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Glossary

Brown A dataset used in experimental evaluation. It ontains 137 objet silhouettes in

total, belonging to 13 di�erent ategories.

Disonnetivity The disonnetivity of two sets of points X, Y is the smallest distane

between a point in X and a point in Y . It is used in the DSaM algorithm.

DSaM Diret Split and Merge method for line segment detetion.

EM Expetation-Maximization algorithm. A framework that by optimizing the likeli-

hood extrats the parameters of a model. In our work we used the EM algorithm

to train a GMM/SMM.

ETHZ A dataset used in experimental evaluation. It ontains 257 real images depiting

senes of 5 ategories (Gira�e, Cup, Swan, Apple Logo and Bottle).

Gatorbait100 A dataset used in experimental evaluation. It ontains 38 �sh silhouettes

in total, belonging to 8 di�erent ategories.

Linearity The linearity is a measure that desribes how lose the points are to a straight

line. It is used in the DSaM algorithm.

MPEG7 A dataset used in experimental evaluation. It ontains 1400 objet silhouettes

in total, belonging to 70 di�erent ategories.

VP The Vanishing Point is the point at whih the parallel lines of a 3D real world image

are interseted after projeting them onto the 2D plane of an image.



Abstrat

Gerogiannis, Demetrios, P. PhD, Department of Computer Siene and Engineering, Uni-

versity of Ioannina, Greee. Deember, 2014. Feature Extration for Image and Point Set

Analysis. Thesis Supervisor: Christophoros Nikou.

This thesis is divided into two parts. The �rst part fouses on an algorithm that �ts

line segments to a set of unordered points and its appliation to omputer vision problems.

The method is based on the observation that a set of ollinear points are haraterized by

a ovariane matrix whose minimum eigenvalue is low and therefore de�nes an eentri

(elongated) ellipse. At �rst, a single ellipse is �tted to the whole set of points whih

is then iteratively split to a large number of highly eentri ellipses. Then, a merge

proess follows in order to ombine neighboring ellipses with almost ollinear major axes to

redue the omplexity of the model. Experimental results on various databases show that

the proposed sheme is an eÆient tehnique for modeling unordered sets of points and

shapes by line segments. A number of omputer vision appliation of the method are also

presented: the loalization of the vanishing point in an image sequene, the detetion of

retinal fundus image features, suh as end-points, juntions, and rossovers, an algorithm

for sampling image edges and a framework for modeling and removing outliers from a

set of unordered points. All of the above methods were suessfully ompared to various

alternative methods of the related literature and provided in general better results.

The seond part of the thesis fouses on the problem of image and point set registra-

tion. Registration is the proess of determining the parameters of a geometri transforma-

tion that brings into alignment two images or point sets. In this work, the images/point

sets to be registered are modeled by a mixture model and a method relying on the min-

imization of the distane between distributions is proposed. We address the problems

of single and multimodal registration by employing both Gaussian mixture models and

mixtures of Student's -t distributions, whih are robust to outliers. Moreover, we express

the task of registration as a Bayesian regression problem with by modeling the non rigid

transformation by relevane vetor mahines whih provide a losed form solution for the

estimation of the transformation. An iterative algorithm is presented whih �rst deter-

mines the orrespondene between pixels/points in the two data images/points sets and

then the non rigid transformation is estimated based on that data assoiation.



Åê�å�áìÝíç �åñßëçøç ó�á ÅëëçíéêÜ

ÄçìÞ�ñéïò �åñïãéÜííçò �ïõ �áíáãéþ�ç êáé �çò ÁëåîÜíäñáò. PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ

êáé �ëçñïöïñéêÞò, �áíåðéó�Þìéï Éùáííßíùí, ÄåêÝìâñéïò, 2014. ÅîáãùãÞ ×áñáê�çñéó�éêþí

ãéá ÁíÜëõóç Åéêüíùí êáé Óçìåßùí. ÅðéâëÝðïí�áò: ×ñéó�üöïñïò Íßêïõ.

Ç ðáñïýóá äéá�ñéâÞ áðï�åëåß�áé áðü äýï èåìá�éêÝò åíü�ç�åò. Ó�çí ðñþ�ç åíü�ç�á

ðáñïõóéÜæå�áé ìßá ìÝèïäïò ìïí�åëïðïßçóçò åíüò óõíüëïõ ìç äéá�å�áãìÝíùí óçìåßùí áðü

Ýíá óýíïëï åõèõãñÜììùí �ìçìÜ�ùí êáé ç åöáñìïãÞ �çò óå äéÜöïñá ðñïâëÞìá�á õðïëïãéó�é-

êÞò üñáóçò. Ç ìÝèïäïò âáóßæå�áé ó�çí ðáñá�Þñçóç ü�é Ýíá óýíïëï óõíåõèåéáêþí óçìåßùí

÷áñáê�çñßæå�áé áðü Ýíáí ðßíáêá óõììå�áâëç�ü�ç�áò �ïõ ïðïßïõ ç åëÜ÷éó�ç éäéï�éìÞ Ý÷åé

ðïëý ìéêñÞ �éìÞ êáé ïñßæåé ìßá Ýëëåéøç ìå ìåãÜëç åêêåí�ñü�ç�á. Áñ÷éêÜ, �ï óýíïëï �ùí

óçìåßùí ðñïóåããßæå�áé áðü ìßá Ýëëåéøç ç ïðïßá ó�ç óõíÝ÷åéá äéá÷ùñßæå�áé åðáíáëçð�éêÜ

óå ðåñéóóü�åñåò åëëåßøåéò þó�å �ï óýíïëï �ùí óçìåßùí íá ðñïóåããéó�åß áðü Ýíáí áñéèìü

Ýêêåí�ñùí åëëåßøåùí. Ó�ç óõíÝ÷åéá, ëáìâÜíåé ÷þñá ìßá äéáäéêáóßá óõã÷þíåõóçò �ùí

åëëåßøåùí ðïõ Ý÷ïõí óõããñáìéêïýò ìÝãéó�ïõò Üîïíåò ãéá íá ìåéùèåß ç ðïëõðëïêü�ç�á �ïõ

ìïí�Ýëïõ. �åéñáìá�éêÜ áðï�åëÝóìá�á äåß÷íïõí �çí áðï�åëåóìá�éêü�ç�á �çò ìåèüäïõ íá

óõìðéÝæåé �çí ðëçñïöïñßá ìç äïìçìÝíùí óõíüëùí óçìåßùí áëëÜ êáé ó÷çìÜ�ùí. Åðßóçò,

ðáñïõóéÜæå�áé ç åöáñìïãÞ �çò ìåèüäïõ ó�ïí åí�ïðéóìü �ïõ óçìåßïõ äéáöõãÞò óå åéêïíïóåé-

ñÝò, ó�ïí åí�ïðéóìü êáé ÷áñáê�çñéóìü åéêüíùí �ïõ âõèïý �ïõ áìöéâëçó�ñïåéäïýò ÷é�þíá

�ïõ ïöèáëìïý, ó�ç äåéãìá�ïëçøßá ÷áñ�þí áêìþí áðü 2Ä åéêüíåò êáèþò êáé ó�çí åîÜëåéøç

�ïõ èïñýâïõ êáé áêñáßùí ìå�ñÞóåùí óå 2Ä óýíïëá óçìåßùí. ¼ëåò áõ�Ýò ïé ìÝèïäïé

óõãêñßíïí�áé åðé�õ÷þò ìå ìåèüäïõò �çò âéâëéïãñáößáò.

Ôï äåý�åñï ìÝñïò �çò äéá�ñéâÞò åó�éÜæåé ó�ï ðñüâëçìá �çò õðÝñèåóçò åéêüíùí êáé óõ-

íüëùí óçìåßùí. ÕðÝñèåóç åßíáé ç äéáäéêáóßá �çò åê�ßìçóçò �ïõ ãåùìå�ñéêïý ìå�áó÷çìá�é-

óìïý ðïõ öÝñíåé óå áí�éó�ïé÷ßá äýï óýíïëá óçìåßùí Þ åéêüíåò. Ó�çí åñãáóßá áõ�Þ, ïé

åéêüíåò/óýíïëá óçìåßùí ìïí�åëïðïéïýí�áé áðü ìéê�Ýò êá�áíïìÝò êáé ç õðÝñèåóç åðé�õã÷Üíå-

�áé ìå �çí åëá÷éó�ïðïßçóç �çò áðüó�áóçò ìå�áîý �ùí êá�áíïìþí. �ñï�åßíå�áé ç ìïí�åëïðïß-

çóç �ùí äåäïìÝíùí ìå ìéê�Ýò êáíïíéêÝò êá�áíïìÝò üóï êáé áðü ìéê�Ýò êá�áíïìÝò Student's

t ïé ïðïßåò åßíáé åýñùó�åò óå äåäïìÝíá ðïõ äåí áêïëïõèïýí �ï êõñßáñ÷ï ìïí�Ýëï.

Åðßóçò, ç äéáäéêáóßá �çò õðÝñèåóçò ðåñéãñÜöå�áé ùò Ýíá ðñüâëçìá ÌðåûæéáíÞò ðáëéíäñü-

ìçóçò ìå �ç ìïí�åëïðïßçóç �ïõ ìå�áó÷çìá�éóìïý áðü ìç÷áíÝò äéáíõóìÜ�ùí óõíÜöåéáò

(RVM) �á ïðïßá ðáñÝ÷ïõí ìßá êëåéó�Þò ìïñöÞò ëýóç ãéá �ï ãåùìå�ñéêü ìå�áó÷çìá�éóìü.

Ó�ï ðëáßóéï áõ�ü ðáñïõóéÜæå�áé Ýíáò åðáíáëçð�éêüò áëãüñéèìïò ðïõ åê�åëåß Ýíá âÞìá

áí�éó�ïß÷éóçò ìå�áîý �ùí åéêïíïó�ïé÷åßùí/óçìåßùí êáé ó�ç óõíÝ÷åéá ìå âÜóç áõ�Þ �çí

áí�éó�ïß÷éóç åê�éìÜåé �ïí åëáó�éêü ãåùìå�ñéêü ìå�áó÷çìá�éóìü ðïõ óõíäÝåé �á äýï óýíïëá.



Prologue

0.1 Overview

0.2 Struture of the thesis

0.1 Overview

The �eld of omputer vision has been advaning during the last years, bene�ted from the

development of the tehnology and the available omputational resoures. Many methods

have been proposed in a high level to deal with the diÆult problem of simulating human

pereption. A ommon harateristi of all these methods is that they are based on

preliminary feature extration tehniques to derive meaningful information from images

for further postproessing.

Features are very basi entities that arry information related to a spei� problem.

Computing features is performed via various algorithms and the proess is alled feature

extration and their representation may vary. A prinipal harateristi is that feature

models tend to be as simple as possible. Lines and line segments are widely used in the

omputer vision literature as feature representation models. They present low omplexity

and their aggregation an produe more omplex models enabling the aurate represen-

tation of more omplex strutures in an image. Sine the early stages of the development

of the omputer siene �elds the interest was foused on the extration of lines and line

segments on a set of points, that in many ases, is derived from the edges of an image.

The pioneering Hough Transform beame the basis upon whih many variants were based

and a numerous of appliations used them as a preproessing step.

The fat that a majority of strutures depited in images (e.g. buildings, furniture,

ars, human bodies, trees, et.) an be deomposed into a set of lines, and more spei�ally

line segments, makes the latter an important feature to reognize in images. Figure

1 depits some representative examples of images were line segments ould be used to

desribe the image ontent. The typial Hough Transform is only apable of omputing

lines, while its variants that produe line segments demand a lot of e�ort, as they are based

on trial and error, to adjust the orresponding thresholds. In addition, reently proposed

methods may solve the 2D problem, but their generalization to more dimensions, i.e.



extration of planes, is not trivial nor an they deal with point oordinates. Alternatively,

they operate diretly on images and thus, they annot handle data olleted via other

methods, e.g. range data. All these fators motivated us to study the problem of line

segment detetion. Moreover, taking into aount that in most of the methods, threshold

values tuning has not been thoroughly studied, we take are for setting the values of the

various thresholds used by our line segment detetion method. In brief, the main problem

we wish to takle in the �rst part of this dissertation, may be onluded to the following:

given a set of unordered points X = {x
i

∈ R
2|i = 1; : : : ; N} �nd the set of line segments

E = {�
j

|j = 1; : : : ; K} be modeling aurately the points, where �

i

is the line desribing

the i-th segment, while the number K of the line segments is unknown. In addition,

provide a method for automati tuning of any parameters of the line segment method.

(a) (b) () (d) (e)

Figure 1: Example of various images where line segments ould be used to desribe the

depited information: (a) road raks, (b) maps, () objet edges, (d) building edges, (e)

road lanes.

As soon as the line segments are extrated, various appliations an bene�t from the

established model. The following list desribes in brief the appliations that were studied

in this dissertation. The reader is referred to the related setion for more details.

• The detetion of a vanishing point in an image depiting strutured environments,

i.e. plaes were the edges between the various regions of the image are learly

established (e.g. the edge line between a wall and the oor). Some representative

examples of the aforementioned strutured environments are shown in �gure 2, both

for indoor and outdoor senes. The vanishing point is the point of the image spae

where parallel lines of the real world interset after projeting them to the image

spae. This point is an important feature that an be used for posterior analysis

of the image (e.g. extration of the road plane, the walls, et.) or autonomous

navigation.

• The sampling of point louds in order to provide a new set with fewer points,

preserving the initial information. Sampling is an important preproessing step in

many omputer vision algorithms, beause the latter present high omplexity and

thus, their eÆient exeution is related to the number of the observations they

are parsing. A similar problem is the reonstrution of a shape, based on some

harateristi points. In brief, given a shape (i.e. a set of 2D points) it is asked

to detet those harateristi points from the initial set that summarize the shape

and enables the reonstrution of the initial set of points (i.e. shape) with as low

distortion as possible. Figure 3 demonstrates a shape reonstrution example. In



(a) (b) ()

Figure 2: Example of images depiting strutured worlds. (a) Indoor sene (b),() Out-

door senes.

�gure 3(a) the initial set is demonstrated, while �gure 3(b) depits the extrated

harateristi points (green stars). In �gure 3() the reonstrution result is shown

(blue points) superpositioned over the initial shape (red points). Notie the small

deviation between real and omputed data.

(a) (b) ()

Figure 3: Example of shape reonstrution. (a) The initial set of points desribing a

shape, (b) The harateristi points (green stars) are extrated from the initial shape (red

points), () The reonstrution result (blue points) superpositioned over the initial shape

(red points). Notie the small deviation between real and omputed data.

• The ompression of bilevel images that depit the edge map of a real image. More

preisely, we dealt with the problem of enoding binary images that depit the

ontour of various shapes. This type of images is mainly used to desribe objets in

the MPEG4 standard, in terms of video enoding. Thus, it is plausible to enode

individual objets in a video frame, a fat that provides freedom to the end user,

regarding the presentation options. The eÆieny of the ompression method is

ditated by the ahieved ompression rate with respet to distortion.

• The haraterization of a retinal fundus image. The tree struture of the veins

in a retinal fundus image an be enoded with line segments. Then it is easy to

detet the intersetion points of the various veins and proeed to a post proessing

algorithm that analyzes this speial points.

• A method for extrating meaningful strutures in presene of outliers. In general,

an outlier is onsidered every point that does not obey the general model of the



real data. In other words, as outliers an be onsidered all those points that are

strutureless, provided that a valid model that desribes the strutured data is

established. That model is a set of line segments in our work.

On the other hand, we dealt also with the problem of image and point set registration.

Registration is a very ommon problem and in many ases it is a preproessing step for

other methods, e.g. the automati evaluation of the development of a patient's ondition

based on the observation of some time varying medial images. In general, registration

relies on the determination of that partiular geometri transformation parameter values,

that upon being applied to one image/set of points it will bring it into alignment with a

referene image/set of points. Figure 4 explains the registration problem. The goal is to

determine that geometri transformation that will be applied on the left image of �gure 4

(yellow bakground) and will align the pixels suh that the pixels of the blue irle in the

left will be mathed with those of the green irle in the right and the pixels of the blue

ellipse in the left will be orresponded with those of the green ellipse in the right image.

A hallenging problem, whih motivated us to deal with registration, ours when the

two images to be registered are of di�erent modalities. A basi observation is that similar

strutures in the two images have similar probabilisti representation of their intensity.

Thus, upon perfet alignment the distane between those distributions will be small. To

that end, a mixture of Gaussian distributions was employed and in order to handle the

presene of outliers we extended the model with Student's-t distributions.

Figure 4: Explanation of the registration problem. The goal is to determine that geometri

transformation that will be applied on the left image (yellow bakground) and will align

the pixels suh that the pixels of the blue irle in the left will be mathed with those of the

green irle in the right and the pixels of the blue ellipse in the left will be orresponded

with those of the green ellipse in the right image.

A basi fator that a�ets the �nal registration result is the model that is seleted

to desribe the registration transformation. In ase of rigid transformations (i.e. rota-

tions and translations) the model is trivial. However, this is not true when a non-rigid

transformation is taken into onsideration, where more ompliated models need to be

onsidered. In that framework, we employed a Bayesian framework, the Relevane Vetor

Mahines, to provide a more robust model that an handle false mathes and prevent

the transformation from global failing, by reduing the impat of a false math in a loal

region. Moreover, this approah provides a losed formula for modeling the registration

transformation.

The ontribution of this thesis an be summarized into the following:



• An iterative framework for line segment detetion to summarize unordered point

sets.

• A voting sheme for the detetion of vanishing points in strutured images.

• A method for eÆiently annotating retinal fundus images.

• A method for eÆiently sampling unordered 2D points.

• A omparative study between line segment extration methods for bilevel image

ompression.

• A method for extrating strutures (e.g. shapes) in presene of outliers.

• A Bayesian approah for modeling a non-rigid registration transformation whih is

robust to false mathes.

• An algorithm for registering multimodal images and loud of points.

0.2 Struture of the thesis

The �rst part of this thesis deals with line segment extration from a set of unordered

points and appliations. The seond part presents our work in the �eld of image and

point set registration.

In Chapter 1, we introdue an iterative method for the extration of line segments.

A short introdution of the related literature is provided and the proposed algorithm is

desribed in detail. Finally, an extensive experimental evaluation is provided omparing

our method with other ommonly used approahes.

In Chapter 2, some appliations based on line segment detetion are introdued.

A short introdution is presented for eah appliation, to desribe the problem and the

various solutions provided in the related literature. Then, the proposed method is pre-

sented along with an experimental evaluation and omparison with the state-of-the-art.

Thus, setion 2.1 deals with the detetion of the vanishing point in strutured images,

setion 2.2 presents an eÆient algorithm for sampling unordered points, in setion

2.3 a method for shape enoding and bilevel image ompression is presented, in setion

2.4 a method for haraterizing a retinal fundus image is demonstrated, and �nally, in

setion 2.5 an algorithm for extrating strutured information (e.g. shapes) in presene

of outliers is introdued.

In Chapter 3, the modeling of a non rigid transformation for point set registration

is presented. The algorithm is desribed in detail and various experimental results are

demonstrated.

In Chapter 4, we desribe a solution of the rigid registration problem based on

mixture models.



Part I

Features and Appliations



Chapter 1

Modeling sets of unordered points

using line segments

1.1 Introdution

1.2 A Diret Split and Merge (DSaM) Framework for Line Segment Detetion

1.2.1 Split proess

1.2.2 Merge proess

1.3 Evaluation of the Line Segment Detetion Algorithm

1.3.1 Numerial Evaluation

1.3.2 Comparison with the Hough Transform

1.1 Introdution

Lines are one of the most basi models to desribe features in an image due to their

simpliity, regarding the modeling parameters. Moreover, lines are suitable models for

desribing real world strutures as most of the human made senes are being represented

by at surfaes. Lines an be used to summarize features in a higher level, e.g. ontours.

Examples regarding the importane of line extration inlude the detetion of vanish-

ing points [18℄, the vetorization of raster images [19℄ and the detetion of road strutures

and parts [20℄ are among appliations neessitating line segment desription of image

strutures. In many of the aforementioned problems, the involved algorithms assume

that they are provided with an ordered point set and standard polygonal approximation

[10, 21℄ is then applied. However, determining the ordering of point sets is not a trivial

task and in the method desribed herein we relax this assumption by making no prior

hypothesis about the ordering of the points.
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In the above ontext, the Hough transform (HT) is a widely used method for line

�tting and many variants have been proposed to improve its eÆieny [22, 23℄. One of

these variants is the randomized Hough transform (RHT) [24, 25℄ whih randomly selets

a number of pixels from the input image and maps them into one point in the parameter

spae whih was shown to be less omplex, ompared to the original algorithm, as far

as time and storage issues are onerned. In [26℄, the probabilisti HT was proposed

whose basi idea is to apply a random sampling of edge points to redue omputational

omplexity and exeution time. Further improvements were introdued in [27℄. A similar

onept was proposed in [28℄, where an orientation-based strategy was adopted to �lter

out inappropriate edge pixels, before performing the standard HT line detetion whih

improves the randomized detetion proess. Also, the idea of fuzziness is integrated in

the main algorithm in [29℄ to model the unertainty imposed to the ontour due to noise.

Thus, a point an ontribute to more than one bin in the standard HT proess. A general

omparison between probabilisti and non-probabilisti HT variants an be found in [30℄.

The robust HT is introdued in [31℄ where both the length and the end points of the

lines may be omputed. Moreover, the algorithm in [32℄ provides a method for adopting a

shape dependent voting sheme for the alulation of the histogram bins. Finally, a novel

HT based on the eliminating partile swarm optimization (EPSO) is proposed in [33℄,

to improve the exeution time of the algorithm. The problem parameters are onsidered

to be the partile positions and the EPSO algorithm searhes the optimum solution by

eliminating the "weakest" partiles, to speed up the proess.

Line segment �tting may also be used in a shape desription proess. The ommonly

used algorithm of Moore [34℄ was a �rst solution to shape following and utilizes the

neighborhood of points. However, this algorithm is appropriate only for traversing urves

without intersetions and produes models with high omplexity, although improvements

of the main algorithm have also been onsidered up to date [35℄. Another ommon model

�tting method is the RANSAC algorithm [36℄, whih despite the fat that it provides

robust estimations, it is appropriate for �tting only one model at a time. Other approahes

are the inremental line �tting [37℄ whih is sensitive to noise and, most importantly, needs

sequential ordering of the points and probabilisti methods [38℄ based on the Expetation-

Maximization algorithm, generally neessitating the prior determination of the number

of model omponents.

More reently a new method was introdued that relies on the Helmholtz priniple: 'no

struture is pereived in white noise', based on the work of [39℄ for adaptive thresholding.

Its main harateristi, aording to the authors, is that this method is parameterless and

an aurately ontrol the false positive and false negative detetions. In brief, initially

the image gradient is omputed at eah pixel and then through a region growing algo-

rithm they try to align points whose gradient diretion is within a prede�ned threshold.

Although that there is a threshold parameter, the authors laim that their method is

nearly parameterless beause the deision threshold on the number of ontrol points in a

given segment is in a

√

( log) dependeny of the expeted number of false alarms. The
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reader is refereed to [40, 41℄ for more details and to [42℄ for the implementation details of

the method.

1.2 A Diret Split and Merge (DSaM) Framework for Line Seg-

ment Detetion

Let X = {x
i

|i = 1; : : : ; N} be a set of points and E = {�
j

|j = 1; : : : ; K} be the set of line
segments modeling the points, where �

i

is the line desribing the i-th segment.

We de�ne the modeling error ∆ indued by the representation of line segments:

∆(X;E) =
N∑

i=1

K∑

j=1

Æ

ij

d(x
i

; �

j

); (1.1)

where K is the number of line segments the model uses to model the points, x

i

∈ R
2
,

i = 1; : : : ; N are the points, d(x
i

; �

j

) is the perpendiular distane of point x
i

to line �

j

,

Æ

ij

is an indiator funtion whose value is one if point x

i

belongs to line segment �

j

and

is zero otherwise.

In order to prevent over�tting, models having a large number of line segments should

be penalized. Therefore, an optimal model would have both low value of ∆ and low

omplexity.

The omputation of the ellipses, modeling the line segments, is performed in two steps:

an iterative split proess, where points are modeled by a number of line segments repre-

sented by the major axes of the orresponding ellipses and an iterative merge proess,

where small line segments are merged to redue the model omplexity. The split proess

tries to minimize the modeling error while the merge proess dereases the model om-

plexity, i.e. the number of line segments ompared to the total number of points in the

set.

In what follows the two steps are presented in detail.

1.2.1 Split Proess

The ultimate goal of this step is to over the point spae with line segments representing

the long axes of elongated ellipses and therefore, eah point of the shape should be assigned

to an eentri ellipse. A split riterion is de�ned, based on Gestalt theory [43℄, whih

models the linearity and the onnetivity the human brain uses when modeling ontours.

In order to split a set X, it should be either non linear or disonneted, or both. Lin-

earity desribes how lose the points are to a straight line, while disonnetivity measures

how onentrated these points are. In the ideal ase, the ovariane matrix of ollinear

2D points should have a very large eigenvalue and a zero eigenvalue. The eigenvetor

orresponding to the larger eigenvalue indiates the diretion of the line segment. If the

linearity property is relaxed, the less ollinear the points beome (i.e. they diverge from

the linear assumption) the larger the value of the minimum eigenvalue is. Based on that
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observation, in our method, linearity is desribed by the minimum eigenvalue of the o-

variane matrix of the points in X. Also, the disonnetivity W of two sets of points X,

Y is the smallest distane between a point in X and a point in Y :

W (X; Y ) = min
x∈X
y∈Y

|x− y|: (1.2)

In the ase of a single set, disonnetivity is the largest distane between two suessive

points in that set. It may be omputed by projeting the points onto both axes de�ned by

the eigenvetors of the ovariane matrix of the set. Then, suessive points are de�ned

by sanning along the axes and their distanes are omputed. Let X

i

be the projetion

of a set X onto the the eigenvetor e

i

. The disonnetivity of X is de�ned as

W (X) = max
j=1;:::;N−1
i=1;:::;d

|xj
i

− x

j+1
i

|; (1.3)

where N is the number of points inX, d is the dimension ofX (here d = 2) and xj
i

is the j-

th point of the sorted set X

i

. A large value of disonnetivity indiates a better separation

of the point sets. The projetions onto all of the eigenvetors should be examined as we

do not know a priori whih diretion to follow while splitting. Although intuitively one

would suggest to split along the diretion of the prinipal axis, we observed that in many

ases that approah was not the best. Also, let us note that as the ordering of the points

is not known a priori, their projetion onto the eigenvetors of their ovariane matrix,

provides a natural way of ordering.

The disonnetivity of a single set of points is also important to be estimated in the

split step, as there may exist subsets that although they are linear, they are disonneted.

The split of an ellipse should be performed along the diretion de�ned by an eigenvetor

of its ovariane. In order to selet the split diretion, the axis orresponding to an

eigenvetor is onsidered as the disrimination border between the split line lusters and

points belonging to the same subplane are grouped together. Then the disonnetivity

of eah line luster is omputed. Finally, the diretion with the largest disonnetivity is

seleted for splitting (�gure 1.1).

Eventually, the adopted strategy that minimizes ∆ and prefers elongated ellipses an

be expressed as follows: split every ellipse whose minimum eigenvalue is greater than a

threshold T1 (linearity) and the maximum gap, within the urrent segment is greater than

a threshold T2 (disonnetivity). The proess is initialized with one ellipse, orresponding

to the ovariane of the initial points set entered at the mean value of the point loa-

tions. Thresholds T1 and T2 may be omputed with a heuristi algorithm, as explained

in subsetion 1.3.1.

At iteration t + 1, a given ellipse, haraterized by the eigenvalues �

t

1 and �

t

2 of its

ovariane matrix Σt

(with �

t

1 ≥ �

t

2), with enter �

t

, is split to two new ellipses with

enters the two antipodal points on the major axis:

�

t+1
1 = �

t +
√
�

t

e

t

,

�

t+1
2 = �

t −
√
�

t

e

t

,

(1.4)
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(b) (b)

Figure 1.1: Split proess. (a) At iteration t+1, the ellipse with enter �

t

is split into two

new ellipses e1 and e2, with enters �

t+1
1 and �

t+1
2 given by (1.4). (b) The new enters

are marked with a star (*). The reassignment of the points to the new enters is shown.

Points of one ategory, assigned to e1, are marked with a square, while points assigned to

e2, are marked with a irle.

where e

t

, �

t

are the eigenvetor and the eigenvalue orresponding to the split diretion

along whih split is performed (�gure 1.1).

The points of the split ellipse are then reassigned to the two new ellipses aording to

the nearest neighbor rule. In this way, new ellipses our, whih are more elongated as

they have greater eentriity and their minor axes are loser to the ontour (�gure 1.2).

Moreover, this detailed representation of the point set provides aurate modeling of the

joints, orners and parts of the ontour exhibiting high urvature.

A variant of the method would be to ompute the ovariane matrix of the points on

the onvex hull of the point set, whih provide more robustness to outliers.

(a) (b) () (d)

Figure 1.2: Steps of the split and merge proess. The proess is initialized with the mean

and the ovariane of the full set of points. (a) Split into 2 ellipses. (b) Split into 4

ellipses. () End of split (35 ellipses). (d) The �nal merge result (23 ellipses). The �gure

is better seen in olor.

1.2.2 Merge Proess

The role of the merge proess is to redue the omplexity of the model. In ase there

exist adjaent ellipses whose major axes have similar orientations, it would be bene�ial

to merge and replae them with a more elongated ellipse. Therefore, in this step, ellipses

are merged using the following rule: merge two onseutive ellipses, if the resulting ellipse

has minimum eigenvalue smaller than a threshold T1 (linearity) and the marginal width

between the two line lusters is smaller than a threshold T2 (disonnetivity).
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Note that the threshold T1 ould be set equal to the threshold used in the split proess,

where the value of parameter T1 spei�es whether an ellipse has low eentriity and needs

to be split. In the merge proess, it indiates whether two andidates for merging ellipses

would result in an ellipse with high eentriity. One ould use the same threshold in

both proesses, assuming the same signi�ane. On the other hand, a relaxation of the

merge threshold ould lead to a rougher model of the points, smoothing out details like

joints. In our experiments, the merge threshold was seleted to be the same with the split

threshold. The same applies for threshold T2 that indiates whether two segments are

lose enough to be onsidered as one line segment.

The overall desription of the method is presented in Algorithm 1.

SPLIT PROCESS

input: The set of points X = {x
i

|i = 1; : : : ; N}.
output: A set of ellipses {�

j

;Σ
j

}.
Initialize the algorithm by estimating the mean and ovariane of the point loations.

while there are ellipses to split do

Split every ellipse whose minor eigenvalue is greater than T1 and its disonnetivity

is greater than T2.

• Selet the diretion that provides the greatest disonnetivity.

• Set the enters of the new ellipses aording to (1.4).

MERGE PROCESS

input: The ellipses from the split proess �

j

= {�
j

;Σ
j

}; j = 1; : : : ;M .

output: A redued set of ellipses.

while there are ellipses to merge do

for all ellipses �

i

; i = 1; : : : ;M do

if merging �

i

with �

j

provides an ellipse whose minor eigenvalue is less than T1

and its disonnetivity is less than T2 then

Aept merging.

Set �

i

to the ellipse that result from merging

Algorithm 1: Diret Split-and-Merge Algorithm

1.3 Evaluation of the Line Segment Detetion Algorithm

In this setion we evaluate the eÆieny of the introdued algorithm. To that end, two at-

egories of experiments were onduted. The purpose was to investigate the performane

of the method both in shape data, but also in real images. Thus, various well-known

databases were employed, that ontain either objet silhouettes or senes of real images.
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The GatorBait100 database [2℄ onsists of 38 shapes of di�erent �shes grouped in 8 at-

egories. The shapes of this database are not losed and ontain many juntions. The

MPEG7 shape database [1℄ onsists of 1400 silhouettes of various objets lustered in

70 ategories.The shape silhouette database used in [3℄, that ontains 137 silhouettes of

various objets, lustered in 13 ategories, was also used in our experiments. Finally, to

investigate the behavior of the proposed algorithm in real sene images, the images (257)

from the ETHZ image set [4℄ were also used. Table 1.1 gives a brief desription of eah

database. In all ases, the edges were extrated and the oordinates of the edge pixels

were used to desribe the ontour. The Canny edge detetor [44℄ was used in all ases.

Table 1.1: Short desription of the databases used in our experiments.

Database # ategories # shapes/senes Desription

GatorBait100 [2℄ 8 38 Fish silhouettes

MPEG7 [1℄ 70 1400 Objet silhouettes

Brown [3℄ 13 137 Objet silhouettes

ETHZ [4℄ 5 257 Real Sene Images

1.3.1 Numerial evaluation

In this setion, we present the results

1

of omparing the DSaM method with the widely

used implementation of Kovesi [5℄. This is an implementation of the polygon approxima-

tion [10℄ method. The algorithm assumes the traversal of the points is known. Initially,

it selets an arbitrary point and starts traversing the shape. A line segment is omputed

by all points that have been visited so far, and the proesses iterates for all points in the

traversal order. Then, the modeling error is omputed, in terms of deviation of points

from the urrent line segment. If the deviation after a point is used top ompute the line

segment is larger than a threshold, this point is onsidered as the starting point of a new

line segment. The proess terminates when all points have been visited.

Tables 1.2 and 1.3 summarize the numerial results. Some representative images from

those databases are given in �gure 1.3. As it an be observed, in some ases, there

exist inner strutures and thus, the ordering of the points is not obvious. Note that to

share ommon parameters, in the Kovesi [5℄ implementation, we used the disonnetivity

threshold of our method. The exeution time for omputing that value, is not inluded

in the exeution time of the Kovesi implementation. The model omplexity is omputed

by the index:

MC =
#ellipses

#points

: (1.5)

Lower values ofMC imply lower omplexity and therefore a more ompat representation.

The distortion, is the measure of the quality of the �tting, and is omputed as the

average distane between a point and its orresponding line segment, as omputed by

1

Matlab ode available at http://www.s.uoi.gr/∼dgerogia
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(a) (b) () (d)

Figure 1.3: Some representative images of the databases we used in our experiments.

Please note that in some ases inner strutures exist. This does not permit to extrat an

ordering of the points (a)MPEG7 [1℄, (b) Gatorbait [2℄, () Brown [3℄, (d) ETHZ [4℄.

Table 1.2: Modeling Error ∆ (1.1)

MPEG7 [1℄ (70 shapes)

method mean std median min max

DSaM 0.489 0.093 0.509 0.080 0.773

Kovesi 2.796 3.977 1.736 0.533 46.984

GatorBait100 [2℄ (38 shapes)

method mean std median min max

DSaM 0.454 0.033 0.452 0.383 0.509

Kovesi 2.215 0.862 1.981 1.477 6.473

Brown [3℄ (137 shapes)

method mean std median min max

DSaM 0.492 0.119 0.514 0.105 0.894

Kovesi 2.871 6.192 1.095 0.617 33.632

ETHZ [4℄ (255 senes)

method mean std median min max

DSaM 0.494 0.061 0.503 0.257 0.635

Kovesi 2.299 1.340 1.914 1.056 12.655
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Table 1.3: Model Complexity MC (1.5)

MPEG7 [1℄ (70 shapes)

method mean std median min max

DSaM 3.954% 0.013% 3.788% 0.269% 11.429%

Kovesi 3.624% 0.017% 3.406% 0.269% 12.442%

GatorBait100 [2℄ (38 shapes)

method mean std median min max

DSaM 3.280% 0.004% 3.172% 2.732% 4.541%

Kovesi 2.524% 0.005% 2.378% 1.961% 3.904%

Brown [3℄ (7 senes)

method mean std median min max

DSaM 5.792% 0.016% 6.186% 0.921% 10.145%

Kovesi 6.586% 0.022% 6.911% 0.335% 10.821%

ETHZ [4℄ (16 senes)

method mean std median min max

DSaM 5.342% 0.014% 5.195% 2.436% 8.427%

Kovesi 5.402% 0.018% 5.205% 1.601% 11.040%

eah method. Please note that the average length of the diagonal of the bounding box of

the various datasets, is about 500 units (ranging from 300 units in Brown [3℄ to 700 units

in ETHZ [4℄).

In the proposed algorithm, there are two parameters to be a priori spei�ed, a thresh-

old that determines the elongation of an ellipse (T1) and a threshold haraterizing the

disonnetivity of a set (T2). Both parameters are used to deide whether to split (in the

split proess) or merge (in the merge proess). A small value preserves the details, while

a larger one provides more oarse results. For our experiments, we omputed the values

of the parameters as:

T1 =
1

N

N∑

i=1

�

i

(1.6)

T2 =
1

N

N∑

i=1

d

i

(1.7)

where N is the number of the points of the set, �

i

is the smallest eigenvalue of the ovari-

ane matrix of points {x |x ∈ N

�

x

i

; i = 1; : : : ; N}, with N�

x

being the �- neighborhood of

x, and

d

i

= min
y∈N�

x

i

||x
i

− y||; i = 1; : : : ; N: (1.8)

Large values for � derease the model omplexity providing larger modeling error and

details are not preserved. In our experiments, we set � = ⌈0:01 × N⌉ for omputing the

values of T1 and T2. To make our implementation more eÆient, instead of taking all

points into onsideration, we omputed a random permutation of the indies of points
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and used only the �rst 10% of them. Thus, in high density datasets, like in the ETHZ

database [4℄, the values of the thresholds ould be estimated quikly.

In general, the DSaM method and the Kovesi implementation produe models with

similar omplexity, a fat that is obvious, sine they employ the same thresholds. However,

the DSaM method provides muh more aurate results w.r.t distortion (Table 1.2 and

Table 1.3).

Figure 1.4 explains the meaning of the modeling error. Larger modeling error is

assoiated with greater deviations of the omputed model from the shape ontour. The

reader may observe that the proposed method provides a more aurate result, ompared

to the omputation with the Kovesi [5℄ method.

Figure 1.4: A representative result of the modeling of a shape from the MPEG7 dataset

[1℄with the proposed (left) and Kovesi [5℄ (right) methods. Green boxes highlight the

di�erenes regarding the modeling error of the two methods. Although in general both

methods modeled the shape globally, loally the proposed method modeled more au-

rately the shape ontour.

As our method models the line segments with ellipses, we tried to �t line segments

by exploiting various modi�ations of a typial Gaussian Mixture Model (GMM) [45℄,

for example using an inremental GMM, or imposing onstraints in the update step of

the ovariane matries (deomposing the ovariane matries with SVD, replaing the

orresponding minimum eigenvalue with a very small value, threshold T1, and then re-

omputing the ovariane matrix). All these variants failed to produe an eÆient result.

Moreover, the exeution time was quite high (10 times ompared to those of DSaM).

Thus, we opted for exluding the results from this presentation.

Finally, we onduted experiments to verify the robustness of the method against the

presene of noise that degrades the ontour of an objet. To that end, we used three

patterns (see �gure 1.5 (a)-()) whih were randomly repeated, to reate new images. A

representative image is given in �gure 1.5 (e). As a ground truth for the number of line

segments, we used 4 for the square, 3 for triangle and 10 for the star.

The set of unordered points was produed by simple edge detetion. Then, zero
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(a) (b) () (d) (e)

Figure 1.5: (a) - () The primitive images used to reate the arti�ial dataset for exper-

iments with Gaussian additive noise. (d) Contour degraded by additive Gaussian noise

of 18dB. A representative test image produed by randomly repeating the patterns of

images in (a)-().

mean Gaussian noise with varying standard deviation was added in order to get several

on�gurations of signal-to-noise ratio (SNR). A representative result of a degraded ontour

is given in �gure 1.5 (d). Note that no ordering of points may be established in that

ase and thus polygon approximation may not be performed. To make the experiment

independent from the noise on�guration eah experiment was repeated 20 times. The

algorithm assumes that a form of binary data (e.g. an edge map) is provided. Degradation

by noise is performed after the edge extration in order to examine the behavior of the

algorithm to the detetion of line segments. If the noise was added to the original image

the edges would be erroneous and we would not have a standard baseline for evaluating

the algorithm.

In �gure 1.6, we present the results of the experiments. The error is expressed as

the absolute di�erene between the real number of segments and the one omputed by

our method. It an be observed that while the magnitude of the noise dereases, the

error is also dereased. The di�erene between true and estimated number of segments

is generally small, 3 on average with low variane (±2 segments), ompared to the total

number of line segments, 90 line segments on average, orresponding to 3% deviation

between true and estimated measurement. Thus, it ould be laimed that the proposed

method exhibits a onsistent and eÆient performane even if the ontour is orrupted.

1.3.2 Comparison with the Hough Transform

Sine the proposed algorithm �ts line segments to a set of points, we also tested it against

the ommonly used Hough Transform (HT). However, sine the standard HT is appropri-

ate for �tting lines and not line segments, we applied the Progressive Probabilisti Hough

Transform (PPHT), as proposed in [46℄ and implemented in the OpenCV library [47℄.

The implementation of PPHT imposes three parameters: (i) a threshold, indiating the

minimum number of points in a bin, in the line parameter spae, in order to onsider

that the line is represented by a suÆient number of points, (ii) the minimum length of

a line segment and (iii) the maximum gap between line segments lying on the same axis.

In our experiments, we �xed the last two parameters (after a trial and error proedure
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Figure 1.6: Experimental results using the datasets of �gure 1.5 (e) that demonstrate

the performane of our method in presene of Gaussian additive noise in terms of model

omplexity error. The vertial axis represents the absolute error between the real number

of segments and the one omputed by our method.

keeping those parameters that best �t the examined points) and varied the threshold.

The obtained results for the PPHT exhibited signi�ant irregularities suh as a large

number of overlapping lines for the same segment. Also, the orners of the shapes were

not orretly aptured. Representative experiments on the MPEG7 dataset [1℄ are shown

in �gure 1.7(a)-() while the solution of our DSaM algorithm is illustrated in 1.7(d).

The PPHT is based on a histogram whih orrelates the auray of the result with the

number of bins used. Also, a threshold must be established to eliminate lines with small

partiipation in the �nal result. A small number of bins may lead to an underestimation

of the number of segments, while a large number of bins inreases the omplexity of the

model. As far as the threshold is onerned, its value may have similar e�ets in the �nal

model. A large value may drop some segments, while a small value may be responsible

for a large number of lines �tted, analogous to a GMM with one omponent per point.

A more important drawbak of the PPHT is that many overlapping lines may model the

same line segment. Figure 1.7 presents solutions of PPHT for a given set of points and

various parameters values.
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(a) (b) () (d)

Figure 1.7: (a)-() Results of the PPHT algorithm to a set of points representing the shape

of a bone (MPEG7 dataset) y varying the minimum number of points in a bin (namely,

5, 15 and 25). Only a small fration of the lines is drawn for visualization purposes. Note

the overlapping lines. (d) The result of our method. The �gure is better seen in olor.
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2.1 Vanishing Point Detetion

2.1.1 Introdution

Human-made senes, suh as roads, buildings and their faades or indoor orridor bound-

aries have a large number of parallel lines in the 3D spae. In the framework of a pinhole

amera model, two parallel lines are projeted onto a pair of onverging lines in the 2D

image spae provided that their 3D plane is not fronto-parallel to the image plane. The

ommon point of intersetion of all 3D parallel lines (generally belonging to di�erent

planes) in the 2D image is alled the vanishing point. The detetion of a vanishing point

in an image is a ruial step in many omputer vision appliations, like robot navigation,

amera alibration, single view 3D sene reonstrution and pose estimation.

In the related literature, there are two main ategories of methods for vanishing point

detetion. There are tehniques requiring knowledge of the intrinsi parameters of the

amera, whih exploit the notion of 3D parallelism and prominent strutures of the sene

orthogonal to eah other, also alled Manhattan diretions [48, 49℄. There are also teh-

niques assuming no knowledge of the internal amera parameters, suh as the method in

[50℄ using the Helmholtz priniple for image partitioning, the Expetation-Maximization

(EM) framework adopted in [51℄ or the non-iterative algorithm based on onsensus sets

[52℄.

In ontrast to the above methods, whih may base their estimation in the existene

of three orthogonal vanishing points, images aquired in strutured environments suh as

roads or orridors are a spei� ategory where the detetion of a single vanishing point

may be suÆient for the underlined appliation (e.g. vision-based robot motion along a

orridor). The general strategy onsists in partitioning the image into aumulator ells

olleting votes from the line segments having their intersetion in the spei� ell. The

detetion of peaks in the aumulator spae provides the vanishing points [53, 54℄.

An alternative approah is presented in that hapter, based on the DSaM algorithm of

hapter 1. Seondly, a voting step is applied through a kernel, where andidate vanishing

points are assigned weights proportional to the lengths of the line segments they belong

to. Therefore, longer line segments whih are more probable in indoor environments (e.g.

the intersetion of wall and ground) are more probable to ontribute to the determination

of the vanishing point.

2.1.2 The algorithm

Given an indoor sene (e.g. a orridor), the �rst step of the method onsists in deteting

the edges of the image. Therefore, the probabilisti boundaries are �rst omputed [55℄

though in simpler, non textured environments, the output of the standard but established

Canny edge detetor detetor [44℄ is generally aeptable. Then the DSaM algorithm is

performed to model the senes line segments. Please note that other methods may also

be applied.
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The next step onsists in �tting line segments to the extrated edges. Various algo-

rithms may be employed, like the one desribed in 1.

After the determination of the line segments in terms of the long axes of highly e-

entri ellipses, the set C
vp

of andidate vanishing points is onstruted by omputing all

the pairwise intersetion points between all the lines. To further improve the eÆieny

of the method, intersetion points that lie outside the image plane ould be ignored but

this issue is optional and depends on the spei� appliation. For example, in a orridor,

the vanishing point lies within the image plain and intuitively the vanishing line usually

appears somewhere in the viewer's horizon. On the other hand, if the algorithm is to be

used by a robot navigation system, the detetion of the vanishing point outside the image

plane may indiate an abrupt turn.

Thene, a weight w(p) = |lp1 ||lp2 | is assigned to eah point p ∈ C
vp

whih is equal

to the produt of the lengths |lp1 | and |lp2 | of the two line segments whose intersetion is

the andidate vanishing point p. Thus, a andidate vanishing point produed by short

segments, or one long and one short segment, is attributed with a small weight.

In the �nal step of our workow, the vanishing point is omputed by seleting one of

the andidate points, whih is ahieved through a voting sheme. This step is similar in

spirit to the approah presented in [53℄. However, the main di�erene with respet to that

method is that, in our algorithm, eah line segment votes only for the intersetion points

belonging to it while in [53℄ a line segment votes for every andidate vanishing point (even

if it does not belong to the segment).

In a voting sheme, an important fator is the size of the aumulator array bins,

whih in our ase is a grid overing the image support G ≡ [0, G
w

] × [0, G
h

] ⊂ R
2
. The

grid is uniformly divided into equally sized ells B

i

, i = 1; :::; N , using a saling fator

� ∈ (0; 1] imposing a bin size of [�G
w

; �G

h

].

In order to assign weights to eah andidate vanishing point present in a given bin,

a kernel funtion entered at eah array bin is employed. To this end, a 2D Π-Sigmoid

kernel is applied to eah bin [56℄, imposing thus a fuzzy onept to the borders of the ell.

The support of a 1D Π-Sigmoid kernel:

k(x) =
1

b− a

[
1

1 + e

−�(x−a)
− 1

1 + e

−�(x−b)

]

; (2.1)

with � > 0, whih is depited in �gure 2.1, approximates a uniform kernel whose borders

are fuzzi�ed in order to avoid abrupt hanges. Thus, points under the plateau ontribute

equally with their votes while the ontribution of points lying at the extremities falls o�

quikly but it does not beome zero, depending on the value of the parameter �. The

larger the value of � the less fuzzy the kernel borders beome and onsequently the edges

of the kernel are very steep (�g. 2.1). By these means, the apture region of the kernel

allows points from the neighboring bin to ontribute with a relatively low non-zero weight.

A 2D Π-Sigmoid kernel Π
s

(x; a;b; �) with parameters a = (�1; �2), b = (b1; b2), with

�

i

≤ b

i

, and � is a separable funtion that may be generated from the produt of two 1D
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Figure 2.1: Π
s

(x; a;b; �) for � = 50 and � = 1.

kernels:

Π
s

(x; a;b; �) =

2∏

d=1

1
1+e−�(x

d

−a

d

) − 1
1+e−�(x

d

−b

d

)

b

d

− a

d

:

Parameters a and b ontrol the width of the kernel, while the slope � ontrols the fuzziness

of the kernel.

Thus, the total votes asted to ell B

i

are omputed by:

V (B
i

) =
∑

p∈C
vp

w(p)Π
s

(p; a
i

;b

i

; �): (2.2)

The voting proess is onluded by deteting the dominant ell B

∗
aording to:

B

∗ = argmax
B

i

{V (B
i

)}: (2.3)

Finally, the oordinates of the vanishing point are omputed as the weighted average of

all the andidate vanishing points with respet to the Π-Sigmoid kernel entered at the

ell B

∗
:

p

∗ =

∑

p∈C
vp

w(p)pΠ
s

(p; a∗;b∗
; �

∗)

∑

p∈C
vp

w(p)Π
s

(p; a∗;b∗
; �

∗)
; (2.4)

where a

∗
;b

∗
; �

∗
are the parameters of the kernel orresponding to B

∗
in (2.3). Note

that all the andidate points ontribute to the solution. However, the importane of the

points in the dominant ell is overwhelming. The steps of the method are summarized in

Algorithm 1. In order to inrease the robustness of the algorithm and to speed it up, line

segments that are shorter than a threshold T and their orientation is lose to horizontal or

vertial within � degrees are pruned. Although this rule ould be omitted, it was dedued

that setting the value of parameter T to 5% of the size of the diagonal of the image and

� = ±15o improves signi�antly the performane of the method.

2.1.3 Numerial Evaluation

To evaluate our method, we reated two sequenes, with 35 and 18 frames respetively,

with a frame size of 320 × 240 pixels eah. The images in eah sequene were aptured
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input: A olor image.

output: The oordinates of the vanishing point.

Detet the edges of the image.

Detet line segments (e.g. use the algorithm introdued in [6℄).

Prune segments whose length is below T and their orientation is vertial or horizontal

within ±�o.
Compute the oordinates of pairwise intersetion points between all segments.

Voting

Calulate the votes for eah ell B

j

, j = 1; : : : ; N using (2.2).

Find the dominant ell using (2.3).

Compute the vanishing point using (2.4).

Algorithm 2: Vanishing point detetion algorithm

periodially by a robot moving on a spei� ourse. The sequenes represent an indoor

orridor under various illumination onditions. To make the task more hallenging, in the

seond sequene, a person walking towards the robot appears in all of the frames. Then, 5

individuals were asked to detet manually the vanishing point in eah image. The ground

truth vanishing point for eah image was onsidered to be the mean point indiated by

the volunteers. The standard deviation of the various vanishing points provided by the

humans is 11 pixels whih is approximately 3:5% of the shorter image dimension.

In order to investigate the dependene of the �nal result on the values of the parameters

� of the Π-Sigmoid kernel and the grid resolution tuned by �, experiments were performed,

examining the mean detetion error and the exeution (in Matlab) time with respet to

those parameters. Note that as the grid resolution dereases the algorithm demands

more exeution time beause it integrates a larger number of kernels. The results are

summarized in Table 2.1, where we have tested the behavior of the algorithm for two

on�gurations for the parameter �, namely � = 10 and � = 50. As it may be observed,

the proposed method exhibits a onsistent behavior sine the variation of the detetion

error is rather small onerning the di�erent on�gurations of the parameters. The pair

of parameters � = 50 and � = 0:05 is a good ompromise between detetion error and

exeution time. The method provides, in general, aurate results onsidering that its

detetion error is in average 2% of the image diagonal. Moreover, as the algorithm was

developed in Matlab it may be further aelerated and easily integrated in embedded

systems.

Table 2.1: Algorithm Performane

� = 10 � = 50

� 0.05 0.08 0.10 0.20 0.05 0.08 0.10 0.20

Time per image (se) 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1

Error (pixels) 5.4 6.7 7.6 15.4 5.4 6.8 7.5 15.4
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We also ompared our diret split-and-merge framework (DSaM) to the Hough Trans-

form (HT), whih is widely used for line detetion. We kept the proposed voting sheme

in both algorithms. At �rst, the HT needs is relatively diÆult to be tuned due to the

tedious task of determining the bin sizes. Moreover, the HT provided large errors (of the

order of 15 pixels) and thus failed to orretly detet the vanishing point in indoor images

beause it was a�eted by spurious points.

Representative results of our method are given in �gure 2.2. The images depit frames

of an indoor orridor, with and without obstales. The orresponding error between real

and omputed vanishing point is 1:54 pixels. The green lines orrespond to the line

segments omputed by the DSaM algorithm and represent the image edges. The blue

lines represent the edges ontributing to the detetion of the vanishing point. The red

star sign depits the vanishing point as it was omputed by our method, while the yellow

irle is the ground truth.

Figure 2.2: Representative results of the VP detetion with the proposed method (the

�gure is better viewed in olor).

Finally, we onduted some experiments to ompare the proposed voting sheme

against the trivial ase of the omputation of the VP using least squares. In this ap-

proah, all vanishing lines are omputed and the VP is onsidered to be the point that

has the shortest distane to all lines. In a preproessing step, a line pruning proedure

eliminates the lines that are either vertial or horizontal, within a threshold range. We

ompared various line segment detetion methods (HT, Kovesi [5℄, LSD [40, 41, 42℄) and

on�gurations. For this experimental setup, we employed a video stream from a vehile

moving straight on a highway. 19 suessive frames were extrated from the video, that

orrespond to a distane of about 130 meters. Sine the ground truth is not known, we

tested the stability of eah method, by omputing the number of suessive frames where

the distane between the deteted VP in the two frames is less or equal a threshold. The

distane between two VP deteted in suessive frames is a rejetion riterion for the

validity of the omputation. Thus, the stability of the result is ritial. Figure 2.3 shows

a representative frame of the video stream, while Table 2.2 summarizes the experimental

results.
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Ideally, large numbers should appear in the �rst olumns of Table 2.2, indiating that

the majority of the VP are loated lose to eah other. On the other hand, large numbers

in the last olumns of Table 2.2 indiate that the deteted VP are moving within the

image spae between suessive frames, and thus the assoiated method is not onsidered

stable.

Multiple appearane of some methods, indiate a di�erent parameter tuning. The

name of the method indiates the line detetion algorithm and the algorithm used for point

detetion. In ase of the HT exeutions, the size of the bins of the histogram in the voting

spae was altered, leading to a di�erent number of lines ontributing to the detetion of

the VP. As far as the number of peaks that should be deteted in the HT voting proess,

it was set to the same number of line segments deteted by our method. Sine our method

provided aurate results, this tuning minimized the impat of an erroneous seletion of

the number of lines in the HT voting proess. Regarding the method of Kovesi, di�erent

values for the merging threshold were onsidered. To minimize the impat of an arbitrary

seletion of the threshold value, we also employed the merge threshold provided by our

method in one of the variations for the VP detetion based on the method of Kovesi.

One may observe that the proposed voting sheme is superior to the onventional least

squares approah, as it provides more stable results. Moreover, the ombination of the

DSaM method, presented in hapter 1 and the LSD line detetor along with the proposed

voting sheme manage to provide a quite stable and eÆient detetion, with the latter

method presenting slightly better results. Note also that the DSaM result is highly related

to the Canny edge detetion, a ase that is handled intrinsially in the LSD algorithm.

Figure 2.3: Representative results (the �gure is better viewed in olor).
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Table 2.2: Number of two suessive frames where the distane of the deteted VP in the

two frames is less or equal to a threshold

Method

Distane (in pixels)

1 2 3 4 5 6 7 8 9 10 ≥10

DSaM+Π-Sigmoid 0 0 1 5 6 7 8 9 10 11 8

HT+LSE (1) 0 0 0 0 0 0 0 0 0 0 19

HT+LSE (2) 0 1 1 1 2 2 2 2 3 3 16

HT+LSE (3) 0 0 1 1 1 2 5 5 5 5 14

HT+LSE (4) 0 0 0 0 0 0 0 0 0 0 19

HT+LSE (5) 0 1 1 1 2 2 2 2 3 3 16

Kovesi+Π-Sigmoid (1) 0 0 1 1 1 2 2 2 4 4 15

Kovesi+Π-Sigmoid (2) 0 0 0 0 1 1 1 1 2 3 16

Kovesi+LSE (1) 0 0 0 0 0 0 0 0 0 0 19

Kovesi+LSE (2) 0 0 0 1 1 2 3 4 5 5 14

LSD+Π-Sigmoid 0 0 2 5 7 10 10 10 15 17 2

LSD+LSE 0 0 2 2 2 2 2 4 7 7 12

2.2 Point loud sampling and reonstrution

2.2.1 Introdution

As modern image analysis and omputer vision algorithms have beome more omplex

requiring a large number of operations and the the data to be proessed are big, a pre-

proessing step is a neessary task that may assist toward eÆient and fast proessing. In

many ases, that step involves sampling an original image or it edge map (e.g. omputa-

tion of the vanishing point) in order to keep a fration of points that desribe with �delity

the initial information. More spei�ally, in image proessing, this leads to edge pixel

sampling so as to extrat the eventually hidden patterns (e.g. objet ontours) inside an

initial observation so that the result is as lose as possible to the observation.

The most straightforward approah is to apply random sampling, whih assumes that

the edge points are observations of a random variable that follows a spei� distribution.

As soon as we model that distribution, point sampling is augmented to sampling obser-

vations from a known distribution. In the simplisti random sampling, it is assumed that

the original set follows a uniform distribution. A more advaned, but notoriously time

onsuming probabilisti model is Monte Carlo sampling [45℄. J. Malik independently pro-

posed ontour sampling in [57℄ to apply it to an objet retrieval algorithm [7℄. Initially,

a permutation of the points is omputed and a large number of the samples is drawn

from that permutation. Then iteratively, the pair of points with the minimum pairwise

distane is deteted and one of them is kept as a valid sample. This proess is iterated

until the desired number of samples is reahed and it ensures that points from image

regions with large density will be part of the �nal data set.
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In [58℄, the fast marhing farthest point sampling method is introdued for the pro-

gressive sampling of planar domains and urved manifolds in triangulated point louds or

impliit forms. The basi idea of the algorithm is that eah sample is iteratively seleted

as the middle of the least visited area of the sampling domain. For a omprehensive

review of the method, the reader is also referred to [59℄.

The Fourier transform and other 2D/3D transforms have been applied for desribing

shape ontours for ompression purposes. For example, in [60℄, the idea is to warp a

3D spherial oordinate system onto a 3D surfae so as to model eah 3D point with

a parametri ar equation. However, this method demands an ordering of points and

annot model louds of points, where more omplex strutures, like juntions and holes,

are present.

A framework for shape retrieval is presented in [61℄. It is based on the idea of repre-

senting the signature of eah objet as a shape distribution sampled from a shape funtion.

An example of suh a shape funtion would be the distane between two random points

on a surfae. The drawbak of the algorithm is that the number of initial points has to be

relatively small for the method to be fast and eÆient. This may lead to a ompromise

between the number of points of the sample and the information loss. Moreover, the

eÆieny of the method highly depends on the presene of noise.

This type of edge sampling is a preponderant step before other algorithms are applied.

This is the ase in [7℄, where sampling redues the amount of data for objet reognition

and in [62℄, where a shape lassi�ation algorithm neessitates a small number of samples

to redue its omplexity. Hene, the quality of sampling may a�et the �nal result if the

resulting point set does not preserve the oherene of the initial information. Considering

also that most of these algorithms demand large omplexity in terms of resoures (i.e.

memory alloation) in order to extrat omplex features that disriminate better the

various data, one may ome to the onlusion that sampling may be a very ruial step.

In this work, we propose an algorithm for fast, aurate and oherent sampling of

image edge maps. The proedure onsists of two steps. At �rst, the image edges are

summarized by a set of line segments, whih redues the initial quantity of points but

aurately preserves the underlining information ontained in the edge map. Then, based

on the ellipse-based representation, a deimation of the ellipses is performed and samples

are drawn aording to their loation on the long ellipse axis.

2.2.2 The algorithm

The �rst step of the algorithm relies in extrating the line segments that model the point

louds. This task an be ful�lled by the DSaM algorithm explained in hapter 1, or any

other line segment algorithm introdued in the related literature. However, the auray

of the result is highly related to the eÆieny of the line segment modeling.

Assume now that the goal is to sample the set of points that are presented in Fig. 2.4

and keep only Q% of them. The blak dots represent the original points. This may be

onsidered as the output of the DSaM algorithm [6℄. More spei�ally, these points lie on
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the long axis of a highly eentri horizontal ellipse. The axis is shown in red. In order

to approximate the loal point distribution, a histogram is omputed with a number of

bins equal to Q × L, where L is the number of initial points in the set to be sampled.

Then, we represent eah bin by its mean value, whih under e.g. Gaussian assumption

it is the geometri enter of the points in the bin and we selet in eah bin the point

that is loser (in terms of Eulidean distane) to this geometri mean. By repeating the

proedure for eah line segment produed by the appliation of the DSaM algorithm we

are able to sample the original point loud.

Figure 2.4: An example of the sampling proess. The blak points represent the original

set of points, while the red line is the is their summary omputed by DSaM [6℄. The

vertial blue lines depit the limits of the histogram bins. The green points are those

seleted to represent the sampled set beause they are loser to the mean value of the bin.

The �gure is better seen in olor.

It may be easily understood that the eÆieny of the approah is highly related to the

orret determination of a model approximating the loal manifold of the point set. The

larger the deviation of the model from the loal manifold beomes, the less aurate is the

sampling method. This is true as the model fails to ompute the histograms orretly and

therefore to establish aurately the bin enters. Consequently, the seleted samples will

be less representative of the distribution of the initial edges. For that reason, we relied

on the DSaM algorithm whih may aurately desribe the edge map.

An important issue of the sampling algorithm is the value of the sampling frequeny

Q, that is how densely should we sample? Moreover, the number of samples should vary

loally with respet to the number of image edges present in an image region. To this

end, based on the lustering of points to highly eentri ellipses, we propose to selet

the number of samples to be equal to Æ times the number of points that are present in

the mostly populated ellipse, where Æ ≥ 1:0. This guarantees that, highly onentrated

image regions will be more densely sampled but also that sparse regions should always

have some representatives as they have already been assigned to an ellipse. This is in

ontrast to random or even Monte Carlo based sampling where sparse areas may have no

representatives in the sampled data set.

In other words, the sampling rate is omputed by

Q = Æ

R

L

; (2.5)

where R is the maximum number of members in the lusters, L is the total number of

points in the original set and Æ ≥ 1:0 is a real positive number. The larger the value of

Æ is, the more samples we get, and thus the loser to the initial set our sampling result

is. In other words, the estimation of the p-value of parameter Æ is a ompromise between

the quality of the result and its omplexity.
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So far we have presented an algorithm for reduing the number of points in a set with

a minimal impat regarding the information loss. This rationale, an be extended, to

extrat shapes from point louds. In other words, we will present a method for extrating

shapes with a desired resolution, in terms of number of points. If we assume that the

manifold loally an be approximated linearly, then the DSaM method introdued in

setion 1 an be employeed. A line segment � an be desribed by its starting and ending

points, x

s

and x

e

respetively, i.e. � = {x
s

;x

e

} where x

s

;x

e

∈ R
2
. In prinipal, a line is

modeled by the following equation Ax+By+Γ = 0. where x; y; A; B;Γ ∈ R and (x; y)

is a point laying onto the line. Sine x

s

and x

e

are given, determining A, B, Γ is trivial.

Then following a similar proess with the sampling algorithm desribed earlier, we an

reprodue the orresponding shape part, at any desired resolution. Thus, starting from

point x

s

and following the diretion of the line segment with a prede�ned step � ∈ R
+

eah time, we may reonstrut (approximate) the initial points. The value of the step

� ontrols the density of the result: the higher its value is, the more points we extrat.

Algorithm 3 demonstrates the steps of the proposed shape reonstrution method.

The ontribution of the DSaM method is that in manages to model aurately enough

the hidden manifold of the point loud and thus provide eÆient features (line segments)

for shape reonstrution. A diret appliation of this method would be the eÆient

detetion of the projetion of random point onto the ontour of a shape, like the method

proposed in [63℄.

input: The set of unordered points X = {x
i

|i = 1; : : : ; N}, M ∈ N.

output: The omputed set of points Y = {x
i

|i = 1; : : : ;M} that desribe a shape.

Run the DSaM algorithm (refer to hapter 1) to model the manifold.

Let �

i

= {xi
s

;x

i

e

}, i = 1; : : : ; K be the line segments extrated, with x

i

s

; x

i

e

being the

starting and ending points of the i-th segment respetively.

for i=1:K do

Let R
i

= {ri0; ri2; : : : ; riM
i

} be the reonstruted points based on the segment �

i

, where

r

i

0 = x

i

s

and r

i

M

i

= x

i

e

.

�

i

∈ R = |xi
e

−xi
s

|
M

i

.

for j=1:M-2 do

r

i

j

= r

i

j−1 + �~e, where ~e is the unit vetor with diretion similar to the diretion of

�

i

.

Y =
⋃

K

i=1{Ri

}.

Algorithm 3: Shape reonstrution from a 2D point loud

2.2.3 Numerial Evaluation

For our experiments we used two datasets with ontours of various objets: The MPEG7

dataset [1℄ and the Gatorbait dataset [2℄. For more details about those datasets, please
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re�er to setion 1.3. The edges were extrated with the Canny edge detetor [44℄ and the

oordinates of the edge pixels were used as input to our experiments.

A minimum desription length (MDL) approah [45℄ is adopted to ompute the value

of Æ. We de�ne:

Φ(Æ) = D(↓ (X
or

; Æ); X
or

) + �| ↓ (X
or

; Æ)| (2.6)

where X

or

is the original set of points, ↓ (X
or

; Æ) is the output of the sampling proess

applied to set X

or

with the sampling rate omputed by (2.5), | · | denotes the ardinality
of the orresponding set and D(P;Q) is the Hausdor� distane between the set of points

P and Q.

In order to learn parameter Æ, we randomly seleted 119 images from our dataset. The

DSaM sampling method was exeuted for various values of the parameter Æ in the interval

[1:0; 3:0] and Æ = 1:6 minimized Φ(Æ), whih was used in our experiments (Figure 2.5).

Figure 2.5: The value Æ = 1:6, whih minimizes Φ(Æ) was used in our experiments.

The eÆieny of our method was evaluated by omparing it to widely used methods

suh as the sampling sheme proposed by Malik [57℄, Monte Carlo sampling and simple

random sampling. In order to quantitatively measure the �delity of the sampled point

set to the original one we used the Hausdor� distane between the aforementioned point

sets.

The rational is that the smaller the D(X; Y ) beomes, the loser the sample is to

the initial data. This onept may be onsidered as a try to minimize the distortion-

ompression rate. In other words, we wish to sample a set of points (ompress) by keeping

the information loss small (distortion). Moreover, to establish a ommon baseline, we used

the same sampling rate for all of the ompared methods, whih is the one desribed in the

previous setion. In order to avoid any possible bias, we also tested smaller sampling rates

for the other methods. the idea was to explore whether they produe better results, in

terms of similarity with the original shape using these smaller sampling rates. However,

the results proved that by dereasing the sampling rate the results beome poorer for the

other methods.
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The overall results are summarized in Table 2.3. As it an be observed, our method

provides better results in all ases with regard to all of the ompared methods. Repre-

sentative results on Gatorbait [2℄ dataset are demonstrated in Fig. 2.6. The reader may

observe that our method manages to preserve better the details of the original set, as it

produes more uniform results and thus the distribution of the points in the sampled set

is loser to the original.

Table 2.3: Hausdor� distane between the original and the sampled sets using di�erent

sampling methods.

MPEG7 [1℄ (70 shapes)

Algorithm mean std min max

Proposed method 0.00 0.02 0.00 0.29

Malik [57℄ 0.00 0.05 0.00 1.10

Monte Carlo 0.03 0.32 0.00 6.21

Random Sampling 0.01 0.19 0.00 3.31

GatorBait100 [2℄ (38 shapes)

Algorithm mean std min max

Proposed method 0.21 0.04 0.05 0.35

Malik [57℄ 0.30 0.11 0.11 0.51

Monte Carlo 3.08 3.27 0.61 17.02

Random Sampling 1.09 0.38 0.51 1.88

In a seond set of experiments we examined the improvement of the result of a shape

retrieval algorithm that inludes a sampling preproessing step. This is a very ommon

problem in omputer vision and image analysis and muh researh has been performed

in this �eld. We foused on the pioneering algorithm introdued in [7℄ and explored

the improvement of the detetion rate (Bull's Eye Rate) by applying various sampling

methods inluding ours.

The overall evaluation is presented in Table 2.4. It may be seen that the proposed

method improves the retrieval perentage . In ase of the Gatorbait dataset [2℄ the

improvement of the Bull's Eye Rate is around 2:5% with respet to the seond method.

In order to measure the similarity between two shapes we adopted the �

2
distane

between shape ontexts, as explained in [7℄. However, in this problem, a more informative

index should be applied to take into onsideration the deformation (e.g. registration)

energy that is demanded so as to transform one edge map onto the other. Yet, as we wish

to investigate the improvement that our method provides in terms of similarity between

samples and original signals, we opted not to ompute the related parts of the similarity

metri in [7℄. Moreover, to speed up our experimental omputations, we opted not to

use a dynami programming approah to guarantee a one-to-one mathing. Instead, we

assigned eah point from one set to eah losest in the other and omputed the ost of
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(a) (b)

() (d)

Figure 2.6: Representative results of sampling of the Gatorbait dataset [2℄. Details of the

upper left part of a �sh ontour. Sampling with (a) the proposed method, (b) the method

of Malik [7℄, () Monte Carlo sampling and (d) Random sampling.

this assignment in terms of orresponding histogram distanes. By repeating that proess

for all points and summing the related distanes, we omputed the total distane between

two shapes. These remarks, explain the di�erenes in Bull's Eye Rate index omputed

for the MPEG7 dataset, ompared to the one provided in [7℄.

Sine a ruial step of the proposed method is the aurate manifold detetion, we

ompared our sampling method with a widely used method for manifold detetion, namely

Loally Linear Embedding (LLE) [64℄. The reader may observe that LLE does not provide

aurate results, sine it fails to model the various inner strutures and juntions that are

present in the experimental data (Table 2.4).

Table 2.4: Bull's Eye Rates for the retrieval of sampled sets using di�erent sampling

methods.

Algorithm

Bull's Eye Rate

MPEG7 [1℄ GatorBait100 [2℄

Proposed method 65.40% 96.57%

Malik [57℄ 64.96% 93.89%

Monte Carlo 50.71% 77.69%

Random Sampling 57.86% 91.11%

LLE [64℄ 53.81% 93.98%

One may argue that instead of using the DSaM algorithm, we ould traverse the
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point set by visiting the nearest neighbor of eah point suessively following a polygon

approximation variation. For demonstration purposes, we all this approah Nearest-

Neighbor Split (NN-S). Finally, as our algorithm is based on line segment �tting, we also

tested it against one widely used similar algorithm [5℄, that utilizes nearest neighbors.

Moreover, sine we are dealing with manifold learning from point louds, we also

tested the tensor voting framework, [8, 9℄. Tensor voting is a robust and eÆient method,

however its threshold tuning is not trivial and the result is highly related to the seleted

threshold values. In general, tensor voting, manages to extrat a large part of the ontour.

However, the large distortion is due to the fat that some parts of the shape silhouette

are missing, i.e. holes are present, or new points are added, that are not present in the

pure data. For our experiments, we seleted those threshold values that provided the

best result. Figure 2.7 demonstrates the results of our experiments. As it an be seen in

the �gures, the proposed method provides more aurate results ompared to the other

methods in terms of shape reonstrution as it is explained below.

For this experimental on�guration, we disturbed the shape silhouettes with additive

Gaussian noise with progressively inreasing variane. The evaluation of the method is

based on a distortion-ompression model for varying signal-to-noise (SNR) ratio, where

the distortion is measured in terms of shape similarity between the reonstruted shape

and the initial one, and ompression is the number of segments omputed via DSaM over

the total number of points. Please note that although this approah is similar to our

analysis in 1, in this setion the distortion is omputed in a di�erent way, whih is more

meaningful in the ontext of the appliation.
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Distortion Compression

(a) (b)

() (d)

(e) (f)

(g) (h)

Figure 2.7: Shape reonstrution of the Gatorbait dataset [2℄ using (a)-(b) DSaM, ()-

(d)NN-S, (e)-(f) Kovesi [5℄, (g)-(h) vensor voting [8, 9℄.
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2.3 Shape enoding for edge map image ompression

2.3.1 Introdution

Shape representation is a signi�ant task in image storage and transmission, as it an

be used to represent objets at a lower omputational ost, ompared to non-enoded

representations. For example, the widely used MPEG4 Part 2 objet-based video standard

uses shape oding for desribing regions, alled video objet planes, that represent an

objet [65℄. In that ase, aurate shape enoding leads to better preservation of ontour

details.

The pioneering work in [66℄, where sequenes of line segments of spei�ed length and

diretion are represented by hain odes was proposed for the desription of digitized

urves, ontours and drawings and it was followed by numerous tehniques. Shape oding

is a �eld that has been studied extensively in the past but it is still very ative. Vari-

ous methods have been studied in [67℄, inluding the ontext-based arithmeti enoding

(CAE), whih has been adopted by the MPEG4 Part 2 standard.

The digital straight line segments oder (DSLSC) was introdued in [68℄ for oding

bilevel images with loally straight edges, that is, single binary shape images and bilevel

layers of digital maps. DSLS models the edges by digital straight line segments (DSLS)

[69℄. Compared to standard algorithms like JBIG [70℄, JBIG-2 [71℄ and MPEG4 CAE

[65℄,[67℄ DSLSC provides better results, as it fully exploits the information given by the

loal straightness of the boundary, whih is not hte ase for the other methods.

DSLSC is further improved in [72℄, where the segmentation of the alpha plane in three

layers (binary shape layer, opaque layer, and intermediate layer) is employed. Experimen-

tal results demonstrated substantial bit rate savings for oding shape and transpareny

when ompared to the tools adopted in MPEG4 Part 2.

Disrete straight lines were also employed in [73℄ for shape enoding and improvement

of the ompression rate is reahed by arrying out a pattern substrings analysis to �nd

high redundany in binary shapes.

A lossless ompression of map ontours by ontext tree modeling of hain odes is

desribed in [74℄. An optimal n-ary inomplete ontext tree is proposed to be used for

improving the ompression rate.

A JBIG-based approah for enoding ontour shapes is introdued in [75℄, where a

method is presented that manages to eÆiently ode maps of transition points, outper-

forming, in most ases, di�erential hain-oding.

2.3.2 The algorithm

Line segments are important features in omputer vision, as they an enode rih infor-

mation with low omplexity. We take advantage of this feature for enoding a 2D set of

points desribing a shape as a olletion of line segments that approximate the manifold

of the shape, by assuming that the manifold is loally linear. The initial and ending

points of eah line segment may be onsidered as the harateristi points arrying the
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ompressed information that an reprodue the initial shape. The larger the number of

harateristi points is, the better shape information is preserved.

A line segment � may be desribed by its starting and ending points x

s

�

and x

e

�

respetively. The olletion of the starting and ending points of all the segments modeling

the shape manifold are the harateristi points of the shape. Note that the harateristi

points are ordered. Moreover, sine the traversal of the line segments is known, the line

segment an be desribed by its starting point and the transition vetor towards the

ending point. The ending point of one segment is the starting point of its suessor in

the traversal order. Eventually, the shape an be enoded by seleting an arbitrary initial

point from the harateristi points and by the orresponding transition vetors after

visiting eah segment based on the traversal order, in a similar manner desribed in [11℄.

To reonstrut the image we need to reonstrut all the points ontributing to the

omputation of eah line segment � based on the harateristi points. In priniple, a line

is modeled by the parametri equation Ax + By + C = 0. where x; y; A; B; C ∈ R

and (x; y) is a point laying onto the line. If the starting (x

s

�

) and ending (x

e

�

) points of

a line segment � are given, determining A, B, C is trivial. Thus, starting from point x

s

�

and following the diretion of the line segment with a prede�ned step � ∈ R
+
eah time,

we may reonstrut (approximate) the initial points. The value of the step � ontrols the

density of the result: the higher its value is, the larger is the number of extrated points.

In ase of points laying on an image grid, integer arithmetis need to be onsidered and

seleting � = 1 yields the algorithm of Bresenham [76℄ whih may reonstrut the line

segment pixels eÆiently and handle the aliasing e�et.

Algorithms 4-5 desribe the proposed framework for ompression/deompression of

bi-level images of edge maps.

input: An edge map image I, representing shapes.

output: A set of features S that enodes image I.

Detet the line segments that desribe I. Let K be the number of line segments deteted.

Detet the traversal order of the line segments.

Re�ne shape, i.e. lose gaps between line segments. Extrat the harateristi point

P = p

i

; i = 1 : : :K, based on the shape traversal.

S = {p
1

}.
for i=2:K do

S = S ∪ {dx; dx = p

i−1 − p

i

}.

Algorithm 4: Image ompression

2.3.3 Numerial evaluation

In this setion, the experimental investigation of the proposed method is presented re-

garding its robustness and eÆieny. To that end, a ompression-distortion study was

arried out.
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input: A set of features S that enodes an image I.

output: The reonstruted image I.

Reover the harateristi points P = {p
i

; i = 1 : : :K}, based on initial point and

transitions enoded in S.

for i=2:K do

Produe the set of points R, e.g. [76℄, ontaining the points of the line segment from

p

i−1 to pi.

Set the pixels of I orresponding to oordinates of points in R on.

Algorithm 5: Image deompression

Compression was omputed as the ratio of the �le size between the ompressed and

the original �les. Various lossless methods were onsidered and the orresponding size of

the output �les they produed was used as the referene original �le size. The methods

against whih we ompared the proposed framework are the CCITT G4 standard [77℄

(denoted as FAX4 herein), adopted amongst others by the TIFF image �le format for

binary images, and the widely used standards JBIG [70℄ and JBIG2 [71℄.

As far as the distortion is onerned, a twofold omputation was performed in terms

of measuring the loss of information and the similarity between the initial and the �nal

edge map images. Therefore, the distortion index adopted by MPEG4 [78℄, given by

D

R

=
Number of pixels in error

Number of interior pixels

; (2.7)

was also used in this work. The Hausdor� distane between the original edge map X and

the reonstruted edge map Y s, given by

D

H

(X; Y ) = max
x∈X

min
y∈Y

{|x− y|1}; (2.8)

was used to measure the similarity between X and Y .

For the experimental study, we used two datasets. The Gatorbait dataset [2℄ ontains

the silhouettes of 38 �shes, belonging to 8 ategories. The MPEG7 dataset [1℄ ontains

1400 objet ontours belonging to 70 ategories, with 20 members per eah ategory. All

datasets onsist of binary images. In the ase of the Gatorbait100 dataset, the images

were initially thinned so as to extrat the ontour line. Let us note that in this ase, there

are some inner strutures that were also onsidered in our experiments.

The overall results of our experimental analysis are demonstrated in Tables 2.5 and

2.6, with results for various on�gurations of the line segment detetion algorithms onsid-

ered. The values next to the method pre�x in the �rst olumn of the Tables indiates the

orresponding on�guration of the method. We used the line segment method presented

in hapter 1 and the widely used polygon approximation [10℄, as proposed in [11℄. In our

study the values onsidered for the DSaM thresholds were {[0:3; 2:0]; [0:4; 2:0]; [0:5; 2:0]; [0:8; 2:0];
[1:3; 2:0]; [2:3; 2:0]}. The seond threshold was measured in pixels. As far as the poly-

gon approximation (PA) is onerned, this algorithm applies one threshold ontrolling
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the deviation of a set of points from linearity. In that ase, the thresholds used were

{1; 2; 5; 7; 10} pixels. The perentages regarding the ompression values in Tables 2.5 and

2.6 refer to the �le size produed by the proposed ompression sheme ompared to the

orresponding �le size produed by the related lossless method as mentioned on the seond

row of the tables. More spei�ally, in Table 2.5, in the �rst row, we may onlude that

the proposed sheme, using DSaM for line modeling, provides a ompressed shape, whih

on average (over the whole data set) employs 16% of the bits employed when ompressed

by CCTTI G4 (FAX4) [77℄, 30% of the bits used when ompressed by JBIG [70℄, 30% of

the bits employed by a JBIG2 ompression [71℄, 30% of the bits used when ompressed

with the PWC method [79℄ and 0% when used the bilevel enoder implemented in the

open soure program DjVu [80℄. Moreover, the average distortion in terms of information

loss is D

R

= 9% and the average Hausdor� distane between the original shape and the

ompressed shape is D

H

= 8 pixels. Reall that FAX4, JBIG and JBIG2 are lossless

ompression algorithms.

Table 2.5: Experimental results for the Gatorbait dataset [2℄ (38 shapes).

Method Compression Distortion

FAX4 [77℄ JBIG [70℄ JBIG2 [71℄ PWC [79℄ DjVu [80℄ D

R

(2.7) D

H

(2.16)

DSaM#1 10% 24% 32% 39% 32% 10% 8

DSaM#2 10% 23% 30% 36% 30% 7% 7

DSaM#3 9% 22% 28% 35% 29% 5% 7

DSaM#4 8% 20% 26% 31% 26% 5% 8

DSaM#5 8% 19% 25% 30% 25% 3% 10

DSaM#6 7% 17% 22% 27% 22% 3% 11

PA#1 17% 39% 51% 62% 52% 11% 4

PA#2 11% 27% 35% 42% 35% 1% 4

PA#3 7% 18% 23% 28% 23% 2% 8

PA#4 6% 15% 20% 25% 20% 2% 12

PA#5 6% 14% 18% 22% 18% 6% 17

Figures 2.8-2.9 demonstrate some representative results of the proposed method with

various line segment detetion algorithms. One may observe that the ompression based

on the DSaM line segment detetion preserves more details of the initial set, ompared

to the polygon approximation algorithm, whose result is more oarse.

Finally, the rate-distortion urves for the above experiments are presented in Figure

2.10. The blue line orresponds to the ompression results based on DSaM [6℄, while the

red line refers to the results based on a ompression using polygon approximation [11℄. As

it an be observed, the DSaM method provides a learly better performane. Note that

the bits needed to enode the information for eah method annot be �xed diretly, as

they are a�eted by the tuning of the assoiated thresholds and parameters. Thus, equal

bit rates annot be established for DSaM and polygon approximation.
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Table 2.6: Experimental results for the MPEG7 dataset [1℄ (1400 shapes).

Method Compression Distortion

FAX4 [77℄ JBIG [70℄ JBIG2 [71℄ PWC [79℄ DjVu [80℄ D

R

(2.7) D

H

(2.16)

DSaM#1 16% 30% 29% 44% 37% 9% 5

DSaM#2 15% 28% 28% 41% 35% 9% 5

DSaM#3 14% 27% 26% 39% 33% 9% 6

DSaM#4 13% 24% 24% 35% 30% 10% 7

DSaM#5 12% 23% 22% 34% 28% 10% 7

DSaM#6 10% 20% 19% 29% 25% 12% 9

PA#1 25% 47% 46% 68% 58% 7% 2

PA#2 17% 32% 32% 47% 40% 4% 3

PA#3 11% 21% 21% 31% 26% 7% 6

PA#4 9% 18% 18% 27% 23% 9% 9

PA#5 8% 16% 16% 24% 20% 12% 12

(a) (b) () (d)

Figure 2.8: Representative results of the reonstrution method on the Gatorbait [2℄

dataset. (a) The original image. Results extrated with (b) DSaM [6℄, () polygon

approximation [10℄ with automati tuning (d) polygon approximation [10℄ with threshold

value set to 5 pixels.

(a) (b) () (d)

Figure 2.9: Representative results of the reonstrution method on the MPEG7 [1℄ dataset.

(a) The original image. Results extrated with (b) DSaM [6℄, () polygon approximation

[10℄ with automati tuning (d) polygon approximation [10℄ with threshold value set to 5

pixels.

Another appliation of shape oding is the desription of Video Objet Planes (VOP)

in MPEg4 [65℄ standard. In brief, a VOP is a region of image that desribes an objet.

Through VOP, MPEG4 standard manages to enode independent objets. Figures 2.11
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(a) (b)

Figure 2.10: Rate-distortion urves for (a) the Gatorbait dataset [2℄ and (b) the MPEG7

dataset [1℄. The blue line orresponds to the ompression results based on DSaM [6℄ and

the red line refers to polygon approximation [11℄.

a, b demonstrate an example of a video frame and its orresponding VOP. Again, we

performed the same experimental investigation regarding the eÆieny of the proposed

enoding sheme. Figure 2.11  demonstrates the reonstrution result of the ontour,

based on the DSaM method. The red points depit the initial shape and the and the

green points show the ontour reonstruted with our method. Table 2.7 presents the

results of the omparison regarding the VOP enoding of �gure 2.11 b.

(a) (b) ()

Figure 2.11: An example of a video objet plane. (a) The initial image, (b) the video

objet plane mask and () the reonstrution result with the DSaM method. The red

points depit the initial shape and and the green points show the ontour reonstruted

with our method.

One may observe that the proposed enoding framework provides satisfatory results in

terms of ompression, while o�ering low distortion. The DSaM method provides similar

or better results ompared to the polygon approximation that is used in the MPEG

standard, in terms of ompression, but with far lower distortion. Also, DSaM manages

to signi�antly improve the ompression rate providing an image quality (in terms of

distortion) similar to the lossless algorithms.
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Table 2.7: Experimental results for the VOP of �gure 2.11.

Method Compression Distortion

FAX4 [77℄ JBIG [70℄ JBIG2 [71℄ PWC [79℄ DjVu [80℄ D

R

(2.7) D

H

(2.16)

DSaM#1 16% 44% 42% 66% 56% 169% 4

DSaM#2 12% 32% 30% 47% 40% 151% 4

DSaM#3 10% 27% 26% 40% 34% 178% 5

DSaM#4 9% 24% 23% 36% 30% 193% 4

DSaM#5 9% 23% 22% 35% 29% 261% 5

DSaM#6 7% 20% 19% 30% 25% 267% 4

PA#1 17% 45% 43% 68% 58% 105% 4

PA#2 10% 27% 26% 40% 34% 117% 3

PA#3 6% 16% 15% 24% 20% 213% 5

PA#4 5% 15% 14% 22% 19% 302% 7

PA#5 5% 14% 13% 21% 18% 345% 9

2.4 Retinal Fundus Image Feature Charaterization

2.4.1 Introdution

The detetion and haraterization of various topologial features of the retinal vessels is

an important step in retinal image proessing algorithms within an autonomous diagnosis

system. A deviation from ommon topologial feature patterns may be an indiator

of anomaly. A omprehensive study may be found in [81℄. In a typial retinal vessel

struture, more than 100 juntions may be present [82℄, a fat that makes the manual

haraterization a tedious and time onsuming task. Typial retinal features are presented

in �gure 2.12.

Figure 2.12: The di�erent features that the proposed algorithm an detet. The yel-

low point is an end-point, the orange point is an interior-point and the green point is

a rossover. All the other points are juntions (a T-juntion is shown in red, and a

bifuration is shown in blue). The image is better viewed in olour.

In the urrent investigation, three types of features are deteted: end-points (points

at the extremities of the vessels), interior-points (points along a vessel), juntions (a new

vessel is a branh of a longer one - T-juntions or a vessel is split into two or more new
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vessels - bifuration) and rossovers (one vessel passes over another). Please note that

further proessing is needed to distinguish between a rossover and a bifuration.

A methodology that extrats features from the retinal fundus image and haraterizes

them will be presented. The goal is to detet the intersetion points between the vessels,

as they ould provide useful information to an automati diagnosis system.

2.4.2 The algorithm

The �rst step of our method is to extrat the line segments that model the enter line of

the vessels. Thus, it is ruial that an aurate preproessing step towards that diretion

is applied. For eah line segment, its extreme points are the points that have the largest

distane from the orresponding extreme points of the same line luster.

In �gure 2.13, the points x (summarizing the vessel struture) are depited with red

and blak olor, while the orresponding extreme points y are presented with green and

blue dots. A rule is de�ned to haraterize a point as end point or juntion or rossover.

Let C(x) be the index of the line luster point where x belongs to. In �gure 2.13, two

line lusters are shown (C(x) = 1 and C(x) = 2). To de�ne the neighborhood of extreme

points, a neighborhood radius threshold is de�ned as

T

n

= w ∗ d̄ (2.9)

where d̄ is the mean distane between all the nearest neighbors and w is a onstant that is

learned, as explained later in this setion. Thus, for an extreme point y the neighborhood

N (y) is the set of the points x suh that ||x−y|| ≤ T

n

. Note that y ∈ N (y). In order to

haraterize point y, we de�ne CN (y) as the number of distint line lusters that points

x ∈ N (y) belong to.

In the example shown in �gure 2.13, the studied extreme point y is the green one,

while its neighborhood N (y) is de�ned by a irle entered at y with radius T

n

. Red and

blak points lying within that irle are the neighbors of y. Those points belong either

to line luster 1 or to line luster 2 and thus CN (y) = 2. If all neighbors of y belong to

the same line luster with that of y, then y would be an end-point (CN (y) = 1). In ase

where CN (y) > 2, y would be a juntion or a rossover. The algorithm in its urrent

form does not disriminate between them.

A speial ase ours when CN (y) = 2, where the studied point y is either an interior-

point or a juntion (T-juntion). In that ase, further elaboration is needed to haraterize

the extreme point by examining whether N (y) ontains an extreme point or not. Thus, if

y belongs also to the neighborhood of y

′
, with y

′
denoting the neighbor of y, then y is an

interior-point, otherwise it is a juntion (T-juntion). Please note that the neighboring

relationship we are desribing in that setion is not reetive. For example in �gure 2.13,

the green point, whih is one of the extreme points of luster 1, is neighbor to luster 2 (as

there are some points of luster 2 within the yellow irle that de�nes the neighborhood

of the green point). However, none of the extreme points of luster 2 ontain a point from

luster 1 in their neighborhood, and thus luster 1 is not neighboring to luster 2.
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Figure 2.13: An instane of the point haraterization algorithm. Points x (in red and

blak) orrespond to the thinned lines of the extrated vessels. Green and blue points are

the extreme points y omputed by our DSaM algorithm. The yellow irle demonstrates

the neighborhood of that point (N (y)). Red and blak points lying in that irle are

onsidered as neighbors of that extreme point. In that ase, those points belong either to

line luster with index 1 or to line luster with index 2. Thus, CN (y) = 2. The orange

point orresponds to the nearest neighbor of y among the points of neighbor line luster

(blak points). d is the minimum distane between the aforementioned nearest neighbor

and the extreme points of its line luster.

In our example in �gure 2.13, this means that one of the two blue points would be inside

the yellow irle. In ase that N (y) ontains no extreme point, as shown in �gure 2.13,

then we ompute the minimum distane (denoted by d in �gure 2.13) between the nearest

neighbor (orange point in �gure 2.13) of y among the points of the other neighboring line

luster (blak points in �gure 2.13) and the orresponding extreme points (blue points in

�gure 2.13). If d ≤ d̄, then y is a (juntion) (T-juntion), otherwise it is an interior-point.

A detailed desription of the rules used to haraterize an extreme point y is presented

in Algorithm 6.

2.4.3 Numerial evaluation

To investigate the auray of the proposed algorithm, experiments were onduted on the

DRIVE database [83℄, whih inludes 40 retinal images along with their manual extration

of the vessels. The ground truth used in [82℄, [84℄ was also employed. In our experiments,

the manual segmentations were employed, as the sope of our algorithm is to detet

juntions, rossovers and end points. The reader should refer to [85℄ or [86℄ for a detailed

vessel extration algorithm, whih is a preproessing step of the whole hain. At �rst

a Canny edge detetor [44℄ is applied to extrat the borders of the vessels and then a

thinning algorithm [87℄ is used, to extrat the enter line of the vessels. In �gure 2.14(a),

the original image is shown. Figure 2.14(b) presents the manual segmentation, while the

data used in our retinal parsing algorithm are shown in �gure 2.14().

Note that sine the ground truth refers to the original vessels and not to their enter

lines, whih is the input of our method, we determined a value T

onf

that de�nes a

on�dene region around a ground truth point. A omputed point is onsidered to math

a ground truth point if it lies in its on�dene region. In our experiments, T

onf

is de�ned
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input: An extreme point y omputed by the DSaM algorithm and the orresponding

set of vessel skeleton points x ∈ N (y).

output: The label of y.

if CN (y) = 1 then

y is an end-point.

else if CN (y) = 2 then

y is either a juntion or an interior-point.

Q = {x ∈ N (y)|C(x) 6= C(y)}
z = argmin

x∈Q
{|x− y|}

d = |y − z|.
if d ≤ d̄ then

if the line luster of points of Q is equal to C(y) then
y is an interior-point

else

y is a juntion (T-juntion).

else

y is a juntion (T-juntion).

else if CN (y) > 2 then

y is a juntion (bifuration) or a rossover.

Algorithm 6: Rules for vessel features haraterization

(a) (b) () (d)

Figure 2.14: (a) The original retinal image. (b) The manual segmentation of the vessels

in (a). () Result of thinning the image in (b). (d) The on�dene regions depited as

irles with a radius equal to 1% of the diagonal of the bounding box of the original set.

The �gure is better seen in olor.

as a perentage (1%) of the length of the diagonal of the bounding box of points x. Figure

2.14(d) shows the on�dene regions depited as irles with a radius equal to T

onf

. To

establish a robust value for onstant w (eq. (2.9)), the preision and reall rates were

omputed for values of w between 1:8 and 4:0 with a step of 0:8. Then the F measure

(harmoni mean) was alulated as

F = 2
PR

R+ P

; (2.10)
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where P is the preision and R is the reall:

P =
TP

TP + FP

; (2.11)

R =
TP

TP + FN

; (2.12)

where TP is the number of true positives, that is, the number of relevant items retrieved,

FP is the number of false positives, that is, the number of irrelevant items retrieved and

FN is the number of false negatives, that is, the number of relevant items not retrieved.

Figure 2.15 shows the plot of F measure for various values of parameter w in eq.

(2.9). In our experiments, the F measure takes its maximum value for w = 2:9. The

orresponding point is depited with a blak square in �gure 2.15. In that ase, the

orresponding preision is equal to 91:59% while the reall is 98:58%. The value of d̄

omputed from our experimental data is approximately equal to

√
2, whih leads to T

n

=

4:10, eq. (2.9), orresponding to a neighborhood radius equal to 4 pixels.

Figure 2.15: The F measure, (2.10), for various values of parameter w in (2.9). The blak

square indiates the point that orresponds to the maximum value of F measure. This

value (F = 0:95) ours for w = 2:9 and provides a preision rate of 91:59% and a reall

rate of 98:58%. More details are given in setion 2.4.

The mean exeution time was 109 se for the extration of the line segments and 12

se for the extration and haraterization of features using Matlab on a typial Dual

Core 2x2.50 GHz mahine with 2.0 GB RAM.
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2.5 Elimination of outliers from 2D point sets using the Helmholtz

priniple

2.5.1 Introdution

The modeling and removal of outliers from a set of points has been an ative researh topi

for many deades in image proessing and omputer vision and a variety of algorithms

have been proposed [88℄. They may be as simple as the median �lter to more elaborate

whih are based on random sampling, like RANSAC [36℄ or probabilisti models [89℄.

The Gaussian assumption for data generation has been widely adopted but it is ap-

propriate only for sparse outlier distributions. In general, it involves the omparison of

Eulidean distanes between points with the mean of the distribution expanded by a

number of standard deviation [90℄. Kernel density estimators-based methods provide a

probabilisti approah to determine if a point belongs to the unorrupted set and are

inherently related to lustering or lassi�ation tehniques that separate pure data from

outliers [91, 92℄.

The number of neighbors of a point is a key issue in haraterizing it as outlier [93℄. The

main hypothesis is that pure data are more densely populated than outlying points and

many algorithms have been designed based on this idea. The adopted strategy onsists

in de�ning a neighborhood for eah point, determining a feature that haraterizes the

neighborhood and rejeting points with features having a value smaller than a threshold.

In [12℄, the number of ommon neighbors is de�ned as a similarity index between points

and points with neighborhood size smaller than a threshold are rejeted as outliers. An

otree is used in [94℄ to luster points and an impliit quadri is �t to them to smooth

out outliers.

Inspired by the geometri Gestalt theory, whih addresses the answer to the funda-

mental problem in omputer vision: "How to arrive at global perepts from the loal,

atomi information ontained in an image?" [95℄, Desolneux et al. proposed methods for

deteting geometri strutures [39℄ and edges [96℄ in images by a parameter free method

based on the Helmholtz priniple [97℄. The priniple states that an observed geometri

struture is pereptually meaningful if its number of ourrenes is very small in a random

situation. In this ontext, geometri strutures are haraterized as large deviations from

randomness. The priniple is aompanied by an a ontrario assumption against whih

strutures are deteted.

In this setion, we propose an algorithm for outlier elimination and struture extration

from 2D point louds based on the Helmholtz priniple. The main di�erene with the

methods in [39, 96℄ is that the input to the algorithm is not an image whose pixels lay on a

regular grid but a set of sattered points irregularly distributed in spae. To overome this

limitation, at �rst, the point set is approximated by a loally linear manifold onsisting

of a set of line segments. We show that the lengths of the line segments follow a Pareto

distribution whih is our a ontrario model.
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2.5.2 The Helmholtz priniple

The Helmholtz priniple is a general hypothesis of the Gestalt theory [95℄ interpreting the

way human pereption works. Intuitively, it states that if we take into onsideration ran-

domness as the normal ase for our observations then meaningful features and interesting

events should not be expeted. Consequently, if they are observed they should appear

with a small probability. Moreover, the small probability of observing an event is not a

fator to onsider it as meaningful (or true observation not generated by noise). Take

as an example the toss of an unbiased oin. The probability of getting a head (H) or a

tail (T ) is 1=2 respetively. If we toss the oin suessively N times then the probability

of observing any of the possible sequenes of H and T is (1=2)N , whih is a dereasing

funtion of N and approahes zero as N → ∞. More spei�ally, the following sequenes:

S1 = HTHHTTTHTHHTHT:::H

︸ ︷︷ ︸

N times

S2 = HHHHHHHHHHHHH:::H

︸ ︷︷ ︸

N times

have equal probabilities of appearane. However, S2 is not expeted to appear for an

unbiased oin. Therefore, the low probability of an event may not haraterize it as a

deviation from randomness, as its probability may not truly model the randomness of an

event.

Using the same sequenes S1 and S2, we may de�ne another pair of random variables

n

H

and n

T

modeling the number of H and T present in a sequene. Sine the oin is

unbiased, the expetations of both variables is N=2. Although this is on�rmed in S1,

in sequene S2 the observed values for n

H

and n

T

is N and 0 largely deviating from the

expeted values.

The above observations lead to the onlusion that the small probability of an event

may not be an aurate indiation that this event is meaningful and we need to take into

onsideration that the model we use to validate an event desribes the randomness of

all possible observations. Turning bak to the last example of the oin toss, randomness

was modeled only by ounting the number of H and T in a sequene and not by the

probability of a sequene to appear. Taking both issues into aount yields the omplete

model used to desribe randomness whih is alled a ontrario model.

2.5.3 The algorithm

LetX = {x
i

}
i=1;:::;N be a set of observed 2D points inluding both data points and outliers

(Fig. 2.16(a)).

In order to eliminate the outliers, we ompute at �rst an approximation of the point

set by line segments. To this end, the diret split-and-merge (DSaM) algorithm presented

in hapter 1 an be employed, whih summarizes any point set by a set of the major axes

of highly eentri ellipses. The number of ellipses is automatially determined by the
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(a) (b) ()

Figure 2.16: (a) A a set of points (in red olor) degraded by equal in number outliers (in

blue olor). (b) The distribution of the sorted lengths of the line segments approximating

the point set of (a) using a line segment detetion algorithm. The horizontal axis rep-

resents the indies of the segments and the vertial axis represents the lengths. () The

Pareto distribution for various values of the parameter a with b = 1.

algorithm and it depends on the number and the spatial distribution of the point sets.

In the example of Fig. 2.16(a), the large number of outliers will provide a large number

of line segments with relatively small lengths (due to noise) and a smaller number of line

segments with larger lengths (due to both the unorrupted data and the noise around

them). This distribution of the lengths of the line segments, shown in Fig. 2.16(b) after

sorting the lengths in inreasing order, leads to onsider an a ontrario probabilisti model

of the lengths by a Pareto distribution with density [98℄:

Pareto(x; a; b) =

{
ab

a

x

a+1 ; x ≥ b

0; x < b

(2.13)

where b > 0 and a is a parameter ontrolling the slope of the urve (Fig. 2.16()). Herein,

the length of the segment is onsidered in terms of the number of the points ontributed

to its omputation. The line segment detetion algorithm provides line segments with

uniformly distributed points. Therefore, the length of a segment is equivalent to the

number of points belonging to it.

The purpose of the a ontrario model is to desribe the randomness of the data.

However, it might be possible that outliers are organized in suh a way that they generate

short line segments that are not part of the desired struture. The Pareto distribution

omputes the probability that a segment of a given length appears in the observations.

In an analogy to the oin toss example, this event may be expressed by the probability

of getting H or T (with more possible outomes, whih are the lengths of line segments).

By expanding our initial intuition regarding the rareness of the observation, it is possible

that segments due to outliers would be isolated, as the intrinsi feature of noise is to be

strutureless. Therefore, in order to set up the a ontrario model, the neighborhood of a

line segment should be de�ned to aount for isolated strutures.

Eah line segment has a starting and an ending point. The neighborhood N (�) of a

segment � is de�ned as the set of all those segments �

j

whose starting/ending points are
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loated at a distane less than a threshold to the starting/ending points of �:

N (�) = {�
j

: |�k − �

l

j

| ≤ T; k; l ∈ {s; t}}; (2.14)

where the supersripts {s; t} indiate the starting or the ending point of a segment. Figure

2.17 demonstrates the de�nition of the segment neighborhood for a given line segment.

The neighborhood an be iteratively expanded to take into aount the neighbors of

neighbors up to a �xed depth.

Figure 2.17: An example of the de�nition of the neighborhood of a segment. Points A and

B (yan squares) are the starting/ending points of segment 1. The yellow irle with radius

T determines the neighborhood. Line segments 2 and 3 are part of the neighborhood while

segment 4 is not. The same on�guration applies to point B.

Therefore, the a ontrario model is based on the assumption that a line segment is

more probable to be a true observation if its neighboring segments have large lengths.

This may be expressed by the likelihood:

L(�) =
∏

�

j

∈N (�)

Pareto(�
j

; a; b): (2.15)

Consequently, if L(�) < � we onsider the line segments to be a true observation. The

threshold is automatially determined as � = 10−a=D, where D is the maximum depth

of the neighborhood expansion. It may be observed that the value of � is independent

from the data. Thus, following the rationale in [40, 41, 42℄, it may be asserted that the

proposed method is parameter free. The proedure is presented in Algorithm 7.

input: A set of points X, the depth of expansion D.

output: A set of points Y .

while onvergene is not reahed do

Summarize X by line segments (e.g. [6℄). Let B

i

be the points ontributing to

segment �

i

, for i = 1 : : :N .

Y = ∅.
for i = 1 : : : N do

if L(�
i

) ≤ 10−a=D then

Y = Y ∪ B
i

.

Algorithm 7: Outlier elimination based on the Helmholtz priniple.
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2.5.4 Numerial evaluation

To investigate the eÆieny of the proposed method for outlier elimination, we used

the Gatorbait database [2℄. Degradation of the data set was arti�ially performed in

the following way. For eah point of the original data set, an outlier was generated by

multiplying the oordinates of that point with a uniformly distributed random number in

the interval (0; 1]. The number of outliers added was set equal to the number of pure data

points. Moreover, the pure data were degraded by zero-mean additive Gaussian noise

with an appropriate standard deviation in order to obtain a signal to noise ratio (SNR)

of 55 dB (e.g. Fig. 2.16(a)). The algorithm was applied to 50 di�erent realizations of

outliers.

We onduted omparisons with a density-based method (DBSan [13℄) and the al-

gorithm of Xianhao et al. [12℄. Let us also note that other established methods, suh

as the algorithm in [89℄, were also onsidered but they failed to provide an aeptable

result in our framework of highly orrupted point sets. Finally, we also show the results

of the simple, but in many ases powerful, median �lter for image denoising to highlight

the order of magnitude of the obtained auray with respet to a well known baseline.

To evaluate the results provided by the di�erent algorithms we employed the Hausdor�

distane between two sets of points X and Y :

dH(X; Y ) = max
x∈X

min
y∈Y

{|x− y|}; (2.16)

where X is the original set of points (the ground truth) and Y is the omputed set of

points after outliers removal.

Table 2.8 summarizes the performane of the ompared methods. As it may be seen,

our method may suessfully reover the initial shape. Its maximum distane (10:3),

although smaller than the other algorithms, is due to the fat that, in a few ases, parts

of the pure data were pruned beause the outliers were lose to them. Moreover, we

examined the sensitivity of our method to parameter a of the Pareto distribution by

applying the algorithm using a variety of values for this parameter, namely a = {2; 3; 4; 5}.
As it may be observed, the method is onsistent and its performane does not depend

on this parameter. Larger values of a may not be employed as the numerator in the

Pareto distribution (2.13) inreases beyond omputer auray. As b is the mode of the

distribution, we have set b = 2 in all of the experiments relying on the fat that we searh

line segments and any two points de�ne a line segment. This relatively low value for b is

not in favor of our algorithm, as the model aounts for less populated line segments whih

generally are due to noise. However, the results showed the robustness of the proposed

approah.

Furthermore, it is worth noting that DBSan [13℄ needs tedious parameter tuning

(performed here by trial and error) and the method in [12℄ did not detet many outliers

laying near the shape ontour. Representative results are shown in Fig. 2.18.

A seond set of experiments addresses the problem of outlier elimination for line �tting.

Following the same priniples as in the previous experiments, a set of 500 ollinear points
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Table 2.8: Statistis on the Hausdor� distane (2.16) on the 38 shapes of the GatorBait100

data set [2℄

Method mean std median min max

Proposed method (a = 2) 6.12 1.3 5.8 4.2 10.3

Proposed method (a = 3) 6.07 1.3 5.8 4.1 10.3

Proposed method (a = 4) 6.05 1.4 5.6 4.0 10.3

Proposed method (a = 5) 5.99 1.3 5.7 4.1 10.3

DBSan [13℄ 12.62 3.1 11.2 10.5 23.1

Xianhao et al. [12℄ 84.59 19.6 83.0 51.4 129.7

Median Filter 208.17 17.0 208.4 174.9 243.8

(a) (b) () (d)

Figure 2.18: Outlier elimination from the data set of Fig. 2.16(a) by (a) the �rst and (b)

the last iterations of the proposed method, () Xianhao et al. [12℄, (d) DBSan [13℄. The

red boxes highlight representative false points provided by the methods.

were orrupted by outliers and Gaussian noise. Various experiments were onduted with

an inreasing number of outliers at eah on�guration. In the more hallenging setup,

the number of outliers was equal to the number of points. Eah experiment was repeated

50 times and statistis on the �tting error, in terms of Eulidean distane between the

estimated and the true parameters of the lines were omputed. The performanes of the

ompared methods are shown in Fig. 2.19. For a more meaningful evaluation, we have also

ompared our method with two robust algorithms, namely RANSAC [36℄ and the robust

regression method proposed in [99℄. As it may be seen, our algorithm outperforms both

of these methods whih are established in the omputer vision literature. Please notie

the di�erent sales in the absissas in the graphs in Fig. 2.19 whih learly show the

auray of the proposed algorithm as its maximum error, even in the more hallenging

senario is less than one oordinate unit. On the other hand, only RANSAC is relatively

ompetitive but its �tting errors are muh more important.

A �nal set of experiments investigated the dependene of the proposed framework on

the involved line segment detetion algorithm. To this end, the Diret Split-and-Merge

(DSaM) framework [6℄ and the widely used polygon approximation (PA) [10℄ [5℄ were

employed in the orresponding step of Algorithm 7. In both ases, the parameters of

the algorithm were set as a = 2, b = 2, D = 3. The test image of Figure 2.20(a) was

degraded by zero-mean additive white Gaussian with varying standard deviation and then

the various outlier elimination methods were ompared. The algorithm was applied to

50 di�erent realizations of outliers. Figure 2.20(b) demonstrates a degraded instane of
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(a) Proposed method (�rst iteration). (b) Proposed method (last iteration).

() Xianhao et al. [12℄. (d) DBSan [13℄.

(e) RANSAC [36℄. (f) Dumouhel et al. [99℄.

Figure 2.19: Boxplots of the line �tting errors for the ompared methods. Notie the

di�erent sales at the absissas.

the test image (SNR = −1dB). The overall results are shown in Table 2.9, where it may

be observed that DSaM provides better results ompared to PA, due to the fat that PA

annot ompute valid line segments. Representative results of the line segment modeling
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are shown in �gure 2.21. Notie that the PA is trapped by the outliers and produes a

large number of short line segments, while DSaM manages to provide a valid model. This

on�rms that the proposed framework an be aurate independently of the line segment

detetion algorithm seleted, provided that the latter establishes a valid model.

(a) (b)

Figure 2.20: (a) A test image and (b) its degraded version at SNR = −1dB.

Table 2.9: Statistis on the Hausdor� distane (2.16) on the experiments based on the

test image of �gure 2.20(a).

Method mean std median min max

Helmholtz + DSaM [6℄ 16.86 2.45 16.03 15.00 21.00

Helmholtz + PA [10℄ 81.02 19.50 88.41 46.84 94.87

DBSan [13℄ 64.97 43.22 91.83 2.24 98.81

Xianhao et al. [12℄ 29.29 19.22 28.00 10.00 49.24

(a) (b)

Figure 2.21: Line segment modeling of image in �gure 2.20(b) omputed (a) by DSaM[6℄,

PA [10℄. Notie that the PA is trapped by the outliers and produes a large number of

short line segments, while DSaM manages to provide a valid model.
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Part II

Image and Point set Registration



Chapter 3

Registering sets of points using

Bayesian regression

3.1 Introdution

3.2 Registration of sets of points via regression

3.3 Experimental Results and Disussion

3.1 Introdution

Registration of two sets of points is a ommon step in many appliations in omputer

vision, pattern reognition, image proessing and medial image analysis. The problem

onsists in determining a geometrial transformation that brings two sets of points into

alignment. This ould be ahieved, for instane, through the establishment of orrespon-

denes. However, the problem is not always well-posed and beomes more ompliated by

the existene of noise or outliers, making the determination of orrespondenes harder.

Another drawbak rises from the geometri transformation itself, as there may be an in�-

nite number of allowed high dimensional mappings. Also, the de�nition of the similarity

measure is an open issue, sine one an hoose from a variety of metris.

Many methods have been proposed to solve the orrespondene problem. A straight-

forward approah is based on the nearest neighbor riterion to establish orrespondenes,

as in the Iterated Closest Point (ICP) algorithm [100℄. However, despite its simpliity,

this method results in many loal minima, providing a suboptimal solution, and does not

guarantee that the orrespondene is one-to-one. Many variants of this algorithm have

been proposed improving the behavior of the method in the presene of noise. A detailed

review an be found in [101℄. Nevertheless, in all ases, ICP methods neessitate a good

initialization near to the optimal solution in order to prevent the energy funtion from

getting trapped in loal minima.
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The Robust Point Mathing (RPM) algorithm [14℄ relies on a deterministi annealing

sheme. The algorithm applies the softassign priniple [102℄ for mathing and the thin-

plate spline interpolation [15℄ for non-rigid mapping. The rationale is to transfer the

assignment problem from a hard approah to a soft one, that is to de�ne a probability

for eah assignment.

The Coherent Point Drift (CPD) algorithm was also proposed in [17℄, where the reg-

istration is treated as a Maximum Likelihood (ML) estimation problem with motion

oherene onstraints over the veloity �eld suh that one point set moves oherently in

order to be aligned with the other. In that ase, transformation parameter estimation

and determination of orrespondenes are simultaneously handled.

Mixture models were proposed as a framework to solve the registration problem

(GMMReg) [103℄. Eah set of points is represented by a mixture of Gaussians and reg-

istration is de�ned as a problem of aligning the two mixtures. The L2 metri is used as

a measure of mixture alignment. An extension of the method using robust Student's-t

modeling for the data was also proposed in [104℄.

Shape ontext was onsidered in [105℄, where an iterative algorithm is designed to

aount for the shape mathing, registration and detetion. The problem is formulated in

terms of probabilisti inferene using a generative model and the EM algorithm. Shape

features are used in a data-driven tehnique to address the problem of initialization.

A tehnique for establishing orrespondenes is proposed in [106℄, where features of a

2-D point set whih are invariant with respet to a projetive transformation are extrated.

The proposed algorithm is based on the omparison of two projetive and permutation

invariants of �ve-tuples of the points. The best-mathed �ve-tuples are then used for the

omputation of the projetive transformation and the one having the maximum number

of orresponding points is used.

Moreover, in [107℄, a novel tehnique is introdued to solve the rigid point pattern

mathing problem in Eulidean spaes of any dimension. The point pattern mathing is

modeled as a weighted graph, where nodes represent points and the weights of the edges

are equal to the Eulidean distanes between nodes. The graph mathing is formulated

as a problem of �nding a maximum probability on�guration in a graphial model.

In [108℄, the notion of a neighborhood struture for the general point mathing problem

is introdued. Then, the point mathing problem is formulated as an optimization problem

to preserve loal neighborhood strutures during mathing. The method has a simple

graph mathing interpretation, where eah point is a node in the graph, and two nodes

are onneted by an edge if they are neighbors. The optimal math between two graphs

is the one that maximizes the number of mathed edges.

The majority of the registration methods mentioned so far, model the non-rigid map-

ping through a spline interpolation method, and in partiular with the thin-plate spline

(TPS) [15℄. In this work, we onsider the transformation parameter estimation issue as

a regression problem and a Bayesian model, namely Relevane Vetor Mahine (RVM)

[109℄ is used to solve this problem. We onsider here the standard RVM although the
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method may employ other variants suh as the twinned RVM [110℄ whih applies double

training or the multivariate RVM [111℄.

Our work is motivated by the pioneering researh presented in [112℄ where orrespon-

denes are estimated using a softassign approah. Softassign is a tehnique for solving an

assignment problem. As opposed to hard assignment, softassign weights eah mathing

to indiate the quality of the orrespondene. Hard assignment is the limit version of

softassign. In the work herein, instead of solving the assignment problem based on the

smallest distane, we utilize this distane to reate a ost matrix that desribes the ost

of an assignment. Then, the orrespondenes are extrated with a ombinatorial opti-

mization algorithm, the Hungarian algorithm [113℄. The rationale behind this algorithm

is to assign a single task to a single worker, based on an assignment ost matrix, suh

that the total ost is minimum. The temporal omplexity of the algorithm is polynomial,

and in partiular O(n3). After the orrespondene between points has been established,

a Bayesian regression model (RVM) is used to infer the transformation parameters.

The Hungarian algorithm has also been used in [7℄, where a feature-based registration

method is demonstrated. Points are assumed to desribe a shape and a histogram (shape

ontext) is alulated, desribing the spae distribution of points. This histogram is used

to de�ne the ost matrix of the Hungarian algorithm. Our work di�erentiates from [7℄

in the way the geometri transformation is treated. We estimate the transformation's

parameters (both rigid and non rigid) through regression (RVM) while the latter method

uses thin plate splines interpolation. Another substantial di�erene is that in our approah

points are not onsidered as parts of a shape representation, sine our method is more

general.

The main ontribution of this work is that using a regression framework based on

RVM addresses the problem of eventual false orrespondenes with respet to methods

relying on interpolation shemes, like TPS. More preisely, a single false orrespondene

may lead to a totally erroneous registration if TPS is used. For example, this is a ase

of the RPM [14℄, or the GMMReg [103℄ methods. In �gure 3.1(a), the orret orrespon-

denes between the soure and the target sets are represented by line segments. In �gure

3.1(b), two points were falsely mathed on purpose simulating a wrong orrespondene

solution. The result of TPS [15℄ is shown in �gure 3.1(), where large registration errors

are present. The result of the proposed registration sheme based on RVM regression

is shown in �gure 3.1(d), where the registration is orret. TPS by its de�nition tries

to minimize the total bending energy to provide a smooth model, whih is an approah

that restrits the apability of providing good results in areas where the orrespondene

is orretly established. On the other hand, RVM onsiders only the loal neighborhood

to extrat the regression model, due to the priors it implies on eah point. The losed

form solution for the transformation model provided by RVM is ontinuous and loally

smooth depending on the assignment solution and more importantly, it is robust to false

mathes. The orrespondene estimation step used in this work is the Hungarian algo-

rithm. Alternative methods ould also be used to solve the orrespondene problem, like
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the standard softassign approah [102℄.

(a) (b) () (d)

Figure 3.1: A false mathing simulation example, with a point set used in [14℄. (a) Corret

orrespondenes between the soure and the target sets are represented by line segments.

(b) Two points were falsely mathed on purpose simulating a wrong orrespondene solu-

tion. The yellow box depits the false mathed points. () The result of TPS [15℄. Notie

that large registration errors are present. (d) The result of the proposed registration

sheme based on RVM regression. In this ase the registration is orret.

The proposed method is similar in spirit with RPM [14℄ and CPD [17℄ in the sense that

it employs a framework of iteratively updating the orrespondene and the estimation

of the transformation parameters. Both RPM and CPD are based on an expetation-

maximization (EM) [114℄ framework. In RPM and CPD the E-step estimates soft or-

respondenes through a posterior distribution. In our method the E-step involves any

orrespondene estimation algorithm, whih in our ase is the Hungarian algorithm. A

major di�erene in our approah with respet to RPM and CPD is that in the M-step the

transformation is estimated using Bayesian regression (RVM). On the other hand RPM

uses TPS interpolation. Moreover, RVM provides a losed form transformation both for

the rigid and non-rigid ases ompared to CPD, where the two ases have to be mod-

eled with di�erent set of parameters [17℄. A modeling of a rigid registration ase with a

non-rigid model may provide inauraies in the CPD result.

We evaluated our method by omparing it with the CPD [17℄, RPM [14℄ and GMMReg

[103℄ algorithms for both rigid and non-rigid transformations. The results indiate that

our method is more aurate than the state of the art methods ompared onerning

the robustness against false mathing during the orrespondene estimation step and the

parametrization of the method. The innovation of our method is that by utilizing a robust

orrespondene estimation algorithm initially, we ould relax the onstraints imposed in

the transformation modeling step so as to handle any erroneously mathed points.

3.2 Registration of sets of points via regression

In a point set registration problem two sets of points are involved. The soure point set

X = {x
i

∈ R
d}Nx

i=1 and the target point set T = {t
i

∈ R
d}Nt

i=1. In our experiments, we

assume that N

x

= N

t

= N . In ase the two sets have di�erent ardinalities, we add

extra points (as desribed in appendix I). In our method the registration transformation
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is modeled by a RVM. However, one would observe that the RVM desribed in appendix

II is de�ned for univariate output vetors. In other words, the target variable has to be a

salar. However, in our ase t

i

∈ R
d

, and thus, in order to overome this diÆulty, we used

d distint RVMs, one for eah dimension k. Alternatively, one ould use a multivariate

RVM, as desribed in [111℄ or the twinned RVM [110℄.

Eventually, the proposed model is a vetor valued funtion T , having parameters W ,

representing the geometri transformation bringing setX into alignment with set T . Thus,

ideally we would have for every point t

i

∈ T , i = 1; :::; N :

t

i

= T (x
C

i

;W ) = [T 1(x
C

i

;w1); :::; T k(x
C

i

;wk); :::; T d(x
C

i

;wd)]T ; (3.1)

where W = {wk ∈ R
N}d

k=1, with w
k

being the weight vetor of dimension N for the k-th

RVM, T k

is a RVM as desribed by (5.1) in appendix II and C

i

is the index of the point

in X orresponding to the i-th point of T . In other words, the ideal transformation is

t

k

i

= T k(x
C

i

;wk) i = 1; : : : ; N; k = 1; : : : ; d (3.2)

with t

k

i

representing the k-th omponent of point t

i

∈ T .

The proposed method onsists of an iterative sheme, that, at eah iteration alternates

between the method for establishing orrespondenes (e.g. Hungarian algorithm) and the

method for estimating the registration transformation (RVM training). The orresponding

objetive funtion that is minimized has the following form:

J(Æ;W ) =

N∑

i=1

N∑

j=1

Æ

ij

C
x

i

;T (x
j

;W ) +

N∑

i=1

N∑

j=1

Æ

ij

||t
i

− T (x
j

;W )||2: (3.3)

Its optimization involves two steps at eah iteration. In the �rst step, we assume a known

registration transformation T (RVM) and try to estimate the optimal orrespondenes Æ

ij

with the Hungarian algorithm. Thus, the objetive funtion is minimized with respet to

Æ

ij

, ∀ i; j. In the seond step, the orrespondenes Æ

ij

are �xed to the values omputed in

the �rst step and a RVM training proess takes plae to update the registration transfor-

mation T in order to math the estimated orrespondenes. Thus, in this seond step, the

objetive funtion is minimized with respet to the set of weights W = {wk ∈ R
N}d

k=1.

Sine both omputational steps at eah iteration minimize the objetive funtion J , the

whole iterative proess onverges to a minimum of J .

The overall proedure is presented in Algorithm 8. Eah iteration of the registration

algorithm involves two steps. At �rst, orrespondenes between points of the soure set

X and the target set T are estimated by the Hungarian algorithm and then based on

these orrespondenes, d RVMs are trained, one per dimension, to solve the regression

problem of transforming the soure set to the target set. We initialize the registration

transformation as the identity mapping.
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1: Initialize the registration transformation as the identity mapping and selet the type

of basis funtion �

i

(x), i = 1; :::; N for the RVM.

2: Determine the orrespondenes between sets of points X, T .

3: Calulate distane matrix C
ij

= ‖T (x
i

;W )− t

j

‖ ∀ i = 1; : : :N; j = 1; : : : ; N .

4: Solve the assignment problem with the Hungarian algorithm, where C is an assignment

ost matrix.

5: Transformation parameters estimation - train one RVM per dimension of

point set X.

6: for all RVM

k

, k = 1; : : : ; d do

7: Calulate m

k

and �

k

by (5.7) and (5.8).

8: Calulate a

k

i

; �

k

; 

k

i

by (5.9), (5.10) and (5.11).

9: Iterate steps (3.1) and (3.2) until onvergene to obtain the new RVM

k

, with w

k =

m

k

.

10: Iterate steps 2, 3 until onvergene of the objetive funtion J(Æ;W ) (3.3).

Algorithm 8: The RVM-Hungarian method for registration of sets of points

3.3 Experimental Results and Disussion

In order to evaluate our method, several experiments were onduted in a olletion of

sets of points, �rstly used in [112℄, and widely used in the related literature (�gure 3.2).

The algorithm was tested both for its auray and its robustness to noise. Experiments

with real data were also onduted. For that purpose we used the 2D range data from [16℄

(�gure 3.3(a)) and the 3D fae of [17℄ was also used in our experiments (�gure 3.3(b)).

Experiments are divided into two types, aording to the transformation type (either

rigid or non rigid). In ase of non rigid transformation, the non rigid deformation was

followed by a rigid one, to make the problem more hallenging. In that ase the whole

transformation remains non-rigid. In all ases the registration transformation was ini-

tialized to the identity mapping. The angle of the rigid transformation varied between

[0◦; 10◦], while the translation, varied between [−0:2; 0:2] × [−0:2; 0:2]. The registration

error is de�ned as the Eulidean distane between the referene point and its orrespond-

ing registered. Points of �gure 3.2 range in [0; 1]× [0; 1], while those of �gure 3.3(a) range

in [−40; 10]× [−10; 30] and of �gure's 3.3(b) in [−2; 2]× [−2; 2]× [−2; 2].

In our implementation, di�erent kernels were examined (Gaussian, Student's t-kernel

and Laplaian) as desribed in [109℄ and implemented in [115℄. The Laplaian kernel,

K(x; y) = e

− |x−y|
�

, proved to be the most eÆient model for the tested input data shown

in �gure 3.2. However, the di�erenes are not onsiderable as the registration auraies of

the ompared methods di�er at the third deimal digit. Table 3.1 presents the registration

error statistis of the rigid ase, while table 3.2 demonstrates the results of the non rigid

ase. In all ases, variable kernel widths were used in the range between 5% and 30% of

the mean variane of the referene set. The Laplaian kernel proved to be less sensitive

to hanges in the variations of the kernel width ompared to the Gaussian and Student's
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t-kernels.

Table 3.1: Registration error statistis for rigid transformations using di�erent kernels

on the shapes of �gure 3.2. The kernel width varies between 5% and 30% of the mean

variane of the referene set.

Kernel mean std median min max

Gaussian 0.0021 0.0019 0.0013 0.0009 0.0049

Student's t 0.0007 0.0012 0.0001 0.0000 0.0026

Laplaian 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3.2: Registration error statistis for non rigid transformations using di�erent kernels

on the shapes of �gure 3.2. The kernel width varies between 5% and 30% of the mean

variane of the referene set.

Kernel mean std median min max

Gaussian 0.0029 0.0022 0.0020 0.0013 0.0061

Student's t 0.0009 0.0015 0.0002 0.0001 0.0031

Laplaian 0.0001 0.0001 0.0000 0.0000 0.0002

In order to ompare our method with the state-of-the-art, our results were ompared

with the CPD [17℄, the RPM [14℄ and the GMMReg [103℄ algorithms. In this experimental

on�guration the kernel width � was set to 20% of the variane of soure point set X for

all ases of our experiments.

The ode for implementing these algorithms was found in the web pages of the or-

responding authors. RPM was implemented in Matlab environment, while CPD and

GMMReg were programmed in C/C++ (Mex �les). Therefore, this has an impat on

the di�erent exeution times of the algorithms. Our method was partially implemented

in Matlab (RVM training [109℄, by the oÆial web page of Mike Tipping [115℄) and in C

(Hungarian algorithm for retangular and square ost matries, an implementation found

in the Mathwork File Exhange web page). Several experiments were onduted (rigid

and non rigid transformations) and apart from the registration error (root mean squared

error) the exeution time and onvergene rate (i.e. how many iterations were neessary

for the algorithm to onverge) were also measured. A general onlusion is that the pro-

posed Bayesian regression framework provides better results ompared to RPM, where

this algorithm either demands an extra post proessing re�nement step (e.g. registration

of the entroids, �gures 3.6()) or ompletely fails (e.g. tables 3.3, 3.4, 3.7, 3.8).

Eah experiment was run 20 times and error statistis were alulated. In eah on-

�guration, a di�erent registration transformation parameter set was used. The exeution

times are presented in table 3.5, along with the onvergene rate in table 3.6 for experi-

ments with noise free data and points in presene of noise. The initial sets of points, with
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representative results are demonstrated in �gure 3.4 for the rigid ase and in �gures 3.5,

3.6 for the non rigid ase. Also, to investigate the robustness of the algorithm to noise,

the points were orrupted by Gaussian noise (with zero mean and small variane so as

the shape does not hange signi�antly). The initial sets of points, with the estimated

results are demonstrated in �gures 3.8 - 3.11, while the statistis are presented in tables

3.3 (rigid ase) and 3.4 (non rigid ase) for noise free points and in tables 3.7 (rigid ase)

and 3.8 (non rigid ase) for points orrupted by Gaussian noise with zero mean value. To

further support the statistial presentation of the registration error results, the p-value

was omputed, so as to verify the statistial signi�ane of the analysis. Notie that in

ase of unorrupted data, the deviations between real and omputed values are too small

for all the studied methods, and thus the p-value was not omputed. In the ase of data

orrupted by Gaussian noise, there are di�erenes between the results provided by eah

method. As it may be observed in the last row of Table 3.7 and Table 3.8, in all ases,

the omputed p-value is less than a threshold of signi�ane level of 5%, whih is usually

employed.

One an observe that the proposed method, provides better results in general ompared

to CPD, RPM and GMMReg. Observe for example the onentration of estimated target

points in an erroneous spae (no underlying orresponding soure points) in �gure 3.6(b)

and �gure 3.6(d), even in the ase of noise free data. The same also applies in ase of

points orrupted by noise, where CPD and GMMReg provided results that desribe the

shape of the target set quite well but there are points with no underlying orrespondenes,

e.g. �gures 3.9 () and 3.9 (e) or �gures 3.10 () and 3.10 (e). On the other hand, RPM

omputed a good mathing between the registered shapes but a re�nement step is needed

to ahieve perfet registration, e.g. �gure 3.6(). In general, RPM proved too diÆult to

be tuned, and therefore provided a high rate of failures.

Conerning the CPD and the GMMReg methods, the time omplexity of these algo-

rithms are lower than ours whih is partially implemented in Matlab (table 3.5). The

fat that under similar omparison onditions our algorithm may provide similar results

is justi�ed by the onvergene omparison (table 3.6), where one may observe that our

tehnique onverges quite faster than CPD and GMMReg. A general onlusion regard-

ing the omparison of our method and CPD/GMMReg is, that, taking into aount the

registration error, the implementation and parameter tuning (e.g. seleting the type of

transformation rigid or non rigid) along with the time omplexity our method may pro-

vide better registration results, under the ondition that a good assignment solution is

provided.

Another issue studied in our experiments is the integration of an annealing sheme,

either in the orrespondene establishment (step 1 of algorithm 8) or in the RVM training

(step 2 of algorithm 8). One approah was to embed softassign [102℄, as solution to

the orrespondene establishment instead of the Hungarian algorithm. The annealing

temperature was initialized to 10% of the maximum pairwise distane between the points.

After eah iteration, the annealing temperature was redued to 0.9 of its previous value.
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(a) (b) () (d)

Figure 3.2: The initial set of points used in our experiments, [14℄. (a) Sine, (b) Blob, ()

Fish and (d) Ideogram.

(a) (b)

Figure 3.3: (a) 2D range data used in our experiments [16℄. (b) 3D set of points repre-

senting a fae used in our experiments (3D fae) [17℄.

(a) (b)

Figure 3.4: Rigid transformation experiment with 2D points of a range san [16℄. (a) Ref-

erene set of points (red) and deformed set of points (blak) of a 3D fae. (b) Registration

result for the proposed method.
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(a) (b) ()

(d) (e)

Figure 3.5: Non rigid transformation experiment. (a) Referene set of points (red) and

deformed set of points (blak). Registration result for (b) CPD, () RPM, (d) GMMReg

and (e) the proposed method. The di�erene is better highlighted in olor.

(a) (b) ()

(d) (e)

Figure 3.6: Non rigid transformation experiment. (a) Referene set of points (red) and

deformed set of points (blak). Registration result for (b) CPD, () RPM, (d) GMMReg

and (e) the proposed method. The di�erene is better highlighted in olor.
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(a) (b)

Figure 3.7: Non rigid transformation experiment with 3D points [17℄. (a) Referene set

of points (red) and deformed set of points (blak) of a 3D fae. (b) Registration result

for the proposed method.

Table 3.3: Mean registration error for rigid transformations.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.00 14.62 0.00

Blob 0.00 0.00 11.53 0.00

Fish 0.00 0.00 22.60 0.00

Ideogram 0.00 0.00 23.62 0.00

2D range 0.01 0.04 fail 0.00

Table 3.4: Mean registration error for non-rigid transformations.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.00 13.45 0.00

Blob 0.00 0.00 11.19 0.00

Fish 0.00 0.00 21.87 0.00

Ideogram 0.00 0.00 23.50 0.00

3D fae 0.00 0.08 fail 0.00

Table 3.5: Mean exeution time (se) of the ompared methods for the whole set of

experiments presented in setion 3.3. The Hungarian-RVM is partially implemented in

Matlab (RVM training) and C (Hungarian algorithm). RPM is totally implemented in

Matlab while both CPD and GMMReg are totally implemented in C.

Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Pure Data 0.43 0.08 1.97 0.19

Gaussian Noise 0.30 0.08 2.53 0.49
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Table 3.6: Average number of iterations of the ompared methods for the whole set of

experiments presented in setion 3.3.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Pure Data 2 21 97 55

Gaussian Noise 2 20 87 56

(a) (b)

Figure 3.8: Rigid transformation experiment in presene of noise. (a) Referene 2D range

set of points (red) and deformed set of points (blak), [16℄ orrupted with zero mean

additive Gaussian noise. (b) Registration result for the proposed method. The di�erene

is better highlighted in olor.

(a) (b) ()

(d) (e)

Figure 3.9: Non rigid transformation experiment in presene of noise. (a) Referene set

of points (red) and deformed set of points (blak) orrupted with zero mean additive

Gaussian noise. Registration result for (b) CPD, () RPM, (d) GMMReg and (e) the

proposed method. The di�erene is better highlighted in olor.
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(a) (b) ()

(d) (e)

Figure 3.10: Non rigid transformation experiment in presene of noise. (a) Referene

set of points (red) and deformed set of points (blak) orrupted with zero mean additive

Gaussian noise. Registration result for (b) CPD, () RPM, (d) GMMReg and (e) the

proposed method. The di�erene is better highlighted in olor.

(a) (b)

Figure 3.11: Non rigid transformation experiment in presene of noise. (a) Referene 3D

set of a fae points (red) and deformed set of points (blak), [17℄ orrupted with zero mean

additive Gaussian noise. (b) Registration result for the proposed method. The di�erene

is better highlighted in olor.
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The results for the various ombinations are presented in tables 3.9 and 3.10. As it

an be observed, all the mathing variants provide similar auray, regarding the mean

squared error. However, onsidering the omplexity of the model, diret appliation of

the Hungarian algorithm appeared to be the most eÆient approah. A few parameters

have to be estimated while the exeution time is onsiderably smaller. A straightforward

implementation of the Hungarian algorithm demands less than one third of the softassign

exeution time. Based on the aforementioned remarks, we prefer the ombination of the

Hungarian algorithm (for solving the orrespondene problem) with RVMs (for estimating

the transformation) without any annealing sheme.

Table 3.7: Mean registration error for rigid transformations in presene of noise.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.01 14.62 0.01

Blob 0.00 0.01 11.53 0.01

Fish 0.00 0.01 22.61 0.01

Ideogram 0.00 0.01 23.86 0.01

2D range 0.01 0.51 fail 0.48

p-value - 0.00 10−15
0.00

Table 3.8: Mean registration error for non-rigid transformations in presene of noise.

point set Hungarian-RVM CPD [17℄ RPM [14℄ GMMReg [103℄

Sine 0.00 0.01 14.68 0.01

Blob 0.00 0.01 11.47 0.01

Fish 0.00 0.01 22.48 0.01

Ideogram 0.00 0.01 23.72 0.01

3D fae 0.00 0.01 fail 0.00

p-value - 10−4 0:05 0:03

Table 3.9: Registration error statistis for non-rigid transformations.

point set Hungarian-RVM

mean std median max min

sine 0.00 0.00 0.00 0.00 0.00

blob 0.00 0.00 0.00 0.00 0.00

�sh 0.00 0.00 0.00 0.00 0.00

ideogram 0.00 0.00 0.00 0.00 0.00
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Table 3.10: Registration error statistis for non-rigid transformations.

point set Softassign-RVM

mean std median max min

Sine 0.02 0.02 0.02 0.01 0.04

Blob 0.02 0.02 0.02 0.00 0.04

Fish 0.01 0.01 0.01 0.01 0.02

Ideogram 0.01 0.00 0.01 0.00 0.01

More experiments were onduted to investigate the robustness of RVM regression

with respet to TPS interpolation in the registration of point sets. For that purpose, we

�xed the orrespondenes between the referene and the target sets in order to ontain

a number of false mathes. Two types of experiments were performed. In the �rst

type, the false mathes preserved the one-to-one orrespondene, that is, one point of

the soure set orresponds to exatly one point in the target set (one to one). In the

other type of experiments, one point of the soure set may orrespond to one or more

points in the target set (one to many). Then, we applied the transformation (TPS or

RVM) and we ounted the number of orret alignments. An alignment of two points

was onsidered to be orret if the Eulidean distane between a transformed point and

its orresponding was less than a prede�ned threshold. By varying the threshold we may

plot a urve demonstrating the performane of the ompared methods. These urves are

shown in �gure 3.12 for various ases of false mathes on a set of 60 2D points. The urves

orrespond to a rigid transformation on the set of �gure 3.2(a). The translation parameters

were �xed to [0:2; 0:3]T and the rotation angle varied in the interval [0◦; 80◦] with a step of

10◦ degrees. The urves in �gure 3.12 show the average values between all angles examined

per threshold. Notie that the RVM regression always provides an aurate result and

justi�es our laim that it an model better a registration transformation. In ase of one

to one orrespondene, the target and the transformed sets almost oinide, while in the

ase of one to many orrespondenes, the registration result is lose to the target set, and

the shape is generally preserved. On the other hand, TPS ompletely fails to model the

registration transformation even with few false mathes. This behavior is justi�ed by the

fat that RVM does not onsider the whole set for extrating the regression model. A

representative example is also shown in �gure 3.1.

In the same spirit, we examined the smoothness of the resulting transformation of RVM

with respet to TPS. Following the same proedure, the number of false orrespondenes

was gradually inreased and the smoothness of the transformation was omputed. We

de�ne the smoothness of a transformation T that registers set X to Y as

S(T ) =
∑

x∈X
x

′∈N (x)

(d(x;x′)− d(T (x)− T (x′)))
2

(3.4)

where N (x) is the set of nearest neighbors of x in X, d(p; t) = ||p− t|| is the Eulidean
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Figure 3.12: Curves representing the number of points orretly transformed with respet

to a threshold determining the orret transformation using RVM (top row) and TPS

(bottom row) when a number of initial false mathes is established in soure and target

sets. A point in the soure set is orretly transformed if, after transformation, its distane

with respet to its orret ounterpart is below the threshold. The left olumn shows

results with false assignments that preserve the one-to-one mathing. In that ase the

RVM provides a onsistent behavior and its urves are all at 100% orret transformation.

The right olumn shows results with false assignments that do not preserve the one-to-one

mathing.
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distane between points p and t, while T is either the RVM or the TPS transformation.

The quantity given by (3.4) has a high value (indiating non smoothness) when a point

and its neighbors in the soure set have ounterparts loated at distant points in the

target set. In other words, if the distane of the points to its neighbors in the soure set

is relatively di�erent with respet to the distane of their ounterparts in the target set

a high penalty is added in the smoothness quantity. The urve in �gure 3.13 presents

the smoothness of the transformation by varying the number of false mathes, and the

number of neighbors inN (x). Notie that RVM provides a quite smoother transformation

although it may result to foldings if the number of false mathes is inreased.

Figure 3.13: Smoothness (3.4) of the RVM (top row) and TPS (bottom row) under

various number of false mathes. The left olumn shows results with false assignments

that preserve the one-to-one mathing. Notie that the sale of vertial axis at the top-left

plot is 10−5
indiating a very smooth transformation. The right olumn show results with

false assignments that do not preserve the one-to-one mathing.
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Chapter 4

Registering images and sets of points

using Mixture Models

4.1 Introdution

4.2 Image registration with mixtures of Gaussian and Student's t-distributions

4.3 Robust registration of point sets with mixtures of Student's t-distributions

4.4 Experimental results

4.1 Introdution

The goal of image registration is to geometrially align two or more images in order

to superimpose pixels representing the same underlying struture. Image registration

is an important preliminary step in many appliation �elds involving, for instane, the

detetion of hanges in temporal image sequenes or the fusion of multimodal images.

For the state of the art of registration methods we refer the reader to [116℄. Medial

imaging, with its wide variety of sensors (MRI, nulear, ultrasoni, X-Ray) is probably

one of the �rst appliation �elds [117, 118, 119℄. Other researh areas related to image

registration are remote sensing, multisensor robot vision and multisoure imaging used

in the preservation of artisti patrimony. Respetive appliations inlude the following of

the evolution of pathologies in medial image sequenes [120℄, the detetion of hanges

in urban development from aerial photographs [121℄ and the reovery of underpaintings

from visible/X-ray pairs of images in �ne arts painting analysis [122℄.

The overwhelming majority of hange detetion or data fusion algorithms assume that

the images to be ompared are perfetly registered. Even slightly erroneous registrations

may beome an important soure of interpretation errors when inter-image hanges have
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to be deteted. Aurate (i.e. subpixel or subvoxel) registration of single modal images

remains an intriate problem when gross dissimilarities are observed. The problem is

even more diÆult for multimodal images, showing both loalized hanges that have to

be deteted and an overall di�erene due to the variety of responses by multiple sensors.

Sine the seminal works of Viola and Wells [123℄ and Maes et al. [124℄, the max-

imization of the mutual information measure between a pair of images has gained an

inreasing popularity as a riterion for image registration [125℄. The estimation of both

marginal and joint probability density funtions of the involved images is a key element

in mutual information based image alignment. However, this method is limited by the

histogram binning problem. Approahes to overome this limitation inlude Parzen win-

dowing [123, 126℄, where we have the problem of kernel width spei�ation, and spline

approximation [127, 128℄. A reently proposed method relies on the ontinuous represen-

tation of the image funtion and develops a relation between image intensities and image

gradients along the level sets of the respetive intensity [129℄.

Gaussian mixture modeling (GMM) [45, 130℄ onstitutes a powerful and exible method

for probabilisti data lustering that is based on the assumption that the data of eah lus-

ter has been generated by the same Gaussian omponent. In [131℄, GMMs were trained

o�-line to provide prior information on the expeted joint histogram when the images are

orretly registered. GMMs have also been suessfully used as models for the joint [132℄

as well as the marginal image densities [133℄, in order to perform intensity orretion.

They have also been applied in the registration of point sets [134℄ without establishing

expliit orrespondene between points in the two images. The parameters of GMMs an

be estimated very eÆiently through maximum likelihood (ML) estimation using the EM

algorithm [8℄. Furthermore, it is well-known that GMMs are apable of modeling a large

variety of pdfs [130℄.

An important issue in image registration is the existene of outlying data due to

temporal hanges (e.g. urban development in satellite images, lesion evolution in medial

images) or even the omplimentary but non redundant information in pairs of multimodal

images (e.g. visible and infrared data, funtional and anatomial medial images). Al-

though a large variety of image registration methods have been proposed in the literature

only a few tehniques address these ases [135, 120, 136℄.

The method proposed in this study is based on mixture model training. More spei�-

ally, we train a mixture model one for the referene image and obtain the orresponding

partitioning of image pixels into lusters. Eah luster is represented by the parameters

of the orresponding density omponent. The main idea is that a omponent in the ref-

erene image orresponds to a omponent in the image to be registered. If the images

are orretly registered the sum of distanes between the orresponding omponents is

minimum.

A straightforward implementation of the above idea would onsider models with Gaus-

sian omponents. However, it is well known that GMMs are sensitive to outliers and may

lead to exessive sensitivity when the number of data points is small. This is easily
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understood by realling that maximization of the likelihood funtion under an assumed

Gaussian distribution is equivalent to �nding the least-squares solution whih laks ro-

bustness. Consequently, a GMM tends to over-estimate the number of lusters sine it

uses additional omponents to apture the tails of the distributions [137℄. The problem

of attaining robustness against outliers in multivariate data is diÆult and inreases with

the dimensionality. In this work, we onsider mixture models (SMM) with Student's-t

omponents for image registration. This pdf has heavier tails ompared to a Gaussian

[138℄. More spei�ally, eah omponent in the SMM mixture originates from a wider

lass of elliptially symmetri distributions with an additional parameter alled the num-

ber of degrees of freedom. In this way, a more robust mixture model is employed than

the typial GMM.

The main ontributions of the proposed registration method are the following: (i)

the histogram binning problem is overome through image modeling with mixtures of

distributions whih provide a ontinuous representation of image density. (ii) Robustness

to outlying pixel values is ahieved by using mixtures of Student's t-distributions. The

widely used method of maximization of the mutual information is outperformed. (iii)

The method may be diretly applied to vetor valued images (e.g. di�usion tensor MRI)

where standard histogram-based methods fail due to the urse of dimensionality. (iv)

The proposed method is faster than histogram based methods where the joint histogram

needs to be omputed for every hange in the transformation parameters.

Moreover, the registration problem is extended to the ase of point sets where the

nature of the problem is di�erent sine there is no spatial ordering ontrary to image grids

(e.g. pixelized images). Therefore, the diÆulty onsists in simultaneously estimating the

transformation parameters and establishing orrespondenes between points.

In the related literature of point set registration, the standard approah is the well

known Iterative Closest Points (ICP) algorithm [100℄ and its variants [101, 139, 140, 141℄.

In [14, 112℄ a robust point mathing algorithm is proposed relying on soft-assign [142℄

and an iterative optimization proedure. The soft-assign is based on a matrix whose

entries desribe the probability that a point of one set mathes upon transformation to

one of the other set. Mutual information was also used as a onstraint [143℄ for point

set mathing under the above framework. Features extrated from the point sets are

employed in [7, 105℄, a kernel-based method is used in [144℄ and a method modeling the

point sets by a GMM with onstraints on the omponent enters is presented in [145℄.

Also, an approah to the onstrution of an atlas from multiple point sets is proposed in

[146℄. Finally, a work related to the herein proposed approah is presented in [134℄. The

authors propose to model the probability density funtion (pdf) of the points of the two

sets by GMMs and estimate the transformation parameters through the minimization of

an energy funtion desribing the distane of the two GMMs. Our model ompletes this

study by proposing a more robust framework for modeling the point sets.
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4.2 Image registration with mixtures of Gaussian and Student's

t-distributions

Let I

ref

be an image of N × N pixels with intensities denoted as I

ref

(xi), where xi,

i = 1; :::; N2
, is the i

th

pixel index. The purpose of rigid image registration is to esti-

mate a set of parameters S of the rigid transformation TS minimizing a ost funtion

E(I
ref

(·); I
reg

(TS(·))) that, in a similarity metri-based ontext, expresses the similarity

between the image pair. In the 2D ase the rigid transformation parameters are the ro-

tation angle and the translation parameters along the two axes. In the 3D ase, there

are three rotation and three translation parameters. Eventually, sale fators may also be

inluded, depending on the de�nition of the transformation.

Consider, now, a partitioning of the referene image I

ref

into K lusters (groups) by

training a mixture model with K omponents with arbitrary pdf p(I(x); Θ):

�(I
ref

(x)) =

K∑

k=1

�

k

p(I
ref

(x); Θref

k

)

Therefore, the referene image is represented by the parameters Θref

k

, k = 1; : : : ; K of

the mixture omponents. The partitioning of the image is desribed using the funtion

f(x) : [1; 2; :::; N ] × [1; 2; :::; N ] → {1; 2; :::; K}, where f(x) = k means that pixel x of

the referene image I

ref

belongs to the luster de�ned by the k

th

omponent. Let us also

de�ne the sets of all pixels of image I

ref

belonging to the k

th

luster:

P

k

= {xi ∈ I

ref

; i = 1; 2; :::; N2|Æ(f(xi)− k) = 1}

for k = 1; :::; K, where Æ(x) is the Dira funtion:

Æ(f(xi)− k) =

{

1; if f(xi) = k

0; otherwise

(4.1)

The above mixture-based segmentation of the referene image is performed one, at

the beginning of the registration proedure. The referene image I

ref

is, thus, partitioned

into K groups, generally, not orresponding to onneted omponents in the image. This

spatial partition is projeted on the image to be registered I

reg

, yielding a orresponding

partition of this seond image (i.e., the partitioning of the referene image ats as a mask

on the image to be registered). Then, we assume that the pixel values of eah luster k

in I

reg

are modeled using a mixture omponent with parameters Θreg

k

obtained from the

statistis of the intensities of pixels in group k of I

reg

.

In order to apply our method it should be possible to de�ne a distane measure

D(Θref

k

;Θreg

k

) between the orresponding mixture omponents with pdf p(I). Then the

energy funtion we propose, is expressed by the weighted sum of distanes between the

orresponding omponents in I

reg

and I

ref

:

E(I
ref

(·); I
reg

(TS(·))) =
K∑

k=1

�

k

D(Θref

k

;Θreg

k

) (4.2)
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where �

k

is the mixing proportion of the k

th

omponent:

�

k

=
|P

k

|
K∑

l=1

|P
l

|

where |P
k

| denotes the ardinality of set P
k

. If the two images are orretly registered the

riterion in (4.2) assumes that the total distane between the whole set of omponents

would be minimum.

For a given set of transformation parameters S, the total energy between the image

pair is omputed through the following steps:

• segment the referene image I

ref

(·) into K lusters by a mixture model.

• for eah luster k = 1; 2; :::; K of the referene image:

{ projet the pixels of the luster onto the transformed image to be registered

I

reg

(TS(·)).
{ determine the parameters Θreg

k

of the projeted partition of I

reg

.

• evaluate the energy in eq. (4.2) by omputing the distanes between the orrespond-

ing densities.

In the ase of GMMs, the above registration proedure an be applied as follows:

Consider the multivariate normal distributions N1(�1;Σ1) and N2(�2;Σ2) and denote

Θ
i

= {�
i

;Σ
i

}, with i = {1; 2}, their respetive parameters (mean vetor and ovariane

matrix). The Cherno� distane between these distributions is de�ned as [147℄:

C(Θ1;Θ2; s) =
s(1− s)

2
(�2 − �1)

T [sΣ1 + (1− s)Σ2]
−1(�2 − �1)

+
1

2
ln

( |sΣ1 + (1− s)Σ2|
|Σ1|s|Σ2|1−s

)

:

The Bhattaharyya distane is a speial ase of the Cherno� distane with s = 0:5:

B(Θ1;Θ2) =
1

8
(�2 − �1)

T

[
Σ1 + Σ2

2

]−1

(�2 − �1) +
1

2
ln

(

|Σ1+Σ2

2
|

√

|Σ1||Σ2|

)

(4.3)

A representative GMM for the referene image an be obtained via the EM algorithm

[45℄. Therefore, the referene image is represented by the parameters Θref

k

= {�ref
k

;Σref

k

},
k = 1; : : : ; K of the GMM omponents. After projeting the pixel groups of the referene

image to obtain the orresponding groups in the registered image, the parameters Θreg

k

an be estimated by taking the sample mean �

reg

k

and the sample ovariane matrix Σreg

k

:

�

reg

k

=
1

|P
k

|
N

2
∑

i=1

I

reg

(TS(x
i))Æ(f(xi)− k) (4.4)
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and

Σreg

k

=
1

|P
k

|
N

2
∑

i=1

(∆I i
k

)(∆I i
k

)T Æ(f(xi)− k); (4.5)

where ∆I i
k

= I

reg

(TS(x
i))−�reg

k

. The role of Æ(f(xi)−k) in eq. (4.4) and (4.5) is to deter-
mine the support (the pixel oordinates) for the alulation of the mean and ovariane.

These parameters are omputed on the image to be registered for the pixel oordinates

belonging to the k

th

group on the referene image. This also implies a Gaussian mixture

model for the omponents of I

reg

. The total distane between the two images is omputed

using eq. (4.2), where the Bhattaharyya distane between the orresponding Gaussian

omponents is onsidered as distane measure D.

However, GMMs are very sensitive to outlying data and their outome is largely in-

uened by pixels not belonging to the dominating model. In order to overome this

drawbak of GMMs, we have employed in our registration method mixtures of Student's

t-distributions. These mixtures are more robust to outliers as it is desribed in the next

setion.

A d-dimensional random variable X that follows a multivariate t-distribution with

mean �, positive de�nite, symmetri and real d×d ovariane matrix Σ and has � ∈ [0;∞)

degrees of freedom has a density expressed by:

p(x;�;Σ; �) =
Γ
(
�+d
2

)
|Σ|− 1

2

(��)
d

2Γ
(
�

2

)
[1 + �

−1
Æ(x; �; Σ)]

�+d

2

(4.6)

where Æ(x; �; Σ) = (x− �)TΣ−1(x− �) is the Mahalanobis squared distane and Γ is the

Gamma funtion.

It an be shown that the Student's t distribution is equivalent to a Gaussian distri-

bution with a stohasti ovariane matrix. In other words, given a weight u following a

Gamma distribution parameterized by �:

u ∼ Gamma(�=2; �=2): (4.7)

the variable X has the multivariate normal distribution with mean � and ovariane Σ=u:

X|�;Σ; �; u ∼ N(�;Σ=u); (4.8)

It an be shown that for � → ∞ the Student's t-distribution tends to a Gaussian

distribution with ovariane Σ. Also, if � > 1, � is the mean ofX and if � > 2, �(�−2)−1Σ

is the ovariane matrix of X. Therefore, the family of t-distributions provides a heavy-

tailed alternative to the normal family with mean � and ovariane matrix that is equal

to a salar multiple of Σ, if � > 2 (�g. 4.1). A K-omponent mixture of t-distributions is

given by

�(x;Ψ) =
K∑

i=1

�

i

p(x;�
i

;Σ
i

; �

i

) (4.9)
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Figure 4.1: A univariate Student's t-distribution (� = 0, � = 1) for various degrees of

freedom. As � → ∞ the distribution tends to a Gaussian. For small values of � the

distribution has heavier tails than a Gaussian.

where x = (x1; :::; xN)
T

denotes the observed-data vetor and

Ψ = (�1; :::; �K ; �1; :::; �K;Σ1; :::;ΣK

; �1; :::; �K)
T

: (4.10)

are the parameters of the omponents of the mixture.

A Student's t-distribution mixture model (SMM) may also be trained using the EM

algorithm [138℄. Consider now the omplete data vetor

x



= (x1; :::xN ; z1; :::; zN ; u1; :::; uN)
T

(4.11)

where z1; :::; zN are the omponent-label vetors and z

ij

= (z
j

)
i

is either one or zero,

aording to whether the observation x

j

is generated or not by the i

th

omponent. In the

light of the de�nition of the t-distribution, it is onvenient to view that the observed data

augmented by the z

j

, j = 1; :::; N are still inomplete beause the omponent ovariane

matries depend on the degrees of freedom. This is the reason that the omplete-data

vetor also inludes the additional missing data u1; :::; uN . Thus, the E-step on the (t+1)th

iteration of the EM algorithm requires the alulation of the posterior probability that

the datum x

j

belongs to the i

th

omponent of the mixture:

z

t+1
ij

=
�

t

i

p(x
j

;�t
i

;Σt

i

; �

t

i

)
K∑

m=1

�

t

m

p(x
j

;�t
m

;Σt

m

; �

t

m

)

(4.12)

as well as the expetation of the weights for eah observation:

u

t+1
ij

=
�

t

i

+ d

�

t

i

+ Æ(x
j

; �

t

i

; Σt

i

)
(4.13)

Maximizing the log-likelihood of the omplete data provides the update equations of

the respetive mixture model parameters:

�

t+1
i

=
1

N

N∑

j=1

z

t

ij

; (4.14)
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�

t+1
i

=

N∑

j=1

z

t

ij

u

t

ij

x

j

N∑

j=1

z

t

ij

u

t

ij

; (4.15)

Σt+1
i

=

N∑

j=1

z

t

ij

u

t

ij

(x
j

− �

t+1
i

)(x
j

− �

t+1
i

)T

N∑

j=1

z

t+1
ij

: (4.16)

The degrees of freedom �

t+1
i

for the i

th

omponent, at time step t + 1, are omputed as

the solution to the equation:

log

(
�

t+1
i

2

)

−  

(
�

t+1
i

2

)

+ 1− log

(
�

t

i

+ d

2

)

+

N∑

j=1

z

t

ij

(log ut
ij

− u

t

ij

)

N∑

j=1

z

t

ij

+  

(
�

t

i

+ d

2

)

= 0

(4.17)

where  (x) = �(lnΓ(x))
�x

is the digamma funtion.

At the end of the algorithm, the data are assigned to the omponent with maximum

responsibility using a maximum a posteriori (MAP) priniple.

The Student's t-distribution is a heavy tailed approximation to the Gaussian. It

is therefore, natural to onsider the mean and ovariane of the SMM omponents to

approximate the parameters of a GMM on the same data as it was desribed in the

previous setion. If the statistis of the images follow a Gaussian model, the degrees of

freedom �

i

are relatively large and the SMM tends to be a GMMwith the same parameters.

If the images ontain outliers, parameters �

i

are weak and the mean and ovariane of the

data are appropriately weighted in order not to take into aount the outliers. Thus, the

parameters of the SMM, omputed on the referene image I

ref

, are used as omponent

parameters Θref

k

in a straightforward way as they generalize the Gaussian ase by orretly

addressing the outliers problem. After projetion of the pixel groups of the referene image

to their orresponding groups in the registered image, the parameters Θreg

k

are omputed

using the sample mean (4.4) and the sample ovariane matrix (4.5).

One model inferene is aomplished, the Bhattaharyya distane between the om-

ponents of the Student's t-mixtures is minimized. The di�erene with respet to the GMM

is that the ovariane matries are properly saled by the Gamma distributed parameters

u as it is de�ned in equations (4.7)-(4.8).

Finally, let us notie that the energy in (4.2) may be applied to both single and

multimodal image registration. In the latter ase, the di�erene in the mean values of the

distributions in (4.3) should be ignored, as we do not searh to math the orresponding

Student's t-distributions in position but only in shape. In that ase, the distane in (4.3)
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beomes:

B(Θ1;Θ2) = ln

(

|Σ1+Σ2

2
|

√

|Σ1||Σ2|

)

(4.18)

whih is equivalent to a orrelation oeÆient between the two distributions.

4.3 Robust registration of point sets with mixtures of Student's

t-distributions

An extension of the registration algorithm to handle point sets is desribed in this setion.

Given two sets of points X and Y suh that Y is derived from X after applying a rigid

transformation TS with parameters S, that is Y = TS(X), the problem onsists in esti-

mating the transformation parameters from the two data sets without prior knowledge on

any orrespondene. In fat, in our formulation, there ould be no exat orrespondene

at all due to noise or outlying points.

Let us denote p(x) the density at a point x ∈ X and assume that it is expressed by a

GMM of M omponents:

p(x) =
M∑

j=1

�

x

j

N (x|�x
j

;Σx

j

): (4.19)

By the same assumption, the density at a point y ∈ Y is given by another GMM:

q(y) =

N∑

j=1

�

y

j

N (y|�y
j

;Σy

j

): (4.20)

Considering the transformed point set distribution as p

R;t

(x), where R is the rotation

matrix ant t is the translation vetor, that is

p

R;t

(x) =
M∑

i=1

�

x

i

N (x|R�x
i

+ t; RΣx

i

R

T ); (4.21)

we seek to minimize the energy funtion:

D(p
R;t

; q) =

∫

[p
R;t

(z)− q(z)]2dz (4.22)

with respet to R and t. More spei�ally, we seek to math the ontinuous shapes of the

mixtures p

R;t

and q over their region of support. Equation (4.22) may be simpli�ed:

D(p
R;t

; q) =

∫
[
p

2
R;t

(z) + q

2(z)− 2p
R;t

(z)q(z)
]
dz (4.23)

The �rst two terms are invariant under rigid transformation and therefore, the above

expression yields the maximum of the produt of the two distributions over the whole
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sets of points. This is equivalent to maximizing the orrelation between the pdfs. The

ross term may be also expressed as[134℄:

∫ ∫

p

R;t

(x)q(y)dxdy =
M∑

i=1

N∑

j=1

�

x

i

�

y

j

N (0|R�x
i

+ t− �

y

j

; RΣx

i

R

T + Σy

j

) (4.24)

meaning that given the i

th

omponent from the frst mixture and the j

th

omponent from

the seond mixture, eah term of the sum is evaluated as a Gaussian pdf with mean vetor

R�

x

i

+ t− �

y

j

and ovariane matrix RΣx

i

R

T + Σy

j

at x = 0.

Replaing the GMMs by the more robust SMMs in the above equations (4.19) and

(4.20) leads to a better modeling of the point sets. Figures 4.2 and 4.3 illustrate the

performane of a mixture of Student's t-mixture with respet to a standard GMM to

model a 2D point set. In the original set, both methods orretly aptured the shape of

the data (�g. 4.2). On the other hand, when a small amount of outliers (5%) was present

in the set the GMM failed to provide a satisfatory solution while the heavier tailed SMM

orretly modeled the point sets (�g. 4.3). Thus, SMM seems to be a preferable model

for density-based point set registration.

An alternative approah would be to provide a model for the outliers using a GMM

with a bakground omponent or, generally, a probabilisti a model for false observations

[138, 148℄. However, as it will be shown in the experimental results, if the bakground

outliers are not uniformly or normally distributed this approah has its limitations.

Let us note that the above formulas also apply for the registration of point sets using

the mixtures of Student's t-distributions by properly omputing the omponents mean

vetors and ovariane matries following the de�nition of the distributions (4.7)-(4.8)

and the respetive EM algorithm desribed in setion 4.2.
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Figure 4.2: A 2D point set and the obtained models (a) GMM and (b) SMM.

4.4 Experimental results

A large number of interpolations are involved in the registration proess. The auray

of the rotation and translation parameter estimates is diretly related to the auray
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Figure 4.3: The point set of �gure 4.2 with 5% outliers and the obtained models by (a)

GMM and (b) SMM. Notie that the GMM solution is a�eted by the outliers while the

SMM is more robust.

of the underlying interpolation model. Simple approahes suh as the nearest neighbor

interpolation are ommonly used beause they are fast and simple to implement, though

they produe images with notieable artifats. More satisfatory results an be obtained

by small-kernel ubi onvolution tehniques. In our experiments, we have applied a ubi

interpolation sheme, thus preserving the quality of the image to be registered.

The Matlab optimization toolbox was used to perform optimization. In partiular

we tested the algorithm with a derivative free optimization algorithm (simplex) and a

Quasi-Newton algorithm (BFGS) with a numerial alulation of the derivatives. Notie

that the methods mentioned perform only loal optimization, thus depending the �nal

result highly with the initial starting point. Global optimization methods may also be

onsidered but they are highly time onsuming.

In order to evaluate the proposed method, we have performed a number of experiments

in some relatively diÆult registration problems. Registration errors were omputed in

terms of pixels and not in terms of transformation parameters. Registration auraies in

terms of rotation angles and translation vetors are not easily evaluated due to parameter

oupling. Therefore, the registration errors are de�ned as deviations of the orners of

the registered image with respet to the ground truth position. Let us notie that these

registration errors are less forgiving at the orners of the image (where their values are

larger) with regard to the enter of the image frame.

At �rst, we have simulated a multimodal image registration example. The image in

4.4(a) is an arti�ial pieewise onstant image. The image in 4.4(b) is its negative image.

The image in 4.4(a) was degraded by uniformly distributed noise in order to ahieve

various SNR values (between 14 dB and −1 dB). The degraded images underwent several

rigid transformations by rotation angles varying between [0; 20] degrees and translation

parameters between [−15; 10] pixels. To investigate the robustness of the proposed method

to outliers we have applied the algorithm withK = 3 omponents onsidering both GMMs

and SMMs, and 256 histogram bins in the ase of the normalized MI. Figure 4.5 illustrates

the average registration errors for the di�erent SNR values. For eah SNR, four di�erent
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transformations were applied to the image and the average value of the registration error is

presented. For omparison purposes, the performane of the MI method is also shown. As

it an be observed, both the GMM and the SMM-based registration methods outperform

the MI whih fails when the SNR is low. Moreover, the heavier tailed SMM demonstrates

better performane for onsiderable amounts of noise.

(a) (b) ()

(d) (e) (f)

Figure 4.4: (a) A three-lass pieewise onstant image with intensity values 30, 125 and

220, and (b) its negative image (orresponding values, 225, 130 and 35). () The image in

(a) degraded by uniform noise at 14 dB. This image was then registered to the image in

(b). The bottom line shows the registration errors for the ompared methods. The ground

truth solution is 0 deg for the rotation and zero translation (the original image). (d) MI,

(e) GMM, (f) SMM. The errors present the di�erene between the noise free registered

image and the referene image. the values are saled for better visualization.

Furthermore, let us notie that the proposed energy funtion involving the Bat-

taharyya distanes is onvex around the true minimum (�g. 4.6) as it is also the ase for

the MI [149℄.

An open issue in mixture modeling is the determination of the number of omponents.

In our experiments, in the ase of non arti�ial images, the number of omponents is

unknown. If the number of omponents of the mixtures is neither too high (over�tting)

nor too low (under�tting) with respet to the ground truth the registration auray

is not a�eted by that parameter. In order to demonstrate it, we have performed the

experiments involving non arti�ial images by varying the number of omponents in the

experiments.

In that framework, the proposed registration method was tested on a multimodal
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Figure 4.5: Mean registration error versus signal to noise ratio (SNR) for the 3-lass

registration experiment of �gure 4.4.
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Figure 4.6: The objetive funtion in eq. (4.2) for the registration of the image of �gure

4.4(a) with its ounterpart rotated by 20 degrees and translated by 10 pixels.
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Table 4.1: Statistis on the registration errors for the images in �g. 4.7 with varying

number of mixture omponents. The errors are expressed in pixels.

Registration errors - Cell images

K mean std. median max min

MI 256 bins 3.663 0.957 4.019 4.25 1.461

SMM 2 3.157 0.009 3.153 3.178 3.150

SMM 3 2.955 0.636 3.148 3.178 1.146

SMM 4 2.956 0.604 3.159 3.101 1.146

SMM 5 2.953 0.640 3.152 3.177 1.132

image pair suh as the ell images in �g. 4.7. The omplimentary but not redundant

information arried by the multimodal images inreases the diÆulty of the registration

proess. In both experiments we have applied 20 rigid transformations to one of the

images, for eah on�guration of the transformation parameters, with rotation angles

varying between [0; 20] degrees and translation parameters between [−15; 10] pixels.

The experiments in the ase of the images in �gure 4.7 were realized with the number of

omponents varying from K = 2 to K = 5. For the MI we used 256 histogram bins. Table

4.1 summarizes the statistis on the registration errors. As it an be observed, the SMM

method ahieves highly better registration auray. Also, the number of omponents did

not signi�antly a�et the registration auray.

(a) (b)

Figure 4.7: A pair of NIH 3T3 eletron mirosope images (400x magni�ation) of rat

ells under (a) normal and (b) uoresent light.

A last experiment demonstrating the ability of the proposed SMM method to deal

with outliers is the registration of a remotely sensed image pair. The meteorologial

images of Europe in �g. 4.8 were aquired at di�erent dates. The image in �g. 4.8(b)

underwent 20 rigid transformations for eah parameter instane, with values of rotation

angle uniformly sampled in the interval [0; 20] degrees and translations between [−15; 10]

pixels. The experiments were realized with the number of omponents varying between

K = 2 and K = 6 for GMM and SMM and 256 bins for the MI.
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Table 4.2: Statistis on the registration errors for the images in �g. 4.8 with varying

number of mixture omponents. The errors are expressed in pixels.

Registration errors - Satellite images

K mean std median max min

MI 256 bins 6.742 1.493 7.463 7.733 3.565

SMM 2 2.975 0.013 2.979 2.991 2.951

SMM 3 1.857 1.202 1.251 3.653 1.283

SMM 4 2.129 2.289 2.960 3.651 1.359

SMM 5 1.208 0.237 1.142 1.999 1.141

SMM 6 1.210 0.238 1.145 2.001 1.142

The large amount of louds at di�erent loations in the image pair introdue diÆulties

in the registration proedure. It is worth ommenting that the MI method failed to register

the images and systematially provided registration errors of the order of 6 pixels. The

SMM method produed very small registration errors whih are summarized in table 4.2.

(a) (b)

Figure 4.8: (a) Image of Europe on 8 January 2007 at 01h00, provided by MeteoSat.

(b) Image of Europe on 9 January 2007 at 01h00, provided by MeteoSat (by ourtesy of

Meteo-Frane). Notie the large amount of outliers (loudy regions in di�erent loations

in the image pair) introduing important diÆulties in the registration proess.

In order to evaluate the proposed point set registration method we have performed

three types of experiments. At �rst, a 2D set of 600 points was generated from three di�er-

ent Gaussian distributions with means (−16; 9), (0; 5) and (18; 9) and spherial ovariane

matries with the standard deviation being 2 in eah dimension. The point set under-

went rotations varying between [−90◦; 90◦] and translations varying between [−100; 100]

in both dimensions. In all of the ases the proposed algorithm provided solutions lose

to the true transformation parameters. The registration error was measured as the av-

erage distane between the points transformed by the true parameters and the points

obtained by the estimated transformation. In all ases, the order of the registration error

was approximatively 10−6
. This experiment was repeated for inreased number of non

overlapping omponents and the previous results were on�rmed.
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A seond experiment onsisted in omparing the SMM not only to a typial GMM

but also to a GMM having an extra bakground omponent (alled GMMb) in order to

model the outliers. This is a standard tehnique to apture the distribution of outliers and

it is also proposed in [138, 148℄. We have observed that when the outliers are normally

or uniformly distributed the performane of the two approahes (GMMb and SMM) is

similar beause the fourth omponent is a good model for outliers. However, if the outliers

are signal-dependent the fourth omponent does not provide the optimal solution.

In our experiments, the previous point set was orrupted by outlying data from 1%

up to 15%. Eah of the three set of points was orrupted by a uniform noise having range

the double of the initial range of the points generated by the respetive omponent. By

these means, the outliers are sparsely distributed around eah omponent. Also, 1% extra

outliers were globally added to make the problem more hallenging. For eah on�guration

of the perentage of the outliers, 5 registration experiments were performed with random

translation and rotation parameters. A representative example for 9% of points being

ontaminated is shown in �gure 4.9. In �gure 4.10, the results for the registration errors

are summarized. As it an be observed, although the GMMb performs better than the

standard GMM due to its bakground omponent, the SMM provides smaller registration

errors onsistently. This behavior is easily explained by the shapes of the ellipses in

�gures 4.9(b) and 4.9(). Both the GMMb and the SMM estimated small ovarianes but

in GMMb the orientations of the ellipses diverge more from the noise-free ase. Finally, it

is worth notiing that the standard ICP registration algorithm fails in all ases to provide

an aeptable registration.
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Figure 4.9: Example of a set of points used in the experiments. (a) A point set (pre-

sented by dots) was generated by 3 Gaussians with means (−16; 9), (0; 5), (18; 9) and

spherial ovariane matries of standard deviation 2. The points were orrupted with

9% outliers. The resulting modeling of the noisy set by (b) a 3-omponent GMM, () a

4-omponent GMM with the fourth omponent modeling the distribution of outliers and

(d) a 3-omponent SMM.

Finally, we have tested the eÆieny of the proposed method to the registration of

shaped or strutured point sets, ontrary to the sattered points of the previous example.

This type of problems may ome up from many omputer vision appliations suh as

omparison of trajetories in objet traking or shape disrimination and the presene of

outliers makes registration diÆult even if a good initialization is provided. To this end,

we have applied the registration algorithm to data from the Gaitor Bait 100 data base
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Figure 4.10: Registration error as a funtion of outliers for the experiment presented in

�gure 4.9.

(as provided by the Department of Computer and Information Siene and Engineering,

University of Florida, USA, http://www.ise.u.edu/).

In this experimental setting, we begin by illustrating the di�erenes of the ompared

methods (GMM and SMM) in apturing the data. At �rst, the same shape, was modeled

by a GMM (�g. 4.11(a)) and an SMM (�g. 4.11(b)) both with K = 30 omponents. The

methods employed the same initialization by the K-means lustering algorithm. As it

an be observed, both methods provided similar approximations. Consequently, the reg-

istration algorithm is not a�eted and the ompared methods (GMM and SMM) provide

equivalently good performanes.

We then eliminated a ertain amount of points by to simulate missing data and added

outliers to the remaining points. In that ase, we also used the same K-means initialization

whih naturally provided a ertain number of enters that aptured the struture of the

outliers. However, in any ase, the SMMmodeled the degraded data better than the GMM

by eliminating the majority of erroneous enters, due to its heavier tails. A representative

example is presented in �gures 4.11() and 4.11(d) where the missing data perentage is

20% and the perentage of outliers is 10%. In these �gures, one an observe that the

GMM �nally provided two noisy omponents of relatively large ovariane. On the other

hand, due to the heavier tails of the SMM omponents, not only more outlier points were

absorbed by the omponents loated on the �sh shape, but also the erroneous omponent

has smaller support. This is important in a registration proedure beause the L2 distane

in eq. (4.24) will be less inuened in the ase of the SMM, as indiated by the experiments

that follow.

The original point set was arti�ially rotated, translated and orrupted by outliers at

15%. The transformed point set was then registered to its original, noise free ounterpart.

We have ompared the proposed GMM and SMM algorithms with the ICP by initializing

them from the ground truth. The results are summarized in table 4.3, where it is lear
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Figure 4.11: Modeling of a shaped point set from the GatorBait100 [2℄ data base by (a)

GMM with K = 30 omponents and (b) SMM with K = 30 omponents. Notie that the

two models provided similar solutions. The bottom row shows the modeling of the point

set with 20% missing points and 10% outliers by () GMM and (d) SMM. Notie that the

solution of the SMM was less a�eted. In all ases the mixtures were similarly initialized

using the K-means algorithm. The axes in () and (d) are normalized to the range of the

outliers.

that both of the proposed methods (GMM and SMM) perform better than the ICP. Also,

SMM is more aurate than the less robust GMM. It is worth notiing that the ICP

algorithm, as it is sensible to initialization, is always trapped around the same minimum.

Table 4.3: Registration errors for the shaped point set of �gure 4.11 when it is orrupted

by 15% outliers.

Method mean std median max min

ICP 40.3784 15.8546 43.6067 58.0508 10.3555

GMM (K = 15) 2.6950 1.5169 2.8450 5.1540 0.5894

SMM (K = 15) 2.1136 0.8052 1.8880 3.5104 1.2366

GMM (K = 20) 2.4334 1.1380 2.4886 4.5563 0.9656

SMM (K = 20) 1.9506 0.9084 2.0361 3.4830 0.5927
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Chapter 5

Epilogue

5.1 Conlusions

5.2 Future work

5.1 Conlusions

The objetive of this thesis was twofold: to introdue a method for extrating features

from images and sets of points for further analysis and to present a framework for solving

the image and point set registration problem.

As far as the feature extration is onerned, we foused on modeling data with line

segments. We were motivated by the fat that line segments show simpliity and at the

same time they an be ombined into groups to model more ompliated strutures. The

pioneering work of Hough Transform has been the basis for the development of many

variants on the literature. A major problem of this lass of methods is that they assume

the number of lines as a prerequisite. Thus, the result is highly related to the tuning

of the algorithm. Moreover, they are prone to erroneous detetions. This observation,

motivated us to propose a framework that takles that problem by estimating the number

of underlying line segments. Our method relies on two observations: i) the ovariane

matrix of the points belonging to a line segment produes an ellipse that is highly e-

entri, in fat the linearity of the points is modeled by the minimum eigenvalue of the

orresponding ovariane matrix and ii) the points that belong to a line segment should

follow a uniform distribution, whih is explained by the fat that the distane between

suessive points is small. Eventually, those observations are quantifying some remarks

of the Gestalt theory for human pereption regarding linear strutures. The proposed

algorithm was desribed in hapter 1.



Considering line segments as informative features of an image or a set of points, some

appliations are then demonstrated based on the deteted line segments. Chapter 2 is

dediated to explain those appliations.

In the beginning we dealt with a basi problem of autonomous navigation, naming the

detetion of the vanishing point of a real sene. A lot of methods have been proposed for

solving that problem. The most ommon workow is to extrat the edges of an image

with an edge detetor - most often the Canny edge detetor is used - �t lines and then

ompute the ommon intersetion point. This approah it is widely used. However,

we noted that it demands a preise tuning of the line detetion algorithm. A basi

objetive in this work was to preserve the simpliity of the workow. Sine an eÆient

line segment detetion was introdued in a previous hapter, we foused on the ommon

intersetion point estimation proess. Thus, an eÆient voting sheme was established

based on distributions that model a grid laying onto the image plane and ollets votes.

An important advantage of this approah is that it enables the establishment of a losed

form solution. The omplete development of this approah is a matter of ongoing researh.

A line segment is de�ned by its diretion along with its starting/ending points, as it

establishes a framework for reproduing points in any desired density. This observation led

us to the development of an algorithm for eÆient sampling of shapes that preserves the

initial distribution of points. Sampling is a ommon preproessing step for many methods.

In our study, we found that by adopting an eÆient sampling method we managed to

improve already proposed algorithms, related to shape retrieval. The sampling sheme

was further developed and embedded in a shape reonstrution algorithm that enables

the eÆient ompression of information with minimal loss.

Line segments are ideal for modeling tree strutures like the retinal fundus image, sine

they permit to loate intersetions that may be explained as bifurations and juntions. A

related algorithmwas presented by de�ning a neighboring riterion based on the Eulidean

distane.

Finally, a method for eliminating outliers was desribed. The algorithm is based on the

Helmholtz priniple regarding human pereption and states that in a random generated

image the expetation of observing a struture should be low, ideally zero. In this ase,

line segments serve as models of underlying strutures that may appear and assist the

omputation of the orresponding probability of a line segment. The priniple idea is that

long line segments should be rare. A Pareto distribution was used to model the probability

funtion of the random variable that desribes the length of a line segment. The method

was tested both in terms of shape extration from heavily degraded point louds and line

�tting in a set were a large amount of outliers were present. Our method proved to be

robust and eÆient ompared to other state-of-the-art and widely used methods.

The seond part of this dissertation foused on image and point set registration. A

framework that models the registration transformation was introdued. A Bayesian re-

gression framework, namely the Relevane Vetor Mahines, was used to desribe a non-

rigid transformation. The basi harateristi of this approah is that it manages to
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handle false-mathes without ompromising the eÆieny of the model, ompared to the

ommonly used thin plate splines. Moreover, our method provides a losed form solution

for the transformation that may be used for post omputations.

The thesis onludes with the desription of a method for solving the rigid image and

point set registration problem, employing mixture models. By modeling the intensity dis-

tribution of the observed and the referene image/point set and measuring their distane

under a rigid transformation, we ompute a quantity that is minimized with respet to

the transformation's parameters. The advantage of the method is that it an handle multi

modal images providing simultaneously eÆient results, ompared to the state of the art

methods.

5.2 Future Work

The output of this thesis may be the basis for further researh, espeially in the �eld

of the analysis of sets of sattered points. The following topis are of interest for more

detailed investigation:

• The Helmholtz priniple may be adopted to eliminate the need of split/merge thresh-

olds. The Helmholtz priniple states that no pereption should be produed on an

image of noise. In other words, if we onsider the input set of points as a random

distribution of noise, then line segments should be less possible to be deteted. Thus,

by de�ning a model to ompute the likelihood of an observed linear struture, we

may delare this observation as valid if the orresponding probability is two small.

This approah di�ers from the method introdued in [40, 41, 42℄ as it is more general

and does not assumes the existene of a grid, as is the ase for images.

• The development of a loal area desriptor based on the line segments that an

be used either for image/point set registration or mathing. Line segments an be

desribed by their start/end points, their length and diretion. Relying on those

features, we an produe a desriptor of the loal neighborhood of the line segment

and then employ it to ompute the similarity between two line segments. If the line

segments are assoiated with image edges, then their similarity metri is equal to

the similarity of the orresponding image area that provided the edges. In [150℄, a

line desriptor, that follows this rationale is introdued.

• The use of Kalman �lters [151℄ to redue the distortion of the proposed binary image

ompression framework based on the DSaM algorithm.

• The use of DSaM to detet more omplex strutures. For instane, line segments

ould be grouped based on the loal urvature so as to extrat more meaningful

strutures, suh as traÆ signs.

• The use of DSaM and the retinal fundus image annotation riteria to produe a
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graph that desribes raks on pavements and then extrat graph based features to

lassify them.

• The use of DSaM as a preproessing step for extrating line segments for vetorizing

raster images, like the line drawings mentioned in [152℄.
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Appendix

I The Hungarian algorithm

The Hungarian algorithm is a ombinatorial optimization method whih solves the as-

signment problem. Assume that there are m tasks that have to be assigned to n workers.

Eah assignment is weighted with a ost (or pro�t), thus a omplete bipartite weighted

graph is produed, having as verties the workers and the tasks. The goal is to alulate

that partiular assignment suh that the total ost is minimum. The assignment has to

be one to one. Sometimes the algorithm is used to maximize the total pro�t. In that

ase, we subtrat the maximum entry of the ost matrix from all its ells. In ase m 6= n,

the problem is alled unbalaned and the standard Hungarian algorithm may provide a

false solution. A modi�ation of the algorithm to handle retangular ost matries is

introdued in [153℄. Algorithm 10 presents the steps of this modi�ation. In algorithms

9, 10 the terms starred, primed, overed and unovered are haraterizations assigned to

a zero element (stared, primed) or to rows and olumns (overed, unovered), that guides

the exeution of the algorithm and distinguish the examined elements (zeros and rows or

olumns). The algorithm along with a detailed desription may also be found in [153℄.

Hereafter we onsider that m = n, and thus we will exploit only variable n to indiate

the dimension of the problem. The output of the Hungarian algorithm is the optimal

assignment, that minimizes the total ost. The omplexity of the algorithm is O(n3) in

ase of a balaned problem, while it may be inreased in ase of unbalaned problems, as

a lot of trials are made to extrat the solution of the problem.

More spei�ally, suppose we have a weighted undireted bipartite graph with n nodes,

with 

ij

indiating the weight of edge from node i to node j. The variable Æ

ij

, where i; j ∈
{1; : : : ; n} indiates whether edge (i; j) is inluded in the mathing. More spei�ally,

Æ

ij

= 1 means that the orresponding edge is inluded in the mathing, whereas Æ

ij

= 0

signi�es that the edge (i; j) is not part of the mathing proess. The following restritions

apply:

• ∑n

i=1 Æij = 1,

• ∑n

j=1 Æij = 1,

• Æ

ij

> 0; ∀i; j ∈ {1; : : : ; n}.

The goal of the Hungarian algorithm is the following:



Given a n × n matrix C, where C
ij

is the weight of assigning worker i with task j,

minimize

∑
n

i=1

∑
n

j=1 ÆijCij.
The steps of the Hungarian algorithm, or Hungarian method as it is met regularly in

the literature are desribed in algorithm 9. Details may be found in [113℄.

1: From eah row subtrat o� the row min.

2: From eah olumn subtrat o� the row-olumn min.

3: Use as few lines (vertial, horizontal) as possible to over all rows and olumns on-

taining zeros in the matrix (trial and error). Suppose k lines are used for overing.

4: if k < n then

5: Let m be the minimum unovered number.

6: Subtrat m from every unovered number.

7: Add m to every number overed with two lines.

8: goto 3.

9: else if k = n then

10: goto 11.

11: Starting with the top row, go downwards making assignments. An assignment an be

(uniquely) made only whenthere is exatly one zero in the row.

Algorithm 9: The Hungarian algorithm for square ost matries

In original version, the Hungarian algorithm assumes a square ost matrix, i.e. equal

number of tasks and workers. A modi�ation of the algorithm to handle retangular ost

matries is introdued in [153℄, solving thus problems with di�erent number of workers

and tasks (unbalaned problems). Algorithm 10 presents the related proedure. The

reader should notie that our goal is to propose a method that an model a registration

transformation upon an assignment between two point sets has been determined. The

Hungarian algorithm is a solution to that problem. In order to provide a omplete frame-

work, the revised Hungarian algorithm, that handles unbalaned sets is also inluded in

our work.

II Relevane Vetor Mahines

The RVM model an be used to solve either the problem of lassi�ation or regression.

In general, in order to use a RVM, we have to assume that we have a set of examples

of input vetors X = {x
i

∈ R
d}N

i=1 along with orresponding salar targets t = {t
i

}N
i=1.

Our goal is to train a model so as to learn the funtional mapping between input vetors

x

i

and targets t

i

. Sine the points in a registration problem lay in a ontinuous spae,

it is implied that the target variable t is ontinuous, leading to a regression problem. A

detailed desription of RVM theory may be found in [109℄ and [45℄.

More spei�ally, we seek that partiular model f with parametersw = {w1; w2; : : : ; wN

}
suh that f(x

i

;w) ≃ t

i

; i = 1; : : : ; N , assuming that x

i

orresponds to t

i

. The model f
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1: Let k = min(n; n) and l = max(n;m) for a ost matrix A, m× n.

2: if number of rows is larger than number of olumns then

3: goto 3.

4: if number of rows is less than number of olumns then

5: goto 12.

6: Update A:

7: for all row of A do

8: Subtrat the minimum element from eah element in the row.

9: for all olumn of A do

10: Subtrat the minimum element from eah element in the olumn.

11: for all zeros of matrix A do

12: Find a zero at loation Z of the matrix A.

13: if there is no starred zero in its row nor its olumn then

14: Star Z.

15: Cover every olumn ontaining a 0∗.

16: if k olumns are overed then

17: {The starred zeros form the desired independent set (assignment solution).}
18: STOP.

19: for all all zeros are overed do

20: Choose a non overed zero and prime it; then onsider the row ontaining it.

21: if there is no starred zero Z in this row then

22: goto 26.

23: if there is a starred zero Z in this row then

24: Cover this row and unover the olumn of Z.

25: goto 35.

26: There is a sequene of alternating starred and primed zeros onstruted as follows:

27: repeat

28: Let Z0 denote the unovered 0′.

29: Let Z1 denote the 0∗ in Z0's olumn (if any).

30: Let Z2 denote the 0′ in Z
l

's row.

31: until The sequene stops at a 0′, Z2k, whih has no 0∗ in its olumn.

32: Unstar eah starred zero of the sequene, and star eah primed zero of the sequene.

33: Erase all primes and unover every line.

34: goto 15.

35: Let h denote the smallest non overed element of the matrix; it will be positive.

36: Add h to eah overed row; then subtrat h from eah unovered olumn.

37: goto 18 without altering any asterisks, primes, or overed lines.

Algorithm 10: The Hungarian algorithm for retangular ost matries (unbalaned prob-

lems)
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may be analyzed into a �nite linear sum of N non-linear funtions �

j

, alled kernels.

Thus,

f(x
i

;w) =

N∑

j=1

w

j

�

j

(x
i

) = w

TΦ(x
i

); (5.1)

where Φ(x
i

) = (�1(xi); �2(xi); : : : ; �N(xi))
T

.

Assume now that the targets {t
i

}N
i=1 are samples drawn from the model with additive

noise �

i

:

t

i

= f(x
i

;w) + �

i

(5.2)

where �

i

are independent samples from some noise proess. Hereafter we will assume a

Gaussian distribution with zero mean and variane �

2
for �

i

. Thus, a probability density

model ours:

p(t
i

|x
i

) = N (t
i

|f(x
i

;w); �2); (5.3)

where N is a Gaussian distribution over t

i

with mean f(x
i

;w) and variane �

2
.

A seond assumption onerns the statistial independene of target variables t

i

. The

likelihood of the target vetor t is

p(t|w; �2) = (2��2)−
N

2 exp

{

− 1

2�2
‖t−�w‖2

}

; (5.4)

where t = (t1 : : : tN)
T

, w = (w1 : : : wN

)T and � = (Φ(x1) : : : Φ(xN )).

In Bayesian methodology, a ommon pratie to prevent over-�tting, aused by the

large number of parameters, is to impose some additional onstraints, penalizing the

omplexity of the model. These hyperparameters are imposed over parameters w of the

linear model in (5.1). The goal is to redue the number of disrete funtions of the sum,

thus ourring a less omplex model. This is ahieved by adopting a zero-mean Gaussian

prior over w, or

p(w|a) =
N∏

i=1

N (w
i

|0; a−1
i

); (5.5)

where a = (a1 : : : aN)
T

with a

i

representing the preision of the orresponding parameter

w

i

. One an explain these hyperparameters as seletors over eah parameter w

i

whih is

the weight of funtion �

i

partiipating in the total sum. If the variane of the orrespond-

ing prior is large then the resulting probability is low, eliminating the term in the sum.

This means that the orresponding basis funtion �

i

(x
j

) plays no role in the predition

made by the model.

The posterior distribution of weights is Gaussian and takes the form

p(w|t; X; a; �) = N (w|m;�); (5.6)

where � is the inverse of � in (5.4) and

m = ���

T

t; (5.7)

� = (A+ ��

T

�)−1
; (5.8)
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with A = diag{a
i

}.
Eventually, an iterative learning proess ours. Initially, we hoose some values for a,

�, thus evaluating the mean and ovariane of the posterior using (5.7) and (5.8). Then

we iterate, until a onvergene riterion is satis�ed, by re-estimating the hyperparameters:

a

i

=


i

m

2
i

; (5.9)

�

−1 =
‖t−�m‖2
N −∑N

i=1 i

; (5.10)

where m

i

is the i

th

omponent of the posterior mean de�ned by (5.7). and the quantity



i

is omputed as:



i

= 1− a

i

Σ
ii

; (5.11)

where Σ
ii

is the i

th

diagonal omponent of the ovariane matrix � given by (5.8).

The result of the training proess desribed above is learning parameters w of equation

(5.1).
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