traveling time. The linearity of
these curves proves the effectiveness of the learning process maintaining enhanced
convergence capabilities without the existence of plateau phenomena.

Additional experiments were made in an attempt to further study the perspective
of the proposed method to successfully offer knowledge reuse for autonomous navi-
gating tasks, and transfer of the learned policies in unknown scenarios that share the
same properties as the original trained ones.

The proposed reuse of knowledge is found on the learned policies of the route-
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Figure 3.5: The obtained learning curves of the proposed method during training in
terms of mean values of the average traveling time.

Table 3.3: Description of the unknown scenarios used for knowledge reusing.

Scenario # vehicles Duration
(hours)

Test1 900 (684 cars, 144 buses, 72 trucks) 1

Test2 1800 (1368 cars, 288 buses, 144 trucks) 2

Test3 4500 (3420 cars, 720 buses, 360 trucks) 5

agents. In total, fifteen (15) copies of the real scenario (Fig. 3.3) with three (3) degrees
of complexity (i.e., number of vehicles and duration) are generated. The goal is to
evaluate the effectiveness of the learned policies of route-agents to more demanding
and realistic cases and to measure their generalization capabilities. Table 3.3 gives
the detailed characteristics of these generated scenarios.

A final set of experiments was conducted on the learned policies that have been
discovered in the Real_15 and Real_30 scenarios. Note that there are available ten
(10) different sets of policies for each training scenario, since five (5) simulated copies
of them were used during the training of the multi-agent system. Thus, every test
scenario is evaluated using 5(copies) × 10(policies) = 50 reuses of the discovered
driving policies. Again, the same results were also obtained using the car-following
models provided by the SUMO environment for comparative purposes. The statistical
results are summarized in Table 3.4.

In all cases, the knowledge reuse of the trained policies was very successful since:
(a) no collision occurred, and (b) the average traveling time and velocity obtained on
the training scenarios (Table 3.2) are maintained. This is a very important result
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Table 3.4: Driving behavior evaluation of the learned policies to unknown scenarios.

Scenario
Real_15
policies

Real_30
policies

Krauss IDM

Average traveling time (sec)
Test1 34.81 ± 0.44 34.49 ± 0.14 68.24 ± 0.22 113.47 ± 0.33

Test2 36.12 ± 0.11 36.01 ± 0.08 71.53 ± 0.96 117.62 ± 0.81

Test3 37.22 ± 0.92 37.02 ± 0.84 76.19 ± 0.87 123.44 ± 0.90

Average velocity (m/sec)
Test1 25.66 ± 0.27 26.00 ± 0.41 18.14 ± 0.39 11.26 ± 0.74

Test2 25.23 ± 0.28 25.31 ± 0.31 17.52 ± 0.55 10.47 ± 0.48

Test3 25.02 ± 0.73 25.12 ± 0.69 16.94 ± 0.97 9.69 ± 0.73

Number of collisions

Test1 0.00 ± 0.00 0.00 ± 0.00 9.20 ± 1.42 5.03 ± 1.18

Test2 0.00 ± 0.00 0.00 ± 0.00 10.04 ± 1.03 5.11 ± 1.44

Test3 0.00 ± 0.00 0.00 ± 0.00 11.73 ± 1.98 7.41 ± 1.17

that shows the level of stability and the generalization capabilities that the proposed
deep multi-agent framework offers. According to the results, both SUMO embedded
methods were unable to successfully treat such complex scenarios as they produced
solutions with collisions.

As it was expected, the policies provided by the Real_30 (30min duration) scenario
gave slightly better results since they were built using more training examples and
traffic flow cases. However, the performance measured by the Real_15 policies which is
a training scenario with only 15 minutes of traffic, does not lag behind its competitor,
and seems adequate to be successfully transferred and reused.

3.6 Summary

This chapter addressed the problem of autonomous navigation of vehicles in traffic
networks with road segments and unsignalized intersections using a deep MARL
approach. A combinatorial scheme was implemented for the approximation of the
Q-function, consisting of two neural networks structures for efficiently treating the
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intelligent agents’ state space. Among the novelties of this study is the introduction
of the route-agents and the creation of a predictive collision matrix on the traffic flow
of intersections that allows agents to cooperate and learn joint policies to avoid col-
lisions. Initial simulation results are encouraging, showing great performance even
in real-world urban road networks. Finally, successful knowledge reuse and transfer
of learned policies determines the ability of the proposed method to easily adapt to
unknown traffic environments and to offer flexible solutions with increased general-
ization.
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CHAPTER 4

ROBUST TRAFFIC MANAGEMENT IN COMPLEX
URBAN ROAD NETWORKS VIA MULTI-AGENT

REINFORCEMENT LEARNING

4.1 Overview

4.2 Multi‐route‐agent deep reinforcement learning for Traffic Congestion Management

4.3 Simulation results

4.4 Knowledge reuse effect of the proposed multi‐agent reinforcement learning system

4.5 Summary

In this chapter, an extension of the methodology introduced in Chapter 3 is pre-sented, addressing the problem of autonomously navigating vehicles in large-scale
urban road networks with unsignalized intersections. Building upon the founda-
tions laid out in the previous Chapter, this chapter presents novel advancements and
explores additional aspects of the problem, expanding the scope and depth of the
analysis.

In this study, the exploration continues introducing a richer state space, a diverse
set of actions and an improved reward function. This chapter expands the bound-
aries of applicability by introducing an updated deep MARL method for handling
large-scale road networks and extends the transfer learning framework in unknown
stochastic scenarios.
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Moreover, it aims to address certain limitations that were identified in the previous
chapter, such as the creation of the collision matrix which becomes infeasible in large-
scale road networks. By establishing a new source of predictive information for the
unsignalized intersections, the effectiveness and efficiency of the proposed approach
are enhanced, improving its practicality and robustness.

4.1 Overview

One of the most challenging problems in autonomous driving in urban environments
is to handle intersections and traffic congestion problems as more and more vehicles
appear to the transportation system [68]. The traffic density especially in large cities is
increased and becomes a confusing problem. Consequently it becomes imperative to
exert every possible effort to efficiently regulate traffic flow by developing traffic zones
where vehicles can autonomously navigate through intersections and roundabouts to
reach their destinations. Intersection management, as highlighted in [69, 70], is an
emerging research field and one of the most pressing and complex problems faced
by modern society.

Vehicles are expected to be able to drive autonomously to their destination in urban
areas holding an intelligent behavior for situational awareness, optimal path planning
and control. They will be connected to traffic zones under a centralized guidance
designed in a coordinated fashion [36] in order to allow safety and efficiency while
passing-through intersections [71]. Artificial intelligence constitutes a framework with
tools as leverage for constructing intelligent, autonomous control and decision-making
algorithms in an attempt to provide a more efficient, comfortable and accident-free
traffic system.

The importance of traffic control at road intersections in urban environments
can be reflected by the fact that they account for 40% of driving accidents in the
USA according to the Fatality Analysis Reporting System (FARS) and the National
Automotive Sampling System-General Estimates System (NASS-GES) data [72, 73, 74].
This study focuses on unsignalized (or uncontrolled) intersections, which refer to
traffic intersections lacking traffic signals or signs, where all directions are given equal
priority. Within these areas, vehicles must effectively manage their acceleration and
determine how to navigate the intersections without creating collisions or deadlocks.
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A key challenge lies in implementing cooperative driving strategies to address traffic
conflicts and ensure smooth traffic flow [75, 76].

Many methods for controlling traffic intersections have been proposed over the
last years that utilize traffic lights. It is believed that “without traffic lights dense traffic
would come from all sites of the road and would block the intersection without letting any
vehicle pass through” [77]. However, effectively managing traffic flow in the absence of
traffic lights or other traffic signs poses a significant challenge, and it serves as the
primary objective of this study. Within this research, each vehicle is assumed to follow
a pre-defined path or route, which is part of a traffic zone comprising interconnected
roads and intersections. The main goal is to develop efficient driving profiles for the
vehicles by controlling their acceleration along their designated routes, ensuring a
successful and safe arrival at their respective destinations.

Thus, the problem of autonomous navigation is decomposed into a problem of
coordinating vehicles on pre-defined paths where variable levels of acceleration are
imposed as actions along each path. The main challenge here is to construct traffic
control zone policies that provide autonomous navigation behaviors in a way of
enabling easy adaptability and transferability.

One of the key challenges when applying MAS to a task is to alleviate the burden
of learning and allow the exploitation, sharing and reusing of the knowledge generated
throughout decision-making process [78, 79]. Transfer learning focuses on storing
obtained knowledge from the solution of one problem and applying it to a different
but related problem. It can significantly reduce learning time and create more solid
intelligent agents. Knowledge reuse becomes more and more a core technology in
agent-based learning systems where an agent can establish relationships with other agents
that allow implicit or explicit knowledge sharing, and integrate the received information with
its previous experience to improve learning [80].

In this study, the problem of autonomous navigation of multiple vehicles in
unsignalized large-scale urban road networks is formulated as a MAMDP based on
a collaborative RL framework for learning agents’ policies and supporting agents to
reconcile conflicting decisions [17, 81]. The main contributions of this study can be
summarized as follows:

• It considers as agents the possible routes that the vehicles can follow within
a controlled traffic zone. The definition of route-agents (introduced in Chapter
3) has a twofold advantage: Firstly, it provides an efficient solution in MARL
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schemes by mitigating the complexity and constraints associated with treating
each vehicle as an independent agent. As a consequence, it positively impacts the
convergence and quality of the agents’ learning process, since multiple copies
of the same agent (representing vehicles following the same route) can be ad-
dressed simultaneously and in a parallel fashion at each time step. Secondly,
it allows transfer learning and reuse of agents’ policies in handling unknown
scenarios with multiple vehicles and increased stochasticity. As experimental
results have shown, the proposed method manages to establish efficient knowl-
edge reusing and to produce robust agent policies with generalization capabili-
ties over unknown scenarios.

• It introduces a collision term that allows the cooperation between vehicles. This
term serves as a prediction of whether or not a vehicle will potentially collide
with other vehicles at the next intersection it visits. All vehicles that are expected
to participate in the same collision need to coordinate their strategies and to
execute their tasks jointly and cooperatively. As experiments have shown this
information plays a crucial role to the performance of the proposed method and
increases the quality of the learned policies.

• An efficient reward function is proposed that aims at constructing agents’ poli-
cies with optimal autonomous driving behaviors. Experiments have shown that
the proposed method achieves significantly less traveling time in comparison
with the standard methodology which is accompanied with the SUMO simula-
tion environment and an independent MARL framework that does not consider
the collision term.

• It evaluates the proposed method on various simulated traffic scenarios consid-
ering complex urban road networks with unsignalized intersections and diver-
sity in the characteristics of the vehicles. According to the results, the proposed
method has the capability of successfully resolving traffic conflicts and conges-
tion problems.

• Finally, it provides a way to reuse the learned route-agents’ policies in unknown,
stochastic environments. The results indicate that the learned policies can re-
solve the congestion problems in the unknown scenarios, and produce solutions
comparable to the training cases.
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This chapter continues with the proposed multi-agent deep reinforcement learning
scheme which is described in Section 4.2, while in Section 4.3 the evaluation cases
and the simulated results for measuring the efficiency of our method are presented,
considering both artificial and real scenarios. Finally, in Section 4.5 the conclusions
are drawn. It must be noted that the related work and the problem formulation
remain the same as in Chapter 3.

4.2 Multi‐route‐agent deep reinforcement learning for Traffic Con‐

gestion Management

The aim of this study is to efficiently control the vehicles’ acceleration so as to move
them safely (avoiding collisions) and efficiently (minimizing traveling time with high
velocity and fuel economy) to their destination. This task is formulated as a MAMDP
that constitutes an efficient mathematical framework for sequential decision mak-
ing problems in a MAS. The full description of the MAMDP framework has been
presented in Chapter 2.2.5.

It must be noticed that handling simultaneously multiple copies of the same route-
agent (i.e. vehicles that follow the same path) offers more flexibility to the learning
process without affecting the reasoning abilities and the decision making of each
agent. Note also that the route-agents are vehicle-type-specific, meaning that they
are specialized to the vehicle’s physical properties. Specifically, two types of vehicles
are considered: (a) passenger cars and (b) buses and trucks, thus two (2) kind of
route-agents are created for each route.

In the subsequent sections, we describe the state space, action space and the pro-
posed reward function for the aforementioned problem.

4.2.1 Partially observable state space

Following the proposed route-agent profiling scheme, every vehicle before being
served performs an agent identification process, where a specific route-agent under-
takes its driving behavior and guides it to its destination.

At each time step, several vehicle sensing information can be extracted such as
position, velocity, distance from the next visited intersection’s center (inter_dist), and
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so on. Based on the previous information, the time that it would take for a vehicle
to reach the center of the next visited intersection (inter_time) can be calculated
according to the following rule:

inter_time = inter_dist
current_velocity (4.1)

The latter quantity allows to predict whether or not two or more vehicles will
collide while crossing the same intersection. It must be noted that all processing is
handled in a centralized fashion, where each intersection keeps a dedicated controller
that collects and distributes these predictions to all participants.

In this study, a continuous state space for describing vehicles is designed. It consists
of the following quantities:

• Velocity of the ego vehicle (continuous value) that has a maximum allowed value.

• Position of the ego vehicle along the lane it traverses.

• Velocity of the front vehicle. If there isn’t any front vehicle, then the default
value of minus one (-1) is given.

• Distance from the front vehicle, measured as the Euclidean distance between
the two vehicles. Again, if there isn’t any front vehicle, then the default value
of minus one (-1) is given.

• Collision term. This is a binary quantity that provides a prediction whether
or not the ego vehicle is going to collide with other vehicles in the next visited
intersection. It has a key role in the proposed approach as it allows the cooper-
ation among vehicles. This is calculated by comparing the inter_time quantity
of Eq. 4.1 between all vehicles that are moving towards the same intersection.
If there are vehicles with inter_time values that differ from the inter_time of
the ego vehicle by a small threshold, the collision term of the ego vehicle will be
set to one (1). This means that it is expected to participate in a collision. In this
experimental study the above threshold value is set to 1.5 s. Note that either
greater, or lower value makes this feature of less importance since it corresponds
to either frequent or rare collisions at intersections, respectively.

• Density term that shows the number of vehicles, that the ego vehicle is predicted
to collide with at the next intersection. It is another predictive quantity that
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helps at the coordination of the vehicles approaching an intersection, and it
is normalized by dividing with the number of incoming lanes of the specific
intersection.

Figure 4.1: An example of how the collision term is calculated.

Figure 4.1 gives an example of the collision term’s computation. In particular
it presents a snapshot of the SUMO simulator where four vehicles move towards
the same intersection. According to their current velocities and distances from the
intersection’s center, it is estimated that both the pink (up right) and the green (down
right) vehicles will collide since their inter_time quantity differs less than 1.5 s. Thus,
their collision term will become one (1). On the other hand the other two (2) vehicles,
blue (down left) and yellow (up left), are not expected to interfere with any vehicle
and therefore their collision term will be set to zero (0).

To sum up, the agent obtains two kind of information for the corresponding
vehicle: (a) its current velocity and position, distance from the front vehicle and
velocity of the front vehicle (individual information), as well as (b) a prediction of the
collision status in the upcoming intersection (predicitve information):

s = [vel, pos, fveh_dist, fveh_vel, col_term, density] (4.2)
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Table 4.1: Typical levels of acceleration for various vehicle types.

Vehicle type DecelL (m/s2) DecelM (m/s2) AccelM (m/s2) AccelL (m/s2)

passenger cars −5 -2.5 1.5 3

buses & trucks −4 -2 0.75 1.5

4.2.2 Action space

When a vehicle follows a pre-defined path, the corresponding route-agent must con-
trol its acceleration so as to reach its destination safely. Thus, the vehicle’s acceleration
plays the role of the action and the task of autonomous navigation is to perform a
sequence of actions in order to reach its destination in an optimal way. In the present
work, five (5) levels of acceleration are considered (two values for deceleration and
another two for acceleration) depending on the type of vehicle:

A = {DecelL, DecelM , Zero, AccelM , AccelL}

Table 4.1 presents the values of acceleration compatible per vehicle type as pro-
vided by the SUMO simulator.

4.2.3 Instantaneous and future reward function

The reward function provides an evaluation of how good is the selected action based
on the current vehicle’s state. In this study an efficient reward function is designed that
aims at eliminating the collisions and minimizing the traveling time among vehicles.

The computation of the reward function initially examines whether or not the
vehicle meets a terminal state, i.e. either reaches its destination or collides with other
vehicles. In this case the agent receives a positive (success for finding goal) or negative
(punishment for collision) constant reward L. It must be noted that our method did
not show strong sensitivity to the choice of the reward parameter L during our
experimental study. The following equation describes the main body of the reward
function:

R(s, a) =


+L , if it reaches goal
−L , if it collides

r(s, a) , otherwise

(4.3)

In case of no terminal states, the reward function r(s, a) depends mainly on two
environmental features that can be observed: the collision term (col_term) and the
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actual distance from the front vehicle (fveh_dist). More specifically, there are two
major cases:

• It is estimated that the vehicle will not participate in any collision at the next
visited intersection (col_term = 0), according to the collision term. Then,

– if the distance from the front vehicle is greater than a safety distance thresh-
old value (fveh_dist > safe_dist), the vehicle will receive a positive reward
in a manner analogous to its velocity so as to promote the higher velocities.
This is described by the following rule:

r(s, a) = f(v) =
vel

velmax
, (4.4)

that normalizes the velocity to [0, 1], where velmax indicates the maximum
allowed velocity. Note that the value of safe_dist threshold varies according
to the road length

– if the front vehicle is nearby, fveh_dist < safe_dist, a negative reward is
given that depends on both the normalized distance from the front vehicle
(f(d)) and its current normalized velocity (f(v)). This is formulated as
follows:

r(s, a) = −(c1 + f(v)) ∗ f(d)

= −(c1 +
vel

velmax
) ∗ safe_dist
min(fveh_dist, safe_dist)

(4.5)

where c1 is a positive constant that takes a small value (it was set to c1 = 0.2

in all experiments).

• It is estimated that the vehicle is going to participate in a collision at the next
visited intersection (col_term = 1), based on the collision term. Then, a negative
reward will be received depending on the distance from the front vehicle:

– if no other vehicle is in front (fveh_dist > safe_dist), then the received re-
ward depends only on its velocity in a way of discouraging it from reaching
the intersection quickly. This can be formulated as:

r(s, a) = −c2 − f(v) = −(c2 +
vel

velmax
) (4.6)

where c2 is a positive constant equal to 5
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– if there is another vehicle in front at a close distance (fveh_dist < safe_dist),
the reward depends on both its velocity and the distance from the front
vehicle, as given by:

r(s, a) = −(c3 + f(v)) ∗ f(d)

= −(c3 +
vel

velmax
) ∗ safe_dist
min(fveh_dist, safe_dist)

(4.7)

where c3 is a positive constant equal to 0.4.

A last issue that must be noted is about the role of the three constants (c1, c2, c3)
in the above three equations (Eqs. 4.5-4.7) of the reward function. Obviously both
equations 4.5, 4.7 have the same formulation since they refer to the case where
there is another vehicle in close distance. They differ only on the value of their
constant parameter: it is more important (c3 > c1) when the vehicle is also predicted
to participate in a collision. On the other hand, the prediction of a collision, but
without a vehicle in front, leads to a negative reward (Eq. 4.6) with an extra penalty
denoted by the constant parameter c2.

4.2.4 Algorithmic description

The proposed MAS introduces an efficient collaborative framework with two (2) main
focuses. Firstly, it considers route-agents, enabling vehicles that follow the same route
to cooperate in constructing an optimal shared policy. Secondly, it incorporates the
collision term feature in the state, fostering cooperation among vehicles from different
route-agents to avoid collisions and safely reach their destinations.

In summary, the proposed MARL scheme provides multiple advantages. It enables
efficient management of large scale scenarios involving diverse types of vehicles, al-
lowing for cooperation among them to prevent collisions at intersections. The scheme
also enhances learning efficiency by leveraging the simultaneous use of multiple vehi-
cles following the same route to train the corresponding agent. Finally, the constructed
policies demonstrate robustness, and the scheme achieves faster convergence.

The overall scheme can be summarized in Algorithm 6.

69



Algorithm 6: Multi-agent DDQN for autonomous navigation in large-scale
urban road networks
Input: number of iterations N , learning rate η, discount factor γ, episodes
until update of target network Nu, scenario duration T
Create two DDQN networks (evaluation and target) for every route-agent
Initialize a replay buffer for every route-agent
for i← 1 to N do

while t < T do
for every vehicle i found currently in the traffic zone do

Identify the corresponding route-agent j
Obtain its state si,t (Eq. 4.2)
Choose an action ai,t following an ϵ-greedy strategy
Move into the next state si,t+1 and receive a reward (Eq. 4.3)
Save the experience into the replay buffer of the corresponding
DDQN route-agent

Update every route-agent’s DDQN evaluation main using batches
sampled from the replay buffer

Every Nu episodes update the target network
Store the learned route-agents’ policies

4.3 Simulation results

4.3.1 Implementation details

The proposed method, that will be mentioned from now on as col-MARL, was eval-
uated on several traffic scenarios of varying difficulty that they all concern road net-
works with unsignalized intersections. For each experimental case, multiple copies
with random traffic conditions are created using the SUMO tools for obtaining the
routes of the vehicles. Every copy has the same number of vehicles, but differs on the
route plans. Moreover, the arrival rate of the vehicles was considered to be constant
and equal to four (4) seconds in the case of the artificial scenarios, however, in the
real scenarios variable arrival rates were used to test the robustness of the proposed
method in more complex environments. Finally, the maximum velocity is set 40 m/s

and an initial velocity of 10 m/s is applied to all vehicles entering the map.
For the Q-function approximation a DRL network is employed using the DDQN
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algorithm, which consists of a main and a target network. The input state is repre-
sented as a vector of size six (6), capturing the individual and predictive information
about the ego vehicle, and is connected to a single hidden layer with 128 nodes with
hyperbolic tangent (tanh) activation function. This layer served as an intermediate
representation, allowing the network to learn complex relationships between the in-
put state and the desired actions. The output layer of the network consisted of five
(5) nodes, corresponding to the available levels of acceleration.

During the learning process, the weights of the target network are updated every
five (5) episodes with the current weights of the main network. Furthermore, the
batch size was set to 2500 samples drawn from an replay buffer containing 25000
samples. The training is performed at the end of each episode with learning rate
equal to 0.001 by using the Adam optimizer.

An ϵ-greedy exploration-exploitation strategy is proposed, where the probability is
initialized to ϵ = 0.9 and is gradually reduced at constant number of episodes. When
ϵ becomes zero the exploitation phase begins. Moreover, in case of collision during
the training process, the participating vehicles are removed from the traffic zone and
the learning continues with the remaining vehicles. As experiments have shown this
is beneficial for the optimization process.

The proposed col-MARL is compared against two methods:

• An independent MARL (i-MARL) framework where each agent learns its own
policy independently. This approach considers only the individual information
without taking into account the centralized terms, collision and density, as part of
the state space. Furthermore, the reward function has been properly modified
and considers only the distance from the front vehicle (Eqs. 3.2, 3.3).

• The Intelligent Driver Model (IDM) [82] which provides a strategy used in SUMO
environment for intelligent-vehicle simulations and is considered to be one of
the simplest and accident-free models producing realistic acceleration profiles.
IDM’s policy aims to reach the desired velocity by accelerating or braking de-
pending on: (a) the current vehicle’s velocity, and (b) the position and velocity
of the leading vehicle immediately ahead. It must be noted that in order to
make a fair comparison, the IDM shares the same safety settings as the pro-
posed method (i.e., usnignalized intersections, no right-way rule, and so on).

Additionally, in all experiments a deterministic rule is utilized for all vehicles
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(a) one-intersection (b) two-intersections (c) four-intersections

Figure 4.2: Snapshots of the SUMO simulator of three examples of traffic networks
including different number of unsignalized intersections.

crossing their last road segment before exiting the traffic zone, where there is no
longer any intersection in front of them. In that case, the maximum acceleration is
applied until they reach their maximum velocity. As the experiments have shown,
this is beneficial for the learning process and the quality of the produced driving
policies.

At the end of the episode several useful statistics related to the vehicles’ perfor-
mance can be calculated, such as:

• Average traveling time: total time (in s) it takes for the vehicles to reach their
destinations on average.

• Average velocity: mean velocity (in m/s) of all vehicles.

• Average fuel consumption: fuels (in ml/s) that were consumed by each vehicle
on average.

• Collisions: number of collisions during the episode.

These quantities will be used next as evaluation metrics during the experimental
study for measuring the performance of the proposed method.

4.3.2 Experiments with artificial road networks

The first series of experiments was conducted on three (3) artificial scenarios shown in
Fig. 4.2 that consist of one (Sc1), two (Sc2) and four (Sc4) intersections, respectively.
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Table 4.2: Description of three artificial scenarios used in the experimental study

Scenario # vehicles Duration (sec) # roads # routes (agents)
Sc1 150 600 8 12

Sc2 300 1200 14 24

Sc4 1000 4000 24 32

Table 4.3: Comparative results in three artificial scenarios.

Scenario
Traveling time (sec) Velocity (m/s) Fuel consumption (ml/s)

col‐MARL i‐MARL IDM col‐MARL i‐MARL IDM col‐MARL i‐MARL IDM

Sc1 13.9± 0.1
15.1± 0.2

success 100%
17.8± 0.1 25.0± 0.1 23.6± 0.1 16.8± 0.2 125.0± 1.7 126.7± 2.5 129.4± 1.2

Sc2 17.8± 0.2
18.9± 0.4

success 70%
21.8± 0.3 29.4± 0.3 28.1± 0.1 23.6± 0.1 143.0± 0.5 143.7± 4.8 149.9± 3.9

Sc4 20.9± 0.2
22.1± 0.6

success 40%
24.2± 0.5 30.8± 0.4 28.7± 0.6 24.2± 0.4 155.7± 1.7 159.1± 3.3 168.8± 3.9

Their characteristics are shown in Table 4.2, and the results are presented in Table 4.3,
in terms of the statistics (mean value and standard deviation) of three (3) evaluation
metrics that have been calculated by 20 individual experiments per type of scenario.

According to the results, one can observe the capability of the proposed col-MARL
method to construct efficient policies and resolve the scenarios with higher mean ve-
locities and less traveling time compared to the other methods. This also demonstrates
the effectiveness of the proposed reward to boost higher velocities (whenever safe).
Specifically, in the difficult scenario case consisting of four (4) intersections (Sc4), the
mean value of velocity of all vehicles is higher (30.8 m/s) in comparison to the one
achieved by the i-MARL’s policies (28.7 m/s) and the SUMO’s IDM (24.2 m/s). As a
result, the average traveling time obtained by the proposed method is quite improved.

The weakness of the i-MARL approach (non-collaborative version) is its inability
to generate successful policies and its failure to resolve all collisions, especially in
complex scenarios. It must be noted that Table 4.3 reports only the statistics for the
successfully resolved cases for the i-MARL method. The results are in agreement
with our initial belief about the significant role that the collision term plays to the
performance of the proposed method and to the development of a collaborative multi-
agent environment. Finally, as it can be observed, the proposed method is able to
achieve improved average fuel consumption in comparison to the SUMO’s IDM.
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4.3.3 Experiments with real urban road networks

(a) SUMO Map (b) Original Map from Google Maps

Figure 4.3: Snapshots from the SUMO simulator and Google Maps of the real scenario
in Florida.

Further evaluations of the proposed method were conducted using real-world
scenarios. For this purpose, it was selected a traffic domain located in Pembroke Pines,
Florida, and specifically the intersection of Pines Boulevard and South Flamingo Road,
as shown in Figure 4.3. This road network consists of a main intersection along with
a smaller one in the northern part of the map. There are a total of 12 roads and
20 route-agents. Each road is equipped with a minimum of three (3) lanes, with the
main intersection having a maximum of seven (7) lanes. This traffic domain was
specifically chosen for its level of difficulty, as it is recognized as one of the most
dangerous intersections in the United States 1.

The original map was used to create three (3) different types of noisy scenarios that
differ on the level of variability over the arrival rate of the incoming vehicles. More
specifically, by assuming an additive zero-mean Gaussian noise on the arrival rate of
individual vehicles, ten (10) copies of each one of the following types of scenario were
generated:

• CR scenario with constant arrival rate (1 vehicle / 4s)
1https://www.chaliklaw.com/news/most-dangerous-intersections-in-broward-county/
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• MR scenario with medium variable arrival rate using a Gaussian noise of stan-
dard deviation equal to 0.5

• LR scenario with large variable arrival rate using a Gaussian noise of standard
deviation equal to 1.0

In this series of experiments three different types of vehicles are considered: “pas-
senger cars”, “buses” and “trucks”, with a ratio of 75:15:10, that have different char-
acteristics (length, acceleration, deceleration, etc.). During training, the duration of
the road traffic scenarios was 20 minutes and approximately 300 vehicles were used
at every scenario case.

Table 4.4: Comparative results of the proposed method and the SUMO’s IDM on
three noisy versions of the real scenario shown in Fig. 4.3.

Scenario
Traveling time (sec) Velocity (m/s)

col‐MARL IDM col‐MARL IDM

CR 51.5± 0.4
54.1± 0.8

success 80%
30.2± 0.2 26.4± 0.9

MR 50.8± 0.3
53.8± 0.7

success 60%
31.0± 0.3 26.5± 0.2

LR 49.2± 0.3
54.0± 0.0

success 10%
31.4± 0.2 26.2± 0.0

The results using the evaluation metrics of average traveling time, average velocity
and success rate are presented in Table 4.4 for the proposed col-MARL method and the
SUMO’s IDM. No results from the i-MARL method are shown since it was unable to
successfully resolve any scenario case. It is interesting to observe the capability of the
col-MARL method to successfully resolve all types of scenarios without being affected
by the level of noise. On the other hand, IDM seems to reveal weak performance in
environments with variable arrival time of vehicles. Moreover, the existence of more
diversity in the characteristic of vehicles (different types, variable number of lanes)
seems to not affect the proposed framework to produce efficient policies and flexible
driving behaviors.

In Fig. 4.4, two diagrams are provided that illustrate the average velocity and
acceleration (agent’s action) of vehicles following a specific route with one intersec-
tion, based on the learned policy of the corresponding route-agent in Florida’s map
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(a) Avg. velocity Avg. acceleration (b)

Figure 4.4: Average velocity and acceleration (action) of all vehicles that follow a
specific route as obtained from the learned policy. The valleys shows the driving
behavior before and after the intersection.

(Fig. 4.3). The observed pattern in both signals shows a valley, indicating the ve-
hicles’ arrival at the intersection. At this point, the agent selects appropriate levels
of deceleration as actions according to its learned policy. As a result, the vehicles’
velocity decreases as they approach the intersection, as depicted in the left diagram
of Fig. 4.4(a). This strategy ensures safe traversal of vehicles by avoiding collisions
and significantly enhances the traffic throughput.

4.3.4 Experiments with complex urban road networks

Additional experiments were made by evaluating the performance and the scalability
of the proposed method to large scale scenarios. For that purpose, one of the busiest
traffic areas in Athens, Greece (Omonoia square - city center), was chosen. Figure 4.5
illustrates a snapshot of the SUMO simulator along with the original map taken by
the Google maps. The road network consists of over 60 intersections of various types
(2-way, 3-way and 4-way), 190 roads and nearly 150 route-agents. Each road is of
variable length and contains from one (1) to four (4) lanes.

An important feature of the SUMO simulator that adds extra stochasticity to the
scenarios is the hard-coded lane-change controller. According to this, the vehicles are
allowed to change lanes when SUMO considers it appropriate, without affecting their
pre-defined path. Finally, the vehicles can not exceed a maximum velocity of 30 m/s
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(a) SUMO Map (b) Original Map from Google Maps

Figure 4.5: Snapshots from the SUMO simulator and Google maps of the real scenario
around the area of Omonoia Square, Athens.

that obliges with the city rules.
Two versions of the scenario were designed in terms of the arrival rate of vehicles

variability:

• LSconst scenario with constant arrival rate of vehicles, where the“passenger cars”,
“buses” and “trucks” appear every 4/10/15 seconds, respectively.

• LSnoisy scenario using a zero-mean Gaussian noise with standard deviation equal
to 0.2 on the arrival rate of all vehicles.

Both road traffic scenarios had a duration of 30 minutes, involving a total of 750
vehicles. The distribution of vehicle types was as follows: 75% passenger cars, 15%
buses, and 10% trucks. To ensure robust evaluation, ten (10) different copies of each
scenario were generated and assessed.

Table 4.5 presents the obtained statistical results according to three (3) evaluation
metrics: average traveling time, average velocity and success rate. SUMO’s IDM was unable
to resolve both scenarios in almost all cases. Also, results from the i-MARL method
are not reported since it was unable to provide solutions without collisions. On the
other hand, the proposed method showed very promising performance in terms of
scalability in networks of high complexity, as it was able to successfully resolve all test
scenarios (100% success), even in situations with variable arrival rate. Furthermore,
the effectiveness of the reward function can be detected on the average velocity column,
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Table 4.5: Comparative results on the large scale scenario of Fig. 4.5

Scenario
Traveling time (sec) Velocity (m/s)

col‐MARL IDM col‐MARL IDM

LSconst 42.6± 0.4
48.1± 0.0

success 10%
24.9± 0.5 19.7± 0.0

LSnoisy 42.3± 0.3
−

success 0%
25.1± 0.4 −

where the results reveal the tendency of the method to serve the vehicles with high
velocities.

4.4 Knowledge reuse effect of the proposed multi‐agent reinforce‐

ment learning system

This section presents the capability of the proposed method to successfully offer
knowledge reuse for autonomous navigation tasks in environments with unsignal-
ized intersections. In this case, knowledge is represented by the learned policies of the
route-agents which can be (re)used on vehicles in unknown environments. Several
copies of the original scenarios were considered that follow the same generation mech-
anism used in the training phase. These copies serve as the unknown scenarios and
are accompanied with increased “number of vehicles” and “duration”, in an attempt
to test the effectiveness of the learned agents’ policies to successfully transferring
knowledge, and to measure their generalization capabilities.

Every test case produced was then evaluated by each one of the learned policies of
route-agents that were produced during the training phase, according to the follow-
ing procedure: Before entering the (unknown) traffic zone, each vehicle chooses the
appropriate route-agent to follow based on its destination path. The selected agents
are then responsible for navigating safely the “acquired” vehicles and appropriately
controlling their acceleration. This is made by employing sequentially the established
agent’s policy to choose the actions that yield the highest expected return given the
current vehicle’s state.

At first, the knowledge reuse was studied in unknown traffic domains using the
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Table 4.6: Description of the evaluation cases utilized for knowledge reusing.

Evaluation case Description #vehicles Duration (sec)

Sc1(500)
One Intersection

500 2000
Sc1(1000) 1000 4000

Sc2(1000)
Two Intersections

1000 4000
Sc2(2000) 2000 8000

Sc4(2000)
Four Intersections

2000 8000
Sc4(5000) 5000 20000

artificial scenarios of Fig. 4.2. In particular, 20 copies for every one of the three (3)
original scenario profiles were generated with variable degree of difficulty: ten (10)
cases with a medium number of vehicles and another ten (10) cases with much larger
number of vehicles (and duration). Their specific characteristics are presented in Table
4.6.

Table 4.7: Comparative statistical results over various evaluation cases using three
evaluation criteria.

Evaluation case
Traveling time (sec) Velocity (m/s) Fuel consumption (ml/s)

col‐MARL IDM col‐MARL IDM col‐MARL IDM
Sc1(500) 13.8± 0.3 18.1± 0.1 25.0± 0.1 23.4± 0.2 125.4± 2.3 130.0± 1.9

Sc1(1000) 13.7± 0.4 17.8± 0.3 25.2± 0.4 23.6± 0.3 125.9± 2.6 129.8± 1.2

Sc2(1000) 18.0± 0.2 22.5± 0.4 29.3± 0.3 27.2± 0.2 142.1± 1.2 149.8± 3.6

Sc2(2000) 17.7± 0.1 22.9± 0.2 29.7± 0.2 26.9± 0.0 143.0± 1.8 150.6± 1.3

Sc4(2000) 20.6± 0.3 24.3± 0.2 31.6± 0.4 28.2± 0.3 155.3± 1.9 169.2± 1.1

Sc4(5000) 20.7± 0.4 24.8± 0.1 31.5± 0.5 27.6± 0.5 154.9± 2.1 171.4± 3.2

Comparative results are shown in Table 4.7 in terms of the statistics (mean value
and standard deviation) of the three (3) evaluation metrics calculated from 10(copies)×
20(learned policies) = 200 trials per evaluation case (test environment).

According to the results, in all cases the episodes were terminated without any
collision showing the capability of the proposed method to efficiently offer knowledge
reuse. It successfully performs transfer learning and maintains its decision-making
policies to unknown environments. This can be seen by comparing the results of
Tables 4.3 and 4.7 concerning the training and the evaluation phases, respectively,
where all measurements have almost the same values. An interesting observation
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Table 4.8: Contingency table analysis of the three types of learned policies found by
the proposed method in the real scenario of Fig. 4.3. The statistical results are taken
using evaluation cases of various level of noise.

Evaluation
policies of CR policies of MR policies of LR IDM

case
Traveling
time (sec)

Velocity
(m/s)

Succ.
(%)

Traveling
time (sec)

Velocity
(m/s)

Succ.
(%)

Traveling
time (sec)

Velocity
(m/s)

Succ.
(%)

Succ.
(%)

CR(1h) 51.6± 0.1 30.4± 0.3 100 50.4± 0.3 30.9± 0.2 100 49.6± 0.3 31.1± 0.4 100 62
MR(1h) 51.4± 0.2 30.0± 0.4 90 50.8± 0.1 30.4± 0.2 100 49.3± 0.1 31.0± 0.1 100 7
LR(1h) 51.3± 0.2 30.0± 0.5 74 50.1± 0.4 30.9± 0.4 92 49.1± 0.3 31.3± 0.2 100 0

concerns its ability to maintain its performance when using scenarios with significantly
larger number of vehicles and duration. As an example, in the obtained results from
the case of traffic networks with four intersections (SC4), both training (1000 vehicles)
and evaluation cases (2000 or 5000 vehicles), support the previous claim.

In comparison with the SUMO’s IDM driving model, the proposed col-MARL
method achieves solutions with significantly increased average velocity and thus lower
traveling time. Notice that the performance of the i-MARL method is not presented,
due to its inability to resolve the scenarios without producing collisions.

Further experiments on knowledge reuse were made using the real scenario of
Fig. 4.3. Following the same procedure as in the case of artificial scenarios, ten (10)
simulated copies of the following types of scenarios were created:

• CR(1h): one (1) hour traffic with constant arrival rate (1 vehicle /4s)

• MR(1h): one (1) hour traffic with medium variable arrival rate of vehicles using
a zero-mean Gaussian additive noise of standard deviation equal to 0.5

• LR(1h): one (1) hour traffic with large variable arrival rate of vehicles using a
zero-mean Gaussian additive noise of standard deviation equal to 1.0

In all cases more than 900 vehicles were generated. Again, different types of vehicles
were considered with the same analogy as in training: 75% “passenger cars”, 15%
“buses”, and 10% “trucks”.

The obtained results are presented in a contingency table design, in Table 4.8. This
shows the performance of the learned policies of the proposed method (10 policies
per case) to the above evaluation cases (10 copies per case). The reason of adopting
this contingency table analysis is to study the sensitivity of the learned policies to the
noise of the arrival time of vehicles in the traffic domain.
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According to the results, the learned policies of the LR scenarios (with large noise
on the arrival rate) showed the best performance, since they managed to successfully
handle all evaluation cases, independently of the level of noise they contained. Com-
paring the results of both Tables 4.4 and 4.8, it can be observed that the values of the
average traveling time and velocity of vehicles were maintained in the same (high) level
as those reached during the training procedure. This is of great importance since it
shows the ability of the proposed MARL scheme to avoid overfitting and to yield
a superior level of generalization to environments with or without the presence of
noise.

On the other hand, the learned policies of medium noise arrival time scenarios
(MR) had only a small failure rate of 10% in tested scenarios of higher noise (LR(1h)),
while all other scenarios of equal or smaller noise were resolved. As it was expected,
the worst performance is being observed on the constant rate learned policies (CR) as
they are unable to generalize well to unknown scenarios with noise. Moreover, IDM’s
performance deteriorated in these experiments as it resolved 62% of the constant
rate cases, while resolving any other type of scenario with additive noise was almost
impossible (7% and 0% success rate, respectively).

Table 4.9: Contingency table analysis of the two types of learned policies found by
the proposed method in the large scale real scenario of Fig. 4.5

Evaluation
policies of LSconst policies of LSnoisy IDM

case
Traveling
time (sec)

Velocity
(m/s)

Succ.
(%)

Traveling
time (sec)

Velocity
(m/s)

Succ.
(%)

Succ.
(%)

LSconst(1h) 43.0± 0.3 24.3± 0.1 100 42.5± 0.2 24.9± 0.3 100 0
LSnoisy(1h) 43.5± 0.5 24.1± 0.3 80 42.6± 0.3 24.9± 0.2 100 0
LSconst(2h) 43.1± 0.2 24.2± 0.2 100 42.5± 0.3 25.0± 0.3 100 0
LSnoisy(2h) 43.3± 0.4 24.1± 0.2 60 42.4± 0.2 25.1± 0.1 100 0

A final set of experiments on knowledge reuse was made using the large scale
real scenario of Fig. 4.5. Ten (10) simulated copies of the following types of scenarios
were created:

• LSconst(1h): one (1) hour traffic with constant arrival rate: “passenger cars”,
“buses” and “trucks” appear every 4/10/15 secs. In total 1500 vehicles were
used.

• LSnoisy(1h): one (1) hour traffic with variable arrival rate of vehicles using a
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zero-mean Gaussian noise with standard deviation equal to 0.2. In total 1500
vehicles were used.

• LSconst(2h): two (2) hour traffic with constant arrival rate (4/10/15) in all vehicles.
In total 3000 vehicles were used.

• LSnoisy(2h): two (2) hour traffic with variable arrival rate of vehicles using a
zero-mean Gaussian noise with standard deviation equal to 0.2. In total 3000
vehicles were used.

The performance of the learned policies of the proposed method (10 policies per
case) to the unknown scenarios is presented in Table 4.9. Based on the statisti-
cal results, the learned “noisy” policies had more generalization properties as they
successfully resolved all cases without collisions. As it was expected, the learned “con-
stant” policies failed in some of the noisy cases since training scenarios did not cover
noisy examples. On the other hand, IDM completely failed in all evaluation cases. It
is interesting to observe, once again, that even in such demanding evaluation cases the
reused policies did not decline much from the training solutions in terms of average
traveling time and average velocity.

Supplementary results of the proposed method can be found in a related google
drive address 2, where several simulation runs on both real-word scenarios are pre-
sented under various traffic cases using SUMO GUI.

4.5 Summary

This chapter proposes a deep MARL approach for addressing autonomous vehicles’
navigation in traffic environments with unsignalized intersections. A novel perspective
to the problem is presented by treating the routes as the agents, while the effectiveness
of the proposed method is assessed in several large-scale real-world traffic scenarios
of varying difficulty containing large number of vehicles and variable level of noise.
The results were very promising as the proposed method achieved both its objectives:
(a) navigate safely all the vehicles to their destinations avoiding collisions, and (b)
minimize the traveling time.

2https://drive.google.com/drive/folders/1qJ2H1QFfuF9QtHrPMJty1yof97H1kVjY
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The proposed approach is compared against SUMO’s IDM car-following model
and an i-MARL framework, where the experimental analysis demonstrated that it
out-performs both since it manages to drastically reduce the traveling time while
ensuring safety.

Ultimately, a way of transferring the obtained agents’ knowledge to new agents in
unknown traffic environments is displayed. The learned policies are tested to more
demanding cases of traffic, and it is confirmed that they are able to resolve them
without the need of additional training. Moreover, the results from knowledge reuse
indicate that the solutions it provides are of high quality and comparable to the results
obtained during training.
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CHAPTER 5

HIERARCHICAL MULTI-AGENT
REINFORCEMENT LEARNING FOR MANAGING

AIR TRAFFIC CONGESTION

5.1 Overview

5.2 Related work

5.3 The demand and capacity balance problem

5.4 Multi‐agent reinforcement learning structures for ATM

5.5 Hierarchical multi‐agent reinforcement learning for ATM

5.6 Experimental results

5.7 Summary

This chapter studies the resolution of imbalances between demand and capacity in
the air traffic management (ATM) domain. The problem is initially formulated

as collaborative MAMDP, where several MARL methods are provided. Then, an ex-
tension through the prism of hierarchical reinforcement learning (HRL) is presented,
where a method leveraging state abstraction is proposed.

The proposed approach is evaluated on a real-world scenario containing flights
from Barcelona to Madrid and is compared against alternative hierarchical schemes.
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The obtained results show the robustness of the hierarchical framework providing
solutions that eliminate the congestion problems in the air traffic domain.

5.1 Overview

In a multi-agent environment, congestion problems arise when limited resources need
to be shared among multiple agents simultaneously. Such problems are prevalent
in various domains of our modern world and greatly affect our businesses, daily
activities, and overall lives. In the domain of ATM, congestion problems occur when
the demand for airspace use exceeds its capacity, resulting in overcrowded areas
known as hotspots. This situation is referred to as Demand and Capacity Balance
(DCB) problem.

The DCB issues are typically addressed through airspace and flow management
solutions, which include regulatory measures that introduce delays to the involved
flights. However, these delays can propagate throughout the system, introducing un-
certainty and increased operational costs. One of the biggest challenges is to handle
demand-capacity imbalances during the pre-tactical phase (i.e., before flights’ take-
off), due to the limited available operational information at that time.

In such cases, MARL has emerged as a promising framework to address a wide
range of problems, allowing multiple autonomous agents to learn in a decentralized
manner, while interacting within a shared environment. In this chapter, it is discussed
the task of resolving demand-capacity imbalances in the ATM domain at the pre-tactical
stage of operation. Under this setup, the flights are considered to be the agents of the
MAS, and their goal is to coordinate their joint actions (i.e., ground delays) in order
to resolve congestions in which they participate.

To tackle this challenge, the DCB problem at pre-tactical stage of ATM operations
is formulated as a collaborative MAMDP. In this context, the airspace is divided
into air sectors, and the limited capacity of these sectors accounts for the necessity
of operational constrains. Hence, the goal is to minimize the scheduled flight delays
and associated delay costs. This is achieved by introducing a collaborative MARL
(CMARL) algorithm to solve the aforementioned MAMDP.

However, the large number of flights per day in European airspace, along with
the numerous delay options per flight available to resolve DCB problems, results in
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an exponentially increasing state-action space. To address this issue and improve
computational efficiency, the use of abstraction or aggregation techniques is commonly
employed in the field of machine learning.

Abstraction can be applied in both the state and the action space. In the state space,
decision-makers can find solutions more quickly by operating in an abstract state
space, where groups of states are treated as a single unit, and ignoring unnecessary
state information. Similarly, in the action space, also known as temporal abstraction,
decision-makers consider high-level actions composed of multiple lower-level actions.
Thus, abstraction can appear simultaneously in the state and action spaces, or in only
one of them.

Delving more into the structure of the DCB issues and considering a hierarchi-
cal decomposition of the problem, a general hierarchical collaborative framework is
proposed that allows several hierarchical schemes to be introduced. This leads to the
incorporation of abstraction schemes in state and/or action spaces, facilitating the cre-
ation of multiple policies at different levels of abstraction. Also, this study introduces
a hierarchical method that extends CMARL and employs state abstraction. By lever-
aging the capabilities of state abstraction, agents can effectively explore the original
(ground) space more efficiently, leading to the discovery of higher quality refined
solutions.

To evaluate the effectiveness of the proposed method, multiple experiments are
conducted on real-world cases involving thousands of agents, representing aircraft
following specific trajectories. The results demonstrate the efficacy of the hierarchical
framework in effectively addressing congestion problems in the ATM domain.

The contributions can be summarized as follows:

• The DCB problem is initially formulated as a collaborative MAMDP. Subse-
quently, it is extended to the hierarchical case, incorporating multiple levels of
abstraction.

• A generic hierarchical MARL framework capable of functioning at multiple
levels of abstraction is presented.

• The proposed hierarchical framework can be instantiated to various hierarchical
schemes, exploiting multiple levels of abstraction, both at the action and the state
space.
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• The performance of the proposed HCMARL is evaluated using real-world sce-
narios that involve a significant number of flights against other hierarchical
methods.

This chapter is structured as follows. It begins with a brief review of previous
works in Section 5.2, and in Section 5.3 the DCB problem in the ATM domain is
presented. Furthermore, Section 5.4 discusses MARL approaches for ATM, while
Section5.5 proposes a hierarchical framework with multiple levels of abstraction.
Finally, Section 5.6 presents the evaluation cases and experimental results, and Section
5.7 concludes the chapter with a small discussion.

5.2 Related work

Congestion problems have been extensively investigated in various domains including
game theoretic models [83, 84, 85, 86], optimization, transportation, automatic control
[87], and autonomous agents [88, 89]. These interdisciplinary efforts have contributed
to a deeper understanding and effective solutions for managing congestion issues.
Moreover, many MARL approaches [90, 91, 92, 93] have been proposed over the
years for the resolution of congestion problems.

Hierarchical RL has been the subject of extensive research for a considerable period
of time. Within the literature, several early works have laid the foundation to this field,
including hierarchies of abstract machines (HAM) [94], the “option” framework [95],
the feudal networks [96] and the MAX-Q learning method[97]. Specifically, in [96],
the authors propose a hierarchical approach where high-level managers assign tasks
to sub-managers, who then learn to fulfill those tasks. Following, in [95] the “options”
framework is introduced, which leverages temporal abstractions in the action space
and extends the standard Markov Decision Process formulation to a semi-Markov
Decision Process (SMDP). In this framework, agents have the ability to select either
primitive actions or multi-step actions, known as “options”, where each option is
defined by a policy over actions and a termination function. The MAX-Q algorithm
is utilized in [97], where a hierarchical reinforcement learning method is developed
based on decomposing the value function into combinations of value functions.

The authors in [98] extend the “options” framework to address partially observ-
able markov decision processes (POMDP). To solve it, they leverage state abstraction
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and develop a hierarchical Monte Carlo tree search (MCTS) algorithm. Building upon
the “options” framework, in [99] the authors propose the option-critic approach,
which uses a policy gradient method so as the agent to learn options autonomously.
Moreover, in [100] the option-critic framework is further expanded, by introducing
a generalized reinforcement learning architecture capable of learning options with
more than two levels of abstraction. In [101], the authors propose a framework that
incorporates intrinsic behaviors and introduces a meta-controller responsible for de-
termining sub-goals.

In the work of [102], the authors focus on unmanned vehicle swarms with mul-
tiple objectives and introduce a hierarchical reinforcement learning algorithm called
dynamic domain reduction for multi-agent planning that simultaneously explores
sub-environments and generates action sequences that maximize expected rewards.
Finally, more recent works try to learn the temporal abstraction with deep learning
[103, 104, 105].

The objective of the present study is to bridge the previously described approaches
by developing a general framework for hierarchical MARL. While the focus is on the
ATM domain, the framework is designed to be applicable to multiple objective do-
mains. The main goals of this study are twofold: (a) create a generic multi-agent
framework that supports abstractions at multiple levels using different abstraction
methods, and (b) allow agents to engage in coordination to resolve common chal-
lenges. To evaluate these objectives, multiple experiments are conducted to assess
their potential in providing effective solutions to congestion problems in the ATM
domain.

5.3 The demand and capacity balance problem

Nowadays, the nature of ATM domain presents challenges with demand-capacity im-
balances, which are typically addressed through delays before take-off and increased
costs for all parties involved. The objective is to design optimal traffic flows that align
with air traffic control (ATC) capacity, while ensuring the safe and efficient operation
of flights for airlines.

The task of addressing demand-capacity imbalances in ATM has been extensively
discussed and defined in [89, 106]. Following is a brief overview of the DCB problem
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as defined in the aforementioned papers. Two key components generally define the
problem: airspace sectors and aircraft trajectories.

Figure 5.1: An example of airspace sectors in 2D.

Sectors play a crucial role in dividing the airspace into distinct volumes, effectively
segregating the airspace. They can be understood as groups of blocks in the airspace,
which are defined by their geometry. The airspace sectorization can vary depending
on the sector configuration and the number of active sectors. Throughout a single
day, the sectorization of airspace can change frequently to accommodate different
operational conditions and requirements, but only one sector configuration can be
active at any time. The most crucial aspect of a sector is its capacity, which represents
the maximum number of flights that can pass through a sector within a specific time
period. It is important to ensure that the demand for each sector, which refers to the
number of flights that want to pass-through the sector, should not exceed its capacity
at any given time.

To calculate the demand for each sector, various measures can be utilized, but
this study focuses on the entry count, which quantifies the number of flights entering
the sector during a particular time period and is used by the network managers at
pre-tactical stage. In the experiments, the time period for measuring the entry count
is set to one (1) hour.

Typically, aircraft trajectories are described as sequences of spatio-temporal tuples
containing longitude, latitude, altitude, and timestamp information. In the context
of congestion problems, though, trajectories can be also represented as time series
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of events that indicate the utilization of shared resources such as sectors. This may
include a description of the entry and exit locations of the aircraft (e.g. coordinates
and flight levels), entry and exit times, or anticipated time at which the aircraft will
pass through a specific sector.

In this chapter, the focus is on congestion problems that arise from the capacity
limitations of sectors (resources) and the imbalances between demand and capacity
for these shared resources. The objective is to address situations where the demand
exceeds the maximum allowed capacity, leading to violations which are known as
hotspots.

In order to address DCB issues, agents (flights) have to adjust their resource
utilization schedule by imposing delays before the execution of their trajectories. This
means that agents can shift the entire timetable for utilizing the required resources by
a specific time duration. Consequently, the agents must cooperate and coordinate in
order to learn the appropriate joint delays that they have to apply to their trajectories,
while considering the operational constraints related to the capacity of the required
resources.

Hence, the objective can be re-formulated as to effectively resolving all hotspots,
by finding optimal solutions to the DCB problem while minimizing the total delay
imposed on flights (i.e., the cumulative delay across all flights) as well as the average
delay (i.e., the ratio of total delay to the number of flights) in relation to the number
of delayed flights.

Nevertheless, by imposing delays on trajectories, it is possible for congestion prob-
lems to be shifted in different time periods and sectors, and generate new congested
situations. Agents that partecipate in the same hotspot can be regarded as peers, since
they need to collaboratively form a strategy that resolves the congestion. This suggests
that agents form neighborhoods consisting of interacting peers. Obviously, the compo-
sition of interacting trajectories within a neighborhood may change as congestion
problems propagate and get resolved. Therefore, it becomes necessary to dynamically
update the neighborhoods of agents that execute interacting trajectories, as agents
make decisions regarding different delays. All the above contribute to the utilization
of a graphical representation in order to model societies of agents S = {T ,AG, E}.
Under this representation, every node of the graph corresponds to an agent Ai ∈ AG
executing a trajectory Ti ∈ T and any edge (Ai, Aj) ∈ E signifies that those agents are
peers and must coordinate their actions to resolve the common hotspot in which they
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participate. All agents connected to an agent Ai through an edge in the graph belong
to the neighborhood of Ai (denoted as N(Ai)).

Moreover, for each agent Ai, there exist a maximum allowed value for delay (in
minutes), denoted asMaxDelayi. This range can take values inDi = {0, . . . ,MaxDelayi}.
It is important to note that the maximum preferred delay may differ for each flight.
However, in this study, it is assumed that all agents share the same MaxDelay value
and do not have any specific preferences regarding delays, apart from wanting to
decrease their own delay and the total delay of the multi-agent system.

5.4 Multi‐agent reinforcement learning structures for ATM

The DCB process in ATM is formulated as a MARL problem, where the flight-agents
operate in the same environment and share common resources (sectors). To address
this problem, the MAMDP is considered as the underlying model, which has been
thoroughly described in Chapter 2.2.5.

The local state of agent Ai is denoted as si and includes two major quantities:

• the delay imposed on trajectory Ti executed by flight-agent Ai, denoted as di.
This value ranges within the set of possible delay actions in Di,

• the number of hotspots in which Ai is involved, denoted as hi.

si = {di, hi} (5.1)

Moreover, two agents, Ai and Aj , that belong to the same neighborhood share a joint
state, sij , that consists of the concatenated local state variables of both agents.

The local action, ai, of each flight-agent Ai decides about the delay. It is a binary
decision concerning whether the agent should add or not one (1) more unit of time
(i.e., minute) in its total delay. The agent is responsible for distributing delay units to
the corresponding flight until it departs from the airport. Afterwards, the agent flies
in its pre-defined trajectory without the possibility to receive additional delay or to
“communicate” with other agents to resolve imbalances.

The most difficult choice in many real-world RL scenarios concerns designing an
effective reward function that promotes desirable behavior. In the case of the DCB
problem, it has been developed an individual delay reward, denoted as ri, for each
flight-agent Ai. This reward is based on the agent’s involvement in hotspots while
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executing its trajectory, taking also into consideration the agent’s chosen delay. The
formulation of this reward function is given by the following equation, which was
based on our previous studies [89, 106]:

ri(si, ai) = C(si, ai)− λ×DC(si, ai), (5.2)

where C captures the agent’s participation in hotspots, and DC relates to the cost of
the delay for a given flight agent Ai. The parameter λ plays a crucial role in balancing
the trade-off between the cost of participating in hotspots and the cost of imposing
ground delays.

Specifically, in the proposed formulation, the function C measures the total du-
ration that the agent is projected to stay inside the congested sectors. The exact
relationship between the function C and this duration is defined as follows:

C(si, ai) =

81× TDC, if TDC > 0

C+, if TDC = 0
, (5.3)

where TDC represents the total duration of congestion (hotspots) experienced by
agent Ai. When the agent is not predicted to participate in any hotspots, then the
value of TDC is equal to 0, and the agent receives a large positive constant C+ as a
reward. The coefficient 81 corresponds to the average strategic delay cost per minute
in Europe (measured in Euros) when 92% of the flights do not experience any delays
[107].

On the other hand, the DC function represents the delay cost incurred when
flights are delayed at the gate. This cost is determined solely based on the number
of minutes of delay given so far (di) and the type of the aircraft. The following
formulation has been utilized to calculate the delay cost:

DC(si, ai) = SDC(di, ati), (5.4)

where SDC is a function that calculates the strategic delay cost based on the specific
aircraft type of agent Ai, denoted as ati. It is important to note that in the general
case, DC could incorporate additional airline strategic policies and considerations
regarding flight delays.

5.4.1 Multi‐agent independent reinforcement learning

The simplest multi-agent approach to solve the MAMDP is called multi-agent inde-
pendent reinforcement learning (MIRL). In this framework each agent learns its policy
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independently, and considers all other agents part of the environment. The variant
of Q-learning algorithm, as described in [108], assumes that the (global) Q-function
is a linear combination of (local) Q-functions:

Q(s, a) =

|AG|∑
i=1

Qi(si, ai), (5.5)

where local Q-values are adjusted according to the basic Q-learning update rule:

Qi(si, ai) = (1− η)Qi(si, ai) + η
[
ri + γmax

a∗
Qi(s

′
i, a

∗)
]

(5.6)

Following [108], the above equation uses the global reward which depends on the
global state and global action of the agents. However, a simplified version can be
adopted by considering the local reward, ri, in the update rule.

5.4.2 Collaborative multi‐agent reinforcement learning

The proposed collaborative multi-agent reinforcement learning (CMARL) approach capi-
talizes on the problem’s structure, and specifically on the interactions between flights.
This approach considers that the agents do not possess knowledge of the transition
model and interact concurrently with all their peers.

Figure 5.2: An example of a coordination graph between 4 agents.

Using the notion of coordination graphs [109], one can model the interactions be-
tween agents in a MAS. In such graphs, the agents are represented as nodes and
neighboring agents are connected through edges. The concept of coordination graphs
offers a method to decompose a complex multi-agent Q-function. Instead of relying
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on a single joint Q-function that is dependent on the joint action of all agents, coor-
dination graphs utilize hypergraphs to break down this Q-function into a collection
of lower-dimensional Q-functions associated with the edges of the hypergraph. Each
edge represents a distinct Q-function and by passing messages along the edges of
the coordination hypergraph, the process of finding the optimal joint action can be
achieved. This decomposition approach allows for more efficient computation and
coordination among agents in complex MAS. Figure 5.2 illustrates an example of a
coordination graph composed of four (4) agents. As an instance, for the DCB problem,
agent A1 must coordinate its actions with agents A2 and A4 in order to resolve their
common imbalances. Notice that agents A2 and A4 are not connected with an edge
in the coordination graph, which implies that agent A1 participates in two different
congested situations (hotspots).

The proposed method is a variation of the sparse cooperative Q-learning method
introduced in [46] that exploits the structure of coordination graphs. In particular,
if two peer agents, Ai and Aj , are connected through an edge in the coordination
graph, the joint Q-function for these agents is denoted as Qij(sij, aij), and is updated
using the following rule:

Qij(sij, aij) = (1− η)Qij(sij, aij) + η

[
ri

|N(Ai)|
+

rj
|N(Aj)|

+ γQij(s
′
ij, a

∗
ij)

]
, (5.7)

where η is the learning rate and |N(Ai)|, |N(Aj)| are the number of peers (neighbors)
of agents Ai and Aj , respectively.

It is important to highlight that in the previous equation, a∗ij represents the opti-
mal joint action for both agents Ai and Aj given the joint state s′ij. The joint action
refers to the set of actions ai and aj that form a common strategy for agents Ai and
Aj. In the literature, this optimal strategy is typically estimated using the max-plus
message-passing algorithm [46]. However, in this case, in order to reduce computa-
tional complexity, a simplified approach has been adopted. Specifically, the best joint
action is directly obtained from each agent’s (e.g. Ai) Q-function Qi(si, ai), which is
calculated as the summation of local Qij values within its neighborhood:

a∗i = argmax
ai

Qi(si, ai) (5.8)
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Qi(si, ai) =
1

2

∑
j∈N(Ai)

Qij(sij, aij) (5.9)

The global Q-function can then be calculated as follows:

Q(s, a) =
1

2

∑
i,j∈E

Qij(sij, aij) (5.10)

According to this approach, the agents update their Q-values by propagating edge-
specific temporal differences to their neighboring agents, sharing their local rewards
with them.

5.5 Hierarchical multi‐agent reinforcement learning for ATM

State abstraction (or state aggregation) has been widely studied in artificial intel-
ligence (e.g., [110]) and operations research [111] as a technique for accelerating
decision making. Abstraction can be thought of as a process that maps the ground
representation, the original description of a problem, to an abstract representation, a
much more compact and easier one to work with [110]. It denotes a relation of the
form:

ϕ : S → Sϕ

that maps each environmental state s ∈ S to an abstract state ϕ(s) ∈ Sϕ, where
typically |S| ≤ |Sϕ|.

5.5.1 State abstraction for reinforcement learning

State abstraction is a commonly used technique in RL that simplifies the representation
of the ground state space. In many real-world problems, the ground state space can be
large and complex, which can make learning and decision-making computationally
expensive and time-consuming. Rather than operating within the ground state space,
decision makers often achieve faster solutions by operating within an abstract state
space, grouping similar states together. Thus, the dimensionality of the original state
space is reduced and the learning process becomes more efficient.

The goal of state abstraction is to create a coarser, more general representation of
the state space, where states that share similar characteristics are clustered together
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Figure 5.3: Abstract representation of the original state space.

(see Fig. 5.3). This clustering is typically performed based on some predefined criteria,
such as proximity or similarity of state features. By grouping states together, the
number of distinct states is reduced, resulting in a smaller, more manageable state
space.

State abstraction can be applied in different ways depending on the specific prob-
lem and domain. One common approach is to partition the ground state space into a
set of macro-states, where each macro-state represents a cluster of similar states. Each
macro-state then serves as a representative of the group it belongs to, encapsulating
the relevant information of the original states within that group.

Once the state space has been abstracted, the RL agent operates on the abstract
state space rather than the original high-dimensional state space. Moreover, state
abstraction can help in generalization, as the agent learns to make decisions based
on the abstracted states, which may capture the important underlying patterns and
structure of the environment.

After learning a policy in the abstract state space, the next step is to transfer the
solution back to the ground state space. To achieve this, the agent needs a mapping
function that relates the abstract states to their corresponding ground states. This
mapping function establishes a connection between the abstract and ground state
spaces. Ultimately, this allows the agent to make decisions and take actions in the
ground state space based on its learned policy in the abstract space, and refine it to
obtain a better solutions.
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5.5.2 The proposed scheme

The DCB problem in ATM can be formulated as a hierarchical MARL framework,
where the flight-agents operate in the same environment and share common resources
at multiple levels of abstraction. According to the problem specification, the proposed
scheme extends the typical hierarchical MARL (presented in Chapter 2.2.4) containing
the following features:

• A set of abstraction levels L ∈ {1, . . . , h}.

• A ground / abstract local state, sLi , per agent Ai, comprising state variables that
correspond to (a) the delay imposed to the trajectory Ti denoted as dLi , and (b)
the number of hotspots in which Ai is involved denoted as hi. The ground /
abstract joint state sLij of agents Ai and Aj is the tuple of the ground /abstract
state variables for both agents.

• A set of actions ALi per agent Ai that ranges in the set of delay options assumed
by Ai in Di, given the abstraction step at level L (defined below).

• A state abstraction function at every level L:

ϕL : si → sLi (5.11)

that maps ground local states of agent Ai (or ground joint states of agents Ai
and Aj) to abstract local states at level L, sLi (respectively, sLij). Specifically, the
abstraction function ϕL maps ground states with respect to the abstraction step
(specified below) applied on delays, to the corresponding abstract states, given
that ground and abstract states have equal number of hotspots.

• The abstraction step at level L, denoted as ML, defining the amount of time
instants that correspond to the same abstract time point, used in the state ab-
straction function. For example, when ML = 10, then time instants 1−10 belong
to the first abstract time point at level L, 11−20 to the second, and so on. This is
further discussed below. The value of ML decreases as the abstraction proceeds
from level h and moving towards level 1, where M1 =Mground = 1.

• The local reward of an agent Ai, denoted ri, is the reward that the agent gets by
executing its local action in a local state at the ground level. In this study, the
reward function is independent of the hierarchy level L.
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Figure 5.4: Multi-level abstraction

It must be noted that the proposed hierarchical framework is general and can
support many levels of abstraction. In Fig. 5.4, there are h − 1 abstract levels and a
ground level. The higher the level, the more abstract the state representation becomes.
The solution of a higher abstract level is transferred to the next lower abstract level
by propagating the Q-values. In this context, the agent carries over the knowledge
and policy learned at a higher level to initialize the policy of the lower level. The
process continues until the Q-values reach the ground level, which contains the most
detailed and specific states of the environment. At the ground level, the final solution
is achieved by refining the policy obtained from the abstract levels.

However, the proposed method which constitutes a hierarchical extension of CMARL
(called HCMARL), considers two (2) levels of state abstraction: the ground level and
the abstract level. Specifically, the focus is on the delay feature of the state, which is
the only variable subject to abstraction.

In HCMARL, the state space of the ground level is initially mapped to an abstract
state space by dividing the delay interval (of length MaxDelay) into a number of K
equidistant intervals of length L, where K = MaxDelay/L. As shown in Fig. 5.5,
the same state in the abstract space corresponds to all states of the ground level with
delays between consecutive time points t and t + I , where I = 5 in this example.
At the abstract level, the agent has the option to increase its delay by a unit of size
equal to I time instants, until reaching the next time point t + I , as long as it does
not exceed the MaxDelay value. In contrast, at the original state level, only one time
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Figure 5.5: An example of the construction of the abstract level. Delay (MaxDelay =

40 in this case) is partitioned into a number of K = 8 equidistant intervals of 5
minutes and delays between consecutive time points are mapped to the same state in
the abstract level.

instant can be added as in CMARL.
The learning process begins by training a policy at the abstract level in order to

provide an initial solution to the DCB problem. Afterwards, this abstract policy can
be transferred to the ground level in order to further refine the solution. During this
transfer, we assume that the original states corresponding to the same abstract level
state have the same optimal Q∗ values (policy) from the Q-values that have already
been computed at the abstract level.

The proposed hierarchical scheme offers two advantages. Firstly, it provides an
efficient initialization strategy for Q-learning in the original state space. Secondly, it
yields a final solution that is superior to the abstract level’s solution for the DCB
problem. In the experiments conducted, the interval length was set to I = 10 minutes
for the abstract level. However, as already pointed out, the proposed scheme can
handle multiple abstract levels of variable interval lengths.

The local Q-function QL
ij at the abstract level L for the agents Ai and Aj that are

connected through an edge in the coordination graph, is calculated according to the
joint state at abstraction level L, as determined by the mapping function ϕL and the
joint action aij. According to the update rule in Eq. 5.7, the hierarchical case becomes:

QL
ij(ϕL(sij), aij) = (1− η)QL

ij(ϕL(sij), aij) + η

[
ri

|N(Ai)|
+

rj
|N(Aj)|

+ γQL
ij(ϕL(s

′
ij), a

∗
ij)

]
,

(5.12)
where ϕL(sij) is the state abstraction function that maps every joint ground state of
agents Ai and Aj to an abstract local state at level L.

Again, just as in the non-hierarchical CMARL method, a∗ij denotes the best joint
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(a) Asynchronous (b) Synchronous
multi-level combined policy multi-level combined policy

Figure 5.6: Two alternative hierarchical reinforcement learning schemes that combine
multi-level policies obtained from different abstract levels.

action of both agents Ai and Aj for the joint state s′ij. Instead of using the max-plus
algorithm, the best actions can be directly obtained from each peer agent’s Q-function:

a∗i = argmax
ai

Qi(ϕL(si), ai) (5.13)

a∗j = argmax
aj

Qj(ϕL(sj), aj) (5.14)

5.5.3 Extensions

Some early studies have been conducted using two alternative schemes based on the
hierarchical multi-agent reinforcement learning framework discussed previously.

Assuming the linear model, the first scheme (Fig. 5.6(a)) works in two (2) phases.
The first phase is the same as the one explored previously and involves transferring
the learned policy from a higher abstract level to the next lower abstract level, until the
ground level. After training the policy in the ground level, the second phase initiates,
where the scheme aims to create a combined policy that integrates the policies from
all levels. This is achieved by assigning weights to each level’s policy, determining
their influence on the final combined policy. The goal is to find the optimal weight
vector that balances the contribution of each level’s policy. By leveraging the strengths
of each level’s policy, the combined policy aims to achieve better performance in the
environment.
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The second scheme (Fig. 5.6(b)) consists, again, of multiple abstract levels and a
ground level. Contrary to the first scheme, each level learns a policy independently
of the other levels, without helping in the initialization of the policy of the next level.
Instead, the policies at each level communicate with a combined synchronous policy
and exchange Q-values. The synchronous combined policy integrates the policies of
all levels through a weighted combination scheme. As the training progresses, the
level-specific policies continue to learn and refine their policies independently, but
also with the help of the combined synchronous policy. The goal is to find an optimal
weight vector for the combined policy, which provides the final solution.

In both schemes, the weight optimization process can be carried out with various
methods, such as gradient-based optimization or reinforcement learning methods,
such as DQN including regularization techniques for linear weights (e.g. l2 or l1
penalty).

5.6 Experimental results

5.6.1 Data description

The construction of the evaluation cases can be achieved by exploiting the flight plans,
which give an image of the ATM before the flights depart from the origin airport.
In this experimental study, the flight plans are obtained by the Spanish Operational
Data Center, and are created based on the guidance of domain experts, so as to ensure
that the solutions provided by the proposed methods can be compared to the delays
imposed by the NM. Along with the flight plans, an evaluation case is accompanied
with a list of all active sectors and their capacities for the specific day.

In this context, the effectiveness of the proposed methods is assessed in multi-
ple real-world evaluation scenarios with varying levels of difficulty. Specifically, each
evaluation case represents a particular day over Spain in 2016. The difficulty of each
case can be determined based on the following criteria, obtained by the real solutions
provided by the network managers (NM):

• Number of flights: The total number of flights for that particular day above
Spain.

• Average traffic density: The number of interacting flights in average.
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• Maximum delay: The maximum delay imposed that particular day to any
flight.

• Average delay: The average delay per flight ignoring all delays with less than
4 minutes (according to experts’ advise).

• Number of flights with delay: The number of flights that delays were imposed.

• Maximum number of hotspots (number of flights): The initial number of
hotspots together with the number of flights that participate in those hotspots
(each flight may participate in more than one hotspots).

Table 5.1: Description of the evaluation cases

Scenario Evaluation cases NM reported results
# flights avg traffic max avg regulated # hotspots

density delay delay flights (# flights)
Jul2 5572 6.39 80 1.663 498 29 (778)

Jul12 5408 5.84 95 0.95 254 28 (820)

Aug4 5544 6.41 66 0.383 146 33 (853)

Aug13 6000 10.89 147 1.152 415 53 (1460)

Sep3 5788 5.24 61 0.732 280 26 (783)

Table 5.1 contains the criteria values for each evaluation case. In general, it is
important to highlight that while the NM impose delays on flights to address demand-
capacity imbalances, this alone does not resolve the DCB problem. Even when NM
impose delays during the pre-tactical stage, hotspots can still occur. This highlights
the tolerance of the system and its reliance on resolving imbalances during the tactical
phase of operations, as opposed to the pre-tactical phase, aligning with the objective
of this study. As a result, the delays imposed by the NM cannot be directly compared
to the solutions provided by the proposed methods. The low predictability in the pre-
tactical phase currently limits the NM from effectively resolving the DCB problem,
leaving decisions to be made during the tactical phase. However, the comparison does
demonstrate the potential of HRL in effectively addressing such problems.
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5.6.2 Implementation details

During the training of CMARL, 15.000 training episodes are considered following
an ϵ-greedy exploration-exploitation strategy. In particular, the probability is set to
ϵ = 0.9 and every 120 rounds it is diminished by the value of 0.01. To enhance
the performance of the proposed methodology, flights that do not participate in any
hotspot automatically are given delay equal to zero (0) as a deterministic decision
rule. However, it must be noted that any of these flights may participate in hotspots
in the future, due to the dynamic delay scheduling that occurs in the multi-agent
environment.

On the other hand, the HCMARL method contains two stages (corresponding to
the abstract and the ground level) of learning, both consisting of 15.000 episodes
following an ϵ-greedy exploration-exploitation strategy. It must be noted that the
exploration of the ground level does not need to be as extensive as in the case of the
abstract level, hence it begins with probability ϵ = 0.7. Finally, the learning rate α is
set to 0.01, the value of discount factor γ is set to 0.99, and the reward parameter λ
(Eq. 5.2) is experimentally set to 20.

5.6.3 Results

The proposed methods (CMARL and HCMARL) are compared to three (3) HMIRL
approaches. Specifically, these approaches considered state–temporal abstraction (stH-
MIRL), state only abstraction (sHMIRL) and temporal only abstraction (tHMIRL).
Specific details about the implementation of these algorithms are given in [112].

Tables 5.2 and 5.3 present detailed comparative results between the HCMARL,
the non-hierarchical CMARL, and the three (3) HMIRL approaches, where several
statistical measurements were considered that have been calculated after executing
ten (10) independent experiments for every evaluation case. In particular, the mean
value, the standard deviation (std), the median and the interquartile range (IQR) are
provided for the average delay per flight and the number of regulated flights (i.e. flights
with delay), respectively. The best mean value in each Table and case is indicated in
bold, while the second best is underlined.

According to the obtained results, it is obvious that HCMARL is among the most
dominant methods (along with sHMIRL) and constantly provides exemplary results.
Only in the case of Aug13 the tHMIRL presents the best average delay per flight, but
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Table 5.2: Statistical measurements of the average delay per flight, as calculated by
10 independent experiments. Best mean value is indicated in bold, and the second
best is underlined.

Scenario Method Mean std median IRQ
Jul2 HCMARL 1.590 0.049 1.590 0.080

CMARL 1.728 0.045 1.725 0.075

stHMIRL 1.742 0.046 1.735 0.061

sHMIRL 1.358 0.054 1.350 0.005

tHMIRL 1.637 0.060 1.650 0.068

Jul12 HCMARL 0.103 0.009 0.100 0.010

CMARL 0.115 0.013 0.110 0.020

stHMIRL 0.410 0.028 0.408 0.033

sHMIRL 0.187 0.015 0.185 0.028

tHMIRL 0.205 0.016 0.205 0.020

Aug4 HCMARL 0.783 0.056 0.780 0.090

CMARL 0.835 0.059 0.820 0.080

stHMIRL 1.129 0.056 1.130 0.055

sHMIRL 0.731 0.028 0.730 0.035

tHMIRL 0.846 0.042 0.855 0.065

Aug13 HCMARL 1.115 0.053 1.110 0.035

CMARL 1.383 0.048 1.380 0.050

stHMIRL 1.168 0.041 1.159 0.053

sHMIRL 0.996 0.044 0.990 0.075

tHMIRL 0.975 0.042 0.975 0.048

Sep3 HCMARL 0.790 0.041 0.780 0.065

CMARL 0.861 0.052 0.845 0.050

stHMIRL 0.855 0.064 0.867 0.104

sHMIRL 0.578 0.038 0.570 0.038

tHMIRL 0.896 0.045 0.895 0.028
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Table 5.3: Statistical measurements of the regulated-flights, as calculated by 10 inde-
pendent experiments. Best mean value is indicated in bold, and the second best is
underlined.

Scenario Method Mean std median IRQ
Jul2 HCMARL 337.00 8.56 334.00 12.50

CMARL 441.20 5.93 441.00 8.00

stHMIRL 448.70 13.75 448.50 14.25

sHMIRL 331.90 14.74 329.50 16.25

tHMIRL 361.20 10.40 362.00 15.00

Jul12 HCMARL 61.20 1.61 61.00 2.00

CMARL 66.00 4.27 66.00 4.00

stHMIRL 228.65 17.66 225.50 19.75

sHMIRL 127.90 9.45 128.50 13.25

tHMIRL 135.00 9.37 131.00 13.75

Aug4 HCMARL 216.40 8.30 214.00 8.50

CMARL 243.40 7.63 234.50 7.00

stHMIRL 385.75 20.19 391.00 30.75

sHMIRL 243.00 12.11 242.00 21.75

tHMIRL 309.00 9.07 309.00 8.00

Aug13 HCMARL 402.81 3.71 402.00 5.00

CMARL 456.20 11.91 452.50 9.00

stHMIRL 566.50 12.97 568.00 19.50

sHMIRL 421.70 17.34 419.00 14.75

tHMIRL 443.30 18.87 449.50 31.50

Sep3 HCMARL 216.20 5.10 215.00 9.00

CMARL 263.50 11.36 264.00 18.00

stHMIRL 359.45 17.31 360.00 25.25

sHMIRL 207.90 9.02 206.50 13.00

tHMIRL 296.90 11.11 298.00 13.25
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for the same case HCMARL has the lowest number of regulated flights. Comparing
the proposed methods with the results provided by the NM (see Table 5.1), it can
be noticed that the methods consistently provide better results, except in the case
of Aug4, where all methods are unable to outperform the NM. However, as already
pointed out, delays imposed by the NM leave unresolved many imbalances, while
the solutions of the proposed methods always eliminate the hotspots. As an example,
the delays of NM resolve only 2 hotspot occurrences out of the 33 in Aug4 scenario
(see Table 5.1). The reported results of the proposed methods in conjunction with
the delays imposed by the NM, show the effectiveness of the hierarchical framework
and its ability to provide qualitative solutions to real-world complex problems.

The advantages of the HCMARL can be summarized as follows:

• It effectively explores the state space at different levels of abstraction. This is
due to a more informative initialization of the original (ground) space by the
abstract layer, that allows to enhance the learning procedure and discover more
optimal solutions.

• It enables the exploitation and combination of multiple policies through transfer
learning mechanisms

Furthermore, comparing the results of HCMARL to those reported by the non-
hierarchical CMARL method for the same evaluation cases, it is clear that the hier-
archical method has improved performance and effectiveness. However, in the case
of Jul12, CMARL outperforms the HMIRL methods and achieves the second highest
score behind HCMARL.

In addition, Fig. 5.7 illustrates the same results using box plots representations in
the five evaluation cases. The first diagram (Fig. 5.7(a)) shows the average delay per
flight, while the second one (5.7(b)) presents the number of regulated flights. Notice that,
following the standard practice in the domain, flights with delays less than 4 minutes
are not considered in the results. In all cases the blue colored box plot corresponds to
the HCMARL method, the red colored box plot corresponds to the stHMIRL method,
the green one to the sHMIRL method, and the black one to the tHMIRL method.
On the other hand, the non-hierarchical method CMARL is not included in the box
plots, so as to have a more clear comparison between the hierarchical methods.
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(a) Average delay per flight, and per scenario

(b) Number of regulated flights per scenario

Figure 5.7: Comparative results in terms of (a) the average delay per flight and
(b) the number of regulated flights presented in box plots for the four comparative
hierarchical methods per evaluation case: HCMARL (blue), HMIRL (red), sHMIRL
(green), and tHMIRL (black)
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The box plot diagrams provide insights into the robustness of the HCMARL
method in both measurements (average delay and regulated flights), where this
method (along with sHMIRL) presents the best results between the hierarchical meth-
ods. The other two methods either do not offer effective results, or contain outliers
in their solutions. More specifically, stHMIRL presents outliers in almost all cases,
while tHMIRL fails to provide better results compared to HCMARL. In contrast, the
proposed HCMARL method does not exhibit such outliers. The standard deviation
and interquartile range of this method is consistently lower across most evaluation
cases, as depicted in Tables 5.2, and 5.3.

5.7 Summary

This chapter presents a hierarchical MARL framework to address the challenge of
resolving DCB problems during the pre-tactical phase in the ATM domain, which
involves multiple agents and complex congestion scenarios. The proposed approach
supports state abstraction at various levels and offers benefits in several aspects, such
as: (a) progressive refinement of solutions by initializing state-action values based
on previous abstraction levels, (b) cooperation among agents through a coordination
graph, and (b) the ability to accommodate different levels of abstractions.

By exploring these alternatives, the proposed hierarchical scheme operates on
two (2) levels of abstraction: an abstract level and a ground level. The effectiveness
of the proposed methodology has been demonstrated through evaluation on five
(5) real-world cases, representing real flights above Spain. The results indicate that
the proposed HCMARL method exhibits consistent behavior across different cases,
showcasing its robustness and ability to handle complex congestion scenarios with a
large number of agents.
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CHAPTER 6

INVERSE REINFORCEMENT LEARNING FOR
AIRCRAFT TRAJECTORY PREDICTION

6.1 Overview

6.2 Related work

6.3 Problem setting

6.4 Flight trajectory modeling with IRL

6.5 Experimental results

6.6 Summary

The main goal of AI research is to create machines that possess human-like intel-
ligence, and reasoning abilities. Inverse reinforcement learning, involves teach-

ing apprentice agents by observing demonstrations given by experts. This framework
allows for the development of improved solutions that could even surpass the per-
formance of the experts themselves in some cases. In this chapter, the focus shifts
on addressing the problem of predicting aircraft trajectories in the aviation domain
using an IRL approach. The proposed learning scheme involves imitating demon-
strated historical expert flight trajectories by utilizing raw trajectory data enriched
with meteorological features. The algorithm learns an efficient reward model during
the imitation process, which also possesses the ability to generalize to unknown cases.
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6.1 Overview

Ιn the aviation industry, towards implementing the trajectory based operations (TBO)
paradigm, predictability of trajectories is of immense importance. This is because un-
certainties that occur during flights can have significant impacts on various aspects
of operations, including those related to airspace users such as airlines, air traffic
controllers, ground operators, and passengers. The necessity to confront these un-
certainties and adapt to them can be costly for all those involved. As an example, it
may require imposing delays to flights or choosing alternative routes to those orig-
inally planned, which can result in increased fuel consumption, higher workloads,
additional costs, and potentially challenge the capacity of the entire ATM system.
Therefore, ensuring trajectory predictability is critical for minimizing disruptions and
maintaining efficiency in the aviation industry.

Given that RL techniques are inherently a good candidate for dealing with trajec-
tories, the aim here is to develop and evaluate IRL methods that are trained to imitate
demonstrated flight trajectories. By doing so, the historical trajectories are treated as
training data provided by an “expert” that an IRL algorithm should exploit and learn
policies for generating sequences of actions for moving between positions in the 3D
space through time, predicting the evolution of trajectories.

When historical demonstrations are available for a specific task, it is often beneficial
to observe the expert behavior and learn a policy based on the expert’s actions.
Typically, this involves access to a set of expert trajectories, which represent a sequence
of states and actions in an environment. The objective is to create a policy that imitates
the expert’s behavior and reproduces the demonstrated trajectories. One challenge in
this process is the lack of a reward signal to evaluate the expert’s decisions and
facilitate the learning process.

IRL makes the assumption that the expert’s policy is optimal with respect to an
underlying unknown reward function. The goal of the apprentice agent is to discover
the reward function using the available expert demonstrations, which can explain the
optimal behavior [25, 113]. At a second phase, direct RL schemes can be employed
for optimizing the control policy based on the discovered reward function and imitate
the hidden decision mechanism of the expert. Thus, the training procedure iteratively
updates the reward function and learns the policy.

This chapter presents an integrated solution to the problem of aircraft trajectories
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prediction through the prism of IRL, and more specifically apprenticeship learning [25].
The main idea is to discover a policy that generates trajectories that match those
demonstrated by the expert. The learning procedure is not solely focused on creating
a policy as a mapping from demonstrated states to demonstrated actions (which are
often unknown), but rather as a function that operates in an environment, mapping
agent’s states to a hypothetical action space that can lead to an optimal imitation of
the expert.

This study presents several significant contributions, which can be summarized as
follows:

• To begin with, this study utilizes an IRL-based apprenticeship learning framework
to address the problem of aircraft trajectory prediction for the first time. This
is strengthened by the fact that it covers a significant application, since for
the experimental analysis real trajectories and real-world data in the aviation
domain are used. Another interesting aspect is that apart from the observed
trajectories in the spatial domain, there is another series of raw data concerning
meteorological information that is also time-dependent and must be taken into
account to the design of the intelligent agent. As a result, the environment
becomes more complex and has a stochastic nature that may affect significantly
the imitation procedure.

• Secondly, a comprehensive trajectory analysis is established by assuming an in-
formative agent state representation considering a feature vector space of spatial
and meteorological information. Also, the action space considers a discrete set
of aircraft heading angles found by the historical data.

• Finally, the proposed IRL framework allows the flexibility to construct (sub)optimal
policies with generalization capabilities that imitate efficiently the demonstrated
trajectories. As experiments have shown, with only a few trajectories as input,
the proposed method is able to reach very satisfactory solutions

The rest of this chapter is structured as follows. Section 6.2 presents a brief review
of the literature, and Section 6.3 describes the problem setting. In Section 6.4 the
general framework of the proposed IRL method is described, and Section 6.5 reports
evaluation cases and experimental results. Finally, Section 6.6 concludes the chapter
with a small discussion.
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6.2 Related work

In traditional RL tasks the reward function is usually specified manually and an
optimal policy is found so as to maximize the expected accumulated reward. On the
other hand, IRL tries to estimate the unknown reward function that can best explain
the expert behavior and induce solutions similar to that of the expert’s. For this
reason, a set of expert trajectories must be available as a training set which cover the
sequences of states that the expert visits while performing actions in its environment
[114, 115]. The expert’s reward function, RE , can be depicted in various forms such
as a linear combination of weighted feature functions or as a distribution over real-
valued maps from states to reward values, among others. The main problem in IRL
is the reward ambiguity, where multiple reward functions can explain the same expert
behavior, as it has been thoroughly discussed in Chapter 2.

One of the core approaches in IRL is called margin optimization [115, 116, 117, 118],
which has the objective to acquire a reward function that explains the expert’s policy
better than all the other policies by a margin. The methods under this prism aim
to resolve the reward ambiguity problem by finding solutions that maximize a certain
margin, but they introduce bias to the reward function.

On the other hand, to eliminate that bias, entropy optimization [26, 119, 120, 121,
122] methods utilize the maximum entropy principle [27], which helps acquire a distri-
bution over behaviors that is parameterized by the reward function weights. Based
on this principle, the chosen distribution is the one with the maximum entropy. More
details about this approach can be found in Chapter 2.3.2.

An alternative point of view for IRL is through classical ML techniques, such as
classification and regression. One such solution is to treat the problem as a supervised
classification task and train a classifier to act as the policy [123, 124, 125, 126], or
utilize probabilistic models, such as Gaussian Mixture Models (GMM) or Hidden
Markov Models (HMM), to generate similar trajectories to those demonstrated by the
expert [127, 128]. Moreover, IRL can be defined as a multi-class classification problem
by framing the state-action pairs of an expert trajectory as input-label pairs [129, 130].

In this study, a modified version of the apprenticeship learning [25] approach is
proposed. This method lies in the margin optimization category. In short, the reward
function is featured-based and the aim is to learn the feature weights by minimizing
the margin between the feature expectations of the learned policy and the feature
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expectations from the expert’s demonstrations. More details of this methods are given
in section 6.4.2.

IRL has also enjoyed diverse applications in automated control systems that try
to imitate the behavior of human experts. Some characteristic examples are: learning
how to drive [25], predicting trajectories of off-road vehicles [131], controlling heli-
copters [132], capture human navigation behaviors [133], estimating optimal neural
network architecture [134], predicting mouse movements [135], generating music
[136] and handling demographic data from city visitors trajectories [137].

The literature of IRL becomes rich and grows in our days. An alternative imitation
learning strategy from expert trajectories is given in [138] without calculating precisely
the reward signal. Finally, an interesting approach is presented in [139] that uses
successful as well as failed demonstrations simultaneously, for estimating the reward
signal and learning optimal policies.

In most cases, it is assumed that the expert trajectories consist of both action and
state values from the expert. However, in real-world applications optimal actions are
usually not available. This requires the structural exploration of the environment in
order to imitate the expert behavior according to environment’s dynamics (although
it is not necessary to learn such a model for the environment).

6.3 Problem setting

In the aviation domain, a trajectory refers to the description of an aircraft’s movement
both in the air and on the ground. This information can be represented through
a sequentially ordered series of aircraft states, which are described using a set of
variables. The most significant variables are the longitude (lon), latitude (lat), and
geodetic altitude (alt) coordinates. Trajectories that solely offer spatio-temporal details
for each state (i.e., 3D positions and timestamps) can be identified by leveraging
surveillance data and are referred to as raw trajectories.

More formally, a raw trajectory T of an aircraft is defined to be a sequence of |T |
pairs si=<pi, ti>, i ∈ [1, . . . , |T |], where pi is a point (lon, lat, alt) in the 3D space and ti
is a timestamp. An enriched trajectory state corresponds to a raw trajectory point which
is defined to be a triplet si=<pi, ti, vi>, where vi is a vector consisting of categorical
and/or numerical variables annotating the raw trajectory state. Hence, an enriched
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trajectory T is defined to be a sequence of enriched states si=<pi, ti, vi>, i ∈ [1, . . . , |T |].
By adopting a data-driven approach, the objective is to utilize historical aircraft

trajectories that comprise 3D aircraft positions, timestamps, and additional meteoro-
logical variables. Within this context, a predicted trajectory can be characterized as the
anticipated progression of the aircraft’s state based on its present flight conditions.
This entails using an initial state and specifying how the aircraft will transition from
one state to another in a sequential manner.

Casting the trajectory prediction to a data-driven problem, and assuming a set
TE = {TE,i|i = 1, 2, 3, ...} of historical, demonstrated enriched trajectories, the trajectory
prediction problem can be defined as follows: Given TE and a “reward” function r, the
objective is to learn a policy for predicting any trajectory Tπ, such that

Tπ ∼ max
π

Eπ

[
H∑
t=1

γtr(⟨p, t, v⟩, at)

]
, (6.1)

where E [.] denotes the expected cumulative discounted rewards - given the discount
factor γ ∈ (0, 1) - for all enriched states st = ⟨p, t, v⟩ generated along any trajectory,
up to a time horizon H , by following a policy π(at|st) prescribing the probability of
applying an action at at a state st. Actually, according to equation 6.1, the ultimate
objective is to find the policy π that determines the generation of a maximal expected
cumulative reward predicted trajectory Tπ. The time horizon H may depend on the
average flight duration, extracted from historical data in TE.

The form of the reward function can vary depending on the approach taken to
address the problem. In the context of a data-driven trajectory prediction process,
the reward function typically measures the extent to which predictions align with
patterns, constraints, policies, and demonstrated trajectories extracted from historical
data. This topic will be explored in more details in the following sections.

6.4 Flight trajectory modeling with IRL

In this study, a set of expert trajectories that correspond to different flights from the
same origin-destination airport pair is considered. These trajectories are assumed to
be executed within a defined time period (e.g. a month). Although it is possible to
extend the method to cover longer time periods, doing so would necessitate more
extensive exploration within a significantly larger state-space due to larger weather
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fluctuations between months. Additionally, it is essential for the trajectories under
consideration to be uni-modal, meaning they should adhere to a single behavioral
pattern. Methods addressing challenges with multi-modal expert behaviors will be
introduced in the subsequent Chapter.

Thus, the goal is to imitate the demonstrated trajectories in TE and acquire a
(sub)optimal policy that can generate accurate predictions for new trajectories exe-
cuted under similar weather conditions. Furthermore, it is essential for the learning
method to possess generalization capabilities, enabling it to learn policies that predict
trajectories, even when starting from previously unseen initial positions.

6.4.1 The state and action spaces

The enriched trajectory of an aircraft considered in this study is a time-series that
contains two types of input variables. The first type consists of four (4) variables
that provide the spatio-temporal features of longitude, latitude, altitude, and times-
tamp. The second type of information describes the weather conditions at that specific
spatio-temporal state. These weather conditions are characterized by various mete-
orological features, which are extracted from the National Oceanic and Atmospheric
Administration (NOAA) database 1. Specifically, the meteorological features include
the pressure surface, relative humidity isobaric, temperature isobaric, wind speed gust
surface, u-component of wind isobaric, and v-component of wind isobaric.

Rather than working with the original state space, a more informative feature
space is constructed in order to improve the discrimination capabilities among states.
In the case of spatial information, a set of Lpos equidistant points in time along the
centroid trajectory of the training set is considered: {µpos1 , . . . , µposLpos

}, where Lpos is set
manually. Using these points, a feature space can be constructed according to Lpos
RBF basis functions:

ϕpos(s) = (ϕ1(s), . . . , ϕLpos(s)) , where ϕk(s) = e−βpos∥p−µ
pos
k ∥2 (6.2)

In the above equation βpos is a positive scalar parameter (inverse variance) that is
common to any basis function and p is the 2D spatial state (lon, lat) of the aircraft. It
is important to highlight that in the construction of spatial features, only the longitude
and latitude variables are taken into account. The geodetic altitude is obtained using

1https://www.ncei.noaa.gov/cdo-web/
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a straightforward linear regression NN that has been trained beforehand. Although
this may appear as a simplification, it proves to be highly beneficial in generating
accurate features and serves as a valuable tool for determining the action space.

In the case of meteorological features, a clustering procedure is initially performed
by using the K-means algorithm over the dataset of demonstrated trajectories consid-
ering the six (6) meteorological variables. This procedure returns a number of Lmet
clusters, with Lmet cluster’s centers µmetk . Then, similar to the case of spatial infor-
mation, these are used for the construction of a feature space for the meteorological
variables based on Lmeteo RBF basis functions:

ϕmeteo(s) = (φ1(s), . . . , φLmeteo(s)) , where φk(s) = e−βmeteo∥v−µ
meteo
k ∥2 , (6.3)

In the previous equation, βmeteo is a scalar parameter (inverse variance) and v is
the meteorological state of the aircraft.

Combining the previous two (2) feature vectors, the proposed state space can be
described as a vector space of Lpos+Lmeteo dimensions with two sources of information
corresponding to spatio-temporal and meteorological variables:

s −→ ϕ(s)

(p, v) −→ (ϕpos(s), ϕmeteo(s))

In the experimental study, 20 features per information type were used, i.e. Lpos =
Lmeteo = 20. Thus the initial state space has been transformed to a space in 40 dimen-
sions.

In order to control the flight trajectory and provide predictions for the next state,
the RL agent faces the challenge that optimal actions are usually not available in
real-world applications. As a result, it must explore the environment and learn the
dynamics in order to successfully imitate the expert behavior and execute optimal
actions.

One possible strategy to overcome this challenge is to use a regression model that
directly predicts the next state without considering possible actions. This approach
can be thought of as a form of behavior cloning. However, in this study, the problem
is formulated within a “classical” MDP framework by constructing an action space
related to the problem. This allows the creation of a RL agent to control the flight
trajectory and make predictions for the next state.

Specifically, since it is not possible to control the weather conditions, the actions
can only be applied on the transition of the aircraft. One possible way to do this
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- which is also the case in this study - is through a set of heading angles that
the aircraft can be directed towards in the 2D space, defined by the longitude and
latitude coordinates. Specifically, the agent can select an action from the set of La
discrete angles (θ = {θ1, . . . , θLa}), causing the aircraft to move to a new position in
the 2D space according to the following transition functions:

lont+1 = lont + cos(θk) ·∆lon and latt+1 = latt + sin(θk) ·∆lat, (6.4)

where the ∆lon and ∆lat are the step sizes of longitude (lon) and latitude (lat),
respectively, at each position. These have been calculated as the mean value of the
difference of these two measurements during successive positions in all training tra-
jectories. It should be noted that the desired magnitude of the aircrafts’ velocity is
constant and not affected by the RL agent.

Four (4) possible actions were used (La = 4) that correspond to four (4) heading
angles: A = {100, 200, 230, 260}. It must be noted that the determination of the proper
angles can be (automatically) derived from the directions of the expert trajectories.

At the end of this process, the geodetic altitude (alt) is indirectly provided by
a linear regression NN given the new (lon, lat) coordinates. As a result, the aircraft
moves in a new position in the 3D space, where new meteorological conditions are
met.

6.4.2 Apprenticeship learning for trajectory modeling

As it has been thoroughly described in Chapter 2.3.2, IRL aims at discovering a
reward function through expert demonstrations that explains the expert policy πE. A
common strategy is to assume a linear model for the reward function over the feature
vector of state, ϕ(s):

Rw(s) = wTϕ(s) (6.5)

where w is a vector of linear coefficients of size equal to the dimensions of the feature
space, i.e. Lpos+Lmeteo. The apprenticeship learning process is focused on determining
the proper weight vector in order to shape the expert’s behavior.

In the case of apprenticeship learning, the linear weights w are obtained by min-
imizing the distance between the vectors of policy’s feature expectations, µ(π), and
expert’s feature expectations, µ(πE). Feature expectations refer to the expected val-
ues of features extracted from states under a given policy. The IRL process followed
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Figure 6.1: Overview of the proposed IRL structure.

in this study, involves applying an optimization strategy that is based on solving a
quadratic programming marginal - maximization problem by adding an extra con-
straint on these weights, i.e. ∥w∥2 ≤ 1, that introduces regularization properties on
the solution.

Once the linear weights, w, are estimated, then an approximation of the expert’s
reward function can be calculated. Subsequently, a DQN framework can be employed
to learn the apprentice policy by taking into account the estimated reward func-
tion. This allows the agent to train effectively and facilitates its ability to imitate the
demonstrated trajectories.

An overall illustration of the proposed apprenticeship learning method is depicted
in Fig. 6.1. The major building blocks are the following:

• An IRL method, which involves estimating the reward function by leveraging
both the demonstrated expert trajectories and sample trajectories generated by
the agent’s policy. To obtain the linear weights required for the calculation of
the reward function, it solves a quadratic programming optimization problem
for Eq. 6.5.

• A RL method, which employs a DQN framework to address the MDP using
the estimated reward function. It involves a feed-forward NN that computes
the Q-function in the RL context, which is responsible for making decisions
regarding the aircraft’s actions. The NN receives the enriched trajectory state as
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input, which comprises of the transformed spatial and meteorological features.
As explained, the feature space is of dimension Lpos + Lmeteo.

• A regression NN, denoted as NNaltitude, specifically designed to predict the
geodetic altitude (alt) of the aircraft at any given point. This prediction is based
on the longitude and latitude coordinates (lon, lat), which are provided as inputs
to the network.

The proposed methodology begins by creating the feature expectation vector of
the experts (µ(πE)), calculated as:

µ(πE) =
1

M

M∑
i=1

∞∑
t=0

γtϕ(sit, a
i
t) (6.6)

Subsequently, a random initialization of the weights w is conducted, and the first
policy π0 is generated. Next, the feature expectation vector of this policy µ(π0) is
computed according to:

µ(π) = E

[
∞∑
t=0

γtϕ(st, at)

]
(6.7)

The initial set of weights is then determined through an IRL step, wherein the
feature-weights are computed by employing the generated feature expectation and the
expert feature expectation vectors as inputs to the quadratic solver. This particular
step is considered the core of the IRL algorithm, as it aims to infer the underlying
reward function that the expert trajectory seeks to optimize.

Having obtained an estimate of the reward function, the method proceeds by us-
ing the DQN framework for solving the RL trajectory prediction problem. During
the first step of the RL procedure, a replay buffer is created to store the agent’s
experiences, and the weights of the NN are initialized randomly. In each iteration,
the agent selects an action based on an exploration policy (such as ϵ-greedy) and
observes the next state and reward from the environment. The experience tuple
(state, action, reward, next state) is stored in the replay memory, and when a suf-
ficient number of experiences has been collected, mini-batches are sampled in order
to update the DQN by minimizing the mean squared error between the predicted
Q-values and the target Q-values. The target Q-values are calculated using a separate
target network, which is a copy of the main DQN with frozen parameters. This helps
stabilize the training process.
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After the update of the DQN, the IRL process restarts in order to find a better
estimate of the reward function and the whole methodology repeats until it reaches
a point where the feature expectations of the expert and the feature expectation of
the policy are nearly equal bounded by some constant threshold.

The overall structure of the proposed method can be summarized in Algorithm
7.

Algorithm 7: Apprenticeship learning for trajectory prediction
Input: Expert trajectories TE , number of number of iterations N
Train the regression network NNaltitude for predicting the altitude given (lon,
lat) pairs of expert trajectories
Initialize an initial policy π(0) and obtain an initial estimation of the reward
function, receiving the linear weights w

for i← 1 to N do
Pick a random initial state from TE

while termination condition is not met do
Obtain the feature vector ϕ(st) consisting of spatial and meteorological
features (section 6.4.1)
Take an action at according to DQN model and move into the next
state st+1 (Eq. 6.4)
Make a prediction of the altitude altt+1 using the NNaltitude model
Receive a reward rt based on the model of the IRL task (Eq. 6.5)
Store samples (st, at, st+1, rt, done) in the replay buffer
Update the DQN model (every 50 steps)

Update the target network (every 5 episodes)
Perform the IRL task and receive a new estimation of the linear weights
by solving the constrained quadratic programming problem (every 100
episodes)

Once the learning procedure is complete, the proposed methodology can be uti-
lized for trajectory modeling. The only thing missing is the weather conditions, which
can be obtained from a weather forecasting module. The trajectory prediction proce-
dure can be outlined as follows:

1. An initial position represented as p0 = (lon0, lat0, alt0) is drawn from the set of
expert initial positions. From there, the spatial feature vector ϕpos(s0) is obtained

120



along with the weather conditions at this specific state and the corresponding
weather feature vector ϕmeteo(s0) is derived. Combining the spatial and mete-
orological features, the feature vector ϕ(s0) is constructed, which serves as the
state vector for the agent’s initial state.

2. The next step is to select an action a0 based on the learned policy obtained from
the trained DQN network. This action selection process yields the next longi-
tude and latitude values. Subsequently, using the NNaltitude regression model,
the next altitude value is predicted. By combining the updated longitude, lati-
tude, and altitude values, the method performs a policy-based transition to the
next position, denoted as p1, within the 3D space. This transition allows the
progression to a subsequent point along the trajectory.

3. The aforementioned two-step procedure is repeated until the episode either
successfully concludes, meaning the target airport is reached, or terminates due
to failure.

6.5 Experimental results

6.5.1 Data description

The effectiveness of the proposed method is evaluated in real-world applications using
actual flights between Barcelona (BCN) and Madrid (MAD). The dataset consists
of radar tracks, which represent raw trajectories, for a total of 528 different flights.
Additionally, the weather data for those flights are obtained from the NOAA database.
The trajectories were recorded during April 2016 and were divided into two separate
clusters of 250 and 278 members, respectively. Each cluster was treated as a distinct
set of trajectories. Figure 6.2 illustrates a map of the experimental dataset.

The proposed method, named as AppLearn, is evaluated on these two datasets
(clusters) according to the following four (4) scenarios in terms of the ratio of cases
in the training-test sets:

• P1: Only the centroid trajectory of each dataset was used as training set (M = 1),
while all other trajectories were treated as test examples

• P2: 10% training - 90% test
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Figure 6.2: A view of the experimental dataset that consists of expert trajectories
flown from Barcelona (BCN) to Madrid (MAD). They are partitioned into 2 clusters
of trajectories which are treated separately as two different datasets.

• P3: training and test sets of equal size (50%− 50% partition)

• P4: 90% training - 10% test

6.5.2 Implementation details

The proposed framework is trained for 15.000 episodes using the ϵ-greedy exploration-
exploitation scheme for the DQN. Initially, the exploration parameter is set to ϵ = 0.9,
and it is gradually reduced every 100 episodes until it reaches zero (0). This marks
the end of the exploration phase and initiates the exploitation phase, allowing the
learning process to converge towards a (near) optimal policy. The DQN network is
updated every 50 time steps using mini-batches of 5000 experiences randomly sam-
pled from a replay buffer containing 200.000 samples. Furthermore, every five (5)
episodes, the target network is updated with the weights from the main network
(i.e., hard update) to enhance the stability and the performance.

The DQN network has one hidden layer consisting of 150 neurons with ReLU
activation functions, which in turn is connected to an output layer with neurons equal
to the number of available actions. For the optimization process, the Adam optimizer
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is utilized with a learning rate equal to a = 0.001 in the exploration phase, which
is gradually diminished in the exploitation phase until it reaches a small threshold
value. This procedure is important for the stabilization and the convergence of the
method.

Regarding the NNaltitude network, it is a feed-forward NN designed for regression
tasks. Its architecture consists of a hidden layer with 50 ReLU activation units and
an output layer that produces a single value, i.e. the altitude. To train this network,
the expert (lon, lat) pairs are used as input, and the alt dimension as label.

Another crucial implementation detail involves the termination conditions of the
trajectories. Specifically, the generation process is over when one of the following
conditions is met:

1. The aircraft’s position lies within a 5km radius from the destination airport.
This indicates a successful episode.

2. The aircraft’s position is outside of a predefined bounding box that geographi-
cally surrounds the space between the departure and the destination airports.

3. The number of steps exceeds a maximum threshold value, which in this case is
set to 2000 time steps.

Note that the violation of one of the last two conditions results to a failed episode.
A last remark is that for aiding the optimization procedure, a positive high reward

is given to the agent in case of successful termination of episode, and a negative high
reward as penalty in failure cases. This technique is referred to as reward augmentation
[140], and can serve as a general framework for incorporating prior knowledge into
imitation learning by offering additional incentives to the agent without interfering
with the learning process.

To compare the proposed method, a BC scheme is used as a baseline. This scheme
is implemented by training an SVM classifier that takes the four (4) spatio-temporal
and the six (6) meteorological features per state as inputs, and the best action (i.e.,
heading angle) among the set of possible actions as the label. Specifically, the SVM
classifier used RBF kernels, and was trained on the historical data.

The proposed approach is evaluated on its ability to predict the flight trajectories
according to the following two (2) measures:
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Table 6.1: Comparative results of the proposed AppLearn and the BC approaches in
terms of the success rate and the RMSE metric.

Dataset Partition
% success rate RMSE (km.)
AppLearn BC AppLearn BC

Cluster 1

P1 61 0 26.88 -
P2 96 38 22.45 30.54

(250 trajectories) P3 96 50 17.54 28.42
P4 98 95 14.43 25.91

Cluster 2

P1 72 0 20.61 -
P2 94 40 20.53 27.90

(278 trajectories) P3 97 90 17.42 24.55
P4 99 97 13.81 23.38

• Success rate (%): the percentage of the successful episodes, i.e. predicted tra-
jectories reaching the destination airport within a 5km radius

• RMSE (km.): Root mean squared error between the predicted and the true
trajectory. This is found by initially calculating the Dynamic Time Warping (DTW)
distances of them, then detecting their matching points, and finally computing
their root mean squared error (RMSE) concerning only the 3 spatial features
(longitude, latitude, altitude)

The reported results are the mean values obtained from ten (10) independent
experiments.

6.5.3 Results

The results obtained from applying both methods, AppLearn and BC, to the two (2)
experimental datasets corresponding to the two (2) clusters are presented in Table
6.1. The results indicate that the AppLearn method is capable of learning efficient
policies that produce trajectories with high success rates, which are close to those of
the experts measured by the RMSE. Additionally, compared to the BC method, it
is evident that the AppLearn method consistently produces better solutions for every
partition scheme in both clusters, while also having a higher percentage of successfully
terminated trajectories.
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Specifically, the AppLearn method provides the best results for both clusters in
the P4 partition (90% of expert trajectories used for training), where it manages to
successfully produce 98% and 99% successfully predicted trajectories with an average
RMSE of 14.43 km and 13.81 km for cluster 1 and cluster 2, respectively. Moreover, the
results on P2 and P3 partitions also yield high success rates, but the average RMSE
is also increased in both cases. On the other hand, the BC method cannot generalize
well when the training set is reduced, resulting to inferior performance.

It is interesting to note that the proposed AppLearn method is able to create a
satisfactory policy even in the most difficult and least informative partition scenario
(P1), where it is trained on only one expert trajectory, i.e. the centroid of the clus-
ter. The resulting trajectories showed a high success rate, with 61% and 72% of all
produced trajectories being successful, and acceptable average RMSE values. This is
a promising result and demonstrates the effectiveness of the proposed method in
predicting trajectories even in the absence of large datasets or multiple demonstrated
trajectories. In contrast, the BC method failed to produce any successful trajectories,
as shown in Table 6.1.

Figure 6.3 shows an example of the AppLearn learning progress in terms of average
RMSE and the calculated average reward on all training trajectories. These learning
curves are the averages of ten (10) independent runs in the case of partition scenario
P3. Note that they include measurements from all the tested trajectories, successful or
not. The latter explains the bell shaped curve of the average RMSE evaluation metric,
since in the beginning of the training the number of successful trajectories reaching
the destination is very low.

It is noteworthy to observe the convergence of the proposed method once it finishes
the exploration phase and enters the exploitation phase. During the exploration phase
(until episode 11.200), a considerable amount of randomness is introduced due to
the ϵ − greedy approach, and thus the produced RMSE from the roll-outs is noisy.
In the exploitation phase, learning gradually stabilizes until it reaches convergence.
Additionally, the average reward remains negative for most of the exploration phase, but
constantly increases until it finally converges in the late episodes of the exploitation
phase. This highlights a significant advantage of the proposed method, demonstrating
its ability to construct a high-valued reward scheme and fit well to the expert’s
behavior simultaneously.
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Average RMSE for Cluster1 Average RMSE for Cluster2

Average Reward for Cluster1 Average Reward for Cluster2

Figure 6.3: Learning curves for the Average RMSE and the Average Reward for both
clusters.

Figure 6.4: An example of a generated trajectory (opaque green line) versus the
corresponding expert trajectory (transparent green line).
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Finally, Figure 6.4 presents an example of a predicted trajectory provided by
AppLearn after finishing the learning process. An interesting observation is that the
learned policy manages to steer the plane before landing to Madrid and to imitate
the local pattern of the expert trajectory, where the actual trajectory veered towards
the North.

6.6 Summary

In this chapter, an IRL approach is presented for trajectory modeling in the aviation
domain, called AppLearn. The method leverages historical expert trajectories as train-
ing examples in order to learn an efficient model for the reward function and imitate
the expert’s policy that generated the demonstrated trajectories.

The state space is constructed using feature vectors that encode spatio-temporal
and meteorological information, while the action space consists of discrete aircraft
heading angles. To train the Q-value function approximation scheme and enable
decision-making, a DQN-based neural structure is employed. Finally, the results are
highly promising, demonstrating the ability of the proposed AppLearn method to
accurately predict trajectories and exhibit generalization capabilities even when using
few demonstrations.
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CHAPTER 7

MODULAR AND MULTI-MODAL GENERATIVE
ADVERSARIAL IMITATION LEARNING FOR

MODELING FLIGHT TRAJECTORIES

7.1 Overview

7.2 Related work

7.3 Problem setting

7.4 Modular multi‐modal modeling of aircraft trajectories

7.5 Experimental results

7.6 Summary

This chapter addresses the modularity of trajectories in conjunction to multi-
modality (i.e., patterns of behavior), towards imitating the execution of his-

torical aircraft trajectories. Furthermore, it proposes an imitation learning framework
that segments demonstrated aircraft trajectories into sub-trajectories corresponding
to different flight phases. This segmentation helps in separating different modali-
ties and learning a mixture of policies for each flight phase. Domain-specific rules are
used in order to segment the trajectories, and generative multi-modal imitation learn-
ing methods are employed to learn the mixture of policies. This modular approach
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enables accurate prediction of modalities and sub-trajectories, resulting in the predic-
tion of the aircraft state evolution throughout the entire trajectory in a compositional
manner.

7.1 Overview

Aircraft trajectories, similar to other types of trajectories, possess unique characteris-
tics, imposing challenges and opportunities for trajectory modeling methods. One of
the main challenges is that these trajectories may exhibit diverse patterns of behavior
or modalities, even for the same pair of origin and destination airports. This variability
is due to a multitude of factors, including flight parameters, which airlines consider
sensitive business information, route charges, weather conditions, air traffic, delays,
air traffic manager instructions, and network manager regulations. Secondly, these
trajectories comprise distinct phases that can be determined by specific rules for each
origin-destination airport pair.

Data-driven trajectory modeling methods either aim at disentangling existing
modalities (patterns of behavior), which are mostly represented by means of latent
variables, or at segmenting trajectories to sub-trajectories, either through hierarchical
task decomposition depending on the needs and objectives. Additionally, ML meth-
ods for modeling and predicting trajectories, in general, fail to address the existence
of multiple modalities and trajectories’ modules (i.e., sub-trajectories for sub-tasks) in
a conjunctive manner. Specifically for aircraft trajectories, existing trajectory modeling
and prediction methods are modality-agnostic, or do not exploit information about
flight phases during the prediction process.

Motivated by these challenging issues, this study aims to build models that allow
the incorporation of information about trajectory modules, and modalities. Our early
experiments with flight trajectories, showed that due to the existence of various mix-
tures of modalities in distinct flight phases, modeling trajectory modules separately
and disentangling their existing modalities, can boost the performance by approxi-
mately 20% in spatial 3D prediction, and approximately 55% in predicting estimated
time of aircraft arrival, compared to module and modality-agnostic approaches. This
improvement is due to the profound impact of modeling individual trajectory mod-
ules and their modalities, explicitly. Indeed, modalities exhibit striking variations in
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Figure 7.1: Terms used throughout the chapter and the relations between the corre-
sponding concepts.

executing trajectories, with challenging transitions between modalities moving from
flight phase to flight phase. This observation presents a substantial challenge to the
conventional assumption of a consistent behavioral mode throughout the entire tra-
jectory. Therefore, it is crucial to develop modular, multi-modal approaches that can
effectively capture and adapt to the unique characteristics of each phase, enhancing
modeling robustness and prediction precision: Addressing modularity and multi-
modality conjunctively, is highly challenging.

In this chapter, the trajectory modeling problem for the prediction of trajecto-
ries is formulated as an IL problem, exploiting unsegmented historical trajectories.
Specifically, it proposes an IL framework which segments aircraft trajectories into sub-
trajectories corresponding to flight phases. According to the proposed approach, this
facilitates disentangling modalities per flight phase and supports learning a mixture
of policies per flight phase, towards predicting the evolution of spatio-temporal air-
craft states per flight phase. In the end, the whole trajectory is formed by composing
sub-trajectories corresponding to distinct phases.

To clarify the terminology, Fig. 7.1 shows the terms used throughout the chapter
to describe the modular, multi-modal aircraft trajectories IL problem, with relations
between the concepts that these terms denote.

The contributions of this study are as follows:

• It formulates the problem of imitating modular and multi-modal aircraft trajec-
tories. This entails breaking down the trajectory imitation problem into multi-
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ple sub-problems, each focusing on imitating a specific trajectory module (flight
phase). The objectives of these sub-problems are twofold: firstly, to predict the
modality and execution of each sub-trajectory, and secondly, to predict the pro-
gression of the aircraft’s states throughout the entire trajectory by combining
the predicted sub-trajectories.

• It proposes an IL framework for the aircraft trajectory prediction problem ex-
ploiting the modularity of aircraft trajectories. In so doing, it proposes: (a)
identifying trajectory modules by decomposing the trajectories into meaning-
ful sub-trajectories corresponding to distinct flight phases, (b) clustering sub-
trajectories to detect modalities (patterns of behavior) of flight phase execution,
and (c) training a mixture of policies per flight phase, where each policy corre-
sponds to a mode of phase execution.

• It investigates the use of state-of-the-art multi-modal IL algorithms, following
a supervised way of disentangling trajectory modes, enhanced with advanced
adversarial loss schemes.

• The effectiveness of the proposed framework is assessed by applying it to model
4D aircraft trajectories using a real dataset comprising long flight trajectories be-
tween Paris and Istanbul. This evaluation serves to demonstrate the practicality
and advantages of the proposed method in modeling extended trajectories and
accurately predicting aircraft behavior over significant prediction horizons. The
results showcase the capability of the framework to achieve high levels of pre-
diction accuracy in long-range trajectory forecasting.

The structure of this chapter is as follows. Section 7.2 reviews the literature on
the research topic of aircraft trajectory prediction and also on multi-modal IL. Then,
Section 7.3 specifies the problem to be solved, and Section 7.4 describes the proposed
data-driven IL algorithms for modeling multi-modal aircraft trajectories. Finally, Sec-
tion 7.5 presents the experimental cases and the obtained results, and Section 7.6
concludes the chapter.
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7.2 Related work

7.2.1 Multi‐modal IL

In IL, the agent learns to perform a task by exploiting demonstrations of expert
behaviors. Some of the most common approaches used in IL include BC, direct policy
learning (DPL) [141], IRL, and AIL. The generative adversarial imitation learning
(GAIL) [28] is an advanced technique in the field of IL, which leverages the power
of GANs to train an agent in order to imitate expert behavior in a given task or
environment. In comparison to the apprenticeship learning method (see Chapter 6),
which tries to infer the goal of the experts by learning their reward function, GAIL
tries to directly copy the experts without the need to find the reward function. A
detailed description of GAIL has been given in Chapter 2.3.3.

The limitation of GAIL is its vulnerability in the face of multiple behavioral modes
when performing a task, such as when the demonstrations exhibit various expert
patterns of behavior. To overcome the multi-modal behavioral hurdle in IL, one
may pursue either unsupervised or supervised approaches, depending on whether
the behavioral modes are known in advance. An unsupervised extension of GAIL
that tries to solve the multi-modal problem is Burn-InfoGAIL [142]. It uses a dy-
namic Bayesian network to draw latent codes (representing modes) from burn-in
expert demonstrations maximizing the mutual information between demonstrations
and codes. In VAE-GAIL [143], the latent code is being inferred from a VAE, which is
trained to encode demonstration sequences to embedding vectors, while the decoder
is responsible for reconstructing the trajectories. In the traffic management domain,
some recent works leverage generative models to sample diverse trajectories of vari-
able modalities. In their majority they employ VAEs [144, 145] or GANs [146, 147].

In [148], the latent codes are known before hand and the discriminator is con-
ditioned on the annotated latent vectors. An extension of that work [149] uses an
auxiliary classifier to reconstruct the latent vectors and aid the discriminator to set up
an adversarial loss for the generator. In [150], the authors use a task variable with
the role of discriminating different contexts, so as to learn diverse reward functions
and policies for multiple tasks. Furthermore, in [151] the agent learns a multi-modal
imitation policy by optimizing a sparse coding lifelong intention dictionary, which
enables agents to imitate various behaviors. The algorithm follows the structure of
vanilla GAIL, with an additional term in the objective function for rewarding state-

132



action pairs that help at the inference of the latent variable. In a recent work [152],
the authors study the problem of learning from multi-modal demonstrations where
the experts have different dynamics than the imitator, and in [153, 154] the authors
propose multi-modal trajectory prediction approaches with conditional variational
autoencoder (cVAE) in combination with BC and GAIL, respectively. Specifically, in
[153], the whole expert trajectories are being encoded using the cVAE, and the la-
tent variable (encode) is used to condition the policy of BC, while in [154] the cVAE
extracts the latent variable using a part of the trajectory and then use it to model
the GAIL policy. These methods do not align with the specific goals of this study,
which are to disentangle modalities and imitate trajectories by exploiting unsegmented
trajectories. For instance, VAE methods require a part of the trajectory as input to
generate the latent code.

Additionally, some proposals use attention mechanisms to predict trajectories in
a multi-modal manner [155, 156]. Others consider multi-modality as a distribution
fitting and sampling problem, and introduce generative models to solve it [146], while
some address the modality prediction problem as a classification problem [157]. All
the above methods do not utilize historical trajectories in order to imitate the behavior
of experts, hence they cannot be directly compared with the methods proposed in
this chapter.

As far as current knowledge goes, there are no state-of-the-art ML methods
available to predict modular and multi-modal aircraft trajectories. This chapter ex-
plores the use of two state-of-the-art multi-modal extensions of GAIL: (a) Info-
GAIL [158], which has been modified to a supervised version here, and (b) Triple-
GAIL [159]. These methods demonstrate state-of-the-art performance in disentan-
gling multi-modal demonstrations, while identifying accurately behavioral models.

7.2.2 Modular and hierarchical RL

Modular RL approaches decompose a problem into a collection of RL modules, each
of which learns a separate policy to solve a portion (corresponding to a sub-task) of
the original problem [160, 161].

A family of approaches in [162, 161] employs a state predictor for each sub-task,
modeling environmental dynamics. The RL controllers associated with the sub-tasks
are dynamically chosen based on prediction error at any particular moment. An
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alternative scheme is to introduce a responsibility signal to weight outputs of multiple
models and gate their learning. However, this increases the complexity of learning
and may degrade the overall performance.

Hierarchical RL breaks down a RL problem into a hierarchy of sub-problems,
where high-level tasks utilize lower-level tasks as primitive actions (e.g. [95], [96],and
[97] are some of the early approaches). The low-level tasks can themselves be RL
problems with even lower-level tasks. Thus, task decomposition re-formulates the
original task into a sequence of sub-tasks, at different levels of abstraction.

Recent works in the field of HRL utilize the power of deep NNs to determine sub-
goals for task execution (e.g. in [101, 163]) or useful representations of the state space
in HRL tasks [164]. Authors in [165] propose the HAC method that combines learning
a multi-level hierarchy of sub-goals and a hindsight experience replay memory to
learn a policy that selects the optimal sub-goals at each state.

In addition to these efforts, compositional structured RL, either assumes full
knowledge of the correct partition of the tasks [166], or automatically learns the
structure and the task [167, 168, 169, 170]. Moreover, the work presented in [171]
proposes a HRL approach to learn both compound and composable policies within
the same learning process.

The proposed methodology of the present study takes advantage of the semantics
of aircraft trajectories to identify sub-tasks that correspond to distinct flight phases. In
so doing, it does not follow an HRL approach, but rather a compositional approach
to IL, where sub-trajectories for executing flight phases are predicted according to
(sub-)trajectories’ demonstrations, and these predictions are composed to produce
the prediction of the whole task.

7.2.3 Aircraft trajectory prediction

Nowadays, aircraft trajectory predictors are based on mechanistic formulations of the
aircraft motion problem. Predictors’ outputs are generated based on a-priori knowl-
edge of the flight plan (i.e. airline’s planned and intended trajectory), the expected
command and control strategies released by the pilot, or the flight management system
instructions (known as aircraft intent [172]), and the aircraft performance. Aircraft
intent together with very precise aircraft performance models, such as the prominent

134



Base of Aircraft Data (BADA) 1, has helped to improve the prediction accuracy. How-
ever, these mechanistic, model-based approaches require information that typically
is not known at prediction time, given that it includes airlines’ business sensitive
information (i.e. values of parameters such as initial aircraft weight /mass payload,
cost index, pilot flight modes, etc.). Therefore, mechanistic prediction accuracy is re-
duced considerably beyond a limited prediction horizon of approximately ten (10)
minutes. In addition, these solutions are not able to predict how the trajectory is fi-
nally “shaped”, based on evidence from past flights, showing trends, preferences and
strategies of stakeholders. We conjecture that this ability to comply with the ways
in which flown trajectories evolve in space and time will significantly advance the
current abilities towards implementing the TBO paradigm.

Various efforts in the field of data-driven aircraft trajectory prediction have ex-
plored the application of statistical analysis and ML techniques with different objec-
tives. Linear regression models [173, 174], and NNs [175, 176, 177], have improved
the trajectory prediction accuracy for traffic flow forecasting, while generalized linear
models [178] have been applied for the trajectory prediction in arrival management
scenarios. Multiple linear regression methods [179, 180] have been used for predicting
estimated times of arrival (ETA). These efforts include as input historical surveillance
data, and they usually require additional supporting data for accurate trajectory pre-
dictions (e.g. flight plans, airspace structure, ATC procedures, airline strategy, weather
forecasts, etc.), depending on their objectives.

State-of-the-art data-driven approaches in the ATM domain that are closely related
to the methods proposed in this chapter are those in [177, 181, 182, 183]. Authors
in [181] introduce a stochastic approach, modeling trajectories in space and time by
using a set of 4D spatio-temporal data cubes, enriching them with aircraft motion
parameters and weather conditions. This approach computes the most likely sequence
of states derived by a HMM, which has been trained over trajectories enriched with
weather variables. The algorithm computes the maximal probability of the optimal
state sequence, which is best aligned with the observation sequence of the aircraft
trajectory. According to this approach, the space and time are discretized, with the
lateral cube resolution being 13km and with the temporal cube resolution being one
(1) hour.

1Base of Aircraft Data, https://simulations.eurocontrol.int/solutions/

bada-aircraft-performance-model/
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In [177] the authors propose a tree-based matching algorithm to construct image-
like feature maps from high-fidelity meteorological datasets. Then, they model the
trajectory points as conditional Gaussian mixtures with parameters to be learned from
the proposed deep generative model, which is an end-to-end convolutional RNN that
consists of a long short-term memory (LSTM) encoder network and a mixture density
LSTM decoder network. This approach requires information about flight plans, and
a set of actual trajectory points, prior to prediction, which constrains the prediction
task.

The approach in [182] is a “constrained” approach, learning the deviations of
trajectories from flight plans and reporting deviations per waypoint. This is in contrast
to the proposed unconstrained approach, which aims to predict the evolution of
aircraft state without exploiting any additional information regarding the predicted
trajectory. Finally, a recent work [184] studies the use of a deep encoder-decoder
architecture for aircraft trajectory prediction in a specific operational phase (cruise
phase) and for a limited prediction horizon.

The first work that formulates the aircraft trajectory prediction problem as an IL
problem is the one described in [185]. This work provides significant results regarding
uni-modal trajectory predictions, also in comparison to other state-of-the-art methods
(e.g. [181, 182]). Applearn [183], an apprenticeship learning IL approach for the
trajectory prediction problem, proposed as an alternative to the above approach, and
has been thoroughly presented in Chapter 6.

In this chapter, to a greater extent than the aforementioned approaches, the tra-
jectory prediction problem is formulated as a modular, multi-modal IL problem in a
continuous state-action space, without considering constraints to which the trajectory
must adhere. The aim is to identify trajectory modules corresponding to flight phases
and disentangle different modalities with respect to these phases with the objective
to learn a multi-modal policy per phase, and to predict the modality and execution
of each phase. Ultimately, these predictions of trajectory modules are composed to
predict the 4D evolution of the whole trajectory.

136



7.3 Problem setting

As already pointed out, IL methods typically assume that unsegmented expert demon-
strations (i.e. trajectories in executing a task) come from a single expert. Modality-
agnostic methods focus on imitating the expert behavior based on the assumption
that there is a single modality. However, in real world applications, variability among
demonstrations for executing the same task even under the same conditions can be
explained by underlying factors, which in many cases are unknown or hidden to an
external observer (e.g. due to business sensitive data).

While in Chapter 6 there is the underlying assumption that historical trajecto-
ries follow a single modality from origin to destination, usually there exist multiple
modalities in executing a flight, and in addition to that, each trajectory comprises
modules executing distinct flight phases: This combination of modalities with mod-
ules results into modular and multi-modal trajectories, where each of the modules
may be comprised of a distinct mixture of sub-modalities.

Figure 7.2: From uni-modal and uni-module trajectories, to multi-modal modular
trajectories.

To better explain the problem and the proposed approach, Fig. 7.2 shows cases
of trajectories in a more general setting. Each line (black, red and green) in this
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figure exemplifies a distinct pattern of behavior towards a goal state sg rather than
a single trajectory. The symbols my and mx

y denote the modality and sub-modality,
respectively, of the xth module and of the yth pattern, while the symbols sxy denote
intermediate sub-goals for the xth module of the yth pattern(s). In detail, the case
depicted in Fig. 7.2(a) is the simplest case with unsegmented trajectories following a
single modality. The case in Fig. 7.2(b) shows three modalities, m1,m2,m3 towards
achieving the goal state sg, with unsegmented trajectories. No modules, neither sub-
modalities (i.e., modalities for sub-trajectories) exist in this case. The case in Fig.
7.2(c) shows a more complex case where trajectories are segmented into modules
achieving intermediate goals, towards the final goal sg. It must be noticed that while
there are three main modalities for the trajectories, there exist many sub-modalities
for sub-trajectories, nearly one for any of the trajectory modules. Moreover, some sub-
modalities may be similar, as for instance the sub-modalities for the first modules of
the black and red colored modalities (i.e., m1

1,m
1
2).

To imitate such a set of modular, multi-modal trajectories, it requires a set of
expert policies’ mixtures. One option is to have a mixture per modality m1,m2,m3,
where each mixture comprises one policy per module. This requires learning one
mixture of policies per modality, which may lead to not being able to factor out and
identify similar sub-modalities between modalities. Therefore, policies for similar sub-
modalities may be learned independently, and they may not generalize effectively in
learning policies for sub-tasks. As an alternative, one can have a set of policy mixtures
per sub-task, so that each mixture comprises one policy per task sub-modality. For
instance, in the case of Fig. 7.2(c), three sub-tasks may be identified: The first (let
us name this “climb”) corresponds to the first modules of trajectories, and can be
executed by following any one of the two sub-modalities, m1

1 = m1
2 and m1

3. The
second sub-task (called “cruise”) can be executed by following any of the subsequent
sub-modalities m2

1,m
2
2 and m2

3, and the third (called “descent”) by any of the sub-
modalities m4

1,m
3
2 and m3

3 towards the final goal. It must be noted that the first
modality (black) has an additional module corresponding to sub-modality m3

1 which
prolongs the execution of the second sub-task towards landing. In the worst case,
one policy per sub-modality may be needed, but since sub-modalities can be shared
between sub-tasks (as for instance, m1

1 = m1
2), policies can be factored out and be

modeled once for sub-modalities shared between sub-tasks.
From this example it becomes clear that: (a) sub-tasks are in general associated
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with mixtures of sub-modalities, which may differ between sub-tasks (for instance the
first sub-task has two sub-modalities, and the third sub-task has three), but (b) one
can generalize and learn policies for sub-modalities shared in executing sub-tasks.
Sub-tasks that are somehow aligned are indeed the “phases” of executing the initial
task. Nevertheless, there are two challenges that need to be addressed: (a) determining
how to identify phases (or aligned sub-tasks) within the trajectories, and (b) finding
a way to identify the sub-modalities present within these phases, which can also be
shared among multiple trajectories.

Figure 7.3: Identification of phases.

Figure 7.3 shows three possible approaches for resolving the first issue. In case
(a) the goals of sub-tasks are aligned based on spatial and/or temporal criteria. For
instance, the first sub-task, for any of the three modalities, should reach any state
that is within a region defined by spatial and/or temporal criteria, denoted as S1

g .
This results into two modules corresponding to phases f1 and f2 as depicted in the
example. Case (b) segregates tasks based on conditionally defined goal states. In this
case, there are certain conditions to be met by goal states in S1

g , which may involve
spatial/temporal features together with other state features. These states may not be
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temporally or spatially aligned. This segments trajectories into modules corresponding
to the aligned phases f1 and f2 in the depicted example. In case (c) trajectories are
segmented to modules that are spatially/temporally and conditionally aligned. In this
case, trajectories are segmented in three modules corresponding to phases f1, f2 and
f3. Finally, in any of the cases presented, each phase comprises a mixture of sub-
modalities, which may also depend on the set of phases identified.

In this study, the flight phases of aircraft trajectories are aligned by establishing
specific criteria that determine the end of the “climb” phase (signifying the start of the
“cruise” phase) and the end of the “cruise” phase (signifying the start of the “descent”
phase). By doing so, three well-aligned phases are identified for trajectories during
flights: “climb”, “cruise”, and “descent”. However, it is important to note that this is
just one way of handling it, and it is possible to specify additional phases by defining
alternative criteria, which allows for a more detailed breakdown of sub-tasks. For
instance, the “descent” phase could be further segmented into entering the termi-
nal management area, executing holding patterns, and approaching the destination
airport.

It is crucial to highlight that the objective is not to identify the phases with high
accuracy, but rather to establish consistent identification. The key focus is on ensuring
that sub-tasks are identified consistently in both the training and test datasets, even
if the identification process is done roughly or approximately. The emphasis is on
maintaining consistency rather than achieving precise delineation of the phases.

Once the phases are identified, the next step is to address the second challenge:
recognizing the sub-modalities within each phase during execution. To achieve this,
a clustering approach is employed on historical sub-trajectories that correspond to
each phase. This clustering process helps identifying distinct patterns of execution of
the sub-tasks within the phases. By focusing on clustering sub-trajectories, it becomes
possible to recognize the shared sub-modalities among trajectories more effectively.
This approach proves more advantageous than clustering entire trajectories to identify
trajectory modalities and subsequently segmenting these modalities into phases.

Overall, given a set of unsegmented trajectories, the overall objectives in this study
are to identify meaningful and well aligned trajectory modules specifying phases, dis-
entangle different patterns of demonstrated behaviors per phase, and learn models
that under specific circumstances imitate trajectories by choosing (a) the most appro-
priate modality per phase, and (b) the policy that generates each sub-trajectory. The
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following paragraph formulate the modular multi-modal aircraft trajectory prediction
problem addressed in this chapter in a more rigorous way.

7.3.1 Flight trajectory modeling as modular multi‐modal IL prob‐

lem

In the previous Chapter, a definition of a trajectory T has been given, which is a
chronologically ordered sequence of aircraft states determined by latitude (lat), longi-
tude (lon), geodetic altitude (alt) and timestamp (t). Moreover, the notion of enriched
trajectory has been thoroughly described along with its most relevant features, such as
airspeeds, bearing (c), heading (y), instantaneous aircraft mass (m), as well as, traffic,
day of the week/year, cost variable and preferences of airlines. Even though most of
them are very informative on the behavior of the aircraft, they are usually hidden
since they reveal airlines’ business strategies, and in general cannot be considered
during modeling aircraft trajectories.

A predicted trajectory specifies the future evolution of the aircraft state as a function
of: (a) the current flight conditions (e.g. a given state), (b) a forecast of contextual
variables (e.g. weather conditions), and (c) a “policy” specifying how the aircraft
intends to transit among subsequent states.

Casting the aircraft trajectory prediction problem as a modular multi-modal IL prob-
lem, then the problem is specified as follows: Given a set TE= {TEi , i = 1, ...N} of
historical aircraft trajectories that have been executed following multiple modalities
{m1, ...mM}, the goal is to: (a) specify flight phases F = {f1, f2, ....fp} together with
the sets of initial, Sx0 , and goal states Sxg , of each phase fx, and (b) segment each of
the trajectories into p sub-trajectories corresponding to the flight phases. This results
into a set TE= {T xE, x = 1, ...p} of historical aircraft sub-trajectories, where each set
T xE = {T xEi , i = 1, ...N} comprises one sub-trajectory per TEi, i = 1, ...N and phase fx.
The aim is to learn a mixture of policies Πx = {πxmx1 , ..., π

x
mxk
} per phase fx, where each

policy corresponds to one of the k sub-modalities mx
i , i = 1, ...k executing fx.

This problem specification is very generic, as it allows specifying any set of phases
to segment trajectories, in conjunction to specifying phases’ initial and goal states,
and allows to factor sub-trajectories into sub-modalities mx

i , i = 1...k per phase fx,
so as to learn one policy per sub-modality. The execution of a flight trajectory is
determined by: (a) the initial state s0 chosen from S1

0 , (b) the set of sub-trajectory
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modalities (one modality per flight phase, i.e. {m1,m2, ...,mp}), and (c) the set of
policies {π1

m1 , ..., π
p
mp} specifying the execution of each of the phases, with respect to

the determined sub-modalities.
Any such policy, given a time step∆t, and the initial state of aircraft in phase fk, i.e.

sk0 , brings the distribution of the state-action pairs of the imitator as close as possible
to the distribution of those demonstrated, at any time instant t = t0 + (∆t ∗ i) during
the flight phase, predicting how the expert would behave under specific conditions.
The prediction concerns determining the evolution of aircraft 4D states in space and
time. Following the specification in [186], the set A of actions contains all the possible
combinations of differences in all three (3) spatial dimensions between subsequent
trajectory state positions, given the constraint that each such difference is feasible
within the constant ∆t, and the aircraft’s capabilities. This last condition ensures the
“flyability” of the trajectory. Specifically, an action is the magnitude of aircraft shift
in space: given a position in terms of longitude, latitude and altitude (lon, lat, alt),
actions take the form of (∆lon, ∆lat, ∆alt), and the position in the next state given a
constant ∆t is:

lont+1 = lont +∆lon (7.1)

latt+1 = latt +∆lat (7.2)

altt+1 = altt +∆alt (7.3)

Figure 7.4: The overall process for predicting trajectories.

Figure 7.4 depicts the overall process for predicting trajectories. Given an initial
state s01 sampled from S0

1 , the predictor has to decide on the modality x = m1 for
the execution of the first phase, and thus on the policy π1

x which will generate the
sub-trajectory for phase f1, reaching a goal state s1g. Then, to continue the execution
of trajectory to the next phase, a new initial state s20 is sampled from S2

0 , which should
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be “similar” or “near” to s1g. The procedure follows iteratively for subsequent phases:
Decide on the modality y = m2 for the execution of the second phase, and thus on
the policy π2

y which will generate the sub-trajectory for phase f2, reaching a goal state
s2g, and so on for subsequent phases, until executing the final phase and reaching the
goal state sg.

7.4 Modular multi‐modal modeling of aircraft trajectories

Figure 7.5: Overview of the proposed method for modular and multi-modal aircraft
trajectory modeling and prediction.

Figure 7.5 depicts the overall proposed modular multi-modal method for modeling
and predicting trajectories via imitation learning. Given a dataset of unsegmented
historical trajectories (in our case aircraft trajectories), the trajectory modules are
initially identified. This involves segmenting trajectories into phases (modular de-
composition stage) and identifying modalities per module (mode identification stage)
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Module Description
Phase 1: Climb The initial time period during which the aircraft has a zero or

positive rate of climb.

Phase 2: Cruise The time period following the initial climb during which the
aircraft is in level flight. This phase also includes en-route climb
and descent, i.e., any time period during cruise, where the aircraft
approaches a higher or lower flight level.

Phase 3: Descent The time period before landing, during which the aircraft has a
negative rate of climb.

Table 7.1: The selected flight phases together with a brief description.

in an unsupervised manner by clustering sub-trajectories. This results into modular
trajectories and multi-modal sub-trajectories corresponding to phases. Phase-specific
multi-modal IL agents are trained by exploiting the identified sub-trajectories. These
are trained to model trajectories with respect to the dynamics and constraints that
arise within each phase. The training of each of these agents results into a mixture of
policies, corresponding to phase-specific modalities. Finally, learned policies are used
for the prediction of the modality and sub-trajectory per phase. Through composi-
tion of sub-trajectories, this results into predicting the spatio-temporal evolution of
the whole trajectory.

Subsequent paragraphs describe the functionality and methods used per stage, also
detailing how this is tailored to the modeling and prediction of aircraft trajectories.

7.4.1 Identification of modules

This stage, given a set of unsegmented trajectories, identifies sub-trajectories corre-
sponding to flight phases, and identifies the existing sub-modalities per phase.

Long-duration flights typically follow the restrictive sequence pattern of phases
“climb”, “cruise”, and “descent”. Although multiple descents and climbs (i.e., “touch-
down” maneuvers) are likely to occur in training flights, such occurrences are not
typical in commercial flights. Therefore, the transition to the “descent” phase occurs
exclusively from the “cruise” phase, and the transition to the “cruise” phase occurs
solely from the “climb” phase. Table 7.1 provides an overview of the phases along
with a brief description for each phase.
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The conditions that define the termination of each phase are based on the vertical
profile of the flight. Specifically, for each trajectory point the following are computed:
altitude difference ∆H , time difference ∆T and difference of altitude rate ∆A with
the previous point. Therefore, a boolean climbing flag is defined, which is true if
∆H/∆T is above a given threshold or ∆A/∆T is positive. For the identification of
phases, one should also consider that the “cruise” phase of long-range flights has
the longer duration among flight phases. An estimation of the flight duration can
be made by observing the duration of the demonstrated expert flights. The “climb”
phase ends when the climbing flag is not true, and the flight duration at that point
is more than 10% of the estimated flight duration. Finally, the “descent” phase can
start only after a “cruise” phase, where the difference of altitudes between consecutive
positions is above a given threshold, and the flight duration at the starting point has
exceeded 65% of the estimated total flight duration. The last criterion acts as a safety
lock against transitions to lower flight levels during the “cruise” phase.

During the investigation of the available flight plans, we discovered that flight
phases can be effectively aligned using specific waypoints. These waypoints are fixed
geographical positions that aircraft pass through when departing from or arriving at
an airport. They serve as reference points for transitioning between different flight
phases. By leveraging these waypoints, it becomes possible to mark the transitions
between phases without relying on vertical profiles, heuristics, or predefined thresh-
olds as previously described. This approach offers a more robust and independent
method for identifying phase transitions in any flight, regardless of its vertical profile.

Given that behavioral modes per phase (sub-modalities) are not provided in
demonstrations, there is the need to identify them and associate each demonstrated
sub-trajectory to the corresponding phase modality. This study considers the agglom-
erative hierarchical clustering for the identification of sub-modalities, which relies on
the bottom-up generation of a tree-like structure of clusters [187]. Each sub-trajectory
begins as an individual cluster, and clusters are merged iteratively based on linkage
criteria.

It must be noted that the clustering process exploits only the spatial information
regarding trajectories, i.e. the d = 3 spatial variables of longitude, latitude and alti-
tude. This is done, since the aim is to disentangle sub-modalities in space and time,
independently of the factors that determine their choice. A normalized version of the
dynamic time warping (DTW) method [188] is used in order to calculate the distance
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measure of two sub-trajectories of variable length, Li and Lj , as it is specified in the
following equation:

DTWnorm(Li, Lj) =
DTW (Li, Lj)√

d ∗ L
, (7.4)

where L = max(|Li|, |Lj|). This provides a measure normalized to [0, 1].
Also, the Ward’s method is utilized to determine the pair of existing clusters to be

merged. The outcome of agglomerative clustering is a binary tree, i.e. a dendrogram,
where the height of the branches represents the degree of dissimilarity between groups
that are being joined. Cutting the tree at a specific height is equivalent to inducing a
clustering solution. Finally, the number of clusters is estimated using the silhouette
criterion [189].

7.4.2 Multi‐modal IL methods for trajectory modeling

The segmented trajectories in the output of the previous stage demonstrate the execu-
tion of flights’ phases, following the phase-specific sub-modalities identified. At this
stage, multi-modal IL algorithms exploit these sub-trajectories in a supervised way
to model and predict sub-trajectories. Subsequent paragraphs present the proposed
algorithms, Triple-GAIL-GP and sInfo-GAIL-GP. Both methods build upon the GAIL
framework by incorporating additional information from multiple modalities, which
was described in Chapter 2.3.3. Moreover, a comprehensive description of WGANs is
provided in in Chapter 2.1.5, which is the specific variant of GANs that it is integrated
into the proposed multi-modal methods to enhance their performance.

One of the primary challenges of multi-modal IL is the mode collapse problem.
Similar to GANs, mode collapse occurs when the agent fails to explore the full spec-
trum of expert behaviors and instead converges to a limited set of modes. This lack of
diversity can hinder the agent’s ability to generalize and adapt to novel situations, as
it may fail to reproduce the full range of expert actions. To overcome this limitation,
this study proposes incorporating the Wasserstein distance into the objective function
of the multi-modal IL methods. The Wasserstein distance offers a more informative
and stable training signal by measuring the discrepancy between the distributions
of expert demonstrations and the generated trajectories. By adding the Wasserstein
distance to the objective, the agent is incentivized to explore and cover a broader
range of expert behaviors.
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Triple‐GAIL‐GP

Triple-GAIL [159] is a supervised extension of GAIL that has been proposed to
address the problem of multi-modality with the aim to capture diverse behaviors
from a set of experts. It uses a latent variable c that represents the behavioral mode
and learns conditional policies, π(a|s, c).

Triple-GAIL comprises three networks:(a) the generator, Gθ, with parameters θ
that follows an actor-critic architecture consisting of a policy network πθ(a|s, c) and a
value function estimation network, (b) the discriminator, Dw(s, a, c), with parameters
w that functions as in GAIL, and (c) the selector, Cψ(c|s, a), with parameters ψ, which
infers the latent variable given a state-action pair. The generator and selector networks
are trained to produce (s, a, c) samples that are similar to the expert demonstrations,
while the discriminator is trained to distinguish the real from the generated samples.

In order to enhance the Triple-GAIL’s efficiency, a gradient penalty term is inte-
grated in the objective function of the discriminator, as described in the WGAN-GP
framework (see Chapter 2.1.5 for more details). We call this Triple-GAIL-GP and its
objective function can be defined as:

min
θ,ψ

max
w

EπE [log(1−Dw(s, a, c))] + ω ∗ Eπθ [log(Dw(s, a, c))]

+(1− ω) ∗ ECψ [log(Dw(s, a, c)] + λERE + λGRG − λHH(πθ)

+λGPEx̂∼Px̂ [(|∇x̂Dw(x̂)|2 − 1)2] ,

(7.5)

where RE and RG are two cross-entropy terms that guarantee the convergence of
the distributions. Specifically, RE is the standard supervised loss ensuring that the
selector converges to the expert distribution and RG is the divergence between the
distributions of the selector and the generator. Also, the corresponding coefficients
λE , λG suggest the importance of the above entropy terms and λGP regulates the
influence of gradient penalty. It must be noted that proper values of coefficients were
found experimentally to be λE = λG = 0.5 and λGP = 1.0. The last term of Eq.
7.5 is the gradient penalty which enforces the Lipschitz continuity constraint to the
discriminator. The rest terms constitute the standard Triple-GAIL loss [159].

The training procedure begins by initializing the generator with a pre-trained
BC model to speed up the convergence. Afterwards, the algorithm samples an ini-
tial state from the set of demonstrated expert trajectories along with its true latent
variable (mode) and the generator rolls-out the trajectory using the policy πθ(a|s, c).
Concurrently, the selector takes as input the generated state-action pairs and outputs
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a latent variable for each one. In doing so, two diverse (s, a, c) sets are obtained: one
from the generator with the true latent variable, and one from the selector with the
predicted latent variable. The two sets along with the expert (s, a, c) samples, are then
passed to the discriminator Dw for judgement. The optimum is met when both the
generator’s and the selector’s (s, a, c) distributions converge to the distribution of the
expert samples. Algorithm 8 specifies the training process of Triple-GAIL-GP.

Algorithm 8: Triple-GAIL-GP for trajectory modeling
Input: Expert trajectories TE

Initialize the policy weights θ using BC
Create two buffers for the generator and the selector samples
for episode = 1, 2, ... do

while not enough samples in generator’s buffer do
Sample a starting state from TE and its true latent variable c
Roll-out the trajectory with fixed latent variable
Store state-action-latent tuple (s, a, c) into generator’s buffer
Estimate the latent variable, ĉ, using the selector and store the (s, a, ĉ)

sample into selector’s buffer
Select equal number of samples from generator’s buffer, xG, selector’s
buffer, xC , and expert demonstrations, xE
Compute the gradient penalty term
Update w and ψ parameters by taking partial derivatives of Eq. 7.5
Update θ using TRPO/PPO with the surrogate reward: r = −logDw(s, a, c)

It must be noted that the gradient penalty requires computing the gradient of
the discriminator output with respect to the noisy input x̂ (Eq. 7.5). The noisy in-
put comes from a distribution combining expert and policy samples. Specifically, the
method samples data from these distributions and performs a weighted-average in-
terpolation, creating a new set of samples that lie between the demonstrated and
generator’s distributions. Finally, the penalty term is the squared difference between
the gradient norm of the output of the discriminator applied on the interpolated data
and one (1).
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sInfo‐GAIL‐GP

Info-GAIL [158] is another variation of the GAIL algorithm designed to address
the issue of multi-modality, which was inspired by InfoGANs (see Chapter 2.1.5).
Unlike Triple-GAIL, Info-GAIL utilizes an information-theoretic objective function
to learn the policy, instead of using a triplet loss function. Additionally, in order to
discover trajectories’ modalities, which is its main goal, Info-GAIL uses unlabeled
expert demonstrations. In contrast to Triple-GAIL, which employs a selector, Info-
GAIL utilizes a posterior approximator (as InfoGAN) to select the mode based on the
state-action pairs. Finally, Info-GAIL defines the policy and expert distributions as
state-action distributions without conditioning on the latent variable.

In the original version of Info-GAIL, the latent variables associated with the tra-
jectories are unknown and are discovered in an unsupervised way. In the proposed
approach, a supervised version of Info-GAIL is structured, because the semantic in-
formation (i.e. modality of each sub-trajectory) is available. Hence, the choice of latent
variable values is made through the clustering procedure, as described earlier.

Similar to Triple-GAIL, Info-GAIL comprises: (a) a generator Gθ that follows an
actor-critic architecture modeling a policy πθ(a|s, c) and a value function approxima-
tor, (b) a discriminator Dw(s, a), and (c) a posterior network Qψ(c|s, a) with param-
eters ψ that approximates the probability of a state-action pair to belong to a specific
modality c. Both the discriminator Dw and the posterior Qψ networks are used to form
a surrogate reward that guides the generator’s policy to match the state-action distri-
bution of demonstrated trajectories. Moreover, a gradient penalty term is added in the
discriminator’s objective function, as explained in the Triple-GAIL algorithm. This
version of Info-GAIL is called supervised Info-GAIL, and denoted as sInfo-GAIL-GP.

Hence, the objective function of sInfo-GAIL-GP with the addition of gradient
penalty term becomes:

min
θ,ψ

max
w

EπE [log(1−Dw(s, a))] + Eπθ [logDw(s, a)]

−λHH(πθ)− λILI(πθ, Qψ) + λGPEx̂∼Px̂ [(|∇x̂Dw(x̂)|2 − 1)2 ,
(7.6)

where LI(πθ, Qψ) is a variational lower bound of the mutual information between the
state-action pairs and the latent variable, while Q(c|s, a) is an approximation of the
posterior probability P (c|s, a) (similar to InfoGAN). Both regularization coefficients
λH and λI are considered as constants, and have empirically tuned to λH = 0.01 and
λI = 0.5 after experimentation. The gradient penalty term has the same form as in
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Triple-GAIL-GP.
The training procedure of the sInfo-GAIL-GP approach is quite similar with this

of Triple-GAIL-GP, except that the discriminator Dw and posterior Qψ networks use
the generated state-action pairs to update their weights (without including the la-
tent variable). The policy weights are updated according to the PPO algorithm that
combines the output of the discriminator and the posterior to obtain the surrogate
reward:

r = −logDw(s, a) ∗ lD + logQψ(s, a) ∗ lQ , (7.7)

where lD and lQ are weight terms that determine the contribution of each network.
Algorithm 9 provides an outline of the sInfo-GAIL-GP method.

Algorithm 9: sInfo-GAIL-GP for trajectory modeling
Input: Expert trajectories TE

Initialize the policy weights θ using BC
Create a buffer for storing generated state-action pairs
for episode = 1, 2, ... do

while not enough samples in buffer do
Sample a starting state from TE and its true latent variable c
Roll-out the trajectory with fixed latent variable;
Store the generated state-action pairs (s, a) into the buffer

Select equal number of samples from the buffer, xG, and the expert
trajectories, xE
Compute the gradient penalty term
Update w and ψ parameters by taking partial derivatives of Eq.7.6
Update θ using TRPO/PPO with the surrogate reward (Eq. 7.7)

Mode selection

The aim of the evaluation phase of the proposed scheme is twofold: Given a phase
and an initial aircraft state (a) predict the optimal behavioral mode and (b) predict
the subsequent aircraft states until the aircraft reaches a goal state, i.e. a waypoint
that signifies the start of the next phase, or the destination airport, in the case of the
last phase.

In doing so, the following procedure per phase is followed: The trained generator
Gθ̂, and either the trained selector Cψ̂ (for Triple-GAIL-GP), or the posterior network
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Qψ̂ (for sInfo-GAIL-GP) are used to generate M distinct trajectories, equal to the
number of identified phase’s modalities. Each modality corresponds to a different
value of the latent variable c. Then, for each predicted trajectory, the posterior prob-
abilities of the visited state-action pairs are obtained. At the end of this process, the
sub-trajectory with the maximum average posterior probability is selected for that
phase. The mode of that sub-trajectory indicates the behavioral mode predicted by
the method.

7.5 Experimental results

The experimental study aims to evaluate the effectiveness of the proposed modular
multi-modal IL scheme, which was trained using a real-world dataset of commercial
flights. The proposed scheme is compared against a uni-module multi-modal IL base-
line, which does not segment trajectories into phases, but disentangles the modalities
and mimics the evolution of trajectories using a mixture of policies that correspond
to the identified modalities.

7.5.1 Experimental data

The trajectory dataset comprises real-world commercial flights from Paris Charles de
Gaul to Istanbul airport. This set contains 181 flight trajectories, and spans over a
period of four (4) months in 2018. Apart from the four (4) variables specifying 4D
spatio-temporal information per trajectory point, i.e., longitude, latitude, altitude and
the timestamp, trajectories are enriched with five (5) additional variables:

• three (3) weather variables obtained from the Copernicus Knowledge Base (CDS
Dataset) including temperature isobaric, u-wind component and v-wind com-
ponent,

• the aircraft model, represented as one of nine (9) possible integer values, given
the set of aircraft types identified in historical trajectories, and

• the flight delay at gate, which is an integer value of the delay before the flight
takes off (in minutes).
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Figure 7.6: The Paris-Istanbul dataset of flight trajectories used during experiments

It must be noted that the trajectory dataset has been cleaned and pre-processed to
ensure accuracy and reliability in describing trajectories, and in reporting the results.
In particular, since the dataset provides only flight plans (i.e. trajectories indicating
waypoints crossed, with no constant spatial or temporal distance between consec-
utive waypoints), an interpolation process between consecutive waypoints for each
trajectory was necessary to obtain trajectories with points in a constant time interval,
set to ∆t = 20 seconds. The interpolation process assumes constant aircraft speed
between consecutive waypoints, equal to the average speed reported in these points.
Finally, all continuous state variables are normalized to zero mean with unit variance
(z-score scaling). Figure 7.6 shows the trajectories in the dataset, as depicted by the
open source visualizer tool QGIS 2.

7.5.2 Identification of modules and modes

As detailed in the previous section, the identified modules correspond to three flight
phases (“climb”, “cruise”, “descent”) based on the designated waypoints associated
with the departure and arrival at both airports. Figure 7.7 illustrates the result of
applying the modules identification strategy to the specific dataset.

Having determined the modules, the sub-trajectories per phase are clustered to
identify the sub-modalities. The result of the clustering process can be seen in Figure
7.7, where each cluster is represented with a different color. In particular, the process

2https://www.qgis.org/en/site/
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(a) full (b) climb phase

(c) cruise phase (d) descent phase

Figure 7.7: The result of the hierarchical agglomerative clustering approach in whole
trajectories (a) and in sub-trajectories per flight phase (b-d).

ends up with six (6) clusters in the case of whole trajectories, and nine (9), six (6)
and four (4) clusters for “climb”, “cruise” and “descent” phases, respectively. Note
that the clustering solution of the whole trajectories (six clusters) is in accordance
with the results of the cruise phase that covers the biggest part of the flights.

According to the clustering procedure, the size of clusters is imbalanced. Even
though we could follow a data augmentation strategy over small clusters, we favor
a fair sampling scheme during learning so as not to affect the distribution of data.
Specifically, a random selection among the available modes (with equal probability)
is made iteratively, followed by the sampling of a trajectory from the chosen mode.
This sampling scheme resembles data augmentation and also has the advantage of
not allowing the generator’s buffer to be overpopulated with samples that belong to
the largest mode.
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7.5.3 Experimental setting

(a) policy network (b) critic network

Figure 7.8: The architecture of the generator consisting of (a) the policy and (b) the
critic network used in both Triple-GAIL-GP and sInfo-GAIL-GP methods

This section provides: (a) implementation details about Triple-GAIL-GP and sInfo-
GAIL-GP, as well as (b) training details and (c) the measures used for evaluating the
accuracy of the proposed methods.

The generator, Gθ, in both methods follows an actor-critic architecture with two
(2) networks: a policy and a value function. The policy network (Fig. 7.8(a)) takes
as input state features and a latent variable. The state information passes through
two (2) fully connected layers before it is concatenated with the latent variable input,
which passes through one (1) fully connected layer. Then, the concatenated input
is passed through another fully connected layer before it reaches the output layer,
which produces the three (3) spatial quantities (i.e., ∆lon,∆lat,∆alt) that specify
the action to be taken. Moreover, the policy outputs are stochastic and represented
as the mean Gaussian distribution of each action. It must be noted that the policy
parameters are initialized using BC by minimizing the mean squared error between
expert and estimated actions, using the Adam optimizer. Regarding the critic network
(Fig. 7.8(b)), it takes as input only the state information and consists of three hidden
layers with 100-100-32 nodes and an output layer of one (1) node that represents
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the value of the state.
On the other hand, the discriminator, Dw, consists of two (2) hidden layers with

100 (tanh) nodes each and an output layer of a single node. The difference between
the discriminator of Triple-GAIL and that of Info-GAIL lies in the input: The former
uses (state, action, latent variable) samples, while the latter uses (state, action) pairs.
Finally, the posterior, Qψ, and the selector, Cψ, networks consist of two (2) hidden
layers with 100 nodes and their output layers comprises a number of nodes equal
to the number of different modes, M , providing the posterior probabilities of modes
given a (state, action) pair.

The roll-outs generated by Gθ are terminated if one of the following conditions
occurs:

• the trajectory reaches a point that lies within a radius of 10 km from the goal
state (target airport or phases’ goal states specified by waypoints),

• the trajectory exceeds a pre-defined time-step limit,

• the trajectory reaches a point outside a spatial box which is bounded to include
the expert trajectories, or

• the aircraft exceeds an upper or lower altitude limit.

The proposed IL methods are evaluated regarding their ability to predict modal-
ities and model flight trajectories according to the following seven (7) measures:

• Accuracy of predicting the modality,

• Success rate (%) of methods in terms of reaching the goal state,

• RMSE in nautical miles (nm), for each of the spatial dimensions, as well as in
all three (3) spatial dimensions (3D),

• Along‐Track Error (ATE) [190], which is the distance in nautical miles (nm)
between the predicted aircraft position and the projection of the corresponding
actual aircraft position on the predicted trajectory, across the predicted trajectory,

• Cross‐Track Error (CTE) (or lateral error) [190], that corresponds to the
distance in nautical miles (nm) between the actual aircraft position and the cor-
responding predicted trajectory point, perpendicular to the predicted trajectory,
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• Vertical deviation (V) in feet, and

• Estimated time of arrival (ETA) error in seconds.

To measure the predicted errors between trajectories with different length, a trajectory-
matching step is required. Specifically, the actual trajectory points are matched to the
closest predicted trajectory points, as measured by the DTW distance between the
two trajectories.

In addition, the growth rate of the prediction error per minute of the prediction
temporal horizon is reported. This is crucial, as most of the prediction methods
accumulate prediction errors considerably for long prediction horizons, and shows
how the modular scheme proposed manages to report low growth rates of prediction
errors for long prediction horizons, compared to the uni-module imitation method.

The experimental settings comprise:

• the multi-module multi-modal imitation learning (MMIL) proposed scheme,
and

• the single-module multi-modal imitation learning (SMIL) scheme,

using the Triple-GAIL-GP and the sInfo-GAIL-GP IL approaches.
It should be noted that these schemes have not been compared to uni-module

and uni-modal IL methods (e.g. GAIL) since previous studies have shown that they
do outperform them [159, 158]. Finally, all reported results are the mean values of
ten (10) independent experiments.

7.5.4 Results

Accuracy of trajectory prediction

Table 7.2 presents comparative results for MMIL and SMIL using Triple-GAIL-GP
and sInfo-GAIL-GP, in terms of mean RMSE (in nm) for every spatial dimension
(longitude, latitude and altitude) and in 3D of the predicted versus the actual (test)
trajectories. For MMIL, the column Total contains the results of the RMSE for the
combined trajectory that occurs after merging the sub-trajectories of each phase, so
as to have a fair comparison against SMIL. Moreover, it provides the RMSE for any
of the distinct phases produced by MMIL. On the contrary, SMIL reports RMSE only
for the whole trajectories (last column of Table 7.2).
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MMIL
Phases

Total
SMILRMSE (nm) Method

climb cruise descent

Triple‐GAIL‐GP 0.66 15.94 0.67 10.29 16.62
long

sInfo‐GAIL‐GP 0.74 16.98 0.88 10.89 19.39

Triple‐GAIL‐GP 0.29 8.15 0.39 5.88 10.16
lat

sInfo‐GAIL‐GP 0.43 8.70 0.62 6.06 10.54

Triple‐GAIL‐GP 0.04 0.21 0.02 0.16 0.29
alt

sInfo‐GAIL‐GP 0.05 0.19 0.05 0.17 0.27

Triple‐GAIL‐GP 0.73 18.25 0.78 12.02 19.77
3D

sInfo‐GAIL‐GP 0.87 19.27 1.09 12.53 22.36

Table 7.2: RMSE results for Paris-Istanbul test trajectories from origin to destination
(total), as well as for three individual phases (climb, cruise and descent).

According to the results, MMIL outperforms SMIL in every spatial dimension and
in 3D showing a significant improvement. An important observation regardingMMIL
is that the “cruise” phase results in much higher RMSE, which can be attributed to
the fact that it constitutes the longest part of the trajectory, hence the IL algorithms
accumulate larger errors than in the other two shorter phases. The 3D errors for
the other two phases, “climb” and “descent”, are approximately the same even if the
duration of the “descent” phase is triple from that of the “climb” phase. This can be
attributed to the more complex patterns occurring in the “climb” phase of trajectories.

With regards to both multi-modal IL methods, Triple-GAIL-GP performs better
than sInfo-GAIL-GP in every score. In cases where sInfo-GAIL-GP achieves a better
result than Triple-GAIL-GP (e.g. alt row in “cruise” phase), the difference is insignifi-
cant between the two methods. Finally, the 3D error for the whole trajectory is always
in favor of Triple-GAIL-GP.
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(a) Best MMIL case (b) Best SMIL case

Figure 7.9: Two trajectory prediction results using MMIL (green) and SMIL (blue)
trajectories against actual trajectories (red).

To provide a better intuition regarding the quality of the generated trajectories and
demonstrate MMIL’s prediction capabilities, Fig. 7.9 presents visualizations of two
predicted trajectories following the policies of MMIL (green colored) and SMIL (blue
colored). The actual (test) trajectories are shown in red color, and theMMIL trajectory
is in its largest part “hidden” behind the actual one. Specifically, Fig. 7.9(a) shows
the generated trajectories that correspond to the case of the lowest RMSE (3.86 nm in
3D) using the MMIL’s multi-modular policy. The performance of the SMIL scheme
for the same case was significantly worst (17.57 nm in 3D) than that of MMIL. The
reason is that the trajectory generated by SMIL has a remarkable discrepancy from
the actual one during the “climb” and “descent” phases, since it can not accommodate
the modalities existing in these phases. Figure 7.9 (b) shows the MMIL and SMIL
generated trajectories in the case where SMIL manages to score the lowest RMSE
(6.89 nm in 3D). In this case, the performance of the MMIL scheme was almost
the same (6.98 nm in 3D), where the discrepancy of the predicted from the actual
trajectory is mostly in the “cruise phase”. It is worth mentioning that the predicted
trajectories of the proposed MMIL method agree largely with the actual ones, with a
noticeable accuracy in the “climb” and “descent” phases.

In addition, Table 7.3 provides comparative results of both methods in terms of
ATE, CTE, V, and ETA measures. Results are in compliance with those reported
in Table 7.2 showing the superiority of the proposed MMIL against SMIL. Triple-
GAIL-GP is also shown to perform, overall, better than sInfo-GAIL-GP, especially
with regards to the prediction of the whole trajectory (column Total). Moreover, the
effect of the modular approach is shown clearly in the prediction of the “climb” and
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MMIL
Phases

Total
SMILTrack errors Method

climb cruise descent
Triple‐GAIL‐GP 0.48 10.82 0.54 5.72 10.72

ATE (nm)
sInfo‐GAIL‐GP 0.53 11.69 0.69 6.11 12.57

Triple‐GAIL‐GP 0.17 7.94 0.54 5.79 10.65
CTE (nm)

sInfo‐GAIL‐GP 0.38 7.48 0.36 5.90 11.69

Triple‐GAIL‐GP 58.46 236.10 34.12 202.66 390.69
V (ft)

sInfo‐GAIL‐GP 82.18 228.79 56.92 210.81 357.92
Triple‐GAIL‐GP 17.11 193.05 190.38 430.09 523.85

ETA (sec)
sInfo‐GAIL‐GP 20.74 217.91 200.94 498.41 655.85

Table 7.3: Comparative results in terms of ATE, CTE, V, and ETA error of generated
trajectories from origin to destination. The same results are shown for any of the
three individual phases.

“descent” phases.
To further assess the effect of MMIL on the prediction errors reported for each of

the phases and for the whole trajectory, the MMIL policy is compared to the SMIL
policy when the later is used for generating sub-trajectories separately for each of
the phases identified. In this case, SMIL uses the initial point of the sub-trajectories
of the corresponding phase. The obtained results are shown in Table 7.4 for RMSE
errors, and in Table 7.5 for track errors. Comparing these with the results of MMIL
in Tables 7.2 and 7.3, we can observe the significant improvement in prediction that
MMIL achieves, in every measure used, especially in the case of the “climb” and
“descent” phases.
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RMSE (nm) Method
Phases

climb cruise descent

long
Triple‐GAIL‐GP 8.52 19.54 8.99
sInfo‐GAIL‐GP 9.25 22.42 9.58

lat
Triple‐GAIL‐GP 2.88 14.76 3.85
sInfo‐GAIL‐GP 3.55 14.55 6.67

alt
Triple‐GAIL‐GP 0.29 0.69 0.15
sInfo‐GAIL‐GP 0.30 0.72 0.26

3D
Triple‐GAIL‐GP 9.29 24.84 9.87
sInfo‐GAIL‐GP 10.27 27.06 11.89

Table 7.4: RMSE results for SMIL applied to phases.

Track
Errors

Method
Phases

climb cruise descent

ATE (nm)
Triple‐GAIL‐GP 5.44 11.41 5.24
sInfo‐GAIL‐GP 5.74 13.69 5.88

CTE (nm)
Triple‐GAIL‐GP 3.09 8.82 5.15
sInfo‐GAIL‐GP 3.93 9.98 6.92

V (ft)
Triple‐GAIL‐GP 425.51 727.12 216.12
sInfo‐GAIL‐GP 430.62 767.59 362.08

ETA (sec)
Triple‐GAIL‐GP 46.07 248.15 82.23
sInfo‐GAIL‐GP 48.12 250.69 89.77

Table 7.5: ATE, CTE, V, and ETA error of SMIL applied to phases.
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Accuracy in disentangling modalities & success rate

Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6 Policy 7 Policy 8 Policy 9

Mode 1
Triple-GAIL-GP 0.85 0.00 0.11 0.00 0.00 0.00 0.02 0.00 0.02

sInfo-GAIL-GP 0.83 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.01

Mode 2
Triple-GAIL-GP 0.00 0.76 0.00 0.09 0.00 0.13 0.02 0.00 0.00

sInfo-GAIL-GP 0.00 0.71 0.00 0.12 0.00 0.14 0.02 0.01 0.00

Mode 3
Triple-GAIL-GP 0.11 0.01 0.86 0.00 0.01 0.01 0.00 0.00 0.00

sInfo-GAIL-GP 0.15 0.03 0.79 0.00 0.00 0.03 0.00 0.00 0.00

Mode 4
Triple-GAIL-GP 0.00 0.14 0.00 0.73 0.01 0.11 0.01 0.00 0.00

sInfo-GAIL-GP 0.00 0.20 0.00 0.66 0.04 0.08 0.02 0.00 0.00

Mode 5
Triple-GAIL-GP 0.00 0.00 0.00 0.01 0.53 0.13 0.21 0.10 0.02

sInfo-GAIL-GP 0.00 0.00 0.00 0.06 0.45 0.15 0.22 0.12 0.00

Mode 6
Triple-GAIL-GP 0.00 0.12 0.00 0.12 0.09 0.47 0.20 0.00 0.00

sInfo-GAIL-GP 0.00 0.15 0.00 0.14 0.10 0.43 0.18 0.00 0.00

Mode 7
Triple-GAIL-GP 0.00 0.00 0.00 0.01 0.13 0.17 0.49 0.01 0.19

sInfo-GAIL-GP 0.00 0.00 0.00 0.01 0.16 0.18 0.43 0.00 0.22

Mode 8
Triple-GAIL-GP 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.86 0.00

sInfo-GAIL-GP 0.00 0.03 0.00 0.00 0.21 0.00 0.02 0.74 0.00

Mode 9
Triple-GAIL-GP 0.00 0.00 0.00 0.00 0.04 0.00 0.16 0.02 0.78

sInfo-GAIL-GP 0.01 0.00 0.00 0.00 0.09 0.00 0.20 0.01 0.69

Table 7.6: The mean posterior probabilities of the climb phase as calculated by the
selector (Triple-GAIL-GP) and the posterior (sInfo-GAIL-GP) networks in the pro-
posed MMIL scheme

In order to show the accuracy for the prediction of sub-modalities, Tables 7.6, 7.7
and 7.8 present the average posterior probabilities obtained from the selector (Triple-
GAIL-GP) and posterior (sInfo-GAIL-GP) networks on the testing trajectories. To
begin with, it should be noted that both multi-modal IL methods are capable of
perfectly disentangling the modalities in each phase. However, Triple-GAIL-GP out-
performs sInfo-GAIL-GP in terms of higher posterior probabilities in every case, which
demonstrates the robustness of this method.
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Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6

Mode 1
Triple-GAIL-GP 0.92 0.02 0.00.00 0.03 0.02 0.01
sInfo-GAIL-GP 0.87 0.05 0.00 0.06 0.01 0.01

Mode 2
Triple-GAIL-GP 0.00 0.84 0.01 0.09 0.04 0.02
sInfo-GAIL-GP 0.00 0.80 0.03 0.14 0.01 0.02

Mode 3
Triple-GAIL-GP 0.00 0.00 0.83 0.07 0.03 0.07
sInfo-GAIL-GP 0.00 0.00 0.75 0.10 0.10 0.05

Mode 4
Triple-GAIL-GP 0.00 0.02 0.06 0.55 0.08 0.29
sInfo-GAIL-GP 0.00 0.01 0.09 0.45 0.12 0.33

Mode 5
Triple-GAIL-GP 0.01 0.01 0.02 0.09 0.68 0.19
sInfo-GAIL-GP 0.02 0.03 0.02 0.14 0.61 0.18

Mode 6
Triple-GAIL-GP 0.00 0.01 0.07 0.26 0.13 0.53
sInfo-GAIL-GP 0.00 0.00 0.05 0.31 0.16 0.48

Table 7.7: The mean posterior probabilities of the cruise phase as calculated by the
selector (Triple-GAIL-GP) and the posterior (sInfo-GAIL-GP) networks in the pro-
posed MMIL scheme

Policy 1 Policy 2 Policy 3 Policy 4

Mode 1
Triple-GAIL-GP 0.70 0.00 0.19 0.11
sInfo-GAIL-GP 0.62 0.01 0.23 0.14

Mode 2
Triple-GAIL-GP 0.00 0.62 0.17 0.21
sInfo-GAIL-GP 0.00 0.54 0.21 0.25

Mode 3
Triple-GAIL-GP 0.18 0.17 0.65 0.00
sInfo-GAIL-GP 0.21 0.23 0.55 0.01

Mode 4
Triple-GAIL-GP 0.22 0.20 0.00 0.58
sInfo-GAIL-GP 0.20 0.26 0.01 0.53

Table 7.8: The mean posterior probabilities of the descent phase as calculated by
the selector (Triple-GAIL-GP) and the posterior (sInfo-GAIL-GP) networks in the
proposed MMIL scheme

It is worth mentioning that in certain cases, the posterior probabilities for each
method are low. To explain this, let’s consider the cases of Modes 4 and 6 in the
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Figure 7.10: Cruise phase modes 4 and 6. The significant overlap between these
modalities is apparent.

“cruise” phase (Table 7.7). As can be observed in Fig. 7.10, there is significant over-
lap between these two distinct modalities. As a result, the posterior models cannot
accurately identify the correct modality in such cases. However, by considering the
entire generated trajectory, we can ultimately identify the correct sub-modality.

Success Rate (%) climb cruise descent
Triple‐GAIL‐GP 100 85 100

sInfo‐GAIL‐GP 100 80 97

Table 7.9: Success rate of methods in terms of reaching the goal states in every phase

Furthermore, the success rate of the generated sub-trajectories in reaching the goal
states (i.e. the waypoints at the end of each phase) is measured in Table 7.9. In a
compositional approach, this is a crucial aspect because the predicted trajectory from
origin to destination is constructed by concatenating sub-trajectories. As mentioned
earlier, the successful termination of a sub-trajectory occurs when a flight reaches
a distance within a 10 km radius from the goal state. Although both methods can
generate high-quality sub-trajectories for the “climb” and “descent” phases, as shown
in Table 7.9, the success rate for the cruise phase is diminished. This can be attributed
to the extended duration of this phase and the accumulation of the prediction errors.
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Nevertheless the results are still notable given the requirement for flights to terminate
in a condensed area close to a waypoint at the end of a phase (as shown for instance
in Fig. 7.7(c)).

Growth rates of prediction errors

This section reports on the growth rate of the prediction error as the prediction
horizon expands. It shows how the proposed modular scheme manages to report
low growth rates of prediction errors for long prediction horizons, compared to the
uni-module version. This is a crucial finding, since most of the prediction methods
accumulate prediction errors for long-horizon tasks.

Specifically, the error growth rate measures the accumulation of the prediction
error after every minute of look-ahead time. In accordance with the trajectory pre-
diction standards set by EUROCONTROL [191], the lateral prediction error growth
rate should be less or equal to 0.1 nm/min, while the longitudinal prediction er-
ror growth rate should be less or equal to 0.1 nm/min for the cruise phase and
0.2 nm/min for the other phases. Figures 7.11, 7.12 and 7.13 present the comparative
growth rates of RMSE, ATE and CTE in terms of mean and standard deviation (std)
of errors in nm (axis y) per minute of prediction (axis x) for every phase. It must
be noted that these results concern the MMIL and SMIL policies learned by Triple-
GAIL-GP. For a fair comparison, the SMIL policy which was trained for the whole
trajectories, in this case is used for generating sub-trajectories separately for each of
the phases identified, where the starting state is the initial point of the corresponding
phase for the predicted trajectory.

As shown in Fig. 7.11, 7.12 and 7.13, MMIL manages to bound the error growth
considerably in 3D, as measured by RMSE, as well for track errors ATE and CTE, in all
phases compared to SMIL. This shows the capability of MMIL to bound compound-
ing errors in long prediction horizons, with a smaller standard deviation compared
to SMIL. This occurs also for the “cruise” phase, where the error reported is an order
of magnitude higher compared to the other phases. Notably, error growth rates for
the “cruise” phase are as follows: for RMSE(3D) 0.13 nm/min, for ATE 0.08 nm/min,
and for CTE 0.08 nm/min. This indicates that this model can manage to bound the
prediction errors even for long prediction horizons, close to the operational require-
ments for trajectory prediction. The corresponding growth rates for the “climb” and
“descent” phases for RMSE(3D), ATE and CTE are even smaller for MMIL.
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Mean RMSE Growth Rate=0.04 nm Mean ATE Growth Rate=0.02 nm Mean CTE Growth Rate=0.03 nm

Mean RMSE Growth Rate=0.48 nm Mean ATE Growth Rate=0.18 nm Mean CTE Growth Rate=0.40 nm

Figure 7.11: RMSE, ATE & CTE growth rates (in nm) during the climb phase for
MMIL and SMIL.

Mean RMSE Growth Rate=0.13 nm Mean ATE Growth Rate=0.08 nm Mean CTE Growth Rate=0.08 nm

Mean RMSE Growth Rate=0.15 nm Mean ATE Growth Rate=0.09 nm Mean CTE Growth Rate=0.13 nm

Figure 7.12: RMSE, ATE & CTE growth rates (in nm) during the cruise phase for
MMIL and SMIL.
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Mean RMSE Growth Rate=0.04 nm Mean ATE Growth Rate=0.02 nm Mean CTE Growth Rate=0.03 nm

Mean RMSE Growth Rate=0.21 nm Mean ATE Growth Rate=0.10 nm Mean CTE Growth Rate=0.17 nm

Figure 7.13: RMSE, ATE & CTE growth rates (in nm) during the descent phase for
MMIL and SMIL.

7.6 Summary

Data-driven aircraft trajectory modeling constitutes an important research area due
to the increasing need for efficient and safe air traffic management. This chapter aims
to address this issue by proposing a modular, multi-modal IL approach for trajectory
modeling, which leverages large-scale trajectory data and applies deep learning gener-
ative techniques to model the underlying behavior patterns and structures of aircraft
trajectories. The modular approach allows the model to handle different phases of
the flight, while the multi-modal nature enables the model to capture the diverse
trajectory patterns exhibited by different flight modalities. By combining these two
features, the generative agent can learn advantageous policies with the ability to gen-
erate high-quality trajectory predictions that are both accurate and diverse, while also
providing realistic and robust solutions that can adapt to changing conditions.
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CHAPTER 8

CONCLUSIONS AND FUTURE STUDY

This doctoral research is devoted to develop novel reinforcement learning agents
in traffic applications, with emphasis on the urban road and the aviation do-

mains. Several methods were proposed to (a) resolve congestion problems, and (b)
modeling trajectories through imitating historical expert demonstrations, including
techniques from deep reinforcement learning, hierarchical and modular learning, gen-
erative modeling, imitation learning and multi-agent systems. The depicted results
by studying experimental, simulated and real traffic scenarios are compared and con-
trasted, demonstrating the remarkable applicability of the proposed methodologies.
Through rigorous analysis and comprehensive evaluations, the findings not only val-
idate the effectiveness of the methods but also provide invaluable insights into their
practical implementation.

Traffic management and control is a very promising research area with the poten-
tial to impact not only various aspects of transportation, but also to become an attrac-
tive application area for studying and implementing machine learning approaches,
learning schemes and mathematical models that will be able to offer complete and
robust solutions. Due to the inherent complexity of the traffic domain, there is a mul-
titude of exciting avenues for expansion and exploration. It offers the opportunity to
study innovative strategies and solutions addressing challenges associated with traffic
flow optimization, congestion mitigation, and sustainable transportation systems. By
embracing these potential avenues of inquiry, the primary goal of this thesis is to
develop innovative reinforcement learning methodologies and generative adversarial
imitation learning modeling schemes for enhancing the efficiency and effectiveness of
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traffic control mechanisms, such as adaptive traffic management, autonomous vehicle
integration, dynamic route guidance, and intelligent transportation systems.

Chapters 3 and 4 discussed the problem of autonomously navigating a large
number of vehicles in traffic networks with unsignalized intersections. The afore-
mentioned problem was formulated as a MAMDP and tackled using deep MARL
methods. Firstly, the problem was rigorously defined and the notion of route-agents
was introduced. Then the development of rich state spaces and informative reward
functions for the MAMDPs was shown. Moreover, the evaluation of the proposed
methods was conducted on both artificial and real-world scenarios of various level of
difficulty using the well-known traffic simulator SUMO. The results of these exper-
iments have demonstrated the ability of the proposed methods to safely navigate a
large number of vehicles inside large-scale traffic networks and minimize the traveling
time for the participants of the multi-agent environment. Furthermore, a significant
aspect of the work presented in Chapter 4 is the knowledge reuse (i.e., transfer learn-
ing) of the learned policies to unknown scenarios with much larger number of vehicles
and increased stochasticity. The results obtained under the transfer learning settings
were very promising which lead us to look into future directions for the problem.
Such directions could be:

• Devise alternative reward function schemes that may contain more discriminat-
ing features.

• Extend the proposed method to handle larger traffic networks.

• Study advanced policy gradient RL approaches that allow working with con-
tinuous action spaces.

• Explore the problem under imitation learning by utilizing expert trajectories.

• Use the proposed methodology in different congestion problems for navigating
swarms of entities in multi-agent environments.

Chapter 5 addresses the DCB problem in the ATM domain, where multiple flight-
agents need to collaborate in order to develop optimal joint strategies that allocate the
shared resources efficiently. This problem arises in ATM when multiple aircrafts want
to pass through air sectors that have limited capacity. The aforementioned problem is
initially formulated as a collaborative MAMDP and later is extended to the hierarchical
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case. Two methods are proposed to solve the MDPs: Firstly, a collaborative MARL
method that assigns delays to the flights at the pre-tactical stage of the operation.
Then, a hierarchical MARL framework that supports state abstractions at various
levels is proposed. The hierarchical framework offers refined solutions by initializing
state-action values based on previous abstraction levels. In practice, the method works
on two stages, where in the high-level stage an initial abstract solution is found, and
on the second stage a refined (near) optimal solution is obtained. The effectiveness of
the proposed method has been evaluated on real-world cases comprising historical
flights above Spain. The results indicate that the hierarchical collaborative method
has the ability to handle complex congestion settings with a large number of agents.
The following directions have been set as future works:

• Explore deep reinforcement learning schemes that can handle continuous state
spaces. By incorporating these approaches, the aim is to enhance the general-
ization capabilities of the methods.

• Use additional levels of abstraction to provide even more refined solutions.

• Study alternative reward function schemes. This will involve considering state-
of-the-art reward schemes utilized in multi-agent congestion problems, which
encompass additional features relevant to the DCB problem in ATM.

• Work on larger scenarios with more air sectors.

• Apply the proposed hierarchical methodology to different problems, where
agents should coordinate actions in multiple levels of abstraction in order to
find an optimal joint strategy.

Chapter 6 considers the problem of trajectory modeling in the aviation domain
as an IRL problem, where a dataset of expert demonstrations (actual flights) acted as
a teacher for the learning method. Under these settings, the proposed apprenticeship
learning approach tried to extract the expert reward function that explains the behavior
of the expert. To do so, a rich state space from RBF kernels was devised by considering
spatial, temporal and meteorological features and a set of heading angles was used
as actions for the aircraft to follow. In the end, DQN was trained to approximate the
Q-values and choose among the actions. It is of utmost importance that the proposed
method was tested on real-world expert data concerning flights from Barcelona to
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Madrid, and the results were very competent to the actual flight trajectories. The focus
is on the following points for future research:

• Use alternative deep neural networks structures as value function approximation
schemes.

• Study other parametric model-based reward functions for imitating expert be-
havior.

• Use more complex continuous action spaces.

• Extend the experimental study with aircraft trajectories of longer distances.

Chapter 7 extends the flight trajectory modeling problem to cases where multi-
ple expert behaviors (modalities) are present. Specifically, the suggested framework
initially segments the expert trajectories into flight phases, and then proceeds by
applying state-of-the-art multi-modal IL techniques for learning to mimic the multi-
modal expert behaviors inside each phase. The objective functions of the proposed
algorithms are enriched with regularization terms that enhance their performance and
increase their generalization capabilities. The importance of the presented framework
is demonstrated on the experimental results conducted on real-world flight trajec-
tories from Paris to Istanbul that contained a plethora of ways (multi-modality) to
reach the destination airport. In the future, further extensions on this research can
be explored in the following directions:

• Use the proposed methodology to transfer the learned models between different
origin-destination airport pairs, as well as to transfer models between similar
patterns within the same phase, or among distinct phases.

• Develop an automated process to segregate trajectories in multiple sub-trajectories,
also identifying even more detailed flight phases.

• Use offline reinforcement learning algorithms for imitating the expert trajecto-
ries.

• Generalize and evaluate the methodology for different types of trajectories in
executing various tasks.
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