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ABSTRACT

Margaritis, Giorgos, D.

Phd, Department of Computer Science and Engineering, University of loannina, Greece.
April, 2014.

Efficient Storage Indexing of Structured and Unstructured Data.

Thesis Supervisor: Stergios V. Anastasiadis.

Commercial and public organizations currently strive to manage massive amounts
of structured and unstructured data in all fields of society. The data collected across
different local and online services, such as news websites, social media, mail servers and file
systems, is inherently semi-structured or unstructured. Therefore, effective text indexing
and search is crucial for data usability and exploration. Moreover, the exploding amount of
structured data that needs to be managed and the demanding workloads that include both
throughput-oriented batch jobs and latency-sensitive data serving drive the development
of horizontally-expandable, distributed storage systems, called scalable datastores. In this
thesis, we study the analysis, design, and implementation of storage systems to efficiently
store, access, and search both structured and unstructured data.

Real-time text search requires to incrementally ingest content updates and make them
searchable almost immediately, but also serve search queries at low latency. Recent meth-
ods for incremental index maintenance substantially increase search latency with the index
fragmented across multiple disk locations. For the support of fast indexing and search
over disk-based storage, we introduce a method called Selective Range Flush (SRF). We
organize the disk index over blocks, which allow to selectively update only the parts of
the index that can be efficiently updated based on SRF. We show that SRF reduces the
indexing time, but requires substantial experimental effort to tune specific parameters for

performance efficiency. Subsequently, we propose the Unified Range Flush (URF) method,

Xiv



which is conceptually simpler than SRF, achieves similar or better performance with fewer
parameters and less tuning, and is amenable to I/O complexity analysis. We implement
the two methods in the Zettair open-source search engine, using carefully optimized stor-
age and memory management. Then, we do extensive experiments with three different
web datasets of size up to 1TB. Across different open-source systems, we show that our
methods offer search latency that matches or reduces up to half the lowest achieved by
existing disk-based methods. In comparison to an existing method of comparable search
latency on the same system, our methods reduce by a factor of 2.0-2.4 the I/O part of
build time, and by 21-24% the total build time.

Scalable datastores are required to manage enormous amounts of structured data for
online serving and analytics applications. Across different workloads, they weaken the
relational and transactional assumptions of traditional databases to achieve horizontal
scalability and availability, and meet demanding throughput and latency requirements.
Efficiency tradeoffs at each storage server often lead to design decisions that sacrifice query
responsiveness for higher insertion throughput. In order to address this limitation, we in-
troduce the Rangetable storage structure and Rangemerge method so that we efficiently
manage structured data in granularity of key ranges. We develop both a general proto-
type framework and a storage system based on Google’s Level DB open-source key-value
store. In these two platforms, we implement several representative methods as plugins
to experimentally evaluate their performance under common operating conditions. We
conclude that our approach incurs range-query latency that is minimal and has low sensi-
tivity to concurrent insertions, while it achieves insertion performance that approximates
that of write-optimized methods under modest query load. Our method also reduces
down to half the reserved disk space, improves the write throughput proportionally to the

available main memory, and naturally exploits the key skewness of the inserted dataset.
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CHAPTER 1

INTRODUCTION

1.1 Motivation
1.2 Text Search
1.3 Scalable Datastores
1.4 Thesis Contribution

1.5 Thesis Organization

1.1 Motivation

We live in the era of big data, where commercial and public organizations strive to manage
massive amounts of both structured and unstructured data in all fields of society. Even
though there is no clear definition of big data, it is usually characterized by the three
following properties: high volume, high velocity, and high variety [117]. The data collected
across different local and online services, such as news websites, social media, mail servers
and file systems, is inherently semi-structured or unstructured (high variety). Therefore,
effective text indering and search is very important for data usability and exploration.
Moreover, the exploding amount of structured data that needs to be managed (high

volume) and the demanding workloads that include both throughput-oriented batch jobs



and latency-sensitive data serving (high velocity) drive the development of horizontally-
expandable, distributed storage systems, called scalable datastores. Not surprisingly, most
major web companies such as Google, Yahoo!, Facebook and Microsoft deal with both the
problems of text search and data management at large scale, and have developed their
own indexing and storage systems to meet the requirements of their workloads.

In this thesis, we study the problem of big data management from the aspect of
designing and implementing systems to efficiently store, access and search both structured
and unstructured data at large scale. Although quite different in principal, the problems

of scalable text search and storage management share some fundamental characteristics:

o System architecture. The distributed systems designed for large-scale indexing or
storage usually follow a two-tier, shared-nothing architecture, where a number of
front-end servers receive end-user requests and forward them to a number of worker
servers. Front-end and worker servers may be separate physical nodes or hosted on

the same machine.

e Horizontal partitioning. In these systems, scalability is usually achieved using a
technique called horizontal partitioning (or sharding). The data is horizontally
partitioned into a number of disjoint partitions, which are subsequently assigned to
worker servers. For example, a large document collection may be partitioned into
disjoint sets of documents for text indexing, while a large table may be split into
groups of consecutive rows in case of datastores. Each worker then locally stores

and indexes the partition it has been assigned and serves requests for it.

e Data type and ingestion workflow. The ingestion of new data at each worker usu-
ally follows the approach of accumulating in main memory items in the form of
(key, value) pairs, until the memory is exhausted. When this happens, all memory
items are flushed to disk and merged with the existing disk items. In the specific
case of text indexing the key is a term that appeared in the document collection
and the value is a list of documents it appeared into. Similarly, items are explicitly

inserted as (key, value) pairs in datastores.

e Storage fragmentation as read-write tradeoff. The contiguous disk storage of items

at the worker servers is critical for low read latency. Nevertheless, the majority of



existing storage management methods at the workers keep the items fragmented on
disk to improve write or indexing throughput, at the cost of reduced read or search

performance.

In spite of these similarities, text indexing and storage management of datastores do

have some important differences:

e Data preprocessing. Text indexing handles text documents, which must first be
parsed into (document-id, term) tuples before being accumulated in memory and
grouped into (term, list-of-document-ids) key-value pairs. On the other hand, items

inserted in datastores typically do not need any kind of preprocessing.

e Data update. During text indexing, when a new (document-id, term) pair is inserted
in memory, the document-id must be appended to the list of documents for term.
In contrast, a new (key, value) pair inserted in a datastore will replace any existing

value for key (or create a new version of it).

o Jtem size distribution. The sizes of the individual items processed in text indexing
approximately follow a Zipfian distribution: a few popular terms (e.g., “the”, “of”,
“and”) may have document lists of several tens or hundreds of MB in size, while
the vast majority of terms appear infrequently in documents and have list sizes of a
few bytes. Datastores on the other hand handle items of similar sizes, typically in

the range of a few tens or hundreds of KB.

e Workload types. New documents are sent periodically to worker servers for index-
ing (for example, after a web crawler has fetched a batch of web pages). This
means that most of the time the workers serve search queries, and only occasionally
need to index a collection of new documents. Unlike text search servers, datas-
tores constantly serve both reads and writes. In fact, due to the nature of web
applications, datastores frequently experience write-intensive workloads although

read-heavy workloads are also common.

In general, horizontal scalability enables these distributed systems to increase their
capacity by simply adding more servers. Additionally, to a large extent the system per-

formance is determined by the performance of the constituent worker servers. We therefore



focus on the efficiency of storing and serving the assigned partitions at each worker server.
Recent methods that manage the disk and memory on the workers usually follow a write-
optimized approach. As a consequence, reads are considerably affected with respect to
the latency and the rate they are served. We thus shift our focus on improving the storage
layer on the workers by designing, analyzing and implementing efficient methods for the
management of items in memory and on disk. Our aim is to improve the read and search

performance, while maintaining high the write and indexing throughput.

1.2 Text Search

Real-time text search requires to incrementally ingest content updates and almost imme-
diately make them searchable, while serving search queries at low latency. To answer a
text query, a search engine must first process a text dataset and create for each term that
appears in the dataset an inverted list with pointers (postings) to all its occurrences. The
set of the inverted lists make up the inverted index of the dataset. As new documents
are added to the collection, inverted lists are accordingly updated by adding new post-
ings to them. To evaluate a text query, a search engine typically fetches in memory the
inverted list of each query term and combines them to calculate the set of documents that
are relevant to the query (e.g., contain all query terms). Given that a substantial time
fraction of query handling is spent on fetching the lists from disk, list contiguity is con-
sidered extremely important for fast query evaluation. Recent methods for incremental
index maintenance improve indexing cost by relaxing the list contiguity requirement, but
substantially increase search latency due to the storage fragmentation of lists.

For the support of fast search over disk-based storage, we take a fresh look at incre-
mental text indexing in the context of current architectural features. We advocate to
preserve the list contiguity but lower the indexing time, considering efficient algorithms
and data structures, as well as carefully optimized storage-level and memory management
implementations. To this end, we introduce a method called Selective Range Flush (SRF)
to contiguously organize the index over disk blocks and dynamically update it at low cost.
Block-based management simplifies the maintenance of the inverted index because it al-

lows us to selectively update only the parts of the index that can be efficiently updated.



We show that SRF reduces the indexing time, but requires substantial experimental ef-
fort to tune specific parameters for performance efficiency. Subsequently, we propose the
Unified Range Flush (URF) method, which is conceptually simpler than SRF, achieves
similar or better performance with fewer parameters and less tuning, and is amenable
to I/O complexity analysis. We implement interesting variations of the two methods in
a prototype we developed using the Zettair open-source search engine, and do extensive
experiments with three different web datasets of size up to 1TB. Across different systems,
we show that our methods offer search latency that matches or reduces up to half the
lowest, achieved by existing disk-based methods. In comparison to an existing method of
comparable search latency on the same system, our methods reduce by a factor of 2.0-2.4

the 1/O part of build time, and by 21-24% the total build time.

1.3 Scalable Datastores

To meet the needs of write-heavy workloads that often emerge from applications that con-
stantly create large amounts of data, a number of scalable datastores adopt an append-
only, write-optimized storage layer [33, 15]. The majority of datastores, including the
proprietary storage platforms of Google, Microsoft and Facebook [28, 25, 59] and their
popular open-source alternatives [42, 81, 53|, manage the data stored on disk using an
approach similar to the Log-Structured Merge tree (LSM-tree) [79]. Using an LSM-tree,
incoming updates in the form of key-value pairs are simply appended to a log file on disk
and accumulated in memory, before control is returned to the client. When incoming data
fills up the available memory, all memory entries are flushed to disk in a immutable, sorted
file. Reads may need to merge entries from multiple disk files, so files are periodically
merged in the background according to specific merge patterns. These merges (or com-
pactions) can be performed efficiently since files are sorted. Nevertheless, they interfere
with concurrent queries leading to latency spikes and throughput decrease, and they can
last from several minutes to hours. Additionally, they require half of the available disk
capacity to be reserved for the creation of new files. Deferring these compactions is not
a viable solution, because deferred compactions would leave the data fragmented on disk

for extended periods leading to low query performance.



To address all the above issues, the memory and storage management of write-optimized
datastores should be reconsidered. The problem lies in the way the LSM-tree amortizes
the cost of writes, deferring the flush of memory entries to disk files until memory is full
—in which case all memory entries are written to a disk file— and occasionally merging
the files produced. We modify the fundamental structure of data storage: instead of peri-
odically performing a few intensive compactions that cause performance drop, we propose
the use of smaller, more frequent, less aggressive but still efficient compactions. Our main
insight is to keep the data in memory and disk sorted and partitioned across disjoint key
ranges, and store each key range in a separate file. When memory is exhausted, we only
flush to disk the range that occupies the larger part of memory space and merge it with
its disk file. A range is split when needed to keep bounded the size of its file and the
respective merge cost.

We develop both a general prototype framework and a storage system based on
Google’s Level DB open-source key-value store. We show that the proposed method ef-
fectively reduces the variation in query latency caused by background flushes and com-
pactions, while it minimizes the query latency by keeping each entry contiguously stored
on disk. At the same time, the write performance achieved approximates or even beats
those of other write-optimized stores under various moderate conditions. Our method also
removes the need for excessive storage reservation, improves the ingest throughput pro-
portionally to the increase of the main memory, and naturally exploits the key skewness

of the inserted dataset.

1.4 Thesis Contribution

The work performed within this thesis contributes to two areas of computer science: text
retrieval and storage management for structured data. The main goals of this thesis are

as follows:

e to propose incremental text indexing methods and implement a prototype search
engine that can serve search queries with low latency and achieve high indexing

throughput;



e to design and develop an efficient storage layer for the nodes of scalable datastores
in order to store and access items fast and keep the interference between ingesting

and serving data low.
The scientific methodology for validating the proposed thesis includes:
e design of efficient methods;
e development of fully functional prototype systems;

e implementation of the proposed methods and related methods from the literature

in the same prototype system for fair comparison;

e implementation of the methods evaluated in production systems to examine the

applicability of our algorithms and data structures and the generality of our results;
e cxperimental evaluation using both real-world datasets and synthetic workloads;
e theoretical analysis of our methods.
The most important contributions of this thesis are the following:

e We introduce efficient text indexing methods to incrementally update the index on
disk, and describe memory and disk management optimizations that further improve

the indexing performance.

e We evaluate the proposed solution on a state-of-the-art open-source search engine
using three different real-world web datasets. We demonstrate the feasibility of
building text search engines that can preserve index contiguity on disk for fast disk-

based search while maintaining high indexing throughput.

e We provide a unified consideration of known solutions for datastore storage man-
agement across different research fields. We identify several limitations in existing
systems, which stem from the fundamental way memory and storage are managed
in most write-optimized systems. We introduce a new storage structure and a new

data management method to address them.



e We implement the proposed storage management approach in both a general proto-
type framework and a production storage system, and conduct extensive experimen-
tal evaluation using large synthetic workloads. We show that our method achieves
minimal range-query latency of low sensitivity to concurrent inserts, has write per-
formance that approximates or even beats those of other write-optimized methods,

and reduces down to half the required reserved disk space.

e We perform asymptotic analysis for the data ingestion 1/O cost of our methods.
The proposed methods are theoretically shown to have similar asymptotic behavior
to some existing methods, but are experimentally demonstrated to have superior

performance.

1.5 Thesis Organization

The structure of the rest of the thesis is organized as follows:

In Chapter 2, we provide the background required to understand the problems of
full-text search and large-scale data management. We then proceed to an overview of the
related methods for incremental index maintenance and include a brief description of the
architectures of the most important scalable datastores.

In Chapter 3, we define the problem of incremental text indexing, review and compare
previous related research, and motivate our work by experimentally showing the problems
caused by the storage fragmentation of index.

In Chapter 4, we introduce two new methods to efficiently manage the index on disk,
describe the design and architecture of our prototype search engine, and provide details
about our implementation.

In Chapter 5, we specify the characteristics of our experimentation platform, compare
the index build and search performance across a representative collection of methods using
three different datasets over two different systems, and evaluate the effect that important
parameters and engineering optimizations have on the performance of the system.

In Chapter 6, we present the problem of large-scale storage management and ex-

perimentally motivate our work. We then introduce a new method and describe the



architecture of our prototype storage framework.

In Chapter 7, we evaluate the performance of queries and insertions, as well as
their interference, across several methods implemented in our storage system. We also
examine the performance sensitivity to various workload parameters and storage devices,
and discuss about various issues and limitations of our design.

In Chapter 8, we describe the implementation of our storage management method in
a production system. We provide details about the logging and recovery components, and
evaluate the efficiency of these mechanisms. We then compare our method to alternative
methods in terms of data ingestion throughput.

In Chapter 9, we analyze the asymptotic behavior of our methods by performing
complexity analysis of their I/O cost.

In Chapter 10, we provide an overall review of the results of our research, summarize

the basic conclusions, and indicate open issues and interesting directions for future work.



CHAPTER 2

BACKGROUND AND RELATED RESEARCH

2.1 Full-Text Search

2.2 Large-Scale Data Management

2.1 Full-Text Search

Full-text search refers to the set of algorithms and data structures that enable a user to
search for a specific document in a text database. Today, it is an indispensable service for
the automated retrieval of text documents, whether proprietary within an organization,
or public across the web. A document may be a text file stored in the local file system,
a page on the web, or a status update from a social network. The user submits a query
into the system which is typically a set of words describing the contents of the document,
and the response is a list of documents, each probably with different degree of relevance
to the query. Full-text search is distinguished from search based on metadata, such as
document title, author or date of publication.

When the text database consists of a relatively small number of documents, the search
engine can directly scan the contents of the documents to find those relevant to each query.
However, when dealing with a large number of documents or search queries, the problem
of full-text search is usually decomposed into two stages: indexing and searching. The

indexing stage takes as input the document collection and builds an index, which is then
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used in the searching stage to evaluate the search queries. In the next sections, we provide
background information and related literature about index build and query evaluation in

full-text search systems.

2.1.1 Preliminaries

The most efficient index structure for text query evaluation is the inverted file [118]. An
inverted file is an index that for each term stores a list of pointers to all documents that
contain the term. Each pointer to a document is usually called posting and each list of
postings for a particular term is called inverted list. In a word-level inverted list a posting
specifies the exact position where a term occurs in the document, unlike a document-level
inverted list that only indicates the appearance of a term in a document. The lezicon (or
vocabulary) of the inverted file associates every term that appeared in the dataset to its
inverted list. For each term ¢ it stores a count f; of the documents containing ¢ and a
pointer to the start of the corresponding inverted list on disk.

In a word-level index the inverted list for a term ¢ contains pointers of the form:

<d7 fd,t; P1, D2, -, pfd,t>

where d is a document identifier, fq; is the number of occurrences of ¢ in d, and py, ..., py, ,
are the positions within d where ¢ appears. Word positions are valuable in text search
because they are used to identify the adjacency or proximity of terms, e.g., in phrase
queries [3, 112, 16, 118]. A simple text collection along with the corresponding word-level
inverted file is illustrated in Figure 2.1.

Inverted List Organization. Modern search engines typically keep their inverted
lists compressed on disk in order to reduce the space occupied by the inverted index
and the time required for query evaluation. Index compression adds extra computation
cost, but the gain of reduced data traffic to and from disk is relatively higher [118, 64].
Each new document added to the collection is assigned a monotonically increasing iden-
tifier. Thus, an inverted list consists of document identifiers sorted in increasing order
(document-ordered) and can be represented as a sequence of differences between succes-
sive document identifiers (d-gaps). For example, an inverted list containing the documents

(3,5,20,21,23,76,77,78) can be represented as (3,2,15,1,2,53,1,1). The differences are
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Lexicon

t fe

and | 1|e1—~

big 2

dark | 1
d Document contents where | 1
1 | The old night keeper keeps the keep in the town
2 | In the big old house in the big old gown
3 | The house in the town had the big old keep v \ 4 v v
4 | Where the old night keeper never did sleep <6;2;1,6> | <2;2;3,8> <3;1:8> | <6;1;5> | ... | <4:1;1>
5 | The night keeper keeps the keep in the night i i
6 | And keeps in the dark and sleeps in the light Posting lists

(a) Document collection (b) Inverted file

Figure 2.1: (a) A simple text collection of six documents. (b) The lexicon and the inverted

lists for the specific document collection.

usually smaller than the initial identifiers and can be efficiently encoded using an inte-
ger coding scheme [118]. The same technique can also be used to compress the sorted
sequence of term occurrences within each document.

Document-ordered inverted lists are widely used for incremental index maintenance
because they are updated simply by appending new postings at their end [63]. Depending
on the query type and the system performance, query evaluation may require to retrieve
in memory the entire document-ordered inverted list of each query term [64, 116, 50].
Alternatively, an inverted list can be sorted according to decreasing frequency (frequency-
ordered) of term occurrence in a document or decreasing contribution (impact-ordered)
to the query-document similarity score [118]. Such organizations allow inverted lists to
be retrieved in blocks rather than in their entirety, which makes their contiguous storage
relevant for the individual blocks. However, in comparison to a document-ordered list,
the alternative organizations require additional cost (e.g., for I/O) to handle complex
queries (e.g., term-proximity or Boolean queries) [118, 116]. Furthermore, a list update
cannot be performed efficiently as it involves partial list reorganization with additional
encoding or decoding, and thus these schemes are not usually used in incremental index
maintenance [100].

Query Evaluation. A query to a text search engine is usually a list of terms (also
called bag-of-words query), probably along with some constraints such as Boolean oper-

ators. The first step in evaluating a query is finding all documents that contain some
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or all of the query terms and satisfy the constraints. Each document is then assigned a
similarity score that denotes the “closeness” of the document to the textual query [118].
The underlying principle is that the higher the similarity score awarded to a document,
the greater the estimated likelihood that the user would consider it relevant to his or her
query. Finally, the documents are ranked based on their scores and the £ highest-ranked
documents are returned to the user.

The similarity of the indexed documents to a query can be calculated by evaluating the
contribution of each query term to all document scores (term-at-a-time), all query terms
to a single document score (document-at-a-time), or the postings with highest impact
to document scores (score-at-a-time) [2]. Traditionally, document-at-a-time evaluation is
commonly used in web search because it more efficiently handles context-sensitive queries
for which the relation (e.g., proximity) among terms is crucial [18]. Given that a high
percentage of users only examine a few tens of relevant documents, search engines may
prune their index to compute fast the first batches of results for popular documents and
keywords. Thus, a two-tier search architecture directs all incoming queries to a first-tier
pruned index, but directs to a second-tier full index the queries not sufficiently handled
by the first tier [78]. In order to overcome the bottleneck of disk-based storage, pruning
of an impact-sorted index allows inverted lists to be stored in memory for significantly
improved performance of score-at-a-time query evaluation [100].

Index Build. Published literature on text indexing separates offline index con-
struction from online index maintenance [118, 89]. Offline indexing deals with handling
static document collections. In order to index static datasets, the system needs to parse
documents into postings maintained in memory and periodically flush the accumulated
postings to disk creating a new partial index. Eventually, external sorting can be used to
merge the multiple index files into a single file that handles queries for the entire dataset.
During the indexing process the queries are handled using an older index.

Online indexing on the other hand handles dynamic document collections. Documents
may be added to or deleted from the dataset at any time, and the index should reflect
these changes. The system must be able to process queries during index updates, and the
query results should include newly added documents or exclude any documents deleted.
In comparison to online maintenance, offline index construction is simpler because it does

not handle document queries until its completion, and has been addressed in the past
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using efficient methods [51].

In the rest of this section we focus on dynamic datasets that allow insertions of new
documents over time and examine online indexing methods that maintain inverted files
efficiently on secondary storage. Index maintenance for the more general case of docu-
ment updates and deletions is an interesting problem on its own that we won’t consider
further [29, 21, 49]. We assume word-level inverted lists that are sorted in document

order.

2.1.2 Online Index Maintentance

Inserting a new document into a document collection involves in principle the addition of
a new posting to every inverted list corresponding to a term in the document. If lists are
document-ordered and new documents are assigned monotonically increasing numbers,
new postings can be added to a list by simply appending them at the end of it. A single
document may have a few hundred distinct terms, meaning that for every new document
the system must update hundreds of inverted lists. In most cases, a list update can be
carried out with one block read to fetch the list and one block write to store it back to disk
after updating it. The cost of updating the index using this naive scheme is sufficiently
high that in this raw form is not likely to be useful. The only practical solution is to
amortize the cost of updating the lists over a batch of document insertions [118].

Index building typically involves parsing a batch of new documents into inverted lists
that are temporarily maintained in main memory for improved efficiency [35]. When
memory gets full, the system flushes the inverted lists to disk updating the on-disk index.
During indexing, queries can be evaluated combining the disk index with the new in-
memory inverted lists. Early work recognizes as main requirement in the above process the
contiguous storage on disk of the postings belonging to each term [102]. Storage contiguity
improves access efficiency for both query processing and index maintenance [118], but
introduces the need for complex dynamic storage management and frequent or bulky
relocations of postings [65]. On the other hand, if the system keeps the inverted lists
non-contiguously on disk, then it avoids relocations but may need multiple seeks during
query processing to retrieve an inverted list.

In-place methods build each inverted list incrementally as new documents are pro-
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Figure 2.2: Merges and files produced after the first 10 memory flushes for the (a) Im-
mediate Merge or Remerge, and (b) Nomerge methods. Numbers within nodes represent

size.

cessed. Documents are parsed into postings that are accumulated in memory, until mem-
ory is exhausted. Then, for each term that has postings in memory, the system fetches
its inverted list from disk, appends the new postings to it, and writes the updated list
back to disk. In the end, the memory is freed and the next batch of documents can be
processed. The need for contiguity makes it necessary to relocate the lists when they run
out of empty space at their end [102, 65, 64, 22]. One can amortize the cost of relocation
by preallocating list space for future appends using various criteria [102]. Note that, due
to the required list relocations, it is quite difficult —if not impossible— to keep the lists on
disk sorted by term.

The merge-based methods merge the in-memory postings and the disk index into a
single file on disk. The disk index stores all inverted lists in lexicographical order. When
memory gets full, the index is sequentially read from disk list-by-list. Each list is then
merged with new postings from memory and appended to a new file on disk, creating
the new index. Finally, queries are redirected to the newly created index and the old
index is deleted. This index update strategy is called Immediate Merge or Remerge
(Figure 2.2a) [62, 21, 49]. Even though in-place index maintenance has linear asymptotic
disk cost that is lower than the polynomial cost of Remerge, Remerge uses sequential
disk transfers instead of random disk accesses and is experimentally shown to outperform
in-place methods [64]. Nevertheless, each memory flush forces the entire index to be
processed.

A trivial form of merge-based update is the Nomerge method which does not per-
form any merge operations (Figure 2.2b). Whenever the main memory is exhausted, the

inverted lists from the memory bufferload are sorted and transferred to disk creating a
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new sub-index. This sub-index (also called run) corresponds to the latest batch of docu-
ments processed, and the set of all sub-indexes comprise the on-disk index for the whole
document collection. Retrieving an inverted list to evaluate a query requires fetching its
fragments from the multiple runs, which can easily become the dominant cost of query
evaluation. Overall, this strategy maximizes indexing performance but leads to very poor
query performance due to the excessive fragmentation of inverted lists.

Between the two extremes of Remerge and Nomerge there is a family of merge-based
methods that permit the creation of multiple inverted files on disk to amortize the in-
dexing cost, but bound the query latency by periodically merging them according to
specific patterns. Essentially, they tradeoff query performance with index maintenance
performance by having a controlled merging of runs.

In Geometric Partitioning, the disk index is composed by a tightly controlled number
of partitions [62, 63]. Each partition stores a single sub-index and has a maximum size.
The maximum sizes of the partitions form a geometric sequence with ratio r: the limit to
the number of postings for the k-th partition is r times the limit of the (k-1)-th partition.
In particular, if the memory bufferload has capacity M then the i-th partition has a
maximum size of (r — 1)r*"'M. When the memory bufferload is full, it is merged with
the sub-index at partition 1 and stored at partition 1. If the size of the sub-index created
reaches the maximum size (r — 1)M of the partition, it is merged with the existing sub-
index at partition 2 and placed there. In general, whenever the size of a sub-index created
at partition k is more than (r — 1)r¥~1M, it is merged with the sub-index at partition
k + 1 and stored there. Figure 2.3 illustrates the merge pattern produced by 10 memory

flushes for Geometric Partitioning with » = 3. Alternatively, the method can dynamically
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Figure 2.4: Index maintenance approach for the (a) Logarithmic Merge and (b) Hybrid

Immediate Merge methods.

adjust the parameter r to keep the number of disk sub-indexes at most p.

The Logarithmic Merge method introduces the concept of index generation to decide
when to merge the sub-indices [21]. The sub-index created from the memory bufferload
is of generation 0. A sub-index is said to be of generation g+1 if it is created by merging
all sub-indices of generation g. A merge event is triggered whenever the creation of a
new sub-index leads to a situation in which there are more than one sub-indices of the
same generation g. All sub-indices of generation g are then merged to create a new disk
sub-index of generation g+1 (Figure 2.4a).

Hybrid methods separate terms into short and long. One early approach hashed short
terms accumulated in memory into fixed-size disk regions called buckets. If a bucket
filled up, the method categorized the term with the most postings as long and kept it at a
separate disk region from that point on [102]. In several recent hybrid methods, the system
uses a merge-based approach for the short terms (e.g. Immediate Merge or Logarithmic
Merge) and in-place updates for the long ones (Figure 2.4b) [24]. They treat each term as
short or long depending on the number of postings that have shown up in total until the
current moment, or currently participate in the merging process. A recent hybrid method
separates the terms into frequent and non-frequent according to their appearance in query
logs, and maintains them in separate sub-indices of multiple partitions each [50]. Frequent
terms use a merge strategy designed for better query performance, while infrequent terms

rely on a merge strategy that attains better update performance.
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2.1.3 Real-Time Search

Given the high cost of incremental updates and their interference with concurrent search
queries, a main index can be combined with a smaller index that is frequently rebuilt (e.g.
hourly) and a Just-in-Time Index (JiTI) [61]. JiTI provides (nearly) instant retrieval for
content that arrives between rebuilds. Instead of dynamically updating the index on disk,
it creates a small inverted file for each incoming document and chains together the inverted
lists of the same term among the different documents. Earlier work on web search also
pointed out the need to update an inverted file with document insertions and deletions
in real time [29]. Instead of a word-level index, the Codir system uses a single bit to
keep track of multiple term occurrences in a document block (partial inverted index), and
processes search queries by combining a transient memory-based index of recent updates
with a permanent disk-based index.

Twitter commercially provided the first real-time search engine, although other compa-
nies (e.g., Google, Facebook) are also launching real-time search features [46]. Real-time
search at Twitter is recently supported by the Earlybird system that consists of inverted
indices maintained in the main memory of multiple machines [20]. Earlybird reuses query
evaluation code from the Lucene search engine [75], but also implements the term vocabu-
lary as an optimized hash table, and the inverted list as a collection of document-ordered
segments with increasing size.

In comparison to the batch scheme used until recently, the incremental update scheme
of Percolator from Google reduces the average latency of document processing by a factor
of 100, although it is still considered insufficient for real-time search [83, 20]. Stateful incre-
mental processing has also been proposed as a general approach to improve the efficiency
of web analytics over large-scale datasets running periodically over MapReduce [39, 68].
A different study shows that the throughput achieved by a method optimized for con-
struction of inverted files across a cluster of multicore machines is substantially higher
than the best performance achieved by algorithms based on MapReduce [110]. Earlier
work on batch index building proposed a software-pipeline organization to parallelize the
phases of loading the documents, processing them into postings, and flushing the sorted

postings to disk as a sorted file [76].
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Figure 2.5: (a) Each table is partitioned into a number of tablets for load balancing, which
are subsequently assigned to servers. (b) A master node keeps the mapping between

tablets and servers. Clients must first contact the master node to store or access data.

2.2 Large-Scale Data Management

Scalable datastores (also referred to as NoSQL stores [27, 91]) are distributed storage
systems capable of managing enormous amounts of structured data for online serving
and analytics applications. Across different workloads, they weaken the relational and
transactional assumptions of traditional databases to achieve horizontal scalability and
availability, and meet demanding throughput and latency requirements. In this section,
we present previous research activity related to the architecture and storage organization

of datastores.

2.2.1 Scalable Datastores

Bigtable is a centralized structured storage system that partitions data across multiple
storage servers, called tablet servers [28]. A tablet is simply a range of consecutive rows
within a table (Figure 2.5a). A master node is responsible for assigning tablets to tablet
servers, handling node joins and failures, and balancing tablet-server load. A client must
first contact the master node to locate the server responsible for a key, and then com-
municates directly with the tablet server for reads and writes (Figure 2.5b). Incoming
data to a tablet server is first logged to disk and then kept in the memory. When the
occupied memory reaches a threshold, a minor compaction transfers memory data to an

immutable disk file (SSTable). Read operations might need to merge updates from an
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Figure 2.6: Dynamo decentralized architecture. Any node on the ring can coordinate a
request from a client. We assume the ring space is (0,400) and nodes A, B, C, D are

assigned values 100, 200, 300 and 400 respectively.

arbitrary number of SSTables. Periodic merging compactions performed in background
transform multiple files into a single file, while a major compaction regularly merges all
files to a single file free of deleted entries. Bloom filters are used to skip unnecessary key
searches over SSTables.

Azure is another scalable datastore that partitions data by key range across different
servers [25]. It provides storage in the form of blobs (user files), tables (structured stor-
age), or queues (message delivery). All these data types are internally stored into tables
which are partitioned into RangePartitions similar to Bigtable tablets (Figure 2.5a). The
system keeps the data of each partition over multiple checkpoint files whose number is kept
under control through periodic merging. With an emphasis on data analytics, LazyBase
combines update batching with pipelining and allows per-read-query tradeoffs between
freshness and performance [30]. The system reduces query cost through a tree-based
merging of sorted files triggered by the number of leaves or a time period. HBase!, Accu-
mulo? and Hypertable® are open-source variations of Bigtable [33, 81]. Compaction tuning
combined with special metadata files can improve the read performance of HBase [15].

Dynamo is a decentralized storage system which stores key-value pairs over a dis-
tributed hash table [40]. Its partitioning scheme relies on consistent hashing to distribute

the load across multiple storage nodes. In consistent hashing, the output range of a hash

thttp://hbase.apache.org/
Zhttp:/ /accumulo.apache.org/
3http:/ /hypertable.com/

20



function is treated as a fixed circular space or “ring”. FEach node in the system is as-
signed a random value within this space which represents its “position” on the ring, and
is responsible for the region between it and its predecessor on the ring (Figure 2.6). Each
data item identified by a key is assigned to a node by hashing the data item’s key to yield
its position on the ring. This hashing scheme is termed “consistent” because when the
number of nodes (i.e., hash slots) changes —and thus a number of keys must be rehashed—
only the nodes adjacent to the nodes that joined or left the system are affected. Dynamo
accepts different pluggable persistent components for local storage of items. The system
can trade off durability for performance by keeping incoming data in memory and period-
ically transferring it to disk. It supports eventual consistency, which allows for updates to
be propagated to all replicas asynchronously. The Dynamo-inspired Project Voldemort? is
an open-source datastore that supports efficient bulk updates through a custom read-only
storage engine combined with a data deployment pipeline based on Hadoop [101]. Riak®
is another open-source distributed datastore built upon the ideas and design decisions of
Dynamo.

Cassandra® is an open-source write-optimized datastore, designed and implemented
based on the data model of Bigtable and the architecture of Dynamo [59]. Similar to
Dynamo the cluster is configured as a ring of nodes, and it uses asynchronous replication
across multiple nodes along with the hinted handoff technique. There is no master node
and the nodes use a gossip mechanism to propagate the current state of the cluster. The
eventual consistency model is used, in which consistency level can be selected by the client.
Similar to Bigtable, Cassandra uses a structure of immutable files on disk to support reads
without locking. Disk files are created when the size of the data items accumulated in
memory reaches a threshold and are periodically merged.

RAMcloud uses a log-structured approach to manage data on both memory and disk
for fast crash recovery [80]. A coordinator node assigns objects to storage servers in units
of tablets. When a server receives a write request, it appends the new object to its in-
memory log and forwards that log entry to several backup servers. The backups buffer

this information in memory and return immediately. The master server returns to the

4http://github.com/voldemort /voldemort
®http:/ /basho.com /riak/
Shttp://cassandra.apache.org/
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client once all backups have acknowledged receipt of the log data. When a backup’s buffer
fills, it writes the accumulated log data from other nodes to disk or flash and deletes the
buffered data from memory.

For low power consumption, the FAWN key-value store uses a log file on flash storage
indexed by an in-memory hash table [1]. Data is distributed across storage nodes using
consistent hashing. All write requests to a storage node are simply appended to a log on
flash storage. In order to satisfy reads with a single random access, FAWN maintains a
DRAM hash table per node that maps its keys to an offset in the append-only log. The
SILT key-value store combines flash storage with space-efficient indexing and filtering
structures in memory [66]. When a key is inserted at a node, it is appended into a
write-optimized, log called LogStore, and a corresponding in-memory index is updated.
The amount of memory required to index objects on LogStore is drastically reduced using
partial-key cuckoo hashing and entropy-coded tries. Once full, a LogStore is converted into
an immutable sorted hash table (HashStore) that does not require any in-memory index
to locate entries. Periodically, multiple HashStores are merged into a single extremely
compact index representation called SortedStore, and all deleted or overwritten entries
are garbage collected.

Masstree is a shared-memory, concurrent-access structure for data that fully fits in
memory [72]. A collection of Bf-trees organized as a trie is used as a highly concurrent
data structure in memory. The tree is shared among all cores and allows for efficient
implementation of inserts, lookups and range queries (traverse subsets of database in
sorted order by key). Lookups use no locks, while updates acquire locks only on the
tree nodes involved. Similar to RAMcloud, all reads and writes are served from memory
and data is additionally logged and checkpointed for durability. Haystack is a persistent
storage system for photos that implements data volumes as large files over an extent-based

file system across clusters of machines [10].

2.2.2 Storage Organization

In this section, we outline representative known methods for the problem of write-optimized
data storage. We only consider external-memory data structures that handle one-dimensional

range queries to report the points contained in a single-key interval, a type of query that
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is commonly used by large-scale web applications (Section 6.2). Thus we do not exam-
ine spatial access methods (e.g., R-tree, k-d-B-tree) that directly store multidimensional
objects (e.g., lines) or natively handle multidimensional queries (e.g., rectangles). Spatial
structures have not been typically used in datastores until recently [44]; also, at worst
case, the lower-bound cost of orthogonal search in d dimensions (d > 1) is fractional-power
I/O for linear space and logarithmic I/O for nonlinear storage space [108].

A data structure is static if it remains searchable and immutable after it is built;
it is dynamic if it supports both mutations and searches throughout its lifetime. The
processing cost of a static structure refers to the total complexity to insert an entire
dataset, and the insertion cost of a dynamic structure refers to the amortized complexity
to insert a single item [12]. In a datastore, multiple static structures are often combined
to achieve persistent data storage because filesystems over disk or flash devices are more
efficient with appends rather than in-place writes [28, 80, 66].

Some datastores rely on the storage engine of a relational database at each server. For
instance, PNUTS [32] uses the InnoDB storage engine of MySQL, and Dynamo [40] the
Berkeley DB Transactional Data Store. In a relational database, data is typically stored
on a B-tree structure. Let N be the total number of inserted items, B items the disk block
size, and M items the memory size for caching the top levels of the tree. We assume unary
cost for each block I/O transfer. One B-tree insertion costs O(logy o) and a range query
of output size Z items costs O(loggz 27 + %) [114]. In contrast, the Log-structured File
System (LFS) accumulates incoming writes into a memory-based buffer [90]. When the
buffer fills up, data is transferred to disk in a single large I/O and deleted from memory.
RAMCloud and FAWN use a logging approach for persistent data storage [1, 80].

Inspired from LFS, the Log-Structured Merge-Tree (LSM-tree) is a multi-level disk-
based structure optimized for high rate of inserts/deletes over an extended period [79].
In a configuration with ¢ components, the first component is a memory-resident indexed
structure (e.g., AVL tree), and the remaining components are modified B-trees that reside
on disk. Component size is the storage space occupied by the leaf level. The memory
and disk cost is minimized if the maximum size of consecutive components increases by
a fixed factor r. When the size of a component C; reaches a threshold, the leaves of C;
and Cj; are merged into a new C;;; component. The LSM-tree achieves higher insertion

performance than a B-tree due to increased 1/0O efficiency from batching incoming updates
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into large buffers and sequential disk access during merges. The insertion cost of the
LSM-tree is O(% log, 7-), where ¢ = log, 7~ is the number of components. However, a
range query generally requires to access all the components of an LSM-tree. Thus, a
range query costs O(log, % + %) if search is facilitated by a general technique called
fractional cascading [114]. Bigtable and Azure rely on LSM-trees to manage persistent
data [25, 28, 98].

The Stepped-Merge Algorithm (SMA) is an optimization of the LSM-tree for update-
heavy workloads [55]. SMA maintains ¢ + 1 levels, with up to k& B-trees (called runs) at
each level 1 =0,...,¢ — 1, and 1 run at level /. Whenever memory gets full, it is flushed
to a new run on disk at level 0. When k£ runs accumulate at level 7 on disk, they are
merged into a single run at level i + 1, ¢ = 0,...,¢ — 1. SMA achieves insertion cost
O(5logy, &), and query cost O(klog, 2= + Z) under fractional cascading. A compaction
method based on SMA (with unlimited ¢) has alternatively been called Sorted Array
Merge Tree (SAMT) [98]. If we dynamically set k = &£ to SMA, we get the Nomerge
method, which creates new sorted files on disk without merging them (Section 2.1.2).
Although impractical for searches, Nomerge is a baseline case for low index-building cost.
A variation of SMA is applied with £ = 10 by the Lucene search engine [34], or & = 4 by
Cassandra and GTSSL [98].

Text indexing maps each term to a list of document locations (postings) where the
term occurs. Merge-based methods flush postings from memory to a sorted file on disk
and occasionally merge multiple files. Along a sequence of created files, Geometric Par-
titioning introduces the parameter r to specify an upper bound ((r — 1)r*"'M) at the
size of the i-th file, i = 1, 2, ..., for memory size M (Section 2.1.2). Hierarchical merges
guarantee similar sizes among the merged files and limit the total number of files on
disk. The I/O costs of insertion and search in Geometric Partitioning are asymptoti-
cally equal to those of the LSM-tree [63, 114] and the Cache-Oblivious Lookahead Array
(COLA) [11]. Geometric Partitioning can directly constrain the maximum number p of
files with dynamic adjustment of r. Setting p = 1 leads to the Remerge method, which
always merges the full memory into a single file on disk and requires one I/O to handle
a query. In the particular case of p = 2, Geometric Partitioning is also known as Square

Root Merge [24]. A variation of Geometric Partitioning with » = 2 is used by Anvil [71]
and r = 3 by HBase [98]; SILT uses a single immutable sorted file (similar to p = 1) on
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Table 2.1: Summary of storage structures typically used in datastores. We include their
I/O complexities for insertion and range query in one-dimensional search over single-key

items.

The I/O Complexity of Datastore Storage Structures

Dynamic Data Structure Insertion Cost Query Cost System Example
PNUTS [32],
B-tree O(logg ¥ O(logg ¥ 4 Z
(logs 3r) (logs 37 + 5) Dynamo [40]
Log-structured File System . RAMCloud [80],
O(%) N/A
(LFS) FAWN [1]

HBase [98], Anvil [71],
Azure [25], Bigtable [28§],
bLSM [93]

Log-structured Merge Tree

O(log, X + Z
(LSM-tree), Geometric, r-COLA ( vt )

Geometric with p partitions,
O(p+ %) bottom layer of SILT [66]

Remerge (special case p = 1)

Stepped-Merge Algorithm (SMA),
Sorted Array Merge Tree (SAMT), | O(%log, &%) | O(klog, &£+%)

Cassandra [52],
GTSSL [98], Lucene [34]

Nomerge (special case k = N/M)

flash storage [66].

We summarize the asymptotic insertion and range-query costs of the above structures
in Table 2.1. Log-based solutions achieve constant insertion cost, but lack efficient support
for range queries. SMA incurs lower insertion cost but higher query cost than the LSM-
tree. Geometric Partitioning with p partitions takes constant time to answer a query, but

requires fractional-power complexity for insertion.

2.2.3 Related Issues

Transactional Support. An evaluation of transactional support in commercial cloud
database systems shows a diversity across the business models of different providers [58].
The PNUTS system applies a simple relational model to organize attribute records into
tables of a geographically-distributed database [32]. For point or range queries, it uses
alternative physical layers, such as a filesystem-based hash table or a MySQL/InnoDB
database. The primary bottleneck of the system is the disk seek capacity required for data

storage and messaging. PNUTS can achieve higher throughput of bulk record insertion
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with a planning phase to minimize the sum of partition movement and insertion time [96].
Alternatively, snapshot text files can be created by Hadoop for direct data import into
the MySQL tables of PNUTS [97].

Percolator extends Bigtable to support cross-row, cross-table transactions through ver-
sioning [83]. Megastore organizes structured data over a wide-area network as a collection
of small databases, called entity groups [7]. Entities within an entity group are mutated
with ACID transactions, while operations across entity groups typically apply looser se-
mantics through asynchronous messaging. G-Store allows the dynamic creation of key
groups over which multi-key transactional access is supported [36]. Anvil is a modular,
extensible toolkit for database backends [71]. The system periodically digests written data
into read-only tables, which are merged through Geometric Partitioning (also similar to
generational garbage collection [106]).

The ecStore realizes a scalable range-partitioned storage system over a tree-based
structure [109]. The system automatically organizes histogram buckets to accurately esti-
mate access frequencies and replicate the most popular data ranges, while it bases trans-
action management on versioning and optimistic concurrency control. The ES? system
supports both vertical and horizontal partitioning of relational data [26]. It also provides
efficient bulk loading, small-range queries for transaction processing and sequential scans

for batch analytical processing.

Data Structures. The indexed sequential access method (ISAM) refers to a disk-based
tree used by database systems [87]. Each tree node has fixed size (e.g. 4KB), and the
data is sequentially stored key-sorted in the leaf nodes before the non-leaf nodes are
allocated. The ISAM structure is static after it is created, because inserts and deletes
affect only the contents of leaf pages. If subsequent inserts overflow a leaf node, they
are stored at arrival order in additional chained blocks allocated from an overflow area.
For intense update loads and concurrent analytics queries, the Partitioned Exponential
file (PE file) dynamically partitions data into distinct key ranges and manages separately
each partition similarly to an LSM-tree [57]. Over time, the size of a partition changes
by orders of magnitude, while it always has to fully fit in memory. Insertion cost varies
significantly due to the required storage reorganization and data merging within each

partition. Similarly, search cost varies because it involves all levels of a partition, uses
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tree indexing at each level, and interferes with concurrent insertions.

A dictionary stores a mapping from keys to values. In the ezternal memory model, a
two-level memory hierarchy consists of internal memory and a disk with I/O block size
B. The alternative cache-oblivious model is applied in multi-level memory hierarchies
assuming that the block size B is unavailable for tuning. Bender et al. introduce the cache-
oblivious lookahead array (g-COLA) as a multi-level structure, where ¢ is the factor of
size growth between consecutive levels [11]. Due to buffering and amortized 1/0, g-COLA
achieves faster random inserts than a traditional B-tree, but slower searches and sorted
inserts. Brodal et al. proposed the xDict dynamic dictionary for optimal, configurable
tradeoff in space, query and update costs at the cache-oblivious model [17].

A versioned dictionary is a dictionary with an associated version tree, which supports
queries on any version, updates on leaf versions, and cloning on any version by adding
a child. A structure is called fully-versioned if it supports arbitrary version trees, and
partially-versioned if it only supports a linked list as a (degenerate) version tree. As
a partially-versioned dictionary, the multiversion access structure achieves logarithmic
update time, optimal space and optimal query time for a key range at a specific time and
a key in a specified time range [107]. In the cache-oblivious model, Byde et al. recently
proposed the stratified B-tree as a fully-versioned dictionary, which achieves optimal,

configurable tradeoff among query time, update time, and space [105].

Benchmarking. The performance and scalability of several data serving systems has
been studied under the benchmark framework called Yahoo! Cloud Serving Benchmark
(YCSB) [33]. With measurements, it was found that Cassandra achieves higher perfor-
mance at write-heavy workloads, PNUTS at read-heavy workloads, and HBase at range
queries. The YCSB++ adds extensions to YCSB for advanced features that include bulk
data loading, server-side filtering and fine-granularity access control [81]. BigBench is an
end-to-end big data benchmark whose underlying business model is a product retailer [47].
Wang et al. introduce BigDataBench, a benchmark covering a broad range of application
scenarios and real-world datasets, including structured, semi-structured and unstructured

text data and graph datasets [45].
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CHAPTER 3

INCREMENTAL TEXT INDEXING FOR FAST

DISK-BASED SEARCH

3.1 Introduction
3.2 Background

3.3 Motivation

3.1 Introduction

Digital data is accumulated at exponential rate due to the low cost of storage space, and
the easy access by individuals to applications and web services that support fast content
creation and data exchange. Traditionally, web search engines periodically rebuild in
batch mode their entire index by ingesting tens of petabytes of data with the assistance
of customized systems infrastructure and data processing tools [16, 39, 38]. This approach
is sufficient for websites whose content changes relatively infrequently, or their enormous
data volume makes infeasible their continuous tracking.

Today, users are routinely interested to search the new text material that is frequently
added across different online services, such as news websites, social media, mail servers
and file systems [61, 94, 22, 13, 46, 20]. Indeed, the sources of frequently-changing content

are highly popular web destinations that demand almost immediate search visibility of
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their latest additions [61, 63, 22, 83, 20]. Real-time search refers to the fast indexing
of fresh content and the concurrent support of interactive search (Section 2.1.3); it is
increasingly deployed in production environments (e.g., Twitter, Facebook) and actively
investigated with respect to the applied indexing organization and algorithms. Text-based
retrieval remains the primary method to identify the pages related to a web query, while
the inverted file is the typical index structure used for web search (Section 2.1.1).

A web-scale index applies a distributed text-indexing architecture over multiple ma-
chines [3, 8, 16, 5, 60]. Scalability is commonly achieved through an index organization
called document partitioning. The system partitions the document collection into disjoint
sub-collections across multiple machines, and builds a separate inverted index (index
shard) on every machine. A client submits a search query to a single machine (master
or broker). The master broadcasts the query to the machines of the search engine and
receives back disjoint lists of documents that satisfy the search criteria. Subsequently, it
collates the results and returns them in ranked order to the client. Thus, a standalone
search engine running on a single machine provides the basic building block for the dis-
tributed architectures that provide scalable search over massive document collections.

When a fresh collection of documents is crawled from the web, an offline indexing
method can be used to rebuild the index from scratch (Section 2.1.1). Input documents
are parsed into postings, with the accumulated postings periodically flushed from memory
into a new partial index on disk. Techniques similar to external sorting merge at the end
the multiple index files into a single file at each machine. Due to fragmentation of each
inverted list across multiple partial indices on a machine, search is supported by an older
index during the update. Instead, online indexing continuously inserts the freshly crawled
documents into the existing inverted lists and periodically merges the generated partial
indices to dynamically maintain low search latency (Section 2.1.2).

Disk-based storage is known as a performance bottleneck in search. Thus, index-
pruning techniques have been developed to always keep in memory the inverted lists
of the most relevant keywords or documents, but lead to higher complexity in index
updating and context-sensitive query handling [18, 118, 2, 78, 100]. Although the latency
and throughput requirements of real-time search are also currently met by distributing
the full index on the main memory of multiple machines [20], the purchase cost of DRAM

is two orders of magnitude higher than that of disk storage capacity [92]. Therefore, it is
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crucial to develop disk-based data structures, algorithmic methods and implementation
techniques for incremental text indexing to interactively handle queries without the entire
index in memory.

In this chapter, we examine the fundamental question of whether disk-based text
indexing can efficiently support incremental maintenance at low search latency. We focus
on incremental methods that allow fast insertions of new documents and interactive search
over the indexed collection. We introduce two new methods, the Selective Range Flush
and Unified Range Flush. Incoming queries are handled based on postings residing in
memory and the disk. Our key insight is to simplify index maintenance by partitioning
the inverted file into disk blocks. A block may contain postings of a single frequent term or
the inverted lists that belong to a range of several infrequent terms in lexicographic order.
We choose the right block size to enable sequential disk accesses for search and update.
When memory gets full during index construction, we only flush to disk the postings of
those terms whose blocks can be efficiently updated. Due to the breadth of the examined
problem, we leave outside the study scope several orthogonal issues that certainly have to
be addressed in a production-grade system, such as concurrency control [61], automatic
failover [60], or the handling of document modifications and deletions [67, 49].

For comparison purposes, we experiment with a software prototype that we developed,
but we also apply asymptotic analysis. In experiments with various datasets, we achieve
search latency that depends on the number of retrieved postings rather than fragmentation
overhead, and index building time that is substantially lower than that of other methods
with similar search latency. To the best of our knowledge, our indexing approach is the
first to group infrequent terms into lexicographic ranges, partially flush both frequent and
infrequent terms to disk, and combine the above with block-based storage management
on disk. Prior maintenance methods for inverted files randomly distributed the infrequent
terms across different blocks [102], or handled each term individually [119, 19]. Alterna-
tively, they partially flushed to disk only the frequent terms [23, 22|, or used disk blocks
of a few kilobytes with limited benefits [19, 102].
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Table 3.1: Summary of the asymptotic cost (in I/O operations) required to incrementally
build inverted files and retrieve terms for query handling. /N is the number of indexed
postings and M is the amount of memory used for postings gathering. The parameter a

(e.g., a = 1.2) refers to the Zipfian distribution (Section 9.1).

Index Maintenance Method Build Cost Search Cost
Nomerge [102, 63, 24, 51] O(N) N/M
Immediate Merge [63, 35, 22] O(N?/M) 1

Logarithmic Merge [24]
O(N -log(N/M)) | log(N/M)
Geometric Partitioning [62, 63]

Geometric Partitioning with < p partitions [63] | (N - (N/M)l/p) D

Hybrid Immediate Merge [24, 22] 1 or 2 (according to
@(NlJrl/a/ M)

Unified Range Flush [Section 9.1] the list threshold)

Hybrid Logarithmic Merge [24] O(N) log(N/M)

3.2 Background

In this section, we summarize the current general approaches of incremental text indexing,
and factor out the relative differences of existing methods with respect to the new methods
that we introduce.

As discussed in Section 2.1.2, merge-based methods maintain on disk a limited number
of files that contain fragments of inverted lists in lexicographic order. During a merge, the
methods read sequentially the lists from disk, merge each list with the new postings from
memory, and write the updated lists back to a new file on disk. The methods amortize
the I/O cost if they create on disk multiple inverted files and merge them in specific
patterns. In-place methods avoid to read the whole disk index, and incrementally build
each inverted list by appending new memory postings at the end of the list on disk.

Hybrid methods separate terms into short and long according to the term popularity,
and use a merge-based approach for the short terms and in-place appends for the long
ones. The system treats a term as short or long depending on the number of postings that
either have shown up in total until now (contiguous) [23], or participate in the current
merging process (non-contiguous) [24]. In the non-contiguous case, if a term contributes
more than T (e.g., T = 1MB) postings to the merging process, the method moves the

postings from the merge-based index to the in-place index; this reduces the build time,
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Hybrid Immediate Merge Selective Range Flush Unified Range Flush

Figure 3.1: Hybrid Immediate Merge only applies partial flushing to long (frequent) terms,
while Selective Range Flush (SRF) and Unified Range Flush (URF) partially flush both
short (infrequent) and long terms. Unlike SRF, URF organizes all postings in memory as
ranges, allows a term to span both the in-place and merge-based indices, and transfers
postings of a term from the merge-based to the in-place index every time they reach a

size threshold T, (see also Section 4.6).

but may slightly increase the retrieval time of long terms due to their storage on both the
in-place and merge-based indices.

As shown in Table 3.1 for representative methods, the asymptotic complexity of index
building is estimated by the number of /O operations, expressed as function of the number
of indexed postings. We include the search cost as the number of partial indices (or runs)
across which an inverted list is stored. The Nomerge method flushes its postings to a new
run on disk every time memory gets full and provides a baseline for the minimum indexing
time. The Immediate Merge method repeatedly merges the postings in memory with the
entire inverted file on disk every time memory gets full. The Geometric Partitioning and
Logarithmic Merge methods keep multiple runs on disk and use a hierarchical pattern to
merge the postings of memory and the runs on disk. The Geometric Partitioning method
with < p partitions adjusts continuously the fan-out of the merging tree to keep the
number of runs on disk at most p. Hybrid versions of the above methods partition the
index into in-place and merge-based indices.

Our methods, Selective Range Flush and Unified Range Flush, differ from existing
ones, because we organize the infrequent terms into ranges that fit into individual disk
blocks, and store each frequent term into dedicated disk blocks (Figure 3.1). Additionally,

we only partially flush frequent and infrequent terms from memory to preserve the disk
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Table 3.2: Main functional differences among existing and our new methods of incremental

text indexing.

Index Maintenance | Update | Threshold | Merging Partial Flushing | Storage
Method Scheme Count Pattern Flushing | Criterion Unit
Nomerge new run none none none full mem. runs
Immediate Merge merge none sequential none full mem. | single run
Geometric Partition. merge none hierarchical none full mem. | partitions
Hybrid Log. Merge hybrid | merge/total | hierarchical none full mem. | segments
Hybrid Imm. Merge hybrid | merge/total | sequential in-place list size segments
Selective Range Flush hybrid total range-based both list ratio blocks
Unified Range Flush hybrid merge range-based both range size blocks

I/O efficiency. The two methods differ from each other with respect to the criteria that
they apply to categorize the terms as short or long, and also to determine which terms
should be flushed from memory to disk. In Table 3.1 we include the asymptotic costs of
Unified Range Flush as estimated in Section 9.1.

According to experimental research, build time may additionally depend on system
structures and parameters not always captured by asymptotic cost estimates [64, 22].
Thus, although the Hybrid Immediate Merge and Unified Range Flush have the same
asymptotic complexity as shown in Table 3.1, we experimentally find their measured
merge performance to substantially differ by a factor of 2. More generally, the potential
discrepancy between theoretical and empirical results is a known issue in literature. For
instance, online problems are the type of optimization problems that receive input and
produce output in online manner, but each output affects the cost of the overall solution.
Several paging algorithms are examples of online algorithms that theoretically incur the
same relative cost (competitive ratio) to an optimal algorithm, but they clearly differ from
each other with respect to experimentally measured performance [14].

In Table 3.2, we factor out the main functional differences among the representative
methods that we consider. The index update varies from simple creation of new runs, to
purely merge-based and hybrid schemes. In hybrid schemes, term postings are respectively
stored at the merge-based or in-place index according to their count in the entire index

(Total) or the index part currently being merged (Merge). The merging pattern varies
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from sequential with a single run on disk, to hierarchical that tightly controls the number
of runs, and range-based that splits the index into non-overlapping intervals of sorted
terms. When the memory fills up, most existing methods flush the entire memory to disk
except for the Hybrid Immediate Merge that partially flushes frequent terms; in contrast,
our methods apply partial flushing to both frequent and infrequent terms (Figure 3.1).
The criterion of partial memory flushing alternatively considers the posting count of
individual terms and term ranges or their ratio. Most methods allocate the space of disk
storage as either one or multiple runs (alternatively called partitions or segments [24]) of

overlapping sorted terms, while we use blocks of non-overlapping ranges.

3.3 Motivation

In this section we present the motivation of our work. We experimentally highlight that
search latency is primarily spent on disk I/O to retrieve inverted lists. Across different
queries, latency can be relatively high even when stop words are used or caching is applied,
which makes the efficiency of storage access highly relevant in fast disk-based search [118,

).

3.3.1 The Search Cost of Storage Fragmentation

Early research on disk-based indexing recognized as main requirement the contiguous stor-
age of each inverted list [35, 102]. Although storage contiguity improves access efficiency
in search and update, it also leads to complex dynamic storage management and frequent
or bulky relocations of postings. Recent methods tend to relax the contiguity of inverted
lists so that they lower the cost of index building. One particular study partitioned the
postings of each term across multiple index files and stored the inverted list of each long
term as a chain of multiple non-contiguous segments on disk [24]. Not surprisingly, it
has been experimentally shown across different systems that multiple disk accesses (e.g.,
7 in GOV2) may be needed to retrieve a fragmented inverted list regardless of the list
length [63]. List contiguity is particularly important for infrequent terms because they
dominate text datasets and are severely affected by list fragmentation. From the Zipfian

distribution of term frequency, the inverted file of a 426GB text collection has more than
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Table 3.3: Average search latency Table 3.4: Average, median and 99th percentile of
(ms) and the fraction of it spent  search latency (ms) when different numbers of stop

on I/0, using the GOV2 dataset words are applied with and without page caching

over the Zettair search engine. in GOV2/Zettair.
Queries | Avg I/0 stop without caching with caching
50% 105 67% words avg med 99th avg med 99th
75% 255  58% 0 1,726 291 19,616 || 1,315 274 13,044
90% 680 58% 10 640 247 5,283 508 217 4,182
95% 1,053 61% 20 489 242 3,221 413 204 2,873
100% 1,726 64% 100 411 232 2,398 341 188 1,959

99% of inverted lists smaller than 10KB [35, 24]. If a list of such size is fragmented into k
runs, the delay of head movement in a hard disk typically increases the list retrieval time
by a factor of k.

We examine the importance of query I/O efficiency using the Zettair search engine
with an indexing method that stores the inverted lists contiguously on disk [115]. Using
the index of the GOV2 text collection (426GB), we evaluate 1,000 standard queries [103]
in a server as specified in Section 5.1 with the buffer cache disabled. Thus, we measure
the time to return the 20 most relevant documents per query along with the percentage
of time spent on I/O. We sort the queries by increasing response time and calculate the
average query time for the 50%, 75%, 90%, 95% and 100% fastest of them. According
to the last row of Table 3.3, 64% of the average query time is spent on I/O for reading
inverted lists from disk. The percentage becomes 67% for the 50% fastest queries, which
mostly consist of non-frequent terms with small inverted lists.

Caching keeps in memory the postings of frequently queried terms, while stop words
are frequent terms usually ignored during query handling [118, 6]. From Table 3.4 it
follows that enabling the page cache decreases by 24% the average latency, 6% the me-
dian, and 34% the 99th percentile. Caching is generally known to reduce the latency of
interactive services, but it cannot directly address the problem of variable responsiveness
in distributed systems, unless the entire working set resides in main memory [38]. If we
additionally omit the 10, 20 or 100 most common stop words during query handling, the

enabled buffer cache still decreases latency by about 18% on average. For instance, using
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10 stop words combined with caching lowers the average latency by 71% from 1.7s to
508ms. Nevertheless, 45% of the average query time is still spent on I/0.

Query latency is often evaluated using average measurements [24, 62], which do not
convey the high variations across different queries. In Table 3.3, the average query latency
is about 1726ms, even though the 50% fastest queries only take an average of 105ms. If
we presumably double the duration of the 50% fastest queries, the average latency across
all the queries is only increased by 3%. Similarly, the discrepancy between the average
and median latency measurements in Table 3.4 further demonstrates the effect from the
few long queries to the measured statistics. Therefore, the average statistic understates
the problem of list fragmentation.

Given the substantial time fraction of query handling spent on 1/O and the signifi-
cant increase that list fragmentation causes in I/O time, we advocate to preserve the list
contiguity of frequent and infrequent terms through the design and storage-level imple-
mentation of the indexing method. Additionally, we aim to achieve low query latency

both on average and across different percentiles.
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CHAPTER 4

SELECTIVE RANGE FLUSH AND UNIFIED

RANCE FLUSH METHODS

4.1 Problem Definition

4.2 System Architecture

4.3 The Selective Range Flush Method
4.4 Evaluation of Selective Range Flush
4.5 Sensitivity of Selective Range Flush
4.6 The Unified Range Flush Method

4.7 Prototype Implementation

In this section, we first describe the studied problem along with our goals, and then
explain the data structures and the Selective Range Flush (SRF) method to solve it. Mo-
tivated by our long experimental effort to tune SRF, we then proceed to the description
of the Unified Range Flush (URF) method with simpler structure but similar (or even
better sometimes) build and search performance. Finally, we describe the Proteus pro-
totype implementation that we developed using the Zettair open-source search engine to

evaluate the efficiency of the proposed methods.
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4.1 Problem Definition

In this study we mainly focus on the incremental maintenance of inverted files for efficient
index building and search. We do not examine the related problems of parsing input
documents to extract new postings, or the ranking of retrieved postings for query rele-
vance. We primarily aim to minimize the I/O time required to retrieve the term postings
of a query and the total I/O time involved in index building. More formally we set the

following two goals:

query handling: minimize Z I/O time to read the postings of term;  (4.1)

)
index building: minimize Z I/O time to flush posting;, (4.2)
J

where 7 refers to the terms of a query, and j refers to the postings of the indexed document
collection. The I/O time of query handling depends on the data volume read from disk
along with the respective access overhead. Similarly, the total I/O time of index building
is determined by the volume of data transferred between memory and disk along with
the corresponding overhead. Accordingly, we aim to minimize the amount of read data
during query handling, the amount of read and written data during index building, and
the access overheads in both cases.

One challenge that we face in index building is that we do not know in advance the
term occurrences of the incoming documents. As a result, we cannot optimally plan which
postings to flush for maximum I/O efficiency every time memory gets full. Ideally, for
efficient query handling we would store the postings of each term contiguously on disk
in order to retrieve a requested term with a single I/O. Also, for efficient index building,
we would prefer to flush new postings from memory to disk with a single write I/O and
without any involvement of reads.

In fact, the above goals are conflicting because the 1/O efficiency of query handling
depends on the organization of term postings by index building. In the extreme case
that we write new postings to disk without care for storage contiguity, query handling
becomes impractical due to the excessive access overhead involved to read the fragmented
postings from disk. As a reasonable compromise, we only permit limited degree of storage
fragmentation in the postings of a term, and also ensure sufficient contiguity to read a

term roughly sequentially during query handling. At the same time, we limit the volume
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of data read during index building but with low penalty in the I/O sequentiality of disk

reads and writes. Next, we explain in detail how we achieve that.

4.2 System Architecture

As we add new documents to a collection, we accumulate their term postings in memory
and eventually transfer them to disk. We lexicographically order the terms and group
them into ranges that fit into disk blocks (called rangeblocks) of fixed size B,. Rangeblocks
simplify the maintenance of inverted files because they allow us to selectively update parts
of the index. We flush the postings of a range R from memory by merging them into the
respective rangeblock on disk. If the merged postings overflow the rangeblock, we equally
divide the postings —and their range— across the original rangeblock and any number of
additional rangeblocks that we allocate as needed. For several reasons, we do not store

all the lists in rangeblocks:
e First, the list of a frequent term may exceed the size of a single rangeblock.

e Second, the fewer the postings in a rangeblock the lower the update cost, because

the merge operation transfers fewer bytes from disk to memory and back.

e Third, we should defer the overflow of a rangeblock, because the ranges that emerge
after a split will accumulate fewer postings than the original range, leading to higher

merging cost.

e Finally, we experimentally confirm that merge-based management involves repetitive
reads and writes that are mostly efficient for collections of infrequent terms, while in-
place management uses list appends that are preferable for terms with large number

of postings.

Consequently, we store the list of a frequent term on exclusively occupied disk blocks that
we call termblocks. We dynamically allocate new termblocks as existing termblocks run
out of empty space. For efficiency, we choose the size B; of the termblock to be different
from the rangeblock B, (Section 4.7). Where clarity permits, we collectively call posting
blocks the rangeblocks and termblocks.
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The lexicon is expected to map each term to the memory and disk locations where
we keep the respective postings. The B-tree provides an attractive mapping structure,
because it concisely supports ranges, and flexibly handles large numbers of indexed items.
However, when the size of the dataset is at the range of hundreds of GB, as the ones we
consider, we experimentally noticed that the B-tree introduces multiple disk seeks during
lookups, which substantially increase the latency of index search and update. As an
alternative lexicon structure we considered a simple sorted table (called indextable) that
fully resides in memory. For each range or frequent term, the indextable uses an entry
to store the locations of the postings across the memory and disk. For terms within a
range, the indextable plays the role of a sparse structure that only approximately specifies
their position through the range location. For every terabyte of indexed dataset, the
indextable along with the auxiliary structures occupy memory space in the order of few
tens of megabytes. Therefore, the memory configuration of a typical server makes the
indextable an affordable approach to build an efficient lexicon. We explain in detail the

indextable structure at Section 4.7.

4.3 The Selective Range Flush Method

We call posting memory the space of capacity M, that we reserve in main memory to
temporarily accumulate the postings from new documents. When it gets full, we need to
flush postings from memory to disk. We consider a term short or long, if it respectively
occupies total space up to or higher than the parameter term threshold T;. For concise-
ness, we also use the name short or long to identify the postings and inverted lists of a
corresponding term.

Initially all terms are short, grouped into ranges, and transferred to disk via merg-
ing. Whenever during a range merge the posting space of a term exceeds the threshold
T;, we permanently categorize the term as long and move all its postings into a new
termblock. Any subsequent flushing of new postings for a long term is simply an append
to a termblock on disk (Section 4.7). We still need to determine the particular ranges
and long terms that we will flush to disk when memory gets full. Long postings incur

an one-time flushing cost, while short ranges require repetitive disk reads and writes for
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Algorithm 4.1 Pseudocode of SELECTIVE RANGE FLUSH

1: Sort long terms by memory space of postings
2: Sort ranges by memory space of postings
3: while (flushed memory space < M;) do

4: T := long term of max memory space

5: R := range of max memory space

6: /] Compare T and R by memory space of postings

7: if (R.mem_postings < F, x T.mem_postings ) then

8: /] Append postings of T to on-disk index

9: if (append overflows the last termblock of list) then
10: Allocate new termblocks (relocate the list if needed)
11: end if

12: Append memory postings to termblocks

13: Delete the postings of 7' from memory

14: else

15: /] Merge postings of R with on-disk index

16: Read the lists from the rangeblock of R

17: Merge the lists with new memory postings

18: if (list size of term w > T}) then

19: Categorize term w as long

20: Move the inverted list of w to new exclusive termblock
21: end if

22: if (rangeblock overflows) then

23: Allocate new rangeblocks

24: Split merged lists equally across rangeblocks

25: else

26: Store merged lists on rangeblock

27: end if

28: Delete the postings of R from memory

29: end if
30: end while

flushing over time. From an I/O efficiency point of view, we prefer to only perform a

few large in-place appends and totally avoid merges or small appends. Although writes

appear to occur asynchronously and return almost instantly, they often incur increased

latency during subsequent disk reads due to the cleaning delays of dirty buffers [9].

For efficient memory flushing, next we introduce the Selective Range Flush method

(Algorithm 4.1). We maintain the long terms and the term ranges sorted by the space

their postings occupy in memory (Lines 1-2). We compare the memory space (bytes) of

the largest long list against that of the largest range (Line 7). Subsequently, we flush
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the largest long list (Lines 8-13), unless its postings are F), times fewer than those of the
respective range, in which case we flush the range (Lines 15-28). We repeat the above
process until flushed memory (My) bytes of postings are flushed to disk. Our approach

generalizes a previous method of partial memory flushing [22] in two ways:

(i) We avoid inefficiently flushing the entire posting memory because we only move to

disk M; bytes per memory fill-up.

(ii) In addition to long terms we also selectively flush ranges, when their size becomes

sufficiently large with respect to that of long terms.

The constant F, is a fixed configuration parameter that we call preference factor. Its
choice reflects our preference for the one-time flushing cost of a long list rather than the
repetitive transfers between memory and disk of a range. We flush a range only when
the size of the largest long list becomes F), times smaller. Then the flushing overhead
of the long list takes too much for the amount of data flushed. We also prefer to keep
the short postings in memory and avoid their merging into disk. The parameter F),
may depend on the performance characteristics of the system architecture, such as the
head-movement overhead, the sequential throughput of the disk, and the statistics of the
indexed document collection, such as the frequency of terms across the documents. We
summarize the parameters of SRF in Table 4.2.

The SRF method behaves greedily because it only considers the memory space oc-
cupied by a range or long term, and simply estimates the flushing cost of a range as F,
times that of a long term. We extensively experimented with alternative or complemen-

tary flushing rules, including:

(i) directly estimating the disk I/O throughput of ranges and long terms to prioritize
their flushing,

(ii) aggressively flushing the long terms with memory space exceeding a minimum limit

to exploit the append I/O efficiency,

(iii) flushing the ranges with fewest postings currently on disk to reduce the merging

cost,

(iv) periodically flushing the ranges or long terms with low rate of posting accumulation.
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Figure 4.1: We index 426GB using Wumpus with 1GB memory. The x axis refers to the
time instances at which memory contents are flushed to disk. (a) HSM maintains up to 2
merge-based runs on disk, and (b) HLM periodically merges the runs created on disk so

that their number is logarithmic in the current size of the on-disk index.

In the context of the SRF algorithm, the approach of selectively flushing a few tens of

megabytes from the largest terms or ranges in memory performed more robustly overall.

4.4 Evaluation of Selective Range Flush

In this section, we study the behavior of SRF as implemented in our prototype (Proteus)
against alternative configurations of the Wumpus search engine [113]. We consider a
subset of hybrid merge-based index maintenance methods that are known to cover a wide
range of tradeoffs between index building and search efficiency (Table 3.1), and compare
them with SRF. We explain in detail the architecture of our prototype in Section 4.7, and
describe the experimentation environment and the configuration used for Proteus and
Wumpus to ensure systems are functionally comparable in Section 5.2. We use the full
426GB GOV?2 text dataset [103] and give both systems 1GB of RAM for the gathering of
postings in memory. The parameters of SRF are set according to Table 4.2.

As explained in Section 3.2, hybrid methods separate terms into short and long ac-
cording to the size of their inverted list. They improve the indexing performance using a
merge-based method for the short terms and in-place appends for the long ones. Hybrid
Immediate Merge (HIM) uses the Immediate Merge method described in Section 2.1.2

for the short terms, storing the list of each short term contiguously in 1 merge-based run
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Figure 4.2: We break down the index building time into document parsing and postings
flushing parts across different maintenance policies. Parsing includes the time required to
clean dirty pages from page cache to free space for newly read documents. Proteus parsing
performance is pessimistic as it uses an unoptimized implementation (Section 5.1). We
also include the number of merge-based runs each method maintains. SRF has lower time
than HIM and HSM, and only 12% higher build time than HLM, even though it maintains

contiguously all lists on disk.

and the list of each long term in 1 in-place and 1 merge-based run'. Hybrid Square Root
Merge (HSM) maintains the merge-based index using the Square Root Merge method
discussed in Section 3.2, which keeps each short term in at most 2 merge-based runs and
each long term in 1 in-place and in at most 2 merge-based runs (Figure 4.1a). Similarly,
Hybrid Logarithmic Merge (HLM) uses the Logarithmic Merge approach explained in
Section 2.1.2 for the merge-based part of the index. For the GOV2 dataset, it stores the
list of a short term in up to 6 runs and the list of a long term in 1 in-place and up to 6
merge-based runs (Figure 4.1b).

We now study the build time of the methods mentioned above as implemented in
Wumpus, and compare them to SRF as implemented in Proteus. From Figure 4.2, as
expected, the more runs a method maintains on disk the lower build time it achieves
from less frequent merges. On the other hand, the storage fragmentation introduced can
significantly impact the list retrieval times. For example, having a short list fragmented in
k runs typically causes a k-fold increase on the time required to fetch the list from disk due

to disk access overhead. Given also that more than 99% of lists are short and that more

'We use the non-contiguous variations of the hybrid methods in Wumpus, which store each long list
in both the in-place index and the merge-based runs. This reduces the indexing time, but may slightly

increase the retrieval time of long lists (Section 3.2).
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Table 4.1: Sensitivity to interactions between rangeblock size B, and preference factor
F,. We underline the lowest measurement on each row. The highest measured time is

62.18min, i.e., 53.8% higher than the lowest 40.43min.

Index Building Time (min) of Selective Range Flush

FP

B, (MB) 5 10 20 40 80 160 | max inc
8 42.83 42.57 42.83 4355  44.97 4752 | +11.6%
16 42.58 41.63 41.22 4148  42.08 43.28 | +5.0%
32 43.42 41.68 41.38 4043  40.73 41.18 | +7.4%
64 46.90 42.85 4177 41.02  41.15 41.28 | +14.3%
128 51.77 46.82 43.73 4187  41.75 41.52 | +24.7%
256 62.18 53.28 46.75 4357  43.13 42.40 | +46.7%
max inc | +46.0% +28.0% +13.4% +7.7% +10.4% +15.4%

than 60% of query latency is spent on list retrieval (Section 3.3), it immediately follows
that fragmentation can cause a substantial increase in query latency. SRF contiguously
stores the postings of each term in a single rangeblock or in a number of successive
termblocks?. Nevertheless, it has 23% lower build time and 65% lower flush time than
HIM which also keeps lists contiguous. It is worth pointing out that SRF has even lower
build time than HSM and only 12% higher than HLM, even though these methods may
need up to 2 and 6 disk accesses respectively to fetch a list from disk regardless of the list

length.

4.5 Sensitivity of Selective Range Flush

SRF combines low indexing time with list contiguity on disk, but also has several short-

comings.

e First, if the statistics of a processed dataset change over time, it is possible that a
term categorized as long reserves some memory space but then stops accumulating

new postings to trigger flushing.

2We use the CNT maintenance approach for the long lists that keeps them always contiguous (Sec-

tion 4.7)
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e Second, in order for SRF to behave efficiently across different datasets, it requires
tuning of several parameters and their interactions for specific datasets or sys-
tems [22]. For example, the optimal preference factor F, and term threshold 7;
may vary across different term frequencies, or interact in complex ways with other

system parameters such as the rangeblock size B,.

e Third, as the dataset processing progresses, the number of ranges increases due
to rangeblock overflows; consequently, the number of memory postings per range

decreases, leading to lower flushing efficiency.

In Table 4.1 we examine the variation of the SRF index building time across all possible
combinations of 7 values for B, and 6 for F, (42 pairs in total). Due to the large number
of experiments involved, we limit the indexing to the first 50GB of GOV2. The elements
in the last row and column of the table report the largest increase of build time with
respect to the minimum measurement of the respective column and row. We notice that
as B, increases, e.g., due to restrictions from the filesystem [48, 95], we have to tune the
preference factor to retain low build time. Otherwise, the build time may increase as high
as 47% with respect to the lowest measurement for a specific B, value.> The respective
increase of the highest measured value to the lowest in the entire table is 53.8%. After
a large number of experiments across different combinations of parameters, we identified
as default values for build and search efficiency those specified in Table 4.2 (see also

Sections 4.5 and 5.4).

4.6 The Unified Range Flush Method

In order to facilitate the practical application of SRF, we evolved it to a new method that
we call Unified Range Flush (URF). In this method, we assign each memory posting to
the lexicographic range of the respective term without the categorization as short or long.

Thus, we omit the term threshold 7, and preference factor F, of SRF along with their

3Note that large B, values such as 128MB and 256MB are not uncommon in such systems. For
example, Hadoop [95] uses block sizes of 128 MB, while Bigtable [28] uses files of 100-200 MB to store
its data (Section 2.2.1). Moreover, even for B,=256MB, a proper tuning of F, can keep the build time
within 6% of the total lowest time (42.40min versus 40.43min).
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Table 4.2: Parameters of Selective Range Flush (SRF) and Unified Range Flush (URF).

In the last column we include their default values used in our prototype.

Symbol | Name Description Value
B, Rangeblock Byte size of rangeblock on disk 32MB
By Termblock Byte size of termblock on disk 2MB
M, Posting Memory Total memory for accumulating postings 1GB

My Flushed Memory Bytes flushed to disk each time memory gets full 20MB

F, Preference Factor | Preference to flush short or long terms by SRF 20

T Term Threshold Term categorization into short or long by SRF 1MB
T, Append Threshold | Amount of postings flushed to termblock by URF | 256KB

interactions against other parameters. When the posting memory gets full, we always
pick the range with the most postings currently in memory and merge it to disk including
the terms that SRF would normally handle as long. In order to reduce the data volume
of merge, we introduce the append threshold (T,) parameter. If the postings of a term in
a merge occupy memory space more than T,, we move them (append postings) from the
rangeblock to an exclusive termblock. Subsequently, the range continues to accumulate
the new postings of the term in the rangeblock, until their amount reaches the number
T, again (Figure 3.1).

The pseudocode of URF is shown in Algorithm 4.2. In comparison to SRF, it is quite
simpler because we skip the distinct handling of short and long terms. Algorithm 4.2
simply identifies the range with the most postings in memory at line 3 and merges it with
the corresponding rangeblock on disk at lines 5-6 and 14-20. If there are terms whose
amount of postings exceed the threshold 7,, URF flushes them to their corresponding
termblocks at lines 7-13.

The term threshold 7; of SRF permanently categorizes a term as long and prevents
it from merge-based flushing, even at low amount of posting memory occupied by the
term. Additonally, it depends on the characteristics of the dataset and it interacts with
other system parameters such as the preference factor F), since it implicitly controls the
size of the long lists flushed. The general approach of dynamic threshold adjustment fol-
lowed by previous research would only further complicate the method operation (e.g., in

Section 5.2 we examine the automated threshold adjustment 0pr = auto [22]). Instead,
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Algorithm 4.2 Pseudocode of UNIFIED RANGE FLUSH

1: Sort ranges by total memory space of postings
2: while (flushed memory space < M) do

3: R := range of max memory space

4: /] Merge postings of R with on-disk index

5: Read the inverted lists from the rangeblock of R

6: Merge the lists with new memory postings

7: if (list size of term w > T,) then

8: /] Move postings of w to exclusive termblock

9: if (w does not have termblock or append will overflow last termblock) then
10: Allocate new termblocks (relocate list, if needed)
11: end if

12: Append memory postings to termblocks

13: end if

14: if (rangeblock overflows) then

15: Allocate new rangeblocks

16: Split merged lists equally across rangeblocks

17 else

18: Store merged lists on rangeblock

19: end if

20: Remove the postings of R from memory

21: end while

the parameter T}, controls the disk efficiency of the append operation and primarily de-
pends on performance characteristics of the I/O subsystem, such as the geometry of the
disk. Thus, it can be tuned independently of the dataset characteristics and other system
parameters.

The description of T, bears some similarity to the definition of long-term threshold T’
introduced previously [24]. However, the URF algorithm has fundamental differences from
the hybrid approach of Biittcher et al. First, every invocation of hybrid merge flushes all
the postings currently gathered in memory. Instead, we only flush the largest ranges with
total amount of postings in memory at least My. Second, the choice of T}, only affects the
efficiency of the index building process, because we separately control the search efficiency
through the termblock size B; (Sections 4.7, 5.5). In contrast, T determines the storage
fragmentation of each long list; choosing small 7" improves the update performance but
reduces the efficiency of query processing. Indeed, we experimentally found that it is

possible to achieve lowest building time and search latency for 7, around 128 KB-256KB,
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Figure 4.3: (a) The prototype implementation of Proteus. (b) We maintain the hashtable
in memory to keep track of the postings that we have not yet flushed to disk.

but such small values for 7" would significantly lower query processing performance due
to the excessive fragmentation in long lists.

We summarize the parameters of our architecture in Table 4.2. In the following sec-
tions, we show that URF in comparison to SRF (i) has fewer parameters and lower
sensitivity to their values, (ii) has similar index maintenance performance (or better over
a large dataset) and search performance, and (iii) has more tractable behavior that allows

us to do complexity analysis of index building in Section 9.1.

4.7 Prototype Implementation

The Proteus system is a prototype implementation that we developed to investigate our
inverted-file management (Figure 4.3a). We retained the parsing and search components
of the open-source Zettair search engine (v0.9.3) [115]. Unlike the original implementation
of Zettair that builds a lexicon for search at the end of index building, we dynamically
maintain the lexicon in Proteus throughout the building process. We store the post-
ings extracted from the parsed documents in a memory-based hash table that we call
hashtable (Figure 4.3b). The inverted list of each term consists of the document iden-
tifiers along with the corresponding term locations in ascending order (Section 2.1.1).

We store each list as an initial document identifier followed by a list of gaps compressed
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with variable-length byte-aligned encoding [118]. The same compression scheme is used
to store the locations within each document. Compression reduces considerably the space
requirements of postings across memory and disk.

We keep track of the term ranges in a memory-based sorted array that we call
rangetable (Figure 4.4a). Each entry corresponds to the range of a single rangeblock
and contains the space size of the disk postings along with the names of the first and last
term in the range. In a sparse index that we call search bucket we maintain the name and
location of the term that occurs every 128KB along each rangeblock. The search bucket
allows us to only retrieve the exact 128 KB that may contain a term instead of the entire
rangeblock. In our experience, any extra detail in rangeblock indexing tends to signifi-
cantly increase the maintenance overhead and lookup time without considerable benefits
in performance of query evaluation (Section 5.3). We use a sorted array (termtable) to
keep track of the termblocks that store the long terms of SRF or the append postings of
URF respectively (Figure 4.4b). We organize the termtable as an array of descriptors.
Each descriptor contains the term name, a pointer to the memory postings, their size,
the amount of free space at the last termblock on disk, and a linked list of nodes called
blocklist. Each node contains a pointer to a termblock on disk.

The rangetable along with the termtable together implement the indextable in our
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system (Section 4.2). The inverted lists in memory that belong to the same range are
connected through a linked list. Initially, the termtable is empty and the rangetable
contains a single range that covers all possible terms. If the inverted lists after a merge
exceed the capacity of the respective rangeblock, we split the range into multiple half-
filled rangeblocks. Similarly, if we exceed the capacity of the last termblock, we allocate
new termblocks and fill them up. After a flush, we update the tables to accurately reflect
the postings that they currently hold. When the capacity of a termblock is exceeded, we

allocate a new termblock following one of three alternative approaches:

1. Fragmented (FRG): Allocate a new termblock of size B, to store the overflown

postings.

2. Doubling (DBL): Allocate a new termblock of twice the current size to store the

new postings of the list.

3. Contiguous (CNT): Allocate a termblock of twice the current size and relocate the
entire list to the new termblock to keep the list contiguous on disk. This is our

default setting.

For a term, the DBL allocation leads to number of termblocks that is logarithmic with
respect to the number of postings, while FRG makes it linear. In our evaluation, we
consider the implementation of the above approaches over Proteus for both SRF and

URF (Section 5.5).

4.7.1 Memory Management and I/0O

For every inverted list in memory, the hashtable stores into a posting descriptor infor-
mation about the inverted list along with pointers to the term string and the list itself
(Figure 4.3b). For the postings of the inverted list, we allocate a simple byte array whose
size is doubled every time it fills up. When an inverted list is flushed to disk, we free the
respective posting descriptor, term string and byte array. The efficiency of these memory
(de-)allocations is crucial for the system performance because they are invoked extremely
often.

Initially, we relied on the standard libc library for the memory management of the

inverted lists. On allocation, the library traverses a list of free memory blocks (free list)
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to find a large enough block. On deallocation, the freed block is put back into the free
list and merged with adjacent free blocks to reduce external fragmentation. We refer to
this scheme as default.

If a program runs for long time and uses a large amount of memory, the free list
becomes long and the memory fragmented, increasing the management cost. In order
to handle this issue, we use a single call to allocate both the descriptor and term, or
accordingly to deallocate them after an inverted list is flushed to disk. The byte array is
not included in the above optimization, because we cannot selectively free or reallocate
portions of an allocated chunk every time we double the array size. We refer to this
scheme as single-call.

We further reduce the management cost by using a single call to get a memory chunk
(typically 4KB) and store there all the posting descriptors and term strings of a range. In
a chunk, we allocate objects (strings and descriptors) in a stack-like manner. Processor
cache locality is also improved when we store together the objects of each range. If the
current chunk has insufficient remaining space, we allocate an object from a new chunk
that we link to the current one. When we flush a range to disk we traverse its chunk list
and free all chunks, consequently freeing all term strings and descriptors of the range. We
refer to this scheme as chunkstack.

In our prototype system, we store the disk-based index over the default filesystem.
Hence, we cannot guarantee the physical contiguity of disk files that are incrementally
created and extended over time. Disk blocks are allocated on demand as new data is
written to a storage volume leading to file fragmentation across the physical storage
space. To prevent the file fragmentation caused by the system, we examined to use the
preallocation of index files.

Index building includes document parsing, which reads documents from disk to mem-
ory (I/O-intensive) and then processes these documents into postings (CPU-intensive).
During the processing of a part of the dataset, prefetching allows the system to fetch in
advance the next part of the dataset —during the processing of the current part— to prevent
the blocking of subsequent reads to the disk [82]. We evaluate all the above approaches

of memory management and I/O optimization in Section 5.5.
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CHAPTER 5

PERFORMANCE EVALUATION OF

INCREMENTAL TEXT INDEXING

5.1 Experimentation Environment

5.2 Building the Inverted File

5.3 Query Handling

5.4 Sensitivity of Unified Range Flush
5.5 Storage and Memory Management
5.6 Scalability across Different Datasets

5.7 Summary

In this section, we compare the index build and search performance across a rep-
resentative collection of methods (from Table 3.1) over Wumpus and Proteus. In our
experiments we include the performance sensitivity of the URF method across several
configuration parameters, storage and memory allocation techniques, and other 1/O opti-
mizations. We also explore the relative build performance of SRF and URF over different

datasets.
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5.1 Experimentation Environment

We execute our experiments on servers running the Debian distribution of Linux kernel
(v2.6.18). Each server is equipped with one quad-core x86 2.33GHz processor, 3GB RAM
and two SATA disks. We store the generated index and the document collection on two
different disks over the Linux ext3 filesystem. Different repetitions of an experiment on
the same server lead to negligible measurement variations (<1%).

We mostly use the full 426GB GOV2 standard dataset from the TREC Terabyte
track [103]. Additionally, we examine the scalability properties of our methods with the
200GB dataset from Wikipedia [111], and the first 1TB of the ClueWeb09 dataset from
CMU [31]. We mainly use 7200RPM disks of 500GB capacity, 16MB cache, 9-9.25ms
seek time, and 72-105MB/s sustained transfer rate. In some experiments (ClueWeb,
Section 5.6), we store the data on a 7200RPM SATA disk of 2TB capacity, 64MB cache,
and 138MB/s sustained transfer rate.

We use the latest public code of Wumpus [113], and set the threshold T equal to
1MB, as suggested for a reasonable balance between update and query performance. We
measure the build performance of HIM in Wumpus with activated partial flushing and
automated threshold adjustment [22]. In both systems we set M, = 1GB. In Proteus,
unless otherwise specified, we set the parameter values B; = 2MB, B, = 32MB, M; =
20MB, F, = 20, T, = 1MB and 7, = 256KB (Table 4.2, Sections 4.5, 5.4). The auxiliary
structures of URF and SRF for GOV2 in Proteus occupy less than 42MB in main memory.
In particular, with URF (SRF) we found the hashtable to occupy 4MB, the termtable
and rangetable together 0.5MB, the blocklists 0.25MB (0.12MB), and the range buckets
31.2MB (36.5MB).

To keep Wumpus and Proteus functionally comparable, we activate full stemming
across both systems (Porter’s option [85]). Full stemming reduces terms to their root
form through suffix stripping. As a result, document parsing generates smaller index and
takes longer time; also query processing often takes more time due to the longer lists of
some terms, and matches approximately the searched terms over the indexed documents.
In Proteus we use an unoptimized version of Porter’s algorithm as implemented in Zettair.
This makes the parsing performance of Proteus pessimistic and amenable to further op-

timizations. When we examine the performance sensitivity of Proteus to configuration
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Figure 5.1: We consider the index building time for different indexing methods across
Wumpus and Proteus, both with full stemming. Over Wumpus, we examine Nomerge
(Nomergey ), Hybrid Logarithmic Merge (HLMy), Hybrid Square Root Merge (HSMyy)
and Hybrid Immediate Merge (HIMy). Over Proteus, we include Hybrid Immedi-
ate Merge (HIMp), Selective Range Flush (SRFp) and Unified Range Flush (URFp).
URF p takes 421min to process the 426GB of GOV2 achieving roughly 1GB/min indexing
throughput (see also Figure 5.7 for other datasets).

parameters, we use a less aggressive option called light stemming, which is the default in

Zettair.

5.2 Building the Inverted File

First we examine the build time of several methods implemented over Wumpus and Pro-
teus. According to Section 4.4, after indexing the full GOV2 dataset Hybrid Immediate
Merge (HIM) keeps each short term in 1 merge-based run, and each long term in 1 in-
place and 1 merge-based run. Hybrid Square Root Merge (HSM) keeps each short term
in 2 merge-based runs, and each long term in 1 in-place and 2 merge-based runs. Hybrid
Logarithmic Merge (HLM) has each short term over 4 merge-based runs, and each long
term over 1 in-place run and 4 merge-based runs. Nomerge fragments the postings across
42 runs. SRF maintains the postings of each term in a unique rangeblock or termblock,
while URF keeps each infrequent term in 1 rangeblock and each frequent term in up to 1

rangeblock and 1 termblock.
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In Figure 5.1 we consider the build time of the methods Nomergey,, HLMy,, HSMy,
and HIMy, in Wumpus, and the methods HIMp, SRFp, and URFp as we implemented
them in Proteus. HIMyy is the contiguous version of HIM (HIM¢ [22], Section 3.2, Sec-
tion 9.1) with all the applicable optimizations and the lowest build time among the
Wumpus variations of HIM as we experimentally verified. According to the Wumpus
implementation of contiguous and non-contiguous methods, the postings of a long term
are dynamically relocated to ensure storage on multiple segments of size up to 64MB
each [113]. In order to ensure a fair comparison of different methods on the same plat-
form, we also implemented HIM¢ in Proteus (HIMp) with the CNT storage allocation by
default. The index size varied from 69GB for URF p down to 60GB for SRFp and HIMp,
due to about 10GB difference in the empty space within the respective disk files.

The Wumpus methods take between 254min (baseline Nomergey) and 523min (HIMyy).
HSMy and HLMyy reduce the time of HIMy, by 20% and 31% respectively, but they frag-
ment the merge-based index across 2 and 6 runs (Figure 4.1). This behavior is known to
substantially increase the 1/O time of query processing, and consequently we do not con-
sider HSMy, and HLMyy any further [22, 73]. The 531min of HIMp is comparable to the
523min required by HIMyy; in part, this observation validates our HIM implementation
over Proteus. Instead, SRFp and URFp take 404min and 421min, respectively, which is
24% and 21% below HIMp. URFp takes 4.2% more than SRFp to incrementally index
GOV2, although URFp is faster than SRFp in a different dataset (Section 5.6).

In Figure 5.1, we also break down the build time into parse, to read the datasets and
parse them into postings, and flush, to gather the postings and transfer them to disk. The
implementation of HIM in Proteus (HIMp) reduces the flush time of the corresponding
implementation in Wumpus (HIMy) from 303min to 253min, but HIMp has longer parse
time partly due to the unoptimized stemming. Instead, SRFp and URFp only take
105min and 129min for flushing, respectively, thanks to their 1/O efficiency. Therefore,
our methods reduce the flush time of HIMp by a factor of 2.0-2.4, and that of HIMy, by
a factor of 2.4-2.9.

Somewhat puzzled by the longer parse time of Proteus, we recorded traces of disk
transfer activity during index building. Every time we retrieved new documents for pro-
cessing, we noticed substantial write activity with tens of several megabytes transferred

to the index disk. Normally, parsing should only create read activity to retrieve docu-
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ments and no write activity at all. However, when we flush index postings to disk, the
system temporarily copies postings to the system buffer cache. In order to accommodate
new documents in memory later during parsing, read requests clean dirty buffers and free
memory space. Overall, SRFp and URF p reduce by about a factor of 2-3 the flush time of
HIMp and HIMyy, and achieve a reduction of the respective total build time by 20-24%.

5.3 Query Handling

Next we examine the query time across different indexing methods and systems. In our
experiments, we use the GOV2 dataset and the first 1,000 queries of the Efficiency Topics
query set in the TREC 2005 Terabyte Track [103]. We consider both the alternative cases
of having the buffer cache disabled and enabled during query handling. As representative
method of Wumpus we study the HIMy,, while in Proteus we consider HIMp, SRFp and
URFp.

In the latest publicly available version of Wumpus (but also the older versions), we no-
ticed that the implemented contiguous variation (HIM¢) of HIM was constantly crashing
during search at a broken assertion. For that reason, in our search experiments we used
the non-contiguous variation instead (HIMyeo [24]). Although the above two Wumpus
variations of HIM differ in their efficiency of index building, they have similar design with
respect to query handling. They both store each short term in 1 run; however, HIM y¢
allows a long term to be stored in 2 runs (1 in-place and 1 merge-based), while HIM«
always stores it in 1 run. Given the long transfer time involved in the retrieval I/O of long
terms, we do not expect the above difference by 1 disk positioning overhead to practically
affect the query performance.

From Figure 5.2a, caching activation reduces the query time of HIMy by 13%, and
by about 22-24% that of HIMp, SRFp and URFp. Across both the caching scenarios,
HIMy, over Wumpus takes about twice the average query time of the Proteus methods.
Given that our HIMp implementation is based on the published description of HIMy,, we
attribute this discrepancy to issues orthogonal to the indexing method, such as the query
handling and storage management of the search engine. In Proteus, the average query

times of HIMp, SRFp and URFp remain within 2% of each other. Therefore, both SRFp
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Figure 5.2: We consider Hybrid Immediate Merge over Wumpus (HIMy,) or Proteus
(HIMp), along with Selective Range Flush (SRFp) and Unified Range Flush (URFp) over
Proteus. (a) We measure the average query time with alternatively disabled and enabled
the system buffer cache across different queries in the two systems with full stemming. (b)
We look at the distribution of query time over the two systems with enabled the buffer

cache.

and URFp achieve the query performance of HIMp, even though they are considerably
more efficient in index building (Section 5.2).

We use measurement distributions to further compare the query time of the four
methods with enabled system caching (Figure 5.2b). Although the median query time of
Proteus lies in the range 246-272ms, that of HIMy, is 1.378s, i.e., a factor of 5 higher. In
fact, HIMyy requires about 1s to handle even the shortest queries. Also, the 99th percentile
of HIMy is 68% higher than that of the Proteus methods. Instead, the 99th percentiles
of the Proteus methods lie within 2% each other, while the median measurements within
10%. We conclude that HIMp, URFp and SRFp are similar to each other in query

performance, but they are faster by a factor of 2 on average with respect to HIMyy.
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of flushes, and (c) increase the data amount transferred during merges. We use Proteus

with light stemming.

5.4 Sensitivity of Unified Range Flush

Subsequently, we consider the sensitivity of the URF build performance to the rangeblock
size B,, flush memory My, append threshold T, and posting memory M,.

Rangeblock B,. The rangeblock size B, determines the posting capacity of a range; it
directly affects the data amount transferred during range flushes and the I/O time spent
across range and term flushes. We observed the lowest build time for B, at 32-64MB
(Figure 5.3a). Setting B, less than 32MB generates more ranges, and raises the total
number of term and range flushes (Figure 5.3b). On the contrary, setting B, higher than
64MB increases the amount of transferred data during range merges (Figure 5.3c) leading
to longer I/O. Our default value B, = 32MB balances the above two trends into build
time equal to 408min. For sensitivity comparison with SRF, we also measured the URF
build time for the first 50GB of GOV2. With B, in the interval 8MB-256MB, we found
the maximum increase in build time equal to 9.1%, i.e., almost x6 times lower than the
respective 53.8% of SRF (Table 4.1).

As we continue to increase the rangeblock size, we partition the index into fewer
rangeblocks. Each range merge thus flushes more postings and updates a bigger part of

the index. Accordingly, index updates become less “selective” and eventually approach the
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Figure 5.4: (a) Flushing more than few tens of megabytes (1) leads to longer build time
for Unified Range Flush (URF). This results from the more intense I/O activity across
term and range flushes. (b) Setting the append threshold to 7, = 256KB minimizes the
total I/O time of range and term flushes. (¢) The build time of range merge in URF
decreases approximately in proportion to the increasing size of posting memory (M,).

The Proteus system with light stemming is used.

HIM behavior, which flushes all short postings and merges the whole merge-based index
on each memory flush. Setting B, = oo would practically emulate the HIM method; for
example, with B, = 1GB (not shown) we measured 510min build time. This emphasizes
the benefits of the selective index update approach followed by our methods.

Flush Memory M;. The parameter My refers to the amount of bytes that we flush to
disk every time posting memory gets full (Figure 5.4a). Build time is reduced to 408min
if we set My = 20MB, i.e., 2% of the posting memory M,=1GB. Despite the Zipfian
distribution of postings [24], setting M; below 20MB leaves limited free space to gather
new postings at particular ranges (or terms) for efficient I/O. At M; much higher than
20MB, we end up flushing terms and ranges with small amounts of new postings leading
to frequent head movement in appends and heavy disk traffic in merges. If we set M; =

M,

» (= 1GB) we actually deactivate partial flushing, and build time becomes 632min (not

shown).
Append Threshold T,. This parameter specifies the minimum amount of accumulated
postings required during a merge to flush a term to the in-place index. It affects directly

the efficiency of term appends, and indirectly their relative frequency to range flushes. In
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Figure 5.4b we observe that T, = 256KB minimizes the URF build time. If we increase
T, to IMB (=T;) we end up with build time higher by 6%. Unlike T; of SRF that
permanently categorizes a term as long, T, specifies the minimum append size and tends
to create larger merged ranges by including postings that SRF would permanently treat
as long instead. Overall, the URF performance shows little sensitivity across reasonable
values of Tj,.

Posting Memory M,. The parameter M, specifies the memory space that we reserve
for temporary storage of postings. Smaller values of M, increase the cost of range flushes,
because they enforce frequent range flushes and limit the gathering of postings from
frequent terms in memory. As we increase M, from 128MB to 1GB in Figure 5.4c,
the time spent on range merges drops almost proportionally, resulting into substantial
decrease of the total build time. Further increase of M, to 2GB only slightly reduces the

build time, because at M, = 1GB most time (59.3%) is already spent on parsing.

5.5 Storage and Memory Management

Next we examine the effect of storage allocation to the build and query time of URF.
Based on the description of Section 4.7, we consider FRG with alternative termblock sizes
1MB, 2MB, 8MB and 32MB (respectively denoted as FRG/1MB, FRG/2MB, FRG/8MB,
FRG/32MB), and also the DBL and CNT allocation methods. In Figure 5.5a we show
the average CPU and I/O time of query processing in a system with activated buffer
cache. The average query time varies from 1649min with FRG/32MB to 1778min with
FRG/1MB, while it drops to 1424min by DBL and 1338min by CNT. Essentially, CNT
reduces the query time of FRB/1MB by 25% and of DBL by 6%. The above variations
are mainly caused by differences in I/O time given that the CPU time remains almost
constant at 622min (<47% of total). Unlike query time, from Figure 5.5b we notice the
build time to only slightly vary from 386min for both FRG/1MB and DBL to 408min for
CNT (5.7% higher). In these measurements, the flush time is about 40% of the total build
time. Due to differences in the empty space of termblocks, the index size varies from 53GB
for FRG/1MB to 355GB for FRG/32MB, and 70GB for DBL and CNT (Figure 5.5¢). We

conclude that our CNT default setting is a reasonable choice because it achieves improved

61



400
Flush === Empty ===

List retrieval (Disk |/0) === L ] 355
2000 | Processing (CPU) ——1 | 500 Parse C——1 as0 | Used == 355
= 408
’g 1672 1695 4649 400 | 386 388 3% 402 386 A 300
‘@ 1500 - 1424 1 £ =
dg’ 500 1338 £ 8 250 ¢
Z S 300 | e
g £ N o200
2 1000 f - 5 R B A B 2 -
s 5 200 ;3 t i
g a £ 115
g sl 100 | 1
>
Z 500 f — 100 1 1 5 6 70 70
50 ﬂ ﬂ L H H i
0 0

A A £y A
R, R, R, R
g Ry g

A A A A o) C A A A% A% o) C L) C
R, B, Ra, B, B Ny R, R, Ra. B, B Wy % Wy
(2 e G@Ms G/&%s 60944@ /;% /e%) /‘9% 730, e %

(a) Query Time (b) Build Time (c) Index Size

Figure 5.5: We examine the behavior of Unified Range Flush over Proteus with the
following storage allocation methods (i) contiguous (CNT), (ii) doubling (DBL), and (iii)
fragmented (FRG) with termblock sizes IMB, 2MB, 8MB and 32MB. (a) CNT achieves
the lowest query time on average closely followed by DBL. We keep enabled the system
buffer cache across the different queries. (b) Build time across the different allocation
methods varies within 5.7% of 386min (FRG/1MB and DBL). (¢) Unlike CNT and DBL,

FRG tends to increase the index size especially for larger termblock.

query time at low added build time or index size.

In Section 4.7.1 we mentioned three alternative approaches to manage the memory of
postings: (i) default (D), (ii) single-call (S), and (iii) chunkstack (C). The methods differ
in terms of function invocation frequency, memory fragmentation and bookkeeping space
overhead. Memory allocation affects the time spent on dataset parsing when we add new
postings to memory, and the duration of term and range flushes when we remove postings.
In Figure 5.6 we consider the three allocation methods with URF across different values of
posting memory. Memory management increasingly affects build time as posting memory
grows from 512MB to 2GB. More specifically, the transition from the default policy to
chunkstack reduces build time by 3.4% for M, = 512MB, 4.7% for M, = 1GB, and 8.6%
for M, = 2GB. Therefore, larger amounts of memory space require increased efficiency in
memory management to accelerate index building.

In Table 5.1 we compare the effects of several memory and I/O optimizations to
the build and search time of SRF. File preallocation of the index lowers by 14-17% the

average query time as a result of reduced storage fragmentation at the filesystem level.
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Figure 5.6: We consider three methods of memory allocation during index building by
Unified Range Flush: (i) default (D), (ii) single-call (S), and (iii) chunkstack (C). The
sensitivity of build time to memory management is higher (up to 8.6% decrease with C)

for larger values of M,. We use Proteus with light stemming.

For aggressive prefetching, we increase the Linux readahead window to 1MB making it
equal to the size of the parsing buffer. Thus, during the processing of 1MB text, we fetch
in the background the next 1MB from disk. As a result, parse time drops by 30% and the
total build time drops by 20% from 534min to 429min. When we activate the chunkstack
method in memory management, build time further drops by 5% from 429min to 408min.

We have all these optimizations activated throughout the experimentation with Proteus.

5.6 Scalability across Different Datasets

Finally, we measure the total build time of the CNT variants of SRF and URF for three
different datasets: ClueWeb09 (first 1TB), GOV2 (426GB) and Wikipedia (200GB). In
our evaluation, we use the default parameter values shown in Table 4.2. In Figures 5.7a
and 5.7d we break down into parse and flush time the SRF and URF build time for the
ClueWeb09 dataset. Even though SRF better balances the flush time of ranges and terms
against each other, URF actually reduces the total build time of SRF by 7% from 815min
to 762min. This improvement is accompanied by a respective reduction of the total flush
time by 82min (23%) from 353min to 271min.

In Figures 5.7b and 5.7e we examine the scaling of build time for the GOV2 dataset.
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Table 5.1: We examine the effect of alternative optimizations to the query and build time
of Unified Range Flush. Preallocation reduces the average query time, while prefetching

and chunkstack reduce the build time.

Average Build and Query Time - Unified Range Flush

Total | Parse Flush Time Query
Memory and I/O Optimizations Build | Time | Ranges Terms || W/out W/Cache

(min) | (min) | (min)  (min) (ms) (ms)
None 543 374 124 40 2082 1537
Preallocation 534 373 112 45 1728 1316
Preallocation+Prefetching 429 260 118 47 1724 1318
Preallocation+Prefetching+Chunkstack || 408 242 116 48 1726 1315

SRF reduces the build time of URF by 16min (4%) from 420min to 404min. The total
number of indexed postings is 20.58bn in GOV2 (426GB) and 27.45bn in ClueWeb09
(1TB). However, GOV2 has about half the text size of ClueWeb09, and the index building
of GOV2 takes almost half the time spent for ClueWeb09. In fact, the parsing of GOV2
seems to take more than 70% of the total build time partly due to cleaning of pages written
during flushing (Section 5.2). In the Wikipedia dataset, parsing takes about 84-85% of
the total build time, but both URF and SRF require the same time (about 118.5min) to
build the index (Figures 5.7c and 5.7f).

Across Figure 5.7, the total build time of URF and SRF (e.g., ClueWeb09 and GOV 2)
demonstrates a nonlinearity mainly caused by the range flush time rather than the parsing
and term flushing. We explored this issue by using the least-squares method to approxi-
mate the build time of GOV2 as function of the number of postings. In our regression, we
alternatively consider the linear function f(z) = a; + b; - z and the polynomial function
f(x) = ay - x*2. Using the coefficient of determination R? to quantify the goodness of
fit, we find that both the total build time and the time of range flushing are accurately
tracked by the polynomial function [56]. Instead, the respective times of parsing and term

flushing achieve good quality of fit with linear approximation.
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Figure 5.7: We show the scaling of build time with Selective Range Flush (SRF) and
Unified Range Flush (URF). We use the ClueWeb09 (first TB), GOV2 (426GB) and
Wikipedia (200GB) datasets over Proteus with light stemming. URF takes 53.5min (7%)
less time for ClueWeb09, about the same for Wikipedia, and 16.4min (4%) more for GOV2

in comparison to SRF.

5.7 Summary

We investigate the problem of incremental maintenance of a disk-based inverted file. Our
objective is to improve both the search latency and index building time at low resource
requirements. We propose a simple yet innovative disk organization of inverted files
based on blocks, and introduce two new incremental indexing methods, the Selective
Range Flush (SRF) and Unified Range Flush (URF). We implemented our two methods
in the Proteus prototype that we built. We extensively examine their efficiency and
performance robustness using three different datasets of size up to 1TB. SRF requires

considerable tuning effort across different parameter combinations to perform well. In
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comparison to SRF, URF has similar or even better performance, while it is also simpler,
easier to tune and amenable to I/O complexity analysis (Section 9.1).

Both in Proteus and the existing Wumpus system, we experimentally examine the
search performance of the known Hybrid Immediate Merge (HIM) method with partial
flushing and automatic threshold adjustment. Our two methods achieve the same search
latency as HIM in Proteus, while they reduce into half the search latency of HIM in
Wumpus. Additionally, our methods reduce by a factor of 2-3 the I/O time of HIM

during index building, and lower the total build time by 20% or more.
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CHAPTER 6

RANGE-BASED STORAGE MANAGEMENT FOR

SCALABLE DATASTORES

6.1 Introduction

6.2 Motivation

6.3 System Assumptions

6.4 Design and Architecture
6.5 Prototype Implementation

6.6 Summary

6.1 Introduction

Scalable datastores (or simply datastores) are distributed storage systems that scale to
thousands of commodity servers and manage petabytes of structured data. Today, they
are routinely used by online serving, analytics and bulk processing applications, such as
web indexing, social media, electronic commerce, and scientific analysis [28, 40, 32, 52,

33, 15, 101]. Datastores differ from traditional databases because they: (i) Horizontally
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partition and replicate the indexed data across many servers, (ii) Provide weaker concur-
rency model and simpler call interface, and (iii) Allow dynamic expansion of records with
new attributes. Depending on the application needs, they organize data as collections of
key-value pairs, multidimensional maps or relational tables.

System scalability across multiple servers is necessitated by the enormous amount
of handled data and the stringent quality-of-service requirements [28, 40, 104]. Pro-
duction systems keep the high percentiles of serving latency within tens or hundreds of
milliseconds [40, 104]. General-purpose datastores target good performance on both read-
intensive and write-intensive applications [28, 32]. Furthermore, applications that ingest
and mine event logs accelerate the shift from reads to writes [93].

The data is dynamically partitioned across the available servers to handle failures
and limit the consumed resources. To a large extent, the actual capacity, functionality
and complexity of a datastore is determined by the architecture and performance of the
constituent servers [72, 99, 98]. For instance, resource management efficiency at each
storage server translates into fewer hardware components and lower maintenance cost for
power consumption, redundancy and administration time. Also, support of a missing
feature (e.g., range queries) in the storage server may require substantial reorganization
with overall effectiveness that is potentially suboptimal [84, 30].

A storage layer at each server manages the memory and disks to persistently maintain
the stored items [98]. Across diverse batch and online applications, the stored data is
typically arranged on disk as a dynamic collection of immutable, sorted files (e.g., Bigtable,
HBase, Azure and Cassandra in Section 2.2.1, Hypertable [53]). Generally, a query should
reach all item files to return the eligible entries (e.g., in a range). As the number of files
on disk increases, it is necessary to merge them so that query time remains under control.
Datastores use a variety of file merging methods but without rigorous justification. For
instance, Bigtable keeps bounded the number of files on disk by periodically merging
them through compactions [28] (also HBase, Cassandra, LazyBase in Section 2.2.1, Anvil
in Section 2.2.3). In the rest of the document we interchangeably use the terms merging
and compaction.

Despite the prior indexing research (e.g., in relational databases, text search), data-
stores suffer from several weaknesses. Periodic compactions in the background may last

for hours and interfere with regular query handling leading to latency spikes [98, 71, 69,
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70, 81]. To avoid this problem, production environments schedule compactions on a daily
basis, thus leaving fragmented the data for several hours [98]. This leads to reduced query
performance as the performance of these systems (e.g HBase) is sensitive to the number of
disk files per key range [15]. Frequent updates in distinct columns of a table row further
fragment the data [43]. When several files on a server store data with overlapping key
ranges, query handling generally involves multiple I/Os to access all files that contain a
key. Bloom filters can defray this cost, but are only applicable to single-key (but not
range) queries, and have diminishing benefit at large number of files (e.g. 40) [98]. Fi-
nally, several merge-based methods require roughly half of the storage space to remain
free during merging for the creation of new files [98].

In this thesis we study the storage management of online datastores that concur-
rently support both range queries and dynamic updates. Over inexpensive hardware, we
reduce the data serving latency through higher storage contiguity; improve the perfor-
mance predictability with limited query-update interference and configurable compaction
intensity; and decrease the storage space required for file maintenance through incremen-
tal compactions. Our main insight is to keep the data of the memory and disk sorted
and partitioned across disjoint key ranges. In contrast to existing methods (e.g., Sec-
tion 2.2.2), when incoming data fills up the available memory of the server, we only flush
to disk the range that occupies the most memory space. We store the data of each range
in a single file on disk, and split a range to keep bounded the size of the respective file as

new data arrives at the server.

6.2 Motivation

Range queries are often used by data serving and analytics applications [32, 33, 15, 53,
25, 30, 72], while time-range queries are applied on versioned data for transactional up-
dates [83]. Accordingly, typical benchmarks support range queries in addition to updates
and point queries as workload option [33, 81]. In a distributed system, variability in the
latency distribution of individual components is magnified at the service level; effective
caching cannot directly address tail latency unless the entire working set of an application

resides in the cache [38]. In this section, over a distributed datastore we experimentally
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Figure 6.1: The query latency at the Cassandra client varies according to a quasi-periodic

pattern. The total throughput of queries and inserts also varies significantly.

demonstrate the range query latency to vary substantially over time with a high percent-
age of it to be spent in the storage layer.

We use a cluster of 9 machines with the hardware configuration described in Section 7.
We apply the Apache Cassandra version 1.1.0 as datastore with the default Size-Tiered
compaction and the Yahoo! YCSB version 0.1.4 as workload generator [52, 33]. An item
has 100B key length and 1KB value size. A range query requests a random number
of consecutive items that is drawn uniformly from the interval [1,100]. Initially we run
Cassandra on a single node. On a different machine, we use YCSB with 8 threads to
generate a total of 500req/s out of which 99% are inserts and 1% are range queries (see
Section 7.2). We disregarded much higher loads (e.g., 1000req/s) because we found them
to saturate the server. The experiment terminates when a total of 10GB is inserted into
the server concurrently with the queries.

For average size of queried range at 50 items, the generated read load is 250items/s,
i.e., almost half the write load of 495items/s. An I/O on our hard disk takes on average
8.5-10ms for seek and 4.16ms for rotation. Accordingly, the time to serve 5 range queries
is 67.2ms, while the time to sequentially write 495 items is 21.9ms. Although the read
time appears 3 times higher than that of the writes, the actual write load is practically
higher as a result of the compactions involved.

In Figure 6.1 we show the query latency measured every 5s and smoothed with a

window of size 12 for clarity. The query latency varies substantially over time following
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Table 6.1: Storage management on the server occupies more than 80% of the average

query latency measured at the client.

Latency (ms) of Range Queries on Cassandra

Client Server Storage Mgmt
# Servers
Avg 90th 99th Avg 90th 99th
1 204.4 420 2282 178.8 382 1906
4 157.6 313 1601 130.8 269 1066
8 132.2 235 1166 111.7 218 802

some quasi-periodic pattern which is independent of the random query size. In fact, the
latency variation approximates the periodicity at which the server flushes from memory
to disk the incoming data and merges the created files. In the same figure, we additionally
show the measured throughput of queries and inserts to also vary considerably over time,
and actually drop to zero for 90 consecutive seconds at minutes 157 and 295.

We repeat the above experiment with Cassandra over 1, 4 and 8 server machines. We
linearly scale the generated request rate up to 4000req/s and the inserted dataset size up
to 80GB, while we fix to 8 the number of YCSB threads at the client. We instrument the
latency to handle the incoming query requests at each server. Table 6.1 shows the query
latency respectively measured at the YCSB client and the storage layer of all the Cas-
sandra servers. The difference mainly arises from time spent on network transfer, request
redirection among the servers, and RPC handling. As we increase the number of servers,
the query latency drops because the constant (8) number of YCSB threads results into
reduced concurrency (and contention) per server in the cluster. Across different system
sizes, the storage management accounts for more than 80% of the average latency and the
90th percentile, and more than 65% of the 99th percentile. Overall, compactions cause
substantial latency variations, and storage management is dominant in the online perfor-
mance of Cassandra-like datastores (Section 2.2.1). In the following sections we introduce
a new storage structure and method to effectively control the compaction impact, and

improve the datastore performance.
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6.3 System Assumptions

We mainly target interactive applications of online data serving or analytics processing.
The stored data is a collection of key-value pairs, where the key and the value are arbitrary
strings of variable size from a few bytes up to several kilobytes. The system supports the
operation of a point query as value retrieval of a single key, and a range query as retrieval
of the values in a specified key range. Additionally, the system supports an update as
insertion or full overwrite of a single-key value. We do not examine the problems of query
handling over versioned data, or data loading in bulk.

A datastore uses a centralized (Figure 2.5b) or distributed index (Figure 2.6) to locate
the server of each stored item. Data partitioning is based on interval mapping for effi-
ciency in handling range queries (Section 2.2.2). We focus on the storage functionality of
individual servers rather than the higher datastore layers. All accepted updates in a stor-
age server are made immediately durable through write-ahead logging and then inserted
in a memory search structure, before an acknowledgment is sent to the client [28, 40].
When the memory structure reaches a predefined threshold, its contents are sorted and
stored in an immutable file on disk. The storage layer is implemented as a dynamic col-
lection of sorted files, and a query must typically access multiple files. Thus, updates are
commonly handled at sequential disk throughput, and queries involve synchronous ran-
dom I/O. Figure 6.2 illustrates the path of an update or query through the request router
and the storage servers, before returning the respective response back to the datastore
client.

With data partitioning, each storage server ends up locally managing up to a few

terabytes. The data is indexed by a memory-based sparse index, i.e., a sorted array with
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pairs of keys and pointers to disk locations every few tens or hundreds of kilobytes. For
instance, Cassandra indexes 256 KB blocks, while Bigtable, HBase and Hypertable index
64KB blocks [28, 52]. With a 100B entry for every 256KB, we need 400MB of memory to
sparsely index 1TB. Compressed trees can reduce the occupied memory space by an order
of magnitude at the cost of extra decompression processing [66]. We provide additional

details about our assumptions in Section 7.8.

6.4 Design and Architecture

In the present section we propose a novel storage layer to efficiently manage the memory

and disks of datastore servers. Our design sets the following primary goals:

(i) Provide sequential disk scans of sorted data to queries and updates.
(ii) Store the data of each key range at a single disk location.
(iii) Selectively batch updates and free memory space.
(iv) Avoid storage fragmentation or reorganization and minimize reserved storage space.

Below, we describe the proposed Rangetable structure and the accompanying Rangemerge
method. Then we outline the prototype software that we developed to fairly compare our

approach with representative storage structures of existing systems.

6.4.1 The Rangetable Structure

The main insight of Rangetable is to keep the data on disk in key order, partitioned across
large files by key range. We store the data of a range at a single file to avoid multiple
seeks for a point or range query. The disk blocks of a file are closely located in typical
filesystems, with allocators based on block groups or extents (e.g., ext3/4, Btrfs). If the
size of a data request exceeds a few MB, the disk geometry naturally limits the head
movement overhead to below 10%. For instance, if the average rotation and seek take
6.9ms in a 10KRPM SAS drive, the overhead occupies 8.6% of the total time to access
10MB [37]. We do not need enormous files to achieve sequential I1/0, as long as each file
has size in the tens of megabytes. We avoid frequent I/O by gathering incoming updates
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in memory, and inexpensively preserve range contiguity on disk by only flushing those
ranges that ensure I/O efficiency.

New updates at a server are durably logged, but also temporarily accumulated in
memory for subsequent batched flushing to a new file on disk (Figure 6.2). For effective
I/O management, we partition the data of every server into key-sorted ranges using a
memory-based table, called rangeindex. Each slot of the rangeindex maps a range to
the respective items stored on disk and in memory (Figure 6.3). For fast key lookup
and range scan we keep the data in memory sorted through a mapping structure, called
itemtable. We use a concurrent, balanced tree (specifically, a red-black tree) for each range,
although a multicore-optimized structure is preferable if the stored data fully resides in
memory [72].

New data are first inserted to the respective tree in memory and later flushed to
disk. We avoid external fragmentation and periodic reorganization on disk by managing
the space in files, called rangefiles, of maximum size F' (e.g., 256 MB). Each rangefile is
organized as a contiguous sequence of chunks with fixed size C' (e.g., 64KB). In order to
easily locate the rangefile chunks, we maintain a memory-based sparse index per rangefile,
called chunkindezr, with entries the first key of each chunk and the offset within the
rangefile. From the steps shown in Figure 6.3, an incoming range query (1) finds the

respective tree in memstore using the rangeindex and (2) searches this tree. Then, the
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query searches (3) the rangeindex, (4) the chunkindex and (5) the rangefile of the diskstore.
Finally, (6) the requested items from both the itemtable and rangefile are merged into a

single range by the server and returned.

6.4.2 The Rangemerge Method

In order to serve point and range queries with roughly one disk I/O, the Rangemerge
method merges items from memory and disk in range granularity. When we merge items,
we target to free as much memory space as possible at minimal flushing cost. The choice
of the flushed range affects the system efficiency in several ways: (i) Every time we flush
a range, we incur the cost of one rangefile read and write. The more new items we flush,
the higher I/O efficiency we achieve. (ii) A flushed range releases memory space that is
vital for accepting new updates. The more space we release, the longer it will take to
repay the merging cost. (iii) If a range frequently appears in queries or updates, then we
should skip flushing it to avoid repetitive I1/O.

Memory flushing and file merging are generally regarded as two distinct operations.
When memory fills up with new items, the server has to free memory space quickly to
continue accepting new updates. Existing systems sequentially transfer to disk the entire
memory occupied by new items. Thus, they defer merging to avoid blocking incoming
updates for extended time period. This approach has the negative effect of increasing
the files and incurring additional I/O traffic to merge the new file with existing ones [93].
To avoid this extra cost, Rangemerge treats memory flushing and file merging as a single
operation rather than two. It also limits the duration of update blocking because a range
has configurable maximum size, typically a small fraction of the occupied memory at the
server (Section 7.8).

We greedily victimize the range with the largest amount of occupied memory space.
The intuition is to maximize the amount of released memory space along with the /0
efficiency of the memory flush. For simplicity, we take no account of the current rangefile
size, although this parameter affects the merging cost, and the probability of having
future 1/O requests to a particular range. Despite its simplicity, this victimization rule
has proved robust across our extensive experimentation.

The pseudocode of Rangemerge appears in Algorithm 6.3. The server receives items
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Algorithm 6.3 Pseudocode of RANGEMERGE

Input: Rangetable with memory size >= M
Output: Rangetable with memory size < M
1: // Victimize a range
2: R := range whose tree occupy max total memory
3: /] Flush memory items of R to its rangefile
4: Merge rangefile fr of R with its tree mp into empty buffer b
5: if (sizeof(b) > F') then // If block will overflow
6: k := [sizeof(b)/F']

7: else

8: k:=1

9: end if

10: Allocate k new rangefiles f5, ..., f& on disk

11: Split b into k subranges R!,..., R* of equal disk size
12: Transfer subranges to respective fh,..., f&
13: Build chunkindexes for f1,..., fk

14: Update rangeindex with entries for R',..., R¥
15: // Clean up memory and disk

16: Free tree mpg

17: Delete rangefile fr and its chunkindex

in the key interval assigned by the datastore index. We insert new items in their trees
until the occupied memory space reaches the memory limit M. At this point, we pick
as victim R the range of maximum memory space (line 2), read its rangefile fp from
disk, merge it with the respective tree mg in memory, and move the merged range back
to disk (lines 4-13). The addition of new items may lead the size of range R to exceed
the rangefile capacity F' (line 5). In this case, we equally split R into & (usually, k = 2)
subranges and move the data to k& new rangefiles on disk (line 11). Finally, we free the
itemtable space occupied by R, and delete the old rangefile from the disk (lines 16-17).
Practically, flushing a single range is sufficient to reduce the occupied memory below the

memory limit.
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Figure 6.4: Prototype framework with several compaction methods as plugins.

6.5 Prototype Implementation

We developed a general storage framework to persistently manage key-value items over
local disks. The interface supports the put (k,v) call to insert the pair (k,v), the get (k)
call to retrieve the value of key k, the get (k,n) call to retrieve n consecutive records from
key > k, and the get (k1,k2) call to retrieve the records with keys in the range [ky, ko).
Our prototype adopts a multithreaded approach to support the concurrent execution of
queries and updates, and it is designed to easily accept different compaction methods as
pluggable modules. The implementation consists of three main components, namely the
Memstore, the Diskstore, and the Compaction manager (Figure 6.4).

The Memstore uses a thread-safe red-black tree in memory to maintain incoming items
in sorted order (or multiple trees, in case of Rangemerge), and the Diskstore accesses
each sorted file on disk through a sparse index maintained in memory. The Compaction
manager implements the file merging sequences of the following methods: Nomerge, SMA,
Geometric, Rangemerge and Remerge. We implemented the methods using C+-+ with
the standard template library for basic data structures and 3900 uncommented lines of
new code.

To validate the accuracy of our experimentation, we compared the compaction activity
of our storage framework with that of Cassandra. From review of the published literature
and the source code, we found that Cassandra implements a variation of the SMA (k=4)
algorithm [52]. Accordingly, the stored data is organized into levels of up to k=4 files;

every time the threshold of k=4 files is reached at one level, the files of this level are merged
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into a single file of the next level (Section 2.2.2). In our framework we set M=25MB
because we found that Cassandra by default flushes to disk 25MB of data every time
memory gets full. For comparison fairness we disable data compression and insertion
throttling in Cassandra. We create the Cassandra workload using YCSB with 2 clients,
which respectively generate puts at 500req/s and gets at 20req/s. The stored items are
key-value pairs with 100B key and 1KB value, while the size of the get range is drawn
uniformly from the interval [1,20]. The experiment terminates when 10GB of data is
inserted. We generate a similar workload in our framework with two threads.

In Figure 6.5 we show the amount of transferred data as we insert new items into the
Cassandra and our prototype system respectively. The height of each mark refers to the
total amount of transferred data during a compaction. Across the two systems we notice
quasi-periodic data transfers of exactly the same size. In the case that a merge at one level
cascades into further merges at the higher levels, in our prototype we complete all the
required data transfers before we accept additional puts. Consequently, it is possible to
have multiple marks at the same x position. Instead Cassandra allows a limited number of
puts to be completed between the cascading merges, which often introduces a lag between
the corresponding marks. Overall the two systems transfer equal amount of data using

the same compaction pattern during the dataset insertion.
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6.6 Summary

To achieve fast ingestion of new data, scalable datastores usually follow a write-optimized
approach. Incoming updates are simply logged to disk and accumulated in memory,
before the system returns control to the client. When later on the available memory is
exhausted, a flush operation will sort all memory updates and transfer them to a new
file on disk. To improve query performance and reclaim space from obsolete entries, the
system periodically selects and merges multiple disk files into a single file. These flush
and merge operations are collectively called compactions and are usually executed in the
background.

This general approach of amortizing the insertion cost over the periodic compactions is
adopted by most production datastores as it achieves high ingestion throughput. However,
it increases the latency of range queries as it fragments the data of each key in several
disk files, causing multiple random I/Os per query. Furthermore, even though background
compactions are only periodically executed, they are very resource-intensive and have a
significant impact on the serving of concurrent queries. Finally, this approach requires
roughly half of the storage space to be reserved for the creation of new files during merges.

To address these issues, we present the Rangetable storage layer and the Rangemerge
method to efficiently manage the memory and disks of datastore servers. We also de-
scribe our prototype storage framework and provide details about the implementation.
Rangemerge improves query latency by keeping the entries contiguously stored on disk
and minimizes the interference between compactions and queries by only partially flush-
ing entries from memory to disk using lighter compactions. The indexing throughput is
maintained high by scheduling the merges of memory and disk entries based on their I/O
efficiency. Furthermore, Rangemerge implicitly avoids the excessive storage reservation of

other methods.
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CHAPTER 7

PERFORMANCE EVALUATION OF RANGEMERCE

7.1 Experimentation Environment
7.2 Query Latency and Disk Files
7.3 Insertion Time

7.4 Sensitivity Study

7.5 Memory Size

7.6 Key Distribution

7.7 Solid-State Drives

7.8 Discussion

7.9 Summary

In the present section, we experimentally evaluate the query latency and insertion
time across several compaction methods. We show that Rangemerge achieves minimal
query latency of low sensitivity to the I/O traffic from concurrent compactions, and
approximates or even beats the insertion time of write-optimized methods under various

conditions. We also examine the performance sensitivity to various workload parameters
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and storage devices. Although not explicitly shown, Rangemerge also trivially avoids the

100% overhead in storage space of other methods [98].

7.1 Experimentation Environment

We did our experiments over servers running Debian Linux 2.6.35.13. Each machine
is equipped with one quad-core 2.33GHz processor (64-bit x86), one activated gigabit
ethernet port, and two 7200RPM SATA2 disks. Unless otherwise specified, we configure
the server RAM equal to 3GB. Each disk has 500GB capacity, 16MB buffer size, 8.5-10ms
average seek time, and 72MB/s sustained transfer rate. Similar hardware configuration
has been used in a recent related study [86]. We store the data on one disk over the Linux
ext3 filesystem. In Rangemerge, we use rangefiles of size F=256MB. We also examine
Remerge, Nomerge, Geometric (r=2, r=3, or p=2) and SMA (k=2 or k=4, with unlimited
¢). In all methods, we use chunks of size C=64KB. From Section 2.2.2, variations of these
methods are used by Bigtable, HBase (Geometric, r=3), Anvil and bLLSM (Geometric,
r=2), GTSSL (SMA, k=4), and Cassandra (SMA, k=4).

We use YCSB to generate key-value pairs of 100 bytes key and 1KB value. On a
single server, we insert a dataset of 9.6M items with total size 10GB. Similar dataset
sizes per server are typical in related research (e.g., 1M [32], 9M [81], 10.5GB [86],
16GB [98], 20GB [33]). The 10GB dataset size fills up the server buffer several times
(e.g., 20 for 512MB buffer space) and creates interesting compaction activity across the
examined algorithms. With larger datasets, we experimentally found the server behavior
to remain qualitatively similar, while enormous datasets are typically partitioned across
multiple servers. For experimentation flexibility and due to lack of public traces [4], we
use synthetic datasets with keys that follow the uniform distribution (default), Zipfian
distribution, or are partially sorted [33]. We take average measurements every 5s, and
smooth the output with window size 12 (1-min sliding window) for readability. Our
default range query reads 10 consecutive items.

The memory limit M refers to the memory space used to buffer incoming updates.
Large system installations use dynamic assignment to achieve load balancing by having

a number of service partitions (micro-partitions) that is much larger than the number
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of available machines [38]. For instance, the Bigtable system stores data in tablets with
each machine managing 20 to 1,000 tablets. Consequently, the default buffer space per
tablet lies in the range 64-256MB [41]. Other related research configures the memory
buffer with size up to several GB [98, 33]. As a compromise between these choices, we
set the default memory limit equal to M/=512MB; thus we keep realistic (1/20) the ratio
of memory over the 10GB dataset size and ensure the occurrence of several compactions
throughout an experiment. In Section 7.3 we examine memory limit and dataset size up
to 4GB and 80GB respectively. We further study the performance sensitivity to memory
limit M in Figure 7.9.

7.2 Query Latency and Disk Files

First we measure the query latency of a mixed workload with concurrent puts and gets.
An T/O over our disk takes on average 13.4ms allowing maximum rate about 74req/s
(can be higher for strictly read workloads). We configure the get load at 20req/s so that
part of the disk bandwidth can be used by concurrent compactions. We also set the put
rate at 2500req/s, which is about half of the maximum possible with 20get/s (shown in
Figure 7.6¢). The above combined settings occupy roughly two thirds of the total disk
bandwidth and correspond to a write-dominated workload (get/put ratio about 1/100 in
operations and 1/25 in items) [86]. We examine other combinations of put and get loads
in Section 7.4.

We assume that when memory fills up, the put thread is blocked until we free up
memory space. Although write pauses can be controlled through early initiation of mem-
ory flushing [93], their actual effect to insertion performance additionally depends on the
flushing granularity and duration (explored in Section 7.8). In order to determine the
concurrency level of query handling in the server, we varied the number of get threads
between 1 and 20; then we accordingly adjusted the request rate per thread to generate
total get load 20req/s. The measured get latency increased with the number of threads,
but the relative performance difference between the methods remained the same. For
clarity, we only illustrate measurements for one put and one get thread.

In Figure 7.1a we examine three representative methods: SMA (k=4), Geometric
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Figure 7.1: During concurrent inserts and queries, (a) the get latency of Geometric (r=2)
and SMA (k=4) has substantially higher variability and average value than Rangemerge,
and (b) the get throughput of Geometric (r=2) drops as low as 15.5req/s during com-
pactions (grey background).

(r=2), and Rangemerge. The experiment runs separately for each method until loading
10GB. The get latency of Rangemerge (avg: 15.6ms, std: 8.2ms, max: 30.5ms) has
lower average value by 51-83% and standard deviation by 2.5-3 times than Geometric
(avg: 23.5ms, std: 20.5ms, max: 64.5ms) and SMA (avg: 28.6ms, std: 24.3ms, max:
93.3ms). Also Remerge (not shown) is less responsive and predictable (avg: 21.1ms,
std: 10.6ms, max: 35.4ms) than Rangemerge. However, SMA reduces the experiment
duration to 90min from 119min required by Rangemerge and 112min by Geometric (see
also Figure 7.9). In Figure 7.1b we illustrate the get performance of Geometric, with
concurrent compactions as vertical grey lanes. Compactions increase latency by several
factors and reduce throughput by 22.5%, from 20req/s to 15.5req/s. The throughput
of SMA (not shown) also drops to 10.4req/s, unlike the Rangemerge throughput that
remains above 17.4req/s.

In Figure 7.2a we depict the number of files (left y axis) and the average get latency
(right y axis) for Geometric. After every compaction, we measure the get latency as
average over twenty random requests. From every file, the get operation reads the items of
the requested key range (Figure 6.3). Assuming no concurrent compactions, the measured

latency varies between 11.9ms and 49.0ms, as the number of files per key varies between 1
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Figure 7.2: (a) At the insertion of 10GB with M=512MB using Geometric partitioning
(r=2), get latency (at load 10req/s) is closely correlated to the number of files created.

(b) We show the number of files maintained per key range for six methods.

and 4. The evident correlation between get latency and the number of files in Geometric
explains the variation of get performance in between compactions in Figure 7.1b.

We further explore this issue in Figure 7.2b, where we show the number of maintained
files as function of the dataset size. Nomerge increases the number of sorted files up to
20 (only limited by the dataset size), and SMA (k=4) increases the number of created
files up to 8. Geometric with r=2 and p=2 varies the number of files up to 4 and 2,
respectively. Instead, Remerge always maintains a single file for the entire dataset, while
Rangemerge strictly stores on a single file the items of a rangefile range; both methods
lead to roughly one random I/O per get operation. Overall Rangemerge leads to more
responsive and predictable get operations with concurrent puts.

We also examine the generated I/O activity of compactions. In Figure 7.3 we illustrate
the data amount written to and read from disk for 10GB dataset and M=512MB. The
plots of the figure are ordered according to the decreasing size of the maximum transferred
amount. Remerge merges data from memory to an unbounded disk file with 10GB final
size. At the last compaction, the amount of transferred data becomes 20.5GB. Geometric
reduces the transferred amount down to 16.5GB for r=2. In SMA, k=4 limits the trans-

ferred amount to 4.5GB; k=2 (not shown) leads to 14.5GB maximum compaction transfer
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Figure 7.3: /O intensity of compactions. The disk traffic of compactions in Rangemerge

is comparable to that of Nomerge with M=512MB.

with 6 files. It is interesting that Rangemerge reduces to 594MB the maximum trans-
ferred amount per compaction bringing it very close to 512MB periodically transferred
by Nomerge. Thus Rangemerge makes compactions less I/O aggressive with respect to

concurrent gets (Figure 7.1a).

7.3 Insertion Time

Next we study the cumulative latency to insert data items one-by-one into the storage
server. Insertion includes some processing to sort the data in memory, but mainly involves
I/O to flush data and apply compactions over the disk files. In order to ensure the
generality of our results, we measured the total insertion time at different scales of dataset
size and memory limit. In Figure 7.4a and Figure 7.4b the cumulative insertion time of
Geometric, SMA and Rangemerge forms a similar curve as long as the ratio of dataset
size over memory limit is constant (e.g., 5GB/256 MB=40GB/2GB=20). We confirmed
this behavior across several parameter scales that we examined.

In Figure 7.5a (with log y axis) we examine the time required to insert a dataset using
different compaction methods. We already displayed the number of maintained files for

different methods in Figure 7.2b. Nomerge takes 9.3min to create 20 files on disk, and
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Figure 7.4: Scaling configuration parameters. The insertion progress is similar between
the configuration of M=256MB with 5GB dataset (left y-axis) and M=2GB with 40GB
(right y-axis) for Geometric (r=2), SMA (k=4) and Rangemerge.

SMA (k=4) spends 16.2min for 8 files. Geometric takes 31.7min with r=2, 32.4min with
r=3, and 38.0min with p=2 (< 2 files). Remerge requires 92.5min to maintain a single file
on disk, and Rangemerge takes 47.8min. As expected, the smaller the number of disk files
maintained, the longer it takes to insert the dataset. One exception is Rangemerge that
requires about half the insertion time of Remerge to effectively store each key at a single
disk location. Geometric reduces the insertion time of Rangemerge by 20.5%33.6%,
but requires 2-4 random I/Os on disk to handle a query (Figure 7.2b) and has greater
variability in query latency due to its I/O-intensive background compactions (Figure 7.1a).
In addition, under modest concurrent query load the insertion time of Rangemerge is lower
than Geometric (p=2) and similar to Geometric (r=3) (Section 7.4).

In Figure 7.5b we repeat the above experiment using a dataset of 80GB with M=4GB
over a server with 6GB RAM. Nomerge takes 1.5hr and SMA (k=4) 2.9hr. Geometric
takes 5.8hr with r=2, 7.4hr with r=3, and 7.7hr with p=2. Remerge requires 13.9hr and
Rangemerge takes 6.4hr. Interestingly, the insertion time of Rangemerge is lower than
that of Geometric with p=2 and r=3, even though it stores each disjoint range of keys on
a single file on disk. We attribute this behavior to the more efficient use of the available

memory by Rangemerge, further explored in Section 7.5.
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Figure 7.5: (a) The insertion time (log y axis) of Rangemerge is about half the insertion
time of Remerge and closely tracks that of Geometric (p=2). (b) With M=4GB and
80GB dataset size Rangemerge has lower insertion time than Geometric (p=2) and (r=3)

while storing each key at a single disk location.

7.4 Sensitivity Study

We did an extensive sensitivity study with respect to the concurrent load. Specifically,
we examined how the get latency and the total insertion time is affected when we vary
the put and get load of the system.

First we evaluate the impact of the put load to the query and insertion time. As we
vary the put load between 1000-20000req/s, the average latency of concurrent gets is lowest
under Rangemerge (Figure 7.6a). According to the needs of Service Level Agreements [40,
101, 104], we also consider the 99th percentile of get latency in Figure 7.6b. Rangemerge
and Remerge are the fastest two methods. Moreover, under concurrent puts and gets,
the insertion time of Rangemerge closely tracks that of Geometric (r=3) and lies below
that of Remerge and Geometric (p=2) (Figure 7.6¢). We omit Nomerge because it leads
to excessively long get latency.

We also examine the sensitivity to the get size assuming gets of rate 20req/s concur-
rently served with puts of rate 2500req/s. In Figures 7.7a and 7.7b we use logarithmic y
axis to depict the latency of get requests. Across different get sizes and especially at the
larger ones (e.g., 10MB or 100MB), Rangemerge is distinctly faster (up to twice or more)
than the other methods both in terms of average get latency and the respective 99th per-
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Figure 7.7: Sensitivity to range get size assuming concurrent load of 2500req/s put rate

and 20req/s get rate.

centile. From Figure 7.7c it also follows that the concurrent get load has an impact on the
insertion time. Remerge takes as high as 285min with larger get sizes, unlike Rangemerge
that remains between two instances of the Geometric method (r=2 and p=2).

In Figure 7.8, as the load of concurrent gets varies up to 40req/s, the insertion time
of Rangemerge lies at the same level as Geometric and well below Remerge. Under
mixed workloads with both puts and gets, from Figures 7.6, 7.7 and 7.8 we conclude that

Rangemerge achieves the get latency of Remerge and the insertion time of Geometric.
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Nomerge and stays by at least 21% below

the other methods.

7.5 Memory Size

We also evaluate how insertion time depends on the memory limit A (Figure 7.9 with
logarithmic y axis). As we increase M from our default value 512MB to 2GB, both
Remerge and Rangemerge proportionally reduce the disk I/O time. This behavior is
consistent with the respective I/O complexities in Table 2.1 and Section 9.2. At M=2GB,
Rangemerge lowers insertion time to 15.2min, which approximates the 10.2min required
by Nomerge. The remaining methods require more time, e.g., 19.3min for Geometric
(r=2), 19.8min for SMA (k=4) and 30.9min for Remerge. From additional experiments
(not shown) we found that a higher M does not substantially reduce the get latency of the
remaining methods except for the trivial case that the entire dataset fits in memory. We
conclude that the insertion time of Rangemerge approximates that of Nomerge at higher

ratio of memory over dataset size.

7.6 Key Distribution

There are many scenarios where the distribution of keys inserted into the datastore is
skewed or the keys are already sorted. For example, datastores are commonly used to

store timeseries (e.g., system events or user transactions). In these cases the key is usually
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Figure 7.10: Sensitivity of insertion time to key distribution, as we generate put requests

back-to-back with zero get load.

a timestamp so we expect the keys to be ordered —or mostly ordered, if items are collected
from multiple sources.

In Figure 7.10a we investigate how insertion time is affected by the percentage of keys
inserted in sorted order. Rangemerge approaches Nomerge as the percentage of sorted
keys increases from 0% (uniform distribution) to 100% (fully sorted). This behavior is
anticipated because the sorted order transforms merges to sequential writes with fewer
reads.

In Figure 7.10b we draw the inserted keys from a Zipfian distribution and study the
impact of parameter « to the insertion time. The higher we set the parameter «, the
more items appear at the head (popular part) of the distribution. Rangemerge naturally

exploits the higher item popularity to again approximate Nomerge.

7.7 Solid-State Drives

Given the enormous technological improvement of solid-state drives (SSD) over the last
decade, it is reasonable to consider their behavior as part of the storage hierarchy in a
datastore server. Flash SSDs reduce I/O latency at the cost of hardware equipment and

system complexity; the limited lifespan and the relatively poor random-write performance
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that of Nomerge and Remerge. (b) Rangemerge reduces the variability of get latency in

comparison to SMA (k = 4) and Geometric (r = 2).

have been recognized as problem for the wider deployment of SSDs [77]. In our following
experiments we assume that an SSD fully replaces the hard disk drive (HDD) as medium
of persistent storage for the written key-value pairs. Our SSD is a SATA2 60GB solid-
state drive of max read throughput 285MB/s and max write throughput 275MB/s. In
Figure 7.11a we show the cumulative insertion time over an SSD for a 10GB dataset
and memory limit 512MB. The compaction methods applied over the SSD reduce by
28%-60% the insertion time measured over the HDD (Figure 7.9). However, the relative
performance between the methods remains similar across the two devices. In particular,
Rangemerge reduces the insertion time of Remerge by 49% with SSD, and by 53% with
HDD.

Next we examine the query latency over the SSD device. From the previous paragraph,
the write data throughput of our SSD device is about twice as high as that of the HDD.
Therefore we increase the put rate of the background traffic to 5000req/s for the SSD
from 2500req/s previously used for the HDD (Section 7.2). In order to estimate the query
transaction capacity of the two devices, we use a synthetic benchmark with each request
involving a random seek followed by a read of 512B block. Thus we found the read
performance of the HDD equal to 76req/s, and that of the SSD 4323req/s. First we tried
get load of the SSD at rate 1000req/s in analogy to 20req/s that we used for the HDD
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(26% of T6req/s). However the SSD device is saturated (dramatic drop of throughput)
with concurrent workload of 5000req/s puts and 1000req/s gets. Thus we reduced the get
load to 100req/s, so that we stay below the performance capacity of the SSD (and keep
close to 1/100 the operation get/put ratio as with the HDD).

In Figure 7.11b we compare the get latencies of SMA (k = 4), Geometric (r = 2) and
Rangemerge. We terminate the experiment after we insert 10GB into the system concur-
rently with the get load. In comparison to the get latency over the HDD (Figure 7.1a),
the measured latencies of the SSD are about an order of magnitude lower. However the
curves of the three methods look similar across the two devices. In fact the maximum
get latency of Rangemerge reaches 4.5ms, while that of Geometric (r = 2) gets as high as
7.1ms and that of SMA (k = 4) 8.6ms. We conclude that the relative insertion and query
performance of the compaction methods remains similar across the two different types of

storage devices that we experimented with.

7.8 Discussion

In this section, we discuss about practical issues that we considered in our design and

potential limitations resulting from our assumptions.

7.8.1 Compaction I/O Intensity

Motivated from the highly variable query latency in several existing datastores, we propose
the Rangemerge method to reduce the I/O intensity of file merging in several ways: (i)
We only flush a single range from memory rather the entire buffer space, and keep the
amount of I/O during a flush independent of the memory limit. (ii) We combine flushing
and compaction into a single operation to avoid extra disk reads during merging. (iii) We
keep the size of disk files bounded in order to avoid I/O spikes during file creation. The
configurable size of the rangefile provides direct control of the I/O involved in a range
flush.

In Table 7.1 we consider loading 10GB to a datastore at unthrottled insertion rate.
From the transferred data and the compaction time we estimate every compaction to

require 32.7-36.2MB/s, which is about half of the sequential disk bandwidth. If we reduce
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Table 7.1: Amount of flushed and totally transferred data per compaction, delay per

compaction, and total insertion time for different rangefile sizes of Rangemerge.

Delays and Transferred Data over a Hard Disk

Rangefile | Flushed Transferred Compaction Insertion
(MB) (MB) (MB) Time (s) Total (min)
32 4.9 49.1 1.5 54.2
64 9.6 97.8 2.7 51.6
128 19.1 196.0 5.5 51.6
256 37.1 386.8 11.0 53.8

the rangefile size from F'=256MB to F'=32MB, the average duration of a compaction drops
from 11.0s to 1.5s, but the respective total insertion time varies in the range 51.6min to
54.2min. It is not surprising that M=32MB raises insertion time to 54.2min, because
a smaller rangefile causes more frequent and less efficient data flushes. In practice we
can configure the rangefile size according to the insertion and query requirements of the
application.

Previous research has already explored ways to continue accepting insertions during
memory flushing. When the memory limit M is reached, it is possible to allocate addi-
tional memory space of size M to store new inserts, and let previously buffered data be
flushed to disk in the background [28]. Alternatively, a low and high watermark can be
set for the used fraction of memory space. The system slows down application inserts
when the high watermark is exceeded, and it stops merges when the occupied memory
drops below the low watermark [93]. Depending on the rate of incoming inserts, such
approaches can defer the pause of inserts. However they do not eliminate the interference
of compaction I/O with query requests that we focus on in our present study. Essen-
tially, the above approaches can be applied orthogonally to the Rangemerge compaction

mechanism that allows queries to gracefully coexist with inserts.

7.8.2 Queries

Range queries are supported by most datastores that use range partitioning (e.g., Bigtable,
Cassandra) and are used by data serving and analytics applications (Section 6.2). We

do not consider Bloom filters because they are not applicable to range queries, and their
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effectiveness in point queries has been extensively explored previously; in fact, support
for range queries can orthogonally coexist with Bloom filters [28].

We recognize that query performance is hard to optimize for the following reasons: (i)
Service-level objectives are usually specified in terms of upper-percentile latency [40, 104].
(ii) Query performance is correlated with the number of files at each server [15, 81, 98]. (iii)
The amortization of disk writes may lead to intense device usage that causes intermittent
delay (or disruption) of normal operation [71, 69, 70, 101]. (iv) The diversity of supported
applications requires acceptable operation across different distributions of the input data

keys [33].

7.8.3 Updates

Incoming updates are inserted to the itemtable, and queries are directed to both the
itemtable and the rangefiles (Figure 6.4). Although the itemtable supports concurrent
updates at high rate, the rangeindex along with the rangefiles and their chunkindexes
remain immutable between range merges. Every few seconds that Rangemerge splits a
range and resizes the rangeindex, we protect the rangeindex with a coarse-grain lock.
We find this approach acceptable because the rangeindex has relatively small size (in the
order of thousands entries) and only takes limited time to insert a new range.

The enormous amount of I/O in write-intensive workloads has led to data structures
that involve infrequent but demanding sequential transfers [79, 63]. Excessive consump-
tion of disk bandwidth in maintenance tasks can limit interactive performance. Deamor-
tization is a known way to enforce an upper bound to the amount of consecutive 1/0
operations at the cost of extra complexity to handle interrupted reorganizations [11]. In-
stead, Rangemerge naturally avoids to monopolize disk I/O by applying flush operations
at granularity of a single range rather than the entire memory buffer and configuring the

range size through the rangefile parameter F'.

7.8.4 Availability and Recovery

Availability over multiple machines is generally achieved through data replication by the
datastore itself or an underlying distributed filesystem [28, 40, 32]. Durability require-

ments depend on the semantics and performance characteristics of applications, while data
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consistency can be enforced with a quorum algorithm across the available servers [40]. We
consider important the freshness of accessed data due to the typical semantics of online
data serving [30]. For instance, a shopping cart should be almost instantly updated in
electronic commerce, and a message should be made accessible almost immediately after
it arrives in a mailbox.

At permanent server failure, a datastore recovers the lost state from redundant replicas
at other servers. After transient failures, the server rebuilds index structures in volatile
memory from the rangefiles and the write-ahead log. We normally log records about
incoming updates and ranges that we flush to disk. Thus we recover the itemtable by
replaying the log records and omitting items already flushed to rangefiles. Holding a copy
of the chunkindex in the respective rangefile makes it easy to recover chunkindexes from

disk. We also rebuild the rangeindex from the contents of the itemtable and the rangefiles.

7.8.5 Caching

It is possible to improve the query performance with data caching applied at the level
of blocks read from disk or data items requested by users [28, 38]. We currently rely on
the default page caching of the system without any sophistication related to file mapping
or item caching. Prior research suggested the significance of data compaction regardless
of caching [98]. We leave for future work the study of multi-level caching and dynamic

memory allocation for the competing tasks of update batching and query data reuse.

7.9 Summary

After consideration of existing solutions in storage management of datastores, we point
out several weaknesses related to high query latency, interference between queries and
updates, and excessive reservation of storage space. To address these issues, we propose
and analyze the simple yet efficient Rangemerge method and Rangetable structure. We
implement our method in a prototype storage system and experimentally demonstrate
that Rangemerge minimizes range query time, keeps low its sensitivity to compaction
I/O, and removes the need for reserved unutilized storage space. Furthermore, under

various moderate conditions Rangemerge exceeds the insertion performance of practical
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write-optimized methods, and naturally exploits the key skewness of the inserted dataset.
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CHAPTER 8

IMPLEMENTATION OF RANGEMERGE IN A

PRODUCTION SYSTEM

8.1 LevelDB Implementation
8.2 Performance Evaluation

8.3 Summary

In this section, we describe the implementation of Rangemerge in a production system.
We present the design of our logging and recovery mechanisms, and go over the details of
implementing Rangemerge and other compaction methods in LevelDB. Finally, we eval-
uate the efficiency of our logging approach and compare the performance of Rangemerge

with those of related methods.

8.1 LevelDB Implementation

To study the applicability and the benefits of Rangemere on a production system, we
implemented Rangemerge in Level DB [70, 93]. LevelDB is a storage library written by

Google that provides an ordered mapping from string keys to string values. It has the
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Memtable
Level Files F_ile IVI_erge
Level 0 overlap size trigger
0 yes 4MB 4 files
Level 1 1 no 2MB 10MB
2 no 2MB 100MB
Level 2 3 no 2MB 1GB
4 no 2MB 10GB
5 no 2MB 100GB
Level 6 6 no 2MB 1B

Figure 8.1: Files are hierarchically organized in LevelDB. When memtable is full, it is
flushed into an SSTable at level 0. Thus, level-0 files may contain overlapping ranges of
keys. When the size of a level L exceeds its threshold, a single file from level L (or all
level files, if L = 0) along with all overlapping files from level L+ 1 are merged and stored
as a number of 2MB files at level L 4+ 1. The maximum size of a level is expressed either

as maximum number of files (L = 0) or as maximum total size (L > 0).

same general design as the BigTable tablet stack (Section 2.2.1). However, it was written
from scratch in order to have no dependencies on internal Google libraries. It supports the
typical put (k,v), get(k), delete(k) key-value API to modify and query the database,
along with the forward and backward iterators that provide a functionality similar to
range queries. In comparison to our prototype, Level DB includes some additional useful
features such as batch updates that are committed atomically, snapshots that provide
a consistent read-only view of the database, logging and block checksums for durability
and consistency, and compression. It is currently used as backend database for the Riak
distributed datastore (Section 2.2.1) and the Google Chrome browser, but it has also been
used as file system backend [88].

Incoming updates in the form of key-value pairs are inserted into a memory buffer
called memtable, which is implemented as a skip list. When the memtable size reaches a
predefined threshold (4MB by default), the memory contents are sorted, indexed and then
written to disk as an SSTable [28]. An SSTable is an immutable file storing a sequence
of key-value entries sorted by key. The set of SSTables is organized into a sequence of
levels (Figure 8.1). SSTables generated from the memtable are placed into level 0. When

the number of files in level 0 exceeds a certain threshold (currently 4), all level-0 files are
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merged together with all overlapping level-1 files to produce a sequence of new level-1
files (a new file is created for every 2MB of data). When the total size of files at level L
(L > 0) exceeds 10X MB, one file from level L and all of the overlapping files from level
L + 1 are merged to form a set of new files for level L + 1.

In particular, each newly received update is first appended to a log file on disk for
durability and then inserted into the memtable. When the memtable is full, the system: (i)
blocks incoming updates, (ii) makes the memtable read-only, (iii) creates a new memtable
and a new log file for the new updates, and (iv) resumes updates. A background thread
is then scheduled to compact the old memtable into a level-0 SSTable, free the memtable,
delete the old log file (since its entries have been successfully persisted to disk), and
perform any file merges required. If there is a system failure before a memtable is written
to disk, its log can be used to recover all its entries after a system restart.

We refactored the LevelDB code so that the file merging algorithm is pluggable, and
implemented the merging patterns of Nomerge, Stepped Merge Array, Geometric Parti-
tioning, Remerge and Rangemerge. Since Rangemerge only partially flushes some items
from memory to disk, we had to modify accordingly the memory management, logging

and recovery subsystems of LevelDB.

8.1.1 Memory Management

Our implementation of Rangemerge in Level DB maintains for each range a memtable in
memory and an SSTable on disk. When the cumulative size of all memtables exceeds
the memory threshold M, we select for flushing the range with the largest memtable.
Updates are then temporarily blocked, until we mark the memtable as read-only and
create a new memtable for this range, at which point updates are resumed. A background
thread subsequently flushes the old memtable to an SSTable, frees the memory of the old
memtable, and finally merges the new SSTable with the existing SSTable for that range.

8.1.2 Logging

For the logging of the updates in Rangemerge we had two options. The first one was
to keep a separate log for each memtable, and delete it after we flush the memtable

to disk. This logging approach simplifies log management, but causes a large number
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Figure 8.2: Rangemerge logging in LevelDB.

of disk seeks since each new update must be appended to the log file of the respective
memtable. The second approach was to use a single log file for all memtables. This
provides significant performance benefits, as the updates can be handled at sequential
disk bandwidth. However, it complicates log cleaning and recovery as we have to keep
track of which log entries are valid (i.e., have not been written to an SSTable) at each
time. Additionally, to keep the log size bounded, the system must periodically read the
log and remove any obsolete entries, a process that can easily become a performance
bottleneck [90].

To combine the logging throughput of the single-log approach with the simplicity
of the per-range-log approach, and additionally avoid the costs associated with garbage
collection, we came up with a new logging strategy. Similar to the single-log case, updates
for all memtables are append to a single file on disk. When this file reaches a predefined
size (8MB), it is sealed and a new log file is created. For each log file we keep a reference
counter (refcounter) that indicates the number of memtables which have entries in it
(Figure 8.2). Additionally, for each memtable we maintain a list of all logs into which it
has entries (reflist). When a new update is appended to log ¢ and added to a memtable
m, we check the reflist of m; if / is not present, we append ¢ to the reflist and increase
the refcounter of Z by 1. When a memtable is flushed, we decrease by 1 the refcounters
of all logs in its reflist and clear the reflist. When a refcounter for a sealed log drops to

zero, we delete the log.
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8.1.3 Recovery

Every time the disk state of the database changes (e.g., a file is added or deleted), LevelDB
atomically updates a special Manifest file to reflect the new state. The Manifest file lists
the set of SSTables that make up each level, the log file, and other important information.
During recovery the system reads the Manifest file, deletes all files not included in it, and
then recovers the memtable from the log file. We also include in the Manifest file the
ranges and the respective SSTable for each range.

As shown in Figure 8.2, the log files contain all entries that are accumulated in memta-
bles (live entries), as well as a number of entries that have already been stored in SSTables
(obsolete entries). Apparently, we need a mechanism to distinguish between live and ob-
solete entries during log recovery. A naive approach would find for each (k,v) log entry
the range R that k belongs to, and then check if the entry is stored in the SSTable of R.
Since logs are not sorted by key, this approach would require at least one random I/0 for
each entry read, leading to unacceptably long recovery times. What we need is an effi-
cient mechanism that quickly checks whether a log entry is stored on an SSTable or not.
Additionally, the mechanism should have small memory footprint and low maintenance
overhead.

LevelDB assigns a monotonically increasing sequence number to each update inserted
in the system, which is stored along with the entry. Every time we flush a range to an
SSTable on disk, we update a counter that stores the maximum sequence number flushed
to disk for this range (maz_sequence). This information is also persisted in the Manifest
file on every range flush (Figure 8.2). After a system restart, we first recover from the
Manifest file the ranges and their max sequence numbers, and create an empty memtable
for each range. Then, for each entry e that is read from a log file, we find the range R
it belongs to, and we compare its sequence number with the max sequence number of R.
If e.sequence < R.max_sequence then this entry was previously flushed to the SSTable
of R and can thus be safely discarded. Otherwise, the entry was part of the memtable
before the crash and is inserted into the memtable of R. When a range R is split into
a number of ranges (typically two), we initialize the max_sequence for the memtables of

the new ranges to the max_sequence of the memtable of the parent range R.
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Figure 8.3: Various merging strategies, as we implemented them in LevelDB.

8.1.4 Other Merging Strategies

We have also implemented in Level DB all the compaction managers of our prototype. All
methods keep a single memtable in memory for the accumulation of new updates, except
for Rangemerge which maintains a separate memtable for each range. When the total
byte size of all items in memory exceeds the memory threshold M, Rangemerge compacts
only the largest memtable into an SSTable at level 0; all the other methods compact
their single memtable. Depending on the method, the memtable compaction may cause
a cascade of merges. In case of Stepped Merge Array, if level £ has more than k files then
all these files are merged into a new file at level £+ 1. In Geometric Partitioning, the new
file is first merged with the existing level-0 file. Then, if the file at level ¢ has size greater
than (r — 1)r'M, it is merged with the respective file from level £ + 1 and stored at level
¢+ 1. Remerge always merges the new file with the single file at level 0, while Nomerge
just places the file created at level 0. Rangemerge merges the new level-0 file with the
existing file that corresponds to the same range, and splits the file (and the range) if its
size becomes greater than F' (Algorithm 6.3). In Figure 8.3, we present a high level view

of the various file merging patterns that we implemented in LevelDB.

8.2 Performance Evaluation

In this section, we experimentally evaluate the efficiency of Rangemerge logging approach

and study how the various compaction managers compare to each other on a full-featured
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production system. The experimental environment is identical to the one described in
Section 7.1. All methods use a total of M = 512MB for the accumulation of items in
memory. We insert key-value pairs of 100 bytes keys and 1KB values, until a total of
10GB has been inserted into the system. For the experiments in which we measure the
interference between inserts and queries, we issue put requests at 2500req/s and get re-
quests at 20req/s, according to the analysis in Section 7.2. Depending on the experiment,
a get request is either a range query with scan size of 10 entries, or a point query. Range
queries are implemented by initializing an iterator over the Level DB database at a specific
key and reading a number of subsequent entries. Point queries (i.e. get(k)) return the
value associated with a given key, or return “not found” if the key is not stored in the
system. All methods are implemented in Level DB v1.9, in which we disable compression

for a more direct comparison to our prototype.

8.2.1 Logging Performance

As described in Section 8.1.2, our log cleaning approach behaves lazily, in the sense that it
splits the log in multiple 8MB-files and waits until a file contains no valid entries (i.e., its
refcounter drops to 0) before it deletes it. This means that even in the case only a small
portion of a log file corresponds to live entries, the file will still remain in the system.
On the other hand, this lazy strategy enables updates to be logged at sequential disk
throughput, and it totally avoids fetching log files in memory for cleaning. We now study
the efficiency of our approach in terms of disk space consumed and logging throughput.
Since all memory entries must be kept in the log for durability until they are flushed to
disk, the size of the log on disk is at least equal to the cumulative size M of the memtables
in memory. From Figure 8.4a, the log files maintained by Rangemerge on disk take up
roughly 2-3 times the memory size M, independently of the memory size. We believe that
dedicating a few GB from a TB hard drive! for logging is a reasonable compromise for
the performance we achieve, studied next. Nonetheless, in case the available disk space
is scarce, we could prioritize the flushing of ranges that reference many logs or logs with
low refcounters, in order to reclaim space more aggressively. We could also increase or

decrease this priority depending on the size of the log on disk. We have not implemented

!Today, someone can can buy a 3TB disk with $120 [74].
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Figure 8.4: (a) We show the total disk space consumed by log files in our Rangemerge
implementation within LevelDB. Log size is at least equal to the memory size M, and
normally between 2M and 3M. (b) There is a small overhead involved in tracking the

log files referenced by each range and deleting the unreferenced ones.

this optimization.

Figure 8.4b shows the amount of time Rangemerge requires to index 10GB of data
in LevelDB. On the left bar (“Without log cleaning”), Rangemerge simply appends each
incoming update on an unbounded log file, which is never garbage collected. On the right
bar (“With log cleaning”), the system splits the disk log over multiple 8MB files, keeps
track of the number of memtables that reference each file, and deletes a file when it is not
referenced by any memtable. This increases insertion time only by 12.8%.

Overall, our log maintenance strategy requires disk space that is low considering the
capacities of hard disks today, and only adds a modest overhead on insertion time com-

pared to the case of no log cleaning at all.

8.2.2 Insertion Time

In Figure 8.5a we measure the amount of time each method requires to ingest 10GB of data
in LevelDB. Nomerge requires 13min to flush the memory 20 times on disk into an equal
number of files, and SMA with k£ = 4 takes 22min for 8 files. Geometric (p = 2) ingests
the 10GB in 70min, storing each key in at most 2 files on disk during the experiment.
The insertion time can be reduced by 12.8% with » = 3 and 35.7% with r = 2, at the
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Figure 8.5: Comparison of the insertion time of various methods implemented in Level DB

and in our prototype system.

cost of increased get latency and variability due to fragmentation of keys in multiple disk
files (Figures 7.1b, 7.2). Compared to Geometric (p = 2), Rangemerge increases insertion
time by only 12.8% (79min), but keeps each key range strictly in 1 disk file. To achieve
the same storage contiguity as Rangemerge, Remerge requires 136min, i.e., 72.5% more
time.

In Figure 8.5b we repeat the same experiment in our prototype storage framework.
From Figures 8.5a and 8.5b, we observe that the methods take longer to index the same
amount of data in Level DB than the time that they need in our prototype. This is mainly
due to the fact that LevelDB involves a CPU-intensive task to compute a checksum for
each block written to disk. Nevertheless, the relative differences between the methods
remain similar across the two systems. One exception is Remerge, which has a smaller
increase in its insertion time on LevelDB compared to the remaining methods. This is
explained by the fact that Remerge (and the rest methods) simply does not complete its
last compaction, as LevelDB performs the compactions asynchronously: when the last
entry is inserted into the system and the memtable fills for the last time, Level DB marks
the memtable as read-only, creates a new memtable, schedules a new background thread
to flush the memtable, and returns. After this write returns, our benchmark immediately
exits. Consequently, the last flush of the 500MB-memtable and the merge of this file with

the existing 9.5GB-file in Remerge is never performed. If we wait —as our prototype
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Figure 8.6: Get latency in various compaction methods implemented in Level DB, assum-
ing a concurrent load of 2500put/s and 20get/s of scan size 10. Background compactions

(gray background) severely affect queries in all methods except for Rangemerge.

does— for the completion of this last compaction, which reads a total of 10GB and writes

a total 10.5GB, the insertion time of Remerge increases to 148min.

8.2.3 Interference of Queries and Inserts

We now measure the interference between the background compactions that insertions
cause and the serving of the queries. Following the analysis of Section 7.2, we issue put
requests at a rate of 2500req/s and range gets of scan size 10 at 20req/s. Figure 8.6 illus-
trates the effect that memtable flushes and file merges performed in background have on
the latency of queries. As shown, these system operations (depicted as gray background)
seriously impact the performance of concurrent queries in all methods except for Range-
merge, increasing range get latency to several hundred or even thousand milliseconds. In
contrast, the frequent but less intensive compactions of Rangemerge allow the get latency
to be kept below 50ms, improving query responsiveness by up to two orders of magnitude.
Interestingly, even though Remerge stores the entries on disk contiguously in a single disk
file to improve retrieval times (similar to Rangemerge), in the face of concurrent com-

pactions it achieves no better query performance than the methods which fragment the
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Figure 8.7: Get throughput in various compaction methods implemented in LevelDB, as-
suming a concurrent load of 2500put/s and 20get /s of scan size 10. Rangemerge manages
to keep the rate at which queries are served above 15req/s. In all remaining methods
the get throughput is seriously affected during the background compactions (gray back-

ground).

entries on disk.

In Figure 8.7 we demonstrate the impact that background compactions have on the
query throughput. Similar to the Figure 8.6, there is an evident correlation between these
operations and the rate at which queries are served: besides Rangemerge, compactions
greatly affect the query throughput in all the remaining methods, frequently yielding the
system completely unresponsive with respect to query serving. Instead, Rangemerge is
always responsive, keeping the query throughput above 15req/s.

To evaluate a range query, the system must create an iterator over each file that may
contain the first key of the range, and then merge the results from these iterators. This
means that the more files with overlapping keys a method maintains on disk, the greater
the overhead per query will be. This is not true however for point queries, in which bloom
filters can eliminate (with high probability) the need to access files that do not contain the
key searched. In Figure 8.8 we use the same put and get load as in previous experiments,

but use point queries instead of range queries. This means that in the vast majority of
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Figure 8.8: Get latency (above) and throughput (below) for point queries in three meth-
ods, assuming puts at 2500req/s and point gets at 20req/s.

lookups we can avoid all files except from the one that contains the key. Therefore, the
number of disk files is irrelevant to the query performance. Nevertheless, the results are
similar to the case of range queries: background compactions cause a great increase in
latency and a serious drop in throughput in all methods apart from Rangemerge.

The insertion times in Figure 8.6 are greater than those shown in Figures 8.5a mainly
because in these experiments we throttle put requests at 2500req/s. Additionally, the
serving of queries causes a number of random I/Os that negatively affect the concurrent
sequential 1/O performed by the compactions. This leads to further increase in data
ingestion times. Surprisingly, the insertion time of Rangemerge (122min) is similar to
Geometric with 7 = 2 (119min), and even lower than those of Geometric with r = 3 and
p = 2 (158min and 171min respectively), despite the fact that these methods store each
key into multiple disk files to improve write performance. This can be attributed to the
fact that Rangemerge stores the entries contiguously on disk; as a result, Rangemerge
minimizes the random seeks required to serve each range query and the impact of queries

to concurrent compactions.
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8.3 Summary

To study both the engineering effort required to implement Rangemerge in a production
system and its performance benefits, we port Rangemerge and a number of representative
compaction methods in Google’s Level DB key-value store. We describe the design and
implementation of our logging and recovery components and experimentally evaluate its
performance. We show that the implementation of Rangemerge over LevelDB is both
practical and efficient: we can achieve logging at sequential disk bandwidth at the cost
of a modest increase in data ingestion time and storage requirements. We then compare
Rangemerge to related compaction methods that offer different tradeoffs in read and
write performance. We demonstrate that Rangemerge has low sensitivity to background
compactions, achieves minimal query latency, and maintains comparable or even better

insertion performance than other write-optimized methods.
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CHAPTER 9

THEORETICAL ANALYSIS

9.1 I/O Complexity of Unified Range Flush
9.2 1/O Complexity of Rangemerge

9.3 Summary

In this section, we study the asymptotic behavior of the Unified Range Flush and
Rangemerge methods by analyzing their I/O cost. Since these methods transfer data to
and from disk in large sequential 1/Os and therefore their disk access cost is negligible, we
are mainly interested in estimating the amount of bytes that they transfer in the worst

case when ingesting a dataset of a given size.

9.1 I/0 Complexity of Unified Range Flush

For complexity comparison with existing methods of index building, we estimate the
worst-case asymptotic I/O cost of our approach. We focus on the URF method because
the simple flushing of the largest ranges makes the analysis more tractable. For simplicity,

we assume that a termblock is not relocated when overflown.
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During index building, URF allows a term list to be split across the in-place and the
merge-based indices. This approach is also followed by the non-contiguous methods of hy-
brid index maintenance [24]. Accordingly, if the size of a short list during a merge exceeds
the threshold value T', Biittcher et al. move the postings of the term that participate in
the merge to the in-place index. They define as I:(N ,T) the number of postings accumu-
lated in the in-place index, and ]3(N, T') the number of postings in the merge-based index

for a collection of N postings. Next, they provide the following asymptotic estimates:

L(N,T) = N —¢-TU V0. N/e

P(N,T) = ¢-TU"Vo . NV,

1
e .

The parameter v ~ 0.577216 is the Euler-Mascheroni constant, while a is the parameter
of Zipfian distribution that models the frequency of term occurrences (e.g., a = 1.2).

In Equation 9.1, the counts of short and long postings result from the terms distribu-
tion rather than the method used to maintain each part of the index on disk. Therefore, if
we replace T' with the append threshold T}, the above estimates also apply to the number
of postings stored in the rangeblocks and termblocks of URF. In order to indicate the
intuition of URF in our analysis, we use the symbols Ppppend(IN) and Pperge (V) instead
of the respective L(N,T) and P(N,T).

For a collection of N postings, the total 1/O cost Ciyq to build the index with URF

is the sum of costs for appends, Cyppena, and merges, Cerge:

Ctotal(N) - Cappend(N) + Cmerge(N)

kappend(N> : Cappend<N) + kmerge(N> : cmerge<N)a (92)

where koppend() and Kperge() are the respective numbers of appends and merges, while
Cappend() And Cperge() are the respective costs per append and merge.

If a list participates in a range merge and has size greater than T,, we append the
postings of the list to a termblock on disk. After N postings have been processed, we
assume that each append takes a fixed amount of time that only depends on the disk

geometry and the threshold T,:

Cappend(N) ~ Cyrite (Ta) - Cappenda (93)
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where ¢,rie() approximates the delay of a disk write. For a collection of N postings, each
append flushes at least T, postings to a termblock, so the total number of appends does
not exceed | Poppend(N)/T,]:

Pa en N 1 a C
Kappena(N) < {%()J = {N~ = —- NY TTJ c O(N). (9.4)

Instead, a range merge involves the following steps: (i) read the rangeblock to memory,
(ii) merge the disk postings with new postings in memory, and (iii) write the merged
postings back to the rangeblock on disk. If the rangeblock overflows, we split it into two
half-filled rangeblocks. Since a rangeblock begins 50% filled and splits when it is 100%
full, we assume that a rangeblock is 75% full on average. Thus, in a posting collection of
size N, the cost of a range merge can be estimated as: Creqa(0.75B;) + Cerge(0.75B, +
D) + Cwrite(0.75B, + p), where p is the number of new postings accumulated in memory
for the range. The ¢erge() refers to processor activity mainly for string comparisons and
memory copies; we do not consider it further because we focus on disk operations. From
the merged postings of amount 0.75B, + p some will be moved to termblocks because
they exceed the threshold 7,. Since additionally the number p of new postings is usually
small relatively to the amount of merged postings, we can also omit p and approximate

Cmerge(IN) with a constant:
Cmerge(IN) = Cread(0.7T5B;) + Curite(0.75B,) = Cmerge- (9.5)

To process a collection of N postings, we do [N/M;] flushes. During the i-th flush,
we perform m; range merge operations to flush a total of My postings. We first estimate
an upper bound for m;, before we derive an upper bound for the total number of merge
operations Kperge (V).

Suppose the posting memory is exhausted for i-th time, and we need to flush M;
postings. The URF method flushes the minimum number of ranges m; needed to transfer
M postings to disk. That is, it transfers the largest ranges until a total of My postings
are flushed. In the worst-case analysis, we aim to maximize m;. For M, postings and
R; ranges currently in memory, m; is maximized if the postings in memory are equally
distributed across all ranges. Then, before a range is flushed to disk, the respective number
of new postings accumulated in memory for the range is p; = M,/R;. Accordingly, the

M; MR

number of ranges m; flushed during the i-th flush operation is equal to: m; = o= AL
i P
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Just before the i-th flush, a total of (i — 1)M; postings were written to disk. From
them, Perge((1 — 1)My) postings are stored over rangeblocks. Since each rangeblock
stores an average of 0.75B, postings, the number of rangeblocks on disk is Ppepge((i —
1)My)/0.75B,. The number of ranges in the rangetable just before the i-th flush will be

equal to the number of rangeblocks on disk, because each range is associated with exactly

Prerge((i—1)-My)

one rangeblock on disk: R; = 0.75B,

Based on the above equations of m; and R;, for a collection of N postings we can

derive an upper bound for the total number of range merges:

(# flushes) [N/Mp]
Emerge(N) = Z (# merges during i-th flush) = Z m;
i=1 =1
_ [N/My] (i — 1)1/a ) Ta(lfl/a) ) Mf1+1/a .c
i1 075 . Mp : BT‘
(1-1/a) 14+1/a , [N/Mf]
< L My ¢ S e (9.6)

Taglfl/a) . Mf1+1/a e " N -‘lJrl/a

S -
0.75- M, - B, My
T-1/a)
N — . NWe g (N, (9.7)
0.75- M, - B,

According to Equations 9.2, 9.3, 9.4, 9.5 and 9.7, the total I/O cost of index building
has the following upper bound:

Ciotal(N) € O(NH1/a), (9.8)

From Table 3.1, the upper-bound index building cost of Equation 9.8 makes URF asymp-
totically comparable to HIM [24]. Additionally, the approach of URF to store the postings

of each term across up to two sub-indices makes constant the I/O cost of term retrieval.

Special Case To cross-validate our result, we use a special case of URF to emulate the
behavior of HIM [24]. We set My, = Mo to force a full flush when we run out of
memory. We also append to termblocks any list with more than 7, postings, and choose a
large B, value for URF to approximate the sequential merging of HIM. Each range merge

transfers 0.75 - B, postings to disk. For collection size N, the total amount of postings
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written to disk across kpyerge(N) merges follows from Equation 9.6:

Pmerge_written<N) = kmerge<N) . (075 . Br)

_ Ta:,lil/a * Mp1+1/a cC- 0-75 * Br . l—ZV/ZMp] 7;1/04
0.75 - M, - B, 2
[N/Mp]
= Z C'T;_l/a(i'Mp)l/a
=1
N1+1/a
< e TV 7 (9.9)
p

After we add the linear I/O cost from appends (Equations 9.3 and 9.4) and replace T,
with T at the right part of inequality 9.9, we estimate the worst-case cost of HIM to be
that of Equation (6) by Biittcher et al. [24]. Thus we asymptotically confirm that the

behavior of HIM is approximated as special case of the URF method.

9.2 1I/0 Complexity of Rangemerge

We aim to estimate the total amount of bytes transferred between memory and disk
during the insertion of N items to the Rangetable with Rangemerge. For simplicity each
item is assumed to occupy one byte. Since the rangefile size is roughly 0.5F after a split
and cannot exceed F' by design, on average it is equal to 0.75F. Accordingly each merge
operation transfers on average a total of cyerqe = 1.5F bytes, as it reads a rangefile,

updates it, and writes it back to disk. For the insertion of N items, the total amount

3F
20

of transferred bytes is equal to Cipter = K - Cperge = K - where K is the number of
merges. In order to estimate an upper bound on Cj,, Wwe assume an insertion workload
that maximizes K.

We call epoch a time period during which no range split occurs, leaving unmodified
the number of ranges (and rangefiles). Let F be the number of epochs involved in the
insertion of N items, and k; be the number of merges during epoch ¢;, i =1, ..., E. Then
the total number of merges becomes equal to K = Zle k;.

When memory fills up for the first time, there is a single range in memory and no
rangefile on disk. The first merge operation transfers all memory items to ry = M/0.5F

half-filled rangefiles, where r; is the number of rangefiles (or ranges) during the ith epoch.
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The next time memory fills up, we pick to merge the largest range in memory. In order
to maximize the number of merges, we minimize the number of items in the largest range
through the assumption of uniformly distributed incoming data. Then the largest range
has size s; = M/r; items. During the ith epoch, it follows that each merge transfers to
disk a range of size s; = M /r; items.

A split initiates a new epoch, therefore a new epoch increments the number of rangefiles
by one: r; =r;_1+1=r;+1¢— 1. Due to the uniform item distribution, a larger number
of ranges reduces the amount s; of items transferred to disk per merge and increases the
number k; of merges for NV inserted items. If we shorten the duration of the epochs, then
the number of merges will increase as a result of the higher number of rangefiles.

At a minimum, a half-filled rangefile needs to receive 0.5F new items before it splits.
Therefore the minimum number of merges during the epoch e; is k; = 0.5F/s;. Since an
epoch flushes 0.5F items to disk before a split occurs, it takes E = N/0.5F epochs to

insert N items. From Ciy, K, E, s;, r; and r; we find:

E

=

3F 3F 3F? 1
Ctotal 2 2 - kz A - s;
3F2 & 3F2 &
= _ s = — ) — 1
AM Zi:l "I & (riti=1)
3F? 1

6 3F N2

If we divide O(NVQ) by the amount of inserted items N and the block size B, the above
result becomes the O(%) per-item insertion 1/O complexity of the Remerge method
(Table 2.1).

The above analysis of Rangemerge estimates the number of 1/O operations involved
in the worst case during index building. However it does not account for the cost of an
individual I/O operation or the interaction of insertion I/O operations with concurrent
queries. Through extensive experimentation in Chapters 7 and 8 we show that Range-
merge combines high performance in both queries and insertions because it achieves search
latency comparable to or below that of the read-optimized Remerge and insertion per-
formance comparable to that of the write-optimized methods (e.g., Geometric, Nomerge)

under various conditions.
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9.3 Summary

To compare the I/O complexity of our methods with related methods from literature,
we estimate the worst-case asymptotic I/O cost of URF and Rangemerge. We show
that the asymptotic cost of our methods matches those of existing methods with similar
query performance, but as demonstrated in the previous chapters, in practice URF and

Rangemerge outperform these methods.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Contributions

10.2 Future work

10.1 Conclusions

Motivated by the current needs of processing enormous amounts of both structured and
unstructured data under stringent latency and throughput requirements, we study the
related problems of text indexing and storage management at large scale. To cope with
the increasing requirements in data ingestion throughput, current solutions tend to adopt
a write-optimized approach that sacrifices query responsiveness for improved insertion
rates. It is our thesis that these systems can achieve low query latency while maintaining
high insertion throughput.

For the problem of incremental maintenance of the disk-based inverted index, we
propose a simple yet innovative disk organization which groups the inverted lists on disk
into disjoint lexicographical ranges and subsequently stores them in separate blocks. The
lists are categorized as short or long depending on their size, and a different update
policy is used for each category. We introduce two new methods, the Selective Range
Flush (SRF) and the Unified Range Flush (URF), to efficiently schedule the merges of

the new lists from memory with the lists on disk.
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The Proteus is a prototype search engine that we develop to examine the efficiency and
performance of our methods. We also propose and implement a number of optimizations
for the disk and memory management. Using real-world datasets and query workloads,
we show that our methods offer search latency that matches or reduces up to half the
lowest, achieved by existing disk-based methods and systems. In comparison to a related
method of similar search latency on the same system, our methods reduce by a factor of
2.0-2.4 the I/O part of the indexing process, and by 21-24% the total indexing time.

For the storage management of datastores, we survey existing solutions from various
research fields. We point out several weaknesses related to low query performance due
fragmentation of entries on disk, increased variation in query latency caused by back-
ground compactions, and excessive reservation of storage space. To address these issues,
we propose the Rangemerge method that replaces the periodic and intensive compactions
that existing methods incur with more frequent but less intensive ones, while maintaining
the storage contiguity of entries on disk.

A number of related methods along with Rangemerge are implemented in a prototype
storage framework that we develop. To evaluate the practicality of Rangemerge and the
generality of our results, the methods are also implemented in Google’s Level DB key-value
store. Our results from both storage systems demonstrate the superior performance of
Rangemerge: (i) it enables serving range queries with low latency and high rate by storing
the entries contiguously on disk, and minimizes their sensitivity to background I/O by
using less aggressive compactions; (ii) it maintains high insertion throughput, which is
similar to or even better than those of other write-optimized methods, by selectively
flushing entries from memory to disk based on their merge efficiency; (iii) it removes the

need for excessive storage reservation.

10.2 Future Work

Recent reports show that the size of the structured and unstructured data accumulated
increases exponentially [54]. This means that the problem of big data management that
we studied will remain relevant and important at least in the following years. Here we

discuss some interesting problems and research directions for future work.
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Large-scale storage and indexing systems usually adopt a multi-tier architecture.
Nodes from the upper tiers receive client requests and forward them to the worker nodes
of the lower tiers for serving. As the performance of the worker servers is critical for the
overall system performance, in this dissertation we mainly studied the efficiency of the
storage management in the worker nodes. Nevertheless, orthogonal issues on the upper
layers such as load balancing, replication and caching are equally important in large-scale
deployments and require further investigation.

Disk capacity today is both cheap and large, so that many organizations afford to
keep multiple versions of their data. Even though most users are primarily interested
in the latest version the data, there are many cases where search or access over all or
some previous versions would also be of interest. Examples include the Internet Archive!
that collects, stores and offers access to historical versions of web pages from the last
ten years, and a large number of companies that archive their data and analyze them to
extract useful information and patterns. Designing and evaluating methods and systems
to handle multi-versioned data is an interesting problem that we plan to examine.

Text indexing primarily involves parsing documents into memory postings and merg-
ing these postings with existing inverted lists on disk. We demonstrated that our methods
combined with a carefully optimized implementation can reduce the merging cost of in-
dexing by a factor of 2.0-2.9 in comparison to other methods and systems. Furthermore,
increasing the available memory leads to a proportional decrease of the merging time.
Nevertheless, the process of parsing does not benefit from our approach or the extra
memory available on the system, as the time spent on it remains roughly the same. We
are interested in studying and improving the performance of document parsing, using
efficient methods that potentially exploit the multi-core CPUs and the powerful graphics
processing units (GPUs) commonly found in systems today. We also plan to investi-
gate issues related to concurrency control and handling of document modifications and
deletions.

Flash SSDs have low-latency random reads and provide high throughput for sequen-
tial reads and writes. Combined with low power consumption and their declining cost,
they have drawn attention to various datastore designers and developers from both the

academic community and the industry. Since storing the entire dataset on SSD is usually

Thttps://archive.org/
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infeasible due to impractically large costs, SSDs are typically used as an intermediate
layer between RAM and HDD. We are interested in adapting the Rangemerge method
and the Rangetable structure into a multi-tier storage architecture where SSDs are used
complementary to HDDs as either read or write caches, and study the implications of

such a design.
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