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Abstrat

Evaggelia V. Tsiligianni, PhD, Computer Siene & Engineering Department, University

of Ioannina, Greee. July, 2015. Constrution of approximately equiangular tight frames

and their appliations. Thesis Supervisor: Lisimahos P. Kondi.

Frames are onsidered a natural extension of orthonormal bases to overomplete span-

ning systems. Én the signal proessing ommunity, frames have mainly beome popular

due to wavelets; however, many other frame families have been employed in numerous

appliations, inluding soure oding, robust transmission, ode division multiple aess

(CDMA) systems, and oding theory. The most important harateristi of frames is

redundany, whih adds more exibility to signal expansions, failitating various signal

proessing tasks.

A �nite frame with N vetors in an m-dimensional Hilbert spae Hm

is usually identi-

�ed with the m×N matrix F = [f1 f2 : : : f

N

], m ≤ N , with olumns the frame vetors

f

k

∈ Hm

, k = 1; : : : ; N . The most important properties of frames are mutual oherene

and spetral norm. Mutual oherene is a measure of the maximal orrelation between

the frame vetors and haraterizes the degree of similarity between the olumns of the

matrix F . Spetral norm measures how muh a frame an dilate a unit norm oeÆient

vetor. Mutual oherene and spetral norm de�ne partiular lasses of frames. Unit

norm tight frames (UNTFs) attain optimal bounds of spetral norm; these frames have

unit norm olumns and orthogonal rows of equal norm. Unit norm tight frames with small

mutual oherene are referred to as inoherent UNTFs. The minimum possible mutual

oherene is attained by equiangular tight frames (ETFs). The frame vetors of ETFs

exhibit idential orrelation and these frames are onsidered losest to orthonormal bases.

ETFs o�er erasure-robust transmission in ommuniations and minimize interuser

interferene when employed as spreading sequenes in multiuser ommuniation systems.

Due to their inoherene, they are of interest in sparse representations and ompressed

sensing. However, ETFs do not exist for all frame dimensions and their onstrution has

been proved extremely diÆult.

This thesis presents two methods that produe real frames lose to ETFs. The pro-

posed onstrutions are motivated by spei� appliations, namely, ompressed sensing

and sparse representations. Conerning sparse or ompressible signals, that is, signals

with a few signi�ant oeÆients, ompressed sensing and sparse representations have

vii



experiened a growing interest in the last deade, providing the ability of ompat repre-

sentations that serve various data soures. The mathematial model lying in the heart of

these appliations involves an underdetermined linear system with more unknowns than

equations. Computing its sparsest solution, i.e., the one with the fewest non-vanishing

oeÆients is tratable with numerial methods. Standard numerial solvers inlude Or-

thogonal Mathing Pursuit (OMP) and Basis Pursuit (BP).

In sparse and redundant representations, we seek a sparse signal representation with

respet to a redundant (overomplete) ditionary. Performane guarantees for the algo-

rithms deployed to ompute the non-vanishing oeÆients require that the given ditio-

nary forms an inoherent UNTF. While many inoherent ditionaries are known in the

literature, their limited sparsifying ability has promoted the design of learning based di-

tionaries. Often, learning based ditionaries do not satisfy the neessary properties for

numerial omputations.

Compressed sensing is a sampling theory that allows signal reonstrution from an

inomplete number of measurements. Conerning signals that are sparse or ompressible,

ompressed sensing uses a sensing mehanism implemented by an appropriate matrix, the

so-alled projetion matrix. Aording to theoretial results, the projetion matrix must

possess a property known as the restrited isometry property (RIP). Construting RIP

matries is diÆult, as evaluation of RIP is ombinatorially omplex. Random Gaussian

or Bernoulli matries satisfy RIP with high probability. Considering N -dimensional sig-

nals with s non-vanishing oeÆients, reovery onditions for random matries require

O(s logN) measurements. More reent results formulate similar reovery guarantees for

projetion matries that form inoherent UNTFs. Thus, a new design strategy involves

the onstrution of projetion matries exhibiting small mutual oherene and spetral

norm.

Minimum bounds of mutual oherene and spetral norm are attained by ETFs; there-

fore, the methods proposed here aim at the onstrution of frames as lose to ETFs as

possible. The �rst method uses results from frame theory and relies on alternating pro-

jetion ideas. The produed onstrutions form UNTFs with remarkably small mutual

oherene, that is, inoherent UNTFs. The seond method relies on reent results showing

that there is one-to-one orrespondene of ETFs to a speial type of graphs. The existene

of an ETF is determined by the so-alled signature matrix. A signature matrix has the

form of the adjaeny matrix of a graph and its spetrum onsists of two distint eigen-

values. Viewing the onstrution of a signature matrix as an inverse eigenvalue problem,

we develop a numerial algorithm to ompute a solution that approximates the signature

matrix of an ETF. The seond method produes nearly equiangular, nearly tight frames,

that is, frames with similar olumn orrelation and approximately optimal spetral norm.

The proposed frame onstrutions are employed as projetion matries in ompressed

sensing, improving substantially the performane of the deployed algorithms in sparse

reovery. Considering that many signals are sparse or ompressible under overomplete

ditionaries, inoherent UNTFs are also used for the design of optimized projetion ma-
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tries with respet to a given representation ditionary. An additional way to employ the

proposed frames to solve underdetermined linear systems is the tehnique of preondition-

ing. Applying preonditioning to sparse representations, we improve the performane of

the algorithms deployed to �nd the oeÆients of the sparse signal. In ompressed sens-

ing, preonditioning is used to improve signal reovery when binary matries are used as

projetion matries. Note that binary matries are onsidered more suitable for hardware

implementation.

Besides ompressed sensing and sparse representations, one of the proposed onstru-

tions has been employed in the design of near-optimal odes or spreading sequenes in

synhronous CDMA systems. Optimal spreading sequenes maximize the rate at whih

the users an transmit and minimize interuser interferene. Equal norm tight frames have

been proved optimal, if all users in the system are ative. When the number of users

hanges, the only frames that an minimize interuser interferene are ETFs. However,

only a few ETF onstrutions are known in the literature. The near optimal odebook

presented here has the form of a nearly equiangular, nearly tight frame and minimizes

interuser interferene even when some users in the system are silent.
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equiangular tight frames êáé åöáñìïãÝò. ÅðéâëÝðùí: Ëõóßìá÷ïò �áýëïò Êüí�çò.

Ôá frames åßíáé õðåñðëÞñç óõó�Þìá�á ðïõ ðáñÜãïõí Ýíáí äéáíõóìá�éêü ÷þñï êáé

èåùñïýí�áé åðÝê�áóç �ùí ïñèïêáíïíéêþí âÜóåùí. Ó�çí åðåîåñãáóßá óÞìá�ïò, �á frames

Ýãéíáí ãíùó�Ü ÷Üñç ó�á wavelets. ¢ëëïé �ýðïé frames Ý÷ïõí ÷ñçóéìïðïéçèåß óå ðïéêßëåò

åöáñìïãÝò, üðùò åßíáé ç êùäéêïðïßçóç, ç åýñùó�ç ìå�Üäïóç êáé �á óõó�Þìá�á ðïëëáðëÞò

ðñïóðÝëáóçò ìå äéáßñåóç êþäéêá (Code Division Multiple Aess{CDMA). Ç õðåñðëçñü-

�ç�á èåùñåß�áé �ï ðéï óçìáí�éêü ÷áñáê�çñéó�éêü �ùí frames, äéü�é ðñïóöÝñåé åõåëéîßá ó�çí

áíáðáñÜó�áóç åíüò óÞìá�ïò êáé äéåõêïëýíåé �çí åðåîåñãáóßá.

¸íá frame ìå ðåðåñáóìÝíï ðëÞèïò äéáíõóìÜ�ùí ðïõ ðáñÜãåé �ïí m-äéÜó�á�ï äéáíõ-

óìá�éêü ÷þñï Hm

, óõíÞèùò, áíáðáñéó�Ü�áé áðü Ýíáí ðßíáêá ìåãÝèïõò m × N , ðïõ Ý÷åé

ùò ó�Þëåò �á äéáíýóìá�á �ïõ frame, äçëáäÞ, F = [f1 f2 : : : f

N

], m ≤ N , f

k

∈ Hm

,

k = 1; : : : ; N . Ùò ðéï óçìáí�éêÝò éäéü�ç�åò åíüò frame èåùñïýí�áé ç áìïéâáßá óõíÜöåéá

(mutual oherene) êáé ç öáóìá�éêÞ íüñìá (spetral norm). Ç áìïéâáßá óõíÜöåéá áðï�åëåß

Ýíá ìÝ�ñï �çò ìÝãéó�çò óõó÷Ý�éóçò �ùí äéáíõóìÜ�ùí �ïõ frame êáé åêöñÜæåé �çí ïìïéü�ç�á

ìå�áîý �ùí ó�çëþí �ïõ ðßíáêá F . Ç öáóìá�éêÞ íüñìá áðï�åëåß ìÝ�ñï �çò ìÝãéó�çò äõíá�Þò

äéáó�ïëÞò åíüò ìïíáäéáßïõ äéáíýóìá�ïò, ü�áí áõ�ü ðïëëáðëáóéáó�åß ìå �ï frame. Ïé äýï

éäéü�ç�åò ïñßæïõí óõãêåêñéìÝíåò êá�çãïñßåò frames. Ôá unit norm tight frames (UNTFs)

åìöáíßæïõí �ç ìéêñü�åñç äõíá�Þ öáóìá�éêÞ íüñìá. Ôá óõãêåêñéìÝíá frames Ý÷ïõí ó�Þëåò

ìïíáäéáßïõ ìÝ�ñïõ êáé ïñèïãþíéåò ãñáììÝò ßóïõ ìÝ�ñïõ. ¼�áí Ýíá UNTF åìöáíßæåé ìéêñÞ

áìïéâáßá óõíÜöåéá, �ü�å ÷áñáê�çñßæå�áé ùò inoherent UNTF. Ç åëÜ÷éó�ç äõíá�Þ áìïéâáßá

óõíÜöåéá óõíáí�Ü�áé ó�á equiangular tight frames (ETFs). Ôá äéáíýóìá�á �ùí ETFs

åìöáíßæïõí �áõ�üóçìç óõó÷Ý�éóç êáé �á frames áõ�ïý �ïõ �ýðïõ èåùñïýí�áé ùò ç êáëý�åñç

ðñïóÝããéóç ïñèïêáíïíéêþí âÜóåùí.

Ôá ETFs Ý÷ïõí ðñï�áèåß ãéá �çí åðß�åõîç åýñùó�çò ìå�Üäïóçò óå óõó�Þìá�á åðéêïéíù-

íßáò, êáèþò êáé ãéá �çí åëá÷éó�ïðïßçóç �çò ðáñåìâïëÞò ìå�áîý �ùí ÷ñçó�þí óå óõó�Þìá�á

ðïëëáðëÞò ðñïóðÝëáóçò. ×Üñç ó�çí åëÜ÷éó�ç áìïéâáßá óõíÜöåéá ðïõ åìöáíßæïõí, ðáñïõ-

óéÜæïõí åíäéáöÝñïí óå åöáñìïãÝò üðùò ïé áñáéÝò áíáðáñáó�Üóåéò (sparse representations)

êáé ç óõìðéåó�éêÞ äåéãìá�ïëçøßá (ompressed sensing). ¼ìùò, ETFs äåí õðÜñ÷ïõí ãéá

ïðïéåóäÞðï�å äéáó�Üóåéò, åíþ ç êá�áóêåõÞ �ïõò Ý÷åé áðïäåé÷èåß éäéáß�åñá äýóêïëç.
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Ó�çí ðáñïýóá äéá�ñéâÞ ðñï�åßíïí�áé äýï ìÝèïäïé ãéá �çí êá�áóêåõÞ ðñïóåããéó�éêþí

ETFs. Êßíç�ñï ãéá �ç êá�áóêåõÞ �ùí ðñï�åéíüìåíùí frames áðï�åëåß ç åöáñìïãÞ �ïõò óå

ðñïâëÞìá�á áñáéþí áíáðáñáó�Üóåùí êáé óõìðéåó�éêÞò äåéãìá�ïëçøßáò. Ïé óõãêåêñéìÝíåò

åöáñìïãÝò áöïñïýí óÞìá�á ðïõ ìðïñïýí íá ðáñáó�áèïýí áðü ëßãïõò ìç ìçäåíéêïýò óõ-

í�åëåó�Ýò, äçëáäÞ, áñáéÜ Þ óõìðéÝóéìá óÞìá�á, êáé Ý÷ïõí ãíùñßóåé éäéáß�åñç áíÜð�õîç �çí

�åëåõ�áßá äåêáå�ßá, äéü�é ðáñÝ÷ïõí �ç äõíá�ü�ç�á óõìðáãþí áíáðáñáó�Üóåùí, ÷ñÞóéìùí

ãéá äéÜöïñïõò �ýðïõò äåäïìÝíùí. Ôï ìáèçìá�éêü ìïí�Ýëï ðïõ âñßóêå�áé ó�çí êáñäéÜ �ùí

óõãêåêñéìÝíùí áíáðáñáó�Üóåùí åßíáé Ýíá õðï-ïñéóìÝíï ãñáììéêü óýó�çìá, ìå ðëÞèïò

åîéóþóåùí ìéêñü�åñï áðü �ï ðëÞèïò �ùí áãíþó�ùí. Ï õðïëïãéóìüò �çò áñáéü�åñçò ëýóçò,

äçëáäÞ, �çò ëýóçò ìå �ï ìéêñü�åñï ðëÞèïò ìç ìçäåíéêþí óõí�åëåó�þí, åßíáé åöéê�üò ìå �ç

÷ñÞóç êá�Üëëçëùí áñéèìç�éêþí ìåèüäùí. Ïé ðéï ãíùó�ïß áëãüñéèìïé åßíáé ï Orthogonal

Mathing Pursuit (OMP) êáé ï Basis Pursuit (BP).

Ç áíáðáñÜó�áóç åíüò óÞìá�ïò ìå ëßãïõò ìç ìçäåíéêïýò óõí�åëåó�Ýò, óõíÞèùò, åðé-

�õã÷Üíå�áé ìå �ç ÷ñÞóç åíüò õðåñðëÞñïõò óõó�Þìá�ïò áíáðáñÜó�áóçò, ðïõ åßíáé ãíùó�ü

ùò ëåîéêü (ditionary). Ç áðïäï�éêÞ ëåé�ïõñãßá �ùí áëãïñßèìùí ðïõ ÷ñçóéìïðïéïýí�áé

ãéá �ïí õðïëïãéóìü �ùí ìç ìçäåíéêþí óõí�åëåó�þí ðñïûðïèÝ�åé �çí éêáíïðïßçóç óõãêå-

êñéìÝíùí óõíèçêþí. Ìéá áðü áõ�Ýò áðáé�åß �ï ëåîéêü íá Ý÷åé �ç ìïñöÞ åíüò inoherent

UNTF. Ùó�üóï, ãíùó�Ü ëåîéêÜ áõ�Þò �çò ìïñöÞò äåí ïäçãïýí óå éêáíïðïéç�éêü åðßðåäï

áñáéü�ç�áò. �éá �ï ëüãï áõ�ü ðïëëÜ ëåîéêÜ Ý÷ïõí ó÷åäéáó�åß ÷ñçóéìïðïéþí�áò �å÷íéêÝò

åêìÜèçóçò. ÓõíÞèùò, üìùò, �á ëåîéêÜ áõ�ïý �ïõ �ýðïõ äåí éêáíïðïéïýí �éò óõíèÞêåò ðïõ

áðáé�ïýí ïé áëãüñéèìïé õðïëïãéóìïý �çò áñáéÞò áíáðáñÜó�áóçò.

Ç èåùñßá �çò óõìðéåó�éêÞò äåéãìá�ïëçøßáò êáèéó�Ü äõíá�Þ �çí áíÜê�çóç åíüò óÞìá�ïò

áðü Ýíá ðëÞèïò åëëéðþí ìå�ñÞóåùí. Ç óõìðéåó�éêÞ äåéãìá�ïëçøßá áöïñÜ óÞìá�á ðïõ åßíáé

áñáéÜ Þ óõìðéÝóéìá êáé ÷ñçóéìïðïéåß Ýíáí ìç÷áíéóìü äåéãìá�ïëçøßáò ðïõ õëïðïéåß�áé ìå �ç

âïÞèåéá êá�Üëëçëïõ ðßíáêá, ãíùó�ïý ùò ðßíáêá ðñïâïëþí (projetion matrix). Óýìöùíá

ìå �ç èåùñßá, ï ðßíáêáò áõ�üò ðñÝðåé íá Ý÷åé �çí éäéü�ç�á ðåñéïñéóìÝíçò éóïìå�ñßáò (re-

strited isometry property{RIP). Ç êá�áóêåõÞ �Ý�ïéùí ðéíÜêùí åßíáé éäéáß�åñá äýóêïëç,

äéü�é ç åðáëÞèåõóç �çò RIP áðáé�åß óõíäõáó�éêïýò õðïëïãéóìïýò. Ïé ðéï ãíùó�ïß ðßíáêåò

ðïõ éêáíïðïéïýí �ç RIP ìå ìåãÜëç ðéèáíü�ç�á åßíáé ïé �õ÷áßïé ðßíáêåò Gauss êáé Bernoulli.

�éá �ïõò ðßíáêåò áõ�ïýò õðÜñ÷ïõí èåùñç�éêÜ áðï�åëÝóìá�á ðïõ áðïäåéêíýïõí ü�é åßíáé

åöéê�Þ ç áíÜê�çóç åíüò óÞìá�ïò ìÞêïõòN ìå s ìç ìçäåíéêïýò óõí�åëåó�Ýò, ü�áí �ï ðëÞèïò

ìå�ñÞóåùí åßíáé �çò �Üîçò O(s logN). Óýìöùíá ðñüóöá�á áðï�åëÝóìá�á, ç ðáñáðÜíù

óõíèÞêç áíÜê�çóçò éó÷ýåé êáé ü�áí ï ðßíáêáò ðñïâïëþí Ý÷åé �ç ìïñöÞ åíüò inoherent

UNTF. Óõíåðþò, ìéá íÝá ó�ñá�çãéêÞ êá�áóêåõÞò ðéíÜêùí ðñïâïëþí ðåñéëáìâÜíåé �çí

êá�áóêåõÞ ðéíÜêùí ìå ÷áìçëÞ áìïéâáßá óõíÜöåéá êáé ìéêñÞ öáóìá�éêÞ íüñìá.

ÅëÜ÷éó�åò �éìÝò �üóï ãéá �çí áìïéâáßá óõíÜöåéá üóï êáé ãéá �ç öáóìá�éêÞ íüñìá

óõíáí�þí�áé ó�á ETFs. ÅðïìÝíùò, ïé ðñï�åéíüìåíåò ìÝèïäïé ó�ï÷åýïõí ó�çí êá�áóêåõÞ

ðñïóåããéó�éêþí ETFs. Ç ðñþ�ç ìÝèïäïò ÷ñçóéìïðïéåß áðï�åëÝóìá�á áðü �ç èåùñßá �ùí

frames êáé âáóßæå�áé óå éäÝåò ðïõ ÷ñçóéìïðïéïýí�áé ó�ç ìÝèïäï �ùí åíáëëáóóüìåíùí

ðñïâïëþí (alternating projetions). Ôá frames ðïõ ðáñÜãåé Ý÷ïõí �ç ìïñöÞ UNTFs êáé

åìöáíßæïõí ìéêñÞ áìïéâáßá óõíÜöåéá, ïðü�å áðï�åëïýí inoherent UNTFs. Ç äåý�åñç
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ìÝèïäïò âáóßæå�áé óå ðñüóöá�á áðï�åëÝóìá�á ðïõ áðïäåéêíýïõí �çí ýðáñîç áìöéìïíï-

óÞìáí�çò áí�éó�ïé÷ßáò ìå�áîý ETFs êáé ãñÜöùí óõãêåêñéìÝíïõ �ýðïõ. Ç ýðáñîç åíüò

ETF êáèïñßæå�áé áðü Ýíáí ðßíáêá, ãíùó�ü ùò ðßíáêá signature, ðïõ Ý÷åé �ç ìïñöÞ ðßíáêá

ãåé�ïíßáò ãñÜöïõ êáé �ï öÜóìá �ïõ áðï�åëåß�áé áðü äýï äéáêñé�Ýò éäéï�éìÝò. Áí�éìå�ùðßæï-

í�áò �çí êá�áóêåõÞ �ïõ ðßíáêá signature ùò Ýíá áí�ßó�ñïöï ðñüâëçìá éäéï�éìþí (inverse

eigenvalue problem), ðñï�åßíïõìå Ýíáí áñéèìç�éêü áëãüñéèìï ðïõ ïäçãåß óå ðñïóåããéó�éêÞ

ëýóç. Ç äåý�åñç ìÝèïäïò ðáñÜãåé ðñïóåããéó�éêÜ ETFs, ìå äéáíýóìá�á ðïõ åìöáíßæïõí

ðáñüìïéá óõó÷Ý�éóç êáé ó÷åäüí âÝë�éó�ç öáóìá�éêÞ íüñìá.

Ïé ðñï�åéíüìåíåò êá�áóêåõÝò ÷ñçóéìïðïéïýí�áé ùò ðßíáêåò ðñïâïëþí ãéá óõìðéåó�éêÞ

äåéãìá�ïëçøßá, âåë�éþíïí�áò óçìáí�éêÜ �çí áðüäïóç �ùí ó÷å�éêþí áëãïñßèìùí ó�çí áíÜ-

ê�çóç áñáéþí óçìÜ�ùí. ÅðåéäÞ ðïëëÜ óÞìá�á Ý÷ïõí áñáéÝò áíáðáñáó�Üóåéò ùò ðñïò õðåñ-

ðëÞñç ëåîéêÜ, ÷ñçóéìïðïéïýìå �á ðñï�åéíüìåíá inoherent UNTFs ãéá �çí êá�áóêåõÞ

âåë�éó�ïðïéçìÝíùí ðéíÜêùí ðñïâïëþí óå ó÷Ýóç ìå äåäïìÝíï ëåîéêü. ¸íáò åðéðëÝïí

�ñüðïò ãéá �çí áîéïðïßçóç �ùí ðñï�åéíüìåíùí êá�áóêåõþí ó�çí åðßëõóç õðï-ïñéóìÝíùí

ãñáììéêþí óõó�çìÜ�ùí åßíáé ç �å÷íéêÞ �çò ðñïññýèìéóçò. Åöáñìüæïí�áò ðñïññýèìéóç óå

áñáéÝò áíáðáñáó�Üóåéò ïäçãïýìáó�å óå êáëý�åñç áðüäïóç �ùí áëãïñßèìùí ðïõ ÷ñçóéìï-

ðïéïýí�áé ãéá �ïí õðïëïãéóìü �ùí ìç ìçäåíéêþí óõí�åëåó�þí. Ó�ç óõìðéåó�éêÞ äåéãìá�ï-

ëçøßá ç ðñïññýèìéóç âåë�éþíåé �çí áíÜê�çóç �ïõ óÞìá�ïò, ü�áí ÷ñçóéìïðïéïýí�áé äõáäéêïß

ðßíáêåò ðñïâïëþí. Óçìåéþíïõìå ü�é ïé äõáäéêïß ðßíáêåò ðñïâïëþí ðáñïõóéÜæïõí åõêïëü-

�åñç ðñáê�éêÞ õëïðïßçóç.

Åê�üò áðü �éò áñáéÝò áíáðáñáó�Üóåéò êáé �ç óõìðéåó�éêÞ äåéãìá�ïëçøßá, ìéá áðü �éò

ðñï�åéíüìåíåò êá�áóêåõÝò åßíáé êá�Üëëçëç ãéá �ç ó÷åäßáóç ó÷åäüí âÝë�éó�ùí êùäéêþí

(odes) Þ áêïëïõèéþí åîÜðëùóçò (spreading sequenes) óå óõó�Þìá�á óýã÷ñïíïõ CDMA.

Åßíáé ãíùó�ü ü�é ïé âÝë�éó�åò áêïëïõèßåò Ý÷ïõí �ç ìïñöÞ equal norm tight frames êáé

ïäçãïýí óå ìåãéó�ïðïßçóç �ïõ ñõèìïý ìå�Üäïóçò, åíþ åëá÷éó�ïðïéïýí �çí ðáñåìâïëÞ

ìå�áîý ÷ñçó�þí. Ùó�üóï, ü�áí �ï ðëÞèïò �ùí åíåñãþí ÷ñçó�þí åßíáé ìå�áâáëëüìåíï, �ü�å

ïé áêïëïõèßåò åßíáé âÝë�éó�åò ìüíï ü�áí Ý÷ïõí �ç ìïñöÞ ETFs. Äõó�õ÷þò, ìüíï ëßãåò

êá�áóêåõÝò ETFs õðÜñ÷ïõí ó�ç âéâëéïãñáößá. Ôï óýó�çìá êùäéêþí ðïõ ðáñïõóéÜæå�áé

åäþ Ý÷åé �ç ìïñöÞ ðñïóåããéó�éêþí ETFs êáé åëá÷éó�ïðïéåß �çí ðáñåìâïëÞ ìå�áîý ÷ñçó�þí

áêüìá êáé ü�áí êÜðïéïé ÷ñÞó�åò åßíáé áíåíåñãïß.
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Chapter 1

Introdution

1.1 Overview

1.2 Contributions

1.3 Outline

Sometimes the representation of a funtion or an operator by an overomplete spanning

system is preferable over the use of an orthonormal basis. The reason for this may be

that an orthonormal basis with the desired properties does not exist or the deliberate

introdution of redundany. Frames an be regarded as the most natural generalization

of the notion of orthonormal bases. Partiularly useful in appliations are frames in

�nite dimensional spaes. A �nite frame is a spanning set of vetors, whih are generally

redundant (overomplete). As frames have more vetors than the dimension of the spae,

eah vetor in the spae will have in�nitely many representations with respet to the

frame. While armed with the advantage of redundany, frames ome with the drawbak

that the frame vetors are linearly dependent.

A �nite frame with N vetors in an m-dimensional Hilbert spae Hm

is usually iden-

ti�ed with the m × N matrix F = [f1 f2 : : : f

N

], m ≤ N , with olumns the frame

vetors f

k

∈ Hm

, k = 1; : : : ; N . In many appliations there is a need to design frames

that are as lose to orthonormal bases as possible. Unit norm olumns, orthogonal equal

norm rows, equal orrelation between frame vetors are the desired properties of suh

frames; the orresponding frame lasses are known as unit norm frames, tight frames and

equiangular frames, respetively. The most important ategory of frames inludes equian-

gular unit norm tight frames (ETFs) also known as optimal Grassmannian frames. These

frames ombine all of the above properties and they also minimize the maximal olumn

orrelation max
k 6=` |〈fk; f`〉|; therefore, they are onsidered to be losest to orthonormal

bases. Despite their important properties, ETFs do not exist for all frame dimensions

and their onstrution is extremely diÆult. Thus, in many appliations similar frame

onstrutions are used as substitutes.
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This thesis proposes two numerial methods for the onstrution of frames that are

lose to ETFs. The obtained frames exhibit small olumn orrelation, a property known

as inoherene, and small spetral norm , meaning that they are lose to unit norm tight

frames. Using these frames in sparse signal reovery in redundant representations and

ompressed sensing, we substantially improve the performane of the numerial algorithms

deployed to �nd sparse signals. One of the proposed methods yields nearly equiangular

frames, whih are employed as spreading sequenes in synhronous Code Division Multiple

Aess (s-CDMA) systems, minimizing interuser interferene.

1.1 Overview

Let x be a vetor of oeÆients representing data in a real or omplex m-dimensional

Hilbert spae Hm

. One ommon approah to data proessing is the deomposition of x

aording to a representation system {f
k

}N
k=1, N ≥ m, by onsidering the map

x 7→ (〈x; f
k

〉)N
k=1

The hoie of the representation system is ditated by the treated data and the appliation

of interest. A suessful hoie enables us to solve a variety of analysis tasks. For example,

the sequene (〈x; f
k

〉)N
k=1 allows ompression of x, whih is in fat the heart of the new

JPEG2000 ompression standard when hoosing {f
k

}N
k=1 to be a wavelet system.

An aompanying approah is the expansion of the data x by onsidering sequenes

{
k

}N
k=1 satisfying

x =

N∑

k=1



k

f

k

:

It is well known that suitably hosen representation systems allow sparse representations,

that is, representations with small number of nonvanishing oeÆients.

A representation system that forms an orthonormal basis for Hm

is the standard

hoie. While orthonormal bases provide unique representations they exhibit important

drawbaks. From the deomposition viewpoint, the obtained sequene is far from being

robust to erasures. Every single oeÆient enapsulates unique information of the data x;

thus, its loss annot be reovered. From the expansion viewpoint, orthonormal basis rarely

yield sparse representations, therefore, they are not suitable for sparsity methodologies

like ompressed sensing.

These problems an be takled by allowing the system {f
k

}N
k=1 to be redundant, leading

us naturally to the notion of Hilbert frames. Redundany is a fundamental harateristi

of frames and plays a signi�ant role in appliations. Due to redundany frames o�er

greater design exibility and an be onstruted to �t a partiular problem in a manner

impossible by a set of linearly independent vetors. For example, in sparse signal repre-

sentations, a redundant frame an be hosen to �t its ontent to the data, ahieving a

high sparsity level that would not be easily obtained using an orthonormal basis. A se-

ond major advantage of redundany is robustness. Frames have the advantage to spread

2



the information over a wider range of vetors, o�ering resiliene against erasures (losses).

Erasures are, for instane, a severe problem in wireless sensor networks when transmission

losses our.

The advantages provided by the frame redundany ome at the ost that the represen-

tation may not be unique. Thus, while we have good reasons to trade orthonormal bases

for frames, we still want to preserve as many properties of orthonormal bases as possible.

To measure the nearness of a frame to an orthonormal basis, we de�ne two important

properties. The �rst is the maximal orrelation of the frame vetors de�ned as the largest

absolute normalized inner produt between di�erent frame olumns

�(F ) = max
1≤k;`≤N

k 6=`

|〈f
k

; f

`

〉|
‖f

k

‖ ‖f
`

‖ ; (1.1)

where ‖·‖ denotes the Eulidean norm. In sparse representations the maximal orrelation
is referred to as mutual oherene [93℄ and is bounded aording to [119℄

√
N −m

m(N − 1)
≤ �(F ) ≤ 1: (1.2)

Frames with small mutual oherene are known as inoherent.

An interpretation of the inoherene property from an information theoreti viewpoint

is the following. Requiring a matrix F with small mutual oherene, that is, with olumns

as \independent" as possible, means that the information of a vetor x expanded by F

is spread in di�erent diretions, whih makes its reovery easier. As we will see, mutual

oherene plays an important role in the existene of a unique solution of underdetermined

linear systems as well as in the performane of the algorithms deployed to �nd sparse

solutions.

After the mutual oherene, the spetral norm ‖F‖ is the most important geometri

quantity assoiated with a frame F . Spetral norm equals the largest eigenvalue of F

T

F

and measures how muh the frame an dilate a unit norm oeÆient vetor, so it reets

how muh the olumns of F are\spread out". A lower bound on the spetral norm of a

frame is given by

‖F‖2 ≥ N

m

: (1.3)

When equality holds in this relation, the frame forms a unit norm tight frame (UNTF).

Equivalently, the rows of F are mutually orthogonal vetors with equal norms. Mini-

mum bounds of both mutual oherene and spetral norm are ahieved by equiangular

tight frames. ETFs have unit norm vetors forming equal angles, exhibiting minimal

dependeny; thus, they are onsidered to be losest to orthonormal bases. However, the

onstrution of ETFs is extremely diÆult, while it has been proved that ETFs do not

exist for all frame dimensions.

Mutual oherene and spetral norm de�ne partiular lasses of frames and play a

signi�ant role in appliations. Most of the problems employing frames demand ertain
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desired properties; thus, most frame onstrutions are appliation spei�. Following

this rule, the work presented in this thesis is motivated by the researh for a good sensing

operator for ompressed sensing. The importane of inoherene in sparse signal reovery,

both in redundant representations and ompressed sensing makes ETFs ideal andidates

for these problems [70, 124, 125℄. The numerial onstrutions proposed here produe

frames lose to ETFs in the sense that the obtained frames exhibit mutual oherene and

spetral norm approximating or, sometimes, attaining the minimum bounds. The �rst

method relies on frame theory and onstruts inoherent UNTFs. These frames satisfy the

theoretial onditions for sparse reovery, and are used in ompressed sensing to optimize

the measurement proess and improve signal reonstrution. The seond method is based

on results onneting frames to graphs and produes nearly equiangular frames, whih

are also employed in ompressed sensing to improve reovery rates.

Besides ompressed sensing, the proposed frames are found useful in a similar prob-

lem, namely in sparse reonstrution of redundant representations. The mathematial

tehnique that enables their employment in this problem is referred to as preonditioning.

Moreover, based on reent results establishing the important role of equiangularity in de-

signing optimal odes for multiuser ommuniation systems, we employ nearly equiangular

frames as spreading sequenes in s-CDMA systems to minimize interuser interferene.

1.1.1 Sparse representations

In the sparse representations literature, it is ommon for a basis or frame to be referred

to as a ditionary or overomplete ditionary, respetively, with the ditionary elements

being alled atoms. A signal expansion under an overomplete ditionary results in an

underdetermined linear system of the form

y = Ax; (1.4)

where y ∈ RK

is the signal of interest, A ∈ RK×N
, K < N , is a redundant ditionary,

and x ∈ RN

is the vetor of the unknown oeÆients [58℄. Due to the linear dependene

between the olumns of A, an important issue is the uniqueness of the representation.

Aording to well known results, unique representations an be obtained as long as the

involved ditionary is suÆiently inoherent [51℄. Having more unknowns than equations,

system (1.4) an be solved if we add sparsity priors, requiring x to have only a few nonva-

nishing oeÆients. Conditions that guarantee the performane of sparse reonstrution

algorithms [93, 47, 26℄, besides inoherene, highlight the role of tightness, requiring A to

be an inoherent unit norm tight frame [125℄.

Although onstrutions of inoherent tight ditionaries appear often in signal pro-

essing appliations, suh ditionaries have a limited ability of sparsifying signals or are

suitable only for ertain signal types. In this thesis, we propose the use of inoherent unit

norm tight frames in the reonstrution of sparse signals, utilizing a tehnique referred

to as preonditioning. Preonditioning is used to transform a system into a form that
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is more suitable for numerial solution [6℄. Designing a K ×K matrix C suh that CA

exhibits inoherene and tightness and employing C in (1.4) aording to

Cy = CAx; or z = CAx; z = Cy; (1.5)

we obtain a system that an be solved more eÆiently by the deployed algorithms. An

important ondition that must be taken into aount when designing the preonditioner

C is that (1.5) is equivalent to (1.4) if and only if C is invertible.

1.1.2 Compressed sensing

Solving an underdetermined linear system with a sparsity prior has reently reeived a

lot of attention in ompressed sensing [49, 25℄. Exploiting sparsity, ompressed sensing

o�ers simultaneous aquisition and ompression of signals, allowing signal reonstrution

from an inomplete number of measurements. Considering a sparse signal x ∈ RN

under

an orthonormal basis or redundant ditionary A ∈ RK×N
, K ≤ N , we obtain m linear

measurements aording to

y = PAx; (1.6)

using a sensing operator P realized by an m×K, m≪ K, matrix. We refer to P as the

projetion or measurement matrix.

Compressed sensing leads to an underdetermined linear system with m equations

and N unknowns, m ≪ N , and, similarly to the sparse representation problem, relies

on numerial methods to �nd a sparse solution satisfying (1.6). The system matrix is

the produt of the sensing operator P and the representation ditionary A; we refer

to this produt as the e�etive ditionary. Aording to theoretial results from sparse

representations, the e�etive ditionary should be an inoherent unit norm tight frame

[125℄.

Suessful signal reonstrution in ompressed sensing is based on the hoie of the

projetion matrix. Random matries are onsidered a universal solution; however, the

demand to inrease reonstrution auray and redue the neessary number of mea-

surements has led to new theoretial and pratial results [54℄. A tehnique used to

improve reovery rates in ompressed sensing involves the optimization of the projetion

matrix over the representation ditionary A. Here, we design a projetion matrix that

yields an e�etive ditionary having the form of an inoherent unit norm tight frame.

Moreover, binary projetion matries that are onsidered more suitable for hardware im-

plementation may yield reovery rates similar to optimized projetions, if the reovery

proess inludes preonditioning.

1.1.3 Spreading sequenes for s-CDMA

In synhronous CDMA systems, the users share the entire bandwidth and eah user is

distinguished from the others by its spreading sequene or ode. The apaity region

de�ned as the set of information rates at whih users an transmit while retaining reliable
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transmission is haraterized as a funtion of the spreading sequenes and average input

power onstraints of the users. Capaity optimal sequenes are funtions of odebook

length as well as the number of users [95, 136℄.

Suppose that x1; x2; : : : ; xN is a set of vetors in Rm

orresponding to N possible users

of an s-CDMA system. These vetors form a set of sequenes of length m. Optimal

spreading sequenes have been haraterized in [95℄ to be the Welh Bound Equality

(WBE) sequenes, that is, equal norm tight frames. WBE sequenes minimize the total

squared orrelation (TSC), that is,

TSC =

N∑

i=1

N∑

j=1

|〈x
i

; x

j

〉|2 ; (1.7)

whih results in that the interferene experiened by any user is exatly the same. How-

ever, WBE sequenes do not perform well when the number of users in the ell hanges.

If the number of the ative users is smaller than N , then a ode set designed for N users

is no longer optimal and new odes should be assigned to all users [76℄.

The interferene experiened by the j-th user in the system depends on the term [95℄

�(j) =

√∑

i6=j
|〈x

i

; x

j

〉|2: (1.8)

Consider a system with K < N ative users. In [76℄ it was shown that all users experiene

the same interferene, whih depends only on K, the urrent number of ative users, if

and only if the ode set is an equiangular sequene set.

While ETFs onstitute an optimal solution for minimizing interuser interferene, only

a few onstrutions of ETFs are available. Here, we propose the employment of nearly

equiangular frames as spreading sequenes and improve interuser interferene when the

number of users in the system hanges.

1.2 Contributions

The main ontribution of this thesis is the development of two numerial methods for the

onstrution of frames that are lose to ETFs. The �rst method uses results from frame

theory and linear algebra and is based on alternating and averaged projetions ideas. The

obtained frames are UNTFs with small olumn orrelation, i.e., inoherent UNTFs. The

seond method uses theoretial results onerning the onnetion of frames to graphs and

employs a heuristi algorithm to produe frames that are nearly equiangular, that is, the

frame vetors exhibit similar near optimal orrelation. The proposed numerial meth-

ods produe frames of any dimensions, whih may be employed in various appliations

requiring ETFs.

Here, we apply the proposed onstrutions in signal proessing appliations, namely

sparse representations and ompressed sensing, and s-CDMA ommuniation systems.
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Conerning sparse representations under redundant ditionaries, the proposed frames are

utilized in the reonstrution of sparse signals using the tehnique of preonditioning.

Experimental results show that the performane of the deployed numerial solvers is sub-

stantially improved. In ompressed sensing the proposed frame onstrutions are used in

three ways. First, as projetion matries to aquire sparse signals, attaining high au-

ray in signal reonstrution. Seond, given the representation ditionary, we onstrut

optimized projetion matries and further improve reovery rates. Third, for the �rst

time, we apply preonditioning in ompressed signal aquisition with binary operators.

The tehnique improves the performane of numerial algorithms and is very important

for pratial ompressed sensing appliations, beause binary matries have easy hard-

ware implementation. Another appliation involves the employment of nearly equiangular

frames as spreading sequenes in s-CDMA systems. Our simulations show that nearly

equiangular frames minimize the interuser interferene when the number of users in the

system hanges.

1.3 Outline

This thesis is organized as follows. In Chapter, 2 we review basi results from frame theory

and survey important work in frame design. Chapter 3 inludes the proposed methods

for the onstrution of frames exhibiting good inoherene and spetral properties. In

Chapter 4, we review important results for sparse reovery and use the proposed frames to

apply preonditioning of underdetermined linear systems met in sparse representations. In

Chapter 5, we address sparse reovery in ompressed sensing and explain how the proposed

onstrutions are used to produe optimized projetions. We also present reonstrution

of sparse signals aquired with Bernoulli projetion matries using preonditioning. The

employment of the proposed nearly equiangular frames as spreading sequenes in s-CDMA

systems is presented in Chapter 6. Finally, Chapter 7 inludes onlusions and future

researh diretions.
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Chapter 2

Frames review

2.1 Preliminaries

2.2 Finite frames basis

2.3 Connetion of frames to graphs

2.4 The frame design problem

Introdued by DuÆn and Shae�er [56℄, frames have been known for over half a en-

tury, but they beame popular due to wavelets in the late 1980s, when Daubehies, Gross-

man and Meyer [45, 43℄ showed their importane for data proessing. Generalizing the

notion of orthonormal bases, frames are less onstrained than bases allowing for redun-

dant (overomplete) representations, and they are used when more exibility in hoosing

a representation is needed.

Traditionally, frames are used in signal and image proessing, nonharmoni Fourier

series, data ompression, and sampling theory [84, 85℄. For example, in signal proess-

ing, frames are a exible deomposition tool that failitates various signal proessing

tasks, having the ability to apture important signal harateristis and providing numer-

ial stability of reonstrution, resiliene to additive noise and resiliene to quantization

[84, 22℄. Finite frames play a entral role in the design and analysis of both sparse repre-

sentations and ompressed sensing [124, 125, 9, 8, 27, 41℄. Other appliations of frames

inlude soure oding [43, 69℄, robust transmission [80, 62℄, Code Division Multiple A-

ess (CDMA) systems [95, 136, 137, 140℄, operator theory, oding theory [110℄, quantum

theory and quantum omputing [60℄.

Frame theory might be regarded as partly belonging to applied harmoni analysis,

funtional analysis, and operator theory, as well as numerial linear algebra and matrix

theory. Certain frame ategories suh as Grassmannian frames have onnetions to Grass-

mannian pakings, spherial odes and graph theory [119℄. Therefore, frame theory and

its appliations have experiened a growing interest among mathematiians, engineers,
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omputer sientists, and others. New theoretial insights and novel appliations are on-

tinually arising due to the fat that the underlying priniples of frame theory are basi

ideas whih are fundamental to a wide anon of areas of researh.

2.1 Preliminaries

In this setion we present basi de�nitions and results whih we will need later.

Given a positive integer m, we denote by H
m

the real or omplex �nite Hilbert spae

of dimension m. This is either Rm

or Cm

. By 〈·; ·〉 we denote the inner produt and by

‖ · ‖ the orresponding norm. For x = (x1; x2; : : : ; xm) and y = (y1; y2; : : : ; ym), the inner

produt is de�ned as

〈x; y〉 =
m∑

k=1

x

k

y

∗
k

: (2.1)

Two vetors x; y ∈ Hm

are alled orthogonal if 〈x; y〉 = 0. The norm is de�ned as

‖x‖ =
√

〈x; x〉 =

√√√√
m∑

k=1

|x
k

|2: (2.2)

A vetor x ∈ Hm

is alled normalized if ‖x‖ = 1.

De�nition 2.1.1. A system {e
k

}m
k=1 of vetors in Hm

is alled:

i. Linearly independent, if for any salars {a
k

}m
k=1 and provided that e

k

6= 0 for all

k = 1; 2; : : : ; m,

m∑

k=1

a

k

e

k

= 0 ⇒ a

k

= 0; for all k = 1; 2; : : : ; m: (2.3)

ii. Complete (or spanning set) if span{e
k

}m
k=1 = Hm

.

iii. Orthogonal if for all k 6= `, the vetors e

k

and e

`

are orthogonal.

iv. Orthonormal if it is orthogonal and eah e

k

is normalized.

v. An orthonormal basis for Hm

if it is omplete and orthonormal.

Proposition 2.1.1 (Parseval's identity). If {e
k

}m
k=1 is an orthonormal basis for Hm

, then

for every x ∈ Hm

, we have

‖x‖2 =
m∑

k=1

|〈e
k

; x〉|2: (2.4)

It follows that

Corollary 2.1.1. If {e
k

}m
k=1 is an orthonormal basis for Hm

, then for every x ∈ Hm

, we

have

x =

m∑

k=1

〈e
k

; x〉e
k

for all x ∈ H
m

: (2.5)
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Projetions

De�nition 2.1.2 (Orthogonal projetion). An operator P : H → H is alled a projetion,

if P

2 = P . It is an orthogonal projetion if P is also self-adjoint.

For any subspae W ⊂ Hm

, there is an orthogonal projetion of H onto W alled the

nearest point projetion. One way to de�ne it is to pik any orthonormal basis {e
k

}n
k=1,

n ≤ m, and de�ne

Px =
n∑

k=1

〈e
k

; x〉e
k

: (2.6)

Theorem 2.1.3. Let P be an orthogonal projetion onto a subspae W . Then

‖x− Px‖ ≤ ‖x− y‖ for all y ∈ W: (2.7)

Analysis and synthesis

Suppose x is a vetor of oeÆients representing data in H
m

. Considering a general basis

F , the following equation expresses the analysis or deomposition of x under F

X = F

∗
x; (2.8)

where

∗
denotes the Hermitian matrix. We an go bak to x by

x = (F ∗)−1
X; (2.9)

whih expresses the synthesis or reonstrution. If F is an orthonormal basis then F

∗ =

F

−1
, thus, x = FX.

2.2 Finite frames basis

Considering a real or omplex m-dimensional Hilbert spae Hm

, a sequene of N ≥ m

vetors {f
k

}N
k=1, fk ∈ Hm

, is a �nite frame F , if there are positive onstants �, � suh

that

� ‖x‖2 ≤
N∑

k=1

|〈f
k

; x〉|2 ≤ � ‖x‖2 ; for all x ∈ H
m

: (2.10)

We refer to �, � as the lower and upper frame bounds, respetively.

The following notions are related to a frame {f
k

}N
k=1.

(a) The ratio � = N=m is referred to as the redundany of the frame and is a \measure

of overompleteness" of the frame.

(b) When � = �, we say that the frame is �-tight, while when � = � = 1 the frame is

alled Parseval.
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() A frame is alled uniform or equal norm, when ‖f
k

‖ = C, C > 0, for all k ∈
{1; : : : ; N}, and unit norm, when ‖f

k

‖ = 1 for all k ∈ {1; : : : ; N}.

(d) For a unit norm frame, the absolute value of the inner produt between two frame

vetors equals the osine of the aute angle between the lines spanned by the two

vetors. If there is a onstant  > 0 for whih |〈f
k

; f

`

〉| = , k 6= `, then the frame is

alled equiangular.

(e) Any orthonormal basis is a frame with frame bounds � = � = 1.

A simple example of frames is the so-alled Meredes Benz frame, the smallest redun-

dant family in H2
with N = 3 vetors. It an be hosen to be a unit norm tight frame if

we just selet three equally spaed points on the unit irle (i.e., eah 120 degrees apart).

The vetors to these points from the origin is our unit norm tight frame.

We usually identify the m × N matrix F = [f1 f2 : : : f

N

] with olumns the frame

vetors f

k

∈ Hm

, with the frame itself. The frame bounds are then the lower and upper

bounds of the quantity

‖F ∗
x‖2

‖x‖2 =
〈F ∗

x; F

∗
x〉

‖x‖2 =
〈x; FF ∗

x〉
‖x‖2 ; x 6= 0: (2.11)

These bounds are attained at the smallest and largest eigenvalues of FF

∗
, respetively.

We also note that the frame elements span H
m

when � > 0; thus, any frame of N elements

in m dimensions must satisfy N ≥ m.

2.2.1 Frame operators

The analysis, synthesis, and frame operators determine the operation of a frame when

analysing and reonstruting a signal. The analysis operator{as the name suggests{

analyzes a signal in terms of the frame by omputing its frame oeÆients.

De�nition 2.2.1 (Analysis operator). Let {f
k

}N
k=1 be a sequene of vetors in Hm

. Then

the assoiated analysis operator T : Hm → HN

is de�ned by

Tx := (〈x; f
k

〉)N
k=1; x ∈ H

m

: (2.12)

De�nition 2.2.2 (Synthesis operator). Let {f
k

}N
k=1 be a sequene of vetors in Hm

with

assoiated analysis operator T . Then, the adjoint operator T

∗
is alled the synthesis

operator.

The frame operator might be onsidered the most important operator assoiated with

a frame. Although it is \merely" the onatenation of the analysis and synthesis operator,

it enodes ruial properties of the frame as we will see in the sequel. Moreover, it is also

fundamental for the reonstrution of the signal from frame oeÆients.
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De�nition 2.2.3 (Frame operator). Let {f
k

}N
k=1 be a sequene of vetors in Hm

with

assoiated analysis operator T . Then the assoiated frame operator S : Hm → Hm

is

de�ned by

Sx := T

∗
Tx =

N∑

k=1

〈f
k

; x〉f
k

; x ∈ H
m

: (2.13)

When {f
k

}N
k=1 is an orthonormal basis then Sx = x. The matrix representation of the

frame operator S = T

∗
T is the positive semide�nite Hermitian matrix FF

∗
. The most

fundamental property of the frame operator is its invertibility whih is ruial for the

reonstrution formula.

Allowing the mapping x 7→ (〈x; f
k

〉) to apture the energy of any x ∈ Hm

, reon-

strution of x is enabled with the help of some dual frame. In partiular, for every frame

F = {f
k

}N
k=1 for H

m

, there exists at least one dual frame 	 = { 
k

}N
k=1 suh that

x =

N∑

k=1

〈f
k

; x〉 
k

; for all x ∈ H
m

: (2.14)

Any orthogonal basis is a frame with frame bounds � = � = 1 and orresponds to a

dual frame 	 = F . The most often-used dual frame is the anonial dual frame, namely,

the pseudoinverse F̃ = (FF ∗)−1
F . Computing a anonial dual involves the inversion of

FF

∗
. As suh when designing a frame it is important to retain ontrol over the eigenvalues

{�
i

}m
i=1 of FF

∗
.

Of partiular interest is also the operator generated by �rst applying the synthesis and

then the analysis operator.

De�nition 2.2.4 (Grammian operator). Let {f
k

}N
k=1 be a sequene of vetors in Hm

with

assoiated analysis operator T . Then the Grammian operator R : HN → H
N

is de�ned

by

R(a
k

)N
k=1 = TT

∗(a
k

)N
k=1 =

(
N∑

`=1

a

`

〈f
k

; f

`

〉
)
N

k=1

=
N∑

`=1

(a
`

〈f
k

; f

`

〉)N
k=1 : (2.15)

The matrix representation of the Grammian of a frame is alled the Gram matrix; this

is the N ×N matrix R = F

∗
F given by




‖f1‖2 〈f2; f1〉 : : : 〈f
N

; f1〉
〈f1; f2〉 ‖f2‖2 : : : 〈f

N

; f2〉
.

.

.

.

.

.

.

.

.

.

.

.

〈f1; fN〉 〈f2; fN〉 : : : ‖f
N

‖2



: (2.16)

If the frame is unit norm then the entries of the Gram matrix are exatly the osines of

the angles between the frame vetors. The following are fundamental properties of the

Gram matrix.

i. F is an m×N frame, if and only if the Gram matrix is a self-adjoint projetion with

rank m.
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ii. F is an m × N Parseval frame, if and only if the Gram matrix is an orthogonal

projetion with rank m.

iii. An operator U on Hm

is unitary, if and only if the Gram matrix of {Uf
k

}N
k=1 oinides

with R.

iv. The nonzero eigenvalues {�}m
i=1 of F

∗
F and FF

∗
are the same; thus

m∑

i=1

�

i

= trae(F ∗
F ) = trae(FF ∗): (2.17)

Frames F = {f
k

}N
k=1 and G = {g

k

}N
k=1 are unitarily equivalent, if there exists a unitary

transformation U : Hm → Hm

with F = UG := {Uf
k

}, k ∈ {1; : : : ; N}. Therefore, a

frame is determined by its Gram matrix up to unitary equivalene.

2.2.2 Tight frames

Let F = {f
k

}N
k=1 be a �nite redundant frame in Hm

. If (2.10) holds with � = �, we have

x =
1

�

N∑

k=1

〈f
k

; x〉 f
k

; for all x ∈ H
m

; (2.18)

thus obtaining an �-tight frame. In this ase, the rows of �

−1=2
F form an orthogonal

family, eah with norm

√
�. For an �-tight frame the following property

FF

∗ = �I

m

; (2.19)

where I

m

is the m×m identity matrix, follows immediately.

Construting a tight frame is straightforward; we take an orthonormal basis and selet

the desired number of rows. For example, m×N harmoni tight frames are obtained by

deleting (N −m) rows of an N ×N DFT matrix.

While (2.18) resembles the expansion formula in the ase of an orthonormal basis, a

tight frame does not onstitute an orthonormal basis in general. Beause of the linear

dependene whih exists among frame vetors, the expansion is no longer unique. The

expansion is unique in the sense that it minimizes the norm of the expansion among all

valid expansions. Beause of (2.19), the anonial dual frame F̃ = (FF ∗)−1
F oinides

with the frame itself. Thus, tight frames provide perfet reonstrution. For this reason

tight frames are desirable in redundant signal representations.

Considering the spetral properties of an �-tight frame, the following proposition

summarizes well-known results.

Proposition 2.2.1 (Spetral properties of tight frames). A frame is �-tight if and only

if one of the following onditions holds:

(a) The nonzero eigenvalues of the Gram matrix equal �.
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(b) The nonzero singular values of F equal

√
�.

() The spetral norm of F equals

√
�.

Even though the onstrution of a tight frame is trivial, we annot easily design a

tight frame with equal-norm olumns; suh frames exist for ertain frame bounds �. For

an equal norm �-tight frame with olumn norms ‖f
k

‖ = C, k = 1; : : : ; N , there holds

trae(F ∗
F ) =

N∑

k=1

‖f
k

‖2 = NC

2
: (2.20)

For the m nonzero eigenvalues of the frame operator there holds

trae(FF ∗) =
m∑

i=1

�

i

= m�: (2.21)

Thus, the frame bound is given by

� =
N

m

C

2
: (2.22)

2.2.3 Unit norm tight frames

Finite frames that are both tight and normalized are alled unit norm tight frames

(UNTFs) (the term �nite normalized tight frames (FNTF) is also used) and possess a

signi�ant struture. An intuitive haraterization of UNTFs is presented in [69℄ where

the authors demonstrate that if one randomly hooses unit vetors aording to a uni-

form distribution on a sphere, the resulting Bessel sequene is asymptotially a UNTF.

A UNTF an be thought of as a sequene that retains the deomposition properties of

orthonormal bases while relaxing the need to be a basis. For example a onatenation of

� orthonormal bases form an �-UNTF. These expansions gain redundany and stability

at the expense of not having a unique representation.

There is only one hoie for the frame bound of a UNTF of N vetors for H
m

, whih

is given by the following theorem.

Theorem 2.2.5 ([14℄). If {f
k

}N
k=1 is a �nite unit norm �-tight frame for anm-dimensional

Hilbert spae Hm

, then � = N=m.

Therefore, a UNTF in a �nite dimensional spae is an m×N matrix suh that

(a) The rows are orthogonal.

(b) Eah row has norm

√
N=m.

() Eah olumn has norm 1.

Another question of interest is whether UNTFs of a given N exist for a Hilbert spae Hm

.

This question is answered by the following theorem.
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Theorem 2.2.6 (Existene of UNTFs [68℄). Given any m, N , with N ≥ m, there exists

a UNTF for Hm

of N vetors.

Similar to Proposition 2.2.1 the spetral properties of a UNTF are given by the fol-

lowing proposition.

Proposition 2.2.2 (Spetral properties of UNTFs). A frame is unit norm tight if and

only if one of the following onditions holds:

(a) The nonzero eigenvalues of the Gram matrix equal N=m.

(b) The nonzero singular values of F equal

√
N=m.

() The spetral norm of F equals

√
N=m.

The value of the spetral norm of a UNTF is the lowest possible bound for m × N

frames [38℄. The spetral norm of an arbitrary frame is often used as a measure of how

lose a given frame is to a UNTF.

Unit norm tight frames are also known as Welh Bound Equality (WBE) sequenes

[143℄. A quarter entury ago Welh published a olletion of lower bounds on the max-

imum magnitude of the inner produts of a set of unit norm omplex valued vetors

and used these results to dedue lower bounds on the maximum magnitudes of orre-

lation funtions for sets of periodi sequenes. UNTFs were found to meet the lower

bounds on the mean square (RMS) magnitude, a quantity that is also known as total

squared orrelation (TSC). Due to this important property UNTFs are onsidered optimal

spreading sequenes for s-CDMA systems [95, 136, 137, 140℄. Moreover, their robustness

against additive noise and erasures allows for stable reonstrution in ommuniations

[69, 68, 31, 80℄.

2.2.4 Equiangular tight frames

When a unit norm tight frame has vetors forming equal angles we obtain an equiangular

tight frame. ETFs exhibit equal olumn orrelation, whih is also the smallest possible

[119℄; thus, they are maximally inoherent equiangular frames. ETFs are arguably the

most important lass of �nite-dimensional frames, and they are the natural hoie when

one tries to ombine the advantages of orthonormal bases with the onept of redundany

provided by frames.

The maximal orrelation between di�erent normalized frame vetors is de�ned as

�(F ) = max
1≤k;`≤N

k 6=`

|〈f
k

; f

`

〉|; (2.23)

and is related to a lass of frames known as Grassmannian frames. A Grassmannian frame

minimizes the maximal orrelation between frame elements among all unit norm frames

with the same redundany.
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De�nition 2.2.7 (Grassmannian frames [119℄). A sequene of vetors F = {f
k

}N
k=1 in

Hm

is alled a Grassmannian frame, if it is a solution to

min�(F ); (2.24)

where the minimum is taken over all unit norm frames F in H
m

.

The minimum in (2.24) depends on the frame dimensionsm;N . The following theorem

derives bounds on �(F ).

Theorem 2.2.8 (Minimum maximal orrelation [119℄). Let F = {f
k

}N
k=1 be a frame in

Hm

. Then

�(F ) ≥
√

N −m

m(N − 1)
: (2.25)

Equality holds, if and only if F is an equiangular tight frame. Furthemore,

if H = R equality in (2.25) an only hold if N ≤ m(m + 1)

2
;

if H = C equality in (2.25) an only hold if N ≤ m

2
:

(2.26)

In [119℄ it was shown that the bound in (2.25) is attained by Grassmannian frames

that also form unit norm tight frames. These frames are referred to as optimal Grass-

mannian frames and oinide with equiangular tight frames. As unit norm tight frames

with dimensions m;N exist for a spei� tightness parameter (� = N=m), an optimal

Grassmannian frame is an equiangular N=m-tight frame. Therefore, an equiangular tight

frame F = {f
k

}N
k=1 in Hm

satis�es the following onditions:

‖f
k

‖ = 1 for k = 1; : : : ; N; (2.27)

|〈f
k

; f

`

〉| =
√

N −m

m(N − 1)
for k 6= `; (2.28)

N

m

N∑

k=1

〈x; f
k

〉 f
k

= x for all x ∈ H
m

: (2.29)

The lowest bound on the minimal ahievable orrelation for equiangular frames is also

known asWelh bound [143℄, and optimal Grassmannian frames or ETFs are also referred

to as Maximal Welh Bound Equality sequenes (MWBE).

Equiangular tight frames were introdued by van Lint and Seidel in the setting of

disrete geometry [134℄. ETFs are partiularly interesting and useful. In signal proessing,

ETFs meet the Welh bound for optimal odes [76℄. As spreading sequenes in multiuser

ommuniation systems the tightness ondition allows equiangular tight frames to ahieve

maximal apaity of a Gaussian hannel and their equiangularity allows them to satisfy

an interferene invariane property [76℄. In sparse representations and ompressed sensing

they are of interest due to their inoherene. ETFs have also been proposed for robust

transmission [80, 62℄.
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Despite their important properties and their numerous pratial appliations, there is

no expliit way of onstruting ETFs. This problem is onneted with other important

problems suh as pakings in Grassmannian spaes and antipodal spherial odes. It has

also onnetions to graph theory, equiangular line sets and oding theory. The tehniques

reported in [126, 119, 144, 141, 64℄ onstrut a few of existent frames. A tehnique

proposed in [119℄ relies on the onnetion of frames to graphs and will be disussed next.

2.3 Connetion of frames to graphs

Graphs with a lot of struture and symmetry play a entral role in graph theory. Di�erent

kinds of matries are used to represent a graph, suh as the Laplae matrix or adjaeny

matries [21℄. What strutural properties an be derived from the eigenvalues depends on

the spei� matrix that is used. The Seidel adjaeny matrix Q of a graph � is given by

Q =





− 1 if the verties x; y ∈ � are adjaent;

1 if the verties x; y ∈ � are nonadjaent;

0 if x = y:

(2.30)

If Q has only a few distint eigenvalues, then the graph is strongly regular.

Studies onerning the onnetion of frames with graphs have shown that the existene

of an ETF in a real Hilbert spae depends on the existene of a matrix Q with zero

diagonal and ±1's o�-diagonal entries. This matrix orresponds to the adjaeny matrix

of a speial type of strongly regular graphs [119℄. From [119, 80℄ we quote the following

de�nition.

De�nition 2.3.1. Given an m×N equiangular tight frame F = [f1 f2 : : : fN ], the Gram

matrix an be written in the form

R = I + Q; (2.31)

where I is the N × N identity matrix and  is the Welh bound given by (2.25). The

N ×N matrix Q is alled the signature matrix of the frame F .

The main results about signature matries are summarized in the following theorem.

Theorem 2.3.2 ([80℄). Let Q be a self-adjoint N ×N matrix, with q

i;i

= 0 for all i and

|q
i;j

| = 1 for all i 6= j. Then the following are equivalent:

i. Q is the signature matrix of an m×N ETF.

ii. Q

2 = (N − 1)I + �Q for some neessarily real number �.

iii. Q has exatly two distint eigenvalues, denoted as �1 < �2.
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When any of the above onditions hold, the parameters m;N; �; �1; �2 satisfy ertain

relations [17℄, implying that for many values of m;N ETFs do not exist. It an be shown

that [141℄

�1 = −
√
m(N − 1)

N −m

; with multipliity N −m;

�2 =

√
(N −m)(N − 1)

m

; with multipliity m:

(2.32)

Aording to [80℄, there are �nitely many possible N ×N signature matries and �nitely

many real equiangular frames ofN vetors. For more details about the onnetion between

graphs and frames the reader is referred to [119, 80, 17, 141, 18℄.

Based on the onstrution of onferene matries proposed in [86℄ and relying on the

above results, the authors of [119℄ proposed the onstrution of ETFs os size m × 2m.

Conferene matries are N×N matries with zeros along the diagonal and ±1 of diagonal

entries, satisfying CC

T = (N−1)I
N

, and play an important role in graph theory [86℄, [115℄.

Conferene matries exist for N = p

� + 1, where p is an odd prime number and � ∈ N,

and an be onstruted expliity [67, 102℄. Aording to [119℄, if C

2m
is a symmetri

onferene matrix, then there exist 2m vetors in R
m

suh that the bound (2.25) holds

with equality for N = 2m. In this ase the bound beomes  = 1=
√
2m− 1 and the Gram

matrix is obtained aording to (2.31), having o�-diagonal entries equal to ±1=
√
2m− 1.

2.4 The frame design problem

When designing a frame, the design spei�ations arise from the appliation of interest. As

a result, there exist a large number of onstrution methods, as diverse as the appliations

requiring a frame. Usually, the onstrutions that ome to address spei� requirements

are diÆult to generalize to solve di�erent types of frame design problems. On the other

hand, more general onstrutions oming from the frame ommunity often impose ertain

restritions on frame dimensions.

We have seen that properties suh as unit normness, tightness and equiangularity

de�ne ertain lasses of frames and play a signi�ant role in appliations. Therefore,

when design spei�ations are set they inlude

(a) presribed vetor norms,

(b) presribed spetral properties,

() orrelation onstraints suh as equiangularity or inoherene.

Considering the onstrution of a tight frame, it is easy to obtain suh a frame by

seleting the desired number of rows from an N × N orthonormal basis. However, most

appliations require that the vetors omprising the frame have some additional struture.

For example, tight frames with presribed norms, or most required UNTFs, are diÆult
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to onstrut, as row orthogonality opposes olumn unit normness. The design diÆulties

beome stronger when trying to address the main drawbak of frames, that is, the or-

relation between the frame elements. Tightness implies ertain restritions on singular

values and singular vetors whih ombat either olumn normalization or the requirement

for onstant inner produts between olumns [126℄.

Aording to [126℄ �nite-dimensional frame design is an algebrai problem. Frame

design aims at produing a strutured matrix with ertain spetral properties, a problem

that may require the use of disrete and ombinatorial mathematis. Sarwate's survey

paper [112℄ about tight frames inludes onstrutions of unit-norm frames with methods

that have employed algebrai tehniques. The last few years, some essentially algebrai

algorithms have been proposed that an onstrut tight frames with nononstant vetor

norms [136, 32, 127℄. The frames proposed in [136℄ and [127℄ were designed with the

s-CDMA appliation in mind, while [32℄ omes from the frame ommunity.

Algebrai and ombinatori tools are not always e�etive. In these situations, nu-

merial methods an help to produe onstrutions with properties that approximate

the desired theoretial spei�ations. Moreover, numerial methods an help researhers

develop the insight neessary for ompleting an algebrai onstrution. However, the

literature does not o�er many numerial approahes to frame design.

Regarding the onstrution of UNTFs, most algorithms provide frames to be used

as spreading sequenes in s-CDMA systems. This appliation prompted a long series of

papers [132, 109, 133, 3℄ that desribe iterative methods for onstruting tight frames with

presribed olumn norms. Besides spetral and strutural properties frames designed for

s-CDMA systems may also apply restritions on the employed alphabet. It is not lear

how one ould generalize these methods to solve di�erent types of frame design problems.

More reent methods providing general UNTF onstrutions modify a given frame so

that the result is a tight frame. Three tehniques are known to belong to this ategory. In

[19℄, the authors start from a tight frame and approah a UNTF by solving a di�erential

equation. In [29℄, the authors start from a unit norm frame and inrease the degree of

tightness using a gradient-desent-based algorithm. Relative primeness of m and N is a

ondition assumed by both tehniques, though in [29℄ in a weaker sense. The work of [30℄

omes from the frame ommunity. \Spetral tetris" presented in [30℄ has the drawbak

that it often generates multiple opies of the same frame vetor.

Regarding the onstrution of equiangular tight frames, it is known that these frames

exist for ertain frame dimensions [121℄ and most existing onstrutions [126, 119, 144,

107, 141, 64℄ impose additional restritions. A survey on known ETFs an be found in [63℄.

As we have already mentioned, this problem is onneted with other important problems

suh as equiangular line sets and it has been addressed for over 60 years. The problem

of onstruting any number (espeially, the maximal number) of equiangular lines in Rm

is one of the most elementary and at the same time one of the most diÆult problems in

mathematis. After sixty years of researh, we do not know the answer for all dimensions

m ≤ 20 in either the real or omplex ase.
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Reently, the onstrution of equiangular tight frames has gained the interest of the

sparse modelling ommunity, as ETFs are maximally inoherent. Due to new theoretial

results in sparse representations and ompressed sensing, there is a growing interest for

inoherent unit norm tight frames. The few numerial methods that are available in the

literature [57, 145, 82℄ fous on inoherene rather than on spetral properties. Clearly,

this is an open researh topi.
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Chapter 3

Constrution of approximately

equiangular tight frames

3.1 Alternating projetions

3.2 Averaged projetions

3.3 Constrution of inoherent unit norm tight frames

3.4 Constrution of nearly equiangular frames

3.5 Comparison of the proposed onstrutions

The researh presented in this thesis is motivated by reent theoretial and pratial

results formulated in sparse representations and ompressed sensing, whih highlight the

important role of inoherent unit norm tight frames in sparse reovery. Considering that

optimal values of inoherene and tightness are observed in equiangular tight frames

(ETFs), the frame ommunity aims at perfet ETF onstrutions. Here, we fous on

the improvement of pratial appliations and propose two methods for the onstrution

of real frames as lose to ETFs as possible. We pereive nearness to ETFs by means

of mutual oherene and spetral norm and design frames with unit norm vetors that

exhibit small mutual oherene and are almost or exatly tight.

The �rst of the methods developed here is inspired by an algorithm for designing ino-

herent matries for ompressed sensing. In [57℄, Elad argued that an optimized projetion

matrix would be a matrix that redues the mutual oherene of the e�etive ditionary

involved in sparse reovery and proposed a heuristi algorithm for its onstrution. Most

of the existing work for optimized projetions relies on [57℄ and aims at reduing the mu-

tual oherene. The method developed here introdues, for the �rst time, the tightness

parameter in inoherent matrix design, produing unit norm tight frames with remarkably

low inoherene levels.
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The seond method developed in this thesis is based on the following observation.

Studying the properties of the proposed inoherent tight frames, we notied that these

frames have \signature" matries with eigenvalues approximating the spetrum of a sig-

nature matrix of an ETF. Reall that the signature matrix of a real ETF is a matrix with

zero diagonal entries, ±1 o�-diagonal entries, and spetrum onsisting of two distint

eigenvalues, and de�nes ETFs up to unitary equivalene. Here, we develop an algorithm

for the onstrution of a matrix satisfying the strutural onstraints and approximating

the spetral onstraints of a signature matrix of an ETF. Employing this matrix as a \sig-

nature" matrix, we produe frames that are lose to ETFs. The most signi�ant property

of these frames is that they are nearly equiangular, meaning that the frame vetors form

similar angles that are lose to the optimal value. This property makes these frames

suitable for use in s-CDMA systems as spreading sequenes.

Considering the design diÆulties when onstruting ETFs, the onstraints implied

by existing onstrutions and the restritions oming of frame theory regarding the frame

dimensions, the most important harateristi of the proposed algorithms is probably that

they an produe frames of any size. Thus, they an provide solutions in many signal

proessing problems as well as in other appliations requiring ETFs.

Both methods proposed here utilize ideas from alternating and averaged projetions.

However, introduing the tightness parameter in frame design, we atually fous on ma-

tries with ertain spetral requirements. Projeting onto spetral sets, that is, sets of

matries de�ned via properties of their eigenvalues, is an important obstale the pro-

posed algorithms must fae. The spetral sets are not onvex, therefore, they do not

admit unique projetions. We start with a short presentation of alternating and averaged

projetions, and disuss how these problems ould be addressed.

3.1 Alternating projetions

Alternating projetions [139℄ is a very simple algorithm for omputing a point in the

intersetion of some onvex sets, using a sequene of projetions onto the sets. Suppose

S and W are losed onvex sets in RN

, and let P
S

and P
W

denote the projetion on S

and W , respetively. The algorithm starts with any x0 ∈ S, and then alternately projets

onto S and W :

y

k

= P
W

(x
k

); x

k+1 = P
S

(y
k

); k = 0; 1; 2; : : : (3.1)

This generates a sequene of points x

k

∈ S and y

k

∈ W . If S andW are not disjoint, then

the sequenes x

k

and y

k

both onverge to a point x ∈ S ∩W [37℄. Alternating projetions

omputes a point in the intersetion of the sets, provided they interset. The algorithm

does not neessarily produe a point in x ∈ S ∩W in a �nite number of steps, but the

sequene x

k

(whih lies in S) satis�es dist(x
k

;W ) → 0, and likewise for y

k

.

Alternating projetions is also useful when the sets do not interset. In this ase the

following holds. Assume the distane between S andW is attained (i.e., there exist points
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in S and W whose distane is dist(S;W )). Then x
k

→ x

∗ ∈ S, and y

k

→ y

∗ ∈ W , where

‖x∗ − y

∗‖ = dist(S;W ). In other words, alternating projetions yields a pair of points in

S and W that have minimum distane.

There are many variations and extensions of the basi alternating projetions algo-

rithm. For example, we an �nd a point in the intersetion of k > 2 onvex sets, by

projeting onto S1, then onto S2, . . . , and �nally onto S

k

, and then repeating the yle

of k projetions. This is alled the sequential or yli projetion algorithm, instead of

alternating projetion.

Alternating projetions is very popular beause of its simpliity and intuitive appeal

(see survey artile [12℄). The method an be slow, but it an be useful when we have

some eÆient method, suh as an analytial formula, for arrying out the projetions.

Convergene of alternating projetions on onvex sets has been well studied; however,

only a few reent extensions of alternating projetions onsider the ase of nononvex sets

[88℄, [87℄.

3.1.1 Alternating projetions on nononvex sets

Iterated projetion algorithms and analogous heuristis have been suessfully applied in

many nononvex problems, in areas suh as inverse eigenvalue problems [35, 36℄, infor-

mation theory [126℄, image proessing [142, 13℄, and more. While alternating projetions

is quite popular in pratie, theoretial understanding is still poor. An important sub-

problem one must solve in the nononvex ase is that the projetion mapping an no

longer be single-valued and may be hard to ompute. However, the projetion problem

for some nononvex sets is relatively easy and omputationally inexpensive [88℄. Conver-

gene results on nononvex alternating projetion algorithms have been unommon, and

have either foused on a very speial ase [36℄, or have been muh weaker than for the

onvex ase [42, 126℄.

The only general onvergene study is the work of [88, 87℄. In [88℄ the authors study

alternating projetions on manifolds and prove loal onvergene at a linear rate. A more

reent publiation [87℄ onsiders alternating projetions on two nononvex sets, one of

whih is assumed to be suitably \regular"; the term refers to onvex sets, smooth manifolds

or feasible regions satisfying the Mangasarian-Fromovitz onstraint quali�ation. The

authors show that the method onverges loally to a point in the intersetion at a linear

rate. The onvergene of alternating projetions on more than two sets, some of whih

are nononvex, is still an open problem.

3.2 Averaged projetions

Averaged projetions is a simple variation of alternating projetions. At every step of

averaged projetions, we projet the urrent iteration onto every set and average the

results to obtain the value for the next iteration. We start with x0 ∈ S and y0 ∈ W , we
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form the average, z0 = (x0 + y0)=2, and set x1 = P
S

(z0) and y1 = P
W

(z0). Then, we

repeat

z

k

= (x
k

+ y

k

)=2; x

k+1 = P
S

(z
k

); y

k+1 = P
W

(z
k

); k = 1; 2; : : : (3.2)

Global onvergene of this method in the ase of two losed onvex sets was proved in [5℄.

Similar to alternating projetions, the method of averaged projetions might appear

hard to implement on onrete nononvex problems. The only work analysing onvergene

of averaged projetions for nononvex sets is the work of [87℄. Aording to [87℄, studying

the onvergene of iterative algorithms for nononvex minimization problems must be

equipped with a loal theory.

Loal linear onvergene requires good geometri properties suh as onvexity, smooth-

ness, or \prox-regularity". Prox-regular sets is a large lass of sets that admit unique

projetions loally. It is known [88℄ that onvex sets and smooth manifolds (see Appendix

A) belong to this ategory. Considering averaged projetions on several prox-regular sets,

the authors of [87℄ assert that the method onverges loally at a linear rate to a point in

the intersetion as long as the intersetion satis�es some properties.

3.2.1 Convergene for averaged projetions on prox-regular sets

The ruial idea behind the onvergene analysis presented in [87℄ is the notion of strongly

regular intersetion. The main result in [87℄ states that when several prox-regular sets

have strongly regular intersetion at some point, the method onverges loally at a linear

rate to a point in the intersetion. Strongly regular intersetion is important to prevent the

algorithm from projeting near a loally extremal point. The notion of a loally extremal

point in the intersetion of some sets is the following: if we restrit to a neighborhood of

suh a point and then translate the sets by small distanes, their intersetion may render

empty. Therefore, not hoosing a loally extremal point as initial point in a projetions

algorithm is a ritial hypothesis for onvergene.

In order to make lear that strong regularity implies loal extremality, we present here

the relevant de�nitions for the ase of two sets. For more details the reader is referred to

[87℄.

De�nition 3.2.1 (Loally extremal point [87℄). Denoting by E the Eulidean spae,

onsider two sets H;G ⊂ E. A point x̄ ∈ H ∩G is loally extremal for this pair of sets, if

there exists a positive � and a sequene of vetors z

r

→ 0 in E suh that

(H + z

r

) ∩G ∩B
�

(x̄) = ∅; for all r = 1; 2; : : : ;

where B

�

(x̄) is the losed ball of radius � entered at x̄. Clearly x̄ is not loally extremal,

if and only if

0 ∈ int

(
((H − x̄) ∩ �B)− (G− x̄) ∩ �B)

)
; for all � > 0;

where B is the losed unit ball in E.
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De�nition 3.2.2 (Strongly regular intersetion). Two sets H;G ⊂ E have strongly reg-

ular intersetion at a point x̄ ∈ H ∩G if there exists a onstant � > 0 suh that

��B ⊂ ((H − x) ∩ �B)− ((G− z) ∩ �B)

for all x ∈ H near x̄ and z ∈ G near x̄.

By onsidering the ase x = z = x̄, we see that strongly regular intersetion at a point

x̄ implies that x̄ is not loally extremal. Conversely, �nding a point in the intersetion of

the involved sets that is not loally extremal, implies that the sets have strongly regular

intersetion at this point.

Now, we an summarize the results of [87℄ regarding averaged projetions.

Theorem 3.2.3. Consider prox-regular sets H1; H2; : : : ; HL

⊂ E having strongly regular

intersetion at a point x̄ ∈ ∩H
i

, and any onstant k > ond(H1; H2; : : : ; HL

|x̄). Then,

starting from any point near x̄, one iteration of the method of averaged projetions redues

the mean squared distane

D =
1

2L

L∑

i=1

d

2
H

i

by a fator of at least 1− 1
k

2
L

.

The ondition modulus ond(H1; H2; : : : ; HL

|x̄) is a positive onstant that quanti�es

strong regularity [87℄. The distane d

H

i

between the urrent iteration x and the set H

i

we

projet on is de�ned as d

H

i

= inf{‖x−X‖F : X ∈ H

i

}, with ‖·‖F denoting the Frobenius

norm.

3.3 Constrution of inoherent unit norm tight frames

When aiming at minimization of the orrelation of a matrix, a ommon strategy is to

work with the Gram matrix. Reall that given an m × N matrix F , with olumns F =

[f1 f2 : : : fN ], the Gram matrix is the N × N matrix G = F

T

F , with the (i; j) entry of

G being the orrelation between the i-th and the j-th olumn of F , that is, g

ij

= 〈f
i

; f

j

〉.
Reduing olumn orrelation of F is equivalent to applying a \shrinkage" operation on

the o�-diagonal entries of the Gram matrix. The �rst method we propose here for the

onstrution of inoherent UNTFs is inspired by the work presented in [57℄. In [57℄,

Elad proposed an algorithm for the onstrution of inoherent matries, whih were used

to obtain optimized projetion matries for ompressed sensing. In ompressed sensing,

F stands for the e�etive ditionary employed in sparse reovery, whih omes of the

produt of the projetion matrix P and the sparsifying ditionary D, F = PD. In

order to minimize the orrelation between the olumns of F , Elad proposed the following

operation

ĝ

ij

=





g

ij

; |g
ij

| ≥ t;

t · sgn(g
ij

); t > |g
ij

| ≥ t;

g

ij

; t > |g
ij

| ;
(3.3)
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where  and t are appropriate salars. Indeed, them×N matrix obtained by the \shrunk"

Gram exhibits improved mutual oherene, resulting in higher reonstrution auray

when used in ompressed sensing. Notie that, having omputed an inoherent matrix

F , optimized projetions P are obtained by solving the least squares problem min
P

‖F −
PD‖22.

Considering the important role of inoherene in sparse signal reovery, many authors

have argued that ETFs are ideal andidates for these problems as these frames exhibit

the lowest possible mutual oherene. However, very few results onern the employment

of ETFs in ompressed sensing and the main reason for this are the diÆulties in their

onstrution.

The method presented here aims at the onstrution of frames that are as lose to

ETFs as possible. The proposed onstrution strategy is based on the observation that

ETFs not only exhibit minimal mutual oherene, but N=m-tightness as well. Thus, we

proposed in [128℄ the following design methodology: Suppose we ompute a matrix with

small mutual oherene. Then, the problem of approximating an ETF redues to �nding a

UNTF that is nearest to the omputed inoherent matrix, in Frobenius norm. Computing

a UNTF that is nearest to a given matrix, is a matrix nearness problem, whih an be

solved algebraially by employing the following algebrai theorem.

Theorem 3.3.1 (Nearest tight frame [126, 81℄). Given a matrix F ∈ Rm×N
, N ≥ m,

suppose F has singular value deomposition (SVD) U�V

T

. With respet to the Frobenius

norm, a nearest �-tight frame F

′
to F is given by

√
� · UV T

. Assume, in addition, that

F has full row-rank. Then

√
� ·UV T

is the unique �-tight frame losest to F . Moreover,

one may ompute UV

T

using the formula (FF T )−1=2
F .

The proposed design methodology is alternating between tightness and inoherene.

The algorithm presented in [128℄ is a preliminary result of our work and utilizes the

\shrinkage" operation proposed by Elad to improve inoherene, and Theorem 3.3.1 to

improve tightness. Changing the \shrinkage" operation aording to

ĝ

ij

=

{
sgn(g

ij

) · (1=√m); if 1=
√
m < |g

ij

| < 1;

g

ij

; otherwise;

(3.4)

we obtain the algorithms presented in [129℄, whih provide a better formulation and a

learer insight of the proess desribed in [128℄. The presented onstrution strategy is

implemented utilizing alternating and averaged projetions.

3.3.1 Algorithm 1

The �rst algorithm starts from an arbitrary m × N matrix that has full rank and se-

quentially applies (3.4) and Theorem 3.3.1. The \shrinkage" proess redues the matrix

mutual oherene, while Theorem 3.3.1 �nds an N=m-tight frame that is nearest to the

inoherent matrix. The seleted bound 1=
√
m is approximately equal to the lowest possi-

ble bound (see eq. (2.25)) for large values of N . Other hoies of the bound might perform
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better depending on the frame dimensions. Combined with Theorem 3.3.1, the proposed

Gram matrix proessing yields highly inoherent UNTFs.

Algorithm 1 Constrution of inoherent UNTFs with Alternating Projetions

Input: m×N frame F0, iterations ITER

Output: m×N inoherent UNTF F

q+1

for q := 1 to ITER do

F̂

q

= norm(F
q

) // olumn normalization

G

q

= F̂

T

q

F̂

q

// obtain the Gram matrix

for i := 1 to N do

for j := 1 to N do

ĝ

ij

= g

ij

if i 6= j then

if |g
ij

| > 1=
√
d then

ĝ

ij

= sgn(g
ij

)(1=
√
d) // apply (3.4) to bound o�-diagonal entries

[U;�; V ] = svd(G̃
q

)

� = �(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

Ǧ = U�V // Redue the rank of G̃

q

to m

Ǧ = diag(1:=sqrt(diag(Ǧ))) ·Ǧ·diag(1:=sqrt(diag(Ǧ))) // normalize the Gram matrix

[U;�; V ] = svd(Ǧ) // U = V

S

q

= sqrt(�)V T

// Obtain S

q

∈ Rm×N
suh that S

T

q

S

q

= Ǧ

q

S

′
q

=
√
N=m · (S

q

S

T

q

)−1=2
S

q

// Find the nearest N=m-tight frame

F

q+1 = S

′
q

The algorithm we propose is iterative. We employ as initial matrix F0 a tight frame

nearest to a random Gaussian matrix. In the q-th iteration, the proess that redues

the mutual oherene involves \shrinkage" operations on the Gram matrix G

q

; thus, a

olumn normalization step preedes the main steps of our method. After applying (3.4),

the modi�ed Gram matrix G̃

q

may have rank larger than m. We obtain the nearest m-

rank Gram matrix using SVD. Deomposing the new Gram matrix Ǧ

q

, we obtain the

inoherent matrix S

q

suh that S

T

q

S

q

= Ǧ

q

. Next, Theorem 3.3.1 is applied to S

q

to

obtain an inoherent tight frame. Therefore, the q-th iteration of Algorithm 1 involves

the following:

1. Obtain the matrix F̂

q

, after olumn normalization of F

q

.

2. Calulate the Gram matrix Ĝ

q

= F̂

T

q

F̂

q

and apply (3.4) to bound the absolute values

of the o�-diagonal entries, produing G̃

q

.

3. Apply SVD to G̃

q

to fore the matrix rank to be equal to m, obtaining Ǧ

q

.

4. A matrix S

q

∈ Rm×N
is obtained suh that S

T

q

S

q

= Ǧ

q

.
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Figure 3.1: Convergene of Algorithm 1 (alternating projetions) for a 60 × 120 matrix.

The mean squared distane between the urrent iteration and the sets we projet on

redues in a linear rate.

5. Find S

′
q

, the nearestN=m-tight frame to S

q

, aording to S

′
q

=
√
N=m·(S

q

S

T

q

)−1=2
S

q

.

Set F

q+1 = S

q

.

3.3.2 Convergene of Algorithm 1

The proposed algorithm is atually an alternating projetions algorithm. More partiu-

larly, the proposed algorithm projets onto the following sets:

1. The set Y of N ×N Gram matries of m×N unit norm frames,

Y =
{
G ∈ R

N×N : G = G

∗
; g

ii

= 1; i = 1; : : : ; N
}
:

2. The set Z of N ×N symmetri matries with bounded o�-diagonal entries,

Z = {G ∈ R
N×N : G = G

∗
; |g

ij

| ≤ 1=
√
m
; i 6= j; i; j = 1; : : : ; N}:

3. The set W of rank-m, N ×N symmetri matries,

W =
{
G ∈ R

N×N : G = G

∗
; rank(G) = m

}
:

4. The set S of N ×N Gram matries of m×N �-tight frames,

S ={G ∈ R
N×N : G = G

∗
; with only

m nonzero eigenvalues, all equal to �}:

As we have already mentioned, alternating projetions has been well studied for losed

onvex sets. However, from the above sets only Y and Z are onvex, whereas W and S

are smooth manifolds [88℄. Therefore, our disussion regarding onvergene of Algorithm
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Figure 3.2: Convergene of Algorithm 1 (alternating projetions) for a 25 × 120 matrix.

The onvergene rate depends on the bound used in eq. (3.4). In (a) we observe a

sub-linear onvergene rate when the bound equals 1=
√
m. In (b) the onvergene rate

beomes linear as the bound is relaxed to 3=2
√
m.

1 is mainly based on numerial results. To illustrate onvergene, we need to de�ne the

mean squared distane of the urrent iteration from the sets involved in the projetions,

that is

D(q) =
1

8
(d2(G

q

; Y ) + d

2(G
q

; Z) + d

2(G
q

;W ) + d

2(G
q

; S));

where the distane d(G
q

; H) between the urrent iteration G

q

and the set H we projet

on is de�ned as d(G
q

; H) = d

H

= inf{‖G
q

−X‖F : X ∈ H}.
In �gures 3.1 and 3.2 we display log10D(q) when Algorithm 1 is applied to a 60× 120

and a 25 × 120 matrix, respetively. Figure 3.1 shows that the proposed algorithm on-

verges at a linear rate, onstruting a frame that belongs to the intersetion of the involved

sets. The zeroing of the mean squared distane implies that the produed frame is indeed

an inoherent UNTF. When the frame redundany inreases, the numerial results be-

ome a little di�erent. Figure 3.2(a) shows that the onvergene rate for a 25×120 frame

is sub-linear and the produed frame does not belong to the intersetion of the involved

sets. Considering the inreased diÆulties of onstruting inoherent frames of high re-

dundany, this result is not surprising; it is possible that either the intersetion is empty

or it has properties that bring on diÆulties to the proposed algorithm. Experiments

performed with a relaxed inoherene level, whih is determined by the bound 1=
√
m in

eq. (3.4) on�rm our onjeture. A relaxed bound yields a broader set Z and inreases

the probability that the intersetion has good properties. Figure 3.2(b) illustrates on-

vergene of Algorithm 1 when the bound 1=
√
m in eq. (3.4) is replaed by 3=2

√
m. We

an see that the onvergene rate beomes linear and the produed matrix belongs to the

intersetion of the involved sets.
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3.3.3 Algorithm 2

Algorithm 2 Constrution of inoherent UNTFs with Averaged Projetions

Input: N ×N initial Gram matrix G0, iterations ITER

Output: m×N inoherent UNTF F

out

for q := 1 to ITER do

P
Y

(G
q

) = diag(1:=sqrt(diag(G
q

))) · G
q

· diag(1:=sqrt(diag(G
q

))) // Normalize the

Gram matrix

for i := 1 to N do

for j := 1 to N do

ĝ

ij

= g

ij

if i 6= j then

if |g
ij

| > 1=
√
d then

ĝ

ij

= sgn(g
ij

)(1=
√
d) // Apply (3.4) to bound the Gram entries

P
Z

(G
q

) = {ĝ
ij

}
[U;�; V ] = svd(G

q

)

� = �(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

P
W

(G
q

) = U�V // Redue the rank of G

q

to m

� = N=m

�

′ = diag{� � : : : �︸ ︷︷ ︸
N−m

}

P
S

(G
q

) = U�

′
U

T

// Symmetri matrix with m eigenvalues all equal to N=m

G

q+1 =
1
4
(P

Y

(G
q

) + P
Z

(G
q

) + P
W

(G
q

) + P
S

(G
q

)) // Apply (3.5)

[U;�; V ] = svd(G
q+1) // U = V

� = �(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

F

out

= sqrt(�)V T

Considering the diÆulties in studying alternating projetions on nononvex sets, we

propose here a similar algorithm for the onstrution of inoherent UNTFs that relies on

averaged projetions. Suppose G0 is the initial Gram matrix. We onsider the following

projetions: P
Y

(G0) the projetion onto the set of N ×N symmetri matries with unit

diagonal, P
Z

(G0) the projetion onto the set of N ×N symmetri matries with bounded

o�-diagonal entries, P
W

(G0) the projetion onto the set of rank-m N × N symmetri

matries, P
S

(G0) the projetion onto the set of N×N symmetri matries withm nonzero

eigenvalues equal to N=m. If G

q

is the Gram matrix alulated in the q-th iteration, then

a modi�ed version of Algorithm 1 would onsider as input in the (q + 1)-th iteration the
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average

G

q+1 =
1

4
(P

Y

(G
q

) + P
Z

(G
q

) + P
W

(G
q

) + P
S

(G
q

)): (3.5)

The projetion P
S

(G
q

) an be alulated using Theorem A.2 given in the Appendix A.

If G

q

= U�U

T

is the eigenvalue deomposition of the symmetri matrix obtained in the

q-th iteration, then P
S

(G
q

) = U�

′
U

T

with �

′
being a diagonal matrix with m entries

equal to N=m and the rest zero.

Again we start from a random Gaussian matrix and apply Theorem 3.3.1 to obtain

a nearest tight frame F0; then we alulate the Gram matrix G0 = F

T

0 F0. In the q-th

iteration we exeute the following steps:

1. Normalize the Gram matrix to obtain a symmetri matrix with unit diagonal. This

is the projetion P
Y

(G
q

).

2. Apply (3.4) on G

q

to bound the absolute values of the o�-diagonal entries, produing

P
Z

(G
q

).

3. Apply SVD to G

q

to fore the matrix rank to be equal to m, obtaining P
W

(G
q

).

4. If G

q

= U�U

T

then P
S

(G
q

) = U�

′
U

T

with �

′
being a diagonal matrix with m

entries all equal to N=m and the rest zero.

5. Calulate the average Gram matrix G

q+1 aording to (3.5).

3.3.4 Convergene of Algorithm 2

The onvergene of averaged projetions algorithm is straightforward, onsidering the

results presented in 3.2.1. The sets Y; Z;W and S involved in Algorithm 2 are prox-

regular: Y; Z are onvex and W;S are smooth manifolds. Their intersetion is very likely

to be strongly regular; the fat that our initial matrix is a random Gaussian matrix

minimizes the probability of hoosing an initial point that is near to a loally extremal

point. Though we annot guarantee strong regularity for the above sets, randomness

seems to prevent us from irregular solutions. Therefore, we expet that the averaged

projetions algorithm onverges linearly to a point in the intersetion of the above sets.

Let us see what experimental results show. Figures 3.3 and 3.4 present mean squared

distane for the averaged projetions algorithm. Indeed, in Fig. 3.3 the results for a

matrix of redundany equal to 2 on�rm a linear onvergene rate and are in agreement

with our theoretial expetations. Moreover, the zero mean squared distane implies that

the obtained frame belongs to the intersetion of the involved sets, that is, it forms an

inoherent UNTF. The results are a little di�erent for a matrix with higher redundany.

As we an see in Fig. 3.4(b), the rate of onvergene beomes sub-linear, indiating that

the intersetion of the involved sets is either empty or does not have the desired properties.

Relaxing the imposed inoherene level, i.e., using a larger bound than 1=
√
m in eq. (3.4),

we obtain a broader set Z, inreasing the probability that the intersetion of the involved
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Figure 3.3: Convergene of Algorithm 2 (averaged projetions) for a 60×120 matrix. The

mean squared distane between the urrent iteration and the sets we projet on redues

in a linear rate.

sets satis�es the suÆient onditions formulated in Theorem 3.2.3. The experiments

performed with the new set Z yield a linear onvergene rate (Fig. 3.4(b)), on�rming

our onjeture.

Comparing the onvergene of the two proposed algorithms, an important note is that

the presented experiments show that the results of the proposed averaged projetions

algorithm are similar to the alternating projetions. Of ourse, there is a signi�ant

di�erene regarding the slope of the onvergene urve; alternating projetions is faster

than averaged projetions. However, the shapes of the urves are idential in all examples

employed in our experiments. Therefore, even though the theoretial justi�ation of

the proposed alternating projetions needs further investigation, the experimental results

enourage its use for the proposed onstrutions. In the next subsetion, we present some

experiments demonstrating the properties of the obtained frames, showing that both

algorithms give similar results.

Before proeeding to more experiments and appliations, we would like to larify a

point onerning the inoherene level onstraint. One might wonder what is the e�et of

the imposed inoherene level on the proposed onstrution. Do we obtain frames with

similar properties, regardless of the bound used in eq. (3.4)? The answer is that the

frame properties are similar but not idential. Depending on the frame redundany, there

is a lower inoherene bound that should not be exeeded; otherwise, the smaller the

inoherene bound we impose, the worse the inoherene level we �nally obtain. Thus,

the seleted bound needs �ne tuning. However, the proposed bound 1=
√
m works well for

the onstrutions onsidered in this thesis.

3.3.5 Experimental results

In order to test the performane of the proposed algorithms, this setion inludes ex-

perimental results that demonstrate the properties of the obtained onstrutions. The

34



0 1000 2000 3000 4000 5000
10

−1

10
0

10
1

10
2

25X120

Iterations

M
ea

n 
sq

ua
re

d 
di

st
an

ce

(a)

0 1000 2000 3000 4000 5000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

25X120

Iterations

M
ea

n 
sq

ua
re

d 
di

st
an

ce

(b)

Figure 3.4: Convergene of Algorithm 2 (averaged projetions) for a 25×120 matrix. The

onvergene rate depends on the bound used in eq. (3.4). In (a) we observe a sub-linear

onvergene rate when the bound equals 1=
√
m. In (b) the onvergene rate beomes

linear as the bound is relaxed to 3=2
√
m.

results onern mainly the mutual oherene that expresses the similarity between frame

elements and the spetral norm that expresses how lose is a frame to a UNTF.

We begin with Fig. 3.5 that illustrates three snapshots of exeution inluding 500 it-

erations, depiting the ahieved mutual oherene and spetral norm at every iteration.

The examples involve frames of size 60 × 120, 40 × 120 and 20 × 120. The obtained re-

sults on�rm our onvergene disussion, showing that alternating projetions algorithm

is faster than averaged projetions. However, both algorithms �nally onverge to simi-

lar values regarding mutual oherene and spetral norm. The attained results for the

spetral norm oinide with the target values, while for the mutual oherene they are

lose to the minimum bound. Regarding spetral norm , the results for alternating pro-

jetions are impressive showing that the algorithm meets the minimum bound after only

a few iterations; both algorithms �nally attain to produe UNTFs. The most important

observation onerning the proposed algorithms is that their performane depends on the

frame dimensions, or, more aurately, on the frame redundany (� = N=m for an m×N

frame). The lower the frame redundany, the smaller the distane between the properties

of the obtained frames and the target values. This behaviour is more obvious regarding

the mutual oherene, but it also a�ets the spetral norm for large values of redundany

and is in agreement with the onvergene disussion of the previous paragraph. Average

results presented next on�rm these observations.

Tables 3.1 and 3.2 inlude average values of mutual oherene and spetral norm , re-

spetively, for m×120 frames, with m = 20 : 20 : 100. The �rst olumn onerns random

Gaussian matries, the seond olumn frames obtained with alternating projetions (Al-

gorithm 1) and the third olumn frames obtained with averaged projetions (Algorithm
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Figure 3.5: Mutual oherene (left) and spetral norm (right) as a funtion of the number

of iterations. The experiments involve frames of various dimensions.
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Figure 3.6: Distribution of Gram matrix entries of a 60× 120 frame.
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Figure 3.7: Distribution of Gram matrix entries of a 20× 120 frame.
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Table 3.1: Mutual oherene of m×N frames, with m = 20 : 20 : 100 and N = 120.

m Gaussian Algorithm 1 Algorithm 2 Optimal

20 0:756 0:339 0:393 0:205

40 0:577 0:169 0:199 0:130

60 0:472 0:129 0:138 0:092

80 0:428 0:112 0:114 0:065

100 0:384 0:100 0:103 0:041

Table 3.2: Spetral norm of m×N frames, with m = 20 : 20 : 100 and N = 120.

m Gaussian Algorithm 1 Algorithm 2 Optimal

20 3:281 2:450 2:483 2:450

40 2:637 1:732 1:752 1:732

60 2:333 1:414 1:421 1:414

80 2:158 1:225 1:227 1:225

100 2:044 1:095 1:097 1:095

2). The exeution of algorithms involves 100 iterations. It is lear that both algorithms

yield similar onstrutions, that is, they produe highly inoherent UNTFs. A small dis-

repany between the results of the proposed algorithms an be erased if we inrease the

number of iterations so that the slow averaged projetions algorithm athes up alternat-

ing projetions. For medium and low redunday the obtained values for mutual oherene

approximate the lowest possible bound.

A better insight into the obtained onstrutions an be attained by demonstrating

the distribution of the o�-diagonal entries (absolute values) of the orresponding Gram

matrix. Figures 3.6 and 3.7 present results for a 60× 120 and a 20× 120 frame, obtained

after 100 iterations of the proposed algorithms. Compared to the original random Gaus-

sian matrix, most orrelation values of the inoherent UNTFs are onentrated near the

optimal minimum bound, showing that the obtained onstrutions are lose to ETFs.

Before onluding, we would like to note that the proposed frames are ompared with

other tehniques that produe inoherent matries for ompressed sensing in Chapter 5,

where they are used for sensing sparse signals. The reason for hoosing not to make

a omparison with existing methods at this point is that no other method for designing

general purpose inoherent UNTFs has been proposed in the literature. As a �nal remark,

we would like to emphasize that the algorithms proposed here utilizing alternating and

averaged projetions an yield inoherent UNTFs of any dimensions, providing an eÆient

tool for the onstrution of frames that are lose to ETFs even if ETFs with the given

dimensions do not atually exist.
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3.4 Constrution of nearly equiangular frames

The seond tehnique we present for the onstrution of frames that are lose to ETFs is

based on ideas oming from graph theory. Summarizing the results presented in Setion

2.3, an ETF an be de�ned up to unitary equivalene by its so-alled signature matrix.

Considering real equiangular frames, the orresponding signature matrix is a symmetri

matrix with zero diagonal and ±1's o�-diagonal entries, and it an be thought of as the

adjaeny matrix of a graph. The most important property of a signature matrix is its

spetrum, onsisting of exatly two eigenvalues �1, �2, with multipliity N −m and m,

respetively, given by

�1 = −
√
m(N − 1)

N −m

; �2 =

√
(N −m)(N − 1)

m

: (3.6)

Therefore, the problem of designing an ETF an be redued to an inverse eigenvalue prob-

lem, that is, the onstrution of a matrix with spei� struture and spetrum onsisting

of two distint eigenvalues.

Many signature matries that orrespond to ETFs are known and onstrutions of

ETFs based on signature matries have been proposed in [119℄. These tehniques impose

ertain restritions on frame dimensions. In this thesis, we onsider frames of arbitrary

dimensions and onstrut a symmetri matrix with spetrum that approximates the spe-

trum of the orresponding signature matrix. The obtained matrix is then used for the

onstrution of frames that are lose to ETFs. The produed frames are almost tight,

with frame vetors forming angles that approximate the optimal value.

Inverse eigenvalue problems (IEPs) onern the onstrution of a matrix from pre-

sribed spetral data. A large ategory of IEPs inludes strutured inverse eigenvalue

problems (SIEPs), where given a set N of speially strutured matries and a set of

salars {�
i

}N
i=1, �i ∈ R, orresponding to the desired spetrum, we want to �nd a matrix

X ∈ N suh that �(X) = {�
i

}N
i=1, where spetrum �(X) [40℄.

The signature matrix of an ETF is a symmetri matrix with zero diagonal, ±1's o�-

diagonal entries, and spetrum ontaining the eigenvalues given by (3.6). The problem

we need to solve to �nd a signature matrix is a SIEP formulated as follows.

Signature Matrix Inverse Eigenvalue Problem (SMIEP). Considering a set of two

real numbers, �1; �2, given by (3.6), �nd a symmetri N × N matrix with zero diagonal,

±1's o�-diagonal entries, and spetrum

� = {�1; : : : ; �1;︸ ︷︷ ︸
N−m

�2; : : : ; �2︸ ︷︷ ︸
m

}; m < N: (3.7)

SIEPs are diÆult to solve and most of the existing algorithms have been designed for

problems of speial type [40, 101℄. The numerial method proposed here for SMIEP does

not always produe an exat solution. However, it an produe an approximate solution

satisfying strutural onstraints and approximating spetral onstraints. Although suh
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a matrix is not the signature matrix of an ETF, it an be used to obtain a frame that is

lose to an ETF as we will see in the sequel.

The work presented here is based on the observation that real frames that are lose

to ETFs (e.g., inoherent frames proposed in [129℄) have \signature" matries with eigen-

values that approximate the spetrum of a signature matrix orresponding to an ETF.

Before proeeding, we need to explain what we all a \signature" matrix of an arbitrary

real frame. Suppose we are given an ETF with dimensions m, N . From equation (2.31)

we see that we an derive the N × N signature matrix from the orresponding Gram

matrix by keeping the signs of the o�-diagonal entries and zeroing the diagonal. In the

same manner, we an obtain an N ×N symmetri matrix with ±1's o�-diagonal entries

and zero diagonal from the Gram matrix of an arbitrary m×N frame. Therefore, we are

led to the following de�nition.

De�nition 3.4.1 (Signature matrix of an arbitrary frame). The signature matrix Q of

an arbitrary m×N real frame F = [f1 f2 : : : fN ] is the N×N matrix with entries derived

from the orresponding Gram matrix, R = F

T

F , aording to

q

ij

=

{
sgn(r

ij

); i 6= j;

0; i = j;

(3.8)

where r

ij

is the (i; j) entry of R. Obviously, the eigenvalues of an arbitrary signature

matrix do not satisfy (3.6).

Now we an explain the main idea of the work presented here. Let us make the

assumption that an ETF with arbitrary dimensions m;N exists, and use (3.6), (3.7), to

alulate the spetrum of the orresponding signature matrix. If we onstrut a matrix

with spetrum lose to (3.7), satisfying the struture of a signature matrix, then, using

(2.31), we obtain an m×N frame with good spetral properties and frame vetors forming

angles near the optimal value. We refer to this frame as nearly equiangular.

3.4.1 Constrution of signature matries

A speial ase of SIEP is the symmetri nonnegative inverse eigenvalue problem (SNIEP),

that is, �nding a symmetri matrix with nonnegative entries and presribed spetrum. A

numerial method for the solution of SNIEP was presented in [101℄, where the authors

utilize alternating projetion ideas and propose an algorithm in whih, �rst, the eigenvalue

deomposition is used to impose the desired spetrum, and, subsequently, every negative

entry of the obtained matrix is set to zero to obtain a nonnegative matrix.

Inspired by the work of [101℄, we propose here an algorithm that imposes strutural

and spetral onstraints on a randomly generated symmetri matrix to �nd a solution to

SMIEP. Starting from an initial matrix Q0 with the presribed struture, and using an

iterative proess onsisting of two steps, in the k-th iteration we do the following:

Step 1. Compute the eigenvalue deomposition Q

k−1 = P�P

−1
, where � is a diagonal

matrix ontaining the eigenvalues of Q

k−1 and P is the matrix of the orresponding
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eigenvetors. Then, produe a matrix with the desired spetrum � aording to Q̃

k

=

P�P

−1
, where � := diag(�) is the diagonal matrix with entries the desired eigenvalues.

Step 2. Obtain a matrix Q

k

with the desired struture that is lose to Q̃

k

, by keeping

the signs of the o�-diagonal entries of Q̃

k

and set the diagonal to zero,

q

ij

=

{
sgn(q̃

ij

); i 6= j;

0; i = j:

(3.9)

Step 1 replaes the eigenvalues of the given matrix with the requested ones; thus, it yields

a matrix with the desired spetrum, impairing the matrix struture. This step atually

uses Theorem A.2 given in the Appendix and projets on the spetral set of matries

with spetrum �. Step 2 yields a matrix exhibiting the requested struture, impairing

the matrix spetrum. The above steps bring up Algorithm 3. Note that, due to small

numerial inauray, Q̃

k

from Step 1 may not be perfetly symmetri; thus, we perform

the following operation: Q̃

k

:= 0:5 · (Q̃T

k

+ Q̃

k

).

Algorithm 3 Signature Matrix Constrution I

Input: initial N ×N signature matrix Q0, spetrum �, iterations ITER

Output: N ×N symmetri matrix Q

k

, with zero diagonal, ±1's o�-diagonal entries and

spetrum approximate to �

� := diag(�)

for k := 1 to ITER do

[P; �] := EigenDeomp(Q
k−1) // Q

k−1 = P�P

−1

Q

k

:= P�P

−1
// apply desired spetrum

Q

k

:= 0:5 · (QT

k

+Q

k

)

for every entry of Q

k

, q

ij

, do

if i == j then

q

ij

:= 0 // diagonal entries

else

q

ij

:= sgn(q
ij

) // o�-diagonal entries

k := k + 1

Studying the onvergene of the proposed algorithm is not a trivial task. Well known

results from alternating projetions annot be applied here beause onvexity onditions

for the employed sets are not satis�ed, and in ase the orresponding ETF does not exist,

SMIEP is not solvable. Therefore, our results will be basially experimental. First, we

use Algorithm 3 to ompute signature matries of ETFs that are known to exist. Our

experiments have shown that the algorithm an produe the signature matries of ETFs

with dimensions m× (m+1) in a few iterations. When the algorithm is used to onstrut

ETFs of other dimensions, e.g., 5 × 10, 6 × 16, it may need a few trials (with di�erent

starting matries) to �nd the orresponding signature matries. A possible explanation
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Figure 3.8: The spetrum of the signature matrix of a 64× 128 random Gaussian matrix

before and after proessing the matrix with Algorithms 3 and 4. The blak dotted line

stands for the spetrum of the signature matrix orresponding to a 64× 128 ETF.

for this is that the algorithm may onverge loally, thus, �nding a solution depends on

the starting matrix. As an example we ite the signature matrix of a 6× 16 ETF.

0 +1 +1 −1 +1 −1 +1 +1 −1 +1 +1 −1 +1 −1 +1 −1

+1 0 +1 +1 +1 −1 −1 +1 +1 −1 +1 +1 +1 −1 +1 +1

+1 +1 0 −1 +1 −1 −1 −1 +1 +1 −1 +1 +1 +1 +1 −1

−1 +1 −1 0 −1 −1 −1 +1 +1 −1 −1 −1 +1 −1 −1 +1

+1 +1 +1 −1 0 −1 +1 −1 −1 −1 +1 +1 +1 +1 −1 +1

−1 −1 −1 −1 −1 0 −1 −1 −1 −1 +1 +1 −1 −1 +1 −1

+1 −1 −1 −1 +1 −1 0 +1 −1 +1 +1 −1 −1 +1 −1 +1

+1 +1 −1 +1 −1 −1 +1 0 +1 +1 +1 −1 −1 −1 +1 +1

−1 +1 +1 +1 −1 −1 −1 +1 0 +1 −1 +1 −1 +1 +1 +1

+1 −1 +1 −1 −1 −1 +1 +1 +1 0 −1 −1 −1 +1 +1 −1

+1 +1 −1 −1 +1 +1 +1 +1 −1 −1 0 +1 −1 −1 +1 +1

−1 +1 +1 −1 +1 +1 −1 −1 +1 −1 +1 0 −1 +1 +1 +1

+1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1

−1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1 +1 −1 0 −1 +1

+1 +1 +1 −1 −1 +1 −1 +1 +1 +1 +1 +1 −1 −1 0 −1

−1 +1 −1 +1 +1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1 0

Considering that these frame onstrutions are already known, the most important re-

sult of Algorithm 3 onerns �nding the signature matries of nearly equiangular frames of

arbitrary dimensions. Testing the algorithm with signature matries of frames of various

dimensions has shown that after a few iterations we obtain a matrix with the requested

struture and signi�antly improved spetrum that approximates (3.7); therefore, Algo-

rithm 3 yields an approximate solution to SMIEP. Figure 3.8 demonstrates results on-
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erning the spetrum of a signature matrix before and after applying Algorithm 3. The

initial signature matrix was obtained by a random Gaussian 64× 128 matrix.

Algorithm 4 Signature Matrix Constrution II

Input: initial N ×N signature matrix Q0, spetrum �, iterations ITER

Output: N ×N symmetri matrix Q

k

, with zero diagonal, ±1's o�-diagonal entries and

spetrum approximate to �

� := diag(�)

for k := 1 to ITER do

[P; �] := EigenDeomp(Q
k−1) // Q

k−1 = P�P

−1

Q

k

:= P�P

−1

Q

k

:= 0:5 · (QT

k

+Q

k

)

for every entry of Q

k

, q

ij

, do

if i == j then

if |q
ij

| < t then

q

ij

:= 0 // diagonal entries

else

if |1− |q
ij

|| < t then

q

ij

:= sgn(q
ij

) // o�-diagonal entries

k := k + 1

for every o�-diagonal entry do

q

ij

:= sgn(q
ij

)

for every diagonal entry do

q

ii

:= 0

Our experiments with Algorithm 3 have shown that, even though the proposed pro-

essing improves the signature matrix spetrum substantially, it beomes ine�etive after

a few iterations. To further improve our results, we propose to modify the seond step as

follows. Before hanging the value of a matrix entry aording to (3.9), we examine its dis-

tane from 1 (o�-diagonal) or 0 (diagonal). To avoid a signi�ant spetrum impairment,

if this distane exeeds a threshold t, we keep the entry unhanged, that is

q

ij

=





sgn(q̃
ij

); if |1− |q̃
ij

|| < t; i 6= j;

0; if |q̃
ij

| < t; i = j;

q̃

ij

; otherwise.

(3.10)

This way the k-th iteration does not produe a matrix having the appropriate entries, but

struture is improved gradually. After a number of iterations is reahed, we apply (3.9)

to �nally produe a matrix with the desired struture. Thus, we are led to Algorithm 4.

Experimental results showing the improvement ahieved with Algorithm 4 are presented

in Fig. 3.8.

43



3.4.2 Nearly equiangular frames based on signature matries

The signature matrix obtained by Algorithm 4 will be used next to onstrut a nearly

equiangular frame. First, we onstrut the Gram matrix R aording to (2.31). A sym-

metri N ×N matrix obtained by (2.31) orresponds to an m×N frame, if it is of rank

m. Thus, a rank redution step follows. Using singular value deomposition (SVD), we

keep the m largest eigenvalues and set the rest to zero. The matrix produed after rank

redution may not have ones in the diagonal; therefore, a normalization step follows to

ensure that the Gram matrix orresponds to a unit norm frame. Finally, using SVD, we

obtain an m×N frame, whih is unit norm, almost tight, with the frame vetors forming

angles near the optimal value. The above steps bring up Algorithm 5. Reall that the

frame obtained this way is unique up to unitary equivalene.

Algorithm 5 Constrution of a nearly equiangular frame

Input: m×N frame F0

Output: m×N frame F

out

, nearly equiangular

R0 = F

T

0 F0 // Obtain the initial Gram matrix

// Obtain Q0 aording to (3.8)

Q0 = sgn(R0)

Q0(i; i) = 0; for all i

// Use Algorithm 4 to obtain a signature matrix Q̃

Q̃ = Algorithm2(Q0)

// Obtain the Gram matrix from (2.31)

R̃ = I + Q̃

// Redue the rank of R̃ to m

[U; S; V ] = svd(G)

S = S(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

Ř = USV

// Normalize the Gram matrix Ř

Ř = diag(1:=sqrt(diag(Ř))) · Ř · diag(1:=sqrt(diag(Ř)))
// Obtain F

out

[U; S; V ] = svd(G) // U = V

F

out

= sqrt(S)V T

Some results of the produed frames are presented in Fig. 3.9. Figure 3.9(a) demon-

strates the frame vetors' orrelation for a 64×128 frame, showing that the angles formed

by the frame vetors have values around the optimal value of an ETF. Figure 3.9(b)

demonstrates the frame vetors' orrelation for a 96 × 128 frame, showing more impres-

sive results for frames of low redundany.
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Figure 3.9: Correlation distribution of frame vetors produed with Algorithm 5. �

opt

stands for the optimal lowest bound (Welh bound).
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Figure 3.10: Correlation distribution of frame vetors produed with Algorithm 6. �

opt

stands for the optimal lowest bound (Welh bound).

3.4.3 Nearly equiangular, nearly tight frames based on signature

matries

Algorithm 5 produes frames of any dimensions with the frame vetors forming angles

near the optimal value. Even though the obtained frames exhibit good spetral properties,

they are not exatly tight, a harateristi that is important for many appliations. One

way to improve tightness is Theorem 3.3.1 that �nds a nearest �-tight frame to a given

frame F aording to

√
�(FF T )−1=2

F .

Having produed a nearly equiangular m × N frame with Algorithm 5, we apply

Theorem 3.3.1 with � = N=m. As tightness opposes unit-normness, we must arry out

a few iterations, alternating between these two properties aording to Algorithm 6 to

obtain a nearly equiangular, nearly tight unit norm frame.
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Algorithm 6 Constrution of a nearly equiangular, nearly tight frame

Input: m×N frame F0

Output: m×N frame F

out

, nearly equiangular, nearly tight

// Compute Q0 the signature matrix of F0.

// Obtain a nearly equiangular frame F1 with Algorithm 5.

for k := 1 to ITER do

F

k+1 :=
√
N=m(F

k

F

T

k

)−1=2
F

k

// impose tightness

F

k+1 := norm(F
k+1) // normalize olumns

k := k + 1

Table 3.3: Spetral norm of m ×N frames with m = 32 : 16 : 96 and N = 128 obtained

with Algorithm 5 and Algorithm 6.

m

Spetral norm

Algorithm 5 Algorithm 6 Optimal

32 2.074 2.015 2.000

48 1.716 1.655 1.633

64 1.499 1.440 1.414

80 1.351 1.288 1.265

96 1.250 1.171 1.155

A metri to evaluate how lose the obtained frame is to a unit norm tight frame is the

spetral norm. Reall that the spetral norm of a unit norm tight frame equals the lowest

possible bound

√
N=m. To see the improvement of tightness ahieved by Algorithm 6

we onstrut frames of various dimensions and ompute their spetral norm. The results

presented in Table 3.3 are averaged over 500 frame samples and onern m × N frames

with m = 32 : 16 : 96 and N = 128. While Algorithm 6 improves the spetral norm of

the obtained frames, it also a�ets the frame vetors' orrelation. We an see that there

is a trade-o� between equiangularity and tightness, also observed in Figures 3.9, 3.10.

Figure 3.10 demonstrates results of the frame vetors' orrelation for a 64 × 128 and a

96× 128 frame produed by Algorithm 6. Comparing Fig. 3.10 to Fig. 3.9, we observe a

slight deterioration of orrelation's distribution, as a prie of the improvement of tightness.

Therefore, the hoie between Algorithm 5 and Algorithm 6 for the onstrution of nearly

equiangular frames, depends on the spei� requirements of the related appliation.

More results regarding the properties of the proposed frames based on signature ma-

tries are presented in the next setion, where we provide a omparison with inoherent

UNTFs obtained with alternating and average projetions.
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Table 3.4: Standard deviation of the Gram matrix entries orresponding to m×N frames

with m = 32 : 16 : 96, N = 128, obtained with Algorithms 1, 5 and 6.

m

Standard deviation

Gaussian Algorithm 1 Algorithm 5 Algorithm 6

32 0.1051 0.0582 0.0439 0.0412

48 0.0862 0.0471 0.0266 0.0257

64 0.0749 0.0422 0.0176 0.0189

80 0.0670 0.0364 0.0119 0.0153

96 0.0612 0.0292 0.0076 0.0136

3.5 Comparison of the proposed onstrutions

In order to provide a thorough omparison of the proposed frame onstrutions, we present

here numerial results showing the ahieved levels of equiangularity and inoherene of

the obtained frames and disuss already presented results regarding the spetral norm.

The experiments inlude frames onstruted with the signature matrix based Algorithms

5 and 6, and Algorithm 1 that utilizes alternating projetions. Averaged projetions

algorithm yields results very similar to alternating projetions, as we have already seen in

Tables 3.1 and 3.2, while it is more time onsuming. Thus, results for Algorithm 2 are not

demonstrated here. The next Tables inlude average values of the mutual oherene and

the average oherene. To evaluate the equiangularity, we study the distribution of the

Gram matrix entries. The experiments onsider frames of variable redundany, inluding

onstrutions of size m × 128, with m = 32 : 16 : 96. The obtained measurements are

averaged over 500 realizations.

All measurements presented next are related to frame vetors' orrelation. However,

trying give an answer to the question how lose are the proposed frames to ETFs, let

us �rst disuss the obtained values for the spetral norm. Results for the spetral norm

of nearly equiangular onstrutions have been presented in the previous setion in Table

3.3. Comparison with inoherent UNTFs regarding the spetral norm is straightforward,

as already presented results (see Table 3.2) show that inoherent UNTFs meet the mini-

mum bound, whih is also demonstrated in Table 3.3. Table 3.3 shows that equiangular

onstrutions approximate the minimum bound without atually reahing it; therefore,

inoherent UNTFs obtained with Algorithm 1 are preferable when tightness is impor-

tant. However, the spetral norm of frames obtained with Algorithm 6 is very lose to

the optimal value; thus, Algorithm 6 is expeted to provide reliable solutions when the

appliation raises a need for tightness and equiangularity onurrently.

The most important property of the frames produed with the signature matrix based

method is that they omprise nearly equiangular vetors. One way to observe equangu-

larity is to study the distribution of the Gram matrix entries. Besides Figures 3.9, 3.10

depiting the distribution of sample onstrutions, we present average measurements of
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Table 3.5: Mutual oherene of m ×N frames with m = 32 : 16 : 96, N = 128, obtained

with Algorithms 1, 5 and 6.

m

Mutual oherene

Gaussian Algorithm 1 Algorithm 5 Algorithm 6 Optimal

32 0.637 0.220 0.320 0.310 0.154

48 0.534 0.148 0.218 0.214 0.115

64 0.472 0.125 0.158 0.162 0.089

80 0.427 0.112 0.116 0.128 0.069

96 0.392 0.102 0.082 0.103 0.051

the standard deviation of the Gram matrix entries (absolute values). The results pre-

sented in Table 3.4 onern nearly equiangular frames onstruted with Algorithms 5,

6, and inoherent UNTFs onstruted with Algorithm 1. Clearly, Table 3.4 shows that

signature matrix based frames are more equiangular ompared to inoherent UNTFs, ex-

hibiting smaller values of standard deviation. More impressive results are observed for

low redundany frames, showing the important role redundany plays in the eÆieny of

the algorithms, a remark we also have made for Algorithms 1, 2.

Results for the mutual oherene are presented in Table 3.5 and show that smaller

values are obtained for inoherent UNTFs. The di�erene between nearly equiangular

frames and inoherent UNTFs is larger when the frame redundany is high and beomes

insigni�ant for less redundant frames. Truely, for 96× 128 frames Algorithm 6 ahieves

the best results regarding olumn orrelation, that is the smallest mutual oherene and

standard deviation. Results obtained for 80×128 frames are also remarkable. Comparing

the algorithms based on signature matries, the observation made in Figures 3.9, 3.10

regarding equiangularity also holds for the mutual oherene; more tight frames are less

equiangular and less inoherent. Although the di�erenes in mutual oherene are mi-

nor and one would expet that they ould hardly a�et the appliations of interest, the

variation of the spetral norm we observed in Table 3.3 may a�et the eÆieny of the

employed frames in appliations.

A measure that aounts for all inner produts between the olumns of a given matrix,

and not only for the largest one is average oherene. Given a unit norm matrix A =

[a1 a2 : : : aN ], average oherene is de�ned in [55℄ as

�

g

(A) =
1

N(N − 1)

N∑

i=1

N∑

j=1
i6=j

|〈a
i

; a

j

〉|2: (3.11)

Results for average oherene of the proposed onstrutions are presented in Table 3.6 and

they are remarkable. All methods yield frames with idential average oherene. It seems

that no matter what operations are made on a frame, the resulting onstrution attains

some kind of equilibrium, expressed by the same average oherene. This observation may
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Table 3.6: Average oherene of m×N frames with m = 32 : 16 : 96, N = 128, obtained

with Algorithms 1, 5 and 6.

m

Average oherene

Gaussian Algorithm 1 Algorithm 5 Algorithm 6 Optimal

32 0.042 0.038 0.038 0.038 0.154

48 0.035 0.029 0.029 0.029 0.115

64 0.030 0.023 0.023 0.022 0.089

80 0.028 0.017 0.017 0.017 0.069

96 0.026 0.013 0.013 0.013 0.051

be the key to explain the similar performane in sparse reovery observed for the proposed

onstrutions, as we will see in the next hapters. De�nitely, exploring the reasons for

whih these frames exhibit idential average oherene is a subjet for further researh.

Conluding the presentation of the developed frame onstrutions, we would like to

make the following remarks. First, both methods proposed here yield frames exhibiting

high inoherene levels. As we will see in the next hapters, the proposed frames are ap-

propriate for sparse representations and ompressed sensing, improving the performane

of sparse reovery algorithms and o�ering aurate signal reonstrution. Seond, re-

garding the spetral norm , Algorithms 1, 2 yield the best results, produing inoherent

UNTFs with spetral norm oiniding with the minimum ahievable bound. Signature

matrix based onstrutions are less tight; however, they have a simpler implementation,

thus, they are preferable if tightness requirements are loose. Finally, when equiangularity

is the main requirement, then the best onstrutions are obtained with the algorithms

based on signature matries. The frames obtained with Algorithm 6 bridge the distane

between tightness and equiangularity, and may be used as spreading sequenes in s-CDMA

systems, where both properties are required.
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Chapter 4

Preonditioning in Sparse and

Redundant Representations

4.1 The sparse representation problem

4.2 Mutual oherene and RIP

4.3 Promoting a sparse solution

4.4 The role of the spetral norm

4.5 Preonditioning

Sparse signal representations onsist of a linear ombination of a small number of el-

ementary signals alled atoms. Often, the atoms are hosen from a redundant (overom-

plete) ditionary, that is, a olletion of atoms with ardinality exeeding the dimension

of the signal spae. Thus, any signal an be represented by more than one ombinations

of di�erent atoms [58℄.

Sparse representations are motivated by the fat that many natural signals are om-

pressible, that is, they an be well approximated by a few large and many small oeÆients.

Sparseness is one of the reasons for the extensive use of popular transforms suh as the

Disrete Fourier Transform or the wavelet transform. The aim of these transforms is often

to reveal ertain strutures of a signal and to represent these strutures in a ompat and

sparse form. Sparsity has improved the performane of many signal proessing applia-

tions suh as ompression, feature extration, pattern lassi�ation, and noise redution

[58℄.

The generation of sparse representations with a redundant ditionary is non-trivial.

Indeed, the general problem of �nding a representation with the smallest number of

atoms from an arbitrary ditionary has been shown to be NP-hard. This has led to

onsiderable e�ort being put into the development of many sub-optimal shemes. A key

51



ontribution to sparse representation problems is onsidered the work of [34℄ where the

authors proposed a pursuit tehnique for evaluating sparsity. In general, algorithms for

sparse representations form two lasses: algorithms that iteratively build up the signal

approximation one oeÆient at a time, e.g., Mathing Pursuit [93℄, Orthogonal Mathing

Pursuit [47℄, and algorithms that proess all the oeÆients simultaneously, e.g., Basis

Pursuit [34℄. Even though there exist a range of empirial evidene for the performane of

methods built on sparse representation, many fundamental theoretial questions remain

to be addressed. The development of novel fast sparse reonstution algorithms, the

theoretial and pratial performane of suh algorithms, the design and learning of good

ditionaries are open researh topis in the �eld [58℄.

In the heart of sparse representations lies an underdetermined linear system with

more unknowns than equations. Uniqueness onditions for the existene of a sparse solu-

tion and performane guarantees for the algorithms deployed to �nd it require that the

involved system matrix exhibits inoherene and good spetral properties [125℄. While

many inoherent tight ditionaries are known, often they annot provide suÆiently sparse

representations or they are not suitable for ertain families of signals.

In this hapter, �rst, we survey well-known results providing the onditions for the

existene of unique sparse representations and highlighting the onstraints imposed for

suessful numerial omputation. Based on these results, we onsider an underdeter-

mined linear system with sparse solutions and apply a mathematial tehnique referred

to as preonditioning that yields a system matrix with good inoherene and spetral

properties. While existing work in preonditioning onerns greedy algorithms, the teh-

nique presented here an be employed with any standard numerial solver. Our simula-

tions show that the proposed preonditioning substantially improves the reovery rates in

sparse representations.

4.1 The sparse representation problem

The weakness of orthogonal transforms to provide highly sparse representations has pro-

moted the development of overomplete ditionaries. Overomplete or redundant ditio-

naries an provide ompat representations with a few non-vanishing oeÆients. Con-

sider a �nite-length real-valued signal x of length m, whih we view as an m× 1 olumn

vetor in Rm

. Let � ∈ RN

be a represenation of x under an overomplete ditionary

A ∈ Rm×N
, m < N ,

x = A�: (4.1)

Clearly x and � are equivalent representations of the same signal, with x in the time

domain and � in the A domain. Assume that ‖�‖0 = s, where ‖ · ‖0 is the `0 quasi-norm
ounting the nonzero oeÆients of the treated signal. A sparse representation onsists

of a linear ombination of s olumns of A, with s≪ N . We refer to s as the sparsity level

of �. The set of indies orresponding to the non-vanishing oeÆients is referred to as
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the support of �.

The sparse representation problem requires the omputation of the vetor �, given

only the ditionary A and the treated signal x. System (4.1) is underdetermined with

fewer equations than unknowns, making the solution ill-posed in general. To avoid the

trivial ase of having no solution, we assume that the matrix A is of full rank. Thus,

the system has in�nitely many solutions and if one desires to narrow the hoie to one

well-de�ned solution, additional riteria are needed. Therefore, when onsidering systems

of the form (4.1), the following plausible questions are posed:

(a) When an uniqueness of a sparse solution be laimed?

(b) Can the solution be reliably and eÆiently omputed in pratie?

() What performane guarantees an be given for various approximate and pratial

solvers?

Theoretial guarantees for a unique and stable solution satisfying (4.1) set bounds on

the maximum sparsity level of the representation and impose ertain onstraints on the

system matrix A.

4.2 Mutual oherene and RIP

Neessary and suÆient onditions ensuring that a signal an have a unique sparse repre-

sentation under an overomplete ditionary are phrased in terms of the mutual oherene

and the restrited isometry property (RIP). These properties express a measure of the

linear dependene between the olumns of A, and are used to set restritions on the maxi-

mal sparsity allowed for a unique representation. Note that the results presented here an

inorporate sparse representations a�eted by additive noise, i.e., x = A� + �, ‖�‖ ≤ �,

with slight modi�ations.

4.2.1 Mutual Coherene

One of the most important properties related to the geometry of the ditionary A is the

maximal olumn orrelation, also known as mutual oherene. Reall that the mutual

oherene �(A) is a simple numerial way to haraterize the degree of similarity between

the olumns of the matrix A and is de�ned as the largest absolute normalized inner

produt between di�erent frame olumns [93℄,

�(A) = max
1≤i;j≤N

i6=j

|〈a
i

; a

j

〉|
‖a

i

‖ ‖a
j

‖ : (4.2)

Mutual oherene is bounded as 0 ≤ �(A) ≤ 1, with �(A) = 0 if A is orthogonal (see also

Chapter 2). If A ∈ Rm×N
, m ≤ N , then �(A) satis�es

√
N −m

m(N − 1)
≤ �(A) ≤ 1; (4.3)
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where the lower bound is the well-known Welh bound. Matries with small mutual

oherene are known as inoherent. Requiring a matrix A with small mutual oherene,

that is, with olumns as \independent" as possible, means that the information of x

represented by A is spread in di�erent diretions, whih makes its reovery easier. Mutual

oherene plays an important role in the existene of a unique solution of system (4.1) as

well as in the performane of the algorithms deployed to �nd sparse solutions.

4.2.2 Uniqueness via mutual oherene

Mutual oherene an provide a ondition that gives an answer to the ruial question

regarding the existene of a unique solution of (4.1). The following result was derived in

[51℄.

Theorem 4.2.1 (Inoherene and sparsity [51℄). If the linear system of equations in (4.1)

has a solution that satis�es the ondition

‖�‖0 <
1

2

(
1 +

1

�(A)

)
; (4.4)

then this solution is the sparsest one.

Consequently, if a solution satis�es (4.4), then this is the unique sparsest solution.

Combining Theorem 4.2.1 with the lower bound of mutual oherene, we an provide

an upper bound of sparsity related to the lower dimension m of the matrix A. When

N ≥ 2m, it follows that �(A) ≥ (2m−1)−1=2
. Thus, the maximum sparsity level ensuring a

unique sparse representation isO(
√
m). This bound is referred to as square root bottlenek.

We must note here that Theorem 4.2.1 is a pessimisti result, and often sparse signal

reovery is possible for larger values of O(
√
m). However, in order to shatter the square

root bottlenek, probabilisti analysis is needed as we will see later.

4.2.3 The Restrited Isometry Property

The restrited isometry property (RIP) is a di�erent way to measure the similarity of

olumns of a matrix and is used to study the uniqueness of the solution and the stability

of system (4.1), while it provides onditions for robust reovery in the presene of noise.

De�nition 4.2.2. An m × N matrix A has the Restrited Isometry Property (RIP) of

order s with s = 1; 2; : : : , if there exists a onstant Æ
s

∈ [0; 1) suh that

(1− Æ

s

)‖�‖2 ≤ ‖A�‖2 ≤ (1 + Æ

s

)‖�‖2; for all � ∈ R
N

: (4.5)

We refer to Æ

s

as the isometry onstant.

This onept was introdued in [28℄. A matrix A obeys the RIP of order s, if Æ

s

is

not too lose to one. When this property holds, it implies that the Eulidean norm of

� is approximately preserved, after projeting it on the rows of A. Obviously, if matrix
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A were orthogonal then Æ

s

= 0. Sine we are dealing with non-square matries this is

not possible, thus, we an loosely say that when a matrix obeys RIP of order s, then all

subsets of s olumns are nearly orthogonal. Clearly, the loser Æ

s

is to zero, the loser to

orthogonal all subsets of s olumns of A are.

If S is a set of olumns of the ditionary A, with |S| = s, the following expression of

the isometry onstant is an immediate onsequene of the de�nition:

Æ

min

s

= max
S⊆{1;:::;N};|S|=s

‖AT

SAS − I

s

‖; (4.6)

where I

s

is the s× s identity matrix.

It is interesting to note that the RIP is also related to the ondition number of the

Gram matrix. In [28, 11℄, it is pointed out that if A

r

denotes the matrix that results by

onsidering r arbitrary olumns of A, then the RIP in (4.5) is equivalent to requiring the

respetive Gram, A

T

r

A

r

, r ≤ s, to have its eigenvalues within the interval [1− Æ

s

; 1 + Æ

s

].

4.2.4 Relation between RIP and mutual oherene

The properties presented so far show that a entral issue in sparse representations is the

linear independene of vetors involved in the sparse representation. Mutual oherene

and RIP try to apture the geometry of the ditionary A and help us to identify well-

onditioned subsets of vetors. The size of well-onditioned subditionaries determines the

maximum sparsity level allowed to have a sparse representation under a given ditionary.

If S is a subset of olumns of the ditionary A, with |S| = s, then the subditionary

AS is well-onditioned if ‖AT

SAS‖ ≤ , where  is a small onstant. The following result

onnets the mutual oherene with the isometry onstant.

Theorem 4.2.3 (Relation between RIP and mutual oherene [50℄). Let A be a ditionary

with oherene � = �(A), and AS be an arbitrary s-olumn submatrix of A. Then

Æ

min

s

= ‖AT

SAS − I

s

‖ ≤ (s− 1)�; (4.7)

where I

s

is the s×s identity matrix. In partiular, every olletion of s olumns is linearly

independent when (s− 1)� < 1.

We must note here that, while mutual oherene of a given matrix an be easily

extrated, evaluating the RIP property is NP-hard. However, even though working with

the mutual oherene is simpler than working with the omplex RIP, the analysis from the

point of view of the mutual oherene leads to pessimisti results regarding the maximal

sparsity; reovering s omponents from a sparse signal requires s to be of order O(
√
m)

at most. From a theoretial perspetive, the RIP property provides the ability of a

probabilisti analysis of sparse reovery, improving substantially the results obtained with

deterministi analysis.
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4.3 Promoting a sparse solution

When seeking solutions that satisfy system (4.1) the �rst obstale we need to surpass is the

fat that the system may have in�nitely many solutions. Additional riteria to narrow this

hoie are set through regularization. Thus, we de�ne the general optimization problem

min
�

J(�) subjet to x = A�; (4.8)

where J(�) is a funtion that imposes sparsity onstraints on �.

4.3.1 The `0-minimizer

One way to promote a sparse solution is the `0 quasi-norm. Choosing J(�) ≡ ‖�‖0, we
are led to the following `0-minimization problem,

min
�∈RN

‖�‖0 subjet to x = A�: (4.9)

The disrete and disontinuous nature of the `0 norm poses many oneptual hal-

lenges regarding the solution of (4.9). Problem (4.9) is NP-hard, requiring ombinatorial

searh. The main tehniques proposed for its solution inlude greedy algorithms. Greedy

algorithms iteratively approximate the oeÆients and the support of the sparse signals.

They genenerate a sequene of loally optimal hoies in hope of determining a globally

optimal solution, thus, they have the advantage of being very fast and easy to implement.

Orthogonal Mathing Pursuit (OMP) [47℄ and its variants (CoSaMP [98℄, StOMP [53℄,

regularized OMP [99℄) belong to this ategory.

OMP was introdued in [47℄ as an improved suessor of Mathing Pursuit (MP) [93℄.

OMP starts from �

(0) = 0 and it iteratively onstruts a k-term approximant �

(k)
by

maintaining a set of ative atoms. At eah stage, it expands that set by one additional

atom.

A result that provides performane guarantees for OMP is presented in [124℄.

Theorem 4.3.1 (Performane guarantess for OMP [124℄). Let A be an m × N matrix

and � ∈ R
N

be a solution of the `0 minimization problem (4.9) satisfying

‖�‖0 <
1

2

(
1 +

1

�(A)

)
:

Then OMP with error threshold � = 0 reovers �.

4.3.2 Stability of `0 minimization via the RIP

Another fundamental question regarding problem (4.9) onerns the stability of the solu-

tion. Considering a slight disrepany between A� and x, whih an be interpreted as the

presene of noise, we de�ne an error tolerant version of (4.9), with error tolerane � > 0

min
�∈RN

‖�‖0 subjet to ‖A� − x‖ ≤ �: (4.10)
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Algorithm 7 OMP: approximately solve `0-minimization problem

Input: m×N matrix A, m-dimensional signal x, error threshold t

Output: N -dimensional signal �

k = 0

�

(0) = 0

r

(0) = x // initial residual

s

(0) = ∅ // initial solution support

�

(0) = [empty matrix] // matrix of hosen atoms

repeat

k = k + 1

Z = |AT

r

(k)|
p = argmax1;:::;m|Z| // �nd new support entry

s

(k) = sort([s(k−1)
; p]) // new support

�

(k) = A

s

(k) // matrix of hosen atoms

�

(k) = argmin

�

‖x− �

(k)
�‖22 s.t. support(�) = s

(k)
// new solution estimation

r

(k) = x−A�

(k)
// new residual

until r

(k)
< t

Stability issues require that both (4.9) and (4.10) must always give results of the same

sparsity. A stability ondition involving RIP is given in [58℄.

Theorem 4.3.2 (Stability of `0 minimization [58℄). Assume that �̂ is a andidate solution

of (4.10), with 2s0 non-vanishing oeÆients, satisfying the inequality ‖A�̂− x‖ ≤ �. Let

us assume that the matrix A satis�es the RIP property for 2s0, with Æ2s0 < 1. If x0, x̂0

are the solutions of (4.9) and (4.10), respetively, then

‖x0 − x̂0‖ ≤ 4�2

1− Æ2s0

: (4.11)

4.3.3 The `1-minimizer

As problem (4.9) is intratable, another approah towards its solution is smoothing the

penalty funtion and replae `0-norm with `1-norm,

min
�∈RN

‖�‖1 subjet to x = A�: (4.12)

This way we obtain a onvex program with omputational omplexity polynomial in the

signal length.

Transforming a omputationally intratable problem into a tratable one does not

neessarily mean that the solution of (4.9) is similar to the solution of (4.12). A result

established in [51, 70℄ states that if system (4.1) has a solution that satis�es (4.4), then

this is the unique solution of both `0- or `1-minimization. A uniqueness ondition via the

RIP property that also guarantees exat sparse reovery via `1-minimization is presented

next.
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Theorem 4.3.3 (Exat reovery based on RIP [28℄). Suppose that the matrix A in problem

(4.12) satis�es RIP of order s, with RIP-onstant Æ

s

. Let �

s

denote the trunated version

of � obtained if we keep its s largest omponents and set the rest equal to zero.

I. If Æ2s < 1 and � is an s-sparse solution of x = A�, then it is unique.

II. If Æ2s <
√
2 − 1, then the solution to the `1 minimizer of (4.12), denoted by �̂,

satis�es the following two onditions

‖� − �̂‖1 ≤ C0‖� − �

s

‖1; (4.13)

and

‖� − �̂‖ ≤ C0s
− 1

2‖� − �

s

‖1; (4.14)

for some onstant C0.

This theorem states that if the true vetor is a sparse one, i.e., � = �

s

, then the `1-

minimizer reovers the (unique) exat value. On the other hand, if the true vetor is not

a sparse one, then the minimizer results in a solution whose auray is ditated by a

proedure that knew in advane the loations of the s largest omponents of �. Note that

this is a deterministi result; it is always true and not with high probability. Reently,

the suÆient ondition has been improved to Æ2s < 0:4931 [97℄.

Well-known algorithms deployed to solve (4.12) inlude Mathing Pursuit (MP) [93℄,

Basis Pursuit (BP) [34℄, iterative thresholding [44℄, and Dantzig seletor [26℄. While these

solvers require fewer measurements ompared to greedy algorithms, they are omputa-

tionally more omplex.

4.4 The role of the spetral norm

Considering the global geometry of an overomplete ditionary, after the mutual oher-

ene, the most important geometri property is the spetral norm. Spetral norm is a

measure of how lose is a matrix to a tight frame. Reall that an m × N frame � with

‖�‖2 = N

m

is a unit norm tight frame, meaning that the olumns of � have unit norm

and the rows are orthogonal. Results onerning the use of tight frames in sparse repre-

sentations an be found in [24, 52, 124, 125, 8℄. The latest theoretial results that justify

the employment of inoherent tight frames in sparse reovery are probabilisti, leading to

optimisti bounds on the maximal sparsity for sparse reovery.

Deterministi analysis of sparse representations has shown that, given an overom-

plete ditionary, the maximal sparsity depends on the size (number of olumns) of well-

onditioned subditionaries. Instead of onsidering arbitrary sets of olumns, the authors

of [125℄ foused on random subditionaries and shattered the square root bottlenek using

tools from Banah spae probability. The theoretial results presented in [125℄ neessitate

that the system matrix forms an inoherent unit norm tight frame.

58



Theorem 4.4.1 (Inoherent UNTFs and sparse reovery [125℄). Let A be an m × N

inoherent unit norm tight frame, and � a sparse representation of an m-dimensional

signal x under ditionary A, that is, x = A�. If � has s ≤ m= logN nonzero entries

drawn at random ( is some positive onstant), then it is the unique solution for `0- and

`1-minimization problems with probability at least 99:44%.

An m × N ditionary is haraterized as inoherent if its mutual oherene does not

exeed 1=
√
m.

Theorem 4.4.1 states that the maximum sparsity level is allowed to approah the

dimension m of the original time-domain signal. If the ditionary is not a UNTF, then

similar results are given as a funtion of the spetral norm.

Employing spetral norm , mutual oherene and average oherene, the authors of

[8℄ allow for similar sparsity levels providing near-optimal probabilisti guarantees in the

performane of a fast greedy algorithm alled one-step thresholding (OST). In [8℄ the

average oherene of a unit norm matrix A is de�ned as

�(A) =
1

N − 1
max
i

|
∑

i6=j
〈a

i

; a

j

〉| (4.15)

and is a measure of how well the frame elements are distributed in the unit hypersphere.

The main result of [8℄ follows.

Theorem 4.4.2 ([8℄). Let A be an m×N matrix, with mutual oherene � and average

oherene �. Suppose ‖A‖2 = N

m

, � ≤ 1
164 logN

and � ≤ �√
m

. Then, there exists a onstant

 suh that sorted one-step thresholding fails with probability P{�̂ 6= �} ≤ 6
N

, provided that

N ≥ 128 and m ≥ s logN .

Spetral norm and mutual oherene are also used to provide tighter bounds on the

maximal sparsity in ase of onvex optimization methods in [24℄, under the additional

assumption that the sparse signals have independent nonzero entries with zero median.

4.5 Preonditioning

In linear algebra and numerial analysis, preonditioning is a proess that onditions a

given problem into a form that is more suitable for numerial treatment [6℄. Given a

linear system x = A�, a preonditioner C

−1
of the matrix A is a matrix suh that CA has

a smaller ondition number than A. Considering an underdetermined linear system with

sparse solutions, the aim of the proposed tehnique is to transform (4.1) into a form that

satis�es performane guarantees for the algorithms deployed for its solution. Aording

to theoretial results presented in the previous setion, a preonditioner of A should result

in a matrix CA that forms an inoherent UNTF.

Although onstrutions of inoherent tight ditionaries appear often in signal pro-

essing appliations, suh ditionaries have a limited ability of sparsifying signals or are
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suitable only for ertain signal types. Learning based ditionaries, that have been pro-

posed as an alternative, ontain atoms generated from instanes belonging to a partiular

signal family. Every signal in the family an then be represented as a linear ombination

of a few atoms from the ditionary. As the design of the ditionary is ditated by the

harateristis of the treated signals, the obtained ditionary may not satisfy inoherene

and/or tightness. Thus, one way to employ inoherent UNTFs in sparse representations

is preonditioning.

Let A be an arbitrary m×N matrix, not satisfying the neessary onditions for sparse

reovery. Suppose there exists an m × m matrix C suh that the produt CA exhibits

good inoherene and spetral properties. Multiplying both sides of (4.1) by C, we obtain

Cx = CA� or z = CA�; (4.16)

where z = Cx. Requiring C to be invertible, implies that system (4.1) is equivalent to

(4.16). Therefore, solving the following minimization problem

�̂ = argmin
�

‖�‖0 subjet to z = CA�; (4.17)

we obtain a solution that satis�es also (4.9).

Problem (4.17) involves the e�etive system matrix F = CA; thus, the eÆieny of the

numerial algorithms deployed to solve it depends on the properties of F . The question

that naturally arises is how an we onstrut an invertible m×m matrix C suh that the

e�etive matrix F has good inoherene and spetral properties?

The tehnique of preonditioning in sparse representations was introdued in [113, 114℄.

The weakness of many overomplete ditionaries to satisfy inoherene properties, mo-

tivated the authors of [114℄ to propose a modi�ation of thresholding and OMP, suh

that in the estimation of the unknown support, a matrix di�erent from the original rep-

resentation ditionary is employed. More partiularly, in greedy algorithms like OMP,

the estimation of the unknown support depends on the inner produts A

T

x = A

T

A�. If

A were an orthonormal basis, then A

T

A = I

N

, where I

N

is the N × N identity matrix,

and the produt A

T

x would reover the unknown support. Similarly, when employing

overomplete ditionaries, suessful reovery is ahieved if the Gram matrix has small

o�-diagonal entries. The authors of [113, 114℄ introdued a new step, namely, the sensing

step, for the estimation of the support of the unknown signal, whih employs another

ditionary 	 inoherent to A. The key onept of a frame's oherene is extended to pairs

of frames aording to the following de�nition:

De�nition 4.5.1 (Mutual oherene of pairs of frames). Given two frames 	 = [ 1  2 : : :  N ],

and A = [a1 a2 : : : aN ], the mutual oherene between 	 and A is de�ned as the maximum

absolute normalized inner produt between the olumns of the given ditionaries

�(	;A) = max
1≤i;j≤N

|〈 
i

; a

j

〉|: (4.18)
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The sensing step involves the produt 	

T

A that yields a pseudo-Gram matrix with

small o�-diagonal entries, due to inoherene between 	 and A. Thus, support estimation

desribed by 	

T

x = 	

T

A� yields higher reovery rates. Regarding thresholding, an

expliit formula for alulating the optimal matrix for support estimation is given in

[113℄.

The method we proposed in [130℄ onsiders the reovery of signals that are sparse

under overomplete ditionaries and does not depend on the deployed sparse reovery

algorithm. Using the ideas presented in Chapter 3, the proposed preonditioning onerns

underdetermined linear systems enountered in sparse representations and aims at the

onstrution of an e�etive system matrix with good inoherene and spetral properties.

4.5.1 Constrution of a preonditioner

As the onstrution of a preonditioner suitable for system (4.1) aims at the onstrution

of a system matrix with small mutual oherene and small spetral norm , we expet

that both of the methods presented in Chapter 3 with slight modi�ations an be used to

obtain a preonditioner. The proposed tehnique for the onstrution of a preonditioner

involves the following basi steps:

1. Selet the initial preonditioner C

init

to be an m×m random Gaussian matrix. Set

F0 = C

init

A.

2. Apply an algorithm that uses F0 as input to produe a frame F̃ with small mutual

oherene and small spetral norm.

3. Obtain the m×m matrix C solving the minimization problem min
C

‖CA− F̃‖.

The eÆieny of the above proess depends on the solution of the least squares problem

min
C

‖CA− F̃‖, whih must yield a preonditioner C suh that CA is as lose as possible

to F̃ . A few iterations between step 2 and step 3 may be neessary to attain a good

solution. Moreover, the obtained preonditioner must be invertible, in order to ensure

equivalene between the initial and the preonditioned system. Thus, it is important

to selet an invertible initial matrix C. We are based on [110℄ and selet the initial

preonditioner to be a random Gaussian matrix, beause a square random matrix will

almost never be singular.

Next we disuss the details of every implementation and present experimental results.

4.5.2 Preonditioning with inoherent UNTFs

The �rst methodology we propose to obtain a preonditioner involves the onstrution of

an inoherent UNTF based on the algorithms proposed in setion 3.3. As both algorithms

presented there yield similar onstrutions, we will use Algorithm 1 that onverges faster.

To onstrut a preonditioner using Algorithm 1 we employ an iterative proess, with the

q-th iteration involving the following steps:
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Figure 4.1: Disrepany between the Gram or pseudo-Gram matries involved in support

estimation and the identity matrix of the same dimensions. The experiments involve

m×N matries with m = 64 : 32 : 192 and N = 256.

1. Apply Algorithm 1 on F

q

to produe an inoherent UNTF F̃

q

.

2. Find the m×m matrix C

q

by solving the minimization problem min
C

‖CA− F̃

q

‖.

3. Set F

q+1 = C

q

A.

Indeed, the above proess produes an m × m matrix C

q

that yields an e�etive

system matrix F

q+1 = C

q

A forming an inoherent UNTF. As we have already mentioned,

the obtained preonditioner an be used in the solution of system (4.1), if and only if it

is an invertible matrix; thus, C

q

must be invertible. Aording to our analysis in Chapter

3, there is strong evidene that the algorithm onverges loally, meaning that F

q

is lose

to F0. Hopefully, the output matrix C

q

will be lose to the initial matrix C

init

. Having

seleted an invertible initial matrix, the probability that the obtained matrix is singular

is very low. Experimental results on�rm our intuition.

Experimental Results

To test the proposed tehnique in omputing a solution of (4.1), we produe sparse syn-

theti signals � of length 256 under overomplete random Gaussian ditionaries A of size

128 × 256, obtaining a signal x = A� of length 128. Following the above proess, we

ompute a preonditioner C of size 128× 128 and apply it to x to obtain z = Cx. Given

the eÆient matrix F = CA and the signal z, OMP, BP and Dantzig seletor are used to

ompute a sparse solution satisfying z = CA�. The algorithms are also used to ompute

a solution given A and x.

Before displaying results onerning the omputation of sparse signals, we would like

to estimate the appropriateness of the ditionaries involved in signal reovery when greedy

algorithms are used. For this reason we ompute the disrepanies d

init

and d

prop

between

the orresponding Gram matrix involved in the sensing step and the identity matrix, that
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Figure 4.2: Support reovery rates for sparse representations using OMP for signals with

varying support size. The preonditioner's onstrution was based on the onstrution of

inoherent UNTFs.

is, d

init

=
∥∥
A

T

A− I

N

∥∥
F for the initial ditionary and d

prop

=
∥∥
F

T

F − I

N

∥∥
F for the pro-

posed preonditioning, where F denotes the Frobenius norm. As our experiments involve

a omparison with [114℄, whih employs a matrix 	 in the sensing step, we also ompute

the pseudo-Gram matrix 	

T

A and the distane d

[114℄

=
∥∥
	

T

A− I

N

∥∥
F . Results averaged

over 500 experiments are presented in Figure 4.1, involving varying matrix dimensions.

The results are best with the proposed onstrution, indiating improved performane in

numerial reovery.

The performane of the deployed algorithms is quanti�ed by omputing the perentage

of fully reovered support, referred to as reovery rate. Results for signals omputed with

OMP are demonstrated in Fig. 4.2, inluding the method proposed in [114℄. The results

are averaged over 500 experiments and onern signals with varying support size. Clearly,

the reovery rates for OMP show that the proposed tehnique improves algorithm's per-

formane and surpasses the results in [114℄. Similarly, reovery rates for BP and Dantzig

seletor in Figures 4.3 and 4.4, respetively, on�rm that the proposed preonditioning

transforms the original system in a manner that is more suitable for �nding sparse solu-

tions. The method of [114℄ onerns only greedy algorithms and is not appliable here.

4.5.3 Preonditioning with nearly equiangular frames

The seond methodology we propose to obtain a preonditioner involves the onstrution

of a nearly equiangular, nearly tight frame based on Algorithm 6. Similarly to the previous

methodology, the initialization part involves C

init

to be anm×m random Gaussian matrix,
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Figure 4.3: Support reovery rates for sparse representations using BP for signals with

varying support size. The preonditioner's onstrution was based on the onstrution of

inoherent UNTFs.
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Figure 4.4: Support reovery rates for sparse representations using Dantzig seletor for

signals with varying support size. The preonditioner's onstrution was based on the

onstrution of inoherent UNTFs.
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Figure 4.5: Support reovery rates for sparse representations using Dantzig seletor for

signals with varying support size. The preonditioner's onstrution was based on the

onstrution of nearly equiangular, nearly tight frames.

setting F0 = C

init

A. After obtaining a nearly equiangular, nearly tight frame, F̃ , we

ompute the preonditioner solving min
C

‖CA − F̃‖. The proess is iterative, with the

q-th iteration involving the following:

1. Apply Algorithm 6 on F

q

to produe a nearly equiangular, nearly tight frame F̃

q

.

2. Obtain the m×m matrix C

q

solving the minimization problem min
C

‖CA− F̃

q

‖.

3. Set F

q+1 = C

q

A.

In ontrast to the methodology presented in the previous setion, experimental results

show that the above iterative proess does not seem to onverge to an optimal solution.

Thus, we perform a few iterations, in every iteration we keep the obtained solution and

�nally hoose the preonditioner with the smallest mutual oherene. Regarding the in-

vertibility of the obtained preonditioner, we do not really have any theoretial evidene

that the produed matrix is invertible, but the experimental results show that the pro-

posed methodology does not yield singular matries.

Experimental Results

To test the proposed preonditioning tehnique, we produe sparse syntheti signals � of

length 128 under overomplete random Gaussian ditionaries A of size 64 × 128. Thus,

the preonditioner C is of size 64 × 64. Compared to the original random matrix A, the

e�etive ditionary CA exhibits improved mutual oherene and spetral norm. Similarly

65



to the experiments presented in the previous setion, we perform sparse signal reovery

using OMP, BP and Dantzig seletor. The results are averaged over 500 experiments and

onern signals with varying support size. While OMP and BP do not seem to improve

their performane substantially, reovery rates for the Dantzig seletor are better with

the proposed preonditioning and they are demonstrated in Figure 4.5.
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Chapter 5

Improving Sparse Reovery in

Compressed Sensing

5.1 Compressed sensing basis

5.2 Projetion matries onstrutions

5.3 Compressed sensing with the proposed frame onstrutions

5.4 Proposed optimized projetions

5.5 Preonditioning in ompressed sensing

Compressed sensing or ompressive sampling (CS) is a novel theory [49, 25℄ that

merges ompression and aquisition, exploiting sparsity to reover signals that have been

sampled at a drastially smaller rate than the onventional Shannon/Nyquist theorem

imposes. Based on reent mathematial results, CS has enabled signal reonstrution

from muh fewer data samples, relying on the observation that many natural signals

are sparse or ompressible, i.e., they an be represented by a few signi�ant oeÆients.

Reovering a signal from inomplete measurements an be done with omputationally

eÆient methods.

The results of CS have an important impat on numerour signal proessing appliations

inluding the eÆient proessing and analysis of high-dimensional data suh as audio

[71℄, image [89, 100℄, video [7℄, and bioinformati data [131, 90℄. CS has been applied to

aelerate the sensing proess in medial imaging [15, 66, 72℄ and to limit the number of

sensors in Wireless Visual Sensor Networks (WVSNs) [104℄. Other appliation spei�

arhitetures that have been developed inlude radar analysis [120, 103℄ and astronomial

imaging [16℄. Besides signal proessing, to date CS theory is extensively utilized by

experts to address problems in various �elds suh as biology [61, 116℄, mediine [94℄ and

seismology [79℄.

67



The standard way to obtain a ompressed representation of a signal involves that one

omputes the oeÆients in an appropriate basis and then keeps only the largest oef-

�ients. When omplete information on the signal is available, this is ertainly a valid

strategy. However, when the signal has to be aquired �rst with a somewhat ostly, diÆ-

ult, or time-onsuming measurement proess, this seems to be a waste of resoures: First,

one spends huge e�orts to ollet omplete information on the signal and then one throws

away most of the oeÆients of the signal to obtain its ompressed version. Compressed

sensing is an emerging theory that ondenses the signal diretly into a ompressed repre-

sentation, allowing signal reovery from a number of measurements that is muh smaller

than the signal length.

Reovering sparse signals from inomplete measurements leads to the `0 and `1 min-

imization problems formulated in sparse representations. In the ontext of CS, reovery

guarantees onern the sensing matrix, i.e., the matrix implementing the sensing meh-

anism, and involve the restrited isometry property (RIP). At present, a omprehensive

CS theory seems established [65℄ exept for a few deep questions suh as the improvement

of the sensing mehanism and the eÆieny of sparse reovery.

In early CS appliations, the sensing proess was implemented using random matries.

It is known that an m×N random Gaussian or Bernoulli matrix satis�es RIP with high

probability and it an be used to reover an s-sparse signal, provided that the number

of measurements m is O(s log(N=s)) [11℄. Reent researh aims either at the redution

of the number of measurements or at the improvement in reovery performane. While

CS theory onerns non-adaptive measurements, reent work inludes optimally designed

sensing matries with respet to a given sparsifying ditionary. Other parameters a�eting

the design of the sensing mehanism involve the hardware implementation and onstraints

imposed by the spei� appliation. From this viewpoint signi�ant work is related to

matries that are not ompletely random and often exhibit onsiderable struture.

After reviewing basi results from CS theory, we disuss three approahes improving

signal reovery in CS. The �rst inludes the employment of the proposed frame on-

strutions as sensing matries. The seond inludes the onstrution of optimized sensing

matries with respet to a given sparsifying ditionary. A third approah onsiders binary

sensing matries that are more suitable for hardware implementation and improves signal

reovery using preonditioning.

5.1 Compressed sensing basis

In signal proessing, the onventional Shannon/Nyquist theorem asserts that a signal

must be sampled at a rate at least twie its highest frequeny in order to be represented

without error. Similarly, the fundamental theorem of linear algebra suggests that the

number of olleted samples (measurements) of a disrete �nite-dimensional signal should

be at least as large as its length in order to ensure reonstrution. Reovering sparse

signals from inomplete measurements relies on reent results that onern the solution
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of underdetermined linear systems with numerial methods [93℄.

Consider a �nite-length real-valued signal � of length N , whih we view as an N × 1

olumn vetor in R
N

. CS yields a ompressed representation of the treated signal using

a sensing mehanism that is realized by an m×N , m≪ N , matrix P , whih is known as

sensing or projetion or measurement matrix. The linear measurement proess is desribed

by

y = P�; (5.1)

where y ∈ R
m

is the m × 1 vetor ontaining the obtained measurements. Note that

the measurement proess is non-adaptive, that is, P does not depend in any way on the

signal.

Unique identi�ation of a signal from a few measurements is feasible, if we restrit

the lass of signals we aim to reover. In CS, we assume that � is a sparse signal, that

is, ‖�‖0 = s, where ‖ · ‖0 is the `0 quasi-norm ounting the non-vanishing oeÆients

of the treated signal; s is the sparsity level of � and D is referred to as the sparsifying

ditionary. The set of indies orresponding to the non-vanishing oeÆients is referred

to as the support of �. For signals that are not exatly sparse but ompressible, we keep

the s most signi�ant oeÆients.

System (5.1) is underdetermined with fewer equations than unknowns. A sparse vetor

satisfying (5.1) an be obtained as the solution of the `0-minimization problem

min
�∈RN

‖�‖0 subjet to y = P�;

(5.2)

or, alternatively, as the solution of the `1-minimization problem

min
�∈RN

‖�‖1 subjet to y = P�:

(5.3)

The above minimization problems an be solved eÆiently as long as P exhibits ertain

properties. Results from sparse representations require either that P forms an inoherent

unit norm tight frame (Theorem 4.4.1) or that it satis�es the restrited isometry property

(Theorem 4.3.3). In this ase, well-known algorithms suh as OMP [47℄ and BP [34℄

an ompute the solution of the `0- and `1-minimization problems. Random Gaussian or

random Bernoulli matries have been proved to exhibit good RIP properties and have

been employed in various CS appliations.

The theoretial guarantees for sparse reovery in the ontext of CS are mainly ex-

pressed in terms of a suÆient number of measurements. Projetion matries obeying

RIP of order s an reover an s-sparse signal, provided that the number of measurements,

m < N , is of order O(s ln(N=s)), that is

m ≥ 0s ln(N=s); (5.4)

where 0 is some onstant, whih depends on the isometry onstant Æs [11℄. Note that m is

larger than the sparsity level by an amount ontrolled by the inequality (5.4). Apparently,

the higher the value of s, for whih the RIP property of a projetion matrix holds true,

the larger the range of sparse signals that an be observed.

69



A reent result that has been formulated in [46℄ gives a diret expression of the onstant

involved in (5.4).

Theorem 5.1.1. Let P be an m × N matrix that satis�es the RIP of order 2s with

onstant Æ

s

∈
(
0; 1

2

]
. Then

m ≥ 1s log(N=s); (5.5)

where 1 is some onstant, 1 = 1=2 log(
√
24 + 1) ≈ 28.

The restrition to Æ

s

∈
(
0; 1

2

]
is arbitrary and is made merely for onveniene. Minor

modi�ations to the argument establish bounds for Æ ≤ Æ

max

for any Æ

max

< 1.

The seminal work of [25℄ where CS theory was �rst established onerned sparse signal

representations under orthonormal bases. Consider a �nite-length real-valued signal x of

length N , whih we view as a N × 1 olumn vetor in R
N

. Let � ∈ R
N

be a sparse

represenation of x under an orthonormal basis D ∈ RN×N
,

x = D�: (5.6)

Then, ompressed sensing is desribed by

y = PD�: (5.7)

Setting F = PD, system (5.7) an be written in the form

y = F�; (5.8)

with F ∈ Rm×N
referred to as the e�etive ditionary.

Rephrasing the results formulated in sparse representations to apply to CS, we obtain

reovery onditions for the e�etive ditionary F = PD. However, designing an eÆient

proess to reover a signal from inomplete measurements requires theoretial guarantees

that onern the sensing mehanism, i.e., the projetion matrix P . It has been shown

that the above theoretial results that hold for naturally sparse signals also hold for

signals that are sparse under orthonormal bases. Requiring P to be a random Gaussian

matrix, then the produt PD is also an independent identially distributed Gaussian

matrix regardless of the hoie of the orthonormal sparsifying basis D. Random Gaussian

matries are universal in the sense that PD has the RIP with high probability, therefore,

the onditions for sparse reovery for `0- and `1- minimization problems are satis�ed.

Conditions that guarantee reovery of signals that are sparse under redundant ditio-

naries were established in [27℄. In this ase, the projetion matrix must satisfy a modi�ed

RIP property referred to as D-RIP.

De�nition 5.1.2 (D-RIP [27℄). Let �

s

be the union of all subspaes spanned by all

subsets of s olumns of D. A projetion matrix, P , obeys the restrited isometry property

adapted to D, (D-RIP), with Æ

s

, if

(1− Æ

s

)‖�‖2 ≤ ‖P�‖2 ≤ (1 + Æ

s

)‖�‖2; for all � ∈ Σ
s

: (5.9)
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The union of all subspaes, �

s

, ontains all signals x that are s-sparse with respet

to the ditionary D. This is the di�erene with the RIP de�nition given in setion (4.5).

All random matries disussed earlier an be shown to satisfy D-RIP, with overwhelming

probability, provided that the number of measurements, m, is at least of order 2s ln(N=s).

5.2 Projetion matries onstrutions

Compressed sensing was introdued utilizing random projetion matries. The entries of

an m×N random Bernoulli matrix take the value + 1√
m

or − 1√
m

with equal probability,

while the entries of a Gaussian matrix are independent and follow a normal distribution

with expetation 0 and variane 1=m. With high probability suh random matries satisfy

the restrited isometry property with a (near) optimal order in s; therefore, they allow

sparse reovery.

Theorem 5.2.1 (Reovery ondition for Gaussian and Bernoulli random matries [11℄).

Let P ∈ Rm×N
be a Gaussian or Bernoulli random matrix. Let �; Æ ∈ (0; 1) and assume

m ≥ CÆ

−2(s ln(N=s) + ln("−1)) (5.10)

for a universal onstant C > 0. Then with probability at least 1−" the restrited isometry

onstant of P satis�es Æ

s

≤ Æ.

The above Theorem, a simple proof of whih an be found in [11℄, states that all s-

sparse vetors � an be reovered from y = P�, provided that the number of measurements

satis�es m ≥ CÆ

−2(s ln(N=s) + ln("−1)). Note that setting C

′ = CÆ

−2
and hoosing

" = exp(−m) with  = 1=(2C ′), we obtain the reovery ondition m ≥ 2C ′
s ln(N=s) that

we have seen in Theorem 5.1.1.

While random matries satisfy RIP with high probability, the absene of struture

in these matries leads to infeasible real-world appliations. When multiplying arbitrary

matries with signal vetors of high dimension, the lak of any fast matrix multipliation

algorithm results in high omputational ost. Even storing an unstrutured matrix may

be diÆult. Thus, large sale problems are not pratiable with Gaussian or Bernoulli

matries.

Another important issue when onsidering random matries is that the fully random

matrix approah is sometimes impratial to build in hardware. Appliations often do not

allow the use of \ompletely" random matries, but put ertain physial onstraints on the

measurement proess and limit the amount of randomness that an be used. Hardware

arhitetures that have been implemented to enable random measurements in pratial

settings inlude the random demodulator [122℄, random �ltering [123℄ the modulated

wideband onverter [96℄, random onvolution [108℄ and the ompressive multiplexer [117℄.

These arhitetures typially use a redued amount of randomness and are modeled via

matries that have signi�antly more struture than a fully random matrix.
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The physis of the sensing mehanism and the apabilities of sensing devies may

also limit the types of CS matries that an be implemented in a spei� appliation.

Clearly, one reason for proposing new onstrutions of projetion matries is to address

pratial limitations appearing in the appliations. A researh diretion towards the

solution of suh problems involves strutured matries. Important work in onstrution

of strutured matries inludes deterministi matries [48, 83, 4, 78, 20℄ and strutured

random matries [75, 105, 106℄.

Besides the diÆulties in hardware implementation, researh on projetion matries

is also motivated by the improvement of reovery onditions. New theoretial and pra-

tial results onern matries that are more eÆient than random Gaussian or Bernoulli

projetions. Therefore, another researh diretion investigates the onstrution of matri-

es that lead to fewer neessary measurements or improve the performane of the algo-

rithms deployed in sparse reovery. An interesting approah involves optimized proje-

tions [57, 145, 82℄.

5.2.1 Deterministi projetions

From a omputational and an appliation oriented viewpoint it is desirable to have mea-

surement matries with struture. One lass of suh matries inludes deterministi ma-

tries. Deterministi onstrutions [48, 83, 4, 78, 20℄ may provide the onveniene to

verify RIP without heking up all s-olumn submatries. However, the main drawbak

of deterministi matries is that they satisfy poor reovery onditions.

Known deterministi matries with optimal or near optimal mutual oherene are

equiangular tight frames [119℄ and the Gabor frames generated from the Alltop sequene

[78℄, whih are of size m×m2
. Considering a deterministi matrix with mutual oherene

1/

√
m, the sparsity level must be of the order of

√
m (square root bottlenek), or, equiva-

lently, the maximum number of measurementsm that must be obtained to ensure a unique

solution is O(s2). The aforementioned onstrutions restrit the number of measurements

needed to reover an s-sparse signal to O(s2 logN). A onstrution that managed to go

beyond the square root bottlenek [20℄ provided only a slight improvement.

It is also possible to deterministially onstrut matries of size m×N that satisfy the

RIP of order s, but suh onstrutions also requirem to be relatively large [48, 83, 20℄. For

example, the onstrution in [48℄ requires m = O(s2 logN) while the onstrution in [83℄

requires m = O(sN�) for some onstant �. In many pratial settings, this result would

lead to an unaeptably large requirement on m. A more optimisti result onerning a

spei� deterministi onstrution an be found in [10℄; the authors onjeture that ETFs

orresponding to Paley graphs of prime order [107℄ are RIP in a manner similar to random

matries.
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5.2.2 Strutured random projetions

Sine it is hard to prove good reovery onditions for deterministi matries as outlined

above, many strutured onstrutions allow some randomness to ome into play. This

leads to strutured random matries. These matries are of great interest for omputa-

tionally eÆient sparse reovery, even though they do not preiely attain reovery on-

dition (5.10). The best reovery bounds have the form O(Cs log�(N=")), � > 1, where

" ∈ (0; 1) orresponds to the probability of failure [105℄. The important linear saling of

m in s up to log-fators is retained.

An important type of strutured random matries is based on randomly sampled

funtions [105℄. Let D ⊂ R
d

. Consider a funtion of the form

f(t) =
N∑

k=1

x

k

 

k

(t); t ∈ D; (5.11)

where x1; : : : ; xN ∈ C. Let t1; : : : ; tN ∈ D be some points and suppose we are given the

sample values

y

`

= f(t
`

) =

N∑

k=1

x

k

 

k

(t
`

); ` = 1; : : : ; m: (5.12)

The orresponding measurement matrix has entries P

`;k

= ( 
k

(t
`

)), ` = 1; : : : ; m, k =

1; : : : ; N . Assuming that the sampling points t

`

are seleted independently at random,

P

`;k

beomes a strutured random matrix. So the struture is determined by the funtion

system  

k

, while the randomness omes from the sampling loations. SuÆient on-

ditions for sparse reovery for CS matries of the above form require O(Cs ln2(6N="))

measurements [105℄.

The random partial Fourier matries, whih onsist of randomly hosen rows of the

disrete Fourier matrix an be viewed as a speial ase of this setup and was studied

already in the very �rst papers on ompressed sensing [25℄. For these matries the reovery

ondition requires O(Cs log(N=")) measurements. A fast appliation of a partial Fourier

matrix an be omputed using the fast Fourier transform (FFT) algorithm.

Another type of strutured matries are partial random irulant and Toeplitz matries

[75, 105, 106℄; they were �rst inspired by appliations in ommuniations. A irulant

matrix U is a square matrix where the entries in eah diagonal are all equal, and where

the �rst entry of the seond and subsequent rows is equal to the last entry of the previous

row. Sine this matrix is square, we perform random subsampling of the rows to obtain

a CS matrix P = RU , with R being an m × N subsampling matrix, i.e., a submatrix of

the identity N × N matrix. Cirulant and Toeplitz matries an be applied eÆiently

using FFT, and they greatly redue the omputational and storage omplexity in large-

dimensional problems. The reovery gurantees for these matries require m to be of order

O(s1:5 log1:5N) [54℄.
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5.2.3 Optimized projetions

Given a sparse signal � under a ditionary D, the main riterion when designing a pro-

jetion matrix P is to enable unique identi�ation of � from its measurements y = PD�.

While the aforementioned matrix onstrutions onern non-adaptive projetion matri-

es, designing a projetion matrix with respet to a given sparsifying ditionary leads to

optimized projetions.

A major obstale in the onstrution of projetion matries is that verifying RIP is

ombinatorially omplex; we must examine

(
N

s

)
possible ombinations of s nonzero entries

in the N -length vetor �. Thus, existing optimization tehniques onern inoherene.

Inoherene is often not satis�ed by arbitrary represenation ditionaries. As the hoie

of the sparsifying ditionary is ditated by the nature of the signals we want to measure,

one way to improve the struture of the e�etive ditionary F = PD is the optimization

of the projetion matrix P . Projetions' optimization was �rst proposed by Elad [57℄ and

involved the improvement of the mutual oherene.

Optimized projetions proposed in [57℄ are based on a \shrinkage" proess on the Gram

matrix. Suppose we want to obtain CS measurements of a signal that is sparse under a

ditionary D. Using a random Gaussian projetion matrix P , the sensing mehanism

involves the e�etive ditionary F = PD. Let G = F

T

F be the orresponding Gram

matrix. To improve the mutual oherene, the optimization proess \shrinks" the values

of the o�-diagonal elements of the Gram matrix in order to redue the orrelation between

the olumns of F . Entries in G with magnitude above a threshold t are \shrunk" by a

fator . Entries with magnitude below t but above t are \shrunk" by a smaller amount.

Let g

ij

be the (i; j) entry of the initial Gram matrix. The new Gram matrix elements,

ĝ

ij

, are obtained aording to

ĝ

ij

=





g

ij

; |g
ij

| ≥ t;

t · sgn(g
ij

); t > |g
ij

| ≥ t;

g

ij

; t > |g
ij

| :
(5.13)

The \shrinkage" proess is applied iteratively. The new Gram matrix yields an e�e-

tive ditionary F̂ with improved mutual oherene. The optimized projetion matrix is

obtained solving the least squares problem min
P

‖PD − F̂‖.
Elad's tehnique provoked several algorithms for projetions' optimization eah of

them employed a di�erent \shrinkage" proess on the o�-diagonal entries of the Gram

matrix [145, 82℄. In [145℄ the authors modify the Gram matrix aording to

1. ĝ

ij

=





1; i = j;

g

ij

; |g
ij

| < �

G

;

sgn(g
ij

) · �
G

; otherwise;

2. G

p+1 = �G

p

+ (1− �)G
p−1; 0 < � < 1;
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where �

G

is the lowest possible ahievable orrelation (eq. (2.25)) and G

p

is the Gram

matrix in the p-th iteration. Similarly, in [82℄ the proposed \shrinkage" operation is given

by the following formula,

ĝ

ij

= sgn(g
ij

)(|g
ij

| − 0:5 · g2
ij

):

A similar approah is presented in [55℄. Here, the authors' goal is to produe a Gram

matrix that is as lose as possible to the identity matrix, introduing the minimization

problem

min
F

∥∥
F

T

F − I

∥∥
F ; (5.14)

where ‖·‖F denotes the Frobenius norm and I the N ×N identity matrix. Their solution,

based on SVD, an work for either the single optimization of the projetion matrix given

the ditionary or the joint design and optimization of the ditionary and the projetion

matrix, from a set of training images. In the latter ase the authors ombine their method

with K-SVD [2℄. If the ditionary learning proess is omitted, the projetion matrix

optimization is very fast, in onstrast to most existing methods that lead to iterative

algorithms. Problem (5.14) is also treated in [1℄, where a solution based on gradient

desent is proposed.

5.3 Compressed sensing with the proposed frame onstrutions

In ompressed sensing, we may onsider either naturally sparse signals or signals that are

sparse with respet to a representation ditionary D. For naturally sparse signals, we

employ a projetion matrix with the desired properties and take measurements aording

to y = P�. If the treated signals are sparse under a representation ditionary D, then

the sensing proess is desribed by y = PD�. In this ase, we may onsider the produt

F = PD and optimize F over P suh that the projetion matrix yields an e�etive di-

tionary satisfying the desired properties. In this setion we diretly employ the proposed

frame onstrutions as projetion matries. The latter onsideration involving optimized

projetions is presented in the next setion.

Considering the high inoherene level and the small spetral norm of the frame on-

strutions proposed in Chapter 3, it is of interest to investigate their performane in re-

overing sparse signals obtained with ompressed sensing and ompare them with random

Gaussian matries. Therefore, the experiments presented here involve projetion matries

of the form of random Gaussian matries, inoherent UNTFs, nearly equiangular frames

and nearly equiangular, nearly tight frames. For the onstrution of an inoherent UNTF

we employ Algorithm 1, while for the onstrution of nearly equiangular frames we employ

Algorithm 5 and Algorithm 6.

Our simulations involve syntheti sparse signals � of length N = 120, with s = 4

nonzero oeÆients. Considering a projetion matrix P of sizem×N , withm = 15 : 5 : 35

and N = 120, we obtain measurements aording to y = P�. The obtained measurements
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Table 5.1: Reovery rates for sparse signals of length N = 120 obtained with CS, for

variable number of measurements, m = 15 : 5 : 35, and various types of projetion

matries.

m

MSE

Gaussian Alg. 1 Alg. 5 Alg. 6

15 0:01000 0:00821 0:00837 0:00825

20 0:00506 0:00287 0:00300 0:00287

25 0:00180 0:00056 0:00059 0:00059

30 0:00038 5:650 · 10−5 5:609 · 10−5 6:887 · 10−5

35 9:115 · 10−5 3:300 · 10−6 2:768 · 10−6 5:071 · 10−6

Table 5.2: Properties of sensing matries employed in CS experiments. Results involve

m×N matries with m ∈ {20; 30}, N = 120.

Mutual oh. Average oh. Spetral norm

❍
❍
❍
❍
❍
❍
❍

Type

m

20 30 20 30 20 30

Gaussian 0:751 0:647 0:050 0:033 3:290 2:876

Alg. 1 0:354 0:237 0:042 0:025 2:449 2:000

Alg. 5 0:463 0:332 0:042 0:025 2:512 2:075

Alg. 6 0:445 0:319 0:042 0:025 2:459 2:015

are used to �nd the \unknown" sparse signal, using OMP. For every value of m, we per-

form 10000 experiments. The quality of the reovered signal is measured omputing the

Mean Squared Error (MSE). The results demonstrated in Table 5.1 inlude average val-

ues. Aording to Table 5.1, all proposed frames outperform random Gaussian matries,

improving reonstrution auray substantially. In agreement with the established the-

ory, the results depend on the number of aquired measurements, with all types of the

proposed frames attaining similar quality of reonstrution for given m.

In order to assoiate the obtained results for sparse reovery with the properties of

the employed projetion matries, we also present results onerning mutual oherene,

average oherene and spetral norm. Table 5.2 inludes average values over 10000 real-

izations for projetion matries with dimensions 20×120 and 30×120. Aording to these

results, the superiority of the proposed frames against random Gaussian matries is plau-

sible, onsidering mainly the attained inoherene level. Compared to random Gaussian

matries, nearly equiangular frames produed with Algorithm 5 and Algorithm 6 exhibit

redued mutual oherene by a fator 40 − 50%, while the improvement for inoherent

UNTFs produed with Algorithm 1 is higher than 50%.

The next important observations onern a omparison between the proposed frame
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onstrutions. Inoherent UNTFs obtained with Algorithm 1 attain optimal values of

spetral norm and the smallest values of mutual oherene, espeially when the frames

are of high redundany. Aording to theoretial results presented in previous setions

(see Theorem 4.4.1), one ould expet that these frames would yield the highest reon-

strution auray. However, this is not on�rmed by the demonstrated results, whih

show that the attained reonstrution auray is not analogous to the improvement of

the aforementioned properies of the employed projetion matries. These results are not

that surprising, if we take into aount that many authors have argued that mutual oher-

ene may not express well the e�etiveness of a matrix in sparse signal reovery [57, 8, 9℄.

Clearly, other properties of the projetion matrix suh as average oherene seem to in-

uene the e�etiveness of the employed matrix as well. Reall that the notion of average

oherene was introdued in [8, 9℄, where the authors studied its relation to mutual oher-

ene and provided probabilisti guarantees for sparse reovery. While inoherent UNTFs

exhibit the smallest mutual oherene and spetral norm values, the values of average o-

herene are idential for all matrix onstrutions exept from random Gaussian matries.

We onlude that the results obtained in Tables 5.1 and 5.2 indiate that the e�etiveness

of a matrix involved in sparse reovery seems to depend on all a�ormentioned properties,

with average oherene playing a rather important role.

Conluding, we would like to make a omment onerning the omputational ost of

Algorithm 5 and Algorithm 6. While Algorithm 6 produes frames with better spetral

norm, the ahieved improvement slightly a�ets the reonstrution performane of OMP.

Taking into aount the additional omputational ost introdued by Algorithm 6 and

the fat that the matries employed in CS are pratially of large dimensions, we suggest

Algorithm 5 as the best hoie for the onstrution of sensing matries, onsidering both

e�etiveness and omputational ost. Comparison between Algorithm 5 and Algorithm

1 leads to a similar onlusion, strengthening our preferene to Algorithm 5, espeially

when the appliation neessitates limitation of resoures.

5.4 Proposed optimized projetions

Another way to employ the proposed frame onstrutions in ompressed sensing is the

method of optimized projetions. The method proposed here is based on the alternat-

ing and averaged projetions algorithms presented in Chapter 3 that produe inoherent

UNTFs. As we will explain in the sequel, nearly equiangular frames an be employed to

obtain optimized projetions in a similar way, with the restrition that the treated signals

are sparse under an orthonormal basis.

Despite the existene of theoretial results that highlight the important role of spe-

tral norm, none of the existing methods for the optimization of the projetion matrix

aims at the onstrution of e�etive ditionaries that form tight frames. Tightness was

�rstly introdued in the optimization of the projetion matrix in our preliminary work

[128℄. Nevertheless, our initial onern when we proposed the algorithm in [128℄ involved
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minimizing the mutual oherene rather than attaining tightness. Based on the observa-

tion that the best inoherene levels are obtained by ETFs, whih, besides small mutual

oherene, also exhibit minimal spetral norm, the algorithm proposed [128℄ is our �rst

attempt to produe frames lose to ETFs.

In optimized projetions, we onsider the produt of the projetion matrix and the

representation ditionary, that is, F = PD, and optimize F over P . The method de-

veloped in [128℄ involves the following operations on the e�etive ditionary: First, we

apply the \shrinkage" proess proposed in [57℄ (see eq. (5.13)) and obtain an e�etive

ditionary with better mutual oherene. Then, we improve the spetral norm of the ob-

tained ditionary �nding the nearest (N=m)-tight frame aording to Theorem 3.3.1. A

third step involves omputing the optimized projetion matrix solving the minimization

problem min
P

‖PD − F‖. Aiming at the improvement of this algorithm, we were led to

the onstrution of inoherent UNTFs proposed in [129℄.

The appropriateness of the projetion matries proposed in [128℄ is on�rmed by the

results established in Theorem 4.4.1 [125℄. Rephrasing Theorem 4.4.1 to apply to CS, we

onsider CS measurements of a sparse signal � ∈ RN

under a ditionary D ∈ RK×N
, K ≤

N , aording to y = PD�, where P ∈ Rm×K
, m≪ K, is the projetion matrix. Theorem

4.4.1 states that � an be reovered with high probability from O(s logN) measurements

as long as the e�etive ditionary F = PD forms an inoherent UNTF. Consequenlty, an

optimization of F over P involves the omputation of a projetion matrix P suh that F

is as lose to an inoherent UNTF as possible.

Considering the existing optimization tehniques for projetion matries and the re-

sults established in Theorem 4.4.1, the main steps of an algorithm that leads to optimized

projetions may be the following:

1. Initialize projetions with a random Gaussian matrix P

init

and ompute the initial

e�etive ditionary F = P

init

D.

2. Apply an algorithm that modi�es F to obtain a frame F̃ exhibiting small mutual

oherene and spetral norm.

3. Obtain P

opt

solving min
P

‖PD − F̃‖.

Step 2 an be realized using one of the algorithms presented in Chapter 3. However,

the third step of the above proess involves the solution of a least squares problem. The

obtained solution depends on the sparse representation ditionary D and the omputed

frame F̃ . When the sparse representation ditionary is redundant, that is, K < N , mini-

mization of ‖PD− F̃‖ yields an approximate solution P
opt

. Experiments have shown that

if the obtained frame F̃ is an inoherent UNTF onstruted with Algorithm 1 or Algorithm

2, then the optimized P

opt

yields an e�etive ditionary F

opt

= P

opt

D that is lose to F̃ ;

indeed, F

opt

forms an inoherent UNTF. On the other hand, if the obtained frame F̃ is a

nearly equiangular frame, then the optimized P

opt

yields an e�etive ditionary that is far

from F̃ . In this ase, F

opt

does not exhibit the properties of a nearly equiangular frame.
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A nearly equiangular frame ould be used to produe optimized projetions for signals

that are sparse under orthonormal bases, that is, when K = N . Then, minimization of

‖PD − F̃‖ results in a projetion matrix P

opt

satisfying P

opt

D = F̃ . In order to present

a general solution onerning sparse signals under redundant representation ditionaries

and orthonormal bases as well, the optimization method that follows employs algorithms

yielding inoherent UNTFs.

5.4.1 Optimized projetions using inoherent UNTFs

In Chapter 3 we presented two algorithms for onstruting inoherent UNTFs. Both

algorithms yield similar onstrutions; therefore, we have deided to employ only one of

them in the experiments presented here. We hoose the proposed alternating projetions

(Alg. 1), as it exhibits higher onvergene speed. Algorithm 1 is slightly modi�ed to

inorporate the optimization step produing the optimized projetion matrix. The method

yields e�etive ditionaries with small mutual oherene and small spetral norm.

In our experiments, the proposed optimized projetions are ompared to our prelim-

inary work [128℄ and existing onstrutions presented in [145℄ and [82℄. Although our

experiments inluded the methods of [57℄, [55℄ and [1℄ as well, we only report results with

the methods of [145℄ and [82℄ sine they seem to perform better.

The properties of the e�etive ditionary

Before proeeding to reonstrution performane of algorithms employed in CS, let us

present some results that demonstrate the properties of the obtained inoherent ditionary

onstrutions. The reonstrution experiments that follow involve varying number of

measurements, thus, we present here results for m× N ditionaries with m = 15 : 5 : 35

andN = 120. For every value ofm, we arry out 10000 experiments, in whih we onstrut

inoherent matries with all the methods involved in our CS simulations; All algorithms

are exeuted performing 50 iterations. The properties we are interested in inlude mutual

oherene and spetral norm.

Average results for the mutual oherene are presented in Fig. 5.1(a). We an see

that the proposed method leads to a signi�ant redution of the mutual oherene of

the initial matrix by a fator depending on redundany (� = N=m). Ahieved mutual

oherene beomes loser to the lowest possible bound when redundany dereases (the

brown dash-dotted line, in Fig. 5.1(a) stands for the lowest possible bound (see eq. (2.25)).

This is a very signi�ant improvement ompared to the results of our work in [128℄ and

the other methods presented here. The fat that the proposed method performs well even

for very redundant frames is an important advantage over the other ompeting methods.

In Fig. 5.1(b) we demonstrate the spetral norm of the frames under testing, answering

the question \how lose are the obtained onstrutions to UNTFs?". The measurements

orresponding to the proposed inoherent UNTFs and our preliminary onstrution [128℄

oinide with the lowest bound N=m, on�rming that the proposed methodology leads to
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Figure 5.1: Properties of the e�etive ditionaries involved in CS reonstrution experi-

ments. In (a) we present mutual oherene as a funtion of the number of measurements.

The bottom brown dash-dotted line represents the lowest possible bound (see eq. (2.25)).

In (b) we present spetral norm as a funtion of the number of measurements. The red

dotted line orresponding to our methodology oinide with the lowest possible bound.
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Figure 5.2: Changes in the distribution of the olumn orrelation of a 25× 120 frame.

UNTFs.

Another way to evaluate the obtained inoherent ditionaries is to onsider the dis-

tribution of the inner produts between distint olumns. Figure 5.2 illustrates a repre-

sentative example of a 25 × 120 matrix. The histogram depits the distribution of the

absolute values of the orresponding Gram matrix entries. The results onern the initial

matrix and all matries produed by the employed iterative algorithms, after 50 iterations.

The yellow bar rises at the ritial interval that inludes the minimal ahievable orre-

lation, orresponding to the distribution of an optimal Grassmannian frame (the bar's

atual height is onstrained for lear demonstration of the methods under testing). The

proposed method exhibits a signi�ant onentration near the ritial interval, ombined

with a short tail after it, showing that the number of the Gram entries that are loser to

the ideal Welh bound is larger than in any other method presented here. Suh a result

is in agreement with the small mutual oherene values depited in Fig. 5.1(a).

CS performane

Let us now ontinue with CS simulations. For eah experiment, we generate an s-sparse

vetor � ∈ RN

of length N , whih onstitutes a sparse representation of the K-length

syntheti signal x = D�, x ∈ RK

, K ≤ N . We hoose the ditionary D ∈ RK×N
to be a

random Gaussian matrix. Experiments with DCT ditionaries lead to similar results. The

loations of the nonzero oeÆients in the sparse vetor are hosen at random. Besides
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Figure 5.3: CS performane for random and optimized projetion matries by means of

relative MSE in a logarithmi sale. Numerial reovery deploys OMP. In (a) we keep the

sparsity level �xed and vary the number of measurements. In (b) we keep the number of

measurements �xed and vary the sparsity level. A vanishing graph implies a zero error

rate.
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Figure 5.4: CS performane for random and optimized projetion matries by means of

relative MSE in a logarithmi sale. Numerial reovery deploys BP. In (a) we keep the

sparsity level �xed and vary the number of measurements. In (b) we keep the number of

measurements �xed and vary the sparsity level. A vanishing graph implies a zero error

rate.
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the e�etiveness of the projetion matrix P , the reonstrution results also depend on

the number of measurements m and the sparsity level of the representation s. Thus,

our experiments inlude varying values of these two parameters. For a spei�ed number

of measurements m ≪ K, we reate a random projetion matrix P ∈ Rm×K
. After the

optimization proess, we obtainm projetions of the original signal aording to y = PD�.

We reonstrut the original sparse signal with OMP and BP.

In all experiments presented here, the syntheti signals are of length K = 80 and the

respetive sparse representations, under the ditionary D, of length N = 120. The exeu-

tion of the optimization algorithm inluded up to 50 iterations. Two sets of experiments

have been onsidered; the �rst one inludes varying values of the number of measure-

ments m and the seond one inludes varying values of the sparsity level s of the treated

signals. For every value of the aforementioned parameters we perform 10000 experiments

and alulate the relative error rate; if the mean squared error of a reonstrution exeeds

a threshold of order O(10−4), the reonstrution is onsidered to be a failure.

Figure 5.3 demonstrates results for OMP. Figure 5.3 (a) presents the relative errors as a

funtion of the number of measurements m, for a �xed sparsity level (s = 4) of the treated

signal. Figure 5.3 (b) presents the relative errors for a �xed number of measurements

(m = 25) and varying values of the sparsity level of the signal. It is lear that the

projetions matrix obtained with the proposed algorithm leads to better reonstrution

results ompared to random matries and to matries produed by the other methods.

The observed results are due to the improvement in the e�etive ditionary properties.

Similar results for BP are demonstrated in Figure 5.4.

An important observation regarding CS performane, we have also made in the pre-

vious setion, is that although we ahieved a high quality of reonstrution, the fat that

for some values of measurements (e.g., 15) this improvement is not of the same order as

the improvement in the mutual oherene, indiates that additional properties should be

taken into onsideration to deide about the appropriateness of the e�etive ditionary.

This has been pointed out by other authors [57, 55℄ as well and should be explored both

theoretially and experimentally.

5.5 Preonditioning in ompressed sensing

Often hoosing the projetion matrix in a CS appliation is ditated by spei� onstraints

depending on the appliation. A major obstale in most appliations is the design of

aquisition hardware. Binary random matries are onsidered the best option for pratial

implementation [92, 91℄. However, the reovery rates they yield are similar to the ones

ahieved with random Gaussian matries at best [11, 91℄ while ertain types of binary

projetions work well only when ombined with spei� representation ditionaries [54℄.

Motivated by the improved performane of sparse reovery algorithms in sparse repre-

sentations when preonditioning is applied, for the �rst time to the best of our knowledge,

we propose the use of preonditioning in ompressed sensing [130℄. When sparse signals
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are aquired with binary projetions, preonditioning an improve the inoherene of the

e�etive ditionary leading to higher auray in sparse reovery.

The goal of preonditioning is to transform the linear system desribing the measure-

ment proess, y = PD�, P ∈ Rm×K
, D ∈ RK×N

, into a form that is more suitable for

numerial treatment. Employing a preonditioner C ∈ Rm×m
we obtain the system

Cy = CPD� or z = F�; (5.15)

where F = CPD is the new system matrix. Computing an appropriate preonditioner

C is equivalent to onstruting a matrix F exhibiting small mutual oherene and small

spetral norm. Moreover, the preonditioner C must be an invertible matrix suh that

Cy = CPD� and y = PD� are equivalent.

The method developed here is similar to the one proposed in sparse representations.

Initializing the preonditioner C with a random Gaussian matrix, the e�etive ditionary

is modi�ed suh as the new system matrix F = CPD forms an inoherent UNTF.

1. Initialize preonditioner with a random Gaussian matrix C = C

init

.

2. Compute the new system matrix F = CPD.

3. Modify F suh that it forms an inoherent UNTF F̃ .

4. Compute a suitable preonditioner C solving min
C

‖CPD − F̃‖.

To produe an inoherent UNTF, we employ Algorithm 1 proposed in Chapter 3.

Algorithm 1 is modi�ed to inorporate the last step desribed in the above proess suh

as a preonditioner C is omputed in every iteration. We annot guarantee that the above

algorithm yields an invertible matrix C. However, aording to our analysis in [129℄, there

is strong evidene that the algorithm onverges loally, meaning that the output matrix

C is lose to the initial matrix C

init

. Having seleted an invertible initial matrix, the

probability that the obtained matrix is singular is very small.

Experimental results

In our experiments we onsider a pratial problem, assuming that the sensing mehanism

is implemented by a binary random matrix obtained from a Bernoulli (0; 1) distribution.

The �rst group of experiments involves sparse representation ditionaries D realized by

random Gaussian matries of size 128 × 256, while the seond group of experiments

involves overomplete Haar-DCT ditionaries of size 128 × 255. Assuming sparse signal

under the onerned represenation ditionary, we onstrut syntheti signals � of length

N = 256 or N = 255 depending on the employed ditionary, with varying sparsity

level. Signal aquisition is performed aording to y = PD�, where P is a 64 × 128

random projetion matrix with entries 0; 1. Reovery of the \unknown" � is performed

using OMP and BP. preonditioning is initialized by a 64× 64 random Gaussian matrix

and is obtained following the steps desribed above. The performane of the deployed
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Figure 5.5: Support reovery rates for OMP and BP, for signals with varying support

size aquired with Bernoulli random projetions. The signals onsidered in (a) are sparse

under a random Gaussian ditionary. The signals onsidered in (b) are sparse under a

Haar-DCT ditionary.
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Table 5.3: Reovery rates for CS with Bernoulli and optimized projetions. When

Bernoulli projetions are used, reovery involves preonditioning.

Support Size

OMP BP

Bernoulli-Pre. Optimized Bernoulli-Pre. Optimized

4 1.000 1.000 1.000 1.000

8 0.996 1.000 0.998 1.000

12 0.860 0.870 0.924 0.928

16 0.250 0.248 0.398 0.380

20 0.004 0.006 0.042 0.054

algorithms is quanti�ed by omputing the perentage of fully reovered support, referred

to as reovery rate.

For the �rst group of experiments onerning sparse syntheti signals under random

Gaussian ditionaries, reovery rates for OMP and BP are presented in Fig. 5.5(a). Av-

eraged over 500 realizations, the results show that preonditioning yields signi�ant im-

provement in the performane of OMP, and partiularly of BP, implying that the proposed

tehnique an be applied suessfully in CS. For the seond group of experiments onern-

ing sparse syntheti signals under Haar-DCT ditionaries, the reovery rates obtained for

OMP and BP are presented in Fig. 5.5(b), on�rming that preonditioning an substan-

tially improve the performane of the deployed algorithms.

For further evaluation of the proposed tehnique, we ompare the above results with

optimized projetions. We onsider the �rst group of experiments, onerning sparse

signals under 128 × 256 random Gaussian ditionaries, and aquire these signals with

optimized projetion matries obtained with the method desribed in the previous se-

tion. Table 5.3 demonstrates reovery rates for OMP and BP. The results are similar

for both methods, showing that the performane of the deployed algorithms when used

with Bernoulli projetions and preonditioning is omparable to optimized projetions.

Considering that Bernoulli matries are more onvenient for hardware implementation,

this is an important result for pratial ompressed signal aquisition.
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Chapter 6

Spreading sequenes for s-CDMA

6.1 S-CDMA model

6.2 Design of spreading sequenes

6.3 Optimal spreading sequenes for varying number of users

6.4 Codebooks from nearly equiangular, nearly tight frames

Code Division Multiple Aess (CDMA) is an important multiple aess tehnique in

wireless networks and other ommon hannel ommuniation systems where a number

of users transmit their data using the same physial hannel. To distinguish eah user

from the other, every user is assigned a ode, also known as spreading sequene, whih he

uses to spread its information on the ommon hannel through modulation. In symbol-

synhronous CDMA (s-CDMA) systems, all users are in exat synhronism relative to

the reeiver, that is, their data symbols are alligned in time. The reeiver demodulates

the transmitted message upon observing the sum of the transmitted signals embedded in

noise.

Our main onern in suh systems is to ahieve reliable and fair ommuniation using

maximum sum rate. The set of information rates at whih the users an transmit while

retaining reliable transmission is known as apaity region. The information theoreti

apaity region of Gaussian multiple aess hannels was addressed in [135℄ where it was

haraterized as a funtion of spreading sequenes and average input power onstraints

of the users. It was suggested in [135℄ that the hoie of the spreading sequene set or the

odebook is left open to the designer of the CDMA system; the spreading sequenes ould

be optimized given the onstraints of the problem.

Optimal spreading sequenes maximize the sum apaity, whih is de�ned as the max-

imum sum of ahievable rates of all users per unit proessing gain and the maximum

is taken over all hoies of spreading sequenes. Aording to results from [111℄, [136℄,

optimal odebooks are fundamentally a funtion of the number of ative users and the
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number of hips. In [111℄ the authors proved that the spreading sequenes that maximize

the sum apaity are the ones that minimize the interuser interferene. These odebooks

form equal norm tight frames, whih are also referred to as Welh Bound Equality (WBE)

sequenes [95℄.

While WBE sequene sets are of onsiderable interest in CDMA ommuniation sys-

tems, we must note that the properties of a WBE sequene set do not always apply to

subsets, meaning that a odebook designed for a spei� number of users is no longer

optimal, if some users are silent [112, 132℄. Therefore, it is of interest to �nd sequene

sets that perform well even when subsets of the available odes are ative. This problem

was addressed in [77, 76℄, where the authors onstruted odebooks from equiangular

tight frames (ETFs) and proved that suh odebooks are less sensitive to hanges in the

number of ative users. However, the odebooks proposed in [76℄, based on onferene

matries (see setion 2.4), are restrited to ertain dimensions.

In this Chapter, �rst, we briey review well-known results regarding the design of

spreading sequenes and haraterize optimal spreading sequenes for s-CDMA systems.

Then, we employ as spreading sequenes the proposed nearly equiangular, nearly tight

frames and study their performane.

6.1 S-CDMA model

Consider a disrete time symbol synhronous CDMA system with K independent users

and proessing gain L. The K users want to transmit their information symbols B

(k)
,

k = 1; : : : ; K. Eah user is assigned an individual real spreading sequene s

(k)
of length

L, that is, s

(k) = [s
(k)
1 ; s

(k)
2 ; : : : ; s

(k)
L

], where L is known as the spreading fator of the

spread-spetrum system. Eah spreading sequene s

(k)
is assumed to have energy L, i.e.,

〈s(k); s(k)〉 = L: (6.1)

The users enode their information into real ±1 valued symbols B

(k)
, whih are as-

sumed to be independent Gaussian random variables, with E

[
|B(k)|2

]
= 1. In the i-th

symbol interval, the users spread their real-valued enoded symbols B

(k)
i

, k = 1; : : : ; K,

by the spreading sequenes s

(k)
and then transmit the L-dimensional symbols

B

(k)
i

s

(k) =
[
B

(k)
i

s

(k)
1 ; B

(k)
i

s

(k)
2 ; : : : ; B

(k)
i

s

(k)
L

]
:

In this manner, the k-th user reates the sequene

: : : ; B

(k)
−1s

(k)
; B

(k)
0 s

(k)
; B

(k)
1 s

(k)
; : : :

Transmitting over a Gaussian multiple aess hannel and assuming perfet synhro-

nization, the reeiver during the i-th symbol period observes the i-th data symbol

r

i

= w

K∑

k=1

B

(k)
i

s

(k) + n

i

; (6.2)
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where w is the reeived power, assumed the same for all users, n

i

is a zero mean Gaussian

random vetor with orrelation matrix E[NNT ] = n

2
I

L

, and I

L

denotes the L×L identity

matrix.

6.2 Design of spreading sequenes

Optimal spreading sequenes maximize the sum apaity and lead to minimum interuser

interferene experiened by eah user. In [95℄ Massey and Mittelholzer �rst identi�ed

that spreading sequene sets that minimize interuser interferene exhibit minimum total

squared orrelation. The sequene sets having this property were identi�ed as WBE se-

quenes [95℄. Considering the problem of maximizing the apaity of s-CDMA systems, it

was shown in [111℄ that sum apaity is maximized preisely by the same WBE sequenes.

6.2.1 Interuser Interferene

The observed sequene r

i

= [r
i1; ri2; : : : ; riL] at the reeiver is orrelated with the spreading

sequene s

(k)
to produe the detetion statisti S

(k)
i

for the user k,

S

(k)
i

= 〈r
i

; s

(k)〉 =
L∑

j=1

r

ij

s

(k)
j

:

Assuming that 〈s(k); s(k)〉 = L, the data symbol detetion statisti for the user k beomes

S

(k)
i

= wLB

(k)
i

+ w

K∑

`=1
`6=k

B

(`)
i

〈s(k); s(`)〉+ �

(k)
i

; (6.3)

where �

(k)
i

= 〈n
i

; s

(k)〉. The sum

�

(k)
i

= w

K∑

`=1
6̀=k

B

(`)
i

〈s(k); s(`)〉 (6.4)

represents the interuser interferene experiened by the user k. Beause the data symbols

of the K users are themselves statistially independent and eah has mean 0 and variane

1, the interuser interferene given by the sum (6.4) has mean 0 and variane

�

2(k) =

K∑

`=1
`6=k

|〈s(k); s(`)〉|2: (6.5)

The term �

2(k) is also referred to as interferene power. Equation (6.5) an also be written

in the form

�

2(k) =
K∑

`=1

|〈s(k); s(`)〉|2 − L

2
: (6.6)
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The interferene aused by the spreading sequenes has an e�et on the quality of

transmission, reduing the signal-to-noise plus interferene (SINR) ratio

SINR(k) =
1

n

2

w

2 +
∑

K

`=1;k 6=` |〈s(k); s(`)〉|2
; k = 1; : : : ; K: (6.7)

Inreasing interferene results in performane degradation of the s-CDMA system.

Therefore, the sequene design problem for s-CDMA an be formulated as follows:

Problem 6.2.1 (Minimize worst interuser interferene). Choose sequenes s

(1)
; s

(2)
; : : : ; s

(K)

of length L to minimize

�

2
w

= max
k

�

2(k) = max
k

K∑

`=1

|〈s(k); s(`)〉|2 − L

2
; (6.8)

where �

w

stands for the worst interuser interferene.

The optimally solution to problem 6.2.1 will result from a solution, when it exists, to

the following problem:

Problem 6.2.2 (Minimize Total Squared Correlation). Choose sequenes s

(1)
; s

(2)
; : : : ; s

(K)

of length L to minimize

�

2
TOT

=

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2 −KL

2
: (6.9)

It is easy to show that the neessary and suÆient ondition for no interuser interfer-

ene is

〈s(k); s(`)〉 = 0; for all k 6= `: (6.10)

However, this holds only when K ≤ L, sine there an be at most L orthogonal non-zero

sequenes of length L.

6.2.2 Welh Bound Equality (WBE) sequenes

While orthogonal sequenes eliminate interuser interferene, it has been shown that non-

orthogonal odes are sum apaity optimal. A quarter-entury ago, Welh [143℄ published

a olletion of lower bounds on the maximum magnitude of the inner produts of a set of

vetors. One of the main results of [143℄ onerns lower bounds for the 2m-th power of

the sum of the inner produts between pairs of vetors

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2m ≥ K

2
L

2m

(
L+m−1

m

)
: (6.11)

Setting m = 1 in (6.11), we obtain the Welh bound on the total squared orrelation. In

[95℄, Massey and Mittelholzer provided a simple derivation of this bound and �rst stated

the ondition for equality.
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Theorem 6.2.1 (Bound Total Squared Correlation [95℄). If s

(1)
; s

(2)
; : : : ; s

(K)
are se-

quenes in CL

and all have the same energy L, i.e.,

‖s(k)‖2 = 〈s(k); s(k)〉 = L; k = 1; : : : ; K; (6.12)

then

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2 ≥ K

2
L; (6.13)

with equality if and only if the rows r

(1)
; r

(2)
; : : : ; r

(L)
of the L ×K array whose olumns

are s

(1)
; s

(2)
; : : : ; s

(K)
are orthogonal and all rows have the same energy, i.e.,

‖r(`)‖2 = K; ` = 1; : : : ; L: (6.14)

The sequenes satisfying (6.13) with equality are known as Welh Bound Equality

(WBE) sequenes [95℄. When equality holds the sequenes are also haraterized as

uniformly good [95℄ in the sense that

K∑

`=1

|〈s(k); s(`)〉|2 = KL; k = 1; : : : ; K: (6.15)

Reall that the sum in equation (6.15) expresses the variane �

2(k) of the interuser inter-

ferene (see (6.5)). Therefore, WBE sequenes designed for K users when employed as

spreading sequenes in s-CDMA yield the same interferene for every user. From (6.15),

(6.7) we see that the SINR is also onstant and depends only on K and L.

6.2.3 Sum apaity

Sum apaity is an important measure of overall information apaity of a multiple aess

hannel. It was shown in [135℄ that the sum apaity is a funtion of users' spreading

sequenes and reeived powers. Sum apaity optimal spreading sequenes have been

haraterized for Gaussian hannels [111℄, [112℄, fading hannels with white noise [136℄,

fading hannels with olored noise [137℄, [3℄, and with di�erent reeivers [138℄, [73℄.

Let S be the L ×K matrix with the users' spreading sequenes as its olumns, S =

[s(1) s(2) : : : s(K)], and W = diag{w1; w2; : : : ; wK

} be the K ×K diagonal matrix of users'

reeived powers. Considering a multiple aess hannel with zero mean Gaussian noise

with orrelation matrix E[NNT ] = n

2
I

L

, the maximum apaity was derived to be [135℄

C

sum

=
1

2
log[det(I

L

+ n

−2
SWS

T )]: (6.16)

When the reeived powers of the users are the same, w

k

= w for all k, (6.16) redues

to

C

sum

=
1

2
log[det(I

L

+
w

n

2
SS

T )]: (6.17)

A neessary and suÆient ondition to attain (6.17) is [111℄

S

T

S = I

K

; when K ≤ L; (6.18)
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SS

T =
K

L

I

L

; when K ≥ L; (6.19)

where I

K

, I

L

are the K × K and N × N identity matries, respetively. Therefore, a

spreading sequene set should form a set of orthogonal sequenes, if the number of users

is equal or less than the proessing gain, and a unit norm tight frame (UNTF), otherwise.

In [3℄ it was shown that a spreading sequene set satisfying (6.17) exhibits also mini-

mum total squared orrelation (WBE sequenes). Therefore, the problem of maximizing

the apaity of an s-CDMA system is equivalent to minimizing interuser interferene. In

[140℄ it was shown that WBE sequene sets de�ned in [95℄ are preisely equal norm tight

frames.

In Chapter 2 we have seen that equal norm tight frames and unit norm tight frames

exist for any frame dimensions; thus, maximum sum apaity and minimum interuser

interferene an be always ahieved. Construtions of WBE sequenes have been desribed

in [95, 112, 127℄.

6.3 Optimal spreading sequenes for varying number of users

Considering that optimal odebooks are a funtion of the number of ative users, pratial

appliation of WBE sequenes raises the need of reassignment as the number of ative

users hanges. While a WBE sequene designed for K users is apaity optimal and

has a nie interferene invariane property, the sequene subset eases to satisfy Welh's

bound with equality if any M < K signatures are removed. Therefore, whenever a user

leaves or a new user arrives, the subset of remaining sequenes will no longer be optimal

[112, 132, 77, 76℄.

Theorem 6.3.1 ([76℄). Let S = [s(1); s(2); : : : ; s(K)] be a set of WBE sequenes of length

L and assume K > L. If we remove any M < L sequenes from or add any M < L equal

norm sequenes to this set, then the resulting set does not satisfy the Welh's bound with

equality.

Employing a subset of spreading sequenes that are not optimal leads to the undesir-

able property that users would see di�erent amount of interferene as a funtion of their

sequene assignment, whih an result in apaity or bit error probability degradations.

Thus, a system that fully exploits WBE sequenes would need (i) a set of spreading se-

quenes for every possible K and (ii) would need to reassign all sequenes every time a

user arrived or departed from the system.

To mitigate the problems aused by the loss of the WBE property, in [77, 76℄ the

authors studied equiangular frames and employed them as spreading sequenes. Perhaps

the most interesting property of equiangular sequene sets is that the total interferene

power for every sequene is only a funtion of the urrent number of ative sequenes and

the original dimensionality of the odebook.
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Let K denote the set of integers 1; 2; : : : ; K, and A a subset of K that indexes the

ative sequenes. For an arbitrary ative sequene k, the interferene power is

�

2(k) =
∑

`∈A
`6=k

|〈s(k); s(`)〉|2 = (|A| − 1)2; k = 1; : : : ; K; (6.20)

where  is the equiangular onstant,  = |〈s(k); s(`)〉| for any ` 6= k. Note that (6.20)

is independent of k and depends only on the number of the ative users given by the

ardinality of A. This byprodut of the equiangular property is stated in the following

theorem.

Theorem 6.3.2 (Interferene Invariane [77℄). The total interferene power for any

equiangular sequene set is idential for all sequenes and depends only on the total number

of ative sequenes.

A onsequene of this theorem is that ETFs are the best of all equiangular sequenes

sine they ahieve the lowest bound on the maximum orrelation with equality (and thus

have the smallest possible ). Considering that for L×K ETFs there holds

∣∣〈
s

(k)
; s

(`)
〉∣∣

‖s(k)‖ ‖s(`)‖ =

√
K − L

L(K − 1)
; k 6= `; (6.21)

we obtain

 = |〈s(k); s(`)〉| = K − L

L(K − 1)
L

2
; k 6= `; (6.22)

where we assumed that ‖s(k)‖ = L, for all k. Therefore, for sequene sets obtained by

ETFs, the interferene power experiened by the k-th user is

�

2(k) =
∑

`∈A
`6=k

|〈s(k); s(`)〉|2 = (|A| − 1)
K − L

L(K − 1)
L

2
; (6.23)

whih is the same for k = 1; 2; : : : ; K.

It is lear that ETFs are a sublass of WBE sequenes sine

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2 =
K∑

k=1




K∑

`=1
`6=k

|〈s(k); s(`)〉|2 + L

2




= K

(
(K − 1)

K − L

L(K − 1)
L

2 + L

2

)

= K

(
K − L

L

L

2 + L

2

)

= K

2
L:

(6.24)

Welh's bound was originally stated as a lower bound on the maximum value of |〈s(k); s(`)〉|
for k 6= ` (see eq. (3.4.1)), also referred to as maximum Welh bound. Reall that ETFs

satisfy the maximumWelh bound with equality and onstitute a very important sublass

of WBE sequenes, also known as maximal WBE (MWBE) sequenes [112℄.
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Figure 6.1: Standard deviation of the interferene term for variable number of ative users

in an s-CDMA system designed for 128 users.

6.4 Codebooks from nearly equiangular, nearly tight frames

In Chapter 3 we have seen that Algorithm 6 may produe nearly equiangular, nearly tight

frames of any dimensions. As these frames exhibit approximately minimal spetral norm,

they are very lose to UNTFs; thus, we expet that the frame vetors approximately

minimize the total squared orrelation as well. Moreover, as the frame vetors exhibit

similar orrelation, it is expeted that the proposed frames lead to similar values of �

2(k) =∑
K

`=1 |〈s(k); s(`)〉|2, ` 6= k, for all k. As we have disussed, this term is related to the

interuser interferene and results in variation in the quality of the signal reeived by the

users. Therefore, we propose the employment of nearly equiangular, nearly tight frames

as spreading sequenes in s-CDMA. We also employ as spreading sequenes the proposed

inoherent UNTFs produed by Algorithm 1. These frames belong to WBE sequenes

and are expeted to minimize TSC and maximize sum apaity. The proposed frames are

ompared to a UNTF onstrution presented in [124℄ for appliation to s-CDMA.

Our simulations onsider an s-CDMA system with varying ativity, that is, the number

of users in the system hanges, resulting in di�erent subsets of ative users. The system is

designed for at most N = 128 users. The ode set inludes odes with length 64, thus, it

forms a 64× 128 frame. For every subset of K ative users, the system randomly hooses

K frame vetors as odes. The onsidered subsets of users are of varying size. In every

situation, we examine the interferene term �

2(k). As a measure of how lose we are to the

target that all users experiene the same interferene, we ompute the standard deviation

of �

2(k). The results are averaged over a series of random trials and are demonstrated in

Figure 6.1. Clearly, the obtained results show that nearly equiangular, nearly tight frames,

outperform UNTFs (WBE sequenes), when the system works with a load up to 85% its

total load, exhibiting similar interuser interferene for all onsidered senarios of ativity,
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Table 6.1: Average total squared orrelation (TSC) for variable number of ative users.

# of ative users

TSC

Algorithm 6 Algorithm 1 [124℄

64 95.720 95.742 95.868

80 129.812 129.773 129.706

96 167.769 167.763 167.821

112 209.932 209.876 209.805

128 256.094 256.000 256.000

regardless of the number of ative users in the system. On the ontrary, onerning UNTF

onstrutions, we see that the smaller the number of ative users the higher the variane

in interuser interferene. However, UNTFs exhibit optimal performane for K = N , when

�

2(k) is idential for all k, leading to the same interferene for every user (see (6.15)).

In Table 6.1, we present average values of the total squared orrelation (TSC) ob-

served in the above senarios of ative subsets of users. Both UNTF onstrutions attain

the minimum bound as expeted, while nearly equiangular, nearly tight frames exhibit

a small disrepany. As disussed in setion 6.2.3, frames that minimize TSC result in

optimal sum apaity. Computing the sum apaity orresponding to eah frame from

(6.17), the observed disrepany beomes even smaller. We onlude that the proposed

nearly equiangular, nearly tight frames satisfy the ondition for near optimal sum a-

paity. Considering that we may produe suh frames of any dimensions, the proposed

onstrution o�ers exibility when designing odes for an s-CDMA system and provides

spreading sequenes that lead to near optimal performane.
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Chapter 7

Conlusions and future work

In this thesis, we relied on well-known results from frame theory and proposed novel

frame onstrutions that attain small mutual oherene and spetral norm, approximating

the orresponding optimal bounds. The proposed frames are suesfully employed in

sparse representations, ompressed sensing, and ommuniations. More partiularly, the

numerial methods presented here yield three types of frames, namely inoherent UNTFs,

nearly equiangular frames and nearly equiangular, nearly tight frames. All proposed

frames exhibit remarkable performane, when used to aquire sparse signals in ompressed

sensing, improving the reovery rates of the deployed algorithms. Inoherent UNTFs are

suitable for designing optimized projetion matries for ompressed sensing and eÆient

preonditioners for underdetermined linear systems with sparse solutions that are met in

sparse representations and ompressed sensing. Nearly equiangular, nearly tight frames

approximate UNTFs, whih are onsidered optimal spreading sequenes for s-CDMA

systems. Exhibiting the additional advantage of approximate equiangularity, they an be

employed as spreading sequenes in multi-aess systems with varying number of users,

as they minimize interuser interferene.

The mathematial tools used to develop the proposed onstrutions involve optimiza-

tion tehniques that onern projetions onto non-onvex sets and numerial methods for

the solution of inverse eigenvalue problems. Most theoretial results in these �elds have

been established over the past deades, yet, important questions suh as the projetions

onto non-onvex sets have not been ompletely answered. It is obvious that any progress

in these �elds may o�er a better insight of the developed tehniques and ontribute to

the improvement of the eÆieny of the proposed algorithms.

Theoretial study of the new frame onstrutions regarding their feasibility in pratial

problems is an important working diretion. While there exist several reovery guarantees

for inoherent frames and inoherent UNTFs, we have almost no result for frames that

approximate ETFs. It would be of great signi�ane, if the proposed nearly equiangular,

nearly tight frames ould be aompanied by theoretial results justifying their remark-

able performane in simulations. A deep investigation ould provide performane bounds

deiding the appropriateness of the proposed frames in sparse reovery or their feasibil-
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ity to minimize interuser interferene, when used as spreading sequenes in multi-aess

systems.

Towards this diretion, a quantative haraterization of approximate equiangularity

seems useful. The latest work of [23℄ introdues the onept of �-equiangularity. Consid-

ering an m×N frame � = {'
i

}N
i=1, 'i ∈ Rm

, and denoting by �

m;N

the Welh bound (see

(4.3)), the frame is de�ned as �-equiangular if

(1− �)�
m;N

≤ |〈'
i

; '

j

〉| ≤ (1 + �)�
m;N

; (7.1)

for any two distint olumns '

i

, '

j

of �. Regarding the reovery ability of �-equiangular

frames, the authors of [23℄ rephrase the square root bound on sparsity, s ≤ √
m, to the

plausible bound s ≤
√
m

2(1+�)
. De�nitely, a further investigation of the advantages and

limitations of suh frames is of great interest. A theoretial study ould also onsider �-

tight frames with spetral norm that slightly exeeds the minimum bound N=m (‖�‖2 <
N

m

+ �) and �-unit norm frames with olumns of norm lose to 1.

In ompressed sensing, we have seen that pratial problems impose ertain restri-

tions on the design of projetions matries, arising from physial onstraints in the related

appliations. Binary matries are onsidered best andidates for hardware implementa-

tion. A similar onstraint in multi-aess sytems is that the alphabet of the employed

odes may also be restrited. From this perspetive, it is a hallenge to develop methods

that produe frames with spei� alphabet, e.g., binary entries, also exhibiting good ino-

herene and spetral properties. Conerning pratial ompressed sensing appliations, it

is important that projetion matries also possess some struture. Reall that strutured

frames failitate the design of the aquisition hardware and o�er fast and reliable signal

reonstrution, improving the performane of sensing devies. Inorporating the above

parameters in frame design, while also retaining inoherene and tightness, is a hallenge.

The goal of this thesis was the onstrution of frames that exhibit good inoherene

and spetral properties. As equiangular tight frames form a lass of frames satisfying

optimal bounds regarding inoherene and spetral norm, future researh is inevitably

onneted with new developments in frame theory and, more partiularly, new results in

the design of ETFs and UNTFs. Of ourse, the onstrution of ETFs is an extremely

diÆult problem{open for over half a entury, and is onneted with other important

problems and onjetures in frame theory that have been stated in [39, 74, 33℄. However,

from the perspetive of an engineer, besides perfet ETF and UNTF onstrutions, we are

also interested in approximate onstrutions as the ones proposed in this thesis. Any new

theoretial foundations ontributing to a better understanding of ETFs or UNTFs may

provoke the development of new tehniques, produing frames that are useful in pratial

appliations.

Sparse representations and ompressed sensing have experiened a onsiderable growth

during the past deade. Still important theoretial and pratial questions remain open

[59, 118℄. The work presented here is a typial paradigm of how researh in these �elds

evolves. In the reent years, muh of the progress has been inspired from results in

other researh areas suh as frame theory, graph theory, applied harmoni analysis, and
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information theory. On the other hand, ompressed sensing and sparse representations

have played an important role to the evolution of advaned probability theory and, in

partiular, random matrix theory, onvex optimization, and applied harmoni analysis.

Furthermore, di�usion of sparse reovery and ompressed sensing ideas in areas suh as

radar analysis, medial imaging, distributed signal proessing, and data quantization has

also provoked important progress in various pratial appliations. Clearly, the progress

in sparse representations and ompressed sensing is a result of interdisiplinary ollab-

orations motivated by one sensible reason: some important problems simply annot be

solved otherwise! An interesting side of this ollaborative ulture is the way we are think-

ing about the development of hardware and software when designing sensors and other

devies. While, in the past, we addressed these problems separately, it seems that future

developments require an interdisiplinary approah, where hardware and algorithms are

treated in a truly intergrated manner [118℄.
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Appendix A

Projetions

Projetion onto smooth manifolds

Aording to [88℄, a smooth manifold E is, loosely speaking, a set onsisting loally of

the solutions of some smooth equations. More preisely, we say that a set M ⊂ E is a

C

k

-manifold (of odimension d) around a point x ∈ M, if there exists an open set U ⊂ E

ontaining x suh that

M∩ U = {x ∈ V : F (x) = 0};
where F : U → Rd

is a C

k

funtion with surjetive derivative throughout U .

Fixed rank matries is an example of a smooth manifold. Let E = M

m;N

(R) be the

spae of m×N matries with the lassial inner produt 〈A;B〉 = trae(AT

B). Routine

alulations show that the set of matries with �xed rank r,

R
r

= {X ∈ M

m;N

(R) : rank(X) = r};

is a smooth manifold around any matrix A ∈ R
r

. Using the singular value deomposition

A = UDV

T

(the two matries U = [u1; u2; : : : ; un] and V = [v1; v2; : : : ; vm] being orthogo-

nal, and the diagonal entries in the diagonal matrix D being written in dereasing order),

the tangent spae at A to R
r

is

TR
r

(A) = {H ∈M

m;N

(R) : uT
i

V

j

= 0; for all r < i ≤ N; r < j ≤ m}:

The following result states that smooth manifolds admit unique projetions loally.

Theorem A.1 (Projetion onto a manifold [88℄). Let M ⊂ E be a manifold of lass C

k

(with k ≥ 2) around a point x̄ ∈ M. Then the projetion PM is well-de�ned around x̄.

Projetion onto �xed rank matries is an example of projetion onto manifolds and

an be omputed with the trunated singular value deomposition. If X ∈M

m;N

(R) with

X = U�V

T

, then the nearest matrix with rank no more than r is

X̂ =
r∑

i=1

�

i

u

i

v

T

i

;

where �

i

are the r �rst singular values of �.
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Projetion onto spetral sets

Aording to [101℄, projetions onto spetral sets of matries, that is, sets of matries

de�ned via properties of their eigenvalues, an be handled using spetral deomposition.

Let QN

be the spae of real symmetri N × N matries, equipped with the trae inner

produt. QN

is an Eulidean spae. A subset T is spetral if, for every matrix X ∈ T and

every U in the group O

N

of orthogonal matries, we have U

T

XU ∈ T . The eigenvalue map

� : QN → RN

maps any symmetri matrix X to its eigenvalues arranged in noninreasing

order, �1(X) ≥ �2(X) ≥ · · · ≥ �

N

(X). It is easy to see that any spetral set an be

written in the form �

−1(K) = {X : �(X) ∈ K}, for some set K ⊂ RN

, and that we an

further restrit K to be permutation-invariant: for every vetor x ∈ K and every P in the

group P

N

of permutation matries, we have Px ∈ K. The following result is established

in [88℄.

Theorem A.2 (Spetral projetion [88℄). If the point x in the permutation-invariant

set K ⊂ R
N

, is a nearest point to the point y ∈ R
N

, then for any orthogonal matrix

U , the matrix U

T

diag(x)U is a nearest matrix in the spetral set �

−1(K) to the matrix

U

T

diag(y)U .

A good example is the set of matries of some �xed rank. More results regarding

projetions onto spetral sets an be found in [88℄.
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