
Flow Analytics in Large Graphs

A Dissertation

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Chrysanthi Kosyfaki

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina

School of Engineering

Ioannina 2023

Advisory Committee:

• Nikos Mamoulis, Professor, Department of Computer Science and Engineering,
University of Ioannina (advisor)

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina

• Panayiotis Tsaparas, Assoc. Professor, Department of Computer Science and
Engineering, University of Ioannina

Examining Committee:

• Nikos Mamoulis, Professor, Department of Computer Science and Engineering,
University of Ioannina (advisor)

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-
ing, University of Ioannina

• Panayiotis Tsaparas, Assoc. Professor, Department of Computer Science and
Engineering, University of Ioannina

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina

• Reynold Cheng, Professor, Department of Computer Science, The University of
Hong Kong

• Ben Kao, Professor, Department of Computer Science, The University of Hong
Kong

• Matthias Renz, Professor, Department of Computer Science, CAU University of
Kiel

DEDICATION

To my beloved mother, Theodora

To my late father, Nasos,
who never saw this adventure

but he is always in my heart...

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my supervisor
Prof. Nikos Mamoulis for his invaluable advice, continuous support, and patience
during to my PhD studies. His guidance and plentiful experience have encouraged
me in all the time of my academic research and daily life as well as he helped me to
complete this dissertation.

I would also like to thank Profs. Pitoura and Tsaparas for the excellent collabora-
tion and their help during the first year of my PhD studies. Working beside them was
a great and useful experience. Special thanks are given to Profs. Cheng and Kao for
giving me the opportunity to work with them during my internship at the University
of Hong Kong. I really appreciate their support and our discussions on my research
problems during my PhD studies. I would like to thank Profs. Likas and Renz for
being members of my Examination Committee. Lastly, I am grateful to Prof. Papadias
for attending my PhD thesis defense and providing comments.

Many thanks to my friends and fellow colleagues (George Christodoulou, Dimitris
Tsitsigkos, Dinos Lampropoulos, Thanasis Georgiadis and Achilleas Michalopoulos)
for creating a pleasant work environment, and for their invaluable help and advice. It
has been a privilege to work among them and I will always remember our discussions
during my studies (especially with George and Dimitris).

Finally, I must express my very profound gratitude to my mother Theodora and
my sisters Christina, Maria and Konstantina for providing me with unfailing sup-
port and continuous encouragement throughout my years of study. This dissertation
would not have been possible without them

Thank you all for your encouragement and support.

Chrysanthi Kosyfaki

April 2023, Ioannina

TABLE OF CONTENTS

List of Figures v

List of Tables vii

List of Algorithms viii

Abstract ix

Εκτεταμένη Περίληψη xi

1 Introduction 1
1.1 Dissertation contribution . 2

1.1.1 Computing flow in large graphs 2
1.1.2 Tracking provenance in large graphs 6
1.1.3 Extracting spatio-temporal flow patterns 9

1.2 Repeatability . 11
1.3 Dissertation layout . 12

2 Background and Definitions 13
2.1 Flow networks . 14

2.1.1 Flow Networks . 14
2.1.2 Flow Networks - Classic Problems 15

2.2 Temporal Networks . 20
2.3 Temporal Interaction Networks . 21

2.3.1 Buffers . 22
2.4 Data Provenance . 23

2.4.1 Workflow Provenance . 23
2.4.2 Data provenance types . 23

i

2.4.3 Different models of Data Provenance 24

3 Flow computation in temporal interaction networks 27
3.1 Definitions . 28
3.2 Flow Computation Algorithms . 31

3.2.1 Greedy flow computation . 31
3.2.2 Maximum flow computation using LP 33

3.3 A framework for maximum flow computation 34
3.3.1 Graphs for which Algorithm 4.1 computes the maximum flow . 34
3.3.2 Graph preprocessing algorithm 35
3.3.3 Graph simplification . 38
3.3.4 Putting it all together . 41
3.3.5 Mapping [1] to our problem . 41

3.4 Flow pattern search . 43
3.4.1 Graph browsing approach . 43
3.4.2 Flow path indexing . 44
3.4.3 Non-rigid patterns . 45

3.5 Experimental evaluation . 46
3.5.1 Dataset description . 46
3.5.2 Flow computation . 47
3.5.3 Pattern search . 52

3.6 Summary . 54

4 Provenance in temporal interaction networks 56
4.1 Definitions . 57
4.2 Selection policies and provenance . 59

4.2.1 Selection based on generation time 59
4.2.2 Selection based on order of receipt 62
4.2.3 Proportional selection . 63
4.2.4 Sparse vector representation . 64

4.3 Scalable proportional provenance . 65
4.3.1 Selective provenance tracking . 65
4.3.2 Grouped provenance tracking . 66
4.3.3 Limiting the scope of provenance 66

4.4 Tracking the paths . 69

ii

4.5 Experimental Evaluation . 69
4.5.1 Dataset description . 70
4.5.2 Provenance tracking performance 71
4.5.3 Selective and grouped provenance 72
4.5.4 Limiting the scope of provenance tracking 73
4.5.5 Path tracking . 76
4.5.6 Use case . 77

4.6 Summary . 78

5 Spatiotemporal flow patterns 79
5.1 Definitions . 80
5.2 Pattern Extraction . 83

5.2.1 Baseline Algorithm . 84
5.2.2 Optimizations . 86

5.3 Pattern Variants . 89
5.3.1 Size-bounded Patterns . 89
5.3.2 Constrained Patterns . 90
5.3.3 Rank-based patterns . 90

5.4 Experiments . 94
5.4.1 Dataset Description . 94
5.4.2 Pattern enumeration . 96
5.4.3 Bounded patterns . 100
5.4.4 Rank-based patterns . 101
5.4.5 Use cases . 101

5.5 Summary . 102

6 Related Work 104
6.1 Flow computation problem . 104
6.2 Data provenance in graphs . 105

6.2.1 Theory and applications . 105
6.2.2 Provenance systems . 107

6.3 Spatio-temporal patterns . 108

7 Conclusions and future work 110
7.1 Summary of Contributions . 110

iii

7.2 Directions for Future Work . 112

Bibliography 113

iv

LIST OF FIGURES

1.1 A toy interaction network . 3
1.2 Example of quantity transfer (FIFO policy) 7
1.3 Buffered quantities at vertex #79 (East Village) after each interaction in

our Taxis Network . 8

2.1 An example of max flow computation 15
2.2 A set of interactions and the corresponding TIN 22
2.3 An example of workflow provenance . 23

3.1 Interaction network and subnetwork of interest 29
3.2 Network, pattern, and instance . 31
3.3 DAGs for which greedy computes the maximum flow 35
3.4 DAG preprocessing examples . 37
3.5 Example of graph simplification . 40
3.6 Mapping a temporal to an interaction network 42
3.7 Examples of flow patterns . 45
3.8 2-hop non-rigid pattern . 46
3.9 Runtime of algorithms as a function of the number of interactions . . . 50
3.10 Flow statistics in subgraphs . 52
3.11 Set of tested patterns . 53
3.12 Cumulative flow distribution of pattern instances 54

4.1 Windowing approach in provenance tracking 68
4.2 Selective and grouped proportional provenance 73
4.3 Cumulative time vs. number of processed interactions 74
4.4 Average time per interactions vs. number of processed interactions . . . 74
4.5 Windowing approach . 75

v

4.6 Budget-based provenance . 75
4.7 Provenance alerts in Bitcoin . 78

5.1 Example of input graph . 80
5.2 A detailed example . 82
5.3 Pattern enumeration example . 86
5.4 Prefix sum example . 88
5.5 Pattern enumeration runtime, sr = 0.5, varying sa 95
5.6 Pattern enumeration cost breakdown, sr = 0.5, default sa 96
5.7 Pattern enumeration runtime, default sa, varying sr 96
5.8 Number of patterns for different values of sa and sr 97
5.9 Bounded pattern enumeration runtime, default sa, sr, varying origin

bound . 97
5.10 Bounded pattern enumeration runtime, default sa, sr, varying destina-

tion bound . 98
5.11 Bounded pattern enumeration runtime, default sa, sr, varying timeslot

bound . 98
5.12 Rank-based pattern enumeration, sa = 0.1, k = 3000, varying maxl . . . 99
5.13 Rank-based pattern enumeration, sa = 0.1, maxl = 30, varying k 99

vi

LIST OF TABLES

2.1 Table of notations . 26

3.1 Example of greedy flow computation . 32
3.2 Characteristics of Datasets . 47
3.3 Statistics of subgraphs . 48
3.4 Average runtime (msec) on the tested subgraphs 49
3.5 Flow comparison (class C only) . 51
3.6 Pattern Search on Bitcoin . 53
3.7 Pattern Search on Prosper Loans . 54

4.1 Changes at buffers at each Interaction 59
4.2 Changes at buffers (oldest-first policy) 60
4.3 Changes at buffers (LIFO policy) . 62
4.4 Changes at buffers (proportional selection) 64
4.5 Characteristics of Datasets . 70
4.6 Runtime (sec) for each selection policy 72
4.7 Peak memory used by each selection policy 72
4.8 Shrinking statistics in budget-based provenance 76
4.9 Tracking provenance paths in LIFO . 77

5.1 Use case - Taxi Dataset . 102
5.2 Use case - MTR Dataset . 102

vii

LIST OF ALGORITHMS

3.1 Greedy Flow Computation . 32
3.2 DAG preprocessing . 36
3.3 Chain Reduction . 39
3.4 Graph simplification . 40
3.5 Maximum flow computation . 41
3.6 Pattern Search . 44
4.1 Propagation algorithm in a TIN . 58
4.2 Least-recently born selection model . 61
4.3 Proportional selection model . 64
5.1 Baseline Algorithm for finding all ODT patterns 85
5.2 Optimized Algorithm for enumerating rank-based ODT patterns 93

viii

ABSTRACT

Chrysanthi Kosyfaki, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of Ioannina, Greece, 2023.
Flow Analytics in Large Graphs.
Advisor: Nikos Mamoulis, Professor.

Numerous real-world applications can be represented as networks of dynamic
structure, since the vertices correspond to entities that exchange data over time. Ex-
amples include transportation networks, financial networks, social networks, traffic
networks etc. We call these Temporal Interaction Networks (TINs). The importance of
studying and analyzing TINs is high as we can use them to solve problems related
to transportation and financial transactions. Moreover, analyzing TINs can extract
interesting insights or reveal important information (e.g., cyclic transactions, message
interception).

TINs capture the data transfers between entities along a timeline. Specifically, at
each interaction, a quantity (money, message, traffic) moves from one network vertex
(entity) to another. We call this quantity flow. The main objective of this thesis is to
introduce and analyze the flow concept in a variety of problems (flow computation,
tracking the provenance of a quantity, extracting patterns etc.). Flow analysis in TINs
can be used for congestion detection and explanation in traffic networks, identification
of suspicious transactions in financial networks, to name a few applications. It also
comes with a number of challenges and difficulties, most notably the potentially
large graph size and huge number of interactions between the vertices of the TIN.
Another issue is that solutions to well-studied problems in graphs, such as max-flow
computation in static networks, cannot directly be applied to solve flow computation
problems in TINs. Hence, it is necessary to design novel, scaleable, and memory-
efficient solutions for this problem.

ix

In this thesis, we introduce and study a number of flow computation problems
in TINs. In the first part of the thesis, we study the problem of computing in a sub-
graph (DAG) of the TIN the total flow from a designated source node to a designated
sink node. Specifically, for this problem we propose and study two models of flow
computation. The first model is a greedy flow transfer approach where each inter-
action transfers the maximum possible quantity. The second model is an approach
inspired from the maximum flow computation problem. In this case, the interactions
may not transfer the maximum possible quantity, but the one which results in the
maximum flow transfer from the source to the sink along the timeline. This problem
can be formulated and solved as a linear programming (LP) problem. We propose a
number of preprocessing and graph simplification techniques that greatly reduce the
complexity of the problem in practice. Lastly, we propose algorithms that enumerate
DAG pattern instances and their flow in large graphs.

The second problem we study is flow provenance tracking in TINs. Specifically,
given a node in the graph, we study provenance of the total quantity that has been
accumulated at the node by a time instant. We study provenance under a number of
different models for the propagation of quantities; for each such model we define an-
notation generation and propagation algorithm that can be used to track provenance.
We also propose scaleable techniques for the most expensive model (propagation se-
lection) in large graphs and analyze the space and time complexity of the provenance
mechanisms that we propose.

In the last part of this thesis, we introduce spatio-temporal flow patterns of pas-
sengers in transportation networks. We study the problem of identifying interesting
origin-destination-time (ODT patterns) at varying granularity. We propose algorithms
for extracting such patterns efficiently. We also propose a number of optimizations
to our baseline algorithm, which significantly reduce the time spent for generating
candidate patterns and counting their support. Since the pattern enumeration can
still be expensive, we propose practical variants of pattern search.

For our evaluation, we use a number of real datasets from different application
domain (e.g., bitcoin exchange network, passenger transportation network, loan ex-
change network) of varying scales and densities. Our results show that our proposed
algorithms are scaleable and that their output can be useful in many applications of
flow analysis in temporal networks.

x

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Χρυσάνθη Κοσυφάκη, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική
Σχολή, Πανεπιστήμιο Ιωαννίνων, 2023.
Ανάλυση της ροής των δεδομένων σε μεγάλους γράφους.
Επιβλέπων: Νίκος Μαμουλής, Καθηγητής.

Πολλές εφαρμογές που βασίζονται σε προβλήματα του πραγματικού κόσμου
μπορούν να αναπαρασταθούν ως δίκτυα με δυναμική δομή όπου οι κόμβοι αντι-
στοιχούν σε οντότητες που έχουν την δυνατότητα να ανταλλάζουν δεδομένα μεταξύ
τους μέσα στον χρόνο. Μερικά παραδείγματα εφαρμογών αποτελούν τα δίκτυα με-
τακίνησης, τα οικονομικά δίκτυα, τα κοινωνικά δίκτυα, δίκτυα κίνησης κτλ. Καλούμε
αυτά τα δίκτυα χρονικά δίκτυα αλληλεπίδρασης. Η σημαντικότητα της μελέτης και
της ανάλυσης των χρονικών δικτύων αλληλεπίδρασης είναι πολύ υψηλή εξαιτίας του
ότι μπορούμε να τα χρησιμοποιήσουμε για την επίλυση προβλημάτων που σχετί-
ζονται με χρηματικές συναλλαγές ή ταξίδια που πραγματοποιούνται. Επιπλέον, η
ανάλυση των χρονικών δικτύων αλληλεπίδρασης μπορούν να βοηθήσουν στην εξα-
γωγή χρήσιμων συμπερασμάτων ή την αποκάλυψη σημαντικών πληροφοριών (π.χ.,
κυκλικές συναλλαγές, υποκλοπή μηνυμάτων).

Τα χρονικά δίκτυα αλληλεπίδρασης μοντελοποιούν την μεταφορά μιας ποσότη-
τας μεταξύ οντοτήτων κατά την διάρκεια μιας χρονικής στιγμής. Πιο συγκεκριμένα,
σε κάθε αλληλεπίδραση, μια ποσότητα (χρήματα, μηνύματα, κίνηση) μετακινείται
από τον έναν κόμβο (οντότητα) του δικτύου στον άλλον. Καλούμε αυτή την ποσό-
τητα ροή. Αντικείμενο της διδακτορικής διατριβής είναι η εισαγωγή και η ανάλυση
της ροής σε ένα σύνολο διάφορων προβλημάτων (υπολογισμός ροής, ανίχνευση προ-
έλευσης της ροής, εξαγωγή μοτίβων κτλ.). Η ανάλυση της ροής στα χρονικά δίκτυα
αλληλεπίδρασης μπορεί να χρησιμοποιηθεί για την αποσυμφόρηση και τους λόγους
που οδήγησαν στην κίνηση στους δρόμους, ο εντοπισμός παράνομων συναλλαγών
σε οικονομικά δίκτυα και άλλα πολλά παραδείγματα. Επιπροσθέτως, το πρόβλημα

xi

ανάλυσης της ροής συνοδεύεται με μια σειρά από προκλήσεις και δυσκολίες που
εντοπίζονται κυρίως σε σημεία που αφορούν το μεγαλό μέγεθος των γράφων και τον
τεράστιο αριθμό αλληλεπιδράσεων μεταξύ των κόμβων σε ένα χρονικό δίκτυο αλ-
ληλεπίδρασης. Ένα ακόμη πρόβλημα που υπάρχει έγκειται στο ότι οι προτεινόμενες
λύσεις που υπάρχουν για γνωστά προβλήματα σε γράφους όπως π.χ., το πρόβλημα
υπολογισμού της μέγιστης ροής σε στατικά δίκτυα, δεν μπορούν να εφαρμοστούν
και να λύσουν προβλήματα υπολογισμού ροής σε χρονικά δίκτυα αλληλεπίδρασης.
Λαμβάνοντας υπόψιν τα παραπάνω, είναι απαραίτητος ο σχεδιασμός πρωτοπόρων,
κλιμακώσιμων καθώς και αποδοτικών λύσεων που σχετίζονται με την μνήμη προ-
κειμένου να λύσουμε το προηγούμενο πρόβλημα.

Στα πλαίσια της παρούσας διδακτορικής διατριβής, εισάγουμε και μελετάμε
διάφορα προβλήματα που σχετίζονται με τον υπολογισμό της ροής σε χρονικά δί-
κτυα αλληλεπίδρασης. Στο πρώτο μέρος της διδακτορικής διατριβής, μελετάμε το
πρόβλημα υπολογισμού της ροής σε έναν υπογράφο από έναν αρχικό κόμβο σε
έναν τελικό κόμβο. Πιο συγκεκριμένα, για το εν λόγω πρόβλημα προτείνουμε και
μελετάμε δυο μοντέλα υπολογισμού της ροής. Το πρώτο μοντέλο είναι μια άπληστη
προσέγγιση για την μεταφορά της ροής όπου σε κάθε αλληλεπίδραση μεταφέρεται
η μέγιστη πιθανή ποσότητα. Το δεύτερο μοντέλο αποτελεί μια προσέγγιση εμπευν-
σμένη από το γνωστό πρόβλημα του υπολογισμού της μέγιστης ροής. Σε αυτή την
περίπτωση, οι αλληλεπιδράσεις ενδέχεται να μην μεταφέρουν την μέγιστη δυνατή
ποσότητα αλλά εκείνη την ποσότητα όπου καταλήγει από έναν αρχικό κόμβο σε
έναν τελικό κόμβο. Το πρόβλημα αυτό μπορεί να οριστεί και να επιλυθεί σαν ένα
πρόβλημα γραμμικού προγραμματισμού. Λαμβάνοντας υπόψιν όλα τα παραπάνω,
προτείνουμε μια σειρά λύσεων για την προεπεξεργασία του γράφου καθώς και
τεχνικές απλοποίησης όπου μειώνουν σε μεγάλο βαθμό την πολυπλοκότητα του
προβλήματος. Τέλος, προτείνουμε αλγορίθμους για την αρίθμηση στιγμιοτύπων των
μοτίβο και της ροής τους σε μεγάλους γράφους.

Το δεύτερο πρόβλημα που μελετάμε είναι η ανίχνευση της ροής σε χρονικά δί-
κτυα αλληλεπίδρασης. Πιο συγκεκριμένα, δοθέντος ενός κόμβου σε έναν γράφο,
μελετάμε την προέλευση της συνολικής ποσότητας που έχει συγκεντρωθεί σε ένα
κόμβο για μια χρονική στιγμή. Για την μελέτη του προβλήματος της ανίχνευσης,
προτείνουμε διαφορετικά μοντέλα για την διάδοση των ποσοτήτων; για κάθε τέτοιο
μοντέλο ορίσμους αλγορίθμους που σχετίζονται με την δημιουργία επισημάνσεων
και διάδοσης που μπορούν να χρησιμοποιηθούν για την ανίχνευση της ροής της πο-

xii

σότητας. Προτείνουμε κλιμακώσιμες τεχνικές για το ακριβό μοντέλο της αναλογικής
επιλόγης της μεταφοράς της ποσότητας σε μεγάλους γράφους και την ανάλυση της
πολυπλοκότητας του χώρου και του χρόνου των μηχανισμών της ανίχνευσης της
ποσότητας που προτείνουμε.

Στο τελευταίο κομμάτι της διδακτορικής διατριβής, εισάγουμε τα χωροχρονικά
μοτίβα ροής σε δίκτυα μεταφοράς. Μελετάμε το πρόβλημα εντοπισμού ενδιαφε-
ρόντων μοτίβων που χαρακτηρίζονται από τρεις διαστάσεις (αρχικό σημείο, τελικό
σημείο, χρόνος) σε μεταβαλλόμενη λεπτομέρεια. Προτείνουμε αλγορίθμους για την
εξαγωγή μοτίβων αποτελεσματικά. Επιπροσθετώς, προτείνουμε μια σειρά οπτικο-
ποιήσεων βασιζόμενοι στον βασικό μας αλγόριθμο, όπου μειώνουν σημαντικά τον
χρόνο που απαιτείται για την παραγωγή υποψήφιων μοτίβων. Ωστόσο, το πρόβλημα
της αρίθμησης των μοτίβων παραμένει ακριβό. Για τον λόγο αυτό, προτείνουμε μια
σειρά διάφορων παραλλαγών για την εύρεση των μοτίβων.

Στα πλαίσια της αξιολόγησης, χρησιμοποιούμε πραγματικά σύνολα δεδομένων
από διάφορες εφαρμογές (το δίκτυο Bitcoin, δίκτυα μετακίνησης, δίκτυο που σχε-
τίζεται με δάνεια κτλ). Τα αποτελέσματα των πειραμάτων αποδεικνύουν ότι οι
αλγόριθμοι που προτείνουμε είναι κλιμακώσιμοι και το αποτέλεσμα τους μπορεί
να χρησιμοποιηθεί σε πολλές εφαρμογές για την ανάλυση της ροής σε χρονικά δί-
κτυα.

xiii

CHAPTER 1

INTRODUCTION

1.1 Dissertation contribution

1.2 Repeatability

1.3 Dissertation layout

Many real world applications can be represented as temporal interaction networks (TINs)
[2], where vertices correspond to entities that exchange data over time. Examples of
such graphs are financial exchange networks, road networks, social networks, com-
munication networks, etc. Temporal interaction networks model the transfer of data
quantities between entities along a timeline. At each interaction, a quantity (money,
messages, traffic) flows from one network vertex (entity) to another. An interaction r

in a TIN is characterized by a source vertex r.s, a destination vertex r.d, a timestamp
r.t and a quantity r.q (e.g., money, passengers, messages, kbytes, etc.) transferred at
time r.t. Analyzing interaction networks can reveal important information (e.g., cyclic
transactions, message interception). For instance, financial intelligent units (FIUs) are
often interested in finding subgraphs of a transaction network, wherein vertices (fi-
nancial entities) have exchanged a significant amount of money directly or through
intermediaries. Such exchanges may be linked to criminal behavior, such as money
laundering or theft [3].

In this dissertation we introduce the concept of temporal interaction networks, a
versatile and powerful model. In the view of TINs, we study and define a variety
of problems considering the flow information. Specifically, in the first part of this

1

thesis, we study the problem of computing the total flow that is transferred from a
designated source vertex s to a designated sink vertex t in a subgraph (DAG). Flow
computation problem is a classic and well-studied problem in literature [4, 5, 6, 7, 1].
However, there is no previous work that focuses on computing the quantity that has
been transferred between two nodes throughout the history of a TIN. Akrida et al.
[1] approaches the flow computation problem in temporal networks but in our case,
do not consider temporal edge capacities, but the history of quantities that have been
transferred between nodes (for more details see Chapter 2). Secondly, we study the
provenance tracking problem in TINs by proposing a number of efficient and scaleable
solutions. Although provenance problem is a well-known problem [8, 9, 10, 11], we
are the first who study the origin of quantities in TINs (instead of small graphs
[12, 13]). Our main goal is to track the origin of a quantity that is transferred among
the vetices(see Chapter 4).

In the last part of this thesis, we introduce the spatio-temporal flow patterns in
transportation networks (a subcategory of TINs). Extracting spatio-temporal patterns
has been studied extensively in literature [14, 15, 16]. However, in our case, we take
into account the additional information of flow and study spatially and temporally
generalized patterns (see Chapter 5).

In the following, we present in more detail the contribution of this dissertation.

1.1 Dissertation contribution

The main focus of this dissertation is to study a variety of flow computation problems
in TINs. Specifically, we study problems related to computing the flow in a subgraph
(DAG), tracking the provenance, and extracting spatio-temporal patterns considering
the additional information of flow. To do this, we provide formal definitions and
efficient representation models. We also propose scaleable solutions and techniques
and evaluate them by using a number of real datasets from different applications.

1.1.1 Computing flow in large graphs

In the first part of the thesis, we define and solve the problem of computing the
flow through an interaction network, from a designated vertex s, called source to a
designated vertex t, called sink. As an example, Fig. 1.1(a) shows a toy interaction

2

network, where vertices are bank accounts and each edge is a sequence of interac-
tions in the form (ti, qi), where ti is a timestamp and qi is the transferred quantity
(money). To model and solve the flow computation problem from s to t, we assume
that throughout the history of interactions, any quantity that originates from s and
reaches a vertex v is temporarily accumulated at v’s buffer Bv, before being relayed
by interactions from v to other vertices. As a result of an interaction (ti, qi) on edge
(v, u), vertex v may transfer from Bv to u’s buffer Bu a quantity in [0,min{qi, Bv}].
For example, if interaction (1, $3) on edge (s, x) transfers $3 from Bs to Bx, interaction
(5, $5) on edge (x, z) can transfer at most $3 from Bx to Bz. At the end of the timeline,
the buffered quantity at the sink vertex t models the flow that has been transferred
from s to t.

ys z t

x

(2,$6) (8,$5) (2,$3), (10,$1)

(1,$3), (7,$5) (5,$5)

(9,$4)

1

ys z t
(2,$6) (8,$5) (10,$1)

(5,$3)

(9,$4)

1

(a) interaction network (b) simplified network

Figure 1.1: A toy interaction network

We propose and study two models of flow transfer, as an effect of an interaction
(ti, qi) on an edge (v, u), and the corresponding flow computation problems. The first
one is based on a greedy flow transfer assumption, where v transfers to u the maximum
possible quantity, i.e., min{qi, Bv}. This model is suited for applications, where re-
serving flow in intermediate nodes is not practical (e.g., in transportation networks).
According to the second model, v may transfer to u any quantity in [0,min{qi, Bv}], re-
serving the remaining quantity for future outgoing interactions from v (to any vertex).
The objective is then to compute the maximum flow transferred from s to t through
the subgraph that links s to t. This model is suitable for applications where vertices
may opt to transfer their incoming flow at any future outgoing interaction (e.g., in
financial transaction networks). We also study the problem of finding, in a temporal
interaction network, the instances of a small graph pattern and measuring the flow
through each instance, using our flow computation models.

Flow computation in interaction networks finds application in different domains.
As already discussed, computing the flow of money from one financial entity (e.g.,

3

bank account, cryptocurrency user) to another can help in defining their relationship
and the roles of any intermediaries in them [17]. As another application, consider
a transportation network (e.g., flights network, road network) and the problem of
computing the maximum flow (e.g., of vehicles or passengers) from a source to a
destination vertex. Identifying cases of heavy flow transfer can help in improving the
scheduling or redesigning the network. Similarly, in a communication network, mea-
suring the flow between vertices (e.g., routers) can help in identifying abnormalities
(e.g., attacks) or bad design. Recent studies in cognitive science [18] associate the
information flow in the human brain with the embedded network topology and the
interactions between different (possibly distant) regions. Finally, information prop-
agation analysis in social networks [19] can benefit from measuring the transferred
flow from one vertex to another. The transferred flow can be used to model the
relationships between vertices and can serve as a building block for popular graph
analysis tasks, such as link recommendation and clustering.

Although (maximum) flow computation in graphs is a classic problem [20, 21],
there is no previous work that formulates and studies this problem for temporal in-
teraction networks. Specifically, in previous work, the edges of the input graph are
assumed to have a capacity and the objective is to find the maximum flow from a
source vertex s that can reach a sink vertex t. Maximum flow computation has also
been studied for graphs where edges have transit times [7] and for networks with
time-dependent or ephemeral capacities [1]. Our problem is different, since our ver-
tices model entities and edges are time-series of interactions, each of which happens
at a specific timestamp; i.e., our edges do not have capacities and the computed flow
is not continuous. For this reason, our problem cannot be solved by algorithms that
compute the flow in conventional or temporal graphs with capacities (e.g., [21, 7])
and we propose novel solutions for it.

Contributions

We define flow computation in temporal interaction networks, based on two flow
transfer models. We show that flow computation based on greedy transfer can be
done very efficiently by scanning all interactions in order of time and updating two
buffers at each interaction. We show that maximum flow computation, assuming that
intermediate vertices can transfer an arbitrary quantity, can be formulated and solved
using linear programming (LP). Since the direct application of LP is expensive, we

4

study this problem more thoroughly and propose a set of techniques that can greatly
reduce its cost. First, we show that for a certain class of networks, we can compute
(exactly) the maximum flow in linear time to the number of interactions. Second, we
propose a preprocessing algorithm that eliminates interactions, edges, and vertices that
cannot contribute to the maximum flow, with a potential to greatly reduce the problem
size and complexity. Third, we design an algorithm that performs flow computation
on a part of the graph in linear time and simplifies the graph on which LP has to
be eventually applied. For example, the path formed by edges (s, x) and (x, z) can
be reduced to a single edge (s, z) as shown in Fig. 1.1(b). Overall, we take advantage
of our efficient greedy flow computation module to reduce the cost of maximum
flow computation as much as possible. Finally, we define and tackle the problem
of finding the instances of a given small graph pattern in a temporal interaction
network and computing the flow of each instance. We propose an effective flow path
precomputation technique for this purpose.

Our contributions can be summarized as follows:

• This is the first work, to our knowledge, which studies flow computation in
temporal interaction networks. We propose two models for flow computation;
the first one comes together with a linear-time computation algorithm, while
maximum flow computation can be formulated and solved as an LP problem.

• For the expensive maximum flow computation, we propose (i) an efficient check
for verifying if it can be solved exactly by the greedy transfer algorithm, (ii) a
graph preprocessing technique, which can eliminate interactions, vertices and
edges from the graph, (iii) a graph simplification approach, which progressively
reduces paths of the graph to edges, the flow of which can be computed in
linear time.

• We approach the flow pattern search problem in interaction networks and pro-
pose an effective graph preprocessing technique that facilitates fast enumeration
of patterns and their flows.

• We conduct experiments using data from four real interaction networks to eval-
uate our techniques. The results confirm the efficiency of the greedy algorithm
and show that our maximum flow computation approach typically achieves
one order of magnitude speedup over directly applying LP. We also analyze

5

the flow distribution, the approximation quality of the greedy algorithm for the
maximum flow problem, and the performance of pattern search.

1.1.2 Tracking provenance in large graphs

We study a provenance problem in TINs. Our goal is to track the origin (source)
of the quantities that are accumulated at the vertices over time. As discussed, we
assume that each vertex v has a buffer Bv (e.g., bitcoin wallet) [22], wherein it keeps
all incoming quantities to v. Naturally, the buffer Bv changes over time. Specifically,
each interaction r from a vertex r.v to a vertex r.u transfers r.q units from Br.v to Br.u

at time r.t. If Br.v has less than q units by time r.t, then the difference is generated at r.v
before being transferred to r.u. In a financial exchange network, quantity generation
means that new assets are brought from external sources (e.g., a user buys or mines
bitcoins). In a road network, new quantities are cars entering the network from
a given location. If Br.v has more than r.q units, r.q units should be selected from
Br.v to be transferred. We focus on applications, where the interactions do not give
us any information about the selection. For instance, a financial transaction does not
specify the way the transferred amount is selected from the sender’s balance. A traffic
management system monitors the number of cars that move between road network
nodes, but not the car identities (due to privacy constraints).

We propose solutions that proactively create and propagate lightweight provenance
information in the TIN for the generated quantities, as they are transferred through
the network. This way, we can obtain the origins of the quantities at vertices at any
time. We define and study alternative selection policies for quantity propagation that
may apply to different application scenarios. A policy prioritizes quantities based on
the time they were first generated at their origins, or on the order they were added
to Br.v, or could select quantities proportionally based on their origins. For instance,
Figure 1.2 shows the buffers Bv and Bu of two vertices v and u before and after an
interaction ⟨v, u, ti, 5⟩. We split the quantities in the buffers based on their origins
and organize them as a FIFO queue (e.g., Bv contains 4 and 3 units originating
from vertex w and z, respectively). The FIFO policy selects all 4 units from w to be
transferred plus 1 unit from z. For each of the selection policies that we consider,
we propose provenance update mechanisms and study efficient and space-economic
algorithms.

6

w, 4
<latexit sha1_base64="fhBv16Sh4vni4gKwSjUcNA+53sM=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8SNiNAT0GvXiMaB6QLGF20psMmZ1dZmaVEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGN1O/+YhK81g+mFGCfkT7koecUWOl+6fzSrdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmvDKH3OZpAYlmy8KU0FMTKZ/kx5XyIwYWUKZ4vZWwgZUUWZsOnkbgrf48jJplEveRal8VylWr7M4cnAMJ3AGHlxCFW6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHwnaNcw==</latexit>

z, 3
<latexit sha1_base64="Qf3fFeEYW/AP+2phpA0z0WnrXXY=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8SNhNBD0GvXiMaB6QLGF20psMmZ1dZmaFGPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGN1O/+YhK81g+mFGCfkT7koecUWOl+6fzSrdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmvDKH3OZpAYlmy8KU0FMTKZ/kx5XyIwYWUKZ4vZWwgZUUWZsOnkbgrf48jJplEtepVS+uyhWr7M4cnAMJ3AGHlxCFW6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHxYSNdQ==</latexit>

Bv
<latexit sha1_base64="vvHn34lLIH/Ysw8wPmPnXZhK1rI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHSY6036RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG79lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP16VqLYsjD2dwDpfgwQ1U4R7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8jTo2z</latexit>

Bu
<latexit sha1_base64="wJM6hIMZgRRXV/jboZGRNpcFuRs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FjqxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6qPfTfqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbusVO+vyrV6HkcBTuEMLsCDa6jBHTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAhyo2y</latexit>

r = hv, u, ti, 5i
<latexit sha1_base64="2fF6HmvNEC7+qhmzQ3YqpJGBDeY=">AAACBnicbVBNS8NAEJ3Ur1q/oh5FWCyCh1KSquhFKHrxWMG2QlPKZrtpl242YXdTKKEnL/4VLx4U8epv8Oa/cdvmoK0PBh7vzTAzz485U9pxvq3c0vLK6lp+vbCxubW9Y+/uNVSUSELrJOKRfPCxopwJWtdMc/oQS4pDn9OmP7iZ+M0hlYpF4l6PYtoOcU+wgBGsjdSxDyW6Qh7HoscpGpaSku6w0rknZ0LHLjplZwq0SNyMFCFDrWN/ed2IJCEVmnCsVMt1Yt1OsdSMcDoueImiMSYD3KMtQwUOqWqn0zfG6NgoXRRE0pTQaKr+nkhxqNQo9E1niHVfzXsT8T+vlejgsp0yESeaCjJbFCQc6QhNMkFdJinRfGQIJpKZWxHpY4mJNskVTAju/MuLpFEpu6flyt1ZsXqdxZGHAziCE3DhAqpwCzWoA4FHeIZXeLOerBfr3fqYteasbGYf/sD6/AHwJ5eE</latexit>

z, 2
<latexit sha1_base64="qxkKuzL/hIdS5kmtTxxIHL/jVsM=">AAAB/3icbVC7TsNAEDyHVwivABINjUWCRIEi2xRQRtBQBok8pCSKzud1csr5obs1IpgU/AoNBQjR8ht0/A2XxAUkjLTSaGb39nbcWHCFlvVt5JaWV1bX8uuFjc2t7Z3i7l5DRYlkUGeRiGTLpQoED6GOHAW0Ygk0cAU03eHVxG/egVQ8Cm9xFEM3oP2Q+5xR1FKveNBBuMfpO6kEb5yWH06d8rhXLFkVawpzkdgZKZEMtV7xq+NFLAkgRCaoUm3birGbUomcCRgXOomCmLIh7UNb05AGoLrpdO/YPNaKZ/qR1BWiOVV/T6Q0UGoUuLozoDhQ895E/M9rJ+hfdFMexglCyGaL/ESYGJmTMEyPS2AoRppQJrn+q8kGVFKGOrKCDsGeP3mRNJyKfVZxbpxS9TKLI08OyRE5ITY5J1VyTWqkThh5JM/klbwZT8aL8W58zFpzRjazT/7A+PwBBcqWFA==</latexit>

w, 7
<latexit sha1_base64="3Ooqmj9XKr6KGRzuAzIab31nQ5M=">AAAB/3icbVC5TsNAEF1zhnAZkGhoLBIkChTZoQhlBA1lkMghJVa0Xk+SVdaHdsdAZFzwKzQUIETLb9DxN2yOAhKeNNLTezM7O8+LBVdo29/G0vLK6tp6biO/ubW9s2vu7TdUlEgGdRaJSLY8qkDwEOrIUUArlkADT0DTG16N/eYdSMWj8BZHMbgB7Ye8xxlFLXXNww7CA07eSSX4WVq8P6sUs65ZsEv2BNYicWakQGaodc2vjh+xJIAQmaBKtR07RjelEjkTkOU7iYKYsiHtQ1vTkAag3HSyN7NOtOJbvUjqCtGaqL8nUhooNQo83RlQHKh5byz+57UT7F24KQ/jBCFk00W9RFgYWeMwLJ9LYChGmlAmuf6rxQZUUoY6srwOwZk/eZE0yiXnvFS+KReql7M4cuSIHJNT4pAKqZJrUiN1wsgjeSav5M14Ml6Md+Nj2rpkzGYOyB8Ynz8I0JYW</latexit>

z, 1
<latexit sha1_base64="I3LeHXnpxO1+6b7J+R11D/6VfbI=">AAAB/3icbVC7TgJBFJ3FF+ILNbGxmQgmFobsYqEl0cYSE3kkQMjscIEJs4/M3DXiuoW/YmOhMbb+hp1/4wBbKHiSm5ycc+/cuccNpdBo299WZml5ZXUtu57b2Nza3snv7tV1ECkONR7IQDVdpkEKH2ooUEIzVMA8V0LDHV1N/MYdKC0C/xbHIXQ8NvBFX3CGRurmD9oI9zh9J1bQS+Liw6lTTLr5gl2yp6CLxElJgaSodvNf7V7AIw985JJp3XLsEDsxUyi4hCTXjjSEjI/YAFqG+swD3YmnexN6bJQe7QfKlI90qv6eiJmn9dhzTafHcKjnvYn4n9eKsH/RiYUfRgg+ny3qR5JiQCdh0J5QwFGODWFcCfNXyodMMY4mspwJwZk/eZHUyyXnrFS+KRcql2kcWXJIjsgJccg5qZBrUiU1wskjeSav5M16sl6sd+tj1pqx0pl98gfW5w8ERJYT</latexit>

w, 3
<latexit sha1_base64="HC2hgbRdS+YN5facohBQtT+jbH8=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8SNhNBD0GvXiMaB6QLGF20psMmZ1dZmaVEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSK4Nq777aysrq1vbOa28ts7u3v7hYPDho5TxbDOYhGrVkA1Ci6xbrgR2EoU0igQ2AyGN1O/+YhK81g+mFGCfkT7koecUWOl+6fzSrdQdEvuDGSZeBkpQoZat/DV6cUsjVAaJqjWbc9NjD+mynAmcJLvpBoTyoa0j21LJY1Q++PZqRNyapUeCWNlSxoyU39PjGmk9SgKbGdEzUAvelPxP6+dmvDKH3OZpAYlmy8KU0FMTKZ/kx5XyIwYWUKZ4vZWwgZUUWZsOnkbgrf48jJplEtepVS+uyhWr7M4cnAMJ3AGHlxCFW6hBnVg0IdneIU3RzgvzrvzMW9dcbKZI/gD5/MHwPKNcg==</latexit>

Before
<latexit sha1_base64="7+vfAtxJLWZ9d4mcgIxwyh8dla0=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tFoNgFe5ioWWIjWUE8wHJEfY2c8mavb1jd08IR/6DjYUitv4fO/+Nm+QKTXww8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7AST27nfeUKleSwfzDRBP6IjyUPOqLFSu4FhrHBQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62uHZGLqwyJHavLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOavkyFXyIyYWkKZ4vZWwsZUUWZsQCUbgrf68jpp16reVbV2X6vUG3kcRTiDc7gED66hDnfQhBYweIRneIU3J3ZenHfnY9lacPKZU/gD5/MHdPePCw==</latexit> After

<latexit sha1_base64="EaEjxc8mChcmtqZsfxBOKwTwNyY=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LHqxWMF0xbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+m/ntJ1SaJ/LRTFIMYjqUPOKMGiv5N5FB1a9U3Zo7B1klXkGqUKDZr3z1BgnLYpSGCap113NTE+RUGc4ETsu9TGNK2ZgOsWuppDHqIJ8fOyXnVhmQKFG2pCFz9fdETmOtJ3FoO2NqRnrZm4n/ed3MRNdBzmWaGZRssSjKBDEJmX1OBlwhM2JiCWWK21sJG1FFmY1Al20I3vLLq6RVr3mXtfpDvdq4LeIowSmcwQV4cAUNuIcm+MCAwzO8wpsjnRfn3flYtK45xcwJ/IHz+QO7G46g</latexit>

Bu
<latexit sha1_base64="wJM6hIMZgRRXV/jboZGRNpcFuRs=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9FjqxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6qPfTfqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbusVO+vyrV6HkcBTuEMLsCDa6jBHTSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAhyo2y</latexit>

Bv
<latexit sha1_base64="vvHn34lLIH/Ysw8wPmPnXZhK1rI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI8ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHSY6036RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG79lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP16VqLYsjD2dwDpfgwQ1U4R7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8jTo2z</latexit>

Figure 1.2: Example of quantity transfer (FIFO policy)

To our knowledge, there is no previous work that studies data provenance in
TINs. Within our framework, we define and use data transfer models for TINs, where
data units are buffered and transferred in the network instead of being copied and
diffused. On the other hand, previous work on social network provenance [23, 24]
focus on information diffusion and influence maximization models [25, 26, 27], where
data items (e.g., news, rumors, etc.) are spread in the network. Data provenance is
a core concept in database query evaluation [28, 29, 30, 31] and workflow graphs
[13, 32]. The main motivation is tracing the raw data which contribute to a query
output. Data provenance finds use in most types of networks (e.g., threat identification
in communication networks [33]) and can be categorized into: where, how and why
provenance [34]. Where-provenance identifies the raw data which contribute to some
output, why-provenance identifies the sources (e.g., tuples) that influenced the output,
and how-provenance explains how the input sources contribute to the output. Our
work focuses on solving both the where- and why-provenance problem in TINs,
i.e., find the vertices that contribute to each vertex over time. We also extend our
solution to support how-provenance, i.e., capture the paths that have been followed
by quantities. Our solutions can shed light to the reasons behind the accumulation of
a quantity at a given vertex. Key differences to previous work on data provenance are:
(i) in our problem, any vertex of the graph can be the origin of a quantity and any
vertex can also be the destination of a propagated quantity; and (ii) we support the
maintenance of provenance information in real-time, as new interactions take place
in a streaming fashion.

Solving our provenance problem in TINs finds application in various domains.
In a financial network, we can identify the accounts that (indirectly) contributed the
most in financing a suspicious account or identify groups of accounts that finance
other groups of accounts. In a communication network, messages are transferred
between vertices and there is a need to trace the origins of malicious messages that

7

reach a vertex; this is not straightforward, due to IP spoofing [35], and there is a
need for specialized techniques [36]. Similarly, in a transportation network (e.g., flight
networks or road networks) studying the provenance of problems (e.g., traffic, delays,
etc.) can help to improve the network or for planning. As a concrete provenance data
analysis example, consider one of the TINs used in our experiments, which captures
the transfers of passengers by taxi between NYC districts on 2019.01.01. Figure 1.3
shows the number of passengers that are accumulated in East Village from other
districts. The provenance distribution of East Village visitors over time (shown as pie
charts) can be used by social analysis or (location-aware) marketing.

Figure 1.3: Buffered quantities at vertex #79 (East Village) after each interaction in
our Taxis Network

Contributions

Our main contribution is the formulation of a provenance tracking problem in tempo-
ral interaction networks. We define different selection policies for the propagation of
quantities and the corresponding annotation generation and propagation algorithms.
We analyze the space and time complexity of the provenance mechanism that we
propose for each selection policy and find that the proportional propagation policy is
infeasible for large graphs because its space complexity is quadratic to the number of
vertices |V | and each interaction bears a O(|V |) computational cost.

We propose restricted, but practical versions of provenance tracking under the
proportional propagation policy. Our selective provenance tracking approach maintains
provenance data only from a designated subset of k vertices, which are of interest to
the analyst, reducing the space complexity to O(k · |V |) and the time complexity to

8

O(k) per interaction. The grouped provenance tracking approach tracks provenance from
groups of vertices instead of individual vertices (e.g., categories of financial entities
or accounts). Again, the space and time complexity is reduced to O(k · |V |) and
O(k) per interaction, respectively, if k is the number of groups. We also propose two
techniques that limit the scope of provenance tracking from all (individual) vertices.
The first approach limits provenance tracking up to a certain time in the past from
the current interaction (i.e., a time-window approach). The second approach allocates
a provenance budget to each vertex. Both techniques save resources, while providing
some guarantees with respect to either time or importance of the tracked provenance
information.

We extend our propagation algorithms for provenance annotations to capture
not only the origins of the generated data, but the routes (i.e., the paths) that they
travelled along in the graph until they reached their destinations.

We experimentally evaluate the runtime and memory requirements of our meth-
ods on five real TINs with different characteristics. The results show the scalability
and limitations of the different selection policies and the corresponding propagation
algorithms for provenance data.

1.1.3 Extracting spatio‐temporal flow patterns

Consider a transportation company such as a metro system, which routinely collects
large volumes of data from its passengers, regarding their entrance and exit points in
the system and the times of their trips. Information of individual trips can be used in
personalized services, after obtaining consent from the passengers. Other than that,
it is hard to use such detailed data, mainly due to privacy constraints. On the other
hand, aggregate information about passenger trips can be valuable to the company,
since it can provide estimates and predictions about the use of its lines at different
times of the day and different days of the week. In the last part of this thesis, we study
the problem of identifying interesting origin-destination-time patterns of passengers,
called ODT-patterns for brevity, at varying granularity. For this, we first use the
application domain to define the finest granularity of regions on the map (e.g., each
region corresponds to a metro station) and also define the finest time intervals of
interest (e.g., divide the 24-hour time interval of a day into 48 30-minute timeslots).
We call these atomic regions and atomic timeslots, respectively.

9

Since the durations of all trips from a given origin to a given destination at a
given time are strongly correlated, the time of reaching a destination can be inferred
from the time when the trip starts. To prove this assertion, we computed the mean
absolute deviation (MAD) of trip durations between all origin-destination pairs and
for all timeslots of the origin time in both of our real networks (taxi and metro
network) that we use in our experimental evaluation. MAD is defined as Σx∈X |x−µ|

|X| ,
where X is the set of samples and µ is their averages. The computed MAD for taxi
and metro network is 0.10 and 0.06 respectively. Hence, a trip can be described by its
origin region, its destination region, and the timeslot when the trip starts, i.e., as an
(o, d, t) triple.

For all (o, d, t) triples, where o and d are (different) atomic regions and t is an
atomic timeslot, we measure the total number of passengers who took a trip from o to
d at time t. The total flow of an (o, d, t) triple characterizes its importance; the triples
with high flow are considered to be important and they are called atomic ODT-patterns
(we drop the ODT prefix whenever the context is clear). In a generalized ODT-triple,
denoted by (O,D, T), O and D are sets of neighboring atomic regions and T consists
of one or more consecutive timeslots. An atomic (o, d, t) triple is a component of an
(O,D, T) triple if o ∈ O, d ∈ D, and t ∈ T . (O,D, T) is non-atomic, if it has more than
one components, i.e., at least one of O, D, or T is non-atomic.

Defining and finding important non-atomic patterns is more challenging. One
reason is that the number of possible atomic region combinations that can form a
generalized (i.e., non-atomic) region O or D is huge and it is not practical to consider
all these combinations and their flows. At the same time, for a given generalized
ODT triple, it is hard to estimate the flow quantity that can be deemed significant
enough to characterize the triple an interesting pattern. To solve these issues, we fol-
low a “voting” approach, where we characterize an ODT triple as a pattern if at least
a certain percentage of its constituent (o, d, t) triples are atomic patterns (i.e., they
have large enough flow). This allows us to design and use a pattern enumeration
algorithm, which, starting from the atomic patterns, identifies all ODT patterns pro-
gressively by synthesizing them from less generalized ODT patterns. We propose a
number of optimizations to our algorithm, which significantly reduce the time spent
for generating candidate patterns and counting their supports.

Despite our optimizations, the pattern enumeration process can still be expen-
sive due to the huge number of generated and counted patterns even with relatively

10

high support thresholds. Given this, besides the core problem of finding all ODT pat-
terns, given certain support thresholds, we study different practical variants of pattern
search. We investigate the detection of patterns which are constrained to a subset of
regions and timeslots. This allows us to define the importance of flow parametrically
in a fair manner if we constrain pattern search to under-represented regions. In addi-
tion, by constraining patterns for targeted regions and timeslots, pattern enumeration
becomes much faster. We also study pattern detection by limiting the number of
atomic regions and timeslots that a pattern may have. Finally, we define and solve
the problem of finding the top-ranked patterns at each granularity level. We propose
an efficient algorithm that outperforms the simple approach of finding all patterns at
each level and then selecting the top ones by a wide margin.

Applications Identifying spatio-temporal flow patterns finds several applications. In
transportation networks, for instance, it is vital to extract these patterns to attempt
solving real-life problems such as in case of incidents. For example, in December
2021, there was an accident in Hong Kong subway system.1 As a result, scheduled
trips were canceled and passengers had to be served by other means (i.e., buses).
Spatio-temporal flow patterns could help in predicting the movement needs and
in scheduling transportation in such emergency situations. As another application,
studying the evolution of patterns can help in scheduling future trips more effec-
tively. Patterns can also help to understand the correlations between map districts
and perform target-marketing, cross-district advertisements, or location planning.

1.2 Repeatability

We have made publicly available implementations of the various algorithms and
datasets used in this dissertation at GitHub 2.

1https://www.thestandard.com.hk/breaking-news/section/4/183861/(Video)-MTR-door-flew-off,-
disrupting-peak-hour-service

2https://github.com/ckosyfaki95

11

1.3 Dissertation layout

The rest of this dissertation is organized as follows. In Chapter 2, we describe in-
troductory concepts related to flow networks and their variants, data provenance
problem and temporal networks as well as formal definitions related to TINs. In
Chapter 3, we address the problem of computing the flow in a subgraph of a TIN.
Specifically, we propose and study two models of flow computation: a greedy flow
transfer approach and a maximum flow computation approach. Moreover, we pro-
pose algorithm for extracting flow patterns. Chapter 4 presents the formulation of a
provenance tracking problem in TINs. We present different selection policies for the
propagation of quantities and the corresponding annotation generation and propa-
gation algorithms. Chapter 5 introduces spatio-temporal flow patterns. We study the
problem of identifying origin-destination-time (ODT) patterns at varying granularity
and propose algorithm for extracting them. In Chapter 6, we present related work
in flow computation, data provenance and mining spatio-temporal patterns. Lastly,
Chapter 7 summarizes and concludes this dissertation with a discussion about the
future work.

12

CHAPTER 2

BACKGROUND AND DEFINITIONS

2.1 Flow networks

2.2 Temporal Networks

2.3 Temporal Interaction Networks

2.4 Data Provenance

In this chapter, we provide background, concepts, and definitions that can help the
reader to comprehend the problems that we study and our proposed algorithms.
Note that we define the flow as a quantity that transfers through a network (e.g.,
money, passengers, bytes etc). However, in some classic problems like maximum flow
computation, the definition of flow is quite different compared to ours. Specifically,
for the maximum flow computation problem, the traditional definition has a network
with edge capacities and the main objective is to find the maximum flow that can
pass through the network. In our context, given a TIN, which includes a sequence
of interactions, our main objective is to find the maximum quantity that may have
been transferred from a source vertex to a sink vertex given the past interactions
between vertices; or the flow that was transferred based on some assumptions about
how quantities are exchanged at each interaction.

We also provide definitions related to temporal networks and some well known
problems that can be solved using them as well as we provide definitions related to
spatio-temporal networks and we analyze the difference between temporal networks
and TINs.

13

We also analyze basic concepts related to data provenance. The main goal of
provenance is to find the origin of an action that may affect a process. In our case,
the main objective is to find the origin of a quantity which is accumulated at a node
of a TIN as a result of a sequence of interactions.

In the last part of this chapter, we analyze basic concepts related to data prove-
nance. The main goal of provenance is to find the origin of an action that may affect
a process. In our case, the main objective is to find the origin of a quantity which is
accumulated at a node of a TIN as a result of a sequence of interactions.

2.1 Flow networks

Flow can be described as a quantity that transfers through a network. Specifically,
flow can be defined as the number of units which are transferred from a designated
source vertex s to a sink vertex t. During the years, flow concept has attracted a lot of
attention and it is considered as a very important problem with many applications.

2.1.1 Flow Networks

In graph theory, a flow network is defined as a directed graph involving a source s

and a sink t. Each edge is labeled with a capacity which is the maximum flow that
the edge could allow.

The flow should satisfy the following restriction: the amount of flow, into a node
equals the amount of flow out of it, unless it is a source, which has only outgoing flow
or sink which has only incoming flow. A flow network can be used to model traffic
in a transportation network, circulation with demands fluids in pipes, currents in a
electrical circuit, or anything similar in which something travels through a network
of nodes.

Useful concepts in flow networks
Adding edges and flows At this point, it is necessary to mention that in the

context of flow networks, sometimes edges can combine into a single edge. For this
reason, it is important to avoid using multiple edges within a network. To combine
two edges into a single edge, flow networks add their capacities and their flow values,
and assign those to the new edge taking into consideration the following observations:

14

2.1.2 Flow Networks ‐ Classic Problems

In this section, we provide information related to classic flow computation problems
and the most well-known solutions.

Maximum flow problem

In graph theory, the max-flow computation problem is defined as the maximum
amount of a quantity q that the network would allow to flow from the source vertex
S to the sink vertex T . 1 The problem is defined formally as following:

Definition 2.1. Let G(V,E) be a graph with s, t ∈ V being the source and the sink
of G respectively. The capacity of an edge is the maximum amount of flow that can
pass through an edge. Formally, it is a map c: E −→ R∗.

Definition 2.2. A flow is a map f : E −→ R that satisfies the following:

• capacity constraint: the flow of an edge cannot exceed its capacity

• conservation of flows: the sum of the flows entering a node must equal the sum
of the flows exiting the node, except for the source and the sink

Definition 2.3. The value of flow is the amount of flow passing from the source to
the sink. Formally, for a flow f : E −→ R∗ it is given by: |f | =

∑
v:(S,V)∈E f ≤ V

Definition 2.4. The maximum flow problem is to route as much flow as possible
from the source to the sink. Specifically, the main objective of the problem is to find
the flow fmax with maximum flow.

2

1 3

4

50

12

11

4

19

12

11

1 7

1

Figure 2.1: An example of max flow computation

1https://en.wikipedia.org/wiki/Maximumflowproblem

15

Ford-Fulkerson algorithm, Edmonds-Karp algorithm and Dinic’s algorithm are
examples of the most well-known solutions for the maximum flow computation prob-
lem. Solutions like the previous ones have a wide range of applications. Examples
include airline flights scheduling, the circulation-demand problem, and determining
when during a sports season, it is necessary to eliminate losing teams.

Minimum flow problem

In graph theory, the minimum cost flow problem (MCFP) is an optimization and
decision problem to find the cheapest possible way of sending a certain amount of
flow through a flow network.

Formally, the problem is defined as following:

Definition 2.5. A flow network is a directed graph G(V,E) with a source vertex s ∈
V and a sink vertex t ∈ V , where each edge (u, v) ∈ E has capacity c(u, v) > 0. The
cost of sending this flow along an edge (u, v) is f(u, v) · a(u, v). The problem requires
an amount of flow f to be send from source s to sink t.

The main objective of the problem is to minimize the total cost of the flow over
all edges:

∑
(u,v)∈E

a(u, v) · f(u, v) with the following constraints:

• capacity constraints: f(u, v) ≤ c(u, v)

• skew symmetry: f(u, v) = −f(u, v)

• flow conservation:
∑

w∈V f(s, w) = d and
∑

w∈V f(w, t) = d

• required flow:
∑

w∈V f(s, w) = d and
∑

w∈V f(w, t) = d

A variation of this problem is to find a flow which is maximum but has the
lowest cost among the maximum flow solutions. This could be called a minimum-cost
maximum-flow problem and is useful for finding minimum cost maximummatchings.

The minimum cost flow problem can be solved by linear programming, since
we optimize a linear function and all constraints are linear. Apart from that, many
combinatorial algorithms exist. Some of them are generalizations of maximum flow
algorithms.

16

Bipartite matching problem

Bipartite graph In graph theory, a bipartite graph (also known as bigraph) is a graph
whose vertices can be divided into two disjoint sets U and V that every edge connects
a vertex in U to one in V . Vertex sets U and V are usually called parts of the graph.
Formally, a bipartite graph G(V,E) has two disjoint sets U and V with E denoting
the edges of the graph.

Since we have already defined the bipartite graph, we are ready to describe the
bipartite matching problem. We define the bipartite matching problem as the opting
of edges in such a way that there will be no adjacent edges, and each edge will have
unique endpoints. Therefore, the maximum matching will be the highest number of
edges possible in the bipartite graph. Once this is achieved, no new matches can be
added. As a result, the graph is no longer a bipartite graph.

The bipartite matching problem is the problem of determining the matching for a
bipartite graph. It is important to mention the fact that if the graph is modeled as a
flow network (flow transfers from one set of nodes to another), various flow algorithms
can be used to solve the problem of the bipartite matching. For instance, the Ford-
Fulkerson and Hopcroft-Karp algorithms can solve bipartite matching in unweighted
graphs. For the weighted graphs (this problem is also known as assignment problem)
the best algorithm is the Hungarian algorithm.

Such problems, like this can be solved effectively by the Ford Fulkerson algorithm
which connects and disconnects all the possible edges in the graph till the maximum
match number is found.

Transportation problem

In graph theory, transportation problem is used to find the minimum cost of trans-
porting goods from a s source node to a t sink node.

Formally, the main objective of the transportation problem is the following: Let’s
supply the resources from s sources (Si) to t destinations (Dj) such that:

• ai: the quantity available at the source Si

• bj: the quantity required at the destination Dj

• cij the cost of transportation one unit resource from Si to Dj

17

• xij: units of resources transported from Si to Dj

Transportation problems are broadly classified into balanced and unbalanced de-
pending on the source’s supply and the requirement at the destination.

Assignment problem

As we have already mentioned before, a well-known variation of the bipartite match-
ing problem is the assignment problem. In a nutshell, the main objective of the
assignment problem is the following: Given a certain number of agents and a certain
number of tasks, as well as a cost/benefit for each agent on each task, assign each
agent to exactly one task such that the cost/benefit is minimized/maximized.

Formally, we define the assignment as following: Given two sets A and T , of equal
size with a weight function C : A × T −→ R find a bijection f : A −→ T such that
the cost function

∑
a∈A c(a, f(a)) is minimized.

The problem is linear since the cost function to be optimized as well as all the
constraints contain only linear terms.

Algorithms A naive solution is to check all the assignments and calculate the cost
of each one. The assignment problem is a special case of the transportation problem,
which is a special case of the minimum cost flow problem while it is possible to solve
any of these problems using the Simplex algorithm [37]. Each specialization has a
smaller space (less requirements related to space) and thus more efficient algorithms
have designed to take advantage of its special structure. The assignment problem is
separated in two caterogies:

• Balanced assignment: In the balanced assignment problem, both parts of the
bipartite graph have the same number of vertices.

• Unbalanced assignment: In the unbalanced assignment problem, the larger part
of the bipartite graph has n vertices and the smaller part has r < n vertices.

Multi‐commodity flow problem

In graph theory, the multi-commodity flow problem is a network flow problem with
multiple commodities (flow demands) between source and sink nodes. Formally, the
problem is defined as following: Given a flow network G(V,E), where each edge (u, v)
has a capacity c(u, v), there are k commodities k1, k2,...,kk defined by ki = (si, ti, di),

18

where si and ti is the source and sink of commodity i and di is its demand. The
variable fi(u, v) defines the fraction of flow i along edge u, v, where fi(u, v) ∈ [0, 1] in
case the flow can be split among multiple paths and fi(u, v) ∈ 0, 1.

The main objective of this problem is to find for all flow variables values that
satisfy the following constraints:

• link capacity: the sum of all flows routed over a link does not exceed its capacity

• flow conservation on transit nodes: the amount of a flow entering an intermediate
node u is the same that exists the node

• flow conservation at the source: a flow must exist its source node completely

• flow conservation at the destination: a flow must enter its sink node completely

It is important to mention that the minimum cost variant of the multi-commodity
flow problem is a generalization of the minimum cost flow problem.

Circulation problem

In graph theory, the circulation problem is a variation of the maximum flow com-
putation problem. Formally, we define the circulation problem as following: Given a
directed network G(V,E) with positive edge capacities instead of one source and one
sink, we have several sources that generate flow and several sinks that absorb flow.
Specifically:

• edge capacities ce > 0 for all e ∈ E

• node demands dv ∈ R for all v ∈ V

– dv > 0: node needs flow and therefore is a sink

– dv < 0: node has a supply of −dv and therefore is a source

– dv = 0: node is neither a source nor a sink

The flow function for the circulation problem is defined as following: f : E −→
R ≥ satisfying:

• capacity conditions: ∀ e ∈ E: 0 ≤ f(e) ≤ ce

• demand conditions: ∀ v ∈ V : f in(v)− f out(v) = dv

19

2.2 Temporal Networks

It has been known that many networks can grown in time. However, growth is
not the only way in which a network can evolve. Nodes and links may disappear
during the lifetime of a network. For instance, the same link may be active just for
a short period or repetitively with intermittent periods. Furthermore, the activation
of a link may depend on time. Taking into consideration the above observations, the
researchers introduce the concept of temporal networks (also called time/temporally
varying networks/graphs, evolving graphs and evolutionary network analysis).

Formally, a temporal network, also known as time-varying network, is defined
as a network whose links are active only at certain points in time. Each link carries
information on when it is active, along with other possible characteristics such as a
weight. Temporal networks are of a particular relevance to spreading processes, like
the spread of information and disease, since each link is a contact opportunity and
the time ordering of contacts is included.

As we already mentioned, the main purpose of introducing temporal networks is to
represent the dynamics of relations as discrete changes over time. Moreover, temporal
networks can be used to analyze the properties of networks and their evolution over
time. Considering the temporal information into networks has raised a number of
challenges related to algorithms suitable for network analysis. For example, it is
quite important to propose efficient algorithms and a variety of metrics to measure
the density of a network change over time. Also, it is necessary to design algorithms
for solving well-known problems applied only in static networks. Temporal networks
model network dynamics over time, such as time-dependent edge capacities [7, 1]
and evolving structure [38, 39].

Below, we present well-known problems of where temporal networks can be ap-
plied:

• Time respecting paths: are the sequences of edges that have the ability of travers-
ing in a time-varying network considering the constraint that the next link to
be traversed is activated at some point after the current one.

• Reachability: is a time-varying property. Specifically, the set of influence of a node
i is the set of all nodes that can be reached from i via time respecting paths,
note that it is dependent on the start time t.

20

• Causal fidelity: quantified the goodness of the static approximation of a temporal
network. Such a static approximation is generated by aggregating the edges of
a temporal network over time.

• Latency/Temporal distance: In a time-varying network any time respecting path
has a duration, namely the time it takes to follow that path.

• Centrality measures: Measuring centrality on time-varying networks involves re-
placement of distance with latency. The most well known measures are the
closeness centrality and the betweenness centrality

• Temporal patterns: Temporal networks can be used for analysis of explicit time
dependent properties of the network. One of the most well-known problem is
to extract patterns from time-varying data in many ways.

Spatio‐Temporal Networks

Spatio-temporal patterns combines both the spatial and temporal informations. Specif-
ically, spatio-temporal patterns are spatial events or correlations that repeat them-
selves over time. Finding spatio-temporal patterns is considered as quite an impor-
tant task and they can applied to different real problems. Some examples include the
prediction of earthquakes and hurricanes, the traffic on the roads, weather patterns
etc. Moreover, transportation companies and organizations routinely collect huge vol-
umes of passenger transportation data. After anonymizing and aggregating these data
it becomes possible to analyze the movement behavior of passengers in a metropolitan
area at different times of the day.

Spatio-temporal pattern mining is a well-studied problem in the literature [40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50], where a number of different problem definitions
and solutions are presented (see Chapter 5).

2.3 Temporal Interaction Networks

Temporal interaction networks (TINs) include a large number of highly connected
components that dynamically exchange information and are considered as a powerful
and versatile model. Specifically, in TINs, the interactions between vertices are labeled
by the time when they happen.

21

r.s r.d r.t r.q
v1 v2 1 3
v2 v0 3 5
v0 v1 4 3
v1 v2 5 7
v2 v1 7 2
v2 v0 8 1

1

v0 v1

v2

(7,2)

(4,3)

(3,5),(8,1)

(1
,3
),
(5
,7
)

1

(a) Interactions (b) Corresponding graph

Figure 2.2: A set of interactions and the corresponding TIN

Definition 2.6 (Temporal Interaction Network). A temporal interaction network (TIN)
is a directed graph G(V,E,R). Each edge (v, u) in E captures the (non-empty) his-
tory of interactions from vertex v to vertex u. R denotes the set of interactions on all
edges of E, ordered by time. Each interaction r ∈ R is characterized by a quadruple
⟨r.s, r.d, r.t, r.q⟩, where r.s ∈ V (r.d ∈ V) is the source (destination) vertex of the in-
teraction, r.t ∈ IR+ is the time when the interaction took place and r.q ∈ IR+ is the
transferred quantity from vertex r.s to r.d, due to interaction r.

Figure 2.2 shows the set R of interactions in a TIN and the corresponding graph.
For example, sequence {(1, 3), (5, 7)} on edge (v1, v2) means that v1 transferred to v2 a
quantity of 3 units at time 1 and then 7 units at time 5. The corresponding interactions
in R are ⟨v1, v2, 1, 3⟩ and ⟨v1, v2, 5, 7⟩.

2.3.1 Buffers

To compute the flow f(G) throughout G, we assume that each vertex v ∈ G keeps
in a buffer Bv the total quantity received from its incoming interactions and not
transferred yet. Note that an interaction r from v to u cannot transfer more quantity
than the quantity Bv at that time. Furthermore, for the problem of flow computation
(see Chapter 3) we take into consideration a special condition: before the temporally
first interaction in G, the buffers of all nodes are 0 except from the buffer of the source
which is always infinite.

Definition 2.7. A buffer Bv stores the total quantity that has flown into a vertex v but has
not been transferred yet to other vertices via outgoing interactions.

22

2.4 Data Provenance

Provenance is a classic problem and has been studied for over 20 year with numerous
applications. For example, when an error occurs, we can use provenance to find the
reasons behind it. Moreover, provenance is a very useful tool for tracking suspicious
transactions that may happen in a financial network like the Bitcoin network.

2.4.1 Workflow Provenance

A workflow is defined as a system for managing repetitive processes and tasks which
occur in a particular order. In the context of scientific workflows, provenance usually
means the lineage and processing history of a data product, and the record of the
processes that led to it. Provenance workflow captures workflow design and execution
history. Figure 2.3 represents a typical workflow provenance example. Specifically, it
presents the history of making a cake and how all the entities contribute to the final
result.

<latexit sha1_base64="+eGuyFtwZIHlwLnvmWCPVcaBacI=">AAAB7HicdVDLSsNAFJ3UV42vqks3g0VwFZLSl7tSNy4rmLbQhjKZTtqhk5kwMxFK6De4caGIWz/InX/jpK2gogcuHM65l3vvCRNGlXbdD6uwsbm1vVPctff2Dw6PSscnXSVSiYmPBROyHyJFGOXE11Qz0k8kQXHISC+cXed+755IRQW/0/OEBDGacBpRjLSR/LYIbXtUKruOW6k3Kg2YE7daXZGrWrMGPcddogzW6IxK78OxwGlMuMYMKTXw3EQHGZKaYkYW9jBVJEF4hiZkYChHMVFBtjx2AS+MMoaRkKa4hkv1+0SGYqXmcWg6Y6Sn6reXi395g1RHzSCjPEk14Xi1KEoZ1ALmn8MxlQRrNjcEYUnNrRBPkURYm3zyEL4+hf+TbsXx6k7ttlJutddxFMEZOAeXwAMN0AI3oAN8gAEFD+AJPFvcerRerNdVa8Faz5yCH7DePgHt2I4h</latexit>

Bob

<latexit sha1_base64="QAl02Ro6KZOrdGNuYfIgTqhcDv4=">AAAB7XicdVDLSsNAFJ3UV42vqks3g0VwFZJgH+6K3bisYB/QhjKZTtqxk5kwMxFK6D+4caGIW//HnX/jpK2gogcuHM65l3vvCRNGlXbdD6uwtr6xuVXctnd29/YPSodHHSVSiUkbCyZkL0SKMMpJW1PNSC+RBMUhI91w2sz97j2Rigp+q2cJCWI05jSiGGkjdZpoSmx7WCq7jutXa34N5sS9uFiSy0q9Aj3HXaAMVmgNS++DkcBpTLjGDCnV99xEBxmSmmJG5vYgVSRBeIrGpG8oRzFRQba4dg7PjDKCkZCmuIYL9ftEhmKlZnFoOmOkJ+q3l4t/ef1UR/UgozxJNeF4uShKGdQC5q/DEZUEazYzBGFJza0QT5BEWJuA8hC+PoX/k47veFWncuOXG1erOIrgBJyCc+CBGmiAa9ACbYDBHXgAT+DZEtaj9WK9LlsL1mrmGPyA9fYJp5yOjA==</latexit>

Cake

<latexit sha1_base64="jL+GAIY++b2nQPA7ajJcXkyz7j8=">AAAB7XicdVDLSsNAFJ3UV42vqks3g0VwFZJgH+5K3bisYB/QhjKZTtqxk5kwMxFK6D+4caGIW//HnX/jpK2gogcuHM65l3vvCRNGlXbdD6uwtr6xuVXctnd29/YPSodHHSVSiUkbCyZkL0SKMMpJW1PNSC+RBMUhI91wepX73XsiFRX8Vs8SEsRozGlEMdJG6jTRlNj2sFR2Hdev1vwazIl7cbEkl5V6BXqOu0AZrNAalt4HI4HTmHCNGVKq77mJDjIkNcWMzO1BqkiC8BSNSd9QjmKigmxx7RyeGWUEIyFNcQ0X6veJDMVKzeLQdMZIT9RvLxf/8vqpjupBRnmSasLxclGUMqgFzF+HIyoJ1mxmCMKSmlshniCJsDYB5SF8fQr/Jx3f8apO5cYvN5qrOIrgBJyCc+CBGmiAa9ACbYDBHXgAT+DZEtaj9WK9LlsL1mrmGPyA9fYJphOOiw==</latexit>

Bake

<latexit sha1_base64="MzRG9HWYFTEzFs7mWeNIxFtX3Vw=">AAAB83icdVDLSgMxFL1TX3V8VV26CRbB1TBT+nJXdKO7CvYBbSmZTKYNzWSGJCOU0t9w40IRt/6MO//GTFtBRQ8EDufcw705fsKZ0q77YeXW1jc2t/Lb9s7u3v5B4fCoreJUEtoiMY9l18eKciZoSzPNaTeRFEc+px1/cpX5nXsqFYvFnZ4mdBDhkWAhI1gbqX8jRpIGjApt28NC0XXcUrVWqqGMuOXyklxU6hXkOe4CRVihOSy894OYpJFJE46V6nluogczLDUjnM7tfqpogskEj2jPUIEjqgazxc1zdGaUAIWxNE9otFC/J2Y4Umoa+WYywnqsfnuZ+JfXS3VYH8yYSFJNBVkuClOOdIyyAlDAJCWaTw3BRDJzKyJjLDHRpqashK+fov9Ju+R4VadyWyo2Lld15OEETuEcPKhBA66hCS0gkMADPMGzlVqP1ov1uhzNWavMMfyA9fYJhBuRXQ==</latexit>

Ingredient

<latexit sha1_base64="SqIoaQbagRMpNibPor2y4+N5nro=">AAAB7HicdVDLSsNAFJ3UV42vqks3g0VwFZLQl7tSNy4rmLbQhjKZTtqhk0mYmQgh9BvcuFDErR/kzr9x0lZQ0QMXDufcy733BAmjUtn2h1Ha2Nza3invmnv7B4dHleOTnoxTgYmHYxaLQYAkYZQTT1HFyCARBEUBI/1gfl34/XsiJI35ncoS4kdoymlIMVJa8jppZprjStW2bLfRdJuwIHattiJX9VYdOpa9RBWs0R1X3keTGKcR4QozJOXQsRPl50goihlZmKNUkgThOZqSoaYcRUT6+fLYBbzQygSGsdDFFVyq3ydyFEmZRYHujJCayd9eIf7lDVMVtvyc8iRVhOPVojBlUMWw+BxOqCBYsUwThAXVt0I8QwJhpfMpQvj6FP5Peq7lNKz6rVttd9ZxlMEZOAeXwAFN0AY3oAs8gAEFD+AJPBvceDRejNdVa8lYz5yCHzDePgEaG44+</latexit>

Buy

<latexit sha1_base64="yVKkOT1BP4hOqgL+yd/Djb5ow1I=">AAACA3icdVDLSgMxFM3UV62vUXe6CRbB1TAtfbmrunFZoS9oh5JJ0zY08yC5o5ah4MZfceNCEbf+hDv/xkxbQUUPBA7n3MPNPW4ouALb/jBSS8srq2vp9czG5tb2jrm711RBJClr0EAEsu0SxQT3WQM4CNYOJSOeK1jLHV8kfuuaScUDvw6TkDkeGfp8wCkBLfXMgy6wW52Lb4g6A5DcjYD168E0k+mZWduy86VyvowTYhcKc3JarBRxzrJnyKIFaj3zvdsPaOQxH6ggSnVydghOTCRwKtg0040UCwkdkyHraOoTjyknnt0wxcda6eNBIPXzAc/U74mYeEpNPFdPegRG6reXiH95nQgGFSfmfqgP8+l80SASGAKcFIL7XDIKYqIJoZLrv2I6IpJQ0LUlJXxdiv8nzbyVK1nFq3y2er6oI40O0RE6QTlURlV0iWqogSi6Qw/oCT0b98aj8WK8zkdTxiKzj37AePsEqHmYLQ==</latexit>

was
Att

ribu
ted

To

<latexit sha1_base64="/fjtSMg3Lf/q3Q5ZjvfT12MMwho=">AAACA3icdVDLSgMxFM3UV62vUXe6CRbBVZkWa3XnY+OyQluFtpRMequhmcmQ3FHLUHDjr7hxoYhbf8Kdf2OmraCiBwKHc+7h5h4/ksKg5304manpmdm57HxuYXFpecVdXWsYFWsOda6k0hc+MyBFCHUUKOEi0sACX8K53z9J/fNr0EaosIaDCNoBuwxFT3CGVuq4Gy2EW5tLbpg5MkZxwRC6NTXM5Tpu3it4pb1KqUJT4u3ujslBeb9MiwVvhDyZoNpx31tdxeMAQuSSGdMsehG2E6ZRcAnDXCs2EDHeZ5fQtDRkAZh2MrphSLet0qU9pe0LkY7U74mEBcYMAt9OBgyvzG8vFf/ymjH29tuJCKMYIeTjRb1YUlQ0LYR2hQaOcmAJ41rYv1J+xTTjaGtLS/i6lP5PGqVCca9QPivlD48ndWTJJtkiO6RIKuSQnJIqqRNO7sgDeSLPzr3z6Lw4r+PRjDPJrJMfcN4+AYNCmBU=</latexit>

wasAssociatedTo

<latexit sha1_base64="GRWjjr1xHt2vEZ05HgCSm9e0a/c=">AAAB+HicdVDLSsNAFJ3UV42PRl26GSyCq5CEvtwV3bisYB/QhjKZTtqhk0mYmYg19EvcuFDErZ/izr9x0lZQ0QMDh3PvuffOCRJGpXKcD6Owtr6xuVXcNnd29/ZL1sFhR8apwKSNYxaLXoAkYZSTtqKKkV4iCIoCRrrB9DKvd2+JkDTmN2qWED9CY05DipHS0tAqDRS5074slWQ0N82hVXZsx6vVvTrMiVOpLMl5tVGFru0sUAYrtIbW+2AU4zQiXGGGpOy7TqL8DAlFMSNzc6AHJwhP0Zj0NeUoItLPFofP4Wm+FYax0I8ruFC/OzIUSTmLAt0ZITWRv2u5+Fetn6qw4WeUJ6kiHC8XhSmDKoZ5CnBEBcGKzTRBWFB9K8QTJBBWOqs8hK+fwv9Jx7Pdml299srNi1UcRXAMTsAZcEEdNMEVaIE2wCAFD+AJPBv3xqPxYrwuWwvGynMEfsB4+wTxmpNK</latexit>

used

<latexit sha1_base64="WjjkMzchbHe3zerLZLjG1xUPPXE=">AAACAnicdVDLSgMxFM34rPVVdSVugkVwVaalD91JXeiygq1CW0omc6vBTGZI7qhlKG78FTcuFHHrV7jzb8y0FVT0QOBwzj3c3ONFUhh03Q9nanpmdm4+s5BdXFpeWc2trbdMGGsOTR7KUJ97zIAUCpooUMJ5pIEFnoQz7+ow9c+uQRsRqlMcRNAN2IUSfcEZWqmX2+wg3NpccsPMESjQDMGvD4bZbC+XdwtuqVor1WhK3HJ5TPYrexVaLLgj5MkEjV7uveOHPA5AIZfMmHbRjbCbMI2CSxhmO7GBiPErdgFtSxULwHST0QlDumMVn/ZDbZ9COlK/JxIWGDMIPDsZMLw0v71U/Mtrx9jf6yZCRTGC4uNF/VhSDGnaB/WFBo5yYAnjWti/Un7JNONoW0tL+LqU/k9apUKxWqiclPIH9UkdGbJFtskuKZIaOSDHpEGahJM78kCeyLNz7zw6L87reHTKmWQ2yA84b5+blpeS</latexit>

wasGeneratedBy

<latexit sha1_base64="ixwHTqO131nhvqWmr+v4UeUNaao=">AAACAXicdVDJSgNBEO1xjXGLehG8NAbBU5iEbN6iXjxGyAZJCD2dStKkZ6G7RgxDvPgrXjwo4tW/8Obf2JNEUNGChsd79aq6nhNIodG2P6yl5ZXVtfXERnJza3tnN7W339B+qDjUuS991XKYBik8qKNACa1AAXMdCU1nfBnrzRtQWvheDScBdF029MRAcIaG6qUOOwi3xhdpZAqhf4414cI0meyl0nbGzhVLuRKNgZ3Pz8FZoVyg2Yw9qzRZVLWXeu/0fR664CGXTOt21g6wG5mpgkszsRNqCBgfsyG0DfSYC7obzS6Y0hPD9OnAV+Z5SGfsd0fEXK0nrmM6XYYj/VuLyb+0doiDcjcSXhAieHy+aBBKij6N46B9oYCjnBjAuBLmr5SPmGIcTWhxCF+X0v9BI5fJFjOF61y6crGII0GOyDE5JVlSIhVyRaqkTji5Iw/kiTxb99aj9WK9zluXrIXngPwo6+0T5PaXLg==</latexit>

startedAtTime
<latexit sha1_base64="TFef5WylXdTPQ63B1Yk/ztUhprI=">AAAB/3icdVDLSgMxFM34rPU1KrhxEyyCqzItfejOx8ZlhVaFtpRM5laDmcyQ3BHL2IW/4saFIm79DXf+jZm2gooeCBzOuSe5OX4shUHP+3Cmpmdm5+ZzC/nFpeWVVXdt/cxEiebQ4pGM9IXPDEihoIUCJVzEGljoSzj3r48z//wGtBGRauIghm7ILpXoC87QSj13s4Nwa3MpqACCQ2yKEIb5fM8teEWvXKuX6zQjXqUyJvvVvSotFb0RCmSCRs997wQRT0JQyCUzpl3yYuymTKPg0t7YSQzEjF+zS2hbqlgIppuO9h/SHasEtB9pexTSkfo9kbLQmEHo28mQ4ZX57WXiX147wf5eNxUqThAUHz/UTyTFiGZl0EBo4CgHljCuhd2V8iumGUdbWVbC10/p/+SsXCzVitXTcuHgaFJHjmyRbbJLSqRODsgJaZAW4eSOPJAn8uzcO4/Oi/M6Hp1yJpkN8gPO2ycPfJYj</latexit>

endedAtTime

<latexit sha1_base64="WjjkMzchbHe3zerLZLjG1xUPPXE=">AAACAnicdVDLSgMxFM34rPVVdSVugkVwVaalD91JXeiygq1CW0omc6vBTGZI7qhlKG78FTcuFHHrV7jzb8y0FVT0QOBwzj3c3ONFUhh03Q9nanpmdm4+s5BdXFpeWc2trbdMGGsOTR7KUJ97zIAUCpooUMJ5pIEFnoQz7+ow9c+uQRsRqlMcRNAN2IUSfcEZWqmX2+wg3NpccsPMESjQDMGvD4bZbC+XdwtuqVor1WhK3HJ5TPYrexVaLLgj5MkEjV7uveOHPA5AIZfMmHbRjbCbMI2CSxhmO7GBiPErdgFtSxULwHST0QlDumMVn/ZDbZ9COlK/JxIWGDMIPDsZMLw0v71U/Mtrx9jf6yZCRTGC4uNF/VhSDGnaB/WFBo5yYAnjWti/Un7JNONoW0tL+LqU/k9apUKxWqiclPIH9UkdGbJFtskuKZIaOSDHpEGahJM78kCeyLNz7zw6L87reHTKmWQ2yA84b5+blpeS</latexit>

wasGeneratedBy

12.12.2016 15:00:00 12.12.2016 15:20:00

Figure 2.3: An example of workflow provenance

2.4.2 Data provenance types

In this section, we describe different types of data provenance: where‐provenance,
why‐provenance and how‐provenance.

23

Where‐provenance

Where-provenance describes where a piece of data is copied from [11, 28]. While
why-provenance is about the relationship between source and output tuples, where
provenance describes the relationship between source and output locations. To make
this simple, where-provenance specifies which table or cell the actual data is copied
from.

Why‐provenance

Why-provenance is based on the idea of providing information about the witnesses
to a query. It describes the source tuples that witness the existence of an output
tuple in the result of the query. Specifically, why-provenance, describes what data in
the database leads to the production of the output. Explaining why an answer is
in the result of a query or why it is missing from the result is important for many
applications including auditing, debugging data and queries, hypothetical reasoning
about data, and data exploration. On the other hand, why-not provenance provides
explanations about missing results [29].

How‐provenance

How-provenance explains how the outputs contributed to the result. Moreover, how-
provenance describes how the source tuples witness the output tuple. It is important to
mention that how-provenance provides additional information about how the tuples
from the database are combined to produce the output

2.4.3 Different models of Data Provenance

Data provenance can be used for a number of different applications. However, it is
possible to modify the data provenance models to extract better results. For this rea-
son, data provenance can be categorized into two main classes of models. The first
model works for cases we have data and the second is responsible for missing re-
sults. Both classes can be further categorized into three additional groups respectively.
The first type of provenance is provenance for existing results. Its include where-
provenance, why-provenance (and why-not provenance), and how-provenance [51].
The second type is a query-based provenance which finds one or more query oper-

24

ators responsible for pruning the data that would have contribute to the final result.
Lastly, there is the refinement-based provenance which rewrites the query, if possible,
to obtain the missing result.

Algorithms for Data Provenance Algorithms for data provenance can be classified
into two categories. The first category is called lazy algorithms and their main objective
is to compute the provenance on-demand based on input data. In the second category,
we meet the eager approaches. In this case, the algorithms add some necessary meta-
data to the query output to find easier the origin of the data and where it comes
from.

Concluding the chapter, we provide a table 2.1 that summarizes the notation used
frequently through this dissertation.

25

Table 2.1: Table of notations

Notation Description
G(V, E ,R) temporal interaction network
G(V,E) subnetwork of G (problem input)

r.s source vertex of interaction r ∈ R

r.d destination vertex of interaction r ∈ R

r.t time when interaction r ∈ R took place
r.q transferred quantity during interaction r ∈ R

(ti, qi) an interaction with quantity qi at time ti

srci / desti source / destination vertex of interaction (ti, qi)

eS = {(ti, qi)} sequence of interactions on edge e

mG total number of interactions in graph G

Bv total quantity buffered at vertex v

O(t, Bv) origin (provenance) data for the quantity at Bv by time t

(τ.o, τ.q) quantity τ.q originating from τ.o in O(t, Bv)

pv provenance vector of a vertex v ∈ V

G(V,E) region neighborhood graph
ri atomic region
Ri region
ti atomic timeslot
Ti timeslot
P atomic ODT pattern or triple
P.O pattern/triple origin
D pattern/triple destination
T pattern/triple timeslot

σ(P) support of atomic ODT pattern P

P .cnt number of atomic patterns in ODT pattern P

Pℓ/Tℓ Set of ODT patterns/triples at level ℓ

26

CHAPTER 3

FLOW COMPUTATION IN TEMPORAL
INTERACTION NETWORKS

3.1 Definitions

3.2 Flow Computation Algorithms

3.3 A framework for maximum flow computation

3.4 Flow pattern search

3.5 Experimental evaluation

3.6 Summary

Computing the flow in TINs can facilitate their analysis. for studying in depth large
networks. In this study, we introduce and efficiently solve the flow computation prob-
lem between two vertices in an interaction network. We propose and study two models
of flow computation, one based on a greedy flow transfer assumption and one that
finds the maximum possible flow. We show that the greedy flow computation problem
can be easily solved by a single scan of the interactions in time order. For the harder
maximum flow problem, we propose precomputation and simplification approaches
that can greatly reduce its complexity in practice. based on a greedy transfer assump-
tion. We also discuss and analyze the problem of finding the maximum possible flow
transfer throughout such a network, if the interactions do not necessarily transfer the
maximum possible quantity. We model this as a linear programming (LP) problem

27

and identify its equivalence to a maximum flow computation problem in temporal
networks. We identify the classes of directed acyclic graphs for which greedy flow
computation solves the maximum flow transfer problem. In addition, we propose an
efficient graph preprocessing algorithm, which removes all interactions, edges and
vertices that do not contribute to the maximum flow computation. Finally, we pro-
pose a graph simplification approach, which uses the efficient greedy algorithm to
compute part of the maximum flow, before applying LP to solve the remainder of the
problem. As an application of flow computation, we formulate and solve the problem
of flow pattern search, where, given a graph pattern, the objective is to find its instances
and their flows in a large interaction network. We also approach the problem of flow
pattern enumeration in interaction networks and propose an effective path indexing
technique. We evaluate our algorithms using real datasets. The results demonstrate
the efficiency and scalability of our algorithms.

Outline The rest of the chapter is organized as follows. Section 3.1 defines basic
concepts and introduces the two models for flow computation. Section 3.2 presents
algorithms for greedy and maximum flow computation. In Section 3.3, we present
an algorithmic framework which can solve the maximum flow computation problem
much faster than the direct application of an LP solver. Section 3.4 approaches the
flow pattern search problem. Our experimental evaluation is presented in Section 3.5.
Finally, Section 3.6 concludes the chapter.

3.1 Definitions

In this section, we formally define the flow computation problems, and the pattern
search problem that we study.

We study the problem of measuring the total flow from a specific source vertex s to
a specific sink vertex t (s and t might coincide), through a subnetwork G of G, which is
a directed acyclic graph (DAG) and can be formed by ignoring irrelevant vertices (e.g.,
those having no incoming paths from s or no outgoing paths to t) and edges. Fig.
3.1(b) shows the subnetwork of interest when measuring the flow from s to t.

Fig. 3.1(a) shows a toy example; sequence {(6, 2), (8, 1)} on edge (z, x) means that
z transferred to x a quantity of 2 units at time 6 and then a quantity of 1 unit at time
8.

28

s z

y t x

(2, 3)

(3
, 5
)

(5, 1)
(1, 5)

(4, 4)

(6, 2), (8, 1)

(7, 1), (9, 2)

1

s z

y t

(2, 3)

(3
, 5
)

(5, 1)
(1, 5)

(4, 4)

1

(a) interaction network G (b) subnetwork G

Figure 3.1: Interaction network and subnetwork of interest

In order to define the flow f(G) through a DAG G(V,E), we consider the inter-
actions on the edges of G in order of time.1 The goal is to compute the total quantity
originating from s, which is eventually accumulated at the sink vertex t. However, the
quantity at each interaction does not essentially originate (entirely) from s. Hence,
flow computation should comply to the principle that an interaction (ti, qi) on an edge
(v, u) cannot transfer a larger quantity than what v has received from its incoming
interactions before time ti and was not yet transferred via its outgoing interactions
before ti. Specifically, assume that each vertex v ∈ V , except s keeps, in a buffer Bv, the
total quantity originating from s, which has been received from its incoming interac-
tions and has not been transferred by its outgoing interactions. Then, an interaction
on edge (v, u), may transfer from Bv to Bu any quantity in [0,min{qi, Bv}].

Given a subgraph G(V,E) of the network G, with a source vertex s ∈ V and a
target vertex t ∈ V , we propose two definitions of the flow f(G) from s to t through
G:

Problem 1 (Greedy Flow Computation). Considering all interactions in S by order of
time, and assuming that each interaction (ti, qi) on edge (v, u), transfers from Bv to Bu

the maximum possible quantity (i.e., min{qi, Bv}), f(G) is the total quantity eventually
buffered at the sink t.

Problem 2 (Maximum Flow Computation). Considering all interactions in S by order
of time, and assuming that each interaction (ti, qi) on edge (v, u), could transfer from Bv

1In most applications, there are no ties between timestamps of interactions. However, if ties exist,
the incoming interactions to a vertex are given priority compared to the outgoing ones (instant flow
transfer). Between two (or more) outgoing interactions, we break ties arbitrarily (still, any other rule
can be used to define an order).

29

to Bu any quantity in [0,min{qi, Bv}], f(G) is the maximum possible quantity eventually
buffered at the sink t.

Problem 1 is based on the assumption that the maximum possible quantity is
transferred by each interaction. This assumption holds in networks, where reserv-
ing quantities in vertex buffers is costly and should be avoided (e.g., transportation
networks). Problem 2 assumes that the source vertex of each interaction does not
necessary transfer the maximum possible quantity, but may reserve some quantity
for future interactions; this could increase the maximum overall quantity, transferred
from s to t. This assumption holds, for example, in financial networks, where buffer-
ing does not bear any cost. In the next section, we present solutions to both problems.
As we will see, Problem 1 is easy and its solution can be used as a module to reduce
the cost of Problem 2, which is more challenging.

We now define the pattern search problem that we study in Section 3.4, which
includes flow computation as a module.

Definition 3.1 (Network Patterns and Instances). A network pattern GP (VP , EP) is
a directed acyclic graph, where each vertex v ∈ VP has a label ℓ(v). An instance of
pattern GP in a temporal interaction network G is a subgraph GM(VM , EM) of G, such
that:

• there is a surjection µ : VP → VM from the vertex set VP of the pattern GP to
the vertex set VM of GM ;

• for two vertices v, u of GP , µ(v) = µ(u) iff ℓ(v) = ℓ(u);

• (v, u) ∈ EP iff (µ(v), µ(u)) ∈ EM .

Problem 3 (Flow Pattern Enumeration). Given a network G and a pattern GP with a
source s ∈ VP and a sink t ∈ VP , find all instances of GP in G; for each instance GM ,
compute the (greedy or maximum) flow f(GM).

Fig. 3.2 shows an example network G, a pattern and an instance of the pattern.
Note that two (or more) vertices of the pattern that have the same label should be
mapped to the same vertex in G. Here, a, b, and c are mapped to u1, u2, and u3,
respectively. The goal is to find all pattern instances and measure the (maximum)
flow for each instance (e.g. $5 for the instance of Fig. 3.2(c)).

30

u1 u2

u4 u3

(2,$5), (4,$3), (8,$1)

(1,$2), (6,$5)
(3,$4), (5,$2)(9,$4)

(10,$1)

(7,$6)

1

b

a

c

a

1

u1 u2

u3

(2,$5), (4,$3), (8,$1)

(1,$2), (6,$5)
(3,$4), (5,$2)

1

(a) interaction network (b) pattern (c) instance

Figure 3.2: Network, pattern, and instance

3.2 Flow Computation Algorithms

In this section, we present solutions to Problems 1 and 2. In Section 3.2.1, we pro-
pose a greedy algorithm that solves Problem 1 in time linear to the number mG of
interactions in the input graph G. Section 3.2.2 shows that, in general, the greedy
algorithm cannot be used to solve Problem 2 and presents a linear programming (LP)
formulation of the problem. Next, in view of the high complexity of LP compared to
Algorithm 4.1, we investigate approaches for solving Problem 2 faster than directly
using an LP solver. In Section 3.3.1, we show that for specific classes of graphs G we
can solve the problem in linear time. In Section 3.3.2, we propose a preprocessing
approach, which eliminates interactions (and possibly edges and vertices of G) that
are guaranteed not to affect the solution. Finally, in Section 3.3.3, we present a graph
simplification approach, which computes part of the solution using Algorithm 4.1
and, consequently, reduce the overall cost of maximum flow computation. Putting all
these approaches together (Section 3.3.4) results in a powerful maximum flow com-
putation technique for temporal interaction networks that can be orders of magnitude
faster than directly using an LP solver, as we show experimentally in Section 3.5.

3.2.1 Greedy flow computation

Algorithm 4.1 shows the steps of the greedy flow computation algorithm, which solves
Problem 1. First, we initialize the buffers of all vertices in the DAG G. Recall that each
buffer accumulates the total quantity received from s, so all buffers should be 0, except
from Bs, which we set to ∞, in order for all outgoing transactions (ti, qi) from s to

31

Algorithm 3.1 Greedy Flow Computation
Require: DAG G(V,E), source s ∈ V , sink t ∈ V

1: Bs = ∞

2: for each v ∈ V \ {s} do

3: Bv = 0

4: end for

5: for each interaction (ti, qi) in G in order of time do

6: qtr = min{qi, Bsrci}

7: Bsrci = Bsrci − qtr; Bdesti = Bdesti + qtr

8: end for

9: return f(G) = Bt

transfer exactly qi to their destination vertices. Then, we process all interactions (ti, qi)
in order of time. According to the definition of the problem, each transaction subtracts
min{qi, Bsrci} units from the buffer Bsrci of its source vertex srci and adds them to
the buffer of its destination vertex desti. After processing all transactions, the buffer
Bt holds the total quantity f(G) that has flown from s to t.

Table 3.1 shows the steps of computing f(G) of the graph shown in Fig. 3.1(b).
The first column shows the currently examined interaction, the second column the
edge where it belongs, and the last four columns the changes in the buffers of the
vertices after the interaction is processed. The temporally last interaction (5, 1) on
edge (z, t) transfers min{Bz, 1} = 1 units from Bz to Bt and the total flow of the
graph is f(G) = Bt = 1.

Table 3.1: Example of greedy flow computation

(ti, qi) (srci, desti) Bs By Bz Bt

(1, 5) (s, y) ∞ 5 0 0

(2, 3) (s, z) ∞ 5 3 0

(3, 5) (y, z) ∞ 0 8 0

(4, 4) (y, t) ∞ 0 8 0

(5, 1) (z, t) ∞ 0 7 1

Complexity. Algorithm 4.1 runs in O(mG) time, where mG is the total number of
interactions on the edges of G, assuming that the interactions can be accessed in
order of time.

32

3.2.2 Maximum flow computation using LP

We now turn our focus to Problem 2. Algorithm 4.1 does not solve Problem 2 in
the general case. For example, in the graph of Fig. 3.1(b), the maximum possible
transferred quantity from s to t is 5; we get this if interaction (3, 5) on edge (y, z)

does not transfer any units from By to Bz , but reserves these units for interaction
(4, 4) from y to t, which happens later.

Problem 2 can be formulated and solved using linear programming (LP). We
define one variable xi for each interaction (ti, qi) at any edge; xi corresponds to the
quantity that will be transferred as a result of the interaction. Note that, for interactions
which originate from the source vertex s, we have xi = qi, since not transferring the
maximum possible quantity from s cannot increase the total quantity that reaches
the sink t. Hence, the number of variables is the number of interactions that do not
originate from the source.

The value of each variable xi cannot be negative and cannot exceed qi. In addition,
we have the constraint that an interaction (ti, qi) on edge (srci, desti) cannot transfer a
larger quantity than Bsrci , i.e., the total incoming units to srci minus the total outgoing
units from srci, up to timestamp ti. Given the above constraints, the objective is to
find the values of all variables xi, which maximize the total quantity that arrives at
the sink vertex. Hence, we formulate the following linear program:

Maximize:
∑

desti=t xi

Subject to: 0 ≤ xi ≤ qi

xi ≤
∑

destj=srci∧tj<ti

xj −
∑

srcj=srci∧tj<ti

xj

Complexity. Problem 2 defines one variable per interaction; hence, the number of
variables in the LP problem is O(mG). The complexity of LP problems is at least
quadratic to the number of variables [52], hence, the cost for computing the maximum
flow through G is at least O(m2

G).

33

3.3 A framework for maximum flow computation

In view of the high complexity of LP compared to Algorithm 4.1, we investigate
approaches for solving Problem 2 faster than directly using an LP solver. In Section
3.3.1, we show that for a specific class of graphs, we can solve Problem 2 in linear time
using Algorithm 4.1. In Section 3.3.2, we propose a preprocessing approach, which
eliminates interactions (and possibly edges and vertices of G) that are guaranteed
not to affect the solution. Finally, in Section 3.3.3, we present a graph simplification
approach, which computes part of the solution using Algorithm 4.1 and, consequently,
reduces the overall cost of maximum flow computation. Putting all these approaches
together (Section 3.3.4) results in a powerful maximum flow computation technique
for temporal interaction networks that can be orders of magnitude faster than directly
using an LP solver, as we show experimentally in Section 3.5.

3.3.1 Graphs for which Algorithm 4.1 computes the maximum

flow

We first show that, for a class of graphs, Algorithm 4.1 computes the maximum flow.
This means that for these graphs, we do not have to formulate and solve an LP
problem, but we can compute f(G) in time linear to the number of interactions.

Lemma 3.1. The greedy algorithm computes the maximum flow through G if for every
vertex v ∈ V \{s, t}, v has exactly one outgoing edge.

Sketch. Consider a graph G(V,E) that satisfies the condition of the lemma. Assume
that a vertex v ∈ V \{s, t} having outgoing edge (v, u) does not transfer the maximum
possible flow as a result of an interaction (ti, qi) on (v, u), but retains some quantity.
Then this means that the amount of flow available to u for transfer at time tj > ti

will be strictly less than the maximum possible. This can only decrease the amount
of flow that will leave u to reach t. The retained flow at v cannot be utilized in some
other way, since (v, u) is the only outgoing edge from v (i.e., t can be reached from v

only via u). Hence, transferring the maximum possible quantity at every interaction,
results in accumulating the maximum flow at the sink t.

Fig. 3.3 shows two exemplary DAGs for which the condition is satisfied; hence,
Algorithm 4.1 is guaranteed to compute the maximum flow. The DAG in Fig. 3.3(a)

34

is a chain, i.e., a sequence of pairwise connected vertices starting at s and ending at
t. The DAG in Fig. 3.3(b) is another graph where every vertex, except s and t has
exactly one outgoing edge.

Complexity. Checking whether the input graph G satisfies the condition of Lemma
3.1 (i.e., examining the out-degree of each vertex) costs just O(|V |) time.

xs y t
(1, 5), (4, 3), (5, 2) (3, 3), (7, 4) (6, 3), (8, 6)

1

ys z w t

x

(1, 5) (3, 3), (7, 4) (6, 3), (8, 6)

(15, 7)
(9, 2), (12, 5) (10, 3), (14, 4)

(2, 5), (11, 2)

1

(a) chain DAG (b) non-chain DAG

Figure 3.3: DAGs for which greedy computes the maximum flow

3.3.2 Graph preprocessing algorithm

Before applying LP to compute the maximum flow on a DAG which does not satisfy
the condition of Lemma 3.1, we can reduce the complexity of the problem by removing
interactions that do not affect the solution. For example, interaction (2, $3) on edge
(z, t) of the graph of Fig. 1.1(a) can be removed, because timestamp 2 is smaller
than all the timestamps of all interactions that enter z. Removing interactions can be
crucial to the performance of LP because its cost is quadratic to their number mG.
In addition, removing interactions may possibly lead to the removal of edges and
vertices and may greatly simplify the input graph G.

We propose a preprocessing algorithm, which eliminates from G interactions, edges,
and vertices, which cannot contribute to the maximum flow computation. Algorithm
3.2 describes the steps of our method. We consider all vertices of G in a topological order
and, for each vertex, which is not the source or the sink, we examine its outgoing
edges and remove from them all interactions with a smaller timestamp than the
smallest incoming timestamp to the vertex (lines 9–13). If no interactions are left on
an edge, the edge is deleted from G (lines 14–15). The deletion of interactions on an
outgoing edge from the current vertex v may reduce the minimum timestamp of the
incoming interactions to vertices that follow u in the topological order. Hence, only a
single pass over the vertices is required to eliminate needless interactions. In addition,
the deletion of an outgoing edge from v may cause a vertex u that follows v in the

35

order to have no incoming edges. Such an event, will cause u and all its outgoing
edges to be deleted (since there is no way that u can transfer any quantity from s to
t). This case is handled at lines 3–5 of Algorithm 3.2. If all outgoing edges from the
current vertex v are deleted, then we have to delete v and all its incoming edges (lines
18–21). This may cause one or more of the vertices w which connect to v to have no
outgoing edges too. In this case, a recursive vertex deletion is triggered. If the recursive
deletion causes the source s to have no outgoing edges, then Algorithm 3.2 terminates
with the conclusion that f(G) = 0, rendering the execution of LP unnecessary. The
same happens when all vertices that connect to the sink t are deleted.

Algorithm 3.2 DAG preprocessing
Require: DAG G(V,E)

1: define topological order for G’s vertices

2: for each vertex v ∈ V \{s, t} in topological order do

3: if v has no incoming edges then

4: delete all outgoing edges from v

5: delete v from V

6: else

7: mintime = min(w,v)∈E{min(ti,qi)∈(w,v)S ti}

8: for each (v, u) ∈ E do

9: for each (t, q) ∈ (v, u)S do

10: if t < mintime then

11: delete (t, q) from (v, u)S

12: end if

13: end for

14: if (v, u)S = ∅ then

15: delete (v, u) from E

16: end if

17: end for

18: if v has no outgoing edges then

19: delete v from V

20: delete from E all edges (w, v) incoming to v and

21: recursively delete all w ∈ V with no outgoing edges

22: end if

23: end if

24: end for

36

Figure 3.4 shows two application examples of Algorithm 3.2. The algorithm re-
moves four interactions from DAG G1 of Fig. 3.4(a), which is reduced to the graph
shown in Fig. 3.4(b). The reduction of DAG G2 in Fig. 3.4(c) to the graph in Fig.
3.4(d) is more effective, since, in addition to eight interactions, four edges and two
vertices are eliminated. On the resulting graph of Fig. 3.4(d), we can now use Algo-
rithm 4.1 to compute the maximum flow, while we cannot on the initial G2, because
y has two outgoing edges. Hence, if Algorithm 3.2 removes edges from the graph,
we test again the condition of Lemma 3.1, to check the possibility of computing the
maximum flow f(G) using Algorithm 4.1 instead of using LP.

xs y t

z

(5, 3), (8, 3) (2, 7), (12, 4) (3, 3), (15, 2)

(9, 7)

(10, 5)
(4
, 2
), (
11
, 4
)

(1, 2), (13, 1)

1

xs y t

z

(5, 3), (8, 3) (12, 4) (15, 2)

(9, 7)

(10, 5) (11, 4)

(13, 1)

1

(a) DAG G1 (before) (b) DAG G1 (after)

xs y t

z

(5, 3), (8, 3) (3, 4) (2, 7), (12, 4)

(1, 2), (13, 1)

(9, 7)

(10, 5)
(4, 2), (11, 4)

1

s t

z

(9, 7)

(10, 5) (11, 4)

1

(c) DAG G2 (before) (d) DAG G2 (after)

Figure 3.4: DAG preprocessing examples

Complexity. The cost of Algorithm 3.2 is linear to the number of interactions, as
for each examined edge its interactions are processed at most once (from the temporally
earliest to the latest). Each edge is checked for deletion at most twice (once as an
outgoing edge and at most once as an incoming edge). Topological sorting of the
vertices (in the beginning of the algorithm) examines each edge of the DAG once
[20]. Hence, the complexity of Algorithm 3.2 is O(mG).

37

3.3.3 Graph simplification

The last part of our algorithmic framework for Problem 2 is a graph simplification
algorithm, based on the observation that chains which originate from the source
vertex can be reduced to single edges. In a nutshell, graph simplification iteratively
identifies and reduces such chains by applying the greedy algorithm on them, until
no further reduction can be performed. The resulting graph is then solved using LP.

A chain C , denoted by a sequence of vertices v1v2 . . . vk, is a subgraph of G, such
that every vertex vi, i ∈ [2, k − 1] has exactly one outgoing edge in G to vertex vi+1

and exactly one incoming edge in G from vertex vi−1. Our algorithm is based on
the fact that any chain that starts from the source of the graph G can be reduced
(in time linear to the number of interactions on the edges of the chain) to a single
edge without affecting the correctness of maximum flow computation in the graph.
To perform the reduction of a chain sv1v2 . . . vk to an edge (s, vk), we run a variant
of Algorithm 4.1, shown as Algorithm 3.3, on the chain, and define one interaction
for each interaction on the last edge (vk−1, vk) of the chain. Algorithm 3.3, after
initializing all buffers to 0 (except for Bs which is set to ∞), accesses all interactions
in the chain in order of time and updates the buffers of the corresponding vertices,
as in Algorithm 4.1. Each interaction (ti, qi) having as destination the last vertex vk of
the chain generates a new interaction with the quantity that is transferred to vk from
vk−1. After processing all interactions, the algorithm returns the new edge (s, vk) with
the constructed interaction set (s, vk)S. For example, the chain of Fig. 3.3(a) can be
reduced to a single edge (s, t) with interactions {(6, 3), (8, 4)}.

The following lemma shows that, for a DAG G, the replacement a chain starting
from the source vertex s by the single edge computed by Algorithm 3.3 does not
affect the correctness of maximum flow computation.

Lemma 3.2. Let G be a DAG having s as its source vertex. Assume that G includes a
chain sv1v2 . . . vk. Let G′(V ′, E ′) be the DAG for which V ′ = V − {v1, v2, . . . , vk−1} and
E ′ = E −{(s, v1), (v1, v2), . . . , (vk−1, vk)}+ {e}. The new edge e is computed by Algorithm
3.3 taking the chain sv1v2 . . . vk as input. Then, the maximum flow through G is equal to
the maximum flow through G′.

Sketch. Recall that reserving flow in the source vertex s of G cannot increase the
maximum flow that reaches its sink. The same holds for all vertices {v1, v2, . . . , vk−1}
in a chain sv1v2 . . . vk that originates from the source s, except from the last vertex vk,

38

Algorithm 3.3 Chain Reduction
Require: Chain subgraph C(VC , EC), VC = {s, v1, v2, . . . , vk}

1: Bs = ∞

2: for each vi ∈ VC \ {s} do

3: Bvi = 0

4: end for

5: Initialize replacement edge e with eS = ∅

6: for each interaction (ti, qi) on edges of EC in order of time do

7: qtr = min{qi, Bsrci}

8: Bsrci = Bsrci − qtr; Bdesti = Bdesti + qtr

9: if desti = vk and qtr > 0 then

10: eS = eS ∪ (ti, qtr)

11: end if

12: end for

13: return e

as Lemma 3.1 suggests. Hence, replacing chain sv1v2 . . . vk by the edge e computed
by Algorithm 3.3 does not affect the correctness of maximum flow computation in G,
as the quantity received by vk from vk−1 at any time is equal to the quantity received
by vk via (s, vk) = e at any time.

Algorithm 3.4 is a pseudocode for the proposed graph simplification approach,
which uses Algorithm 3.3 to progressively reduce chains that start from s. Note that
the edge (s, vk) = e that should replace a chain sv1v2 . . . vk may already exist in the
graph. In this case, the interactions eS of the new edge e produced by Algorithm 3.3
are merged with those of the existing edge (s, vk). The reduction of a chain and the
potential merging of the resulting edges may cause new chains to exist in G; hence,
the algorithm re-checks for possible new chains after each reduction.

Fig. 3.5 illustrates the functionality of Algorithm 3.4. Assume that the initial
graph G is as shown in Fig. 3.5(a). After reducing to edges the two chains that
originate from the source s, the graph is simplified as shown in Fig. 3.5(b). Note
that the reduction of chain (s, y, z) introduces a new edge (s, z) with interactions
{(3, 2), (7, 1)}, however, an edge (s, z) already exists in the graph with interactions
{(2, 5), (11, 2)}. In such a case, the two edges are merged to a single edge with all
four interactions as shown in Fig. 3.5(c). After the merging, a new chain (s, z, w) that
originates from the source s is created. This chain is then reduced to single edge (s, w)

39

as shown in Fig. 3.5(d). At this stage the graph cannot be simplified any further. Note
that the LP optimization problem of the initial graph in Fig. 3.5(a) has 9 variables
(as many as the interactions that do not originate from s), whereas the reduced graph
in Fig. 3.5(d) requires only 3 variables. This demonstrates the reduction to the cost
of solving the problem achieved by our graph simplification approach.

ys z w t

x

u
(1, 2), (4, 3), (5, 2) (15, 7) (16, 6)(3, 3), (7, 1) (6, 3), (8, 6)

(9, 2), (12, 5)

(2, 5), (11, 2)

(13, 5)

(10, 3), (14, 4)

1

s z w tu
(3, 2), (7, 1) (15, 7) (16, 6)(6, 3), (8, 6)

(2, 5), (11, 2) (13, 5)

(10, 2), (14, 4)

1

(a) initial graph (b) first chain reduction

s z w tu
(2, 5), (3, 2), (7, 1), (11, 2) (15, 7) (16, 6)(6, 3), (8, 6)

(13, 5)

(10, 2), (14, 4)

1

s w tu
(6, 3), (8.5) (15, 7) (16, 6)

(13, 5)

(10, 2), (14, 4)

1

(c) edge merging (d) second chain reduction

Figure 3.5: Example of graph simplification

Complexity. Each edge along the chains of G is examined just once before being
reduced. In addition, each newly created edge is examined at most once if it becomes
part of a chain. The newly generated interactions by a chain reduction cannot be more
than the interactions on the last edge of the chain. Hence, Algorithm 3.4 examines
each edge (and the interactions on it) at most twice. Overall, its cost is O(mG).

Algorithm 3.4 Graph simplification
Require: Graph G(V,E)

1: while G contains a chain sv1v2 . . . vk from source s do

2: run Algorithm 3.3 to simplify chain to edge e

3: remove edges {(s, v1), (v1, v2), . . . (v2, vk)} from E

4: if (s, vk) /∈ E then

5: add edge (s, vk) = e to E

6: end if

7: (s, vk)S = (s, vk)S ∪ eS

8: end while

40

3.3.4 Putting it all together

Algorithm 3.5 summarizes our proposal for maximum flow computation in temporal
interaction networks. First, we test whether maximum flow can be computed on the
DAG G by testing the condition of Lemma 3.1. If this is not possible, we apply
Algorithm 3.2 to remove interactions (and possibly vertices and edges) irrelevant to
the problem. If the structure of the resulting graph changes, we check again whether
Algorithm 4.1 can solve the max-flow problem. Otherwise, we first simplify the graph,
by applying Algorithm 3.4 before computing the maximum flow on the resulting
graph using LP (as described in Section 3.3).

Algorithm 3.5 Maximum flow computation
Require: Graph G(V,E)

1: if If Algorithm 4.1 can compute f(G) then

2: run Algorithm 4.1 on G to compute max-flow

3: else

4: preprocessGraph(G)

5: if Algorithm 4.1 can compute f(G) then

6: run Algorithm 4.1 on G to compute max-flow

7: else

8: simplifyGraph(G)

9: LP(G)

10: end if

11: end if

3.3.5 Mapping [1] to our problem

We now investigate the relationship between our problem and a maximum flow
computation problem in temporal graphs, studied in [1]. Specifically, in a temporal
flow network, as defined in [1], each edge has a capacity c and the edge contains
a set T of time units (e.g., days) during which the edge can transfer flow up to
its capacity (until the next time unit). Figure 3.6(a) shows an example of such a
network. For example, each edge corresponds to a transport service, which may
transfer a quantity up to c per day, but it is only available at days T . The goal is
to find the maximum total quantity that can be transferred from s to t by the end
of the timeline, assuming that infinite quantity is available at the source vertex s at

41

y

s z

t

c=3, T=(2, 7)

c=5,T=(1)

c=
5,
T
=
(3
)

c=1, T=(5, 6)

c=4, T=(4, 8)

1

y

s z

t

(2, 3), (2, 7)

1,5
3,
5 (5, 1), (6, 1)

(4, 4), (4, 8)

1

(a) temporal network (b) interaction network

Figure 3.6: Mapping a temporal to an interaction network

time 0. Our problem is in fact a generalization of this problem. Specifically, we can
convert any instance of this problem by considering the edge validity time units as
timestamps and the edge capacities as quantities and define a temporal interaction
network with the corresponding interactions. For example, the network of Figure
3.6(a) can be mapped to the temporal interaction network shown in Figure 3.6(b).
Finding the maximum flow in Figure 3.6(a) according to the definition of [1] is then
equivalent to finding the maximum flow in Figure 3.6(b) according to our definition.

Akrida et. al [1] suggest solving the maximum flow problem in temporal networks
using LP (suggesting a more complex formulation) and show that the problem can be
solved in PTIME. Our problem also has a quadratic cost to the number of interactions
on the edges. Although our flow computation definition shares similarities to the
temporal flow of [1] and in general to static and dynamic flow computation [7], our
problem definitions are very different. Our goal is not to measure the maximum
flow that can be transferred from s to t given capacity constraints, transit rates and
availability of edges, but to measure the actual total flow that is transferred from
s to t, given the factual transactions at the edges, the order of transactions and the
assumption that nodes have infinite buffering capabilities. In addition, we ignore flow
transfer quantities from a node v that do not originally come from s, either because
they were temporally before the incoming flows to v from s or because they exceed
the total flow that entered v from s. In addition, our algorithm is totally different
(and asymptotically faster) than algorithms used to solve max flow problems.

42

3.4 Flow pattern search

So far, we assumed that the DAG through which we want to compute the flow is
given. In this section, we address Problem 3: find the instances of a small DAG
pattern GP in a temporal interaction network and measure the maximum flow for
each instance. Finding the instances of a graph pattern is a classic search problem
in unlabeled graphs. On the other hand, maximum flow computation for a subgraph
can be expensive, so simply finding the pattern instances, using some approach from
previous work (e.g., [53]), and computing the flow for each instance might not be
the best approach. We propose a flow path indexing technique, which precomputes
paths of the network G, along with their flow. Pattern search can greatly benefit from
the preprocessed data. Before presenting our proposal, we discuss a baseline graph
browsing approach.

3.4.1 Graph browsing approach

A direct approach for solving the pattern search problem traverses the whole network
G, and identifies instances of GP by gradually expanding partial matches of the pattern.
As discussed in [53], graph browsing is appropriate for pattern search in unlabeled
graphs (like G), where the number of instances can be huge. Specifically, the graph
browsing (GB) approach, considers the vertices of GP (VP , EP) in a topological order.
GB is a backtracking algorithm [54], which, starting from the source vertex of GP ,
attempts to map each vertex vP ∈ VP to a vertex v ∈ G, choosing from the neighbors in
G of the currently instantiated vertex and making sure that all mapping and structural
constraints w.r.t. all previously instantiated vertices are satisfied. For each identified
pattern instance, we compute the corresponding flow.

Note that for certain patterns, like the chain pattern of Fig. 3.2(b), which satisfy
the condition of Lemma 3.1, we can compute the maximum flows of their instances
incrementally. That is, for each partial instance which matches a prefix of the pattern,
we can apply Algorithm 3.3 to model it as an edge eI . When the partial instance is
expanded by one edge e, we then incrementally update the flow by running Algorithm
3.3 on a graph with two consecutive edges eI and e. When we backtrack and before
expanding again, we can re-use eI and avoid redundant flow re-computations.

43

3.4.2 Flow path indexing

Before searching for any pattern, we propose the preprocessing of the network G and
the extraction from it of small paths that can be components of pattern instances. This
way, we can avoid searching for subgraphs of a pattern GP from scratch; instead, we
can retrieve the pattern’s structural components (and precomputed flow data) and
then “stitch” them together using join algorithms. The idea of extracting and indexing
subgraphs in order to facilitate graph pattern search has been used before [53, 55];
here, we apply it in the context of flow pattern search and show how we can benefit
from the precomputation of the flow along the indexed paths.

Index Construction. We apply GB to identify and index all paths up to k hops. We
form one table for each length up to k, holding all paths of that length. That is, for
each path, we store: (i) the sequence of vertex-ids that form the path, (ii) the sequence
of interactions eS that result from the application of Algorithm 3.3 to the path. Each
table is sorted w.r.t. the vertex-id sequences, in order to facilitate merge joins.

Pattern Search. Algorithm 3.6 shows the steps of the proposed pattern search algo-
rithm that uses our index. To find the instances of a given pattern GP , we first identify
the indexed path subpatterns in GP and access and join the corresponding tables, in
order to form instances of GP . As soon as a complete pattern match GM is identified,
we compute the flow f(GM) for GM . We take advantage of the precomputed flow
sequences eS for the constituent paths of GM to reduce the cost of computing f(GM).

Algorithm 3.6 Pattern Search
Require: Network G(V, E), pattern GP (VP , EP)

1: Decompose GP to a set of paths

2: Access and join corresponding tables to form instances of GP

3: for each instance GM of GP do

4: compute f(GM) using precomputed flows (if possible)

5: end for

Consider, for example, the flow pattern GP1 shown in Fig. 3.7(a). Assume that we
have preprocessed and have available all instances of two-hop and three-hop cyclic
paths that start from and end to the same node a in two tables L2 and L3, respectively.
In this case, we can easily compute all instances of GP1 , by only accessing and using
preprocessed data. Specifically, we scan L2 and L3 and merge-join them, in order to
find all pairs of paths from L2 and L3 that have the same start (and hence end)

44

vertex. To compute the total flow of each pattern instance, we simply sum up all
precomputed incoming flows to the sinks of the two paths.

The precomputed flows cannot always be used. For example, in the pattern GP2

of Fig. 3.7(b), the path a → b → c → d is not isolated; hence, precomputed flow infor-
mation for its instances is not useful. Still, even when precomputed flow information
is not useful, the tables of the index can be used to accelerate finding the instances
of the patterns.

ba c a

d

1

ba c a

1

(a) Pattern GP1 (b) Pattern GP2

Figure 3.7: Examples of flow patterns

3.4.3 Non‐rigid patterns

The patterns that we have defined so far have a rigid structure. In some applications,
however, we might be interested in searching for patterns with more relaxed structure.
Consider, for example, a money-laundering pattern where a source node a is sending
payments to recipients (which do not have a fixed number) and then these recipients
send money back to a. Right now, we could only define a set of different patterns and
measure their flows independently, as shown in Fig. 3.8(a). Then, we could aggregate
the flows of all instances of the different patterns that correspond to the same node
a in order to compute the total flow from a to a via other nodes.

This approach has several shortcomings. First, we would have to compute and
merge the results of multiple pattern queries. Second, there is no limit on how many
patterns we should use. Third, the final result might not be correct, as the flows of
subpatterns could be included in the flows of superpatterns (for example, an instance
of the 2nd pattern in Fig. 3.8(a) includes two instances of the first pattern).

In order to avoid these issues, we can define a relaxed pattern as shown in Fig.
3.8(b), which links a to a by parallel paths via any number of intermediate nodes.
Finding the instances of this pattern and measuring their flows is very easy using
our precomputation approach, as we only have to scan the 2-hop cycle table L2 and,

45

ba a a b a

c

a b a • • •

c

d

1

a a

...

1

(a) 2-hop rigid patterns (b) relaxed pattern

Figure 3.8: 2-hop non-rigid pattern

for each instance of a, we have to aggregate the flows of the corresponding rows of
the table. We can also set constraints to the number of paths in a non-rigid pattern.
For example, we might be interested in instances of the pattern shown in Fig. 3.8(b)
which include at least 10 cycles.

3.5 Experimental evaluation

In this section, we evaluate the performance of the flow computation techniques on
real datasets. All methods were implemented in C and the experiments were run on
a MacBook Pro with an 2.3 GHz Quad-Core Intel Core i5 and 8GB memory. For the
implementation of LP, we used the lpsolve library2 (version 5.5.2.5). The source code
of the study is publicly available.3

3.5.1 Dataset description

We used four real datasets, generated from real interaction networks: the Bitcoin
transactions network, an internet traffic network, a loans exchange network, and a
taxis transport network. We now provide details about the data. Table 4.5 summarizes
their characteristics.

Bitcoin: This dataset includes all transactions in the bitcoin network [56] up to
2013.12.28 from https://senseable2015-6.mit.edu/bitcoin/. The data were collected
and formatted by the authors of [17]. We joined tables ‘txedge.txt’ with ‘txout.txt’
to create a single table with transactions of the form (sender, recipient, timestamp,
amount). We used table ‘contraction.txt’ to merge addresses which belong to the

2https://sourceforge.net/projects/lpsolve/
3https://github.com/ckosyfaki/FlowComputation

46

same user. Addresses were mapped to integers in a continuous range starting from
0. We converted all amounts to B (originally in Satoshis, where 1 Satoshi=10−8B) and
removed all insignificant transactions with amounts less than 10000 Satoshis.

CTU‐13: We extracted data from a botnet traffic network4, created in CTU University
[57]. The vertices of the graph are IP addresses and the interactions are data exchanges
between them at different timestamps. We consider as flow the total amount of bytes
transferred between IP addresses.

Prosper Loans: Prosper5 is an online peer-to-peer loan service. We consider Prosper
as an interaction network between users who lend money to each other. Each record
includes the lender, the borrower, the time of the transaction and the loan amount. We
disregarded the tax that the borrower paid for the transaction and considered only
the net loan amount. The data were downloaded from http://konect.cc/networks/.

Taxis Network: We downloaded data from NYC yellow taxi trips6 on January 1st
2019. Each record has the pick-up and drop-off locations (taxi zones), the drop-off
time and the number of the passengers on each trip (flow). We created a graph, where
vertices are taxi zones and edges are trips.

Table 3.2: Characteristics of Datasets

Dataset #nodes #edges #interactions avg. qi
Bitcoin 12M 27.7M 45.5M 34.4B
CTU-13 607K 697K 2.8M 19.2KB

Prosper Loans 88K 3M 3.04M $76

Taxis 255 10.4K 231K 1.53

3.5.2 Flow computation

In order to evaluate the flow computation algorithms, we extracted a number of
subgraphs from each network and we computed the flow on each of them. Specifically,
for the first three networks, we identified seed vertices from which there are paths
(up to three hops) that pass through other vertices and then return to the origin. For
each seed vertex, we unified all edges along these paths to form a single subgraph of

4https://www.stratosphereips.org/datasets-ctu13
5https://en.wikipedia.org/wiki/Prosper_Marketplace
6https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

47

the network. For the Taxis network, which is very dense, for all possible source/sink
pairs, we unified all paths up to three hops that connect them to create the respective
DAGs.

We discarded subgraphs with more than 10K interactions because the LP algo-
rithm for maximum flow computation was too slow on them.7 The number of tested
subgraphs extracted from each dataset and their statistics are shown in Table 3.3.
For the first three datasets, the subgraphs are relatively small in terms of vertices and
edges, but they have a relatively large number of interactions (for example in Bit-
coin subgraphs there are about 70 interactions per edge on average, while there are
about 2 interactions per edge on average in the entire Bitcoin graph). For the Taxis
dataset, the subgraphs are substantially larger and denser. In general, computing the
maximum flow through the tested subgraphs is relatively expensive, due to the large
number of interactions.

Table 3.3: Statistics of subgraphs
Dataset #subgraphs avg |V | avg |E| avg #interactions
Bitcoin 48.7K 5.16 6.42 448.4
CTU-13 9235 3.24 2.49 15.9
Prosper Loans 137 6.1 8 611.5
Taxis 33.6K 28.8 93.6 2542.39

Competitors.We applied the following methods to compute the flow on the extracted
subgraphs from each dataset.

• The greedy algorithm (Algorithm 4.1) presented in Section 3.2.1, which com-
putes the flow based on the greedy transfer assumption, i.e., it does not (always)
find the maximum flow.

• LP, which solves the maximum flow problem using linear programming, as
discussed in Section 3.3, using a direct application of the LP solver.

• Pre, which applies all steps of Algorithm 3.5 except from graph simplification
(i.e., line 8). We include this version of our algorithm in order to assess the
effect of testing for Lemma 3.1 and the preprocessing Algorithm 3.2.

7Our graph preprocessing and simplification approaches for max-flow computation reduce the size
of LP problem and are independent to the LP solver used. Hence, they can be applied on larger graphs
with more scalable LP solvers.

48

Table 3.4: Average runtime (msec) on the tested subgraphs
Bitcoin subgraphs CTU-13 subgraphs Prosper Loans subgraphs Taxis subgraphs

All A B C All A B C All A B C All A B C
Greedy 0.05 0.007 0.295 0.353 0.0035 0.0032 0.0037 0.076 0.0027 0.0015 0.004 0.0067 0.13 0.005 0.02 0.17
LP 5775 2667 7179 24248 10.313 3.835 71.07 1810 0.5105 0.5072 0.5646 0.4527 4650 0.62 209 6452
Pre 838.8 0.0078 0.575 7615.8 6.314 0.0033 0.0074 1767 0.0352 0.0016 0.008 0.2373 1091 0.005 0.03 1520
PreSim 524.5 0.0078 0.575 4762 0.7902 0.0033 0.0074 220.2 0.0157 0.0016 0.008 0.0889 1085 0.005 0.03 1512

• PreSim is our complete solution for maximum flow computation (i.e., Algorithm
3.5).

Runtime comparison. Table 3.4 (columns ‘All’) shows the average runtime (in msec)
of the compared flow computation methods on the tested subgraphs from each
dataset. The greedy algorithm is lightning fast, as its cost is linear to the number
of interactions. Its running time in all cases is in the order of microseconds. For the
maximum flow problem, LP is quite slow especially on the Bitcoin and Taxis sub-
graphs, which contain the largest number of interactions on average (see Table 3.3).
With the help of the preprocessing approach (Pre), the graphs are simplified and
maximum flow computation becomes up to 14 times faster compared to LP. Note
that the time for preprocessing the graphs is included in the measured runtimes.
Finally, the graph simplification method (PreSim) further reduces the cost by a fac-
tor of at least two compared to Pre on the first three networks. On the other hand,
the average improvement is very small on the Taxis dataset because the subgraphs
are quite dense and they can rarely be simplified. On average, the speedup of our
proposed maximum flow computation approach (PreSim) over LP is 11x, 13x, 32x,
and 4.5x on the four networks.

For a more detailed analysis of the results, we divided the tested subgraphs in
three classes. Class A contains the easiest subgraphs, which are found to be solved by
Algorithm 4.1. The cost of verifying this (i.e., testing the condition of Lemma 3.1) is
very low, so the cost of computing the maximum flow on these graphs equals the cost
of running Greedy. Class B contains the subgraphs, which are found to be solvable
Algorithm 4.1 after preprocessing. The cost for computing the maximum flow on
these graphs is again close to that of Greedy. Finally, class C contains the hardest
graphs, which even after preprocessing cannot be solved using the greedy algorithm.
The corresponding columns of Table 3.4 average the runtimes of the tested methods
on each of the three classes of subgraphs. Note that the results on the hardest graphs

49

<100 100-1000 >1000

101

102

103

104

105

106

107

108

#interactions

T
im

e
[µ
se
c]

Runtime of algorithms per interactions

Greedy
LP
Pre
PreSim

1

<100 100-1000 >1000

101

102

103

104

105

106

107

108

#interactions

T
im

e
[µ
se
c]

Runtime of algorithms per interactions

Greedy
LP
Pre
PreSim

1

(a) Bitcoin Network (b) CTU-13 Network

<100 100-1000 >1000

101

102

103

104

105

106

107

108

#interactions

T
im

e
[µ
se
c]

Runtime of algorithms per interactions

Greedy
LP
Pre
PreSim

1

<100 100-1000 >1000

101

102

103

104

105

106

107

108

#interactions

T
im

e
[µ
se
c]

Runtime of algorithms per interactions

Greedy
LP
Pre
PreSim

1

(c) Prosper Loans Network (d) Taxi Network

Figure 3.9: Runtime of algorithms as a function of the number of interactions

of class C, show the actual improvement of PreSim over Pre (as these are the only
cases where graph simplification is applied).

To assess the scalability of the approaches, we divided the tested subgraphs into
three categories based on the number of interactions they include (<100 interactions,
between 100 and 1000 interactions, >1000 interactions). Fig. 3.9 compares the av-
erage performance of all methods on each category of subgraphs from each dataset.
As expected, the costs of all methods increase with the number of interactions. In
general, the savings of PreSim and Pre over LP are not affected by the magnitude of
the problem size. Overall, the experiments confirm the efficiency and the scalability
of the proposed techniques for greedy and maximum flow computation.

Greedy vs. maximum flow. As we have seen, maximum flow computation (Problem
2) is very expensive compared to greedy flow computation (Problem 1). A natural

50

question is how often the greedy Algorithm 4.1 computes the maximum flow and
what is the relative difference between the maximum flow and the flow computed
under the greedy transfer assumption. Since for subgraphs belonging to classes A
and B, the greedy algorithm finds the maximum flow, we analyzed the flows of the
subgraphs that belong to class C from all four datasets. Table 3.5 shows the average
relative difference fM (G)−fG(G)

fM (G)
between the maximum flow fM(G) and the flow fG(G)

computed by Algorithm 4.1 in all subgraphs G and the fraction of subgraphs where
Algorithm 4.1 computes the maximum flow. Observe that the relative difference is
quite small on average and that the probability that the greedy algorithm finds the
maximum flow is quite high, which indicates that Algorithm 4.1 can be used as
an approximation algorithm for maximum flow computation (although there is no
quality guarantee).

Table 3.5: Flow comparison (class C only)

Statistics Bitcoin CTU-13 Prosper Loans Taxis

Avg. relative difference 0.18 0.11 0.16 0.30

ratio of fG(G) = fM (G) 0.49 0.57 0.55 0.31

Flow distribution analysis. We collected some statistics that demonstrate the appli-
cability of flow computation. Fig. 3.10(a) shows the cumulative distribution of the
computed maximum flows on the tested subgraphs of the Bitcoin network. We ob-
serve a powerlaw distribution: the maximum flow for the majority of DAGs is smaller
than 10 and there are only few DAGs with flow greater than 10000. This indicates
that there are few interesting cases of DAGs with large flow which may ring a bell to
financial analysts. Fig. 3.10(b) shows the (greedy) flow distribution for all subgraphs
of the Taxis network as a heatmap. Observe that (i) the heatmap is symmetric (i.e.,
the flow from a region a to a region b is similar to the flow from region b to region a),
(ii) the flow between regions of small IDs (less than 60) is much higher compared to
the flow between other pairs of regions, (iii) there are regions, from/to which there is
very little flow (black lines), e.g., zone 71 (East Flatbush in Brooklyn). These results
may provide insights to transportation/urban analysts.

51

10 3 10 1 101 103 105

flow x

10 4

10 3

10 2

10 1

100

fra
ct

io
n

of
 D

AG
s

w
ith

 fl
ow

 >
=

 x

(a) flow of Bitcoin subgraphs (b) flow between NYC regions

Figure 3.10: Flow statistics in subgraphs

3.5.3 Pattern search

We now evaluate the flow pattern enumeration techniques presented in Section 3.4,
i.e., the graph browsing (GB) approach and the preprocessing-based (PB) approach.
We compared the time they need to find the instances of several simple graph patterns
in the Bitcoin and Prosper Loan networks and to compute the maximum flow of each
instance. We constructed main-memory representations of the networks that facilitate
graph browsing (i.e., we can navigate to the neighbors of each vertex with the help of
adjacency lists). Due to the high precomputation and storage cost, in Bitcoin, we were
able to precompute and store only paths up to 3 hops where the start and the end
vertex are the same (i.e., cycles). Paths of longer sizes and of arbitrary nature require
a lot more space than the original datasets. On the other hand, the precomputed
cycles up to three hops require at most 20% space compared to the size of the entire
graphs. For the Prosper Loans dataset, we also precomputed 2-hop chains (i.e., paths
of three different nodes) which could easily be accommodated in the main memory
of our machine.

Figure 3.11 shows the set of patterns that we tested in the experiments. We ex-
perimented with six rigid patterns (P1–P6) and three relaxed patterns (RP1–RP3). In
the non-rigid patterns (see Section 3.4.3), all vertices in the parallel paths (except for
the source and the sink) are required to be different.

Tables 3.6 and 3.7 compare the performance of GB to that of PB on enumerating

52

ba

P1

c

d

a

P4

b c a

a

P2

b a

c

a

P3

b c a

aP5 b c a

d

a

P6

b c a

d

a

RP1

c

...
a

RP3

a

...
...

a

RP2

a

...

1

Figure 3.11: Set of tested patterns

Table 3.6: Pattern Search on Bitcoin

Pattern Instances Average flow GB PB
P2 22.3G 56.15 23.2 hours 30.59 sec
P3 2.8M 4786.18 3155.96 sec 179.70 sec
P4 17.7M 1378.32 3.8 hours 2.3 hours
P5 577.5M 8069.2 15 days (est.) 179.74 sec
P6 2.74T 9043.12 6.3 hours 5.2 hours
RP2 655K 39.86 422.79 sec 53.273 msec
RP3 1.2M 1.86 306 min 13.53 msec

the instances of the various patterns and computing their maximum flow. Note that
for Bitcoin, the processing times for P1 and RP1 were not included because PB was not
applicable in this case (we have not precomputed any path that would be useful). In
general, we observe that preprocessing pays off for most of the tested patterns, as the
runtimes of PB in most cases are orders of magnitude lower than the corresponding
ones of GB.

For some patterns and networks, prepcocessing (PB) does not give much benefit
compared to GB (e.g., P4 and P6 on the Bitcoin network). For these patterns, the
preprocessed flows cannot be used and the maximum flow of the instances must be
computed by LP. Hence, on the Bitcoin network, PB has a similar cost as GB, as the
instances contain numerous interactions and maximum flow computation dominates
the overall cost of pattern enumeration.

Flow patterns may have a huge number of instances. In such cases, the analyst

53

Table 3.7: Pattern Search on Prosper Loans

Pattern Instances Average flow GB PB
P1 5.12M 45.89 119.08 sec 2.80 sec
P2 201 223.23 88.66 msec 0.004 msec
P3 268 100.44 3.57 sec 1.3 msec
P4 98 299.55 3.54 sec 0.723 msec
P5 1833 121.47 605.67 msec 0.021 msec
P6 1296 43.55 474.61 msec 11.13 msec
RP1 25.5M 25.12 133.37 sec 3.01 sec
RP2 260 58.061 0.016 msec 0.004 msec
RP3 532 10.94 503.89 msec 0.040 msec

might be interested in the instances with the largest flow, or in instances having flow
above a threshold. Indicatively, Fig. 3.12 shows the cumulative flow distribution of
two patterns. Observe that, as in the case of DAGs, a small percentage of instances
have large flow. In the future, we will study the problem of finding the top instances
of a given pattern with the largest flow efficiently.

10 3 10 1 101 103 105

flow x

10 5

10 4

10 3

10 2

10 1

100

fra
ct

io
n

of
 in

st
an

ce
s w

ith
 fl

ow
 >

=
x

102 103

flow x

10 3

10 2

10 1

100

fra
ct

io
n

of
 in

st
an

ce
s w

ith
 fl

ow
 >

=
x

(a) P3 on Bitcoin (b) P5 on ProsperLoans

Figure 3.12: Cumulative flow distribution of pattern instances

3.6 Summary

In this chapter, we introduced, studied and defined the flow computation problem in
TINs. Specifically, our main objective was to compute the quantity that transfers from

54

a source to a destination in a subgraph (DAG). To do this, we proposed two transfer
approaches and a number of preprocessing and simplification techniques to reduce
the complexity of the problem. We also design an efficient algorithm for extracting
flow patterns. We evaluated our proposed algorithms using four real datasets and
our results showed that our techniques are scaleable.

55

CHAPTER 4

PROVENANCE IN TEMPORAL INTERACTION
NETWORKS

4.1 Definitions

4.2 Selection policies and provenance

4.3 Scalable proportional provenance

4.4 Tracking the paths

4.5 Experimental Evaluation

4.6 Summary

Another important problem we study in considering TINs is to trace the origin of
quantities that have reached a given vertex at any time. In other words, we investigate
a data provenance problem in temporal interaction networks. We investigate alterna-
tive network propagation models that may apply to different application scenarios.
For each such model, we propose annotation mechanisms for provenance tracking.
Besides analyzing the space and time complexity of these mechanisms, we propose
techniques that reduce their cost in practice, by either (i) limiting provenance tracking
to a subset of vertices or groups of vertices, or (ii) tracking provenance only for quan-
tities that were generated in the near past or limiting the provenance data in each
vertex by a budget constraint. Our experimental evaluation on five real datasets shows
that quantity propagation models based on generation time or receipt order scale well

56

on large graphs; on the other hand, a model that propagates quantities proportionally
has high space and time requirements and can benefit from the aforementioned cost
reduction techniques.

Outline The rest of the chapter is organized as follows. In Section 4.1, we formally
define the provenance problem in TINs. Section 4.2 presents the different informa-
tion propagation policies and the corresponding provenance tracking algorithms. In
Section 4.3, we discuss scaleable techniques for provenance tracking under the pro-
portional propagation policy. In Section 4.4, we show how to track the paths of the
propagated quantities in the TINs from their origin. Section 4.5 presents our experi-
mental evaluation. Finally, Section 4.6 concludes the chapter.

4.1 Definitions

In this section, we formally define the provenance problem that we research in this
study. Then, we present the data propagation model, which determines the origins
of the quantities which are transferred in the network.

We consider all interactions R in the TIN in order of time and assume that through-
out the timeline, each vertex v ∈ V has a buffer Bv, which stores the total quantity that
has flown into v but has not been transferred yet to another vertex via an outgoing
interaction from v. We use |Bv| to denote the quantity buffered at Bv.

As an effect of an interaction ⟨r.s, r.d, r.t, r.q⟩, vertex r.s transfers a quantity of r.q
to vertex r.d. Quantity r.q (or part of it) could be data that have been accumulated
at vertex r.s by time r.t, or r.q could (partially) be generated at r.s. More specifically,
we distinguish between two cases:

• |Br.s| ≤ r.q. In this case, all units from Br.s are transferred to Br.d due to the
interaction. In addition, r.q − |Br.s| units are generated by the source vertex r.s

and transferred to Br.d. Hence, |Br.s| becomes 0 and |Br.d| is increased by r.q.

• |Br.s| > r.q. In this case, r.q units are selected from Br.s to be transferred to
Br.d. Hence, |Br.s| is decreased by r.q and |Br.d| is increased by r.q. The selection
policy may determine the routes of the quantities in the network and may affect
the result of provenance tracking.

57

Algorithm 4.1 Propagation algorithm in a TIN
Require: TIN G(V,E,R)

1: for each v ∈ V do

2: |Bv| = 0 {Initialize buffers}

3: end for

4: for each interaction r ∈ R in order of time do

5: q = min{r.q, Br.s} {relayed quantity from Br.s}

6: |Br.s| = |Br.s| − q {decrease by q}

7: |Br.d| = |Br.d|+ r.q {increase by r.q; r.q−q is newborn}

8: end for

Definition 4.1 (Provenance Problem). Given a TIN G(V,E,R), at any time moment
t and at any vertex v ∈ V determine the origin(s) O(t, Bv) of the total quantity
accumulated at buffer Bv by time t. O(t, Bv) is a set of (τ.o, τ.q) tuples τ , such that
each quantity τ.q was generated by vertex τ.o and

∑
τ∈O(t,Bv)

τ.q = |Bv|.

Algorithm 4.1 is a pseudocode of the data propagation procedure. Interactions in
R are processed in order of time, i.e., as a stream. For each interaction r ∈ R, we first
determine the relayed quantity q from the buffer of the source vertex r.s (Line 5). This
quantity cannot exceed the currently buffered quantity |Br.s| at r.s. Line 6 decreases
Br.s, accordingly. The target node’s buffer Br.d is increased by r.q (Line 7). If r.q > q,
a new quantity r.q− q is born by the source vertex r.s to be transferred to Br.d as part
of r.q.

Table 4.1 shows the changes in the buffers of the three vertices in the example TIN
(Figure 1.1), during the application of Algorithm 4.1. The values in the parentheses
are the newborn quantities at r.s, which are transferred to r.d. In the beginning, all
buffers are empty, hence, as a result of the first interaction, 3 quantity units are born
at vertex v1 and transferred to v2, but no previously born quantity is relayed from
Bv1 to Bv2. At the second interaction, 3 units move from Bv2 to Bv0 and 2 newborn
units at v2 are also transferred to Bv0. At the third interaction, 3 units are selected to
be transferred from Bv0 to Bv1 and no new units are generated because the Bv0 had
more units than r.q = 3 before the interaction.

Definition 4.1 formally defines the provenance problem that we investigate in this
study.

At any time t, during Algorithm 4.1, the objective is to be able to identify the origin
vertices which have generated the quantities that have been accumulated at buffer Bv,

58

Table 4.1: Changes at buffers at each Interaction

r.s r.d r.t r.q |Bv0 | |Bv1 | |Bv2 |

v1 v2 1 3 0 0 3 (3)
v2 v0 3 5 5 (2) 0 0
v0 v1 4 3 2 3 0
v1 v2 5 7 2 0 7 (4)
v2 v1 7 2 2 2 5
v2 v0 8 1 3 2 4

for any vertex v. Hence, the problem is to divide the buffer Bv into a set of (τ.o, τ.q)
(origin-quantity) pairs, such that each quantity τ.q is generated by the corresponding
vertex τ.o. A data analyst can then know how the total quantity buffered at v has
been composed.

4.2 Selection policies and provenance

For each interaction r ∈ R, the selection policy in the case where |Br.s| > r.q de-
termines the provenance of the quantities that are accumulated at any vertex v (and
transferred from v) throughout the timeline. Selection does make a difference because
the quantities in Br.s may originate from different vertices. We present possible selec-
tion policies that (i) are based on the time quantities are generated, (ii) are based on
the order they are received by the vertex r.s or (iii) choose quantities proportionally
based on their origins. For each policy, we present annotation mechanisms that can
be used to trace the provenance of the quantities accumulated at the vertices of the
TIN. We also discuss applications where these selection policies apply.

4.2.1 Selection based on generation time

The first class of selection policies is based on the time when the candidate quantities
to be transferred are generated. We will first discuss the least recently born selection
policy. To implement this approach, any generated quantity should be marked with
the vertex v that generates it and the timestamp t when it is generated. Hence, during
the course of the algorithm, each buffer Bv is modeled and managed as a set of
(o, t, q) triples, where o is the origin of (i.e., the vertex which bore) quantity q and
t is the time of birth of q. The total quantity |Bv| accumulated at buffer Bv is the

59

sum of all q values in the triples that constitute Bv. As a result of an interaction r, if
|Br.s| > r.q, the triples in Br.s with the smallest timestamps whose quantities sum up
to r.q are selected and transferred to Br.d. The triples in each buffer Bv are organized
in a min-heap in order to facilitate the selection.

Algorithm 4.2 describes the whole process. For the current interaction r ∈ R in
order of time, we maintain in variable resq the residue quantity, which has yet to be
transferred from r.s to r.d. Initially, resq = r.q. While q > 0 and Br.s is not empty,
we locate the least recently born triple τ in Br.s (with the help of the min-heap). If
τ.q > q, this means that we should transfer part of the quantity in the triple to Br.d,
hence, we split τ , by keeping it in Br.s and reducing τ.q by q and initializing a new
triple τ ′ with the same origin and birthtime as τ and quantity q. The new triple is
added to Br.d. If τ.q ≤ q, we transfer the entire triple τ from Br.a to Br.d. If Br.s becomes
empty and resq > 0, then this means that it was |Br.s| < r.q in the beginning, so we
should generate a newborn triple τ ′ with the residue quantity resq, having as origin
vertex r.s and marked to be generated at time r.t.

Table 4.2 shows the changes in the buffers of the vertices (shown as sets here, but
organized as min-heaps with their middle element t as key) after each interaction
of our running example. Note that the quantities in the buffers are broken based on
their origins and times of birth.

Table 4.2: Changes at buffers (oldest-first policy)

r.s r.d r.t r.q Bv0 Bv1 Bv2

v1 v2 1 3 ∅ ∅ {(1,1,3)}
v2 v0 3 5 {(1,1,3),(2,3,2)} ∅ ∅
v0 v1 4 3 {(2,3,2)} {(1,1,3)} ∅
v1 v2 5 7 {(2,3,2)} ∅ {(1,1,3),(1,5,4)}
v2 v1 7 2 {(2,3,2)} {(1,1,2)} {(1,1,1),(1,5,4)}
v2 v0 8 1 {(1,1,1),(2,3,2)} {(1,1,2)} {(1,5,4)}

By running Algorithm 4.2, we can have at any time t the set of vertices that
contribute to a vertex v by time t and the corresponding quantities (i.e., the solution to
Problem 4.1). In other words, the heap contents for each vertex v at time t corresponds
to O(t, Bv). Finally, to implement the most recently born selection policy, we should
change Line 7 of Algorithm 4.2 to “τ = most recent triple in Br.s” and organize each
buffer as a max-heap (instead of a min-heap).

Application The least recently born policy is applicable when the generated quantities

60

Algorithm 4.2 Least-recently born selection model
Require: TIN G(V,E,R)

1: for each v ∈ V do

2: Bv = ∅; |Bv| = 0

3: end for

4: for each interaction r ∈ R in order of time do

5: resq = r.q

6: while resq > 0 and |Br.s| > 0 do

7: τ = least recent triple in Br.s

8: if τ.q > resq then

9: τ ′.o = τ.o; τ ′.t = τ.t; τ ′.q = resq;

10: add τ ′ to Br.d;

11: τ.q = τ.q − r.q;

12: resq = 0;

13: else

14: remove τ from Br.s and add it to Br.d;

15: resq = resq − τ.q

16: end if

17: end while

18: if resq > 0 then

19: τ ′.o = r.s; τ ′.t = r.t; τ ′.q = resq;

20: add τ ′ to Br.d;

21: end if

22: end for

lose their value over time (or even expire), which means that the vertices prefer to keep
the most recently generated data. On the other hand, the most recently born policy is
relevant to applications, where quantities have antiquity value, i.e., they become more
valuable as time passes by. For example, in a loans exchange network, the generation
time of a loan affects its value as it determines the owed interest; hence, it is reasonable
to prioritize loan transfers based on generation time.

Complexity Analysis In the worst case, each interaction r increases the total number
of triples by one (i.e., by splitting the last transferred triple or by generating a new
triple), hence, the space complexity of the entire process is O(|R|). In terms of time,
each interaction accesses in the worst case the entire set of triples at vertex r.s. This

61

set is O(|R|) in the worst case, but we expect it to be O(|R|/|V |); for each triple in
the set, we update two priority queues in the worst case (i.e, by triple transfers) at an
expected cost of O(log |R|/|V |). Hence, the overall expected cost (assuming an even
distribution of triples) is O(|R| · |R|/|V | · log |R|/|V |) = O(|R|2/|V | log |R|/|V |).

4.2.2 Selection based on order of receipt

Another policy would be to select the transferred quantities in order of their receipt.
Specifically, the quantities at each buffer Bv are modeled and managed as a set of
(o, q) pairs, where o is the vertex which generated q. These pairs are organized based
on the order by which they have been inserted to Bv. If, for the current transaction
r, |Br.s| > r.q, the last (or the first) quantities in Br.s which sum up to r.q are selected
and added to Br.d in their selection order. To implement this policy, each buffer is
implemented as a FIFO (or LIFO) queue, hence, it is not necessary to keep track of
the transfer-time timestamps. The algorithm is identical to Algorithm 4.2, except that
Line 7 becomes “least recently added triple in Br.s” in the FIFO policy and “most
recently added triple in Br.s” in the LIFO policy. Table 4.3 shows the changes in the
buffers after each interaction when the LIFO policy is applied.

Table 4.3: Changes at buffers (LIFO policy)

r.s r.d r.t r.q Bv0 Bv1 Bv2

v1 v2 1 3 ∅ ∅ {(1,3)}
v2 v0 3 5 {(1,3),(2,2)} ∅ ∅
v0 v1 4 3 {(1,2)} {(1,1),(2,2)} ∅
v1 v2 5 7 {(1,2)} ∅ {(1,1),(2,2),(1,4)}
v2 v1 7 2 {(1,2)} {(1,2)} {(1,1),(2,2),(1,2)}
v2 v0 8 1 {(1,2),(1,1)} {(1,2)} {(1,1),(2,2),(1,1)}

Application The FIFO policy is used in applications where the buffers are naturally
implemented as FIFO queues (pipelines, traffic networks). The LIFO policy applies
when the accumulated quantities are organized in a stack (e.g., cash registers, wallets)
before being transferred.

Complexity Analysis The space complexity is O(|R|), same as that of generation
time selection policies (Sec. 4.2.1), because the only change is that we replace the
heap by a FIFO queue (or a stack). This replacement changes the access and update

62

costs from O(log |R|/|V |) to O(1). Hence, the overall expected cost is reduced from
O(|R|2/|V | log |R|/|V |) to O(|R|2/|V |).

4.2.3 Proportional selection

The proportional selection policy, for the case where |Br.s| > r.q, chooses the relayed
quantity from r.s to r.d proportionally from the vertices that have contributed to Br.s,
based on their contribution.

Formally, for each vertex v ∈ V , we define a |V |-length vector pv, which captures
the provenance of the quantity currently in its buffer Bv. The i-th value of pv is the
quantity fragment in Bv which originates from the i-th vertex of the TIN G. Hence,
the sum of quantities in pv equals the total quantity |Bv| in Bv. Initially, all values of
pv are 0.

Algorithm 4.3 shows how the provenance vectors are updated after each inter-
action r. We distinguish between two cases. The first one is when r.q ≥ |Br.s|, i.e.,
the quantity r.q to be transferred by the current interaction is greater than or equal
to the buffered quantity |Br.s| at the source buffer. In this case, the entire buffered
quantity in Br.s is relayed to Br.d. Hence, vector pr.s is added to pr.d (symbol ⊕ de-
notes vector-wise addition). If r.q is strictly greater than |Br.s|, a newborn quantity
r.q−|Br.s| at r.s is added to Br.d, hence, we should add the corresponding provenance
information to the r.s-th element of pr.d (Line 6). This is denoted by the addition of
vector er.s,(r.q−Br.s), where ev,x denotes a vector with all 0’s except having value x at
position v. The second case is when r.q < |Br.s|. In this case, the quantity r.q which
is transferred from r.s to r.d is chosen proportionally. Specifically, if vertex r.s has in
its buffer Br.s a quantity q which was born by the i-th vertex, then a quantity q · r.q

|Br.s|

should be transferred from the i-th position of pr.s to the i-th position of pr.d. This
translates into the vector-wise operations at Lines 9 and 10 of Algorithm 4.3. Table
4.4 shows the changes in the buffer vectors after each interaction when proportional
selection is applied.

Application Proportional selection makes sense in applications where the quantities
are naturally mixed in the buffers. This includes cases when the buffered data are
liquids or indistinguishable financial units in accounts (i.e., balances in bank accounts,
capital stocks in digital portfolios). In such cases, it is reasonable to consider that the
origins of the buffered quantities contribute proportionally to a transfer.

63

Algorithm 4.3 Proportional selection model
Require: TIN G(V,E,R)

1: for each v ∈ V do

2: |Bv| = 0; pv = 0;

3: end for

4: for each interaction r ∈ R in order of time do

5: if r.q ≥ |Br.s| then

6: pr.d = pr.d ⊕ pr.s ⊕ er.s,(r.q−Br.s); pr.s = 0;

7: |Br.d| = |Br.d|+ r.q; |Br.s| = 0;

8: else

9: pr.d = pr.d ⊕ (r.q/|Br.s|)pr.s; Br.d = Br.d + r.q;

10: pr.s = pr.s ⊖ (r.q/|Br.s|)pr.s; Br.s = Br.s − r.q;

11: end if

12: end for

Table 4.4: Changes at buffers (proportional selection)

r.s r.d r.t r.q pv0
pv1 pv2

v1 v2 1 3 [0, 0, 0] [0, 0, 0] [0, 3, 0]

v2 v0 3 5 [0, 3, 2] [0, 0, 0] [0, 0, 0]

v0 v1 4 3 [0, 1.2, 0.8] [0, 1.8, 1.2] [0, 0, 0]

v1 v2 5 7 [0, 1.2, 0.8] [0, 0, 0] [0, 5.8, 1.2]

v2 v1 7 2 [0, 1.2, 0.8] [0, 1.66, 0.34] [0, 4.14, 0.86]

v2 v0 8 1 [0, 2.03, 0.97] [0, 1.66, 0.34] [0, 3.31, 0.69]

Complexity Analysis The provenance vectors pv raise the space requirements of this
model to O(|V |2), i.e., we need a |V |-length vector for each vertex. In the next section,
we will explore a number of directions in order to reduce the space requirements
and make proportional provenance tracking feasible for large graphs with millions
of vertices. The time complexity is also high, because we need one or two vector-
wise operations per interaction, which accumulates to a O(|R| · |V |) cost. In our
implementation, we exploit SIMD instructions [58] to reduce the cost of vector-wise
operations.

4.2.4 Sparse vector representation

In sparse graphs, each vertex v may receive quantities originating from a small subset
of vertices in practice. To save space, instead of storing each space-demanding vector

64

pv explicitly, we can represent it by an ordered list of (u, q) pairs, for each vertex u

contributing a quantity q > 0 in the buffer Bv. For example, after the temporally first
interaction in our running example, instead of storing pv2 as [0, 3, 0], we store it as
[(v1, 3)], implying that v2 received its 3 units from v1. The vector update operations
of Algorithm 4.3 can be replaced by merging the ordered lists of the corresponding
sparse vector representations. This way, the space requirements are reduced from
O(|V |2|) to O(|V | · ℓ), where ℓ is the average length of the list representations of
the vectors. The time complexity is reduced to O(|R| · ℓ), accordingly. Still, as we
show experimentally, in Section 5.4, ℓ can grow too large and we may not be able to
accommodate the lists in memory, after a long sequence of interactions.

4.3 Scalable proportional provenance

Proportional provenance tracking (Section 4.2.3) has high space and time complexity
compared to the models based on generation time (Section 4.2.1) or receipt order
(Section 4.2.2). We investigate a number of techniques that reduce the space require-
ments and constitute proportional provenance feasible even on very large graphs.

4.3.1 Selective provenance tracking

In many applications, we may not have to track provenance from all vertices in the
graph, but from a selected subset of V of size k. For example, in a financial network,
we could limit our focus to a specific set of entities, suspected to be involved in illegal
activities. To apply this, for each vertex v ∈ V , we maintain a vector pv of size k + 1,
where the first k positions correspond to the vertices of interest and the last position
represents the rest of the vertices. Algorithm 4.3 can now directly be applied, after
the following change: if any of the source vertex r.s or the destination r.d is not in the
set of the k vertices of interest, we update the (k + 1)-th position, which accumulates
the sum of quantities that originate from all vertices except the selected ones. This
version of proportional selection algorithm has reduced space and time complexity
compared to Algorithm 4.3. Specifically, its space requirements are O(k · |V |) and its
time complexity is O(k · |R|).

65

4.3.2 Grouped provenance tracking

Provenance data from all individual vertices of a big graph could be too large and
hard to interpret. Sometimes, it is more practical to divide the vertices into groups
and track provenance from each group. To implement this, we can replace the long
pv vectors by shorter vectors of length k, where k is the number of groups. This
means that, for each vertex v we maintain in pv the total quantity in buffer Bv which
originates from each group. The grouping of vertices can be done in different ways
depending on the application. For example, the values of one or more attributes that
characterize the vertices (e.g., gender, country) can be used for grouping. In addition,
network clustering algorithms (e.g., METIS [59]) or geographical clustering can be
used to define the groups. Algorithm 4.3 can easily be adapted to operate on groups.
The vertices involved at each interaction (i.e., r.s and r.d) are mapped to group-ids
and the corresponding positions are updated in the vector-wise operations. As in the
case of selective provenance tracking (Section 4.3.1), the space and time complexity
is reduced to O(k · |V |) and O(k · |R|), respectively.

4.3.3 Limiting the scope of provenance

If selective and grouped provenance is not an option, tracking proportional prove-
nance in large graphs with millions of vertices could be infeasible. We investigate
two techniques that limit the scope of provenance by either avoiding the tracking of
quantities generated far in the past or setting a budget for provenance at each ver-
tex. Tracking proportional provenance in large graphs with millions of vertices could
be infeasible, even when using sparse vector representations, because potentially all
vertices in the graph can contribute to each pv. If we are interested in proportional
provenance tracking from each individual vertex (i.e., selective and grouped provenance
are not applicable), the only option we have in large graphs with millions of vertices
is to use sparse vector representations. However, as discussed in Section 4.2.4, we
verify experimentally in Section 5.4, this may require too much space, because poten-
tially all vertices in the graph can contribute to each pv. In turn, the time complexity
increases, as provenance propagation may require merging long vectors. To allevi-
ate this problem, we investigate two techniques that limit the scope of provenance
tracking. The first approach is based on a pair of provenance vector-sets that are
periodically reset. In this way, we may have provenance information up to a given

66

interaction back in the past. The second approach allocates a maximum memory
budget to each vertex v. Our techniques are especially suitable when the interactions
R are processed as a stream and they should be handled in real time; i.e., speed and
feasibility are preferred over preciseness.

Windowing approach

Our first approach takes as input a parameter W , representing a window, which de-
termines how far in the past we are interested in tracking provenance. Specifically,
for each vertex v we can guarantee finding the provenance of quantities that reach
v, which where born up to W interactions before. To achieve this, for each v, we
initialize two sparse (i.e., list) provenance vector representations podd

v and peven
v . At

each interaction, both lists are updated. However, whenever we reach an interaction
r whose order is a multiple ofW , we reset either podd

v or peven
v as follows. If the order of

r in the sequence R of interactions is an odd multiple of W , for each vertex v ∈ V , we
reset its provenance list podd

v by setting podd
v = [(α, |Bv|)], where α is an artificial vertex,

representing the entire set V of vertices. This means that we assume that the entire
quantity in Bv has unknown provenance. If the order of r is an even multiple of W ,
for all vertices v, we reset peven

v by setting peven
v = [(α, |Bv|)]. After any interaction r,

we can track provenance for any vertex v using whichever of peven
v or podd

v was least
recently reset. This guarantees that we can track the provenance of quantities born
up to (at least) W interactions before. The space requirements (i.e., the total space
required to store the provenance lists) are now controlled due to the provenance list
resets.

Figure 4.1 illustrates how, for each vertex v, podd
v and peven

v are updated and used.
Assuming that W = 100, until the 100-th interaction, podd

v and peven
v are identical and

either of them can be used. Since podd
v is reset at the 100-th interaction, between the

100-th and the 200-th interaction peven
v is used to track the provenance of quantities

which were generated since the first interaction. Similarly, between the 200-th and the
300-th interaction podd

v is used to track provenance up to the 100-th interaction.

Budget‐based provenance

Another approach which we can apply to control the memory requirements and make
proportional provenance tracking feasible on large graphs is to allocate a maximum

67

Streaming Data (revised)

27

<latexit sha1_base64="3mj/CI0muIB+lxKvQarP1oG6654=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSqKiLotuXFawD2hjmExv2qGTSZiZFEKIv+LGhSJu/RB3/o2TNgttPTBwOOde7pnjx4xKZdvfxsrq2vrGZmWrur2zu7dvHhx2ZJQIAm0SsUj0fCyBUQ5tRRWDXiwAhz6Drj+5LfzuFISkEX9QaQxuiEecBpRgpSXPrA1CrMZ+kMX5YwZT4Lk39cy63bBnsJaJU5I6KtHyzK/BMCJJCFwRhqXsO3as3AwLRQmDvDpIJMSYTPAI+ppyHIJ0s1n43DrRytAKIqEfV9ZM/b2R4VDKNPT1ZBFVLnqF+J/XT1Rw7WaUx4kCTuaHgoRZKrKKJqwhFUAUSzXBRFCd1SJjLDBRuq+qLsFZ/PIy6Zw1nMvG+f1FvXlT1lFBR+gYnSIHXaEmukMt1EYEpegZvaI348l4Md6Nj/noilHu1NAfGJ8/wz6VgA==</latexit>

peven
v

<latexit sha1_base64="wUCpwZM7t8RvcR+0jRSHxydydM4=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqgQQMFawMBaJPqQ2RI7jtFYdO7KdiirKr7AwgBArP8LG3+C0GaDlSJaOzrlX9/gECaNKO863tbK6tr6xWdmqbu/s7u3bB7WOEqnEpI0FE7IXIEUY5aStqWakl0iC4oCRbjC+LfzuhEhFBX/Q04R4MRpyGlGMtJF8uzaIkR4FUZbkj5kIw9yf+HbdaTgzwGXilqQOSrR8+2sQCpzGhGvMkFJ910m0lyGpKWYkrw5SRRKEx2hI+oZyFBPlZbPsOTwxSggjIc3jGs7U3xsZipWaxoGZLJKqRa8Q//P6qY6uvYzyJNWE4/mhKGVQC1gUAUMqCdZsagjCkpqsEI+QRFibuqqmBHfxy8ukc9ZwLxvn9xf15k1ZRwUcgWNwClxwBZrgDrRAG2DwBJ7BK3izcuvFerc+5qMrVrlzCP7A+vwB4fyU/w==</latexit>

podd
v

100 200 300 400

reset
<latexit sha1_base64="wUCpwZM7t8RvcR+0jRSHxydydM4=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqgQQMFawMBaJPqQ2RI7jtFYdO7KdiirKr7AwgBArP8LG3+C0GaDlSJaOzrlX9/gECaNKO863tbK6tr6xWdmqbu/s7u3bB7WOEqnEpI0FE7IXIEUY5aStqWakl0iC4oCRbjC+LfzuhEhFBX/Q04R4MRpyGlGMtJF8uzaIkR4FUZbkj5kIw9yf+HbdaTgzwGXilqQOSrR8+2sQCpzGhGvMkFJ910m0lyGpKWYkrw5SRRKEx2hI+oZyFBPlZbPsOTwxSggjIc3jGs7U3xsZipWaxoGZLJKqRa8Q//P6qY6uvYzyJNWE4/mhKGVQC1gUAUMqCdZsagjCkpqsEI+QRFibuqqmBHfxy8ukc9ZwLxvn9xf15k1ZRwUcgWNwClxwBZrgDrRAG2DwBJ7BK3izcuvFerc+5qMrVrlzCP7A+vwB4fyU/w==</latexit>

podd
vresetreset

<latexit sha1_base64="3mj/CI0muIB+lxKvQarP1oG6654=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSqKiLotuXFawD2hjmExv2qGTSZiZFEKIv+LGhSJu/RB3/o2TNgttPTBwOOde7pnjx4xKZdvfxsrq2vrGZmWrur2zu7dvHhx2ZJQIAm0SsUj0fCyBUQ5tRRWDXiwAhz6Drj+5LfzuFISkEX9QaQxuiEecBpRgpSXPrA1CrMZ+kMX5YwZT4Lk39cy63bBnsJaJU5I6KtHyzK/BMCJJCFwRhqXsO3as3AwLRQmDvDpIJMSYTPAI+ppyHIJ0s1n43DrRytAKIqEfV9ZM/b2R4VDKNPT1ZBFVLnqF+J/XT1Rw7WaUx4kCTuaHgoRZKrKKJqwhFUAUSzXBRFCd1SJjLDBRuq+qLsFZ/PIy6Zw1nMvG+f1FvXlT1lFBR+gYnSIHXaEmukMt1EYEpegZvaI348l4Md6Nj/noilHu1NAfGJ8/wz6VgA==</latexit>

peven
v reset

<latexit sha1_base64="3mj/CI0muIB+lxKvQarP1oG6654=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSqKiLotuXFawD2hjmExv2qGTSZiZFEKIv+LGhSJu/RB3/o2TNgttPTBwOOde7pnjx4xKZdvfxsrq2vrGZmWrur2zu7dvHhx2ZJQIAm0SsUj0fCyBUQ5tRRWDXiwAhz6Drj+5LfzuFISkEX9QaQxuiEecBpRgpSXPrA1CrMZ+kMX5YwZT4Lk39cy63bBnsJaJU5I6KtHyzK/BMCJJCFwRhqXsO3as3AwLRQmDvDpIJMSYTPAI+ppyHIJ0s1n43DrRytAKIqEfV9ZM/b2R4VDKNPT1ZBFVLnqF+J/XT1Rw7WaUx4kCTuaHgoRZKrKKJqwhFUAUSzXBRFCd1SJjLDBRuq+qLsFZ/PIy6Zw1nMvG+f1FvXlT1lFBR+gYnSIHXaEmukMt1EYEpegZvaI348l4Md6Nj/noilHu1NAfGJ8/wz6VgA==</latexit>

peven
v

0

init

use either or
<latexit sha1_base64="wUCpwZM7t8RvcR+0jRSHxydydM4=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqgQQMFawMBaJPqQ2RI7jtFYdO7KdiirKr7AwgBArP8LG3+C0GaDlSJaOzrlX9/gECaNKO863tbK6tr6xWdmqbu/s7u3bB7WOEqnEpI0FE7IXIEUY5aStqWakl0iC4oCRbjC+LfzuhEhFBX/Q04R4MRpyGlGMtJF8uzaIkR4FUZbkj5kIw9yf+HbdaTgzwGXilqQOSrR8+2sQCpzGhGvMkFJ910m0lyGpKWYkrw5SRRKEx2hI+oZyFBPlZbPsOTwxSggjIc3jGs7U3xsZipWaxoGZLJKqRa8Q//P6qY6uvYzyJNWE4/mhKGVQC1gUAUMqCdZsagjCkpqsEI+QRFibuqqmBHfxy8ukc9ZwLxvn9xf15k1ZRwUcgWNwClxwBZrgDrRAG2DwBJ7BK3izcuvFerc+5qMrVrlzCP7A+vwB4fyU/w==</latexit>

podd
v

<latexit sha1_base64="3mj/CI0muIB+lxKvQarP1oG6654=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSqKiLotuXFawD2hjmExv2qGTSZiZFEKIv+LGhSJu/RB3/o2TNgttPTBwOOde7pnjx4xKZdvfxsrq2vrGZmWrur2zu7dvHhx2ZJQIAm0SsUj0fCyBUQ5tRRWDXiwAhz6Drj+5LfzuFISkEX9QaQxuiEecBpRgpSXPrA1CrMZ+kMX5YwZT4Lk39cy63bBnsJaJU5I6KtHyzK/BMCJJCFwRhqXsO3as3AwLRQmDvDpIJMSYTPAI+ppyHIJ0s1n43DrRytAKIqEfV9ZM/b2R4VDKNPT1ZBFVLnqF+J/XT1Rw7WaUx4kCTuaHgoRZKrKKJqwhFUAUSzXBRFCd1SJjLDBRuq+qLsFZ/PIy6Zw1nMvG+f1FvXlT1lFBR+gYnSIHXaEmukMt1EYEpegZvaI348l4Md6Nj/noilHu1NAfGJ8/wz6VgA==</latexit>

peven
v

<latexit sha1_base64="wUCpwZM7t8RvcR+0jRSHxydydM4=">AAAB+3icbVC7TsMwFHV4lvIKZWSxqJCYqgQQMFawMBaJPqQ2RI7jtFYdO7KdiirKr7AwgBArP8LG3+C0GaDlSJaOzrlX9/gECaNKO863tbK6tr6xWdmqbu/s7u3bB7WOEqnEpI0FE7IXIEUY5aStqWakl0iC4oCRbjC+LfzuhEhFBX/Q04R4MRpyGlGMtJF8uzaIkR4FUZbkj5kIw9yf+HbdaTgzwGXilqQOSrR8+2sQCpzGhGvMkFJ910m0lyGpKWYkrw5SRRKEx2hI+oZyFBPlZbPsOTwxSggjIc3jGs7U3xsZipWaxoGZLJKqRa8Q//P6qY6uvYzyJNWE4/mhKGVQC1gUAUMqCdZsagjCkpqsEI+QRFibuqqmBHfxy8ukc9ZwLxvn9xf15k1ZRwUcgWNwClxwBZrgDrRAG2DwBJ7BK3izcuvFerc+5qMrVrlzCP7A+vwB4fyU/w==</latexit>

podd
vuse use

Figure 4.1: Windowing approach in provenance tracking

capacity C (budget) to each vertex v for its provenance list pv. Whenever we have to
add new entries to pv, if the required capacity after the addition exceeds C , we select
a certain fraction f of entries to keep in pv. We remove the remaining entries and
assume that the total quantity Q which originates from them was born at an artificial
vertex α, modeling all vertices (i.e., unknown source). Hence, if pv includes an (α, q)

entry, the entry is updated to (α, q +Q); if not, a new entry (α,Q) is added to pv.
With this approach, the space requirements of proportional provenance tracking

become O(|V | · C). The larger the value of C the more accurate provenance tracking
becomes. Parameter f should be chosen such that the memory allocated at each vertex
is not underutilized and, at the same time, shrinking does not happen very often. We
suggest a value between 0.6 and 0.8. Finally, the selection of entries to keep when
the budget C is reached in pv can be done using different criteria. For example, we
can keep the entries with the largest quantities, or set a priority/importance order to
vertices and keep provenance data for the most important ones.

As an example, let pv = {(v, 1), (u, 3), (w, 2), (z, 1)} and C = 5. Let {(x, 2), (w, 1), (y, 4)}
be the new entries that have to be added/merged into pv. After the change, pv should
become pv = {(v, 1), (u, 3), (w, 3), (x, 2), (y, 4), (z, 1)}, i.e., the capacity constraint C = 5

is violated. If f = 0.6, we should keep 0.6 ·C = 3 entries; let us assume that we keep
the ones with the largest quantities, i.e., {(u, 3), (w, 3), (y, 4)}. The remaining three
entries are replaced in pv by an entry (α, 4), since the sum of their quantities is 4.
Hence, after the update, pv becomes {(u, 3), (w, 3), (y, 4), (α, 4)}. Note that selecting the
entries with the largest quantities may cause a bias in favor of origins that generate
quantities early over origins whose generation is spread more evenly in the timeline.

68

4.4 Tracking the paths

So far, we have studied the problem of identifying the origins of the quantities ac-
cumulated at the vertices. An additional question is which path did each of the
quantities, accumulated at a vertex v, follow from its origin to v. This information
can provide more detailed explanation for the reasons behind data transfers and cor-
responds to how-provenance in query evaluation [34].

To implement how-provenance for the selection models of Sections 4.2.1 and 4.2.2,
for each quantity element in the buffer Bv of every node v, we maintain a transfer
path, which captures the route that the element has followed so far from its origin
to v. When a new quantity element is generated (i.e., Line 20 of Algorithm 4.2), its
path is initialized to include just the origin vertex r.s. Every time a quantity element
is transferred from one vertex to another as a result of an interaction r′ (i.e., Line
14 of Algorithm 4.2), its path is extended to include the transmitter vertex r′.s. This
way, for each quantity element, we keep track of not just its origin but also the path
which the quantity has followed.

Note that path tracking in the case of proportional selection is not meaningful,
because, if r.q < |Br.s|, all quantities in Br.s are split to a fraction that remains at Br.s

and a fraction that moves to Br.s, wherein they are combined with the corresponding
quantities from the same origins. This means that quantities in a buffer from the same
origin (but potentially from multiple different paths) are mixed and indistinguishable.

Complexity Analysis Path tracking does not change the time complexity, as the
number of path changes is O(|R|) and each path initialization or extension costs
O(1). On the other hand, the space complexity increases by a factor of O(|R|/|V |),
i.e., the expected number of quantity element transfers (executions of Line 14 of
Algorithm 4.2). Hence, the space complexity increases to O(|R|2/|V |).

4.5 Experimental Evaluation

We experimentally evaluated the performance and scalability of our proposed prove-
nance tracking techniques. For this, we used five real TINs, described in Section
4.5.1. We compare the different selection policies for information propagation in
terms of runtime cost and memory requirements in Section 4.5.2. In Section 4.5.3,

69

we evaluate the performance of selective and grouped provenance tracking using the
proportional selection policy. Section 4.5.4 tests the windowing and budget-based
approaches for limiting the scope of provenance tracking. Section 4.5.5 evaluates the
memory and computational overhead of tracking the paths of quantities accumulated
at each vertex. Finally, Section 4.5.6 presents a use case that demonstrates the prac-
ticality of provenance in TINs. All methods were implemented in C and compiled
using gcc with -O3 flag. The experiments were run on a machine with a 3.6GHz
Intel i9-10850k processor and 32GB RAM. The source code is publicly available at
https://github.com/KosyfakiChrysanthi/ICDE2022-code

4.5.1 Dataset description

Table 4.5 summarizes the statistics for each of the datasets that we use in the experi-
ments. Below, we provide a detailed description for the flight network since we have
already mentioned the previous ones (see Chapter 3 for more details).

Flights Network: We extracted flights data from Kaggle1. We converted the original
file into an interaction network, where vertices are the origin and destination airports
and the time of departure was used to model the time of the corresponding interaction.
We used the number of passengers in each flight as the quantity in the corresponding
interaction. Since this number was not given in the original data, we generated it at
random (between 50 and 200). Provenance information can help us understand the
reasons behind potential traffic, bottlenecks, or other issues at airports. For example,
at certain “origin” airports there could be an excessive number of passengers that
travel to destinations served only via intermediate (hub) airports where heavy traffic
is observed. Identifying such origins facilitates flights rescheduling or redesign.

Table 4.5: Characteristics of Datasets

Dataset #nodes #interactions average r.q

Bitcoin 12M 45.5M 34.4B
CTU 608K 2.8M 19.2KB

Prosper Loans 100K 3.08M $76

Flights 629 5.7M 125

Taxis 255 231K 1.53

1https://www.kaggle.com/yuanyuwendymu/airline-delay-and-cancellation-data-2009-2018

70

4.5.2 Provenance tracking performance

In our first set of experiments, we investigate the runtime cost and the memory re-
quirements of provenance tracking based on the different selection policies for infor-
mation propagation, presented in Section 4.2. We executed each method by processing
the entire sequence of interactions and updating the necessary information for each
of them, according to the algorithms described in Section 4.2. Tables 4.6 and 4.7
show the runtime cost and the peak memory use by the different selection policies.
As a point of reference, we also included the basic propagation algorithm that does
not track provenance (Algorithm 4.1), denoted by NoProv.

From the two tables, we observe that the methods based on generation time (Sec-
tion 4.2.1) are scaleable, since they terminate even at very large graphs with millions
of interactions (i.e., Bitcoin network). Naturally, they are one to two orders of mag-
nitude slower than NoProv, as NoProv has O(1) cost per interaction. Their space
overhead compared to NoProv is not high for big and sparse graphs, like Bitcoin and
CTU. On the other hand, for smaller graphs with heavy traffic between vertices, the
space requirements become relatively high.

The methods that select the information to propagate based on receipt order (Sec-
tion 4.2.2) are also slower than NoProv, but faster than the ones that use generation
time, because they do not have to maintain a heap and select the propagated quan-
tities from it. Instead, the simpler data structures that they use (stack, FIFO queue)
are more efficient. In terms of space, their requirements are lower compared to the
generation-time policies mainly because they do not need to store and propagate the
time of birth together with the origin vertices (i.e., each provenance tuple has two
values instead of three). Their behavior in big/sparse graphs compared to small/dense
ones is similar to that of generation-time policies.

As opposed to the selection policies of Sections 4.2.1 and 4.2.2, the proportional
selection policy, presented in Section 4.2.3, performs best when the number of ver-
tices in the graph is small (i.e., at the Flights and Taxis networks). This is expected
because their storage overhead in this case is manageable (at most O(|V |2)). Specif-
ically, the proportional policy using dense vector representations can be used only
for the Flights and Taxis networks, with very good performance. Even when the
sparse vector representations are used, the required memory exceeds the capacity of
our machine in the Bitcoin and CTU networks. This approach can be used on the

71

Table 4.6: Runtime (sec) for each selection policy
Dataset No Provenance Least Recently Born Most Recently Born LIFO FIFO Proportional (dense) Proportional (sparse)
Bitcoin 0.19 31.77 9.17 3.10 3.90 – –
CTU 0.010 0.16 0.19 0.08 0.11 – –
Prosper Loans 0.006 0.089 0.082 0.055 0.08 – 15.7
Flights 0.009 0.75 0.77 0.077 0.15 1.58 2.91
Taxis 0.0005 0.014 0.015 0.002 0.004 0.032 0.05

Table 4.7: Peak memory used by each selection policy
Dataset No Provenance Least Recently Born Most Recently Born LIFO FIFO Proportional (dense) Proportional (sparse)
Bitcoin 96MB 891MB 892MB 536MB 535MB – –
CTU 4.85MB 56.4MB 56.4MB 33.8MB 33.8MB – –
Prosper Loans 800KB 61.4MB 61.4MB 36.8MB 36.8MB – 2.4GB
Flights 5KB 0.90MB 1.05MB 1.05MB 1.05MB 3.16MB 2.32MB
Taxis 2KB 0.93MB 1.02MB 0.59MB 0.6MB 0.52MB 0.44MB

Prosper Loans network, however, it requires a lot of space (2.4GB) and it is signifi-
cantly slower than the policies of Sections 4.2.1 and 4.2.2, because it needs to manage
and maintain long lists. This necessitates the use of the scope limiting techniques de-
scribed in Section 4.3.3, as tracking provenance from all vertices in the entire history
of interactions becomes infeasible.

4.5.3 Selective and grouped provenance

In the next set of experiments, we evaluate the performance of proportional prove-
nance only for a subset of vertices or for groups of vertices as described in Sections
4.3.1 and 4.3.2. We conduct the experiments on the three largest networks (in terms
of number of vertices), i.e., Bitcoin, CTU, and Prosper Loans. Recall that on these
networks tracking proportional provenance from all vertices is infeasible or very ex-
pensive. Let k denote the number of selected vertices (for selective provenance) or
the number of groups (for grouped provenance). We measure the runtime cost and
memory requirements for different values of k. In the case of selective provenance,
we select the top-k contributing vertices as the set of vertices for which we will mea-
sure provenance. That is, we first run NoProv (Algorithm 4.1) and measure the total
quantity generated by each vertex and then choose the ones that generate the largest
quantity.2 In case of grouped provenance, we randomly allocate vertices to groups
in a round-robin fashion; since the runtime performance and memory requirements

2The k vertices could be selected by any other method without affecting the performance of the
algorithm.

72

are not affected by the group sizes or the way the vertices are allocated to groups,
this allocation does not affect the experimental results.

Figure 4.2 shows the runtime performance (in sec.) and memory requirements (in
MB) for the different values of k on the different datasets. As expected the runtime
and the memory requirements are roughly proportional to k. For small values of k
(less than 20) the runtime is roughly constant with respect to k (see Figure 4.2(a)).
This is because of the effect of SIMD instructions, which make vector operations (lines
9 and 10 of Algorithm 4.3) unaffected by the vector size. SIMD data parallelism is
already in full action for values of k greater than 20, so we observe linear scalability
from thereon.

5 10 15 20 25

0.5

1

1.5

2
·104

φ, δ = 600

#
in

s
t
a
n
c
e
s

Selective Provenance Runtime Grouping Provenance Runtime Memory Footprint

5

10

15

20

C
P
U

ti
m
e
(s
ec
)

5

10

15

20

M
em

or
y
(G

B
)

5 20 50 100 150 200

5

10

15

20

k

0.2

0.4

0.6

0.8

C
P
U

ti
m
e
(s
ec
)

200

400

600

800

1,000

M
em

o
ry

(M
B
)

50 100 150 200

0.2

0.4

0.6

0.8

k

5 20 50 100 150 200

200

400

600

800

1,000

0.1

0.2

0.3

0.4

0.5

C
P
U

ti
m
e
(s
ec
)

50

100

150

M
em

or
y
(M

B
)

5 20 50 100 150 200

50

100

150

(a) Bitcoin Network (b) CTU Network (c) Prosper Loans Network

Figure 4.2: Selective and grouped proportional provenance

4.5.4 Limiting the scope of provenance tracking

As shown in Section 4.5.2, proportional provenance tracking throughout the entire
history of interactions is infeasible, due to its high memory requirements. In ad-
dition, keeping and updating sparse representations of provenance vectors becomes
expensive over time as the lists grow larger because of the higher cost of merging
operations. Figure 4.3 verifies this assertion, by showing the cumulative time and
memory requirements while tracking proportional selection after each interaction for
the first 500K interactions in Bitcoin and CTU (after this point, the memory require-
ments become too high), and for all interactions in Prosper Loans. Observe that the
cumulative runtime increases superlinearly with the number of interactions and so do
the memory requirements (these two are correlated). The average cost for handling
each interaction grows as the number of processed interactions increases, which is

73

attributed to the population of the sparse lists that keep the provenance information
for each vertex; merging operations on these lists become expensive as they grow.

5 10 15 20 25

0.5

1

1.5

2
·104

φ, δ = 600

#
in

s
t
a
n
c
e
s

Cumulative Time Memory Footprint

10

20

30

40

50

60

C
P
U

ti
m
e
(s
ec
)

2,000

4,000

6,000

M
em

o
ry

(M
B
)

100 200 300 400 500

10

20

30

40

50

60

#interactions (K)

100 200 300 400 500

2,000

4,000

6,000

20

40

60

80

C
P
U

ti
m
e
(s
ec
)

500

1,000

1,500

2,000

M
em

o
ry

(M
B
)

100 200 300 400 500

20

40

60

80

#interactions (K)

100 200 300 400 500

500

1,000

1,500

2,000

5

10

15

20

25

30

C
P
U

ti
m
e
(s
ec
)

500

1,000

1,500

2,000

2,500

M
em

or
y
(M

B
)

0.5 1 1.5 2 2.5 3

5

10

15

20

25

30

#interactions (M)

0.5 1 1.5 2 2.5 3

500

1,000

1,500

2,000

2,500

(a) Bitcoin Network (b) CTU Network (c) Prosper Loans Network

Figure 4.3: Cumulative time vs. number of processed interactions

Figure 4.4 shows the average runtime cost for each interaction in the first 100K
interactions, in the second 100K interactions, and so on until the first 500K interac-
tions for Bitcoin and CTU and until the last interaction in Prosper Loans. Observe
that the average cost for handling each interaction grows as the number of processed
interactions increases, which is attributed to the population of the sparse lists that
keep the provenance information for each vertex; merging operations on these lists
become expensive as they grow.

100 200 300 400 500

50

100

150

200

250

300

350

#interactions (K)

ti
m
e
(s
ec
)

1

100 200 300 400 500

50

100

150

200

250

300

350

#interactions (K)

ti
m
e
(s
ec
)

1

0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

#interactions (M)

ti
m
e
(s
ec
)

1

(a) Bitcoin Network (b) Facebook Network (c) Prosper Loans Network

Figure 4.4: Average time per interactions vs. number of processed interactions

We now evaluate the solutions proposed in Section 4.3.3 for limiting the scope of
provenance tracking in order to make the maintenance of proportional provenance
vectors feasible for large graphs, and real-time provenance tracking possible when the
interactions R are processed as an endless stream. Once again, we experimented with

74

5 10 15 20 25

0.5

1

1.5

2
·104

φ, δ = 600

#
in

s
t
a
n
c
e
s

Runtime Memory Footprint

5

10

15

20

25

30

C
P
U

ti
m
e
(s
ec
×
1
03
)

5

10

15

20

25

30

M
em

or
y
(G

B
)

2 4 6 8 10 12

5

10

15

20

25

30

window size w (×103)

50

100

150

200

250

C
P
U

ti
m
e
(s
ec
)

5

10

15

M
em

or
y
(G

B
)

2 4 6 8 10 12 14 16

50

100

150

200

250

window size w (×103)

10

20

30

40

50

60

C
P
U

ti
m
e
(s
ec
)

50

100

150

200

M
em

or
y
(M

B
)

2 4 6 8 10 12 14 16

10

20

30

40

50

60

window size w (×103)

(a) Bitcoin Network (b) CTU Network (c) Prosper Loans Network

Figure 4.5: Windowing approach

5 10 15 20 25

0.5

1

1.5

2
·104

φ, δ = 600

#
in

s
t
a
n
c
e
s

Runtime Memory Footprint

20

40

60

80

100

C
P
U

ti
m
e
(s
ec
)

5

10

15

20

M
em

or
y
(G

B
)

20 40 60 80 100

20

40

60

80

100

budget per vertex

20 40 60 80 100

5

10

15

20

10

20

30

40

50

60

C
P
U

ti
m
e
(s
ec
)

500

1,000

1,500

M
em

or
y
(M

B
)

0 200 400 600 800 1,000

10

20

30

40

50

60

budget per vertex

0 200 400 600 800 1,000

500

1,000

1,500

2

4

6

8

10

C
P
U

ti
m
e
(s
ec
)

100

200

300

400

500

M
em

or
y
(M

B
)

0 200 400 600 800 1,000

2

4

6

8

10

budget per vertex

0 200 400 600 800 1,000

100

200

300

400

500

(a) Bitcoin Network (b) CTU Network (c) Prosper Loans Network

Figure 4.6: Budget-based provenance

the three largest networks and applied the two approaches proposed in Section 4.3.3
on them. Figure 4.5 shows the runtime cost and the memory requirements of the
windowing approach for different values of the window parameter W . By increasing
the size of the window, the runtime performance is improved as the buffers have
to be reset less frequently. On the other hand, increasing the window size increases
the memory requirements and increases the cost of list management. For Bitcoin
and Prosper Loans, larger window sizes are affordable, as the memory requirements
do not increase a lot. For CTU ,the memory requirements almost double when W

doubles, and the cost increases for windows larger than 2000.
Figure 4.6 shows the runtime cost and the memory requirements of the budget-

based approach for different values of the maximum budget C given as capacity for
provenance entries to each vertex. As the figure shows, by increasing the budget C
per vertex, the runtime cost to maintain provenance increases, as the provenance

75

information at buffers becomes larger and merging lists becomes more expensive.
The increase in the runtime cost is not very high though, because many lists remain
relatively short and the number of list shrinks are less frequent. At the same time,
the space requirements grow linearly with C , which means that very large values of
C are not affordable for large graphs like Bitcoin.

In order to assess the value of this approach, in Table 4.8, we measured for each
of the three large datasets and for different values3 of C , (i) the number of times
each non-empty buffer has been shrunk and (ii) the percentage of vertices (with
non-empty buffer) whose buffer was shrunk at least once. Especially for the larger
networks with high memory requirements (Bitcoin and CTU), we observe that the
number of shrinks and the percentage of vertices where they take place converge to
low values and, after some point, increasing C does not offer much benefit. Overall,
the budget-based approach is attractive since each buffer is shrunk only a few times
on average, meaning that the provenance information loss is limited even in large
graphs. For example, at the Bitcoin network, for a value of C = 50, each buffer is
shrunk 1.5 times on average after 45M interactions, meaning that each buffer tracks
provenance information that traces back to tens of millions of transactions before.

Table 4.8: Shrinking statistics in budget-based provenance
C Bitcoin Network CTU Network Prosper Loans Network

avg. shrinks % vertices avg. shrinks % vertices avg. shrinks % vertices
10 1.94 18.38 7.27 31.07 20.67 94.7
50 1.51 14.79 5.1 28.68 4.77 79.29
100 1.43 14.21 4.77 27.94 2.97 69.09
200 – – 4.53 26.6 2.1 59.16
500 – – 4.34 25.24 1.5 47.64
1000 – – 4.3 25.02 1.23 41.39

4.5.5 Path tracking

In the next experiment, we evaluate the overhead of tracking the paths (i.e., how-
provenance) compared to just tracking the origins of the quantities (see Section 4.4).
We implemented path tracking as part of the LIFO selection policy for provenance
(Section 4.2.2) and used it to track the paths for all (origin, quantity) pairs accu-
mulated at vertices after processing all interactions in all datasets. Table 4.9 shows
the runtime performance, the memory requirements, and the average path length for

3We could not use values of C larger than 100 on Bitcoin due to memory constraints.

76

each quantity element. The memory requirements are split into the memory required
to store the provenance entries in the lists (as in LIFO) and the memory required to
store the paths. Observe that for most datasets the memory overhead for keeping the
paths is not extremely high. This overhead is determined by the average path length
(last column of the table), which is relatively low in four out of the five datasets. Only
in Flights the storage overhead for the paths is very high. In this dataset, the number
of vertices is very small compared to the number of interactions, so we can expect
very long paths. Still, on all datasets, the runtime is only up to a few times higher
compared to tracking just the origins and not the paths (see Table 4.6, column LIFO),
meaning that path tracking is feasible even for very long sequences of interactions on
large graphs, like Bitcoin.

Table 4.9: Tracking provenance paths in LIFO
Dataset time (sec.) MB for entries MB for paths total MB avg. path length
Bitcoin 13.35 534.62 847.50 1382.13 4.75
CTU 0.36 33.87 7.16 41.03 0.63
Prosper 0.4 36.85 0.74 37.59 0.06
Flights 0.17 0.627 57.09 57.72 273.17
Taxis 0.008 0.58 1.09 1.68 5.55

4.5.6 Use case

Figure 4.7 demonstrates a real-life application example of provenance tracing in TINs.
The plot shows the total accumulated quantities at the vertices of Bitcoin after each
interaction (first 100K interactions, proportional selection policy). Consider a data
analyst who wants to be alerted whenever a vertex v accumulates a significant amount
of money, which does not originate from v’s direct neighbors (i.e., v’s neighbors just
relay amounts to v). Hence, after each interaction, we issue an alert when the receiving
vertex does not have any quantity that originates from its neighbors and the total
quantity in its buffer exceeds 10K BTC. The colored dots in the figure show these
alerts (89 in total) and provenance information for some of them. Red dots are alerts
where the number of non-neighbors that cause the alert is less than five (the rest
of them are blue). We observe that in most cases the amount was received from
numerous vertices (an indication of possible “smurfing”). This alerting mechanism is
very efficient and easy to implement, as we only have to maintain at each vertex v

the total quantity that originates from vertices that transfer quantities to v (i.e., direct

77

neighbors of v). In the Introduction (Figure 1.2), we have shown another use case
of provenance, where the vertices that contribute most to a given vertex over time is
analyzed (the FIFO selection model is used).

#204 obtained 4.35BTC from #183 and 15950BTC from #185

#7120 obtained 14995.98BTC from 2731 vertices

Figure 4.7: Provenance alerts in Bitcoin

4.6 Summary

In this chapter, we introduced and studied the problem of tracking the origin (prove-
nance) of a quantity that has transferred between vertices. We proposed different
models and techniques for the propagation of the quantity. We also proposed tech-
niques to limit the scope of the provenance and as a result to reduce the complexity
of the problem. We evaluated our algorithms using real networks.

78

CHAPTER 5

SPATIOTEMPORAL FLOW PATTERNS

5.1 Definitions

5.2 Pattern Extraction

5.3 Pattern Variants

5.4 Experiments

5.5 Summary

In the last part of this thesis, we study the problem of finding important trends
in passenger movements at varying granularity. Specifically, we study the extraction
of movement patterns between regions that have significant flow. The huge number
of possible regions render the detection of patterns hard. We propose algorithms
that greatly reduce the search space and the computational cost of pattern detection.
We study variants of patterns that could be useful to different problem instances,
such as constrained patterns and top-k ranked patterns. The results of our research
can be used in several applications such as target marketing, scheduling, and traffic
prediction.

Outline The rest of the chapter is organized as follows. In Section 5.1, we formally
define the problem we study in this work. Section 5.2 presents an algorithm for ex-
tracting spatio-temporal flow patterns and its optimizations. In Section 5.3, we define
interesting variants of flow patterns and propose algorithms for their enumeration.
Section 5.4 evaluates our methods on real networks with different characteristics.

79

Origin Destination Time Flow
A D 9:12 4
C D 9:18 1
B D 9:20 2
C D 9:24 1
B D 9:29 1
D C 9:34 2
C B 9:45 2
A D 9:53 3

1

(a) Region graph (b) Trips table

Figure 5.1: Example of input graph

Section ?? reviews related work on spatio-temporal pattern mining. Finally, Section
5.5 concludes the work with a discussion about future work.

5.1 Definitions

In this section, we formally define the ODT patterns and the graph wherein they are
identified as well as the generalization problem that we study.

The main input to our problem is a trips table, which records information about
trips from origins to destinations at different times. Each origin/destination is a min-
imal region of interest on a map (e.g., a district, a metro station, etc.), called atomic
region. In addition, an undirected neighborhood graph G(V,E) defines the neighbor-
ing relations between atomic regions. V is the set of all atomic regions and there is an
edge (v, u) in E iff v ∈ V and u ∈ V are neighbors on the map. Finally, the timeline is
divided into periods that repeat themselves (e.g., 24-hours each) and each period is
discretized into time ranges (e.g., 48 30-minute slots). Each such minimal time range
is called atomic timeslot. Figure 5.1 (a) shows an exemplary region neighborhood
graph with four atomic regions (districts or stations) as vertices and Figure 5.1 (b)
shows a trips table which includes individual trips between these regions that have
taken place.

Definition 5.1 (Region/Timeslot). A region r is a subset V ′ of V , such that the induced
subgraph G′(V′,E′) of G is connected. A timeslot T is a continuous sequence of atomic
timeslots.

80

Definition 5.2 (Generalization of a region/timeslot). A region R1 is a generalization
of region R2 iff R2 ⊂ R1. A timeslot T1 is a generalization of timeslot T2 iff T2 ⊂ T1.

Definition 5.3 (Minimal generalization of a region/timeslot). A region R1 is a minimal
generalization of region R2 iff R2 ⊂ R1 and R1−R2 is an atomic region. A timeslot T1

is a minimal generalization of timeslot T2 iff T2 ⊂ T1 and T1−T2 is an atomic timeslot.

For example, region {B,C,D} is a minimal generalization of {B,D}. Symmetri-
cally, {B,D} is a minimal specialization of {B,C,D}.

Definition 5.4 (Atomic ODT triple). A triple (o, d, t) is atomic if:

• o is an atomic region

• d is an atomic region

• t is an atomic timeslot

• o ̸= d

We can map each trip in the trips table to an atomic ODT triple (o, d, t), where o

is the origin region of the trip (if the origin is a GPS location, it can be mapped to
the nearest v ∈ V), d is the destination region of the trip, and t is the atomic timeslot
that contains the origin time of the trip. Given an atomic ODT triple P , the support
σ(P) of P is the total number of passengers (flow) of the trips that are mapped to
P . For example, the top-left of Figure 5.2 shows a map and an individual trip in
it, which corresponds to the first trip in Figure 5.1. The top-right of Figure 5.2 has
the aggregated trips table, which contains all atomic (o, d, t) triples, after aggregating all
trips that correspond to the same (o, d, t). For instance, trips (B, D, 9:20, 2) and (B,
D, 9:29, 1) are merged to triple (B,D, 18)1 with total flow 3.

Definition 5.5 (ODT triple). An ODT triple (O,D, T) consists of a region O, a region
D, and a timeslot T , such that O ∩D = ∅.

Definition 5.6 (ODT triple generalization). An ODT triple P1 is a generalization of
ODT triple P2 if for all X ∈ {O,D, T}, P1.X ⊆ P2.X and for at least one X ∈ {O,D, T},
P1.X ⊂ P2.X.

1All time moments between 9:00 and 9:30 are generalized to timeslot 18, which is the 18th slot in
30-minute intervals, starting from 00:00-00:30 (mapped to 0).

81

<latexit sha1_base64="yhd6ZBjQACXTFP4iTTZ/g0Z+alk=">AAACC3icbVA9SwNBEN3z2/gVtbRZDIJVvBNRS9HGMoLRQAxhbm9yWdy9O3bnhBDS2/hXbCwUsfUP2Plv3CRXaOKDgbfvzbAzL8yUtOT7397M7Nz8wuLScmlldW19o7y5dWPT3Aisi1SlphGCRSUTrJMkhY3MIOhQ4W14fzH0bx/QWJkm19TLsKUhTmRHCiAntcu7EMcGYyCMOFCqpeDu6awDkhp5BATtcsWv+iPwaRIUpMIK1Nrlr7soFbnGhIQCa5uBn1GrD4akUDgo3eUWMxD3EGPT0QQ02lZ/dMuA7zkl4p3UuEqIj9TfE33Q1vZ06Do1UNdOekPxP6+ZU+e01ZdJlhMmYvxRJ1ecUj4MhkfSoCDVcwSEkW5XLrpgQJCLr+RCCCZPniY3h9XguHp0dVg5Oy/iWGI7bJfts4CdsDN2yWqszgR7ZM/slb15T96L9+59jFtnvGJmm/2B9/kD1Mya6g==</latexit>

aggregated atomic region/time data

<latexit sha1_base64="HpIwSZ9Vx6LfMePvkJU0VgsexG4=">AAAB+HicbVDLSgNBEJz1GeMjqx69DAbBU9gNoh6DXjxGMA9IljA7mU2GzGOZ6RViyJd48aCIVz/Fm3/jJNmDJhY0FFXddHfFqeAWguDbW1vf2NzaLuwUd/f2D0r+4VHT6sxQ1qBaaNOOiWWCK9YADoK1U8OIjAVrxaPbmd96ZMZyrR5gnLJIkoHiCacEnNTzSwS05BSnBIAZZXt+OagEc+BVEuakjHLUe/5Xt69pJpkCKoi1nTBIIZoQA5wKNi12M8tSQkdkwDqOKiKZjSbzw6f4zCl9nGjjSgGeq78nJkRaO5ax65QEhnbZm4n/eZ0MkutowlWaAVN0sSjJBAaNZyngPjeMghg7Qqjh7lZMh8QQ6kKwRRdCuPzyKmlWK+Fl5eK+Wq7d5HEU0Ak6RecoRFeohu5QHTUQRRl6Rq/ozXvyXrx372PRuublM8foD7zPHwcLk1Y=</latexit>

atomic patterns
<latexit sha1_base64="OEiShZFQO/IbH5JBfcQFohBESlY=">AAAB/XicbVDLSgNBEJz1GeNrfdy8DAbBU9gNoh6DXjxGMA9IljA76SRDZmeXmV4hCcFf8eJBEa/+hzf/xkmyB00saCiquunuChMpDHret7Oyura+sZnbym/v7O7tuweHNROnmkOVxzLWjZAZkEJBFQVKaCQaWBRKqIeD26lffwRtRKwecJhAELGeEl3BGVqp7R73QIFmUoygQxOGCFqZtlvwit4MdJn4GSmQDJW2+9XqxDyNQCGXzJim7yUYjJlGwSVM8q3UQML4gPWgaaliEZhgPLt+Qs+s0qHdWNtSSGfq74kxi4wZRqHtjBj2zaI3Ff/zmil2r4OxUEmKoPh8UTeVFGM6jYJ2hAaOcmgJ41rYWynvM824DcHkbQj+4svLpFYq+pfFi/tSoXyTxZEjJ+SUnBOfXJEyuSMVUiWcjMgzeSVvzpPz4rw7H/PWFSebOSJ/4Hz+AP9mlZU=</latexit>

generalized patterns

<latexit sha1_base64="tueA2mSHTyX8BOXHnr1F/q7d5g0=">AAAB+3icbVDJSgNBEO2JW4xbjEcvjUHwFGaCqMegF48RzAJJCDU9laRJz0J3jRpCfsWLB0W8+iPe/Bs7y0ETHxQ83quiqp6fKGnIdb+dzNr6xuZWdju3s7u3f5A/LNRNnGqBNRGrWDd9MKhkhDWSpLCZaITQV9jwhzdTv/GA2sg4uqdRgp0Q+pHsSQFkpW6+ECCBVBjwnoofeQAE3XzRLbkz8FXiLUiRLVDt5r/aQSzSECMSCoxpeW5CnTFokkLhJNdODSYghtDHlqURhGg649ntE35qFbs81rYi4jP198QYQmNGoW87Q6CBWfam4n9eK6XeVWcsoyQljMR8US9VnGI+DYIHUqMgNbIEhJb2Vi4GoEGQjStnQ/CWX14l9XLJuyid35WLletFHFl2zE7YGfPYJauwW1ZlNSbYE3tmr+zNmTgvzrvzMW/NOIuZI/YHzucPqq2UNA==</latexit>

detailed flow data

<latexit sha1_base64="yvmgEpLMJm2TFScLAR3YBssAJ9E=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaJUY+oF4+YyCMCIbNDL0yYnd3M9BrJhr/w4kFjvPo33vwbB9iDgpV0UqnqTneXH0th0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x/dTP3mI2gjInWP4xi6IRsoEQjO0EoPHYQn9IP0atIrltyyOwNdJl5GSiRDrVf86vQjnoSgkEtmTNtzY+ymTKPgEiaFTmIgZnzEBtC2VLEQTDedXTyhJ1bp0yDSthTSmfp7ImWhMePQt50hw6FZ9Kbif147weCymwoVJwiKzxcFiaQY0en7tC80cJRjSxjXwt5K+ZBpxtGGVLAheIsvL5NGpeydl8/uKqXqdRZHnhyRY3JKPHJBquSW1EidcKLIM3klb45xXpx352PemnOymUPyB87nD9WIkQc=</latexit>

A<latexit sha1_base64="Hj/2+WeIC/ruEcH0Siph3FuyOyo=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaJUY8ELx4xkUcEQmaHXpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne4uP5bCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiOTR4JCPd9pkBKRQ0UKCEdqyBhb6Elj++mfmtR9BGROoeJzH0QjZUIhCcoZUeughP6AdpbdovltyyOwddJV5GSiRDvV/86g4inoSgkEtmTMdzY+ylTKPgEqaFbmIgZnzMhtCxVLEQTC+dXzylZ1YZ0CDSthTSufp7ImWhMZPQt50hw5FZ9mbif14nweC6lwoVJwiKLxYFiaQY0dn7dCA0cJQTSxjXwt5K+YhpxtGGVLAheMsvr5Jmpexdli/uKqVqLYsjT07IKTknHrkiVXJL6qRBOFHkmbySN8c4L86787FozTnZzDH5A+fzB9cNkQg=</latexit>

B

<latexit sha1_base64="Vjl3777NVEtx5o4IOzjp5tDoA+s=">AAAB8XicbVDLTgJBEJzFF+IL9ehlIjHxRHaJUY9ELh4xkUcEQmaHXpgwO7uZ6TWSDX/hxYPGePVvvPk3DrAHBSvppFLVne4uP5bCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNFGiOTR4JCPd9pkBKRQ0UKCEdqyBhb6Elj+uzfzWI2gjInWPkxh6IRsqEQjO0EoPXYQn9IO0Nu0XS27ZnYOuEi8jJZKh3i9+dQcRT0JQyCUzpuO5MfZSplFwCdNCNzEQMz5mQ+hYqlgIppfOL57SM6sMaBBpWwrpXP09kbLQmEno286Q4cgsezPxP6+TYHDdS4WKEwTFF4uCRFKM6Ox9OhAaOMqJJYxrYW+lfMQ042hDKtgQvOWXV0mzUvYuyxd3lVL1JosjT07IKTknHrkiVXJL6qRBOFHkmbySN8c4L86787FozTnZzDH5A+fzB9iSkQk=</latexit>

C
<latexit sha1_base64="0qUuceg1pmpwSWkhSMvNyJ66ybg=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKewGUY9BPXiMYB6YhDA76U2GzM4uM71iWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dfiyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEc6jzSEa65TMDUiioo0AJrVgDC30JTX90PfWbj6CNiNQ9jmPohmygRCA4Qys9dBCe0A/Sm0mvWHLL7gx0mXgZKZEMtV7xq9OPeBKCQi6ZMW3PjbGbMo2CS5gUOomBmPERG0DbUsVCMN10dvGEnlilT4NI21JIZ+rviZSFxoxD33aGDIdm0ZuK/3ntBIPLbipUnCAoPl8UJJJiRKfv077QwFGOLWFcC3sr5UOmGUcbUsGG4C2+vEwalbJ3Xj67q5SqV1kceXJEjskp8cgFqZJbUiN1wokiz+SVvDnGeXHenY95a87JZg7JHzifP9oXkQo=</latexit>

D

<latexit sha1_base64="ufb1G9uKmkgwhDUjb1XuQpzS7sA=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBIvgQspMKb5WRTcuK9gHtKVk0jttaJIZkoxQhoK/4saFIm79Dnf+jWk7C209EDicc25yc4KYM20879tZWl5ZXVvPbeQ3t7Z3dt29/bqOEkWhRiMeqWZANHAmoWaY4dCMFRARcGgEw9uJ33gEpVkkH8woho4gfclCRomxUtc9vLr2S5iIM1zGMdEaZN+mu27BK3pT4EXiZ6SAMlS77le7F9FEgDSU22tavhebTkqUYZTDON9ONMSEDkkfWpZKIkB30un6Y3xilR4OI2WPNHiq/p5IidB6JAKbFMQM9Lw3Ef/zWokJLzspk3FiQNLZQ2HCsYnwpAvcYwqo4SNLCFXM7orpgChCje0gb0vw57+8SOqlon9eLN+XCpWbrI4cOkLH6BT56AJV0B2qohqiKEXP6BW9OU/Oi/PufMyiS042c4D+wPn8Ac91lCM=</latexit>

9:12 am, 4 passengers
Origin Destination Timeslot Flow

A D 18 4
C D 18 2

B D 18 3
D C 19 2

C B 19 2

A D 19 3

1

Origin Destination Timeslot

A D 18

B D 18

A D 19

1

Origin Destination Timeslot Flow

A D 18 4
C D 18 2

B D 18 3
D C 19 2

C B 19 2

A D 19 3

Origin Destination Timeslot sr
AB D 18 1.0
ABC D 18 0.66
AB D [18, 19] 0.75

Table 1: Table to test captions and labels.

1

Figure 5.2: A detailed example

Definition 5.7 (Minimal generalization of ODT triple). An ODT triple P1 is a minimal
generalization of ODT triple P2 if one of the following holds:

• P1.O = P2.O, P1.D = P2.D and P1.T is a minimal generalization of P2.T

• P1.D = P2.D, P1.T = P2.T and P1.O is a minimal generalization of P2.O

• P1.O = P2.O, P1.T = P2.T and P1.D is a minimal generalization of P2.D

Definition 5.8 (Atomic ODT pattern). Let ATr be the set of atomic ODT triples with
non-zero support. Given a threshold sa, 0 < sa ≤ 1, an atomic ODT triple P is called
an atomic ODT pattern if σ(P) is in the top sa × |ATr| supports of triples in ATr.

Figure 5.2 (bottom-right) shows the atomic ODT patterns for our running ex-
ample if sa = 0.5. The above definition considers a global support threshold for
characterizing an atomic triple as a pattern, following the typical approach in data
mining.

Definition 5.9 (ODT pattern). An ODT pattern P is an ODT triple where:

• the ratio of atomic triples in P , which are atomic patterns is at least equal to a
minimum ratio threshold sr

82

• there exists a minimal specialization of P which is an ODT pattern

The number of atomic triples in P , which are atomic patterns is denoted by P .cnt.
In the example of Figure 5.2, if sr = 0.6, (AB,D, 18) is a (generalized) ODT pattern
where origins A and B have significant joint flow to destination D at timeslot t = 18,
because the pattern includes two out of three atomic patterns.

A pattern (triple) P is said to be level-ℓ pattern (triple) if the total number of
atomic elements in it (regions and timeslots) is ℓ. Hence, atomic patterns are level-
3 patterns, since they contain exactly 3 elements (i.e., two atomic regions and one
atomic timeslot). Similarly, triple (A,BC, [1, 3]) is a level-6 triple because it includes 1
atomic region in its origin, 2 atomic regions in its destination, and 3 atomic regions
in its time-range (note that [1, 3] includes atomic timeslots {1, 2, 3}).

5.2 Pattern Extraction

To find the ODT patterns, we first start by finding the atomic ODT patterns, i.e.,
the (o, d, t) triples which are frequent/significant, where o and d are atomic regions
and t is an atomic timeslot. This can be done by one pass over the aggregated trips
data, where the occurrence of each (o, d, t) triple is unique and by selecting the top
sa ratio of them as atomic patterns. Then, we need an algorithm that progressively
synthesizes non-atomic patterns from atomic patterns.

Recall that a non-atomic triple P = (O,D, T) is a pattern if at least a ratio sr > 0

of its included atomic triples are patterns. Hence, by definition, a non-atomic pattern
generalizes at least one atomic pattern (o, d, t). The pattern synthesis algorithm uses
the set of atomic patterns and the region neighborhood graph G to synthesize the non-
atomic patterns. Given an existing (O,D, T) pattern P of size k, we attempt a minimal
generalization of P by including into the set O a neighboring atomic region to the
existing regions in O, or doing the same for set D, or adding an atomic neighboring
timeslot to T .

The challenge is to prune candidate generalizations that cannot be patterns. For
this, we need a fast way to compute (or bound) the number of contributing (newly
added to P) atomic patterns to the ratio of the candidate.

83

5.2.1 Baseline Algorithm

We now present a baseline algorithm for enumerating all the atomic and extended
ODT patterns in an input graph G(V,E). The first step of Algorithm 5.1 is to scan all
trips data and compute the support counts of all atomic triples T3. Then, it finds the
set P3 of atomic patterns, i.e., the triples having support count at least equal tominsup,
which is the support count of the sa · |T3|-th triple in T3 with the highest support. All
triples (patterns) in T3 (P3) have exactly three atomic elements (regions or timeslots).
The algorithm progressively finds the patterns with more atomic elements. Recall that
a triple (pattern) P is at level ℓ, i.e., in set Tℓ (Pℓ) if it has ℓ atomic elements; we also
call P an ℓ-size triple (pattern). Candidate patterns CandP at level ℓ+1 are generated
by either adding an atomic region at O or an atomic region at D or an atomic timeslot
at T , provided that the resulting triple is valid according to Definition 5.5. If a CandP

has been considered before it is disregarded. This may happen because the same triple
can be generated from two or more different triples at level ℓ. For example, candidate
pattern (AB,C, 1) could be generated by pattern (A,C, 1) (by extending region A to
region AB) and by (B,C, 1) (by extending region B to region AB). Hence, we keep
track at each level ℓ the set of triples that have been considered before, in order to
avoid counting the same candidate twice.2

To check whether a candidate CandP not considered before is a pattern, we need
to divide the number CandP .cnt of atomic patterns included in CandP by the total
number CandP .card of atomic triples in CandP . If this ratio is at least sr, then CandP

is a pattern. CandP .card can be computed algebraically: it is the product of atomic
elements in each of the three ODT components. For example, (AB,CD, [1, 3]).card =
2 · 2 · 3 = 12 because there are 12 atomic triples in (AB,CD, [1, 3]), i.e., combinations
of elements {A,B}, {C,D}, and {1, 2, 3}. To compute CandP .cnt fast, we can take
advantage of the fact that we already have P .cnt, i.e., the number of atomic patterns
in the generator pattern. We only have to compute the P ′.cnt for the difference P ′ =

CandP − P between CandP and P , which is the triple consisting of the extension
element in the extended dimension (one of O, D, T) together with the element-sets

2Since a pattern at level ℓ + 1 requires at least one and not all its minimal specializations to be
patterns, an id-numbering scheme for atomic regions, which would extend patterns by only adding
elements that have larger id would not work. For example, if both (A,C, 1) and (B,C, 1) are patterns,
(AB,C, 1) can be generated by both of them; however, if just (B,C, 1) is a pattern, (AB,C, 1) can only
be generated by (B,C, 1).

84

in the intact dimensions (two of O, D, T). For example, if P = (A,CD, [1, 2]) and
CandP = (AB,CD, [1, 2]), then P ′ = (B,CD, [1, 2]). To compute P ′.cnt, Algorithm 5.1
enumerates all atomic triples in P ′ to check whether they are patterns. It then sums
up P .cnt and P ′.cnt to derive CandP .cnt.

Algorithm 5.1 Baseline Algorithm for finding all ODT patterns
Require: a region graph G(V,E); a trips table; a minimum support sa for atomic

ODT patterns; a minimum support ratio sr for non-atomic ODT patterns
1: T3 = atomic triples computed from trips table
2: P3 = triples in T3 with support ≥ sa

3: for all atomic triples P ∈ T3 do
4: P .cnt = 1 if P ∈ P3, else P .cnt=0
5: end for
6: ℓ = 3
7: while |Pℓ| > 0 do
8: Pℓ+1 = ∅
9: for each P in Pℓ do
10: for each minimal generalization CandP of P do
11: if CandP not considered before then
12: P ′= CandP − P

13: CandP .cnt = P .cnt + P ′.cnt
14: if CandP .cnt / CandP .card ≥ sr then
15: add CandP to Pℓ+1

16: end if
17: end if
18: end for
19: end for
20: ℓ = ℓ + 1
21: end while

Figure 5.3 exemplifies the pattern enumeration process in our running example
(see Figure 5.2). Atomic pattern P = (A,D, 18) can be generalized by adding to the
origin any of the neighbors of atomic region A, to the destination any of the neighbors
of atomic region D, and to timeslot 18 either timeslot 17 or timeslot 19. Each of these
generalization forms a candidate pattern CandP at level 4. Counting the support of

85

these candidates requires counting only the difference P ′. For example, to count the
support of (AB,D, 18), we only have to add to the support of P = (A,D, 18) the
support of P ′ = (B,D, 18), which is 1. Then, the support of (AB,D, 18) is found to be
2. Assuming that sr = 0.6, CandP = (AB,D, 18) is a pattern, since the ratio of atomic
patterns in it is 1.0 ≥ sr. All patterns that stem from P = (A,D, 18) up to level 5 are
emphasized in Figure 5.3; these are used to generate candidate patterns at the next
levels.

<latexit sha1_base64="f3nArge3OVqYO586PdBOPRLYDsM=">AAAB+HicdVDLSgMxFM3UV62Pjrp0EyyCq2GmMrbuim5cVrAPaIeSSTNtaCYZkoxYh36JGxeKuPVT3Pk3pu0IKnogcDjnHu7NCRNGlXbdD6uwsrq2vlHcLG1t7+yW7b39thKpxKSFBROyGyJFGOWkpalmpJtIguKQkU44uZz7nVsiFRX8Rk8TEsRoxGlEMdJGGtjlviZ3JpcJSUeUzwZ2xXXqtXO/7kPXcRcwxDutub4HvVypgBzNgf3eHwqcxoRrzJBSPc9NdJAhqSlmZFbqp4okCE/QiPQM5SgmKsgWh8/gsVGGMBLSPK7hQv2eyFCs1DQOzWSM9Fj99ubiX14v1VE9yChPUk04Xi6KUga1gPMW4JBKgjWbGoKwpOZWiMdIIqxNVyVTwtdP4f+kXXW8M8e/rlYaF3kdRXAIjsAJ8EANNMAVaIIWwCAFD+AJPFv31qP1Yr0uRwtWnjkAP2C9fQIK15QC</latexit>

origin
<latexit sha1_base64="zyOCN35GD5YRkegkMaSG8UBKtzk=">AAAB/XicdVDLSgMxFM34rPVVHzs3wSK4KjOV2rorunFZwT6gLSWT3rahmcyQ3BHrUPwVNy4Ucet/uPNvTB+Cih4IHM65h3tz/EgKg6774SwsLi2vrKbW0usbm1vbmZ3dmgljzaHKQxnqhs8MSKGgigIlNCINLPAl1P3hxcSv34A2IlTXOIqgHbC+Ej3BGVqpk9lvIdzaXNIFg0JN1XEnk3VzpeJZoVSgbs6dwhLvpOgWPOrNlSyZo9LJvLe6IY8DUMglM6bpuRG2E6ZRcAnjdCs2EDE+ZH1oWqpYAKadTK8f0yOrdGkv1PYppFP1eyJhgTGjwLeTAcOB+e1NxL+8Zoy9UjsRKooRFJ8t6sWSYkgnVdCu0MBRjixhXAt7K+UDphlHW1jalvD1U/o/qeVz3mmucJXPls/ndaTIATkkx8QjRVIml6RCqoSTO/JAnsizc+88Oi/O62x0wZln9sgPOG+fGDKWTg==</latexit>

destination
<latexit sha1_base64="+si4P+KSE2FwbPB9exFLFRSbmn0=">AAAB9HicdVDJSgNBFOyJW4xb1KOXxiB4CjORMfEW9OIxglkgGUJP5yVp0rPY/SYYhnyHFw+KePVjvPk3dhZBRQsaiqpXvNflx1JotO0PK7Oyura+kd3MbW3v7O7l9w8aOkoUhzqPZKRaPtMgRQh1FCihFStggS+h6Y+uZn5zDEqLKLzFSQxewAah6AvO0EheB+HepFIUAUy7+YJdrJQv3IpL7aI9hyHOWdl2HeoslQJZotbNv3d6EU8CCJFLpnXbsWP0UqZQcAnTXCfREDM+YgNoGxqyALSXzo+e0hOj9Gg/UuaFSOfq90TKAq0ngW8mA4ZD/dubiX957QT7FS8VYZwghHyxqJ9IihGdNUB7QgFHOTGEcSXMrZQPmWIcTU85U8LXT+n/pFEqOudF96ZUqF4u68iSI3JMTolDyqRKrkmN1Aknd+SBPJFna2w9Wi/W62I0Yy0zh+QHrLdP9IKS5A==</latexit>

time

<latexit sha1_base64="WslPsjffeezYc73kOQNFC/HUSY4=">AAAB+XicdVDLSgNBEJyNrxhfUY9eBoMQL2F31TxuQS8eI5gHJCHMTmaTIbOzy0xvICz5Ey8eFPHqn3jzb5xNIqhoQUNR1U13lxcJrsG2P6zM2vrG5lZ2O7ezu7d/kD88aukwVpQ1aShC1fGIZoJL1gQOgnUixUjgCdb2Jjep354ypXko72EWsX5ARpL7nBIw0iCfLxIIA07PcUQAmDJSwS7Z5Uu3XMWGOLXaRS0lrlspV7BTshcooBUag/x7bxjSOGASqCBadx07gn5CFHAq2DzXizWLCJ2QEesaKknAdD9ZXD7HZ0YZYj9UpiTghfp9IiGB1rPAM50BgbH+7aXiX143Br/aT7iMYmCSLhf5scAQ4jQGPOSKURAzQwhV3NyK6ZgoQk0GOmdC+PoU/09abskpl67u3EL9ehVHFp2gU1REDqqgOrpFDdREFE3RA3pCz1ZiPVov1uuyNWOtZo7RD1hvn258k5A=</latexit>

(atomic) pattern

<latexit sha1_base64="tF4YnNIaXLNCdp13Hi5msqFAzHc=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmNZk1uUS8eEzAPSJYwO5lNxsw+mJkVwpIv8OJBEa9+kjf/xskmgooWNBRV3XR3eTFnUlnWh5FbWV1b38hvFra2d3b3ivsHbRklgtAWiXgkuh6WlLOQthRTnHZjQXHgcdrxJtdzv3NPhWRReKumMXUDPAqZzwhWWmpeDooly7QqZee8hjJSc6yMnFWdMrJNK0MJlmgMiu/9YUSSgIaKcCxlz7Zi5aZYKEY4nRX6iaQxJhM8oj1NQxxQ6abZoTN0opUh8iOhK1QoU79PpDiQchp4ujPAaix/e3PxL6+XKL/qpiyME0VDsljkJxypCM2/RkMmKFF8qgkmgulbERljgYnS2RR0CF+fov9Ju2zajllplkv1q2UceTiCYzgFGy6gDjfQgBYQoPAAT/Bs3BmPxovxumjNGcuZQ/gB4+0T/Z6NFQ==</latexit>

A
<latexit sha1_base64="OH4QHO2jyQm1l9KZPC6i9wwE9dI=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmNZk1uQT14TMA8IFnC7GQ2GTP7YGZWCEu+wIsHRbz6Sd78GyebCCpa0FBUddPd5cWcSWVZH0ZuZXVtfSO/Wdja3tndK+4ftGWUCEJbJOKR6HpYUs5C2lJMcdqNBcWBx2nHm1zN/c49FZJF4a2axtQN8ChkPiNYaal5PSiWLNOqlJ3zGspIzbEyclZ1ysg2rQwlWKIxKL73hxFJAhoqwrGUPduKlZtioRjhdFboJ5LGmEzwiPY0DXFApZtmh87QiVaGyI+ErlChTP0+keJAymng6c4Aq7H87c3Fv7xeovyqm7IwThQNyWKRn3CkIjT/Gg2ZoETxqSaYCKZvRWSMBSZKZ1PQIXx9iv4n7bJpO2alWS7VL5dx5OEIjuEUbLiAOtxAA1pAgMIDPMGzcWc8Gi/G66I1ZyxnDuEHjLdPAjmNGA==</latexit>

D
<latexit sha1_base64="H/RCKLe7snn/N1t1Q5LavK6jnHo=">AAAB6XicdVDLSsNAFL2pr1pfVZduBovgKiTRxnZXdOOyin1AG8pkOmmHTh7MTIQS+gduXCji1j9y5984TSuo6IELh3Pu5d57/IQzqSzrwyisrK6tbxQ3S1vbO7t75f2DtoxTQWiLxDwWXR9LyllEW4opTruJoDj0Oe34k6u537mnQrI4ulPThHohHkUsYAQrLd3atUG5YplW1XHP6ygnddfKyVnNdZBtWjkqsERzUH7vD2OShjRShGMpe7aVKC/DQjHC6azUTyVNMJngEe1pGuGQSi/LL52hE60MURALXZFCufp9IsOhlNPQ150hVmP525uLf3m9VAU1L2NRkioakcWiIOVIxWj+NhoyQYniU00wEUzfisgYC0yUDqekQ/j6FP1P2o5pu2b1xqk0LpdxFOEIjuEUbLiABlxDE1pAIIAHeIJnY2I8Gi/G66K1YCxnDuEHjLdPX2KNRw==</latexit>

18

<latexit sha1_base64="gNkLe8LNnK8YjJcAgcdN9vYH8aI=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgKeyuZk1uMV48RjAP2IQwO5lNhsw+mOkVw5LP8OJBEa9+jTf/xskmgooWNBRV3XR3ebHgCkzzw8itrK6tb+Q3C1vbO7t7xf2DtooSSVmLRiKSXY8oJnjIWsBBsG4sGQk8wTre5Grud+6YVDwKb2Eas35ARiH3OSWgJbcH7B48P71szAbFklk2K7ZzXsMZqTlmRs6qjo2tspmhhJZoDorvvWFEk4CFQAVRyrXMGPopkcCpYLNCL1EsJnRCRszVNCQBU/00O3mGT7QyxH4kdYWAM/X7REoCpaaBpzsDAmP125uLf3luAn61n/IwToCFdLHITwSGCM//x0MuGQUx1YRQyfWtmI6JJBR0SgUdwten+H/StsuWU67c2KV6YxlHHh2hY3SKLHSB6ugaNVELURShB/SEng0wHo0X43XRmjOWM4foB4y3T8rvkZw=</latexit>

AB
<latexit sha1_base64="El88Shcys2OnSTbE2uX15DW5D5Q=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0mrje2tqAePFewHtqFstpt26WYTdidiCf0XXjwo4tV/481/4zatoKIPBh7vzTAzz4sE12DbH1ZmaXlldS27ntvY3Nreye/utXQYK8qaNBSh6nhEM8ElawIHwTqRYiTwBGt744uZ375jSvNQ3sAkYm5AhpL7nBIw0m0P2D14fnI57ecLdtGulJ3TGk5JzbFTclJ1yrhUtFMU0AKNfv69NwhpHDAJVBCtuyU7AjchCjgVbJrrxZpFhI7JkHUNlSRg2k3Si6f4yCgD7IfKlAScqt8nEhJoPQk80xkQGOnf3kz8y+vG4FfdhMsoBibpfJEfCwwhnr2PB1wxCmJiCKGKm1sxHRFFKJiQciaEr0/x/6RVLpacYuW6XKifL+LIogN0iI5RCZ2hOrpCDdREFEn0gJ7Qs6WtR+vFep23ZqzFzD76AevtE0KZkVM=</latexit>

D
<latexit sha1_base64="kgAIFvFMnIFKgq23EyUMF9K793c=">AAAB83icdVDLSsNAFJ3UV62vqks3g0VwFZJqY7srunFZwT6gCWUynbRDJw9mbsQS+htuXCji1p9x5984TSuo6IGBwznncu8cPxFcgWV9GIWV1bX1jeJmaWt7Z3evvH/QUXEqKWvTWMSy5xPFBI9YGzgI1kskI6EvWNefXM397h2TisfRLUwT5oVkFPGAUwJacl1g9+AHmW1as0G5YplWreqcN3BOGo6Vk7O6U8U6kaOClmgNyu/uMKZpyCKggijVt60EvIxI4FSwWclNFUsInZAR62sakZApL8tvnuETrQxxEEv9IsC5+n0iI6FS09DXyZDAWP325uJfXj+FoO5lPEpSYBFdLApSgSHG8wLwkEtGQUw1IVRyfSumYyIJBV1TSZfw9VP8P+lUTdsxazfVSvNyWUcRHaFjdIpsdIGa6Bq1UBtRlKAH9ISejdR4NF6M10W0YCxnDtEPGG+fBeWRsg==</latexit>

1.0
<latexit sha1_base64="YtpyfwM7iTJ+uQnHXotQ//Kl8M0=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GqYj2W7RXDxGMQskQ+jp9CRNeha6e4Qw5A+8eFDEq3/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iTxtzv3DOpeBTe6WnM3ICMQu5zSrSRbi8bg3zBsctFXMM1ZIiDcbVkSKl2UXHKCNvOAgVYoTnIv/eHEU0CFmoqiFI97MTaTYnUnAo2y/UTxWJCJ2TEeoaGJGDKTReXztCZUYbIj6SpUKOF+n0iJYFS08AznQHRY/Xbm4t/eb1E+1U35WGcaBbS5SI/EUhHaP42GnLJqBZTQwiV3NyK6JhIQrUJJ2dC+PoU/U/aRRuX7dJNsVC/WsWRhRM4hXPAUIE6XEMTWkDBhwd4gmdrYj1aL9brsjVjrWaO4Qest0+Sdo1p</latexit>

AC
<latexit sha1_base64="NyoUFUXkrf38A2IsQh2F+Yjgjpo=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5BPXhMwCyQDKGnU5O06Vno7hHCkC/w4kERr36SN//GziKo6IOCx3tVVNXzYsGVdpwPK7O2vrG5ld3O7ezu7R/kD4/aKkokgxaLRCS7HlUgeAgtzbWAbiyBBp6Ajje5mvude5CKR+GtnsbgBnQUcp8zqo3UvB7kC45dLpIaqWFDHEKqJUNKtYuKU8bEdhYooBUag/x7fxixJIBQM0GV6hEn1m5KpeZMwCzXTxTElE3oCHqGhjQA5aaLQ2f4zChD7EfSVKjxQv0+kdJAqWngmc6A6rH67c3Fv7xeov2qm/IwTjSEbLnITwTWEZ5/jYdcAtNiaghlkptbMRtTSZk22eRMCF+f4v9Ju2iTsl1qFgv1y1UcWXSCTtE5IqiC6ugGNVALMQToAT2hZ+vOerRerNdla8ZazRyjH7DePgEMUY0f</latexit>

D
<latexit sha1_base64="LzD0+Zo0yd7QMdXhUCoSdsVmDA4=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4CtORbLegF49RzALJEHo6PUmTnp6hu0cIQ/7AiwdFvPpH3vwbO4ugog8KHu9VUVXPjwXXxnU/nMza+sbmVnY7t7O7t3+QPzxq6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMefXM39zj1Tmkfyzkxj5oVkJHnAKTFWusW1Qb7gFislXMd1ZImLca1sSbl+UXUrCBfdBQqwQnOQf+8PI5qETBoqiNY97MbGS4kynAo2y/UTzWJCJ2TEepZKEjLtpYtLZ+jMKkMURMqWNGihfp9ISaj1NPRtZ0jMWP/25uJfXi8xQc1LuYwTwyRdLgoSgUyE5m+jIVeMGjG1hFDF7a2Ijoki1NhwcjaEr0/R/6RdKuJKsXxTKjQuV3Fk4QRO4RwwVKEB19CEFlAI4AGe4NmZOI/Oi/O6bM04q5lj+AHn7RNpeo1O</latexit>

18
<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5

<latexit sha1_base64="mrnvzMh7u9Ky4kwxIyyW1JcLaQg=">AAACBXicdVBNS8NAFNzU7/oV9aiHxSJ4Kklba3MTvXhUsCq0oWy2r+nSzSbsbsQaevHiX/HiQRGv/gdv/hs3tYKKDiwMM294+yZIOFPacd6twtT0zOzc/EJxcWl5ZdVeWz9XcSopNGnMY3kZEAWcCWhqpjlcJhJIFHC4CAZHuX9xBVKxWJzpYQJ+RELBeowSbaSOvdXWcG1yWQgCJOHshokQx5KFTIw6dskpVxv7bt3DOfGcRi0nXq1e9bBbdsYooQlOOvZbuxvTNAKhKSdKtVwn0X5GpGaUw6jYThUkhA5ICC1DBYlA+dn4ihHeMUoX92JpntB4rH5PZCRSahgFZjIiuq9+e7n4l9dKda/hZ0wkqQZBPxf1Uo51jPNKcJdJoJoPDSFUMvNXTPtEEqpNcUVTwtel+H9yXim79fLeaaV0cDipYx5tom20i1y0jw7QMTpBTUTRLbpHj+jJurMerGfr5XO0YE0yG+gHrNcPXSuZzA==</latexit>

generalizing origin

<latexit sha1_base64="g0azaWMkudxitxC8Y/k34Wyoufc=">AAAB83icdVBNS8NAEN34WetX1aOXxSJ4Cmm1tb3V9uKxgv2ANpTNdtMu3WzC7kQsoX/DiwdFvPpnvPlv3KYVVPTBwOO9GWbmeZHgGhznw1pZXVvf2MxsZbd3dvf2cweHbR3GirIWDUWouh7RTHDJWsBBsG6kGAk8wTrepDH3O3dMaR7KW5hGzA3ISHKfUwJG6veB3YPnJ1f1xmyQyzu2UyqWL6o4JdWyk5LzSrmIC7aTIo+WaA5y7/1hSOOASaCCaN0rOBG4CVHAqWCzbD/WLCJ0QkasZ6gkAdNukt48w6dGGWI/VKYk4FT9PpGQQOtp4JnOgMBY//bm4l9eLwa/4iZcRjEwSReL/FhgCPE8ADzkilEQU0MIVdzciumYKELBxJQ1IXx9iv8n7aJdKNulm2K+Vl/GkUHH6ASdoQK6RDV0jZqohSiK0AN6Qs9WbD1aL9bronXFWs4coR+w3j4BWayR6Q==</latexit>

ABC
<latexit sha1_base64="El88Shcys2OnSTbE2uX15DW5D5Q=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0mrje2tqAePFewHtqFstpt26WYTdidiCf0XXjwo4tV/481/4zatoKIPBh7vzTAzz4sE12DbH1ZmaXlldS27ntvY3Nreye/utXQYK8qaNBSh6nhEM8ElawIHwTqRYiTwBGt744uZ375jSvNQ3sAkYm5AhpL7nBIw0m0P2D14fnI57ecLdtGulJ3TGk5JzbFTclJ1yrhUtFMU0AKNfv69NwhpHDAJVBCtuyU7AjchCjgVbJrrxZpFhI7JkHUNlSRg2k3Si6f4yCgD7IfKlAScqt8nEhJoPQk80xkQGOnf3kz8y+vG4FfdhMsoBibpfJEfCwwhnr2PB1wxCmJiCKGKm1sxHRFFKJiQciaEr0/x/6RVLpacYuW6XKifL+LIogN0iI5RCZ2hOrpCDdREFEn0gJ7Qs6WtR+vFep23ZqzFzD76AevtE0KZkVM=</latexit>

D
<latexit sha1_base64="7j5FbPoD+mfvvd64JR3X1XjIadQ=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFZJqY7srunFZwT4gDWUynbRDJw9mbsQS+hluXCji1q9x5984TSuo6IELh3Pu5d57/ERwBZb1YRRWVtfWN4qbpa3tnd298v5BR8WppKxNYxHLnk8UEzxibeAgWC+RjIS+YF1/cjX3u3dMKh5HtzBNmBeSUcQDTgloye0Duwc/yOz6bFCuWKZVqzrnDZyThmPl5KzuVLFtWjkqaInWoPzeH8Y0DVkEVBClXNtKwMuIBE4Fm5X6qWIJoRMyYq6mEQmZ8rL85Bk+0coQB7HUFQHO1e8TGQmVmoa+7gwJjNVvby7+5bkpBHUv41GSAovoYlGQCgwxnv+Ph1wyCmKqCaGS61sxHRNJKOiUSjqEr0/x/6RTNW3HrN1UK83LZRxFdISO0Smy0QVqomvUQm1EUYwe0BN6NsB4NF6M10VrwVjOHKIfMN4+AaNdkYI=</latexit>

18
<latexit sha1_base64="x/O0/Di0YC0kRmSNJYAB0B1k8aU=">AAAB9HicdVDLSgNBEJyNrxhfUY9eBoPgadmNZk1uQS8eI5gHJEuYncwmQ2YfzvQGw5Lv8OJBEa9+jDf/xskmgooWNBRV3XR3ebHgCizrw8itrK6tb+Q3C1vbO7t7xf2DlooSSVmTRiKSHY8oJnjImsBBsE4sGQk8wdre+GrutydMKh6FtzCNmRuQYch9Tgloye0BuwfPTy3TcWb9YskyrUrZOa/hjNQcKyNnVaeMbdPKUEJLNPrF994goknAQqCCKNW1rRjclEjgVLBZoZcoFhM6JkPW1TQkAVNumh09wydaGWA/krpCwJn6fSIlgVLTwNOdAYGR+u3Nxb+8bgJ+1U15GCfAQrpY5CcCQ4TnCeABl4yCmGpCqOT6VkxHRBIKOqeCDuHrU/w/aZVN2zErN+VS/XIZRx4doWN0imx0geroGjVQE1F0hx7QE3o2Jsaj8WK8LlpzxnLmEP2A8fYJiHyR9w==</latexit>

0.66

<latexit sha1_base64="mrnvzMh7u9Ky4kwxIyyW1JcLaQg=">AAACBXicdVBNS8NAFNzU7/oV9aiHxSJ4Kklba3MTvXhUsCq0oWy2r+nSzSbsbsQaevHiX/HiQRGv/gdv/hs3tYKKDiwMM294+yZIOFPacd6twtT0zOzc/EJxcWl5ZdVeWz9XcSopNGnMY3kZEAWcCWhqpjlcJhJIFHC4CAZHuX9xBVKxWJzpYQJ+RELBeowSbaSOvdXWcG1yWQgCJOHshokQx5KFTIw6dskpVxv7bt3DOfGcRi0nXq1e9bBbdsYooQlOOvZbuxvTNAKhKSdKtVwn0X5GpGaUw6jYThUkhA5ICC1DBYlA+dn4ihHeMUoX92JpntB4rH5PZCRSahgFZjIiuq9+e7n4l9dKda/hZ0wkqQZBPxf1Uo51jPNKcJdJoJoPDSFUMvNXTPtEEqpNcUVTwtel+H9yXim79fLeaaV0cDipYx5tom20i1y0jw7QMTpBTUTRLbpHj+jJurMerGfr5XO0YE0yG+gHrNcPXSuZzA==</latexit>

generalizing origin

<latexit sha1_base64="//GsH2N+HFjSep6saHXlJOFvMyI=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5RLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihLJoMUiEcmuRxUIHkJLcy2gG0uggSeg402u537nHqTiUXirpzG4AR2F3OeMaiM1Lwf5gmOXi6RGatgQh5BqyZBS7aLilDGxnQUKaIXGIP/eH0YsCSDUTFClesSJtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/qpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtqkbJeaxUL9ahVHFp2gU3SOCKqgOrpBDdRCDAF6QE/o2bqzHq0X63XZmrFWM8foB6y3TwfFjRw=</latexit>

A
<latexit sha1_base64="+bSHGd/JRrNPbhnGvex1inKz9jk=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GmYi2W4hevAYxSyQDKGn05M06ekZunuEMOQPvHhQxKt/5M2/sbMIKvqg4PFeFVX1/JgzpR3nw8qsrW9sbmW3czu7e/sH+cOjtooSSWiLRDySXR8rypmgLc00p91YUhz6nHb8yeXc79xTqVgk7vQ0pl6IR4IFjGBtpNvG1SBfcOxy0a25NWSI47rVkiGl2kXFKSPXdhYowArNQf69P4xIElKhCcdK9Vwn1l6KpWaE01munygaYzLBI9ozVOCQKi9dXDpDZ0YZoiCSpoRGC/X7RIpDpaahbzpDrMfqtzcX//J6iQ6qXspEnGgqyHJRkHCkIzR/Gw2ZpETzqSGYSGZuRWSMJSbahJMzIXx9iv4n7aLtlu3STbFQb6ziyMIJnMI5uFCBOlxDE1pAIIAHeIJna2I9Wi/W67I1Y61mjuEHrLdPlX+Naw==</latexit>

BD
<latexit sha1_base64="zGWPQ5as4ap6bhjwNgRM7hEsT1E=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GqYj2W7BePAYxSyQDKGn05M06Vno7hHCkD/w4kERr/6RN//GziKo6IOCx3tVVNXzYsGVdpwPK7O2vrG5ld3O7ezu7R/kD4/aKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNGnO/c8+k4lF4p6cxcwMyCrnPKdFGum1cDfIFxy4XcQ3XkCEOxtWSIaXaRcUpI2w7CxRgheYg/94fRjQJWKipIEr1sBNrNyVScyrYLNdPFIsJnZAR6xkakoApN11cOkNnRhkiP5KmQo0W6veJlARKTQPPdAZEj9Vvby7+5fUS7VfdlIdxollIl4v8RCAdofnbaMglo1pMDSFUcnMromMiCdUmnJwJ4etT9D9pF21ctks3xUL9chVHFk7gFM4BQwXqcA1NaAEFHx7gCZ6tifVovVivy9aMtZo5hh+w3j4BlwSNbA==</latexit>

CD

<latexit sha1_base64="LzD0+Zo0yd7QMdXhUCoSdsVmDA4=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4CtORbLegF49RzALJEHo6PUmTnp6hu0cIQ/7AiwdFvPpH3vwbO4ugog8KHu9VUVXPjwXXxnU/nMza+sbmVnY7t7O7t3+QPzxq6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMefXM39zj1Tmkfyzkxj5oVkJHnAKTFWusW1Qb7gFislXMd1ZImLca1sSbl+UXUrCBfdBQqwQnOQf+8PI5qETBoqiNY97MbGS4kynAo2y/UTzWJCJ2TEepZKEjLtpYtLZ+jMKkMURMqWNGihfp9ISaj1NPRtZ0jMWP/25uJfXi8xQc1LuYwTwyRdLgoSgUyE5m+jIVeMGjG1hFDF7a2Ijoki1NhwcjaEr0/R/6RdKuJKsXxTKjQuV3Fk4QRO4RwwVKEB19CEFlAI4AGe4NmZOI/Oi/O6bM04q5lj+AHn7RNpeo1O</latexit>

18
<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5
<latexit sha1_base64="//GsH2N+HFjSep6saHXlJOFvMyI=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5RLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihLJoMUiEcmuRxUIHkJLcy2gG0uggSeg402u537nHqTiUXirpzG4AR2F3OeMaiM1Lwf5gmOXi6RGatgQh5BqyZBS7aLilDGxnQUKaIXGIP/eH0YsCSDUTFClesSJtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/qpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtqkbJeaxUL9ahVHFp2gU3SOCKqgOrpBDdRCDAF6QE/o2bqzHq0X63XZmrFWM8foB6y3TwfFjRw=</latexit>

A
<latexit sha1_base64="LzD0+Zo0yd7QMdXhUCoSdsVmDA4=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4CtORbLegF49RzALJEHo6PUmTnp6hu0cIQ/7AiwdFvPpH3vwbO4ugog8KHu9VUVXPjwXXxnU/nMza+sbmVnY7t7O7t3+QPzxq6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMefXM39zj1Tmkfyzkxj5oVkJHnAKTFWusW1Qb7gFislXMd1ZImLca1sSbl+UXUrCBfdBQqwQnOQf+8PI5qETBoqiNY97MbGS4kynAo2y/UTzWJCJ2TEepZKEjLtpYtLZ+jMKkMURMqWNGihfp9ISaj1NPRtZ0jMWP/25uJfXi8xQc1LuYwTwyRdLgoSgUyE5m+jIVeMGjG1hFDF7a2Ijoki1NhwcjaEr0/R/6RdKuJKsXxTKjQuV3Fk4QRO4RwwVKEB19CEFlAI4AGe4NmZOI/Oi/O6bM04q5lj+AHn7RNpeo1O</latexit>

18
<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5

<latexit sha1_base64="64cXaoa2BF7yWHC2TQuAUDOk6FU=">AAACCnicdVC7SgNBFJ31GeMramkzGgSrsOsjJp1oYxnBmEASwuzkJhkyO7vM3BXjktrGX7GxUMTWL7Dzb5yNEVT0wMDhnHO5c48fSWHQdd+dqemZ2bn5zEJ2cWl5ZTW3tn5pwlhzqPJQhrruMwNSKKiiQAn1SAMLfAk1f3Ca+rUr0EaE6gKHEbQC1lOiKzhDK7VzW02EazuX9ECBZlLcCNWjHTAo1DgyaufybmG/dOQVyzQlZbd0kJLyQXG/TL2CO0aeTFBp596anZDHASjkkhnT8NwIWwnTKLiEUbYZG4gYH7AeNCxVLADTSsanjOiOVTq0G2r7FNKx+n0iYYExw8C3yYBh3/z2UvEvrxFjt9RKhIpiBMU/F3VjSTGkaS+0IzRwlENLGNfC/pXyPtOMo20va0v4upT+Ty73Cl6xcHi+lz8+mdSRIZtkm+wSjxyRY3JGKqRKOLkl9+SRPDl3zoPz7Lx8RqecycwG+QHn9QOEo5wY</latexit>

generalizing destination

<latexit sha1_base64="1Izt6rQ9MkZSoTREOdr4gaz12Ho=">AAACA3icdVDLSgMxFM34rPVVdaebYBFclRkftd2JblxWsLbQlpJJb9vQTGZI7oh1KLjxV9y4UMStP+HOvzFTK6jogcDhnHu4ucePpDDouu/O1PTM7Nx8ZiG7uLS8sppbW780Yaw5VHkoQ133mQEpFFRRoIR6pIEFvoSaPzhN/doVaCNCdYHDCFoB6ynRFZyhldq5zSbCtc0lPVCgmRQ3QvUoigBG7VzeLeyXjrximaak7JYOUlI+KO6XqVdwx8iTCSrt3FuzE/I4AIVcMmManhthK2EaBZcwyjZjAxHjA9aDhqWKBWBayfiGEd2xSod2Q22fQjpWvycSFhgzDHw7GTDsm99eKv7lNWLsllqJUFGMoPjnom4sKYY0LYR2hAaOcmgJ41rYv1LeZ5pxtLVlbQlfl9L/yeVewSsWDs/38scnkzoyZItsk13ikSNyTM5IhVQJJ7fknjySJ+fOeXCenZfP0SlnktkgP+C8fgCz6pjf</latexit>

generalizing time

<latexit sha1_base64="//GsH2N+HFjSep6saHXlJOFvMyI=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5RLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihLJoMUiEcmuRxUIHkJLcy2gG0uggSeg402u537nHqTiUXirpzG4AR2F3OeMaiM1Lwf5gmOXi6RGatgQh5BqyZBS7aLilDGxnQUKaIXGIP/eH0YsCSDUTFClesSJtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/qpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtqkbJeaxUL9ahVHFp2gU3SOCKqgOrpBDdRCDAF6QE/o2bqzHq0X63XZmrFWM8foB6y3TwfFjRw=</latexit>

A
<latexit sha1_base64="NyoUFUXkrf38A2IsQh2F+Yjgjpo=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5BPXhMwCyQDKGnU5O06Vno7hHCkC/w4kERr36SN//GziKo6IOCx3tVVNXzYsGVdpwPK7O2vrG5ld3O7ezu7R/kD4/aKkokgxaLRCS7HlUgeAgtzbWAbiyBBp6Ajje5mvude5CKR+GtnsbgBnQUcp8zqo3UvB7kC45dLpIaqWFDHEKqJUNKtYuKU8bEdhYooBUag/x7fxixJIBQM0GV6hEn1m5KpeZMwCzXTxTElE3oCHqGhjQA5aaLQ2f4zChD7EfSVKjxQv0+kdJAqWngmc6A6rH67c3Fv7xeov2qm/IwTjSEbLnITwTWEZ5/jYdcAtNiaghlkptbMRtTSZk22eRMCF+f4v9Ju2iTsl1qFgv1y1UcWXSCTtE5IqiC6ugGNVALMQToAT2hZ+vOerRerNdla8ZazRyjH7DePgEMUY0f</latexit>

D
<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5
<latexit sha1_base64="tOeXI/qwAzAKAmMJylTuD+OxwGI=">AAAB63icdVBNSwMxEJ2tX7V+VT16CRbB07Kp9OtW9OKxgrWFdinZNG1Ds9klyQpl6V/w4kERr/4hb/4bs20FFX0w8Hhvhpl5QSy4Np734eTW1jc2t/LbhZ3dvf2D4uHRnY4SRVmbRiJS3YBoJrhkbcONYN1YMRIGgnWC6VXmd+6Z0jySt2YWMz8kY8lHnBKTSbiG64NiyXOrZdzADWSJh3G9YkmlcVHzqgi73gIlWKE1KL73hxFNQiYNFUTrHvZi46dEGU4Fmxf6iWYxoVMyZj1LJQmZ9tPFrXN0ZpUhGkXKljRooX6fSEmo9SwMbGdIzET/9jLxL6+XmFHdT7mME8MkXS4aJQKZCGWPoyFXjBoxs4RQxe2tiE6IItTYeAo2hK9P0f/kruziqlu5KZeal6s48nACp3AOGGrQhGtoQRsoTOABnuDZCZ1H58V5XbbmnNXMMfyA8/YJUfiNyg==</latexit>

1718
<latexit sha1_base64="//GsH2N+HFjSep6saHXlJOFvMyI=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5RLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihLJoMUiEcmuRxUIHkJLcy2gG0uggSeg402u537nHqTiUXirpzG4AR2F3OeMaiM1Lwf5gmOXi6RGatgQh5BqyZBS7aLilDGxnQUKaIXGIP/eH0YsCSDUTFClesSJtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/qpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtqkbJeaxUL9ahVHFp2gU3SOCKqgOrpBDdRCDAF6QE/o2bqzHq0X63XZmrFWM8foB6y3TwfFjRw=</latexit>

A
<latexit sha1_base64="NyoUFUXkrf38A2IsQh2F+Yjgjpo=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5BPXhMwCyQDKGnU5O06Vno7hHCkC/w4kERr36SN//GziKo6IOCx3tVVNXzYsGVdpwPK7O2vrG5ld3O7ezu7R/kD4/aKkokgxaLRCS7HlUgeAgtzbWAbiyBBp6Ajje5mvude5CKR+GtnsbgBnQUcp8zqo3UvB7kC45dLpIaqWFDHEKqJUNKtYuKU8bEdhYooBUag/x7fxixJIBQM0GV6hEn1m5KpeZMwCzXTxTElE3oCHqGhjQA5aaLQ2f4zChD7EfSVKjxQv0+kdJAqWngmc6A6rH67c3Fv7xeov2qm/IwTjSEbLnITwTWEZ5/jYdcAtNiaghlkptbMRtTSZk22eRMCF+f4v9Ju2iTsl1qFgv1y1UcWXSCTtE5IqiC6ugGNVALMQToAT2hZ+vOerRerNdla8ZazRyjH7DePgEMUY0f</latexit>

D
<latexit sha1_base64="XNhQ1cL14KZdU4WQULvI2oIKano=">AAAB63icdVDLSgMxFM3UV62vqks3wSK4GiaVPmZXdOOygrWFdiiZNNOGJpkhyQhl6C+4caGIW3/InX9jpq2gogcuHM65l3vvCRPOtPG8D6ewtr6xuVXcLu3s7u0flA+P7nScKkI7JOax6oVYU84k7RhmOO0limIRctoNp1e5372nSrNY3ppZQgOBx5JFjGCTS6iJ/GG54rn1KvKRDy3xEGrWLKn5Fw2vDpHrLVABK7SH5ffBKCapoNIQjrXuIy8xQYaVYYTTeWmQappgMsVj2rdUYkF1kC1uncMzq4xgFCtb0sCF+n0iw0LrmQhtp8Bmon97ufiX109N1AwyJpPUUEmWi6KUQxPD/HE4YooSw2eWYKKYvRWSCVaYGBtPyYbw9Sn8n9xVXVR3azfVSutyFUcRnIBTcA4QaIAWuAZt0AEETMADeALPjnAenRfnddlacFYzx+AHnLdPVQKNzA==</latexit>

1819
<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5

<latexit sha1_base64="x6n5/ccJSXWIiBkx9vj+6DY4QVU=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GqYj2W4xXjxGMQskQ+jp9CRNeha6e4Qw5A+8eFDEq3/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iTq7nfuWdS8Si809OYuQEZhdznlGgj3V42BvmCY5eLuIZryBAH42rJkFLtouKUEbadBQqwQnOQf+8PI5oELNRUEKV62Im1mxKpORVslusnisWETsiI9QwNScCUmy4unaEzowyRH0lToUYL9ftESgKlpoFnOgOix+q3Nxf/8nqJ9qtuysM40Syky0V+IpCO0PxtNOSSUS2mhhAqubkV0TGRhGoTTs6E8PUp+p+0izYu26WbYqHeWMWRhRM4hXPAUIE6XEMTWkDBhwd4gmdrYj1aL9brsjVjrWaO4Qest0+Q8o1o</latexit>

AB
<latexit sha1_base64="zGWPQ5as4ap6bhjwNgRM7hEsT1E=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GqYj2W7BePAYxSyQDKGn05M06Vno7hHCkD/w4kERr/6RN//GziKo6IOCx3tVVNXzYsGVdpwPK7O2vrG5ld3O7ezu7R/kD4/aKkokZS0aiUh2PaKY4CFraa4F68aSkcATrONNGnO/c8+k4lF4p6cxcwMyCrnPKdFGum1cDfIFxy4XcQ3XkCEOxtWSIaXaRcUpI2w7CxRgheYg/94fRjQJWKipIEr1sBNrNyVScyrYLNdPFIsJnZAR6xkakoApN11cOkNnRhkiP5KmQo0W6veJlARKTQPPdAZEj9Vvby7+5fUS7VfdlIdxollIl4v8RCAdofnbaMglo1pMDSFUcnMromMiCdUmnJwJ4etT9D9pF21ctks3xUL9chVHFk7gFM4BQwXqcA1NaAEFHx7gCZ6tifVovVivy9aMtZo5hh+w3j4BlwSNbA==</latexit>

CD
<latexit sha1_base64="LzD0+Zo0yd7QMdXhUCoSdsVmDA4=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4CtORbLegF49RzALJEHo6PUmTnp6hu0cIQ/7AiwdFvPpH3vwbO4ugog8KHu9VUVXPjwXXxnU/nMza+sbmVnY7t7O7t3+QPzxq6yhRlLVoJCLV9YlmgkvWMtwI1o0VI6EvWMefXM39zj1Tmkfyzkxj5oVkJHnAKTFWusW1Qb7gFislXMd1ZImLca1sSbl+UXUrCBfdBQqwQnOQf+8PI5qETBoqiNY97MbGS4kynAo2y/UTzWJCJ2TEepZKEjLtpYtLZ+jMKkMURMqWNGihfp9ISaj1NPRtZ0jMWP/25uJfXi8xQc1LuYwTwyRdLgoSgUyE5m+jIVeMGjG1hFDF7a2Ijoki1NhwcjaEr0/R/6RdKuJKsXxTKjQuV3Fk4QRO4RwwVKEB19CEFlAI4AGe4NmZOI/Oi/O6bM04q5lj+AHn7RNpeo1O</latexit>

18
<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5
<latexit sha1_base64="x6n5/ccJSXWIiBkx9vj+6DY4QVU=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4GqYj2W4xXjxGMQskQ+jp9CRNeha6e4Qw5A+8eFDEq3/kzb+xswgq+qDg8V4VVfW8WHClHefDyqytb2xuZbdzO7t7+wf5w6O2ihJJWYtGIpJdjygmeMhammvBurFkJPAE63iTq7nfuWdS8Si809OYuQEZhdznlGgj3V42BvmCY5eLuIZryBAH42rJkFLtouKUEbadBQqwQnOQf+8PI5oELNRUEKV62Im1mxKpORVslusnisWETsiI9QwNScCUmy4unaEzowyRH0lToUYL9ftESgKlpoFnOgOix+q3Nxf/8nqJ9qtuysM40Syky0V+IpCO0PxtNOSSUS2mhhAqubkV0TGRhGoTTs6E8PUp+p+0izYu26WbYqHeWMWRhRM4hXPAUIE6XEMTWkDBhwd4gmdrYj1aL9brsjVjrWaO4Qest0+Q8o1o</latexit>

AB
<latexit sha1_base64="NyoUFUXkrf38A2IsQh2F+Yjgjpo=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GqYj2W5BPXhMwCyQDKGnU5O06Vno7hHCkC/w4kERr36SN//GziKo6IOCx3tVVNXzYsGVdpwPK7O2vrG5ld3O7ezu7R/kD4/aKkokgxaLRCS7HlUgeAgtzbWAbiyBBp6Ajje5mvude5CKR+GtnsbgBnQUcp8zqo3UvB7kC45dLpIaqWFDHEKqJUNKtYuKU8bEdhYooBUag/x7fxixJIBQM0GV6hEn1m5KpeZMwCzXTxTElE3oCHqGhjQA5aaLQ2f4zChD7EfSVKjxQv0+kdJAqWngmc6A6rH67c3Fv7xeov2qm/IwTjSEbLnITwTWEZ5/jYdcAtNiaghlkptbMRtTSZk22eRMCF+f4v9Ju2iTsl1qFgv1y1UcWXSCTtE5IqiC6ugGNVALMQToAT2hZ+vOerRerNdla8ZazRyjH7DePgEMUY0f</latexit>

D
<latexit sha1_base64="tOeXI/qwAzAKAmMJylTuD+OxwGI=">AAAB63icdVBNSwMxEJ2tX7V+VT16CRbB07Kp9OtW9OKxgrWFdinZNG1Ds9klyQpl6V/w4kERr/4hb/4bs20FFX0w8Hhvhpl5QSy4Np734eTW1jc2t/LbhZ3dvf2D4uHRnY4SRVmbRiJS3YBoJrhkbcONYN1YMRIGgnWC6VXmd+6Z0jySt2YWMz8kY8lHnBKTSbiG64NiyXOrZdzADWSJh3G9YkmlcVHzqgi73gIlWKE1KL73hxFNQiYNFUTrHvZi46dEGU4Fmxf6iWYxoVMyZj1LJQmZ9tPFrXN0ZpUhGkXKljRooX6fSEmo9SwMbGdIzET/9jLxL6+XmFHdT7mME8MkXS4aJQKZCGWPoyFXjBoxs4RQxe2tiE6IItTYeAo2hK9P0f/kruziqlu5KZeal6s48nACp3AOGGrQhGtoQRsoTOABnuDZCZ1H58V5XbbmnNXMMfyA8/YJUfiNyg==</latexit>

1718

<latexit sha1_base64="1Izt6rQ9MkZSoTREOdr4gaz12Ho=">AAACA3icdVDLSgMxFM34rPVVdaebYBFclRkftd2JblxWsLbQlpJJb9vQTGZI7oh1KLjxV9y4UMStP+HOvzFTK6jogcDhnHu4ucePpDDouu/O1PTM7Nx8ZiG7uLS8sppbW780Yaw5VHkoQ133mQEpFFRRoIR6pIEFvoSaPzhN/doVaCNCdYHDCFoB6ynRFZyhldq5zSbCtc0lPVCgmRQ3QvUoigBG7VzeLeyXjrximaak7JYOUlI+KO6XqVdwx8iTCSrt3FuzE/I4AIVcMmManhthK2EaBZcwyjZjAxHjA9aDhqWKBWBayfiGEd2xSod2Q22fQjpWvycSFhgzDHw7GTDsm99eKv7lNWLsllqJUFGMoPjnom4sKYY0LYR2hAaOcmgJ41rYv1LeZ5pxtLVlbQlfl9L/yeVewSsWDs/38scnkzoyZItsk13ikSNyTM5IhVQJJ7fknjySJ+fOeXCenZfP0SlnktkgP+C8fgCz6pjf</latexit>

generalizing time

<latexit sha1_base64="gNkLe8LNnK8YjJcAgcdN9vYH8aI=">AAAB8nicdVDLSgNBEJyNrxhfUY9eBoPgKeyuZk1uMV48RjAP2IQwO5lNhsw+mOkVw5LP8OJBEa9+jTf/xskmgooWNBRV3XR3ebHgCkzzw8itrK6tb+Q3C1vbO7t7xf2DtooSSVmLRiKSXY8oJnjIWsBBsG4sGQk8wTre5Grud+6YVDwKb2Eas35ARiH3OSWgJbcH7B48P71szAbFklk2K7ZzXsMZqTlmRs6qjo2tspmhhJZoDorvvWFEk4CFQAVRyrXMGPopkcCpYLNCL1EsJnRCRszVNCQBU/00O3mGT7QyxH4kdYWAM/X7REoCpaaBpzsDAmP125uLf3luAn61n/IwToCFdLHITwSGCM//x0MuGQUx1YRQyfWtmI6JJBR0SgUdwten+H/StsuWU67c2KV6YxlHHh2hY3SKLHSB6ugaNVELURShB/SEng0wHo0X43XRmjOWM4foB4y3T8rvkZw=</latexit>

AB
<latexit sha1_base64="El88Shcys2OnSTbE2uX15DW5D5Q=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0mrje2tqAePFewHtqFstpt26WYTdidiCf0XXjwo4tV/481/4zatoKIPBh7vzTAzz4sE12DbH1ZmaXlldS27ntvY3Nreye/utXQYK8qaNBSh6nhEM8ElawIHwTqRYiTwBGt744uZ375jSvNQ3sAkYm5AhpL7nBIw0m0P2D14fnI57ecLdtGulJ3TGk5JzbFTclJ1yrhUtFMU0AKNfv69NwhpHDAJVBCtuyU7AjchCjgVbJrrxZpFhI7JkHUNlSRg2k3Si6f4yCgD7IfKlAScqt8nEhJoPQk80xkQGOnf3kz8y+vG4FfdhMsoBibpfJEfCwwhnr2PB1wxCmJiCKGKm1sxHRFFKJiQciaEr0/x/6RVLpacYuW6XKifL+LIogN0iI5RCZ2hOrpCDdREFEn0gJ7Qs6WtR+vFep23ZqzFzD76AevtE0KZkVM=</latexit>

D
<latexit sha1_base64="qJSKvhrYmjI2XJiVKJGdqH4RcM4=">AAAB9HicdVDLSsNAFJ34rPVVdelmsAiuQlJJW3dFNy4r2Ae0oUymk3bo5OHMTbGEfocbF4q49WPc+TdO2ggqeuDC4Zx7ufceLxZcgWV9GCura+sbm4Wt4vbO7t5+6eCwraJEUtaikYhk1yOKCR6yFnAQrBtLRgJPsI43ucr8zpRJxaPwFmYxcwMyCrnPKQEtuX1g9+D5qWXWnPmgVLZMy7bP61WcEevCqeek5mDbtBYooxzNQem9P4xoErAQqCBK9WwrBjclEjgVbF7sJ4rFhE7IiPU0DUnAlJsujp7jU60MsR9JXSHghfp9IiWBUrPA050BgbH67WXiX14vAb/upjyME2AhXS7yE4EhwlkCeMgloyBmmhAqub4V0zGRhILOqahD+PoU/0/aFdOums5Npdy4zOMooGN0gs6QjWqoga5RE7UQRXfoAT2hZ2NqPBovxuuydcXIZ47QDxhvn3yOke8=</latexit>

0.75
<latexit sha1_base64="c/qdjzmZm8LBldEU2x87p1E8OkA=">AAAB9HicdVDLSgNBEJyNrxhfUY9eBoPgKexGkmxuQS8eI5gHJEuYncwmQ2YfzvQGw5Lv8OJBEa9+jDf/xtlkBRUtaCiquunuciPBFZjmh5FbW9/Y3MpvF3Z29/YPiodHHRXGkrI2DUUoey5RTPCAtYGDYL1IMuK7gnXd6VXqd2dMKh4GtzCPmOOTccA9TgloyRkAuwfXSyzbaiyGxZJZNi3rwq7hlJiNqp2RehVbZXOJEsrQGhbfB6OQxj4LgAqiVN8yI3ASIoFTwRaFQaxYROiUjFlf04D4TDnJ8ugFPtPKCHuh1BUAXqrfJxLiKzX3Xd3pE5io314q/uX1Y/BsJ+FBFAML6GqRFwsMIU4TwCMuGQUx14RQyfWtmE6IJBR0TgUdwten+H/SqZStWrl6Uyk1L7M48ugEnaJzZKE6aqJr1EJtRNEdekBP6NmYGY/Gi/G6as0Z2cwx+gHj7ROKTJH4</latexit>

1819

<latexit sha1_base64="wPHEFL877bW/t9QBI8VtuDrG+lc=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpLK9LErunFZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeIBFcG4Q+nNza+sbmVn67sLO7t39QPDxq6zhVlLVoLGLVDYhmgkvWMtwI1k0UI1EgWCeYXM39zj1TmsfyzkwT5kdkJHnIKTFWukWuNyiWkFsp4zquQ0sQxjXPEq9+UUUViF20QAms0BwU3/vDmKYRk4YKonUPo8T4GVGGU8FmhX6qWULohIxYz1JJIqb9bHHqDJ5ZZQjDWNmSBi7U7xMZibSeRoHtjIgZ69/eXPzL66UmrPkZl0lqmKTLRWEqoInh/G845IpRI6aWEKq4vRXSMVGEGptOwYbw9Sn8n7TLLq643k251LhcxZEHJ+AUnAMMqqABrkETtAAFI/AAnsCzI5xH58V5XbbmnNXMMfgB5+0TzmWNgg==</latexit>

0.5

<latexit sha1_base64="64cXaoa2BF7yWHC2TQuAUDOk6FU=">AAACCnicdVC7SgNBFJ31GeMramkzGgSrsOsjJp1oYxnBmEASwuzkJhkyO7vM3BXjktrGX7GxUMTWL7Dzb5yNEVT0wMDhnHO5c48fSWHQdd+dqemZ2bn5zEJ2cWl5ZTW3tn5pwlhzqPJQhrruMwNSKKiiQAn1SAMLfAk1f3Ca+rUr0EaE6gKHEbQC1lOiKzhDK7VzW02EazuX9ECBZlLcCNWjHTAo1DgyaufybmG/dOQVyzQlZbd0kJLyQXG/TL2CO0aeTFBp596anZDHASjkkhnT8NwIWwnTKLiEUbYZG4gYH7AeNCxVLADTSsanjOiOVTq0G2r7FNKx+n0iYYExw8C3yYBh3/z2UvEvrxFjt9RKhIpiBMU/F3VjSTGkaS+0IzRwlENLGNfC/pXyPtOMo20va0v4upT+Ty73Cl6xcHi+lz8+mdSRIZtkm+wSjxyRY3JGKqRKOLkl9+SRPDl3zoPz7Lx8RqecycwG+QHn9QOEo5wY</latexit>

generalizing destination

<latexit sha1_base64="SgPLM9UMtmjMbC0ACo9ushUkwqA=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5BUW9tb0YvHCrYW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZtWUNEHA4/3ZpiZ58ecKe04H1ZuZXVtfSO/Wdja3tndK+4fdFSUSELbJOKR7PpYUc4EbWumOe3GkuLQ5/TOn1zN/bt7KhWLxK2extQL8UiwgBGsjdQuq4EsD4olx3aqldp5A2WkUXMyclavVZBrOxlKsERrUHzvDyOShFRowrFSPdeJtZdiqRnhdFboJ4rGmEzwiPYMFTikykuzY2foxChDFETSlNAoU79PpDhUahr6pjPEeqx+e3PxL6+X6KDupUzEiaaCLBYFCUc6QvPP0ZBJSjSfGoKJZOZWRMZYYqJNPgUTwten6H/Sqdhuza7eVErNy2UceTiCYzgFFy6gCdfQgjYQYPAAT/BsCevRerFeF605azlzCD9gvX0CiiyOiA==</latexit>sr

<latexit sha1_base64="SgPLM9UMtmjMbC0ACo9ushUkwqA=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5BUW9tb0YvHCrYW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZtWUNEHA4/3ZpiZ58ecKe04H1ZuZXVtfSO/Wdja3tndK+4fdFSUSELbJOKR7PpYUc4EbWumOe3GkuLQ5/TOn1zN/bt7KhWLxK2extQL8UiwgBGsjdQuq4EsD4olx3aqldp5A2WkUXMyclavVZBrOxlKsERrUHzvDyOShFRowrFSPdeJtZdiqRnhdFboJ4rGmEzwiPYMFTikykuzY2foxChDFETSlNAoU79PpDhUahr6pjPEeqx+e3PxL6+X6KDupUzEiaaCLBYFCUc6QvPP0ZBJSjSfGoKJZOZWRMZYYqJNPgUTwten6H/Sqdhuza7eVErNy2UceTiCYzgFFy6gCdfQgjYQYPAAT/BsCevRerFeF605azlzCD9gvX0CiiyOiA==</latexit>sr

<latexit sha1_base64="SgPLM9UMtmjMbC0ACo9ushUkwqA=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5BUW9tb0YvHCrYW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZtWUNEHA4/3ZpiZ58ecKe04H1ZuZXVtfSO/Wdja3tndK+4fdFSUSELbJOKR7PpYUc4EbWumOe3GkuLQ5/TOn1zN/bt7KhWLxK2extQL8UiwgBGsjdQuq4EsD4olx3aqldp5A2WkUXMyclavVZBrOxlKsERrUHzvDyOShFRowrFSPdeJtZdiqRnhdFboJ4rGmEzwiPYMFTikykuzY2foxChDFETSlNAoU79PpDhUahr6pjPEeqx+e3PxL6+X6KDupUzEiaaCLBYFCUc6QvPP0ZBJSjSfGoKJZOZWRMZYYqJNPgUTwten6H/Sqdhuza7eVErNy2UceTiCYzgFFy6gCdfQgjYQYPAAT/BsCevRerFeF605azlzCD9gvX0CiiyOiA==</latexit>sr

<latexit sha1_base64="SgPLM9UMtmjMbC0ACo9ushUkwqA=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5BUW9tb0YvHCrYW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZtWUNEHA4/3ZpiZ58ecKe04H1ZuZXVtfSO/Wdja3tndK+4fdFSUSELbJOKR7PpYUc4EbWumOe3GkuLQ5/TOn1zN/bt7KhWLxK2extQL8UiwgBGsjdQuq4EsD4olx3aqldp5A2WkUXMyclavVZBrOxlKsERrUHzvDyOShFRowrFSPdeJtZdiqRnhdFboJ4rGmEzwiPYMFTikykuzY2foxChDFETSlNAoU79PpDhUahr6pjPEeqx+e3PxL6+X6KDupUzEiaaCLBYFCUc6QvPP0ZBJSjSfGoKJZOZWRMZYYqJNPgUTwten6H/Sqdhuza7eVErNy2UceTiCYzgFFy6gCdfQgjYQYPAAT/BsCevRerFeF605azlzCD9gvX0CiiyOiA==</latexit>sr

<latexit sha1_base64="SgPLM9UMtmjMbC0ACo9ushUkwqA=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5BUW9tb0YvHCrYW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZtWUNEHA4/3ZpiZ58ecKe04H1ZuZXVtfSO/Wdja3tndK+4fdFSUSELbJOKR7PpYUc4EbWumOe3GkuLQ5/TOn1zN/bt7KhWLxK2extQL8UiwgBGsjdQuq4EsD4olx3aqldp5A2WkUXMyclavVZBrOxlKsERrUHzvDyOShFRowrFSPdeJtZdiqRnhdFboJ4rGmEzwiPYMFTikykuzY2foxChDFETSlNAoU79PpDhUahr6pjPEeqx+e3PxL6+X6KDupUzEiaaCLBYFCUc6QvPP0ZBJSjSfGoKJZOZWRMZYYqJNPgUTwten6H/Sqdhuza7eVErNy2UceTiCYzgFFy6gCdfQgjYQYPAAT/BsCevRerFeF605azlzCD9gvX0CiiyOiA==</latexit>sr

<latexit sha1_base64="SgPLM9UMtmjMbC0ACo9ushUkwqA=">AAAB7HicdVBNS8NAEJ3Ur1q/qh69LLaCp5BUW9tb0YvHCrYW2lA22027dLMJuxuhhP4GLx4U8eoP8ua/cZtWUNEHA4/3ZpiZ58ecKe04H1ZuZXVtfSO/Wdja3tndK+4fdFSUSELbJOKR7PpYUc4EbWumOe3GkuLQ5/TOn1zN/bt7KhWLxK2extQL8UiwgBGsjdQuq4EsD4olx3aqldp5A2WkUXMyclavVZBrOxlKsERrUHzvDyOShFRowrFSPdeJtZdiqRnhdFboJ4rGmEzwiPYMFTikykuzY2foxChDFETSlNAoU79PpDhUahr6pjPEeqx+e3PxL6+X6KDupUzEiaaCLBYFCUc6QvPP0ZBJSjSfGoKJZOZWRMZYYqJNPgUTwten6H/Sqdhuza7eVErNy2UceTiCYzgFFy6gCdfQgjYQYPAAT/BsCevRerFeF605azlzCD9gvX0CiiyOiA==</latexit>sr

<latexit sha1_base64="7j5FbPoD+mfvvd64JR3X1XjIadQ=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwFZJqY7srunFZwT4gDWUynbRDJw9mbsQS+hluXCji1q9x5984TSuo6IELh3Pu5d57/ERwBZb1YRRWVtfWN4qbpa3tnd298v5BR8WppKxNYxHLnk8UEzxibeAgWC+RjIS+YF1/cjX3u3dMKh5HtzBNmBeSUcQDTgloye0Duwc/yOz6bFCuWKZVqzrnDZyThmPl5KzuVLFtWjkqaInWoPzeH8Y0DVkEVBClXNtKwMuIBE4Fm5X6qWIJoRMyYq6mEQmZ8rL85Bk+0coQB7HUFQHO1e8TGQmVmoa+7gwJjNVvby7+5bkpBHUv41GSAovoYlGQCgwxnv+Ph1wyCmKqCaGS61sxHRNJKOiUSjqEr0/x/6RTNW3HrN1UK83LZRxFdISO0Smy0QVqomvUQm1EUYwe0BN6NsB4NF6M10VrwVjOHKIfMN4+AaNdkYI=</latexit>

18

<latexit sha1_base64="6hwE0pBHxiAE0cFprRoJo4Yj1dM=">AAAB+XicdVDLSgMxFM34rPU16tJNsAiuSqbttC6LblxWsA9oh5JJb9vQzIMkUyxD/8SNC0Xc+ifu/BszbQUVPRA4nHMP9+b4seBKE/Jhra1vbG5t53byu3v7B4f20XFLRYlk0GSRiGTHpwoED6GpuRbQiSXQwBfQ9ifXmd+eglQ8Cu/0LAYvoKOQDzmj2kh92+5puDe5VMAUBC7P+3aBFAkpVwnBhjglUqtkhLiuW8GOIRkKaIVG337vDSKWBBBqJqhSXYfE2kup1JwJmOd7iYKYsgkdQdfQkAagvHRx+RyfG2WAh5E0L9R4oX5PpDRQahb4ZjKgeqx+e5n4l9dN9PDSS3kYJxpCtlw0TATWEc5qwAMugWkxM4Qyyc2tmI2ppEybsvKmhK+f4v9Jq1R0qkX3tlSoX63qyKFTdIYukINqqI5uUAM1EUNT9ICe0LOVWo/Wi/W6HF2zVpkT9APW2yfvZ5Pe</latexit>

level 3

<latexit sha1_base64="MhiTsFALwHq6L47pDZxONKMKtOI=">AAAB+XicdVDLSgMxFM3UV62vUZdugkVwVTK107osunFZwT6gHUomvW1DMw+STLEM/RM3LhRx65+482/MtBVU9EDgcM493Jvjx4IrTciHlVtb39jcym8Xdnb39g/sw6OWihLJoMkiEcmOTxUIHkJTcy2gE0uggS+g7U+uM789Bal4FN7pWQxeQEchH3JGtZH6tt3TcG9yqYApCFyZ9+0iKRFyUSUEG+KUSa2SEeK6bgU7hmQoohUaffu9N4hYEkComaBKdR0Say+lUnMmYF7oJQpiyiZ0BF1DQxqA8tLF5XN8ZpQBHkbSvFDjhfo9kdJAqVngm8mA6rH67WXiX1430cNLL+VhnGgI2XLRMBFYRzirAQ+4BKbFzBDKJDe3YjamkjJtyiqYEr5+iv8nrXLJqZbc23KxfrWqI49O0Ck6Rw6qoTq6QQ3URAxN0QN6Qs9Waj1aL9brcjRnrTLH6Aest0/w7JPf</latexit>

level 4

<latexit sha1_base64="IVFc26+liSxAM29jGhBi4kNHTJw=">AAAB+XicdVDLSgMxFM3UV62vUZdugkVwVTK107osunFZwT6gHUomvW1DMw+STLEM/RM3LhRx65+482/MtBVU9EDgcM493Jvjx4IrTciHlVtb39jcym8Xdnb39g/sw6OWihLJoMkiEcmOTxUIHkJTcy2gE0uggS+g7U+uM789Bal4FN7pWQxeQEchH3JGtZH6tt3TcG9yqYApCOzO+3aRlAi5qBKCDXHKpFbJCHFdt4IdQzIU0QqNvv3eG0QsCSDUTFClug6JtZdSqTkTMC/0EgUxZRM6gq6hIQ1Aeeni8jk+M8oADyNpXqjxQv2eSGmg1CzwzWRA9Vj99jLxL6+b6OGll/IwTjSEbLlomAisI5zVgAdcAtNiZghlkptbMRtTSZk2ZRVMCV8/xf+TVrnkVEvubblYv1rVkUcn6BSdIwfVUB3doAZqIoam6AE9oWcrtR6tF+t1OZqzVplj9APW2yfycZPg</latexit>

level 5

Figure 5.3: Pattern enumeration example

5.2.2 Optimizations

We now discuss some optimizations to the baseline algorithm, which can greatly
enhance its performance.

Avoid re‐counting P ′. The first approach is based on caching the ODT triples that
have been counted before. Instead of computing P ′.cnt directly for P ′ = CandP−P , we
first check whether P ′.cnt is already available. This requires us to cache the counted
triples and their supports at each level in a hash table. Hence, before counting P ′, we
first search the hash table, which caches the triples of size |P ′| to see if P ′ is in there.
In this case, we simply use P ′.cnt instead of computing it again from scratch.

Fast check for zero support of P ′. The second optimization is based on the
observation that for some pairs (o, d) of atomic regions, there does not exist any
timeslot t, such that (o, d, t) is an atomic pattern in P3. For example, if o and d are
remote regions on the map, it is unlikely that there is significant passenger flow that

86

connects them at any time of the day. We take advantage of this to avoid counting
any P ′ which may not include atomic patterns. Specifically, for each atomic region
r, we record (i) r.dests, the set of atomic regions r′, such that there exists a (r, r′, t)

pattern in P3; and (ii) r.srcs, the set of atomic regions r′, such that there exists a
(r′, r, t) pattern in P3. If, in Algorithm 5.1, CandP is a minimal generalization of P ,
by expanding P.O to include a new atomic region r, then P ′ = CandP − P should
only include r in P ′.O. If P ′.D ∩ r.dests = ∅, then P ′ does not include any atomic
patterns and CandP .cnt is guaranteed to be equal to P .cnt. Hence, we can skip support
computations for P ′. Symmetrically, if CandP is a minimal generalization of P , by
expanding P.D to include a new atomic region r, then P ′ = CandP − P should only
include r in P ′.D. If P ′.O ∩ r.srcs = ∅, then CandP .cnt is guaranteed to be equal to
P .cnt. Overall, by keeping track of r.dests and r.srcs for each atomic region r, we can
save computations when counting the supports of patterns. Since the space required
to store r.dests and r.srcs is O(|V |) in the worst case, the total space complexity of
these sets is O(|V |2). This cost is bearable, because our problem typically applies on
transportation networks or district neighborhood graphs in urban maps, where the
number of vertices in V is rarely large.

Improved neighborhood computation. The minimal generalizations of a pattern
P are generated by minimally generalizing P.O, P.D, and P.T . The generalization of
P.T is trivial as we add one atomic timeslot before the smallest one in P.T or after
the largest one in P.T . On the other hand, computing the minimal generalizations
of a region R (i.e., P.O or P.D) can be costly if done in a brute-force way. The
naive algorithm tries to add to P.O all possible neighbors of each atomic region
r ∈ R and for each such neighbor not in P.O and P.D it measures the support of
the corresponding generalized pattern P ′, if P ′ was not considered before. Since the
same P ′ can be generated by multiple P , checking whether P ′ has been considered
before can be performed a very large number of times with a negative effect in the
runtime. We design a neighborhood computation technique for a region R, which
avoids generating the same P ′ multiple times. The main idea is to collect first all
neighbors of all r ∈ R in a set N and then compute (in one step) N −P.O−P.D, i.e.,
the set of regions r that minimally expand R to form the minimal generalizations of
P .

Indexing atomic patterns. As another optimization, we employ a prefix-sum index
which can help us to compute an upper bound of the support of P ′. The main idea

87

comes from indexes used to compute range-sums in OLAP [60]. Let N be the number
of atomic regions and M be the number of atomic timeslots. Consider a N ×N ×M

array A, where each cell corresponds to an atomic ODT triple. The cell includes a 1 if
the corresponding atomic ODT triple is a pattern; otherwise the cell includes a 0. In
addition, consider a 3D array R with shape (N +1)× (N +1)× (M +1). Each element
R[i][j][k] of R is the sum of all elements A[i′][j′][k′] of A, such that i′ ≤ i, j′ ≤ j, and
k′ ≤ k R[i][j][k] = 0 if any of i, j, k is 0. R is the prefix-sum array of A. Figure 5.4
illustrates the prefix sum 3D array R.

…

…

… …

Ts
ue

n
W

an

<latexit sha1_base64="LK7Zb/cdPcAH+JJG6HHPHuFFZ/c=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUfCyLblxWsQ9sh5JJ0zY0kxmSO2IZ+hduXCji1r9x59+YtrPQ1gOBwzn3kHtPEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRjNdZJCPdCqjhUiheR4GSt2LNaRhI3gxG11O/+ci1EZG6x3HM/ZAOlOgLRtFKDx3kTzaV3k26xZJbdmcgy8TLSAky1LrFr04vYknIFTJJjWl7box+SjUKJvmk0EkMjykb0QFvW6poyI2fzjaekBOr9Eg/0vYpJDP1dyKloTHjMLCTIcWhWfSm4n9eO8H+pZ8KFSfIFZt/1E8kwYhMzyc9oTlDObaEMi3sroQNqaYMbUkFW4K3ePIyaVTK3nn57LZSql5ldeThCI7hFDy4gCrcQA3qwEDBM7zCm2OcF+fd+ZiP5pwscwh/4Hz+AA/YkS4=</latexit>

R

<latexit sha1_base64="mHGp+ozmEteVYOWWiWwxdXif2is=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj2PQi8cIeUmyhNlJbzJkdnaZmRXCkq/w4kERr36ON//GSbIHTSxoKKq66e4KEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR23dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+m/ntJ1Sax7JhJgn6ER1KHnJGjZUeGzpFSdpU9ktlt+LOQVaJl5My5Kj3S1+9QczSCKVhgmrd9dzE+BlVhjOB02Iv1ZhQNqZD7FoqaYTaz+YHT8m5VQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14Y2fcZmkBiVbLApTQUxMZt+TAVfIjJhYQpni9lbCRlRRZmxGRRuCt/zyKmlVK95V5fKhWq7d5nEU4BTO4AI8uIYa3EMdmsAggmd4hTdHOS/Ou/OxaF1z8pkT+APn8wd1IpAx</latexit>

Tsuen Wan

<latexit sha1_base64="GiNrvou8saAcxwe5cP1XTJ0q6Ko=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktWD0WvXis2C9ol5JNs21okl2TbKEs/R1ePCji1R/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O7mNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY38399oQqzSLZMNOY+gIPJQsZwcZKfkMzgR5HGDV0wvrFklt2F0DrxMtICTLU+8Wv3iAiiaDSEI617npubPwUK8MIp7NCL9E0xmSMh7RrqcSCaj9dHD1DF1YZoDBStqRBC/X3RIqF1lMR2E6BzUivenPxP6+bmPDGT5mME0MlWS4KE45MhOYJoAFTlBg+tQQTxeytiIywwsTYnAo2BG/15XXSqpS9avnqoVKq3WZx5OEMzuESPLiGGtxDHZpA4Ame4RXenInz4rw7H8vWnJPNnMIfOJ8/CW2Rog==</latexit>

Tsim Sha Tsui
<latexit sha1_base64="WuK3u4grNqt2tJW/4hesavY4smQ=">AAAB8HicbVDLSsNAFJ34rPVVdelmsAiuSlLwsay6cVnBPqQNZTKZtENnJmHmRgihX+HGhSJu/Rx3/o3TNgttPXDhcM693HtPkAhuwHW/nZXVtfWNzdJWeXtnd2+/cnDYNnGqKWvRWMS6GxDDBFesBRwE6yaaERkI1gnGt1O/88S04bF6gCxhviRDxSNOCVjp8TqUXBMB2aBSdWvuDHiZeAWpogLNQeWrH8Y0lUwBFcSYnucm4OdEA6eCTcr91LCE0DEZsp6likhm/Hx28ASfWiXEUaxtKcAz9fdETqQxmQxspyQwMoveVPzP66UQXfk5V0kKTNH5oigVGGI8/R6HXDMKIrOEUM3trZiOiCYUbEZlG4K3+PIyaddr3kXt/L5ebdwUcZTQMTpBZ8hDl6iB7lATtRBFEj2jV/TmaOfFeXc+5q0rTjFzhP7A+fwB8V2Qgw==</latexit>

Admiralty

<latexit sha1_base64="M826xfNiHZvCyvbMwj3SwiXloSA=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj2NQEC9CBPOAZAmzk95kyOzOMjMrhCUf4cWDIl79Hm/+jZNkD5pY0FBUddPdFSSCa+O6387K6tr6xmZhq7i9s7u3Xzo4bGqZKoYNJoVU7YBqFDzGhuFGYDtRSKNAYCsY3Uz91hMqzWX8aMYJ+hEdxDzkjBorte6Rk1spe6WyW3FnIMvEy0kZctR7pa9uX7I0wtgwQbXueG5i/Iwqw5nASbGbakwoG9EBdiyNaYTaz2bnTsipVfoklMpWbMhM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWf8ThJDcZsvihMBTGSTH8nfa6QGTG2hDLF7a2EDamizNiEijYEb/HlZdKsVryLyvlDtVy7zuMowDGcwBl4cAk1uIM6NIDBCJ7hFd6cxHlx3p2PeeuKk88cwR84nz+vbY8n</latexit> M
ei

F
oo

<latexit sha1_base64="0m5/CdeFImZGaurYXfXO6+ZiMkY=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqswUfCyL3bisYB/QDiWT3mlDM5khyQhl6Ee4caGIW7/HnX9j2s5CWw8EDufcQ+49QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTxtzvPKHSPJaPZpqgH9GR5CFn1Fip00BpFBWDcsWtuguQdeLlpAI5moPyV38YszSycSao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sse6MXFhlSMJY2ScNWai/ExmNtJ5GgZ2MqBnrVW8u/uf1UhPe+hmXSWpQsuVHYSqIicn8djLkCpkRU0soU9zuStiYKsqMbahkS/BWT14n7VrVu65ePdQq9bu8jiKcwTlcggc3UId7aEILGEzgGV7hzUmcF+fd+ViOFpw8cwp/4Hz+AFFCj5E=</latexit>

Central

<latexit sha1_base64="hRcgF7nEI7Mh+V1Q/WigKPT2BKY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKfhyLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vmm6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVYvmrVK/SaPowgncArn4MEV1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/e7mMvA==</latexit>

0

<latexit sha1_base64="ITNVbrYM3e1HW3W5i/60iw7tOgY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKfhyLXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2Vml6/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVYvmrVK/SaPowgncArn4MEV1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/fT2MvQ==</latexit>1

<latexit sha1_base64="rPMqHrSpNuk5gylyvXAOCLb5LwE=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVJKCH8eiF48V7Ae0oWy2k3btZhN2N0IJ/QVePChe/U3e/Ddu2xy09cHA470ZZuaFqeDaeN63U9rY3NreKe+6e/sHh0cV97itk0wxbLFEJKobUo2CS2wZbgR2U4U0DgV2wsnd3O88o9I8kY9mmmIQ05HkEWfUWOmhPqhUvZq3AFknfkGqUKA5qHz1hwnLYpSGCap1z/dSE+RUGc4Eztx+pjGlbEJH2LNU0hh1kC8OnZFzqwxJlChb0pCF+nsip7HW0zi0nTE1Y73qzcX/vF5mopsg5zLNDEq2XBRlgpiEzL8mQ66QGTG1hDLF7a2EjamizNhsXBuCv/ryOmnXa/5V7bLauC3CKMMpnMEF+HANDbiHJrSAAcILvMG78+S8Oh/LxpJTTJzAHzifPxTri5Y=</latexit>

2

<latexit sha1_base64="y3dNohtbjJSJMRc6KONZ+ycmkf4=">AAAB7XicdVDLSsNAFJ3UV62vqks3g0VwFZJgX7uiG5cV7APaUCbTSTt2MhNmJkIJ/Qc3LhRx6/+482+ctBFU9MCFwzn3cu89Qcyo0o7zYRXW1jc2t4rbpZ3dvf2D8uFRV4lEYtLBggnZD5AijHLS0VQz0o8lQVHASC+YXWV+755IRQW/1fOY+BGacBpSjLSRukLSCeWjcsWx626z2biAju0skZGaV/Wa0M2VCsjRHpXfh2OBk4hwjRlSauA6sfZTJDXFjCxKw0SRGOEZmpCBoRxFRPnp8toFPDPKGIZCmuIaLtXvEymKlJpHgemMkJ6q314m/uUNEh02/JTyONGE49WiMGFQC5i9DsdUEqzZ3BCEJTW3QjxFEmFtAiqZEL4+hf+Trme7Nbt641Val3kcRXACTsE5cEEdtMA1aIMOwOAOPIAn8GwJ69F6sV5XrQUrnzkGP2C9fQIidY+E</latexit> or
ig
in

<latexit sha1_base64="YQn8Fli0kVeKEWIsIpklpNCNIq0=">AAAB8nicdVBNS8NAEN3Ur1q/qh69LBbBU0mC/boVvXisYG0hLWWz3bZLN5uwOxFK6M/w4kERr/4ab/4bN2kEFX0w8Hhvhpl5fiS4Btv+sApr6xubW8Xt0s7u3v5B+fDoToexoqxLQxGqvk80E1yyLnAQrB8pRgJfsJ4/v0r93j1TmofyFhYRGwZkKvmEUwJG8sZMA5cZH5UrdrXhtFrNC2xX7Qwpqbs1t4WdXKmgHJ1R+X0wDmkcMAlUEK09x45gmBAFnAq2LA1izSJC52TKPEMlCZgeJtnJS3xmlDGehMqUBJyp3ycSEmi9CHzTGRCY6d9eKv7leTFMmsOEyygGJulq0SQWGEKc/o/HXDEKYmEIoYqbWzGdEUUomJRKJoSvT/H/5M6tOvVq7cattC/zOIroBJ2ic+SgBmqja9RBXURRiB7QE3q2wHq0XqzXVWvBymeO0Q9Yb58bZJHQ</latexit>

destination

<latexit sha1_base64="uHX6Pj/FOGetnemFMaNg4dbODKI=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwFZJgX7uiG5cV7APaUCbTSTt08nDmRiihP+HGhSJu/R13/o2TNoKKHrhwOOde7r3HiwVXYFkfRmFtfWNzq7hd2tnd2z8oHx51VZRIyjo0EpHse0QxwUPWAQ6C9WPJSOAJ1vNmV5nfu2dS8Si8hXnM3IBMQu5zSkBLfeABUyKCUblimXW72WxcYMu0lshIzak6TWznSgXlaI/K78NxRJOAhUAFUWpgWzG4KZHAqWCL0jBRLCZ0RiZsoGlI9B43Xd67wGdaGWM/krpCwEv1+0RKAqXmgac7AwJT9dvLxL+8QQJ+w015GCfAQrpa5CcCQ4Sz5/GYS0ZBzDUhVHJ9K6ZTIgkFHVFJh/D1Kf6fdB3TrpnVG6fSuszjKKITdIrOkY3qqIWuURt1EEUCPaAn9GzcGY/Gi/G6ai0Y+cwx+gHj7RPTGJCB</latexit> tim
es
lo
t

<latexit sha1_base64="GiNrvou8saAcxwe5cP1XTJ0q6Ko=">AAAB9HicbVBNSwMxEJ2tX7V+VT16CRbBU9ktWD0WvXis2C9ol5JNs21okl2TbKEs/R1ePCji1R/jzX9j2u5BWx8MPN6bYWZeEHOmjet+O7mNza3tnfxuYW//4PCoeHzS0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY38399oQqzSLZMNOY+gIPJQsZwcZKfkMzgR5HGDV0wvrFklt2F0DrxMtICTLU+8Wv3iAiiaDSEI617npubPwUK8MIp7NCL9E0xmSMh7RrqcSCaj9dHD1DF1YZoDBStqRBC/X3RIqF1lMR2E6BzUivenPxP6+bmPDGT5mME0MlWS4KE45MhOYJoAFTlBg+tQQTxeytiIywwsTYnAo2BG/15XXSqpS9avnqoVKq3WZx5OEMzuESPLiGGtxDHZpA4Ame4RXenInz4rw7H8vWnJPNnMIfOJ8/CW2Rog==</latexit> T
si
m

S
h
a
T
su
i

<latexit sha1_base64="WuK3u4grNqt2tJW/4hesavY4smQ=">AAAB8HicbVDLSsNAFJ34rPVVdelmsAiuSlLwsay6cVnBPqQNZTKZtENnJmHmRgihX+HGhSJu/Rx3/o3TNgttPXDhcM693HtPkAhuwHW/nZXVtfWNzdJWeXtnd2+/cnDYNnGqKWvRWMS6GxDDBFesBRwE6yaaERkI1gnGt1O/88S04bF6gCxhviRDxSNOCVjp8TqUXBMB2aBSdWvuDHiZeAWpogLNQeWrH8Y0lUwBFcSYnucm4OdEA6eCTcr91LCE0DEZsp6likhm/Hx28ASfWiXEUaxtKcAz9fdETqQxmQxspyQwMoveVPzP66UQXfk5V0kKTNH5oigVGGI8/R6HXDMKIrOEUM3trZiOiCYUbEZlG4K3+PIyaddr3kXt/L5ebdwUcZTQMTpBZ8hDl6iB7lATtRBFEj2jV/TmaOfFeXc+5q0rTjFzhP7A+fwB8V2Qgw==</latexit> A
d
m
ir
al
ty

<latexit sha1_base64="0m5/CdeFImZGaurYXfXO6+ZiMkY=">AAAB7nicbVDLSgMxFL1TX7W+qi7dBIvgqswUfCyL3bisYB/QDiWT3mlDM5khyQhl6Ee4caGIW7/HnX9j2s5CWw8EDufcQ+49QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJW8epYthisYhVN6AaBZfYMtwI7CYKaRQI7ASTxtzvPKHSPJaPZpqgH9GR5CFn1Fip00BpFBWDcsWtuguQdeLlpAI5moPyV38YszSycSao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sse6MXFhlSMJY2ScNWai/ExmNtJ5GgZ2MqBnrVW8u/uf1UhPe+hmXSWpQsuVHYSqIicn8djLkCpkRU0soU9zuStiYKsqMbahkS/BWT14n7VrVu65ePdQq9bu8jiKcwTlcggc3UId7aEILGEzgGV7hzUmcF+fd+ViOFpw8cwp/4Hz+AFFCj5E=</latexit> C
en
tr
al

<latexit sha1_base64="e9JItCUuqu0g9QmW1fXdBgsOzec=">AAACDXicdZBBaxNBFMdn22prtDa2Ry9DV8FTmN0mqZdCaEG8CNUmTWGzhNnJSzNkdmaZeVsIIV+gF7+KFw+KePXuzW/jbJNCLfUPAz/+7z3evH9WKOmQsT/B2vrGo8ebW09qT59tP9+pv9g9d6a0AnrCKGMvMu5ASQ09lKjgorDA80xBP5ueVPX+FVgnje7irIA055dajqXg6K1h/dWnpHvWTZMPIN8ZkyZxekQHIUeTS0ELjghWu2E9ZA3GDtqMUQ9RzA6bFbBWq9WkkYdKIVnpdFj/PRgZUeagUSjuXBKxAtM5tyiFgkVtUDoouJjyS0g8ap6DS+c31yzoa++M6NhY/zTSG/fuxJznzs3yzHfmHCfufq0yH6olJY7fpnOpixJBi+WicakoGlpFQ0fSgkA188CFlf6vVEy45cKH4Go+hNtL6f/hPG5E7UbrYxx2jldxbJGXZJ+8IRE5JB3ynpySHhHkmnwh38j34HPwNfgR/Fy2rgWrmT3yj4JffwE9AJsV</latexit>

R[TST][MeiFoo][2]= #atomic patterns
<latexit sha1_base64="8FbrROc5w8GjMmWiOyXy2KHIxEg=">AAACBXicdZDLSgMxFIYzXmu9jbrURbAILqRkai8ui924rNgbtKVk0kwbmkmGJCOU0o0bX8WNC0Xc+g7ufBszbQUV/SHw8Z9zkpzfjzjTBqEPZ2l5ZXVtPbWR3tza3tl19/YbWsaK0DqRXKqWjzXlTNC6YYbTVqQoDn1Om/6oktSbt1RpJkXNjCPaDfFAsIARbKzVc49kAKViAyZghQqjMIexMIzD2k3trOdmUBah8yJC0IKXQ6V8AqhQKOShZyFRBixU7bnvnb4kcWhvIhxr3fZQZLoTrAwjnE7TnVjTCJMRHtC2RYFDqruT2RZTeGKdPgykskcYOHO/T0xwqPU49G1niM1Q/64l5l+1dmyCi+6EiSg2VJD5Q0HMoZEwiQT2maLE8LEFTBSzf4VkiBUmxgaXtiF8bQr/h0Yu6xWzhetcpny5iCMFDsExOAUeKIEyuAJVUAcE3IEH8ASenXvn0XlxXuetS85i5gD8kPP2CXlbl+4=</latexit>

of origin Central until TST,
<latexit sha1_base64="BV4QKQHz8wyQxU0dyMM2gK9z8hs=">AAACC3icdVBNSwMxEM36WetX1aOX0CJ4kJKtVj0WBfEiKFgVainZdKqh2WRJZoVSvHvxr3jxoIhX/4A3/43ZtoKKPgi8vDczybwoUdIhYx/B2PjE5NR0biY/Oze/sFhYWj5zJrUC6sIoYy8i7kBJDXWUqOAiscDjSMF51N3P/PMbsE4afYq9BJoxv9KyIwVHL7UKxTY4lHpwo/ug0XJFU41S0SOQ9MCYjVahxMqMbW4zRj0JK2xnKyOsWq1u0dCTDCUywnGr8H7ZNiKN/TShuHONkCXY7HOLUii4zV+mDhIuuvwKGp5qHoNr9ge73NI1r7Rpx1h/NNKB+r2jz2PnenHkK2OO1+63l4l/eY0UO7vNvtRJiqDF8KFOqigamgVD29KCQNXzhAsr/V+puOaWC/Tx5X0IX5vS/8lZpRxul6snlVJtbxRHjqySIlknIdkhNXJIjkmdCHJHHsgTeQ7ug8fgJXgdlo4Fo54V8gPB2yd/F5qz</latexit>

destination Central until Mei Foo,
<latexit sha1_base64="I7HJX3LY0LRkwMTyOkJGymavis4=">AAAB+3icdZDLSgMxFIYz9Vbrrdalm2ARXJVM7cVl0Y3LCvYC7VAyadqGZjJDckYsQ1/FjQtF3Poi7nwbM20FFf0h8PGfczgnvx9JYYCQDyeztr6xuZXdzu3s7u0f5A8LbRPGmvEWC2Wouz41XArFWyBA8m6kOQ18yTv+9Cqtd+64NiJUtzCLuBfQsRIjwShYa5AvgAi4kSFggmMFQuLyIF8kJULOa4RgC26Z1CspkGq1WsGuhVRFtFJzkH/vD0MWB1wBk9SYnksi8BKqQTDJ57l+bHhE2ZSOec+ionajlyxun+NT6wzxKNT2KcAL9/tEQgNjZoFvOwMKE/O7lpp/1XoxjC68RKgoBq7YctEolhhCnAaBh0JzBnJmgTIt7K2YTaimDGxcORvC10/x/9Aul9xaqXpTLjYuV3Fk0TE6QWfIRXXUQNeoiVqIoXv0gJ7QszN3Hp0X53XZmnFWM0foh5y3Tz8Qk/A=</latexit>

timeslot 0 until 2

Figure 5.4: Prefix sum example

Now consider a 3D range [a, b], [c, d], [e, f], where 0 < a ≤ b ≤ N , 0 < c ≤ d ≤ N ,
and 0 < e ≤ f ≤ M and assume that the objective is to compute the sum of values
in A inside this range. We can show that this sum can be accumulated by seven
computations as follows:

R[b][d][f]

−R[a− 1][d][f]−R[b][c− 1][f]−R[b][d][e− 1]

+R[a− 1][c− 1][f] +R[b][c− 1][e− 1] +R[a− 1][d][e− 1]

−R[a− 1][c− 1][e− 1]

Now, consider a P ′ which needs to be counted. P ′ includes a set of atomic origin
regions, a set of atomic destination regions, and a set of atomic timeslots. The atomic

88

timeslots are guaranteed to be a continuous sublist of regions in the corresponding
dimension of the 3D array A, starting, say, from timeslot e and including up to timeslot
f . However, the region sets in P ′ are not guaranteed to be continuous. Still, the 3D
range [a, b], [c, d], [e, f], where a (c) is the origin (destination) region in P ′ with the
smallest ID and b (d) is the origin (destination) region in P ′ with the largest ID is
guaranteed to be a superset of atomic triples in P ′. Hence, the prefix-sum index can
give us in O(1) time an upper bound of the number of atomic patterns in P ′. If this
upper bound is added to the support of P and the resulting support is less than sr,
then CandP is definitely not a pattern, so we can avoid counting P ′.

5.3 Pattern Variants

In this section, we explore alternative problem definitions and the corresponding
problem solutions that can be more useful than our general definition in certain prob-
lem instances. In particular, we observe that the number of patterns can be huge even
if relatively high values of the thresholds sa and sr are used. In addition, setting global
thresholds may not be “fair” for some regions which are under-represented in the
data. To address these issues, we propose (i) size-bounded patterns, (ii) constrained-
pattern search, and (iii) rank-based patterns.

5.3.1 Size‐bounded Patterns

The first type of constraint that we can put to limit the number of patterns is on
the size of the regions or timeslots in a pattern. Specifically, we can set an upper
bound BO to |O|, i.e., the number of atomic regions in an origin region of a pattern.
Similarly, we can limit the number of regions in D to at most BD and the number of
atomic timeslots to at most BT . In effect, this limits the number of levels that we use
for pattern search to BO ·BD ·BT and reduces the number of patterns at each level.

For pattern enumeration, we use the same algorithms and optimizations discussed
in Section 5.2, but with the constraints applied whenever we expand a pattern to
generate the candidate patterns at the next level.

89

5.3.2 Constrained Patterns

Another way to control the number of the patterns, but also focus on specific regions
and/or timeslots that are under-represented in the entire population is to limit the
domain of atomic regions and timeslots. Specifically, we give as parameter to the
problem the set of atomic regions VO ⊆ V that we are interested in to serve as origins
the set VD ⊆ V of regions that can serve as destinations, and TR ⊆ T , a restricted
contiguous subsequence of the entire sequence of atomic timeslots T to be used as
timeslots in the patterns. The induced subgraphs by VO and VD should be connected,
in order to potentially have the entire VO (and/or VD) as an origin (destination) of
a pattern. For example, if a data analyst is interested in flow patterns from South
Manhattan to Queens in afternoon hours, she could include in VO (resp. VD) all the
atomic regions in South Manhattan (resp. Queens) and restrict the timeslots to be
used in patterns to include only afternoon hours.

Recall that thresholds sa and sr apply to the set of atomic triples and ratio of
atomic patterns, respectively. Hence, by constraining VO, VD, and TR, we consider
only atomic triples for the regions (times) of interest, making it possible to detect
patterns that are under-represented in the entire set of atomic triples. For example,
restricting VO to be a remote district on the map, makes it possible to detect flow
patterns from that district, which would not be found otherwise, assuming that the
outgoing flow from that district is very small compared to the outgoing flow from all
other districts.

Again, adapting our pattern enumeration algorithm and its variants to identify
constrained patterns is straightforward, as we only have to (i) confine atomic triples
and patterns to include only origins in VO, destinations in VD, and timeslots in TR, and
(ii) limit the expansion of regions/timeslots in candidate pattern generation, according
to the constraints VO, VD, and TR. Depending on the sizes of VO, VD, and TR pattern
enumeration can be significantly faster compared to unconstrained pattern search.

5.3.3 Rank‐based patterns

Another way to control the number of patterns and still not miss the most important
ones is to regard as patterns, at each level, the k triples with the highest support and
prune the rest of them as non-patterns. This is achieved by replacing the minimum
ratio threshold sr by a parameter k, which models the ratio of eligible triples at each

90

level which are considered to be important.
More formally, let Tℓ be the set of triples at level ℓ, which are minimal generalization

of patterns at level ℓ − 1. The set of patterns Pℓ at level ℓ consists of the k triples in
Tℓ having the largest number of atomic patterns.

Definition 5.10 (ODT pattern (rank-based)). An ODT pattern p is a triple t at level
l where:

• there exists a minimal specialization of p which is a rank-based ODT pattern

• there are no more than k minimal generalizations of level-(ℓ− 1) patterns that
include more frequent atomic patterns than p.

Baseline approach for rank‐based pattern enumeration

A baseline approach for enumerating rank-based patterns is to generate all eligible
triples at each level ℓ, which are minimal generalizations of patterns at level ℓ−1. For
each such triple, count its support (i.e., number of atomic patterns included in it). We
may use the optimizations proposed in Section 5.2.2, to reduce the cost of generating
ODT triples that are candidate patterns and counting their supports. After generating
all triples and counting their supports, we select the top-k ones as patterns. Only
these patterns are used to generate the candidate patterns at level ℓ+ 1.

Optimized rank‐based pattern enumeration

To minimize the number of generated triples at each level ℓ and the effort for counting
them, we examine the patterns at ℓ−1 in decreasing order of their potential to generate
triples that will end up in the top-k triples at level ℓ. Hence, we access the patterns
P at level ℓ− 1 in decreasing order of their support P .cnt. For each such pattern P

and for each minimal generalization CandP of P , we first compute the potential of
P ′ = CandP−P to add to the support CandP .cnt (initially CandP .cnt = P .cnt). If, by
adding the maximum possible P ′.cnt to CandP .cnt, CandP .cnt cannot make it to the
top-k ℓ-triples so far, then we prune CandP and avoid its counting. The maximum
possible P ′.cnt can be computed based on the following lemma:

Lemma 5.1. The maximum possible P ′.cnt that can be added to P .cnt, to derive the support
of CandP is as follows:

91

• If CandP is generated by minimally generalizing P.O, then P ′.cnt equals |P.D|·|P.T |.

• If CandP is generated by minimally generalizing P.D, then P ′.cnt equals |P.O|·|P.O|.

• If CandP is generated by minimally generalizing P.T , then P ′.cnt equals |P.O|·|P.D|.

Proof. Each of the three cases is proved as follows:

If CandP is generated by minimally generalizing P.O, then P ′.O is an atomic region,
P ′.D = P.D, and P ′.T = P.T ; hence, the maximum possible P ′.cnt equals |P.D| · |P.T |.

If CandP is generated by minimally generalizing P.D, then P ′.D is an atomic region,
P ′.O = P.O, and P ′.T = P.T ; hence, the maximum possible P ′.cnt equals |P.O| · |P.O|.

If CandP is generated by minimally generalizing P.T , then P ′.T is an atomic timeslot,
P ′.O = P.O, and P ′.D = P.D; hence, the maximum possible P ′.cnt equals |P.O| ·
|P.D|.

Let θ be the k-th largest support of the triples generated so far at level ℓ. If for the
next examined P from level ℓ− 1 to generalize, P cannot be generalized to a CandP

that may end up in the top-k level-ℓ triples, then we can immediately prune P . The
condition for pruning P is stated in the following lemma:

Lemma 5.2. If P .cnt + max{|P.D| · |P.T |, |P.O| · |P.O|, |P.O| · |P.D|} ≤ θ, then no
minimal generalization of P can enter the set of top-k level-ℓ ODT triples.

Proof. The proof stems directly from Lemma 5.1. Any candidate pattern CandP which
is a minimal generalization of P belongs to one of the three cases above. Hence, the
maximum possible support for CandP is derived by adding to P .cnt the maximum
of the three products that P ′.cnt can be.

Based on the above lemmas, we can prove the correctness of our enumeration
algorithm for rank-based ODT patterns, described by Algorithm 5.2. The algorithm
computes first all level-3 patterns P∋, based on the atomic pattern support threshold sa

(Lines 3–5). Having the patterns at level ℓ, the algorithm organizes those at level ℓ+1

in a priority queue (minheap) Pℓ+1 of maximum size k. We consider all patterns P at
level ℓ in decreasing order of support P .cnt, to maximize the potential of generating
level-(ℓ+1) triples of high support early. For each such pattern P , we first check if P
can generate any level-(ℓ+1) triple that can enter the set Pℓ+1 of top-k triples so far at
level ℓ+1, based on Lemma 5.2. If this is not possible, then P is pruned. Otherwise,

92

Algorithm 5.2 Optimized Algorithm for enumerating rank-based ODT patterns
Require: a region graph G(V,E); a trips table; a minimum support sa for atomic ODT patterns; number k of top patterns to

be generated at each level; maximum level considered (maxl)
1: T3 = atomic triples computed from trips table
2: P3 = triples in T3 with support ≥ sa

3: for all atomic triples P ∈ T3 do
4: P .cnt = 1 if P ∈ P3, else P .cnt=0
5: end for
6: ℓ = 3
7: while |Pℓ| > 0 and ℓ < maxl do
8: Pℓ+1 = ∅
9: for each P in Pℓ in decreasing order of P .cnt do
10: if |Pℓ+1| = k and P .cnt+max{|P.D| · |P.T |, |P.O| · |P.O|, |P.O| · |P.D|} ≤ Pℓ+1.top.cnt then
11: continue
12: end if
13: if |Pℓ+1| = k and P .cnt+ |P.D| · |P.T | ≤ Pℓ+1.top.cnt then
14: for each minimal generalization CandP of P by origin do
15: if CandP not considered before then
16: P ′= CandP − P

17: CandP .cnt = P .cnt + P ′.cnt
18: if |Pℓ+1| < k then
19: add CandP to Pℓ+1

20: else
21: if CandP .cnt > Pℓ+1.top.cnt then
22: update Pℓ+1 with CandP

23: end if
24: end if
25: end if
26: end for
27: end if
28: if |Pℓ+1| = k and P .cnt+ |P.O| · |P.T | ≤ Pℓ+1.top.cnt then
29: for each minimal generalization CandP of P by dest. do
30: Lines 15 to 25 above
31: end for
32: end if
33: if |Pℓ+1| = k and P .cnt+ |P.O| · |P.D| ≤ Pℓ+1.top.cnt then
34: for each minimal generalization CandP of P by time do
35: Lines 15 to 25 above
36: end for
37: end if
38: end for
39: ℓ = ℓ + 1
40: end while

93

we attempt to generalize P , first by adding an atomic region to P.O. If the maximum
addition to P .cnt by such an extension cannot result in a CandP that can enter the
top-k at level ℓ + 1 (based on Lemma 5.1), then we do not attempt such extensions;
otherwise we try all such extensions and measure their supports (Lines 15 to 25).
We repeat the same for the possible extensions of P.D and P.T . After Pℓ+1 has been
finalized, we use it to generate the top-k patterns at the next level. Since the number
of levels for which we can generate patterns can be very large, Algorithm 5.2 takes
as a parameter the maximum level maxl for which we are interested in generating
patterns.

5.4 Experiments

In this section, we evaluate the performance of our proposed algorithms on real
datasets. All methods were implemented in Python3 and the experiments were run
on a Macbook Air with a M2 processor and 8GB memory. The source code of the
work is publicly available3.

5.4.1 Dataset Description

For our experiments, we used three real datasets; NYC taxi trips, MTR network trips
and Flights. Below, we provide a detailed description for each of them.

NYC taxi trips: We processed 7.5M trips of yellow taxis in NYC in January 2019,
downloaded from TLC4. Each record represents a taxi trip and includes the pick-up
and drop-off taxi zones (different regions in NYC), the date/time of the pick-up, and
the number of passengers who took the trip. As already mentioned in Chapter , since
the pick-up and drop-off time of a given region are strongly correlated, we do not
consider the drop-off times in ODT patterns. We converted all time moments to 48
time-of-day slots (one slot per 30min intervals in the 24h). Then, we aggregated
the data by merging all trips having the same origin, destination, and timeslot, and
summing up the total number of passengers in all these trips to a total passenger
flow, as explained in Section 5.1. This way, we ended up having 373460 unique
ODT combinations (atomic ODT triples), which we used as input to our pattern

3https://github.com/SpatioTemporalFlowPatterns/VLDB-2023
4https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

94

enumeration algorithms. In addition, we used the maps posted at the same website
to construct the neighboring graph G between the atomic regions (taxi zones). In G,
we connected all pairs of atomic regions that share boundary points or are separated
by water boundaries.

MTR trips: The Mass Transit Railway (MTR)5 is the biggest and one of the most
major public transport network operating in Hong Kong. The system consists of 168
stations, serving the areas of Hong Kong island, Kowloon and New Territories. We
consider each station as an atomic region; we created the neighborhood graph G

for them by linking stations that are next to each other in the network. MTR Corp.
provided us with aggregate data for all passenger trips taken in September 2019.
Specifically, for each atomic ODT triple, where the origin and destination are MTR
stations and T is one of the 48 atomic timeslots, we were given the total number of
passenger trips in September 2019. The total umber of atomic ODT triples is 253497.

Flights: We extracted information for 5.8M US flights in 2015 from Kaggle6. In this
dataset, we consider as atomic regions 319 airports in North America that appear in
the file. Since the number of passengers in each flight was not given in the original
data, we randomly generated a number between 50 and 200. We followed the same
procedure as in for the two previous datasets; namely, we converted the original
flights data into a table with atomic ODT triples. The total number of resulting ODT
triples is 17623. To create the neighbor graph G, we follow the same logic as the two
previous datasets; we connect atomic regions in neighboring states.

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

Baseline AV AVFC AVFCIN OPT

0.0006 0.0008 0.001 0.0012 0.0014
0

20

40

60

80

100

120

140

sa

ti
m
e
(s
ec
)

1

0.006 0.008 0.01 0.012 0.014

0.5

1

1.5

2

2.5

3

sa

ti
m
e
(s
ec
)

1

0.06 0.08 0.1 0.12 0.14
0

2

4

6

8

10

12

sa

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.5: Pattern enumeration runtime, sr = 0.5, varying sa

5https://www.mtr.com.hk/en/customer/main/index.html
6https://www.kaggle.com/datasets/usdot/flight-delays?select=flights.csv

95

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

Baseline AV AVFC AVFCIN OPT

Baseline AV AVFC AVFCIN OPT
0

10

20

30

Time for support count
Time for candidate generation

Baseline AV AVFC AVFCIN OPT
0

1

2

3

Time for support count
Time for candidate generation

Baseline AV AVFC AVFCIN OPT
0

2

4

6

8

10

Time for support count
Time for candidate generation

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.6: Pattern enumeration cost breakdown, sr = 0.5, default sa

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

Baseline AV AVFC AVFCIN OPT

0.4 0.5 0.6 0.7 0.8

20

40

60

80

100

sr

ti
m
e
(s
ec
)

1

0.4 0.5 0.6 0.7 0.8

20

40

60

80

sr

ti
m
e
(s
ec
)

1

0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

sr

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.7: Pattern enumeration runtime, default sa, varying sr

5.4.2 Pattern enumeration

In the first set of experiments, we evaluate the performance of our baseline pattern
enumeration algorithm, described in Section 5.2.1, and its optimizations, described in
Section 5.2.2. Specifically, we compare the performance of the following methods:

• Algorithm 5.1, denoted by Baseline.

• Algorithm 5.1 with the avoid recounting P ′ optimization, denoted by AV.

• Algorithm 5.1 with the avoid recounting P ′ and fast check for zero support of
P ′ optimizations, denoted by AVFC.

96

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

sr = 0.4 sr = 0.5 sr = 0.6 sr = 0.7 sr = 0.8

0.0006 0.0008 0.001 0.0012 0.0014
0

2

4

6

8
·106

sa

#
p
a
tt
er
n
s

1

0.006 0.008 0.01 0.012 0.014

0.2

0.4

0.6

0.8

1

1.2

1.4

·106

sa

#
p
a
tt
er
n
s

1

2 3 4 5 6
0

0.2

0.4

0.6

0.8

O-bound, D-bound=4, T-bound=4

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.8: Number of patterns for different values of sa and sr

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

Baseline AVFCIN OPT

2 4 6 8 10
0

1

2

3

4

O-bound, D-bound=6, T-bound=6

ti
m
e
(s
ec
)

1

2 3 4 5 6
0

0.1

0.2

0.3

0.4

O-bound, D-bound=4, T-bound=4

ti
m
e
(s
ec
)

1

2 3 4 5 6
0

0.2

0.4

0.6

0.8

O-bound, D-bound=4, T-bound=4

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.9: Bounded pattern enumeration runtime, default sa, sr, varying origin
bound

• Algorithm 5.1 with the avoid recounting P ′, fast check, and improved neigh-
borhood optimizations, denoted by AVFCIN.

• Algorithm 5.1 with all four optimizations, denoted by OPT.

Figure 5.5 shows the costs of all tested methods on the three datasets for various
values of sa (default sa = 0.001 for Taxi, sa = 0.01 for MTR, and sa = 0.1 for Flights),
while keeping sr fixed to 0.5. Observe that the optimizations pay off, since the initial
cost of the baseline approach drops to about 50% of the initial cost. When comparing
between the different optimizations, we observe that the ones that have the biggest
impact are the P ′ counting avoidance and the improved neighborhood computation.
The savings by the prefix sum optimization are not impressive, because the other

97

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

Baseline AVFCIN OPT

2 4 6 8 10
0

1

2

3

4

5

6

7

D-bound, O-bound=6, T-bound=6

ti
m
e
(s
ec
)

1

2 3 4 5 6
0

0.1

0.2

0.3

0.4

D-bound, O-bound=4, T-bound=4

ti
m
e
(s
ec
)

1

2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

D-bound, O-bound=4, T-bound=4

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.10: Bounded pattern enumeration runtime, default sa, sr, varying destination
bound

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

Baseline AVFCIN OPT

2 4 6 8 10
0

0.5

1

1.5

2

T-bound, O-bound=6, D-bound=6

ti
m
e
(s
ec
)

1

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

T-bound, O-bound=4, D-bound=4

ti
m
e
(s
ec
)

1

2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

T-bound, O-bound=4, D-bound=4

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.11: Bounded pattern enumeration runtime, default sa, sr, varying timeslot
bound

optimizations already reduce a lot the number of candidates for which exact counting
is required.

This assertion is confirmed by the cost-breakdown experiment shown in Figure
5.6, where for the default values of sa and sr, we show the fraction of the cost that
goes to candidate pattern generation and support counting. Note that the baseline
approach spends most of the time in pattern counting, as the candidate generation
process is quite simple. On the other hand, the optimized versions of the algorithm
trade off time for pattern generation (spent on bookkeeping all generated triples at
each level, bookkeeping OD pairs with at least one trip, etc.) to reduce the time spent
on support counting. Note that the ratio of the time spent on support counting is

98

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

BASERANK BASEOPTRANK OPTRANK

10 20 30 40 50
0

10

20

30

40

50

max level

ti
m
e
(s
ec
)

1

10 20 30 40 50
0

2

4

6

8

10

12

max level

ti
m
e
(s
ec
)

1

10 20 30 40 50
0

2

4

6

8

10

12

max level

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.12: Rank-based pattern enumeration, sa = 0.1, k = 3000, varying maxl

5 10 15 20 25

0.5

1

1.5

2
·104

ϕ, δ = 600

#
in

s
t
a
n
c
e
s

BASERANK BASEOPTRANK OPTRANK

1,000 2,000 3,000 4,000 5,000
0

5

10

15

20

k

ti
m
e
(s
ec
)

1

1,000 2,000 3,000 4,000 5,000
0

2

4

6

8

10

k

ti
m
e
(s
ec
)

1

1,000 2,000 3,000 4,000 5,000
0

2

4

6

8

k

ti
m
e
(s
ec
)

1

(a) Taxi Network (b) MTR Network (c) Flights Network

Figure 5.13: Rank-based pattern enumeration, sa = 0.1, maxl = 30, varying k

eventually minimized. When comparing between the different versions, we observe
that the candidate generation time drops as more optimizations are employed (e.g.,
fast check for zero support).

Figure 5.7 shows the runtime cost of pattern enumeration for different values of
sr, by keeping sa to its default value. Observe that the cost explodes for values of sr
smaller than 0.5. The reason is that small sr values make it easy for triples at each
level to be characterized as patterns, which, in turn, greatly increases the number of
candidates and patterns at the next level. On the other hand, for sr ≥ 0.5 at least half
of the atomic triples in a candidate must be atomic patterns, which restricts a lot the
number of candidates and patterns at all levels.

The next experiment proves the pattern explosion for small values of sr. The high
cost of pattern enumeration stems from the fact that a very large number of patterns
are found at each level, which, in turn, all have to be minimally generalized due to

99

the weak monotonicity property of Definition 5.10. Figure 5.8 shows the numbers
of enumerated patterns for different values of sa and sr. As the number of patterns
grow, so does the essential cost of candidate generation, which becomes the dominant
cost factor. From Figure 5.8, we observe that the number of enumerated patterns is
very sensitive to sr. Specifically, for values of sr smaller than 0.5 the number of
patterns explode. On the other hand, the sensitivity to sa is relatively low. Still, even
for the default values of sa (0.001 for Taxi and 0.01 for MTR and Flights) there are
thousands or even millions of qualifying patterns. Such huge numbers necessitate the
use of constraints or ranking in order to limit the number of patterns, focusing on
the most important ones.

5.4.3 Bounded patterns

As discussed in Section 5.3.1, one way to limit the number of patterns is to bound the
number of atomic regions and/or atomic timeslots in them. In the next experiment, we
study the effect of such pattern size constraints to the runtime of algorithms Baseline,
AVFCIN, and OPT. We run experiments by setting sa and sr to their default values.
In each experiment, we set a fixed upper bound to the sizes of two of O, D, and T,
and vary the bound of one. Hence, in Figure 5.9, we keep the upper size bounds
of D and T fixed and we vary the upper size bound of O; in Figure 5.10, we keep
the upper size bounds of O and T fixed and we vary the upper size bound of D; in
Figure 5.11, we keep the upper size bounds of O and D fixed and we vary the upper
size bound of T. In general, the cost increases as one bound increases, which is as
expected, because the number of patterns and generated candidates increases as well.
On certain datasets (e.g., MTR) the cost growth is slow when the bound of O or D is
increased; this is due to the fact that the number of patterns at low levels is already
quite small and the generated patterns start to decrease as we change levels, so the
bound increase does not affect the cost significantly. On the other hand, when the
bound of T increases (Figure 5.11), there is a stable increase of time in all datasets.
This is due to the fact that the number of atomic timeslots is significantly small and
neighboring timeslots are highly correlated in terms of flow. When comparing the
costs of Baseline, AVFCIN, and OPT, we observe that OPT maintains a significant
performance advantage for different bound values, especially on the MTR dataset.

100

5.4.4 Rank‐based patterns

In this experiment, we evaluate the performance of rank-based pattern enumeration,
described in Section 5.3.3. We compare three algorithms. The first one is the baseline
approach described in Section 5.3.3, without the pattern enumeration optimizations
described in Section 5.2.2. The second one is the baseline approach of Section 5.3.3
with the pattern enumeration optimizations described in Section 5.2.2. The third ap-
proach is the optimized algorithm for rank-based patterns described in Section 5.3.3.
The three approaches are denoted by BASERANK, BASEOPTRANK, and OPTRANK,
respectively.

Figure 5.12 shows the runtime cost of the three algorithms for sa = 0.1 and
k = 3000 patterns per level, as a function of the maximum level maxl of patterns
that we generate and enumerate. Recall that the top-k patterns selected per level may
generate numerous triples at the next level and there is no sr threshold to reduce
them, so the number of levels can become too large. We use maxl as a parameter for
limiting the sizes of patterns. As shown in the figure, OPTRANK maintains a large
advantage over the other approaches which do not take advantage of the pruning
conditions and the ranking of generated triples. Figure 5.13 shows the runtime cost
of the algorithms for sa = 0.1 and various values of k, after setting maxl = 30. The
advantage of OPTRANK over the other algorithms is not affected by k. Overall, despite
the fact that a very high value of sa is used, due to the fact that the number of patterns
per level is limited by k, all algorithms are scalable, making pattern enumeration
practical, even in cases where the number of possible ODT combinations is huge.

5.4.5 Use cases

Finally, we explored the use of ODT patterns in real applications. We restricted the
origin and time dimensions, according to Section 5.3.2, and studied the resulting
patterns to identify the most popular destinations.

Table 5.1 shows some of these patterns in the Taxi dataset. We first restricted O to
be GreenPoint, Brooklyn and T to peak hour morning timeslots. This gave us as most
popular destinations, extended region East and South Williamsburg and extended
region {East Williamsburg, South Williamsburg, Williamsburg NS, Williamsburg SS}.
In afternoon peak hours people from a central region in Manhattan (Midtown South)
tend to move to neighboring central regions (MidTown Centre, MidTown East, Times

101

Square, Murray Hill). Overall, based on our study, most people move within their
borough to relatively near destinations (possibly due to high taxi fares).

Table 5.1: Use case - Taxi Dataset
Origin Timeslots popular destinations

GreenPoint [8:30-9:30] Williamsburg E, Williamsburg S
GreenPoint [8:30-9:30] Williamsburg E, Williamsburg S, Williamsburg NS, Williamsburg SS

Midtown South [17:30-18:30] MidTown Centre,MidTown East
Midtown South [17:30-18:30] MidTown Centre,MidTown East,Times Square,Murray Hill

We repeated the experiment on the MTR data to obtain some interesting patterns
such as those shown in Table 5.2. As representative patterns, we show popular des-
tinations for people who move from a relatively remote region in Hong Kong (Tsuen
Wan) in morning peak hours. The extended patterns show that the most popular re-
gions are an extended region covering the center of Hong Kong (all stations between
Sheung Wan and Wan Chai) and an extended region which includes the center and
destinations from the city center along a line northern to it.

Table 5.2: Use case - MTR Dataset
Origin Timeslots popular destinations

Tsuen Wan [8:30-9:30] [Sheung Wan-Wan Chai]
Tsuen Wan [8:30-9:30] [Sheung Wan-Wan Chai],[HK-Asia World]
CWB [17:30-18:30] [North Point-Sai Wan Ho]
CWB [17:30-18:30] [North Point-Sai Wan Ho][Exhibition Centre-Mong Kok East]

Identification of ODT patterns such as the above can be used for social/demographics
analysis or (location-aware) marketing. Finding the popular destinations from a spe-
cific origin at a specific time may also help the handling of incidents (e.g., urgent
closure of a station, due to an accident). The transportation company or municipality
can use patterns that indicate the historical movement needs to arrange emergency
bus routes and serve passengers in need. Finally, by contrasting patterns detected in
different time periods (e.g., pre-COVID and post-COVID) one may also identify the
changes in transportation needs and take proper action.

5.5 Summary

In the context of this chapter, we studied the problem of extracting spatio-temporal
patterns considering the extra information of flow (e.g.number of passengers) at vary-

102

ing granularity. We called these patterns origin-destination-time (ODT) patterns and
proposed algorithm for extracting them. Since the enumeration process was very ex-
pensive, we also proposed variants of our baseline algorithm to reduce the complexity
of the problem. We evaluated our algorithms in real datasets.

103

CHAPTER 6

RELATED WORK

6.1 Flow computation problem

6.2 Data provenance in graphs

6.3 Spatio‐temporal patterns

In this chapter, we present related work in flow computation, data provenance and
pattern mining problem.

6.1 Flow computation problem

The maximum flow problem is well studied in the literature [5, 61, 6, 20]. Given
a graph with a source node s with no incoming edges and a sink node t with no
outgoing edges and assuming that each edge has a capacity, the objective is to find
the maximum flow that can be transferred from s to t. The graph is assumed to be
static, i.e., the existence of edges and their capacities do not change over time. In
addition, the flow is assumed to be transferred instantly from one vertex to another
and to be constant over time. Since then, a number of models and algorithms for
maximum flow computation have been developed [62, 6]. We are the first to address
flow computation in temporal interaction networks. Our problem is related but not
identical to temporal maximum flow computation problems [7]. In these problems, the
graph is static, but each edge, besides having a capacity, is characterized by a transit

104

time, i.e., the time needed to transfer flow equal to its capacity [63]. The objective is
to find the maximum flow that can be transferred from s to t within a time horizon
H [64, 65]. A variant of this problem assumes that each edge is ephemeral, i.e., it
can be used to transfer flow only at specific time intervals [1], and the objective is to
find the maximum flow that can be transferred within a given time interval. Flow
computation when the capacities of the edges are time-varying was also studied in
[66]. In their work, they take into consideration the maximum flow that transfers
from the source to destination. Also, there is a delay when the flow carries among
the vertices because of the availability of the edges in network (the edges last a
couple of days and the flow cannot carries directly from source node to destination
node). As opposed to all temporal flow computation problems studied in previous
work [7, 1] we do not consider networks where edges have capacities (variable or
constant), but edges having sequences of instantaneous interactions, which transfer
flow at specific timestamps. Our objective is to compute the flow from a given source
to a given sink vertex considering all interactions on the edges and assuming that
vertices have the ability to buffer their incoming quantities. Still, as we show in Section
??, there is a relationship between the maximum flow version of our problem and
the problem formulated and studied in [1]. In Section ??, we propose novel graph
preprocessing and simplification techniques that greatly reduce the cost of maximum
flow computation in practice and can also be applied to accelerate maximum flow
computation in the problems studied in [7, 1].

6.2 Data provenance in graphs

There has been a lot of research in data provenance over the years [67, 23, 68, 69, 29,
70, 71, 72]. However, we are the first to study the problem of tracking the origin of
quantities that flow in temporal interaction networks. In this section, we summarize
representative works in temporal networks and provenance tracking.

6.2.1 Theory and applications

Buneman et al. [28] were the first who defined and studied the problem of provenance
in database systems. An annotation mechanism for where-provenance was proposed
in [73] and implemented in DBNotes [74]. As query operators (select, project, join, etc.)

105

are executed, annotations are propagated to eventually reach the query output tuples.
Geerts et al. [75] proposed another annotation-based model for the manipulation
and querying of both data and provenance, which allows annotations on sets of values
and for effectively querying how they are associated. There are important differences
between our work and provenance approaches for database systems. First, the TIN
graphs that we examine are very large (as opposed to small query graphs) and we
track provenance for any vertex in them (i.e., we do not distinguish between input
and output vertices). Second, the data transfer model between vertices in TINs is very
different compared to data transfer in query graphs. Third, interactions can happen
in any order in our TINs, as opposed to query graphs, where edges have a specific
order (query graphs are typically DAGs).

Data Provenance has also been studied in social networks [23]. An important ap-
plication is to detect where from a rumor has started before spreading through the
internet. Gundecha et al. [76] represent social networks as directed graphs and try to
recover paths to find out how information spread through the network by isolating
important nodes, based on their centrality. Taxidou et al. [24] studied provenance
within an information diffusion model, based on the W3C Provenance Data Model
(https://www.w3.org/TR/prov-dm/). These approaches are not applicable to TINs, be-
cause, in social networks, information is copied and diffused, whereas in TINs data are
buffered and moved (i.e., not copied) from one vertex to another.

Savage et al. [36] propose a stochastic packet marking mechanism that can be used
for probabilistic tracing of packet-flooding attacks in the Internet. We target a more
generic provenance problem in TINs, where we consider information propagation
based on several alternative policies. Moreover, we aim at exact provenance tracking
wherever possible.

Data Provenance has recently gained ground in social networks. Studying the
provenance in social networks is vital in order to detect for example, from where
a rumor has started before spreading through the internet. Gundecha et al. [76]
take into consideration this consensus and try to solve the problem of untraceable
information. They represent social networks as directed graphs and try to recover
paths to find out how information spread through the network by isolating important
nodes (less than 1%). The importance of the nodes is based on their centrality. Zhou et
al. [77] study the problem of dynamically synthesizing realistic TINs by learning from
log data. These approaches are not applicable to TINs, because, in social networks,

106

information is copied and diffused, whereas in TINs data are moved from one vertex to
another. This key difference makes the provenance problem in TINs unique compared
to related problems in previous work.

6.2.2 Provenance systems

Over the years, a number of systems for provenance tracking have been developed,
mainly to serve the need of efficiently storing and managing the annotation data.
Chapman et al. [13] propose a factorization technique, which identifies and unifies
common query evaluation subtrees for reducing the provenance storage requirements.
Heinis and Alonso [12] represent workflow provenance mechanisms as DAGs and
compress DAGs with common nodes, in order to save space.

Several systems [78, 79] have been developed to support the answering of data
provenance questions, where the objective is to find how a data element has appeared
in the query result. Provenance is considered as a very important concept in databases,
especially when we want to track the origin of the information or answer questions
related to how a data element was appeared. Many systems have been developed
through the years because of the need to record the provenance in order to find an-
swers [78] [79]. Karvounarakis et al [80] developed ProQL, a query language which
can be used to detect errors and side effects during the updates of a database. ProQL
takes advantage of the graph representation and path expressions to simplify op-
erations involving traversal and projection on the provenance graph. A provenance
query language and algorithms for datalog programs, supporting tracking for se-
lected graph subsets were proposed in [81]. Deutch et al. [82] reduce the granularity
of provenance tracking in order to make it feasible on large graphs. Titian [83] adds
provenance support to Spark, aiming at identifying errors during query evaluation.

Glavic et al. [84] present a system for provenance tracking in data stream man-
agement systems (DSMS). They propose an operator instrumentation model, which
annotates data tuples that are generated or propagated by the streaming operators
with their provenance. They also propose an alternative approach (called replay lazy),
which uses the original operators and, whenever provenance information is needed,
the approach replays query processing on the relevant inputs through a instrumented
copy of the network (hence, data processing and provenance computation are decou-
pled). We also propose space-economic models for tracking provenance. However,

107

our input graphs (TINs) are larger and different than DSMS graphs and our prop-
agation models consider the transfer of quantities between vertices as a result of a
stream of interactions.

Provenance has also been studied in blockchain systems especially after the huge
success of Bitcoin. In [85], a secure and efficient system called LineageChain is im-
plemented on top of Hyperledger (https://www.hyperledger.org), for capturing the
provenance during contract execution and safely storing it in a Merkle tree.

6.3 Spatio‐temporal patterns

Pattern enumeration in general graphs and temporal networks is a well-studied prob-
lem [86, 87, 53, 88, 89, 90]. However, most previously proposed techniques apply
on labeled graphs and all of them disregard flow computation. In Chapter 3 [47], we
have studied a flow pattern enumeration problem in temporal interaction networks,
based on a different definition of flow transfer; each vertex along the path of a pattern
instance is only allowed to transfer its buffered quantities to the next vertex just once.
In addition, flow can be measured only along paths, but not arbitrary graphs. The
objective is to find occurrences of (path) patterns and measuring the flow through
them during time windows of specific length. On the other hand, in our pattern
enumeration problem, the objective is to compute the maximum flow (based on our
definition), at all instances of more complex patterns than simple paths.

Agrawal and Srikant [16] introduced the concept of sequential patterns over a
database of customer sales transactions. More specifically, the problem of mining
sequential patterns is to find the maximal sequences of itemsets (that appear together
in a customer transaction) among all those that have a certain user-specific minimum
support. The authors use three different algorithms to solve this problem and evaluate
their proposed techniques using synthetic data.

Extracting trajectory patterns from large graphs is a well-studied problem in data
mining. The main objective is to find spatio-temporal patterns from raw GPS data,
which can describe, for example, frequent routes or passenger movements. Giannotti
et al. [15] extended the problem of mining sequential patterns in trajectories. They
define trajectory patterns as frequent behaviors in both space and time. They also
propose algorithms for discovering regions of interest, to mine trajectory patterns with

108

predefined regions and reduce the complexity of the problem. Cao et al. [91] studied
the problem of mining sequential patterns from spatiotemporal data. They defined
patterns as spatial regions and extract frequent patterns by considering not only
the similarity between regions but also the closeness in space. They also proposed a
substring tree, a fast approach for extracting longer patterns. Choi et al., [92] introduce
a tool for discovering all regional movement patterns in semantic trajectories. They
design an algorithm called RegMiner (Regional Semantic Trajectory Pattern Miner)
which is capable of finding movement patterns that can be frequent only in specific
regions and not in the entire space. By doing this, they automatically reduce the search
requirements and identify more interesting patterns. [14] try to improve existing
algorithms by providing scalable solutions using Apache Spark.

Pattern mining in graph streams has been studied in [93]. In this work, the au-
thors model and solve the problem of mining patterns in dense graphs by proposing
probabilistic algorithms. The goal is to develop a summarization of the graph stream
which can then be used as input to the mining problem. They use a min-hash ap-
proach for extracting patterns more efficiently. Pattern detection in temporal networks
with an application in social network analysis was also studied in [94].

Motifs are patterns that repeat themselves more frequently than expected. Paran-
jape et al., [95] define motifs in temporal networks. They define motifs as small
connected graphs whose edges are temporally ordered and propose algorithms for
computing the number of motif instances and counting certain temporal motifs.

Our problem is quite different compared to previous work on trajectory, sequence,
and graph mining. First, we are not interested in finding frequent paths (subse-
quences, subgraphs), but in finding hot combinations of trip origins, destinations,
and timeslots. Second, we do not search for patterns at the finest granularity only,
but looking for patterns where any of the three ODT components are generalized.
Furthermore, we only have a weak monotonicity property when generalizing de-
tailed patterns, which means that the classic Apriori algorithm (and its variants)
[96, 97, 98, 99, 100] cannot be readily applied to solve our problem.

109

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Summary of Contributions

7.2 Directions for Future Work

To conclude, in this thesis, we summarize our major contributions in 7.1 and describe
directions for future work in we discuss ideas for future work.

7.1 Summary of Contributions

Computing the flow in TINs In the first part of thesis, we studied the problem of
computing the flow in TINs. Specifically, we defined two models for flow computation,
one based on greedy flow transfer between vertices and one that assumes arbitrary
flow transfer. For the second model, the main objective was to compute the maximum
flow. In this case, we proved that computation based on the first model can be done
in linear time. We also proposed and evaluated a number of techniques that greatly
reduce the cost of the more interesting maximum flow computation problem. The
value of our greedy computation approach is not only in solving efficiently the prob-
lem under the greedy transfer assumption but also in simplifying maximum flow
computation wherever possible. At this point, it is important to mention that that
our techniques are readily applicable for the time-restricted version of the problem,

110

where we only consider interactions that happen within a time window (i.e., by sim-
ply ignoring all interactions outside the window). In addition, the greedy algorithm
can seamlessly be used to continuously maintain the incoming flow at the sink, if
interactions come from a stream in time order. Although flow computation problem
is considered as a classic and difficult problem to solve (because of the high complex-
ity of the proposed solutions), our solutions are very efficiently and can easily adapt
to a variety of problems related to transferred quantities between vertices through a
network.

Tracking the provenance of a quantity in TINs In the second part of this thesis,
we introduced and studied provenance tracking in TINs. We investigated different
selection policies for data propagation in TINs, suitable for applications where trans-
ferred quantity units are not tagged in the network. We defined a number of different
policies and for each policy, we proposed propagation mechanisms for provenance
meta-data and analyze their space and time complexities. For the hardest policy (pro-
portional selection), we propose to track provenance from a limited set of vertices or
from groups thereof. We also propose to limit the provenance tracking up to a sliding
window of past interactions or to set a space budget at each vertex for provenance
tracking. Lastly, we evaluated our methods using four real datasets and demonstrated
their scalability.

Extracting spatio‐temporal flow patterns In the last part of this thesis, we have
studied the problem of enumerating origin-destination-timeslot (ODT) patterns of
varying granularity from a database of trips. To our knowledge, this is the first
work that formulates and studies this problem. Due to the huge number of region-
time combinations that can formulate a candidate pattern, the problem is hard. We
explore the problem space level-by-level, building on a weak monotonicity property
of patterns. We propose a number of optimizations that greatly reduce the cost of
the baseline pattern enumeration algorithm. To reduce the possibly huge number of
ODT patterns, which take too long to enumerate and analyze, we propose practical
variants of the mining problem, where we restrict the size of patterns and/or the
region/timeslots included in them. In addition, we suggest the interesting definition
of rank-based patterns and we study their efficient enumeration. Experiments with
three real datasets demonstrate the effectiveness of the proposed techniques.

111

7.2 Directions for Future Work

In this section, we outline ideas for additional research.

Computing the flow in TINs We plan to investigate additional techniques for reduc-
ing the cost of the maximum flow problem. It is quite important to take into con-
sideration issues related to memory managememt for example and improve further
our proposed techniques. Another important aspect we would like to explore is the
investigation of similar simplification techniques to other flow computation problems
like the computation of minimum quantity. Lastly, we are interested in proposing
algorithms for the systematic discovery of interesting patterns and subgraphs that
have significanlty more flow that expected (motifs).

Tracking the provenance of a quantity in TINs For the provenance problem, our
main goal is to investigate lazy approaches [84] as well as why-not provenance[30] in
TINs. We also consider spatio-temporal information in TINs (e.g., districts in passen-
ger flow networks, locations of financial entities) to track coarse-gained provenance
for spatial regions and/or identify hot paths [101]. Finally, we plan to analyze prove-
nance data in spatio(temporal) networks, with the help of mining approaches [102],
to find interesting insights in them.

Extracting spatio‐temporal flow patterns Finding spatio-temporal flow patterns can
help in solving problems related to transportation networks (for example the problem
of congestion especially in rush hours). Our goal in the future is to study the rela-
tionships between patterns at different levels/granularity. Also it would be interesting
to propose alternative definitions of interesting ODT patterns. Last but not least, we
are interested in developing tools for visualizing the ODT patterns.

112

BIBLIOGRAPHY

[1] E. C. Akrida, J. Czyzowicz, L. Gasieniec, L. Kuszner, and P. G. Spirakis, “Tem-
poral flows in temporal networks,” in CIAC, 2017, pp. 43–54.

[2] P. Holme and J. Saramäki, “Temporal networks,” CoRR, vol. abs/1108.1780,
2011. [Online]. Available: http://arxiv.org/abs/1108.1780

[3] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, “A fistful of bitcoins: characterizing payments among men with
no names,” in IMC,. ACM, 2013, pp. 127–140.

[4] D. R. Fulkerson and G. B. Dantzig, “Computation of maximal flows in net-
works,” RAND CORP SANTA MONICA CA, Tech. Rep., 1955.

[5] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian
Journal of Mathematics, no. 8, pp. 399–404, 1956.

[6] A. V. Goldberg and R. E. Tarjan, “Efficient maximum flow algorithms,” Com-
mun. ACM, vol. 57, no. 8, pp. 82–89, 2014.

[7] M. Skutella, “An introduction to network flows over time,” in Research Trends in
Combinatorial Optimization, Bonn Workshop on Combinatorial Optimization, Novem-
ber 3-7, 2008, Bonn, Germany. Springer, 2008, pp. 451–482.

[8] R. Dánger, V. Curcin, P. Missier, and J. W. Bryans, “Access control and view
generation for provenance graphs,” Future Gener. Comput. Syst., pp. 8–27, 2015.

[9] M. K. Anand, S. Bowers, and B. Ludäscher, “Techniques for efficiently querying
scientific workflow provenance graphs,” in EDBT 13th International Conference
on Extending Database Technology, 2010, pp. 287–298.

113

http://arxiv.org/abs/1108.1780

[10] T. D. Huynh, M. Ebden, J. E. Fischer, S. J. Roberts, and L. Moreau, “Provenance
network analytics - an approach to data analytics using data provenance,” Data
Min. Knowl. Discov., pp. 708–735, 2018.

[11] P. Buneman, A. Chapman, and J. Cheney, “Provenance management in cu-
rated databases,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2006, pp. 539–550.

[12] T. Heinis and G. Alonso, “Efficient lineage tracking for scientific workflows,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD, Vancouver, BC, Canada, June 10-12, 2008, pp. 1007–1018.

[13] A. Chapman, H. V. Jagadish, and P. Ramanan, “Efficient provenance storage,”
in Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD, Vancouver, BC, Canada, June 10-12, 2008, pp. 993–1006.

[14] Q. Fan, D. Zhang, H. Wu, and K. Tan, “A general and parallel platform for
mining co-movement patterns over large-scale trajectories,” Proc. VLDB En-
dow., pp. 313–324, 2016.

[15] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern mining,”
in Proceedings of the 13th SIGKDD International Conference on Knowledge Discovery
and Data Mining, San Jose, California, USA, August 12-15. ACM, 2007, pp.
330–339.

[16] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of the
Eleventh International Conference on Data Engineering, March 6-10, Taipei, Taiwan.
IEEE Computer Society, 1995, pp. 3–14.

[17] D. Kondor, I. Csabai, J. Szüle, M. Pósfai, and G. Vattay, “Inferring the interplay
between network structure and market effects in bitcoin,” New Journal of Physics,
vol. 16, no. 12, p. 125003, 2014.

[18] O. Y. Chén, H. Cao, J. M. Reinen, T. Qian, J. Gou, H. Phan, M. D. Vos, and T. D.
Cannon, “Resting-state brain information flow predicts cognitive flexibility in
humans,” Nature Scientific Reports, vol. 9, no. 3879, 2019.

[19] M. Cha, A. Mislove, and P. K. Gummadi, “A measurement-driven analysis of
information propagation in the flickr social network,” in Proceedings of the 18th

114

International Conference on World Wide Web, WWW, Madrid, Spain, April 20-24.
ACM, 2009, pp. 721–730.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 3rd Edition. MIT Press, 2009.

[21] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic effi-
ciency for network flow problems,” J. ACM, vol. 19, no. 2, pp. 248–264, 1972.

[22] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin net-
work,” in 13th IEEE International Conference on Peer-to-Peer Computing, 2013,
pp. 1–10.

[23] G. Barbier, Z. Feng, P. Gundecha, and H. Liu, Provenance Data in Social Media,
ser. Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan &
Claypool Publishers, 2013.

[24] I. Taxidou, T. D. Nies, R. Verborgh, P. M. Fischer, E. Mannens, and R. V.
de Walle, “Modeling information diffusion in social media as provenance with
W3C PROV,” in Proceedings of the 24th International Conference on World Wide
Web Companion, WWW, 2015, pp. 819–824.

[25] M. Richardson and P. M. Domingos, “Mining knowledge-sharing sites for viral
marketing,” in Proceedings of the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002, pp. 61–70.

[26] R. Kumar and T. Calders, “Information propagation in interaction networks,”
in EDBT, 2017, pp. 270–281.

[27] D. Kempe, J. M. Kleinberg, and É. Tardos, “Maximizing the spread of influence
through a social network,” in Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2003, pp. 137–146.

[28] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A characterization
of data provenance,” in Database Theory - ICDT, 8th International Conference,
2001, pp. 316–330.

[29] S. Lee, B. Ludäscher, and B. Glavic, “Approximate summaries for why and
why-not provenance,” Proc. VLDB Endow., pp. 912–924, 2020.

115

[30] ——, “Provenance summaries for answers and non-answers,” Proc. VLDB En-
dow., vol. 11, no. 12, pp. 1954–1957, 2018.

[31] ——, “PUG: a framework and practical implementation for why and why-not
provenance,” VLDB J., vol. 28, no. 1, pp. 47–71, 2019.

[32] F. Psallidas and E. Wu, “Smoke: Fine-grained lineage at interactive speed,”
Proc. VLDB Endow., vol. 11, no. 6, pp. 719–732, 2018.

[33] X. Han, T. F. J. Pasquier, A. Bates, J. Mickens, and M. I. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in 27th
Annual Network and Distributed System Security Symposium, NDSS , San Diego,
California, USA, February 23-26. The Internet Society, 2020.

[34] J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in databases: Why, how,
and where,” Found. Trends Databases, pp. 379–474, 2009.

[35] R. T. Morris, “A weakness in the 4.2bsd unix tcp/ip software,” Bell Labs Com-
puter Science, Tech. Rep., 1985.

[36] S. Savage, D. Wetherall, A. R. Karlin, and T. E. Anderson, “Practical network
support for IP traceback,” in Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tion, August 28 - September 1, Stockholm, Sweden. ACM, 2000, pp. 295–306.

[37] M. S. Hung, “A polynomial simplex method for the assignment problem,” Op-
erations Research, vol. 31, no. 3, pp. 595–600, 1983.

[38] A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabási, “The fundamental
advantages of temporal networks,” Science, vol. 358, no. 6366, pp. 1042–1046,
2017.

[39] N. Masuda and P. Holme, “Predicting and controlling infectious disease epi-
demics using temporal networks,” F1000Prime Reports, vol. 5, no. 6, 2013.

[40] F. Giannotti, M. Nanni, and D. Pedreschi, “Efficient mining of temporally an-
notated sequences,” in Proceedings of the Sixth SIAM International Conference on
Data Mining, April 20-22, Bethesda, MD, USA. SIAM, 2006, pp. 348–359.

116

[41] M. T. Asif, J. Dauwels, C. Y. Goh, A. Oran, E. Fathi, M. Xu, M. M. Dhanya,
N. Mitrovic, and P. Jaillet, “Spatiotemporal patterns in large-scale traffic speed
prediction,” IEEE Trans. Intell. Transp. Syst., no. 2, pp. 794–804, 2014.

[42] Y. Morimoto, “Mining frequent neighboring class sets in spatial databases,” in
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, San Francisco, CA, USA, August 26-29. ACM, 2001,
pp. 353–358.

[43] X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou, “Fast mining of spatial
collocations,” in Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Seattle, Washington, USA, August 22-
25. ACM, 2004, pp. 384–393.

[44] J. S. Yoo and M. Bow, “Mining top-k closed co-location patterns,” in IEEE In-
ternational Conference on Spatial Data Mining and Geographical Knowledge Services,
ICSDM, Fuzhou, China, June 29 - July 1. IEEE, 2011, pp. 100–105.

[45] W. Yu, “Spatial co-location pattern mining for location-based services in road
networks,” Expert Syst. Appl., pp. 324–335, 2016.

[46] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate
generation: A frequent-pattern tree approach,” Data Min. Knowl. Discov., pp.
53–87, 2004.

[47] C. Kosyfaki, N. Mamoulis, E. Pitoura, and P. Tsaparas, “Flow motifs in interac-
tion networks,” in Advances in Database Technology - 22nd International Conference
on Extending Database Technology, EDBT Lisbon, Portugal, March 26-29. Open-
Proceedings.org, 2019, pp. 241–252.

[48] J. Cai and M. Kwan, “Discovering co-location patterns in multivariate spatial
flow data,” Int. J. Geogr. Inf. Sci., vol. 36, no. 4, pp. 720–748, 2022.

[49] C. Kosyfaki, N. Mamoulis, E. Pitoura, and P. Tsaparas, “Flow computation in
temporal interaction networks,” in 37th IEEE International Conference on Data
Engineering, ICDE, Chania, Greece, April 19-22, 2021, pp. 660–671.

117

[50] M. Y. Ansari, A. Ahmad, S. S. Khan, G. Bhushan, and Mainuddin, “Spatiotem-
poral clustering: a review,” Artif. Intell. Rev., vol. 53, no. 4, pp. 2381–2423,
2020.

[51] N. Bidoit, M. Herschel, and K. Tzompanaki, “Query-based why-not provenance
with nedexplain,” in Proceedings of the 17th International Conference on Extending
Database Technology, EDBT, Athens, Greece, March 24-28. OpenProceedings.org,
2014, pp. 145–156.

[52] M. B. Cohen, Y. T. Lee, and Z. Song, “Solving linear programs in the current
matrix multiplication time,” in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC, Phoenix, AZ, USA, June 23-26.
ACM, 2019, pp. 938–942.

[53] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph matching
on billion node graphs,” PVLDB, vol. 5, no. 9, pp. 788–799, 2012.

[54] P. van Beek, “Backtracking search algorithms,” in Handbook of Constraint Pro-
gramming, 2006, pp. 85–134.

[55] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang, “Fast graph pattern match-
ing,” in ICDE, 2008, pp. 913–922.

[56] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system
http://bitcoin.org/bitcoin.pdf,” 2007.

[57] S. García, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of
botnet detection methods,” Comput. Secur., pp. 100–123, 2014.

[58] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD vectorization
for in-memory databases,” in Proceedings of the SIGMOD International Conference
on Management of Data, Melbourne, Victoria, Australia, May 31 - June 4. ACM,
2015, pp. 1493–1508.

[59] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for
partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–
392, 1998.

118

[60] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant, “Range queries in OLAP data
cubes,” in SIGMOD, Proceedings ACM SIGMOD International Conference on Man-
agement of Data, May 13-15,Tucson, Arizona, USA, J. Peckham, Ed. ACM Press,
1997, pp. 73–88.

[61] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows - theory, algorithms
and applications. Prentice Hall, 1993.

[62] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. Reddy, “Applications of network
optimization,” Handbooks in Operations Research and Management Science, vol. 7,
pp. 1–83, 1995.

[63] B. Hoppe, “Efficient dynamic network flow algorithms,” Ph.D. dissertation,
Cornell University, USA, 1995.

[64] N. Baumann and M. Skutella, “Earliest arrival flows with multiple sources,”
Math. Oper. Res., vol. 34, no. 2, pp. 499–512, 2009.

[65] S. Ruzika, H. Sperber, and M. Steiner, “Earliest arrival flows on series-parallel
graphs,” Networks, vol. 57, no. 2, pp. 169–173, 2011. [Online]. Available:
https://doi.org/10.1002/net.20398

[66] H. W. Hamacher and S. A. Tjandra, “Earliest arrival flows with time-dependent
data,” Pedestrian and Evacuation Dynamics, 2003.

[67] L. Rupprecht, J. C. Davis, C. Arnold, Y. Gur, and D. Bhagwat, “Improving
reproducibility of data science pipelines through transparent provenance cap-
ture,” Proc. VLDB Endow., pp. 3354–3368, 2020.

[68] Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe, “Explaining outputs in
modern data analytics,” Proc. VLDB Endow., pp. 1137–1148, 2016.

[69] R. de Paula, M. Holanda, L. S. A. Gomes, S. Lifschitz, and M. E. M. T. Walter,
“Provenance in bioinformatics workflows,” BMC Bioinform., p. S6, 2013.

[70] F. Psallidas and E. Wu, “Demonstration of smoke: A deep breath of data-
intensive lineage applications,” in Proceedings of the International Conference on
Management of Data, SIGMOD Conference, Houston, TX, USA, June 10-15, 2018,
pp. 1781–1784.

119

https://doi.org/10.1002/net.20398

[71] N. N. Parulian, T. M. McPhillips, and B. Ludäscher, “A model and system for
querying provenance from data cleaning workflows,” in Provenance and Anno-
tation of Data and Processes - 8th and 9th International Provenance and Annotation
Workshop, IPAW 2020 + IPAW 2021, Virtual Event, July 19-22, Proceedings,
2021, pp. 183–197.

[72] M. H. Namaki, A. Floratou, F. Psallidas, S. Krishnan, A. Agrawal, Y. Wu,
Y. Zhu, and M. Weimer, “Vamsa: Automated provenance tracking in data
science scripts,” in KDD: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp.
1542–1551.

[73] P. Buneman, S. Khanna, and W. C. Tan, “On propagation of deletions and
annotations through views,” in Proceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, Madi-
son, Wisconsin, USA. ACM, 2002, pp. 150–158.

[74] D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya, “An annotation
management system for relational databases,” in (e)Proceedings of the Thirtieth
International Conference on Very Large Data Bases, VLDB, Toronto, Canada, August
31 - September 3, 2004, pp. 900–911.

[75] F. Geerts, A. Kementsietsidis, and D. Milano, “MONDRIAN: annotating and
querying databases through colors and blocks,” in Proceedings of the 22nd In-
ternational Conference on Data Engineering, ICDE, 3-8 April, Atlanta, GA, USA,
2006, p. 82.

[76] P. Gundecha, Z. Feng, and H. Liu, “Seeking provenance of information using
social media,” in 22nd ACM International Conference on Information and Knowledge
Management, CIKM, 2013, pp. 1691–1696.

[77] D. Zhou, L. Zheng, J. Han, and J. He, “A data-driven graph generative model
for temporal interaction networks,” in KDD: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020, pp. 401–411.

[78] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,
and J. Widom, “Trio: A system for data, uncertainty, and lineage,” in Proceedings

120

of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, pp. 1151–1154.

[79] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Provenance in OR-
CHESTRA,” IEEE Data Eng. Bull., pp. 9–16, 2010.

[80] G. Karvounarakis, Z. G. Ives, and V. Tannen, “Querying data provenance,” in
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD, Indianapolis, Indiana, USA, June 6-10, 2010, pp. 951–962.

[81] D. Deutch, A. Gilad, and Y. Moskovitch, “Selective provenance for datalog
programs using top-k queries,” Proc. VLDB Endow., vol. 8, no. 12, pp. 1394–
1405, 2015.

[82] D. Deutch, Y. Moskovitch, and N. Rinetzky, “Hypothetical reasoning via prove-
nance abstraction,” in Proceedings of the International Conference on Management
of Data, SIGMOD Conference, Amsterdam, The Netherlands. ACM, 2019, pp.
537–554.

[83] M. Interlandi, K. Shah, S. D. Tetali, M. A. Gulzar, S. Yoo, M. Kim, T. D.
Millstein, and T. Condie, “Titian: Data provenance support in spark,” Proc.
VLDB Endow., pp. 216–227, 2015.

[84] B. Glavic, K. S. Esmaili, P. M. Fischer, and N. Tatbul, “Ariadne: managing fine-
grained provenance on data streams,” in The 7th ACM International Conference
on Distributed Event-Based Systems, DEBS ’13, Arlington, TX, USA - June 29
- July 03. ACM, 2013, pp. 39–50.

[85] P. Ruan, G. Chen, A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang, “Fine-grained, se-
cure and efficient data provenance for blockchain,” Proc. VLDB Endow., vol. 12,
no. 9, pp. 975–988, 2019.

[86] B. Gallagher, “Matching structure and semantics: A survey on graph-based
pattern matching,” in Capturing and Using Patterns for Evidence Detection, Papers
from the AAAI Fall Symposium, Washington, DC, USA, October 13-15, vol. FS-
06-02. AAAI Press, 2006, pp. 45–53.

[87] K. Semertzidis and E. Pitoura, “Durable graph pattern queries on historical
graphs,” in ICDE, 2016, pp. 541–552.

121

[88] S. Ranu and A. K. Singh, “Graphsig: A scalable approach to mining significant
subgraphs in large graph databases,” in ICDE, 2009, pp. 844–855.

[89] U. Redmond and P. Cunningham, “Subgraph isomorphism in temporal
networks,” CoRR, vol. abs/1605.02174, 2016. [Online]. Available: http:
//arxiv.org/abs/1605.02174

[90] L. Zou, L. Chen, and M. T. Özsu, “Distancejoin: Pattern match query in a large
graph database,” Proc. VLDB Endow., vol. 2, no. 1, pp. 886–897, 2009.

[91] H. Cao, N. Mamoulis, and D. W. Cheung, “Mining frequent spatio-temporal
sequential patterns,” in Proceedings of the 5th International Conference on Data
Mining (ICDM), 27-30 November, Houston, Texas, USA. IEEE Computer
Society, 2005, pp. 82–89.

[92] D. Choi, J. Pei, and T. Heinis, “Efficient mining of regional movement patterns
in semantic trajectories,” Proc. VLDB Endow., vol. 10, no. 13, pp. 2073–2084,
2017.

[93] C. C. Aggarwal, Y. Li, P. S. Yu, and R. Jin, “On dense pattern mining in graph
streams,” Proc. VLDB Endow., vol. 3, no. 1, pp. 975–984, 2010.

[94] C. Belth, X. Zheng, and D. Koutra, “Mining persistent activity in continually
evolving networks,” in KDD: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp.
934–944.

[95] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks,”
in Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining, WSDM, Cambridge, United Kingdom, February 6-10. ACM, 2017, pp.
601–610.

[96] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules between
sets of items in large databases,” in Proceedings of the SIGMOD International
Conference on Management of Data, Washington, DC, USA, May 26-28. ACM
Press, 1993, pp. 207–216.

[97] J. Han and Y. Fu, “Mining multiple-level association rules in large databases,”
IEEE Trans. Knowl. Data Eng., pp. 798–804, 1999.

122

http://arxiv.org/abs/1605.02174
http://arxiv.org/abs/1605.02174

[98] K. Koperski and J. Han, “Discovery of spatial association rules in geographic
information databases,” in Advances in Spatial Databases, 4th International Sym-
posium, SSD, Portland, Maine, USA, August 6-9, Proceedings, ser. Lecture Notes
in Computer Science, vol. 951. Springer, 1995, pp. 47–66.

[99] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo, “Fast
discovery of association rules,” in Advances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1996, pp. 307–328.

[100] “Association rules, spatio-temporal,” in Encyclopedia of GIS, S. Shekhar and
H. Xiong, Eds. Springer, 2008, p. 32.

[101] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. K. Sellis, “On-line discovery of hot motion paths,” in
EDBT , 11th International Conference on Extending Database Technology, Nantes,
France, March 25-29, Proceedings, ser. ACM International Conference Proceed-
ing Series, vol. 261. ACM, 2008, pp. 392–403.

[102] V. Kaffes, G. Giannopoulos, N. Tsakonas, and S. Skiadopoulos, “Determining
the provenance of land parcel polygons via machine learning,” in SSDBM: 32nd
International Conference on Scientific and Statistical Database Management, Vienna,
Austria, July 7-9. ACM, 2020, pp. 21:1–21:4.

123

AUTHOR’S PUBLICATIONS

• Chrysanthi Kosyfaki, Reynold Cheng, Ben Kao, Nikos Mamoulis, Spatiotempo‐
ral flow patterns, submitted to VLDB 2023, Vancouver, Canada

• Chrysanthi Kosyfaki, Nikos Mamoulis, Provenance in Temporal Interaction
Networks, in ICDE’22, Kuala Lumpur, Malaysia

• Chrysanthi Kosyfaki, Flow Provenance in Temporal Interaction Networks in
as a poster in SIGMOD’21, X’ian, China

• Chrysanthi Kosyfaki, Nikos Mamoulis, Evaggelia Pitoura, Panayiotis Tsaparas,
Flow Computation in Temporal Interaction Networks, in ICDE’21, Chania,
Greece

• Chrysanthi Kosyfaki, Nikos Mamoulis, Evaggelia Pitoura, Panayiotis Tsaparas,
Flow Motifs in Interaction Networks in EDBT’19, Lisbon, Portugal

SHORT BIOGRAPHY

Chrysanthi Kosyfaki was born in 1995. She received her BSc degree from the De-
partment of Computer Science of Ionian University in 2017. At the same year, she
became a MSc student at the Department of Computer Science and Engineering of
University of Ioannina, working under the supervision of Prof. Mamoulis. In 2019,
she was admitted to the PhD program of the same department working with Prof
Mamoulis. During her PhD studies, she went in Hong Kong as an intern at the De-
partment of Computer Science of the University of Hong Kong working with Profs.
Cheng and Kao. Her research interests are in the area of temporal data analytics,
data management, temporal graph analysis, flow analytics in graphs and network
and continuous queries.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Dissertation contribution
	Computing flow in large graphs
	Tracking provenance in large graphs
	Extracting spatio-temporal flow patterns

	Repeatability
	Dissertation layout

	Background and Definitions
	Flow networks
	Flow Networks
	Flow Networks - Classic Problems

	Temporal Networks
	Temporal Interaction Networks
	Buffers

	Data Provenance
	Workflow Provenance
	Data provenance types
	Different models of Data Provenance

	Flow computation in temporal interaction networks
	Definitions
	Flow Computation Algorithms
	Greedy flow computation
	Maximum flow computation using LP

	A framework for maximum flow computation
	Graphs for which Algorithm 4.1 computes the maximum flow
	Graph preprocessing algorithm
	Graph simplification
	Putting it all together
	Mapping DBLP:conf/ciac/AkridaCGKS17 to our problem

	Flow pattern search
	Graph browsing approach
	Flow path indexing
	Non-rigid patterns

	Experimental evaluation
	Dataset description
	Flow computation
	Pattern search

	Summary

	Provenance in temporal interaction networks
	Definitions
	Selection policies and provenance
	Selection based on generation time
	Selection based on order of receipt
	Proportional selection
	Sparse vector representation

	Scalable proportional provenance
	Selective provenance tracking
	Grouped provenance tracking
	Limiting the scope of provenance

	Tracking the paths
	Experimental Evaluation
	Dataset description
	Provenance tracking performance
	Selective and grouped provenance
	Limiting the scope of provenance tracking
	Path tracking
	Use case

	Summary

	Spatiotemporal flow patterns
	Definitions
	Pattern Extraction
	Baseline Algorithm
	Optimizations

	Pattern Variants
	Size-bounded Patterns
	Constrained Patterns
	Rank-based patterns

	Experiments
	Dataset Description
	Pattern enumeration
	Bounded patterns
	Rank-based patterns
	Use cases

	Summary

	Related Work
	Flow computation problem
	Data provenance in graphs
	Theory and applications
	Provenance systems

	Spatio-temporal patterns

	Conclusions and future work
	Summary of Contributions
	Directions for Future Work

	Bibliography
	Author's Publications
	Short Biography

