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ABSTRACT

Anna Mpanti, Ph.D., Department of Computer Science and Engineering, School of
Engineering, University of Ioannina, Greece, 2022.
Edge Modification on Perfect and Reducible Graphs with Application to Watermark-
ing.
Advisor: Stavros D. Nikolopoulos, Professor.

In graph modification problems, we have to repair, improve, or adjust a graph to
satisfy appropriate properties while minimizing the cost of the modification. The study
of graph modification problems is crucial to computer science as they find applications
in different areas, such as biology, mathematics, sociology, machine learning, data
mining, and computer vision.

This PhD thesis has a theoretical and a more applied part, both related to edge
modification problems on classes of graphs.

For the theoretical part, we study and present polynomial algorithms for the
minimum completion problem (i) of a graph with a “tail” for four subclasses of perfect
graphs and (ii) of a graph and an added edge for the class of P4-sparse graphs. The
minimum completion (fill-in) problem is defined as follows: Given a graph family F
(more generally, a property Π) and a graph G, the completion problem asks for the
minimum number of non-edges needed to be added to G so that the resulting graph
belongs to the graph family F (or has property Π). This problem is NP-complete for
many subclasses of perfect graphs and polynomial solutions are available only for
minimal completion sets.

Given a graph G, a tail uw is an edge connecting a vertex w ̸∈ V (G) to a vertex u ∈
V (G). We study the minimum completion problem for the graph G+uw for the classes
of split, quasi-threshold, threshold, and P4-sparse graphs. Based on properties of the
structure of split graphs and of the tree representation of quasi-threshold, threshold,
and P4-sparse graphs, we present linear-time algorithms to solve this problem.
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Additionally, for the class of P4-sparse graphs, we study the minimum completion
problem of a P4-sparse graph G with an added edge. For any optimal solution of
the problem, we prove that there is an optimal solution whose form is of one of a
small number of possibilities. This along with the solution of the problem when the
added edge connects two non-adjacent vertices of a spider or connects two vertices
in different connected components of the graph enables us to present a linear-time
algorithm for the problem.

The applied part of this thesis focuses on the study of malicious edge modifications
of reducible graphs used to encode an integer number as a watermark in a specific
software watermarking codec system. The most important step in any software wa-
termarking method is the choice of the right watermark, which, in the watermarking
system we study, is a watermark producing a reducible graph in which edge modi-
fications can be detected. Through the study of such edge modifications, we classify
watermarks as strong, intermediate, or weak and we are able to give recommendations
for the best choice of watermarks to use.
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Άννα Μπαντή, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή,
Πανεπιστήμιο Ιωαννίνων, 2022.
Τροποποίηση Ακμών σε Τέλεια και Αναγώγιμα Γραφήματα με Εφαρμογή στην Υδα-
τογράφηση.
Επιβλέπων: Σταύρος Δ. Νικολόπουλος, Καθηγητής.

Σε προβλήματα τροποποίησης γραφήματος, πρέπει να διορθώσουμε, να βελτιώ-
σουμε ή να προσαρμόσουμε ένα γράφημα προκειμένου να πληροί συγκεκριμένες
κατάλληλες ιδιότητες, ελαχιστοποιώντας ταυτόχρονα το κόστος της τροποποίησης.
Η μελέτη των προβλημάτων τροποποίησης γραφημάτων είναι ύψιστης σημασίας για
την επιστήμη των υπολογιστών. Τα προβλήματα τροποποίησης γραφημάτων έχουν
πολλές εφαρμογές σε διαφορετικούς τομείς, όπως η βιολογία, τα μαθηματικά, η
κοινωνιολογία, η μηχανική μάθηση, η εξόρυξη δεδομένων, η υπολογιστική όραση και
πολλοί άλλοι τομείς.

Το κύριο σημείο εστίασης αυτής της διδακτορικής διατριβής έγκειται σε δύο
μέρη, το θεωρητικό και το εφαρμοσμένο μέρος των προβλημάτων τροποποίησης
ακμών σε κατηγορίες τέλειων γραφημάτων και αναγώγιμων γραφημάτων.

Στο θεωρητικό μέρος, μελετάμε και παρουσιάζουμε αλγόριθμους πολυωνυμικού
χρόνου για το πρόβλημα ελάχιστης συμπλήρωσης (i) ενός γραφήματος και την προ-
σθήκη μιας “ουράς” (tail) για τέσσερις υποκατηγορίες τέλειων γραφημάτων και (ii)
ενός γραφήματος και την προσθήκη μιας ακμής για τη κατηγορία P4-sparse γρα-
φημάτων. Το πρόβλημα ελάχιστης συμπλήρωσης ορίζεται ως εξής: Δεδομένης μιας
οικογένειας γραφημάτων F (ή γενικότερα, μια ιδιότητα Π) και ενός γραφήματος G,
το πρόβλημα συμπλήρωσης ζητά τον ελάχιστο αριθμό μη ακμών που χρειάζεται να
προστεθούν στο G, ώστε το γράφημα που προκύπτει να ανήκει στην οικογένεια
γραφημάτων F (ή να έχει την ιδιότητα Π). Αυτό το πρόβλημα είναι NP-complete
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για πολλές κλάσεις τέλειων γραφημάτων και υπάρχουν πολυωνυμικές λύσεις μόνο
για ελάχιστα σύνολα συμπλήρωσης.

Δεδομένου ενός γραφήματος G, ουρά uw είναι μια ακμή που συνδέει έναν κόμβο
w ̸∈ V (G) με έναν κόμβο u ∈ V (G). Μελετάμε το πρόβλημα ελάχιστης συμπλήρωσης
για το γράφημα G + uw σε κατηγορίες τέλειων γραφημάτων, όπως τα split, quasi-
threshold, threshold και P4-sparse γραφήματα. Με βάση τις ιδιότητες της δομής των
split γραφημάτων και της δεντρικής αναπαράστασης των quasi-threshold, threshold
και P4-sparse γραφημάτων, παρουσιάζουμε αλγόριθμους γραμμικού χρόνου για την
επίλυση αυτού του προβλήματος.

Επιπρόσθετα, για την κατηγορία των P4-sparse γραφημάτων, μελετάμε το πρό-
βλημα ελάχιστης συμπλήρωσης ενός P4- sparse γραφήματος G με την πρόσθεση
μιας μη-ακμής. Συγκεκριμένα, δοθέντος ενός P4- sparse γραφήματος G και μιας
μη-ακμής xy (δηλαδή, ένα ζεύγος των μη γειτονικών κόμβων x και y) του G, υπολο-
γίζεται ο ελάχιστος αριθμός μη ακμών του G που πρέπει να προστεθούν στο G έτσι
ώστε το γράφημα που προκύπτει να είναι P4-sparse γράφημα και να περιέχει την
xy ως ακμή. Για κάθε βέλτιστη λύση του προβλήματος, αποδεικνύουμε ότι υπάρχει
μια βέλτιστη λύση της οποίας η μορφή είναι μία από ένα μικρό πλήθος πιθανοτή-
των. Αυτό μαζί με τη λύση του προβλήματος όταν η προστιθέμενη ακμή συνδέει
δύο μη γειτονικού κόμβους ενός spider γραφήματος ή συνδέει δύο κόμβους σε δυο
διαφορετικές συνεκτικές συνιστώσες του γραφήματος, μας δίνει τη δυνατότητα να
παρουσιάσουμε έναν αλγόριθμο γραμμικού χρόνου για το πρόβλημα.

Τέλος, το εφαρμοσμένο μέρος της παρούσας διατριβής επικεντρώνεται στη με-
λέτη των κακόβουλων τροποποιήσεων ακμών των αναγώγιμων (reducible) γραφημά-
των που χρησιμοποιούνται για την κωδικοποίηση ενός ακέραιου αριθμού ως υδατο-
γράφημα σε ένα συγκεκριμένο σύστημα κωδικοποίησης υδατογραφήματος λογισμι-
κού. Σε οποιαδήποτε μέθοδο υδατογράφησης λογισμικού, το πιο σημαντικό μέρος
είναι η επιλογή του σωστού υδατογραφήματος, δηλαδή στην προτεινόμενη μέθοδο
μας, ένα υδατογράφημα, της μορφής του αναγώγιμου γραφήματος, που είναι ανθε-
κτικό σε επιθέσεις τροποποίησης ακμών. Μέσω της μελέτης τέτοιων τροποποιήσεων
ακμών, ταξινομούμε τα υδατογραφήματα ως ισχυρά, ενδιάμεσα ή αδύναμα και εί-
μαστε σε θέση να δώσουμε συστάσεις για την καλύτερη επιλογή υδατογραφήματος
προς χρήση.
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CHAPTER 1

INTRODUCTION

1.1 Graph Modification Problems

1.2 Basic Graph Definitions

1.3 Motivation

1.4 Structure of the Thesis

1.5 Main Results

1.1 Graph Modification Problems

The study of graph modification problems is crucial to computer science. Modifica-
tion problems on graphs have several applications in different areas, such as biology,
mathematics, sociology, machine learning, data mining, computer vision, and many
others. In graph modification problems, also known as network modification prob-
lems, we have to repair, improve, or adjust a graph to satisfy specific appropriate
properties while minimizing the cost of the modification. Theoretical, these problems
have been studied in a variety of classes of graphs, such as perfect graphs or reducible
graphs. An important role for solving this problem in these graphs is their properties
and structure.

In graph theory, the modification problems consist of:

• vertex modification (deletion) problems, and

• edge modification (completion, deletion, editing) problems.

1



We next briefly discuss the theoretical point of view, as well as the applications of
them in several fields.

1.1.1 Edge and Vertex Modification

In this section, we give an overview of several recent results dealing with the graph
modification problems, edge or vertex modification, from the angle of perfect graphs
and algorithms.

A graph-based study of the modification problems can be traced to the classical
work of Lewis and Yannakakis [2] in 1980. They investigated the complexity of the
vertex deletion problems, where the aim is to obtain a graph that satisfies a given
hereditary non-trivial property. They studied the vertex-deletion problems, which is
defined as: For a fixed graph property Π, what is the minimum number of vertices
which must be deleted from a given graph so that the resulting subgraph satisfies Π?
They proved that the vertex-deletion problems for Π is NP-complete for directed and
undirected graphs if Π is nontrivial and hereditary on induced subgraphs. Moreover,
Lund and Yannakakis [3] examined the general case of hereditary problem and
proved for any such property, and for every ϵ > 0, the maximum induced subgraph
problem cannot be approximated with ratio 2log

d n in quasi-polynomial time, where
d = 1/2− ϵ and n,m the number of vertices and edges, repsectively, unless P̃ = ÑP .

Fujito considered a polynomial time approximation method for node-deletion
problems with nontrivial and hereditary graph properties and presented a generic
algorithm scheme, which can be applied to any node-deletion problem for finding
approximate solutions [4]. Okun and Barak designed a 1+(log 2)(k−1) approximation
algorithm, by combining the local ratio and the greedy multicovering algorithms, for
the problem of deleting a minimum number of nodes so that the remaining graph
contains no k-bicliques [5]. In [6], approximation algorithms are developed for a
few node deletion problems for non-trivial properties which can be characterized by
forbidden structure, when the input is restricted to be a bipartite graph.

The edge modification problems are splited into the following problems [7]:

• The minimum completion (fill-in) problem is defined as follow: Given a property
Π and a graph G, the completion problem asks the minimum number of non-
edges needed to be added to G so that the resulting graph has property Π or
belongs to a graph family F . The minimum completion (fill-in) problem is NP-

2



complete for chain graphs (bipartite graph, which does not contain a pair of
independent edges), chordal graphs, interval and unit interval graphs, which is
an undirected graph G where there is an interval representation of G in which
all the intervals have the same length [8, 9]. In [10], if h edges is part of the
input as the problems of minimum threshold completion, weighted 2-threshold
partition and weighted 2-threshold covering, then the problem of determining
whether a graph G contains a threshold subgraph containing at least h edges
is NP-complete.

• The edge deletion problem is defined analogously but only deletion of edges
is allowed, that is the minimum number of edges whose removal of G will
form from a graph with property Π or belongs to a graph family F . In [11],
El-Mallah and Colbourn showed that edge deletion problem corresponding to
specific classes of graphs is NP-hard, for instance deletion problem on cograph
were shown to be NP-complete. Moreover, Goldberg et al. proved that the dele-
tion problems on interval graphs and unit interval graphs are NP-complete [9].
Yannakakis showed that the edge-deletion problem is NP-complete for the prop-
erties: without cycles of specified length l, or of any length ≤ l, with ≥ 3, out-
erplanar, transitive digraph, line-invertible, bipartite (simple max-cut problem),
transitively orientable (namely, comparability graph) [12]. Also, the deletion of
the minimum number of edges in order to create a disjoint union of cliques
is named as clique deletion problem, which was proven to be NP-complete in
[13].

• In the edge editing problem, defined similarly, deletion as well as addition of
edges is allowed, specifically asks the minimum set of edges you need to edit
(add or delete) such that editing of these edges in the graph G will form a graph
that has property Π or belongs to a graph family F . Cirino et al. considered
graph editing to the class of bipartite interval graph and they prove that the
connected bipartite interval editing problem is NP-complete [14]. In [15], the
editing problem is defined as splittance of a graph G in order to produce a
split graph and the authors show that it is polynomial in this class of perfect
graphs. Finally, Shamir et al. resulted that cluster editing (both edge additions
and edge deletions are allowed) is NP-complete [16]. Cai [17] focused on the
fixed-parameter tractability of the problem of deciding whether a graph can be
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made into a graph with a specified hereditary property by deleting at most i
vertices, at most j edges, and adding at most k edges, where i, j, k are fixed
integers and he proved that this problem is fixed-parameter tractable whenever
the hereditary property can be characterized by a finite set of forbidden induced
subgraphs.

The edge modification problem, specifically edge completion and deletion problem,
can be also defined with a parameter which will be considered constant. Let k be the
edges where we add or delete from a graph G = (V (G), E(G)) which belongs in a
class C and let G′ = (V (G′), E(G′)) be the resulting graph after addition or deletion
edges, i.e. |E(G′)| = |E(G)|+k or |(G′)| = |(G)|−k. Hence, it is easy to be defined the
problems (C,±k)-MinEdgeAddition problem and (C,±k)-MinEdgeDeletion problem.

• (C,+k)-MinEdgeAddition problem: k given non-edges are added in a graph
belonging to a class C and the aim is to compute a minimum C-completion of
the resulting graph G′,

• (C,−k)-MinEdgeAddition problem: k given edges are deleted in a graph G

belonging to a class C, where these k edges belong to V (G) and the aim is to
compute a minimum C-completion of the resulting graph G′ without these k

edges,

• (C,+k)-MinEdgeDeletion problem: given non-edge set Ek are added in a graph
belonging to a class C and the aim is the minimum number of edges to be
deleted to G′ so that the resulting graph belongs to C without delete any edge
of Ek,

• (C,−k)-MinEdgeDeletion problem: k given edges are deleted in a graph G be-
longing to a class C, where these k edges belong to V (G) and the aim is the
minimum number of edges to be deleted to G′ so that the resulting graph
belongs to C.

Figure 1.1 schematically depicts the problems which are included in the general
problem of graph modification problem.

1.1.2 Applications

The study of graph modification problems plays an important role in designing algo-
rithms for solving real problems. Many types of relations and processes are modeled
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Graph Modification Problem

Edge Modification Problem Vertex Modification Problem

edditingaddition deletion deletion

Figure 1.1: All problems which are included in the general problem of graph modi-
fication problem.

by graphs from physical, biological, social and information systems where the exper-
imental data is very important to classify or figure with their properties. Graphs are
used to represent applications to real-world systems, such as networks of communi-
cation, social network analysis, dataset of molecular biology and genomics, ecological
networks, etc. As we mention above, the graph modification problems consist of edge
and vertex modification problems and find application in several and different areas
because the input graphs arise from experiments and edge modification approach
serves to correct the few errors.

The main obstacle for analyzing and modeling data through graphs, is the lacking
of data, equivalently the deletion some vertices or edges of a initial graph. Οn the
contrary, sometimes, graphs can undergo modifications from their initial structure by
a malicious user or by incorrect measurements and adjustments. The main purpose
is to have the ability, regardless of the changes to the original graph, to add/delete
the minimum number of appropriate elements (vertices and/or edges), in order that
the final graph has similar properties to the original.

The graph modification methods change graph’s structure and release the entire
anonymous network and these methods allow researchers and third-parties to apply
any graph-mining technique, from local to global information extraction, on anony-
mous data [18]. Networked systems must be resilient against the removal of network
nodes, whether due to random node failure or targeted attack. The network must
have optimal robustness according to a given measure, which is affected by several
different strategies that alter the network by rewiring a fraction of the edges or by
adding new edges [19].

Fomin et al. [20] presented some examples with application of graph modification
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problems. The connectivity augmentation problem refers to enhance the network to
ensure resilience against link failures, that is the addition of a few links (edges)
between nodes in order to obtain a network with better connectivity. Furthermore,
according to the same authors, a special case of the graph modification problem is
graph clustering in which aim is to identify a set of low-cost edges (interactions) which
removal partition the graph into clusters (objects). Bruckner et al. [21] suggested an
algorithm to determine whether a graph is a split-cluster graph and if that is not the
case, produce a forbidden subgraph in O(n + m) time, developing a core periphery
identification technique for protein-protein interaction (PPI) networks using graph
modification.

Moreover, there are several interactions between the development of fixed-parameter
algorithms and the design of heuristics for graph modification problems, featuring
quite different aspects of mutual benefits [22]. Finally, the finding of the optimal
elimination order to minimizing the number of fill elements can be formulated as the
problem of adding the minimum number of edges to convert a graph into a chordal
graph. A recurring topic in many applications is graph modification problems that
produce a graph with a nice combinatorial characterisation, such as being a class
of perfect graphs, i.e. interval or planar graph [20]. All above problems of graph
modifications are NP-hard problems.

Rajabzadeh et al. [23] proposed a k-degree anonymization method (or genetic k-
degree edge modification), in which includes partitioning of vertices and community
detection in the graph in order to increase in edges for every vertex in each society and
using a genetic algorithm by adding some edges between vertices in each community.
In the same research area, Kiabod et al. [24] suggested a algorithm for increase the
anonymization speed, using number factorization to remove the best edges from the
graph in the graph modification step of the algorithm and using NaFa algorithm to
add all the appropriate edges.

1.2 Basic Graph Definitions

We consider finite undirected graphs with no loops or multiple edges. For a graph G,
we denote by V (G) and E(G) the vertex set and edge set of G, respectively. Let S
be a subset of the vertex set V (G) of a graph G. Then, the subgraph of G induced
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G1

G2

G1 ∪G2

G1 +G2

Figure 1.2: The union G1 ∪G2 and the join G1 +G2 of graphs G1 and G2.

by S is denoted by G[S]. A maximal connected subgraph of a graph G is a connected
component of G. For any two graphs G1 and G2 with disjoint vertex sets, we define

• the union G1 ∪ G2 which is the graph with vertex set V (G1) ∪ V (G2) and edge
set E(G1) ∪ E(G2), and

• the join G1 + G2 which is the graph union G1 ∪ G2 together with all the edges
joining V (G1) and V (G2).

An example of union G1 ∪ G2 and join G1 + G2 of graphs G1 and G2 is depicted
in Figure 1.2.

The neighborhood N(x) of a vertex x of the graph G is the set of all the vertices of G
which are adjacent to x. The closed neighborhood of x is defined as N [x] := N(x)∪{x}.
The neighborhood of a subset S of vertices is defined as N(S) :=

(⋃
x∈S N(x)

)
−S and

its closed neighborhood as N [S] := N(S) ∪ S. For an edge e = xy, the neighborhood
(closed neighborhood) of e is the vertex set N({x, y}) (resp. N [{x, y}]) and is denoted
by N(e) (resp. N [e]).

The degree of a vertex x in G, denoted deg(x), is the number of vertices adjacent
to x in G; thus, deg(x) = |N(x)|. A vertex of a graph is universal if it is adjacent to
all other vertices of the graph. We extend this notion to a subset of the vertices of a
graph G and we say that a subset S ⊆ V (G) is universal in G, if every vertex in S is
adjacent to every vertex in V (G) \ S.
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The chordless path on k vertices is denoted by Pk. In each P4, edge connecting
the second and third vertex is called the rib, while the remaining two edges are called
wings; moreover, the endpoints of the rib are called middle vertices of the P4.

The coloring (of vertices) of a graph is an assignment of “colors” to its vertices
such that, every two adjacent vertices always have different colors. The chromatic
number of a graph is the smallest number of colors that suffice to color it. A graph
is called a clique if its vertices are pairwise adjacent. The clique number of a graph
is the size of the largest clique in this graph. We denote the chromatic number and
the clique number of graph G by χ(G) and ω(G), respectively [25]. The chromatic
number of a graph is at least its clique number, since every two adjacent vertices
must receive different colors. Perfect graph is defined as a graph in which every
induced subgraph H has χ(H) = ω(H). At present, no polynominal-time algorithm
to recognize perfect graph is known, although several large classes of perfect graphs,
with polynomial-time, recognition algorithms, have been found [26].

1.3 Motivation

A main part of this thesis is some classes of perfect graphs and the edge modification
of them. The motivation of our work is that many classes of perfect graphs arise
quite naturally in real-world applications. More specifically, split, cographs, threshold,
quasi-threshold, interval, permutation, P4-sparse graphs are used to optimization of
computer storage, analysis of genetic structure, hiding information, synchronization
of parallel processes, etc [27].

To be specific, one application is that threshold covered partitions are unigraphic
[28]. In addition, the classes of threshold and quasi-threshold graphs have applica-
tions in set-packing problems, parallel processing, and resource allocation problems
[29, 30, 31]. The importance and significance of the study of P4-sparse graphs in
practical application is obvious from local density properties, which are featured in
real-life applications. In particular, graphs that are unlikely to have more than a few
chordless paths of length three appear in a number of contexts [32]. Applications in
scheduling, clustering, and computational semantics were the driving forces behind
the study of P4-sparse graphs, which attracted attention due to their natural gen-
eralization of cographs, which has a nice tree structure and bounded clique-width,
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implying efficient algorithms for some problems [1, 33, 34, 35].
In [36], Nikolopoulos and Palios proposed a linear-time algorithm for the (Co-

graph, +1) - MinEdgeAddition problem based on the properties of the component-
partition of a cograph. Given a cograph G and a non-edge xy, (Cograph, +1) -
MinEdgeAddition is the problem of finding the minimum number of non-edges of
G that need to be added to G so that the resulting graph is a cograph and contains
xy as an edge. The same authors let the (P4-sparse graph, +1) - MinEdgeAddition
problem as an open problem since class of P4-sparse graphs is a superclass of the
class of cographs.

Today, modifications on networks are a common problem that needs to be ad-
dressed. Network diagrams can be defined as a graph, which figures the interconnec-
tions between a set of entities. The vertices of this graph are each entity and its edges
are the connections between vertices. Graph modification is an attack on the integrity
of network. Modification means an unauthorized party not only accesses the data but
tampers it, for instance, by modifying the data packets being transmitted or causing a
denial of service attack such as flooding the network with bogus data. Similarly, edge
and vertex modification mean addition, deletion or editing of elements of graph.

Furthermore, the calling relationships between subroutines in a computer pro-
gram are represented by a control-flow graph called a call graph (also known as
a call multigraph). The most important part of a security of a call graph is its re-
silience to edge-modification attacks. A technique of hiding additional data or hiding
information is watermarking. More precisely, the software watermarking is the em-
bedding of a signature, i.e., an identifier reliably representing the owner, in the code.
The resilience of software watermarking in the form of call graph, is proved by the
resilience of call graph to attacks against edge and/or vertex modifications. The main
purpose is the finding of the strongest watermark through a specific software codec
watermarking system.

To sum up, the basis of motivation for this thesis is the importance of classes of
perfect graphs and the graph modification problems applied in real-life applications.
It is crucial to have the ability to characterize a software watermark, namely how
strong the embedding watermark is in a graph.
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1.4 Structure of the Thesis

This thesis consists of two main parts: The first (Chapters 2 and 3), the theoretical
part studies the complexity and approximability of edge modification problems. The
second (Chapter 4), applied part highlights the application of watermarking.

Chapter 1 provides an introduction to perfect graphs and an outline of the graph
modification problems under consideration, while it briefly presents our research
contribution. Additionally in the same chapter, we summarize preliminary remarks
and basic definitions of graph theory terms, which serve as the primary corpus for
our study, and conclude with the results of the thesis.

In Chapter 2, graph properties and the graph modification problem concerning
the scope of the thesis are extensively described. More precisely, the fundamental
structural components and properties of specific classes of perfect graphs required
for solution of edge modification problem are presented, analyzed and discussed
over the aspect of their utilization as also how they are combined to consist the basis
of this thesis. In this chapter, we study the completion problem, especially adding a
tail in some classes of perfect graphs, such as split, threshold, quasi-threshold and
P4-sparse graphs.

Next, in Chapter 3, it is presented the proposed approach for an algorithm, which
solves the (P4-sparse graph, +1)-MinEdgeAddition problem. Following the similar
structure as in the previous section, the main theoretical assumptions regarding the
properties of tree representation of P4-sparse graphs are all described and exten-
sively discussed, followed by lemmas and theorems that proved the efficiency and
correctness of proposed Algorithm P4-sparse-Edge-Addition.

In addition, Chapter 4 describes all basic parts of an already proposed software
watermarking codec system (encoding watermark members as graph structures) and
through edge modification theory, we characterize the watermarks according to their
resilience against attacks by malicious user. Based on graph structure of the embedded
watermark in software, the minimum number of edges modification is calculated in
order to clasiffy the watermarks as strong, intermediate and weak in a specific range.

Chapter 5, the last chapter of the PhD thesis, summarizes the main results pre-
sented in Chapters 2 to 4, and discusses possible future extensions, also similar prob-
lems that could be studied on the horizon of further research.
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1.5 Main Results

From the above partitioning of the five Chapters, it becomes obvious that the main
research results of our Thesis are presented in two parts, the theoretical and applied
parts. We next give the organization of the chapters of these two parts emphasizing
the theoretical results and its application.

In the first theoretical part (Chapters 2 and 3), we first present the results of
addition a tail to graphs, which are included in classes of perfect graphs, such as
split, quasi-threshold, threshold and P4-sparse graphs. To be specific, we study the
problem of given a graph G and a tail uw, where w /∈ V (G) and u ∈ V (G), and
we compute the minimum number of non-edges to be added to G + uw. Based on
properties and the structure of P4-sparse graph and its tree representation, we first
present some lemmas and theorems in order to prove the correctness of description
the Algorithm P4‐sparse‐Tail‐Addition.

Moreover, we study the (P4-sparse graph, +1)-MinEdgeAddition problem, namely
given a P4-sparse graph G and a non-edge xy (i.e., a pair of non-adjacent vertices
x and y) of G, find the minimum number of non-edges of G that need to be added
to G so that the resulting graph is a P4-sparse graph and contains xy as an edge.
For optimal solution H and its P4-sparse tree T , there exist two cases: the root node
of T to be 1-node, and the root node of T to be 2-node with two options, thin or
thick spider. Also, we present the cases, according to what node is the least common
ancestor of the leaves corresponding to u, v in T (G): if it is a 0-node, then the graph
G is a disconnected graph, which consists of 2 connected components each containing
one of the endpoints of the added non-edge uv, and if it is a 2-node with at least
one of the leaves corresponding to u, v being a child of the 2-node, the vertices u, v
belong to the same spider subgraph. As a consequence of lemmas and theorems about
P4-sparse graphs that we present in the same chapter, we prove the efficiency and
correctness of Algorithm P4‐sparse‐Edge‐Addition.

The applied part of this thesis is referred to graph modification to software wa-
termarking method. We analyze a software watermarking codec system [37], which
embeds a graph encoded by an integer number as watermark, in order to mention
the properties of this process. In any software watermarking method, the most im-
portant part is the choice of the right watermark, that is, in our proposed method, a
watermark which is resilient under edge-modification attacks. Thus, we classify each
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watermark into one of three categories, which are strong, intermediate and weak wa-
termarks in a specific range. Through this classification, we suggest the best choice
of the strongest watermark, which user has to embed in his software.

12



CHAPTER 2

ADDING A TAIL TO CLASSES OF PERFECT
GRAPHS

2.1 Introduction

2.2 Theoretical Framework

2.3 Adding a Tail to Split, Threshold and Quasi‐Threshold Graphs

2.4 Adding a Tail to a P4‐sparse Graph

2.5 Concluding Remarks

2.1 Introduction

Given a graph G, an edge connecting a vertex w ̸∈ V (G) to a vertex u of G is a tail
added to G; let us denote the resulting graph as G + uw. If G belongs to a class C
of graphs, this may not hold for the graph G + uw. Hence, we are interested in
computing a minimum C-completion of G + uw, i.e., the minimum number of non-
edges (in addition to the tail uw) to be added to G + uw so that the resulting graph
belongs to C; such non-edges are called fill edges. The above problem is an instance
of the more general (C,+k)-MinEdgeAddition problem [36] in which we add k given
non-edges in a graph belonging to a class C and we want to compute a minimum
C-completion of the resulting graph.

Yannakakis [38] defined the node (edge) deletion problem as the finding of the
minimum number of nodes (edges), whose deletion results in a subgraph satisfying
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property π and show that if graph property π belongs to a rather broad class of
properties (the class of properties that are hereditary on induced subgraphs) then the
node-deletion problem is NP-complete, and the same is true for several restrictions
of it.

A related field is that of the dynamic recognition (or on-line maintenance) problem
on graphs: a series of requests for the addition or the deletion of an edge or a vertex
(potentially incident on a number of edges) are submitted and each is executed only if
the resulting graph remains in the same class of graphs. Several authors have studied
this problem for different classes of graphs and have given algorithms supporting
some or all the above operations; we mention the edges-only fully dynamic algorithm
of Ibarra [39] for chordal and split graphs, and the fully dynamic algorithms of Hell
et al. [40] for proper interval graphs, of Shamir and Sharan [41] for cographs, of
Heggernes and Mancini for split graphs [42], and of Nikolopoulos et al. for P4-sparse
graphs [34].

Given an Hermitian matrix A whose graph G is a simple undirected graph and
its eigenvalues, Toyonagaet al. [43] suppose the status of each vertex in the graph is
known for each eigenvalue of A. They investigate the change of the multiplicity of
each eigenvalue, adding a pendent vertex with given value to a particular vertex in
the graph via an edge with given weight and show how each multiplicity changes
based on this information. Bevis et al. [44] examine several ways in which a single
vertex and some positive number of edges can be added to a graph, and the resulting
effect on the rank of the adjacency matrix of a graph G. In the general case of adding
a vertex and any number of edges to an arbitrary graph G, they prove that the rank
depends on the relationship of the neighborhood vector to the range space of A.

Recently, Lopes and Carvalho [45] present an integer programming formulation
for solving the minimum interval graph completion problem recurring to a charac-
terization of interval graphs that produces a linear ordering of the maximal cliques of
the solution graph. Chimani et al. [46] consider the problem of computing a crossing
minimum drawing of a given planar graph G = (V,E) augmented by a star, i.e., an
additional vertex v together with its incident edges Ev = {(v, u)|u ∈ V }, in which
all crossings involve Ev. They prove that the star insertion problem is polynomially
solvable and decribe an efficient algorithm for this problem using the SPQR-tree data
structure to handle the exponential number of possible embeddings, in conjunction
with dynamic programming schemes. Brandes et al. [47] propose an algorithm to

14



F2 F3F1

F4 F5

F0

F6

Figure 2.1: The forbidden subgraphs of the class of P4-sparse graphs (the naming
follows [1]).

solve the quasi-threshold graph editing problem with a minimum number of edge
insertions and deletions, called Quasi-Threshold Mover (QTM).

Our work in this chapter also focuses on P4-sparse graphs; the P4-sparse graphs
are defined as the graphs for which every set of five vertices induces at most one
chordless path on four vertices [25] (Figure 2.1 depicts the 7 forbidden subgraphs
for the class of P4-sparse graphs). The P4-sparse graphs are perfect and also perfectly
orderable [25], and properly contain many graph classes, such as, the cographs, the
P4-reducible graphs, etc. (see [48, 35, 1]). The P4-sparse graphs have received con-
siderable attention in recent years and they find applications in applied mathematics
and computer science (e.g., communications, transportation, clustering, scheduling,
computational semantics) in problems that deal with graphs featuring “local density”
properties; note that the notion of local density is often associated with the absence
of P4s.

In this chapter, we study the properties of split, threshold and quasi-threshold
graphs and their representation tree and we compute the minimum added edges
that are needed to remain in the same class of initial graph after an added tail.
Furthermore, we exploit the structure of the P4-sparse tree of the P4-sparse graphs
in order to present an algorithm for computing a minimum P4-sparse completion
of a given graph G to which we have added a tail. Given the P4-sparse tree of G,
our algorithm runs in optimal O(n) time where n is the number of vertices of G.
This algorithm is the first step towards the solution of the (P4-sparse,+1)-MinEdge-
Addition Problem [36].

Our Contribution. In this chapter, in order to connect a node w /∈ V (G) to graph G

by a single edge uw where u ∈ V (G), which is named as tail, we compute a minimum
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C-completion of G′, where the graph G′ resulting from G after the addition of the tail
need not belong to the class C. More specifically, we refer to the minimum number of
non-edges (in addition to the tail uw) to be added to G′ so that the resulting graph
belongs to C.

We first present the above problem for the class of split graphs and we study its
graph properties to compute the minimum Split-completion after addition of a tail.
In class of split graphs, a split graph G = (V,E) has a partition V = K + S of its
vertex set V into a clique (complete) set K and a independent (stable) set S. Hence,
the addition of tail can be performed in two sets, in vertex set K or in vertex set S.
Based on the structure of this class we figure the minimum number of edges that
need to be added.

Furthermore, we study the same problem of classes of Threshold and Quasi-
Threshold graphs. The main idea behind the computation of minimum Threshold-
completion and (Quasi-Threshold)-completion is the structure of an A-free graph,
named cent-tree Tc(G), which incorporates several important properties and charac-
teristics. The proof of minimum completion of these classes are based on properties
of tree representation Tc(G).

We next consider the above problem for the class of P4-sparse graphs and we
describe an algorithm for it which, given the P4-sparse tree of the given graph G,
runs in O(n) time where n is the number of vertices of G.

Road Map. The chapter is organized as follows: In Section 2.2 we establish the
notation and and related terminology, and present background results. In Section 2.3
we define the minimum number of edges that needed to be added in a graph G after
the addition of a tail uw on a node u of G and the graph G can be split, threshold or
quasi-threshold graph. In Section 2.4 we describe the algorithm for counting of added
edges for a P4-sparse completion of the graph G+ uw and show the main results of
our work. Finally, in Section 2.5 we conclude the chapter and discuss possible future
extensions.

2.2 Theoretical Framework

Some classes of perfect graphs are split, threshold, quasi-threshold and P4-sparse
graphs, which are presented below.
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Figure 2.2: A split graph.

Split Graphs. An undirected graph G = (V,E) is split if there is a partition V = K+S

of its vertex set V into a clique (complete) set K and a independent (stable) set S.
These graphs were first proposed in [49], where it was shown that G is split if and
only if it does not have an induced subgraph isomorphic to one of the three forbidden
graphs, C4, C5, or 2K2. The complement and every induced subgraph of a split graph
are split as a result of the definition (or the forbidden subgraph characterization)
[50, 28]. Let G = (V,E) be the graph with vertex set V = {1, 2, 3, 4} illustrated in
Fig. 2.2. Evidently, G is a split graph. One way to partition V into a disjoint union
of an independent set and a clique is V = {1} ∪ {2, 3, 4}. Other possibilities are
V = {1, 4} ∪ {2, 3} and V = {1, 3} ∪ {2, 4}.

Threshold Graphs. A well-known subclass of perfect graphs called threshold graphs
are those whose independent (stable) vertex set subsets can be distinguished by using
a single linear inequality. Equivalently, a graph G = (V,E) is threshold if there exists
a threshold assignment [α, t] consisting of a labeling α of the vertices by non-negative
integers and an integer threshold t such that: S is a independent set if and only
if α(v1) + α(v2) + · · · + α(vp) ≤ t, where vi ∈ S, 1 ≤ i ≤ p, and S ⊆ V . Chvátal and
Hammer first proposed threshold graphs in 1973 [29] and have proved the following:

Theorem 2.1. Let G = (V,E) be an undirected graph. Then, the following statements are
equivalent:

(i) G is a threshold graph.

(ii) G has no induced subgraph isomorphic to 2K2, P4, or C4.

Given a graph G = (V,E), Nikolopoulos [51] defines three classes of edges in G,
denoted by actual edges (AE), free edges (FE) and semi-free edges (SE) according
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to relationship of the closed neighborhoods of the endpoints of its edges, where
E = FE+SE+AE. Let x = (u, v) be an edge of G. Then, (u, v) ∈ FE if N [u] = N [v],
(u, v) ∈ SE if N [u] ⊂ N [v], (u, v) ∈ AE if N [u]−N [v] = ∅ and N [v]−N [u] = ∅.

Definition 2.1. [51] An undirected graph G = (V,E) is called A-free if every edge of
G is either free or semi-free edge.

Lemma 2.1. A graph G = (V,E) is an A-free graph if and only if it contains no induced
subgraph isomorphic to P4 or C4.

Thus, the following result directly follows from Lemma 6 and Theorem 2.

Theorem 2.2. The threshold graphs are precisely those A-free graphs containing no induced
subgraph isomorphic to 2K2.

Let G = (V,E) be a connected A-free graph and is defined as
cent(G) = x ∈ V (G)|N [x] = V (G).

Theorem 2.3. (see [52]). The following two statements hold.

1. A graph G is A-free if and only if G− cent(G) is an A-free graph.

2. Let G be a connected A-free graph. Then cent(G) = ∅. Moreover, if G−cent(G) = ∅,
then G− cent(G) contains at least two components.

Theorem 2.4. (see [52]). Let G be a connected A-free graph, and let V (G) = V1 + V2 +

· · ·+ Vk be the partition of vertex set, in particular, V1 := cent(G). Then this partition and
the partially ordered set ({V i},⪯) have the following properties:

(P1) If Vi ⪯ Vj, then every vertex of Vi and every vertex of Vj are joined by an edge of G.

(P2) For every Vi, cent(G[{∪Vi|Vj ⪰ Vi}]) = Vi.

(P3) For every two Vs and Vt such that Vs ⪯ Vt , G[{∪Vi|Vs ⪯ Vi ⪯ Vt}] is a complete
graph. Moreover, for every maximal element Vt of ({Vi},⪯), G[{∪Vi|V1 ⪯ Vi ⪯ Vt}]
is a maximal complete subgraph of G.

(P4) Every edge with both endpoints in Vi is a free edge.

(P5) Every edge with one endpoint in Vi and the other endpoint in Vj, where Vi ̸= Vj, is
a semi-free edge.
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Figure 2.3: (a) Threshold Graph G. (b) The cent-tree Tc(G).

The typical structure of an A-free graph, named Tc(G), meets the properties of above
Theorem. The elements of a cent-tree Tc(G) are called nodes; that is, the vertex sets
Vi,j , where 0 ≤ i ≤ h and 1 ≤ j ≤ ki, of the partition of V (G) of an A-free graph G.
Every node Vi,j of the cent-tree, which is a rooted tree with root V0,1, is either a leaf or
has at least two children. Nodes Vi,j with j > 1 contain only one vertex. Furthermore,
Vi,j ⪯ Vs,t if and only if Vi,j is an ancestor of Vs,t. If Vi,j and Vs,t are disjoint vertex
sets of an A-free graph G, Vi,j and Vs,t are defined as clique-adjacent and Vi,j ≈ Vs,t

if Vi,j ⪯ Vs,t or Vs,t ⪯ Vi,j.
The cent-tree Tc(G) of an A-free graph G has the following properties:

• The vertex set K = V0,1 ∪ V1,1 ∪ · · · ∪ Vh,1 is a clique.

• The vertex set S = V − {V0,1 ∪ V1,1 ∪ · · · ∪ Vh,1} is an independent set.

• For every pair of nodes x, y ∈ S such that level(x) < level(y), N(x) ⊆ N(y).

In Figure 2.3, it is depicted an example of a threshold graph G and its cent-tree
Tc(G).

Quasi‐Threshold Graphs. A graph G is called quasi-threshold, or QT-graph for short,
if G contains no induced subgraph isomorphic to P4 or C4 (cordless path or cycle
on 4 vertices) [53, 31, 54, 55]. The class of quasi-threshold-graphs is a subclass of
the class of cographs and contains the class of threshold graphs [56, 57, 26, 58].
Nikolopoulos and Papadopoulos [59] have shown, among other properties, a unique
tree representation of such graphs which is similar with threshold graphs cent(G).

Theorem 2.5. [52, 60] Let G be an undirected graph.
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Figure 2.4: (a) Quasi-threshold Graph G. (b) The cent-tree Tc(G).

1. G is a QT-graph if and only if every connected induced subgraph G[S], S ⊆ V (G),
satisfies cent(G[S] ̸= ∅).

2. G is a QT-graph if and only if G[V (G)− cent(G)] is a QT-graph.

3. Let G be a connected QT-graph. If V (G) − cent(G) ̸= ∅, then G[V (G) − cent(G)]

contains at least two connected components.

Corollary 2.1. [52, 60] A graph G is a QT-graph if and only if G has a cent-tree Tc(G).

The structure of a cent-tree Tc(G), which is a tree representation of QT-graph, is
similar to tree representation of a threshold graph. Every node Vi,j of the cent-tree
Tc(G), which is a rooted tree with root V0,1, is either a leaf or has at least two children
and all nodes Vi,j can be a clique vertex set, since it contains induced subgraph
isomorphic to 2K2. If u ∈ Vi,j and pi is a pair of (k, l) where V0 ⪯ Vp1 ⪯ Vp2 ⪯ · · · ⪯
Vpi ⪯ Vi,j , we assume, without any loss of generality, that V0,1 ⪯ V1,1 ⪯ V2,1 ⪯ · · · ⪯
Vi−1,1 ⪯ Vi,1. We define all children of node Vi,j in Tc(G) as Vi+1,1, Vi+1,2, · · · , Vi+1,ki+1

(see, Figure 2.4).

P4‐sparse Graphs. As we referred above, a graph G is called P4-sparse graph, if for
every set of five vertices induces at most one cordless path on four vertices [25].
Furthermore, a graph H is called a spider if its vertex set V (H) admits a partition into
sets S,K,R such that:

• the set S is an independent (stable) set, the set K is a clique, and |S| = |K| ≥ 2;

• every vertex in R is adjacent to every vertex in K and to no vertex in S;
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Figure 2.5: (left) A thin spider; (right) a thick spider.

• there exists a bijection f : S → K such that either NG(s) ∩K = {f(s)} for each
vertex s ∈ S or else, NG(s)∩K = K−{f(s)} for each vertex s ∈ S; in the former
case, the spider is thin, in the latter it is thick; see Figure 2.5.

The triple (S,K,R) is called the spider partition. Note that for |S| = |K| = 2, the spider
is simultaneously thin and thick.

In [1], Jamison and Olariu showed that each P4-sparse graph G admits a unique
tree representation, up to isomorphism, called the P4-sparse tree T (G) of G which is
a rooted tree such that:

(i) each internal node of T (G) has at least two children provided that |V (G)| ≥ 2;

(ii) the internal nodes are labeled by either 0, 1, or 2 (0-, 1-, 2-nodes, resp.) and the
parent-node of each internal node t has a different label than t;

(iii) the leaves of the P4-sparse tree are in a 1-to-1 correspondence with the vertices
of G; if the least common ancestor of the leaves corresponding to two vertices
vi, vj of G is a 0-node (1-node, resp.) then the vertices vi, vj are non-adjacent
(adjacent, resp.) in G, whereas the vertices corresponding to the leaves of a
subtree rooted at a 2-node induce a spider.

The structure of the P4-sparse tree implies the following lemma.

Lemma 2.2. Let G be a P4-sparse graph and let H = (S,K,R) be a thin spider of G.
Moreover, let s ∈ S and k ∈ K be vertices that are adjacent in the spider.

P1. Every vertex of the spider is adjacent to all vertices in NG(s)− {k}.

P2. Every vertex in K − {k} is adjacent to all vertices in NG(k)− {s}.

Also the same authors [1] have shown how this tree representation of a P4-sparse
graph can be computed in linear time. Figure 2.6 shows an example of a P4-sparse
graph along with its tree representation.
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Figure 2.6: An example of a P4-sparse graph G and the tree representation T (G) of
G.

Note. With a slight abuse of terminology, in the following, we will simply use the
term edges instead of fill edges, which in fact are non-edges of the given graph.

Given the forbidden subgraphs of P4-sparse graphs (see, Figure 2.1), an interesting
problem that arises is how they can be transformed into P4-sparse graphs with as
few edges as possible. In Figure 2.7, the minimum edges that must be added to
become it into a P4-sparse graph are shown in green color. For the graph F2 (which
is isomorphic to the path P5) there is a unique solution by adding exactly one edge.
The forbidden subgraphs F3, F4, F6 need the addition of 1 edge and as seen their
solution is not unique, i.e. there is more than one edge choice that can become it into
a P4-sparse graph. For the F5 graph, 2 edge additions are needed to be a P4-sparse
graph, and this pair is not unique.

In the same Figure 2.7, we show the edge additions for the House graph and for
the cycle C5, i.e., the graphs F1 and F0 respectively. In the same image, the edges that
should be added to these two graphs so that they are in the class of P4-sparse graphs
are shown in green color. For the House graph, adding an edge is necessary in order
to belong the class of P4-sparse graphs, without the solution being unique since two
nodes can become a universal node in the final graph. For the cycle C5, i.e., the F0

forbidden subgraph, the minimum additions of edges needed to belong to P4-sparse
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Figure 2.7: All choices of the minimum number of added edges (green edges) in
order to forbidden graphs of P4-sparse graphs to be P4-sparse graphs.

graphs is again 2 edges, without this pair of edges being unique.

2.3 Adding a Tail to Split, Threshold and Quasi‐Threshold Graphs

In this section, we present the results of calculation of the minimum number of
fill edges that needed after an addition of a tail in the initial graph which is split,
threshold or quasi-threshold graph and we present the following lemmas for this
purpose.
Split Graphs. The first class of perfect graphs that we will study, in order to add a
tail, is the split graphs. Based on its structural properties and its vertex partition, we
conclude the calculation of the minimum number of fill edges needed if a tail uw is
added on a node u of G.
Let G be a given graph to which we want to add the tail uw with u ∈ V (G).

Lemma 2.3. Let G = (V,E) be a split graph with vertex partition V = K+S, where K is
a clique (complete) set and S is a independent (stable) set. Consider the addition of a tail uw
incident on a node u of G. Then, for a minimum split completion of the graph G+ uw, it
holds:

1. If u ∈ K, the minimum number of fill edges needed (in addition to the tail uw) is 0.
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Figure 2.8: The structure of an A-free graph which contains no induced subgraph
isomorphic to 2K2.

2. If u ∈ S and degree(u) = ku, the minimum number of fill edges needed (in addition
to the tail uw) is |K| − ku.

Proof. 1. No fill edge (in addition to uw) is needed, since the addition of uw yields a
new split graph G′ = (V ′, E ′), where E ′ = E∪{uw} and V ′ = S ′+K with independent
set S ′ = S ∪ {w}.

2. Let G′ = (V ′, E ′) be a new split graph after the addition of the minimum
number of fill edges and let the vertex partition be V ′ = S ′ +K ′. We consider three
cases:

(i) u ∈ K ′ and w ∈ S ′. In this case, the number of fill edges (in addition to the
tail uw) needed is |K| − degree(u) since the node u needs to be adjacent to all
vertices of K.

(ii) u ∈ S ′ and w ∈ K ′. Then, |K| edges need to be added.

(iii) u,w ∈ K ′. It means that S ′ = S and K = K ′ ∪ {u,w}; which implies that,
2|K| − degree(u) fill edges are needed.

Hence, the minimum number of edges (in addition to the tail uw) needed is |K|− ku,
where ku = degree(u) and u ∈ K ′, w ∈ S ′.

Threshold Graphs. Based on the structural of an A-free graph G and its tree rep-
resentation, cent-tree Tc(G), we show how we can calculate the minimum number of
edges that need to be added in G+ uv graph, where uv is a tail.
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Lemma 2.4. Let G = (V,E) be a A-free graph, where V (G) = K ∪S and let Tc(G) be its
cent-tree. Consider the addition of a tail uw incident on a node u of G. Then, there exists
a minimum A-free completion of the graph G+ uw then:

(i) If u ∈ Vi,1 ⊆ K, the minimum number of fill edges needed (in addition to the tail uw)
is min

0≤l≤i
A(l) where

A(l) =
l−1∑
j=0

|Vj,1|+
i∑

w=l+1

kw∑
j=2

|Vw,j|.

(ii) If u ∈ Vi,j ⊆ S, where 2 ≤ j ≤ ki, the minimum number of fill edges needed

(in addition to the tail uw) is min(Am,

i−1∑
j=0

|Vj,1| +
h∑

w=i+1

kw∑
j=1

|Vw,j| + |Vi,1|), where

Am = min
0≤l<i

A(l) and

A(l) =
l−1∑
j=0

|Vj,1|+
i−1∑

w=l+1

kw∑
j=2

|Vw,j|+
h∑

w=i

kw∑
j=1

|Vw,j| − 1

.

Proof. 1. Let u ∈ Vi,1 ⊆ K and add the tail uw. We can get a A-free graph G′ = (V ′, E ′)

with following structure of Tc(G
′) after having added the edges |V0,1| + |V1,1| + · · · +

|Vi−1,1| such that for all V ′
j,1 = Vj,1, where 0 ≤ l < i and V ′

i,1 = {u}, V ′
i+1,1 = Vi,1 \ {u}

and V ′
j+2,1 = Vj,1, where i < j ≤ h. All independent sets remain with the same

number of vertices and degree except V ′
i+1,2 = {w}. Also, we can get a A-free graph

G′ = (V ′, E ′) after having added the edges |V0,1| + |V1,1| + · · · + |Vi−2,1| +
∑ki

j=2 |Vi,j|.
Aiming the minimality of this solution, we have to minimize the edges from vertices
u and w. Thus, the minimum number of fill edges needed (in addition to the tail uw)
is min

0≤l≤h
A(l) where A(l) =

∑l−1
j=0 |Vj,1|+

∑kl+1

j=2 |Vl+1,j|+
∑kl+2

j=2 |Vl+2,j|+ · · ·+
∑ki

j=2 |Vi,l| =∑l−1
j=0 |Vj,1|+

∑i
w=l+1

∑kw
j=2 |Vk,j|.

2. Let u ∈ Vi,j ⊆ S, where 2 ≤ j ≤ ki and add the tail uw. We can get a
A-free graph G′ = (V ′, E ′), if the vertex u is the only one member of clique set
V ′
i,1 of cent-tree Tc(G

′), and it holds, with this solution, the total fill edges to be∑i−1
j=0 |Vj,1| +

∑h
w=i+1

∑kw
j=1 |Vw,j| + |Vi,1|. In other case, if the cent-tree of G′ has the

following structure V ′
i+1,1 = {u} and V ′

i+2,1 = Vi+1,1 and V ′
i+2,2 = {w}, then the num-

ber of fill edges needed (in addition to the tail uw) is increased by |Vi,1|. Thus, the
minimum number of fill edges needed will be resulted by vertex u, which belongs
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to a clique set V ′
l,1, where 0 ≤ l ≤ i. If l = i, it holds that the minimum number

of fill edges needed is
∑i−1

j=0 |Vj,1| +
∑h

w=i+1

∑kw
j=1 |Vw,j| + |Vi,1| and if 0 ≤ l < i, it

holds Al =
∑l−1

j=0 |Vj,1|+
∑i−1

w=l+1

∑kw
j=2 |Vw,j|+

∑h
w=i

∑kw
j=1 |Vw,j|−1. Thus the minimum

number of fill edges needed is Am = min(Am,
i−1∑
j=0

|Vj,1|+
h∑

w=i+1

kw∑
j=1

|Vw,j|+ |Vi,1|), where

Am = min
0≤l<i

A(l) .

Quasi‐threshold Graphs. Let G be a given quasi-threshold graph and we want to
add a tail uw where u ∈ V (G) and w /∈ V (G). We can easily prove the following
lemma about minimum number of fill edges.

Lemma 2.5. Let G = (V,E) be a QT-graph, and let Tc(G) be its cent-tree. Consider
the addition of a tail uw incident on a node u of G. Then, there exists a minimum QT
completion of the graph G+ uw, and if u ∈ Vi,j, the minimum number of fill edges needed
(in addition to the tail uw) is min(Am,

∑i−1
w=0 |Vw,1| + |Vi,j| − 1), where Am = min

0≤l<i
A(l)

and A(l) =
∑l−1

j=0 |Vj,1|+
∑h

w=l

∑kw
j=2 |Vw,j|+

∑h
w=i |Vw,1| − |Vi,j| − 1.

Proof. It is easy to see that this case of QT-graph can be proved with similar way of
Lemma 7.(i). In the case where a tail uw is added, where u ∈ Vi,j , and there exists a
new induced subgraph isomorphic to 2K2 included the new node w, then the number
of edges that need to be added is

∑i−1
w=0 |Vw,1||Vi,j|−. Therefore, the minimum number

of edges (in addition to the tail uw) that need to be added is the minimum value
of case that created a new induced subgraph isomorphic to 2K2 and the case that
created a new vertex set V ′

l,1 = u and V ′
l+1,2 = w where 0 ≤ l < i.

2.4 Adding a Tail to a P4‐sparse Graph

Let G be a given graph to which we want to add the tail uw with u ∈ V (G). Let
t0t1 · · · thu be the path from the root in the P4-sparse tree TG of G to u and let Vi

(0 ≤ i < h) be the set of vertices associated with the leaves of the subtrees rooted
at the children of ti except for ti+1 and Vh be the set of vertices associated with the
leaves of the subtrees rooted at the children of th except for u (see Figure 2.9).

We first show that there exist minimum P4-sparse completions of the graph G+uw

in which u and w appear together in a small number of different formations.
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Figure 2.9: The P4-sparse tree of the given graph G in terms of the leaf corresponding
to vertex u.

Lemma 2.6. Let G be a P4-sparse graph and TG be its P4-sparse tree. Consider the addition
of a tail uw incident on a node u of G. Then, there exists a minimum P4-sparse completion
of the graph G + uw such that for the P4-sparse tree TG′ of the resulting graph G′, one of
the following three cases holds:

1. The nodes u,w in TG′ have the same parent-node which is a 2-node corresponding to
a thin spider with partition (S,K,R) with u ∈ K and w ∈ S.

2. The P4-sparse tree TG′ contains a 3-treenode subtree with an 1-node t at the root
and the nodes for u and w as children (see Formation 1 in Figure 2.10). Moreover,
the parent-node of t, if it exists, is either a 0-node or a 2-node corresponding to a
spider (S,K,R) where R = {u,w}.

3. The P4-sparse tree TG′ is the same as TG without the node for u except that an 1- or a
2-node t in the path from the root of TG to the node for u is replaced by a 5-treenode
subtree with an 1-node at the root with children the node for u and a 0-node which in
turn has children the node for w and the node t (see Formation 2 in Figure 2.10).

Proof. Let GOPT be the P4-sparse graph that is a minimum P4-sparse completion of
the graph G+uw and let TOPT be its P4-sparse tree. We consider the following cases:

A. The leaves associated with u,w in TOPT have the same parent-node: Then, since u,w

are adjacent, the parent-node is either a 1-node or a 2-node.
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Figure 2.10: (left) Formation 1; (right) Formation 2 (if the root node of the P4-sparse
tree for Z is a 0-node than it is merged with its parent 0-node).

(i) The parent-node of u,w in TOPT is a 2-node: Let H = (S,K,R) be the correspond-
ing spider. The spider H cannot be thick with |K| ≥ 3: if H were a thick spider,
no matter whether the tail uw was an S-K , K-K , or R-K edge, the sum of de-
grees of u,w would be at least |V (H)|−2+ |K|−1 (consider a vertex in K and a
vertex in S); however, we would have added fewer edges to G+uw if we made
u universal in H and then replaced it by Formation 2 with Z = V (H)− {u,w}.
The same holds if H is a thin spider and the edge uw were a K-K or R-K edge,
whereas if it were an S-K edge with u ∈ S and w ∈ K , then we can exchange u
and w for the same total number of added edges. Thus, we have a thin spider
with u ∈ K and w ∈ S.

(ii) The parent-node of u,w in T2 is a 1-node: Then, if t is the parent-node of u,w, the
leaves associated to u and w are the only children of t (Formation 1), otherwise
we can use Formation 2 as shown in Figure 2.11 for a smaller number of added
edges. Additionally, the parent-node of t in TOPT is a 0-node or a 2-node in
which case the set R of the corresponding spider is precisely {u,w}.

B. The nodes for u,w in TOPT do not have the same parent-node: Let TR be the P4-sparse
tree obtained from TOPT by using Formation 2 as shown in Figure 2.12. Then, the
graph corresponding to TR uses no more added edges than TOPT : note that because
w is adjacent to u, in TOPT , w is also adjacent to all vertices in Z whereas in TR, w is
not adjacent to any vertex in Z but u is adjacent to all of them.

Now, in the right P4-sparse tree TR in Figure 2.12, let TA be its part resulting after
the removal of the subtree rooted at the 1-node that is the parent of the leaf u and
let TZ be the subtree corresponding to Z; if A is the set of vertices of the graph G
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Figure 2.11: A transformation that saves added edges.

associated with the leaves of TA, clearly, A and Z partition the set of vertices V (G)−
{u}.

Recall that t0t1 · · · thu is the path from the root to u in the P4-sparse tree TG of G
and Vi is the set of vertices associated with the leaves of the subtrees rooted at the
children of ti except for ti+1 (where th+1 = u); see Figure 2.9.

Next, we show that we can construct a P4-sparse tree containing a Formation 2

in which the part above the Formation 2 consists of the subpath t0 · · · tp for 0 ≤
p < h with the associated complete subtrees for the Vis in TG and the part below the
Formation 2 consists of the remaining subpath tp+1 · · · th with the associated complete
subtrees in TG. Suppose for contradiction that this is not the case. First, consider a
neighbor x of u in G such that x ∈ Vj , x ̸∈ A and (Vj ∪ · · · ∪ Vh) ∩ A ̸= ∅; in fact,
without loss of generality, let x be such a vertex belonging to the lowest-index such
set Vj. Since u, x are neighbors in G, then because of the P4-sparse tree TG, x is
adjacent to all the vertices in Vj+1 ∪ · · · ∪ Vp. Since x ∈ Z , then in TR, u is adjacent to
all vertices in (Vj+1∪ · · ·∪Vp)∩A, otherwise x would not be adjacent to these vertices,
a contradiction. Then, since u is adjacent to all of them, then we can change TR by
moving all these vertices in Z and replace TZ by the P4-sparse tree of the induced
subgraph G[Z]. Additionally, there are no vertices in (V0 ∪ · · · ∪ Vj) − NG(u) in Z ,
because if they were, we could move them in A and replace TA by the P4-sparse tree
of the induced subgraph G[A], thus reducing the number of added edges. Finally, in
the worst case, there may exist q such that for each i = 0, . . . , q−1 it holds that Vi ⊆ A,
and for each i = q + 1, . . . , h it holds that Vi ⊆ Z whereas Vq ∩A ̸= ∅ and Vq ∩ Z ̸= ∅.
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Figure 2.12: (left) The P4-sparse tree TOPT in which the leaves associated with u,w do
not have the same parent; (right) The P4-sparse tree TR obtained by using Formation 2

that uses no more added edges than TOPT .

Then, if tq is a 0-node, we move all vertices in Vq to A and reduce the number of
added edges whereas if tq is a 1- or 2-node, we move all vertices in Vq to Z , since the
number of non-neighbors of u among the elements of Vq is no more than the number
of neighbors (thus, it is worth adding edges connecting u to its non-neighbors in Vq

than adding edges connecting w to u’s neighbors in Vq). The final P4-sparse tree is
obtained using the P4-sparse tree of G[A ∪ {u}] and of G[Z].

It is interesting to note that Formation 1 is a special case of Formation 2 when
Z = ∅.

2.4.1 A Special Case

In this section, we consider a special case that will be useful for our algorithm for
the general problem. In particular, we consider that the given graph is a spider H =

(SH , KH , RH) and we add a tail uw to a vertex u of H such that the parent-node of u
in the P4-sparse tree TH of H is the 2-node corresponding to H. We distinguish the
cases whether H is thin or thick.

Lemma 2.7. Suppose that the spider H = (SH , KH , RH) is thin. Then:

1. If u ∈ SH, the minimum number of fill edges needed (in addition to the tail uw) is
|KH | − 1 if RH = ∅ and KH otherwise.
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2. If u ∈ KH, the minimum number of fill edges needed (in addition to the tail uw) is
|KH | − 1.

3. If u ∈ RH, then RH = {u} and no edge (in addition to the tail uw) needs to be added.

Proof. 1. Let v ∈ KH be the neighbor of u in H. Then, we can get a P4-sparse graph
as follows: if RH = ∅, we connect u to all vertices in KH − {v} (we get a thin spider
with S = (SH−{u})∪{w}, K = (KH−{v})∪{u}, and R = {v}, that is, the tail uw is a
leg of a P4 of a thin spider), otherwise we connect v to all vertices in {w}∪ (SH−{u}),
which makes v universal in V (H)∪ {w} and u,w are moved to the set R where they
form a separate connected component; the total number of added edges (excluding
the edge uw) is precisely |KH | − 1 if RH = ∅ and KH otherwise.
Moreover, this is the minimum number of edges (in addition to the tail uw) that
need to be added. First, we note that for each pair ki, si where ki ∈ KH − {v} and
si ∈ SH − {u}, the vertices v, u, w, ki, si define an F5 or an F3 depending on whether
the vertices v, w are adjacent or not, which implies that at least |KH | − 1 added edges
(in addition to the tail uw) are needed. Then, if there is a way of getting a P4-sparse
graph by adding fewer than the number of added edges mentioned in case 1 of the
statement of the lemma, it has to be the case that (i) RH ̸= ∅, (ii) each pair ki, si where
ki ∈ KH − {v} and si ∈ SH − {u} is incident on exactly 1 added edge, and (iii) no
more edges are added. Let r ∈ RH and k ∈ KH − {v}. Then, the vertices v, u, w, k, r
induce a en subgraph (an F5 if k is non-adjacent to both u,w, or an F6 (F1, resp.)
if k becomes adjacent to u (w, resp.) by means of an added edge); thus, at least KH

added edges are needed in this case.

2. Let v ∈ SH be the neighbor in H of u ∈ KH . Then, by connecting u to all vertices
in SH − {v} or by connecting w to all vertices in KH − {u} yields a P4-sparse graph.
Moreover, this is the minimum number of edges (in addition to the tail uw) that need
to be added. Suppose, for contradiction, that we get a P4-sparse graph after having
added fewer than |KH | − 1 edges (in addition to the edge uw) to the thin spider H.
Then, there exists a pair of adjacent vertices s, k with s ∈ SH −{v} and k ∈ KH −{u}
such that neither s nor k is incident on any of the added edges. Then the vertices
u, v, w, s, k induce a forbidden subgraph F5 if w and v are adjacent and a forbidden
subgraph F3 if they are not; a contradiction.

3. No edge (in addition to uw) needs to be added, since the addition of uw yields
a thin spider with S = SH ∪ {w}, K = KH ∪ {u}, and R = ∅.
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In turn, for a thick spider we have the following lemma.

Lemma 2.8. Suppose that the spider H = (SH , KH , RH) is thick and |KH | ≥ 3. Then:

1. If u ∈ SH, the minimum number of fill edges needed (in addition to the tail uw) is
▷ |KH |−1 = 2 if |KH | = 3 and RH = ∅;
▷ |KH | = 3 if |KH | = 3 and |RH | = 1;
▷ |KH |+1 = 4 if |KH | = 3 and |RH | ≥ 2;
▷ |KH | if |KH | ≥ 4 and RH = ∅;
▷ |KH |+ 1 if |KH | ≥ 4 and |RH | ≥ 1.

2. If u ∈ KH, the minimum number of fill edges needed (in addition to the tail uw) is 1.

3. If u ∈ RH, then, RH = {u}, and the minimum number of fill edges needed (in
addition to the tail uw) is |KH |.

Proof. 1. Let v ∈ KH be the non-neighbor of u in H. Let us first consider the case
|KH | = 3. If |RH | ≤ 2, we can get a P4-sparse graph after having added the edges
vu and vw (this implies that v becomes universal in (V (H) − {v}) ∪ {w}) and the
edge connecting u to the vertices in RH if RH is non-empty (then the vertices in
(V (H)−{v})∪{w} induce a thin spider withK = (KH−{v})∪{u}, S = (SH−{u})∪{w},
and R = RH , for a total of |KH | − 1 + |RH | added edges (excluding the edge uw).
If |RH | ≥ 21, a P4-sparse graph is obtained after in addition to the tail uw vu and
vw (again v is universal in (V (H) − {v}) ∪ {w}) and the edges connecting w to the
vertices in KH − {v} (then the vertices in (V (H) − {v}) ∪ {w} induce a thin spider
with K = KH−{v}, S = SH−{u}, and R = RH ∪{u,w}), for a total of |KH |+1 added
edges (in addition to uw).
Now, consider the case that |KH | ≥ 4. If |RH | ≤ 1, we get a P4-sparse graph after
having made u universal by adding |KH | − 1 edges to the remaining vertices in SH ,
the edge uv, and the edge connecting u to the vertex in RH if RH is non-empty, for a
total of |KH |+ |RH | added edges (in addition to uw). If |RH | ≥ 12, a P4-sparse graph
is obtained after having made v universal (by adding the edges vu and vw) and then
having connected w to all vertices in KH−{v} (then the vertices in (V (H)−{v})∪{w}
induce a thick spider with K = KH − {v}, S = SH − {u}, and R = RH ∪ {u,w}) for a
total of |KH |+ 1 added edges (in addition to uw).

1 For |RH | = 2, we have two optimal solutions.
2 For |RH | = 1, we have two optimal solutions.
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Below we show the minimality of this solution. Let v ∈ KH be the non-neighbor
of u in H. We consider each of the five cases.

(i) |KH | = 3 and RH = ∅: Suppose, for contradiction, that there is a solution with at
most |KH |−2 = 1 added edge (in addition to uw). Then, there exists at least one
vertex s ∈ SH−{u} that is not incident on this added edge. If v is incident on the
unique added edge (which connects v to u or w), then the vertices u, v, w, s, s′

(where {s′} = SH − {u, s}) induce an F3. If v is not incident on the added
edge, then the vertices u, v, w, s, k (where k ∈ KH is the non-neighbor of s in
H) induce an F5 if k, w are connected by the added edge, or an F2 otherwise.

(ii) |KH | = 3 and |RH | = 1: Let RH = {r}. Suppose, for contradiction, that there
is a solution with at most |KH | − 1 = 2 added edge (in addition to uw). We
distinguish three cases depending on whether v is incident on 0, 1, or 2 added
edges:

• v is not incident on an added edge: If there exists a pair s, k of non-neighbors
with s ∈ SH − {u} and k ∈ KH − {v} such that none of s, k is incident on
an added edge to u or w, the vertices u, v, w, s, k induce an F2. Otherwise,
since the number of such pairs is 2, each such pair s, k is incident on 1

added edge to u or w, and no other added edges exist. If there exists a
vertex k ∈ KH − {v} not incident on an added edge to w, the vertices
u, v, w, k, r induce an F5, otherwise each of the added edges connects w to
each of the vertices in KH −{v} to w and then u, v, w, s, k (for any pair s, k
of non-neighbors with s ∈ SH − {u} and k ∈ KH − {v}) induce an F6.

• v is incident on 1 added edge (to u or w): Then, there is 1 more added edge;
hence, there exist 2 vertices in the set (SH −{u})∪{r} that are not incident
on an added edge connecting them to u or w, and let these vertices be
p1, p2. Then, the vertices u, v, w, p1, p2 induce an F5 if p1, p2 are connected
by an added edge or an F3 otherwise.

• v is incident on 2 added edges connecting it to u and w: Then, there is no
other added edge. Then, the vertices u,w, k, k′, r (where {k, k′} = KH−{v})
induce an F6.

(iii) |KH | = 3 and |RH | ≥ 2: Let r1, r2 be two vertices in RH . Suppose, for contradic-
tion, that there is a solution with at most |KH | = 3 added edge (in addition to
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uw). Again, we distinguish three cases depending on whether v is incident on
0, 1, or 2 added edges:

• v is not incident on an added edge: Consider the case that there exists a
vertex k ∈ KH − {v} that is not incident on an added edge to u or w. Let
s ∈ SH be the non-neighbor of k in H and A = (SH − {u, s}) ∪ {r1, r2};
the set A contains 3 vertices which are common neighbors of v, k. If at
least one of these 3 vertices (say, p) is not incident on an added edge to
u,w, then the vertices u, v, w, k, p induce an F5, otherwise all 3 of these
vertices are incident on an added edge to u,w (then these are all the added
edges) and the vertices u, v, w, s, k induce an F2. On the other hand, if no
such vertex k exists, then both vertices in KH − {v} are incident on an
added edge to w, accounting for 2 of the 3 added edges; then there exists a
vertex s′ ∈ SH −{u} that is not incident on an added edge and the vertices
u, v, w, s′, k′ (where k′ ∈ KH is the non-neighbor of s′) induce an F5.

• v is incident on 1 added edge (to u or w): There are 2 more added edges;
hence, there exist 2 vertices in the set (SH − {u}) ∪ {r1, r2} that are not
incident on an added edge connecting them to u or w, and let these vertices
be p1, p2. Then, the vertices u, v, w, p1, p2 induce an F5 if p1, p2 are connected
by an added edge or an F3 otherwise.

• v is incident on 2 added edges connecting it to u and w: Then, there is
1 more added edge; hence, there exists a vertex k ∈ KH − {v} that is
not incident on the added edge. Moreover, there exist 2 vertices in the
set (SH−{u, s})∪{r1, r2} that are not incident on an added edge connecting
them to u or w (where s ∈ SH is the non-neighbor of k); let these vertices
be p1, p2. Then, the vertices u,w, k, p1, p2 induce an F5 if p1, p2 are connected
by an added edge or an F3 otherwise.

(iv) |KH | ≥ 4 and RH = ∅: Suppose, for contradiction, that there is a solution with
at most |KH | − 1 added edge (in addition to the tail uw). Again, we distinguish
three cases depending on whether v is incident on 0, 1, or 2 added edges:

• v is not incident on an added edge: If there exists a vertex s ∈ SH − {u} not
incident on an added edge to u or w, the vertices u, v, w, s, k (where k ∈ KH

is the non-neighbor of s in H) induce an F5 if k, w are connected by an
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added edge, or an F2 otherwise; if all vertices in SH − {u} are incident on
an added edge to u or w, then there are no more added edges and the
vertices u, v, w, k, k′ (for any k, k′ ∈ KH − {v}) induce an F6.

• v is incident on 1 added edge (to u or w): Then, the remaining added edges
are at most |KH | − 2 in total. If there exist two vertices s, s′ ∈ SH − {u}
not incident on an added edge to u or w, the vertices u, v, w, s, s′ induce
an F5 or an F3 depending on whether s, s′ are adjacent or not. Otherwise,
the remaining |KH | − 2 added edges connect each of |KH | − 2 vertices in
SH − {u} to u or w; let s be the unique vertex in SH − {u} not incident on
an added edge. Then, the vertices u, v, w, s, k′ (where k′ ∈ KH − {v} is a
neighbor of s in H) induce an F6 or an F1 if the added edge incident on
v connects it to u or w respectively.

• v is incident on 2 added edges connecting it to u and w: Then, the remaining
added edges are at most |KH |−3 in total; hence, there exist two pairs of non-
adjacent vertices s1, k1 and s2, k2 with s1, s2 ∈ SH−{u} and k1, k2 ∈ KH−{v}
such that none of s1, s2, k1, k2 is incident on an added edge to w or u. Let
A = SH − {u, s1, s2}; the set A is the set of |KH | − 3 common neighbors
of k1, k2 in SH other than u. If there exists a vertex s ∈ A not incident
on an added edge to u or w, then the vertices u,w, k1, k2, s induce an F6,
otherwise, the remaining |KH |−3 added edges connect each of the vertices
in A to u or w, that is, none of the vertices in KH − {v} is incident on
an added edge. Then, the vertices u,w, s1, s2, k (where k is any vertex in
KH − {v, k1, k2}) induce an F3.

(v) |KH | ≥ 4 and |RH | ≥ 1: Let r ∈ RH . Suppose, for contradiction, that there is a
solution with at most |KH | added edge (in addition to the tail uw). Again, w
distinguish three cases depending on whether v is incident on 0, 1, or 2 added
edges:

• v is not incident on an added edge: If there exists a vertex s ∈ SH − {u} not
incident on an added edge to u or w, the vertices u, v, w, s, k (where k ∈ KH

is the non-neighbor of s in H) induce an F5 if k, w are connected by an
added edge, or an F2 otherwise; if all vertices in SH − {u} are incident on
an added edge to u or w, which account for the |KH |−1 of the |KH | added
edges, there exist vertices k, k′ ∈ KH − {v} which are not incident on an
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added edge and then the vertices u, v, w, k, k′ induce an F6.

• v is incident on 1 added edge (to u or w): Then, the remaining added edges
are at most |KH | − 1 in total. If all vertices in KH − {v} are incident on
an added edge to w, then no more added edges exist and the vertices
u, v, w, s, s′ (for any s, s′ ∈ SH − {u}) induce an F3. So, assume that there
exists k ∈ KH − {v} which is not incident on an added edge to w. The
number of common neighbors of v, k in (SH − {u})∪ r is |KH | − 1. If each
of these vertices is incident on an added edge to u or w, then no more
added edges exist and the vertices u, v, w, s, k′ induce an F6 or an F1 if the
added edge incident on v connects it to u or w, respectively, where s ∈ SH

is the non-neighbor of k and k′ is any vertex in KH − {v, k}; otherwise,
there exists a common neighbor p not incident on an added edge to u or
w and the vertices u, v, w, k, p induce an F6 or an F1 if the added edge
incident on v connects it to u or w, respectively.

• v is incident on 2 added edges connecting it to u and w: Then, the remaining
added edges are at most |KH | − 2 in total; hence, there exists a pair of
non-adjacent vertices s, k (where s ∈ SH − {u} and k ∈ KH − {v}) which
are not incident on an added edge to w or u. Let A = (SH −{u, s})∪ r; the
set A is a set of |KH | − 1 neighbors of k other than u. Then, there exists 1
vertex p1 in A which is not incident on an added edge to u or w. If there
exists a second vertex p2 in A not incident on an added edge to u or w, then
the vertices u,w, k, p1, p2 induce an F5 if p1, p2 are connected by an added
edge or an F3 otherwise. If each vertex in A−{p1} is incident on an added
edge to u or w, then the added edges incident on these vertices account for
the remaining |KH | − 2 added edges. Then, the vertices u,w, s, k1, k2 (for
any vertices k1, k2 ∈ KH − {v, k}) induce an F6.

Therefore, if we use fewer than the stated number of added edges, in each case, the
resulting graph contains an induced forbidden subgraph; a contradiction.

2. Let v ∈ SH be the non-neighbor of u in H. Then, we get a P4-sparse graph by
connecting u to v; thus, u becomes universal in V (H) ∪ {w}. This is the minimum
number of edges (in addition to the tail uw) that need to be added since for any pair
of non-neighbors s, k with s ∈ SH − {v} and k ∈ KH − {u}, the vertices u, v, w, s, k

induce a forbidden subgraph F3; a contradiction.
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3. By connecting u to all vertices in SH or by connecting w to all vertices in KH ,
we get a P4-sparse graph; in the former case, u becomes universal in V (H) ∪ {w}, in
the latter case, we get a thick spider with S = SH , K = KH , and R = {u,w}, and
in either case the number of added edges (in addition to the edge uw) is equal to
|KH |. In particular, for |KH | = 3, we can also get a P4-sparse graph, by connecting
a vertex k ∈ KH to w and to its non-neighbor s in SH (thus making k universal in
V (H)∪ {w}) and by connecting s to u; the resulting P4-sparse graph is a thin spider
with S = (SH − {s}) ∪ {w}, K = (KH − {k}) ∪ {u}, and R = {s}.
To prove the minimality of this number of added edges, suppose, for contradiction,
that we can get a P4-sparse graph after having added at most |KH | − 1 edges (in
addition to the tail uw). Then, there exists a pair s1, k1 of non-neighbors in H with
s1 ∈ SH and k1 ∈ KH none of which is incident on an added edge to u or w. We
distinguish the following two cases that cover all possibilities.

• Each of the vertices in KH − {k1} is incident on an added edge to w. These are
precisely all the |KH | − 1 added edges; hence none of the vertices in SH − {s1}
is incident on an added edge. Then, the vertices u,w, k1, s2, s3 (for any s2, s3 ∈
SH − {s1}) induce an F3.

• There exists at least one vertex in KH−{k1} that is not incident on an added edge to w.
Let that vertex be k2. Then, if there exists another vertex k3 ∈ KH −{k1, k2} that
is not incident on an added edge to w as well, the vertices u,w, k2, k3, s1 induce
an F6. On the other hand, if each of the vertices in KH − {k1, k2} is incident on
an added edge to w (which implies that k3 is adjacent to w), then these added
edges are |KH | − 2 in total, with only 1 remaining. If the non-neighbor s3 of k3
in SH is not incident on an added edge to u or w, then the vertices u,w, k1, k2, s3
induce an F6 whereas if it is adjacent to w, the vertices u,w, k2, s1, s3 induce an
F4 and if it is adjacent to u, the vertices u, k1, k3, s1, s3 induce an F6.

In each case, we get a contradiction.

If the (thin or thick) spider H belongs to a more general P4-sparse graph, then
Lemmas 2.7 and 2.8 imply the following result.

Corollary 2.2. If the spider H of Lemmas 2.7 and 2.8 belongs to a more general P4-
sparse graph G, then the minimum number of added edges needed for a minimum P4-sparse
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completion of the graph G+ uw does not exceed the minimum number respectively given by
Lemmas 2.7 and 2.8 augmented by |NG(u) ∩ (V0 ∪ · · · ∪ Vh−1)|.

The number suggested in the corollary corresponds to doing the minimum P4-
completion of the graph H + uw and not changing the rest of the P4-sparse tree
of G.

2.4.2 The Algorithm

Recall that t0t1 · · · thu is the path from the root to u in the P4-sparse tree TG of G and
Vi (0 ≤ i < h) is the set of vertices associated with the leaves of the subtrees rooted
at the children of ti except for ti+1 and Vh is the set of vertices associated with the
leaves of the subtrees rooted at the children of th except for u. See Figure 2.9.

In the following lemma, we show how a P4 with the tail uw as a wing may be
formed in a minimum completion of the graph G+ uw.

Lemma 2.9. In addition to the cases of Lemmas 2.7 and 2.8, a P4 with the tail uw as
a wing may be formed in a minimum completion of the graph G + uw, only if there exists
j (0 ≤ j < h) such that tj is a 1-node, tj+1 is a 0-node, there exists a vertex a ∈ Vi that
is universal in Vi, and there exists a vertex b ∈ Vi+1 that is adjacent to no vertex in Vi+1.
Then, the vertices u,w, a, b belong to a spider with (S,K,R) where S = {w, b}, K = {u, a}
and R = (Vi+1 − {b}) ∪ Vi+2 ∪ · · · ∪ Vh.

Proof. For the tail uw to be the wing of a P4 wuxy, it has to be the case that u, x, y form
a P3. If the P4 wuxy belongs to a spider with clique size equal to 2, then with just the
additional added edge uy, we get a P4-sparse graph as well (then, u is universal in the
vertex set of the spider). This implies that a minimum completion involving such a P4

will be better if u, x, y form a P3 in G so that no added edge is required for building
the P3. The same argument applies for more than one P4. For example, consider that
the minimum completion of G + uw contains a spider with |K| = |S| = k = 3 where
K = {u, k1, k2} and S = {w, s1, s2}, with s1, s2 being adjacent to k1, k2, respectively.
In G, the vertices u, k1, k2, s1, s2 should induce a connected subgraph for otherwise,
we add edges connecting u to its non-neighbors only in the connected component
of G[{u, k1, k2, s1, s2}] to which u belongs, thus getting a P4-sparse graph with fewer
added edges. Then, the edges s1k1 and s2k2 should be edges of G; moreover, the
edge k1k2 should belong to G for otherwise, to ensure connectivity, u would be adjacent
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to both k1 and k2, and u, k1, k2, s1, s2 would induce an F2 = P5. Since k1k2 is an edge
of G, then the vertices s1, k1, k2, s2 induce a P4 in G and thus the formation of a P4

with the tail uw as a wing occurs as described in the proofs of Lemmas 2.7 and 2.8.
We work similarly, for larger spiders.

Therefore, in the following, we consider the generation of a single P4 wuab where
the graph G contains the P3 uab. If any edge of the P3 uab connects a vertex of a set S
to a vertex of a set K of a spider, then the 3rd vertex would belong to the spider,
and thus Lemmas 2.7 and 2.8 cover this case. Then, the only way, to have a P3 uab

is to have a node ti which is a 1- or a 2-node such that a ∈ Vi (in the latter case, a
is a vertex of the clique of the spider) and a node tj with j > i such that tj is a 0-
or a 2-node with b ∈ Vj (in the latter case, b is a vertex of the independent set of the
spider). If we use Formation 2 right after node ti, then the number of added edges
are |(Vi+1 ∪ · · · ∪ Vh)−NG(u)|+ |(V0 ∪ · · · ∪ Vi) ∩NG(u)|; the former term corresponds
to edges incident on u, the latter to edges incident on w.

Let us now try forming a P4 wuab, and thus a spider of clique size equal to 2;
clearly, this is a thin spider. Then, Property P1 in Lemma 2.2 implies that w and
a (as well as u) should be adjacent to all the neighbors of b except for a, that is,
w should be adjacent to at least the vertices in [(V0 ∪ · · · ∪ Vj−1) − {a}] ∩ NG(b) =

[(V0 ∪ · · · ∪ Vj−1)−{a}]∩NG(u). Additionally, Property P2 in Lemma 2.2 implies that
because a is adjacent to all the vertices in Vi+1 ∪ · · · ∪ Vh and to its neighbors in Vi,
then so must be vertex u. Clearly, (Vi+1 ∪ · · · ∪ Vh) − NG(u) ⊆ Vi+1 ∪ · · · ∪ Vh. On the
other hand, |(V0∪· · ·∪Vi)∩NG(u)| ≤ |[(V0∪· · ·∪Vj−1)−{a}]∩NG(u)| unless j = i+1.
Moreover, if a is universal in Vi and b is adjacent to no vertex in Vj = Vi+1, then by
removing a from Vi and b from Vj , and by placing the new spider involving just the
P4 wuab in between the nodes ti and ti+1 requires 1 added edge less than the solution
using Formation 2. This advantage is lost if ti is a 2-node in which case a has a
neighbor in Vi that is not a neighbor of u; then Property P2 in Lemma 2.2 implies
that an added edge is needed to connect u to it. Now consider that ti is a 1-node.
Then, the advantage is lost again if a has a non-neighbor in Vi; this non-neighbor is
a neighbor of u and Property P2 in Lemma 2.2 implies that an added edge is needed
to connect a to it. The advantage is also lost if tj is a 0-node and b has a neighbor in
Vj or if tj is a 2-node, which also implies that b has a neighbor in Vj; in either case,
Property P1 in Lemma 2.2 yields that w must be adjacent to it, costing an additional
edge.
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Now we are ready to describe our algorithm for counting the minimum number
of added edges for a P4-completion of the graph G+ uw.

Algorithm P4‐sparse‐Tail‐Addition
Input: A P4-sparse graph G and a tail uw to be added to G.
Output: The minimum number of added edges (in addition to the tail uw) needed

so that the resulting graph is P4-sparse.

if |V (G)| = 1 then {V (G) = {u}}
the graph resulting from the addition of the tail uw is P4-sparse;
no further added edge is needed;
return(0);

Let t0t1...th (h ≥ 1) be the path from the root t0 of the P4-sparse tree of G to the
parent-node th of the leaf corresponding to u;
Let Vi (0 ≤ i < h) be the set of vertices associated with the leaves of the subtrees
rooted at the children of ti except for ti+1 and Vh be the set of vertices associated with
the leaves of the subtrees rooted at the children of th except for u (see Figure 2.9);

min← |NG(u)|; {corresponds to Formation 1}

{check for Formation 2 (Lemma 2.6(iii))}
for each ti (i = 0, 1, . . . , h) that is a 1- or a 2-node do

ℓ← |NG(u) ∩ (V0 ∪ · · · ∪ Vi−1)|+ |(Vi ∪ · · · ∪ Vh)−NG(u)|;
if ℓ < min then

min← ℓ;

{check for new P4 formation (Lemma 2.9)}
for each i = 0, 1, . . . , h− 1 such that ti is a 1-node and Ti+1 is a 0-node do

if there exists a vertex a ∈ Vi such that a is universal in Vi and
there exists a vertex b ∈ Vi+1 such that b has non neighbors in Vi+1 then

ℓ← |NG(u) ∩ (V0 ∪ · · · ∪ Vi−1)|+ |Vi − {a}|+ |Vi+1 − {b}|+
|(Vi+2 ∪ · · · ∪ Vh)−NG(u)|;

if ℓ < min then
min← ℓ;

{check the cases if th is a 2-node and apply Corollary 2.2}
if th is a 2-node then

ℓ← number of added edges according to cases of Lemmas 2.7 or 2.8;
ℓ← ℓ+ |NG(u) ∩ (V0 ∪ · · · ∪ Vh−1)|;

40



if ℓ < min then
min← ℓ;

return(min);

Algorithm P4-sparse-Tail-Addition can be easily augmented to return a minimum
cardinality set of added edges.

The correctness of the algorithm follows from Lemmas 2.6, 2.7, 2.8, 2.9, and
Corollary 2.2. Let G be the given graph and let n be the number of its vertices.
If the P4-sparse tree TG of G is given, an O(n)-time traversal of the tree enables
us to compute the number of neighbors and non-neighbors of u in each of the sets
V0, . . . , Vh; additionally, the height of TG is O(n) which implies that h = O(n). Since the
conditions of Lemmas 2.7 and 2.8 can be checked in O(1)-time, the entire algorithm
runs in O(n) time.

Theorem 2.6. Let G be a P4-sparse graph on n vertices and let uw be tail attached at
node u of G. If the P4-sparse tree of G is given, Algorithm P4-sparse-Tail-Addition computes
the minimum number of edges to be added to G+uw so that the resulting graph is P4-sparse
in O(n) time.

If the P4-sparse tree TG of G is not given, then it can be computed in O(n+m) time
where m is the number of edges of G [35], and the entire algorithm takes O(n+m)

time.

2.5 Concluding Remarks

In this chapter, we study the minimum C-completion problem. We consider a graph G

which belongs to a graph class C and we are interested in connecting a node w ̸∈ V (G)

to G by a single edge uw where u ∈ V (G); we call such an edge a tail. Our aim is
the calculation of a minimum C-completion of G′; in other words, the minimum
number of non-edges (in addition to the tail uw) that must be added in order to the
resulting graph to belong to the class C, because the graph G′ resulting from G after
the addition of the tail need not necessarily belong to the class C.

In particular, we study this completion problem in some classes of perfect graphs,
such as split, threshold, quasi-threshold and P4-sparse graphs. In every class, we study
their properties and graph structure in order to calculate the minimum number of
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fill edges that needed after an addition of a tail in the initial graph G. Firstly, we
assume a split graph G, and we add a tail uw, where u ∈ V (G) and w /∈ V (G). The
minimum number of fill edges depends on the vertex set, independent set S or clique
set K , to which node u belongs. Secondly, we consider a quasi-threshold graph G,
which is A-free graph or a threshold graph G, which is precisely a A-free graph
containing no induced subgraph isomorphic to 2K2. In these classes, the minimum
quasi-threshold/threshold completion of the graph G + uw, where uw is a tail, is
defined as the minimum value of some functions, which depends on the position
and the level of vertex u in the tree representation Tc(G). Finally, since we study
the properties and the structure of P4-sparse graph and its tree representation, we
describe the Algorithm P4‐sparse‐Tail‐Addition in order to count the added edges
for a P4-sparse completion of the graph G + uw. The correctness of this algorithm
based on a series of lemmas.
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CHAPTER 3

ADDING AN EDGE IN A P4-SPARSE GRAPH

3.1 Introduction

3.2 Connecting two Connected Components

3.3 Adding a Non‐edge incident on a Vertex of the Clique or the Independent Set

of a Spider

3.4 Adding an Edge to a General P4‐sparse Graph

3.5 Concluding Remarks

3.1 Introduction

Other one instance of the general (C,+k)-MinEdgeAddition problem [36] is the (P4-
sparse,+1)-MinEdgeAddition Problem. In this problem, we add 1 given non-edge uv
in a P4-sparse graph and we want to compute a minimum P4-sparse-completion of
the resulting graph G+ uv.

The above problem are motivated by the dynamic recognition (or on-line mainte-
nance) problem on graphs: a series of requests for the addition or the deletion of an
edge or a vertex (potentially incident on a number of edges) are submitted and each
is executed only if the resulting graph remains in the same class of graphs. Several
authors have studied this problem for different classes of graphs and have given algo-
rithms supporting some or all the above operations; we mention the edges-only fully
dynamic algorithm of Ibarra [39] for chordal and split graphs, and the fully dynamic
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algorithms of Hell et al. [40] for proper interval graphs, of Shamir and Sharan [41]
for cographs, and of Nikolopoulos et al. for P4-sparse graphs [51].

As referred in [61], the class of integrally completable graphs are those Lapla-
cian integral graphs having the property that one can add in a sequence of edges,
presenting Laplacian integrality with each addition, and that such edge additions
can continue until a complete graph is obtained. According to [62], the energy of a
complete multipartite graph, i.e., the sum of the absolute values of its eigenvalues,
increases if a new edge added or an old edge is deleted. Papagelis [63] study the
problem of edge modification on social graphs and consider the problem of adding a
small set of non existing edges in a social graph with the main objective of minimizing
its characteristic path length, i.e., the average distance between pairs of vertices that
controls how broadly information can propagate through a network.

More specifically about C-completion problems, Yannakakis [8] showed that the
computing the minimum fill-In of chordal graphs is NP-Complete. Nikolopoulos and
Palios [59] establish structural properties of cographs and they present an algorithm
which, for a cograph G and a non-edge xy (i.e., two non-adjacent vertices x and y)
of G, finds the minimum number of edges that need to be added to the edge set of G
such that the resulting graph is a cograph and contains the edge xy. Their proposed
algorithm could be a suitable addition to the algorithm of Shamir and Sharan [40]
for the online maintenance of cographs and it runs in time linear in the size of the
input graph and requires linear space.

Our Contribution. A typical graph modification problem aims to modify a graph G,
via a small number of operations from a specified set S, into some other graph G′

that has a certain desired property, which usually describes a certain graph class C
to which G′ must belong. Based on the idea behind the proof of problem of adding
a tail to a graph G, which belongs to a class of perfect graphs, we present an efficient
algorithm for calculation the minimum fill edges in G + uv such that belongs in the
same class with initial graph G. For this purpose, we investigate the class of P4-sparse
graphs, and we study the above problem: given a P4-sparse graph G and non edge
uv, where u, v ∈ V (G), we compute the minimum fill edges for G+uv to be P4-sparse
graph.

What is important of the proposed method of solution is to distinguish the two
cases of addition of a non-edge. More precisely, the first case is the least common
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ancestor of the leaves corresponding to u, v in P4-sparse tree T is a 0-node, i.e., the
given P4-sparse graph G consists of 2 connected components each containing one of
the endpoints of the added non-edge uv. Furthermore, there exists the case where the
addition of a non-edge is incident on a vertex of the clique or the independent set of
a spider graph (either thin or thick spider). Our approach is summarized finding the
optimal solution H in each case and what root node (1-node, 2-node thin or 2-node
thick) of P4-sparse tree T (H) is.

Finally, we would like to point out that the primary purpose of our approach is
not to fill a gap of the existing C-completion methods by proposing a new algorithm,
but to expand the idea used on the previous chapter and show that it can be efficiently
applied for other classes of perfect graphs depicting thus the high versatility of the
whole concept.

Road Map. The chapter is organized as follows: In Section 3.2 we define the (P4-
sparse-2CC,+1)-MinEdgeAddition Problem, namely we consider the special case in
which the given P4-sparse graph G consists of 2 connected components each con-
taining one of the endpoints of the added non-edge uv. In Section 3.3 we introduce
the same problem in the case where the adding a non-edge is incident on a vertex
of the clique or the independent set of a spider graph, i.e., the addition of a new
edge is done inside in a spider graph. In Section 3.4 we analyze the steps of general
algorithm, which calculate the minimum number of fill edges in (P4-sparse,+1)-Min-
EdgeAddition Problem. Finally, in Section 3.5 we summarize our work with the main
parts of it.

3.2 Connecting two Connected Components

In this section, we will consider the special case in which the given P4-sparse graph G

consists of 2 connected components each containing one of the endpoints of the added
non-edge uv; we will cal this problem (P4-sparse-2CC,+1)-MinEdgeAddition. Let Cu

(Cv respectively) be the connected component of G containing u (v respectively).
Clearly V (G) = Cu ∪ Cv. It is not difficult to see that:

Observation 3.1. Let G be a disconnected graph consisting of 2 connected components Cu

and Cv such that u ∈ Cu and v ∈ Cv, and consider the instance of the (P4-sparse-2CC,+1)-
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0

G[Cu \ {u}] G[Cv]

1

u

Figure 3.1: The tree representation T (G) with the vertex u as universal in G.

MinEdgeAddition Problem for the graph G and the non-edge uv. Then

(i) Each of the induced subgraphs G[Cu] and G[Cv] is connected.

(ii) In any optimal solution H to the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for
the graph G and the added non-edge uv it holds that each of the induced subgraphs
H[Cu] and H[Cv] is connected and the entire graph H is connected.

Observation 3.1(ii) implies that the root node of the P4-sparse tree of any optimal
solution H of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for G and uv is a
1-node or a 2-node (for a thin or a thick spider) and these are the cases that we
consider in the following subsections.

Before that, however, we note that we can get a P4-sparse graph G′ where V (G′) =

V (G) and E(G)∪{uv} ⊆ E(G′) by making u universal in G (Figure 3.1) which requires
|V (G)| − 1− degG(u) fill edges (including uv). A similar statement holds for v.

Also, it is important to note that for any two positive integers i1, i2, it holds that

i1 · i2 ≥ i1 + i2 − 1;

equality holds if i1 = 1 or i2 = 1.
(3.1)

Note that i1 · i2 = i1 + i2 − 1 ⇐⇒ (i1 − 1) · (i2 − 1) = 0.
Our algorithm for the (P4-sparse,+1)-MinEdgeAddition Problem relies on the

structure of the P4-sparse tree of the given graph. In particular, for a P4-sparse
graph G and a vertex u of G, we define the subtrees Tu,1(G), Tu,2(G), . . .. Let t1t2 · · · tr
be the path in the P4-sparse tree TG of G from the root node t1 to the leaf tr corre-
sponding to u. Then,

• Tu,1(G) is the subtree of TG containing t1 after we have removed the tree
edge t1t2;
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t1

tj

tj+1

u

Tu,1(G)

Tu,j(G)

Tu,j+1(G)

Figure 3.2: The subtrees Tu,1(G), Tu,2(G), . . ., Tu,j(G), Tu,j+1(G), . . . which contain the
vertices t1, t2, . . . tj, tj+1 . . . respectively.

• for j = 2, 3, . . . , r − 1, Tu,j(G) is the subtree of TG containing tj after we have
removed the tree edges tj−1tj and tjtj+1.

In Figure 3.2, it depicts the path t1t2 · · · tjtj+1 · · ·u and the subtrees Tu,1(G), Tu,2(G),
. . ., Tu,j(G), Tu,j+1(G), . . ..

3.2.1 Case 1: The root node of the P4‐sparse tree TH of the solu‐

tion H is a 1‐node

If the treenode corresponding to u (v resp.) in TH is a child of the root of TH , then u (v
resp.) is universal in H. So, in the following, assume that the treenodes corresponding
to u, v are not children of TH’s root. Let Tu, Tv be the subtrees rooted at the children
of the root of TH containing the treenodes corresponding to u and v, respectively.
Next, we consider the cases whether Tu = Tv and Tu ̸= Tv.

Case 1a. The vertices u, v belong to the same subtree T .
We show the following lemma.

Lemma 3.1. Suppose that the root node of the P4-sparse tree TH of an optimal solution H

of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for the graph G and the non-edge uv
is a 1-node and that the vertices u, v belong to the same subtree of the root of TH. Then,
there exists an optimal solution H ′ of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem
for the graph G and the non-edge uv (a) which results from making u or v universal in G

or (b) in which the subtree Tu,1(H
′) is identical to Tu,1(G[Cu]) or Tv,1(G[Cv]) or (c) G[Cu]
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(G[Cv] respectively) is a thin spider (S ′, K ′, R′) with u ∈ S ′ (v ∈ S ′ respectively) in which
case H ′ results from making the unique neighbor of u (v respectively) universal in G.

Proof. We distinguish the following cases depending on the treenode type of the root
of the subtree Tu,1(G[Cu]); since the subgraph G[Cu] of G induced by Cu is connected
(Observation 3.1(i)), the root of Tu,1(G[Cu]) is a 1-node or a 2-node.

A. The root of the subtree Tu,1(G[Cu]) is a 1-node. If V (Tu,1(G[Cu])) ⊆ V (Tu,1(H)),
then in H , every vertex in V (Tu,1(G[Cu])) is adjacent to all the vertices in V (G)\
V (Tu,1(G[Cu])); then, an optimal solution of the problem can be constructed
from the join G[V (Tu,1(G[Cu]))] + F where F is an optimal solution after the
addition of the non-edge uv in G[V (G) \ V (Tu,1(G[Cu])).

Let Q = V (Tu,1(G[Cu])) \V (Tu,1(H)) and consider now the case in which Q ̸= ∅;
in particular, assume that H is such that |Q| is minimum. Then, Q is universal
in G[Cu \ V (Tu,1(G[Cu]))], which includes u. Additionally, since u is adjacent to
all the vertices in V (Tu,1(G[Cu])), the graph G[Cu \ V (Tu,1(H)) is connected and
so is H[V (G) \ V (Tu,1(H)); since the root of the P4-sparse tree of H is a 1-node,
then any non-leaf child of the root is a 2-node.

If the least common ancestor t of u, v is not a child of the root of the P4-sparse
tree TH of H , then the subtree Tu,2(H) is well defined and its root is a 2-node;
let (S1, K1, R1) be the corresponding spider and u, v ∈ R1.

• The spider (S1, K1, R1) is thin. If S1 ∪ K1 contains vertices from both Cu

and Cv, Lemma 3.4 implies that there exists an optimal solution of the
(P4-sparse-2CC,+1)-MinEdgeAddition Problem for the subgraph G[V (G) \
V (Tu,1(H))] and the non-edge uv in which u or v is universal or the induced
subgraphs G[Cu \V (Tu,1(H))] and G[Cv] are as shown in Figure 3.5. In the
latter case, we cannot have that |R1∩Cv| ≤ |R1∩Cu| since then there exists an
optimal solution H ′ of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem
for G and uv in which Q ∪ {u′} is universal in G[Cu \ V (Tu,1(G[Cu]))], in
contradiction to the minimality of Q. Now, if |R1∩Cu| < |R1∩Cv| then Q∪
{v′} is universal in G[Cu\V (Tu,1(G[Cu]))] and Lemma 3.2 implies that there
is an optimal solution with u or v is universal or the induced subgraphs
G[Cu\V (Tu,1(H))]. But if u or v is universal in G[Cu\V (Tu,1(H))], there exists
an optimal solution of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem
for G and uv in which u or v is universal in G.
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Let us now consider that S1 ∪ K1 ⊆ Cu or S1 ∪ K1 ⊆ Cv. However, it is
not possible that S1 ∪ K1 ⊆ Cu, otherwise S1 ∩ Q = ∅ (no vertex in S1 is
adjacent to u) and then no vertex is adjacent to all the vertices in G[S1].
Hence S1 ∪ K1 ⊆ Cv but then exchanging Tu,1(H) and Tu,2(H), we get an
optimal solution with fewer fill edges.

• The spider (S1, K1, R1) is thick. Lemma 3.8 implies that either S1 ∪K1 ⊆ Cu

or S1 ∪ K1 ⊆ Cv; the former case is impossible otherwise S1 ∩ Q = ∅ (no
vertex in S1 is adjacent to u) and then no vertex is adjacent to all the vertices
in G[S1], whereas in the latter case, by exchanging Tu,1(H) and Tu,2(H), we
get an optimal solution with fewer fill edges.

If the least common ancestor t of u, v is a child of the root of the P4-sparse
tree TH of H , then t is a 2-node. If G[Cu \ V (Tu,1(H))] is a P2 then |Cu| ≥ 3

and u is universal in G[Cu]. Then the number of fill edges in H is at least
(|Cu|−2) · |Cv| ≥ |Cv| and thus there exists an optimal solution of the (P4-sparse-
2CC,+1)-MinEdgeAddition Problem for the graph G and the non-edge uv with
u being universal in H ′′. On the other hand, G[Cu \ V (Tu,1(H))] is not a spider
since no subset of vertices are adjacent to all remaining vertices in a spider. Let
(S2.K2.R2) be the spider corresponding to the treenode t.

• The spider (S2, K2, R2) is thin. If one of u, v belongs to S2∪K2 and the other
belongs to R2, the subgraph G[Cu] cannot be a P3 with u as an endpoint
and Lemma 3.5 implies that there exists an optimal solution H ′ with u or
v being universal in H ′[V (G) \ V (Tu,1(H))]. On the other hand, if u, v in
S2 ∪ K2, since G[Cu \ V (Tu,1(H))] is neither a P2 nor a thin spider, then
Lemma 3.6 implies that there exists an optimal solution H ′ with u or v

being universal in H ′[V (G) \ V (Tu,1(H))].

• The spider (S2, K2, R2) is thick. Since at least one of u, v belongs to S2 ∪K2,
Lemma 3.9 implies that there exists an optimal solution H ′ with u or v

being universal in H ′[V (G) \ V (Tu,1(H))].

Therefore, if the least common ancestor t of u, v is a child of the root of TH there
exists an optimal solution H ′ with u or v being universal in H ′[V (G)\V (Tu,1(H))]

directly implies that there exists an optimal solution H ′′ (P4-sparse-2CC,+1)-
MinEdgeAddition Problem for the graph G and the non-edge uv with u or v
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being universal in H ′′.

B. The root of the subtree Tu,1(G[Cu]) is a 2-node corresponding to a thin or a thick
spider (SG, KG, RG). Let SG = {s1, . . . , s|KG|} and KG = {k1, . . . , k|KG|} where si, ki
(i = 1, . . . , |KG|) are adjacent (non-adjacent resp.) if G[Cu] is a thin (thick, resp.)
spider. If KG ̸⊆ V (Tu,1(H)) and there exist vertices in V (Tu,1(H))\(SG∪KG), then
we exchange vertices in KG \V (Tu,1(H)) with vertices in V (Tu,1(H))\ (SG∪KG);
note that for any vertex ki ∈ KG and any vertex w ∈ V (Tu,1(H)) \ (SG ∪ KG),
it holds that NG[w] ⊆ NG[ki]. Additionally, for any i (i = 1, . . . , |KG|) such that
si ∈ V (Tu,1(H)) and ki ̸∈ V (Tu,1(H)), we exchange si and ki; note that again
NG[si] ⊆ NG[ki]. After these exchanges, which do not increase the number of fill
edges, we have constructed an optimal solution H ′ of the (P4-sparse-2CC,+1)-
MinEdgeAddition Problem for the graph G and the non-edge uv, and in H ′,
there is no vertex sj in the resulting V (Tu,1(H)) such that kj ̸∈ V (Tu,1(H)).

Let K ′ ⊆ KG be the set of vertices kj ∈ V (Tu,1(H)) such that sj ̸= u and let
S ′ = { sj | kj ∈ K ′ }. Then, if |K ′| = 1 and K ′ = {kj}, let F be the graph resulting
from H ′ after having removed the vertices sj, kj , having inserted sj as an isolated
vertex, and after having made kj as a universal vertex whereas if |K ′| ≥ 2, let F
be the spider (S ′, K ′, V (G)\ (S ′∪K ′) where F [V (G)\ (S ′∪K ′)] = H ′[V (G)\ (S ′∪
K ′)] (the spider is thin or thick if and only if the spider (SG, KG, RG) is thin or
thick respectively). In either case, the graph F is P4-sparse and a completion of
G including the non-edge uv and has fewer fill edges than H , a contradiction.
The only possibility is that V (Tu,1(H)) = {kj} such that sj = u.

Case 1b. The vertices u, v belong to subtrees Tu, Tv, respectively, with Tu ̸= Tv.
Then, we show the following lemma.

Lemma 3.2. Let H be an optimal solution of the (P4-sparse-2CC,+1)-MinEdgeAddition
Problem for the graph G and the non-edge uv and suppose that the vertices u, v belong to
subtrees T1, T2, respectively, of the root of the P4-sparse tree TH of H. If A = V (T1) and
B = V (G) \V (T1), then it is not possible that A∩Cv ̸= ∅ and B ∩Cu ̸= ∅ and there exists
an optimal solution of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for the graph G

and the non-edge uv which results from making u or v universal in G.
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Figure 3.3: The P4-sparse tree TH of the optimal solution H in Cases (i) and (ii) of
the proof of Lemma 3.4 respectively.

Proof. The definition of A,B implies that u ∈ A and v ∈ B. First we prove that it
is not possible that that A ∩ Cv ̸= ∅ and B ∩ Cu ̸= ∅. Suppose for contradiction that
A ∩ Cv ̸= ∅ and B ∩ Cu ̸= ∅. By considering only fill edges with one endpoint in Cu

and the other in Cv, we have that the number N of fill edges is

N ≥ |A ∩ Cu| · |B ∩ Cv|+ |A ∩ Cv| · |B ∩ Cu|

≥ (|A ∩ Cu|+ |B ∩ Cv| − 1) + (|A ∩ Cv|+ |B ∩ Cu| − 1) = |V (G)| − 2

On the other hand, if we make u or v universal, we need |V (G)| − 1 − degG(u) and
|V (G)| − 1 − degG(v) fill edges respectively. Then the optimality of H implies that
degG(u) ≤ 1 and degG(v) ≤ 1. Since A ∩ Cv ̸= ∅ and v ∈ B, we have that |Cv| ≥ 2

which implies that degG(v) ≥ 1 because the induced subgraph G[Cv] is connected
(Observation 3.1(i)); thus, degG(v) = 1. In a similar fashion, degG(u) = 1. Then, the
number of fill edges needed to make u or v universal is |V (G)|−2 and the optimality
of H along with Equation 3.1 imply that

• at least one of |A ∩ Cu|, |B ∩ Cv| is equal to 1;

• at least one of |A ∩ Cv|, |B ∩ Cu| is equal to 1;

• no more fill edges are used in H which implies that H[Cu] = G[Cu] and H[Cv] =

G[Cv].

We consider the following two main cases; the remaining ones are similar.

(i) |A ∩Cu| = 1 and |A ∩Cv| = 1: Then, A ∩Cu = {u} and if A ∩Cv = {v′}, the P4-
sparse tree of H is as shown in Figure 3.3(left) which implies that u is universal
in H[Cu] = G[Cu] and that v′ is universal in H[Cv] = G[Cv]. The fact that
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Figure 3.4: (a) |Cv| = 2: only the fill edge uv is needed; (b) |Cv| = 3: only the fill
edges uv and uv′ are needed; (c) |Cv| ≥ 4: only the fill edges uv, uv′, and u′v′ are
needed (Cu = {u, u′}).

degG(u) = 1 yields |Cu| = 2 and the fact that degG(v) = 1 yields that v is adjacent
only to v′ in G[Cv]. Figure 3.4 shows solutions to the (P4-sparse-2CC,+1)-Min-
EdgeAddition Problem for the graph G and the non-edge uv contradicting the
optimality of H which requires 2, 3, and |Cv| fill edges (including the edge uv)
in case (a), (b), and (c) respectively.

(ii) |A ∩ Cu| = 1 and |B ∩ Cu| = 1: Then, A ∩ Cu = {u} and Cu = {u, u′} where
B ∩ Cu = {u′}. The optimality of H implies that the P4-sparse tree of H is as
shown in Figure 3.3(right). Moreover, since H[Cv] = G[Cv] and degG(v) = 1, we
conclude that |A ∩ Cv| = 1 which leads to the setting of Case (i).

We reached a contradiction in each case. Then either A ∩ Cv = ∅ or B ∩ Cu = ∅.
Suppose without loss of generality that A ∩ Cv = ∅. If A = {u} then H ′ = H and we
are done. Suppose next that |A| ≥ 2. Then the number of fill edges N in H is at least
equal to

N ≥ |B \NG(u)|+ |A \ {u}| · |Cv| ≥ |B \NG(u)|+ |A| − 1 + |Cv| − 1

≥ |V (G) \NG(u)|+ |Cv| − 1 ≥ |V (G) \NG(u)|

which implies that there is an optimal solution with u being a universal vertex.

3.2.2 Case 2: The root node of the P4‐sparse tree of the solution H

is a 2‐node corresponding to a thin spider (S,K,R)

We first prove some important properties for the optimal solution H in this case.
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Observation 3.2. Suppose that an optimal solution H of the (P4-sparse-2CC,+1)-Min-
EdgeAddition Problem for a P4-sparse graph G and a non-edge uv is a thin spider (S,K,R).
Then:

(i) For each edge ab in H such that a ∈ K, b ∈ S, and b is not u or v, the vertices a, b

are adjacent in G (i.e., ab is not a fill edge).

(ii) For each edge ac in H such that a, c ∈ K ∩ Cu, the vertices a, c are adjacent in G

(i.e., ac is not a fill edge); a symmetric result holds if a, c ∈ K ∩ Cv.

Proof. (i) Suppose without loss of generality that a, b are not adjacent in G; then, ab
is a fill edge in H. Let H ′ be the graph resulting from H after we have removed the
edge ab. The graph H ′ is P4-sparse since it is the union of the isolated vertex b with
the induced subgraph H[V (G) \ {b}]; in fact, since b is not u or v, it is an optimal
solution of the (P4-sparse,+1)-MinEdgeAddition Problem for the P4-sparse graph G

and the non-edge uv and it has 1 fewer fill edge than H , in contradiction to the
optimality of H. Therefore, a, b are adjacent in G.

(ii) We concentrate only in the case in which a, c ∈ K∩Cu. In H , let a′ (c′, resp.) be the
unique neighbor of a (c, resp.) in S; by statement (i) of this observation, a′, c′ ∈ Cu,
and a, a′ and c, c′ are adjacent in G. Now, suppose, for contradiction, that a, c are
not adjacent in G. Since a, c ∈ Cu and the induced subgraph G[Cu] is connected
(Observation 3.1(i)), there is a path connecting a′ to c′ in G[Cu], and in fact there is a
chordless such path ρ. Clearly, ρ starts with the edge a′a, ends at the edge cc′ and has
length at least 4; thus, G contains an induced chordless path on at least 5 vertices, in
contradiction to the fact that G is P4-sparse.

Case 2a. The vertices u, v belong to R. Since u, v ∈ R, it is possible that S ∪K ⊂ Cu

or S ∪K ⊂ Cv. For these cases, we show the following lemma.

Lemma 3.3. Suppose that the optimal solution H of the (P4-sparse,+1)-MinEdgeAddition
Problem for a P4-sparse graph G and a non-edge uv is a thin spider (S,K,R) with u, v ∈ R.
If S ∪K ⊆ Cu then there exists an optimal solution H ′ of the (P4-sparse-2CC,+1)-Min-
EdgeAddition Problem for the graph G and the non-edge uv (a) which results from making
u or v universal in G or (b) in which Tu,1(H) = Tu,1(G[Cu]) or Tu,1(H) = Tv,1(G[Cv]).
A symmetric result holds if S ∪K ⊆ Cv.

Proof. We consider the following cases that cover all possibilities:
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A. The root node of the tree Tu,1(G[Cu]) is a 1-node. This implies that every vertex in
V (Tu,1(G[Cu])) is adjacent to all vertices in Cu \ V (Tu,1(G[Cu])) and in particular
to u. On the other hand, the vertices in S are not adjacent to u in H and
consequently are not adjacent to u in G; hence, since S ⊂ Cu, it holds that
S ⊂ Cu \ V (Tu,1(G[Cu])) which in turn implies that in G, all the vertices in
V (Tu,1(G[Cu])) are adjacent to all the vertices in S and this is also true in H.
But this is impossible since no vertex in H is adjacent to all vertices in S.

B. The root node of the tree Tu,1(G[Cu]) is a 2-node corresponding to a thin spider
(SG, KG, RG). Since each vertex in Cu \SG has degree at least 2 in G and thus it
has degree at least 2 in H , and each vertex in S ⊂ Cu has degree 1, we conclude
that S ⊆ SG. Then, by Observation 3.2(i), K = NG(S) and K ⊆ KG. If K = KG

then S = SG and Tu,1(H) = Tu,1(G[Cu]).

In the following assume that K ⊂ KG. Then if |KG\K| ≥ 2, the subgraph G[Cu\
(S ∪K)] is a thin spider (SG \ S,KG \K,RG) whereas if KG \K = {w} then w

is universal in G[Cu \ (S ∪K)] and the remaining vertices form a disconnected
graph with connected components RG and z where {z} = NG(w)∩SG. In either
case, |Cu \ (S ∪K)| ≥ 3 and G[Cu \ (S ∪K)] is connected.

If the least common ancestor t of u, v is not a child of the root of the P4-sparse
tree TH of H , then the subtree Tu,2(H) is well defined and its root is a 1-node
or a 2-node.

(a) The root node of Tu,2(H) is a 1-node. Then Lemma 3.1 implies that there is an
optimal solution F of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem
for the subgraph G[V (G) \ (S ∪K)] and the non-edge uv in which either
Tu,1(F ) = Tu,1(G[Cu\(S∪K)]) or Tu,1(F ) = Tv,1(G[Cv]) or u or v is universal.
The former case is impossible since by replacing H[S ∪K ∪ V (Tu,1(F ))] by
G[S ∪K ∪ V (Tu,1(F ))], we get an optimal solution with fewer fill edges in
contradiction to the optimality of H.

(b) The root node of Tu,2(H) is a 2-node. Let (S1, K1, R1) be the corresponding
spider and u, v ∈ R1.

– The spider (S1, K1, R1) is thin. If S1 ∪K1 contains vertices from both Cu

and Cv, Lemma 3.4 implies that there exists an optimal solution H ′ of
the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for the subgraph
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G[V (G) \ V (Tu,1(H))] and the non-edge uv in which either u or v is
universal in H ′ or Tu,1(H

′) is identical to Tu,1(G[V (G) \ V (Tu,1(H))]) or
Tv,1(G[Cv]). In the latter case, by exchanging Tu,1(H

′) and Tu,2(H
′) we

get an optimal solution of the (P4-sparse-2CC,+1)-MinEdgeAddition
Problem for G and uv in which Tu,1(H

′) is identical to Tu,1(G[Cu]) or
Tv,1(G[Cv]). In turn, if vertex u or v is universal in an optimal solution
of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for the induced
subgraph G[V (G)\(S∪K) and uv, then there exists an optimal solution
of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for G and uv in
which u or v is universal; note that solution H contains fill edges
connecting the vertices in K to all the vertices in (SG \ S) ∪Cv, which,
for |Cv| ≥ 2, are more than the |K| fill edges needed to connect u or v
to the vertices in S.
If S1 ∪K1 ⊆ Cu then S1 ⊆ SG which implies that K1 ⊆ KG, and if we
replace H[(S ∪ S1) ∪ (K ∪ K1)] by G[(S ∪ S1) ∪ (K ∪ K1)] we get an
optimal solution with fewer fill edges than H , a contradiction. Hence
S1 ∪K1 ⊆ Cv. Then, because |K| ≥ 2, |K1| ≥ 2, |Cu| ≥ 5 and |Cv| ≥ 5,
the number N of fill edges is at least equal to

N ≥ |K| · |Cv|+ |K1| · |Cu \ (S ∪K)|

≥ |Cv|+ (|K| − 1) · |Cv|+ 2 |Cu \ (S ∪K)|

= |Cv|+ (|K| − 1) · (|Cv| − 4) + 4 (|K| − 1) + 2 |Cu| − 4 |K|

≥ 2 |Cv| − 4 + 2 |Cu| − 4 ≥ |Cv|+ |Cu|+ 2

which is greater than making u or v universal, a contradiction to the
optimality of H.

– The spider (S1, K1, R1) is thick. Lemma 3.8 implies that either S1∪K1 ⊆
Cu or S1∪K1 ⊆ Cv. If S1∪K1 ⊆ Cv then by working as in the previous
case, we get a contradiction. If S1 ∪ K1 ⊆ Cu then no matter where
the vertices in KG \ K are, there exists a vertex in S1 that belongs to
SG, which implies that its neighbor in KG belongs to K1. Then, by
removing these two vertices from the spider (S1, K1, R1) and joining
them to the spider (S,K,R) we get an optimal solution that requires
fewer fill edges than H , a contradiction.
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If the least common ancestor t of u, v is a child of the root of the P4-sparse
tree TH of H , then t is a 1-node or a 2-node.

(a) The root node of Tu,2(H) is a 1-node. Then Lemma 3.2 implies that there
exists an optimal solution F of the (P4-sparse-2CC,+1)-MinEdgeAddition
Problem for the subgraph G[V (G)\ (S∪K)] and the non-edge uv in which
u or v is universal.

(b) The root node of Tu,2(H) is a 2-node. Let (S2, K2, R2) be the spider corre-
sponding to the treenode t.

– The spider (S2, K2, R2) is thin. If one of u, v belongs to S2 ∪ K2 and
the other belongs to R2, Lemma 3.5 applies. If Lemma 3.5, case (c)
holds, G[Cv] is a P2 and let the resulting spider be (S ′, K ′, R′). Then,
we can get an optimal solution of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for the graph G and the non-edge uv, which is a
spider with stable set S ∪ (S ′ ∩Cu) and clique K ∪ (K ′ ∩Cu), requiring
fewer fill edges than H , a contradiction. A similar construction implies
that Lemma 3.5, case (b) if Tu,2(H) = Tu,1(G[Cu \ (S ∪ K)]) as well
as Lemma 3.5, case (b), if Tu,2(H) = Tv,1(G[Cv]) and the root node of
Tv,1(G[Cv]) is a 1-node are not possible either. If Lemma 3.5,case (b)
holds with Tu,2(H) = Tv,1(G[Cv]) and the root node of Tv,1(G[Cv]) being
a 2-node then by exchanging Tu,1(H) and Tu,2(H), we get an optimal
solution with Tu,1(H) = Tv,1(G[Cv]).
On the other hand, if u, v in S2 ∪K2, then Lemma 3.6 applies. Since
G[Cu\(S∪K) cannot be a P2 or a headless thin spider (which includes
the P4), then the only possibility is Lemma 3.6, case (a), i.e, there ex-
its an optimal solution F of the (P4-sparse-2CC,+1)-MinEdgeAddition
Problem for the graph G[V (G)\ (S∪K) and the non-edge uv in which
u or v is universal.

– The spider (S2, K2, R2) is thick. Since at least one of u, v belongs to
S2 ∪ K2, Lemma 3.9 implies that there exists an optimal solution H ′

with u or v being universal in H ′[V (G) \ V (Tu,1(H))].

Therefore, if the least common ancestor t of u, v is a child of the root
of TH and t is a2-node, then there exists an optimal solution H ′ of the
(P4-sparse-2CC,+1)-MinEdgeAddition Problem for the graph G and the
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non-edge uv in which Tu,1(H
′) = Tv,1(G[Cv]) or u or v is universal in the

induced subgraph G[V (G) \ (S ∪K).

If vertex u or v is universal in an optimal solution of the (P4-sparse-2CC,+1)-
MinEdgeAddition Problem for the graph G[V (G)\(S∪K) and the non-edge uv,
then there exists an optimal solution of the (P4-sparse-2CC,+1)-MinEdgeAddition
Problem for G and uv in which u or v is universal; note that solution H contains
fill edges connecting the vertices in K to all the vertices in (SG \ S) ∪ Cv.

C. The root node of the tree Tu,1(G) is a 2-node corresponding to a thick spider QG =

(SG, KG, RG). Since QG is a thick spider and |SG| = |KG| ≥ 3, every vertex
w ∈ Cu is adjacent to at least 2 vertices in Cu. On the other hand, in H , each
vertex in S ⊂ Cu is adjacent to exactly 1 vertex, which belongs to K ⊂ Cu.
Therefore, such a case is impossible.

In addition to the above case, it is possible that S ∪K contains vertices from both
Cu and Cv; however, we show that this case cannot yield solutions better than having
u or v being universal in H.

Lemma 3.4. Suppose that the optimal solution H of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for a P4-sparse graph G and a non-edge uv is a thin spider (S,K,R) with
u, v ∈ R. Then, if S ∪ K contains vertices from both Cu and Cv, there exists an optimal
solution H ′ of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for the graph G and the
non-edge uv (a) which results from making u or v universal in G or (b) in which the
subtree Tu,1(H

′) is identical to Tu,1(G[Cu]) or Tv,1(G[Cv]) in the case shown in Figure 3.5.

Proof. Because H[Cu] and H[Cv] are connected (Observation 3.1(i)), there exist vertices
u′ ∈ K ∩Cu and v′ ∈ K ∩Cv. Let ku = |K ∩Cu| and kv = |K ∩Cv|; clearly ku ≥ 1 and
kv ≥ 1. By taking into account the fill edges with one endpoint in Cu and the other
in Cv, we have that the number N of fill edges is

N ≥ ku · |R ∩ Cv|+ kv · |R ∩ Cu|+ ku · kv + 1

where the term +1 accounts for the added non-edge uv. Then by Equation 3.1 we
have

N ≥ (ku + |R ∩ Cv| − 1) + (kv + |R ∩ Cu| − 1) + (ku + kv − 1) + 1 = |V (G)| − 2.
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Figure 3.5: The vertex u is adjacent only to u′ which is universal in G[Cu], with
u′ = K ∩ Cu and v′ = K ∩ Cv.

If vertex u is universal in G then the number of fill edges is |V (G)| − 1 − degG(u)

where degG(u) ≥ 1 and similarly for v. Then, the optimality of H implies that in H

all of the following hold: degG(u) = degG(v) = 1; ku = 1 or |R ∩ Cv| = 1; kv = 1 or
|R ∩ Cu| = 1; ku = 1 or kv = 1; no fill edges exist with both endpoints in Cu or Cv,
i.e., H[Cu] = G[Cu] and H[Cv] = G[Cv].

Let u′ = K ∩ Cu and v′ = K ∩ Cv. The facts that H[Cu] = G[Cu], ku ≥ 1, and
degG(u) = 1 imply that ku = 1 and that in G, u is adjacent only to u′ which is
universal in G[Cu] (Figure 3.5). Similarly, kv = 1 and in G, v is adjacent only to v′,
which is universal in G[Cv]. Then, |K| = 2 and the number of fill edges (including
uv) is |V (G)| − 2 = |R|+ 2 (where |R| ≥ 2) matching the number of fill edges if u or
v is made universal in G.

Moreover, we can get a P4-sparse graph by making u′ or v′ universal. In particular,
if |R∩Cv| ≤ |R∩Cu|, we make u′ universal and add the fill edge uv, and if |R∩Cv| > 1

we add the fill edge u′v as well; the total number of fill edges is 4 if |R∩Cv| = 1 and
|R∩Cv|+4 if |R∩Cv| ≥ 2; a symmetric result holds if |R∩Cu| ≤ |R∩Cv|. In summary,
the number of fill edges (including uv) is 4 if min{|R ∩ Cu|, |R ∩ Cv|} = 1 otherwise
it is min{|R ∩ Cu|, |R ∩ Cv|} + 4. Since min{|R ∩ Cu|, |R ∩ Cv|} ≤ |R|/2, this solution
ties the solution with u or v universal if R = {u, v} or |R ∩ Cu| = |R ∩ Cv| = 2 and is
better in all other cases. The lemma follows from the fact that u′ (v′ respectively) is
universal in G[Cu] (G[Cv] respectively).

Cases 2b. One of the vertices u, v belongs to R and the other one belongs to S∪K;
since u, v are adjacent in the solution H , the latter vertex belongs to K.
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Without loss of generality, suppose that u ∈ K and v ∈ R. Then ku = |K∩Cu| ≥ 1.

Lemma 3.5. Suppose that an optimal solution H of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for a P4-sparse graph G and a non-edge uv is a thin spider (S,K,R)
with one of u, v belongs to R and the other one belongs to S ∪ K. Then, there exists an
optimal solution H ′ which

(a) results from making u or v universal in G or

(b) has Tu,1(H
′) = Tu,1(G[Cu]) or Tv,1(H

′) = Tv,1(G[Cv])

(c) except if in G one of Cu, Cv induces a P2 and the other induces a P3 with u or v

being an end vertex or a thin spider (S1, K1, R1) with u or v being an isolated vertex
in G[R1] and |R1| ≤ |K1| in which case the optimal solution involves joining G[Cu]

and G[Cv] into a thin spider.

Proof. We distinguish the following cases:

A. kv = |K∩Cv| = 0. Then Cv ⊆ R. By taking into account the number of fill edges
with one endpoint in Cu and the other in Cv, we have that the number N of fill
edges in H is

N ≥ ku · |R ∩ Cv| = ku · |Cv| ≥ ku + |Cv| − 1.

If we make u universal in G, the number of fill edges (including the fill edge uv)
is precisely ku−1+ |Cv|. Then, the optimality of H implies that N = ku−1+ |Cv|
which requires that ku · |Cv| = ku + |Cv| − 1 and that no additional fill edges
exist; the former implies that ku = 1 or |Cv| = 1, the latter that no fill edges
exist with both endpoints in Cu or Cv. Thus, since kv = 0, G[Cu] is a thin spider
(Su, Ku, Ru), which implies that ku ≥ 2; thus |Cv| = 1, i.e., Cv = {v}. Then,
N = ku + |Cv| − 1 = ku and this is optimal: if there were an optimal solution H ′

with at most ku−1 fill edges (one of which is uv), there would exist an edge ab in
G[Cu] where a ∈ K \{u}, b ∈ S, and no fill edge in H ′ is incident on a or b; then,
the vertices u, v, a, b, c (where c is the unique neighbor of u in S) induce an F5

or an F2 depending on whether v, c are adjacent in H ′ or not, in contradiction
to the fact that H ′ is P4-sparse.

B. kv ≥ 1 and R∩Cu ̸= ∅. By taking into account the number of fill edges with one
endpoint in Cu and the other in Cv, we have that the number N of fill edges in
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H is

N ≥ ku · kv + ku · |R ∩ Cv|+ kv · |R ∩ Cu|

≥ (ku + kv − 1) + (ku + |R ∩ Cv| − 1) + (kv + |R ∩ Cu| − 1) = |V (G)| − 3.

If we make u universal in G, the number of fill edges (including uv) is pre-
cisely |V (G)| − 1 − degG(u). By Observation 3.2 and the facts that the induced
graph G[Cu] is connected (Observation 3.1(i)) and that R ∩ Cu ̸= ∅, we have
degG(u) ≥ ku + 1 ≥ 2. Then, the optimality of H implies that degG(u) = 2 and
N = |V (G)| − 3 which by Equation 3.1 requires that all of the following hold:
ku = 1 or kv = 1; ku = 1 or |R ∩ Cv| = 1; kv = 1 or |R ∩ Cu| = 1; no addi-
tional fill edges exist, i.e., G[Cu] = H[Cu] and G[Cv] = H[Cv]. Since degG(u) = 2,
ku ≥ 1, R∩Cu ̸= ∅, and G[Cu] = H[Cu], Observation 3.2 implies that ku = 1 and
|R ∩ Cu| = 1; thus, G[Cu] is a P3 and N = 2 kv + |R ∩ Cv|.

Next, if we make v universal in G, the number of fill edges (including uv) is
precisely 3 + kv + |(R ∩ Cv) \NG[v]|. The optimality of H implies that

2 kv + |R ∩ Cv| ≤ 3 + kv + |(R ∩ Cv) \NG[v]| ⇐⇒ kv + |(R ∩ Cv) ∩NG(v)| ≤ 2.

Then there exist three possibilities:

(i) kv = 1 and |(R ∩ Cv) ∩ NG(v)| = 0. Let K ∩ Cv = {a}. If |R ∩ Cv| = 1,
then an optimal solution requires 3 fill edges (including uv), a tie between
the thin spider H (clique {u, a}) and making u universal; if |R ∩ Cv| = 2,
then an optimal solution requires 4 fill edges (including uv), a three-way
tie among the thin spider H , making u universal, and making a universal;
if |R ∩ Cv| ≥ 3, the optimal solution is obtained by making a universal,
which requires 4 fill edges (including uv). Note that vertex a is universal
in G[Cv]; thus, Tv,1(H

′) = Tv,1(G[Cv]) if H ′ is the optimal solution with a

universal.

(ii) kv = 1 and |(R ∩Cv) ∩NG(v)| = 1. Then |R ∩Cv| ≥ 2. Let K ∩Cv = {a}. If
|R∩Cv| = 2, then an optimal solution requires 4 fill edges (including uv), a
four-way tie among the thin spider H (clique {u, a}), making u universal,
making v universal, and making a universal; if |R∩Cv| ≥ 3, then the optimal
solution is to make a universal which requires 4 fill edges (including uv).
Again, vertex a is universal in G[Cv] and Tv,1(H

′) = Tv,1(G[Cv]) if H ′ is the
optimal solution with a universal.
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(iii) kv = 2 and |(R ∩ Cv) ∩ NG(v)| = 0. Let K ∩ Cv = {a, b}. If |R ∩ Cv| = 1,
then an optimal solution requires 5 fill edges including uv), a tie between
the thin spider H (clique {u, a, b}) and making u universal; if |R∩Cv| = 2,
then an optimal solution requires 6 fill edges including uv), a three-way tie
among the thin spider H , making u universal, and forming a thin spider
with clique {a, b}; if |R∩Cv| ≥ 3, then an optimal solution is to form a thin
spider with clique {a, b} which requires 6 fill edges (including uv). Again,
note that G[Cv] is a thin spider with clique {a, b}.

C. kv ≥ 1 and R ∩ Cu = ∅. Then R ∩ Cv = R. By taking into account the number
of fill edges with one endpoint in Cu and the other in Cv, we have that the
number N of fill edges in H is

N ≥ ku · kv + ku · |R ∩ Cv| = ku · kv + ku · |R|

≥ (ku + kv − 1) + (ku + |R| − 1) = 2 ku + kv + |R| − 2.

In accordance with Observation 3.2, if we make u universal in G then the
number of fill edges is ku − 1 + 2 kv + |R| whereas if we make v universal in
G then the number of fill edges is 2 ku + kv + |R \ NG[v]|. The optimality of H
implies that

2 ku + kv + |R \NG[v]| ≥ N ≥ 2 ku + kv + |R| − 2 ⇐⇒ |R ∩NG(v)| ≤ 1

and in accordance with Equation 3.1 for the product ku · |R|, that

ku − 1 + 2 kv + |R| ≥ N ≥ ku · kv + ku · |R| ≥ ku · kv + ku + |R| − 1

from which we conclude that ku ≤ 2. in fact, if ku = 2, then from ku− 1+ 2 kv +

|R| ≥ ku ·kv+ku · |R| we conclude that 2 kv+ |R|+1 ≥ 2 kv+2 |R| ⇐⇒ |R|+1 ≥
2 |R| ⇐⇒ |R| ≤ 1 ⇐⇒ |R| = 1, i.e., R = {v}.

We distinguish two cases.

(i) v has no neighbors in R. If ku = 1 then G[Cu] is a P2. If kv = 1 then if
|R| = 1 the optimal solution is the thin spider H which requires 2 fill edges
(including uv), if |R| ≥ 3 the optimal solution is to make the single vertex
in K ∩Cv universal which requires 3 fill edges (including uv), and there is
a tie between these two possibilities if |R| = 2 (3 fill edges including uv);
note that the single vertex in K ∩ Cv is universal in G[Cv]. Let us now
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consider that kv ≥ 2. We note that in this case the thin spider H requires
fewer fill edges than making v universal which in turn requires fewer fill
edges than making u universal. Then, if |R| ≤ kv, the optimal solution
is the thin spider H which requires |R| + kv fill edges (including uv), if
|R| ≥ kv +2 the optimal solution is the thin spider with clique K ∩Cv (the
vertices in Cu are placed in the R-set of the spider) which requires 2 kv +1

fill edges (including uv), and there is a tie between these two possibilities
if |R| = kv +1 in which case |R|+ kv = 2 kv +1 fill edges (including uv) are
required.

If ku = 2 then G[Cu] is a P4 and G[Cv] is a P3 if kv = 1 or else a thin spider
(Sv, Kv, Rv) where |Sv| = |Kv| = kv ≥ 2 and Rv = {v}. If G[Cv] is a P3 then
an optimal solution requires 4 fill edges (including uv), a tie between the
thin spider H and making u universal; if G[Cv] is a thin spider (Sv, Kv, {v}),
then if kv = 2 an optimal solution requires 6 fill edges (including uv), a tie
between the thin spider H and making u or v universal whereas if kv ≥ 3,
the optimal solution is to make v universal which requires kv +4 fill edges
(including uv).

(ii) v has 1 neighbor in R. Let z be the neighbor of v in R and let Sz be the
connected component in H[R] to which v, z belong. The fact that v has 1
neighbor in R implies that |R| = |R ∩ Cv| ≥ 2 and hence ku = 1; then,
due to Observation 3.2, the induced subgraph G[Cu] is a P2. If kv = 1,
G Moreover, |R \ NG[v]| = |R| − 2 and the optimality of H implies that
N = 2 ku + kv + |R| − 2 = kv + |R| which by Equation 3.1 requires that
no additional fill edges exist, i.e., H[Cu] = G[Cu] and H[Cv] = G[Cv]. Then,
the thin spider H and making v universal tie in the number of fill edges
required. If kv = 1, then the optimal solution is making the single vertex
in K ∩Cv universal which requires 3 fill edges (including uv); we note that
there is a tie with making v universal if |R| = 2 and that the single vertex in
K∩Cv is universal in G[Cv]. If kv ≥ 2 then the induced subgraph G[Cv] is a
thin spider (Sv, Kv, R) withKv = K∩Cv. Then, a thin spider (Sv, kv, Rv∪Cu)

can be built which requires

2 kv + 1 fill edges if Sz = {v, z},

2 kv + 2 fill edges if G[Sz] is a P3,
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2 kv + 3 fill edges if z is universal in Sz but Sz is not a P2 or a P3,

2 kv + κ+ 2 fill edges if zv is a ”leg” of a thin spider with clique size

equal to κ

where the above number of fill edges includes uv. The optimal solution is
one of the above possibilities and depends on the difference of |R| − kv.

Case 2c. The vertices u, v belong to S ∪K. Since u, v are adjacent in H and because
of Observation 3.2(i), then u, v ∈ K and thus ku = |K∩Cu| ≥ 1 and kv = |K∩Cv| ≥ 1.
We show the following lemma.

Lemma 3.6. Suppose that an optimal solution H of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for a P4-sparse graph G and a non-edge uv is a thin spider (S,K,R)
with u, v ∈ S ∪K. Then, there exists an optimal solution which

(a) results from making either u or v universal in G

(b) except if in G

(i) one of Cu, Cv induces a P2 and the other induces a P2 or a headless thin spider
(S1, K1, ∅) with u or v in G[K1] or
(ii) both Cu and Cv induce a P4 with u, v being middle vertices,
in which cases the optimal solution involves joining G[Cu] and G[Cv] into a thin spider.

Proof. Due to the symmetry of u, v, it suffices to consider the following cases.

A. R ∩Cu ̸= ∅ and R ∩Cv ̸= ∅: By counting the fill edges with one endpoint in Cu

and the other in Cv, we have that the total number N of fill edges in H is

N ≥ ku · kv + ku · |R ∩ Cv|+ kv · |R ∩ Cu|

which by Equation 3.1 gives

N ≥ (ku + kv − 1) + (ku + |R ∩ Cv| − 1) + (kv + |R ∩ Cu| − 1) = |V (G)| − 3.

If we make u universal in G, the number of fill edges needed (including uv) is
|V (G)|−1−degG(u); then, the optimality ofH implies that degG(u) ≥ 2. Moreover,
since the induced graph G[Cu] is connected (Observation 3.1(i)), degG(u) ≥ 2

and thus degG(u) = 2. Similarly, we get that degG(v) = 2. The optimality of H
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implies that N = |V (G)| − 3 and Equation 3.1 requires that all of the following
hold: ku = 1 or kv = 1; ku = 1 or |R ∩ Cv| = 1; kv = 1 or |R ∩ Cu| = 1; no
additional fill edges exist, i.e., G[Cu] = H[Cu] and G[Cv] = H[Cv]. Note that if
ku > 1, then because |R ∩ Cu| ≥ 1 we would have degG(u) ≥ 3, in contradiction
to degG(u) ≤ 2; thus, ku = 1 and similarly kv = 1, which implies that each of
G[Cu], G[Cv] is a P3. Then the optimal solution requires 3 fill edges (including
uv) and there is a tie between the thin spider H and making u or v universal.

B. R ∩ Cu ̸= ∅ but R ∩ Cv = ∅: Then R ∩ Cu = R. By counting the fill edges with
one endpoint in Cu and the other in Cv, we have that the total number N of fill
edges in H is

N ≥ ku · kv + kv · |R ∩ Cu| = ku · kv + kv · |R|

which by Equation 3.1 gives

N ≥ (ku + kv − 1) + (kv + |R| − 1) = |V (G)| − ku − 2.

If we make u universal in G, the number of fill edges needed (including uv)
is |V (G)| − 1 − degG(u). By Observation 3.2 and the facts that the induced
graph G[Cu] is connected (Observation 3.1(i)) and that R ∩ Cu ̸= ∅, we have
degG(u) ≥ ku + 1 and then, the optimality of H implies that degG(u) = ku + 1;
similarly, we get that kv ≤ degG(v) ≤ ku + 1. The optimality of H implies that
N = |V (G)| − ku − 2 and Equation 3.1 requires that all of the following hold:
ku = 1 or kv = 1; kv = 1 or |R| = 1; no additional fill edges exist, i.e., G[Cu] =

H[Cu] and G[Cv] = H[Cv]. The facts degG(u) = ku + 1 and H[Cu] = G[Cu] imply
that |R| = |R∩Cu| = 1, whereas the fact H[Cv] = G[Cv] implies that degG(v) = kv

from which we get that kv ≤ ku + 1. We distinguish the following cases.

– ku = kv = 1: Then G[Cu] is a P3 and G[Cv] is a P2; an optimal solution
requires 2 fill edges (including uv), a tie between the thin spider H and
making u universal.

– ku = 1 and kv > 1: Since kv ≤ ku + 1 = 2, kv = 2. Then G[Cu] is a P3 and
G[Cv] is a P4; an optimal solution requires 4 fill edges (including uv), a tie
between the thin spider H and making u or v universal.

– kv = 1 and ku > 1: Then G[Cv] is a P2 whereas G[Cu] is a thin spider with
clique size equal to ku and only 1 vertex in its R-set. An optimal solution
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requires ku+1 fill edges (including uv), a tie between the thin spider H and
making u or v universal. (The optimality can be shown by contradiction.
Let G[Cu] be the thin spider ({s1, s2, . . . , sku}, {u, t2, . . . , tku}, {b}) and let
G[Cv] be the P2 av. If there were an optimal solution with at most ku

fill edges, then these would include the fill edge uv and at most ku −
1 more fill edges; the latter ku − 1 fill edges would be incident to the
vertices s2, . . . , sku , t2, . . . , tku for if there were a pair si, ti (2 ≤ i ≤ ku) not
incident to any fill edges then the vertices a, v, u, ti, si would induce an F5

or an F2 depending on whether u, a are adjacent on not. Then, the vertices
a, v, u, s1, b would induce an F3, a contradiction.)

C. R = ∅: Then, by Observation 3.2(i) and (ii), G[Cu] = H[Cu] and G[Cv] = H[Cv]

and thus degG(u) = ku and degG(v) = kv. The fill edges in H are precisely the
fill edges with one endpoint in Cu and the other in Cv which are ku · kv in total.

Suppose without loss of generality that ku ≥ kv. If we make u universal in G,
the number of fill edges needed (including uv) is ku + 2 kv − 1. The optimality
of H implies that ku · kv ≤ ku + 2 kv − 1 ≤ 3 ku − 1 < 3 ku and thus kv < 3. We
distinguish the following cases.

– kv = 1: Then G[Cv] is a P2 and G[Cu] is a thin spider ({s1, s2, . . . , sku},
{u, t2, . . . , tku}, ∅); an optimal solution requires ku fill edges (including uv),
which form the thin spider H (the solution H requires fewer fill edges than
making u universal in G). (The optimality can be shown by contradiction.
Let G[Cv] be the P2 av. If there were an optimal solution with at most
ku − 1 fill edges, then these would include the fill edge uv and at most
ku − 2 more fill edges; then, there would exist a pair si, ti (2 ≤ i ≤ ku) not
incident to any fill edges and the vertices a, v, u, ti, si would induce an F5

or an F2 depending on whether u, a are adjacent on not, a contradiction.)

– kv = 2: Then G[Cv] is a P4. In this case, the solution H requires 2 ku fill edges
(including uv) whereas making u universal requires ku+3. The optimality
of H implies that ku · kv = 2 ku ≤ ku + 3 =⇒ ku ≤ 3. Since ku ≥ kv, we
have 2 ≤ ku ≤ 3.

If ku = 2 then G[Cu] is also a P4 and an optimal solution requires 4 fill
edges (including uv), which form the thin spider H (the solution H requires
fewer fill edges than making u or v universal which requires 5 fill edges).
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If ku = 3 then G[Cu] is a headless thin spider with clique size equal to 3;
an optimal solution requires 6 fill edges (including uv), a tie between the
thin spider H and making u universal.

3.2.3 Case 3: The root node of the P4‐sparse tree of the solution H

is a 2‐node corresponding to a thick spider (S,K,R)

According to our convention, |S| = |K| ≥ 3.

Case 3a. The vertices u, v belong to R. In this case, it is possible that S ∪K ⊂ Cu or
S ∪K ⊂ Cv and in a fashion similar to the proof of Lemma 3.3, we can prove:

Lemma 3.7. Suppose that an optimal solution H of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for a P4-sparse graph G and an added non-edge uv is a thick spi-
der (S,K,R) with u, v ∈ R. If S ∪K ⊆ Cu then G[Cu] is a thick spider (SG, KG, RG) and
K = KG and S = SG, i.e., Tu,1(H) = Tu,1(G[Cu]).
A symmetric result holds if S ∪K ⊆ Cv.

Proof. We consider the following cases that cover all possibilities:

A. The root node of the tree Tu,1(G) is a 1-node. We can prove that this case is not
possible; the proof is identical to Case A in the proof of Lemma 3.3.

B. The root node of the tree Tu,1(G) is a 2-node corresponding to a thin spider (SG, KG, RG).
We show that KG ⊆ K. Suppose for contradiction that there existed a vertex
w ∈ KG, such that w /∈ K. Moreover, since w is adjacent in G to u and so
is in H , w /∈ S. Then, w is not adjacent in H to the vertices in S, which im-
plies that neither is in G and since w ∈ KG, it implies that S ⊆ SG (note that
KG ∪ RG ⊂ NG[w]). Moreover since NH(S) ⊆ K , we have that NG(S) ⊆ K ,
and since |NG(S)| = |S| = |K|, it holds that NG(S) = K. But then, if we re-
place in H the induced subgraph H[S ∪K] by the induced subgraph G[S ∪K],
we get a solution for the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for G
and the non-edge uv which requires fewer fill edges than H , in contradiction
to the optimality of H. Therefore, KG ⊆ K which implies that SG ⊆ S. But
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again, if we replace in H the induced subgraph H[SG∪KG] by the induced sub-
graph G[SG∪KG] (note that each vertex in (S \SG)∪(K \KG) is adjacent to each
vertex in KG), we get a solution for the (P4-sparse-2CC,+1)-MinEdgeAddition
Problem for G and the non-edge uv which requires fewer fill edges than H , a
contradiction. Therefore, such a case is impossible.

C. The root node of the tree Tu,1(G) is a 2-node corresponding to a thick spider QG =

(SG, KG, RG). Since QG is a thick spider, then for every vertex w ∈ KG, it holds
that |NG(w)| = |Cu|−2 which yields that |NH(w)∩Cu| ≥ |NG(w)∩Cu| = |Cu|−2.
On the other hand, in H , for each vertex z in V (H)\K = V (G)\K , it holds that
NH(z) ∩ S = ∅ and since S ⊂ Cu and |S| = |K| ≥ 3, |NH(z) ∩ Cu| ≤ |Cu − S| ≤
|Cu| − 3. Therefore, KG ⊆ K. Since S ∪ K ⊆ Cu and since for each p ∈ KG,
p’s only non-neighbor in G[Cu] belongs to SG, then p’s non-neighbor in S is
precisely p’s non-neighbor in SG; thus, SG ⊆ S.

Additionally, we show that K = KG. Let K2 = K \ KG = ∅ and let S2 be the
set of non-neighbors in H of the vertices in K2: S2 = {w | ∃ s ∈ K2 : w ̸∈
NH(s) }. Let us consider the P4-sparse graph H ′ consisting of the thick spider
(SG, KG, RG) where the induced subgraph H ′[RG] coincides with the induced
subgraph H[V (G) \ (SG ∪KG)]; note that each vertex in S2 ∪K2 is adjacent to
each vertex in KG. Clearly the graphs H and H ′ have the same fill edges with
both endpoints in V (G) \ (SG ∪ KG). The number of fill edges in H with an
endpoint in SG ∪KG is |KG| |Cv|+ |K2| |SG| whereas the number of fill edges in
H ′ with an endpoint in SG ∪KG is |KG| |Cv|; the optimality of H immediately
implies that K2 = ∅.

However, unlike Case 2a, it turns out that this is the only possibility in this case.

Lemma 3.8. Suppose that an optimal solution H of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for a P4-sparse graph G and a non-edge uv is a thick spider (S,K,R)
with u, v ∈ R. Then, it is not possible that S ∪K contains vertices from both Cu and Cv.

Proof. Suppose for contradiction that S ∪K contains a vertex in Cu and a vertex in
Cv. Because H[Cu] and H[Cv] are connected (Observation 3.1(ii)), there exist vertices
u′ ∈ K ∩ Cu and v′ ∈ K ∩ Cv and let u′′, v′′ be the non-neighbors in S of u′, v′

respectively. Then, if u′′ ∈ Cu, u′ is incident on |(S ∪K ∪ R) ∩ Cv| = |Cv| fill edges in
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H whereas if u′′ ∈ Cv, u′ is incident on |(S ∪ K ∪ R) ∩ Cv| − 1 = |Cv| − 1 fill edges;
a symmetric result holds for v′ and v′′. Before proceeding, we note that by making
u universal in G, we would need at most |V (G)| − 2 fill edges since degG(u) ≥ 1

because |Cu| ≥ 2 and G[Cu] is connected (Observation 3.1(i)). Next, we distinguish
the following cases:

• u′′ ∈ Cu and v′′ ∈ Cv: Then, in H , the number N of fill edges is

N ≥ |Cv|+ |Cu| − 1 + 1

where we subtract 1 for the double counted fill edge u′v′ and we add 1 for the
fill edge uv, which implies that N ≥ |V (G)| in contradiction to the optimality of
the solution H.

• u′′, v′′ ∈ Cu or u′′, v′′ ∈ Cv: In either case, as in the previous item, in H , the
number N of fill edges is

N ≥ (|Cu|+ |Cv| − 1)− 1 + 1,

which implies that N ≥ |V (G)|−1, again a contradiction to the optimality of H.

• u′′ ∈ Cv and v′′ ∈ Cu: Then, in H , in addition to the fill edge uv and the
(|Cu|−1)+(|Cv|−1)−1 = |V (G)|−3 fill edges incident on u′, v′, we note that any
vertex in K \{u′, v′} is adjacent to both u′′, v′′, thus being incident to at least 1 fill
edge, for a total of at least 1+(|V (G)|−3)+(|K|−2) = |V (G)|+|K|−4 ≥ |V (G)|−1
fill edges, again a contradiction to the optimality of H.

Cases 3b and 3c. At least one of the vertices u, v belongs to S ∪K.

Lemma 3.9. If there exists an optimal solution H of the (P4-sparse-2CC,+1)-MinEdge-
Addition Problem for the union of G[Cu] and G[Cv] and the non-edge uv such that the
root node of the P4-sparse tree corresponding to H is a 2-node corresponding to a thick
spider (S,K,R) with at least one of u, v in S ∪K, then there exists an optimal solution of
the same problem which results from making u or v universal in G.

Proof. First, note that a vertex in the set K needs exactly 1 additional fill edge to
become universal in H. The idea of the proof is to show that in each case at least one
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Figure 3.6: The fill edges (green edges) are |R|+ 4 including uv (red edge).

of u, v belongs to K and that by making it universal in H , we get an optimal solution
that is no worse than H. Furthermore, recall that we consider that in a thick spider
|K| = |S| ≥ 3.

Case 3b: one of the vertices u, v belongs to R and the other belongs to S ∪ K ,
which implies that in fact it belongs to K. Without loss of generality, we assume
that u ∈ R and v ∈ K. We show that |Cv| ≥ 2. Otherwise, Cv = {v}, and we could
get a solution H ′ with fewer fill edges than H by removing v and all incident edges
from H (the resulting graph is still P4-sparse) and by adding fill edges incident on u

to all its non-neighbors including v, a contradiction; note that in H , v is incident on
|V (G)|−2 fill edges (including uv) whereas u is adjacent to at least |K|−1 ≥ 2 vertices
other than v which implies that it has at most |V (G)| − 3 non-neighbors including v.
Thus, |Cv| ≥ 2. Additionally, it holds that K ∩ Cv = {v} since otherwise, in addition
to the fill edges incident on v in H , we would have at least 2 more fill edges whereas
by making v universal in H , we get a solution that requires fewer fill edges than H ,
a contradiction; to see this, note that if |K ∩ Cv| ≥ 3 there exist at least 2 more fill
edges connecting u to each of the vertices in (K ∩ Cv) \ {v}, whereas if |K ∩ Cv| = 2

there exist at least 2 more fill edges connecting the vertex in (K ∩ Cv) \ {v} to u and
to the vertices in K ∩ Cu where |K ∩ Cu| = |K \ Cv| ≥ 1.

Therefore, |Cv| ≥ 2 and K ∩ Cv = {v}. In fact, (Cv \ {v}) ⊆ S; if there existed
a vertex in Cv ∩ R then, in addition to the fill edges incident on v in H , we would
have at least 2 more fill edges connecting that vertex to the vertices in K ∩ Cu, again
implying that making v universal in H would lead to a solution with fewer fill edges
than H , a contradiction. Since K ∩Cv = {v}, each vertex in S is adjacent to at least 1
vertex in K∩Cu and thus the optimality of the solution H (versus the solution with v

being universal in H) implies that |Cv| = 2, |K| = 3, and the only fill edges are those
connecting the vertices in Cu to the vertices in Cv (Figure 3.6) for a total of |R| + 4
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Figure 3.7: The graph G with fill edges (green edges) including uv edge (red edge)
where Cu = {u} and |K| ≥ 4, and its representation tree after addition of fill edges.
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Figure 3.8: The graph G with fill edges (green edges) including uv edge (red edge)
where Cu = {u}, |K| = 4, and R = ∅ and its representation tree after addition of fill
edges.

fill edges (including uv) as in the case when v is universal in G.

Case 3c: the vertices u, v belong to S ∪K. Then, because the vertices in S form an
independent set in H , at least one of u, v belongs to K; without loss of generality, let
us assume that u ∈ K. We consider the following cases:

(i) K ⊆ Cu: Because H[Cv] is connected 3.1, then Cv = {v} which implies that v
is incident on fill edges to u ∈ K and to |K| − 2 ≥ 1 more vertices in Cu; then,
the optimality of the solution H (versus the solution with u being universal in
G) implies that |K| = 3, and the fill edges are those connecting v to the vertices
in K ⊆ Cu (a total of 2 fill edges) matching the number of fill edges if u is
universal in G.

(ii) K∩Cv ̸= ∅: We show that v ̸∈ K. Otherwise, let w ∈ K−{u, v} and w′ ∈ S be the
non-neighbor of w. If w,w′ ∈ Cu, then, in addition to the fill edges incident on
u in H , H contains the 2 fill edges vw and vw′, a contradiction to the optimality
of H compared to the solution with u being universal in G; if w,w′ ∈ Cv, the
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Figure 3.9: The graph G with fill edges (green edges) including uv edge (red edge)
where Cu = {u}, |K| = 3, and R ̸= ∅ and its representation tree after addition of fill
edges.

case is symmetric considering v being universal in G. So consider that one of
w,w′ belongs to Cu and the other in Cv; due to symmetry, we can assume that
w ∈ Cu and w′ ∈ Cv. Then H contains the fill edges vw and uw′. Now consider
the non-neighbor x of u in S, which is adjacent to both v and w; if x ∈ Cu, then
H also contains the fill edge vx and thus is not optimal compared to the solution
with u being universal in G whereas if x ∈ Cv, H contains the fill edge wx and
again H is not optimal compared to the solution with u being universal in G.

Thus v ̸∈ K; since u, v ∈ S ∪ K , then v ∈ S. Since K ∩ Cv ̸= ∅ and H[Cv] is
connected (Observation 3.1(i)), there exists w ∈ K ∩Cv with w being adjacent to
v. Then we can show that K \ {u} ⊆ Cv; otherwise, there would exist a vertex
x ∈ (K \ {u}) ∩ Cu and if x′ ∈ S is a common neighbor of w, x, the graph H

would include the fill edges wx and one of wx′ or xx′ (depending on whether
x′ belongs to Cu or to Cv, respectively) and thus H is not optimal compared to
the solution with u being universal in G, a contradiction. In a similar fashion,
R ⊆ Cv for otherwise H would contain the at least 2 fill edges from any vertex
in R ∩ Cu to all the vertices in K \ {u} and would not be optimal compared to
the solution with u being universal in G. A similar argument proves that there
is at most 1 vertex in S ∩ Cu and that all the vertices in S that are adjacent to
at least 2 vertices in K \ {u} need also belong to Cv.

Then, either (i) Cu = {u} or (ii) Cu = {u, z} (where z ∈ S is a neighbor of u) and
|K| = 3 (otherwise z would be adjacent to at least 2 vertices in K \{u} and thus
would need to belong to Cv, a contradiction). In the former case, H contains
|R| + 2 |K| − 2 fill edges incident on u, whereas in the latter, |R| + 3 |K| − 5 fill
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edges incident on u and z. However, we can show that in either case, we get a
P4-sparse graph by replacing these fill edges with fewer ones. In the following,
let u′ ∈ S be the non-neighbor of u and v′, z′ ∈ K be the non-neighbors of v, z
respectively.

(i) Cu = {u}. If |K| ≥ 4, we use |K| + 1 fill edges (|K| fill edges connecting
u to v and to the vertices in K \ {u} and 1 more fill edge connecting v

to v′); v′ becomes universal in the resulting graph while the remaining
vertices induce a thick spider with S ′ = S \ {u′, v}, K ′ = K \ {u, v′}, and
R′ = R ∪ {u, v, u′} (Figure 3.7). If |K| = 3 and R = ∅, we use 3 fill edges
to connect u to v and to v′, and to connect v to v′; in the resulting graph
(Figure 3.8), v′ is universal and in the subgraph induced by the remaining
vertices, the vertex in S \ {v, u′} becomes isolated and the other vertices
induce a P4. If |K| = 3 and R ̸= ∅, we use 4 fill edges by additionally
using the fill edge uy where y is the vertex in K \ {u, v′}; in the resulting
graph (Figure 3.9), the vertex v′ and the vertex in S \ {v, u′} are as in the
case for |K| = 3 and R = ∅, vertex y is universal in the subgraph induced
by the remaining vertices which in turn induce a disconnected graph with
connected components R, {u′}, and {u, v}.

(ii) Cu = {u, z} and |K| = 3. In this case, we use 3 = |K| fill edges to connect
v to u and to connect u and z to z′, and then z′ becomes universal in the
resulting graph (z′ is universal in H[Cv]), in which the remaining vertices
induce a disconnected subgraph with connected components R ∪ {u′, v′}
and {v, u, z} (Figure 3.10).

In either case, we get a contradiction to the optimality of the solution H (note
that for any |K| ≥ 4 it holds that |K| + 1 < 2 |K| − 2 ≤ |R| + 2 |K| − 2 whereas
for |K| = 3 we have: 3 < 4 = 2 |K| − 2 ≤ |R|+2 |K| − 2; for R ̸= ∅, 4 < |R|+4 =

|R|+ 2 |K| − 2; lastly, 3 < 4 = 3 |K| − 5 ≤ |R|+ 3 |K| − 5).
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Figure 3.10: The graph G with fill edges (green edges) including uv edge (red edge)
where Cu = {u, z} and |K| = 3, and its representation tree after addition of fill edges.

3.3 Adding a Non‐edge incident on a Vertex of the Clique or the

Independent Set of a Spider

In this section, we consider the (P4-sparse,+1)-MinEdgeAddition Problem for a spider
G = (S,K,R) and a non-edge e incident on a vertex in S ∪ K. In the following,
for simplicity, we assume that S = {s1, s2, . . . , s|K|}, K = {k1, k2, . . . , k|K|}, and R =

{r1, r2, . . . , r|R|} where |K| ≥ 2 and |R| ≥ 0.

3.3.1 Thin Spider

Suppose that the spider G is thin and that si is adjacent to ki for each i = 1, 2, . . . , |K|.
The following lemmas address the cases of the addition of the non-edge e.

Lemma 3.10. The (P4-sparse,+1)-MinEdgeAddition Problem for the thin spider G =

(S,K,R) and a non-edge e incident on a vertex in S and a vertex in K admits an optimal
solution that requires |K| − 1 fill edges (including e).

Proof. Suppose, without loss of generality, that e = k1s2. Then, we can get a P4-sparse
graph if, in addition to the fill edge e, we add the fill edges k2sj (j = 3, . . . , |K|) or
alternatively the fill edges s1kj (j = 3, . . . , |K|) for a total of |K| − 1 fill edges.

To prove the optimality of this solution, assume for contradiction that there is an
optimal solution of the (P4-sparse,+1)-MinEdgeAddition Problem for the thin spider
G and the non-edge k1s2 with at most |K| − 2 fill edges, that is, for e and at most
|K| − 3 additional fill edges. Because the number of pairs si, ki (3 ≤ i ≤ |K|) is equal
to |K|− 2, there exists a pair sj, kj among them such that neither sj nor kj is incident
on any of the fill edges. Then, due to the addition of the non-edge e = k1s2, the
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vertices s1, k1, s2, sj, kj induce a forbidden subgraph F5 or F3 (depending on whether
s1, s2 have been made adjacent or not, respectively); a contradiction.

Lemma 3.11. The (P4-sparse,+1)-MinEdgeAddition Problem for the thin spider G =

(S,K,R) and a non-edge e with both endpoints in S admits an optimal solution that
requires λ fill edges (including the non-edge e) where

λ =


2 |K| − 3, if |R| = 0;

2 |K| − 2, if |R| = 1;

2 |K| − 1, if |R| ≥ 2.

Proof. Suppose, without loss of generality, that e = s1s2. Then, we can get a P4-sparse
graph if, in addition to the fill edge e, we add the following fill edges:

• if R = ∅, s1k3, . . ., s1k|K| and s2k3, . . ., s2k|K|;

• if R = {r1}, s1k3, . . ., s1k|K|, s2k3, . . ., s2k|K|, and 1 fill edge (among r1s1, r1s2,
k1s2, k2s1) so that the forbidden subgraph F1 induced by s1, s2, k1, k2, r1 be
comes a P4-sparse graph;

• if |R| ≥ 2, s1k2, s1k3, . . ., s1k|K| and s2k1, s2k3, . . ., s2k|K|, s1k2 (then k1, k2 become
universal);

for a total of λ fill edges as stated above.
To prove the optimality of this solution, suppose for contradiction that there exists

an optimal solution G′ that requires fewer than λ fill edges (including e). First, consider
that |K| = 2. Then the values of λ imply that G′ requires at most 0 fill edges if |R| = 0,
at most 1 fill edge if |R| = 1, and at most 2 fill edges if |R| ≥ 2 including e in each case.
The number of fill edges if |R| = 0 leads to a contradiction since e is added. If |R| = 1,
then the addition of e results in an F1 (= house) and at least 1 additional fill edge
needs to be added, a contradiction again. If |R| ≥ 2, then each vertex r ∈ R and the
vertices s1, s2, k1, k2 induce an F1, and additional fill edges are needed. If neither the
fill edge k1s2 nor the fill edge k2s1 is added, then we need 1 fill edge incident on each
r ∈ R; since G′ requires at most 2 fill edges (including e) then |R|+1 ≤ 2⇐⇒ |R| ≤ 1,
in contradiction to the fact that ||R| ≥ 2. Since G′ uses at most 2 fill edges including
e, only one of k1s2 and k2s1 can be added; let that be the fill edge k1s2. But then the
vertices s1, s2, k2, r1, r2 induce a forbidden subgraph F5 or F3 (depending on whether
r1, r2 are adjacent on not), a contradiction.
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Figure 3.11: For the proof of Lemma 3.11: (left) at the top, the clique and stable
set of the thin spider with the fill edges s1s2 and k1s2 (but not k2s1) and below the
graph that results after the addition of 1 more fill edge; (right) at the top, the clique
and stable set of the thin spider with the fill edges s1s2, k1s2, and k2s1 and below the
graph that results after the addition of 1 more fill edge. The red graph next to each
of the above graphs is an induced forbidden subgraph.

Now, consider that |K| ≥ 3.

A. Suppose that neither the non-edge k1s2 nor the non-edge k2s1 is added. Then, the vertices
k1, k2, s1, s2 induce a C4. For each vertex kj (3 ≤ j ≤ |K|), the vertices k1, k2, s1, s2, kj
induce a forbidden subgraph F1 and thus for each such subgraph at least one fill
edge needs to be added; since k1s2 and k2s1 cannot be added, this has to be adjacent
to kj (connecting it to s1 or s2). If only one of these two non-edges is added, say
the edge kjs2 but not the edge kjs1, then an edge needs to be added adjacent to sj ,
otherwise the vertices k1, s1, s2, kj, sj induce a forbidden subgraph F4. Thus, for each
j = 3, . . . , |K|, we need to add at least 2 fill edges, for a total of 2 |K| − 4 fill edges in
addition to e. Moreover, if |R| > 0, for each vertex ri ∈ R, the vertices k1, k2, s1, s2, ri
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induce a forbidden subgraph F1 and thus at least 1 additional fill edge adjacent to ri

needs to be added. Then, the total number of fill edges is at least equal to |R|+2 |K|−3
(including e), which is no less than the value of λ for all values of |R|.

B. Suppose that exactly one of the non-edges k1s2 and k2s1 is added. Without loss of
generality, suppose that the non-edge k1s2 is added (and not the edge k2s1). Then,
for each pair of vertices sj, kj (3 ≤ j ≤ |K|), the vertices k1, k2, s2, kj, sj induce a
forbidden subgraph F6. But a single fill edge is not enough (see Figure 3.11(left)).
Thus at least 2 + 2 (|K| − 2) = 2|K| − 2 fill edges are needed (including e), which is
no less than the value of λ for |R| ≤ 1. If |R| ≥ 2, the vertices s1, s2, k2, r1, r2 induce
a forbidden subgraph F5 or F3 (depending on whether r1, r2 are adjacent or not);
hence, at least one more fill edge is needed, for a total of 2 |K|−1 fill edges (including
e), which is no less than the value of λ for |R| ≥ 2.

C. Suppose that both the edges k1s2 and k2s1 are added. Then, the vertices s1, s2, k1,
k2 induce a K4. For each pair of vertices kj, sj (3 ≤ j ≤ |K|), the vertices s1, k1, k2,
kj , sj and k1, k2, s2, kj , sj induce a forbidden subgraph F5. But a single fill edge is
not enough (as shown in Figure 3.11(right)). Thus, the total number of fill edges
(including e) is at least 3 + 2 (|K| − 2) = 2 |K| − 1, which is no less than the value of
λ for all values of |R|.

Lemma 3.12. The (P4-sparse,+1)-MinEdgeAddition Problem for the thin spider G =

(S,K,R) and a non-edge e incident on a vertex s in S and a vertex in R admits an optimal
solution that requires |K| − 1+µ fill edges (including e) where µ is the number of fill edges
in an optimal solution of the (P4-sparse,+1)-MinEdgeAddition Problem for the disconnected
induced subgraph G[{s} ∪R] and the non-edge e.

Proof. Suppose, without loss of generality, that s = s1 and e = s1r1 with r1 ∈ R. Then,
we can get a P4-sparse graph if first we add the fill edges s1kj (j = 2, 3, . . . , |K|) which
makes s1 adjacent to all the vertices in K and then add the minimum number of fill
edges so that the disconnected induced subgraph G[{s1} ∪R] with the non-edge s1r1
becomes P4-sparse for a total of |K|− 1+µ fill edges (including e); note that the only
neighbor k1 of s1 in G is universal in G[{s1} ∪R].

To prove the optimality of this solution, we show that no optimal solution of
the (P4-sparse,+1)-MinEdgeAddition Problem for the thin spider G and the non-
edge s1r1 has fewer than |K| − 1 fill edges incident on vertices in (S ∪K) \ {s1, k1}.
Suppose, for contradiction, that there is a solution with at most |K|−2 such fill edges.
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Then, because the number of pairs ki, si in (S ∪K) \ {s1, k1} is equal to |K| − 1, there
exists a pair kj, sj (2 ≤ j ≤ |K|) such that neither kj nor sj is incident to any of the fill
edges. Then, due to the addition of the non-edge e = s1r1, the vertices s1, k1, r1, kj, sj
induce a forbidden subgraph F6; a contradiction.

3.3.2 Thick Spider

Suppose that the spider G is thick and that si is non-adjacent to ki for each i =

1, 2, . . . , |K|. Additionally, according to our convention, we assume that |K| ≥ 3.

Lemma 3.13. The (P4-sparse,+1)-MinEdgeAddition Problem for the thick spider G =

(S,K,R) and a non-edge e incident on a vertex in S and a vertex in K admits an optimal
solution that requires only the fill-edge e.

Proof. Suppose, without loss of generality, that e = k1s1. Then, the addition of emakes
k1 universal, and no additional fill edges are needed, which is optimal.

Lemma 3.14. The (P4-sparse,+1)-MinEdgeAddition Problem for the thick spider G =

(S,K,R) and a non-edge e with both endpoints in S admits an optimal solution that
requires λ fill edges (including the non-edge e) where

λ =

 2, if |K|+ |R| = 3;

3, if |K|+ |R| ≥ 4.

Proof. Suppose, without loss of generality, that e = s1s2. Additionally, recall that we
assume that |K| ≥ 3. We can get a P4-sparse graph if, in addition to the fill edge e,
we add the fill edge s2s3 if |K| = 3 and |R| = 0 (note that the complement of the
resulting graph is the union of the P2 s2k2 and the P4 k1s1s3k3) and the fill edges s1k1
and s2k2 if |K|+ |R| ≥ 4 (note that k1, k2 are universal in the resulting graph).

To establish the optimality of this solution, we first observe that for |K| = 3 and
|R| = 0, the vertices s1, s2, s3, k1, k2 induce a forbidden subgraph F1 and thus, at least
2 fill edges (including e) are needed. Next we show that for |K|+ |R| ≥ 4, no solution
has fewer than 3 fill edges (including e). Suppose for contradiction that there is a
solution with at most 2 fill edges. Due to e, the vertices s1, s2, s3, k1, k2 induce a
forbidden subgraph F1, and thus at least 1 additional fill edge is needed.

A. This additional fill edge is s1k1 or s2k2. Due to symmetry, suppose without loss of
generality that the fill edge s1k1 is added. But then, the vertices s1, s2, s3, k2, k3 induce
a forbidden subgraph F6, a contradiction.
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B. None of the non-edges s1k1 and s2k2 is added. Then, the vertices s1, s2, k1, k2 induce
a C4 and for each q ∈ {s3, . . . , s|K|}∪R, the vertices s1, s2, k1, k2, q induce a forbidden
subgraph F1 and either the fill edge qs1 or the fill edge qs2 needs to be added (recall
that none of s1k1, s2k2 is added). Since for the different possibilities of q, these fill edges
are distinct and at most 1 fill edge is added in addition to e, then it must hold that
|K|+ |R| − 2 = 1⇐⇒ |K|+ |R| = 3, in contradiction to the fact that |K|+ |R| ≥ 4.

Lemma 3.15. The (P4-sparse,+1)-MinEdgeAddition Problem for the thick spider G =

(S,K,R) and a non-edge e incident on a vertex s in S and a vertex in R admits an optimal
solution that requires 1 + µ fill edges (including e) where µ is the number of fill edges in
an optimal solution of the (P4-sparse,+1)-MinEdgeAddition Problem for the disconnected
induced subgraph G[{s} ∪R] and the non-edge e.

Proof. Suppose, without loss of generality, that s = s1 and e = s1r1 with r1 ∈ R. Then,
we can get a P4-sparse graph if first we add the fill edge s1k1 which makes k1 universal
and s1 adjacent to all the vertices in K , and then add the minimum number µ of fill
edges (including e) so that the disconnected induced subgraph G[{s1} ∪ R] with the
non-edge e becomes P4-sparse for a total of 1 + µ fill edges.

The optimality of this solution follows from the fact that, due to the addition of
the non-edge e = s1r1, the vertices s1, s2, k1, k2, r1 induce a forbidden subgraph F6

and so at least 1 fill edge incident on a vertex in S∪K and other than e is needed.

3.4 Adding an Edge to a General P4‐sparse Graph

It is not difficult to see that the following fact holds.

Observation 3.3. Let G be a P4-sparse graph, T be the P4-sparse tree of G, and uv be
a non-edge that we want to add. Suppose that the least common ancestor of the tree leaves
corresponding to u, v in T is a 0-node and let Cu (Cv resp.) be the connected components
containing u (v resp.) in G after having removed all of their common neighbors. Then an
optimal solution of the (P4-sparse,+1)-MinEdgeAddition Problem for the graph G and the
non-edge uv can be obtained from G after we have replaced the induced subgraph G[Cu∪Cv]

by an optimal solution of the (P4-sparse-2CC,+1)-MinEdgeAddition Problem for the union
of G[Cu] and G[Cv] and the non-edge uv.
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In light of the lemmas in Section 3.3 and Observation 3.3, Algorithm P4-SPARSE-
EDGE-ADDITION for solving the (P4-sparse,+1)-MinEdgeAddition Problem for a P4-
sparse graph G and a non-edge uv computes the least common ancestor of the
leaves corresponding to u and v, and if it is a 2-node, it applies the results in Lem-
mas 3.10-3.15 calling Algorithm (P4-SPARSE-2CC)-EDGE-ADDITION for the problem on
a 2-component graph in the S-R case whereas if it is a 0-node, we apply Observa-
tion 3.3, compute the connected components that include u and v and call Algorithm
(P4-SPARSE-2CC)-EDGE-ADDITION.

Algorithm (P4-SPARSE-2CC)-EDGE-ADDITION relies on the lemmas of Section 3.2; it
has as input the connected components Cu and Cv containing u and v respectively
and the P4-sparse trees T (G[Cu]) and T (G[Cv]) of the induced subgraphs G[Cu] and
G[Cv]. It first checks if Cu = {u} or Cv = {v} in which case it calls Algorithm P4-
SPARSE-TAIL-ADDITION. Otherwise it checks for the special cases of Lemmas 3.5 and 3.6
and if they apply, it computes the number of fill edges as suggested in the lemmas.
Next, it ignores Tu,1(G[Cu]) if its root node is a 0-node and similarly for Tv,1(G[Cv]).
Otherwise, it computes the fill edges of a P4-sparse graph H on the vertex set Cu∪Cv

having an edge set that is a superset of E(G[Cu ∪ Cv]) ∪ {uv}

• which results from making u universal in G[Cu ∪ Cv],

• which results from making v universal in G[Cu ∪ Cv],

• in which Tu,1(H) = Tu,1(G[Cu]),

• in which Tu,1(H) = Tv,1(G[Cv]), and

• as in the special case of Lemma 3.1

making recursive calls in the last 3 cases.
The algorithms can be easily augmented to return a minimum cardinality set of

fill edges (including uv).

Time and space Complexity. Let the given graph G have n vertices and m edges.
The P4-sparse tree of a given P4-sparse graph G can be constructed in O(n+m) time
and its number of nodes and height is O(n). Then the time to compute the number
of fill edges (excluding the call to Algorithm (2CC-P4-SPARSE)-EDGE-ADDITION) is O(n).

Theorem 3.1. Let G be a P4-sparse graph on n vertices and m edges and u, v be two
non-adjacent vertices of G. Then for the (P4-sparse,+1)-MinEdgeAddition Problem for the
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graph G and the non-edge uv, we can compute the minimum number of fill edges needed
(including uv) in O(n2) time and O(n2) space.

3.5 Concluding Remarks

In this chapter, we study the minimum completion problem of a P4-sparse graph G

with an added edge, namely given a P4-sparse graph G and a non-edge xy (i.e., a pair
of non-adjacent vertices x and y) of G, find the minimum number of non-edges of G
that need to be added to G so that the resulting graph is also a P4-sparse graph and
contains xy as an edge and it is called as (P4-sparse,+1)-MinEdgeAddition Problem.

For any optimal solution of the problem, we prove that there is an optimal solution
whose form is of one of a small number of possibilities. This along with the solution
of the problem when the added edge connects two non-adjacent vertices of a spider
or connects two vertices in different connected components of the graph enables us
to present a linear-time algorithm for the problem. Specifically, for optimal solution
H and its P4-sparse tree T (H), there exist two cases: the root node of T to be 1-
node, and the root node of T to be 2-node with two options, thin or thick spider.
Also, we present the cases, according to what node is the least common ancestor
of the leaves corresponding to u, v in T (G): if it is a 0-node, then the graph G is
a disconnected graph, which consists of two connected components each containing
one of the endpoints of the added non-edge uv ((P4-sparse-2CC,+1)-MinEdgeAddition
Problem), and if it is a 2-node with at least one of the leaves corresponding to u, v

being a child of the 2-node, the vertices u, v belong to the same spider subgraph.
As a consequence of lemmas and theorems about P4-sparse graphs, we prove

the efficiency and correctness of proposed Algorithm (P4-SPARSE-2CC)-EDGE-ADDITION
according all the properties and the structure of P4-sparse graph and its tree repre-
sentation.

80



CHAPTER 4

EDGE MODIFICATION: APPLICATION TO
WATERMARKING

4.1 Introduction

4.2 The W‐RPG Codec System

4.3 Characterizing Watermark Numbers

4.4 Strong and Weak Watermark Numbers

4.5 Concluding Remarks

4.1 Introduction

In graph theory, graph modification problems are fundamental. Garey and Johnson
mentioned 18 different types of vertex and edge modification problems in 1979 [7].
Edge modification problems in graphs have a lot of applications in different areas,
and many polynomial-time algorithms and NP-completeness proofs for this kind of
problems are known. Edge modification challenges require making minor changes to
an input graph’s edge set in order to produce a graph with the required attribute,
property and structure. These issues are significant in computer science and have
application in several field, including molecular biology, numerical algebra and hiding
information. Adding an edge corrects a false negative mistake, whereas deleting an
edge corrects a false positive error. A graph is frequently used to model experimental
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data, and edge modifications correlate to correcting errors in the data. We summarize
below some of these applications.

Firstly, interval modification problems have important applications in physical
mapping of DNA (see [9, 9]). Large DNA molecules are first divided into smaller
fragments since direct sequencing of such large DNA molecules is currently not fea-
sible. The order of the fragments is lost during this process, and its reconstructing is
extremely difficult. Testing for overlap between any two fragments and using the re-
sult to deduce the order of the fragments is one method of reconstructing the order.
This problem can be modeled as follows: Create a graph G where the edges con-
necting two vertices are defined by whether or not the respective segments of those
vertices overlap. If G were an interval graph, the reconstruction issue would be solved
by finding a realization of G. However, experimental data is error-prone and, hence,
G is only close to being an interval graph. Completion, deletion, and editing problems
can arise for both interval and unit interval graphs depending on the technology used
and the kind of experimental errors.

Furthermore, the minimum fill-in problem, also known as the chordal completion
problem, arises when a sparse symmetric positive-definite matrix is subjected to a
numerical Gaussian elimination [8]. Finding an elimination sequence that introduces
the fewest number of additional non-zero elements into the matrix is preferable be-
cause the computation’s time and storage requirements depend on how sparse the
matrix is. This problem is equivalent to the minimum fill-in problem, as shown by
Rose [33].

Hiding information is another area where edge modification problems could ap-
ply. Software watermarking is a defense technique used to prevent or discourage
software piracy by embedding a signature in the code, i.e., an identifier or equiva-
lently a watermark representing the owner [64, 65]. When an illegal copy is made,
the ownership can be claimed by extracting this identifier or watermark. In [66], a
software watermarking system is presented which encodes an integer number w (i.e.,
a watermark) as a reducible permutation flow-graph F [π∗] embeddable in the code
through the use of a self-inverting permutation π∗. In this section, we theoretically
investigate this watermarking system and exploit structural properties of the self-
inverting permutation π∗ encoding the watermark in order to prove its resilience to
edge-modification attacks on the flow-graph F [π∗]. Based on the minimum number
of edge modifications needed to be applied on F [π∗] so that a different watermark can

82



be extracted from the resulting graph, we give a characterization of the watermarks
as strong, intermediate or weak and provide good recommendations for the choices
of watermark.

More precisely, the software watermarking problem can be described as the prob-
lem of embedding a structure w into a program P such that w can be reliably located
and extracted from P even after P has been subjected to code transformations such
as translation, optimization and obfuscation [37, 67]. In recent years, software wa-
termarking has received considerable attention [68, 69, 70, 71, 72, 73]. The patent
by Davidson and Myhrvold [70] presented the first published software watermarking
algorithm. The preliminary concepts of software watermarking also appeared in [74]
and patents [72, 73]. Collberg et al. [68, 69] presented detailed definitions for soft-
ware watermarking. Authors of papers [75, 76] have given brief surveys of software
watermarking research. Furthermore, Craver et al.[77, 78] present the capability of
invisible watermarking schemes to resolve copyright ownership and generate a set of
sufficient conditions that watermarks must satisfy to provide unambiguous proof of
ownership.

Several software watermarking algorithms have appeared in the literature that
encode watermarks as graph structures [79, 80, 70, 81], among which the graph-based
methods that encode a watermark number w as a reducible flow-graph structure F

capturing properties which make it resilient to attacks.
Such a graph-based codec algorithm was presented by Chroni et al. [82, 66];

the algorithm uses self-inverting permutations for encoding watermark numbers as
reducible flow-graphs, which do not differ from the graph data structures built by real
programs. Subsequently, Mpanti et al. [83] experimentally investigated the resilience
of the used reducible permutation graph under edge-modifications. Based on the
above ideas and watermarking scheme, Bento et al. [84, 85] introduced a linear-time
algorithm which succeeds in retrieving deterministically the n-bit identifiers encoded
by such graphs (with n > 2) even if 2 edges are missing. In addition, they defined
a formal characterization of the class of graphs generated by Chroni et al.’s codec
algorithms [82, 66], which are called canonical reducible permutation graphs and
they give a linear-time recognition algorithm for them. Their results reinforce the
effectiveness of Chroni et al.’s scheme as a possible software watermarking solution.
Finally, Mpanti and Nikololopoulos [86] proposed two different reducible permutation
flow-graphs incorporating important structural properties which are derived from the
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bitonic subsequences forming the self-inverting permutation.
Chionis et al. [87] implemented the W-RPG (named WaterRpg) watermarking

model on several Java application programs and evaluated it under various criteria
in order to gain information about its practical behavior. They proposed call-graphs
as key-objects in their watermarking model for embedding the graph into an ap-
plication program and discussed the properties of dynamic call-graphs. In such a
setting, the edges of the embedded watermark (as mentioned earlier, this is a re-
ducible flow-graph) are inserted as additional calls to specific functions of the original
application program. Then, an edge modification attack (an edge modification, inser-
tion or deletion) is a corresponding modification of function calls whereas a node
modification attack (a node insertion or deletion) affects the set of called functions.
More recently, Novac et al. [88] proposed LLWM, an LLVM-based watermarking
framework automating the embedding of watermarks, which can incorporate a codec
watermarking system based on an existing watermarking technique as an LLVM
pass. Moreover, they presented an experimental evaluation of known watermarking
systems (including the W-RPG (named WaterRPG) codec watermarking system) in
real-world applications and investigated them with respect to their stealth, credibility,
capacity, overhead, and resilience against additive, subtractive, and distorting attacks.

Our Contribution. In light of the results in [88] and since the behavior of a water-
marked program against attacks may differ based on the watermark used, it becomes
apparent that the choice of watermark is of critical importance. To this effect and in
the framework of the codec system presented in [82, 66], which encodes an integer
watermark number w as a reducible permutation flow-graph F [π∗] embeddable in the
code through the use of a self-inverting permutation π∗, in this work, we present the
types of changes in the self-inverting permutation π∗ and corresponding edge modifi-
cations of the resulting reducible permutation graph F [π∗] that maintain the structure
and properties of these two components. These operations are Swap(), Move-in() and
Move-out().

We next compute the minimum number of edge modifications on F [π∗], namely
minVM(w), so that a different watermark is extracted from the modified reducible graph,
and by means of that, we characterize the watermark as W-RPG-strong, W-RPG-
intermediate or W-RPG-weak. Finally, we mention here that, this characterization
enables us to provide good recommendations for the choice of watermarks.
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Road Map. The chapter is organized as follows: In Section 4.2 we establish the
notation and briefly present the W-RPG codec watermarking system. In Section we
prove the resilience of any watermark w ∈ Rn = [2n−1, 2n − 1] and show the main
results of our work. In Section 4.4 we provide the characterizations of the watermark
numbers. Finally, in Section we conclude the paper with possible future extensions.

4.2 The W‐RPG Codec System

In this section we briefly present the W-RPG codec watermarking system proposed
by Chroni et al. [82, 37, 66]. The system embeds an integer watermark w in code as
a reducible permutation graph constructed from a self-inverting permutation (SiP)
obtained from w. We next introduce some definitions that are key to describe algo-
rithms for encoding numbers as self-inverting permutations in order to encoded as
reducible permutation graph.

Self‐inverting Permutation. A permutation π over a set A is an arrangement of
the elements of the set A into some sequence or order, or if the set A is already
ordered, π is a rearrangement of the elements of A into a one-to-one correspondence
with itself. In this thesis, we consider permutations π over the set Nn = {1, 2, . . . , n}.
Let π = (π1, π2, . . . , πn) be such a permutation. By πi we denote the ith element
of π, while by π−1

i we denote the position in π of the element πi ∈ Nn [26]. The
length of a permutation π is the number of elements in π. The reverse of π, denoted
πR, is the permutation πR = (πn, πn−1, . . . , π1). The inverse of π is the permutation
τ = (τ1, τ2, . . . , τn) with τπi

= πτi = i. It is obvious that every permutation has a
unique inverse, and the inverse of the inverse is the original permutation. Also, a
subsequence of a permutation π = (π1, π2, . . . , πn) is a sequence α = (πi1 , πi2 , . . . , πik)

such that i1 < i2 < . . . < ik. If, in addition,πi1 < πi2 < . . . < πik , then we say that α is
an increasing subsequence of π, while if πi1 > πi2 > . . . > πik we say that α is a decreasing
subsequence of π; the length of a subsequence α is the number of elements in α.

A cycle of π is a sequence c = (πi1 , πi2 , . . . , πip) such that πi1
−1 = πi2 , πi2

−1 =

πi3 , . . . , πik)
−1 = πi1. An element i of π forms a 1-cycle if i = π−1

i ; two elements i, j

form a 2-cycle if i = π−1
j and j = π−1

i . The definition of the inverse of a permutation
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Figure 4.1: The main data components of the codec system for a watermark number
w ∈ Rn = [2n−1, 2n − 1] where n∗ = 2n+ 1.

implies that a permutation is a self-inverting permutation if and only if all its cycles
are of length 1 or 2; hereafter, we shall denote a 2-cycle by (x; y) with x > y and a
1-cycle by (x) or, equivalently, (x;x).

Definition 4.1. Let π = (π1, π2, . . . , πn) be a permutation over the set Nn, n > 1. The
inverse of the permutation π is the permutation q = (q1, q2, . . . , qn) with qπi

= πqi = i.
A self-inverting permutation (or SiP) of length n is a permutation that is its own inverse:
for each 1 ≤ i ≤ n, ππi

= i.

For a watermark whose binary representation has length n, the produced SiP (de-
noted π∗) has length n∗ = 2n + 1. For example, for the watermark w = 12, the SiP
produced is π∗ = (5, 6, 9, 8, 1, 2, 7, 4, 3), where n∗ = 9 and n = 4 because it exists in
range R4. The reverse of π∗ is πR = (3, 4, 7, 2, 1, 8, 9, 6, 5) and an increasing subse-
quence of π∗ is α1 = (5, 6, 9, 8).

Reducible Permutation Graph. We consider finite graphs with no multiple edges.
A flow-graph is a directed graph with an initial node s from which all other nodes
are reachable. A directed graph G is strongly connected when there is a directed path
x → y for all nodes x, y in V (G). A node u ∈ V (G) is an entry for a subgraph H of
the graph G when there is a path p = (y1, y2, . . . , yk, u) such that p ∩ H = {u} (see
[89, 90]).

Definition 4.2. A flow-graph is reducible when it does not have a strongly connected
subgraph with two (or more) entries.

There are some other equivalent definitions of the reducible flow-graphs which use
a few more graph-theoretic concepts. A depth first search (DFS) of a flow-graph
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partitions its edges into tree edges (making up a spanning tree known as a DFS tree),
forward edges (pointing to a successor in the spanning tree), back edges (pointing to a
predecessor in the spanning tree, plus the cycle-edges), and cross edges (the remaining
edges). It is well known that tree, forward, and cross edges form a dag known as a
DFS dag. Hecht and Ullman show that a flow-graph F is reducible if and only if F
has a unique DFS dag or equivalently if and only if the graph F can be transformed
into a single node by repeated application of the transformations T1 and T2, where T1
removes a cycle-edge, and T2 picks a non-initial node y that has only one incoming
edge (x; y) and glue nodes x and y [89, 90].

Encoding and Decoding Process. The codec system W-RPG (see Figure 4.1) consists
of the algorithms Encode_W.to.SiP and Encode_SiP.to.RPG, which enable us to encode
a watermark w into a self-inverting permutation π∗ of length n∗ = 2n + 1 and the
latter into a reducible permutation graph F [π∗] on n∗+2 = 2n+3 nodes, respectively,
where n is the length of the binary representation of w, as well as the corresponding
decoding algorithms Decode_SiP.to.W and Decode_RPG.to.SiP.

The system’s encoding strategy allows it to encode any integer w as a self-inverting
permutation π∗ of length n∗ = 2n + 1, where n∗ = 2⌈log2w⌉ + 1. Additionally, the
produced RPG F [π∗] has nodes un∗+1, un∗ , . . ., ui, . . ., u0, which include a unique root
node s = un∗+1, namely header node, with only 1 outgoing edge (from which all
other nodes of F [π∗] are reached). Also it exists the footer node which is a unique
sink node t = u0 with only 1 incoming edge and no outgoing edges, and all nodes
that form the body of the produced reducible permutation graph F [π∗], namely n∗

nodes with 2 outgoing edges: from node ui we have a forward edge to node ui−1 and
a back-edge to node um, where m > i. See Figure 4.1. For example, for the water-
mark w = 12, the produced SiP is (5, 6, 9, 8, 1, 2, 7, 4, 3), and the RPG is as shown in
Figure 4.2. This codec system uses a construction method that captures crucial struc-
tural characteristics and properties into π∗ to encode an integer w as a self-inverting
permutation π∗. These characteristics and properties allow an attack-detection system
to recognize changes (node and edge modifications) that an attacker has made.

Moreover, we note that the forward edges of F [π∗] form a forward Hamilton path
whereas for the back-edges we have [66]:

Note 4.1. In the reducible permutation graph F [π∗] produced from SiP π∗, for each
i = 1, 2, . . . , n∗, the back-edge from node ui points to node s if there is no larger
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number to the left of i ∈ π∗, otherwise it points to node um where m is the rightmost
number to the left of i in π∗ that is larger than i.

For example, in the graph F [π∗] which corresponds to the SiP (7, 8, 11, 12, 13, 10, 1,

2, 9, 6, 3, 4, 5) encoding the watermark w = 51 = (110011)2, the back-edge from nodes
u7, u8, u11, u12, u13 points to s, from u10 points to u13, from u1, u2, u9 points to u10, from
u6 points to u9, and from u3, u4, u5 points to u6.

The permutation π∗ can be encoded as a reducible permutation flow-graph F [π∗]

and correctly decoded from F [π∗] in O(n∗) time and space, where n∗ is the length of
π∗. Recall that the SiP π∗ can be encoded into a reducible permutation graph F [π∗]

in O(n) time and space using algorithm Encode_SiP.to.RPG and decoded from F [π∗] in
O(n) time and space using algorithm Decode_RPG.to.SiP; see [82].

Properties of the W‐RPG Codec System. To be effective, a graph watermark codec
system needs to provide several key properties of its structural components. In pro-
posed algorithms by Chroni and Nikolopoulos, the suggested watermarking technique
has properties that make it robust to multiple code transformations. Based on the
structure of a self-inverting permutation π∗ produced by Algorithm Encode_W.to.SiP,
which takes as input an integer w, and the type of reducible permutation graphs F [π∗],
which encoded a self-inverting permutation π∗ by Algorithm Encode_SiP.to.RPG, four
important properties (Odd-One Property, Bitonic Property, Block Property and Range
Property) of π∗ or 4−Chain Property are incorporated into the codec watermark graph
F [π∗] in order to make it resilient against attacks [66]. In particular, the Odd-One
Property describes the property of SiP (self-inverting permutation) that all its cycles
are of length 1 or 2, and the Bitonic Property refers to construction of self-inverting
permutation π∗ from the bitonic sequence πb = X||Y R, where X and Y are increasing
subsequences and thus the bitonic property of πb is encapsulated in the cycles of π∗.
Moreover, the Block Property is mentioned that the first part of B′ = 00 . . . 0||B||0,
where B be the binary representation of the integer w, contains the leftmost n bits,
each equal to 0, where n is the length of the binary representation of the integer w,
and the Range Property is that the graph F [π∗] produced by W-RPG codec system
consists of |V (F [π∗])| = n∗ + 1 = 2n+ 3 nodes, where n∗ = 2n+ 1. Whenever a flow-
graph F [π∗], encoding the watermark wi, is attacked having k edges modified, then
the decoding algorithm returns a true-incorrect watermark wj ̸= wi, if all the four
properties are satisfied during the decoding process, i.e., the process of getting the
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π∗ = (5, 6, 9, 8, 1, 2, 7, 4, 3)

67 5 4 3 2RPG 8s 1 t9

πb = (5, 6, 9, 8, 7, 4, 3, 2, 1)

B′ = (0, 0, 0, 0, 1, 1, 0, 0, 0)

I. SiP Property

II. Bitonic Property

III. Block Property

The watermark w = 12

Figure 4.2: The reducible permutation graph produced for the watermark w = 12 by
using the self-inverting permutation π∗ = (5, 6, 9, 8, 1, 2, 7, 4, 3) with its system code
properties.

watermark wi from F ′[π∗].

Structure of the SiPs Used in the W‐RPG Codec System. Consider a self-inverting
permutation π∗ encoding an integer w ∈ Rn = [2n−1, 2n − 1], where n is the length of
the binary representation of w; we distinguish the following two cases [66]:

Zero‐and‐One case: w ∈ [2n−1, 2n−2]. In this case, the structure of π∗ consists of four
subsequences, that is, π∗ = π∗

1 || π∗
2 || π∗

3 || π∗
4 , having the following forms:

π∗ = (n+ 1, n+ 2, . . . , n+ k) || (p1, p2, . . . , β) || (1, 2, . . . , k, α) || (q1, q2, . . . , γ),

where

◦ π∗
1 = (n + 1, n + 2, . . . , n + k) is an increasing sequence of length k consisting of

k consecutive integers starting always with n+ 1, where k ≥ 1,

◦ π∗
2 = (p1, p2, . . . , β) is a bitonic sequence of length n− k with elements of the set
{n+ k + 2, n+ k + 3, . . . , 2n+ 1}, where max = 2n+ 1,

◦ π∗
3 = (1, 2, . . . , k, α) is an increasing sequence of length k + 1 consisting of k

consecutive integers starting always with 1 followed by the integer α = n+k+1

(note that the integer α forms the 1-cycle of π∗), and
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◦ π∗
4 = (q1, q2, . . . , γ) is a sequence of length n − k with elements of the set {k +

1, k+2, . . . , k+ i, . . . , n}, where k+ i is the index of the i-th smallest element of
π∗
2. Thus, the integer γ is the index of the max = 2n+ 1 element of π∗

2.

From the structure of subsequences π∗
1 , π∗

2 , π∗
3 and π∗

4 of the SiP π∗, it follows that (i) the
subsequences π∗

1 and π∗
2 contain all the elements of the set ({n+1, . . . , 2n+1}−{α}),

(ii) all the elements of π∗
2 are larger than those of π∗

1 , (iii) the last element β of π∗
2 is

greater than any element of π∗
3||π∗

4 , and (iv) the last element α of π∗
3 is greater that

any element of π∗
4.

All‐One case: w = 2n − 1. In this case, the sequences π∗
2 and π∗

4 have no elements
and, thus, π∗ consists of two subsequences, that is, π∗ = π∗

1 || π∗
3 , having the following

forms:
π∗ = (n+ 1, n+ 2, . . . , 2n) || (1, 2, . . . , n, 2n+ 1),

where

◦ π∗
1 = (n + 1, n + 2, . . . , 2n) is an increasing sequence of length n consisting of n
consecutive integers starting with n+ 1, and

◦ π∗
3 = (1, 2, . . . , n, 2n + 1) is an increasing sequence of length n + 1 consisting of

n consecutive integers starting always with 1 followed by the max = 2n + 1

element of π∗. In this case, the max element 2n+ 1 forms the 1-cycle of π∗.

Since the subsequences π∗
3 and π∗

4 contain the element α located at position α (1-cycle)
and at any other position t the location of t in π∗

1 or π∗
2 , it holds:

Note 4.2. For a self-inverting permutation π∗ = π∗
1 || π∗

2||π∗
3 || π∗

4 structured as above,
the contents of π∗

1 || π∗
2 uniquely determine the entire π∗.

For example, if we know that π∗
1 = (7, 8) and π∗

2 = (11, 12, 13, 10), then we know
that 9 is in position 9 (1-cycle), and positions 7, 8, 10, 11, 12, 13 contain 1, 2, 6, 3, 4, 5,
respectively.

Finally, the decoding process of the W-RPG system ensures that a watermark
number gets extracted from every SiP structured as described above.
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4.3 Characterizing Watermark Numbers

In this section, we classify the watermark numbers encoded as a reducible permutation
graph F [π∗] regarding the valid edge-modification attacks on F [π∗] and we present
the main theorem for the characterization of them. Let F [π∗] be a flow-graph which
encodes the integer w and let F ′ be the graph resulting from F [π∗] after an edge
modification. Then, we say that F ′ is either a false-incorrect or a true-incorrect graph:

• F ′ is false-incorrect if the decoding process of the W-RPG codec system fails to
return a watermark from the graph F ′[∗], whereas

• F ′ is true-incorrect if the decoding process extracts from F ′ and returns an integer
w′ ̸= w.

4.3.1 Valid Modification Operations on a SiP

We concentrate on the edge modifications that turn an RPG F [π∗] into a true-incorrect
graph F ′. Then, clearly, (i) F ′ has to have the structure of RPGs produced by the
encoding process of the W-RPG system and (ii) the SiP resulting from it in the
decoding process has to match the structure of SiPs presented in Section 4.2. Since
condition (i) can be easily checked, we concentrate on condition (ii) and we investigate
which changes in the structure of SiPs used in the W-RPG system maintain this
structure. We consider the necessary SiP operations to transform a SiP structured as
described in Section 4.2 into another such SiP. In particular, in light of Remark 4.2, it
suffices to concentrate on the elements of π∗

1 and π∗
2. We have the following operations:

• Swap(): the operation swaps two elements in either π∗
1 or π∗

2 also making corre-
sponding changes in the rest of π∗. Since π∗

1 is increasing, this can only happen
in π∗

2 and only in one of the following two ways:

– The element max is swapped with max − 1 (which is next to it) or with
max − 2 only if π∗

2 contains the subsequence (max − 2,max − 1,max) or
(max,max− 1,max− 2). This follows easily from the fact that π∗

2 is bitonic
and hence it should contain the subsequence (max − 2,max − 1,max) or
(max− 2,max,max− 1) or their right-to-left counterparts.
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– Two elements i, j ̸= max are swapped. Then, it is easy to see that i, j

cannot both belong either to the increasing or to the decreasing subse-
quence of π∗

2 and that i, j should be consecutive numbers (To see the
latter, consider that i belongs to the increasing subsequence and j to the
decreasing subsequence of π∗

2 and assume that j = i + k > i + 1; the
case j < i − 1 is symmetric. Since j can be swapped with i without vi-
olating the SiP structure, the element i + ℓ following i should be larger
than j. But then, all the elements i + 1, i + 2, . . . , i + ℓ − 1 (which in-
clude j) should belong to the decreasing subsequence, and thus the el-
ement following j is j − 1 > i. But then placing i before j − 1 would
violate the fact that they belong to a decreasing subsequence.) As an ex-
ample consider the operation Swap() on the elements 12 and 13 of the SiP
(7, 8)||(11, 12, 13, 10)||(1, 2, 9)||(6, 3, 4, 5). Then, for the resulting permutation
to have the described structure, the elements 4 and 5 in π∗

4 get also swapped
and the resulting SiP is (7, 8)||(11, 13, 12, 10)||(1, 2, 9)||(6, 3, 5, 4) which can
be produced from F [π∗] if the 3 back-edges (11, s), (10, 13), (3, 6), and (4, 6)

get changed to (11, 13), (10, 11), (3, 5), and (4, 5), respectively.

• Move-in(): the operation takes elements of either π∗
1 or π∗

2 and moves them in
other positions in the same subsequence also making corresponding changes
in the rest of π∗. As with the Swap() operation, this operation cannot be per-
formed on elements of π∗

1. As an example consider the operation Move-in() on
the element 11 of the SiP (7, 8)||(11, 12, 13, 10)||(1, 2, 9)||(6, 3, 4, 5). Then, for the
resulting permutation to have the described structure, element 11 is inserted
between 13 and 10 and the element 5 in π∗

4 gets inserted between 6 and 3. The
resulting SiP is(7, 8, 12, 13, 11, 10, 1, 2, 9, 6, 5, 3, 4) which can be produced from
F [π∗] if the 4 back-edges (11, s), (10, 13), (3, 6), and (4, 6) get changed to (11, 13),
(10, 11), (3, 5), and (4, 5), respectively.

• Move-out(): the operation takes elements of either π∗
1 or π∗

2 and moves them in
other subsequences also making corresponding changes in the rest of π∗. As
this operation can be applied to both π∗

1 and π∗
2 , we have two cases.

(a) a number of elements of π∗
1 are moved to π∗

2 and π∗
3. In particular, the

SiP structure implies that these elements must be the largest consecutive
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numbers in π∗ − 1; the smallest of them is moved to π∗
3 becoming the 1-

cycle whereas the remaining elements and the element that used to be the
1-cycle are placed in π∗

2. As an example consider the operation Move-out()

on 1 element of π∗
1 of the SiP (7, 8)||(11, 12, 13, 10)||(1, 2, 9)||(6, 3, 4, 5). Then,

this element has to be the largest element 8 of π∗
1 which becomes the 1-

cycle whereas the element 9 is inserted in π∗
2. If it is placed before 11 then

we get the SiP (7, 9, 11, 12, 13, 10, 1, 8, 2, 6, 3, 4, 5) which can be produced
from F [π∗] if the 4 back-edges (9, 10), (8, s), (2, 10), and (6, 9) get changed
to (9, s), (8, 10), (2, 8), and (6, 8), respectively, whereas if it is placed after
10, we get the SiP (7, 11, 12, 13, 10, 9, 1, 8, 6, 5, 2, 3, 4) which can be produced
from F [π∗] if the 5 back-edges (1, 10), (8, s), (2, 10), (3, 6), and (4, 6) get
changed to (1, 9), (8, 9), (2, 5), (3, 5), and (4, 5), respectively.

(b) a number of elements of π∗
2 are moved to π∗

1 and π∗
3. In particular, the

SiP structure implies that these elements must be the smallest consecutive
numbers in π∗ − 1; the largest of them is moved to π∗

3 becoming the 1-
cycle whereas the remaining elements and the element that used to be the
1-cycle are placed at the end of π∗

1. As an example consider the operation
Move-out() on an element of π∗

1 of the SiP (7, 8) || (11, 12, 13, 10) || (1, 2, 9) ||
(6, 3, 4, 5). Then, this element has to be the smallest element 10 of π∗

2 which
becomes the 1-cycle whereas the element 9 is inserted in π∗

1. If it is placed
before 11 then we get the SiP (7, 8, 9, 11, 12, 13, 1, 2, 3, 10, 4, 5, 6) which can be
produced from F [π∗] if the 7 back-edges (9, 10), (1, 10), (2, 10), (3, 6), (4, 6),
(5, 6), and (6, 9) are changed to (9, s), (1, 13), (2, 13), (3, 13), (4, 10), (5, 10),
and (6, 10), whereas if it is placed after 13, we get the SiP (7, 8, 11, 12, 13, 9,

1, 2, 6, 10, 3, 4, 5) which can be produced from F [π∗] if the 6 back-edges
(1, 10), (2, 10), (9, 10), (3, 6), (4, 6), and (5, 6) get changed to (1, 9), (2, 9),
(9, 13), (3, 10), (4, 10), and (5, 10), respectively.

These three operations are called as SiP operations where, given a SiP π∗
1 , we can

create another SiPs π∗
i through the Swap(), Move-in() and/or Move-out() operations.

Definition 4.3. Let w be a watermark number encoded as a reducible permutation
graph F [π∗] through the self-inverting permutation π∗. The minimum number of valid
edge-modification (or minVM(w)) of the graph F [π∗] is the minimum SiP operations in
π∗ in order to create another SiPs π∗

i .
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Specifically, an edge-modification on graph F [π∗] which preserves the SiP opera-
tions, i.e., the decoding algorithm on graph F [π∗] returns a true-incorrect watermark,
is called valid edge-modification, otherwise it is called invalid edge-modification, i.e.,
the graph F [π∗] does not satisfy the SiP operations and thus the decoding algorithm
returns nothing.

4.3.2 Main Results

The above description implies that these operations cover all possible cases to generate
a SiP of the described structure. Then, we can prove the main result of this work.

Theorem 4.1. Let w be a watermark number encoded as a reducible permutation graph
F [π∗] through the self-inverting permutation π∗ and let b(w) = b1b2 . . . bn be its binary
representation and B = b2b3 . . . bn−1 be the internal block of w. For the minimum number
of valid edge-modification minVM(w) of the graph F [π∗] we distinguish the following cases:

1. The internal block B of w contains at least two 0s. Then, minVM(w) = 3.

2. The internal block B of w contains exactly one 0 (i.e., the watermark number has the
form w = 11ℓ01rbn with ℓ, r ≥ 0 and ℓ+ r = n− 3). Then,

minVM(w) =


4 +min{ℓ, r − 1}, if bn = 0 and r > 0

4, if bn = 0 and r = 0

4 +min{ℓ, r}, if bn = 1 and r ≥ 0

where ℓ, r are the numbers of consecutive 1s before and after the unique 0 in B,
respectively.

3. The internal block B of w contains no 0s (i.e., the watermark number has the form
w = 11 . . . 1bn). Then, minVM(w) = 4.

Proof. We distinguish the following three cases depending on the number of 0s in
the internal block B = b2 · · · bn−1 of the watermark w = b1b2 · · · bn−1bn.

Case 1. The internal block of the watermark w contains at least two 0s. In this
case, by construction (see Algorithm Encode_W.to.SiP [82]), the max = 2n + 1 and
the max − 1 = 2n elements of π∗ are not located in the last position of π∗

2 , that is,
β ̸= max− 1 and β ̸= max.
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Let γ = π∗−1
2n+1 be the index of the max element in π∗. Since π∗

2 is a bitonic sequence,
it follows that the elements max and max− 1 are in consecutive positions in π∗

2 and
thus the index π∗−1

2n of the max− 1 = 2n element is either γ − 1 or γ + 1.
We assume that γ − 1 = π∗−1

2n (the case where γ + 1 = π∗−1
2n is handled in a similar

manner). In this case, the watermark number w encodes a SiP π∗ = π∗
1 || π∗

2 || π∗
3 || π∗

4

having the following structure:

π∗ = (n+ 1, n+ 2, . . . , n+ k) || (p1, p2, . . . , pi,max− 1,max, pj, . . . , β) ||

(1, 2, . . . , k, α) || (q1, q2, . . . , qm, . . . , γ − 1, γ),
(4.1)

Now we perform valid modifications on the elements of the SiP π∗. In fact, we
apply the process Swap() on the elements max− 1 and max of the SiP π∗ resulting in
the new SiP ϕ∗ having the following structure:

ϕ∗ = (n+ 1, n+ 2, . . . , n+ k) || (p1, p2, . . . , pi,max,max− 1, pj, . . . , β) ||

(1, 2, . . . , k, α) || (q1, q2, . . . , qm, . . . , γ, γ − 1),
(4.2)

where along with the swapping of max and max − 1 the elements at positions max

and max− 1 get also swapped.
Let F [ϕ∗] be the true-incorrect reducible permutation graph that results from ϕ∗. The
graph F [ϕ∗] meets the structural properties of the RPGs used in the W-RPG system.
On the other hand, it is not difficult to see that the only back-edges that need to be
changed are those of the nodes corresponding to max−1, pj , and γ−1; the back-edges
(max− 1, s), (pj,max), and (γ − 1, qm) where 1 ≤ m ≤ n− k − 2 need to be changed
to (max− 1,max), (pj,max− 1), and (γ − 1, γ), respectively.

From the above, we conclude that the graph F [ϕ∗] is a true-incorrect reducible
permutation graph, encoding a watermark number w′ ̸= w, which results from F [π∗]

after performing 3 edge-modifications on its back-edges. Thus, minVM(w) = 3.

Case 2. The internal block B of the watermark w contains exactly one 0 and thus w
has the form:

w = 11 . . . 1︸ ︷︷ ︸
ℓ

0 1 . . . 1︸ ︷︷ ︸
r

bn

where ℓ, r ≥ 0 and ℓ+ r = n− 3.

Subcase 2.1: bn = 0 and r > 0. In this case, the watermark number w is encoded by
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a SiP π∗ = π∗
1||π∗

2||π∗
3||π∗

4 having the following structure:

π∗ = (n+ 1, n+ 2, . . . , n+ ℓ+ 1) || (n+ ℓ+ 3, . . . , n+ ℓ+ r + 2,max,max− 1) ||

(1, 2, . . . , ℓ+ 1, α) || (ℓ+ 2, . . . , ℓ+ r + 1, n, n− 1),

(4.3)

where max = 2n+ 1, max− 1 = 2n and α = n+ ℓ+ 2. Now, the watermark w is

w = 11 . . . 1︸ ︷︷ ︸
ℓ

0 1 . . . 1︸ ︷︷ ︸
r

0

and, thus, max − 1 = 2n is the last element of the sequence π∗
2; in fact, π−1

2n = n and
π−1
2n+1 = n− 1.
Let ϕ∗ be the SiP resulting from the permutation π∗ after performing some valid

modifications on its elements and let F [ϕ∗] be the true-incorrect reducible permutation
graph encoding a watermark number w′ ≠ w; the valid modifications belong to the
following three categories:

(i) Swap(). Based on the description of the Swap() operation, the operation can
be applied only on the pairs (max − 1,max) and (max − 1,max − 2), where
max− 2 = n+ ℓ+ r + 2.

The application of Swap() on the pair (max,max− 1) results in the SiP ϕ∗:

ϕ∗ = (n+ 1, n+ 2, . . . , n+ ℓ+ 1) || (n+ ℓ+ 3, . . . , n+ ℓ+ r + 2,max− 1,max) ||

(1, 2, . . . , ℓ+ 1, α) || (ℓ+ 2, . . . , ℓ+ r + 1, n− 1, n).

(4.4)

Since ϕ∗ is a valid SiP and ϕ∗ ̸= π∗, the graph F [ϕ∗] is a true-incorrect reducible
permutation graph encoding the watermark number w′ ̸= w, where

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ

0 1 . . . 1︸ ︷︷ ︸
r

1

i.e., the last bit changed from 0 to 1. The back-edges that need to be changed so
that we get the graph F [ϕ∗] are those emanating from the nodes corresponding
to max − 1, 1, 2, . . . , ℓ + 1, α, n − 1 and thus, in this case, the number of edge
modifications needed is 4 + ℓ.

In turn, the application of Swap() on the pair (max − 2,max − 1) results in a
SiP ϕ∗ such that the corresponding graph F [ϕ∗] can be produced from F [π∗]
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after 5 + ℓ edge modifications. Indeed, in this case the structure of ϕ∗ is:

ϕ∗ = (n+ 1, n+ 2, . . . , n+ ℓ+ 1) || (n+ ℓ+ 3, . . . ,max− 1,max, n+ ℓ+ r + 2) ||

(1, 2, . . . , ℓ+ 1, α) || (ℓ+ 2, . . . , ℓ+ r, n, n− 2, n− 1)

(4.5)

and, thus, the back-edges that need to be changed so that we get the graph F [ϕ∗]

are those emanating from the nodes corresponding to n + ℓ + r + 2,max −
1, 1, 2, . . . , ℓ+ 1, α, n− 2.

(ii) Move-in(). The Move-in() operation is performed on sequence π∗
2 which, in this

case, is a bitonic sequence of the form:

π∗
2 = (n+ ℓ+ 3, . . . , n+ ℓ+ i− 1, n+ ℓ+ i, n+ ℓ+ i+ 1, . . . , n+ ℓ+ r+ 2,max,max− 1)

Let n + ℓ + i (3 ≤ i ≤ r + 2) be an element of the increasing subsequence of
π∗
2. Since n + ℓ + i < max − 1, a Move-in() operation on the element n + ℓ + i

results into moving the element in the last position of π∗
2. Thus, the resulting

sequence ϕ∗
2 is:

ϕ∗
2 = (n+ ℓ+3, . . . , n+ ℓ+ i− 1, n+ ℓ+ i+1, . . . , n+ ℓ+ r+2,max,max− 1, n+ ℓ+ i).

Then, π∗
1 = ϕ∗

1 and π∗
3 = ϕ∗

3 = (1, 2, . . . , ℓ+ 1, α), while the sequences π∗
4 and ϕ∗

4

are:
π∗
4 = (ℓ+ 2, . . . , ℓ+ i− 2, ℓ+ i− 1, ℓ+ i, . . . , ℓ+ r + 1, n, n− 1)

and
ϕ∗
4 = (ℓ+ 2, . . . , ℓ+ i− 2, n, ℓ+ i− 1, . . . , ℓ+ r, n− 1, n− 2).

In this case, the resulting true-incorrect graph F [ϕ∗] contains 1+ |ϕ∗
3|+(r− i+3)

nodes whose back-edge needs to be updated: these nodes correspond to the
element n+ℓ+i of sequence ϕ∗

2, to all the elements 1, 2, . . . , ℓ+1, α of sequence ϕ∗
3,

due to element n+ℓ+i, and to the elements ℓ+i−1, . . . , ℓ+r, n−2 of sequence ϕ∗
4.

Thus, the total number of such nodes is 6 + ℓ + r − i where 3 ≤ i ≤ r + 2 and
r > 0. It follows that the graph F [ϕ∗] is produced after at least 4 + ℓ edge
modifications. In fact, there is a true-incorrect graph F [ϕ∗] that results from
F [π∗] after exactly 4 + ℓ edge modifications: it suffices to apply a Move-in()
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operation on the element n+ ℓ+ r+2 = max− 2. This graph F [ϕ∗] encodes the
watermark number w′ ̸= w, where

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ

0 1 . . . 10︸ ︷︷ ︸
r

0.

Now, consider the case where the Move-in() operation is applied on either the
element max or max−1 of π∗

2. Both these cases are reduced to Case 2.1(i), where
the graph F [ϕ∗] is produced after 4 + ℓ edge modifications as well.

(iii) Move-out(). Recall that the sequences of the SiP π∗ are:

π∗
1 = (n+ 1, n+ 2, . . . , n+ ℓ+ 1︸ ︷︷ ︸

ℓ+ 1

)

π∗
2 = (n+ ℓ+ 3, . . . , n+ ℓ+ r + 2,max,max− 1︸ ︷︷ ︸

r + 2

)

π∗
3 = (1, 2, . . . , ℓ+ 1, α︸ ︷︷ ︸

ℓ+ 2

) π∗
4 = (ℓ+ 2, . . . , ℓ+ r + 1, n, n− 1︸ ︷︷ ︸

r + 2

)

(4.6)

where max = 2n+ 1 and α = n+ ℓ+ 2.

(iii.a): We consider first the case where i elements are moved from π∗
1 to π∗

3 and
π∗
2 , and let ϕ∗ be the resulting SiP. As we mentioned, such an operation moves the

i largest elements from π∗
1 and produces the SiP ϕ∗ with the following structure:

ϕ∗
1 = (n+ 1, . . . , n+ ℓ+ 1− i︸ ︷︷ ︸

ℓ+ 1− i

)

ϕ∗
2 = (n+ ℓ+ 3− i, . . . , n+ ℓ+ 1, α, n+ ℓ+ 3, . . . ,max− 1︸ ︷︷ ︸

r + 2 + i

)

ϕ∗
3 = (1, 2, . . . , ℓ+ 1− i, α′︸ ︷︷ ︸

ℓ+ 2− i

) ϕ∗
4 = (ℓ+ 2− i, . . . , ℓ+ 1, ℓ+ 2, . . . , n− 1︸ ︷︷ ︸

r + 2 + i

)

(4.7)

where α = n+ ℓ+ 2 and α′ = n+ ℓ+ 2− i.

The resulting true-incorrect graph F [ϕ∗] contains 3+i+r (1 ≤ i ≤ ℓ) nodes whose
back-edge needs to be updated: these nodes correspond to the element α =

n+ℓ+2 of the sequence ϕ∗
2, the element α′ = n+ℓ+2− i of the sequence ϕ∗

3, and
the i elements ℓ+2− i, . . . , ℓ+1 plus the r+1 nodes ℓ+2, . . . , ℓ+ r+1, n of the
sequence ϕ∗

4, due to element α′. It follows that the graph F [ϕ∗] is produced after
at least 4 + r edge modifications. In fact, there is a true-incorrect graph F [ϕ∗]

that results from F [π∗] after exactly 4+ r edge modifications: it suffices to apply

98



a Move-out() operation on the element n+ ℓ+1 of π∗
1. This graph F [ϕ∗] encodes

the watermark w′ ̸= w where

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ− i

0 1 . . . 1︸ ︷︷ ︸
r + i

0

(iii.b): Consider now the case where j elements are moved from π∗
2 to π∗

3 and
π∗
1 , where 1 ≤ j ≤ r (the cases where j = r+ 1 and j = r+ 2 will be considered
separately); recall that these are the j smallest elements n+ℓ+3, n+ℓ+4, . . . , n+

ℓ+ 2 + j of π∗
2 and the resulting SiP ϕ∗ has the following structure:

ϕ∗
1 = (n+ 1, . . . , n+ ℓ+ 1, α, n+ ℓ+ 3, . . . , n+ ℓ+ 1 + j︸ ︷︷ ︸

ℓ+ 1 + j

)

ϕ∗
2 = (n+ ℓ+ 3 + j, . . . ,max− 1︸ ︷︷ ︸

r + 2− j

)

ϕ∗
3 = (1, 2, . . . , ℓ+ 1 + j, α′︸ ︷︷ ︸

ℓ+ 2 + j

) ϕ∗
4 = (ℓ+ 2 + j, . . . , n, n− 1︸ ︷︷ ︸

r + 2− j

)

(4.8)

where α = n+ ℓ+ 2 and α′ = n+ ℓ+ 2 + j.

The resulting true-incorrect graph F [ϕ∗] contains the following nodes whose
back-edge needs to be updated: the node α = n+ ℓ+ 2 of the sequence ϕ∗

1, the
node α′ = n+ℓ+2+j of the sequence ϕ∗

3, and the j nodes ℓ+2, ℓ+3, . . . , ℓ+1+j

plus the r + 1 − j nodes ℓ + 2 + j, . . . , n of the sequence ϕ∗
4 due to element α′.

Thus, F [ϕ∗] results from F [π∗] after 3 + r edge modifications and encodes the
watermark w′ ̸= w where

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ+ j

0 1 . . . 1︸ ︷︷ ︸
r − j

0

for j = 1, 2, . . . , r.

In the case where the j = r+1 smallest elements of π∗
2 are moved to π∗

3 and π∗
1 ,

the resulting SiP ϕ∗ has the structure

ϕ∗
1 = (n+ 1, n+ 2, . . . , n+ ℓ+ 1, α, . . . ,max− 2 = 2n− 1) ϕ∗

2 = (max)

ϕ∗
3 = (1, 2, . . . , ℓ+ 1, ℓ+ 2, . . . , n− 1, α′) ϕ∗

4 = (n)
(4.9)

where α′ = max − 1, and thus the corresponding true-incorrect graph F [ϕ∗]

contains the following nodes whose back-edge needs to be updated: the node α
in ϕ∗

1, the n − 1 nodes 1, 2, . . . , n − 1) in ϕ∗
3, and the node n in ϕ∗

4. Thus, F [ϕ∗]
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results from F [π∗] after n+1 edge modifications where n ≥ 4, and encodes the
watermark w′ ̸= w where

w′ = 111 . . . 1︸ ︷︷ ︸
n− 2

0.

In the case where the j = r + 2 smallest elements of π∗
2 are moved to π∗

3 and
π∗
1 (i.e., all the elements of π∗

2 are moved), the sequences ϕ∗
2 and ϕ∗

4 of the
resulting SiP ϕ∗ are empty. Thus, ϕ∗ actually consists of two increasing sequences
ϕ∗ = ϕ∗

1||ϕ∗
3 and has the following structure:

ϕ∗
1 = (n+ 1, n+ 2, . . . , n+ ℓ+ 1, α, . . . ,max− 1 = 2n) ϕ∗

2 = ()

ϕ∗
3 = (1, 2, . . . , ℓ+ 1, ℓ+ 2, . . . , n, α′) ϕ∗

4 = ()
(4.10)

where α′ = max = 2n+1. The resulting graph F [ϕ∗] contains the following nodes
whose back-edge needs to be updated: the nodes α = n+ℓ+2 and max−1 = 2n

in ϕ∗
1 and the r + 2 = |ϕ∗

2| nodes ℓ + 2, ℓ + 3, . . . , n due to element max − 1. in
ϕ∗
2, i.e., the Thus, F [ϕ∗] results from F [π∗] after 4 + r edge modifications and
encodes the watermark w′ ̸= w where

w′ = 111 . . . 1︸ ︷︷ ︸
n− 2

1.

Summing up the case where bn = 0 and r > 0, we conclude that a true-incorrect
reducible permutation graph F [ϕ∗] encoding a watermark number w′ ̸= w can result
from F [π∗] after performing either 4+ ℓ or 3+ r edge modifications on its back-edges.
Thus, minVM(w) = 4 +min{ℓ, r − 1}.

Subcase 2.2: bn = 0 and r = 0. In this case, the watermark number w is encoded by
the SiP π∗ = π∗

1||π∗
2||π∗

3||π∗
4 having the following structure:

π∗
1 = (n+ 1, n+ 2, . . . , n+ ℓ+ 1︸ ︷︷ ︸

ℓ+ 1

) π∗
2 = (max,max− 1︸ ︷︷ ︸

2

)

π∗
3 = (1, 2, . . . , ℓ+ 1, α = n+ ℓ+ 2︸ ︷︷ ︸

ℓ+ 2

) π∗
4 = (n, n− 1︸ ︷︷ ︸

2

).
(4.11)

where max = 2n + 1, max − 1 = 2n, α = n + ℓ + 2 and ℓ = n − 3. The watermark
number w is

w = 1111 . . . 1︸ ︷︷ ︸
ℓ = n− 3

00.

Let ϕ∗ be the SiP resulting from π∗ after performing some valid modifications on its
elements. We consider:
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(i) Swap(). The Swap() operation can only be applied on the pair (max,max− 1) of
the bitonic sequence π∗

2 and the structure of the resulting SiP ϕ∗ is

ϕ∗ = (n+ 1, n+ 2, . . . , n+ ℓ+ 1) || (max− 1,max) ||

(1, 2, . . . , ℓ+ 1, α) || (n− 1, n).
(4.12)

The true-incorrect graph F [ϕ∗] contains the following nodes whose back-edge
needs to be updated: the node max− 1 in ϕ∗

2, the node n− 1 in ϕ∗
4, and the ℓ+2

nodes 1, 2, . . . , ℓ + 1, α in ϕ∗
3. Thus, F [ϕ∗] results from F [π∗] after 4 + ℓ = n + 1

edge modifications where n ≥ 4.

(ii) Move-in(). It is easy to see that the SiP ϕ∗ which results from π∗ by applying one
Move-in() operation on sequence π∗

2 has the same structure with that resulting
in the previous Case 2.2(i). Thus, the graph F [ϕ∗] results from F [π∗] after 4 + ℓ

edge modifications.

(iii) Move-out(). We consider the two variants of the Move-out() operation:

(iii.a): We consider first the case where i elements are moved from π∗
1 to π∗

3 and
π∗
2 where 1 ≤ i ≤ ℓ, and let ϕ∗ be the resulting SiP. This case results from the Case
2.1(iii) by setting r = 0. It follows that there exists a true-incorrect graph F [ϕ∗]

resulting from F [π∗] after exactly 4 edge modifications; the watermark number
w′ ̸= w encoded by F [ϕ∗] is

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ− 1

010.

(iii.b): The cases where the max − 1 element or both the max − 1 and max

elements are moved from π∗
2 result to a true-incorrect graph F [ϕ∗] after more

than 4 edge modifications.

Summarizing, for the case where bn = 0 and r = 0, we conclude that a true-incorrect
reducible permutation graph F [ϕ∗] encoding a watermark number w′ ̸= w can result
from F [π∗] after performing at least 4 edge modifications on its back-edges. Thus,
minVM(w) = 4.

Subcase 2.3: bn = 1 and r ≥ 0. In this case, the watermark number w is encoded by
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a SiP π∗ = π∗
1 || π∗

2 || π∗
3 || π∗

4 where

π∗
1 = (n+ 1, n+ 2, . . . , n+ ℓ+ 1︸ ︷︷ ︸

ℓ+ 1

) π∗
2 = (n+ ℓ+ 3, . . . , n+ ℓ+ r + 2,max− 1,max︸ ︷︷ ︸

r + 2

)

π∗
3 = (1, 2, . . . , ℓ+ 1, α︸ ︷︷ ︸

ℓ+ 2

) π∗
4 = (ℓ+ 2, . . . , ℓ+ r + 1, n− 1, n︸ ︷︷ ︸

r + 2

).

(4.13)

where max = 2n+1 and α = n+ ℓ+2. The max element is located at the last position
of the sequence π∗

2 and, thus, π∗
2 is an increasing sequence of length r+2. In the case

under consideration, the watermark number w encoded by π∗ is

w = 11 . . . 1︸ ︷︷ ︸
ℓ

0 1 . . . 1︸ ︷︷ ︸
r

1.

Let F [ϕ∗] be the true-incorrect reducible permutation graph resulting from F [π∗] after
performing some valid modifications on the back-edges and let ϕ∗ be the correspond-
ing SiP encoding a watermark number w′ ̸= w.

(i) Swap(). The pair (max− 1,max) is the only pair of elements of π∗
2 on which we

can apply a Swap() operation after which the structure of the resulting SiP ϕ∗ is

ϕ∗ = (n+ 1, n+ 2, . . . , n+ ℓ+ 1) || (n+ ℓ+ 3, . . . , n+ ℓ+ r + 2,max,max− 1) ||

(1, 2, . . . , ℓ+ 1, α) || (ℓ+ 2, . . . , ℓ+ r + 1, n, n− 1).

(4.14)

The graph F [ϕ∗] results from F [π∗] after having appropriately updated the back-
edges of the nodes max−1, 1, 2, . . . , ℓ+1, α, n−1 and the encoded watermark
number w′ ̸= w is

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ

0 1 . . . 1︸ ︷︷ ︸
r

0.

Thus, in this case, the number of valid edge modifications of the graph F [π∗] is
4 + ℓ.

(ii) Move-in(). Let p1, p2, . . . , pi be i elements of π∗
2 (see Equation 4.13) such that

p1 < p2 < · · · < pi and p1 = n + ℓ + m where 3 ≤ m ≤ r + 3. We perform
Move-in() operations on the elements p1, p2, . . . , pi and let ϕ∗

2 be the resulting
bitonic sequence of the resulting SiP ϕ∗. Then, ϕ∗

2 is

ϕ∗
2 = (P,max, pi, pi−1, . . . , p1)
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where P is an increasing sequence of length r+1− i consisting of the remaining
elements of π∗

2 lying to the left of max after having applied the operations. Let
q1, q2, . . . , qj be the elements π∗−1

p1
, π∗−1

p1
+1, . . . , π∗−1

max−1. Then, the sequence ϕ∗
4 has

the form:
ϕ∗
4 = (Q, n, q1, q2, . . . , qj)

where Q is an increasing sequence of length m − 3 consisting of the indices
of the elements n + ℓ + 3, n + ℓ + 4, . . . , n + ℓ + m − 1. Moreover, π∗

1 = ϕ∗
1 =

(n+ 1, n+ 2, . . . , n+ ℓ+ 1) and π∗
3 = ϕ∗

3 = (1, 2, . . . , ℓ+ 1, α).

Thus, the corresponding true-incorrect graph F [ϕ∗] results from F [π∗] after hav-
ing updated the back-edge of the elements pi, pi−1, . . . , p1 of the sequence ϕ∗

2, the
elements 1, 2, . . . , ℓ + 1, α of the sequence ϕ∗

3, and the elements q1, q2, . . . , qj of
the sequence ϕ∗

4. In total, the graph F [ϕ∗] results after i+ ℓ+2+(π∗−1
max−π∗−1

p1
) =

i + ℓ + 2 + (n − m) edge modifications. By setting i = 1 and (n − m) = 1, we
conclude that we can obtain a true-incorrect graph after having performed 4+ ℓ

edge modifications on graph F [π∗].

(iii) Move-out(). We perform a Move-out() operation either by moving i elements
from π∗

1 to π∗
3 and π∗

2 (1 ≤ i ≤ ℓ) or by moving j elements from π∗
2 to π∗

3 and π∗
1

(1 ≤ j ≤ r + 2), where

(iii.a): We consider first the case where the i largest elements of π∗
1 are moved

to π∗
3 and π∗

2 , which produces the SiP ϕ∗ with

ϕ∗
1 = (n+ 1, . . . , n+ ℓ+ 1− i︸ ︷︷ ︸

ℓ+ 1− i

)

ϕ∗
2 = (n+ ℓ+ 3− i, . . . , n+ ℓ+ 1, α, n+ ℓ+ 3, . . . ,max︸ ︷︷ ︸

r + 2 + i

)

ϕ∗
3 = (1, 2, . . . , ℓ+ 1− i, α′︸ ︷︷ ︸

ℓ+ 2− i

) ϕ∗
4 = (ℓ+ 2− i, . . . , ℓ+ 1, ℓ+ 2, . . . , n︸ ︷︷ ︸

r + 2 + i

)

(4.15)

where α′ = n + ℓ + 2 − i. The resulting true-incorrect graph F [ϕ∗] results from
F [π∗] after having updated the back-edge of the nodes corresponding to the
element α = n+ ℓ+2 of the sequence ϕ∗

2, the element α′ of the sequence ϕ∗
3, and

the i elements ℓ+2− i, . . . , ℓ+1 plus the r+2 nodes ℓ+2, . . . , ℓ+r+1, n−1, n of
the sequence ϕ∗

4. Thus, the graph F [ϕ∗] results after 4+ i+ r edge modifications,
where 1 ≤ i ≤ ℓ. It follows that there exists a true-incorrect graph F [ϕ∗] resulting
after 5 + r edge modifications.
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(iii.b): We follow a similar approach as in Case 2.1(iii.b). Let j elements are
moved from π∗

2 to π∗
3 and π∗

1 , where 1 ≤ j ≤ r (the cases where j = r + 1 and
j = r+2 will be considered separately). The moved elements are the j smallest
elements n+ ℓ+ 3, n+ ℓ+ 4, . . . , n+ ℓ+ 2 + j of π∗

2 and the resulting SiP ϕ∗ is

ϕ∗
1 = (n+ 1, . . . , n+ ℓ+ 1, α, n+ ℓ+ 3, . . . , n+ ℓ+ 1 + j︸ ︷︷ ︸

ℓ+ 1 + j

)

ϕ∗
2 = (n+ ℓ+ 3 + j, . . . ,max︸ ︷︷ ︸

r + 2− j

)

ϕ∗
3 = (1, 2, . . . , ℓ+ 1 + j, α′︸ ︷︷ ︸

ℓ+ 2 + j

) ϕ∗
4 = (ℓ+ 2 + j, . . . , n− 1, n︸ ︷︷ ︸

r + 2− j

)

(4.16)

where α′ = n+ ℓ+ 2 + j.

The true-incorrect graph F [ϕ∗] results from F [π∗] after back-edge changes of
the nodes corresponding to the element α = n + ℓ + 2 of the sequence ϕ∗

1, the
element α′ = n + ℓ + 2 + j of the sequence ϕ∗

3, and the j elements ℓ + 2, ℓ +

3, . . . , ℓ+ 1+ j plus the r + 2− j elements ℓ+ 2+ j, . . . , n− 1, n of the sequence
ϕ∗
4 due to element α′. Thus, F [ϕ∗] requires 4+ r edge modifications and encodes
the watermark number w′ ̸= w of the form:

w′ = 11 . . . 1︸ ︷︷ ︸
ℓ+ j

0 1 . . . 1︸ ︷︷ ︸
r − j

1

where, j = 1, 2, . . . , r.

The cases where the j = r + 1 and j = r + 2 are exactly the same as the
corresponding cases in Case 2.1(iii.b).

Concluding, in the case that bn = 1 and r ≥ 0, it holds that a true-incorrect reducible
permutation graph F [ϕ∗] encoding a watermark number w′ ̸= w can result from
F [π∗] after performing either 4 + ℓ or 4 + r edge-modifications on its back-edges.
Thus, minVM(w) = 4 +min{ℓ, r}.

Case 3. In this case, the internal block B of the watermark number w contains no 0s
and, thus, the binary representation of the number w has one of the following two
forms:

1 1 . . . 11︸ ︷︷ ︸
n− 2

0 or 1 1 . . . 11︸ ︷︷ ︸
n− 2

1.
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(3.1) In the former case where bn = 0, the watermark number w is encoded by a SiP
π∗ = π∗

1 || π∗
2 || π∗

3 || π∗
4 having the following structure:

π∗ = (n+ 1, n+ 2, . . . , 2n− i− 1, 2n− i, . . . , 2n− 1) || (max) ||

(1, 2, . . . , n− i− 1, n− i, . . . , n− 1, α) || (n)
(4.17)

where max = 2n+ 1 and α = 2n.

From the structures of π∗
1 and π∗

2 , it follows that the only operation we can apply
is the Move-out() on the elements of both these sequences.

Let us first consider the case where the i largest elements 2n−i, 2n−i+1, . . . , 2n−
1 from π∗

1 are moved to π∗
3 and π∗

2. Then, the structure of the resulting SiP ϕ∗ is

ϕ∗ = (n+ 1, n+ 2, . . . , 2n− i− 1) || (2n− i+ 1, . . . , 2n− 1, α,max) ||

(1, 2, . . . , n− i− 1, α′) || (n− i, . . . , n− 1, n),
(4.18)

where α′ = 2n − i. The true-incorrect graph F [ϕ∗] results from F [π∗] after
modifying the back-edge of the nodes corresponding to the element α = 2n

in sequence ϕ∗
2, the element α′ = 2n − i in sequence ϕ∗

3, and the i + 1 elements
n− i, . . . , n− 1, n in sequence ϕ∗

4. Thus, in total 2 + i+ 1 edge modifications are
needed. Since 1 ≤ i ≤ n− 1, it follows that a true-incorrect graph F [ϕ∗] can be
obtained from F [π∗] by modifying at least 4 edges. In fact, we can do exactly 4

edge modifications and encode the watermark number w′ ̸= w where

w′ = 11 . . . 10︸ ︷︷ ︸
n− 2

1.

Let us now consider the case where the element max is moved out of π∗
2. Then,

both sequences ϕ∗
2 and ϕ∗

4 become empty and the sequences ϕ∗
1 and ϕ∗

3 have the
following structure:

ϕ∗ = (n+ 1, n+ 2, . . . , 2n− i− 1, 2n− i, . . . , 2n− 1, α = 2n) || () ||

(1, 2, . . . , n− i− 1, n− i, . . . , n− 1, α′ = max) || ().
(4.19)

The nodes of the graph F [π∗] whose back-edge needs to point to another node
in order to create the true-incorrect graph F [ϕ∗] are those corresponding to the
elements α′ = max, α = 2n and 1, 2, . . . , n− i− 1, n− i, . . . , n− 1 of ϕ∗

3 due to the
last element α = 2n of ϕ∗

1. Thus, the graph F [ϕ∗] can be obtained from F [π∗] by
modifying n+ 1 edges, where n ≥ 4.
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(3.2) In the latter case where bn = 1, the watermark number w is encoded by a SiP
π∗ = π∗

1 || π∗
2 || π∗

3 || π∗
4 having the following structure:

π∗ = (n+ 1, n+ 2, . . . , 2n− i, 2n− i+ 1, . . . , 2n) || () ||

(1, 2, . . . , n− i− 1, n− i, . . . , n− 1, n, α) || (),
(4.20)

where α = max = 2n + 1. The only operation that we can apply on π∗
1 is the

Move-out() operation on π∗
1 and suppose that the i largest elements of π∗

1 , i.e.,
2n − i + 1, . . . , 2n − 1, 2n, are moved to π∗

2 and π∗
3. Then, by choosing the last

element 2n of π∗
1 to be the last element of π∗

2 , the structure of the resulting SiP
ϕ∗ becomes the following:

ϕ∗ = (n+ 1, n+ 2, . . . , 2n− i) || (2n− i+ 2, . . . , α = max, 2n) ||

(1, 2, . . . , n− i, α′ = 2n− i+ 1) || (n− i+ 1, . . . , n, n− 1),
(4.21)

In this case, the true-incorrect graph F [ϕ∗] results from F [π∗] after changing the
back-edge of the nodes corresponding to the elements 2n and α′ = 2n − i + 1

of ϕ∗
2 and ϕ∗

3, respectively, the elements n − i + 1, . . . , n due to the last element
α′ = 2n − i + 1 of ϕ∗

3, and the element n − 1 due to the element n of ϕ∗
4. Thus,

the graph F [ϕ∗] can be obtained from F [π∗] by modifying 2 + i edges. Since
we require the element 2n to be in the last position of π∗

2 , we have that i ≥ 2.
Thus, the graph F [ϕ∗] can be obtained from F [π∗] by modifying 4 edges and
the watermark number w′ ̸= w encoded by F [ϕ∗] is

w′ = 11 . . . 10︸ ︷︷ ︸
n− 2

0.

It is easy to see that in the case where the element 2n is not located in the last
position of π∗

2 , the number of edge modifications exceeds 4.

Summarizing, in Case 3, we conclude that a true-incorrect reducible permutation
graph F [ϕ∗] can result from F [π∗] after having performed at least 4 edge modifications
on its back-edges. Thus, minVM(w) = 4.

4.4 Strong and Weak Watermark Numbers

In the previous section, for each watermark w, we computed the minimum num-
ber minVM(w) of edge modifications of the constructed reducible permutation graph
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which are needed so that a watermark different from w may be extracted from the
modified reducible permutation graph. Since the greater the value of minVM(w) is, the
more difficult it is to alter the watermark embedded, we obviously are interested
in watermarks that maximize the value of minVM(w). Therefore, we characterize the
watermarks as follows:

Definition 4.4. Let w be an integer watermark in Rn = [2n−1, 2n − 1]. We say that:

• w is W-RPG-strong if the value minVM(w) is maximum in the range Rn;

• w is W-RPG-weak if the value minVM(w) is minimum in the range Rn;

• w is W-RPG-intermediate in the remaining cases.

Then, Theorem 4.1 directly implies that all the watermarks whose internal block B

contains at least two 0s are W-RPG-weak watermarks with minVM(w) = 3; moreover,
for each of these W-RPG-weak watermarks, it holds that after 3 edge modifications,
exactly 1 different watermark may be extracted (see proof of Case 1 of Theorem 4.1).
For the W-RPG-strong watermarks, we have the following corollary.

Corollary 4.1. Let w be an integer watermark in Rn = [2n−1, 2n − 1].

(i) If n is odd, then there is a unique W-RPG-strong watermark w, which has the form
w = 11ℓ01ℓ1 (ℓ ≥ 0) with minVM(w) = n+ ℓ = n−1

2
+ 3.

(ii) If n is even, then there are 3 W-RPG-strong watermarks w of the forms w = 11ℓ01ℓ+10,
w = 11ℓ01ℓ+11, w = 11ℓ+101ℓ1 (ℓ ≥ 0) with minVM(w) = n

2
+ 2.

Proof. Theorem 4.1 implies that the maximum value of minVM(w) of valid edge mod-
ifications is 4 +min{ℓ, r − 1} if bn = 0 and r > 0 or 4 +min{ℓ, r} if bn = 1 and r ≥ 0;
the maximum values are obtained if |ℓ− (r−1)| ≤ 1 in the former case and |ℓ− r| ≤ 1

in the latter case.

(i) If n = 2κ + 1, κ ∈ Z then the max{minVM(w)} for w ∈ Rn is obtained for a
unique w of the form w = 11ℓ01r1, where ℓ = r = n−3

2
= k − 1 and bn = 1; then,

max{minVM(w)} = 4 + ℓ = n−1
2

+ 3 = k + 3.

(ii) If n = 2κ, κ ∈ Z then the binary representation of watermark w is of the form
w = 11ℓ01r0, where r−ℓ = 1 and bn = 0, with max{minVM(w)} = 4+ℓ or |r−ℓ| = 1
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and bn = 1, with max{minVM(w)} = 4+ ℓ or max{minVM(w)} = 4+ r. This means
that there are 3 integers w in the range Rn with maximum value of minVM(w),
as follows.

• w = 11ℓ01r0, where r − ℓ = 1 and bn = 0 (top subcase in Case 2 of Theo-
rem 4.1): then, minVM(w) = 4+ℓ where ℓ+r = ℓ+ℓ+1 = n−3 −→ ℓ = n

2
−2,

and hence minVM(w) = 4 + ℓ = n
2
+ 2.

• if the watermark w is of the form w = 11ℓ01r1, where |r− ℓ| = 1 and bn = 1

(bottom subcase in Case 2 of Theorem 4.1): then, minVM(w) = 4+min{ℓ, r}
where ℓ+r = 2min{ℓ, r}+1 = n−3 −→ min{ℓ, r} = n

2
−2; again, minVM(w) =

4 +min{ℓ, r} = n
2
+ 2.

We note that if the minimum number of edge modifications is applied to the con-
structed reducible permutation graph, it may be the case that more than one different
watermarks may be produced. Obviously, a good recommendation for a watermark
would be a W-RPG-strong watermark such that from the modified reducible permu-
tation graph after exactly max{minVM(w)} edge modifications the minimum number
of different watermarks may be extracted. Then, Corollary 4.1 and the proof of Case 2
of Theorem 4.1 imply:

Theorem 4.2. The W-RPG-strongest watermark w ∈ Rn = [2n−1, 2n − 1] is of the form
w = 11ℓ01ℓ+11.

Proof. Let us consider the W-RPG-strong watermarks exhibited in Corollary 4.1.

(i) If n is odd, then the unique W-RPG-strong watermark is w = 11ℓ01ℓ1, and
there are just ℓ+2 watermarks different from w that may be extracted from the
modified reducible permutation graph after 4+ ℓ edges have been modified. By
Subcase 2.3 of Theorem 4.1, there is just 1 other watermark w′ if we apply Swap(),
and another ℓ+1 watermarks w′ if we apply Move-out() with j ∈ {1, 2, . . . , r+1}
where r = ℓ.

(ii) If n is even, then we have the 3 W-RPG-strong watermarks w = 11ℓ01ℓ+10,
w = 11ℓ01ℓ+11, and w = 11ℓ+101ℓ1.

108



• if w = 11ℓ01ℓ+10, the number of watermarks w′ ̸= w extracted from the
modified reducible permutation graph is ℓ + 3. By Subcase 2.2 of Theo-
rem 4.1, there is just 1 other watermark w′ if we apply Swap(), another 1
if we apply Move-in() and minimize the value of 6 + ℓ+ r− i, and another
ℓ + 1 watermarks w′ if we apply Move-out() with j ∈ [{1, 2, . . . , r} where
r = ℓ+ 1.

• if w = 11ℓ01ℓ+11, there is only 1 watermark w′′ ̸= w extracted if we apply
Swap() (see Subcase 2.3 of Theorem 4.1).

• if w = 11ℓ+101ℓ1, the number of different watermarks w′′ ̸= w extracted is
ℓ+ 3. By Subcase 2.3 of Theorem 4.1, there are ℓ different watermarks w′

extracted if we apply Move-out() with j ∈ {1, 2, . . . , r + 1} where r = ℓ+ 1.

Thus, the theorem follows.

Example. According to Corollary 4.1, if n = 7 (odd), the unique W-RPG-strong wa-
termark in range R7 = [26, 27 − 1] = [64, 127] is 1110111 (i.e. watermark number
w = 119) with minVM(w) = 7−1

2
+3 = 6. From the same Corollary, if n = 8 (even), there

are three W-RPG-strong watermarks in range R8 = [27, 28 − 1] = [128, 255], namely
11101110, 11101111 and 11110111 with minVM(w) = 8

2
+ 3 = 9 and from Theorem 4.2,

the W-RPG-strongest watermark in range R8 is w = 239 (its binary representation
b(w) = 11101111). Finally, one of W-RPG-weak watermarks in the same range R8 is
the number 227 because its binary representation (11100011) contains three 0s and the
minimum number of valid edge-modification is 3 and one ofW-RPG-intermediate wa-
termarks in the same range R8 is the number 253 with binary representation 11111101

and minVM(w) = 4.

4.5 Concluding Remarks

Following up on the software watermarking method presented in the W-RPG codec
system by Chroni et al. [82, 37, 66], in this section, we theoretically studied the re-
silience of the created reducible permutation graphs under edge-modification attacks.
For a specific range Rn = [2n−1, 2n − 1], we classify each watermark number w ∈ Rn

into one of three categories. Firstly, a watermark can be characterized as W-RPG-
strong watermark, in the case where it has max{minVM(w)}, secondly it can be clas-
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sified as W-RPG-weak watermark, in the case where minVM(w) = 3 and and lastly
if 3 < minVM(w) < max{minVM(w)}, it is a W-RPG-intermediate watermark. By also
minimizing the number of watermarks different from w extracted from the modified
reducible permutation graph after minVM(w) edge modifications, we conclude that the
best choice of watermark in Rn is a W-RPG-strong watermark of the form 11ℓ01ℓ+11

(ℓ ≥ 0) where n is even and ℓ = n
2
+ 2.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Edge Modification Problems

5.2 Applications

5.1 Edge Modification Problems

In this chapter, we conclude the results of edge modification problems such as adding
a tail and adding an edge in some classes of perfect graphs and its application to
watermarking.

5.1.1 Adding a Tail

According to the graph modification problems, we focused on the minimum C-
completion problem on a graph G and edge modification problem particularly. We
assume a graph class C to which a graph G belongs on it. In Chapter 2, we studied the
problem of connecting a node w ̸∈ V (G) to G by a single edge uw where u ∈ V (G).
The study of these problems is crucial for real world problems because a lot of times
we have to deal with the addition of new data as a node and how the initial structure
of graph will not be affected or which is the appropriate modification/changes in
order to maintain its properties and structure.

We call as tail, the addition of a node w ̸∈ V (G) in a node u ∈ V (G) through a
non edge uw. Thus, our goal was to determine the minimum number of fill edges
(including the tail) that must be added in order to the resulting graph to belong to

111



the class C since the graph G′, which results from G after the addition of the tail,
is not necessarily a graph of class C. We focused on the classes of perfect graphs,
which include many important families of graphs, i.e a graph in which the chromatic
number of every induced subgraph equals the order of the largest clique of that
subgraph, namely clique number.

The first class of perfect graphs where we studied this completion problem, is the
split graphs. Split graph is a graph in which the vertices can be partitioned into a
clique and an independent set and it may have more than one partition into a clique
and an independent set. Let us consider a split graph G, and we add a tail uw, where
u ∈ V (G) and w /∈ V (G). Depending on which vertex set (independent set S or clique
set K) the node u belongs to, it is configured with the minimum number of fill edges.
If u ∈ K , the minimum number of fill edges needed (in addition to the tail uw) is
0 and if u ∈ S and degree(u) = ku, the minimum number of fill edges needed (in
addition to the tail uw) is |K| − ku.

Secondly, we studied the same problem (adding a tail in a graph G) in classes
of threshold and quasi-threshold graphs. According to the literature, the threshold
graphs are precisely those A-free graphs (i.e it contains no induced subgraph iso-
morphic to P4 or C4) containing no induced subgraph isomorphic to 2K2 and quasi-
threshold contains no induced subgraph isomorphic to P4 or C4 (i.e., they are A-free
graphs). The results of threshold graphs are that the minimum number of edges (in
addition to the tail uw) that need to be added is min

0≤l≤i
A(l) where A(l) =

∑l−1
j=0 |Vj,1|+∑i

w=l+1

∑kw
j=2 |Vw,j|. if u ∈ Vi,1 ⊆ K , or A(l) =

∑l−1
j=0 |Vj,1|+

∑h
w=l

∑kw
j=1 |Vw,j|+

∑l−1
j=i |Vj,1|

if u ∈ Vi,j ⊆ S, where 2 ≤ j ≤ ki.
Furthermore, we investigated the properties and the structure of P4-sparse graph,

as well as its tree representation. P4-sparse graph G is a graph where no set of five ver-
tices in G induces more than one chordless path of length three. Let G be a P4-sparse
graph and TG be its P4-sparse tree. Considering the addition of a tail uw incident
on a node u of G, we proved that there exists a minimum P4-sparse completion of
the graph G + uw such that for the P4-sparse tree TG′ of the resulting graph G′. As
a special case, we consider that the given graph is a spider H (thin or thick) and
we add a tail uw to a vertex u of H such that the parent-node of u in the P4-sparse
tree TH of H is the 2-node corresponding to H. Finally, for this purpose, we described
the Algorithm P4‐sparse‐Tail‐Addition in Chapter 2, which computes the minimum
number of edges to be added to G + uw so that the resulting graph is P4-sparse in
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O(n) time.
An interesting open question is the minimum C-completion of other classes of

perfect graphs. The problem of adding a tail in graph G, where G belongs to class of
interval or permutation graph, would be a first step for solution of general problem of
adding an edge in these classes of graphs; we leave it as an open problem for future
investigation.

5.1.2 Adding an Edge

In the scope of this thesis, we studied the problem of adding an edge in a graph G,
which belongs to class of P4-sparse graphs, namely given a P4-sparse graph G and
a non-edge xy of G, find the minimum number of non-edges of G that need to be
added to G so that the resulting graph is a P4-sparse graph and contains xy as an
edge.

Firstly, we investigated the special case in which the given P4-sparse graph G

consists of 2 connected components each containing one of the endpoints of the added
non-edge uv, namely (P4-sparse-2CC,+1)-MinEdgeAddition, i.e., the least common
ancestor of the leaves corresponding to u, v in P4-sparse tree T is a 0-node. For any
optimal solution H , we distinguished the cases for what root node (1-node, 2-node
thin, or 2-node thick) of P4-sparse tree is. In the following, there are presented the
approach of solution of adding a non-edge incident on a vertex of the clique or the
independent set of a spider graph (thin or thick spider).

According to the lemmas and theorems we previously described and the combi-
nation of cases (included the case of addition a tail to P4-sparse graph, which was
described in the previous chapter), we presented the general algorithm for computa-
tion of (P4-sparse graph,+1)-MinEdgeAddition. In addition, we proved the efficiency
and correctness of general algorithm, showing its complexity based on the lemmas
and theorems that have been given in Chapter 3.

As a prime further research target there has left the study of (P4-sparse graph,
-1)-MinEdgeAddition problem, namely given a graph G and deletion of an edge
uv ∈ E(G), find the minimum number of non-edges (without uv) to be added to
G − uv so that the resulting graph belongs to P4-sparse graphs. This problem is
included in general problem of C-completion problem. Moreover, on the same goal
is embedded the investigation of (C,±k)-MinEdgeAdditionproblem to other classes
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of perfect graphs. Additionally, on the same concept several algorithms could also be
deployed as a result of the properties of perfect graphs and their specific structure.

5.2 Applications

In the last decade, a wide range of software watermarking techniques has been pro-
posed among which the graph-based methods that encode watermark numbers as
graphs whose structure resembles that of real program graphs. Recently, Chroni et
al. [82, 37, 66] proposed a codec system algorithm for multiple encoding a water-
mark into a graph structure: an integer (i.e., a watermark) is encoded first into a
self-inverting permutation π∗ and then into a reducible permutation graph. In this
watermark coded system, which is based on graphs and structure properties, it is con-
sidered necessary the study of the resilience of these graphs against edge modification
attacks.

The aim of this thesis is a theoretical study about the resilience of the created
reducible permutation graphs under edge-modification attacks. These reducible per-
mutation graphs are extracted by W-RPG codec system presented by Chroni et al.
[82, 37, 66], which is a software watermarking method based on the structural prop-
erties of the self-inverting permutation π∗ encoding the watermark in order to prove
its resilience to edge-modification attacks on the flow-graph F [π∗]. In this thesis and
specifically Chapter 4, we arranged the watermark numbers in classes according to
shared qualities or characteristics.

Thus, the three categories where we classify each watermark number are W-RPG-
strong watermark, W-RPG-weak watermark and W-RPG-intermediate watermark.
In the first category, W-RPG-strong watermark, is when the watermark number
w has max{minVM(w)}, where minVM(w) is the minimum number of valid edge-
modification of the graph F [π∗], i.e. the minimum SiP operations in π∗ in order to cre-
ate other self-inverting permutations (SiPs) π∗

i . In the second category, W-RPG-weak
watermark, then the watermark number w has minVM(w) = 3 which is the less number
of valid edge-modification that can be made. In the last category, W-RPG-intermediate
watermark is the watermark number which has 3 < minVM(w) < max{minVM(w)},
where the most watermark numbers belong. All above classification is done οn a
specific range Rn = [2n−1, 2n − 1], with n > 2. The next question, which we solved in
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the thesis, is the best choice of a watermark in Rn and if it exists or if it is unique. We
conclude that the best choice of watermark in Rn is a W-RPG-strong watermark of
the form 11ℓ01ℓ+11 (ℓ ≥ 0) where n is even and ℓ = n

2
+ 2, by minimizing the number

of watermarks different from w extracted from the modified reducible permutation
graph after minVM(w) edge modifications.

It would be very interesting to come up with new efficient codec algorithms and
structures having “better” properties with respect to resilience to attacks. Another
interesting question with practical value is whether the class of reducible permuta-
tion graphs can be extended so that it includes other classes of graphs with structural
properties capable to efficiently encode watermark numbers. Furthermore, the evalua-
tion of the W-RPG system codec algorithms and structures under other watermarking
quality measurements is another interesting topic of study which will provide detailed
information about their practical behavior.

Finally, in light of graph modification problems, it would be very interesting to
investigate theoretically the resilience of others watermarking codec systems that are
based on graphs. Through theory of completion, deletion, and editing problems, it
would be effective to find the possibility of altering other components of the watermark
structure and how we can handle the possible additive, subtractive, and distorting
attacks on watermark structure, i.e., edge-modification, edge-insertion or deletion and
node-insertion or deletion attacks on watermark graph in order to the embedded
watermark represents the real owner; we leave it as a direction for future work.
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