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ABSTRACT

Michalis S. Vrigkas.

PhD, Department of Computer Science & Engineering, University of loannina, Greece.
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Thesis Title: Human activity recognition using conditional random fields and privileged
information.

Thesis Supervisor: Christophoros Nikou.

Recognizing human activities from video sequences or still images is a challenging
task due to problems such as background clutter, partial occlusion, changes in scale,
viewpoint, lighting, and appearance. Many applications, including video surveillance
systems, human-computer interaction, and robotics for human behavior characterization,
require a multiple activity recognition system.

In the first part of this thesis, after a review of the state-of-the-art methods, a learning-
based framework for action representation and recognition relying on time series of optical
flow motion features is presented. In the learning step, the motion curves representing
each action are clustered using Gaussian mixture modeling (GMM). In the recognition
step, the optical flow curves of a probe sequence are also clustered using a GMM, then
each probe sequence is projected onto the training space and the probe curves are matched
to the learned curves using a non-metric similarity function based on the longest common
subsequence, which is robust to noise and provides an intuitive notion of similarity between
curves.

Next, a human behavior recognition method with an application to political speech
videos is presented. The behavior of a subject is modeled using a conditional random
field (CRF). To evaluate the performance of the model, a novel behavior dataset is intro-
duced, which includes low resolution video sequences depicting different people speaking
in the Greek parliament. The subjects of the Parliament dataset are labeled as friendly,
aggressive or neutral depending on the intensity of their political speech.

An extension of the aforementioned human behavior recognition method using multi-
modal features is also presented. Individual and social behaviors of a subject are modeled
using a hidden conditional random field (HCRF). Each video is represented by a vector of
spatio-temporal visual features along with audio features. To remove irrelevant features
a feature pruning method based on the spatio-temporal neighborhood of each feature in
a video sequence is presented. The proposed framework assumes that human movements
are highly correlated with sound emissions and canonical correlation analysis is employed
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to find relationship between the audio and video features prior to fusion.

Besides the classical learning frameworks, a novel method based on the learning us-
ing privileged information (LUPI) paradigm for recognizing complex human activities
is proposed that handles missing information during testing. A supervised probabilistic
approach that integrates LUPI into an HCRF model is presented. The proposed model
employs a self-training technique for automatic estimation of the regularization param-
eters of the objective function. Moreover, the method provides robustness to outliers
by modeling the conditional distribution of the privileged information by a Student’s
t-density function. Different forms of additional information were investigated.

In many human activity recognition systems the size of the unlabeled training data
may be significantly large due to expensive human effort required for data annotation.
Moreover, the insufficient data collection process from heterogenous sources may cause
dissimilarities between training and testing data. To address these limitations, a novel
probabilistic approach that combines LUPI and active learning is proposed. A pool-based
privileged active learning approach is presented for semi-supervising learning of human
activities from multimodal labeled and unlabeled data.

In the last part of this dissertation, the LUPI paradigm is also investigated for solv-
ing biometric applications such as facial expression recognition. As facial image sequences
may contain information for heterogeneous sources, facial data may be asymmetrically dis-
tributed between training and testing, as it may be difficult to maintain the same quality
and quantity of information. To this end, a novel probabilistic classification method that
combined the LUPI framework and conditional random fields is proposed to indirectly
propagate knowledge from privileged to regular feature space. Each feature space owns
specific parameter settings, which are combined together through a Gaussian prior, to
train the proposed t-CRF+ model and allow the different tasks to share parameters and

improve classification performance.
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Tithoc Awtpdric: Avayvoplon aviendmivng dpaotneldtntag Ye utd ouvinixn Tuyaio Tedi
xou TpovouLoxy TAnpogopla.

Emufiénwy Kodnyntic: Xpotégopog Nixou.
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ETXETA DEDOUEVAL
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CHAPTER 1

INTRODUCTION

1.1 Human Activity Recognition from Video Sequences

1.2 Thesis Contribution

1.1 Human Activity Recognition from Video Sequences

Human activity recognition plays a significant role in human-to-human interaction and
interpersonal relations. Because it provides information about the identity, personality,
and psychological state, it is difficult to extract. The human ability to recognize another
person’s activities is one of the main subjects of study of the scientific areas of computer
vision and machine learning. As a result of this research, many applications, including
video surveillance systems, human-computer interaction, and robotics for human behavior
characterization, require a multiple activity recognition system.

Among various classification techniques two main questions arise: “What action?”
(i.e., the recognition problem) and “Where in the video?” (i.e., the localization problem).
When attempting to recognize human activities one must determine the kinetic states of
a person, so that the computer can efficiently recognize this activity. Human activities
such as “walking” or “running” arise very naturally in daily life and are relatively easy to
recognize. On the other hand, more complex activities such as “peeling an apple” are more
difficult to identify. Complex activities may be decomposed into other simpler activities,
which are generally easier to recognize. Usually, the detection of objects in a scene may
help to better understand human activities as it may provide useful information about
the ongoing event [11].

Most of the work in human activity recognition assumes a figure-centric scene of un-
cluttered background, where the actor is free to perform an activity. The development
of a fully automated human activity recognition system, capable of classifying a person’s
activities with low error, is a challenging task due to problems such as background clutter,



partial occlusion, changes in scale, viewpoint, lighting and appearance, and frame resolu-
tion. In addition, annotating behavioral roles is time consuming and requires knowledge
of the specific event. Moreover, intra- and inter-class similarities make the problem amply
challenging. That is, actions within the same class may be expressed by different people
with different body movements and actions between different classes may be difficult to
distinguish as they may be represented by similar information. The way that humans per-
form an activity depends on their habits, and this makes the problem of identifying the
underlying activity quite difficult to determine. Also, the construction of a visual model
for learning and analyzing human movements in real time with inadequate benchmark
datasets for evaluation are challenging tasks.

To overcome these problems a task is required that consists of three components,
namely: (i) background subtraction [12, 13], in which the system attempts to separate
the parts of the image that are invariant over time (background) from the objects that are
moving or changing (foreground); (ii) human tracking, in which the system locates human
motion over time [14, 15, 16]; and (iii) human action and object detection [17, 18, 19], in
which the system is able to localize a human activity in an image.

The goal of human activity recognition is to examine activities from video sequences or
still images. Motivated by this fact, human activity recognition systems aim to correctly
classify input data into its underlying activity category. Depending on their complexity,
human activities are categorized into: (i) gestures; (ii) atomic actions; (iii) human-to-
object or human-to-human interactions; (iv) group actions; (v) behaviors; and (vi) events.
Figure 1.1 visualizes the decomposition of human activities according to their complexity.

Gestures are considered as primitive movements of the body parts of a person that
may correspond to a particular action of this person [20]. Atomic actions are movements
of a person describing a certain motion that may be part of more complex activities [21].
Human-to-object or human-to-human interactions are human activities that involve two or
more persons or objects [6]. Group actions are activities performed by a group or persons
[22]. Human behaviors refer to physical actions that are associated with the emotions,
personality and psychological state of the individual [23]. Finally, events are high level
activities that describe social actions between individuals and indicate the intention or
the social role of a person [24].

1.2 Thesis Contribution

This thesis focuses on the development of efficient human activity recognition methods
using several graphical probabilistic models such as Gaussian mixture models (GMM)
[25], conditional random fields (CRF) [26], and hidden conditional random fields (HCRF)
[27]. Conditional random fields are more suitable to encode sequential human activities by
representing the dependencies between the observations and the actual class label with a
structured graphical model. They are formed as a collection of different feature functions
and are able to work well with complex features that may be extracted form different
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Figure 1.1: Decomposition of human activities.

sources. A key issue when modeling human activities with such models is which features
are more informative for this task. In this dissertation, a set of diverse and multimodal
features are used and innovative classification tasks are combined together to address the
problems in classification of activities due to dissimilarities in training and testing features
that may occur from the data acquisition procedure.

For a better insight of the existing methodologies, in Chapter 2, we overview the
related work for human activity recognition and present a new taxonomy of the related
methods. This helps to categorize those human actions that play a significant role in
evaluating human activity recognition systems. Moreover, we present a complete list of
human activity datasets categorizing them according to the kind of activities they may
represent. We also set the bases for an ideal human activity classification system and
discuss the strengths and weaknesses of each category separately.

In Chapter 3, human activities are represented by a set of clustered motion curves.
These motion curves consist of time series of optical flow motion features, which are
grouped using Gaussian mixture modeling to represent the different activities. To avoid
flaws in the representation of human motion due to the sensitivity of optical flow analy-
sis to noise and partial occlusions, a non-metric similarity function based on the longest
common subsequence is used. The learned motion curves are matched to a new probe
sequence by detecting similar pairs of curve segments. The advantage of the propose
method is that it is able to handle motion curves of different lengths and is robust to
outliers. Since a human actions may non uniformly occur within a video sequence, the
continuity of the curves along time is ensured by tracking the optical flow features. More-



over, canonical time warping is employed for spatio-temporal alignment of the motion
curves and dimensionality reduction is applied to remove outliers from the motion curves
and reduce their lengths.

In Chapter 4, a human behavior recognition method with application to political
speeches is presented and a novel behavior dataset, called the Parliament dataset is also
introduced. This dataset is a collection of low resolution video sequences depicting dif-
ferent people speaking in the Greek parliament. Each sequence was manually labeled
with one of three behavioral labels, which correspond to friendly, aggressive and neutral
states. The discrimination between friendly and aggressive labels is not straightforward
in political speeches as the subjects perform similar movements in both cases. To model
the underlying human behavior, a fully connected conditional random field (CRF) is em-
ployed, where different labels for each video frame were considered. This makes the model
more suitable to handle video sequences with more than one label per video sequence.

In Chapter 5, a multimodal human action recognition method based on hidden con-
ditional random fields (HCRF) is proposed. To reduce the number of irrelevant features
that may occur during data acquisition constraints, a feature selection technique based
on the spatio-temporal neighborhood of the visual features is employed. Moreover, the
correlation of audio and visual information is investigated for recognizing complex human
activities. However, due to the different frame rate that each modality may have, audio
and video features are temporally aligned such that the correlation between sound emis-
sions and human movements is maximized. The combination of both visual and audio
information reinforces the intuition that human behaviors are more easily identified as
they are characterized by complex actions of movements and sound emissions.

In Chapter 6, a novel classification model that exploits learning using privileged in-
formation (LUPI) is introduced. Within this framework, training data are enhanced with
additional information also called privileged information, that may reflect on natural or
auxiliary properties about classes and members of the classes of the training data. Privi-
leged information is available only during training but never during testing. This kind of
learning is of high importance as it resembles the human ability of learning by exploiting
only useful information, which are provided by a strong teacher during training, while
only a few information may be available during testing. The LUPI framework is used in
a probabilistic manner by incorporating it in a hidden conditional random field model,
while maximum likelihood and maximum margin approaches are employed to learn the
model’s parameters. The regularization parameters are automatically inferred through a
self-training procedure directly form the training data.

In Chapter 7, a semi-supervising method using active learning and privileged informa-
tion for recognizing human activities is presented. Knowing the ground truth labeling for
all training examples in advance may not always be feasible for large scale heterogeneous
and unconstrained data. Moreover, to reduce tedious human effort in data annotation,
which may be time consuming and computationally expensive, a combination of learning

using privileged information and active learning is proposed. The benefit of the proposed



methodology is twofold. First, it is able to cope with information that is not available dur-
ing testing and second, it addresses the problem of missing labels during training. Both
procedures are performed simultaneously through a unified semi-supervising pool-based
active learning technique.

In Chapter 8, a novel classification method for indirect propagation of knowledge
from privileged to regular feature space is introduced with application to biometrics such
as facial expression and affective recognition. Each domain is treated separately and
the learned privileged weights are used to penalize the original feature space through a
Gaussian prior. Thus, samples that have a good evidence to distinguish between classes
for both privileged and original feature spaces contribute heavier to the learning process,
while samples that are harder to separate have less effect to the leaning model. The
proposed method is not limited to the use of any specific form of auxiliary information.

Finally, Chapter 9 summarizes this thesis, provides some possible extensions of the
proposed methodologies and overviews the directions for future work.






CHAPTER 2

BACKGROUND AND RELATED WORK IN
AcCTION RECOGNITION

2.1 Introduction

2.2 Human Activity Categorization
2.3 Unimodal Methods

2.4 Multimodal Methods

2.5 Discussion

2.1 Introduction

There are several surveys in the human activity recognition literature. Gavrila [28] sep-
arated the research in 2D (with and without explicit shape models) and 3D approaches.
Aggarwal and Cai [29], presented a new taxonomy focusing on human motion analysis,
tracking from single view and multi view cameras and recognition of human activities.
Similar in spirit to the previous taxonomy, Wang et al. [30] proposed a hierarchical action
categorization hierarchy. The survey of Moeslund et al. [31] mainly focused on pose-based
action recognition methods and proposed a four-fold taxonomy including initialization of
human motion, tracking, pose estimation, and recognition methods.

A fine separation between the meanings of “action” and “activity” was proposed by
Turaga et al. [32], where the activity recognition methods were categorized according to
their degree of activity complexity. Poppe [33] characterized human activity recognition
methods into two main categories, describing them as “top-down” and “bottom-up”. On
the other hand, Aggarwal and Ryoo [34] presented a tree structured taxonomy, where
the human activity recognition methods were categorized into two big subcategories, the



“single layer” approaches and the “hierarchical” approaches, each of which have several
layers of categorization.

Modeling 3D data is also a new trend and it was extensively studied by Chen et al.
[35] and Ye et al. [36]. As the human body consists of limbs connected with joints, one
can model these parts using stronger features, which are obtained from depth cameras,
and create a 3D representation of the human body, which is more informative than the
analysis of 2D activities carried out in the image plane. Aggarwal and Xia [37] recently
presented a categorization of human activity recognition methods from 3D stereo and
motion capture systems with the main focus on methods that exploit 3D depth data. To
this end, Microsoft Kinect has played a significant role in motion capture of articulated
body skeletons using depth sensors.

Although much research has been focused on human activity recognition systems from
video sequences, human activity recognition from static images remains an open and very
challenging task. Most of the studies of human activity recognition are associated with
facial expression recognition and/or pose estimation techniques. Guo and Lai [38] sum-
marized all the methods for human activity recognition from still images and categorized
them into two big categories according to the level of abstraction and the type of features
each method uses.

Jaimes and Sebe [39] proposed a survey for multimodal human computer interaction
focusing on affective interaction methods from poses, facial expressions and speech. Pan-
tic and Rothkrantz [40] performed a complete study in human affective state recognition
methods that incorporate nonverbal multimodal cues such as facial and vocal expressions.
Pantic et al. [41] studied several state-of-the-art methods of human behavior recognition
including affective and social cues, and covered many open computational problems and
how they can be efficiently incorporated into a human-computer interaction system. Zeng
et al. [42] presented a review of state-of-the-art affective recognition methods that use
visual and audio cues for recognizing spontaneous affective states and provided a list of re-
lated datasets for human affective expression recognition. Bousmalis et al. [43] proposed
an analysis of non-verbal multimodal (i.e., visual and auditory cues) behavior recogni-
tion methods and datasets for spontaneous agreements and disagreements. Such social
attributes may play an important role in analyzing social behaviors, which are the key
to social engagement. Finally, a thorough analysis of the ontologies for human behavior
recognition from the viewpoint of data and knowledge representation was presented by
Rodriguez et al. [44].

Table 2.1 summarizes the previous surveys on human activity and behavior recognition
methods sorted by chronological order. Most of these reviews summarize human activity
recognition methods, without providing the strengths and the weaknesses of each category
in a concise and informative way. Our goal is not only to present a new classification for
the human activity recognition methods, but also to compare different state-of-the-art
studies and understand the advantages and disadvantages of each method.



Table 2.1: Summary of previous surveys.

Authors Year Area of interest

Aggarwal and Cai [29] 1999 Human motion analysis and tracking from single and multi view data.

Gavrila [28] 1999 Shape model analysis from 2D and 3D data.

Pantic and Rothkrantz [40] 2003 Multimodal human affective state recognition.

Wang et al. [30] 2003 Human detection, tracking and activity recognition.

Moeslund et al. [31] 2006 Motion initialization, tracking, pose estimation, and recognition.

Pantic et al. [41] 2006 Investigation of affective and social behaviors for human-computer interactions.
Jaimes and Sebe [39] 2007 Multimodal affective interaction analysis for human-computer interactions.
Turaga et al. [32] 2008 Categorization of actions and activities according to their complexity.

Zeng et al. [42] 2009 Audio-visual affective recognition analysis.

Poppe [33] 2010  Action classification according to global or local representation of data.
Aggarwal and Ryoo [34] 2011 Gestures, human activities, actions and interactions analysis.

Bousmalis et al. [43] 2013 Audio-visual behavior analysis of spontaneous agreements and disagreements.
Chen et al. [35] 2013 Human body part motion analysis from depth image data.

Ye et al. [36] 2013 Human activity analysis from skeletal poses using depth data.

Aggarwal and Xia [37] 2014 Human activity analysis from stereo, motion capture, and depth sensors 3D data.
Guo and Lai [38] 2014 Understanding human activities from still images.

Rodriguez et al. [44] 2014 Representation of human behavior ontologies from knowledge-based techniques.

2.2 Human Activity Categorization

The human activity categorization problem has remained a challenging task in computer
vision for more than two decades. Previous works on characterizing human behavior have
shown great potential in this area. First, we categorize the human activity recognition
methods into two main categories: (i) unimodal and (ii) multimodal activity recognition
methods according to the nature of sensor data they employ. Then, each of these two
categories is further analyzed into sub-categories depending on how they model human
activities. Thus, we propose a hierarchical classification of the human activity recognition
methods, which is depicted in Figure 2.1.

Human Activity Recognition Methods
Unimodal Multimaqdal

Space-Time  Stochastic ~ Rule-based =~ Shape-based  Affective = Behavioral = Social networking

Figure 2.1: Proposed hierarchical categorization of human activity recognition methods.

Unimodal methods represent human activities from data of a single modality, such as
images, and they are further categorized as: (i) space-time, (ii) stochastic, (iii) rule-based,
and (iv) shape-based methods.

Space-time methods involve activity recognition methods, which represent human ac-
tivities as a set of spatio-temporal features [45, 46] or trajectories [47, 48]. Stochastic
methods recognize activities by applying statistical models to represent human actions
(e.g., hidden Markov models) [49, 50]. Rule-based methods use a set of rules to describe



human activities [51, 52]. Shape-based methods efficiently represent activities with high-
level reasoning by modeling the motion of human body parts [53, 54].

Multimodal methods combine features collected from different sources [55] and are
classified into three categories: (i) affective, (ii) behavioral, and (iii) social networking
methods.

Affective methods represent human activities according to emotional communications
and the affective state of a person [23, 56]. Behavioral methods aim to recognize behavioral
attributes, non-verbal multimodal cues such as gestures, facial expressions and auditory
cues [5, 57]. Finally, social networking methods model the characteristics and the behavior
of humans in several layers of human-to-human interactions in social events from gestures,
body motion, and speech [6, 58].

Usually, the terms “activity” and “behavior” are used interchangeably in the literature
[57, 59]. In this survey, we differentiate between these two terms in the sense that the
term “activity” is used to describe a sequence of actions that correspond to specific body
motion. On the other hand, the term “behavior” is used to characterize both activities
and events that are associated with gestures, emotional states, facial expressions and
auditory cues of a single person.

2.3 Unimodal Methods

Unimodal human activity recognition methods identify human activities from data of one
modality. Most of the existing approaches represent human activities as a set of visual
features extracted from video sequences or still images and recognize the underlying activ-
ity label using several classification models [60, 61]. Unimodal approaches are appropriate
for recognizing human activities based on motion features. However, the ability to rec-
ognize the underlying class only from motion is on its own a challenging task. The main
problem is how we can ensure the continuity of the motion along time as an action occurs
uniformly or non-uniformly within a video sequence. Some approaches use snippets of
motion trajectories [62, 63], while others use the full length of motion curves by tracking
the optical flow features [64].

We classify unimodal methods into four broad categories: (i) space-time, (ii) stochas-
tic, (iii) rule-based, and (iv) shape-based approaches. Each of these subcategories describes
specific attributes of human activity recognition methods according to the type of repre-
sentation each method uses.

2.3.1 Space-Time Methods

Space-time approaches focus on recognizing activities based on space-time features or on
trajectory matching. They consider an activity in the 3D space-time volume, consisting
of concatenation of 2D spaces in time. An activity is represented by a set of space-time

features or trajectories extracted from a video sequence.
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A plethora of human activity recognition methods based on space-time representation
have been proposed in the literature [2, 65, 66, 67, 68]. A major family of methods relies
on optical flow, which has proven to be an important cue. Efros et al. [65] recognized
human actions from low-resolution sports video sequences using the nearest neighbor
classifier, where humans are represented by windows of height of 30 pixels. The approach
of Fathi and Mori [66] was based on mid-level motion features, which are also constructed
directly from optical flow features. Moreover, Wang and Mori [69] employed motion
features as input to hidden conditional random fields (HCRF) [27] and support vector
machine (SVM) classifiers [25]. Real time classification and prediction of future actions
was proposed by Morris and Trivedi [70], where an activity vocabulary is learned through
a three-step procedure. Other optical flow-based methods which gained popularity were
presented in [71, 72, 73]. An invariant in translation and scaling descriptor was introduced
by Oikonomopoulos et al. [74]. Spatio-temporal features based on B-splines are extracted
in the optical flow field. To model this descriptor, a Bag-of-Words (BoW) technique is
employed, whereas, classification of activities is performed using relevant vector machines
(RVM) [75].

The classification of a video sequence using local features in a spatio-temporal envi-
ronment has also been given much focus. Schuldt et al. [2] represented local events in a
video using space-time features, while an SVM classifier was used to recognize an action.
Gorelick et al. [76] considered actions as 3D space-time silhouettes of moving humans.
They took advantage of the Poisson equation solution to efficiently describe an action
by using spectral clustering between sequences of features and applying nearest neighbor
classification to characterize an action. Niebles et al. [68] addressed the problem of action
recognition by creating a codebook of space-time interest points. A hierarchical approach
was followed by Jhuang et al. [67], where an input video was analyzed into several feature
descriptors depending on their complexity. The final classification was performed by a
multi-class SVM classifier. Dollar et al. [77] proposed spatio-temporal features based
on cuboid descriptors. Instead of encoding human motion for action classification, Jainy
et al. [19] proposed to incorporate information from human-to-objects interactions and
combined several datasets to transfer information from one dataset to another.

An action descriptor of histograms of interest points, relying on the work of Schuldt
et al. [2], was presented by Yan and Luo [78]. Random forests for action representation
have also attracted widespread interest for action recognition [79, 80]. Furthermore, the
key issue of how many frames are required to recognize an action was addressed by
Schindler and Gool [81]. Shabani et al. [45] proposed a temporally asymmetric filtering for
feature detection and activity recognition. The extracted features were more robust under
geometric transformations than the features described by a Gabor filter [82]. Sapienza
et al. [83] used a bag of local spatio-temporal volume features approach to recognize
and localize human actions from weakly labeled video sequences using multiple instance
learning.

The problem of identifying multiple persons simultaneously and performing action
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recognition was presented by Khamis et al. [84]. The authors considered that a per-
son could first be detected by performing background subtraction techniques. Based
on histograms of oriented Gaussians, Dalal and Triggs [85] were able to detect humans,
whereas classification of actions was made by training an SVM classifier. Wang et al.
[86] performed human activity recognition by associating the context between interest
points based on the density of all features observed. A multi-view activity recognition
method was presented by Li and Zickler [46], where descriptors from different views were
connected together to construct a new augmented feature that contains the transition
between the different views. Multi-view action recognition has also been studied by Rah-
mani and Mian [87]. A non-linear knowledge transfer model based on deep learning was
proposed for mapping action information from multiple camera views into one single view.
However, their method is computationally expensive as it requires a two step sequential
learning phase prior to the recognition step for analyzing and fusing the information of
multi-views.

Tian et al. [88] employed spatio-temporal volumes using a deformable part model
to train an SVM classifier for recognizing sport activities. Similar in spirit, the work of
Jain et al. [89] used a 3D space-time volume representation of human actions obtained
from super-voxels to understand sport activities. They used an agglomerative approach to
merge super-voxels that share common attributes and localize human activities. Kulkarni
et al. [90] used a dynamic programming approach to recognize sequences of actions in
untrimmed video sequences. A per-frame time-series representation of each video and a
template representation of each action were proposed, whereas dynamic time warping was
used to sequence alignment.

Samanta and Chanda [91] proposed a novel representation of human activities using
a combination of spatio-temporal features and a facet model [92], while they used a 3D
Haar wavelet transform and higher order time derivatives to describe each interest point.
A vocabulary was learned from these features and SVM was used for classification. Jiang
et al. [93] used a mid-level feature representation of video sequences using optical flow
features. These features were clustered using K-means to build a hierarchical template tree
representation of each action. A tree search algorithm was used to identify and localize
the corresponding activity in test videos. Roshtkhari and Levine [94] also proposed a
hierarchical representation of video sequences for recognizing atomic actions by building
a codebook of spatio-temporal volumes. A probe video sequence was classified into its
underlying activity according to its similarity with each representation in the codebook.

Earlier approaches were based on describing actions by using dense trajectories. The
work of Le et al. [95] discovered the action label in an unsupervised manner by learning
features directly from video data. A high-level representation of video sequences, called
“action bank”, was presented by Sadanand and Corso [96]. Each video was represented by
a set of action descriptors, which were put in correspondence. The final classification was
performed by an SVM classifier. Yan and Luo [78] also proposed a novel action descriptor
based on spatial temporal interest points (STIP) [97]. To avoid overfitting they proposed
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a novel classification technique combining Adaboost and sparse representation algorithms.
Wu et al. [98] used visual features and Gaussian mixture models (GMM) [25] to efficiently
represent the spatio-temporal context distributions between the interest points at several
space and time scales. The underlying activity was represented by a set of features
extracted by the interest points over the video sequence. A new type of feature called the
“hankelet” was presented by Li et al. [47]. This type of feature, which was formed by
short tracklets, along with a BoW approach, was able to recognize actions under different
viewpoints without requiring any camera calibration.

The work of Vrigkas et al. [64] focused on recognizing human activities by representing
a human action with a set of clustered motion trajectories. A Gaussian mixture model
was used to cluster the motion trajectories and the action labeling was performed using
a nearest neighbor classification scheme. Yu et al. [99] proposed a propagative point
matching approach using random projection trees, which can handle unlabeled data in an
unsupervised manner. Jain et al. [100] used motion compensation techniques to recognize
atomic actions. They also proposed a new motion descriptor called “divergence-curl-
shear descriptor”, which is able to capture the hidden properties of flow patterns in video
sequences. Wang et al. [15] used dense optical flow trajectories to describe the kinematics
of motion patterns in video sequences. However, several intra-class variations caused by
missing data, partial occlusion, and the sort duration of actions in time may harm the
recognition accuracy. Ni et al. [21] discovered the most discriminative groups of similar
dense trajectories for analyzing human actions. Each group was assigned a learned weight
according to its importance in motion representation.

An unsupervised method for learning human activities from short tracklets was pro-
posed by Gaidon et al. [101]. They used a hierarchical clustering algorithm to represent
videos with an unordered tree structure and compared all tree-clusters to identity the
underlying activity. Raptis et al. [63] proposed a mid-level approach extracting spatio-
temporal features and constructing clusters of trajectories, which could be considered as
candidates of an action. Yu and Yuan [102] extracted bounding box candidates from
video sequences, where each candidate may contain human motion. The most significant
action paths were estimated by defining an action score. Due to the large spatio-temporal
redundancy in videos, many candidates may overlap. Thus, estimation of the maximum
set coverage was applied to address this problem. However, the maximum set coverage
problem is NP-hard, and thus the estimation requires approximate solutions.

An approach that exploits the temporal information encoded in video sequences was
introduced by Li et al. [103]. The temporal data were encoded into a trajectory system,
which measures the similarity between activities and computes the angle between the
associated subspaces. A method that tracks features and produces a number of trajectory
snippets was proposed by Matikainen et al. [62]. The trajectories were clustered by an
SVM classifier. Motion features were extracted from a video sequence by Messing et al.
[104]. These features were tracked with respect to their velocities and a generative mixture

model was employed to learn the velocity history of these trajectories and classify each
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video clip. Tran et al. [105] proposed a scale and shape invariant method for localizing
complex spatio-temporal events in video sequences. Their method was able to relax the
tight constraints of bounding box tracking, while they used a sliding window technique
to track spatio-temporal paths maximizing the summation score.

An algorithm that may recognize human actions in 3D space by a multi-camera system
was introduced by Holte et al. [106]. It was based on the synergy of 3D space and time to
construct a 4D descriptor of spatial temporal interest points and a local description of 3D
motion features. The BoW technique was used to form a vocabulary of human actions,
whereas agglomerative information bottleneck and SVM were used for action classification.
Zhou and Wang [107] proposed a new representation of local spatio-temporal cuboids for
action recognition. Low level features were encoded and classified via a kernelized SVM
classifier, whereas a classification score denoted the confidence that a cuboid belongs to
an atomic action. The new feature could act as complementary material to the low level
feature. The work of Sanchez-Riera et al. [108] recognized human actions using stereo
cameras. Based on the technique of BoW, each action was presented by a histogram of
visual words, whereas their approach was robust to background clutter.

The problem of temporal segmentation and event recognition was examined by Hoai
et al. [109]. Action recognition was performed by a supervised learning algorithm. Satkin
and Hebert [110] explored the effectiveness of video segmentation by discovering the most
significant portions of videos. In the sense of video labeling, the study of Wang et al. [111]
leveraged the shared structural analysis for activity recognition. The correct annotation
was given in each video under a semi supervised scheme. Bag-of-video words have be-
come very popular. Chakraborty et al. [112] proposed a novel method applying surround
suppression. Human activities were represented by bag-of-video words constructed from
spatial temporal interest points by suppressing the background features and building a
vocabulary of visual words. Guha and Ward [113] employed a technique of sparse repre-
sentations for human activity recognition. An overcomplete dictionary was constructed
using a set of spatio-temporal descriptors. Classification over three different dictionaries
was performed.

Seo and Milanfar [114] proposed a method based on space-time locally adaptive re-
gression kernels and the matrix cosine measure. They extracted features from space-time
descriptors and compared them against features of the target video. A vocabulary based
approach has been proposed by Kovashka and Grauman [115]. The main idea is to find
the neighboring features around the detected interest points, quantize them, and form a
vocabulary. Ma et al. [116] extracted spatio-temporal segments from video sequences that
correspond to whole or part human motion and constructed a tree-structured vocabulary
of similar actions. Fernando et al. [117] learned to arrange human actions in chronologi-
cal order in an unsupervised manner by exploiting temporal ordering in video sequences.
Relevant information was summarized together through a ranking learning framework.

The main disadvantage of using a global representation such as optical flow is the

sensitivity to noise and partial occlusions. Space-time approaches can hardly recognize
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actions when more than one person is present in a scene. Nevertheless, space-time features
focus mainly on local spatiotemporal information. Moreover, the computation of these
features produces sparse and varying numbers of detected interest points, which may lead
to low repeatability. However, background subtraction can help overcome this limitation.

Low-level features usually used with a fixed length feature vector (e.g., Bag-of-Words)
failed to be associated with high-level events. Trajectory-based methods face the problem
of human body detection and tracking, as these are still open issues. Complex activities
are more difficult to recognize when space-time feature based approaches are employed.
Furthermore, viewpoint invariance is another issue that these approaches have difficulty
in handling.

2.3.2 Stochastic Methods

In recent years there has been a tremendous growth in the amount of computer vision
research aimed at understanding human activity. There has been an emphasis on activi-
ties, where the entity to be recognized may be considered as a stochastically predictable
sequence of states. Researchers have conceived and used many stochastic techniques, such
as hidden Markov model (HMMSs) [25] or hidden conditional random fields (HCRFs) [27],
to infer useful results for human activity recognition.

Robertson and Reid [118] modeled human behavior as a stochastic sequence of actions.
Each action was described by a feature vector, which combines information about posi-
tion, velocity, and local descriptors. An HMM was employed to encode human actions,
whereas recognition was performed by searching for image features that represent an ac-
tion. Pioneering this task, Wang and Mori [119] were among the first to propose HCRFs
for the problem of activity recognition. A human action was modeled as a configuration
of parts of image observations. Motion features were extracted forming a BoW model.
Activity recognition and localization via a figure-centric model was presented by Lan et
al. [49]. Human location was treated as a latent variable, which was extracted from
a discriminative latent variable model by simultaneous recognition of an action. A real
time algorithm that models human interactions was proposed by Oliver et al. [120]. The
algorithm was able to detect and track a human movement, forming a feature vector that
describes the motion. This vector was given as input to an HMM, which was used for
action classification. Song et al. [121] considered that human action sequences of various
temporal resolutions. At each level of abstraction, they learned a hierarchical model with
latent variables to group similar semantic attributes of each layer.

A multi-view person identification was presented by Tosifidis et al. [50]. Fuzzy vector
quantization and linear discriminant analysis were employed to recognize a human activity.
Huang et al. [122] presented a boosting algorithm called LatentBoost. The authors trained
several models with latent variables to recognize human actions. A stochastic modeling of
human activities on a shape manifold was introduced by Yi et al. [123]. A human activity
was extracted as a sequence of shapes, which is considered as one realization of a random

process on a manifold. The piecewise Brownian motion was used to model human activity
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on the respective manifold. Wang et al. [61] proposed a semi-supervised framework for
recognizing human actions combining different visual features. All features were projected
onto a common subspace and a boosting technique was employed to recognize human
actions from labeled and unlabeled data. Yang et al. [20] proposed an unsupervised
method for recognizing motion primitives for human action classification from a set of
very few examples.

Sun and Nevatia [124] treated video sequences as sets of short clips rather than a
whole representation of actions. Each clip corresponded to a latent variable in an HMM
model, while a Fisher kernel technique [125] was employed to represent each clip with a
fixed length feature vector. Ni et al. [126] decomposed the problem of complex activity
recognition into two sequential sub-tasks with increasing granularity levels. First, the
authors applied human-to-object interaction techniques to identify the area of interest,
then used this context-based information to train a conditional random field (CRF) model
[26] and identify the underlying action. Lan et al. [127] proposed a hierarchical method
for predicting future human actions, which may be considered as a reaction to a previous
performed action. They introduced a new representation of human kinematic states,
called “hierarchical movements”, computed at different levels of coarse to fine-grained level
granularity. Predicting future events from partially unseen video clips with incomplete
action execution has also been studied by Kong et al. [128]. A sequence of previously
observed features was used as a global representation of actions and a CRF model was
employed to capture the evolution of actions across time in each action class.

An approach for group activity classification was introduced by Choi et al. [129]. The
authors were able to recognize activities such as a group of people talking or standing in a
queue. The proposed scheme was based on random forests, which could select samples of
spatio-temporal volumes in a video that characterize an action. A probabilistic Markov
random field (MRF) [130] framework was used to classify and localize the activities in a
scene. Lu et al. [131] also employed a hierarchical MRF model to represent segments of
human actions by extracting supervoxels from different scales and automatically estimated
the foreground motion using saliency features of neighboring supervoxels.

The work of Wang et al. [132] focused on tracking dense sample points from video
sequences using optical flow based on HCRFs for object recognition. Wang et al. [133]
proposed a probabilistic model of two components. The first component modeled the
temporal transition between action primitives to handle large variation in an action class,
while the second component located the transition boundaries between actions. A hi-
erarchical structure, which is called the sum-product network, was used by Amer and
Todorovic [134]. The BoW technique encoded the terminal nodes, the sum nodes corre-
sponded to mixtures of different subsets of terminals, and the product nodes represented
mixtures of components.

Zhou and Zhang [135] proposed a robust to background clutter, camera motion and
occlusions method for recognizing complex human activities. They used multiple-instance

formulation in conjunction with an MRF model and were able to represent human activi-
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ties with a bag of Markov chains obtained from STIP and salient region feature selection.
Chen et al. [136] addressed the problem of identifying and localizing human actions using
CRFs. The authors were able to distinguish between intentional actions and unknown
motions that may happen in the surroundings by ordering video regions and detecting
the actor of each action. Kong and Fu [137] addressed the problem of human interac-
tion classification from subjects that lie close to each other. Such a representation may
be erroneous to partial occlusions and feature-to-object mismatching. To overcome this
problem the authors proposed a patch-aware model, which learned regions of interacting
subjects at different patch levels.

Shu et al. [138] recognized complex video events and group activities from aerial
shoots captured from unmanned aerial vehicles (UAVs). A preprocessing step prior to the
recognition process was adopted to address several limitations of frame capturing such
as low resolution, camera motion, and occlusions. Complex events were decomposed into
simpler actions and modeled using a spatiotemporal CRF graph. A video segmentation
approach for video activities and a decomposition into smaller clips task that contained
sub-actions was presented by Wu et al. [139]. The authors modeled the relation of
consecutive actions by building a graphical model for unsupervised learning of the activity
label from depth sensor data.

Often, human actions are highly correlated to the actor, who performs a specific action.
Understanding both the actor and the action may be vital for real life applications such
as robot navigation or patient monitoring. Most of the existing works do not take into
account the fact that a specific action may be performed in different manner by a different
actors. Thus, a simultaneous inference of actors and actions is required. Xu et al. [140]
addressed these limitations and proposed a general probabilistic framework for joint actor-
action understanding while they presented a new dataset for actor-action recognition.

There is an increasing interest in exploring human-object interaction for recognition.
Moreover, recognizing human actions from still images by taking advantage of contextual
information such as surrounding objects is a very active topic [141]. These methods assume
that not only the human body itself, but the objects surrounding it, may provide evidence
of the underlying activity. For example, a soccer player interacts with a ball when playing
soccer. Motivated by this fact, Gupta and Davis [11] proposed a Bayesian approach that
encodes object detection and localization for understanding human actions. Extending
the previous method, Gupta et al. [142] introduced spatial and functional constraints
on static shape and appearance features and they were also able to identify human-to-
object interactions without incorporating any motion information. Ikizler-Cinbis and
Sclaroff [143] extracted dense features and performed tracking over consecutive frames
for describing both motion and shape information. Instead of explicitly using separate
object detectors, they divided the frames into regions and treated each region as an object
candidate.

Most of the existing probabilistic methods for human activity recognition may per-
form well and apply exact and/or approximate learning and inference. However, they are
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usually more complicated than non-parametric methods, since they use dynamic program-
ming or computationally expensive HMMs for estimating a varying number of parameters.
Due to their Markovian nature, they must enumerate all possible observation sequences
while capturing the dependencies between each state and its corresponding observation
only. HMMs treat features as conditionally independent, but this assumption may not
hold for the majority of applications. Often, the observation sequence may be ignored
due to normalization leading to the label bias problem [26]. Thus, HMMs are not suit-
able for recognizing more complex events, but rather an event is decomposed into simpler
activities, which are easier to recognize.

CRFs on the other hand, overcome the label bias problem. Most of the aforementioned
methods do not require large training datasets, since they are able to model the hidden
dynamics of the training data and incorporate prior knowledge over the representation of
data. Although CRFs outperform HMMS in many applications, including bioinformatics,
activity, or speech recognition, the construction of more complex models for human activ-
ity recognition may have a good generalization ability, but is rather impractical for real
time applications due to the large number of parameter estimations and the approximate

inference.

2.3.3 Rule-Based Methods

Rule based approaches determine ongoing events by modeling an activity using rules or
sets of attributes that describe an event. Each activity is considered as a set of primitive
rules/attibutes, which enables the construction of a descriptive model for human activity
recognition.

Action recognition of complex scenes with multiple subjects was proposed by Morariu
and Davis [51]. Each subject must follow a set of certain rules while performing an action.
The recognition process was performed over basketball game videos, where the players
were first detected and tracked, generating a set of trajectories that are used to create
a set of spatio-temporal events. Based on first order logic and probabilistic approaches
such as Markov networks, the authors were able to infer which event has occurred. Liu et
al. [144] addressed the problem of recognizing actions by a set of descriptive and discrim-
inative attributes. Each attribute was associated with the characteristics describing the
spatio-temporal nature of the activities. These attributes were treated as latent variables,
which capture the degree of importance of each attribute for each action in a latent SVM
approach.

A combination of activity recognition and localization was presented by Chen and
Grauman [52]. The whole approach was based on the construction of a space-time graph
using a high-level descriptor, where the algorithm seeks to find the optimal subgraph that
maximizes the activity classification score (i.e., find the maximum weight subgraph, which
in the general case is an NP-complete problem). Kuehne et al. [145] proposed a structured
temporal approach for daily living human activity recognition. The author used HMMs to

model human actions as action units and then used grammatical rules to form a sequence
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of complex actions by combining different action units. When temporal grammars are used
for action classification, the main problem consists in treating long video sequences due
to the complexity of the models. One way to cope with this limitation is to segment video
sequences into smaller clips that contain sub-actions, using a hierarchical approach [146].
The generation of short description from video sequences [147] based on convolutional
neural networks (CNN) [148] was also used for activity recognition [149].

Intermediate semantic features representation for recognizing unseen actions during
training were proposed [150]. These intermediate features were learned during training,
while parameter sharing between classes was enabled by capturing the correlations be-
tween frequently occurring low-level features [151]. Learning how to recognize new classes
that were not seen during training, by associating intermediate features and class labels,
is a necessary aspect for transferring knowledge between training and test samples. This
problem is generally known as zero-shot learning [152]. Thus, instead of learning one
classifier per attribute, a two step classification method has been proposed by Lampert et
al. [153]. Specific attributes are predicted from already learned classifiers and are mapped
into a class-level score.

Action classification from still images by learning semantic attributes was proposed
by Yao et al. [154]. Attributes describe specific properties of human actions, while parts
of actions, which were obtained from objects and human poses, were used as bases for
learning complex activities. The problem of attribute-action association was reported
by Zhang et al. [155]. The authors proposed a multi-task learning approach [156] for
simultaneously coping with low-level features and action-attribute relationships, and in-
troduced attribute regularization as a penalty term for handling irrelevant predictions. A
robust to noise representation of attribute-based human action classification was proposed
by Zhang et al. [157]. Sigmoid and Gaussian envelopes were incorporated into the loss
function of an SVM classifier, where the outliers are eliminated during the optimization
process. A GMM was used for modeling human actions and a transfer ranking technique
was employed for recognizing unseen classes. Ramanathan et al. [158] were able to trans-
fer semantic knowledge between classes to learn human actions from still images. The
interaction between different classes was performed using linguistic rules. However, for
high-level activities the use of language priors is often not adequate, thus simpler and
more explicit rules should be constructed.

Complex human activities cannot be recognized directly from rule-based approaches.
Thus, decomposition into simpler atomic actions is applied and then combination of in-
dividual actions is employed for the recognition of complex or simultaneously occurring
activities. This limitation leads to constant feedback by the user of rule/attribute an-
notations of the training examples, which is time consuming and sensitive to errors due
to subjective point of view of the user defined annotations. To overcome this drawback,
several approaches employing transfer learning [153, 159], multi-task learning [156, 160],
and semantic/discriminative attribute learning [161, 162] were proposed to automatically

generate and handle the most informative attributes for human activity classification.
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2.3.4 Shape-Based Methods

Modeling of human pose and appearance has received a great response from researchers
during the last decades. Parts of the human body are described in 2D space as rectangular
patches and as volumetric shapes in 3D space. It is well known that activity recognition
algorithms based on the human silhouette play an important role in recognizing human
actions. As a human silhouette consists of limbs jointly connected to each other, it is
important to obtain exact human body parts from videos. This problem is considered as
part of the action recognition process. Many algorithms convey a wealth of information
about solving this problem.

A major focus in action recognition from still images or videos has been made in
the context of scene appearance [163, 164, 165]. More specifically, Thurau and Hlavac,
[163] represented actions by histograms of pose primitives and n-gram expressions were
used for action classification. Also, Yang et al. [164] combined actions and human poses
together, treating poses as latent variables, to infer the action label in still images. Maji
et al. [165] introduced a representation of human poses, called the “poselet activation
vector”, which is defined by the 3D orientation of the head and torso and provided a
robust representation of human pose and appearance. Moreover, action categorization
based on modeling the motion of parts of the human body was presented by Tran et al.
[53], where a sparse representation was used to model and recognize complex actions. In
the sense of template matching techniques, Rodriguez et al. [3] introduced the maximum
average correlation height (MACH) filter, which was a method for capturing intra-class
variabilities by synthesizing a single action MACH filter for a given action class. Sedai
et al. [166] proposed a combination of shape and appearance descriptors to represent
local features for human pose estimation. The different types of descriptors were fused at
the decision level using a discriminative learning model. Nevertheless, identifying which
body parts are most significant for recognizing complex human activities still remains a
challenging task [167].

Ikizler and Duygulu [168] modeled the human body as a sequence of oriented rectan-
gular patches. The authors described a variation of BoW method called bag-of-rectangles.
Spatially oriented histograms were formed to describe a human action, while the classi-
fication of an action was performed using four different methods such as frame voting,
global histogramming, SVM classification, and dynamic time warping (DTW) [169]. The
study of Yao and Fei-Fei [170] modeled human poses for human-object interactions by
introducing a mutual context model. The types of human poses, as well as the spa-
tial relationship between the different human parts, were modeled. Self organizing maps
(SOM) [171] were introduced by losifidis et al. [172] for learning human body posture,
in conjunction with fuzzy distances, to achieve time invariant action representation. The
proposed algorithm was based on multi-layer perceptrons, where each layer was fed by
an associated camera, for view-invariant action classification. Human interactions were
addressed by Andriluka and Sigal [173]. First, 2D human poses were estimated from

pictorial structures from groups of humans and then each estimated structure was fitted
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into 3D space. To this end, several 2D human pose benchmarks have been proposed for
the evaluation of articulated human pose estimation methods [174].

Action recognition using depth cameras was introduced by Wang et al. [175], where
a new feature type called “local occupancy pattern” was also proposed. This feature was
invariant to translation and was able to capture the relation between human body parts.
The authors also proposed a new model for human actions called “actionlet ensemble
model”, which captured the intra-class variations and was robust to errors incurred by
depth cameras. 3D human poses have been taken into consideration in recent years
and several algorithms for human activity recognition have been developed. A recent
review on 3D pose estimation and activity recognition was proposed by Holte et al. [176].
The authors categorized 3D pose estimation approaches aimed at presenting multi-view
human activity recognition methods. The work of Shotton et al. [177] modeled 3D
human poses and performed human activity recognition from depth images by mapping
the pose estimation problem into a simpler pixel-wise classification problem. Graphical
models have been widely used in modeling 3D human poses. The problem of articulated
3D human pose estimation was studied by Fergie and Galata [178], where the limitation
of the mapping from the image feature space to the pose space was addressed using
mixtures of Gaussian processes, particle filtering, and annealing [179]. A combination of
discriminative and generative models improved the estimation of human pose.

Multi-view pose estimation was examined by Amin et al. [180]. The 2D poses for
different sources were projected onto 3D space using a mixture of multi-view pictorial
structures models. Belagiannis et al. [181] have also addressed the problem of multi-view
pose estimation. They constructed 3D body part hypotheses by triangulation of 2D pose
detections. To solve the problem of body part correspondence between different views,
the authors proposed a 3D pictorial structure representation based on a CRF model.
However, building successful models for human pose estimation is not straightforward
[182]. Combining both pose specific appearance and the joint appearance of body parts
helps to construct a more powerful representation of the human body. Deep learning has
gained much attention for multi-source human pose estimation [183] where the tasks of
detection and estimation of human pose were jointly learned. Toshev and Szegedy [184]
have also used deep learning for human pose estimation. Their approach relies on using
deep neural networks (DNN) [185] for representing cascade body joint regressors in a
holistic manner.

Despite the vast development of pose estimation algorithms, the problem still remains
challenging for real time applications. Jung et al. [186] presented a method for fast
estimation of human pose with 1,000 frames per second. To achieve such a high com-
putational speed the authors used random walk sub-sampling methods. Human body
parts were handled as directional tree-structured representations and a regression tree
was trained for each joint in the human skeleton. However, this method depends on the
initialization of the random walk process.

Sigal et al. [54] addressed the multi-view human tracking problem where the modeling
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of 3D human pose consisted of a collection of human body parts. The motion estimation
was performed by non-parametric belief propagation [25]. On the other hand, the work
of Livne et al. [187] explored the problem of inferring human attributes, such as gender,
weight, and mood, by the scope of 3D pose tracking. Representing activities using tra-
jectories of human poses is computationally expensive due to many degrees of freedom.
To this end, efficient dimensionality reduction methods should be applied. Moutzouris
et al. [188] proposed a novel method for reducing dimensionality of human poses called
“hierarchical temporal Laplacian eigenmaps” (HTLE). Moreover, the authors were able
to estimate unseen poses using a hierarchical manifold search method.

Du et al. [189] divided the human skeleton into five segments and used each of these
parts to train a hierarchical neural network. The output of each layer, which corresponds
to neighboring parts, is fused and fed as input to the next layer. However, this approach
suffers from the problem of data association as parts of the human skeleton may vanish
through the sequential layer propagation and back projection. Nie et al. [190] also divided
human pose into smaller mid-level spatio-temporal parts. Human actions were represented
using a hierarchical AND/OR graph and dynamic programming was used to infer the class
label. Ome disadvantage of this method is that it cannot deal with self-occlusions (i.e.,
overlapping parts of human skeleton).

A shared representation of human poses and visual information has also been explored
[7,191, 192]. However, the effectiveness of such methods is limited by tracking inaccuracies
in human poses and complex backgrounds. To this end, several kinematic and part-
occlusion constraints for decomposing human poses into separate limbs have been explored
to localize the human body [193]. Xu et al. [194] proposed a mid-level representation
of human actions by computing local motion volumes in skeletal points extracted from
video sequences, and constructed a codebook of poses for identifying the action. Eweiwi
et al. [195] reduced the required amount of pose data using a fixed length vector of more
informative motion features (e.g., location and velocity) for each skeletal point. A partial
least squares approach was used for learning the representation of action features, which
is then fed into an SVM classifier.

Kviatkovsky et al. [196] mixed shape and motion features for online action classifi-
cation. The recognition processes could be applied in real time using the incremental
covariance update and the on-demand nearest neighbor classification schemes. Rahmani
et al. [197] trained a random decision forest (RDF) [198] and applied a joint representa-
tion of depth information and 3D skeletal positions for identifying human actions in real
time. A novel part-based skeletal representation for action recognition was introduced
by Vemulapalli et al. [199]. The geometry between different body parts was taken into
account and a 3D representation of human skeleton was proposed. Human actions are
treated as curves in the Lie group [200] and the classification was performed using SVM
and temporal modeling approaches. Following a similar approach, Anirudh et al. [201]
represented skeletal joints as points on the product space. Shape features were represented
as high dimensional non-linear trajectories on a manifold to learn the latent variable space
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of actions. Fouhey et al. [202] exploited the interaction between human actions and scene
geometry to recognize human activities from still images using 3D skeletal representation
and adopting geometric representation constraints of the scenes.

The problem of appearance-to-pose mapping for human activity understanding was
studied by Urtasun and Darrell [203]. Gaussian processes were used as an online proba-
bilistic regressor for this task using sparse representation of data for reducing computa-
tional complexity. Theodorakopoulos et al. [204] have also employed sparse representation
of skeletal data in the dissimilarity space for human activity recognition. In particular,
human actions are represented by vectors of dissimilarities and a set of prototype ac-
tions is built. The recognition is performed into the dissimilarity space using sparse
representation-based classification. A publicly available dataset (UPCV Action dataset)
consisting of skeletal data of human actions was also proposed.

A common problem in estimating human pose is the high-dimensional space (i.e.,
each limb may have a large number of degrees of freedom that need to be estimated
simultaneously). Action recognition relies heavily on the obtained pose estimations. The
articulated human body is usually represented as a tree-like structure, thus locating the
global position and tracking each limb separately is intrinsically difficult, since it requires
exploration of a large state space of all possible translations and rotations of the human
body parts in 3D space. Many approaches, which employ background subtraction [205] or
assume fixed limb lengths and uniformly distributed rotations of body parts [206], have
been proposed to reduce the complexity of the 3D space.

Moreover, the association of human pose orientation with the poses extracted from
different camera views is also a difficult problem due to similar body parts of different
humans in each view. Mixing body parts of different views may lead to ambiguities
because of the multiple candidates of each camera view and false positive detections. The
estimation of human pose is also very sensitive to several factors such as illumination
changes, variations in view-point, occlusions, background clutter, and human clothing.
Low cost devices such as Microsoft Kinect or other RGB-D sensors, which provide 3D
depth data of a scene, can efficiently leverage these limitations and produce a relatively
good estimation of human pose, since they are robust to illumination changes and texture
variations [207].

2.4 Multimodal Methods

Recently, much attention has been focused on multimodal activity recognition methods.
An event can be described by different types of features that provide more and useful
information. In this context, several multimodal methods are based on feature fusion,
which can be expressed by two different strategies: early fusion and late fusion. The
easiest way to gain the benefits of multiple features is to directly concatenate features
in a larger feature vector and then learn the underlying action [208]. This feature fusion
technique may improve recognition performance, but the new feature vector is of much
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larger dimension.

Multimodal cues are usually correlated in time, thus a temporal association of the
underlying event and the different modalities is an important issue for understanding the
data. In that context, audio-visual analysis is used in many applications, not only for
audio-visual synchronization [209], but also for tracking [210] and activity recognition
[55]. Multimodal methods are classified into three categories: (i) affective methods, (ii)
behavioral methods, and (iii) methods based on social networking. Multimodal methods
describe atomic actions or interactions that may correspond to affective states of a person
with whom he/she communicates, and depend on emotions and/or body movements.

2.4.1 Affective Methods

The core of emotional intelligence is understanding the mapping between a person’s affec-
tive states and the corresponding activities, which are strongly related to the emotional
state and communication of a person with other people [211]. Affective computing studies
model the ability of a person to express, recognize, and control his/her affective states
in terms of hand gestures, facial expressions, physiological changes, speech, and activity
recognition [40]. This research area is generally considered to be a combination of com-
puter vision, pattern recognition, artificial intelligence, psychology, and cognitive science.

A key issue in affective computing is accurately annotated data. Ratings are one
of the most popular affect annotation tools. However, this is challenging to obtain for
real world situations, since affective events are expressed in a different manner by dif-
ferent persons, or occur simultaneously with other activities and feelings. Preprocessing
affective annotations may be detrimental for generating accurate and ambiguous affective
models due to biased representations of affect annotation. To this end, a study on how
to produce highly informative affective labels has been proposed by Healey [212]. Soley-
mani et al. [213] investigated the properties of developing a user-independent emotion
recognition system that is able to detect the most informative affective tags from elec-
troencephalogram (EEG) signals, pupillary reflex, and bodily responses that correspond
to video stimulus. Nicolaou et al. [214] proposed a novel method based on probabilistic
canonical correlation analysis (PCCA) [215] and DTW for fusing multimodal emotional
annotations and performing temporal aligning of sequences.

Liu et al. [56] associated multimodal features (i.e., textual and visual) for classifying
affective states in still images. The authors argued that visual information is not ade-
quate for understanding human emotions, and thus additional information that describes
the image is needed. Dempster-Shafer theory [216] was employed for fusing the differ-
ent modalities, while SVM was used for classification. Hussain et al. [217] proposed a
framework for fusing multimodal psychological features such as heart and facial muscle
activity, skin response, and respiration, for detecting and recognizing affective states. Al-
Zoubi et al. [218] explored the effect of the affective feature variations over time on the
classification of affective states.

Siddiquie et al. [219] analyzed four different affective dimensions such as activation,
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expectancy, power, and valence [220]. To this end, they proposed joint hidden conditional
random Fields (JHCRF) as a new classification scheme to take advantage of the mul-
timodal data. Furthermore, their method uses late fusion to combine audio and visual
information together. This may lead to significant loss of the inter-modality dependence,
while it suffers from propagating the classification error across different levels of classi-
fiers. Although their method could efficiently recognize the affective state of a person,
the computational burden was high as JHCRFs require twice as many hidden variables
as the traditional HCRFs when features represent two different modalities.

Nicolaou et al. [221] proposed a regression model based on SVMs for regression (SVR)
[222] for continuous prediction of multimodal emotional states, using facial expression,
shoulder gesture, and audio cues in terms of arousal and valence. Castellano et al. [59]
explored the dynamics of body movements to identify affective behaviors using time series
of multimodal data. Martinez et al. [23] presented a detailed review of learning methods
for classification of affective and cognitive states of computer game players. They analyzed
the properties of directly using affect annotations in classification models, and proposed
a method for transforming such annotations to build more accurate models.

Multimodal affect recognition methods in the context of neural networks and deep
learning have generated considerable recent research interest [223]. In a more recent study,
Martinez et al. [224] could efficiently extract and select the most informative multimodal
features using deep learning to model emotional expressions and recognize the affective
states of a person. They incorporated psychological signals into emotional states such as
relaxation, anxiety, excitement, and fun, and demonstrated that deep learning was able
to extract more informative features than feature extraction on psychological signals.

Although the understanding of human activities may benefit from affective state recog-
nition, the classification process is extremely challenging due to the semantic gap between
the low-level features extracted from video frames and high-level concepts such as emotions
that need to be identified. Thus, building strong models that can cope with multimodal
data, such as gestures, facial expressions or psychological data, depends on the ability
of the model to discover relations between different modalities and generate informative
representation on affect annotations. Generating such information is not an easy task.
Users cannot always express their emotion with words, and producing satisfactory and
reliable ground truth that corresponds to a given training instance is quite difficult as
it can lead to ambiguous and subjective labels. This problem becomes more prominent
as human emotions are continuous acts in time and variations in human actions may be
confusing or lead to subjective annotations. Therefore, automatic affective recognition
systems should reduce the effort for selecting the proper affective label to better assess

human emotions.

2.4.2 Behavioral Methods

Recognizing human behaviors from video sequences is a challenging task for the computer
vision community [225]. A behavior recognition system may provide information about
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the personality and psychological state of a person and its applications vary from video
surveillance to human-computer interaction. Behavioral approaches aim at recognizing
behavioral attributes, non-verbal multimodal cues such as gestures, facial expressions,
and auditory cues. Factors that can affect human behavior may be decomposed into sev-
eral components including emotions, moods, actions, and interactions with other people.
Hence, the recognition of complex actions may be crucial for understanding human behav-
ior. One important aspect of human behavior recognition is the choice of proper features,
which can be used to recognize behavior in applications such as gaming or physiology. A
key challenge in recognizing human behaviors is to define specific emotional attributes for
multimodal dyadic interactions [226]. Such attributes may be descriptions of emotional
states or cognitive states such as activation, valence, or engagement.

Audio-visual representation of human actions has gained an important role in human
behavior recognition methods. Sargin et al. [227] suggested a method for speaker iden-
tification integrating a hybrid scheme of early and late fusion of audio-visual features
and used CCA [228] to synchronize the multimodal features. However, their method can
cope with video sequences of frontal view only. Metallinou et al. [229] proposed a proba-
bilistic approach based on GMMs for recognizing human emotions in dyadic interactions.
The authors took advantage of facial expressions as they can be expressed by the facial
action coding system (FACS) [230], which describes all possible facial expressions as a
combination of action units (AU), and combines them with audio information, extracted
from each participant, to identify their emotional state. Similarly, Chen et al. [231] pro-
posed a real-time emotion recognition system that modeled 3D facial expressions using
random forests. The proposed method was robust to subjects’ poses and changes in the
environment.

Wu et al. [232] proposed a human activity recognition system by taking advantage
of the auditory information of the video sequences of the HOHA dataset [233] and used
late fusion techniques for combining audio and visual cues. The main disadvantage of this
method is that it used different classifiers to separately learn the audio and visual context.
Also, the audio information of the HOHA dataset contains dynamic backgrounds and the
audio signal is highly diverse (i.e., audio shifts roughly from one event to another), which
generates the need for developing audio feature selection techniques. Similar in spirit is
the work of Wu et al. [55], who used the generalized multiple kernel learning algorithm for
estimating the most informative audio features. They applied fuzzy integral techniques
to combine the outputs of two different SVM classifiers, increasing the computational
burden of the method.

Song et al. [57] proposed a novel method for human behavior recognition based on
multi-view hidden conditional random fields (MV-HCRF) [234] and estimated the inter-
action of the different modalities by using kernel canonical correlation analysis (KCCA)
[228]. However, their method cannot deal with data that contain complex backgrounds,
and due to the down-sampling of the original data the audio-visual synchronization may
be lost. Also, their method used different sets of hidden states for audio and visual
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information. This property considers that the audio and visual features were a priori
synchronized, while it increases the complexity of the model. Metallinou et al. [235] em-
ployed several hierarchical classification models from neural networks to HMMs and their
combinations to recognize audio-visual emotional levels of valence and arousal rather than
emotional labels such as anger or kindness.

Vrigkas et al. [5] employed a fully connected CRF model to identify human behaviors
such as friendly, aggressive and neutral. To evaluate their method they introduced a novel
behavior dataset, called the Parliament dataset, which consists of political speeches in
the Greek parliament. Bousmalis et al. [236] proposed a method based on hierarchical
Dirichlet processes to automatically estimate the optimal number of hidden states in an
HCRF model for identifying human behaviors. The proposed model, also known as infinite
hidden conditional random field model (iHCRF), was employed to recognize emotional
states such as pain and agreement and disagreement from non-verbal multimodal cues.

Baxter et al. [237] proposed a human classification model that does not learn the tem-
poral structure of human actions but rather decomposes human actions and uses them
as features for learning complex human activities. The intuition behind this approach is
a psycholinguistics phenomenon, where randomizing letters in the middle of words has
almost no effect on understanding the underlying word if and only if the first and the last
letters of this word remain unchanged [238]. The problem of behavioral mimicry in social
interactions was studied by Bilakhia et al. [239]. It can be seen as an interpretation of hu-
man speech, facial expressions, gestures, and movements. Metallinou et al. [240] applied
mixture models to capture the mapping between audio and visual cues to understand the
emotional states of dyadic interactions.

Selecting the proper features for human behavior recognition has always been a trial-
and-error approach for many researchers in this area of study. In general, effective feature
extraction is highly application dependent. Several feature descriptors such as HOG3D
[241] or STIP [97] are not able to sufficiently characterize human behaviors. The com-
bination of visual features with other more informative features, which reflect human
emotions and psychology, is necessary for this task. Nonetheless, the description of hu-
man activities with high-level contents usually leads to recognition methods with high
computational complexity. Another obstacle that researchers must overcome is the lack
of adequate benchmark datasets to test and validate the reliability, effectiveness, and

efficiency of a human behavior recognition system.

2.4.3 Methods Based on Social Networking

Social interactions are an important part of daily life. A fundamental component of
human behavior is the ability to interact with other people via their actions. Social in-
teraction can be considered as a special type of activity where someone adapts his/her
behavior according to the group of people surrounding him/her. Most of the social net-
working systems that affect people’s behavior, such as Facebook, Twitter, or YouTube.

measure social interactions and infer how such sites may be involved in issues of identity,
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privacy, social capital, youth culture, and education. Moreover, the field of psychology
has attracted great interest in studying social interactions, as scientists may infer useful
information about human behavior. A recent survey on human behavior recognition pro-
vides a complete summarization of up-to-date techniques for automatic human behavior
analysis for single person, multi-person, and object-person interactions [225].

Fathi et al. [242] modeled social interactions by estimating the location and orientation
of the faces of persons taking part in a social events, computing a line of sight for each
face. This information was used to infer the location where an individual may be found.
The type of interaction was recognized by assigning social roles to each person. The
authors were able to recognize three types of social interactions: dialogue, discussion, and
monologue. To capture these social interactions, eight subjects wearing head-mounted
cameras participated in groups of interacting persons analyzing their activities from the
first-person point of view. In the sense of first-person scene understanding, Park and Shi
[243] were able to predict joint social interactions by modeling geometric relationships
between groups of interacting persons. Although the proposed method could cope with
missing information and variations in scene context, scale, and orientation of human poses,
it is sensitive to localization of interacting members, which leads to erroneous predictions
of the true class.

Human behavior on sport datasets was investigated by Lan et al. [24]. The authors
modeled the behavior of humans in a scene using social roles in conjunction with mod-
eling low-level actions and high-level events. Burgos-Artizzu et al. [244] discussed the
social behavior of mice. Each video sequence was segmented into periods of activities
by constructing a temporal context that combines spatio-temporal features. Kong et al.
[60] proposed a new high-level descriptor called “interactive phrases” to recognize human
interactions. This descriptor was a binary motion relationship descriptor for recognizing
complex human interactions. Interactive phrases were treated as latent variables, while
the recognition was performed using a CRF model.

Cui et al. [245] recognized abnormal behaviors in human group activities. The authors
represented human activities by modeling the relationships between the current behavior
of a person and his/her actions. An attribute-based social activity recognition method
was introduced by Fu et al. [246]. The authors were interested in classifying social
activities of daily life such as birthdays or weddings. A new social activity dataset has
also been proposed. By treating attributes as latent variables, the authors were able to
annotate and classify video sequences of social activities. Yan et al. [16] leveraged the
problem of human tracking for modeling the repulsion, attraction, and non-interaction
effects in social interactions. The tracking problem was decomposed into smaller tasks by
tracking all possible configurations of interactions effects, while the number of trackers was
dynamically estimated. Tran et al. [22] modeled crowded scenes as a graph of interacting
persons. Each node represents one person and each edge on the graph is associated with a
weight according to the level of the interaction between the participants. The interacting

groups were found by graph clustering, where each maximal clique corresponds to an
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interacting group.

The work of Lu et al. [247] focused on automatically tracking and recognizing players’
positions (i.e., attacker, defender) in sports videos. The main problem of this work was
the low resolution of the players to be tracked (a player was roughly 15 pixels tall). Lan et
al. [248] recognized group activities, which were considered as latent variables, encoding
the contextual information in a video sequence. Two types of contextual information
were explored: group-to-person interactions and person-to-person interactions. To model
person-to-person interactions, one approach is to model the associated structure. The
second approach is based on spatio-temporal features, which encode the information about
an action and the behavior of people in the neighborhood. Finally, the third approach is
a combination of the above two.

Much focus has also been given to recognizing human activities from real life videos
such as movies or TV shows by exploiting scene contexts to localize activities and under-
stand human interactions [6, 249, 250, 251]. The recognition accuracy of such complex
videos can also be improved by relating textual descriptions and visual context to a uni-
fied framework [252]. An alternative approach is a system that takes a video clip as its
input and generates short textual descriptions, which may correspond to an activity label,
which was unseen during training [253]. However, natural video sequences may contain
irrelevant scenes or scenes with multiple actions. As a result, Bandla and Grauman [254]
proposed a method for recognizing human activities from unsegmented videos using a
voting-based classification scheme to find the most frequently used action label.

Marin-Jiménez et al. [58] used a bag of visual-audio words scheme along with late fu-
sion for recognizing human interactions in TV shows. Even though their method performs
well in recognizing human interaction, the lack of an intrinsic audio-visual relationship
estimation limits the recognition problem. Bousmalis et al. [255] considered a system
based on HCRFs for spontaneous agreement and disagreement recognition using audio
and visual features. Although both methods yielded promising results, they did not con-
sider any kind of explicit correlation and/or association between the different modalities.
Hoai and Zisserman [251] proposed a learning based method based on the context and
the properties of a scene for detecting upper body positions and understanding the inter-
action of the participants in TV shows. An audio-visual analysis for recognizing dyadic
interactions was presented by Yang et al. [256]. The author combined a GMM with a
Fisher kernel to model multimodal dyadic interactions and predict the body language
of each subject according to the behavioral state of his/her interlocutor. Escalera et al.
[257] represented the concept of social interactions as an oriented graph using an influ-
ence model to identify human interactions. Audio and visual detection and segmentation
were performed to extract the exact segments of interest in a video sequence, and then
the influence model was employed. Each link measured the influence of a person over
another.

Many works on human activity recognition based on deep learning techniques have

been proposed in the literature. In fact, deep learning methods have had a large impact
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on a plethora of research areas including image/video understanding, speech recognition,
and biomedical image analysis. Kim et al. [258] used deep belief networks (DBN) [259]
in both a supervised and unsupervised manner to learn the most informative audio-
visual features and classify human emotions in dyadic interactions. Their system was
able to preserve non-linear relationships between multimodal features and showed that
unsupervised learning can be used efficiently for feature selection. Shao et al. [260]
mixed appearance and motion features for recognizing group activities in crowded scenes
collected from the web. For the combination of the different modalities the authors
applied multi-task deep learning. By these means, they were able to capture the intra-
class correlations between the learned attributes while they proposed a novel dataset of
crowed scene understanding, called WWW crowd dataset.

Deep learning has also been used by Gan et al. [18] for detecting and recognizing
complex events in video sequences. The proposed approach followed a sequential frame-
work. First, saliency maps were used for detecting and localizing events and then deep
learning was applied to the pre-trained features for identifying the most important frames
that correspond to the underlying event. Although much of the existing work on event
understanding relies on video representation, significant work has been done on recogniz-
ing complex events from static images. Xiong et al. [261] utilized CNNs to hierarchically
combine information from different visual channels. The new representation of fused fea-
tures was used to recognize complex social events. To assess their method, the authors
introduced a large dataset with more than 60,000 static images obtained from the web,
called web image dataset for event recognition (WIDER).

Karpathy et al. [262] performed an experimental evaluation of CNNs to classify events
from large-scale video datasets, using one million videos with 487 categories (Sports-1M
dataset) obtained from YouTube videos. Chen et al. [263] exploited different types of
features such as static and motion features for recognizing unlabeled events from heteroge-
nous web data (e.g., YouTube, Google/Bing image search engines). A separate classifier
for each source is learned and a multi-domain adaptation approach was followed to infer
the labels for each data source. Tang et al. [264] studied the problem of heterogenous
feature combination for recognizing complex events. They considered the problem as two
different tasks. At first, they estimated which were the most informative features for
recognizing social events, and then combined the different features using an AND/OR
graph structure.

Modeling crowded scenes has been a difficult task due to partial occlusions, interacting
motion patterns, and sparsely distributed cameras in outdoor environments [265]. Most
of the existing approaches for modeling group activities and social interactions between
different persons usually exploit contextual information from the scenes. However, such in-
formation is not sufficient to fully understand the underlying activity as it does not capture
the variations in human poses when interacting with other persons. When attempting to
recognize social interactions with a fixed number of participants the problem may become
more or less trivial. When the number of interacting people dynamically changes over
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time, the complexity of the problem increases and becomes more challenging. Moreover,
social interactions are usually decomposed into smaller subsets that contain individual
person activities or interaction between individuals. The individual motion patterns are
analyzed separately and are then combined to estimate the event. A person adapts his/her
behavior according to the person with whom s/he interacts. Thus, such an approach is
limited by the fact that only specific interaction patterns can be successfully modeled and

is sensitive in modeling complex social events.

2.4.4 Multimodal Feature Fusion

Consider the scenario where several people have a specific activity/behavior and some
of them may emit sounds. In the simple case, a human activity recognition system may
recognize the underlying activity by taking into account only the visual information. How-
ever, the recognition accuracy may be enhanced from audio-visual analysis, as different
people may exhibit different activities with similar body movements, but with different
sound intensity values. The audio information may help to understand who is the person
of interest in a test video sequence and distinguish between different behavioral states.

A great difficulty in multimodal feature analysis is the dimensionality of the data from
different modalities. For example, video features are much more complex with higher
dimensions than audio, and thus techniques for dimensionality reduction are useful. In
the literature, there are two main fusion strategies that can be used to tackle this problem
[266, 267].

FEarly fusion, or fusion at the feature level, combines features of different modalities,
usually by reducing the dimensionality in each modality and creating a new feature vector
that represents an individual. Canonical correlation analysis (CCA) [228] was widely
studied in the literature as an effective way for fusing data at the feature level [268,
269, 270]. The advantage of early fusion is that it yields good recognition results when
the different modalities are highly correlated, since only one learning phase is required.
On the other hand, the difficulty of combining the different modalities may lead to the
domination of one modality over the others. A novel method for fusing verbal (i.e., textual
information) and non-verbal (i.e., visual signals) cues was proposed by Evangelopoulos et
al. [271]. Each modality is separately analyzed and saliency scores are used for linear and
non-linear fusing schemes.

The second category of methods, which is known as late fusion or fusion at the decision
level, combines several probabilistic models to learn the parameters of each modality
separately. Then all scores are combined together in a supervised framework yielding
a final decision score [272, 273]. The individual strength of each modality may lead to
better recognition results. However, this strategy is time-consuming and requires more
complex supervised learning schemes, which may cause a potential loss of inter-modality
correlation. A comparison of early versus late fusion methods for video analysis was
reported by Snoek et al. [274].

Recently, a third approach for fusing multimodal data has come to the foreground

31



[262]. This approach, called slow fusion, is a combination of the previous approaches and
can be seen as a hierarchical fusion technique that slowly fuses data by successively passing
information through early and late fusion levels. Although this approach seems to have
the advantages of both early and late fusion techniques, it also has a large computational
burden due to the different levels of information processing.

2.5 Discussion

Human activity understanding has become one of the most active research topics in com-
puter vision. The type and amount of data that each approach uses depends on the
ability of the underlying algorithm to deal with heterogeneous and/or large scale data.
The development of a fully automated human activity recognition system is a non-trivial
task due to cluttered backgrounds, complex camera motion, large intra-class variations,
and data acquisition issues. Tables 2.2 and 2.3 provide a comprehensive comparison of
unimodal and multimodal methods, respectively, and list the benefits and limitations of
each family of methods.

The first step in developing a human activity recognition system is to acquire an ad-
equate human activity database. This database may be used for training and testing
purposes. A complete survey, which covers important aspects of human activity recog-
nition datasets, was introduced by Chaquet et al. [275]. An appropriate human activity
dataset is required for the development of a human activity recognition system. This
dataset should be sufficiently rich in a variety of human actions. Moreover, the creation
of such a dataset should correspond to real world scenarios. The quality of the input
media that forms the dataset is one of the most important things one should take into ac-
count. These input media can be static images or video sequences, colored or gray-scaled.
An ideal human activity dataset should address the following issues: (i) the input media
should include either still images and/or video sequences, (ii) the amount of data should
be sufficient, (iii) input media quality (resolution, grayscale or color), (iv) large number
of subjects performing an action, (v) large number of action classes, (vi) changes in illu-
minations, (vii) large intra-class variations (i.e., variations in subjects’ poses), (viii) photo
shooting under partial occlusion of human structure, and (ix) complex backgrounds.

Although there exists a plethora of benchmark activity recognition datasets in the
literature, we have focused on the most widely used ones with respect to the database
size, resolution, and usability. Table 2.4 summarizes human activity recognition datasets,
categorizing them into seven different categories. All datasets are grouped by their asso-
ciated category and by chronological order for each group. We also present the number
of classes, actors, and video clips along with their frame resolution.

Many of the existing datasets for human activity recognition were recorded in con-
trolled environments, with participant actors performing specific actions. Furthermore,
several datasets are not generic, but rather cover a specific set of activities, such as sports
or simple actions, which are usually performed by one actor. However, these limitations
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Table 2.2: Comparison of unimodal methods.

Type of method Pros Cons
Space-time - Localization of actions - Sensitivity to noise and occlusions
- 3D body representation - Recognizing complex activities may be
tricky
- Good representation of low-level features - Feature sparsity leads to low repeatability
- Detailed analysis of human movements - Gap between low-level features and high-
level events
- Unsupervised learning - Human body detection is often a prerequi-
site
Stochastic - Complex activity recognition - Learning and inference may be difficult
- Modeling of human interactions - Learning a large number of parameters
- Recognition from very short clips - Label bias problem

- Partial occlusion, background clutter and - Prone to overfitting
camera motion handling

- High generalization ability - Approximate solutions
- Non-periodic activity recognition - Large number of training data required
Rule-based - High-level representation of human actions - Decomposition of complex activities into
smaller tasks
- Sequential activity recognition - Only atomic actions are recognized
- Context-free grammar classification - Rule/attribute generation is difficult
- Knowledge transfer between actions - Problems with long video sequences

- Learning of multiple tasks simultaneously

Shape-based - 2D and 3D body representation - Large number of degrees of freedom
- Independent modeling of human body parts - Skeleton tracking inaccuracies
- Recognition from still images - View-point and self occlusions dependent
- Upper body action recognition - Sensitivity to illumination changes and
human clothing
- Existence of low cost devices for pose esti- - Difficulties in mapping image feature space
mation to pose space

constitute an unrealistic scenario that does not cover real-world situations and does not
address the specifications for an ideal human activity dataset as presented earlier. Nev-
ertheless, several activity recognition datasets that take into account these requirements
have been proposed.

Several existing datasets have reached their expected life cycle (i.e., methods on Weiz-
mann and KTH datasets achieved 100% recognition rate). These datasets were cap-
tured in controlled environments and the performed actions were obtained from a frontal
view camera. The non-complex backgrounds and the non-intra-class variations in human
movements make these datasets non-applicable for real world applications. However,
these datasets still remain popular for human activity classification, as they provide a
good evaluation criterion for many new methods. A significant problem in constructing
a proper human activity recognition dataset is the annotation of each action, which is
generally performed manually by the user, making the task biased.

Understanding human activities is a part of interpersonal relationships. Humans have
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Table 2.3: Comparison of multimodal methods.

Type of method Pros Cons
Affective - Association of human emotions and actions - Affective data annotation is difficult
- Better understanding of human activities - Problems in handling continuous actions
- Complex activity recognition - Dimensionality of the different modalities
- Incorporation of well known classification - Gap between low-level features and high-
models level concepts
Behavioral - Personalized action recognition - Emotional attribute specification is difficult
- Improve human-computer interaction - Mainly frontal view emotion recognition
- Complex activity recognition - Complex classification models
- Recognizes human interactions - Proper feature selection is difficult
- Psychological attributes improve recogni- - Visual feature descriptors cannot capture
tion human emotions

- Dimensionality of the different modalities

Social networking - Recognizes social human interactions - Limited by the number of interacting per-
sons
- Easy access to data though social platforms - Dimensionality of the different modalities
- Reliable recognition of human-to-human or - Decomposition of complex actions into
human-to-object interactions smaller tasks is necessary
- Abnormal activity recognition - Difficulties in crowded scene modeling due
to occlusions

the ability to understand another human’s actions by interpreting stimuli from the sur-
roundings. On the other hand, machines need a learning phase to be able to perform this
operation. Thus, some basic questions arise about a human activity classification system:

1. How to determine whether a human activity classification system provides the best
performance?

2. In which cases is the system prone to errors when classifying a human activity?

3. In what level can the system reach the human ability of recognizing a human activ-
ity?

4. Are the success rates of the system adequate for inferring safe conclusions?

It is necessary for the system to be fully automated. To achieve this, all stages of
human activity modeling and analysis are to be performed automatically, namely: (i)
human activity detection and localization, where the challenge is to detect and localize
a human activity in the scene. Background subtraction [12] and human tracking [14] are
usually used as part of this process; (ii) Human activity modeling (e.g., feature extraction
[97]) is the step of extracting the necessary information that will help in the recognition
step; and (iii) human activity classification is the step where a probe video sequence is
classified in one of the classes of the activities that have been defined before building the

system.
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Table 2.4: Human activity recognition datasets.

Dataset name and category Year # Classes # Actors # Videos Resolution

Single action recognition

KTH [2) 2004 6 25 2,391 160 x 120

Weizman [1] 2005 10 9 90 180 x 144

UCF Sports [3] 2008 9 200 720 x 480

MuHAVi [276] 2010 17 14 720 x 576

UCF50 [277] 2013 50 6,676

UCF101 [278] 2012 101 13,320 320 x 240

Movie

UCF YouTube [4] 2009 11 >1.100 720 x 480

Hollywood2 [249] 2009 12 3,669

HMDB51 [279] 2011 51 6,840 320 x 240

TVHI [6] 2012 4 20 300 320 x 240

Surveillance

PETS 2004 (CAVIAR) [280] 2004 6 28 384 x 288

PETS 2007 [281] 2007 3 7 768 x 576

VIRAT [282] 2011 23 17 1920 x 1080
Pose

TUM Kitchen [283] 2009 10 4 20 324 x 288

Two-person interaction [7] 2012 8 7 ~ 300 640 x 480

MSRC-12 Kinect gesture [284] 2012 12 30 594

J-HMDB [285] 2013 21 1 928 240 x 320

UPCV action [204] 2014 10 20 ~ 200

Daily living

URADL [104] 2009 17 S 150 1280 x 720
ADL [17] 2012 18 20 ~ 10 hours 1280 x 960
MPII Cooking [286] 2012 65 12 44 1624 x 1224
Breakfast [145] 2014 10 52 &~ 77 hours 320 x 240

Social networking

CCV [287] 2001 20 9,317

FPSI [242] 2012 6 8 ~ 42 hours 1280 x 720
Broadcast field hockey [248] 2012 11 58

USAA [8] 2012 8 ~ 200

Sports-1M [262] 2014 487 IM

ActivityNet [288] 2015 203 27,801 1280 x 720
WWW Crowd [260] 2015 94 10,000 640 x 360

Behavior

BEHAVE [289] 2007 8 321 640 x 480

Canal9 [290] 2009 2 190 ~42 hours 720 x 576

USC Creative IT [291] 2010 50 16 100

Parliament [5] 2014 3 20 228 320 x 240

In addition, the system should work regardless of any external factors. This means that
the system should perform robustly despite changes in lighting, pose variations or partially
occluded human bodies, and background clutter. Also, the number as well as the type of
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human activity classes to be recognized is an important factor that plays a crucial role in
the robustness of the system. The requirements of an ideal human activity classification
system should cover several topics, including automatic human activity classification and
localization, lighting and pose variations (e.g., multi-view recognition), partially occluded
human bodies, and background clutter. Also, all possible activities should be detected
during the recognition process, the recognition accuracy should be independent from the
number of activity classes, and the activity identification process should be performed in
real time and provide a high success rate and low false positive rate.
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CHAPTER 3

MATCHING MIXTURES OF
TRAJECTORIES FOR HUMAN ACTION
RECOGNITION

3.1 Introduction
3.2 Action Representation and Recognition
3.3 Experimental Results

3.4 Conclusion

3.1 Introduction

In this chapter, we address the problem of human action recognition by representing an
action with a set of clustered motion curves. Motion curves are generated by optical flow
features which are then clustered using a different Gaussian mixture [25] for each distinct
action. The optical flow curves of a probe sequence are also clustered using a Gaussian
mixture model (GMM) and they are matched to the learned curves using a similarity
function [292] relying on the longest common subsequence (LCSS) between curves and
the canonical time warping (CTW) [293]. Linear [25] and non linear [294] dimensionality
reduction methods may also be employed in order to remove outliers from the motion
curves and reduce their lengths. The motion curve of a new probe video is projected onto
its own subspace by a projection matrix specified by that video, and then the action label
of the closest projection is selected according to the learned feature vectors as the identity
of the probe sequence. The LCSS is robust to noise and provides an intuitive notion
of similarity between curves. Since different actors perform the same action in different
manners and at different speeds, an advantage of the LCSS similarity is that it can handle
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with motion curves of varied lengths. On the other hand, CTW, which is based on the
dynamic time warping [169], allows the spatio-temporal alignment between two human
motion sequences. A preliminary version of this work was presented in [48]. One of the
main contributions of this work, is that the training sequences do not need to have the
same length. When a new probe sequence comes, it is matched against all the training
sequences using the LCSS similarity measure. This measure provides a similarity between
motion curves without enforcing one-to-one matching. An optimal matching is performed
using dynamic programming, which detects similar pairs of curve segments [292].

However, training an action recognition system with only the knowledge of the motion
of the current subject it is on its own a challenging task. The main problem is how we
can ensure the continuity of the curves along time as an action occurs uniformly or non-
uniformly within a video sequence. Unlike other approaches [62, 63], which use snippets
of motion trajectories, our approach uses the full length of motion curves by tracking the
optical flow features. Another question concerns the optimal model that one should adopt
for recognizing human actions with high accuracy. This is accomplished by a statistical
measure based on the data likelihood. The different lengths of the video sequences and
therefore the respective lengths of the motion curves is another problem that is addressed.
The large variance between benchmark datasets shows how the algorithm may be gener-
alized. All these problems are discussed here and proper solutions are proposed. To this
end, we have conducted experiments on several datasets [2, 3, 4] that would help us to
understand how human activity recognition works.

Concatenating of optical flow features along time allows us to collect time series that
preserve their continuity along time. It is true that correspondence is missing. However,
this is the main assumption in many works [65, 66, 69]. If data association were used
the resulting feature curves would have short duration and would be incomplete, as the
features disappear and reappear due to occlusion, illumination, viewpoint changes and
noise. In that case, a combination of sparse approach of clustering curves with variant
lengths and tracking approaches should be used [295, 296]. This is not the central idea in
this chapter, as the nature of the feature curves drastically changes.

3.2 Action Representation and Recognition

Our goal is to analyze and interpret different classes of actions to build a model for human
activity categorization. Given a collection of figure-centric sequences, we represent motion
templates using optical flow [297] at each frame. Assuming that a bounding box can be
automatically obtained from the image data, we define a rectangle region of interest (ROT)
around the human. A brief overview of our approach is depicted in Figure 3.1. In the
training mode, we assume that the video sequences contain only one actor performing
only one action per frame. However, in the recognition mode, we allow more than one
action per video frame. The optical flow vectors as well as the motion descriptors [65] for
each sequence are computed. These motion descriptors are collected together to construct
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Figure 3.1: Overview of our approach.

motion curves, which are clustered using a mixture model to describe a unique action.
Then, the motion curves are clustered and each action is modeled by a set of clustered
motion curves. Action recognition is performed by matching the clusters of motion curves

of the probe sequence and the clustered curves in each training sequence.

3.2.1 Motion Representation

The proposed approach employs optical flow features [297]. These motion descriptors are
commonly used in many recognition problems and they are shown to be quite reliable
despite the existence of noisy features. Within a figure-centric scene, any human motion
may be decomposed to the motion of different body parts (e.g., head and limbs). We can
easily localize the motion by computing the optical flow vectors for the regions around
the human torso.

Following the work of Efros et al. [65], we compute the motion descriptor for the ROI
as a four-dimensional vector F; = (F;,FQ,F;Q,FJZ,) € R*, where i = 1,..., N, with N
being the number of pixels in the ROI. Also, the matrix F refers to the blurred, motion
compensated optical flow. We compute the optical flow F, which has two components,
the horizontal F, and the vertical F,,, at each pixel. It is worth noting that the horizontal
and vertical components of the optical flow F, and F, are half-wave rectified into four
non-negative channels F,",F, ,F,7 F", so that F, = Ff — F, and F, = [,/ — F,. In

the general case, optical flow is suffering from noisy measurements and analyzing data
under these circumstances will lead to unstable results. To handle any motion artifacts

39



due to camera movements, each half-wave motion compensated flow is blurred with a
Gaussian kernel. In this way, the substantive motion information is preserved, while
minor variations are discarded. Thus, any incorrectly computed flows are removed. Since
all curves are considered normally distributed there is an intrinsic smoothing of the optical
flow curves. Moreover, at a preprocessing step, we discard flows whose amplitude is over
20% of the standard deviation of the mean amplitude of all curves for each video.

3.2.2 Extraction of Motion Curves

A human action is represented by a set of primitive motion curves which are constructed
directly from the optical low motion descriptors. The main idea is to extract the salient
features, which describe a relative motion from each frame and associate them with the
corresponding feature in the next frame.

Consider T to be the number of image frames and C ={¢;(t)},t € [0,7], is a set of
motion curves for the set of pixels ¢ = 1, ..., NV of the ROI. Each motion curve is described
as a set of points corresponding to the optical flow vector extracted in the ROI. Specifically,
we describe the motion at each pixel by the optical flow vector F; = (F;, F_, F;ir, ij) A
set of motion curves for a specific action is depicted in Figure 3.1. Given the set of motion
descriptors for all frames, we construct the motion curves by following their optical flow
components in consecutive frames. If there is no pixel displacement we consider a zero
optical flow vector displacement for this pixel.

The set of motion curves describes completely the motion in the ROI. Once the mo-
tion curves are created, pixels and therefore curves that belong to the background are
eliminated. We assume that the motion are normally distributed, thus, we keep flows
whose values are inside 6 standard deviations of the amplitude distributions. In order
to establish a correspondence between the motion curves and the actual motion, we per-
form clustering of the motion curves using a Gaussian mixture model. We estimate the
characteristic motion which is represented by the mean trajectory of each cluster.

3.2.3 Motion Curves Clustering

A motion curve is considered to be a 2D time signal:
Cji(t) = (Fﬂfji (t)v iji (t)) , tE [O7T] ’ (31)

where the index ¢ = 1,..., N represents the i pixel, for the 7 video sequence in the
training set. To efficiently learn human action categories, each action is represented by
a GMM by clustering the motion curves in every sequence of the training set. The p*®
action (p = 1,..., A), in the 5™ video sequence (j = 1,...,S,), is modeled by a set of K
mean curves learned by a GMM. The likelihood of the i*" curve ¢f;(t) of the p™ action in
the j*" video is given by:

KP?
J
k=1
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K? K?
where 77 = {7 },2, are the mixing coefficients, u? = {u,},2, is the set of the mean
K?
curves and X} = {¥% },7, is the set of covariance matrices. The covariance matrix in
equation (3.2) is a diagonal ¥, = dz’ag(af-ﬁb . ,ajz-ﬁﬂT). Therefore, the log-likelihood of

the p'" action in the 7' video can be written as:

NP K?
L(c}) = H In Z Wfk/\/'(cgi(t); u?k, Z?k), tel0,7], (3.3)
=1 k=1

where N7 is the number of motion curves in the training set describing the p'™ action in
the ** video.

The GMM is trained using the Expectation-Maximization (EM) algorithm [25], which
provides a solution to the problem of estimating the model’s parameters. The initialization
of the EM algorithm is performed by the K-means algorithm. We have examined several
configurations for the initialization of K-means and we decided to employ K-means with 50
different random initializations which were consistent and had no significant impact on the
final classification. However, the number of mixture components should be determined.
To select the number of the Gaussians K f , for the j*" training video sequence, representing
the p'™® action, the Bayesian Information criterion (BIC) [25] is used:

BIC(&) = L(X(t)) — ;MNf, te 0,1, (3.4)

where M is the number of parameters of the GMM to be inferred. Thus, when EM
converges the cluster labels of the motion curves are obtained. This is schematically
depicted in Figure 3.1, where a set of motion curves, representing a certain action (e.g., p),
in a video sequence (e.g., labeled by j) is clustered by a GMM into K7 = 2 curves for action
representation. Note that a given action is generally represented by a varying number
of mean curves as the BIC criterion may result in a different number of components in
different sequences.
Apart from the BIC criterion, there are other techniques for determining the appro-
priateness of a model such as the Akaike Information Criterion (AIC) [25].
AIC(c)) = L(i(t)) = M, t<[0,T], (3.5)

J

where M is the number of parameters of the GMM to be inferred. BIC is independent of
the prior, it can measure the efficiency of the parameterized model in terms of predicting
the data and it penalizes the complexity of the model, where complexity refers to the
number of parameters in the model. It is also approximately equal to the minimum
description length criterion [25] but with negative sign, it can be used to choose the
number of clusters according to the intrinsic complexity present in a particular dataset
and it is closely related to other penalized likelihood criteria such as the AIC. BIC tends to
select highly parsimonious models, while AIC tends to include more parameters [298, 299].
Complexity measures such as BIC and AIC have the virtue of being easy to evaluate, but

can also give misleading results.
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3.2.4 Matching of Motion Curves

Once a new probe video is presented, where we must recognize the action depicted, the
optical flow is computed, motion curves are created and clustered, and they are compared
with the learned mean curves of the training set. Recall that human actions are not
uniform sequences in time, since different individuals perform the same action in different
manner and at different speeds. This means that motion curves have varied lengths. An
optimal matching may be performed using dynamic programming which detects similar
pairs of curve segments. The longest common subsequence (LCSS) [292] is robust to noise
and provides a similarity measure between motion curves since not all points need to be
matched.

Let u(t), t € [0,T] and v(7), 7 € [0,T] be two curves of different lengths. Then, we
define the affinity between the two curves as:

a (t).vi) = FE AT, 36)

where the LCSS (u(t),v(7)) (Eq. (3.7)) indicates the quality of the matching between
the curves u(t) and v(7) and measures the number of the matching points between two
curves of different lengths.

LCSS (u(t), v(7)) =
0, if T=0 or T =0,
1+ LCSS (,u(t)Tt—l, V(T)T‘;_l if |p(t) —v(r) <e and |T—T'| <94, (3.7)
max {LC’SS (,u(t)Ti_l, V(T)T; , LCSS (u(t)Tt, V(T)T;_l)} , otherwise.

Note that the LCSS is a modification of the edit distance [169] and its value is computed
within a constant time window ¢ and a constant amplitude €, that control the matching
thresholds. The terms ()™ and V(T)T; denote the number of curve points up to time ¢
and 7, accordingly. The idea is to match segments of curves by performing time stretching
so that segments that lie close to each other (their temporal coordinates are within ) can
be matched if their amplitudes differ at most by . A characteristic example of how two
motion curves are matched is depicted in Figure 3.2.

When a probe video sequence is presented, its motion curves z = {2}V, are clustered
using GMMs of various numbers of components using the EM algorithm. The BIC cri-
terion is employed to determine the optimal value of the number of Gaussians K, which
represent the action in the probe sequence. Thus, we have a set of K mean curves vy,
k=1,..., K modeling the probe action, whose likelihood is given by:

N K
L(z) = H In Z TN (255 Vi, k) (3.8)
=1 k=1

where Y, is the covariance matrix for the k" component.
Recognition of the action present in the probe video sequence is performed by assigning
the probe action to the action of the labeled sequence which is most similar. As both the
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Figure 3.2: Depiction of the LCSS matching between two motions considering that they
should be within § = 64 time steps in the horizontal axis and their amplitudes should
differ at most by € = 0.086.

probe sequence and the j* labeled video sequence of the p'" action in the training set are
represented by a number of mean curves v = {v;}/<, and 4§ = {,ujk} w21 respectively, the
overall distance between them is computed by:
K K
:u]? Z Zﬂjkﬂ—f {1 - (ujk(t) ( ))} ) (39)
k=1¢=1
where 7 s and mp are the GMM mixing proportions for the labeled and probe sequence,
respectively, that is >, 7Tjk =1 and )} ,m = 1. The probe sequence v is categorized with

respect to its minimum distance from an already learned action:

j°,p] = arg min (2, v) (3.10)
J:p

3.2.5 Canonical Time Warping

The canonical time warping (CTW) [293] solves the problem of spatio-temporal alignment
of human motion between two time series. Based on dynamic time warping, the algorithm
in [169] finds the temporal alignment of two subjects maximizing the spatial correlation
between them. Given two time series C; = [c1(0),...,c1(T)] and Cy = [c2(0), ..., co(T")]
canonical time warping minimizes the following energy function:

Jth(WC17WC27 VCl? VCQ) = ”VCT161WCTl - VE:QC2-W2; H% ) (311)

where W, and Wey are binary selection matrices that need to be inferred to align C,
and Cq, and V¢,, V¢, parameterize the spatial warping by projecting sequences into the

same coordinate system.
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3.2.6 Dimensionality Reduction

Dimensionality reduction methods [294] may be employed in order to reduce the dimension
of the motion curves and to enforce them to be of equal length. In the experiments,
Principal Complements Analysis (PCA) [300] was chosen as a simple linear method but
any other non-linear technique [294] could also be applied. When PCA is employed the
time ordering is suppressed and curves are then transformed into feature vectors. In
that case, the Bhattacharyya distance [169] is (among others) an appropriate matching
measure.

Let vy and vy, be two feature vectors following Gaussian distributions, with means i,
and po and covariance matrices ¥ and Yo, respectively. The Bhattacharyya distance has

the form :

1 DDA 1 B
dp(vh;,va) = — (1 — p2) " () (1 — p2) + = In (2 . (3.12)
’ 8 2 20\ 2121

To perform the match, one can project a probe video feature vector vy = {vy;}X | onto
its own subspace by a projection matrix specified to that video and assume the label that
lies closer than all the training feature vectors vy; = {vfjk}szl. For Gaussian mixture
models, we define the Bhattacharyya distance as:

dGMM Ulj,’Ug ZZ k,?ngB vljk,v%) (313)
k=1/¢=1

where 7r§’,g and 7, are the GMM mixing proportions for the labeled and probe sequence,
respectively. This is common in GMM modeling [301]. The probe feature vector v, is
categorized with respect to the minimum distance from an already learned action:

%, p*] = arg min daara (vi;, v2) - (3.14)

7P

The overall approach for learning an action and categorizing a probe are summarized
in Algorithm 1 and Algorithm 2, respectively. The steps inside the parenthesis indicate
the extra steps when PCA is employed.

3.3 Experimental Results

In what follows, we refer to our mixtures of curves action recognition method by the
acronym TMAR. We evaluated the proposed method on action recognition by conducting

a set of experiments over publicly available datasets.

3.3.1 Evaluation over the Weizmann Dataset

First, we applied the algorithm to the Weizmann human action dataset [1]. The Weiz-
mann dataset is a collection of 90 low-resolution videos, which consists of 10 different
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Algorithm 1 Action learning
Input: Training video sequences.

Output: GMMs summarizing each action in each sequence.

1: for each action do

2 for each video sequence representing the action do

3 Compute the optical flow at each pixel and generate half-wave rectified features.

4: Construct the motion curves by concatenating the optical flow features.

5 (Perform dimensionality reduction of the motion curves.)

6 Cluster the motion curves by training GMMs with varying number of compo-
nents and select the model maximizing the BIC criterion.

7: end for

8: end for

Algorithm 2 Action categorization
Input: A probe video sequence to be categorized and the GMMs summarizing the ac-

tions in the training sequences.
Output: Action label.

1: Compute the optical flow at each pixel of the probe sequence and generate half-wave
rectified features.

2: Construct the motion curves by concatenating the optical flow features.

3: (Project the motion curves onto their own subspace by a projection matrix.)

4: Cluster the motion curves by training GMMs with varying number of components
and select the model maximizing the BIC criterion.

5. Compute the distances between the GMM of the probe sequence and each GMM of
the learnt actions.

6: Classify the probe sequence using a nearest neighbor classifier.

actions (i.e., run, walk, skip, jumping jack, jump forward, jump in place, gallop sideways,
wave with two hands, wave with one hand, and bend), performed by nine different peo-
ple. The videos were acquired with a static camera and contain uncluttered background.
Nevertheless, the dataset provides a good evaluation context for testing the performance
of the proposed algorithm, due to the periodicity of the actions. Figure 3.3 illustrates
some sample frames from the Weizmann dataset.

To test the proposed method on action recognition we adopted the leave-one-out
scheme. We learned the model parameters from the videos of eight subjects and tested
the recognition results on the remaining video sequences. The procedure was repeated
for all sets of video sequences and the final result is the average of the individual results.
The optimal number of mixture components K? for the J™ video sequence, j =1,...,5,
of the p' action p = 1, ..., A is found by employing the BIC criterion. The value of BIC
was computed for K f = 1 to the square root of the maximum number of motion curves.

As shown in Table 3.1, the average correct classification of the algorithm on this
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Figure 3.3: Sample frames from video sequences of the Weizmann dataset [1].

Table 3.1: Recognition accuracy over the Weizmann dataset.

Method Year Accuracy (%)
Blank et al. [1] 2005 100.0
Chaudhry et al. [72] 2009 95.7
Fathi and Mori [66] 2008 100.0
Jhuang et al. [67] 2007 98.8
Lin et al. [73] 2009 100.0
Niebles et al. [68] 2008 90.0
Seo and Milanfar [114] 2011 97.5
TMAR(LCSS-BIC) 2013 98.8
TMAR(CTW-BIC) 2013 92.2
TMAR(PCA-BIC) 2013 100.0

dataset is 98.8%, while it reaches 100% when the proposed method with PCA is utilized.
However, the average correct classification falls to 92.2%, when the CTW is utilized. All
motion curves are reduced to a length that explains the 90% of the eigenvalue sum, which
results in a reduced curve length of 50 time instances with respect to the original 3.000
time instances. Note that better results are achieved with respect to four out of seven
state-of-the-art methods for the standard method, whereas for the TMAR(PCA) the
highest performance on this dataset is achieved. The proposed method provided only one
erroneous categorization as one jump-in-place (pjump) action was incorrectly categorized
as run. It appears that in this case the number of Gaussian components Kf computed
by the BIC criterion was not optimal. Figure 3.4 depicts the confusion matrices for the
TMAR(LCSS), TMAR(CTW) and TMAR(PCA) approaches.

More specifically, for the proposed method, when the LCSS metric is employed, for
K? =1, K] = 2 and K} = 3 recognition rates of 100% are attained and performance
begins to decrease for K7 > 4. This is not surprising since the majority of the mixture
components provided by the BIC criterion is equal to two. In the case where CTW
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Figure 3.4: Confusion matrices of the classification results for the Weizmann dataset for
(a) the proposed method denoted by TMAR(LCSS), (b) the the proposed method using
the CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA,
denoted by TMAR(PCA), for the estimation of the number of components using the BIC
criterion.

alignment is employed, the average recognition accuracy begins to fall for K7 > 2. When
PCA is employed the recognition is perfect and begins to degrease for K7 > 6. In Figure
3.5, the recognition accuracy for this dataset with respect to the number of Gaussian
components is depicted.

According to Tables 3.2 and 3.3, TMAR(LCSS-BIC) rejects the null hypothesis for
five out of the seven cases. TMAR(CTW-BIC) rejects the null hypothesis for three out of
seven cases but fails to reject the null hypothesis for the rest. In contrary to the previous
approaches, TMAR(PCA-BIC) rejects the null hypothesis in all cases and is considered
to be statistical significant.

3.3.2 Evaluation over the KTH Dataset

We also applied the proposed algorithm to the KTH dataset [2]. This dataset consists of
2.391 sequences and contains six types of human actions such as walking, jogging, running,
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Figure 3.5: The recognition accuracy with respect to the number of Gaussian components
for the Weizmann dataset.

Table 3.2: p-values for measuring the statistical significance of the proposed methods for
the Weizmann dataset. The null hypothesis appears in the first column of the table.

Null hypothesis | TMAR(LCSS-BIC) TMAR(CTW-BIC) TMAR(PCA-BIC)
Blank et al. [1] 0.0283 0.0955 0.0097
Chaudhry et al. [72] 0.0097 0.0204 0.0254
Fathi and Mori [66] 0.0283 0.0955 0.0387
Jhuang et al. [67] 0.0723 0.0591 0.0455
Lin et al. [73] 0.0283 0.0955 0.0438
Niebles et al. [68] 0.0001 0.0450 0.0415
Seo and Milanfar [114] 0.1246 0.0393 0.0294

Table 3.3: Statistical measurements of the recognition results for each of the proposed
approaches for the Weizmann dataset.
‘ mean median std min max

TMAR(LCSS-BIC) 98.9 100.0 3.5 888 100.0
TMAR(CTW-BIC) 92.2 100.0  18.2 444 100.0
TMAR(PCA-BIC) | 100.0 100.0 0.0 100.0 100.0

boxing, hand waving, and hand clapping. These actions are repeatedly performed by
25 different people in four different environments: outdoors (s1), outdoors with scale
variation (s2), outdoors with different clothes (s3), and indoors (s4). The video sequences
were acquired using a static camera and include a uniform background. The average
length of the video sequences is four seconds, while they were downsampled to a spatial
resolution of 160 x 120 pixels. Figure 3.6 depicts sample snapshots from the KTH dataset.
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Figure 3.6: Sample frames from video sequences of the KTH dataset [2].

Table 3.4: Recognition results over the KTH dataset.

Method Year Accuracy (%)
Schuldt et al. [2] 2004 71.7
Jhuang et al. [67] 2007 90.5
Fathi and Mori [66] 2008 90.5
Niebles et al. [68] 2008 83.3
Lin et al. [73] 2009 95.8
Seo and Milanfar [114] 2011 95.1
Wang et al. [69] 2011 94.2
Wu et al. [98] 2011 94.5
Le et al. [95] 2011 93.9
Yan and Luo [78] 2012 93.9
Sadanand and Corso [96] 2012 98.2
TMAR(LCSS-BIC) 2013 96.7
TMAR(CTW-BIC) 2013 93.8
TMAR(PCA-BIC) 2013 98.3

We tested the action recognition performance of the proposed method by using a leave-
one-out cross validation approach. Accordingly, the model from the videos of 24 subjects
was learned while the algorithm was tested on the remaining subjects and averaged the
recognition results. The confusion matrices over the KTH dataset for this leave-one-out
approach are shown in Figure 3.7. A recognition rate of 96.7% was achieved when only
the BIC criterion was employed in conjunction with the LCSS metric, 93.8% when the
CTW alignment is employed, and 98.3% using PCA.

In addition, a comparison of the proposed method with other state-of-the-art methods
is reported in Table 3.4. Note that the TMAR approach provides the more accurate
recognition rates. All motion curves are reduced to a length that explains the 90% of
the eigenvalue sum, which results in a reduced feature vector length of 50 instances with
respect to the original 3,000 time instances.

In order to examine the behavior and the consistency of the method to the BIC crite-
rion, we have also applied the algorithm without using BIC but having a predetermined
number of Gaussian components for both the training and the test steps. Therefore, we
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Figure 3.7: Confusion matrices of the classification results for the KTH dataset for (a)
the proposed method denoted by TMAR(LCSS), (b) the the proposed method using the
CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA,
denoted by TMAR(PCA), for the estimation of the number of components using the BIC
criterion.

fixed the number of Gaussians K f to values varying from one to the square root of the
maximum number of the motion curves and executed the algorithm. The TMAR(LCSS)
approach attains high action classification accuracy as the BIC criterion determines the
optimal value of Gaussians K f for this dataset. Figure 3.8 depicts the accuracy rate for the
TMAR(LCSS), TMAR(CTW) and TMAR(PCA) approaches with respect to the number
of mixture components. As the number of curves representing each action is relatively
small (30-60 curves per action), a large number of Gaussian components may lead to
model overfitting. As the number of Gaussians is K > 3 for the TMAR(LCSS), K7 > 5
for the TMAR(CTW) and K} > 4 for the TMAR(PCA) the accuracy rate drastically
falls. This fact indicates the dependency of the recognition accuracy over the number of
Gaussian components as an action is represented by few motion curves.

In order to provide a statistical evidence of the recognition accuracy we present some
statistical indices (Tables 3.5 and 3.6). The p-value is the probability of obtaining a

statistical test at least as extreme as the one that was actually observed, assuming that the
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Figure 3.8: The recognition accuracy with respect to the number of Gaussian components
for the KTH dataset.

Table 3.5: p-values for measuring the statistical significance of the proposed methods for
the KTH dataset.

Method TMAR(LCSS-BIC) TMAR(CTW-BIC) TMAR(PCA-BIC)
Schuldt et al. [2] 46142 x 1077 0.0002 3.9887 x 10~%
Jhuang et al. [67] 4.2002 x 1074 0.1368 1.3577 x 107°
Fathi and Mori [66] 4.2002 x 1074 0.1368 1.3577 x 107°
Niebles et al. [68] 1.0195 x 10~ 0.0056 6.3654 x 107
Lin et al. [73] 0.1847 0.7551 0.0015
Seo and Milanfar [114] 0.0660 0.6757 5.9672 x 1074
Wang et al. [69] 0.0181 0.5563 2.2285 x 104
Wu et al. [98] 0.0274 0.5977 3.0348 x 1074
Le et al. [95] 0.0121 0.5141 1.6643 x 10~
Yan and Luo [78] 0.0121 0.5141 1.6643 x 10~
Sadanand and Corso [96] 0.9340 0.9189 0.9389

null hypothesis is true. A small p-value (p < 0.05) indicates strong evidence against the
null hypothesis, so we reject the null hypothesis. A large p-value (p > 0.05) indicates weak
evidence against the null hypothesis, so we fail to reject the null hypothesis. Specifically,
the null hypothesis was set to Hy: the recognition results of the state-of-the-art methods
are better than the proposed and the alternative hypothesis is defined as H,: the proposed
method outperforms the state-of-the-art methods. In Table 3.5 and Table 3.6, statistical
measurements for the KTH dataset are shown. TMAR(LCSS-BIC) and TMAR(PCA-
BIC) reject the null hypothesis in the majority of the cases while, TMAR(CTW-BIC)
rejects the null hypothesis in only two cases. Thus, the statistical significance meaning
holds for TMAR(LCSS-BIC) and TMAR(PCA-BIC).
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Table 3.6: Statistical measurements of the recognition results for each of the proposed
approaches for the KTH dataset. All values are expressed in percentages.

mean median std min max

TMAR(LCSS-BIC)  96.6 96.8 21 927 989
TMAR(CTW-BIC)  93.8 95.6 6.6 84.7 100.0
TMAR(PCA-BIC)  98.9 99.5 1.4 96.6 100.0

3.3.3 Evaluation over the UCF Sports Dataset

We have also applied our algorithm to the UCF Sports dataset [3]. This dataset consists
of nine main actions such as diving, golf-swinging, kicking, lifting, horse riding, running,
skating, swinging and walking. The dataset contains approximately 200 video sequences
at a resolution of 720 x 480 pixels, which are captured in natural environment with a wide
range of scenes and viewpoints. Figure 3.9 depicts some sample frames from the UCF
Sports dataset.

Figure 3.9: Sample frames from video sequences of the UCF Sports dataset [3].

To test the proposed method on action recognition we also adopted the leave-one-
out scheme. In Figure 3.10 are depicted the confusion matrices for the TMAR(LCSS),
TMAR(CTW) and the TMAR(PCA) approaches. TMAR(LCSS) achieves 94.6% recog-
nition accuracy with optimal number of components (BIC criterion) and 90.1% when the
CTW alignment is employed. We also achieve the highest recognition accuracy of 95.1%
when the proposed method uses PCA. In Figure 3.11, the dependency of the recognition
accuracy with respect to the number of the Gaussian components is shown. For all three
approaches as the number of components increases the recognition accuracy decreases,
which may occur due to model overfitting. In the case where K7 = 3 all three approaches
reach the highest peek of the graph. For Kf > 4 the recognition accuracy begins to
decrease.

Table 3.7, shows the comparison between our TMAR approach, the baseline method
using the BIC criterion in conjunction with the LCSS metric and the CTW alignment, the
proposed method with PCA and previous approaches on the UCF Sports dataset. As it
can be observed, the TMAR(PCA) approach preforms better than all the other methods,
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Figure 3.10: Confusion matrices of the classification results for the UCF Sports dataset for
(a) the proposed method denoted by TMAR(LCSS), (b) the the proposed method using
the CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA,
denoted by TMAR(PCA), for the estimation of the number of components using the BIC

criterion.

while TMAR(LCSS) performs better for seven out of eight of the other methods. On the
other hand, TMAR(CTW) has the less desirable performance as it outreaches four out of
eight of the other methods on the same dataset.

Statistical evidence for the UCF Sports dataset is shown in Tables 3.8 and 3.9.
TMAR(LCSS-BIC) and TMAR(PCA-BIC) appear to reject the null hypothesis for the
majority of the cases, in contrary to the TMAR(CTW-BIC) which reject the null hypoth-
esis only for the Rodriguez et al. [3] method. TMAR(LCSS-BIC) and TMAR(PCA-BIC)
seem to be statistical significant while TMAR(CTW-BIC) is not.

3.3.4 Evaluation over the UCF YouTube Dataset

Finally, we have put our algorithm to test with the UCF YouTube dataset [4]. The
UCF YouTube human action data set contains 11 action categories such as basketball
shooting, biking, diving, golf swinging, horse riding, soccer juggling, swinging, tennis
swinging, trampoline jumping, volleyball spiking, and walking with a dog. This data set
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Figure 3.11: The recognition accuracy with respect to the number of Gaussian components
for the UCF Sports dataset.

Table 3.7: Recognition results over the UCF Sport dataset.

Method Year Accuracy (%)
Rodriguez et al. [3] 2008 69.2
Kovaska and Grauman [115] 2010 87.3
Wang et al. [69] 2011 88.2
Wu et al. [98] 2011 91.3
Le et al. [95] 2011 86.5
Yan and Luo [7§] 2012 90.7
Sadanand and Corso [96] 2012 95.0
TMAR(LCSS-BIC) 2013 94.6
TMAR(CTW-BIC) 2013 90.1
TMAR(PCA-BIC) 2013 95.1

includes actions with large variation in camera motion, object appearance and pose and
scale. It also contains viewpoint and illumination changes, and spotty background. The
video sequences are grouped into 25 groups of at least four actions each for each category,
whereas the videos in the same group may share common characteristics such as similar
background or actor. Representative frames of this data set are shown in Figure 3.12.
To assess our method we have used the leave-one-out cross validation scheme. In Fig-
ure 3.13 the confusion matrices for the TMAR(LCSS), TMAR(CTW) and TMAR(PCA)
approaches are shown. We achieve a recognition rate of 91.7% when the LCSS metric is
employed and having estimated the Gaussian components using the BIC criterion. We
also achieve 91.3% when the CTW alignment is employed and 93.2% when using PCA. In
Table 3.10, comparisons with other state-of-the-art methods for this dataset are reported.
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Table 3.8: p-values for measuring the statistical significance of the proposed methods for
the UCF Sports dataset.

Method TMAR(LCSS-BIC) TMAR(CTW-BIC) TMAR(PCA-BIC)
Rodriguez et al. [3] 1.2614 x 1076 0.0052 3.9515 x 1076
Kovaska and Grauman [115] 0.0048 0.3336 0.0083

Wang et al. [69] 0.0090 0.3848 0.0142

Wu et al. [98] 0.0822 0.5735 0.0913

Le et al. [95] 0.0028 0.2909 0.0052

Yan and Luo [78] 0.0541 0.5369 0.0644
Sadanand and Corso [96] 0.5691 0.7714 0.4950

Table 3.9: Statistical measurements of the recognition results for each of the proposed
approaches for the UCF Sports dataset. All values are expressed in percentages.

mean median std min max

TMAR(LCSS-BIC) 946  100.0 6.5 85.1 100.0
TMAR(CTW-BIC) 90.1 1000 18.8 44.4 100.0
TMAR(PCA-BIC) 951 1000 7.7 81.4 100.0

Table 3.10: Recognition results over the UCF YouTube dataset.

Method Year Accuracy (%)
Liu et al. [4] 2009 71.2
Ikizler-Cinbis and Sclaroff [143] 2010 75.2
Le et al. [95] 2011 75.8
Wang et al. [132] 2011 84.2
TMAR(LCSS-BIC) 2013 91.7
TMAR(CTW-BIC) 2013 91.3
TMAR(PCA-BIC) 2013 93.2

As it can be seen, our algorithm achieves the highest recognition accuracy amongst all
the others.

The performance of the proposed method with respect to the number of the Gaussian
components is depicted in Figure 3.14. For TMAR(LCSS) the recognition accuracy begins
to decrease for K7 > 1 and exhibits the worst performance than the other two approaches.
The TMAR(CTW) approach decreases for K% > 2 while TMAR(PCA) reaches its peak
for Kf = 4 and then it begins to decrease. Note that the best approach tends to be
attained by TMAR(PCA), which reaches a recognition accuracy of 91%.
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Figure 3.12: Sample frames from video sequences of the UCF YouTube action dataset [4].

Table 3.11: p-values for measuring the statistical significance of the proposed methods for
the UCF YouTube dataset.

Method TMAR(LCSS-BIC) TMAR(CTW-BIC) TMAR(PCA-BIC)
Liu et al. [4] 2.1189 x 107 4.0791 x 10710 9.6806 x 10~
Ikizler-Cinbis and Sclaroff [143] 1.7831 x 107° 3.5804 x 107 6.6558 x 1078
Le et al. [95] 2.5596 x 1077 5.1805 x 107 9.1874 x 1078
Wang et al. [132] 3.0663 x 1076 7.5786 x 1076 3.4593 x 107

Table 3.12: Statistical measurements of the recognition results for each of the proposed
approaches for the UCF YouTube dataset. All values are expressed in percentages.

mean median std min max

TMAR(LCSS-BIC)  91.7 90.9 2.9 89.3 100.0
TMAR(CTW-BIC) 91.3 90.4 3.0 883 100.0
TMAR(PCA-BIC) 93.1 91.4 4.6 87.8 100.0

Table 3.11 and Table 3.12 present the same indices for the UCF YouTube dataset.
All three proposed methods reject the null hypothesis for all the cases. In this case, the
recognition results of the proposed methods for the UCF YouTube dataset appear to be

statistically significant.

3.3.5 Parameter Estimation

In the recognition step, in our implementation of the LCSS the parameters § and e were
optimized using 10-fold cross validation for all three datasets. These parameters need to
be determined for each data set separately since each data set perform different types of
actions. However, after we have determined the parameters no further action needs to be
taken. To classify a new unknown sequence, we have already learned the parameters from
the learning step and thus we are able to recognize the new action. For all the datasets,
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Figure 3.13: Confusion matrices of the classification results for the UCF YouTube dataset
for (a) the proposed method denoted by TMAR(LCSS), (b) the the proposed method using
the CTW alignment, denoted by TMAR(CTW), and (c) the proposed method using PCA,
denoted by TMAR(PCA), for the estimation of the number of components using the BIC
criterion.

Table 3.13, Table 3.14 and 3.15 show the optimal values per action as they have resulted
after the cross validation process. Note that the values in Table 3.13 for both § and e
are consistently small. However, the handclapping and walking actions have larger values
for € parameter than the other actions, which may be due to the large vertical movement
of the subject between consecutive frames. On the other hand, the actions in the UCF
Sport dataset holds large movements from one frame to the other for both horizontal and
vertical axes, which is the main reason why the actions show large variances between the
values of 6 and ¢ (Table 3.14). Finally, the actions in the UCF YouTube dataset have
a uniform distributed representation of the parameters ¢ and e, since the parameter o
is determined as the 10% of the mean curves length for the most of the actions and the
mean of the parameter ¢ is varies in the 15% of the standard deviation of the two curves
to be compared.
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Figure 3.14: The recognition accuracy with respect to the number of Gaussian components
for the UCF YouTube dataset.

Table 3.13: Parameters 0 and ¢ for the KTH dataset estimated using cross validation.

Action TMAR(LCSS)
5(1073) (107
boxing 1 1
handclapping 10 100
handwaving 300 100000
jogging ) 3000
running 30 500
walking 1000 120000

3.3.6 Discussion

The average percentage of matched curves for the TMAR(LCSS) and TMAR(CTW)
approach in the case where the BIC criterion is employed to determine the number of
Gaussian components for all three datasets is depicted in Figure 3.15. As it can be
observed, the TMAR(LCSS) method appears to match a larger part of curves for the
same dataset than the TMAR(CTW) approach, which is the reason why TMAR(LCSS)
performs better than TMAR(CTW).

In Figure 3.16, the execution times using the BIC criterion are depicted in order to
determine the number of the Gaussian components, for all three cases, when using the
LCSS metric, the CTW alignment and PCA, for all three datasets. For the Weizmann
dataset, when PCA is used, the execution time drastically falls bellow one second per
action. On the other hand, TMAR(LCSS) requires the highest execution time, which
needs six seconds to recognize the action pjump. In the KTH dataset, TMAR(CTW)
requires the highest execution time (needs nine seconds to recognize two out of six actions),
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Table 3.14: Parameters § and ¢ for the UCF Sports dataset estimated using cross valida-

tion.

Action TMAR(LCSS)

o €
diving 1 2.1
golf 2.01 6.1
kicking 10 15
lifting 11 10
riding 0.1 15
run 0.1 12
skateboarding 1.4 13
swing 0.6 20
walk 0.1 10

Table 3.15: Parameters 0 and e for the UCF Youtube dataset estimated using cross

validation.

Action TMAR(LCSS)

o €
shooting 20 20
biking 10 10
diving 10 15
golf 20 10
riding 10 )
juggle 10 15
swing 10 )
tennis 10 10
jumping 10 )
spiking 10 30
walk dog 10 20

while TMAR(LCSS) takes less than six seconds for one action. Moreover, the use of PCA
speeds up the execution time for recognizing a single action in all datasets since feature
vectors of smaller lengths are being used. However, in UCF Sport dataset TMAR(LCSS)
and TMAR(CTW) both have the same upper bound of eight seconds to recognize an
action. Finally, in UCF YouTube dataset, the average execution time to recognize an
action ranges from two to nine seconds when TMAR(LCSS) approach is used. In the
case where TMAR(PCA) is used the upper bound to recognize an action is five seconds
in UCF Sports and UCF YouTube datasets, while in in KTH is less than a second. This
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Figure 3.15: Average percentage of matched curves for TMAR(LCSS) and TMAR(CTW)),
when the BIC criterion is used, for (a) Weizman, (b) KTH, (¢) UCF Sports and (d) UCF
YouTube datasets, respectively.

makes the algorithm capable to adapt to any real video sequence and recognize an action
really fast.

3.4 Conclusion

In this chapter, a human activity recognition method is proposed, where actions are rep-
resented by a set of motion curves generated by a probabilistic model. The performance of
the extracted motion curves is interpreted by computing similarities between the motion
curves, followed by a classification scheme. The large size of motion curves was reduced
via PCA and after noise removal a reference database of feature vectors is obtained. Al-
though a perfect recognition performance is accomplished with a fixed number of Gaussian
mixtures, there are still some open issues in feature representation.

The obtained results showed that the use of PCA has a significant impact on the per-
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formance of the recognition process, as its use leads to further improvement of the recog-
nition accuracy, while it significantly speeds up the behavior of the proposed algorithm.
The optimal model was determined by using the BIC criterion. Finally, the presented
algorithm is free of any constraints in the curves lengths. Although the proposed method
yielded encouraging results in standard action recognition datasets, it is requirement of
a challenging task of performing motion detection, background subtraction, and action
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CHAPTER 4

CLASSIFYING BEHAVIORAL ATTRIBUTES
UsING CONDITIONAL RANDOM FIELDS

4.1 Introduction
4.2 Behavior Recognition Using Conditional Random Fields
4.3 Experimental Results

4.4 Conclusion

4.1 Introduction

In this chapter, we are interested in characterizing human activities as behavioral roles
in video sequences. The main contribution of this work is twofold. First, we introduce
a method for recognizing behavioral roles (i.e., friendly, aggressive and neutral) (Figure
4.1). These behavioral classes are similar, as the involved people perform similar body
movements. Our goal is to recognize these behavioral states by building a model, which
allows us to discriminate and correctly classify human behaviors. To solve this problem,
we propose an approach based on conditional random fields (CRF) [26]. Motivated by the
work of Domke [302], which takes into account both model and inference approximation
methods to fit the parameters for several imaging problems, we develop a structured
model for representing scenes of human activity and utilize a marginalization fitting for
parameter learning. Secondly, to evaluate the model performance, we introduce a novel
behavior dataset, which we call the Parliament dataset [5], along with the ground truth
behavioral labels for the individuals in the video sequences. More specifically, we have
collected 228 low-resolution video sequences (320 x 240, 25fps), depicting 20 different
individuals speaking in the Greek parliament. Fach video sequence is associated with
a behavioral label: friendly, aggressive and neutral, depending on the intensity of the

political speech and the specific individual’s movements.
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Figure 4.1: Sample frames from the proposed Parliament dataset. (a) Friendly, (b)
Aggressive, and (c) Neutral

4.2 Behavior Recognition Using Conditional Random Fields

In this chapter, we present a supervised method for human behavior recognition. We
assume that a set of training labels is provided and every video sequence is pre-processed
to obtain a bounding box of the human in every frame and every person is associated
with a behavioral label.

The model is general and can be applied to several behavior recognition datasets.
Our method uses CRFs (Figure 4.2) as the probabilistic framework for modeling the
behavior of a subject in a video. First, spatial local features are computed in every video
frame capturing the roles associated with the bounding boxes. Then, a set of temporal
context features are extracted capturing the relationship between the local features in
time. Finally, the loopy belief propagation (LBP) [303] approximate method is applied
to estimate the labels.

Let y§- € Y be the behavioral role label of the j** person in a bounding box at frame
t, where R is the set of possible behavioral role labels and ¢ € [0, T is the current frame.
Let X; represent the feature vector of the observed j** pixel at frame t. Our goal is to
assign each person a behavioral role by maximizing the posterior probability:

y = arg max p(y|x; w) . (4.1)
y

It is useful to note that our CRF model is a member of the exponential family defined
as:

plylx; w) = exp (E(y[x; w) — A(w)) , (4.2)
where w is a vector of parameters, E(y|x) is a vector of sufficient statistics and A(w) is

the log-partition function ensuring normalization:
A(w) logz exp (E(y|x;w)) . (4.3)

Different sufficient statistics E(y|x;w) in (4.2) define different distributions. In the
general case, sufficient statistics consist of indicator functions for each possible configura-

tion of unary and pairwise terms:

E(y|x;w) = Z\II yhxbw) + 303 Uyl it x x wa) (4.4)
J keN;
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where N is the neighborhood system of the 5 person for every pixel in the bounding box.
In our model temporal and spatial neighbors are considered. We use eight spatial and 18
temporal neighbors. The parameters w; and wy are the unary and the pairwise weights
that need to be learned and W, (y, x4 wy), W, (v}, yit' x4, x;"'; wy) are the unary and
pairwise potentials, respectively.

Unary potential: This potential predicts the behavior label yg. of the j** person in
frame t indicating the dependence of the specific label on the location of the person. It

may be expressed by:

N (Yngawl ZZWIH y _€)¢u( )’ (45)

ey j

where 1, (x}) are the unary features and 1(-) is the indicator function, which is equal to
1, if the j™ person is associated with the ¢** label and 0 otherwise. The unary features
are computed as a 36-dimensional vector of HoG3D values [241] for each bounding box.
Then, a 64-dimensional spatio-temporal feature vector (STIP) [97] is computed, which
captures the human motion between frames. The spatial relationship of each pixel in the
bounding box and its 8 x 8 neighborhood is computed using a 16-dimensional Local Binary
Pattern (LBP) feature vector [304]. The final unary features occur as a concatenation of
the above features to a 116-dimensional vector.

Pairwise potential: This potential represents the interaction of a pair of behavioral
labels in consecutive frames. We define the following function as the pairwise potential:

U (y5 e X x i we) = 30 3 wo Ly = O1(y = m)y, (xh, xi ), (4.6)
fneeyyke]’Nj

where ¢p(x }5:“1) are the pairwise features. We compute a 4-dimensional spatio-temporal

feature vector, which is the concatenation of the 2D velocity and acceleration of the
jt"person along time. The acceleration features play a crucial role in the distinction
between the behavioral classes, as different persons in different behavioral classes perform
similar movements. In addition, the Ly norm of the difference of the RGB values at frames
t and t + 1 is computed. We use eight spatial and 18 temporal neighbors creating an 18-
dimensional feature vector. The final pairwise features are computed as the concatenation
of the above features to a 22-dimensional vector.

4.2.1 Learning

To learn the model weights w = {wy,ws}, we employ a labeled training set and seek to
minimize:
w =argmin »_ L(y,x;w), (4.7)
w y

where L(-,-) is a loss function, which quantifies how well the distribution in Eq. (4.2) is
defined by the parameter vector w matches the labels y.
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Figure 4.2: Graphical representation of the model. The observed features are represented
by x and the unknown labels are represented by y. Temporal edges exist also between
the labels and the observed features across frames.

We select a clique loss function [302], which is defined as the log-likelihood of the
posterior probability p(r|x; w):

L(y,x;w) = —log p(y[x; w) . (4.8)

The loss function is minimized using a gradient-descent optimization method. It can be
seen as the empirical risk minimization of the Kullback-Leibler divergence between the

true and predicted marginals.

4.2.2 Inference

Having set the parameters w, an exact solution to Eq. (4.1) is generally intractable. For
this reason, approximate inference is employed to solve this problem. In this work, LBP
[303] is used for computing the marginals using the full graphical model as depicted in
Figure 4.2. For comparison purposes and for better insight of the proposed method, we
have also tested a variant of the full graphical model by transforming it into a tree-like
graph (Figure 4.3). This is accomplished by ignoring the spatial relationship between the
observation nodes x and keeping only the temporal edges between the labels y. In this
case, tree-reweighted belief propagation [130] is considered for inference.

t—1 m t+1

Y1 Y1 Y1

Figure 4.3: Tree-like graphical representation of the model. The observed features are

represented by x and the unknown labels are represented by y.
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4.3 Experimental Results

The experiments are applied to the novel Parliament dataset [5]. The number of features
are kept relatively small in order not to increase the model’s complexity. Additionally, to
show that the proposed method can perform well, different model variants are compared.

4.3.1 Political Behavior Dataset

To evaluate our method, we collected a set of 228 video sequences, depicting political
speeches in the Greek parliament. All behaviors were recorded for 20 different subjects.
The videos were acquired with a static camera and contain uncluttered backgrounds. The
video sequences were manually labeled with one of three behavioral labels: friendly (90
videos), aggressive (73 videos), or neutral (65 videos). Figure 4.4 depicts some represen-
tative frames of the Parliament dataset. The subjects express their opinion on a specific
law proposal and they adjust their body movements and voice intensity level according
to whether they agree with that or not.

Figure 4.4: Sample frames from the proposed Parliament dataset. (Top row) Friendly,
(middle row) Aggressive, and (bottom row) Neutral.

Each video sequence was manually labeled with one of three behavioral labels ac-
cording to human perception on kindness and aggressiveness. Figure 4.5 (a) shows the
similarity of each class against the other by measuring the Bhattacharyya distance be-
tween all pairs of classes. Since the data are multidimensional, viewing slices through
lower dimensional subspaces is one way to partially work around the limitation of two
or three dimensions. To this end, we employed PCA to project the data onto a three
dimensional space and demonstrated how pairs of different classes are distributed in the
projected space. Figure 4.5 (b) depicts the distribution of the data of all bivariate scatter
plots between all pairs of classes. The plots in the diagonal depict the univariate his-
togram for each class. Note that all classes are not linearly separable. Within each class,
there is a variation in the performance of an action. Each individual exhibits the same
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Figure 4.5: Distribution of classes friendly, aggressive, and neutral. (a) Bhattacharyya
distance between classes for all video samples. (b) Distribution of each class against the
others (bottom row) after projection onto a common subspace using PCA. The main
diagonal shows how data are distributed within each class.

behavior in a different manner by using different body movements. This is an interesting
characteristic of the dataset, which makes it challenging.

The videos of the Parliament dataset were captured at a resolution of 320 x 240 pixels
at 25 fps and their length is 250 frames. The dataset was annotated by two observers of
Greek origin, who watched the videos independently and recorded their labels separately.
Disagreement was resolved by a third observer. It is worth noting that the initial two
annotators disagreed in only 3% of the videos of the dataset. The observers were asked to
categorize the videos with respect to the notions of kindness and aggressiveness according
to a general perception of a political speech by a citizen with a Greek mentality as follows.
(i) Subjects with large and abrupt body, head and hand movements and high speech signal
amplitude are to be labeled as aggressive. This corresponds to statesmen who express
strongly their disagreement with the topic discussed or a previous speech given by a
political opponent. (ii) Subjects with very small variations in their motion and speech
signal amplitude are to be labeled as neutral. This class includes standard political
speeches only expressing a point of view without any strong indication (body motion or
voice tone) of agreement or disagreement with the topic discussed. (iii) Subjects with
large but smooth variations in the pose of their body and hands speaking with a normal
speech signal amplitudes are to be labeled as friendly.

We used 5-fold cross validation to split the dataset into training and test sets. Ac-
cordingly, the model was learned from 183 videos, while the algorithm was tested on the
remaining five videos and the recognition results were averaged over all the examined
configurations of training and test sets. Within each class, there is a variation in the per-
formance of an action. Each individual exhibits the same behavior in a different manner
by using different body movements. This is an interesting characteristic of the dataset
which makes it quite challenging.
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Table 4.1: Behavior classification accuracies (%) using the graphical model with only
temporal edges (4.2) and the full graphical model (4.1).

Classification Accuracy(%)

Method Friendly Aggressive Neutral
Tree model (tree-reweighted BP) 100.0 49.2 84.5
Full model (loopy BP) 100.0 60.7 95.8

Table 4.2: Comparison between variants of the proposed method.

Method Accuracy (%)
CRF (unary only) 81.0
CRF (unary no spatio-temporal) 69.7
CRF (pairwise no spatio-temporal) 69.7
Full CRF model 85.5

4.3.2 Results and Discussion

We evaluated the proposed model with different variants of the method. First, we com-
pared the full graphical model (see Figure 4.1) with a variant of the method, which
considers the graphical model as a tree-like graph (see Figure 4.2). As it can be observed
in Table 4.1, the full graphical model performs better than the tree-like graph, which uses
only temporal edges between the labels. The second model ignores the spatial relationship
between the features and the classification error is increased. Generally, the full graphical
model provides strong improvement of more than 8% with respect to the tree model.

In the second set of experiments, we evaluated three variants of the proposed CRF
model. First, we used the CRF model with only the unary potentials ignoring the pairwise
potentials. The second variant uses only unary potential without the spatio-temporal
features. Finally, the third configuration uses the full model without the spatio-temporal
pairwise features. The classification results comparing the different models are shown in
Table 4.2.

We may observe that the CRF model, which does not usespatio-temporal feature
in either the unary potentials or the pairwise potentials, attains the worst performance
between the different variants. It is worth mentioning that the first variant, which uses
only unary features, performs better than the other two variants, which do not use spatio-
temporal features. However, this is not a surprising fact, as in the case of the no spatio-
temporal variants the classification is performed for each frame individually ignoring the
temporal relationship between consecutive frames. The use of spatio-temporal features
appears to lead to better performance than all the other approaches. We also observe
that the full CRF model shows significant improvement over all of its variants. The full
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Figure 4.6: Confusion matrices of the classification results for the CRF model employing
(a) only unary potentials, (b) only unary potentials without spatio-temporal features, (c)

the full model without spatio-temporal pairwise features, and (d) the full model.

CRF model leads also to a significant increase in performance of 85.5%, with respect to
the model with no spatio-temporal features. This confirms that temporal and spatial
information combined together constitute an important cue for action recognition.

Figure 4.6 illustrates the overall behavior recognition accuracy, where the full CRF
model exhibits the best performance in recognizing each of the three behaviors. The
main conclusion we can draw from the confusion matrices is that adding temporal edges
to the graphical model helps reduce the classification error between the different behav-
ioral states. It is also worth noting that, due to missed and relatively close features in
consecutive frames, the classes “friendly” and “aggressive” are often confused as the sub-
ject performs similar body movements. Feature selection may be employed to solve this
problem.

4.4 Conclusion

In this chapter, a method for recognizing human behaviors in a supervised framework
using a CRF model is presented. A new challenging dataset (Parliament) was introduced,
which captures the behaviors of some politicians in the Greek parliament during their
speeches. Several variants of the method were examined reaching an accuracy of 85.5%.
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CHAPTER 5

IDENTIFYING HUMAN BEHAVIORS USING
HiDDEN CONDITIONAL RANDOM FIELDS

5.1 Introduction
5.2 Behavior Recognition Using Hidden Conditional Random Fields
5.3 Experimental Results

5.4 Conclusion

5.1 Introduction

Recognizing human behaviors from video sequences is a challenging task [42, 225]. A
behavior recognition system may provide information about the personality and psycho-
logical state of a person. Its applications vary from video surveillance to human-computer
interaction. Human behavior is often expressed as a combination of non-verbal multimodal
cues such as gestures, facial expressions and auditory cues. The correlation between cues
from different modalities has been shown to improve recognition accuracy [57, 255, 266].

When attempting to recognize human behaviors, one must determine the kinematic
states of a person. From psychological point of view, human behaviors may be classified
in three types: behavioral, cognitive and social [305]. Our goal is to understand not
only social behaviors (e.g., relationships and interactions between people such as hugging
or kissing) but also individual behaviors (e.g., expression of personal feelings such as
aggressiveness or friendliness).

Factors that can affect human behavior may be decomposed into several components
including emotions, moods, actions and interactions with other people. Hence, the recog-
nition of complex actions may be crucial for understanding human behavior. Recognizing

human actions that correspond to a specific emotional state of a person or an affective
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label such as boredom, or kindness, may help understand social behaviors. The task of
learning human behaviors is to identify the psychological state or the social activities of
a person taking place in the surroundings [226]. Several affective computing methods
[56, 217] used semantic annotations in terms of arousal and valence to capture the under-
lying affect from multimodal data. However, obtaining affective labels for real world data
is a challenging task [212] and it may lead to biased representation of human behaviors.

In this chapter, we address the problem of multimodal data association for human
behavior recognition. First, audio and visual data from the video sequences are extracted
and then a feature pruning technique is applied to remove redundant features according
to the spatiotemporal neighborhood of the features in the video frames. Then, CCA
[228] is employed to find the synchronization offset between the audio and video features,
such that the correlation between sound emissions and human movements is maximized.
Finally, the projected data are concatenated into a new feature vector and are used as
input to a chain hidden conditional random field (HCRF) [27] model to capture the
interaction across modalities and compute the underlying hidden dynamics between the
labels and the features. Our method is also able to cope with videos with varying human
poses as feature pruning may reduce the background and discard irrelevant frames. In
contrast to most of the multimodal human behavior analysis methods, the combination
of feature pruning and early fusion keeps the complexity of our method relatively low, as
only one step of classification for estimating human behaviors is required.

The contributions of this work is threefold. First, we developed a supervised multi-
modal learning framework, for human behavior recognition based on the canonical cor-
relation of audio and visual features. We also proposed a feature selection technique for
pruning redundant features, based on the spatio-temporal neighborhood of the visual fea-
tures that reduced the complexity of the classification algorithm. Finally, we employed
an audio-visual synchronization method to temporally align the audio and video features,
to better exploit the correlation of the audio-visual features and improve the recognition

accuracy.

5.2 Behavior Recognition Using Hidden Conditional Random
Fields

We assume that a set of training labels is provided and each video sequence is pre-
processed to obtain a bounding box of the human in every frame and each person is
associated with a behavioral label. The model is general and can be applied to several
behavior recognition datasets. Our method uses HCRFs, which are defined as a chained
structured undirected graph G = (V,€) (Fig. 5.1), as the probabilistic framework for
modeling the behavior of a subject in a video. First, audio and visual features are com-
puted in each video frame capturing the roles associated with the bounding boxes. Next,
irrelevant visual features are eliminated according to their spatio-temporal relationship of
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Figure 5.1: Graphical representation of the chain structure model. The grey nodes are
the observed features and the unknown labels represented by x and y, respectively. The
white nodes are the unobserved hidden variables h.

neighboring features. Then, the synchronization offset between the different modalities is
estimated by using CCA. Finally, belief propagation (BP) [169] is applied to estimate the
labels.

5.2.1 Multimodal Hidden Conditional Random Fields

We consider a labeled dataset D = {x; ;, ¥}, with N videos, where x; ; = (a;, v; ;) is
a multimodal observation sequence, which contains audio (a; ; € R™*T) and visual data
(vi; € R™*T) of length T with j = 1...T. For example, x; ; corresponds to the j™ frame
of the i video sequence. Finally, v; corresponds to a class label defined in a finite label
set V. Our model is applied to all video sequences in the training set. In what follows,
we omit indices ¢ and j for simplicity.

It is useful to note that our HCRF model is a member of the exponential family and
the probability of the class label given an observation sequence is given by:

plylx;w) =Y p(y, hix; w)

(5.1)
— 3 exp (B(y, hfx; w) — A(w)) .
h

where w = [0, w] is a vector of model parameters, h = {hq, hs, ..., hr}, with h; € H is a
set of latent variables. In particular, the number of latent variables may be different from
the number of samples, as h; may correspond to a substructure in a sample. However,
for simplicity we use the same notation. Finally, E(y, h|x;w) is a vector of sufficient
statistics and A(w) is the log-partition function ensuring normalization:

Alw) = logz; > exp (E(y, hlx;w)) . (5.2)

Different sufficient statistics E(y, h|x;w) in (5.1) define different distributions. In the
general case, sufficient statistics consist of indicator functions for each possible configura-
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tion of unary and pairwise terms:

E(y,hix;w) => ®(y,hj,x;;0) + > U(y, hy, hy;w), (5.3)
JEV j,keE
where the parameters 8 and w are the unary and the pairwise weights, respectively,
that need to be learned and ®(y, h;,x;;80), ¥(y, hj, hi;w) are the unary and pairwise
potentials, respectively.

The unary potential is expressed by:
Dy, hj,x5;0) =D > d16(y, hj;010) + Y Palhyj, x;;05), (5.4)
j ¢ J

and it can be considered as a state function, which consists of two different feature func-
tions. The label feature function, which models the relationship between the label y and
the hidden variables h;, is expressed by:

G1e(y, hj; 010) = Z Z 01,1(y = N1(h; =a), (5.5)
AEY aeH
where 1(-) is the indicator function, which is equal to 1, if its argument is true and 0
otherwise. The observation feature function, which models the relationship between the
hidden variables h; and the observations x;, defined by:

qf)g(hj,Xj; 02) = Z Ogﬂ(h] = CL)Xj . (56)
acH

The pairwise potential is a transition function and represents the association between
a pair of connected hidden states h; and hj and the label y. It is expressed by:

Uy, hj, hyw) = > > wil(y = N1(hj =a)l(hy =1). (5.7)
N
a,beH

5.2.2 Parameter Learning and Inference

Our goal is to assign a test video sequence with a behavioral role by maximizing the
posterior probability:

y = argmax p(y|x; w). (5.8)
yey

In the training step the optimal parameters w* are estimated by maximizing the
following loss function:

L wip. (5.9)

N
L(w) = log p(y;|xi; w) — 252

i=1
The first term is the log-likelihood of the posterior probability p(y|x; w) and quantifies

how well the distribution in (5.1) defined by the parameter vector w matches the labels
y. It can be rewritten as:

log p(y;|xi; w) = logz exp(E(y, hlx;; w)) — log Z exp(E(y', hlx;; w)) . (5.10)
h y',h
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The second term is a Gaussian prior with variance o? and works as a regularizer. The loss
function is minimized using a gradient-descent optimization method. More specifically, in
our experiments we used the limited-memory BFGS (LBFGS) method [306] to maximize
the log-likelihood of the data. Having set the parameters w, the marginal probability
is obtained by applying the BP algorithm [25] using the graphical model as depicted in
Figure 5.1.

5.2.3 Multimodal Feature Extraction

In this work, we used three different sets of visual features (i.e., STIPs, head orientations,
and proxemic features). First, we extract local space-time features at frame rate of 25 fps
using a 72-dimensional vector of HoG and 90-dimensional vector of HoF feature descriptors
[241] for each STIP [97], which captures the human motion between frames. These features
were selected because they can capture salient visual motion patterns in an efficient and
compact way.

Feature extraction may be erroneous due to cluttered backgrounds caused by cam-
era motion or changes in illumination and appearance. Reducing the number of irrele-
vant /redundant features drastically reduces the running time of a learning algorithm and
yields a more general concept. For this reason, we adopt a similar technique with Liu
et al. [4] and we perform feature pruning based on spatial and temporal neighborhood
of motion features. The proposed algorithm depends on two factors: (i) the distance
between the centers of the feature locations and (ii) the scatter of each feature group in
consecutive frames.

Let N; be the number of features in frame ¢ and NV be the total number of features in the
video sequence. Let also, p; and o7 be the center and the variance of the feature locations
in frame ¢, respectively. First, we discard those frames where N, is much larger than the
mean number of features in the video sequence. Next, if the ratio of the difference of the
means to the standard deviation of feature locations and the number of features between
frame t and its neighboring frames ¢ — 1 and ¢ + 1 are over a predefined threshold, we
select M; < N, features that lie close to the centers of the feature locations in neighboring
frames. A detailed description of the proposed feature pruning algorithm is presented
in Algorithm 3. Figure 5.2 depicts some representative examples of the feature pruning
technique. Feature pruning may significantly reduce the number of features (Figure 5.5).

In cases where the video sequences are not person-centric, but may contain human
interactions (e.g., hugging), STIP features are not adequate. For this reason, we have used
head orientation as additional feature. This choice is motivated by the fact that a person
who interacts with another is more likely to look at that person than looking at somewhere
else. Furthermore, we have also used proxemic features, which capture the spatial and
temporal relations between interacting persons detected in the video sequences. This
means that interacting persons are in general more probable to lie close to each other
(spatially and temporally). Moreover, many audio features have been studied for speaker
detection and voice recognition [307]. Mel-frequency cepstral coefficients (MFCCs) [308]
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Algorithm 3 Feature pruning
Input: Original features v, for frame t.

Output: Pruned features z,; for frame ¢.
1: if N; >> mean(N) then

2: Discard frame ¢;

e — il e gl

4 if (‘Hm & m>€> & (INoi = Ny| > ¢ & |N, = Newa| > )
then

5 J 1

6 for i + 1 to N; do

e i M =l g = el

||Vz‘,t - Mt“2 ”Vz‘,t - ,Uth2

8 Zjt S Vit

9 JJ+1

10: end if

11: end for

12: end if

Table 5.1: Types of audio and visual features used for human behavior recognition. The

numbers in parentheses indicate the dimension of the features.
Audio features (39) ‘ Visual features (166)

MFCCs (13) STIP (162)
Delta-MFCCs (13) Head orientations (2)
Delta-delta-MFCCs (13) Proxemic (2)

are the most popular and common audio features. We employ the MFCCs features and
their first and second order derivatives (delta and delta-delta MFCCs) to form an audio
feature vector of dimension 39. Table 5.1 summarizes all audio and visual feature types

used in our algorithm.

5.2.4 Audio-Visual Synchronization and Fusion

The purpose of the proposed method is to perform multimodal human behavior recogni-
tion by taking into account both visual and audio information. One drawback of com-
bining features of different modalities is the different frame rate that each modality may
have. Thus, prior to the fusion step, visual features are interpolated to match the audio
frame rate. However, interpolation may harm the synchronization between the audio and
visual features, which is necessary to better exploit the correlation between the different
modalities. To this end, we propose using CCA to estimate audio-visual synchronization
offset and perform the data fusion.

Given a set of zero-mean paired observations {(a;,v;)}},, with A = [a;,...,ay] and
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Figure 5.2: Representative examples of feature pruning. (a) The original features and
(b) the pruned features for the Parliament dataset [5] (top row) and the TV human
interaction dataset [6] (bottom row). Feature pruning may reduce the number of features
by 29% on average.

V =|vy,..., vy, CCA seeks to find two linear transformation vectors -, and ~,, such
that the correlation p(v] A~ V) between the projections onto these vectors, a = v, A
and v = v,V (also known as canonical variates) is maximized:

E[av]
pla,v) = max ———————
Yar Yo E[G]ZE[U]Q
= max By, AV ) (5.11)
o\ JEly] AATY, B[y VV T, ] '
Yo ZavYe

= Imax

Yoo \/’7 YaaYaVy Lo Yo ’

where E[-] is the expected value, ¥,, € R"*™ and X,, € R™*™ are the covariance
matrices, respectively, and ¥,, € R"**™ is the cross-covariance matrix of A and V.

The solutions for «, and -y, are the eigenvectors corresponding to the largest eigen-
values of X150, %1%, and X718, 215, respectively.

The greatest challenge when dealing with audio-visual features is to correctly identify
the auditory information that corresponds to the motion of the underlying event. This
means, that audio and visual features need to be precisely correlated before data fusion
is applied [227, 309]. To this end, we assume that there is a time gap 7, which can be
seen as an integer offset of frames between audio and visual streams such that the visual
feature vector v; in frame t corresponds to the (¢ + 7)™ audio feature vector a,,,. We
assume that the synchronization offset 7 may lie in an interval [—s, s]. First, we remove
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the first and last s frames from the audio signal and compute the audio features in the
remaining cropped sequence of length T — 2s. Then, we compute the visual features vy,
t € [1,2s + 1] in all groups of T'— 2s consecutive frames. Finally, CCA is applied between
the set of cropped audio features a and each visual feature group v;. We select the optimal
temporal gap such that the correlation between audio and visual features is maximized
according to:

T = argmax A —(s+1), (5.12)

where A corresponds to the largest eigenvalue, which is associated with the maximization
of the canonical correlation between the audio feature vector and each group of visual
features, as the audio feature vector is slid over the visual features. The steps of the
audio-visual synchronization algorithm are summarized in Algorithm 4.

Algorithm 4 Audio-visual synchronization
Input: Audio and video streams, time interval [—s, s].

Output: Synchronization offset 7.

: Delete the first and last s frames from the auditory signal.
: Compute the audio features in the remaining 7" — 2s instances of the audio stream.
: for all groups of T' — 2s consecutive frames do

Estimate the CCA between the cropped audio and the visual features v;

1
2
3
4: Compute the visual features vy, ¢ € [1,2s + 1].
)
6: end for

7

. Estimate the temporal offset 7 according to Eq. (5.12).

We now consider the fusion of the audio and visual features a and v respectively by
projecting these features onto the canonical basis vectors [y, ,~,]" and use this projection
for recognition.

5.3 Experimental Results

In what follows, we refer to our synchronized audio-visual cues for activity recognition
method by the acronym SAVAR. The experiments are applied to the novel Parliament
dataset [5] and the TV human interaction (TVHI) dataset [6]. The number of features is
kept relatively small in order not to increase the model’s complexity.

5.3.1 Datasets

Parliament [5]: This dataset contains 228 video sequences of political speeches, belong-
ing in three behavioral categories: friendly, aggressive, and neutral. It is described in
detail in Chapter 4.

TV human interaction [6]: This dataset consists of 300 video sequences collected
from over 20 different TV shows. The video clips contain four kinds of interactions: hand
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Figure 5.3: Sample frames from the proposed Parliament dataset. (a) Friendly, (b)
Aggressive, and (c) Neutral.

shakes, high fives, hugs and kisses, which are equally distributed to the four classes (50
video sequences for each class). Negative examples (e.g., clips that do not contain any
of the aforementioned interactions) consist the remaining 100 videos. The length of the
video sequences ranges from 30 to 600 frames. The great degree of intra and inter-class
diversity between the clips, such as different number of actors in each scene, variations in
scale, and changes in camera angle, is an important factor that popularized this dataset
for real world evaluation. Some representative frames of the TVHI dataset are illustrated
in Figure 5.4.

Figure 5.4: Sample frames from the TVHI dataset. (a) Hand shake, (b) High five, (c)
Hug, and (d) Kiss.

In particular, the Parliament and the TVHI datasets are representative examples
of individual and social behaviors, respectively. The Parliament contains examples of
behavioral attributes, which may correspond to positive (e.g., friendliness) or negative
(e.g., aggressiveness) behaviors. Passive is also a possible behavioral state for this dataset.
The TVHI dataset on the other hand, models the social behaviors of people in terms of
communication/interation with other people. Both kinds of behaviors entail much effort
in order to analyze the given information.

5.3.2 Implementation details

We used 5-fold cross validation to split the Parliament dataset into training and test
sets, and we report the average results over all the examined configurations. Moreover,
for the same dataset, we also used the leave-one-speaker-out (LOSO) cross validation, to
split training and testing data into two independent sets so that training and testing data
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Figure 5.5: Comparison of the per class number of visual features before and after pruning
for (a) the Parliament and (b) the TVHI datasets.

may not have utterances from the same speaker. For the evaluation of our method to
the TVHI dataset, we used the provided annotations, which are related to the locations
of the persons in each video clip including the bounding boxes that contain them, the
head orientations of each subject in the clips, the pair of the subjects who interact to
each other and the corresponding labels. For comparison purposes, we used the same
data split described in [6], which is a 10-fold cross validation. To obtain a bounding box
of the human in every frame we used the method described by Dalal and Triggs [85].
Each frame is considered as a grid of overlapping blocks, where HOG features [241] are
computed for each block. Finally, a binary SVM classifier is used to identify wether there
exists an object or not. The detection window is extracted in all positions and scales and
non-maximum suppression is used to detect each object. This method is able to cope
with variations in appearance, pose, lighting and complex backgrounds.

The audio signal was sampled at 16 KHz and processed over 10 ms using a Hamming
window with 25 % overlap. The audio feature vector consisted of a collection of 13 MFCC
coefficients along with the first and second derivatives forming a 39 dimensional audio

feature vector.

5.3.3 Model Selection

As shown in Figure 5.2, there are many features that are non-informative due to pose
variations or complex backgrounds. A comparison of the per class number of visual fea-
tures before and after pruning using Algorithm 3 for both Parliament and TVHI datasets
is illustrated in Figure 5.5. It can be observed that the number of visual features before
pruning is much higher than the number of visual features after pruning, which indicates
that our pruning algorithm may significantly reduce the number of features by 29 % for
the Parliament dataset and by 27 % for the TVHI dataset on average.
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Figure 5.6: Synchronization offsets between audio and video features for some sample
video sequences of the Parliament (top row) and TVHI (bottom row) datasets. The
circle indicates a delay of (a) -44 frames, (b) +13 frames, (¢) —13 frames and (d) +37

frames.

To automatically estimate the synchronization offset, such that the correlation between
audio and video features is maximized, we used Algorithm 4. Figure 5.6 illustrates the
synchronization offset for some randomly selected video sequences by plotting the most
significant canonical basis as the visual features slide over the audio features. It is worth
noting that, for the synchronization offset, we selected the frame with the maximum
correlation. The corresponding canonical bases for the synchronized audio and visual
features are depicted in Figure 5.7. The similarity between the audio and visual canonical
variates indicates high correlation.

The optimal number of hidden states was automatically estimated based on validation,
varying the number of hidden states from three to ten. The Ly regularization scale term
o was set to 10F k € {—3,...,3}. Finally, our model was trained with a maximum of 400
iterations for the termination of the LBFGS minimization method.

We compared the SAVAR approach, which uses audio-visual feature synchronization
with an HCRF model, SAVAR(A/V sync), with previously reported methods in the litera-
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Figure 5.7: Canonical variates of audio and visual features for two sample videos of (a)
the Parliament and (b) the TVHI (bottom row) datasets. Notice the high correlation
between audio and visual features obtained by the projection.

ture and seven baseline approaches (variants of the proposed method). First, we compared
the proposed SAVAR method with an HCRF variant, which does not employ audio-visual
feature synchronization prior to the fusion process, SAVAR(A/V no-sync). To show the
benefit of audio-visual fusion and synchronization, we compared our SAVAR(A/V sync)
method against two HCRF variants, which use only audio, SAVAR (audio), and only vi-
sual, SAVAR (visual), features as input, respectively. Moreover, we compared our method
with a late fusion technique without using audio-visual synchronization as it is not neces-
sary in late fusion. Information from each modality was learned separately by the HCRF
model and then the resulting classification scores were used as input to an SVM model
to fuse the results. The parameters of SVM were chosen using cross validation.

A conditional random field model, using four different variants, was also used as a
baseline method, to demonstrate the effectiveness of the HCRF model to learn the hidden
dynamics between the video clips of different classes. First, synchronized and unsyn-
chronized audio-visual features were used as input to two CRF models comprising two
different variants A /V sync CRF and A/V no-sync CRF, respectively. Finally, we trained
two CRFs, one with only audio features (audio CRF) and one with only visual (visual
CRF) features.

5.3.4 Feature Pruning

The classification accuracy with respect to the number of hidden states before and after
feature pruning for both the 5-fold and the LOSO cross validation schemes for the Parlia-
ment dataset is shown in Table 5.2. It is clear that the model obtained by the proposed
algorithm, which uses pruned features, leads to better classification accuracy compared to
the model, which uses the un-pruned features for both cross validation schemes. This is
due to the fact that the un-pruned visual features may contain outliers and decrease the

82



recognition accuracy, as the redundant visual features may lead to false estimation of the
synchronization offset. Although audio features may improve the overall accuracy of the
proposed method, in the case of un-pruned features they do not provide any significant
performance as visual features may dominate over the audio features. For LOSO cross
validation, and in contrast to the 5-fold scheme, visual features perform better than audio
as there exist no utterances from the same speaker, and thus model overfitting, due to
existence of redundant information, may be prevented. It is worth mentioning that the
accuracy difference between visual and audio cues may be due to the difference in number
of features for each modality. The optimal number of hidden states for the 5-fold and
LOSO cross validation schemes, which use only audio and only visual data, in the case
where feature pruning is used, is six. For the A/V no-sync method the optimal number of
hidden states is 10. The number of hidden states remains the same for the LOSO scheme.
The optimal number of hidden states for the proposed A/V sync method for the 5-fold
scheme is seven, while for the LOSO scheme increases to nine.

Also, Table 5.2 shows the classification results with respect to the number of hidden
states when late fusion is applied. It can be seen that the proposed method yields better
results than late fusion for both 5-fold and LOSO cross validation schemes. For more
than seven hidden states, the results of the proposed method are notably higher than
those obtained by late fusion. Although late fusion may work better than the proposed
method for a small number of hidden states (3, 5, and 6) for 5-fold cross validation, and 6
hidden states for LOSO cross validation, it is evident that for the majority of number of
hidden states the proposed method performs better. Furthermore, even when late fusion
outperforms the proposed approach, the improvement is marginal with respect to the
improvement obtained by the proposed early fusion approach versus the late fusion for
the same number of hidden states. This can be inferred by the fact that the optimal
number of hidden states for the proposed 5-fold cross validation scheme is seven and the
recognition accuracy is almost 30% higher than corresponding the late fusion approach
for the same number of hidden states. Also, for the LOSO cross validation scheme, the
recognition accuracy of the proposed method is higher in seven out of eight cases. This
might be due to the low number of dimensions that late fusion handles. The proposed
method exploits context provided by all modalities and the gain obtained by early fusion
corresponds to the synchronized audio-visual cues, as they may be complementary in
time. Also, despite the fact that late fusion is a suitable approach for handling multi-
modal data, where each modality can be learned separately and differently, we may loose
inter-modality dependence, which is crucial for audio-video classification.

The dependence of the classification accuracy and the number of hidden states on the
TVHI dataset for both pruned and un-pruned features is shown in Table 5.3. Note that
the visual model, which uses the original un-pruned features, performs better than the
proposed A/V sync method, which uses pruned visual features, for six and 10 hidden
states. This is because the additional visual features may act as outliers and affect the

estimation of the true synchronization offset. We can observe that in the case of feature
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Table 5.2: Recognition accuracy of the proposed HCRF model with respect to the number
of hidden states (h={3 ...10}) for the Parliament dataset [5] using 5-fold and LOSO cross
validation, before feature pruning and after feature pruning.

#Hidden states: 3 4 5 6 7 8 9 10

HCRF before feature pruning using 5-fold cross validation

A/V sync 29.0 55.7 56.8 64.5 46.3 47.7 514 51.0
A/V no-sync 34.6 46.5 554 51.0 34.1 44.7 420 444
Visual 449 56.6 47.6 529 44.1 40.9 60.8 48.9

HCRF before feature pruning using LOSO cross validation

A/V sync 67.8 70.0 421 52.8 51.8 344 355 66.5
A/V no-sync 37.1 4377 471 334 50.1 44.7 40.9 53.9
Visual 484 314 476 364 43.0 432 426 43.6

HCRF after feature pruning using 5-fold cross validation

A/V sync 88.1 952 8.7 80.2 97.6 952 90.5 929
A/V no-sync 63.9 669 644 71.0 69.8 73.8 723 789
Audio 58.2 T71.0 7277 727 547 67.1 69.6 67.3
Visual 67.1 572 482 67.1 151 449 44.0 59.9

HCRF after feature pruning using LOSO cross validation

A/V sync 91.0 89.7 949 77.1 936 949 974 974
A/V no-sync 63.0 59.3 749 804 769 79.2 751 89.7
Audio 29.3 63.0 50.0 63.0 51.9 53.7 62.7 50.0
Visual 427 63.7 58.2 65.6 60.0 42.7 39.6 58.2

Classification accuracies using late fusion

Late-fusion (5-fold) 91.1 84.4 89.6 829 69.6 72.6 71.9 68.9
Late-fusion (LOSO) 83.3 78.7 83.9 81.5 63.2 67.1 69.3 68.9

pruning the visual model requires seven hidden states to achieve the best classification
accuracy. It can also be noted that the audio model achieves the best recognition result
by using four hidden states. Although the recognition results for this model are affected
by background noise, it is obvious that the combination with the visual information can
significantly improve the recognition rate. The A/V no-sync method requires eight hidden
states, while the proposed A/V sync method uses nine hidden states to reach the best
recognition accuracy. The number of hidden states depends not only on the number of
the classes in a specific dataset, but also on the variety of the features used.

Table 5.3 demonstrates also the classification results, when late fusion is applied.
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Table 5.3: Recognition accuracy of the proposed HCRF model with respect to the number
of hidden states (h={4 ...10}) the TVHI dataset [6] before feature pruning and after
feature pruning.

#Hidden states: 4 5 6 7 8 9 10

HCRF before feature pruning

A/V sync 40.6 60.9 46.9 43.8 53.1 54.7 54.7
A/V no-sync 39.1 422 40.6 32.8 469 51.6 35.9
Visual 30.9 375 484 422 299 359 60.9

HCREF after feature pruning

A/V sync 53.1 79.7 703 734 734 813 76.6
A/V no-sync 469 53.1 359 56.6 60.9 54.7 42.2
Audio 35.9 344 29.7 281 281 328 234
Visual 28.1 50.0 594 609 375 359 578

Classification accuracies using late fusion

Late-fusion 80.1 75.0 734 750 71.8 781 76.5

Although in three out of seven cases, the late fusion scheme was able to improve the
classification results, the proposed early fusion method performed better for the majority
of the different number of hidden states. This is due to the heterogeneity of the different
modalities and the confidence scores of each classifier, which may affect the discrimina-
tive ability of the SVM classifier as it may assign larger weights to scores that are less
prominent.

Taking a closer look at the visual model, we can see that the number of hidden states
plays a crucial role in the recognition process; when the hidden states are increased
from six to seven, recognition accuracy falls drastically from 67.1% to 15.1% for the
Parliament dataset and from 60.9 % to 37.5 % for the TVHI dataset. In order to estimate
the optimal number of hidden states we used cross validation. The reason for reporting the
classification accuracies for all hidden states and not only for the optimal configuration is
to demonstrate the behavior of the method with respect to the different number of hidden
states and the cross validation schemes. It is also worth noting that 5-fold and LOSO
cross validation schemes do not achieve the best accuracy for the same number of hidden
states, which leads us to the conclusion that knowing in advance the optimal number
of hidden states is not an easy task. Moreover, for both datasets, the optimal number
of hidden states for each method with respect to the recognition accuracy is depicted
in bold in Tables 5.2 and 5.3. When the same accuracy is achieved for more than one
hidden states, the smallest number is considered to be the optimal. However, a larger
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Table 5.4: Classification results on the Parliament dataset [5].
Accuracy (%)

Method Audio Visual A/V no-sync A/V sync
Vrigkas et al. [5] N/A 85.5 N/A N/A
CRF [26] 50.3 78.1 67.6 83.7
SAVAR-5-fold 72.7 67.1 78.9 97.6
SAVAR-LOSO 62.2 65.5 89.7 97.4

number of hidden states may lead to a severe overfitting of the model. In this case, the
regularization term in Eq. (5.9) may act as a preventer however, tuning the regularization
parameters may be difficult and thus, overfitting may not be perfectly eliminated. It is
also worth mentioning that both the Parliament and the TVHI datasets hold strong
intra-class variabilities as certain classes are often confused because the subject performs
similar body movements. This confirms that audio and visual information combined
together constitute an important cue for action recognition.

5.3.5 Comparison of Learning Frameworks

Tables 5.4 and 5.5 report the classification accuracy on the Parliament dataset, for both
5-fold and LOSO cross validation schemes, and the TVHI datasets, respectively. We
compare our SAVAR(A/V sync) method with the seven baseline methods and include
previous results for each dataset reported in the literature. The results indicate that our
approach captures the hidden dynamics between the clips (i.e., the interaction between
an arm lift and the raise in the voice). It is clear that HCRFs outperform CRFs when
multimodal data are used for the recognition task. Notably, our approach achieves very
high recognition accuracy for the Parliament dataset (97.6 %), when 5-fold cross validation
is used. Comparable results are also provided by the LOSO cross validation scheme as the
recognition accuracy is only by 0.2 % lower than the 5-fold cross validation counterpart
method. Note that for the SAVAR(A/V no-sync) variant, when LOSO scheme is used,
the classification accuracy is by approximately 12% higher than the corresponding 5-
fold cross validation method. Also, when the 5-fold cross validation scheme is employed,
SAVAR (audio) performs better than SAVAR(visual) as training data may have utterances
from the same speaker. For the LOSO scheme, where the same speaker is excluded from
the training data, visual features perform by approximately 3 % better than the acoustic.

The method in [5] employs a fully connected CRF model, where not only the labels
but also the observation samples are associated to each other between consecutive frames.
That is, the method in [5] assigns a distinct label to each frame, which makes it more
suitable to cope with un-segmented videos (i.e., videos with more than one class labels).
On the other hand, this property significantly increases the complexity of the method,
which makes it quite difficult to use for large video clips.

Also, Table 5.5 demonstrates that the SAVAR approach performs significantly higher
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Table 5.5: Classification results on the TVHI dataset [6].
Accuracy (%)

Method Audio Visual A/V no-sync A/V sync
Patron-Perez et al. [6] N/A 54.7 N/A N/A
Li et al. [103] N/A  68.0 N/A N/A
Yu et al. [99] N/A 66.2 N/A N/A
Gaidon et al. [310] N/A 55.6 N/A N/A
Marin-Jiménez et al. [58]  48.5 46.0 54.5 N/A
CRF [26] 36.7  38.7 49.5 52.8
SAVAR 35.9 60.9 60.9 81.3

than other methods proposed in the literature for the TVHI dataset, by achieving an
accuracy of 81.3 %, which is remarkably higher than the best recognition accuracy (68 %)
for this dataset achieved by Li et al. [103], when only visual features are used, and the
best recognition accuracy (54.5 %) achieved by Marin-Jiménez et al. [58], when audio and
visual features are combined together. It is also worth noting that the SAVAR(visual)
and the SAVAR(A/V no-sync) models achieve the same recognition accuracy for this
dataset, indicating how important the audio-visual synchronization is for the recognition
task, as the unsynchronized multimodal data may not provide any further information to
the overall process. For the methods [6, 58, 99, 103, 310] the standard deviations of the
classification accuracies are not provided in the original papers and thus, they are not
included in Table 5.5.

The resulting confusion matrices of the proposed method for the optimal number
of hidden states for the Parliament dataset using 5-fold and LOSO cross validation, are
depicted in Figures 5.8 and 5.9. The proposed SAVAR(A/V sync) method has significantly
small classification errors between different classes, when is compared to the other variants,
for both 5-fold and LOSO cross validation schemes. The SAVAR(A/V no-sync) variant
has also good classification results and particularly, for the LOSO cross validation scheme,
it can perfectly recognize the classes friendly and neutral. It is also interesting to observe
that the different classes for the SAVAR(visual) and the SAVAR(audio) variants may
be strongly confused, which emphasizes the fact that when combining audio and visual
information together we are able to better separate the emotional states of a person.

Finally, the confusion matrices for the TVHI dataset are shown in Figure 5.10. The
smallest classification error between classes belongs to the proposed SAVAR(A/V sync)
method. Note that the different classes may be strongly confused as the TVHI dataset
has large intra-class variability. Especially, the SAVAR(audio) variant has the largest
classification error among all other variants as all classes are confused with the class kiss.
This is due to the fact that in class kiss the audio information may serve as outlier since
it contains background sounds.

In order to provide a statistical evidence of the recognition accuracy, we computed

the p-values of the obtained results with respect to the compared methods. The null
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Figure 5.8: Confusion matrices for the classification results of the proposed SAVAR ap-
proach for the Parliament dataset [5], after feature pruning, using 5-fold cross validation.

Table 5.6: p-values of the proposed method for the Parliament dataset [5].

Method SAVAR-5-fold SAVAR-LOSO
Vrigkas et al. [5] 0.0200 0.0058
CRF [26] 0.0137 0.0047

hypothesis was defined as: the mean performances of the proposed model are the same as
those of the state-of-the-art methods; and the alternative hypothesis was defined as: the
mean performances of the proposed model are higher than those of the state-of-the-art
methods. For the assessment of the statistical significance, we used paired t-tests with
statistical significance threshold p < 0.05 for all experiments.

For the Parliament dataset (Table 6), we may observe that the SAVAR-5-fold and
SAVAR-LOSO approaches reject the null hypothesis as all values are greater than the
critical value (95% of significance level). For the TVHI dataset (Table 7) the null hypoth-
esis is rejected for the majority of the cases. That is, for four out of six cases the p-values
were less than the significance level of 0.05. Therefore, we may conclude that the null
hypothesis can be rejected and the improvements obtained by our model are statistically
significant.

The main strength of the proposed method is that it achieves remarkably good classifi-
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Figure 5.9: Confusion matrices for the classification results of the proposed SAVAR ap-
proach for the Parliament dataset [5], after feature pruning, using LOSO cross validation.

Table 5.7: p-values of the proposed method for the TVHI dataset [6].

Method SAVAR
Patron-Perez et al. [6] 0.0012
Li et al. [103] 0.1239
Yu et al. [99] 0.0620
Gaidon et al. [310] 0.0015
Marin-Jiménez et al. [58]  0.0002
CRF [26] 0.0007

cation results when synchronized multimodal features are used compared with the results
reported in the literature for the same datasets. Additionally, it keeps the number of visual
features relatively small by pruning irrelevant features, thus reducing the computational
burden of the method.

5.4 Conclusion

In this chapter, the problem of human behavior recognition in a supervised framework
using a HCRF model with multimodal data was studied. Specifically, audio features were
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Figure 5.10: Confusion matrices for the classification results of the proposed SAVAR
approach for the TVHI dataset [6], after feature pruning.

jointly used with the visual information to take into account natural human actions. To
prune redundant features, a feature selection technique, based on the spatio-temporal
neighborhood of each feature in a video clip, was proposed. This has helped reduce the
number of features and sped up the learning process.

Furthermore, a method for multimodal feature synchronization and fusion using CCA
was also proposed. The evaluation of the proposed method, showed that a moving subject
is highly correlated with the auditory information, as human behaviors are characterized
by complex actions of movements and sound emissions. The experimental results indicated
that the exact synchronization of multimodal data before feature fusion ameliorates the
recognition performance. In addition, the combination of audio and visual cues may lead
to better understanding of human behaviors. The main strength of this method is that
the proposed multimodal fusion approach is general and it can be applied to several types
of features for recognizing realistic human actions.

According to the obtained results, the proposed SAVAR method, when it is used
with synchronized audio-visual cues, achieves notably higher performance than all the
compared classification schemes. This could be seen as an additional characteristic of our
model to discriminate between similar classes, when multimodal data is used. Nonetheless,
when only one modality was used, the method seemed to have difficulties in efficiently
recognizing human behaviors, but it could yield comparable results to the multimodal
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SAVAR method. That is, although the combination of audio and visual cues could con-
stitute a strong attribute for discriminating between different classes, each modality sep-
arately was unable to capture the variation in temporal patterns of the input data. The
proposed method was also able to deal with natural video sequences. The visual feature
pruning process could significantly reduce the amount of irrelevant features extracted in
each frame, and considerably increased the classification performance with respect to all

methods that do not incorporate feature pruning.
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CHAPTER 6

HuMAN AcTIviTY RECOGNITION USING
RoBUST ADAPTIVE PRIVILEGED
PROBABILISTIC LEARNING

6.1 Introduction
6.2 Robust Privileged Probabilistic Learning
6.3 Experimental Results

6.4 Conclusion

6.1 Introduction

Recent advances in computer vision such as video surveillance and human-machine in-
teractions [311, 312] rely on machine learning techniques trained on large scale human
annotated datasets. However, training data may not always be available during testing
and learning using privileged information (LUPI) [313] has been used to overcome this
problem. The insight of privileged information is that one may have access to additional
information about the training samples, which is not available during testing.
Consequently, classification models may often suffer from “structure imbalance” be-
tween training and testing data, which may be represented by the LUPI paradigm. Since
the additional features are considered more informative than the initial features, the lack
of such information during testing is interpreted as an imbalance between training and
testing data. This learning technique simulates a real-life learning condition, when a
student learns from his/her teacher, where the latter provides the student with addi-
tional knowledge, comments, explanations, or rewards in class. Subsequently, the student
should be able to face any problem related to what he/she has learned without the help
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Figure 6.1: Robust learning using privileged information. Given a set of training examples
and a set of additional information about the training samples (left) our system can
successfully recognize the class label of the underlying activity without having access
to the additional information during testing (right). We explore three different forms
of privileged information (e.g., audio signals, human poses, and attributes) by modeling
them with a Student’s ¢-distribution and incorporating them into the HCRF+ model.

of the teacher. Taking advantage of this learning model, the LUPI framework has also
been used in several machine learning applications such as boosting [314], clustering [315],
facial expression recognition [316] and textual description [317].

The problem of human activity understanding using privileged knowledge is on its own
a very challenging task. Since privileged information is only available during training, one
should combine both original and privileged information into a unified classifier to predict
the true class label. That is, the learning model should be able to combine both types of
information to enhance the classification accuracy by learning a better estimate of model
parameters. However, it is quite difficult to identify the most useful information to be
used as privileged as the lack of informative data or the presence of misleading information
may influence the performance of the model by introducing bias.

We address these issues by presenting a new probabilistic approach, which is able to
learn human activities by exploiting additional information about the input data, that
may reflect on natural or auxiliary properties about classes and members of the classes
of the training data (see Fig. 6.1) and it is used for training purposes only and not for
predicting the true classes (where, in general, this information is missing). It is worth
noting that the proposed methodology is not limited to the use of a specific form of
privileged information, but it is general and may handle any form of additional data. We
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also discuss how the privileged information can be used for recognizing human activities
when the input may consist of data from different modalities.

Within this framework, we employ a new learning method based on hidden conditional
random fields (HCRFs) [27], called HCRF+-, which is able to capture the underlying hid-
den dynamics between the labels and the features in a way that is independent of the
learning function involving the additional feature set. In particular, the proposed HCRF+
method differentiates from previous approaches, which may also use the LUPI paradigm,
by incorporating privileged information in a supervised probabilistic manner, which fa-
cilitates the training process by learning the conditional probability distribution between
human activities and observations. We show that both maximum likelihood and maximum
margin learning methods may be used to estimate the model’s parameters. Furthermore,
we introduce a novel technique for automatic estimation of the optimal regularization
parameters for the learning process for both maximum likelihood and max-margin ap-
proaches. The method is adaptive as the regularization parameters are computed from
the training data through a self-training procedure.

Moreover, our method can efficiently manage dissimilarities in input data, which may
correspond to noise, missing data, or outliers, using a Student’s t-distribution to model
the conditional probability of the privileged information. Such dissimilarities may harm
the classification accuracy and lead to excessive sensitivity when input data is small or
contains large intra-class variations. In particular, the use of Student’s ¢-distribution is
justified by the property that it has heavier tails than a standard Gaussian distribution,
thus providing robustness to outliers [318].

The main contributions of this work can be summarized in the following points: (i)
a human activity recognition method is proposed, which exploits privileged information
in a probabilistic manner by introducing a novel classification scheme based on hidden
conditional random fields to deal with missing or incomplete data during testing; (ii)
both maximum likelihood and maximum margin approaches are incorporated into the
proposed HCRF+ model; (iii) a novel technique for adaptive estimation of the regular-
ization term during the learning process is introduced by incorporating both privileged
and original data. (iv) contrary to previous methods, which may be sensitive to outlying
data measurements, a robust framework for recognizing human activities is intergraded by
employing a Student’s ¢-distribution to attain robustness against outliers; (v) the generic
nature of our approach is emphasized with the use of samples from different modalities
(e.g., data samples may contain information from audio and visual cues) as no further
assumption about the kind of training information is made.

6.2 Robust Privileged Probabilistic Learning

We assume that a set of training labels is provided and each video sequence is pre-
processed to obtain a bounding box of the human in every frame and each person is
associated with a behavioral label. The model is general and can be applied to several
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Figure 6.2: Graphical representation of the chain structure model. The grey nodes are

*
%

the observed features (x;), the privileged information (z}), and the unknown labels (y),

respectively. The white nodes are the unobserved hidden variables (h).

activity recognition datasets. Our method uses HCRFSs, which are defined by a chained
structured undirected graph G = (V, &) (Fig. 6.2), as the probabilistic framework for
modeling the behavior of a subject in a video.

During training, a classifier and the mapping from observations to the label set for
the different configurations are learned. In testing, a probe sequence is classified into its
respective state using loopy belief propagation (LBP) [303].

6.2.1 HCRF+ Model Formulation

We consider a labeled dataset with N video sequences, which instead of paired input-

output samples D = {(x;;,%:)}/L; it consists of triplets D = {(x;;,X};, ;) }i.,, where

RM=xT"is an observation sequence of length 7" with j =1...7. For example,

X €
x;,; might correspond to the 5 frame of the i** video sequence. Furthermore, y; corre-
sponds to a class label defined in a finite label set ). In the context of robust learning
using a privileged information paradigm, additional information about the observations
x; is encoded in a feature vector x; ; € RMsxxT -~ Quch privileged information is provided
only at the training step and it is not available during testing. Note that we do not make
any assumption about the form of the privileged data.

In particular, x;; does not necessarily share the same characteristics with the original
data, but is rather computed as a very different kind of information, which may contain
verbal and/or non-verbal multimodal cues such as (i) visual features, (ii) semantic at-
tributes, (iii) textual descriptions of the observations, (iv) image/video tags, (v) human
poses, and (vi) audio cues. The goal of LUPI is to use the privileged information x}; as
a medium to construct a better classifier for solving practical problems than one would
learn without it. In what follows, we omit indices ¢ and j for simplicity.

The HCRF+ model is a member of the exponential family and the probability of the

96



class label given an observation sequence is given by:
pylx, x*;w) = > p(y, hlx,x";w)
h

(6.1)
— 3 exp (Bly hix, x5 w) — A(w)) |
h

where w = [0, w] is a vector of model parameters, and h = {hy, ho, ..., hr}, with h; € H
being a set of latent variables. In particular, the number of latent variables may be
different from the number of samples, as h; may correspond to a substructure in an
observation. Moreover, the features follow the structure of the graph, in which no feature
may depend on more than two hidden states h; and hy [27]. This property not only
captures the synchronization points between the different sets of information of the same
state, but also models the compatibility between pairs of consecutive states. We assume
that our model follows the first-order Markov chain structure (i.e., the current state affects
the next state). Finally, E(y, h|x;w) is a vector of sufficient statistics and A(w) is the
log-partition function ensuring normalization:

Alw) = logZZexp (E(y, h|x,x*;w)) . (6.2)

Different sufficient statistics E(y|x,x*;w) in (6.1) define different distributions. In
the general case, sufficient statistics consist of indicator functions for each possible con-
figuration of unary and pairwise terms:

E(y,h|x,x*;w) = Z D(y, hj, xj,%x3; 0) + Z U(y, hj, hy;w), (6.3)
JEV jkeE
where the parameters @ and w are the unary and the pairwise weights, respectively, that
need to be learned. Moreover, the potential functions correspond to the structure of the
graphical model as illustrated in Fig. 6.2. For example, a unary potential does not depend
on more than two hidden variables h; and hy, and a pairwise potential may depend on h;
and hy, which means that there must be an edge (4, k) in the graphical model.
The unary potential is expressed by:

Dy, hy,x;,x55:0) =D > dro(y, hjs 01.0) + Y d2(hj, x5562) + Y ¢3(hy, x5;03), (6.4)
j L J J

and it can be seen as a state function, which consists of three different feature functions.
The label feature function, which models the relationship between the label y and the
hidden variables h;, is expressed by:

¢1,£(y, hj; 91,@) = Z Z 01,21(3/ = )\)]uhj = a), (6-5)

AeY aeH

where 1(-) is the indicator function, which is equal to 1, if its argument is true and
0 otherwise. The number of the label feature functions is |Y| x |H|. The observation
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feature function, which models the relationship between the hidden variables h; and the
observations x;, is defined by:

¢2(hj,Xj; 02) = Z 0;]1(}1] = a)xj . (66)

acH
The number of the observation feature functions is considered to be |Y| x |My|. Finally,
the privileged feature function, which models the relationship between the hidden variables
number of functions and is defined

h; and the privileged information x3, has |V] x [ M-
by:
¢3(hy, x5;03) = Y 05 1(h; = a)x; . (6.7)
acH
The pairwise potential is a transition function and represents the association between
a pair of connected hidden states h; and hj and the label y. It is expressed by:

Uy, hj, hyyw) = > > wil(y = N1(hj =a)l(hy =1). (6.8)
P
a,beH
The number of the transition functions is || x |H|*. Note that the HCRF+ model keeps

a transition matrix for each label.

6.2.2 Maximum Likelihood Learning

In the training step the optimal parameters w* are estimated by maximizing the following

loss function:
N

1 . 1
L(w) = >3- log plyilxi, x}5 w) = o[ w]*. (6.9)

i=1 7\

The first term is the log-likelihood of the posterior probability p(y|x,x*; w) and quan-
tifies how well the distribution in (6.1) defined by the parameter vector w matches the
labels y, while X is a tuning parameter. It can be rewritten as:

log p(yi|xs, x;;w) =1log > _exp(E(y, h|x;, xj;w)) —log Y exp(E(y, h|x;, xj;w)).
h y'#y,h

(6.10)

2 and works as a

The second term in Eq. (6.9) is a Gaussian prior with variance o
regularizer. The use of hidden variables makes the optimization of the loss function non-
convex, thus, a global solution is not guaranteed and we can estimate w* that are locally
optimal. The loss function is optimized using a gradient-descent optimization method.
More specifically, in our experiments we used the limited-memory BFGS (LBFGS) method
[306] to minimize the negative log-likelihood of the data.

6.2.3 Maximum Margin Learning

We can easily alter the optimization problem of the loss function defined in Eq. (6.9) into

a max-margin problem by substituting the summation over the hidden states and the

98



labels in Eq. (6.10) with maximization [69]. The goal is to maximize the margin between
the score of the correct label and the score of the other labels. To learn the parameters
w* we need to minimize a loss function of the form:

L) =S Le L jwe
=T 20 (6.11)

s.t. max E(y,h|x;, x];w) — I&a}; E(y hlx;,x;w) <& —1and & >0, Vi.
vy,

Parameter A is the trade-off between the classification accuracy and the regularization
term. Note that although we add slack variables ¢ to max-margin optimization, they
eventually vanish. We do not estimate the slacks, but we replace them with the Hinge
loss error [319] that penalizes the loss when the constraints in Eq. (6.11) are violated:

l;(w) = max(0,1 + (m}elmx E(y,hlx;, x5 w) — max E(y, h|x;, x5 w))) . (6.12)
y'#y,
The optimization problem in (6.11) is equivalent to the optimization of the following

unconstrained problem:

L(w) = 3 lw) + gl (6.13)

i=1 i
However, the quantity max(0,-) is not differentiable and thus, Eq. (6.11) it is hard
to solve. To overcome this problem we adapt the bundle method [320], which uses sub-

gradient descent optimization algorithm.

6.2.4 Estimation of Regularization Parameters

Both maximum likelihood and max-margin loss functions introduce regularization pa-
rameters that control data fidelity and these regularization parameters in Egs. (6.9) and
(6.13), may be obtained in closed form. Here, we examine the case of maximum likeli-
hood optimization as the estimation of the regularization parameters for the max-margin
optimization is equivalent. We can rewrite the loss function in Eq. (6.9) as the sum of
individual smoothing functionals for each of the training samples N:

L(w) =Y {log p(yilxi, x;; w) — cui(w)||w|]*} , (6.14)

=1

Ai

where a;(w) = ——.
o

In general, tﬁe choice of the regularization parameter for the optimization of the loss

function should be a function of model parameters w. We consider a linear function f(-)

between «; and each term of the loss function:

N

a;(w) = f(.z {log p(yifxi, x;:w) — Oéi(W>||“’”2}>
1=1 (615)
g * 2
= L5 {lowptubeiw) — )
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where ; is determined by the sufficient conditions for convergence:

1 *

— < log p(yilxi, x;; w) — as(w)[[wl|*. (6.16)

(2

We assume that the privileged information is more informative for classifying human
actions than the regular information. Note that, this is the intuition of using of privileged
information as additional features for classification purposes and it may hold for most of
the cases. Thus, the loss of classifying human actions directly from x should be lower
than classifying from both x and x*:

log p(yi|xi; w) < log p(yi|xi, X} W) . (6.17)

We can then relax the problem and consider that Eq. (6.16) is satisfied when:

1
— = log p(yi[xi; w). (6.18)

Thus, the regularization parameter a; for the loss function is given by:
log p(yi[xi, X}’; W)
a; (W) = 1 )
— +||W
Yi Il (6.19)
_ logp(yilxi, xj;w)
log p(yi[xi; w) + [|w|[?

The regularization parameter o; may act as as the within-classification balance between
data and model parameters. In each step of the optimization process we adaptively
update the regularization parameter «; providing robustness to the trade-off between the
regularization terms.

Similarly, the regularization parameter «; for the loss function in the case of max-
margin optimization is given by:
_ li(w)
G(w) + [lw2

where (;(w) is the Hinge loss error for classification directly from the original data x:

a;(w)

(6.20)

Gi(w) = max(0,1 + (ml?x E(y,h|x;w) — max E(y' hlx;w))). (6.21)
y'#y,

6.2.5 Inference

Having computed the optimal parameters w* in the training step, our goal is to estimate
the optimal label configuration over the testing input, where the optimality is expressed
in terms of a cost function. To this end, we maximize the posterior probability and
marginalize over the latent variables h and the privileged information x*:

y = arg max p(y|x; w)
Y

= arg;naxz >_p(y, h,x"[x; w) (6.22)
h x*

= argmax 333 p(y, hlx, x7s wip(x'[x).
h x*

100



In the general case, the training samples x and x* may be considered to be jointly
Gaussian, thus the conditional distribution p(x*|x) is also Gaussian. We quantized the
continuous space of features to a large number of discrete values to approximate the true
value of the marginalization of Eq. (6.22). However, to efficiently cope with outlying
measurements about the training data, we consider that the training samples x and
x* jointly follow a Student’s t-distribution. Therefore, the conditional density function
p(x*|x) is also a Student’s ¢-distribution St(x*|x; u*, 3*, v*), where x* forms the first My-
components of (x*, X)T, x comprises the remaining M — My~ components, u* is the mean
vector, ¥* is the covariance matrix and v* € [0, 00) corresponds to the degrees of freedom
of the distribution [321]. Note that by letting the degrees of freedom v* go to infinity,
we can recover the Gaussian distribution with the same parameters. If the data contain
outliers, the degrees of freedom parameter v* is weak and the mean and covariance of the
data are appropriately weighted in order not to take into account the outliers. More details
on how the parameters of the conditional Student’s ¢-distribution p(x*|x) are estimated
can be found in Appendix A.

Although both distributions p(y, h|x,x*; w) and p(x*|x) belong to the exponential
family, the graph in Fig. 6.2 is cyclic, and therefore an exact solution to Eq. (6.22) is
generally intractable. For this reason, approximate inference is employed for estimation
of the marginal probability by applying the LBP algorithm [303].

6.2.6 Mapping of Discrete Features to Continuous Space

Our model is able to learn the relationship between the input data and the semantic fea-
tures. Directly comparing the semantic attributes with the raw data is not well principled,
as semantic attributes are binary while raw data are not. To this end, we jointly calibrate
the different modalities by learning a multiple output linear regression model [152]. Let
x € RM*d be the input raw data and a € RM*P be the set of semantic attributes. Our
goal is to find a set of weights v € R%*P, which relates the attributes to the raw features
by minimizing a distance function across the input samples and their attributes:

arg min [y — al[* + v . (6.23)

where ||v||? is a regularization term and 7 controls the degree of the regularization. The
regularization parameter 17 was chosen to give the best solution by using a cross validation
scheme with n € [107* 1]. Following a constrained least squares (CLS) optimization
problem and minimizing ||v||* subject to xy = a, then Eq. (6.23) has a closed form

Ta, where I is the identity matrix. Note that solving this

solution v = (xTx + 77])_1 X
minimization problem is fast since the number of attributes is relatively low, and needs
to be solved only once during training.

One drawback of combining features of different modalities is the different frame rate
that each modality may have. Thus, instead of directly combining audio and visual
features together, we used canonical correlation analysis (CCA) [228] to better exploit the

correlation between the different modalities by projecting them onto a common subspace.
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6.3 Experimental Results

We evaluated our method on four publicly available datasets in challenging human activity
recognition problems. Three different types of privileged information were used: audio
signal, human pose, and semantic attribute annotation, and we compared our method
with the state-of-the-art.

6.3.1 Datasets

Parliament [5]: This dataset contains 228 video sequences of political speeches, be-
longing in three behavioral categories: friendly, aggressive, and neutral. It is described
in detail in Chapter 4. Figure 5.3 depicts some representative frames of the Parliament

dataset.

Figure 6.3: Sample frames from the proposed Parliament dataset. (a) Friendly, (b)
Aggressive, and (c) Neutral.

TV human interaction (TVHI) [6]: The TVHI, is a group of 300 video sequences
collected by different TV shows and contain four kinds of interactions: high fives, hugs
and kisses. This dataset was also used and described in Chapter 5. Some representative
frames of the TVHI dataset are illustrated in Figure 6.4.

Figure 6.4: Sample frames from the TVHI dataset. (a) Hand shake, (b) High five, (c)
Hug, and (d) Kiss.

Two-person interaction (TPI) [7]: This dataset is a collection of approximately
300 video sequences depicting two-person interactions captured by a Microsoft Kinect
sensor. The dataset contains eight different interaction classes including approaching,
departing, kicking, pushing, shaking hands, hugging, exchanging objects, and punching,
which are performed by seven different participants. It also contains three-dimensional
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coordinates of 15 joints for each person at each frame. Figure 6.5 shows some sample
frames for this dataset.

Figure 6.5: Sample frames from the TPI dataset. (a) Approach, (b) Depart, (c¢) Kick, (d)
Push, (e) Shake hands, (f) Hug, (g) Exchange objects, and (h) Punch.

Unstructured social activity attribute (USAA) [8]: The USAA dataset includes
eight different semantic class videos of social occasions such as birthday party, graduation
party, music performance, non-music performance, parade, wedding ceremony, wedding
dance, and wedding reception. It contains around 100 videos per class for training and
testing. Each video is annotated with 69 attributes, which can be broken down into five
broad classes: actions, objects, scenes, sounds, and camera movement. Figure 6.6 depicts
some representative frames of the USAA dataset.

6.3.2 Feature Selection

For the evaluation of our method on all datasets, we used spatio-temporal interest points
(STIP) [97] as our base video representation. First, we extracted local space-time features
at a rate of 25 fps using a 72-dimensional vector of HoG and 90-dimensional vector of HoF
feature descriptors [241] for each STIP, which captures the human motion between frames.
These features were selected because they can capture salient visual motion patterns in an
efficient and compact way. In addition, for the TVHI dataset, we also used the provided
annotations, which are related to the locations of the persons in each video clip, including
the bounding boxes that contain them, the head orientations of each subject in the clips,
the pair of subjects who interact with each other, and the corresponding labels. For
our experiments on this dataset, we used audio features as privileged information. More
specifically, we employed the mel-frequency cepstral coefficients (MFCC) [308] features
and their first and second order derivatives. The audio signal was sampled at 16 KHz
and processed over 10 ms using a Hamming window with 25% overlap. The audio feature
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Figure 6.6: Sample frames from the USAA dataset. (a) Birthday party, (b) Gradua-
tion party, (¢) Music performance, (d) Non-music performance, (e) Parade, (f) Wedding
ceremony, (g) Wedding dance, and (h) Wedding reception.

vector consisted of a collection of 13 MFCC coefficients along with the first and second
derivatives forming a 39 dimensional audio feature vector.

Furthermore, for the TPI dataset, we used the poses provided by the dataset as priv-
ileged information. In particular, along with the positions of the locations of the joints
for each person in each frame, we used six more feature types concerning joint distance,
joint motion, plane, normal plane, velocity, and normal velocity as described by Yun et
al. [7]. As basic representation of the video data, we used the STIP features.

Finally, we used the USAA dataset and the provided attribute annotation as privileged
information to characterize each class not with an individual label, but with a feature
vector of semantic attributes. As a representation of the video data, we used the provided
low-level features, which correspond to SIFT [322], STIP, and MFCC features. Table 6.1
summarizes all forms of features used either as regular or privileged for each dataset in
our algorithm during training and testing.

6.3.3 Model Selection

The optimal number of hidden states of the model in Fig. 6.2 was estimated based on cross
validation, varying the number of hidden states from 3 to 20. The L, regularization scale
term o for the non-adaptive methods was set to 10, with k € {—3,...,3}. Finally, our
model was trained with a maximum of 400 iterations for the termination of the LBFGS
optimization method.

The evaluation of our method was performed using 5-fold cross validation to split the
datasets into training and test sets, according to the documentation described in each
dataset, and we report here the average results over all the examined configurations.

Four variants of our approach are proposed, called Mazimum Likelihood LUPI Hidden
Conditional Random Field (ml-HCRF+), Adaptive Mazimum Likelihood LUPI Hidden
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Table 6.1: Types of features used for human activity recognition for each dataset. The
numbers in parentheses indicate the dimension of the features. The checkmark corre-
sponds to the usage of the specific information as regular or privileged. Privileged features
are used only during training.

Dataset Features (dimension) Regular Privileged
STIP (162) v
Parli
arliament [5] MFCC (39) Y
STIP (162) v
TVHI [6] Head orientations (2) v
MFCC (39) v
STIP (162) v
TPI
7 Pose (15) v
STIP (162) v
SIFT (128) v
AA
USAA[8] MFCC (39) v
Attributes (69) v

Conditional Random Field (aml-HCRF+), Maximum Margin LUPI Hidden Conditional
Random Field (mm-HCRF+), and Adaptive Mazximum Margin LUPI Hidden Conditional
Random Field (amm-HCRF+ ), depending on which learning method we apply (i.e., max-
imum likelihood or max-margin) and wether we automatically estimate the regularization

parameters of the corresponding loss function or not.

6.3.4 Evaluation of Privileged Information

The classification accuracy with respect to the number of hidden states is depicted in
Fig. 6.7. We may observe that all four variants have a similar behavior as the number of
hidden states increases. The max-margin HCRF+ approach seems to perform better than
the maximum likelihood HCRF+ approach for all datasets. Moreover, the performance
of the adaptive methods is equally good in many cases they perform higher than the
non-adaptive methods HCRF+ variants. The optimal number of hidden states for the
Parliament dataset is eight for both the non-adaptive approaches and 11 for the adaptive
approaches, respectively. The best accuracy for the TVHI dataset is seven, when the
maximum likelihood HCRF+ method is used, while the max-margin HCRF+ variant
requires more hidden states (12) to reach the maximum accuracy. On the other hand, the
adaptive methods may achieve their highest performance with less hidden states. The
maximum accuracy for the TPI dataset is reached for 11 hidden states for the proposed
maximum likelihood HCRF+ model and for 14 hidden states for its adaptive counterpart.
The max-margin HCRF+ approach requires at least 16 hidden states to achieve the
highest accuracy and its adaptive form requires only 11. Finally, the USAA dataset
achieves its best accuracy for both the non-adaptive approaches in 15 hidden states their
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Figure 6.7: Comparison of the recognition accuracy of the four different variants of the
proposed method and standard HCRF model with respect to the number of hidden states
for (a) the Parliament [5], (b) the TVHI [6], (c) the TPI [7], and (d) the USAA [§]
datasets. The text in parentheses in the legend of each figure corresponds to the type of
information used both for training and testing.

adaptive counterpart methods require 11 and nine hidden states, respectively.

In Fig. 6.7 we may observe that the standard HCRF model suffers from large fluctu-
ations in recognition accuracy as the number of hidden states increases. This is because
the number of hidden states plays a crucial role in the recognition process. Many hidden
states may lead to model overfitting, while few hidden states may cause underfitting.
This would be resolved by the estimation of the optimal number of hidden states during
learning, but this is not straightforward for this model. For example, when only the visual
information is used for both training and testing, we may see that there exist very large
variations in the recognition accuracy for all datasets and for few hidden states, as this
number may be small and the model may not generalize under such poor conditions. We
may also observe that for these datasets the performance of each modality alone is kept
significantly lower for all configurations of hidden states, which reinforces the fact that
privileged information may help to construct better classification models.
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Figure 6.8: Recognition performance of the proposed maximum likelihood variant as
function of the regularization parameter and the number of hidden states for (a) the
Parliament [5], (b) the TVHI [6], (c) the TPI [7] and (d) the USAA [8] datasets.

The behavior of the proposed adaptive model as a function of the regularization pa-
rameters and the number of hidden states for all four datasets for the aml-HCRF+ and
amm-HCRF+ is depicted in Fig. 6.8 and Fig. 6.9, respectively. To be consistent to the
non-adaptive methods, the real-valued regularization parameters were quantized from the
continuous to the discrete space with a(w) = 10¥,k € {—2,...,2} and the results were
averaged. We may observe that the behavior of the recognition accuracy is smooth for
the different values of a(w) and the number of hidden states, which indicates that the
automatic estimation of o(w) is robust and may lead to high classification accuracies with
performances close to the non-adaptive approaches.

6.3.5 Comparison of Learning Frameworks

We compare the results of our method with several state-of-the-art methods. In particu-
lar, to show the benefit of using robust privileged information we compared our method
both with state-of-the-art methods with and without incorporating the LUPI paradigm.
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Figure 6.9: Recognition performance of the proposed max-margin variant as function of
the regularization parameter and the number of hidden states for (a) the Parliament [5],
(b) the TVHI [6], (c) the TPI [7] and (d) the USAA [8] datasets.

The first chronologically method that integrated the LUPI framework for classification
purposes was SVM+ [313]. In a nutshell, SVM+ consists of optimizing the hyperplane pa-
rameters such that it can minimize the probability of incorrect classifications and increase
the convergence rate. A brief description of SVM+ can be found in Appendix B. Also,
to demonstrate the efficacy of the robust privileged information to the problem of human
activity recognition and show how it can be used for constructing accurate classifiers, we
compared it with ordinary SVM and HCRF, as if they could access both the original
and the privileged information at test time. This means that we do not differentiate
between regular and privileged information, but use both forms of information as regu-
lar to infer the underlying class label instead. Moreover, to complete the study, we also
trained an HCRF model that uses only the regular and only the privileged information
for training and testing. To distinguish between the different types of information that
the HCRF model may use, we specifically report the type of feature in parentheses after
the HCRF caption. Furthermore, for the SVM+ and SVM we consider a one-versus-one
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Table 6.2: Comparison of the classification accuracies (%) on Parliament dataset [5].

Method Overall Aggressive Friendly Neutral
Methods without privileged information

Vrigkas et al. [5] 85.5 100.0 60.7 95.8
Wang and Schmid [323] 66.6 67.9 60.0 71.1
SVM [25] 72.6 76.9 69.8 71.1
HCRF (visual4-audio) [27]  97.6 92.7 100.0 100.0
HCRF (visual) [27] 67.1 50.0 66.7 84.6
HCRF (audio) [27] 2.7 85.7 55.6 76.9
Methods with privileged information

Wang and Ji [316] 59.2 77.9 39.2 60.5
Sharmanska et al. [317] 57.7 57.1 58.1 57.8
Wang et al. [324] 96.9 90.7 100.0 100.0
SVM+ [313] 78.4 77.5 68.9 88.7
ml-HCRF+ 97.6 92.9 100.0 100.0
aml-HCRF+ 83.5 85.7 80.0 84.6
mm-HCRF+ 96.5 92.6 100.0 97.4
amm-HCRF+ 82.3 85.7 61.1 100.0

decomposition of multi-class classification scheme and average the results for every possi-
ble configuration. Finally, the optimal parameters for the SVM and SVM+ were selected
using cross validation.

Table 6.2 compares the proposed approach with state-of-the-art methods on the human
activity classification task on the Parliament dataset. The proposed maximum likelihood
HCRF+ method has highest recognition accuracy (97.6%) among the other variants of
the proposed model, while it achieves the same accuracy with the standard HCRF model.
Although both the adaptive HCRF+ approaches may perform worse than the non adap-
tive variants, they can still achieve better results than the majority of the state-of-the-art
methods. The estimation of the regularization parameters for the adaptive variants of
the proposed method depends on the input features. Features that belong to the back-
ground may influence the estimation of the regularization parameters as they may serve
as background noise.

It is also worth mentioning that our method is able to increase the recognition accuracy
by nearly 38% with respect to the methods of Wang and and Ji [316] and the method of
Sharmanska et al. [317], which also incorporate the LUPI paradigm. This significantly
high increase in recognition accuracy indicates the strength of the proposed method.
Moreover, the performance of the proposed approach on the Parliament dataset is higher
approximately by 19% than the SVM~+ model and 25% than the standard SVM approach.
The Parliament dataset contains large intra-class variabilities. For example the interaction
between an arm lift and the raise in the voice may not exclusively be combined together
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Figure 6.10: Confusion matrices for the classification results of the proposed HCRF+
approach for the Parliament dataset [5] for (a) the ml-HCRF+, (b) the aml-HCRF+, (c)
the mm-HCRF+, and (d) the amm-HCRF+ variants.

as some features may act as outliers and affect the classification accuracy.

The resulting confusion matrices of the proposed method for the optimal number
of hidden states for the Parliament dataset are depicted in Figure 6.10. It is worth
mentioning that for this dataset the classification errors between different classes are
relatively small, while the maximum likelihood HCRF+ approach may perfectly recognize
the classes friendly and neutral.

Table 6.3 demonstrates the classification results on the TVHI dataset. For this dataset,
we significantly managed to increase the classification accuracy by approximately 10%,
with respect to the LUPI-based SVM+ and Wang and Ji [316] approaches, as our approach
achieves very high recognition accuracy for this dataset (84.9%). The improvement of our
method compared to the method of Sharmanska et al. [317] was even higher. On the
other hand, the method of Wang et al. [324] was able to yield similar results to our
ml-HCRF+ approach, as it achieved an accuracy of 84.4%. It is also worth mentioning
that when our method is compared with methods that do not use privileged information,
it is able to increase the recognition accuracy. Also, if only privileged information (HCRF
(audio)) is used as regular features for classification, the recognition accuracy is notably
lower than when using visual information (HCRF (visual)) for the classification task. In
general, when privileged information alone is used as regular it may not be suffiecient
for correct classification of an action into its respective category, since finding proper
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Table 6.3: Comparison of the classification accuracies (%) on TVHI dataset [6].

Method Overall Hand Shake High Five Hug Kiss
Methods without privileged information

Patron-Perez et al. [6] 64.2 57.8 51.1 71.2 76.5
Hoai and Zisserman [251] 56.3 55.8 60.2 60.8 48.2
Marin-Jiménez et al. [58] 54.5 36.3 59.4 66.9 40.9
Wang and Schmid [323] 76.1 76.2 74.6 74.8 74.6
SVM [25] 75.9 74.6 76.3 75.8 76.3
HCRF (visual+audio) [27]  81.3 87.5 56.3 87.5 93.8
HCRF (visual) [27] 60.9 56.3 25.0 87.5 75.0
HCRF (audio) [27] 35.9 12.5 12.5 43.8 75.0
Methods with privileged information

Wang and Ji [316] 74.8 74.6 76.3 722 76.3
Sharmanska et al. [317] 65.2 78.3 54.8 74.3  53.5
Wang et al. [324] 84.4 93.8 81.2 75.1 875
SVM+ [313] 75.0 74.6 76.3 72.8 76.2
ml-HCRF+ 84.9 97.2 81.3 729 87.5
aml-HCRF+ 83.6 93.8 81.3 71.8 875
mm-HCRF+ 83.6 93.8 81.3 72.5 875
amm-HCRF+ 82.9 93.8 81.3 68.8 87.5

privileged information is not always a straightforward process.

Figure 6.11 illustrates the confusion matrices of four variant of the proposed method
for the TVHI dataset. The maximum likelihood HCRF+ and the max-margin HCRF+
have the smallest classification errors. The category hand shake is the most commonly
confused class as the remaining three classes have many false positives for this class. This
is due to the fact that the TVHI dataset has large intra-class variability.

The classification accuracies for the TPI dataset are reported in Table 6.4. The best
accuracy was achieved by the ml-HCRF+ approach, where we were able to improve the
accuracy by nearly 12% with respect to the method of Yun et al. [7], while compared to the
standard HCRF model, we were better by nearly 4%. Comparing our method to methods
that do not use privileged information we increased the classification accuracy in all cases.
An interesting characteristic of the non-privileged methods HCRF (visual) and HCRF
(audio) is that despite the fact that for some classes these methods were able to perfectly
recognize the underlying activity, they failed to recognize some of the classes as the rate
of false positives may reach 100%. This observation, reinforces the intuition that different
modalities may help in constructing better classifiers. Considerably high improvements
are also reported when comparing our methods with state-of-the-art methods that employ
privileged information. Closer to our results were the method of Wang et al. [324]. We
may also observe that all four variants outperform all privileged and non-privileged based
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Figure 6.11: Confusion matrices for the classification results of the proposed HCRF+
approach for the TVHI dataset [6] for (a) the ml-HCRF+, (b) the aml-HCRF+, (c) the
mm-HCRF+, and (d) the amm-HCRF+ variants.

Table 6.4: Comparison of the classification accuracies (%) on TPI dataset [7].

Method Overall Approach Depart Kick Push Shake Hands Hug Exchange Objects Punch
Methods without privileged information

Yun et al. [7] 73.8 88.0 96.0 71.0  69.0 69.0 50.0 79.0 63.0
Wang and Schmid [323] 79.6 76.2 74.6 78.6 789 81.4 79.2 84.3 83.5
SVM [25] 79.4 74.9 67.2 68.7 76.9 100.0 59.4 89.4 100.0
HCRF (visual+pose) [27] 814 100.0 33.3 100.0 66.7 66.7 75.0 100.0 83.3
HCRF (visual) [27] 69.8 100.0 100.0  100.0  66.7 100.0 0.0 100.0 0.0
HCRF (pose) [27] 62.5 100.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0
Methods with privileged information

Wang and Ji [316] 62.4 79.5 61.4 59.2  60.0 59.7 60.5 56.4 62.6
Sharmanska et al. [317] 56.3 51.6 79.2 40.9  60.0 74.1 39.9 43.6 61.2
Wang et al. [324] 83.7 100.0 66.7 75.0  66.7 66.7 75.5 100.0 100.0
SVM+ [313] 79.4 76.4 72.6 732 915 70.2 73.2 81.4 100.0
ml-HCRF+ 85.4 100.0 83.3 100.0 100.0 66.7 33.3 100.0 100.0
aml-HCRF+ 79.8 100.0 100.0 75.0 778 100.0 50.0 66.7 66.7
mm-HCRF+ 83.7 100.0 75.0 100.0 100.0 66.7 25.0 100.0 100.0
amm-HCRF+ 82.8 100.0 66.7 834  66.7 66.7 75.0 100.0 100.0

methods.

The confusion matrices for the TPI dataset are depicted in Figure 6.12. Note that the
classification error is relatively small, as only a few classes are confused with each other
(e.g., the class hugging may be confused with the class hand shaking), in all four variants.
For both the maximum likelihood and the the max-margin HCRF+ approaches, five out
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Figure 6.12: Confusion matrices for the classification results of the proposed HCRF+
approach for the TPI dataset [7] for (a) the ml-HCRF+, (b) the aml-HCRF+, (c) the
mm-HCRF+, and (d) the amm-HCRF+ variants.

Table 6.5: Comparison of the classification accuracies (%) on USAA dataset [8].

Method Overall Birthday Graduation Music Non-music Parade Ceremony Dance Reception
Methods without privileged information

Wang and Schmid [323] 55.6 52.8 55.3 57.1 58.3 60.2 49.7 59.6 40.1
SVM [25] 474 47.5 47.9 49.4 45.7 48.7 38.2 36.5 45.9
HCRF (visual4attributes)[27] ~ 54.0 79.8 59.6 48.5 68.3 61.5 44 69.8 21.2
HCRF (visual) [27] 55.5 74.8 50.5 76.4 50.5 79.1 4.3 80.2 19.2
HCRF (attributes) [27] 37.4 22.2 41.4 63.7 47.5 35.2 14.1 56.3 0.0
Methods with privileged information

Wang and Ji [316] 48.5 32.9 44.6 52.7 48.9 52.0 494 54.7 53.0
Sharmanska et al. [317] 56.3 56.9 47.8 62.0 62.6 67.1 51.8 57.5 44.4
Wang et al. [324] 55.3 58.6 68.7 58.4 67.3 4.7 174 75.0 154
SVM+ [313] 48.5 52.7 49.9 53.3 50.9 51.6 48.7 41.1 32.5
ml-HCRF+ 58.1 78.8 59.6 74.3 60.4 70.3 11.3 87.5 23.5
aml-HCRF+ 57.5 78.8 57.6 78.2 70.3 67.0 3.3 78.1 23.1
mm-HCRF+ 56.8 79.8 63.6 79.2 59.4 54.9 14.6 85.4 17.5
amm-HCRF+ 59.4 78.8 61.6 7.2 69.3 69.2 18.3 79.2 21.2

of the eight classes were perfectly recognized. Accordingly, both the adaptive maximum
likelihood and max-margin HCRF+ methods have also performed remarkably well and
were able to perfectly recognize three out of eight categories.

The classification results for the USAA dataset are summarized in Table 6.5. The
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Figure 6.13: Confusion matrices for the classification results of the proposed HCRF+
approach for the USAA dataset [8] for (a) the mI-HCRF+, (b) the aml-HCRF+, (¢) the
mm-HCRF+, and (d) the amm-HCRF+ variants.

combination of both raw data and attribute representation of human activities on the
USAA dataset significantly outperforms the SVM+ baseline and the method of Wang
and Ji [316] by increasing the classification accuracy by approximately 11% for the amm-
HCFR+ model. An improvement of 3% with respect to the methods of Sharmanska et al.
[317] and Wang et al. [324] was also achieved. Furthermore, the adaptive variants of the
proposed method perform better than their non-adaptive counterparts for this dataset.
Automatic estimation of the regularization parameters provides more flexibility to the
model as it allows the model to adjust its behavior according to the training data.

In general, our method is able to robustly use privileged information in a more effi-
cient way than the SVM+ and the other LUPI based methods, by exploiting the hidden
dynamics between the video clips and the privileged information. We can also observe
that the proposed method outperforms both the SVM and HCRF models. Note that the
HCRF (attributes) approach shows the lowest results among all other methods as the use
of binary features for training and testing may contain inherent biases and thus model
cannot generalize under unknown video sequences. However, the combination of visual
and semantic features does not suffer from the biasing problem due to feature calibration
and their projection to a common subspace using Eq. (6.23).

Figure 6.13 depicts the confusion matrices for the USAA dataset. It is interesting to
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Table 6.6: p-values of the proposed method for the Parliament dataset [5].

Method MLHCRF+ AMLHCRF+ MMHCRF+ AMMHCRF+
Vrigkas et al. [5] 0.0154 0.5978 0.1759 0.5610
Wang and Schmid [323] 0.0011 0.0001 0.0015 0.0345
SVM [25] 0.0022 0.0001 0.0022 0.0149
HCRF [27] 0.1283 0.9883 0.6074 0.9055
HCRF (visual) [27] 0.0234 0.0429 0.0270 0.0440
HCRF (audio) [27] 0.0064 0.0465 0.0089 0.0448
Wang and Ji [316] 0.0131 0.0184 0.0142 0.0189
Sharmanska et al. [317] 0.0005 0.0001 0.0004 0.0282
Wang et al. [324] 0.0128 0.1988 0.4613 0.5955
SVM+ [313] 0.0102 0.0116 0.0152 0.0201

observe that for this dataset the different classes may be strongly confused. For exam-
ple, the class wedding ceremony is confused with the class birthday party and the class
wedding reception is confused with the class non-music performance as the dataset has
large intra-class variabilities, while the corresponding classes may share the same attribute
representation as different videos may have been captured under similar conditions.

The main strength of the proposed method is that it achieves remarkably good clas-
sification results, when the LUPI framework is incorporated with the standard HCRF
model. The probabilistic approach of privileged learning and the automatic estimation
of the regularization parameters provide flexibility to the model, which constitute an im-
portant cue for high classification performance. The performance of the adaptive based
methods is close to the non-adaptive ones and in many cases it is higher. Moreover, as
the regularization parameters are estimated during training from the training examples,
it is not necessary to re-estimate these parameters for a new problem, which reduces the
required time for performing cross-validation on the data.

In order to provide a statistical evidence of the recognition accuracy, we computed
the p-values of the obtained results with respect to the compared methods. The null
hypothesis was defined as: the mean performances of the proposed model are the same
as those of the state-of-the-art methods; and the alternative hypothesis was defined as:
the mean performances of the proposed model are higher than those of the state-of-the-
art methods. Paired t-tests showed that the results were statistically significant for all
datasets.

For the Parliament dataset (Table 6.6), we may observe that for the majority of the
comparisons all four variant of the proposed approach reject the null hypothesis as all
values are greater than the critical value (95% of significance level). When the proposed
method is compared to the HCRF model, which uses both audio and visual modalities
for training and testing, the p-values are grater than the threshold of 0.05. However,
this does not mean that our results were achieved due to chance as both the proposed
method and the HCRF model may yield comparable results. The p-values for the TVHI
dataset are reported in Table 6.7. The null hypothesis is rejected for the majority of the
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Table 6.7: p-values of the proposed method for the TVHI dataset [6].

Method MLHCRF+ AMLHCRF+ MMHCRF+ AMMHCRF+
Patron-Perez et al. [6] 0.0185 0.0191 0.0178 0.0252
Hoai and Zisserman [251] 0.0033 0.0034 0.0031 0.0049
Marin-Jiménez et al. [58] 0.0127 0.0129 0.0123 0.0157
Wang and Schmid [323] 0.0323 0.0366 0.0320 0.0494
SVM [25] 0.0487 0.0453 0.0486 0.0414
HCRF [27] 0.0319 0.0374 0.0367 0.0407
HCRF (visual) [27] 0.0607 0.0672 0.0650 0.0765
HCRF (audio) [27] 0.0100 0.0098 0.0096 0.0108
Wang and Ji [316] 0.0273 0.0275 0.0241 0.0451
Sharmanska et al. [317] 0.0148 0.0201 0.0186 0.0275
Wang et al. [324] 0.3540 0.8584 0.8668 0.8812
SVM+ [313] 0.0301 0.0309 0.0273 0.0500

Table 6.8: p-values of the proposed method for the TPI dataset [7].

Method MLHCRF+ AMLHCRF+ MMHCRF+4+ AMMHCRF+
Yun et al. [7] 0.0474 0.0476 0.1044 0.0942
Wang and Schmid [323] 0.2317 0.5020 0.3312 0.2795
SVM [25] 0.2278 0.4992 0.3203 0.3175
HCRF [27] 0.2942 0.4617 0.2942 0.2128
HCRF (visual) [27] 0.0143 0.0216 0.0179 0.0236
HCRF (pose) [27] 0.0327 0.0187 0.0353 0.0870
Wang and Ji [316] 0.0076 0.0058 0.0178 0.0011
Sharmanska et al. [317] 0.0051 0.0001 0.0110 0.0068
Wang et al. [324] 0.3033 0.5917 0.4116 0.2203
SVM+ [313] 0.2095 0.5106 0.3192 0.2994

cases. That is, for two out of 12 cases the p-values were less than the significance level
of 0.05. Therefore, we may conclude that the null hypothesis can be rejected and the
improvements obtained by our model are statistically significant.

Table 6.8 presents the statistical significance values for the TPI dataset. We may
observe that the null hypotheses is rejected for only half of the cases, while for the rest
methods the p-values are greater than the significant threshold. However, the rejection
of the null hypothesis does not necessarily indicate that the results are not practical
significance. Finally, the statistical significance values between the proposed method and
the different state-of-the-art methods for the USAA dataset are shown in Table 6.9. We
may see that for almost all cases the null hypothesis is rejected. In general, we may
conclude that the null hypothesis can be rejected for and the improvements obtained by
our model are statistically significant and not due to chance.
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Table 6.9: p-values of the proposed method for the USAA dataset [8].

Method MLHCRF+ AMLHCRF+ MMHCRF+ AMMHCRF+
Wang and Schmid [323] 0.0295 0.0359 0.0368 0.0222
SVM [25] 0.0465 0.0.0399 0.1024 0.0492
HCRF [27] 0.0505 0.0745 0.1353 0.0219
HCRF (visual) [27] 0.0404 0.1167 0.1547 0.0355
HCRF (attributes) [27] 0.0018 0.0029 0.0017 0.0001
Wang and Ji [316] 0.0158 0.0198 0.0200 0.0122
Sharmanska et al. [317] 0.3975 0.4575 0.4727 0.3227
Wang et al. [324] 0.1719 0.2739 0.3129 0.0810
SVM+ [313] 0.0108 0.0141 0.0137 0.0468

6.4 Conclusion

To address the problem of missing information, a novel probabilistic classification model
based on robust learning using a privileged information paradigm, called HCFR+4, was
presented. The proposed model is made robust using Student’s ¢-distributions to model
the conditional distribution of the privileged information. Two variants for training in
the LUPI framework were proposed. The first variant uses maximum likelihood (MIL-
HCRF+) and the second uses maximum margin (MMHCFR+) learning. Moreover, the
regularization parameters of the loss functions for both maximum likelihood and max-
margin approaches were automatically estimated allowing the model to be more flexible.

Using auxiliary information about the input data, the proposed model was able to
produce better classification results than the standard HCRF [27] approach by incorpo-
rating into the classification model auxiliary information about the input data, which is
available only during model training. The performance of the proposed method was eval-
uated on four publicly available datasets and various forms of data that can be used as
privileged were tested. The experimental results indicated that robust privileged informa-
tion along with the regular input data for training the model ameliorates the recognition
performance.

The proposed HCRF+ method and its variants achieved notably higher performance
than all the compared classification schemes. In particular, the proposed method is able
to flexibly understand multimodal human activities with high accuracy, when not the
same amount of information is available during testing. Also, high recognition accuracy
with less effort than standard cross validation based classification schemes was achieved
by automatically estimating the regularization parameters during learning. Since the
combination of multimodal data falls natural to the human perception of understanding
complex activities, the incorporation of such information to the proposed model allows
us to significantly increase the recognition accuracy for natural video sequences. Fur-
thermore, it was shown that the combination of multimodal data constitute a strong
attribute for discriminating between different classes in real-world vision problems, rather
than learning each modality separately.
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CHAPTER 7

ACTIVE PRIVILEGED LEARNING OF
HuUuMAN ACTIVITIES FROM WEAKLY
LABELED SAMPLES

7.1 Introduction
7.2 Active Privileged Leaning
7.3 Experimental Results

7.4 Conclusion

7.1 Introduction

Most of the recognition systems including classification systems based on the LUPI
paradigm assume that labeled training data are easy to obtain. However, knowing a
priori the label of all training examples may not always be feasible for large databases
as the cost for manually labeling all samples may be prohibitively large. To address this
limitation, active learning has been proposed [325]. The idea of active learning is closely
related to semi-supervised learning, where during training, labeled and unlabeled data
co-exist. The aim of active learning is to actively select the most informative unlabeled
samples according to a specified criterion, query their label and use them as training data
to construct a stronger classifier. Active learning has been used with several classifica-
tion models such as SVM [326], conditional random fields [327] and radial basis function
networks [328].

An interesting application of active learning is the automatic annotation of ongoing
activities in unsegmented video sequences for detecting and localizing human actions
[254]. Hasan and Roy-Chowdhury [329] proposed an incremental algorithm for actively
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learning new actions from streaming videos. However, one of the main problems of active
learning is how to define an effective criterion for selecting unlabeled samples [330]. To
this end, the same authors [331] combined entropy and mutual information to handle
inter and intra-relationships between training data through incremental update of the
classification model to learn human activities. Finally, Long et al. [332] considered an
action recognition method that exploits active learning to cope with multiple and noisy
labels.

Previous methods can either handle information that is not available during testing,
or cope with missing labels during training but cannot address both problems simultane-
ously. In this chapter, a novel classification method that combines the LUPI paradigm
and active learning for identifying human activities in a semi-supervised framework us-
ing hidden conditional random fields (HCRFs) [27], called active-HCRF+ (a-HCRF+) is
presented. The proposed method exploits privileged information as an additional input
during training to learn the conditional probability distribution between human activities
and observations. To reduce tedious human effort in data annotation, an incremental
pool-based active learning technique is adopted to actively select unlabeled training sam-
ples for which the uncertainty about their actual class label is reduced.

7.2 Active Privileged Leaning

We consider a labeled dataset D = {(x;;,X};, ;) }iL, with N video sequences, where
x;; € RM>T is an observation sequence of length T with j = 1...T, which belongs in
feature space X. For example, x;; might correspond to the j™ frame of the i*" video
sequence. Furthermore, y; corresponds to a class label defined in a finite label set ).
Also additional information about the observations x; is encoded in a feature vector
X;; € RMx**T and belongs to feature space X*. This information is provided only at the
training step and it is not available during testing, while not any assumption about the
form of the privileged data is made. In what follows, we omit indices ¢ and j for simplicity.

7.2.1 a-HCRF+ Model Formulation

The a-HCRF+ model is defined by a chained structured undirected graph G = (V. €) (Fig.
7.1). The proposed model is a member of the exponential family and the probability of
the class label given an observation sequence is given by:

plylx, x*;w) = > p(y, hix,x*;w)
" ) (7.1)
= mzh:exp (E(y,hlx,x*;w)) ,

where h = {hy, hy, ..., hr}, with h; € H is a set of latent variables and w = [0, w] is a
vector of model parameters. Finally, F(y, h|x;w) is a function of sufficient statistics and
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Figure 7.1: Graphical representation of the chain structure model. The grey nodes are
the observed features (z; and x}), and the unknown labels (y). The white nodes are the
hidden variables (h).

A(w) is the partition function ensuring normalization:

A(w) =D exp (E(y hlx,x";w)) . (7.2)
y h
Different sufficient statistics E(y|x,x*;w) in Eq. (7.1) define different distributions.
Generally, sufficient statistics consist of indicator functions for each possible configuration
of unary and pairwise terms:

E(yu h’X, X*; W) = Z (I)(ya hj7 Xj7 X;a 0) + Z \I/(y) hj7 hk; w) ’ (73)
jEV ke
where the parameters @ and w are the unary and the pairwise weights, respectively, that
need to be learned.
The unary potential is expressed by:

Dy, hy,x;,%55:0) =D > dro(y, hjs 010) + > d2(hj, x5502) + Y ¢3(hy, x5:03), (7.4)
j L J J

and it can be seen as a state function consisting of three different feature functions. The
label feature function models the relationship between the label y and the hidden variables
hj, and it is expressed by:

G10(y, hj;010) = D> 01,1(y =N1L(h; =a), (7.5)

AeY aceH

where 1(-) is the indicator function, which is equal to 1, if its argument is true and 0
otherwise. The observation feature function, which models the relationship between the
hidden variables h; and the observations x;, is defined by:

¢2(hj,Xj; 02) = Z 9;]1(}1,] = CL)X]' . (76)
acH
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Finally, the privileged feature function, which models the relationship between the hidden
variables h; and the privileged information x7, is defined by:

¢3(hj,X;; 03) = Z Hgﬂ(h] = a)x}f . (77)
a€H

The pairwise potential is expressed by:

Uy, hj, hisw) = > > wil(y=N1(h; =a)l(hy =0). (7.8)
AEY 4
a,beH

It is a transition function and represents the association between a pair of connected
hidden states h; and hj and the label y.

7.2.2 Learning and Inference

In the training step, the optimal parameters w* are estimated by maximizing the following
loss function:
al 1
L(w) = leogp(yilxmé‘; w) — 55 lwl. (7.9)

The first term is the log-likelihood of the posterior probability p(y|x, x*; w) and quan-
tifies how well the distribution in Eq. (7.1) defined by the parameter vector w matches
the labels .

The second term is a Ly regularization Gaussian prior with variance o?. The use of
hidden variables makes the optimization of Eq. (7.9) non-convex, thus, a global solution
is not guaranteed and we can estimate w* that are locally optimal. The loss function
is optimized using the limited-memory BFGS (LBFGS) method [306] to minimize the
negative log-likelihood of the data.

Having computed the optimal parameters w* in the training step, our goal is to esti-
mate the optimal label configuration over the testing input. We maximize the posterior
probability and marginalize over the latent variables h and the privileged information x*:

y = arg max p(y|x; w)
Yy
= argmax > > p(y, b, X" w) (7.10)
h x*

= argmax > > p(y, hlx, x*; w)p(x*|x) .
h x*

In the general case, the training samples x and x* may be considered to be jointly
Gaussian, thus the conditional distribution p(x*|x) is also a Gaussian distribution. We
quantized the continuous space of features to a large number of discrete values to ap-
proximate the true value of the marginalization of Eq. (7.10). To efficiently cope with
outlying measurements about the training data, we consider that the training samples x
and x* jointly follow a Student’s ¢-distribution. More details on how the parameters of the
conditional Student’s ¢-distribution p(x*|x) are estimated can be found in Appendix A.
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However, an exact solution to Eq. (7.10) is generally intractable. Therefore, approximate
inference is employed for estimation of the marginal probability by applying the loopy
belief propagation (LBP) algorithm [303].

7.2.3 Active Learning

In pool-based active learning, we suppose that during training we have access to a la-
beled dataset £ = {(xgi,xz,yi)}f\;@l, with N, video sequences and an unlabeled dataset
U={(x,,x;) N with N, video sequences. We assume that pairs of original X and
privileged information A* are always available during training for both labeled and un-
labeled datasets and only the corresponding label y; may be missing. Our method is an
incremental pool-based active learning approach, where at each iteration the most infor-
mative sample from U is selected. That is, the model selects samples that minimize the
class label uncertainty. First, we learn the a-HCRF+ classifier on the labeled dataset.
Then, we iteratively select an unlabeled sample pair u = (x,,x};) and obtain the class pos-
terior p(y,|u; w). In particular, we use two different strategies for selecting an unlabeled
sample and ask for its label.

The first selection criterion is the entropy H(y,|u; w), which measures how uncertain
the classifier is about the class label y, on the unlabeled sample u. Therefore, the most
uncertain sample that maximizes the entropy is selected:

G = arg Igax (— > p(yulu; w) log p(ya|u; W)) : (7.11)
ueE Yu
The second selection criterion corresponds to the ratio of class posteriors [328]. We
estimate the class posterior for each unlabeled observation v and every class. Then,
for these two classes that exhibit the largest posterior values y; = arg max,, P(Yu|u; W)
and y, = argmax, ., p(y.|u; w), respectively, we select the unlabeled sample u that
minimizes the ratio between the largest class posteriors:

. . (Y |u; w)
i = arg min ————

. 7.12
we  P(yo|u; w) (7.12)

The ratio of class posteriors criterion allows to select an observation that lies closer to
decision boundary of the learned classifier. Specifically, the main steps of proposed pool-
based active learning methodology are summarized in Algorithm 5.

7.3 Experimental Results

The experiments were conducted in four challenging publicly available human activity
recognition datasets. Three different types of privileged information were used: audio
signal, human pose, and semantic attribute annotation and two active selection criteria

were applied: entropy and ratio of class posteriors.
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Algorithm 5 Pool-based active learning using a-HCRF+
1. procedure ACTIVEHCRFPLUS(L, U, X, X*,))

2: w <— arg min (—L(w)) > Train a-HCRF+ on L.

3:  while U W7é 0 do

4: Select an unlabeled observation @ according to Eqs. (7.11) or (7.12) and query
its label y.

5 L+ LU{(t,y.)}; > Update labeled dataset L.

6 U<+ U\{a}; > Update unlabeled dataset U.

7: end while

8 w < argmin (—L(w)) > Update a-HCRF+ parameters.

9: end procedwure

7.3.1 Datasets

Parliament dataset [5]: This dataset contains 228 video sequences, depicting political
speeches in the Greek parliament. The video sequences are labeled with one of three
behavioral categories: friendly, aggressive, and neutral. The subjects express their opinion
on a specific law proposal and they adjust their body movements and voice intensity level
according to whether they agree with that or not.

TV human interaction (TVHI) dataset [6]: The TVHI dataset is a group of 300
video sequences collected by different TV shows and contain four kinds of interactions:
high fives, hugs and kisses, which are equally distributed to the four classes (50 video
sequences for each class). Negative examples (e.g., clips that do not contain any of the
aforementioned interactions) consist the remaining 100 videos.

Two-person interaction (TPI) dataset [7]: This dataset consists of approximately
300 video sequences depicting two-person interactions captured by a Microsoft Kinect
sensor. The sequences are categorized in eight different interaction classes including ap-
proaching, departing, kicking, pushing, shaking hands, hugging, exchanging objects, and
punching. It also contains three-dimensional coordinates of 15 joints for each person at
each frame.

Unstructured social activity attribute (USAA) [8]: The USAA dataset con-
tains around 100 videos per class for training and testing, while it includes eight different
semantic class videos of social occasions such as birthday party, graduation party, mu-
sic performance, non-music performance, parade, wedding ceremony, wedding dance, and
wedding reception. Fach video is annotated with 69 attributes, which can be broken down
into five broad classes: actions, objects, scenes, sounds, and camera movement.

7.3.2 Implementation Details

As video representation for all datasets, we used spatio-temporal interest points (STIP)
[97]. Furthermore, for the Parliament and TVHI datasets, we extracted the mel-frequency
cepstral coefficients (MFCC) [308] features along with their first and second order deriva-
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tives. Audio features are also used as privileged information for these datasets. For the
TPI dataset, we used the provided poses as privileged information, and for the USAA
dataset we used the provided attribute annotation as privileged information. The number
of hidden states was estimated based on cross validation, varying their from 3 to 20. The
L, regularization scale term o for was set to 10%, with k € {—3,...,3}. The proposed
model was trained with a maximum of 400 iterations for the termination of the LBFGS
optimization method.

For each dataset we used 5-fold cross validation to split into training and test sets.
Finally, the initial training set was split into labeled and unlabeled set so that the size of
the unlabeled set may vary from 10% to 50% of the total size of the original training set
and the remaining videos form the labeled training set.

According to which selection criterion is employed (entropy or ratio of class posteri-
ors), we proposed two variants of the method, called a-HCRF+ (entropy) and a-HCRF+
(ratioCP). We compared the proposed method with several baseline methods that may
or may not use privileged information and/or active learning. First, we compared it with
ordinary SVM [25] and HCRF [27], as if they could access both the original and the
privileged information at test time. We also compared with state-of-the-art methods that
employ privileged information such as SVM+ [313] (see Appendix B for more details), the
rank transfer SVM+ (rt-SVM+) [317], which exploits a max-margin technique to transfer
knowledge from the privileged to the original feature space, and the method of Wang and
Ji [316], which exploits a loss inequality regularization (LIR) to address the sensitiveness
of the loss function against the inequality constraints. However, these methods do not
employ active learning, thus, we also compare with the method of Druck et al. [327],
which applies generalized expectation criteria such as entropy (GEE) to select the most
uncertain samples. Finally, we transformed standard SVM to an active learning based
method (a-SVM) using entropy as selection criterion. For the SVM-based methods we
consider a one-versus-one decomposition of multi-class classification scheme and average
the results for every possible configuration, while the optimal parameters were selected
using cross validation.

7.3.3 Results and Discussion

We assess the impact of privileged active learning by measuring the classification accuracy
of both variants of the proposed method with varying number of unlabeled data. The
obtained results are depicted in Figure 7.2. We may observe that for all datasets both
pool-based active learning variants (entropy and ratio of class posteriors) always have
superior performance than GEE and a-SVM methods as the size of unlabeled training
observations increases. Specifically, for the TVHI dataset GEE may perform better only
for the a-HCRF+ (ratioCP) variant, while for the USAA dataset a-HCRF+ (ratioCP)
and a-SVM achieve similar results. This indicates the strength of the proposed privileged
active learning method to recognize human actions from weakly labeled data without
loosing accuracy due to the uncertainty of the model about class of each observation.
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Figure 7.2: Comparison of classification accuracies with respect to the number of unla-

beled data for (a) the Parliament [5], (b) the TVHI [6], (¢) the TPI [7], and (d) the USAA
[8] datasets.

Detailed results of the proposed method compared with state-of-the-art methods are
presented in Table 7.1. We may observe that for all four datasets the proposed a-HCRF+
(entropy) method outperforms the state-of-the-art. For this variant, the classification
performance significantly increased with respect to the LUPI-based SVM+ method for
all datasets (e.g., 20% improvement of the Parliament dataset). Moreover, significant
improvement is obtained, when the proposed method is compared to the active learning
counterpart methods. Furthermore, the performance of the a-HCRF+ (ratioCP) variant
achieves similar results to its counterpart that uses entropy as a selection criterion. Al-
though the ratio of class posteriors for the Parliament and TVHI datasets may perform
worse than standard HCRF model the overall performance is still better than the other
methods. This is because of the presence of closely related classes as for some observation
close to the decision boundary between two classes the logarithmic ratio of class posteriors

may approach zero.

The corresponding confusion matrices for the a-HCRF+ (entropy) variant for the
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Table 7.1: Comparison of the classification accuracies (%) for the Parliament [5], TVHI [6],
TPI [7], and USAA [8] datasets. The results were averaged for all different configurations
(mean £ standard deviation).

Method Parliament [5] TVHI [6] TPI [7]  USAA [§]
Methods without privileged information and without active learning

HCRF [27] 97.6 = 0.6 81.3+0.7 81.4+0.8 54.0+0.8
SVM [25] 726 £04 75.9+06 79.4+£04 474+0.1
Methods without privileged information and with active learning

GEE [327] 82.3+0.6 83.8+0.8 66.1+0.7 45.4+0.6
a-SVM 80.5+0.3 71.5+£05 80.6+£02 544402
Methods with privileged information and without active learning

SVM+ [313] 78.44+0.2 75.0+£0.2 794+03 485+0.1
rt-SVM+ [317] 57.7+04 65.2+0.1 56.3+02 56.3+0.2
LIR [316] 59.2£0.2 74.8+£0.2 624+£03 485402

Methods with privileged information and with active learning

a-HCRF+ (entropy) 98.1+£09 858+ 0.5 85.2+06 569+04
a-HCRF+ (ratioCP) 93.0+£0.2 85.1+0.8 &838£10 552=£0.5

best split for each dataset are shown in Figure 7.3. It is worth mentioning that for
the Parliament and TVHI datasets the classification errors between different classes are
relatively small. For the TPI dataset, only a few classes are highly correlated to each
other (e.g., the class shake hands is confused with the classes push and hug). On the
other hand, the USAA dataset, shows high confusion between the different classes (e.g.,
wedding ceremony is confused with the class birthday party). This is because of the large
intra-class variabilities, since different classes may have similar attribute representation
of human actions.

7.4 Conclusion

In this chapter, the problem of human activity recognition in a semi-supervised framework
is investigated. A combination of learning using privileged information and active learning
into a unified framework indicated that human actions can effectively be recognized.
Moreover, two variants of the proposed a-HCRf+ method were proposed. The fist uses
entropy as a measure of uncertainty of the actual class of unlabeled observations and
the second selects an unlabeled observation that lies closer to the decision boundary.
Several types of auxiliary information were used indicating that the proposed method is
not limited to a specific form of privileged information. The experimental results on four
different publicly available datasets were very promising and supported the fact that both
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Figure 7.3: Confusion matrices for the classification results for the best split of the pro-
posed a-HCRF+ model for the Parliament [5] (first row), the TVHI [6] (second row), the
TPI [7] (third row), and the USAA [8] (fourth row) datasets. Right column corresponds
to a-HCRF+ (entropy) and left column corresponds to a-HCRF+ (ratioCP) variants,
respectively.

LUPI and active learning schemes, when used together, achieve superior performance
than the state-of-the-art.
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CHAPTER 8

EXPLOITING PRIVILEGED INFORMATION
FOR FACIAL EXPRESSION RECOGNITION

8.1 Introduction
8.2 Leaning to Transfer Privileged Information
8.3 Experimental Results

8.4 Conclusion

8.1 Introduction

Facial expression recognition has recently attracted much attention due to its applica-
bility in several fields of biometrics, computer vision, and machine learning [42, 333].
Its applications may vary from video surveillance, driver and/or patient monitoring to
human-machine interactions. Many facial expression recognition systems provide infor-
mation about the personality and psychological state of a person. In real world, humans
express their emotions as a combination of verbal and non-verbal multimodal cues such
as gestures, facial expressions and auditory cues. Combining different modalities poses a
great challenge on recognizing facial expressions [121, 334].

The multimodal nature of the problem requires the development of new learning tech-
niques. Several approaches such as multi-task learning [335] and domain adaptation [336]
have been proposed for dealing with multimodal problems. In multi-task learning the
goal is to improve the performance across all tasks, while domain adaptation methods
consider individual domains, which are combined to improve the performance on a target
domain. These approaches assume that the classifier is trained and tested on similar sets
of data. However, exploiting the same type of information during training and testing

may not always be possible due to data acquisition constraints. To this end, learning
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privileged information
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knowledge label

Figure 8.1: An overview of the proposed framework.

using privileged information [313] has been explored to cope with the inhomogeneity in
training and testing information. The idea of privileged information is that one may have
access to additional information about the training samples, which is not available during
testing. However, defining which information may be considered as privileged and which
as regular is not an easy task as the problem is not straightforward [337], while the lack of
informative data or the presence of misleading information may influence the performance
of the model by introducing bias.

In this chapter, we address these limitations by introducing a novel probabilistic model,
which incorporates the LUPI paradigm into a unified framework for recognizing facial
expressions and affective states of a person. We propose an efficient method to indirectly
transfer the knowledged from privileged to the original feature space using conditional
random fields (CRFs) [26], called transfer-CRF+ (t-CRF+). Specifically, the privileged
information is provided as additional input to our model through a two step classification
process. We first train a standard CRF model on the privileged data and encode the
ability of privileged information to distinguish between different class labels into the model
weights. The learned privileged weights are then used to penalize the training process on
the original feature space by learning the conditional probability distribution between the
class labels and original observations. The penalty term encourages the model to assign
larger weights to samples that have a good evidence to distinguish between classes both in
privileged and original feature space and smaller weights to the contrary. In other words,
the proposed model is able to enhance the classification accuracy by learning a better
estimate of model parameters in the original feature space by transferring the knowledge
from the privileged data. Figure 8.1 illustrates an overview of the proposed methodology.

The main contributions of this work can be summarized in the following points: (i) a
new probabilistic classification scheme based on CRFs is proposed to improve the recogni-
tion of facial expressions and affective states of a person by gaining additional knowledge
about the training data using privileged information; (ii) information transferring is used
to keep only the relevant information between privileged and original feature space. Note
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Figure 8.2: Graphical representation of the chain structure CRF model. The grey nodes

are the observed features (z;) and the white nodes are unknown labels (y;), respectively.

that the proposed method is general and is not limited to the use of any specific form of
privileged information, but rather it is general for any form of additional data.

8.2 Leaning to Transfer Privileged Information

We consider a labeled dataset with N video sequences, which instead of paired input-
output samples, it consists of triplets D = {(x;,x},v:)} Y|, where x; € Rx is a training
observation from the feature space X’ and y; corresponds to a class label defined in a finite
label set ). In the context of learning using a privileged information paradigm, additional
information about the observations x; is encoded in a feature vector x; € R™x* in the
privileged space X*. Such privileged information is provided only at the training step
and it is not available during testing, while no further assumption about the form of the
privileged data is made.

In particular, x} does not necessarily share the same characteristics with the original
data, but is rather computed as a very different kind of information, which may contain
verbal and/or non-verbal multimodal cues such as (i) visual features, (ii) attributes, (iii)
textual descriptions of the observations, (iv) image/video tags, and (vi) audio cues. The
goal of LUPI is to use the privileged information x;} as a medium to construct a superior
classifier for solving practical problems than one would learn without it.

8.2.1 t-CRF+ Model Formulation

The proposed method uses CRFs, which are defined by a chained structured undirected
graph G = (V,&) (Fig. 8.2), as the probabilistic framework for modeling the facial
expressions of a subject in a single image or video. During training, a classifier and the
mapping from observations to the label set for the different configurations are learned.
In testing, a probe sequence is classified into its respective state using belief propagation
(BP) [303].

The CRF model is a member of the exponential family and the probability of the class
label given an observation sequence is given by:

p(ylx; w) = exp (E(y|x; w) — A(w)) , (8.1)
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where w = [0, w] is a vector of model parameters. We assume that our model follows
the first-order Markov chain structure (i.e., the current state affects the next state). Fi-
nally, E(y|x; w) is a function of sufficient statistics and A(w) is the log-partition function
ensuring normalization:

A(w) logz exp (E(y'|x;w)) . (8.2)
Y
Different sufficient statistics E(y|x,x*;w) in (8.1) define different distributions. In
the general case, sufficient statistics consist of indicator functions for each possible con-
figuration of unary and pairwise terms:

(ylx;w) = (y;,x5;0) + > V(s yws w) (8.3)
jev JkeE
where the parameters € and w are the unary and the pairwise weights, respectively, that
need to be learned.
The unary potential is expressed by:

D(y;,x;0) =D > 0" 1(y; = a)x;, (8.4)
Jj a€y
and it can be seen as an observation feature function, which models the relationship
between the label y; and the observations x;, where 1(-) is the indicator function, which
is equal to 1, if its argument is true and 0 otherwise.
The pairwise potential is a transition function and represents the association between
a pair of connected labels y; and y;. It is expressed by:

oy, yrswe) = > > wel(y; =a)l(y, =1b). (8.5)

a,bey (

Note that the CRF model keeps a transition matrix for each label.

8.2.2 Parameter Learning and Inference

In the classical CRF model, the optimal parameters are estimated during training by
maximizing the following loss function:

[w|?
202

L(w) = log p(yilxi; w) —

i=1

(8.6)

The first term is the log-likelihood of the posterior probability p(y|x; w) and quantifies
how well the distribution in Eq. (8.1) defined by the parameter vector w matches the
labels y. The second term is a Gaussian prior with variance o2 and works as a regularizer.

Our work is based on the intuition that privileged information is more informative
than the ordinary information and thus, learning on privileged data may improve the
classification. The proposed t-CRF+ model relies on the idea that instead of jointly
learning the ordinary and privileged information, we first train an ordinary CRF on the
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Figure 8.3: Proposed t-CRF+ model. First, a standard chain structure CRF model is
trained on the privileged feature space (X™*) with parameters wp. Then, the privileged
knowledge is transferred to the original feature space (X'). The square nodes correspond
to the unary and pairwise potentials, which are conditioned on their hyper-parameters
wp and w,, respectively.

privileged feature space X*, and then we exploit the obtained knowledge to improve the
performance on the target feature space X', for which training data are always available
during training and testing.

To achieve the knowledge transfer, we penalize the loss function of the standard CRF
model with an additional term that corresponds to a Gaussian prior with zero mean and
variance o.
transfer from privileged to original feature space:

Thus, the loss function in Eq. (8.6) is modified to encode the knowledge

N W, — Wl Wol|?
Liw) = 3 log plulxs; wo) — 12— Well” _ IWal 8.7)

2 2
= 20, 207

where w, and wy, are the model parameters when training in the original and the priv-
ileged feature space, respectively. In Eq. (8.7), the parameters w, and wp should be
of equal length and this is achieved using canonical correlation analysis (CCA) [228] as
a preprocessing step. The parameters ag and o2 are tuning parameters that control the
degree of influence of the privileged and the original information, respectively.

Figure 8.3 illustrates the graphical representation of the proposed t-CRF+ model.
The t-CRF+ model is parameterized by two hyper-parameters wy, and w,. In this case,
the privileged information is indirectly transferred for learning the baseline CRF model
through the learned prediction function for each training instance in the privileged space.
The privileged parameters wy, are used in the original conditional log-likelihood function
to influence the values of the parameters in the original feature space.

The degree of influence the privileged information may have upon the original infor-
mation depends on the degree of evidence for each privileged weight. The smallest the
values of the privileged weights w, are, the smallest the influence of privilege data also
is. The opposite occurs when samples with larger privileged weights wy, may contribute
more heavily through the Gaussian prior in Eq. (8.7) and thus, the privileged knowledge
may have greater effect on the finally parameter learning. This process can be viewed as
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Algorithm 6 Transferring knowledge from A* to X using t-CRF+
Input: Original data X', privileged data X*, class labels ).
Output: Predicted labels.

1: Perform canonical correlation to make the dimensions of X and X* equal.

2: Train a standard CRF on the privileged data (x*,y) using Eq. (8.6) and estimate
models’ parameters wy,.

3: Train a CRF on the original feature space (x,y) using Eq. (8.7) to transfer the
knowledge from the privileged to the original feature space.

4: Obtain final labels using Eq. (8.8).

selection process, where the most informative data in the privileged space contribute to
the classification of the true label.

In our implementation, the loss function in Eq. (8.7) is optimized using a gradient-
descent optimization method. More specifically, we used the limited-memory BFGS
(LBFGS) method [306] to minimize the negative log-likelihood of the data.

*

Having computed the optimal parameters w* in the training step, our goal is to es-
timate the optimal label configuration over the testing input, where the optimality is

expressed in terms of a cost function. To this end, we maximize the posterior probability:
y = argmax p(y|x; w) . (8.8)
yeY

The marginal probability is obtained by applying the BP algorithm [25] using the
graphical model as depicted in Fig. 8.2. The main steps of the proposed t-CRF+ classi-

fication model are summarized in Algorithm 6.

8.3 Experimental Results

To show the ability of the proposed t-CRF+ method to generalize, we compared it with
several state-of-the-art methods for two different computer vision applications, namely
emotional facial recognition, and facial expression recognition, with different type of priv-
ileged information for each problem. For the first problem, we used the AVEC 2011
dataset [9] and for the second we used the extended Cohn-Kanade (CK+) dataset [10].

8.3.1 Datasets

AVEC 2011 audio/visual challenge dataset [9]: This dataset consists of 95 sequences
of upper body video segments at resolution of 780 x 580 at 49.979 fps while the audio
was recorded at 48 kHz, and is part of the SEMAINE corpus [338]. The AVEC 2011
dataset consists of 31 videos for training, 32 videos for validation, and 32 videos for
testing, annotated with four affective labels such as activation, expectation, power, and
valence. As original features, we used the pre-computed video features provided by the
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dataset, and the privileged information was selected to be the provided audio features,
which were obtained from various low-level descriptors. Due to the large amount of data
and relatively high feature dimensionality for this dataset, we followed the same strategy
as proposed by Schuller et al. [9] for sub-sampling the data and reducing the feature
dimension.

Cohn-Kanade (CK+) dataset [10]: This dataset describes facial expressions such
as anger, disgust, fear, happiness, sadness, surprise, and contempt. All facial expres-
sions are expressed by the facial action coding system (FACS) [230], which describes all
possible facial expressions as a combination of action units (AU), extracted from each
participant, to identify their emotional state. It consists of 593 video sequences of 123
subjects captured from the neutral face to the peak expression. Since FACS are coded
only at the peak frame, we only considered the peak frame in our experiments. For this
dataset, the original features were selected to be the 68 tracked facial landmarks obtained
by active appearance models [339] and the privileged information was selected to be the
17 annotated action units, all provided by the database creators.

8.3.2 Baseline Approaches

We compared the proposed method with several baseline methods that may or may not
use privileged information. First, we used SVM+ [313], which consists of optimizing the
hyperplane parameters such that it can minimize the probability of incorrect classifications
and increase the convergence rate. A brief description of SVM+ can be found in Appendix
B. The second baseline is the rank transfer SVM+ (rt-SVM+) [317], which exploits a
max-margin technique to transfer knowledge from the privileged to the original feature
space. Finally we compared with the method of Wang and Ji [316], which exploits a loss
inequality regularization (LIR) to address the sensitiveness of the loss function against
the inequality constraints.

We also compared the proposed t-CRF+ method with ordinary SVM and CRF, as if
they could access both the original and the privileged information at test time. This means
that we do not differentiate between regular and privileged information, but use both
forms of information as regular to infer the underlying class label instead. In this case,
we considered early fusion to combine features from different modalities. Furthermore, to
complete the study, we also trained an CRF model that uses only the regular and only
the privileged information for training and testing.

8.3.3 Model Selection

The L, regularization scale terms o, and o, were set to 10, with k € {-3,...,3}. The
optimal parameters for all baseline methods were selected using cross validation, and the
best parameters or parameter sets were used to retrain the model. Finally, our model
in Eq. (8.7) was trained with a maximum of 400 iterations for the termination of the
LBFGS minimization method.
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Dataset Regular Privileged Accuracy (%) AUC (%)

visual X 60.5 85.7
audio X 59.6 83.1

AVEC 2011

VEC 2011 9] visual+audio X 60.7 70.6
visual audio 70.7 91.2
facial Ind X 85.4 91.9
AU X 85.1 92.5

K+ [1

CK+ [10] facial Ind + AU X 85.9 93.4
facial Ind AU 93.6 99.3

Table 8.1: Comparison of feature combinations for classifying facial expressions and af-
fective states on AVEC 2011 [9], and CK+ [10] datasets. The crossmark indicates the
absence of privileged information during training.

The evaluation of our method was performed using 5-fold cross validation to split
the datasets into training and test sets, according to the documentation described in
each dataset, and we report the average results over all the examined configurations.
For the SVM-based methods we consider a one-versus-all decomposition of multi-class
classification scheme and average the results for every possible configuration.

8.3.4 Results and Discussion

In the fist set of experiments, we assessed the impact of privileged information to rec-
ognize affective states of emotional audio and video dyadic interactions between human
participants using the AVEC 2011 dataset [9], and we also trained the proposed model
to the CK+ dataset [10] for recognizing facial expressions. For the evaluation of the pro-
posed method we used the classification accuracies and the area under the ROC curve
(AUC), which compares the true positive against the false positive rate. The benefit of
using robust privileged information along with conventional data instead of using each
modality separately or both modalities as regular information is shown Table 8.1. For the
classification, we used a standard CRF model and compared it with the proposed t-CRF+
method. We may observe that for both datasets, if only privileged information is used as
regular features for classification both the classification accuracy and the AUC are lower
than when using only the regular information for the classification task. However, these
results are relatively similar to each other, which leads to the conclusion that finding
proper privileged information is not always a straightforward procedure. Moreover, the
proposed classification scheme performs better than all other approaches. These results
demonstrate that the t-CRF+ model can successfully exploit the privileged information
to improve the recognition accuracy.

In the second set of experiments, the proposed approach was compared with sev-
eral state-of-the-art methods, that may or may not use privileged information for both
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AVEC 2011 CK+

Method Accuracy AUC Accuracy AUC
Methods without privileged information

SVM [25] 57.3+£0.111 73.7+£0.287 84.8+£0.079 87.3+0.095
CRF [26] 60.7 +0.825 70.6 £0.408 85.9+£0.626 93.4+0.095

Methods with privileged information

rt-SVM+ [317]  63.6 £0.069 86.3+0.138 85.7+0.103 88.4 +0.147
SVM+ [313] 59.6 £0.041 65.7£0.134 87.7£0.083 85.6 +=0.080
LIR [316] 49.3£0.066 67.2+0.196 87.3+£0.834 85.5£0.081
t-CRF+ 70.7£0.273 92.9+0.024 93.6 £0.667 99.3 £0.008

Table 8.2: Comparison of the classification accuracies and the area under the ROC curve

(%) for the AVEC 2011 [9] and the CK+ [10] datasets.

datasets. The results are presented in Table 8.2. The results indicate that our approach
improved the classification accuracy and the AUC. On AVEC 2011, we significantly man-
aged to increase the classification accuracy by approximately 10% and the AUC by 20%
with respect to CRF and SVM, which do not employ privileged information, as our ap-
proach achieves very high recognition accuracy for this dataset (70.7%). The improvement
of our method compared to the methods that also employ privileged information is high.
Furthermore, our method outperforms by approximately 7% in recognition accuracy and
by 5% in AU the rt-SVM+, which also employs transferring of privileged information.
Accordingly, for the CK+ dataset, the improvement against the state-of-the-art methods
is also high and almost 8% higher accuracy with respect to the achieved by rt-SVM+ and
6% higher when compared to SVM+ and LIR methods. We may also observe that for
this dataset, the AUC values achieved by the proposed t-CRF+ model are very high and
close to the ideal classifier. In general, the significantly high increase in all evaluation
indices by our model indicates the strength of the proposed method.

In order to provide a statistical evidence of the recognition results, we computed the p-
values of the obtained results with respect to the compared methods. The null hypothesis
was defined as: the mean performances (accuracies or AUC) of the proposed model are
equal to the state-of-the-art methods; and the alternative hypothesis was defined as: the
mean performances (accuracies or AUC) of the proposed model are higher than those of
the state-of-the-art methods. For the assessment of the statistical significance, we used
paired t-tests with statistical significance threshold p < 0.05 for all experiments. The
resulted p-values for both datasets are reported in Table 8.3. According to these results,
we conclude that for both datasets the the null hypothesis is rejected as the p-values were
less than the significance level of 0.05, and thus, the improvements obtained by our model
are statistically significant and not due to chance.

The corresponding ROC curves for both datasets are depicted in Fig. 8.4. The red
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AVEC 2011 CK+

Method Accuracy AUC Accuracy AUC
SVM [25] 0.0174 0.0383 0.0257 0.0089
CRF [26] 0.0435 0.0145 0.0390 0.0851
rt-SVM+ [317] 0.0269 0.7683 0.0361 0.0001
SVM+ [313] 0.0035 0.0062 0.0776 0.0026
LIR [316] 0.0043 0.0054 0.0666 0.0025

Table 8.3: p-values of the proposed method for the AVEC 2011 [9] and the CK+ [10]
datasets.
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Figure 8.4: Illustration of ROC curves for (a) AVEC 2011 [9] and (b) CK+ [10] datasets.

dotted diagonal line corresponds to complete random guess. The intersection of the ROC
curve for each method with the black diagonal line, corresponds to the equal error rate
(EER). We may see that for the AVEC 2011 dataset the proposed method has the lowest
EER (0.1141) and for the CK+ the EER is 0.0726, which is smaller than the state-of-the-
art methods.

Finally, the classification performance of the proposed method against the baseline
methods for each class separately on both datasets is depicted in Fig. 8.5. We may
observe that for AVEC 2011 in three out of four classes the proposed t-CRF+ method has
the highest accuracy. However, for the valence class the standard CRF model performs
slightly better, but still our method outperforms the rest of the state-of-the-art. For
the CK+ dataset, the classification accuracy on four classes is perfect (100%), but for
the classes sadness and surprise the proposed method performs worse than the baseline
methods, mostly because some action units are hard to detect.

In general, our method is able to transfer privileged information to the original space
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Figure 8.5: Comparison of recognition performance accuracies (%) of each class for (a)
AVEC 2011 [9] and (b) CK+ [10] datasets.

in a more efficient way than SVM+, rt-SVM+, and LIR. We can also observe that the
proposed method outperforms both the SVM and CRF models. However, the information
that is being transferred may not always improve the classification in all classes, although
the classification results in each class are relatively high, as it is mainly a matter of training
and testing set size and the quality/structure of the data.

8.4 Conclusion

In this chapter, the problem of facial expression recognition in the framework of learning
using privileged information is addressed. It is demonstrated that the proposed t-CRF+
method is able to efficiently exploit additional information about the training data to
transfer the knowledge learned from privileged to the original feature space for predicting
the true class. In contrast to conventional classification tasks, it is observed that the use
of privileged information can lead to superior performance in classifying facial emotions
for both accuracy and AUC indices. Moreover, various forms of data that can be used as
privileged were investigated. Experimental results on different publicly available bench-
marks showed improvements over state-of-the-art methods that may or may not employ
privileged information.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

9.2 Limitations and Future Work

9.1 Conclusions

In this thesis, we carried out a comprehensive study of state-of-the-art methods of human
activity recognition and proposed a hierarchical taxonomy for classifying these methods.
We surveyed different approaches, which were classified into two broad categories accord-
ing to the source channel each of these approaches employ to recognize human activi-
ties. We discussed unimodal approaches and provided an internal categorization of these
methods, which were developed for analyzing gesture, atomic actions, and more complex
activities, either directly or employing activity decomposition into simpler actions. We
also presented multimodal approaches for the analysis of human social behaviors and in-
teractions. We discussed the different levels of representation of feature modalities and
reported the limitations and advantages for each representation. A comprehensive review
of existing human activity classification benchmarks was also presented and we provided
the characteristics of building an ideal human activity recognition system.

Based on the above observations, our work in Chapter 3 was focused on recognizing
atomic actions and more complex human activities such as sport activities by tracking
optical flow features in time. The obtained trajectories were grouped to represent an
individual class of human action with a compact set of motion curves. Although this ap-
proach may perform relatively well for datasets with small variations in the backgrounds,
it may not achieve equally high results for more complex and dynamic scenes mainly due
to the erroneous nature of optical flows. A possible extension to this problem would be
the use of a “hyper-cluster” that may capture the outliers occurred form data acquisition.
Moreover, instead of clustering trajectories of similar action classes from the whole body,
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an interesting approach would be to cluster motion trajectories of similar body parts (e.g.,
left /right hand, torso, and head) separately.

In Chapter 4, a new challenging dataset (Parliament) was introduced for recognizing
high-level human activities and behaviors. First, we presented a method for recognizing
human behaviors that used a fully connected CRF model, where different labels for each
video frame were considered. Although this representation makes the model more suitable
to handle video sequences with more than one label per video, it significantly increases
the complexity of the model. To this end, in Chapter 5, we replaced the above model
with a chain-structured HCRF model and employed a feature selection technique along
with voice features to improve recognition accuracy.

Standard human activity classification systems assume that both training and testing
sequences represent similar types of information. However, in real-world applications,
this may not always be possible due to data acquisition constraints. In Chapter 6, we
developed a solution to this limitation by presenting an improved version of the HCRF
model that incorporates the LUPI paradigm and it is able to handle auxiliary (privileged)
information about the input data, which is accessible only during training but never dur-
ing testing. The proposed method is not tightly combined to a specific type of privileged
information, but it can cope with different types of auxiliary data. Both maximum like-
lihood and max-margin approaches were used to train the proposed model, while the
regularization parameters for both approaches were iteratively estimated through a self-
training procedure. The results indicated that high recognition rates were achieved and
we also managed to beat the state-of-the-art in the LUPI framework. However, in the
current work, the number of hidden states is determined using cross validation. Learning
the number of the hidden variables necessitates more complex models and is a topic that
needs of further exploration.

An extension of the aforementioned method that incorporates both LUPI framework
and active learning to take advantage of semi-supervised learning was also proposed in
Chapter 7. Training data were considered to be both labeled and unlabeled, while in
testing data privileged information is not available. Entropy and the distance form the
decision boundary were used to selected the most informative unlabeled sample and obtain
its label. Although both selection criteria were individually found to work relatively well,
a rough combination of them may not achieve equally close results as different weights
to each criterion should be assigned. Thus, a possible extension of this work should be
the investigation of other query selection criteria and how active learning can be used to
recognize actions from unsegmented sequences.

We also investigated how privileged information could be applied not only to human
activity recognition but in other applications in biometrics such as facial expression recog-
nition. In Chapter 8, privileged information was embedded into a chain-structured CRF
model to transfer privileged knowledge to the original feature space by penalizing the
models’ weights using a Gaussian prior over the privileged space. In the current work, the

proposed model considers that privileged information consists of one modality. Thus, the
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evaluation of our method on multiple and heterogeneous sources of privileged information
at the same time is an issue that needs to be investigated.

The gap of a complete representation in number of human activities and the corre-
sponding data collection and annotation is still a challenging and unbridged problem.
In particular, we may conclude that despite the tremendous increase of human under-
standing methods, many problems still remain open, including modeling of human poses,

handling occlusions, and annotating data.

9.2 Limitations and Directions for Future Work

Besides the vast amount of research in the field of activity recognition, a generalization of
the learning framework is crucial towards modeling and understanding real world human
activities. Several challenges that correspond to the ability of a classification system
to generalize under external factors, such as variations in human poses and different
data acquisition, are still open issues. The ability of a human activity classification
system to imitate humans’ skill in recognizing human actions in real time is a future
challenge to be tackled. Machine learning techniques that incorporate knowledge-driven
approaches may be vital for human activity modeling and recognition in unconstrained
environments, where data may not be adequate or may suffer from occlusions and changes
in illuminations and view point.

Training and validation methods still suffer from limitations such as slow learning rate,
which gets even worse for large scale training data, and low recognition rate. Although
much research focuses on leveraging human activity recognition from big data, this prob-
lem is still in its infancy. The exact opposite problem (i.e., learning human activities from
very little training data or missing data) is also very challenging. Several issues concern-
ing the minimum number of learning examples for modeling the dynamics of each class or
safely inferring the performed activity label are still open and need further investigation.
More attention should also be put in developing robust methods under the uncertainty of
missing data either on training steps or testing steps.

The role of appropriate feature extraction for human activity recognition is a problem
that needs to be tackled in future research. The extraction of low-level features that
are focused on representing human motion is a very challenging task. To this end, a
fundamental question arises: are there features that are invariant to scale and viewpoint
changes, which can model human motion in a unique manner, for all possible configura-
tions of human pose?

Furthermore, there exists a great need for efficiently manipulating training data that
may come from heterogeneous sources. The number and type of different modalities that
can be used for analyzing human activities is an important question. The combination
of multimodal features such as body motion features, facial expressions, or the intensity
level of voice may produce superior results, when compared to unimodal approaches, On
the other hand, such a combination may constitute over-complete examples that can be
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confusing and misleading. The proposed multimodal feature fusion techniques does not
incorporate the special characteristics of each modality and the level of abstraction for
fusing. Therefore, a comprehensive evaluation of feature fusion methods that retain the
feature coupling is an issue that needs to be assessed.

The lack of large and realistic human activity recognition datasets is a significant
challenge that needs to be addressed. An ideal action dataset should cover several topics,
including diversity in human poses for the same action, a wide range of ground truth
labels, and variations in image capturing and quality. Although a list of action datasets
that correspond to most of these specifications has been introduced in the literature, the
question of how many actions we can actually learn is a task for further exploration.
Although most of the existing datasets contain no more than two tens of classes, there
exist a few datasets having a few hundreds of classes. In such large datasets, the ability
to distinguish between easy and difficult examples for representing the different classes
and recognizing the underlying activity is difficult. This fact opens a promising research
area that should be further studied.

Another challenge worthy of further exploration is the exploitation of unsegmented se-
quences, where one activity may succeed another. Frequent changes in human motion and
actions performed by groups of interacting persons makes the problem amply challenging.
More sophisticated high-level activity recognition methods need to be developed, which
should be able to localize and recognize simultaneously occurring actions by different
persons.
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APPENDIX A

CONDITIONAL DISTRIBUTION OF THE
PRIVILEGED INFORMATION

A.1 Conditional Student’s t-Distribution

A.1 Conditional Student’s t-Distribution

Recall that x € R™=*T is an observation sequence of length 7" and x* € R xT

corre-
sponds to the privileged information of the same length. We partition the original set
(x*,X)T € RM*T into two disjoint subsets, where x* forms the first M~ components of
(x*,x)" € RM*T and x comprises the remaining M — My. components. If the joint distri-
bution p(x,x*) follows a Student’s t-law, with mean vector p = (pix, ux)T, a real, positive
Zx*x* Ex*
x) and v € [0, 00)

Exx* Exx
corresponds to the degrees of freedom of the distribution [321], then the conditional dis-

definite, and symmetric M x M covariance matrix ¥ = (

tribution p(x|x*) is also a Student’s ¢-distribution:

p(x*|x) = St(x*; p*, ¥, v")
(v*+Mx)
L (1" + M) /2) S /2 1+ AxTygix] (A1)

(W +M) °

- ) M * *
(m*) M2 (v + M) [2) [57]1/2 14 Lzrstz]

The mean p*, the covariance matrix 3* and the degrees of freedom v* of the conditional

distribution p(x*|x), respectively, are computed by the respective parts of p and X:

W= e — EX*XE;i (x = pix) (A.2)
Vg + (X - ,MX)T Yix (X B ﬂx) -1
Y= = : Ex*x* - Ex*xE Exx* ) A.
PR ( ot o) (A.3)
vt = s Mx* . (A4)
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The parameters (u, 2, v) of the joint Student’s ¢-distribution p(x*,x), which are defined
by the corresponding partition of the vector (x*, X)T7 are estimated using the expectation-
maximization (EM) algorithm [321]. Then, the parameters of the conditional distribution
p(x*|x) are computed using Eq. (A.2)-(A.4).

It is worth noting that by letting the degrees of freedom v* to go to infinity, we can
recover the Gaussian distribution with the same parameters. If the data contain outliers,
the degrees of freedom parameter v* are weak and the mean and covariance of the data
are appropriately weighted in order not to take into account the outliers.

Note that p* is a linear function of the observations x and it is the same as the con-
ditional mean in the case that the sample data x* and x follow a Gaussian distribution
and ¥* is influenced by the realization x. If v* tends to reach infinity, we can approxi-
mate the Gaussian conditional covariance as the Student’s ¢-distribution is a heavy tailed
approximation to the Gaussian:

lim Y = Ve — DyorxDn D - (A.5)

v*—00

That is, given a weight u that follows a Gamma distribution with parameters v*:
u ~ Gamma(v*/2,v"/2), (A.6)

the vector (x*, X)T follows the multivariate normal distribution with mean p* and covari-

ance X* /u:

X|x ~ N (", X% /u). (A7)

From the properties of the t-distribution, it can be shown that, if v* > 1, then p* is
the mean of (x*,x)" and if v* > 2, then v*(v* — 2)"'S* is the covariance matrix of x*.
Therefore, the family of ¢-distributions provides a heavy-tailed alternative to the normal

family with mean p and covariance matrix that is equal to a scalar multiple of X.
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APPENDIX B

LEARNING USING PRIVILEGED
INFORMATION

B.1 SVM+ Formulation

B.1 SVM+ Formulation

Learning using privileged information (LUPI) was originally introduced by Vapnik and
Vashist [313]. Their SVM+ method is based on a max-margin classification scheme (SVM)
and encodes additional (privileged) information about the training data, which is acces-
sible only during training but never during testing. Many variants of SVM+ have been
proposed, including SVM+ with L1 regularization [340], and multi-task SVM+ [341].

Given a training dataset with N samples D = {(x;,x}, )}, where x; € RMx is
an observation sequence, which belongs in feature space X, the privileged information is
represented by x; € R~ which belongs to the privileged space X*, and y; is the true
class label defined in a finite label set J. The SVM+ algorithm determines the decision
hyperplane between the two classes by parameterizing the slack variables &; as a function
of privileged features, & = (w*,xF) + b*, where w* and b* are the privileged parameters
that are learned as a solution to the following optimization problem:

wii oW+ g Iw P+ o2& (B.1)

subject to y;((w,x;) +b) >1—¢ and & >0, Vi=1,...,N,

where w is a normal vector perpendicular to the hyperplane, C' > 0 and v > 0 are two
hyper-parameters that control the influence of the margin errors in the objective function,
and b determines the offset of the hyperplane from the origin along the normal vector w.
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For solving the optimization problem in Eq. (B.1) the standard technique is to consider
its dual problem and construct the Lagrangian. Thus, the optimization problem becomes:

N N N
1 1 * *
I%%XZOQ -3 > aayiy K (xi, x5) — 7 > (i + 8 = C)oy + 6 — O)K(x},%])
S ij=1 ij=1

N N
SUbjeCttO Z(Ozl—f—ﬁl—C):O, Z%‘%’ZO, CYzZOa Bzzoa \V/Z.:la"')Nv

i=1 =1

(B.2)

where o and 3 are the Lagrange dual variables of the SVM+, and K(x;,x;) and K (x}, x})
are kernel functions in the decision X and the correcting X'* space, respectively.

The decision function f(x) takes place in the original space X"

N
f(x) =sgn 'Zl vioi K (x5, %) . (B.3)
ij=
Although only K (x;, x;) contributes to the decision function, both K (x;,x;) and K (x}, x})
kernels are coupled through variable o in Eq. (B.2). In can be seen that Eq. (B.2) in-
cludes the solution to the standard SVM, therefore, SVM+ may either use privileged
information only when it is considered to be informative by controlling the maximum
influence of original space on the decision boundary or use the SVM solution instead.
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