
Áðïäï�éêÞ Äåéê�ïäü�çóç ÁðïèÞêåõóçò ãéá ÄïìçìÝíá êáé

Áäüìç�á ÄåäïìÝíá

Ç ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ

õðïâÜëëå�áé ó�çí

ïñéóèåßóá áðü �çí �åíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé �ëçñïöïñéêÞò

Åîå�áó�éêÞ Åðé�ñïðÞ

áðü �ïí

�åþñãéï Ìáñãáñß�ç

ùò ìÝñïò �ùí Õðï÷ñåþóåùí ãéá �ç ëÞøç �ïõ

ÄÉÄÁÊÔÏÑÉÊÏÕ ÄÉ�ËÙÌÁÔÏÓ ÓÔÇÍ �ËÇÑÏÖÏÑÉÊÇ

Áðñßëéïò 2014





ÔñéìåëÞò Óõìâïõëåõ�éêÞ Åðé�ñïðÞ

• Ó�Ýñãéïò Áíáó�áóéÜäçò, Åðßêïõñïò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• Ëåùíßäáò �áëçüò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• �áíáãéþ�çò ÂáóéëåéÜäçò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ

êáé �ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

Åð�áìåëÞò Åîå�áó�éêÞ Åðé�ñïðÞ

• Ó�Ýñãéïò Áíáó�áóéÜäçò, Åðßêïõñïò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• Ëåùíßäáò �áëçüò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• �áíáãéþ�çò ÂáóéëåéÜäçò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ

êáé �ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• Åõáããåëßá �é�ïõñÜ, ÊáèçãÞ�ñéá �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé �ëçñïöïñéêÞò

�ïõ �áíåðéó�çìßïõ Éùáííßíùí

• ÁëÝîçò ÄåëÞò, Êáèçãç�Þò �ïõ ÔìÞìá�ïò �ëçñïöïñéêÞò êáé Ôçëåðéêïéíùíéþí �ïõ

Åèíéêïý êáé Êáðïäéó�ñéáêïý �áíåðéó�çìßïõ Áèçíþí

• �áíáãéþ�çò Ôñéáí�áöýëëïõ, Êáèçãç�Þò �ïõ Shool of Computer Siene, University

of Glasgow, UK

• Íéêüëáïò Êïýäáò, Êáèçãç�Þò �ïõ Department of Computer Siene, University of

Toronto, Canada





Dediation

To my family.

To the giants on whose shoulders we stand to see further.

Ó�çí ïéêïãÝíåéÜ ìïõ.

Ó�ïõò ãßãáí�åò ó�ùí ïðïßùí �ïõò þìïõò ó�åêüìáó�å ãéá íá äïýìå ðéï ìáêñõÜ.



Aknowledgements

First and foremost, I would like to thank my supervisor Professor Stergios Anastasiadis

for his help and researh guidane, his full support and invaluable input, both theoretial

and tehnial. He taught me to set high standards and provided the support required to

meet those standards. I learned a great deal from him.

I would also like to thank the rest members of the examination ommittee, Prof.

Leonidas Palios, Prof. Panos Vassiliadis, Prof. Evaggelia Pitoura, Prof. Peter Trianta�l-

lou, Prof. Alex Delis, and Prof. Nik Koudas for their kind omments and healthy

ritiism.

I am very grateful to my parents for their ontinuous psyhologial (and eonomial)

support, for their enouragement and their patiene during my researh. This dissertation

would de�nitely not be possible without their help, espeially on these tough times.

Charles Bukowski

1

one said: \Some people never go razy. What truly horrible lives

they must lead". My last years were truly amazing, so I would like to thank the following

for sharing their raziness and time with me: Konstantinos Karras, for all the laughs,

beers, and hangovers we had; Evaggelia Liggouri, for sharing with me 10 wonderful years;

Argyris Kalogeratos and Andreas Vasilakis, for the ountless hours we spent brainstorm-

ing about the killer app that would make us rih without e�ort (I'm sure our book of \Epi

Ideas" will someday be published); Andromahi Hatzieleftheriou

2

, for her extraordinary

tasty meals, pies, akes and ookies; Giorgos Kappes, Eirini Miheli, Vasilis Papadopou-

los and Christos Theodorakis, all members of the Systems Researh Group, for all the

interesting sienti� and not{so{sienti� talks we had within these four walls; and Nikos

Papanikos, for reminding me that I oasionally needed to take a break from researh

1

Charles Bukowski (1920 { 1994) was a German-born Amerian poet, novelist and short story writer.

2

It took me about 10 seonds to write this name, and I also had to double-hek it for orret spelling.



(oinidentally, this happened every time he needed to smoke). Last but de�nitely not

least, many thanks to Vassillis Delis and Stathis Moraitidis, for saving me ountless times

from zombies in Left 4 Dead 2; I owe you my life guys.

I would also like to thank Antonis Mpalasas and Fotis Pindis, ever-lasting friends from

high-shool, and Kostas Karabelas, Nikos Giotis, Maria Panagiotidou, Maria Goutra and

Pavlos Xouplidis, all friends from Ioannina with whom I enjoyed many hours of surrealisti

and non-sense disussions about the universe and everything. Speial thanks goes also to

Maria Alexiou, the living enylopedia of beer, Mitsos Papageorgiadis, the living legend

of drinking beer, and Eleni Marmaridou, the sweet \at lady" that tries to make me a

vegan (you know its futile, right?), with all of whom I share more than just a strong

friendship.

Finally, the last 13 years I spent in Ioannina would ertainly not have been the same

without the Takis and Sakis restaurant (I owe about 5Kg of my weight to their deliious

food and tsipouro), and the bars \Berlin", \Lemon" and \Parenthesis" where I pratied

for hours {and perfeted{ my air-guitaring tehniques. I would also like to personally

thank the anonymous inventor of tsipouro, whih I onsider the third most important

invention after the wheel and Super Nintendo.

This researh was partially funded by the Bodossaki Foundation, to whih I am very

thankful. It has also been o-�naned by the European Union (European Soial Fund -

ESF) and Greek national funds through the Operational Program \Eduation and Lifelong

Learning" of the National Strategi Referene Framework (NSRF) - Researh Funding

Program: Thales. Investing in knowledge soiety through the European Soial Fund.

6



Table of Contents

1 Introdution 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Text Searh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Salable Datastores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Bakground and Related Researh 10

2.1 Full-Text Searh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Online Index Maintentane . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Real-Time Searh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Large-Sale Data Management . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Salable Datastores . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Storage Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Related Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Inremental Text Indexing for Fast Disk-Based Searh 28

3.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Bakground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 The Searh Cost of Storage Fragmentation . . . . . . . . . . . . . . 34

4 Seletive Range Flush and Uni�ed Range Flush Methods 37

4.1 Problem De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



4.2 System Arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The Seletive Range Flush Method . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Evaluation of Seletive Range Flush . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Sensitivity of Seletive Range Flush . . . . . . . . . . . . . . . . . . . . . . 45

4.6 The Uni�ed Range Flush Method . . . . . . . . . . . . . . . . . . . . . . . 46

4.7 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7.1 Memory Management and I/O . . . . . . . . . . . . . . . . . . . . . 51

5 Performane Evaluation of Inremental Text Indexing 53

5.1 Experimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Building the Inverted File . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Query Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Sensitivity of Uni�ed Range Flush . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Storage and Memory Management . . . . . . . . . . . . . . . . . . . . . . . 61

5.6 Salability aross Di�erent Datasets . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Range-Based Storage Management for Salable Datastores 67

6.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 System Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Design and Arhiteture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.1 The Rangetable Struture . . . . . . . . . . . . . . . . . . . . . . . 73

6.4.2 The Rangemerge Method . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Performane Evaluation of Rangemerge 80

7.1 Experimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Query Lateny and Disk Files . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Insertion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.5 Memory Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

ii



7.6 Key Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.7 Solid-State Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.8 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.8.1 Compation I/O Intensity . . . . . . . . . . . . . . . . . . . . . . . 92

7.8.2 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.8.3 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.8.4 Availability and Reovery . . . . . . . . . . . . . . . . . . . . . . . 94

7.8.5 Cahing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Implementation of Rangemerge in a Prodution System 97

8.1 LevelDB Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1.1 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1.3 Reovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1.4 Other Merging Strategies . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2 Performane Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.1 Logging Performane . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.2.2 Insertion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2.3 Interferene of Queries and Inserts . . . . . . . . . . . . . . . . . . 106

8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Theoretial Analysis 110

9.1 I/O Complexity of Uni�ed Range Flush . . . . . . . . . . . . . . . . . . . . 110

9.2 I/O Complexity of Rangemerge . . . . . . . . . . . . . . . . . . . . . . . . 114

9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10 Conlusions and Future Work 117

10.1 Conlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

iii



List of Figures

2.1 (a) A simple text olletion of six douments. (b) The lexion and the

inverted lists for the spei� doument olletion. . . . . . . . . . . . . . . 12

2.2 Merges and �les produed after the �rst 10 memory ushes for the (a)

Immediate Merge or Remerge, and (b) Nomerge methods. Numbers within

nodes represent size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Merge sequene of Geometri Partitioning with r = 3, for the �rst 10

memory ushes. Numbers within nodes represent size. . . . . . . . . . . . 16

2.4 Index maintenane approah for the (a) Logarithmi Merge and (b) Hybrid

Immediate Merge methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 (a) Eah table is partitioned into a number of tablets for load balaning,

whih are subsequently assigned to servers. (b) A master node keeps the

mapping between tablets and servers. Clients must �rst ontat the master

node to store or aess data. . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Dynamo deentralized arhiteture. Any node on the ring an oordinate

a request from a lient. We assume the ring spae is (0,400) and nodes A,

B, C, D are assigned values 100, 200, 300 and 400 respetively. . . . . . . 20

3.1 Hybrid Immediate Merge only applies partial ushing to long (frequent)

terms, while Seletive Range Flush (SRF) and Uni�ed Range Flush (URF)

partially ush both short (infrequent) and long terms. Unlike SRF, URF

organizes all postings in memory as ranges, allows a term to span both the

in-plae and merge-based indies, and transfers postings of a term from the

merge-based to the in-plae index every time they reah a size threshold

T

a

(see also Setion 4.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



4.1 We index 426GB using Wumpus with 1GB memory. The x axis refers to

the time instanes at whih memory ontents are ushed to disk. (a) HSM

maintains up to 2 merge-based runs on disk, and (b) HLM periodially

merges the runs reated on disk so that their number is logarithmi in the

urrent size of the on-disk index. . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 We break down the index building time into doument parsing and postings

ushing parts aross di�erent maintenane poliies. Parsing inludes the

time required to lean dirty pages from page ahe to free spae for newly

read douments. Proteus parsing performane is pessimisti as it uses an

unoptimized implementation (Setion 5.1). We also inlude the number

of merge-based runs eah method maintains. SRF has lower time than

HIM and HSM, and only 12% higher build time than HLM, even though

it maintains ontiguously all lists on disk. . . . . . . . . . . . . . . . . . . 44

4.3 (a) The prototype implementation of Proteus. (b)We maintain the hashtable

in memory to keep trak of the postings that we have not yet ushed to

disk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 (a) Eah entry of the rangetable orresponds to a term range, and points

to the searh buket, whih serves as partial index of the orresponding

rangeblok. (b) Eah entry of the termtable orresponds to a term and

points to the bloklist that keeps trak of the assoiated termbloks on disk. 50

5.1 We onsider the index building time for di�erent indexing methods aross

Wumpus and Proteus, both with full stemming. Over Wumpus, we exam-

ine Nomerge (Nomerge

W

), Hybrid Logarithmi Merge (HLM

W

), Hybrid

Square Root Merge (HSM

W

) and Hybrid Immediate Merge (HIM

W

). Over

Proteus, we inlude Hybrid Immediate Merge (HIM

P

), Seletive Range

Flush (SRF

P

) and Uni�ed Range Flush (URF

P

). URF

P

takes 421min to

proess the 426GB of GOV2 ahieving roughly 1GB/min indexing through-

put (see also Figure 5.7 for other datasets). . . . . . . . . . . . . . . . . . 55

v



5.2 We onsider Hybrid Immediate Merge over Wumpus (HIM

W

) or Proteus

(HIM

P

), along with Seletive Range Flush (SRF

P

) and Uni�ed Range

Flush (URF

P

) over Proteus. (a) We measure the average query time with

alternatively disabled and enabled the system bu�er ahe aross di�er-

ent queries in the two systems with full stemming. (b) We look at the

distribution of query time over the two systems with enabled the bu�er

ahe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 (a) Setting the rangeblok size B

r

below 32MB or above 64MB raises the

build time of Uni�ed Range Flush. Inreasing the B

r

tends to (b) derease

the number of ushes, and () inrease the data amount transferred during

merges. We use Proteus with light stemming. . . . . . . . . . . . . . . . . 59

5.4 (a) Flushing more than few tens of megabytes (M

f

) leads to longer build

time for Uni�ed Range Flush (URF). This results from the more intense I/O

ativity aross term and range ushes. (b) Setting the append threshold

to T

a

= 256KB minimizes the total I/O time of range and term ushes.

() The build time of range merge in URF dereases approximately in

proportion to the inreasing size of posting memory (M

p

). The Proteus

system with light stemming is used. . . . . . . . . . . . . . . . . . . . . . 60

5.5 We examine the behavior of Uni�ed Range Flush over Proteus with the

following storage alloation methods (i) ontiguous (CNT), (ii) doubling

(DBL), and (iii) fragmented (FRG) with termblok sizes 1MB, 2MB, 8MB

and 32MB. (a) CNT ahieves the lowest query time on average losely

followed by DBL. We keep enabled the system bu�er ahe aross the

di�erent queries. (b) Build time aross the di�erent alloation methods

varies within 5.7% of 386min (FRG/1MB and DBL). () Unlike CNT and

DBL, FRG tends to inrease the index size espeially for larger termblok. 62

5.6 We onsider three methods of memory alloation during index building by

Uni�ed Range Flush: (i) default (D), (ii) single-all (S), and (iii) hunkstak

(C). The sensitivity of build time to memory management is higher (up to

8.6% derease with C) for larger values of M

p

. We use Proteus with light

stemming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



5.7 We show the saling of build time with Seletive Range Flush (SRF) and

Uni�ed Range Flush (URF). We use the ClueWeb09 (�rst TB), GOV2

(426GB) and Wikipedia (200GB) datasets over Proteus with light stem-

ming. URF takes 53.5min (7%) less time for ClueWeb09, about the same

for Wikipedia, and 16.4min (4%) more for GOV2 in omparison to SRF. . 65

6.1 The query lateny at the Cassandra lient varies aording to a quasi-

periodi pattern. The total throughput of queries and inserts also varies

signi�antly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Assumed datastore arhiteture. . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 The organization of the Rangetable struture, and ontrol ow of a handled

range query. For presentation larity we use alphabeti haraters as item

keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Prototype framework with several ompation methods as plugins. . . . . 77

6.5 We observe similar ompation ativity between Cassandra and our pro-

totype implementation of SMA (k=4). The height (y-axis value) of eah

mark denotes the transfer size of the respetive ompation. . . . . . . . . 78

7.1 During onurrent inserts and queries, (a) the get lateny of Geometri

(r=2) and SMA (k=4) has substantially higher variability and average

value than Rangemerge, and (b) the get throughput of Geometri (r=2)

drops as low as 15.5req/s during ompations (grey bakground). . . . . . 83

7.2 (a) At the insertion of 10GB withM=512MB using Geometri partitioning

(r=2), get lateny (at load 10req/s) is losely orrelated to the number of

�les reated. (b) We show the number of �les maintained per key range for

six methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3 I/O intensity of ompations. The disk traÆ of ompations in Range-

merge is omparable to that of Nomerge with M=512MB. . . . . . . . . . 85

7.4 Saling on�guration parameters. The insertion progress is similar be-

tween the on�guration of M=256MB with 5GB dataset (left y-axis) and

M=2GB with 40GB (right y-axis) for Geometri (r=2), SMA (k=4) and

Rangemerge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



7.5 (a) The insertion time (log y axis) of Rangemerge is about half the insertion

time of Remerge and losely traks that of Geometri (p=2). (b) With

M=4GB and 80GB dataset size Rangemerge has lower insertion time than

Geometri (p=2) and (r=3) while storing eah key at a single disk loation. 87

7.6 Performane sensitivity to put load assuming onurrent get requests at

rate 20req/s and san size 10. . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.7 Sensitivity to range get size assuming onurrent load of 2500req/s put rate

and 20req/s get rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.8 Sensitivity of insertion time to get rate of san size 10 with onurrent put

rate set at 2500req/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.9 Impat of M to insertion time. With M=2GB, Rangemerge approahes

Nomerge and stays by at least 21% below the other methods. . . . . . . . 89

7.10 Sensitivity of insertion time to key distribution, as we generate put requests

bak-to-bak with zero get load. . . . . . . . . . . . . . . . . . . . . . . . 90

7.11 (a) Over an SSD, the insertion time of Rangemerge lies halfway between

that of Nomerge and Remerge. (b) Rangemerge redues the variability of

get lateny in omparison to SMA (k = 4) and Geometri (r = 2). . . . . 91

8.1 Files are hierarhially organized in LevelDB. When memtable is full, it is

ushed into an SSTable at level 0. Thus, level-0 �les may ontain overlap-

ping ranges of keys. When the size of a level L exeeds its threshold, a

single �le from level L (or all level �les, if L = 0) along with all overlapping

�les from level L + 1 are merged and stored as a number of 2MB �les at

level L + 1. The maximum size of a level is expressed either as maximum

number of �les (L = 0) or as maximum total size (L > 0). . . . . . . . . . 98

8.2 Rangemerge logging in LevelDB. . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Various merging strategies, as we implemented them in LevelDB. . . . . . 102

8.4 (a) We show the total disk spae onsumed by log �les in our Rangemerge

implementation within LevelDB. Log size is at least equal to the memory

size M , and normally between 2M and 3M . (b) There is a small overhead

involved in traking the log �les referened by eah range and deleting the

unreferened ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

viii



8.5 Comparison of the insertion time of various methods implemented in Lev-

elDB and in our prototype system. . . . . . . . . . . . . . . . . . . . . . . 105

8.6 Get lateny in various ompation methods implemented in LevelDB, as-

suming a onurrent load of 2500put/s and 20get/s of san size 10. Bak-

ground ompations (gray bakground) severely a�et queries in all meth-

ods exept for Rangemerge. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.7 Get throughput in various ompation methods implemented in LevelDB,

assuming a onurrent load of 2500put/s and 20get/s of san size 10.

Rangemerge manages to keep the rate at whih queries are served above

15req/s. In all remaining methods the get throughput is seriously a�eted

during the bakground ompations (gray bakground). . . . . . . . . . . 107

8.8 Get lateny (above) and throughput (below) for point queries in three

methods, assuming puts at 2500req/s and point gets at 20req/s. . . . . . . 108

ix



List of Tables

2.1 Summary of storage strutures typially used in datastores. We inlude

their I/O omplexities for insertion and range query in one-dimensional

searh over single-key items. . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Summary of the asymptoti ost (in I/O operations) required to inre-

mentally build inverted �les and retrieve terms for query handling. N is

the number of indexed postings and M is the amount of memory used for

postings gathering. The parameter a (e.g., a = 1.2) refers to the Zip�an

distribution (Setion 9.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Main funtional di�erenes among existing and our new methods of inre-

mental text indexing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Average searh lateny (ms) and the fration of it spent on I/O, using the

GOV2 dataset over the Zettair searh engine. . . . . . . . . . . . . . . . . 35

3.4 Average, median and 99th perentile of searh lateny (ms) when di�er-

ent numbers of stop words are applied with and without page ahing in

GOV2/Zettair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Sensitivity to interations between rangeblok size B

r

and preferene fa-

tor F

p

. We underline the lowest measurement on eah row. The highest

measured time is 62.18min, i.e., 53.8% higher than the lowest 40.43min. . 45

4.2 Parameters of Seletive Range Flush (SRF) and Uni�ed Range Flush (URF).

In the last olumn we inlude their default values used in our prototype. . 47

5.1 We examine the e�et of alternative optimizations to the query and build

time of Uni�ed Range Flush. Prealloation redues the average query time,

while prefething and hunkstak redue the build time. . . . . . . . . . . 64

x



6.1 Storage management on the server oupies more than 80% of the average

query lateny measured at the lient. . . . . . . . . . . . . . . . . . . . . 71

7.1 Amount of ushed and totally transferred data per ompation, delay per

ompation, and total insertion time for di�erent range�le sizes of Range-

merge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xi



List of Algorithms

4.1 Pseudoode of Seletive Range Flush . . . . . . . . . . . . . . . . . . 41

4.2 Pseudoode of Unified Range Flush . . . . . . . . . . . . . . . . . . . . 48

6.3 Pseudoode of Rangemerge . . . . . . . . . . . . . . . . . . . . . . . . . 76

xii



Glossary

HIM Hybrid Immediate Merge

HLM Hybrid Logarithmi Merge

HSM Hybrid Square Root Merge

SRF Seletive Range Flush

SMA Stepped Merge Array

URF Uni�ed Range Flush

B

r

Rangeblok

B

t

Termblok

F

p

Preferene Fator

M

f

Flush Memory

M

p

Posting Memory

T

a

Append Threshold

T

t

Term Threshold

xiii



Abstrat

Margaritis, Giorgos, D.

Phd, Department of Computer Siene and Engineering, University of Ioannina, Greee.

April, 2014.

EÆient Storage Indexing of Strutured and Unstrutured Data.

Thesis Supervisor: Stergios V. Anastasiadis.

Commerial and publi organizations urrently strive to manage massive amounts

of strutured and unstrutured data in all �elds of soiety. The data olleted aross

di�erent loal and online servies, suh as news websites, soial media, mail servers and �le

systems, is inherently semi-strutured or unstrutured. Therefore, e�etive text indexing

and searh is ruial for data usability and exploration. Moreover, the exploding amount of

strutured data that needs to be managed and the demanding workloads that inlude both

throughput-oriented bath jobs and lateny-sensitive data serving drive the development

of horizontally-expandable, distributed storage systems, alled salable datastores. In this

thesis, we study the analysis, design, and implementation of storage systems to eÆiently

store, aess, and searh both strutured and unstrutured data.

Real-time text searh requires to inrementally ingest ontent updates and make them

searhable almost immediately, but also serve searh queries at low lateny. Reent meth-

ods for inremental index maintenane substantially inrease searh lateny with the index

fragmented aross multiple disk loations. For the support of fast indexing and searh

over disk-based storage, we introdue a method alled Seletive Range Flush (SRF). We

organize the disk index over bloks, whih allow to seletively update only the parts of

the index that an be eÆiently updated based on SRF. We show that SRF redues the

indexing time, but requires substantial experimental e�ort to tune spei� parameters for

performane eÆieny. Subsequently, we propose the Uni�ed Range Flush (URF) method,

xiv



whih is oneptually simpler than SRF, ahieves similar or better performane with fewer

parameters and less tuning, and is amenable to I/O omplexity analysis. We implement

the two methods in the Zettair open-soure searh engine, using arefully optimized stor-

age and memory management. Then, we do extensive experiments with three di�erent

web datasets of size up to 1TB. Aross di�erent open-soure systems, we show that our

methods o�er searh lateny that mathes or redues up to half the lowest ahieved by

existing disk-based methods. In omparison to an existing method of omparable searh

lateny on the same system, our methods redue by a fator of 2.0{2.4 the I/O part of

build time, and by 21{24% the total build time.

Salable datastores are required to manage enormous amounts of strutured data for

online serving and analytis appliations. Aross di�erent workloads, they weaken the

relational and transational assumptions of traditional databases to ahieve horizontal

salability and availability, and meet demanding throughput and lateny requirements.

EÆieny tradeo�s at eah storage server often lead to design deisions that sari�e query

responsiveness for higher insertion throughput. In order to address this limitation, we in-

trodue the Rangetable storage struture and Rangemerge method so that we eÆiently

manage strutured data in granularity of key ranges. We develop both a general proto-

type framework and a storage system based on Google's LevelDB open-soure key-value

store. In these two platforms, we implement several representative methods as plugins

to experimentally evaluate their performane under ommon operating onditions. We

onlude that our approah inurs range-query lateny that is minimal and has low sensi-

tivity to onurrent insertions, while it ahieves insertion performane that approximates

that of write-optimized methods under modest query load. Our method also redues

down to half the reserved disk spae, improves the write throughput proportionally to the

available main memory, and naturally exploits the key skewness of the inserted dataset.

xv



Åê�å�áìÝíç �åñßëçøç ó�á ÅëëçíéêÜ

�åþñãéïò Ìáñãáñß�çò �ïõ Äçìç�ñßïõ êáé �çò �áíáãéþ�áò.

PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé �ëçñïöïñéêÞò, �áíåðéó�Þìéï Éùáííßíùí, Áðñßëéïò, 2014.

Áðïäï�éêÞ Äåéê�ïäü�çóç ÁðïèÞêåõóçò ãéá ÄïìçìÝíá êáé Áäüìç�á ÄåäïìÝíá.

ÅðéâëÝðïí�áò: Ó�Ýñãéïò Â. Áíáó�áóéÜäçò.

Äçìüóéïé ïñãáíéóìïß êáé éäéù�éêÝò åðé÷åéñÞóåéò áí�éìå�ùðßæïõí óÞìåñá �ï ðñüâëçìá

�çò äéá÷åßñéóçò ìåãÜëïõ üãêïõ äïìçìÝíùí êáé áäüìç�ùí äåäïìÝíùí. Ôá äåäïìÝíá áõ�Ü

óõ÷íÜ óõëëÝãïí�áé áðü Ýíá ðëÞèïò �ïðéêþí õðçñåóéþí Þ õðçñåóéþí �ïõ äéáäéê�ýïõ, üðùò

�á óõó�Þìá�á áñ÷åßùí, ïé éó�ïóåëßäåò åíçìÝñùóçò, �á êïéíùíéêÜ äßê�õá êáé ïé äéáêïìéó�Ýò

çëåê�ñïíéêïý �á÷õäñïìåßïõ, êáé åßíáé åããåíþò çìéäïìçìÝíá Þ áäüìç�á. �éá �ï ëüãï áõ�ü,

ç áðï�åëåóìá�éêÞ äåéê�ïäü�çóç êáé áíáæÞ�çóç êåéìÝíïõ åßíáé ìßá åîáéñå�éêÜ óçìáí�éêÞ

õðçñåóßá ãéá �çí áîéïðïßçóç êáé ÷ñÞóç �ùí äåäïìÝíùí áõ�þí. Åðéðñüóèå�á, �ï óõíå÷þò

áõîáíüìåíï ìÝãåèïò �ùí äïìçìÝíùí äåäïìÝíùí ðïõ ðñÝðåé íá äéá÷åéñéó�ïýí, êáèþò êáé ï

õøçëüò áëëÜ êáé ðïéêéëüìïñöïò öüñ�ïò åñãáóßáò, Ý÷ïõí ïäçãÞóåé ó�çí áíÜð�õîç ïñéæüí�éá-

åðåê�Üóéìùí êá�áíåìçìÝíùí óõó�Þìá�ùí �á ïðïßá êáëïýí�áé êëéìáêþóéìá óõó�Þìá�á

áðïèÞêåõóçò. Ó�ç äéá�ñéâÞ áõ�Þ ìåëå�ïýìå �çí áíÜëõóç, �ï ó÷åäéáóìü êáé �çí õëïðïßçóç

áðïäï�éêþí óõó�çìÜ�ùí áðïèÞêåõóçò êáé áíáæÞ�çóçò ãéá äïìçìÝíá êáé áäüìç�á äåäïìÝíá.

Ç áíáæÞ�çóç êåéìÝíïõ óå ðñáãìá�éêü ÷ñüíï ðñïûðïèÝ�åé �ç äõíá�ü�ç�á óõíå÷ïýò

åéóáãùãÞò íÝùí åíçìåñþóåùí ó�ï óýó�çìá êáé �çí ó÷åäüí Üìåóç äéÜèåóÞ �ïõò ðñïò

áíáæÞ�çóç, üðùò åðßóçò êáé �çí åîõðçñÝ�çóç åñù�çìÜ�ùí áíáæÞ�çóçò ìå ÷áìçëÞ êáèõ-

ó�Ýñçóç. �ñüóöá�åò ìÝèïäïé ãéá �çí áõîç�éêÞ åíçìÝñùóç �ïõ åõñå�çñßïõ áíáæÞ�çóçò

êá�áêåñìá�ßæïõí �ï åõñå�Þñéï ó�ï äßóêï, ìå áðï�Ýëåóìá �ç óçìáí�éêÞ áýîçóç �ùí ÷ñüíùí

áíáæÞ�çóçò. ¸÷ïí�áò ùò ó�ü÷ï �çí õðïó�Þñéîç ãñÞãïñçò äåéê�ïäü�çóçò êáé áíáæÞ�çóçò,

ðñï�åßíïõìå �ç ìÝèïäï Seletive Range Flush (SRF). ÅðéëÝãïõìå íá ïñãáíþóïõìå �ï

åõñå�Þñéï ó�ï äßóêï óå ìðëïê, �ï ïðïßï åðé�ñÝðåé �çí åðéëåê�éêÞ åíçìÝñùóç ìüíï �ùí

xvi



�ìçìÜ�ùí �ïõ åõñå�çñßïõ ðïõ ìðïñïýí íá åíçìåñùèïýí áðïäï�éêÜ âÜóåé �ïõ áëãïñßèìïõ

SRF. Äåß÷íïõìå ðùò ï SRF ðå�õ÷áßíåé ìåßùóç �ïõ ÷ñüíïõ äåéê�ïäü�çóçò, üìùò áðáé�åß

óçìáí�éêÞ ðåéñáìá�éêÞ ðñïóðÜèåéá ãéá �çí áðï�åëåóìá�éêÞ ðáñáìå�ñïðïßçóç �ïõ. Ó�ç

óõíÝ÷åéá ðñï�åßíïõìå �ïí áëãüñéèìï Uni�ed Range Flush (URF), ï ïðïßïò åßíáé êá�Ü

âÜóç áðëïýó�åñïò áðü �ïí SRF, ðå�õ÷áßíåé ðáñüìïéá Þ êáé êáëý�åñç áðüäïóç ìå ëéãü�åñåò

ðáñáìÝ�ñïõò êáé åõêïëü�åñç ñýèìéóÞ �ïõò, åíþ åðé�ñÝðåé �ç ìåëÝ�ç �çò áóõìð�ù�éêÞò �ïõ

ðïëõðëïêü�ç�áò. Áíáð�ýóóïõìå �éò äýï ðñï�åéíüìåíåò ìåèüäïõò ó�ç ìç÷áíÞ áíáæÞ�çóçò

áíïé÷�ïý êþäéêá Zettair, ÷ñçóéìïðïéþí�áò ðñïóåê�éêÜ õëïðïéçìÝíá õðïóõó�Þìá�á äéá÷åß-

ñéóçò ìíÞìçò êáé äßóêïõ. ¸ðåé�á, åê�åëïýìå åê�å�áìÝíá ðåéñÜìá�á ìå �ñåéò äéáöïñå�éêÝò

óõëëïãÝò äåäïìÝíùí ìåãÝèïõò ìÝ÷ñé 1TB. Ìå�áîý äéáöïñå�éêþí óõó�çìÜ�ùí áíïé÷�ïý

êþäéêá, äåß÷íïõìå ü�é ïé ìÝèïäïß ìáò ðáñÝ÷ïõí êáèõó�Ýñçóç áíáæÞ�çóçò ðïõ åßíáé ðáñüìïéá

Þ ìåéùìÝíç Ýùò êáé 50% óå ó÷Ýóç ìå �éò ÷áìçëü�åñåò êáèõó�åñÞóåéò ðïõ ðå�õ÷áßíïõí

õðÜñ÷ïõóåò ìÝèïäïé. Óõãêñé�éêÜ ìå ìßá ìÝèïäï áí�ßó�ïé÷çò êáèõó�Ýñçóçò áíáæÞ�çóçò, ïé

ìÝèïäïß ìáò ìåéþíïõí êá�Ü Ýíáí ðáñÜãïí�á 2.0{2.4 �ï êïììÜ�é �ïõ ÷ñüíïõ äåéê�ïäü�çóçò

ðïõ áöïñÜ �çí Å/Å, êáé êá�Ü 21%{24% �ï óõíïëéêü ÷ñüíï äåéê�ïäü�çóçò.

Ôá êëéìáêþóéìá óõó�Þìá�á áðïèÞêåõóçò åßíáé óÞìåñá áðáñáß�ç�á ãéá �ç äéá÷åßñéóç

�ïõ �åñÜó�éïõ üãêïõ äïìçìÝíùí äåäïìÝíùí ðïõ áðáé�ïýí ïé õðçñåóßåò äéáäéê�ýïõ êáé ïé

äéÜöïñåò åöáñìïãÝò áíÜëõóçò äåäïìÝíùí. Ìå óêïðü �çí åðß�åõîç ïñéæüí�éáò êëéìáêùóé-

ìü�ç�áò êáé äéáèåóéìü�ç�áò, êáèþò êáé �çí åîõðçñÝ�çóç áé�çìÜ�ùí ìå õøçëÞ ñõèìáðüäïóç

êáé ÷áìçëÞ êáèõó�Ýñçóç, �á óõó�Þìá�á áõ�Ü äåí õéïèå�ïýí �ï ó÷åóéáêü ìïí�Ýëï êáé �éò

ACID éäéü�ç�åò ðïõ ðáñÝ÷ïõí ïé ðáñáäïóéáêÝò âÜóåéò äåäïìÝíùí. ¸÷ïí�áò ùò êýñéï

ó�ü÷ï �çí ðáñï÷Þ õøçëÞò áðüäïóçò áðïèÞêåõóçò åããñáöþí, �á óõó�Þìá�á áõ�Ü óõíÞèùò

åðéëÝãïõí íá èõóéÜóïõí �çí áðüäïóç áíÜãíùóçò åããñáöþí. �éá íá áí�éìå�ùðßóïõìå �ïí

ðåñéïñéóìü áõ�ü ðñï�åßíïõìå �çí äïìÞ áðïèÞêåõóçò Rangetable êáé �ç ìÝèïäï Range-

merge, âÜóåé �ùí ïðïßùí ç äéá÷åßñéóç �ùí åããñáöþí ãßíå�áé áðïäï�éêÜ ïìáäïðïéþí�áò �éò

óå ëåîéêïãñáöéêÜ åýñç. Áíáð�ýóóïõìå �üóï ìßá ãåíéêÞ ðñü�õðç ðëá�öüñìá áðïèÞêåõóçò

üóï êáé Ýíá áðïèçêåõ�éêü óýó�çìá âáóéóìÝíï ó�ï LevelDB, Ýíá áíïé÷�ïý êþäéêá óýó�çìá

äéá÷åßñéóçò êëåéäéïý-�éìÞò áðü �ç Google. Õëïðïéïýìå Ýíá ðëÞèïò áðü áí�éðñïóùðåõ�éêÝò

ìåèüäïõò ó�á äýï áõ�Ü óõó�Þìá�á êáé ìåëå�ïýìå ðåéñáìá�éêÜ �çí áðüäïóÞ �ïõò. Äåß÷íïõìå

ðùò ç áðüäïóç �çò ðñïóÝããéóÞò ìáò åðé�õã÷Üíåé êáèõó�Ýñçóç áðÜí�çóçò óå åñù�Þìá�á

åýñïõò (range-queries) ðïõ åßíáé åëÜ÷éó�ç êáé Ý÷åé ÷áìçëÞ åõáéóèçóßá óå �áõ�ü÷ñïíåò

åéóáãùãÝò äåäïìÝíùí. �áñÜëëçëá, ç áðüäïóç åããñáöÞò �çò ìåèüäïõ ìáò ðñïóåããßæåé

xvii



áõ�Ýò �ùí ìåèüäùí ðïõ åßíáé ó÷åäéáóìÝíåò ãéá õøçëÞ áðüäïóç åããñáöÞò ü�áí �áõ�ü÷ñïíá

åîõðçñå�ïýí�áé êáé áé�Þìá�á áíÜãíùóçò. ÔÝëïò, ç ìÝèïäüò ìáò ìåéþíåé ó�ï ìéóü �ï

äåóìåõìÝíï áðïèçêåõ�éêü ÷þñï, âåë�éþíåé �çí ñõèìáðüäïóç åéóáãùãÞò äåäïìÝíùí áíáëïãéêÜ

ìå �ç äéáèÝóéìç ìíÞìç �ïõ óõó�Þìá�ïò, åíþ åêìå�áëëåýå�áé �çí áóõììå�ñßá �çò êá�áíïìÞò

�ùí êëåéäéþí ðïõ åéóÜãïí�áé.

xviii



Chapter 1

Introdution

1.1 Motivation

1.2 Text Searh

1.3 Salable Datastores

1.4 Thesis Contribution

1.5 Thesis Organization

1.1 Motivation

We live in the era of big data, where ommerial and publi organizations strive to manage

massive amounts of both strutured and unstrutured data in all �elds of soiety. Even

though there is no lear de�nition of big data, it is usually haraterized by the three

following properties: high volume, high veloity, and high variety [117℄. The data olleted

aross di�erent loal and online servies, suh as news websites, soial media, mail servers

and �le systems, is inherently semi-strutured or unstrutured (high variety). Therefore,

e�etive text indexing and searh is very important for data usability and exploration.

Moreover, the exploding amount of strutured data that needs to be managed (high

volume) and the demanding workloads that inlude both throughput-oriented bath jobs

1



and lateny-sensitive data serving (high veloity) drive the development of horizontally-

expandable, distributed storage systems, alled salable datastores. Not surprisingly, most

major web ompanies suh as Google, Yahoo!, Faebook and Mirosoft deal with both the

problems of text searh and data management at large sale, and have developed their

own indexing and storage systems to meet the requirements of their workloads.

In this thesis, we study the problem of big data management from the aspet of

designing and implementing systems to eÆiently store, aess and searh both strutured

and unstrutured data at large sale. Although quite di�erent in prinipal, the problems

of salable text searh and storage management share some fundamental harateristis:

• System arhiteture. The distributed systems designed for large-sale indexing or

storage usually follow a two-tier, shared-nothing arhiteture, where a number of

front-end servers reeive end-user requests and forward them to a number of worker

servers. Front-end and worker servers may be separate physial nodes or hosted on

the same mahine.

• Horizontal partitioning. In these systems, salability is usually ahieved using a

tehnique alled horizontal partitioning (or sharding). The data is horizontally

partitioned into a number of disjoint partitions, whih are subsequently assigned to

worker servers. For example, a large doument olletion may be partitioned into

disjoint sets of douments for text indexing, while a large table may be split into

groups of onseutive rows in ase of datastores. Eah worker then loally stores

and indexes the partition it has been assigned and serves requests for it.

• Data type and ingestion workow. The ingestion of new data at eah worker usu-

ally follows the approah of aumulating in main memory items in the form of

〈key, value〉 pairs, until the memory is exhausted. When this happens, all memory

items are ushed to disk and merged with the existing disk items. In the spei�

ase of text indexing the key is a term that appeared in the doument olletion

and the value is a list of douments it appeared into. Similarly, items are expliitly

inserted as 〈key, value〉 pairs in datastores.

• Storage fragmentation as read-write tradeo�. The ontiguous disk storage of items

at the worker servers is ritial for low read lateny. Nevertheless, the majority of

2



existing storage management methods at the workers keep the items fragmented on

disk to improve write or indexing throughput, at the ost of redued read or searh

performane.

In spite of these similarities, text indexing and storage management of datastores do

have some important di�erenes:

• Data preproessing. Text indexing handles text douments, whih must �rst be

parsed into 〈doument-id, term〉 tuples before being aumulated in memory and

grouped into 〈term, list-of-doument-ids〉 key-value pairs. On the other hand, items

inserted in datastores typially do not need any kind of preproessing.

• Data update. During text indexing, when a new 〈doument-id, term〉 pair is inserted

in memory, the doument-id must be appended to the list of douments for term.

In ontrast, a new 〈key, value〉 pair inserted in a datastore will replae any existing

value for key (or reate a new version of it).

• Item size distribution. The sizes of the individual items proessed in text indexing

approximately follow a Zip�an distribution: a few popular terms (e.g., \the", \of",

\and") may have doument lists of several tens or hundreds of MB in size, while

the vast majority of terms appear infrequently in douments and have list sizes of a

few bytes. Datastores on the other hand handle items of similar sizes, typially in

the range of a few tens or hundreds of KB.

• Workload types. New douments are sent periodially to worker servers for index-

ing (for example, after a web rawler has fethed a bath of web pages). This

means that most of the time the workers serve searh queries, and only oasionally

need to index a olletion of new douments. Unlike text searh servers, datas-

tores onstantly serve both reads and writes. In fat, due to the nature of web

appliations, datastores frequently experiene write-intensive workloads although

read-heavy workloads are also ommon.

In general, horizontal salability enables these distributed systems to inrease their

apaity by simply adding more servers. Additionally, to a large extent the system per-

formane is determined by the performane of the onstituent worker servers. We therefore

3



fous on the eÆieny of storing and serving the assigned partitions at eah worker server.

Reent methods that manage the disk and memory on the workers usually follow a write-

optimized approah. As a onsequene, reads are onsiderably a�eted with respet to

the lateny and the rate they are served. We thus shift our fous on improving the storage

layer on the workers by designing, analyzing and implementing eÆient methods for the

management of items in memory and on disk. Our aim is to improve the read and searh

performane, while maintaining high the write and indexing throughput.

1.2 Text Searh

Real-time text searh requires to inrementally ingest ontent updates and almost imme-

diately make them searhable, while serving searh queries at low lateny. To answer a

text query, a searh engine must �rst proess a text dataset and reate for eah term that

appears in the dataset an inverted list with pointers (postings) to all its ourrenes. The

set of the inverted lists make up the inverted index of the dataset. As new douments

are added to the olletion, inverted lists are aordingly updated by adding new post-

ings to them. To evaluate a text query, a searh engine typially fethes in memory the

inverted list of eah query term and ombines them to alulate the set of douments that

are relevant to the query (e.g., ontain all query terms). Given that a substantial time

fration of query handling is spent on fething the lists from disk, list ontiguity is on-

sidered extremely important for fast query evaluation. Reent methods for inremental

index maintenane improve indexing ost by relaxing the list ontiguity requirement, but

substantially inrease searh lateny due to the storage fragmentation of lists.

For the support of fast searh over disk-based storage, we take a fresh look at inre-

mental text indexing in the ontext of urrent arhitetural features. We advoate to

preserve the list ontiguity but lower the indexing time, onsidering eÆient algorithms

and data strutures, as well as arefully optimized storage-level and memory management

implementations. To this end, we introdue a method alled Seletive Range Flush (SRF)

to ontiguously organize the index over disk bloks and dynamially update it at low ost.

Blok-based management simpli�es the maintenane of the inverted index beause it al-

lows us to seletively update only the parts of the index that an be eÆiently updated.

4



We show that SRF redues the indexing time, but requires substantial experimental ef-

fort to tune spei� parameters for performane eÆieny. Subsequently, we propose the

Uni�ed Range Flush (URF) method, whih is oneptually simpler than SRF, ahieves

similar or better performane with fewer parameters and less tuning, and is amenable

to I/O omplexity analysis. We implement interesting variations of the two methods in

a prototype we developed using the Zettair open-soure searh engine, and do extensive

experiments with three di�erent web datasets of size up to 1TB. Aross di�erent systems,

we show that our methods o�er searh lateny that mathes or redues up to half the

lowest ahieved by existing disk-based methods. In omparison to an existing method of

omparable searh lateny on the same system, our methods redue by a fator of 2.0-2.4

the I/O part of build time, and by 21-24% the total build time.

1.3 Salable Datastores

To meet the needs of write-heavy workloads that often emerge from appliations that on-

stantly reate large amounts of data, a number of salable datastores adopt an append-

only, write-optimized storage layer [33, 15℄. The majority of datastores, inluding the

proprietary storage platforms of Google, Mirosoft and Faebook [28, 25, 59℄ and their

popular open-soure alternatives [42, 81, 53℄, manage the data stored on disk using an

approah similar to the Log-Strutured Merge tree (LSM-tree) [79℄. Using an LSM-tree,

inoming updates in the form of key-value pairs are simply appended to a log �le on disk

and aumulated in memory, before ontrol is returned to the lient. When inoming data

�lls up the available memory, all memory entries are ushed to disk in a immutable, sorted

�le. Reads may need to merge entries from multiple disk �les, so �les are periodially

merged in the bakground aording to spei� merge patterns. These merges (or om-

pations) an be performed eÆiently sine �les are sorted. Nevertheless, they interfere

with onurrent queries leading to lateny spikes and throughput derease, and they an

last from several minutes to hours. Additionally, they require half of the available disk

apaity to be reserved for the reation of new �les. Deferring these ompations is not

a viable solution, beause deferred ompations would leave the data fragmented on disk

for extended periods leading to low query performane.

5



To address all the above issues, the memory and storage management of write-optimized

datastores should be reonsidered. The problem lies in the way the LSM-tree amortizes

the ost of writes, deferring the ush of memory entries to disk �les until memory is full

|in whih ase all memory entries are written to a disk �le| and oasionally merging

the �les produed. We modify the fundamental struture of data storage: instead of peri-

odially performing a few intensive ompations that ause performane drop, we propose

the use of smaller, more frequent, less aggressive but still eÆient ompations. Our main

insight is to keep the data in memory and disk sorted and partitioned aross disjoint key

ranges, and store eah key range in a separate �le. When memory is exhausted, we only

ush to disk the range that oupies the larger part of memory spae and merge it with

its disk �le. A range is split when needed to keep bounded the size of its �le and the

respetive merge ost.

We develop both a general prototype framework and a storage system based on

Google's LevelDB open-soure key-value store. We show that the proposed method ef-

fetively redues the variation in query lateny aused by bakground ushes and om-

pations, while it minimizes the query lateny by keeping eah entry ontiguously stored

on disk. At the same time, the write performane ahieved approximates or even beats

those of other write-optimized stores under various moderate onditions. Our method also

removes the need for exessive storage reservation, improves the ingest throughput pro-

portionally to the inrease of the main memory, and naturally exploits the key skewness

of the inserted dataset.

1.4 Thesis Contribution

The work performed within this thesis ontributes to two areas of omputer siene: text

retrieval and storage management for strutured data. The main goals of this thesis are

as follows:

• to propose inremental text indexing methods and implement a prototype searh

engine that an serve searh queries with low lateny and ahieve high indexing

throughput;

6



• to design and develop an eÆient storage layer for the nodes of salable datastores

in order to store and aess items fast and keep the interferene between ingesting

and serving data low.

The sienti� methodology for validating the proposed thesis inludes:

• design of eÆient methods;

• development of fully funtional prototype systems;

• implementation of the proposed methods and related methods from the literature

in the same prototype system for fair omparison;

• implementation of the methods evaluated in prodution systems to examine the

appliability of our algorithms and data strutures and the generality of our results;

• experimental evaluation using both real-world datasets and syntheti workloads;

• theoretial analysis of our methods.

The most important ontributions of this thesis are the following:

• We introdue eÆient text indexing methods to inrementally update the index on

disk, and desribe memory and disk management optimizations that further improve

the indexing performane.

• We evaluate the proposed solution on a state-of-the-art open-soure searh engine

using three di�erent real-world web datasets. We demonstrate the feasibility of

building text searh engines that an preserve index ontiguity on disk for fast disk-

based searh while maintaining high indexing throughput.

• We provide a uni�ed onsideration of known solutions for datastore storage man-

agement aross di�erent researh �elds. We identify several limitations in existing

systems, whih stem from the fundamental way memory and storage are managed

in most write-optimized systems. We introdue a new storage struture and a new

data management method to address them.

7



• We implement the proposed storage management approah in both a general proto-

type framework and a prodution storage system, and ondut extensive experimen-

tal evaluation using large syntheti workloads. We show that our method ahieves

minimal range-query lateny of low sensitivity to onurrent inserts, has write per-

formane that approximates or even beats those of other write-optimized methods,

and redues down to half the required reserved disk spae.

• We perform asymptoti analysis for the data ingestion I/O ost of our methods.

The proposed methods are theoretially shown to have similar asymptoti behavior

to some existing methods, but are experimentally demonstrated to have superior

performane.

1.5 Thesis Organization

The struture of the rest of the thesis is organized as follows:

In Chapter 2, we provide the bakground required to understand the problems of

full-text searh and large-sale data management. We then proeed to an overview of the

related methods for inremental index maintenane and inlude a brief desription of the

arhitetures of the most important salable datastores.

InChapter 3, we de�ne the problem of inremental text indexing, review and ompare

previous related researh, and motivate our work by experimentally showing the problems

aused by the storage fragmentation of index.

In Chapter 4, we introdue two new methods to eÆiently manage the index on disk,

desribe the design and arhiteture of our prototype searh engine, and provide details

about our implementation.

InChapter 5, we speify the harateristis of our experimentation platform, ompare

the index build and searh performane aross a representative olletion of methods using

three di�erent datasets over two di�erent systems, and evaluate the e�et that important

parameters and engineering optimizations have on the performane of the system.

In Chapter 6, we present the problem of large-sale storage management and ex-

perimentally motivate our work. We then introdue a new method and desribe the

8



arhiteture of our prototype storage framework.

In Chapter 7, we evaluate the performane of queries and insertions, as well as

their interferene, aross several methods implemented in our storage system. We also

examine the performane sensitivity to various workload parameters and storage devies,

and disuss about various issues and limitations of our design.

In Chapter 8, we desribe the implementation of our storage management method in

a prodution system. We provide details about the logging and reovery omponents, and

evaluate the eÆieny of these mehanisms. We then ompare our method to alternative

methods in terms of data ingestion throughput.

In Chapter 9, we analyze the asymptoti behavior of our methods by performing

omplexity analysis of their I/O ost.

In Chapter 10, we provide an overall review of the results of our researh, summarize

the basi onlusions, and indiate open issues and interesting diretions for future work.

9



Chapter 2

Bakground and Related Researh

2.1 Full-Text Searh

2.2 Large-Sale Data Management

2.1 Full-Text Searh

Full-text searh refers to the set of algorithms and data strutures that enable a user to

searh for a spei� doument in a text database. Today, it is an indispensable servie for

the automated retrieval of text douments, whether proprietary within an organization,

or publi aross the web. A doument may be a text �le stored in the loal �le system,

a page on the web, or a status update from a soial network. The user submits a query

into the system whih is typially a set of words desribing the ontents of the doument,

and the response is a list of douments, eah probably with di�erent degree of relevane

to the query. Full-text searh is distinguished from searh based on metadata, suh as

doument title, author or date of publiation.

When the text database onsists of a relatively small number of douments, the searh

engine an diretly san the ontents of the douments to �nd those relevant to eah query.

However, when dealing with a large number of douments or searh queries, the problem

of full-text searh is usually deomposed into two stages: indexing and searhing. The

indexing stage takes as input the doument olletion and builds an index, whih is then

10



used in the searhing stage to evaluate the searh queries. In the next setions, we provide

bakground information and related literature about index build and query evaluation in

full-text searh systems.

2.1.1 Preliminaries

The most eÆient index struture for text query evaluation is the inverted �le [118℄. An

inverted �le is an index that for eah term stores a list of pointers to all douments that

ontain the term. Eah pointer to a doument is usually alled posting and eah list of

postings for a partiular term is alled inverted list. In a word-level inverted list a posting

spei�es the exat position where a term ours in the doument, unlike a doument-level

inverted list that only indiates the appearane of a term in a doument. The lexion (or

voabulary) of the inverted �le assoiates every term that appeared in the dataset to its

inverted list. For eah term t it stores a ount f

t

of the douments ontaining t and a

pointer to the start of the orresponding inverted list on disk.

In a word-level index the inverted list for a term t ontains pointers of the form:

〈d; f
d;t

; p1; p2; :::; pf
d;t

〉

where d is a doument identi�er, f

d;t

is the number of ourrenes of t in d, and p1; :::; pf
d;t

are the positions within d where t appears. Word positions are valuable in text searh

beause they are used to identify the adjaeny or proximity of terms, e.g., in phrase

queries [3, 112, 16, 118℄. A simple text olletion along with the orresponding word-level

inverted �le is illustrated in Figure 2.1.

Inverted List Organization. Modern searh engines typially keep their inverted

lists ompressed on disk in order to redue the spae oupied by the inverted index

and the time required for query evaluation. Index ompression adds extra omputation

ost, but the gain of redued data traÆ to and from disk is relatively higher [118, 64℄.

Eah new doument added to the olletion is assigned a monotonially inreasing iden-

ti�er. Thus, an inverted list onsists of doument identi�ers sorted in inreasing order

(doument-ordered) and an be represented as a sequene of di�erenes between sues-

sive doument identi�ers (d-gaps). For example, an inverted list ontaining the douments

〈3; 5; 20; 21; 23; 76; 77; 78〉 an be represented as 〈3; 2; 15; 1; 2; 53; 1; 1〉. The di�erenes are

11



d Document contents

The old night keeper keeps the keep in the town

In the big old house in the big old gown

The house in the town had the big old keep

Where the old night keeper never did sleep

The night keeper keeps the keep in the night

And keeps in the dark and sleeps in the light

1

2

3

4

5

6

(a) Doument olletion

The old night keeper keeps the keep in the town

The night keeper keeps the keep in the night

big

dark

and

...

where

...

<6;2;1,6> <2;2;3,8> <3;1;8> <6;1;5>   ...   <4;1;1>

1

2

1

1

...

t ft

Lexicon

Posting lists

(b) Inverted �le

Figure 2.1: (a) A simple text olletion of six douments. (b) The lexion and the inverted

lists for the spei� doument olletion.

usually smaller than the initial identi�ers and an be eÆiently enoded using an inte-

ger oding sheme [118℄. The same tehnique an also be used to ompress the sorted

sequene of term ourrenes within eah doument.

Doument-ordered inverted lists are widely used for inremental index maintenane

beause they are updated simply by appending new postings at their end [63℄. Depending

on the query type and the system performane, query evaluation may require to retrieve

in memory the entire doument-ordered inverted list of eah query term [64, 116, 50℄.

Alternatively, an inverted list an be sorted aording to dereasing frequeny (frequeny-

ordered) of term ourrene in a doument or dereasing ontribution (impat-ordered)

to the query-doument similarity sore [118℄. Suh organizations allow inverted lists to

be retrieved in bloks rather than in their entirety, whih makes their ontiguous storage

relevant for the individual bloks. However, in omparison to a doument-ordered list,

the alternative organizations require additional ost (e.g., for I/O) to handle omplex

queries (e.g., term-proximity or Boolean queries) [118, 116℄. Furthermore, a list update

annot be performed eÆiently as it involves partial list reorganization with additional

enoding or deoding, and thus these shemes are not usually used in inremental index

maintenane [100℄.

Query Evaluation. A query to a text searh engine is usually a list of terms (also

alled bag-of-words query), probably along with some onstraints suh as Boolean oper-

ators. The �rst step in evaluating a query is �nding all douments that ontain some

12



or all of the query terms and satisfy the onstraints. Eah doument is then assigned a

similarity sore that denotes the \loseness" of the doument to the textual query [118℄.

The underlying priniple is that the higher the similarity sore awarded to a doument,

the greater the estimated likelihood that the user would onsider it relevant to his or her

query. Finally, the douments are ranked based on their sores and the k highest-ranked

douments are returned to the user.

The similarity of the indexed douments to a query an be alulated by evaluating the

ontribution of eah query term to all doument sores (term-at-a-time), all query terms

to a single doument sore (doument-at-a-time), or the postings with highest impat

to doument sores (sore-at-a-time) [2℄. Traditionally, doument-at-a-time evaluation is

ommonly used in web searh beause it more eÆiently handles ontext-sensitive queries

for whih the relation (e.g., proximity) among terms is ruial [18℄. Given that a high

perentage of users only examine a few tens of relevant douments, searh engines may

prune their index to ompute fast the �rst bathes of results for popular douments and

keywords. Thus, a two-tier searh arhiteture direts all inoming queries to a �rst-tier

pruned index, but direts to a seond-tier full index the queries not suÆiently handled

by the �rst tier [78℄. In order to overome the bottlenek of disk-based storage, pruning

of an impat-sorted index allows inverted lists to be stored in memory for signi�antly

improved performane of sore-at-a-time query evaluation [100℄.

Index Build. Published literature on text indexing separates o�ine index on-

strution from online index maintenane [118, 89℄. O�ine indexing deals with handling

stati doument olletions. In order to index stati datasets, the system needs to parse

douments into postings maintained in memory and periodially ush the aumulated

postings to disk reating a new partial index. Eventually, external sorting an be used to

merge the multiple index �les into a single �le that handles queries for the entire dataset.

During the indexing proess the queries are handled using an older index.

Online indexing on the other hand handles dynami doument olletions. Douments

may be added to or deleted from the dataset at any time, and the index should reet

these hanges. The system must be able to proess queries during index updates, and the

query results should inlude newly added douments or exlude any douments deleted.

In omparison to online maintenane, o�ine index onstrution is simpler beause it does

not handle doument queries until its ompletion, and has been addressed in the past

13



using eÆient methods [51℄.

In the rest of this setion we fous on dynami datasets that allow insertions of new

douments over time and examine online indexing methods that maintain inverted �les

eÆiently on seondary storage. Index maintenane for the more general ase of dou-

ment updates and deletions is an interesting problem on its own that we won't onsider

further [29, 21, 49℄. We assume word-level inverted lists that are sorted in doument

order.

2.1.2 Online Index Maintentane

Inserting a new doument into a doument olletion involves in priniple the addition of

a new posting to every inverted list orresponding to a term in the doument. If lists are

doument-ordered and new douments are assigned monotonially inreasing numbers,

new postings an be added to a list by simply appending them at the end of it. A single

doument may have a few hundred distint terms, meaning that for every new doument

the system must update hundreds of inverted lists. In most ases, a list update an be

arried out with one blok read to feth the list and one blok write to store it bak to disk

after updating it. The ost of updating the index using this naive sheme is suÆiently

high that in this raw form is not likely to be useful. The only pratial solution is to

amortize the ost of updating the lists over a bath of doument insertions [118℄.

Index building typially involves parsing a bath of new douments into inverted lists

that are temporarily maintained in main memory for improved eÆieny [35℄. When

memory gets full, the system ushes the inverted lists to disk updating the on-disk index.

During indexing, queries an be evaluated ombining the disk index with the new in-

memory inverted lists. Early work reognizes as main requirement in the above proess the

ontiguous storage on disk of the postings belonging to eah term [102℄. Storage ontiguity

improves aess eÆieny for both query proessing and index maintenane [118℄, but

introdues the need for omplex dynami storage management and frequent or bulky

reloations of postings [65℄. On the other hand, if the system keeps the inverted lists

non-ontiguously on disk, then it avoids reloations but may need multiple seeks during

query proessing to retrieve an inverted list.

In-plae methods build eah inverted list inrementally as new douments are pro-

14



Mem

Disk

Immediate Merge or Remerge

1 1 1 1 1 1 1 1 1 1

1 2 4 5 7 8 103 6 9

(a)

Mem

Disk

Nomerge

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 11 1 1

(b)

Figure 2.2: Merges and �les produed after the �rst 10 memory ushes for the (a) Im-

mediate Merge or Remerge, and (b) Nomerge methods. Numbers within nodes represent

size.

essed. Douments are parsed into postings that are aumulated in memory, until mem-

ory is exhausted. Then, for eah term that has postings in memory, the system fethes

its inverted list from disk, appends the new postings to it, and writes the updated list

bak to disk. In the end, the memory is freed and the next bath of douments an be

proessed. The need for ontiguity makes it neessary to reloate the lists when they run

out of empty spae at their end [102, 65, 64, 22℄. One an amortize the ost of reloation

by prealloating list spae for future appends using various riteria [102℄. Note that, due

to the required list reloations, it is quite diÆult {if not impossible{ to keep the lists on

disk sorted by term.

The merge-based methods merge the in-memory postings and the disk index into a

single �le on disk. The disk index stores all inverted lists in lexiographial order. When

memory gets full, the index is sequentially read from disk list-by-list. Eah list is then

merged with new postings from memory and appended to a new �le on disk, reating

the new index. Finally, queries are redireted to the newly reated index and the old

index is deleted. This index update strategy is alled Immediate Merge or Remerge

(Figure 2.2a) [62, 21, 49℄. Even though in-plae index maintenane has linear asymptoti

disk ost that is lower than the polynomial ost of Remerge, Remerge uses sequential

disk transfers instead of random disk aesses and is experimentally shown to outperform

in-plae methods [64℄. Nevertheless, eah memory ush fores the entire index to be

proessed.

A trivial form of merge-based update is the Nomerge method whih does not per-

form any merge operations (Figure 2.2b). Whenever the main memory is exhausted, the

inverted lists from the memory bu�erload are sorted and transferred to disk reating a

15



Geometric Partitioning (r=3)

Mem

Disk

Partition

1

2

3

1 1 1 1 1 1 1 1 1 1

1 2

3

1 2

6

1 2 13 3 3

9

9

Figure 2.3: Merge sequene of Geometri Partitioning with r = 3, for the �rst 10 memory

ushes. Numbers within nodes represent size.

new sub-index. This sub-index (also alled run) orresponds to the latest bath of dou-

ments proessed, and the set of all sub-indexes omprise the on-disk index for the whole

doument olletion. Retrieving an inverted list to evaluate a query requires fething its

fragments from the multiple runs, whih an easily beome the dominant ost of query

evaluation. Overall, this strategy maximizes indexing performane but leads to very poor

query performane due to the exessive fragmentation of inverted lists.

Between the two extremes of Remerge and Nomerge there is a family of merge-based

methods that permit the reation of multiple inverted �les on disk to amortize the in-

dexing ost, but bound the query lateny by periodially merging them aording to

spei� patterns. Essentially, they tradeo� query performane with index maintenane

performane by having a ontrolled merging of runs.

In Geometri Partitioning, the disk index is omposed by a tightly ontrolled number

of partitions [62, 63℄. Eah partition stores a single sub-index and has a maximum size.

The maximum sizes of the partitions form a geometri sequene with ratio r: the limit to

the number of postings for the k-th partition is r times the limit of the (k-1)-th partition.

In partiular, if the memory bu�erload has apaity M then the i-th partition has a

maximum size of (r − 1)ri−1
M . When the memory bu�erload is full, it is merged with

the sub-index at partition 1 and stored at partition 1. If the size of the sub-index reated

reahes the maximum size (r − 1)M of the partition, it is merged with the existing sub-

index at partition 2 and plaed there. In general, whenever the size of a sub-index reated

at partition k is more than (r − 1)rk−1
M , it is merged with the sub-index at partition

k + 1 and stored there. Figure 2.3 illustrates the merge pattern produed by 10 memory

ushes for Geometri Partitioning with r = 3. Alternatively, the method an dynamially

16



Mem

Disk

Generation

0

1

Logarithmic Merge

2

3

1 1 1 1 1 1 1 1 1 1

1

2

1

2

1

2

1 1

2 2

4

8

4

1 1 1 1 1

Partition

(a)

Hybrid Immediate Merge

In-Place 

Update

short lists long lists

long listsshort lists

Immediate 

Merge

Mem

Disk

(b)

Figure 2.4: Index maintenane approah for the (a) Logarithmi Merge and (b) Hybrid

Immediate Merge methods.

adjust the parameter r to keep the number of disk sub-indexes at most p.

The Logarithmi Merge method introdues the onept of index generation to deide

when to merge the sub-indies [21℄. The sub-index reated from the memory bu�erload

is of generation 0. A sub-index is said to be of generation g+1 if it is reated by merging

all sub-indies of generation g. A merge event is triggered whenever the reation of a

new sub-index leads to a situation in whih there are more than one sub-indies of the

same generation g. All sub-indies of generation g are then merged to reate a new disk

sub-index of generation g+1 (Figure 2.4a).

Hybrid methods separate terms into short and long. One early approah hashed short

terms aumulated in memory into �xed-size disk regions alled bukets. If a buket

�lled up, the method ategorized the term with the most postings as long and kept it at a

separate disk region from that point on [102℄. In several reent hybrid methods, the system

uses a merge-based approah for the short terms (e.g. Immediate Merge or Logarithmi

Merge) and in-plae updates for the long ones (Figure 2.4b) [24℄. They treat eah term as

short or long depending on the number of postings that have shown up in total until the

urrent moment, or urrently partiipate in the merging proess. A reent hybrid method

separates the terms into frequent and non-frequent aording to their appearane in query

logs, and maintains them in separate sub-indies of multiple partitions eah [50℄. Frequent

terms use a merge strategy designed for better query performane, while infrequent terms

rely on a merge strategy that attains better update performane.

17



2.1.3 Real-Time Searh

Given the high ost of inremental updates and their interferene with onurrent searh

queries, a main index an be ombined with a smaller index that is frequently rebuilt (e.g.

hourly) and a Just-in-Time Index (JiTI) [61℄. JiTI provides (nearly) instant retrieval for

ontent that arrives between rebuilds. Instead of dynamially updating the index on disk,

it reates a small inverted �le for eah inoming doument and hains together the inverted

lists of the same term among the di�erent douments. Earlier work on web searh also

pointed out the need to update an inverted �le with doument insertions and deletions

in real time [29℄. Instead of a word-level index, the Codir system uses a single bit to

keep trak of multiple term ourrenes in a doument blok (partial inverted index ), and

proesses searh queries by ombining a transient memory-based index of reent updates

with a permanent disk-based index.

Twitter ommerially provided the �rst real-time searh engine, although other ompa-

nies (e.g., Google, Faebook) are also launhing real-time searh features [46℄. Real-time

searh at Twitter is reently supported by the Earlybird system that onsists of inverted

indies maintained in the main memory of multiple mahines [20℄. Earlybird reuses query

evaluation ode from the Luene searh engine [75℄, but also implements the term voabu-

lary as an optimized hash table, and the inverted list as a olletion of doument-ordered

segments with inreasing size.

In omparison to the bath sheme used until reently, the inremental update sheme

of Perolator from Google redues the average lateny of doument proessing by a fator

of 100, although it is still onsidered insuÆient for real-time searh [83, 20℄. Stateful inre-

mental proessing has also been proposed as a general approah to improve the eÆieny

of web analytis over large-sale datasets running periodially over MapRedue [39, 68℄.

A di�erent study shows that the throughput ahieved by a method optimized for on-

strution of inverted �les aross a luster of multiore mahines is substantially higher

than the best performane ahieved by algorithms based on MapRedue [110℄. Earlier

work on bath index building proposed a software-pipeline organization to parallelize the

phases of loading the douments, proessing them into postings, and ushing the sorted

postings to disk as a sorted �le [76℄.

18



B

A

C

B

key col1 ...   coln

...     ...    ...  

...     ...    ...  

...     ...    ...  

...     ...    ...  

...     ...    ...  

...     ...    ...  

...     ...    ...  

...     ...    ...  

13

104

134

167

180

258

284

390

(a) Bigtable tablet partitioning

Client

(1) 230 ?

(2) C

(3) write(230,...)(4) OK

A

134
167

...

...

key ...

B

13
104
284
390

...

...

...

...

key ...

Master

(0 - 104) : B

(105 - 167) : A

(168 - 258) : C

(259 - 400) : B

C

180
258

...

...

key ...

(b) Bigtable entralized arhiteture

Figure 2.5: (a) Eah table is partitioned into a number of tablets for load balaning, whih

are subsequently assigned to servers. (b) A master node keeps the mapping between

tablets and servers. Clients must �rst ontat the master node to store or aess data.

2.2 Large-Sale Data Management

Salable datastores (also referred to as NoSQL stores [27, 91℄) are distributed storage

systems apable of managing enormous amounts of strutured data for online serving

and analytis appliations. Aross di�erent workloads, they weaken the relational and

transational assumptions of traditional databases to ahieve horizontal salability and

availability, and meet demanding throughput and lateny requirements. In this setion,

we present previous researh ativity related to the arhiteture and storage organization

of datastores.

2.2.1 Salable Datastores

Bigtable is a entralized strutured storage system that partitions data aross multiple

storage servers, alled tablet servers [28℄. A tablet is simply a range of onseutive rows

within a table (Figure 2.5a). A master node is responsible for assigning tablets to tablet

servers, handling node joins and failures, and balaning tablet-server load. A lient must

�rst ontat the master node to loate the server responsible for a key, and then om-

muniates diretly with the tablet server for reads and writes (Figure 2.5b). Inoming

data to a tablet server is �rst logged to disk and then kept in the memory. When the

oupied memory reahes a threshold, a minor ompation transfers memory data to an

immutable disk �le (SSTable). Read operations might need to merge updates from an

19



(2) write(135,...)

(3) OK

(0 - 100) : A

(101 - 200) : B

(201 - 300) : C

(301 - 400) : D

Routing table

Client
(1) write(135,...)(4) OK

D B

A

C

Figure 2.6: Dynamo deentralized arhiteture. Any node on the ring an oordinate a

request from a lient. We assume the ring spae is (0,400) and nodes A, B, C, D are

assigned values 100, 200, 300 and 400 respetively.

arbitrary number of SSTables. Periodi merging ompations performed in bakground

transform multiple �les into a single �le, while a major ompation regularly merges all

�les to a single �le free of deleted entries. Bloom �lters are used to skip unneessary key

searhes over SSTables.

Azure is another salable datastore that partitions data by key range aross di�erent

servers [25℄. It provides storage in the form of blobs (user �les), tables (strutured stor-

age), or queues (message delivery). All these data types are internally stored into tables

whih are partitioned into RangePartitions similar to Bigtable tablets (Figure 2.5a). The

system keeps the data of eah partition over multiple hekpoint �les whose number is kept

under ontrol through periodi merging. With an emphasis on data analytis, LazyBase

ombines update bathing with pipelining and allows per-read-query tradeo�s between

freshness and performane [30℄. The system redues query ost through a tree-based

merging of sorted �les triggered by the number of leaves or a time period. HBase

1

, Au-

mulo

2

and Hypertable

3

are open-soure variations of Bigtable [33, 81℄. Compation tuning

ombined with speial metadata �les an improve the read performane of HBase [15℄.

Dynamo is a deentralized storage system whih stores key-value pairs over a dis-

tributed hash table [40℄. Its partitioning sheme relies on onsistent hashing to distribute

the load aross multiple storage nodes. In onsistent hashing, the output range of a hash

1

http://hbase.apahe.org/

2

http://aumulo.apahe.org/

3

http://hypertable.om/

20



funtion is treated as a �xed irular spae or \ring". Eah node in the system is as-

signed a random value within this spae whih represents its \position" on the ring, and

is responsible for the region between it and its predeessor on the ring (Figure 2.6). Eah

data item identi�ed by a key is assigned to a node by hashing the data item's key to yield

its position on the ring. This hashing sheme is termed \onsistent" beause when the

number of nodes (i.e., hash slots) hanges {and thus a number of keys must be rehashed{

only the nodes adjaent to the nodes that joined or left the system are a�eted. Dynamo

aepts di�erent pluggable persistent omponents for loal storage of items. The system

an trade o� durability for performane by keeping inoming data in memory and period-

ially transferring it to disk. It supports eventual onsisteny, whih allows for updates to

be propagated to all replias asynhronously. The Dynamo-inspired Projet Voldemort

4

is

an open-soure datastore that supports eÆient bulk updates through a ustom read-only

storage engine ombined with a data deployment pipeline based on Hadoop [101℄. Riak

5

is another open-soure distributed datastore built upon the ideas and design deisions of

Dynamo.

Cassandra

6

is an open-soure write-optimized datastore, designed and implemented

based on the data model of Bigtable and the arhiteture of Dynamo [59℄. Similar to

Dynamo the luster is on�gured as a ring of nodes, and it uses asynhronous repliation

aross multiple nodes along with the hinted hando� tehnique. There is no master node

and the nodes use a gossip mehanism to propagate the urrent state of the luster. The

eventual onsisteny model is used, in whih onsisteny level an be seleted by the lient.

Similar to Bigtable, Cassandra uses a struture of immutable �les on disk to support reads

without loking. Disk �les are reated when the size of the data items aumulated in

memory reahes a threshold and are periodially merged.

RAMloud uses a log-strutured approah to manage data on both memory and disk

for fast rash reovery [80℄. A oordinator node assigns objets to storage servers in units

of tablets. When a server reeives a write request, it appends the new objet to its in-

memory log and forwards that log entry to several bakup servers. The bakups bu�er

this information in memory and return immediately. The master server returns to the

4

http://github.om/voldemort/voldemort

5

http://basho.om/riak/

6

http://assandra.apahe.org/

21



lient one all bakups have aknowledged reeipt of the log data. When a bakup's bu�er

�lls, it writes the aumulated log data from other nodes to disk or ash and deletes the

bu�ered data from memory.

For low power onsumption, the FAWN key-value store uses a log �le on ash storage

indexed by an in-memory hash table [1℄. Data is distributed aross storage nodes using

onsistent hashing. All write requests to a storage node are simply appended to a log on

ash storage. In order to satisfy reads with a single random aess, FAWN maintains a

DRAM hash table per node that maps its keys to an o�set in the append-only log. The

SILT key-value store ombines ash storage with spae-eÆient indexing and �ltering

strutures in memory [66℄. When a key is inserted at a node, it is appended into a

write-optimized, log alled LogStore, and a orresponding in-memory index is updated.

The amount of memory required to index objets on LogStore is drastially redued using

partial-key ukoo hashing and entropy-oded tries. One full, a LogStore is onverted into

an immutable sorted hash table (HashStore) that does not require any in-memory index

to loate entries. Periodially, multiple HashStores are merged into a single extremely

ompat index representation alled SortedStore, and all deleted or overwritten entries

are garbage olleted.

Masstree is a shared-memory, onurrent-aess struture for data that fully �ts in

memory [72℄. A olletion of B

+
-trees organized as a trie is used as a highly onurrent

data struture in memory. The tree is shared among all ores and allows for eÆient

implementation of inserts, lookups and range queries (traverse subsets of database in

sorted order by key). Lookups use no loks, while updates aquire loks only on the

tree nodes involved. Similar to RAMloud, all reads and writes are served from memory

and data is additionally logged and hekpointed for durability. Haystak is a persistent

storage system for photos that implements data volumes as large �les over an extent-based

�le system aross lusters of mahines [10℄.

2.2.2 Storage Organization

In this setion, we outline representative known methods for the problem of write-optimized

data storage. We only onsider external-memory data strutures that handle one-dimensional

range queries to report the points ontained in a single-key interval, a type of query that

22



is ommonly used by large-sale web appliations (Setion 6.2). Thus we do not exam-

ine spatial aess methods (e.g., R-tree, k-d-B-tree) that diretly store multidimensional

objets (e.g., lines) or natively handle multidimensional queries (e.g., retangles). Spatial

strutures have not been typially used in datastores until reently [44℄; also, at worst

ase, the lower-bound ost of orthogonal searh in d dimensions (d > 1) is frational-power

I/O for linear spae and logarithmi I/O for nonlinear storage spae [108℄.

A data struture is stati if it remains searhable and immutable after it is built;

it is dynami if it supports both mutations and searhes throughout its lifetime. The

proessing ost of a stati struture refers to the total omplexity to insert an entire

dataset, and the insertion ost of a dynami struture refers to the amortized omplexity

to insert a single item [12℄. In a datastore, multiple stati strutures are often ombined

to ahieve persistent data storage beause �lesystems over disk or ash devies are more

eÆient with appends rather than in-plae writes [28, 80, 66℄.

Some datastores rely on the storage engine of a relational database at eah server. For

instane, PNUTS [32℄ uses the InnoDB storage engine of MySQL, and Dynamo [40℄ the

Berkeley DB Transational Data Store. In a relational database, data is typially stored

on a B-tree struture. Let N be the total number of inserted items, B items the disk blok

size, andM items the memory size for ahing the top levels of the tree. We assume unary

ost for eah blok I/O transfer. One B-tree insertion osts O(log
B

N

M

) and a range query

of output size Z items osts O(log
B

N

M

+ Z

B

) [114℄. In ontrast, the Log-strutured File

System (LFS) aumulates inoming writes into a memory-based bu�er [90℄. When the

bu�er �lls up, data is transferred to disk in a single large I/O and deleted from memory.

RAMCloud and FAWN use a logging approah for persistent data storage [1, 80℄.

Inspired from LFS, the Log-Strutured Merge-Tree (LSM-tree) is a multi-level disk-

based struture optimized for high rate of inserts/deletes over an extended period [79℄.

In a on�guration with ` omponents, the �rst omponent is a memory-resident indexed

struture (e.g., AVL tree), and the remaining omponents are modi�ed B-trees that reside

on disk. Component size is the storage spae oupied by the leaf level. The memory

and disk ost is minimized if the maximum size of onseutive omponents inreases by

a �xed fator r. When the size of a omponent C

i

reahes a threshold, the leaves of C

i

and C

i+1 are merged into a new C

i+1 omponent. The LSM-tree ahieves higher insertion

performane than a B-tree due to inreased I/O eÆieny from bathing inoming updates

23



into large bu�ers and sequential disk aess during merges. The insertion ost of the

LSM-tree is O( r
B

log
r

N

M

), where ` = log
r

N

M

is the number of omponents. However, a

range query generally requires to aess all the omponents of an LSM-tree. Thus, a

range query osts O(log
r

N

M

+ Z

B

) if searh is failitated by a general tehnique alled

frational asading [114℄. Bigtable and Azure rely on LSM-trees to manage persistent

data [25, 28, 98℄.

The Stepped-Merge Algorithm (SMA) is an optimization of the LSM-tree for update-

heavy workloads [55℄. SMA maintains ` + 1 levels, with up to k B-trees (alled runs) at

eah level i = 0; : : : ; `− 1, and 1 run at level `. Whenever memory gets full, it is ushed

to a new run on disk at level 0. When k runs aumulate at level i on disk, they are

merged into a single run at level i + 1, i = 0; : : : ; ` − 1. SMA ahieves insertion ost

O( 1
B

log
k

N

M

), and query ost O(k log
k

N

M

+ Z

B

) under frational asading. A ompation

method based on SMA (with unlimited `) has alternatively been alled Sorted Array

Merge Tree (SAMT) [98℄. If we dynamially set k = N

M

to SMA, we get the Nomerge

method, whih reates new sorted �les on disk without merging them (Setion 2.1.2).

Although impratial for searhes, Nomerge is a baseline ase for low index-building ost.

A variation of SMA is applied with k = 10 by the Luene searh engine [34℄, or k = 4 by

Cassandra and GTSSL [98℄.

Text indexing maps eah term to a list of doument loations (postings) where the

term ours. Merge-based methods ush postings from memory to a sorted �le on disk

and oasionally merge multiple �les. Along a sequene of reated �les, Geometri Par-

titioning introdues the parameter r to speify an upper bound ((r − 1)ri−1
M) at the

size of the i-th �le, i = 1, 2, . . . , for memory size M (Setion 2.1.2). Hierarhial merges

guarantee similar sizes among the merged �les and limit the total number of �les on

disk. The I/O osts of insertion and searh in Geometri Partitioning are asymptoti-

ally equal to those of the LSM-tree [63, 114℄ and the Cahe-Oblivious Lookahead Array

(COLA) [11℄. Geometri Partitioning an diretly onstrain the maximum number p of

�les with dynami adjustment of r. Setting p = 1 leads to the Remerge method, whih

always merges the full memory into a single �le on disk and requires one I/O to handle

a query. In the partiular ase of p = 2, Geometri Partitioning is also known as Square

Root Merge [24℄. A variation of Geometri Partitioning with r = 2 is used by Anvil [71℄

and r = 3 by HBase [98℄; SILT uses a single immutable sorted �le (similar to p = 1) on

24



Table 2.1: Summary of storage strutures typially used in datastores. We inlude their

I/O omplexities for insertion and range query in one-dimensional searh over single-key

items.

The I/O Complexity of Datastore Storage Strutures

Dynami Data Struture Insertion Cost Query Cost System Example

B-tree O(log
B

N

M

) O(log
B

N

M

+ Z

B

)
PNUTS [32℄,

Dynamo [40℄

Log-strutured File System

(LFS)

O( 1

B

) N/A

RAMCloud [80℄,

FAWN [1℄

Log-strutured Merge Tree

(LSM-tree), Geometri, r-COLA

O( r
B

log
r

N

M

) O(log
r

N

M

+ Z

B

)

HBase [98℄, Anvil [71℄,

Azure [25℄, Bigtable [28℄,

bLSM [93℄

Geometri with p partitions,

O( 1

B

p

√

N

M

)
O(p+ Z

B

) bottom layer of SILT [66℄

Remerge (speial ase p = 1)

Stepped-Merge Algorithm (SMA),

O( 1

B

log
k

N

M

) O(k log
k

N

M

+ Z

B

)
Cassandra [52℄,

GTSSL [98℄, Luene [34℄

Sorted Array Merge Tree (SAMT),

Nomerge (speial ase k = N=M)

ash storage [66℄.

We summarize the asymptoti insertion and range-query osts of the above strutures

in Table 2.1. Log-based solutions ahieve onstant insertion ost, but lak eÆient support

for range queries. SMA inurs lower insertion ost but higher query ost than the LSM-

tree. Geometri Partitioning with p partitions takes onstant time to answer a query, but

requires frational-power omplexity for insertion.

2.2.3 Related Issues

Transational Support. An evaluation of transational support in ommerial loud

database systems shows a diversity aross the business models of di�erent providers [58℄.

The PNUTS system applies a simple relational model to organize attribute reords into

tables of a geographially-distributed database [32℄. For point or range queries, it uses

alternative physial layers, suh as a �lesystem-based hash table or a MySQL/InnoDB

database. The primary bottlenek of the system is the disk seek apaity required for data

storage and messaging. PNUTS an ahieve higher throughput of bulk reord insertion

25



with a planning phase to minimize the sum of partition movement and insertion time [96℄.

Alternatively, snapshot text �les an be reated by Hadoop for diret data import into

the MySQL tables of PNUTS [97℄.

Perolator extends Bigtable to support ross-row, ross-table transations through ver-

sioning [83℄. Megastore organizes strutured data over a wide-area network as a olletion

of small databases, alled entity groups [7℄. Entities within an entity group are mutated

with ACID transations, while operations aross entity groups typially apply looser se-

mantis through asynhronous messaging. G-Store allows the dynami reation of key

groups over whih multi-key transational aess is supported [36℄. Anvil is a modular,

extensible toolkit for database bakends [71℄. The system periodially digests written data

into read-only tables, whih are merged through Geometri Partitioning (also similar to

generational garbage olletion [106℄).

The eStore realizes a salable range-partitioned storage system over a tree-based

struture [109℄. The system automatially organizes histogram bukets to aurately esti-

mate aess frequenies and repliate the most popular data ranges, while it bases trans-

ation management on versioning and optimisti onurreny ontrol. The ES

2
system

supports both vertial and horizontal partitioning of relational data [26℄. It also provides

eÆient bulk loading, small-range queries for transation proessing and sequential sans

for bath analytial proessing.

Data Strutures. The indexed sequential aess method (ISAM) refers to a disk-based

tree used by database systems [87℄. Eah tree node has �xed size (e.g. 4KB), and the

data is sequentially stored key-sorted in the leaf nodes before the non-leaf nodes are

alloated. The ISAM struture is stati after it is reated, beause inserts and deletes

a�et only the ontents of leaf pages. If subsequent inserts overow a leaf node, they

are stored at arrival order in additional hained bloks alloated from an overow area.

For intense update loads and onurrent analytis queries, the Partitioned Exponential

�le (PE �le) dynamially partitions data into distint key ranges and manages separately

eah partition similarly to an LSM-tree [57℄. Over time, the size of a partition hanges

by orders of magnitude, while it always has to fully �t in memory. Insertion ost varies

signi�antly due to the required storage reorganization and data merging within eah

partition. Similarly, searh ost varies beause it involves all levels of a partition, uses

26



tree indexing at eah level, and interferes with onurrent insertions.

A ditionary stores a mapping from keys to values. In the external memory model, a

two-level memory hierarhy onsists of internal memory and a disk with I/O blok size

B. The alternative ahe-oblivious model is applied in multi-level memory hierarhies

assuming that the blok size B is unavailable for tuning. Bender et al. introdue the ahe-

oblivious lookahead array (g-COLA) as a multi-level struture, where g is the fator of

size growth between onseutive levels [11℄. Due to bu�ering and amortized I/O, g-COLA

ahieves faster random inserts than a traditional B-tree, but slower searhes and sorted

inserts. Brodal et al. proposed the xDit dynami ditionary for optimal, on�gurable

tradeo� in spae, query and update osts at the ahe-oblivious model [17℄.

A versioned ditionary is a ditionary with an assoiated version tree, whih supports

queries on any version, updates on leaf versions, and loning on any version by adding

a hild. A struture is alled fully-versioned if it supports arbitrary version trees, and

partially-versioned if it only supports a linked list as a (degenerate) version tree. As

a partially-versioned ditionary, the multiversion aess struture ahieves logarithmi

update time, optimal spae and optimal query time for a key range at a spei� time and

a key in a spei�ed time range [107℄. In the ahe-oblivious model, Byde et al. reently

proposed the strati�ed B-tree as a fully-versioned ditionary, whih ahieves optimal,

on�gurable tradeo� among query time, update time, and spae [105℄.

Benhmarking. The performane and salability of several data serving systems has

been studied under the benhmark framework alled Yahoo! Cloud Serving Benhmark

(YCSB) [33℄. With measurements, it was found that Cassandra ahieves higher perfor-

mane at write-heavy workloads, PNUTS at read-heavy workloads, and HBase at range

queries. The YCSB++ adds extensions to YCSB for advaned features that inlude bulk

data loading, server-side �ltering and �ne-granularity aess ontrol [81℄. BigBenh is an

end-to-end big data benhmark whose underlying business model is a produt retailer [47℄.

Wang et al. introdue BigDataBenh, a benhmark overing a broad range of appliation

senarios and real-world datasets, inluding strutured, semi-strutured and unstrutured

text data and graph datasets [45℄.

27



Chapter 3

Inremental Text Indexing for Fast

Disk-Based Searh

3.1 Introdution

3.2 Bakground

3.3 Motivation

3.1 Introdution

Digital data is aumulated at exponential rate due to the low ost of storage spae, and

the easy aess by individuals to appliations and web servies that support fast ontent

reation and data exhange. Traditionally, web searh engines periodially rebuild in

bath mode their entire index by ingesting tens of petabytes of data with the assistane

of ustomized systems infrastruture and data proessing tools [16, 39, 38℄. This approah

is suÆient for websites whose ontent hanges relatively infrequently, or their enormous

data volume makes infeasible their ontinuous traking.

Today, users are routinely interested to searh the new text material that is frequently

added aross di�erent online servies, suh as news websites, soial media, mail servers

and �le systems [61, 94, 22, 13, 46, 20℄. Indeed, the soures of frequently-hanging ontent

are highly popular web destinations that demand almost immediate searh visibility of

28



their latest additions [61, 63, 22, 83, 20℄. Real-time searh refers to the fast indexing

of fresh ontent and the onurrent support of interative searh (Setion 2.1.3); it is

inreasingly deployed in prodution environments (e.g., Twitter, Faebook) and atively

investigated with respet to the applied indexing organization and algorithms. Text-based

retrieval remains the primary method to identify the pages related to a web query, while

the inverted �le is the typial index struture used for web searh (Setion 2.1.1).

A web-sale index applies a distributed text-indexing arhiteture over multiple ma-

hines [3, 8, 16, 5, 60℄. Salability is ommonly ahieved through an index organization

alled doument partitioning. The system partitions the doument olletion into disjoint

sub-olletions aross multiple mahines, and builds a separate inverted index (index

shard) on every mahine. A lient submits a searh query to a single mahine (master

or broker). The master broadasts the query to the mahines of the searh engine and

reeives bak disjoint lists of douments that satisfy the searh riteria. Subsequently, it

ollates the results and returns them in ranked order to the lient. Thus, a standalone

searh engine running on a single mahine provides the basi building blok for the dis-

tributed arhitetures that provide salable searh over massive doument olletions.

When a fresh olletion of douments is rawled from the web, an o�ine indexing

method an be used to rebuild the index from srath (Setion 2.1.1). Input douments

are parsed into postings, with the aumulated postings periodially ushed from memory

into a new partial index on disk. Tehniques similar to external sorting merge at the end

the multiple index �les into a single �le at eah mahine. Due to fragmentation of eah

inverted list aross multiple partial indies on a mahine, searh is supported by an older

index during the update. Instead, online indexing ontinuously inserts the freshly rawled

douments into the existing inverted lists and periodially merges the generated partial

indies to dynamially maintain low searh lateny (Setion 2.1.2).

Disk-based storage is known as a performane bottlenek in searh. Thus, index-

pruning tehniques have been developed to always keep in memory the inverted lists

of the most relevant keywords or douments, but lead to higher omplexity in index

updating and ontext-sensitive query handling [18, 118, 2, 78, 100℄. Although the lateny

and throughput requirements of real-time searh are also urrently met by distributing

the full index on the main memory of multiple mahines [20℄, the purhase ost of DRAM

is two orders of magnitude higher than that of disk storage apaity [92℄. Therefore, it is

29



ruial to develop disk-based data strutures, algorithmi methods and implementation

tehniques for inremental text indexing to interatively handle queries without the entire

index in memory.

In this hapter, we examine the fundamental question of whether disk-based text

indexing an eÆiently support inremental maintenane at low searh lateny. We fous

on inremental methods that allow fast insertions of new douments and interative searh

over the indexed olletion. We introdue two new methods, the Seletive Range Flush

and Uni�ed Range Flush. Inoming queries are handled based on postings residing in

memory and the disk. Our key insight is to simplify index maintenane by partitioning

the inverted �le into disk bloks. A blok may ontain postings of a single frequent term or

the inverted lists that belong to a range of several infrequent terms in lexiographi order.

We hoose the right blok size to enable sequential disk aesses for searh and update.

When memory gets full during index onstrution, we only ush to disk the postings of

those terms whose bloks an be eÆiently updated. Due to the breadth of the examined

problem, we leave outside the study sope several orthogonal issues that ertainly have to

be addressed in a prodution-grade system, suh as onurreny ontrol [61℄, automati

failover [60℄, or the handling of doument modi�ations and deletions [67, 49℄.

For omparison purposes, we experiment with a software prototype that we developed,

but we also apply asymptoti analysis. In experiments with various datasets, we ahieve

searh lateny that depends on the number of retrieved postings rather than fragmentation

overhead, and index building time that is substantially lower than that of other methods

with similar searh lateny. To the best of our knowledge, our indexing approah is the

�rst to group infrequent terms into lexiographi ranges, partially ush both frequent and

infrequent terms to disk, and ombine the above with blok-based storage management

on disk. Prior maintenane methods for inverted �les randomly distributed the infrequent

terms aross di�erent bloks [102℄, or handled eah term individually [119, 19℄. Alterna-

tively, they partially ushed to disk only the frequent terms [23, 22℄, or used disk bloks

of a few kilobytes with limited bene�ts [19, 102℄.

30



Table 3.1: Summary of the asymptoti ost (in I/O operations) required to inrementally

build inverted �les and retrieve terms for query handling. N is the number of indexed

postings and M is the amount of memory used for postings gathering. The parameter a

(e.g., a = 1.2) refers to the Zip�an distribution (Setion 9.1).

Index Maintenane Method Build Cost Searh Cost

Nomerge [102, 63, 24, 51℄ Θ(N) N=M

Immediate Merge [63, 35, 22℄ Θ(N2
=M) 1

Logarithmi Merge [24℄

Θ(N · log(N=M)) log(N=M)
Geometri Partitioning [62, 63℄

Geometri Partitioning with ≤ p partitions [63℄ Θ(N · (N=M)1=p) p

Hybrid Immediate Merge [24, 22℄

Θ(N1+1=a
=M)

1 or 2 (aording to

Uni�ed Range Flush [Setion 9.1℄ the list threshold)

Hybrid Logarithmi Merge [24℄ Θ(N) log(N=M)

3.2 Bakground

In this setion, we summarize the urrent general approahes of inremental text indexing,

and fator out the relative di�erenes of existing methods with respet to the new methods

that we introdue.

As disussed in Setion 2.1.2, merge-based methods maintain on disk a limited number

of �les that ontain fragments of inverted lists in lexiographi order. During a merge, the

methods read sequentially the lists from disk, merge eah list with the new postings from

memory, and write the updated lists bak to a new �le on disk. The methods amortize

the I/O ost if they reate on disk multiple inverted �les and merge them in spei�

patterns. In-plae methods avoid to read the whole disk index, and inrementally build

eah inverted list by appending new memory postings at the end of the list on disk.

Hybrid methods separate terms into short and long aording to the term popularity,

and use a merge-based approah for the short terms and in-plae appends for the long

ones. The system treats a term as short or long depending on the number of postings that

either have shown up in total until now (ontiguous) [23℄, or partiipate in the urrent

merging proess (non-ontiguous) [24℄. In the non-ontiguous ase, if a term ontributes

more than T (e.g., T = 1MB) postings to the merging proess, the method moves the

postings from the merge-based index to the in-plae index; this redues the build time,

31



Hybrid Immediate Merge Selective Range Flush Unified Range Flush

short lists long lists

Immediate 

Merge

Mem

Disk

long listsshort lists

In-Place

Update

ranges long lists

Selective 

Merge

long listsranges

In-Place 

Update

ranges long lists

Selective

Merge

ranges

In-Place

Updatesize > Ta

Figure 3.1: Hybrid Immediate Merge only applies partial ushing to long (frequent) terms,

while Seletive Range Flush (SRF) and Uni�ed Range Flush (URF) partially ush both

short (infrequent) and long terms. Unlike SRF, URF organizes all postings in memory as

ranges, allows a term to span both the in-plae and merge-based indies, and transfers

postings of a term from the merge-based to the in-plae index every time they reah a

size threshold T

a

(see also Setion 4.6).

but may slightly inrease the retrieval time of long terms due to their storage on both the

in-plae and merge-based indies.

As shown in Table 3.1 for representative methods, the asymptoti omplexity of index

building is estimated by the number of I/O operations, expressed as funtion of the number

of indexed postings. We inlude the searh ost as the number of partial indies (or runs)

aross whih an inverted list is stored. The Nomerge method ushes its postings to a new

run on disk every time memory gets full and provides a baseline for the minimum indexing

time. The Immediate Merge method repeatedly merges the postings in memory with the

entire inverted �le on disk every time memory gets full. The Geometri Partitioning and

Logarithmi Merge methods keep multiple runs on disk and use a hierarhial pattern to

merge the postings of memory and the runs on disk. The Geometri Partitioning method

with ≤ p partitions adjusts ontinuously the fan-out of the merging tree to keep the

number of runs on disk at most p. Hybrid versions of the above methods partition the

index into in-plae and merge-based indies.

Our methods, Seletive Range Flush and Uni�ed Range Flush, di�er from existing

ones, beause we organize the infrequent terms into ranges that �t into individual disk

bloks, and store eah frequent term into dediated disk bloks (Figure 3.1). Additionally,

we only partially ush frequent and infrequent terms from memory to preserve the disk

32



Table 3.2: Main funtional di�erenes among existing and our new methods of inremental

text indexing.

Index Maintenane Update Threshold Merging Partial Flushing Storage

Method Sheme Count Pattern Flushing Criterion Unit

Nomerge new run none none none full mem. runs

Immediate Merge merge none sequential none full mem. single run

Geometri Partition. merge none hierarhial none full mem. partitions

Hybrid Log. Merge hybrid merge/total hierarhial none full mem. segments

Hybrid Imm. Merge hybrid merge/total sequential in-plae list size segments

Seletive Range Flush hybrid total range-based both list ratio bloks

Uni�ed Range Flush hybrid merge range-based both range size bloks

I/O eÆieny. The two methods di�er from eah other with respet to the riteria that

they apply to ategorize the terms as short or long, and also to determine whih terms

should be ushed from memory to disk. In Table 3.1 we inlude the asymptoti osts of

Uni�ed Range Flush as estimated in Setion 9.1.

Aording to experimental researh, build time may additionally depend on system

strutures and parameters not always aptured by asymptoti ost estimates [64, 22℄.

Thus, although the Hybrid Immediate Merge and Uni�ed Range Flush have the same

asymptoti omplexity as shown in Table 3.1, we experimentally �nd their measured

merge performane to substantially di�er by a fator of 2. More generally, the potential

disrepany between theoretial and empirial results is a known issue in literature. For

instane, online problems are the type of optimization problems that reeive input and

produe output in online manner, but eah output a�ets the ost of the overall solution.

Several paging algorithms are examples of online algorithms that theoretially inur the

same relative ost (ompetitive ratio) to an optimal algorithm, but they learly di�er from

eah other with respet to experimentally measured performane [14℄.

In Table 3.2, we fator out the main funtional di�erenes among the representative

methods that we onsider. The index update varies from simple reation of new runs, to

purely merge-based and hybrid shemes. In hybrid shemes, term postings are respetively

stored at the merge-based or in-plae index aording to their ount in the entire index

(Total) or the index part urrently being merged (Merge). The merging pattern varies

33



from sequential with a single run on disk, to hierarhial that tightly ontrols the number

of runs, and range-based that splits the index into non-overlapping intervals of sorted

terms. When the memory �lls up, most existing methods ush the entire memory to disk

exept for the Hybrid Immediate Merge that partially ushes frequent terms; in ontrast,

our methods apply partial ushing to both frequent and infrequent terms (Figure 3.1).

The riterion of partial memory ushing alternatively onsiders the posting ount of

individual terms and term ranges or their ratio. Most methods alloate the spae of disk

storage as either one or multiple runs (alternatively alled partitions or segments [24℄) of

overlapping sorted terms, while we use bloks of non-overlapping ranges.

3.3 Motivation

In this setion we present the motivation of our work. We experimentally highlight that

searh lateny is primarily spent on disk I/O to retrieve inverted lists. Aross di�erent

queries, lateny an be relatively high even when stop words are used or ahing is applied,

whih makes the eÆieny of storage aess highly relevant in fast disk-based searh [118,

6℄.

3.3.1 The Searh Cost of Storage Fragmentation

Early researh on disk-based indexing reognized as main requirement the ontiguous stor-

age of eah inverted list [35, 102℄. Although storage ontiguity improves aess eÆieny

in searh and update, it also leads to omplex dynami storage management and frequent

or bulky reloations of postings. Reent methods tend to relax the ontiguity of inverted

lists so that they lower the ost of index building. One partiular study partitioned the

postings of eah term aross multiple index �les and stored the inverted list of eah long

term as a hain of multiple non-ontiguous segments on disk [24℄. Not surprisingly, it

has been experimentally shown aross di�erent systems that multiple disk aesses (e.g.,

7 in GOV2) may be needed to retrieve a fragmented inverted list regardless of the list

length [63℄. List ontiguity is partiularly important for infrequent terms beause they

dominate text datasets and are severely a�eted by list fragmentation. From the Zip�an

distribution of term frequeny, the inverted �le of a 426GB text olletion has more than

34



Table 3.3: Average searh lateny

(ms) and the fration of it spent

on I/O, using the GOV2 dataset

over the Zettair searh engine.

Queries Avg I/O

50% 105 67%

75% 255 58%

90% 680 58%

95% 1,053 61%

100% 1,726 64%

Table 3.4: Average, median and 99th perentile of

searh lateny (ms) when di�erent numbers of stop

words are applied with and without page ahing

in GOV2/Zettair.

stop

words

without ahing with ahing

avg med 99th avg med 99th

0 1,726 291 19,616 1,315 274 13,044

10 640 247 5,283 508 217 4,182

20 489 242 3,221 413 204 2,873

100 411 232 2,398 341 188 1,959

99% of inverted lists smaller than 10KB [35, 24℄. If a list of suh size is fragmented into k

runs, the delay of head movement in a hard disk typially inreases the list retrieval time

by a fator of k.

We examine the importane of query I/O eÆieny using the Zettair searh engine

with an indexing method that stores the inverted lists ontiguously on disk [115℄. Using

the index of the GOV2 text olletion (426GB), we evaluate 1,000 standard queries [103℄

in a server as spei�ed in Setion 5.1 with the bu�er ahe disabled. Thus, we measure

the time to return the 20 most relevant douments per query along with the perentage

of time spent on I/O. We sort the queries by inreasing response time and alulate the

average query time for the 50%, 75%, 90%, 95% and 100% fastest of them. Aording

to the last row of Table 3.3, 64% of the average query time is spent on I/O for reading

inverted lists from disk. The perentage beomes 67% for the 50% fastest queries, whih

mostly onsist of non-frequent terms with small inverted lists.

Cahing keeps in memory the postings of frequently queried terms, while stop words

are frequent terms usually ignored during query handling [118, 6℄. From Table 3.4 it

follows that enabling the page ahe dereases by 24% the average lateny, 6% the me-

dian, and 34% the 99th perentile. Cahing is generally known to redue the lateny of

interative servies, but it annot diretly address the problem of variable responsiveness

in distributed systems, unless the entire working set resides in main memory [38℄. If we

additionally omit the 10, 20 or 100 most ommon stop words during query handling, the

enabled bu�er ahe still dereases lateny by about 18% on average. For instane, using

35



10 stop words ombined with ahing lowers the average lateny by 71% from 1.7s to

508ms. Nevertheless, 45% of the average query time is still spent on I/O.

Query lateny is often evaluated using average measurements [24, 62℄, whih do not

onvey the high variations aross di�erent queries. In Table 3.3, the average query lateny

is about 1726ms, even though the 50% fastest queries only take an average of 105ms. If

we presumably double the duration of the 50% fastest queries, the average lateny aross

all the queries is only inreased by 3%. Similarly, the disrepany between the average

and median lateny measurements in Table 3.4 further demonstrates the e�et from the

few long queries to the measured statistis. Therefore, the average statisti understates

the problem of list fragmentation.

Given the substantial time fration of query handling spent on I/O and the signi�-

ant inrease that list fragmentation auses in I/O time, we advoate to preserve the list

ontiguity of frequent and infrequent terms through the design and storage-level imple-

mentation of the indexing method. Additionally, we aim to ahieve low query lateny

both on average and aross di�erent perentiles.

36



Chapter 4

Seletive Range Flush and Unified

Range Flush Methods

4.1 Problem De�nition

4.2 System Arhiteture

4.3 The Seletive Range Flush Method

4.4 Evaluation of Seletive Range Flush

4.5 Sensitivity of Seletive Range Flush

4.6 The Uni�ed Range Flush Method

4.7 Prototype Implementation

In this setion, we �rst desribe the studied problem along with our goals, and then

explain the data strutures and the Seletive Range Flush (SRF) method to solve it. Mo-

tivated by our long experimental e�ort to tune SRF, we then proeed to the desription

of the Uni�ed Range Flush (URF) method with simpler struture but similar (or even

better sometimes) build and searh performane. Finally, we desribe the Proteus pro-

totype implementation that we developed using the Zettair open-soure searh engine to

evaluate the eÆieny of the proposed methods.

37



4.1 Problem De�nition

In this study we mainly fous on the inremental maintenane of inverted �les for eÆient

index building and searh. We do not examine the related problems of parsing input

douments to extrat new postings, or the ranking of retrieved postings for query rele-

vane. We primarily aim to minimize the I/O time required to retrieve the term postings

of a query and the total I/O time involved in index building. More formally we set the

following two goals:

query handling: minimize

∑

i

I/O time to read the postings of term

i

(4.1)

index building: minimize

∑

j

I/O time to ush posting

j

; (4.2)

where i refers to the terms of a query, and j refers to the postings of the indexed doument

olletion. The I/O time of query handling depends on the data volume read from disk

along with the respetive aess overhead. Similarly, the total I/O time of index building

is determined by the volume of data transferred between memory and disk along with

the orresponding overhead. Aordingly, we aim to minimize the amount of read data

during query handling, the amount of read and written data during index building, and

the aess overheads in both ases.

One hallenge that we fae in index building is that we do not know in advane the

term ourrenes of the inoming douments. As a result, we annot optimally plan whih

postings to ush for maximum I/O eÆieny every time memory gets full. Ideally, for

eÆient query handling we would store the postings of eah term ontiguously on disk

in order to retrieve a requested term with a single I/O. Also, for eÆient index building,

we would prefer to ush new postings from memory to disk with a single write I/O and

without any involvement of reads.

In fat, the above goals are oniting beause the I/O eÆieny of query handling

depends on the organization of term postings by index building. In the extreme ase

that we write new postings to disk without are for storage ontiguity, query handling

beomes impratial due to the exessive aess overhead involved to read the fragmented

postings from disk. As a reasonable ompromise, we only permit limited degree of storage

fragmentation in the postings of a term, and also ensure suÆient ontiguity to read a

term roughly sequentially during query handling. At the same time, we limit the volume

38



of data read during index building but with low penalty in the I/O sequentiality of disk

reads and writes. Next, we explain in detail how we ahieve that.

4.2 System Arhiteture

As we add new douments to a olletion, we aumulate their term postings in memory

and eventually transfer them to disk. We lexiographially order the terms and group

them into ranges that �t into disk bloks (alled rangebloks) of �xed size B

r

. Rangebloks

simplify the maintenane of inverted �les beause they allow us to seletively update parts

of the index. We ush the postings of a range R from memory by merging them into the

respetive rangeblok on disk. If the merged postings overow the rangeblok, we equally

divide the postings {and their range{ aross the original rangeblok and any number of

additional rangebloks that we alloate as needed. For several reasons, we do not store

all the lists in rangebloks:

• First, the list of a frequent term may exeed the size of a single rangeblok.

• Seond, the fewer the postings in a rangeblok the lower the update ost, beause

the merge operation transfers fewer bytes from disk to memory and bak.

• Third, we should defer the overow of a rangeblok, beause the ranges that emerge

after a split will aumulate fewer postings than the original range, leading to higher

merging ost.

• Finally, we experimentally on�rm that merge-based management involves repetitive

reads and writes that are mostly eÆient for olletions of infrequent terms, while in-

plae management uses list appends that are preferable for terms with large number

of postings.

Consequently, we store the list of a frequent term on exlusively oupied disk bloks that

we all termbloks. We dynamially alloate new termbloks as existing termbloks run

out of empty spae. For eÆieny, we hoose the size B

t

of the termblok to be di�erent

from the rangeblok B

r

(Setion 4.7). Where larity permits, we olletively all posting

bloks the rangebloks and termbloks.

39



The lexion is expeted to map eah term to the memory and disk loations where

we keep the respetive postings. The B-tree provides an attrative mapping struture,

beause it onisely supports ranges, and exibly handles large numbers of indexed items.

However, when the size of the dataset is at the range of hundreds of GB, as the ones we

onsider, we experimentally notied that the B-tree introdues multiple disk seeks during

lookups, whih substantially inrease the lateny of index searh and update. As an

alternative lexion struture we onsidered a simple sorted table (alled indextable) that

fully resides in memory. For eah range or frequent term, the indextable uses an entry

to store the loations of the postings aross the memory and disk. For terms within a

range, the indextable plays the role of a sparse struture that only approximately spei�es

their position through the range loation. For every terabyte of indexed dataset, the

indextable along with the auxiliary strutures oupy memory spae in the order of few

tens of megabytes. Therefore, the memory on�guration of a typial server makes the

indextable an a�ordable approah to build an eÆient lexion. We explain in detail the

indextable struture at Setion 4.7.

4.3 The Seletive Range Flush Method

We all posting memory the spae of apaity M

p

that we reserve in main memory to

temporarily aumulate the postings from new douments. When it gets full, we need to

ush postings from memory to disk. We onsider a term short or long, if it respetively

oupies total spae up to or higher than the parameter term threshold T

t

. For onise-

ness, we also use the name short or long to identify the postings and inverted lists of a

orresponding term.

Initially all terms are short, grouped into ranges, and transferred to disk via merg-

ing. Whenever during a range merge the posting spae of a term exeeds the threshold

T

t

, we permanently ategorize the term as long and move all its postings into a new

termblok. Any subsequent ushing of new postings for a long term is simply an append

to a termblok on disk (Setion 4.7). We still need to determine the partiular ranges

and long terms that we will ush to disk when memory gets full. Long postings inur

an one-time ushing ost, while short ranges require repetitive disk reads and writes for

40



Algorithm 4.1 Pseudoode of Seletive Range Flush

1: Sort long terms by memory spae of postings

2: Sort ranges by memory spae of postings

3: while (ushed memory spae < M

f

) do

4: T := long term of max memory spae

5: R := range of max memory spae

6: // Compare T and R by memory spae of postings

7: if (R.mem postings < F

p

× T .mem postings ) then

8: // Append postings of T to on-disk index

9: if (append overows the last termblok of list) then

10: Alloate new termbloks (reloate the list if needed)

11: end if

12: Append memory postings to termbloks

13: Delete the postings of T from memory

14: else

15: // Merge postings of R with on-disk index

16: Read the lists from the rangeblok of R

17: Merge the lists with new memory postings

18: if (list size of term w > T

t

) then

19: Categorize term w as long

20: Move the inverted list of w to new exlusive termblok

21: end if

22: if (rangeblok overows) then

23: Alloate new rangebloks

24: Split merged lists equally aross rangebloks

25: else

26: Store merged lists on rangeblok

27: end if

28: Delete the postings of R from memory

29: end if

30: end while

ushing over time. From an I/O eÆieny point of view, we prefer to only perform a

few large in-plae appends and totally avoid merges or small appends. Although writes

appear to our asynhronously and return almost instantly, they often inur inreased

lateny during subsequent disk reads due to the leaning delays of dirty bu�ers [9℄.

For eÆient memory ushing, next we introdue the Seletive Range Flush method

(Algorithm 4.1). We maintain the long terms and the term ranges sorted by the spae

their postings oupy in memory (Lines 1-2). We ompare the memory spae (bytes) of

the largest long list against that of the largest range (Line 7). Subsequently, we ush

41



the largest long list (Lines 8-13), unless its postings are F

p

times fewer than those of the

respetive range, in whih ase we ush the range (Lines 15-28). We repeat the above

proess until ushed memory (M

f

) bytes of postings are ushed to disk. Our approah

generalizes a previous method of partial memory ushing [22℄ in two ways:

(i) We avoid ineÆiently ushing the entire posting memory beause we only move to

disk M

f

bytes per memory �ll-up.

(ii) In addition to long terms we also seletively ush ranges, when their size beomes

suÆiently large with respet to that of long terms.

The onstant F

p

is a �xed on�guration parameter that we all preferene fator. Its

hoie reets our preferene for the one-time ushing ost of a long list rather than the

repetitive transfers between memory and disk of a range. We ush a range only when

the size of the largest long list beomes F

p

times smaller. Then the ushing overhead

of the long list takes too muh for the amount of data ushed. We also prefer to keep

the short postings in memory and avoid their merging into disk. The parameter F

p

may depend on the performane harateristis of the system arhiteture, suh as the

head-movement overhead, the sequential throughput of the disk, and the statistis of the

indexed doument olletion, suh as the frequeny of terms aross the douments. We

summarize the parameters of SRF in Table 4.2.

The SRF method behaves greedily beause it only onsiders the memory spae o-

upied by a range or long term, and simply estimates the ushing ost of a range as F

p

times that of a long term. We extensively experimented with alternative or omplemen-

tary ushing rules, inluding:

(i) diretly estimating the disk I/O throughput of ranges and long terms to prioritize

their ushing,

(ii) aggressively ushing the long terms with memory spae exeeding a minimum limit

to exploit the append I/O eÆieny,

(iii) ushing the ranges with fewest postings urrently on disk to redue the merging

ost,

(iv) periodially ushing the ranges or long terms with low rate of posting aumulation.

42



 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80

M
e

rg
e

-b
a

s
e

d
ru

n
s

 o
n

 d
is

k

Memory flush

(a) HSM

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80

M
e

rg
e

-b
a

s
e

d
ru

n
s

 o
n

 d
is

k

Memory flush

(b) HLM

Figure 4.1: We index 426GB using Wumpus with 1GB memory. The x axis refers to the

time instanes at whih memory ontents are ushed to disk. (a) HSM maintains up to 2

merge-based runs on disk, and (b) HLM periodially merges the runs reated on disk so

that their number is logarithmi in the urrent size of the on-disk index.

In the ontext of the SRF algorithm, the approah of seletively ushing a few tens of

megabytes from the largest terms or ranges in memory performed more robustly overall.

4.4 Evaluation of Seletive Range Flush

In this setion, we study the behavior of SRF as implemented in our prototype (Proteus)

against alternative on�gurations of the Wumpus searh engine [113℄. We onsider a

subset of hybrid merge-based index maintenane methods that are known to over a wide

range of tradeo�s between index building and searh eÆieny (Table 3.1), and ompare

them with SRF. We explain in detail the arhiteture of our prototype in Setion 4.7, and

desribe the experimentation environment and the on�guration used for Proteus and

Wumpus to ensure systems are funtionally omparable in Setion 5.2. We use the full

426GB GOV2 text dataset [103℄ and give both systems 1GB of RAM for the gathering of

postings in memory. The parameters of SRF are set aording to Table 4.2.

As explained in Setion 3.2, hybrid methods separate terms into short and long a-

ording to the size of their inverted list. They improve the indexing performane using a

merge-based method for the short terms and in-plae appends for the long ones. Hybrid

Immediate Merge (HIM) uses the Immediate Merge method desribed in Setion 2.1.2

for the short terms, storing the list of eah short term ontiguously in 1 merge-based run

43



 0

 100

 200

 300

 400

 500

 600

HLMWumpus
 (up to 6 runs)

HSMWumpus
 (up to 2 runs)

HIMWumpus
 (1 run)

SRFProteus
 (1 run)

B
u

il
d

 t
im

e
 (

m
in

)

Flush
Parse

361

418

523

404

Figure 4.2: We break down the index building time into doument parsing and postings

ushing parts aross di�erent maintenane poliies. Parsing inludes the time required to

lean dirty pages from page ahe to free spae for newly read douments. Proteus parsing

performane is pessimisti as it uses an unoptimized implementation (Setion 5.1). We

also inlude the number of merge-based runs eah method maintains. SRF has lower time

than HIM and HSM, and only 12% higher build time than HLM, even though it maintains

ontiguously all lists on disk.

and the list of eah long term in 1 in-plae and 1 merge-based run

1

. Hybrid Square Root

Merge (HSM) maintains the merge-based index using the Square Root Merge method

disussed in Setion 3.2, whih keeps eah short term in at most 2 merge-based runs and

eah long term in 1 in-plae and in at most 2 merge-based runs (Figure 4.1a). Similarly,

Hybrid Logarithmi Merge (HLM) uses the Logarithmi Merge approah explained in

Setion 2.1.2 for the merge-based part of the index. For the GOV2 dataset, it stores the

list of a short term in up to 6 runs and the list of a long term in 1 in-plae and up to 6

merge-based runs (Figure 4.1b).

We now study the build time of the methods mentioned above as implemented in

Wumpus, and ompare them to SRF as implemented in Proteus. From Figure 4.2, as

expeted, the more runs a method maintains on disk the lower build time it ahieves

from less frequent merges. On the other hand, the storage fragmentation introdued an

signi�antly impat the list retrieval times. For example, having a short list fragmented in

k runs typially auses a k-fold inrease on the time required to feth the list from disk due

to disk aess overhead. Given also that more than 99% of lists are short and that more

1

We use the non-ontiguous variations of the hybrid methods in Wumpus, whih store eah long list

in both the in-plae index and the merge-based runs. This redues the indexing time, but may slightly

inrease the retrieval time of long lists (Setion 3.2).

44



Table 4.1: Sensitivity to interations between rangeblok size B

r

and preferene fator

F

p

. We underline the lowest measurement on eah row. The highest measured time is

62.18min, i.e., 53.8% higher than the lowest 40.43min.

Index Building Time (min) of Seletive Range Flush

F

p

B

r

(MB) 5 10 20 40 80 160 max in

8 42.83 42.57 42.83 43.55 44.97 47.52 +11.6%

16 42.58 41.63 41.22 41.48 42.08 43.28 +5.0%

32 43.42 41.68 41.38 40.43 40.73 41.18 +7.4%

64 46.90 42.85 41.77 41.02 41.15 41.28 +14.3%

128 51.77 46.82 43.73 41.87 41.75 41.52 +24.7%

256 62.18 53.28 46.75 43.57 43.13 42.40 +46.7%

max in +46.0% +28.0% +13.4% +7.7% +10.4% +15.4%

than 60% of query lateny is spent on list retrieval (Setion 3.3), it immediately follows

that fragmentation an ause a substantial inrease in query lateny. SRF ontiguously

stores the postings of eah term in a single rangeblok or in a number of suessive

termbloks

2

. Nevertheless, it has 23% lower build time and 65% lower ush time than

HIM whih also keeps lists ontiguous. It is worth pointing out that SRF has even lower

build time than HSM and only 12% higher than HLM, even though these methods may

need up to 2 and 6 disk aesses respetively to feth a list from disk regardless of the list

length.

4.5 Sensitivity of Seletive Range Flush

SRF ombines low indexing time with list ontiguity on disk, but also has several short-

omings.

• First, if the statistis of a proessed dataset hange over time, it is possible that a

term ategorized as long reserves some memory spae but then stops aumulating

new postings to trigger ushing.

2

We use the CNT maintenane approah for the long lists that keeps them always ontiguous (Se-

tion 4.7)

45



• Seond, in order for SRF to behave eÆiently aross di�erent datasets, it requires

tuning of several parameters and their interations for spei� datasets or sys-

tems [22℄. For example, the optimal preferene fator F

p

and term threshold T

t

may vary aross di�erent term frequenies, or interat in omplex ways with other

system parameters suh as the rangeblok size B

r

.

• Third, as the dataset proessing progresses, the number of ranges inreases due

to rangeblok overows; onsequently, the number of memory postings per range

dereases, leading to lower ushing eÆieny.

In Table 4.1 we examine the variation of the SRF index building time aross all possible

ombinations of 7 values for B

r

and 6 for F

p

(42 pairs in total). Due to the large number

of experiments involved, we limit the indexing to the �rst 50GB of GOV2. The elements

in the last row and olumn of the table report the largest inrease of build time with

respet to the minimum measurement of the respetive olumn and row. We notie that

as B

r

inreases, e.g., due to restritions from the �lesystem [48, 95℄, we have to tune the

preferene fator to retain low build time. Otherwise, the build time may inrease as high

as 47% with respet to the lowest measurement for a spei� B

r

value.

3

The respetive

inrease of the highest measured value to the lowest in the entire table is 53.8%. After

a large number of experiments aross di�erent ombinations of parameters, we identi�ed

as default values for build and searh eÆieny those spei�ed in Table 4.2 (see also

Setions 4.5 and 5.4).

4.6 The Uni�ed Range Flush Method

In order to failitate the pratial appliation of SRF, we evolved it to a new method that

we all Uni�ed Range Flush (URF ). In this method, we assign eah memory posting to

the lexiographi range of the respetive term without the ategorization as short or long.

Thus, we omit the term threshold T

t

and preferene fator F

p

of SRF along with their

3

Note that large B

r

values suh as 128MB and 256MB are not unommon in suh systems. For

example, Hadoop [95℄ uses blok sizes of 128MB, while Bigtable [28℄ uses �les of 100-200 MB to store

its data (Setion 2.2.1). Moreover, even for B

r

=256MB, a proper tuning of F

p

an keep the build time

within 6% of the total lowest time (42.40min versus 40.43min).

46



Table 4.2: Parameters of Seletive Range Flush (SRF) and Uni�ed Range Flush (URF).

In the last olumn we inlude their default values used in our prototype.

Symbol Name Desription Value

B

r

Rangeblok Byte size of rangeblok on disk 32MB

B

t

Termblok Byte size of termblok on disk 2MB

M

p

Posting Memory Total memory for aumulating postings 1GB

M

f

Flushed Memory Bytes ushed to disk eah time memory gets full 20MB

F

p

Preferene Fator Preferene to ush short or long terms by SRF 20

T

t

Term Threshold Term ategorization into short or long by SRF 1MB

T

a

Append Threshold Amount of postings ushed to termblok by URF 256KB

interations against other parameters. When the posting memory gets full, we always

pik the range with the most postings urrently in memory and merge it to disk inluding

the terms that SRF would normally handle as long. In order to redue the data volume

of merge, we introdue the append threshold (T

a

) parameter. If the postings of a term in

a merge oupy memory spae more than T

a

, we move them (append postings) from the

rangeblok to an exlusive termblok. Subsequently, the range ontinues to aumulate

the new postings of the term in the rangeblok, until their amount reahes the number

T

a

again (Figure 3.1).

The pseudoode of URF is shown in Algorithm 4.2. In omparison to SRF, it is quite

simpler beause we skip the distint handling of short and long terms. Algorithm 4.2

simply identi�es the range with the most postings in memory at line 3 and merges it with

the orresponding rangeblok on disk at lines 5-6 and 14-20. If there are terms whose

amount of postings exeed the threshold T

a

, URF ushes them to their orresponding

termbloks at lines 7-13.

The term threshold T

t

of SRF permanently ategorizes a term as long and prevents

it from merge-based ushing, even at low amount of posting memory oupied by the

term. Additonally, it depends on the harateristis of the dataset and it interats with

other system parameters suh as the preferene fator F

p

, sine it impliitly ontrols the

size of the long lists ushed. The general approah of dynami threshold adjustment fol-

lowed by previous researh would only further ompliate the method operation (e.g., in

Setion 5.2 we examine the automated threshold adjustment �

PF

= auto [22℄). Instead,

47



Algorithm 4.2 Pseudoode of Unified Range Flush

1: Sort ranges by total memory spae of postings

2: while (ushed memory spae < M

f

) do

3: R := range of max memory spae

4: // Merge postings of R with on-disk index

5: Read the inverted lists from the rangeblok of R

6: Merge the lists with new memory postings

7: if (list size of term w > T

a

) then

8: // Move postings of w to exlusive termblok

9: if (w does not have termblok or append will overow last termblok) then

10: Alloate new termbloks (reloate list, if needed)

11: end if

12: Append memory postings to termbloks

13: end if

14: if (rangeblok overows) then

15: Alloate new rangebloks

16: Split merged lists equally aross rangebloks

17: else

18: Store merged lists on rangeblok

19: end if

20: Remove the postings of R from memory

21: end while

the parameter T

a

ontrols the disk eÆieny of the append operation and primarily de-

pends on performane harateristis of the I/O subsystem, suh as the geometry of the

disk. Thus, it an be tuned independently of the dataset harateristis and other system

parameters.

The desription of T

a

bears some similarity to the de�nition of long-term threshold T

introdued previously [24℄. However, the URF algorithm has fundamental di�erenes from

the hybrid approah of B�utther et al. First, every invoation of hybrid merge ushes all

the postings urrently gathered in memory. Instead, we only ush the largest ranges with

total amount of postings in memory at least M

f

. Seond, the hoie of T

a

only a�ets the

eÆieny of the index building proess, beause we separately ontrol the searh eÆieny

through the termblok size B

t

(Setions 4.7, 5.5). In ontrast, T determines the storage

fragmentation of eah long list; hoosing small T improves the update performane but

redues the eÆieny of query proessing. Indeed, we experimentally found that it is

possible to ahieve lowest building time and searh lateny for T

a

around 128KB{256KB,

48



Hashtable

Rangetable Termtable

Posting blocks

(a) Proteus arhiteture

..
.

<130; 2; 56, 70> <148; 1; 13> <150; 2; 47, 50>

<130; 2; 56, 14> <18; 1; 13> <2; 2; 47, 3>d-gaps

original

lean be

tree can shy

(b) Hashtable

Figure 4.3: (a) The prototype implementation of Proteus. (b) We maintain the hashtable

in memory to keep trak of the postings that we have not yet ushed to disk.

but suh small values for T would signi�antly lower query proessing performane due

to the exessive fragmentation in long lists.

We summarize the parameters of our arhiteture in Table 4.2. In the following se-

tions, we show that URF in omparison to SRF (i) has fewer parameters and lower

sensitivity to their values, (ii) has similar index maintenane performane (or better over

a large dataset) and searh performane, and (iii) has more tratable behavior that allows

us to do omplexity analysis of index building in Setion 9.1.

4.7 Prototype Implementation

The Proteus system is a prototype implementation that we developed to investigate our

inverted-�le management (Figure 4.3a). We retained the parsing and searh omponents

of the open-soure Zettair searh engine (v0.9.3) [115℄. Unlike the original implementation

of Zettair that builds a lexion for searh at the end of index building, we dynamially

maintain the lexion in Proteus throughout the building proess. We store the post-

ings extrated from the parsed douments in a memory-based hash table that we all

hashtable (Figure 4.3b). The inverted list of eah term onsists of the doument iden-

ti�ers along with the orresponding term loations in asending order (Setion 2.1.1).

We store eah list as an initial doument identi�er followed by a list of gaps ompressed

49



a    cast    full    lost   

a - lost   lot - pass   paste - zoo

term postings

Rangetable

Search

buckets

Posting

blocks

(a) Ranges and rangetable

and   of   the

postings postings postings

Termtable

Blocklist

Posting

blocks

(b) Long terms and termtable

Figure 4.4: (a) Eah entry of the rangetable orresponds to a term range, and points

to the searh buket, whih serves as partial index of the orresponding rangeblok. (b)

Eah entry of the termtable orresponds to a term and points to the bloklist that keeps

trak of the assoiated termbloks on disk.

with variable-length byte-aligned enoding [118℄. The same ompression sheme is used

to store the loations within eah doument. Compression redues onsiderably the spae

requirements of postings aross memory and disk.

We keep trak of the term ranges in a memory-based sorted array that we all

rangetable (Figure 4.4a). Eah entry orresponds to the range of a single rangeblok

and ontains the spae size of the disk postings along with the names of the �rst and last

term in the range. In a sparse index that we all searh buket we maintain the name and

loation of the term that ours every 128KB along eah rangeblok. The searh buket

allows us to only retrieve the exat 128KB that may ontain a term instead of the entire

rangeblok. In our experiene, any extra detail in rangeblok indexing tends to signi�-

antly inrease the maintenane overhead and lookup time without onsiderable bene�ts

in performane of query evaluation (Setion 5.3). We use a sorted array (termtable) to

keep trak of the termbloks that store the long terms of SRF or the append postings of

URF respetively (Figure 4.4b). We organize the termtable as an array of desriptors.

Eah desriptor ontains the term name, a pointer to the memory postings, their size,

the amount of free spae at the last termblok on disk, and a linked list of nodes alled

bloklist. Eah node ontains a pointer to a termblok on disk.

The rangetable along with the termtable together implement the indextable in our

50



system (Setion 4.2). The inverted lists in memory that belong to the same range are

onneted through a linked list. Initially, the termtable is empty and the rangetable

ontains a single range that overs all possible terms. If the inverted lists after a merge

exeed the apaity of the respetive rangeblok, we split the range into multiple half-

�lled rangebloks. Similarly, if we exeed the apaity of the last termblok, we alloate

new termbloks and �ll them up. After a ush, we update the tables to aurately reet

the postings that they urrently hold. When the apaity of a termblok is exeeded, we

alloate a new termblok following one of three alternative approahes:

1. Fragmented (FRG): Alloate a new termblok of size B

t

to store the overown

postings.

2. Doubling (DBL): Alloate a new termblok of twie the urrent size to store the

new postings of the list.

3. Contiguous (CNT): Alloate a termblok of twie the urrent size and reloate the

entire list to the new termblok to keep the list ontiguous on disk. This is our

default setting.

For a term, the DBL alloation leads to number of termbloks that is logarithmi with

respet to the number of postings, while FRG makes it linear. In our evaluation, we

onsider the implementation of the above approahes over Proteus for both SRF and

URF (Setion 5.5).

4.7.1 Memory Management and I/O

For every inverted list in memory, the hashtable stores into a posting desriptor infor-

mation about the inverted list along with pointers to the term string and the list itself

(Figure 4.3b). For the postings of the inverted list, we alloate a simple byte array whose

size is doubled every time it �lls up. When an inverted list is ushed to disk, we free the

respetive posting desriptor, term string and byte array. The eÆieny of these memory

(de-)alloations is ruial for the system performane beause they are invoked extremely

often.

Initially, we relied on the standard lib library for the memory management of the

inverted lists. On alloation, the library traverses a list of free memory bloks (free list)

51



to �nd a large enough blok. On dealloation, the freed blok is put bak into the free

list and merged with adjaent free bloks to redue external fragmentation. We refer to

this sheme as default.

If a program runs for long time and uses a large amount of memory, the free list

beomes long and the memory fragmented, inreasing the management ost. In order

to handle this issue, we use a single all to alloate both the desriptor and term, or

aordingly to dealloate them after an inverted list is ushed to disk. The byte array is

not inluded in the above optimization, beause we annot seletively free or realloate

portions of an alloated hunk every time we double the array size. We refer to this

sheme as single-all.

We further redue the management ost by using a single all to get a memory hunk

(typially 4KB) and store there all the posting desriptors and term strings of a range. In

a hunk, we alloate objets (strings and desriptors) in a stak-like manner. Proessor

ahe loality is also improved when we store together the objets of eah range. If the

urrent hunk has insuÆient remaining spae, we alloate an objet from a new hunk

that we link to the urrent one. When we ush a range to disk we traverse its hunk list

and free all hunks, onsequently freeing all term strings and desriptors of the range. We

refer to this sheme as hunkstak.

In our prototype system, we store the disk-based index over the default �lesystem.

Hene, we annot guarantee the physial ontiguity of disk �les that are inrementally

reated and extended over time. Disk bloks are alloated on demand as new data is

written to a storage volume leading to �le fragmentation aross the physial storage

spae. To prevent the �le fragmentation aused by the system, we examined to use the

prealloation of index �les.

Index building inludes doument parsing, whih reads douments from disk to mem-

ory (I/O-intensive) and then proesses these douments into postings (CPU-intensive).

During the proessing of a part of the dataset, prefething allows the system to feth in

advane the next part of the dataset {during the proessing of the urrent part{ to prevent

the bloking of subsequent reads to the disk [82℄. We evaluate all the above approahes

of memory management and I/O optimization in Setion 5.5.

52



Chapter 5

Performane Evaluation of

Inremental Text Indexing

5.1 Experimentation Environment

5.2 Building the Inverted File

5.3 Query Handling

5.4 Sensitivity of Uni�ed Range Flush

5.5 Storage and Memory Management

5.6 Salability aross Di�erent Datasets

5.7 Summary

In this setion, we ompare the index build and searh performane aross a rep-

resentative olletion of methods (from Table 3.1) over Wumpus and Proteus. In our

experiments we inlude the performane sensitivity of the URF method aross several

on�guration parameters, storage and memory alloation tehniques, and other I/O opti-

mizations. We also explore the relative build performane of SRF and URF over di�erent

datasets.

53



5.1 Experimentation Environment

We exeute our experiments on servers running the Debian distribution of Linux kernel

(v2.6.18). Eah server is equipped with one quad-ore x86 2.33GHz proessor, 3GB RAM

and two SATA disks. We store the generated index and the doument olletion on two

di�erent disks over the Linux ext3 �lesystem. Di�erent repetitions of an experiment on

the same server lead to negligible measurement variations (<1%).

We mostly use the full 426GB GOV2 standard dataset from the TREC Terabyte

trak [103℄. Additionally, we examine the salability properties of our methods with the

200GB dataset from Wikipedia [111℄, and the �rst 1TB of the ClueWeb09 dataset from

CMU [31℄. We mainly use 7200RPM disks of 500GB apaity, 16MB ahe, 9-9.25ms

seek time, and 72-105MB/s sustained transfer rate. In some experiments (ClueWeb,

Setion 5.6), we store the data on a 7200RPM SATA disk of 2TB apaity, 64MB ahe,

and 138MB/s sustained transfer rate.

We use the latest publi ode of Wumpus [113℄, and set the threshold T equal to

1MB, as suggested for a reasonable balane between update and query performane. We

measure the build performane of HIM in Wumpus with ativated partial ushing and

automated threshold adjustment [22℄. In both systems we set M

p

= 1GB. In Proteus,

unless otherwise spei�ed, we set the parameter values B

t

= 2MB, B

r

= 32MB, M

f

=

20MB, F

p

= 20, T

t

= 1MB and T

a

= 256KB (Table 4.2, Setions 4.5, 5.4). The auxiliary

strutures of URF and SRF for GOV2 in Proteus oupy less than 42MB in main memory.

In partiular, with URF (SRF) we found the hashtable to oupy 4MB, the termtable

and rangetable together 0.5MB, the bloklists 0.25MB (0.12MB), and the range bukets

31.2MB (36.5MB).

To keep Wumpus and Proteus funtionally omparable, we ativate full stemming

aross both systems (Porter's option [85℄). Full stemming redues terms to their root

form through suÆx stripping. As a result, doument parsing generates smaller index and

takes longer time; also query proessing often takes more time due to the longer lists of

some terms, and mathes approximately the searhed terms over the indexed douments.

In Proteus we use an unoptimized version of Porter's algorithm as implemented in Zettair.

This makes the parsing performane of Proteus pessimisti and amenable to further op-

timizations. When we examine the performane sensitivity of Proteus to on�guration

54



 0

 100

 200

 300

 400

 500

 600

Nomerge
W

HLM
W

HSM
W

HIM
W

HIM
P

SRF
P

URF
P

B
u

il
d

 t
im

e
 (

m
in

)

Flush
Parse

254

361

418

523 531

404
421

Figure 5.1: We onsider the index building time for di�erent indexing methods aross

Wumpus and Proteus, both with full stemming. Over Wumpus, we examine Nomerge

(Nomerge

W

), Hybrid Logarithmi Merge (HLM

W

), Hybrid Square Root Merge (HSM

W

)

and Hybrid Immediate Merge (HIM

W

). Over Proteus, we inlude Hybrid Immedi-

ate Merge (HIM

P

), Seletive Range Flush (SRF

P

) and Uni�ed Range Flush (URF

P

).

URF

P

takes 421min to proess the 426GB of GOV2 ahieving roughly 1GB/min indexing

throughput (see also Figure 5.7 for other datasets).

parameters, we use a less aggressive option alled light stemming, whih is the default in

Zettair.

5.2 Building the Inverted File

First we examine the build time of several methods implemented over Wumpus and Pro-

teus. Aording to Setion 4.4, after indexing the full GOV2 dataset Hybrid Immediate

Merge (HIM) keeps eah short term in 1 merge-based run, and eah long term in 1 in-

plae and 1 merge-based run. Hybrid Square Root Merge (HSM) keeps eah short term

in 2 merge-based runs, and eah long term in 1 in-plae and 2 merge-based runs. Hybrid

Logarithmi Merge (HLM) has eah short term over 4 merge-based runs, and eah long

term over 1 in-plae run and 4 merge-based runs. Nomerge fragments the postings aross

42 runs. SRF maintains the postings of eah term in a unique rangeblok or termblok,

while URF keeps eah infrequent term in 1 rangeblok and eah frequent term in up to 1

rangeblok and 1 termblok.

55



In Figure 5.1 we onsider the build time of the methods Nomerge

W

, HLM

W

, HSM

W

and HIM

W

in Wumpus, and the methods HIM

P

, SRF

P

, and URF

P

as we implemented

them in Proteus. HIM

W

is the ontiguous version of HIM (HIM

C

[22℄, Setion 3.2, Se-

tion 9.1) with all the appliable optimizations and the lowest build time among the

Wumpus variations of HIM as we experimentally veri�ed. Aording to the Wumpus

implementation of ontiguous and non-ontiguous methods, the postings of a long term

are dynamially reloated to ensure storage on multiple segments of size up to 64MB

eah [113℄. In order to ensure a fair omparison of di�erent methods on the same plat-

form, we also implemented HIM

C

in Proteus (HIM

P

) with the CNT storage alloation by

default. The index size varied from 69GB for URF

P

down to 60GB for SRF

P

and HIM

P

,

due to about 10GB di�erene in the empty spae within the respetive disk �les.

The Wumpus methods take between 254min (baseline Nomerge

W

) and 523min (HIM

W

).

HSM

W

and HLM

W

redue the time of HIM

W

by 20% and 31% respetively, but they frag-

ment the merge-based index aross 2 and 6 runs (Figure 4.1). This behavior is known to

substantially inrease the I/O time of query proessing, and onsequently we do not on-

sider HSM

W

and HLM

W

any further [22, 73℄. The 531min of HIM

P

is omparable to the

523min required by HIM

W

; in part, this observation validates our HIM implementation

over Proteus. Instead, SRF

P

and URF

P

take 404min and 421min, respetively, whih is

24% and 21% below HIM

P

. URF

P

takes 4.2% more than SRF

P

to inrementally index

GOV2, although URF

P

is faster than SRF

P

in a di�erent dataset (Setion 5.6).

In Figure 5.1, we also break down the build time into parse, to read the datasets and

parse them into postings, and ush, to gather the postings and transfer them to disk. The

implementation of HIM in Proteus (HIM

P

) redues the ush time of the orresponding

implementation in Wumpus (HIM

W

) from 303min to 253min, but HIM

P

has longer parse

time partly due to the unoptimized stemming. Instead, SRF

P

and URF

P

only take

105min and 129min for ushing, respetively, thanks to their I/O eÆieny. Therefore,

our methods redue the ush time of HIM

P

by a fator of 2.0-2.4, and that of HIM

W

by

a fator of 2.4-2.9.

Somewhat puzzled by the longer parse time of Proteus, we reorded traes of disk

transfer ativity during index building. Every time we retrieved new douments for pro-

essing, we notied substantial write ativity with tens of several megabytes transferred

to the index disk. Normally, parsing should only reate read ativity to retrieve dou-

56



ments and no write ativity at all. However, when we ush index postings to disk, the

system temporarily opies postings to the system bu�er ahe. In order to aommodate

new douments in memory later during parsing, read requests lean dirty bu�ers and free

memory spae. Overall, SRF

P

and URF

P

redue by about a fator of 2-3 the ush time of

HIM

P

and HIM

W

, and ahieve a redution of the respetive total build time by 20-24%.

5.3 Query Handling

Next we examine the query time aross di�erent indexing methods and systems. In our

experiments, we use the GOV2 dataset and the �rst 1,000 queries of the EÆieny Topis

query set in the TREC 2005 Terabyte Trak [103℄. We onsider both the alternative ases

of having the bu�er ahe disabled and enabled during query handling. As representative

method of Wumpus we study the HIM

W

, while in Proteus we onsider HIM

P

, SRF

P

and

URF

P

.

In the latest publily available version of Wumpus (but also the older versions), we no-

tied that the implemented ontiguous variation (HIM

C

) of HIM was onstantly rashing

during searh at a broken assertion. For that reason, in our searh experiments we used

the non-ontiguous variation instead (HIM

NC

[24℄). Although the above two Wumpus

variations of HIM di�er in their eÆieny of index building, they have similar design with

respet to query handling. They both store eah short term in 1 run; however, HIM

NC

allows a long term to be stored in 2 runs (1 in-plae and 1 merge-based), while HIM

C

always stores it in 1 run. Given the long transfer time involved in the retrieval I/O of long

terms, we do not expet the above di�erene by 1 disk positioning overhead to pratially

a�et the query performane.

From Figure 5.2a, ahing ativation redues the query time of HIM

W

by 13%, and

by about 22-24% that of HIM

P

, SRF

P

and URF

P

. Aross both the ahing senarios,

HIM

W

over Wumpus takes about twie the average query time of the Proteus methods.

Given that our HIM

P

implementation is based on the published desription of HIM

W

, we

attribute this disrepany to issues orthogonal to the indexing method, suh as the query

handling and storage management of the searh engine. In Proteus, the average query

times of HIM

P

, SRF

P

and URF

P

remain within 2% of eah other. Therefore, both SRF

P

57



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

HIMW HIMP SRFP URFP

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

m
s
)

without cache
with cache3371

1768 1768 1760

2930

1374 1346 1347

(a) Average Query Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000  10000

P
e
rc

e
n

ta
g

e
 o

f 
q

u
e
ri

e
s
 (

%
)

Query time (ms)

SRFP
URFP
HIMP
HIMW

(b) Query Time Distribution

Figure 5.2: We onsider Hybrid Immediate Merge over Wumpus (HIM

W

) or Proteus

(HIM

P

), along with Seletive Range Flush (SRF

P

) and Uni�ed Range Flush (URF

P

) over

Proteus. (a) We measure the average query time with alternatively disabled and enabled

the system bu�er ahe aross di�erent queries in the two systems with full stemming. (b)

We look at the distribution of query time over the two systems with enabled the bu�er

ahe.

and URF

P

ahieve the query performane of HIM

P

, even though they are onsiderably

more eÆient in index building (Setion 5.2).

We use measurement distributions to further ompare the query time of the four

methods with enabled system ahing (Figure 5.2b). Although the median query time of

Proteus lies in the range 246-272ms, that of HIM

W

is 1.378s, i.e., a fator of 5 higher. In

fat, HIM

W

requires about 1s to handle even the shortest queries. Also, the 99th perentile

of HIM

W

is 68% higher than that of the Proteus methods. Instead, the 99th perentiles

of the Proteus methods lie within 2% eah other, while the median measurements within

10%. We onlude that HIM

P

, URF

P

and SRF

P

are similar to eah other in query

performane, but they are faster by a fator of 2 on average with respet to HIM

W

.

58



 0

 100

 200

 300

 400

 500

 600

8MB 16MB 32MB 64MB 256MB

B
u

il
d

 t
im

e
 (

m
in

)

Rangeblock size

Parse dataset
Flush terms

Flush ranges

435
413 408 406 418

(a) Index Building

 0

 20

 40

 60

 80

 100

 120

 140

8MB 16MB 32MB 64MB 256MB

R
a
n

g
e
s
 &

 t
e
rm

s
 f

lu
s
h

e
d

 (
x
1
0
0
0
)

Rangeblock size

Range flushes
Term appends

123

94

80
74

69

(b) Number of Flushes

 0

 100

 200

 300

 400

 500

 600

 700

 800

8MB 16MB 32MB 64MB 256MB

G
ig

a
b

y
te

s
 t

ra
n

s
fe

rr
e
d

Rangeblock size

Term relocations
Term appends

Range reads
Range writes

474 479 488 497 509

() I/O Ativity

Figure 5.3: (a) Setting the rangeblok size B

r

below 32MB or above 64MB raises the

build time of Uni�ed Range Flush. Inreasing the B

r

tends to (b) derease the number

of ushes, and () inrease the data amount transferred during merges. We use Proteus

with light stemming.

5.4 Sensitivity of Uni�ed Range Flush

Subsequently, we onsider the sensitivity of the URF build performane to the rangeblok

size B

r

, ush memory M

f

, append threshold T

a

, and posting memory M

p

.

Rangeblok B

r

. The rangeblok size B

r

determines the posting apaity of a range; it

diretly a�ets the data amount transferred during range ushes and the I/O time spent

aross range and term ushes. We observed the lowest build time for B

r

at 32-64MB

(Figure 5.3a). Setting B

r

less than 32MB generates more ranges, and raises the total

number of term and range ushes (Figure 5.3b). On the ontrary, setting B

r

higher than

64MB inreases the amount of transferred data during range merges (Figure 5.3) leading

to longer I/O. Our default value B

r

= 32MB balanes the above two trends into build

time equal to 408min. For sensitivity omparison with SRF, we also measured the URF

build time for the �rst 50GB of GOV2. With B

r

in the interval 8MB-256MB, we found

the maximum inrease in build time equal to 9.1%, i.e., almost x6 times lower than the

respetive 53.8% of SRF (Table 4.1).

As we ontinue to inrease the rangeblok size, we partition the index into fewer

rangebloks. Eah range merge thus ushes more postings and updates a bigger part of

the index. Aordingly, index updates beome less \seletive" and eventually approah the

59



 0

 100

 200

 300

 400

 500

 600

5MB 20MB 40MB 100MB

B
u

il
d

 t
im

e
 (

m
in

)

Flush Memory

Parse dataset
Flush terms

Flush ranges

438
408 418

464

(a) Sensitivity to M

f

 0

 100

 200

 300

 400

 500

 600

64KB 128KB 256KB 512KB 1MB

B
u

il
d

 t
im

e
 (

m
in

)

Append Threshold

Parse dataset
Flush terms

Flush ranges

433
414 408 414 425

(b) Sensitivity to T

a

 0

 500

 1000

 1500

 2000

128MB 256MB 512MB 1GB 2GB

B
u

il
d

 t
im

e
 (

m
in

)

Posting Memory

Parse dataset
Flush terms

Flush ranges
1976

991

564

408
342

() Sensitivity to M

p

Figure 5.4: (a) Flushing more than few tens of megabytes (M

f

) leads to longer build time

for Uni�ed Range Flush (URF). This results from the more intense I/O ativity aross

term and range ushes. (b) Setting the append threshold to T

a

= 256KB minimizes the

total I/O time of range and term ushes. () The build time of range merge in URF

dereases approximately in proportion to the inreasing size of posting memory (M

p

).

The Proteus system with light stemming is used.

HIM behavior, whih ushes all short postings and merges the whole merge-based index

on eah memory ush. Setting B

r

= ∞ would pratially emulate the HIM method; for

example, with B

r

= 1GB (not shown) we measured 510min build time. This emphasizes

the bene�ts of the seletive index update approah followed by our methods.

Flush Memory M

f

. The parameter M

f

refers to the amount of bytes that we ush to

disk every time posting memory gets full (Figure 5.4a). Build time is redued to 408min

if we set M

f

= 20MB, i.e., 2% of the posting memory M

p

=1GB. Despite the Zip�an

distribution of postings [24℄, setting M

f

below 20MB leaves limited free spae to gather

new postings at partiular ranges (or terms) for eÆient I/O. At M

f

muh higher than

20MB, we end up ushing terms and ranges with small amounts of new postings leading

to frequent head movement in appends and heavy disk traÆ in merges. If we set M

f

=

M

p

(= 1GB) we atually deativate partial ushing, and build time beomes 632min (not

shown).

Append Threshold T

a

. This parameter spei�es the minimum amount of aumulated

postings required during a merge to ush a term to the in-plae index. It a�ets diretly

the eÆieny of term appends, and indiretly their relative frequeny to range ushes. In

60



Figure 5.4b we observe that T

a

= 256KB minimizes the URF build time. If we inrease

T

a

to 1MB (=T

t

) we end up with build time higher by 6%. Unlike T

t

of SRF that

permanently ategorizes a term as long, T

a

spei�es the minimum append size and tends

to reate larger merged ranges by inluding postings that SRF would permanently treat

as long instead. Overall, the URF performane shows little sensitivity aross reasonable

values of T

a

.

Posting Memory M

p

. The parameter M

p

spei�es the memory spae that we reserve

for temporary storage of postings. Smaller values of M

p

inrease the ost of range ushes,

beause they enfore frequent range ushes and limit the gathering of postings from

frequent terms in memory. As we inrease M

p

from 128MB to 1GB in Figure 5.4,

the time spent on range merges drops almost proportionally, resulting into substantial

derease of the total build time. Further inrease of M

p

to 2GB only slightly redues the

build time, beause at M

p

= 1GB most time (59.3%) is already spent on parsing.

5.5 Storage and Memory Management

Next we examine the e�et of storage alloation to the build and query time of URF.

Based on the desription of Setion 4.7, we onsider FRG with alternative termblok sizes

1MB, 2MB, 8MB and 32MB (respetively denoted as FRG/1MB, FRG/2MB, FRG/8MB,

FRG/32MB), and also the DBL and CNT alloation methods. In Figure 5.5a we show

the average CPU and I/O time of query proessing in a system with ativated bu�er

ahe. The average query time varies from 1649min with FRG/32MB to 1778min with

FRG/1MB, while it drops to 1424min by DBL and 1338min by CNT. Essentially, CNT

redues the query time of FRB/1MB by 25% and of DBL by 6%. The above variations

are mainly aused by di�erenes in I/O time given that the CPU time remains almost

onstant at 622min (<47% of total). Unlike query time, from Figure 5.5b we notie the

build time to only slightly vary from 386min for both FRG/1MB and DBL to 408min for

CNT (5.7% higher). In these measurements, the ush time is about 40% of the total build

time. Due to di�erenes in the empty spae of termbloks, the index size varies from 53GB

for FRG/1MB to 355GB for FRG/32MB, and 70GB for DBL and CNT (Figure 5.5). We

onlude that our CNT default setting is a reasonable hoie beause it ahieves improved

61



 0

 500

 1000

 1500

 2000

FRG/1MB

FRG/2MB

FRG/8MB

FRG/32MB

DBL
CNT

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

m
s
) 

Processing (CPU)
List retrieval (Disk I/O)

1778
1672 1695 1649

1424
1338

(a) Query Time

 0

 100

 200

 300

 400

 500

FRG/1MB

FRG/2MB

FRG/8MB

FRG/32MB

DBL
CNT

B
u

il
d

 t
im

e
 (

m
in

) 

Parse
Flush

386 388 394 402
386

408

(b) Build Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

FRG/1MB

FRG/2MB

FRG/8MB

FRG/32MB

DBL
CNT

In
d

e
x
 s

iz
e
 (

G
B

) 

Used
Empty

53 61

115

355

70 70

() Index Size

Figure 5.5: We examine the behavior of Uni�ed Range Flush over Proteus with the

following storage alloation methods (i) ontiguous (CNT), (ii) doubling (DBL), and (iii)

fragmented (FRG) with termblok sizes 1MB, 2MB, 8MB and 32MB. (a) CNT ahieves

the lowest query time on average losely followed by DBL. We keep enabled the system

bu�er ahe aross the di�erent queries. (b) Build time aross the di�erent alloation

methods varies within 5.7% of 386min (FRG/1MB and DBL). () Unlike CNT and DBL,

FRG tends to inrease the index size espeially for larger termblok.

query time at low added build time or index size.

In Setion 4.7.1 we mentioned three alternative approahes to manage the memory of

postings: (i) default (D), (ii) single-all (S), and (iii) hunkstak (C). The methods di�er

in terms of funtion invoation frequeny, memory fragmentation and bookkeeping spae

overhead. Memory alloation a�ets the time spent on dataset parsing when we add new

postings to memory, and the duration of term and range ushes when we remove postings.

In Figure 5.6 we onsider the three alloation methods with URF aross di�erent values of

posting memory. Memory management inreasingly a�ets build time as posting memory

grows from 512MB to 2GB. More spei�ally, the transition from the default poliy to

hunkstak redues build time by 3.4% for M

p

= 512MB, 4.7% for M

p

= 1GB, and 8.6%

for M

p

= 2GB. Therefore, larger amounts of memory spae require inreased eÆieny in

memory management to aelerate index building.

In Table 5.1 we ompare the e�ets of several memory and I/O optimizations to

the build and searh time of SRF. File prealloation of the index lowers by 14-17% the

average query time as a result of redued storage fragmentation at the �lesystem level.

62



 0

 100

 200

 300

 400

 500

 600

 700

D S C  D S C  D S C

B
u

il
d

 t
im

e
 (

m
in

)

Parse dataset
Flush terms

Flush ranges

584 574 564

428 417 408
374

355 342

512MB 1GB 2GB

Posting Memory

Figure 5.6: We onsider three methods of memory alloation during index building by

Uni�ed Range Flush: (i) default (D), (ii) single-all (S), and (iii) hunkstak (C). The

sensitivity of build time to memory management is higher (up to 8.6% derease with C)

for larger values of M

p

. We use Proteus with light stemming.

For aggressive prefething, we inrease the Linux readahead window to 1MB making it

equal to the size of the parsing bu�er. Thus, during the proessing of 1MB text, we feth

in the bakground the next 1MB from disk. As a result, parse time drops by 30% and the

total build time drops by 20% from 534min to 429min. When we ativate the hunkstak

method in memory management, build time further drops by 5% from 429min to 408min.

We have all these optimizations ativated throughout the experimentation with Proteus.

5.6 Salability aross Di�erent Datasets

Finally, we measure the total build time of the CNT variants of SRF and URF for three

di�erent datasets: ClueWeb09 (�rst 1TB), GOV2 (426GB) and Wikipedia (200GB). In

our evaluation, we use the default parameter values shown in Table 4.2. In Figures 5.7a

and 5.7d we break down into parse and ush time the SRF and URF build time for the

ClueWeb09 dataset. Even though SRF better balanes the ush time of ranges and terms

against eah other, URF atually redues the total build time of SRF by 7% from 815min

to 762min. This improvement is aompanied by a respetive redution of the total ush

time by 82min (23%) from 353min to 271min.

In Figures 5.7b and 5.7e we examine the saling of build time for the GOV2 dataset.

63



Table 5.1: We examine the e�et of alternative optimizations to the query and build time

of Uni�ed Range Flush. Prealloation redues the average query time, while prefething

and hunkstak redue the build time.

Average Build and Query Time - Uni�ed Range Flush

Memory and I/O Optimizations

Total

Build

Parse

Time

Flush Time Query

Ranges Terms W/out W/Cahe

(min) (min) (min) (min) (ms) (ms)

None 543 374 124 40 2082 1537

Prealloation 534 373 112 45 1728 1316

Prealloation+Prefething 429 260 118 47 1724 1318

Prealloation+Prefething+Chunkstak 408 242 116 48 1726 1315

SRF redues the build time of URF by 16min (4%) from 420min to 404min. The total

number of indexed postings is 20.58bn in GOV2 (426GB) and 27.45bn in ClueWeb09

(1TB). However, GOV2 has about half the text size of ClueWeb09, and the index building

of GOV2 takes almost half the time spent for ClueWeb09. In fat, the parsing of GOV2

seems to take more than 70% of the total build time partly due to leaning of pages written

during ushing (Setion 5.2). In the Wikipedia dataset, parsing takes about 84-85% of

the total build time, but both URF and SRF require the same time (about 118.5min) to

build the index (Figures 5.7 and 5.7f).

Aross Figure 5.7, the total build time of URF and SRF (e.g., ClueWeb09 and GOV2)

demonstrates a nonlinearity mainly aused by the range ush time rather than the parsing

and term ushing. We explored this issue by using the least-squares method to approxi-

mate the build time of GOV2 as funtion of the number of postings. In our regression, we

alternatively onsider the linear funtion f(x) = a1 + b1 · x and the polynomial funtion

f(x) = a2 · x
b2
. Using the oeÆient of determination R

2
to quantify the goodness of

�t, we �nd that both the total build time and the time of range ushing are aurately

traked by the polynomial funtion [56℄. Instead, the respetive times of parsing and term

ushing ahieve good quality of �t with linear approximation.

64



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  5  10  15  20  25

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(a) SRF - ClueWeb09

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  5  10  15  20

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(b) SRF - GOV2

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

() SRF - Wikipedia

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  5  10  15  20  25

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(d) URF - ClueWeb09

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  5  10  15  20

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(e) URF - GOV2

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(f) URF - Wikipedia

Figure 5.7: We show the saling of build time with Seletive Range Flush (SRF) and

Uni�ed Range Flush (URF). We use the ClueWeb09 (�rst TB), GOV2 (426GB) and

Wikipedia (200GB) datasets over Proteus with light stemming. URF takes 53.5min (7%)

less time for ClueWeb09, about the same for Wikipedia, and 16.4min (4%) more for GOV2

in omparison to SRF.

5.7 Summary

We investigate the problem of inremental maintenane of a disk-based inverted �le. Our

objetive is to improve both the searh lateny and index building time at low resoure

requirements. We propose a simple yet innovative disk organization of inverted �les

based on bloks, and introdue two new inremental indexing methods, the Seletive

Range Flush (SRF) and Uni�ed Range Flush (URF). We implemented our two methods

in the Proteus prototype that we built. We extensively examine their eÆieny and

performane robustness using three di�erent datasets of size up to 1TB. SRF requires

onsiderable tuning e�ort aross di�erent parameter ombinations to perform well. In

65



omparison to SRF, URF has similar or even better performane, while it is also simpler,

easier to tune and amenable to I/O omplexity analysis (Setion 9.1).

Both in Proteus and the existing Wumpus system, we experimentally examine the

searh performane of the known Hybrid Immediate Merge (HIM) method with partial

ushing and automati threshold adjustment. Our two methods ahieve the same searh

lateny as HIM in Proteus, while they redue into half the searh lateny of HIM in

Wumpus. Additionally, our methods redue by a fator of 2-3 the I/O time of HIM

during index building, and lower the total build time by 20% or more.

66



Chapter 6

Range-Based Storage Management for

Salable Datastores

6.1 Introdution

6.2 Motivation

6.3 System Assumptions

6.4 Design and Arhiteture

6.5 Prototype Implementation

6.6 Summary

6.1 Introdution

Salable datastores (or simply datastores) are distributed storage systems that sale to

thousands of ommodity servers and manage petabytes of strutured data. Today, they

are routinely used by online serving, analytis and bulk proessing appliations, suh as

web indexing, soial media, eletroni ommere, and sienti� analysis [28, 40, 32, 52,

33, 15, 101℄. Datastores di�er from traditional databases beause they: (i) Horizontally

67



partition and repliate the indexed data aross many servers, (ii) Provide weaker onur-

reny model and simpler all interfae, and (iii) Allow dynami expansion of reords with

new attributes. Depending on the appliation needs, they organize data as olletions of

key-value pairs, multidimensional maps or relational tables.

System salability aross multiple servers is neessitated by the enormous amount

of handled data and the stringent quality-of-servie requirements [28, 40, 104℄. Pro-

dution systems keep the high perentiles of serving lateny within tens or hundreds of

milliseonds [40, 104℄. General-purpose datastores target good performane on both read-

intensive and write-intensive appliations [28, 32℄. Furthermore, appliations that ingest

and mine event logs aelerate the shift from reads to writes [93℄.

The data is dynamially partitioned aross the available servers to handle failures

and limit the onsumed resoures. To a large extent, the atual apaity, funtionality

and omplexity of a datastore is determined by the arhiteture and performane of the

onstituent servers [72, 99, 98℄. For instane, resoure management eÆieny at eah

storage server translates into fewer hardware omponents and lower maintenane ost for

power onsumption, redundany and administration time. Also, support of a missing

feature (e.g., range queries) in the storage server may require substantial reorganization

with overall e�etiveness that is potentially suboptimal [84, 30℄.

A storage layer at eah server manages the memory and disks to persistently maintain

the stored items [98℄. Aross diverse bath and online appliations, the stored data is

typially arranged on disk as a dynami olletion of immutable, sorted �les (e.g., Bigtable,

HBase, Azure and Cassandra in Setion 2.2.1, Hypertable [53℄). Generally, a query should

reah all item �les to return the eligible entries (e.g., in a range). As the number of �les

on disk inreases, it is neessary to merge them so that query time remains under ontrol.

Datastores use a variety of �le merging methods but without rigorous justi�ation. For

instane, Bigtable keeps bounded the number of �les on disk by periodially merging

them through ompations [28℄ (also HBase, Cassandra, LazyBase in Setion 2.2.1, Anvil

in Setion 2.2.3). In the rest of the doument we interhangeably use the terms merging

and ompation.

Despite the prior indexing researh (e.g., in relational databases, text searh), data-

stores su�er from several weaknesses. Periodi ompations in the bakground may last

for hours and interfere with regular query handling leading to lateny spikes [98, 71, 69,

68



70, 81℄. To avoid this problem, prodution environments shedule ompations on a daily

basis, thus leaving fragmented the data for several hours [98℄. This leads to redued query

performane as the performane of these systems (e.g HBase) is sensitive to the number of

disk �les per key range [15℄. Frequent updates in distint olumns of a table row further

fragment the data [43℄. When several �les on a server store data with overlapping key

ranges, query handling generally involves multiple I/Os to aess all �les that ontain a

key. Bloom �lters an defray this ost, but are only appliable to single-key (but not

range) queries, and have diminishing bene�t at large number of �les (e.g. 40) [98℄. Fi-

nally, several merge-based methods require roughly half of the storage spae to remain

free during merging for the reation of new �les [98℄.

In this thesis we study the storage management of online datastores that onur-

rently support both range queries and dynami updates. Over inexpensive hardware, we

redue the data serving lateny through higher storage ontiguity; improve the perfor-

mane preditability with limited query-update interferene and on�gurable ompation

intensity; and derease the storage spae required for �le maintenane through inremen-

tal ompations. Our main insight is to keep the data of the memory and disk sorted

and partitioned aross disjoint key ranges. In ontrast to existing methods (e.g., Se-

tion 2.2.2), when inoming data �lls up the available memory of the server, we only ush

to disk the range that oupies the most memory spae. We store the data of eah range

in a single �le on disk, and split a range to keep bounded the size of the respetive �le as

new data arrives at the server.

6.2 Motivation

Range queries are often used by data serving and analytis appliations [32, 33, 15, 53,

25, 30, 72℄, while time-range queries are applied on versioned data for transational up-

dates [83℄. Aordingly, typial benhmarks support range queries in addition to updates

and point queries as workload option [33, 81℄. In a distributed system, variability in the

lateny distribution of individual omponents is magni�ed at the servie level; e�etive

ahing annot diretly address tail lateny unless the entire working set of an appliation

resides in the ahe [38℄. In this setion, over a distributed datastore we experimentally

69



 0

 500

 1000

 1500

 2000

 0  50  100  150  200  250  300

Q
u

e
ry

 l
a

te
n

c
y
 (

m
s
)

Time (min)

(a) Cassandra query lateny

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  50  100  150  200  250  300

T
o

ta
l 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(b) Cassandra total operations throughput

Figure 6.1: The query lateny at the Cassandra lient varies aording to a quasi-periodi

pattern. The total throughput of queries and inserts also varies signi�antly.

demonstrate the range query lateny to vary substantially over time with a high perent-

age of it to be spent in the storage layer.

We use a luster of 9 mahines with the hardware on�guration desribed in Setion 7.

We apply the Apahe Cassandra version 1.1.0 as datastore with the default Size-Tiered

ompation and the Yahoo! YCSB version 0.1.4 as workload generator [52, 33℄. An item

has 100B key length and 1KB value size. A range query requests a random number

of onseutive items that is drawn uniformly from the interval [1,100℄. Initially we run

Cassandra on a single node. On a di�erent mahine, we use YCSB with 8 threads to

generate a total of 500req/s out of whih 99% are inserts and 1% are range queries (see

Setion 7.2). We disregarded muh higher loads (e.g., 1000req/s) beause we found them

to saturate the server. The experiment terminates when a total of 10GB is inserted into

the server onurrently with the queries.

For average size of queried range at 50 items, the generated read load is 250items/s,

i.e., almost half the write load of 495items/s. An I/O on our hard disk takes on average

8.5-10ms for seek and 4.16ms for rotation. Aordingly, the time to serve 5 range queries

is 67.2ms, while the time to sequentially write 495 items is 21.9ms. Although the read

time appears 3 times higher than that of the writes, the atual write load is pratially

higher as a result of the ompations involved.

In Figure 6.1 we show the query lateny measured every 5s and smoothed with a

window of size 12 for larity. The query lateny varies substantially over time following

70



Table 6.1: Storage management on the server oupies more than 80% of the average

query lateny measured at the lient.

Lateny (ms) of Range Queries on Cassandra

# Servers

Client Server Storage Mgmt

Avg 90th 99th Avg 90th 99th

1 204.4 420 2282 178.8 382 1906

4 157.6 313 1601 130.8 269 1066

8 132.2 235 1166 111.7 218 802

some quasi-periodi pattern whih is independent of the random query size. In fat, the

lateny variation approximates the periodiity at whih the server ushes from memory

to disk the inoming data and merges the reated �les. In the same �gure, we additionally

show the measured throughput of queries and inserts to also vary onsiderably over time,

and atually drop to zero for 90 onseutive seonds at minutes 157 and 295.

We repeat the above experiment with Cassandra over 1, 4 and 8 server mahines. We

linearly sale the generated request rate up to 4000req/s and the inserted dataset size up

to 80GB, while we �x to 8 the number of YCSB threads at the lient. We instrument the

lateny to handle the inoming query requests at eah server. Table 6.1 shows the query

lateny respetively measured at the YCSB lient and the storage layer of all the Cas-

sandra servers. The di�erene mainly arises from time spent on network transfer, request

rediretion among the servers, and RPC handling. As we inrease the number of servers,

the query lateny drops beause the onstant (8) number of YCSB threads results into

redued onurreny (and ontention) per server in the luster. Aross di�erent system

sizes, the storage management aounts for more than 80% of the average lateny and the

90th perentile, and more than 65% of the 99th perentile. Overall, ompations ause

substantial lateny variations, and storage management is dominant in the online perfor-

mane of Cassandra-like datastores (Setion 2.2.1). In the following setions we introdue

a new storage struture and method to e�etively ontrol the ompation impat, and

improve the datastore performane.

71



Request Router

Storage 

Server

update query

...

Log Memory Disk

update query

Storage 

Server
async flush

when mem 

full

Figure 6.2: Assumed datastore arhiteture.

6.3 System Assumptions

We mainly target interative appliations of online data serving or analytis proessing.

The stored data is a olletion of key-value pairs, where the key and the value are arbitrary

strings of variable size from a few bytes up to several kilobytes. The system supports the

operation of a point query as value retrieval of a single key, and a range query as retrieval

of the values in a spei�ed key range. Additionally, the system supports an update as

insertion or full overwrite of a single-key value. We do not examine the problems of query

handling over versioned data, or data loading in bulk.

A datastore uses a entralized (Figure 2.5b) or distributed index (Figure 2.6) to loate

the server of eah stored item. Data partitioning is based on interval mapping for eÆ-

ieny in handling range queries (Setion 2.2.2). We fous on the storage funtionality of

individual servers rather than the higher datastore layers. All aepted updates in a stor-

age server are made immediately durable through write-ahead logging and then inserted

in a memory searh struture, before an aknowledgment is sent to the lient [28, 40℄.

When the memory struture reahes a prede�ned threshold, its ontents are sorted and

stored in an immutable �le on disk. The storage layer is implemented as a dynami ol-

letion of sorted �les, and a query must typially aess multiple �les. Thus, updates are

ommonly handled at sequential disk throughput, and queries involve synhronous ran-

dom I/O. Figure 6.2 illustrates the path of an update or query through the request router

and the storage servers, before returning the respetive response bak to the datastore

lient.

With data partitioning, eah storage server ends up loally managing up to a few

terabytes. The data is indexed by a memory-based sparse index, i.e., a sorted array with

72



pairs of keys and pointers to disk loations every few tens or hundreds of kilobytes. For

instane, Cassandra indexes 256KB bloks, while Bigtable, HBase and Hypertable index

64KB bloks [28, 52℄. With a 100B entry for every 256KB, we need 400MB of memory to

sparsely index 1TB. Compressed trees an redue the oupied memory spae by an order

of magnitude at the ost of extra deompression proessing [66℄. We provide additional

details about our assumptions in Setion 7.8.

6.4 Design and Arhiteture

In the present setion we propose a novel storage layer to eÆiently manage the memory

and disks of datastore servers. Our design sets the following primary goals:

(i) Provide sequential disk sans of sorted data to queries and updates.

(ii) Store the data of eah key range at a single disk loation.

(iii) Seletively bath updates and free memory spae.

(iv) Avoid storage fragmentation or reorganization and minimize reserved storage spae.

Below, we desribe the proposed Rangetable struture and the aompanying Rangemerge

method. Then we outline the prototype software that we developed to fairly ompare our

approah with representative storage strutures of existing systems.

6.4.1 The Rangetable Struture

The main insight of Rangetable is to keep the data on disk in key order, partitioned aross

large �les by key range. We store the data of a range at a single �le to avoid multiple

seeks for a point or range query. The disk bloks of a �le are losely loated in typial

�lesystems, with alloators based on blok groups or extents (e.g., ext3/4, Btrfs). If the

size of a data request exeeds a few MB, the disk geometry naturally limits the head

movement overhead to below 10%. For instane, if the average rotation and seek take

6.9ms in a 10KRPM SAS drive, the overhead oupies 8.6% of the total time to aess

10MB [37℄. We do not need enormous �les to ahieve sequential I/O, as long as eah �le

has size in the tens of megabytes. We avoid frequent I/O by gathering inoming updates

73



: Search Diskstore5

2

6 : Scan & merge keys

a - h i - p q - z

2

3

6

Itemtable

Rangeindex

Chunkindices

Rangefiles

Diskstore

Memstore

Memory

Disk

i k m

6

q t wa c e

4

43

: Search Memstore

5

a - h i - p q - z

1

1

Get("last", "night")
Rangeindex

Figure 6.3: The organization of the Rangetable struture, and ontrol ow of a handled

range query. For presentation larity we use alphabeti haraters as item keys.

in memory, and inexpensively preserve range ontiguity on disk by only ushing those

ranges that ensure I/O eÆieny.

New updates at a server are durably logged, but also temporarily aumulated in

memory for subsequent bathed ushing to a new �le on disk (Figure 6.2). For e�etive

I/O management, we partition the data of every server into key-sorted ranges using a

memory-based table, alled rangeindex. Eah slot of the rangeindex maps a range to

the respetive items stored on disk and in memory (Figure 6.3). For fast key lookup

and range san we keep the data in memory sorted through a mapping struture, alled

itemtable. We use a onurrent balaned tree (spei�ally, a red-blak tree) for eah range,

although a multiore-optimized struture is preferable if the stored data fully resides in

memory [72℄.

New data are �rst inserted to the respetive tree in memory and later ushed to

disk. We avoid external fragmentation and periodi reorganization on disk by managing

the spae in �les, alled range�les, of maximum size F (e.g., 256MB). Eah range�le is

organized as a ontiguous sequene of hunks with �xed size C (e.g., 64KB). In order to

easily loate the range�le hunks, we maintain a memory-based sparse index per range�le,

alled hunkindex, with entries the �rst key of eah hunk and the o�set within the

range�le. From the steps shown in Figure 6.3, an inoming range query (1) �nds the

respetive tree in memstore using the rangeindex and (2) searhes this tree. Then, the

74



query searhes (3) the rangeindex, (4) the hunkindex and (5) the range�le of the diskstore.

Finally, (6) the requested items from both the itemtable and range�le are merged into a

single range by the server and returned.

6.4.2 The Rangemerge Method

In order to serve point and range queries with roughly one disk I/O, the Rangemerge

method merges items from memory and disk in range granularity. When we merge items,

we target to free as muh memory spae as possible at minimal ushing ost. The hoie

of the ushed range a�ets the system eÆieny in several ways: (i) Every time we ush

a range, we inur the ost of one range�le read and write. The more new items we ush,

the higher I/O eÆieny we ahieve. (ii) A ushed range releases memory spae that is

vital for aepting new updates. The more spae we release, the longer it will take to

repay the merging ost. (iii) If a range frequently appears in queries or updates, then we

should skip ushing it to avoid repetitive I/O.

Memory ushing and �le merging are generally regarded as two distint operations.

When memory �lls up with new items, the server has to free memory spae quikly to

ontinue aepting new updates. Existing systems sequentially transfer to disk the entire

memory oupied by new items. Thus, they defer merging to avoid bloking inoming

updates for extended time period. This approah has the negative e�et of inreasing

the �les and inurring additional I/O traÆ to merge the new �le with existing ones [93℄.

To avoid this extra ost, Rangemerge treats memory ushing and �le merging as a single

operation rather than two. It also limits the duration of update bloking beause a range

has on�gurable maximum size, typially a small fration of the oupied memory at the

server (Setion 7.8).

We greedily vitimize the range with the largest amount of oupied memory spae.

The intuition is to maximize the amount of released memory spae along with the I/O

eÆieny of the memory ush. For simpliity, we take no aount of the urrent range�le

size, although this parameter a�ets the merging ost, and the probability of having

future I/O requests to a partiular range. Despite its simpliity, this vitimization rule

has proved robust aross our extensive experimentation.

The pseudoode of Rangemerge appears in Algorithm 6.3. The server reeives items

75



Algorithm 6.3 Pseudoode of Rangemerge

Input: Rangetable with memory size >= M

Output: Rangetable with memory size < M

1: // Vitimize a range

2: R := range whose tree oupy max total memory

3: // Flush memory items of R to its range�le

4: Merge range�le f

R

of R with its tree m

R

into empty bu�er b

5: if (sizeof(b) > F ) then // If blok will overow

6: k := ⌈sizeof(b)=F ⌉

7: else

8: k := 1

9: end if

10: Alloate k new range�les f

1
R

; : : : ; f

k

R

on disk

11: Split b into k subranges R

1
; : : : ; R

k

of equal disk size

12: Transfer subranges to respetive f

1
R

; : : : ; f

k

R

13: Build hunkindexes for f

1
R

; : : : ; f

k

R

14: Update rangeindex with entries for R

1
; : : : ; R

k

15: // Clean up memory and disk

16: Free tree m

R

17: Delete range�le f

R

and its hunkindex

in the key interval assigned by the datastore index. We insert new items in their trees

until the oupied memory spae reahes the memory limit M . At this point, we pik

as vitim R the range of maximum memory spae (line 2), read its range�le f

R

from

disk, merge it with the respetive tree m

R

in memory, and move the merged range bak

to disk (lines 4-13). The addition of new items may lead the size of range R to exeed

the range�le apaity F (line 5). In this ase, we equally split R into k (usually, k = 2)

subranges and move the data to k new range�les on disk (line 11). Finally, we free the

itemtable spae oupied by R, and delete the old range�le from the disk (lines 16-17).

Pratially, ushing a single range is suÆient to redue the oupied memory below the

memory limit.

76



Diskstore

Memstore
put() get()

Compaction Manager

(Nomerge, SMA, Geometric, Rangemerge, Remerge)

...

Itemtable

File

Chunkindex

File

Chunkindex

File

Chunkindex

Figure 6.4: Prototype framework with several ompation methods as plugins.

6.5 Prototype Implementation

We developed a general storage framework to persistently manage key-value items over

loal disks. The interfae supports the put(k,v) all to insert the pair (k,v), the get(k)

all to retrieve the value of key k, the get(k,n) all to retrieve n onseutive reords from

key ≥ k, and the get(k1,k2) all to retrieve the reords with keys in the range [k1; k2].

Our prototype adopts a multithreaded approah to support the onurrent exeution of

queries and updates, and it is designed to easily aept di�erent ompation methods as

pluggable modules. The implementation onsists of three main omponents, namely the

Memstore, the Diskstore, and the Compation manager (Figure 6.4).

The Memstore uses a thread-safe red-blak tree in memory to maintain inoming items

in sorted order (or multiple trees, in ase of Rangemerge), and the Diskstore aesses

eah sorted �le on disk through a sparse index maintained in memory. The Compation

manager implements the �le merging sequenes of the following methods: Nomerge, SMA,

Geometri, Rangemerge and Remerge. We implemented the methods using C++ with

the standard template library for basi data strutures and 3900 unommented lines of

new ode.

To validate the auray of our experimentation, we ompared the ompation ativity

of our storage framework with that of Cassandra. From review of the published literature

and the soure ode, we found that Cassandra implements a variation of the SMA (k=4)

algorithm [52℄. Aordingly, the stored data is organized into levels of up to k=4 �les;

every time the threshold of k=4 �les is reahed at one level, the �les of this level are merged

77



 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8  9  10

D
a

ta
 t

ra
n

s
fe

rr
e

d
 p

e
r 

c
o

m
p

a
c
ti
o

n
 (

G
B

)

Data inserted (GB)

SMA (k=4)
Cassandra

 0.01

 0.1

 1

Figure 6.5: We observe similar ompation ativity between Cassandra and our prototype

implementation of SMA (k=4). The height (y-axis value) of eah mark denotes the

transfer size of the respetive ompation.

into a single �le of the next level (Setion 2.2.2). In our framework we set M=25MB

beause we found that Cassandra by default ushes to disk 25MB of data every time

memory gets full. For omparison fairness we disable data ompression and insertion

throttling in Cassandra. We reate the Cassandra workload using YCSB with 2 lients,

whih respetively generate puts at 500req/s and gets at 20req/s. The stored items are

key-value pairs with 100B key and 1KB value, while the size of the get range is drawn

uniformly from the interval [1,20℄. The experiment terminates when 10GB of data is

inserted. We generate a similar workload in our framework with two threads.

In Figure 6.5 we show the amount of transferred data as we insert new items into the

Cassandra and our prototype system respetively. The height of eah mark refers to the

total amount of transferred data during a ompation. Aross the two systems we notie

quasi-periodi data transfers of exatly the same size. In the ase that a merge at one level

asades into further merges at the higher levels, in our prototype we omplete all the

required data transfers before we aept additional puts. Consequently, it is possible to

have multiple marks at the same x position. Instead Cassandra allows a limited number of

puts to be ompleted between the asading merges, whih often introdues a lag between

the orresponding marks. Overall the two systems transfer equal amount of data using

the same ompation pattern during the dataset insertion.

78



6.6 Summary

To ahieve fast ingestion of new data, salable datastores usually follow a write-optimized

approah. Inoming updates are simply logged to disk and aumulated in memory,

before the system returns ontrol to the lient. When later on the available memory is

exhausted, a ush operation will sort all memory updates and transfer them to a new

�le on disk. To improve query performane and relaim spae from obsolete entries, the

system periodially selets and merges multiple disk �les into a single �le. These ush

and merge operations are olletively alled ompations and are usually exeuted in the

bakground.

This general approah of amortizing the insertion ost over the periodi ompations is

adopted by most prodution datastores as it ahieves high ingestion throughput. However,

it inreases the lateny of range queries as it fragments the data of eah key in several

disk �les, ausing multiple random I/Os per query. Furthermore, even though bakground

ompations are only periodially exeuted, they are very resoure-intensive and have a

signi�ant impat on the serving of onurrent queries. Finally, this approah requires

roughly half of the storage spae to be reserved for the reation of new �les during merges.

To address these issues, we present the Rangetable storage layer and the Rangemerge

method to eÆiently manage the memory and disks of datastore servers. We also de-

sribe our prototype storage framework and provide details about the implementation.

Rangemerge improves query lateny by keeping the entries ontiguously stored on disk

and minimizes the interferene between ompations and queries by only partially ush-

ing entries from memory to disk using lighter ompations. The indexing throughput is

maintained high by sheduling the merges of memory and disk entries based on their I/O

eÆieny. Furthermore, Rangemerge impliitly avoids the exessive storage reservation of

other methods.

79



Chapter 7

Performane Evaluation of Rangemerge

7.1 Experimentation Environment

7.2 Query Lateny and Disk Files

7.3 Insertion Time

7.4 Sensitivity Study

7.5 Memory Size

7.6 Key Distribution

7.7 Solid-State Drives

7.8 Disussion

7.9 Summary

In the present setion, we experimentally evaluate the query lateny and insertion

time aross several ompation methods. We show that Rangemerge ahieves minimal

query lateny of low sensitivity to the I/O traÆ from onurrent ompations, and

approximates or even beats the insertion time of write-optimized methods under various

onditions. We also examine the performane sensitivity to various workload parameters

80



and storage devies. Although not expliitly shown, Rangemerge also trivially avoids the

100% overhead in storage spae of other methods [98℄.

7.1 Experimentation Environment

We did our experiments over servers running Debian Linux 2.6.35.13. Eah mahine

is equipped with one quad-ore 2.33GHz proessor (64-bit x86), one ativated gigabit

ethernet port, and two 7200RPM SATA2 disks. Unless otherwise spei�ed, we on�gure

the server RAM equal to 3GB. Eah disk has 500GB apaity, 16MB bu�er size, 8.5-10ms

average seek time, and 72MB/s sustained transfer rate. Similar hardware on�guration

has been used in a reent related study [86℄. We store the data on one disk over the Linux

ext3 �lesystem. In Rangemerge, we use range�les of size F=256MB. We also examine

Remerge, Nomerge, Geometri (r=2, r=3, or p=2) and SMA (k=2 or k=4, with unlimited

`). In all methods, we use hunks of size C=64KB. From Setion 2.2.2, variations of these

methods are used by Bigtable, HBase (Geometri, r=3), Anvil and bLSM (Geometri,

r=2), GTSSL (SMA, k=4), and Cassandra (SMA, k=4).

We use YCSB to generate key-value pairs of 100 bytes key and 1KB value. On a

single server, we insert a dataset of 9.6M items with total size 10GB. Similar dataset

sizes per server are typial in related researh (e.g., 1M [32℄, 9M [81℄, 10.5GB [86℄,

16GB [98℄, 20GB [33℄). The 10GB dataset size �lls up the server bu�er several times

(e.g., 20 for 512MB bu�er spae) and reates interesting ompation ativity aross the

examined algorithms. With larger datasets, we experimentally found the server behavior

to remain qualitatively similar, while enormous datasets are typially partitioned aross

multiple servers. For experimentation exibility and due to lak of publi traes [4℄, we

use syntheti datasets with keys that follow the uniform distribution (default), Zip�an

distribution, or are partially sorted [33℄. We take average measurements every 5s, and

smooth the output with window size 12 (1-min sliding window) for readability. Our

default range query reads 10 onseutive items.

The memory limit M refers to the memory spae used to bu�er inoming updates.

Large system installations use dynami assignment to ahieve load balaning by having

a number of servie partitions (miro-partitions) that is muh larger than the number

81



of available mahines [38℄. For instane, the Bigtable system stores data in tablets with

eah mahine managing 20 to 1,000 tablets. Consequently, the default bu�er spae per

tablet lies in the range 64-256MB [41℄. Other related researh on�gures the memory

bu�er with size up to several GB [98, 33℄. As a ompromise between these hoies, we

set the default memory limit equal to M=512MB; thus we keep realisti (1/20) the ratio

of memory over the 10GB dataset size and ensure the ourrene of several ompations

throughout an experiment. In Setion 7.3 we examine memory limit and dataset size up

to 4GB and 80GB respetively. We further study the performane sensitivity to memory

limit M in Figure 7.9.

7.2 Query Lateny and Disk Files

First we measure the query lateny of a mixed workload with onurrent puts and gets.

An I/O over our disk takes on average 13.4ms allowing maximum rate about 74req/s

(an be higher for stritly read workloads). We on�gure the get load at 20req/s so that

part of the disk bandwidth an be used by onurrent ompations. We also set the put

rate at 2500req/s, whih is about half of the maximum possible with 20get/s (shown in

Figure 7.6). The above ombined settings oupy roughly two thirds of the total disk

bandwidth and orrespond to a write-dominated workload (get/put ratio about 1/100 in

operations and 1/25 in items) [86℄. We examine other ombinations of put and get loads

in Setion 7.4.

We assume that when memory �lls up, the put thread is bloked until we free up

memory spae. Although write pauses an be ontrolled through early initiation of mem-

ory ushing [93℄, their atual e�et to insertion performane additionally depends on the

ushing granularity and duration (explored in Setion 7.8). In order to determine the

onurreny level of query handling in the server, we varied the number of get threads

between 1 and 20; then we aordingly adjusted the request rate per thread to generate

total get load 20req/s. The measured get lateny inreased with the number of threads,

but the relative performane di�erene between the methods remained the same. For

larity, we only illustrate measurements for one put and one get thread.

In Figure 7.1a we examine three representative methods: SMA (k=4), Geometri

82



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  20  40  60  80  100  120

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

SMA (k=4)
Geometric (r=2)

Rangemerge

(a) Get lateny in three methods

 0
 10
 20
 30
 40
 50
 60

G
e
t 
la

te
n
c
y
 (

m
s
)

 0

 5

 10

 15

 20

 0  20  40  60  80  100G
e
t 
th

ro
u
g
h
p
u
t 
(r

e
q
/s

)

Time (min)

(b) Compations in Geom (r=2)

Figure 7.1: During onurrent inserts and queries, (a) the get lateny of Geometri (r=2)

and SMA (k=4) has substantially higher variability and average value than Rangemerge,

and (b) the get throughput of Geometri (r=2) drops as low as 15.5req/s during om-

pations (grey bakground).

(r=2), and Rangemerge. The experiment runs separately for eah method until loading

10GB. The get lateny of Rangemerge (avg: 15.6ms, std: 8.2ms, max: 30.5ms) has

lower average value by 51-83% and standard deviation by 2.5-3 times than Geometri

(avg: 23.5ms, std: 20.5ms, max: 64.5ms) and SMA (avg: 28.6ms, std: 24.3ms, max:

93.3ms). Also Remerge (not shown) is less responsive and preditable (avg: 21.1ms,

std: 10.6ms, max: 35.4ms) than Rangemerge. However, SMA redues the experiment

duration to 90min from 119min required by Rangemerge and 112min by Geometri (see

also Figure 7.9). In Figure 7.1b we illustrate the get performane of Geometri, with

onurrent ompations as vertial grey lanes. Compations inrease lateny by several

fators and redue throughput by 22.5%, from 20req/s to 15.5req/s. The throughput

of SMA (not shown) also drops to 10.4req/s, unlike the Rangemerge throughput that

remains above 17.4req/s.

In Figure 7.2a we depit the number of �les (left y axis) and the average get lateny

(right y axis) for Geometri. After every ompation, we measure the get lateny as

average over twenty random requests. From every �le, the get operation reads the items of

the requested key range (Figure 6.3). Assuming no onurrent ompations, the measured

lateny varies between 11.9ms and 49.0ms, as the number of �les per key varies between 1

83



 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7  8  9  10
 0

 10

 20

 30

 40

 50

 60
N

u
m

b
e
r 

o
f 
fi
le

s
 p

e
r 

k
e
y
 r

a
n
g
e

G
e
t 
la

te
n
c
y
 (

m
s
)

Data inserted (GB)

Get latency
Number of disk files

(a) Files and get lateny in Geom (r=2)

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

Nomerge

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

Geom (p=2)

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

SMA (k=4)

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

Rangemerge

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

Geom (r=2)

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9 10

Data inserted (GB)

Remerge

(b) Number of �les per key range

Figure 7.2: (a) At the insertion of 10GB with M=512MB using Geometri partitioning

(r=2), get lateny (at load 10req/s) is losely orrelated to the number of �les reated.

(b) We show the number of �les maintained per key range for six methods.

and 4. The evident orrelation between get lateny and the number of �les in Geometri

explains the variation of get performane in between ompations in Figure 7.1b.

We further explore this issue in Figure 7.2b, where we show the number of maintained

�les as funtion of the dataset size. Nomerge inreases the number of sorted �les up to

20 (only limited by the dataset size), and SMA (k=4) inreases the number of reated

�les up to 8. Geometri with r=2 and p=2 varies the number of �les up to 4 and 2,

respetively. Instead, Remerge always maintains a single �le for the entire dataset, while

Rangemerge stritly stores on a single �le the items of a range�le range; both methods

lead to roughly one random I/O per get operation. Overall Rangemerge leads to more

responsive and preditable get operations with onurrent puts.

We also examine the generated I/O ativity of ompations. In Figure 7.3 we illustrate

the data amount written to and read from disk for 10GB dataset and M=512MB. The

plots of the �gure are ordered aording to the dereasing size of the maximum transferred

amount. Remerge merges data from memory to an unbounded disk �le with 10GB �nal

size. At the last ompation, the amount of transferred data beomes 20.5GB. Geometri

redues the transferred amount down to 16.5GB for r=2. In SMA, k=4 limits the trans-

ferred amount to 4.5GB; k=2 (not shown) leads to 14.5GB maximum ompation transfer

84



 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9  10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Remerge

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0  1  2  3  4  5  6  7  8  9  10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

SMA (k=4)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  1  2  3  4  5  6  7  8  9  10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Geom (p=2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9  10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Rangemerge

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  1  2  3  4  5  6  7  8  9  10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Geom (r=2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6  7  8  9  10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Nomerge

Figure 7.3: I/O intensity of ompations. The disk traÆ of ompations in Rangemerge

is omparable to that of Nomerge with M=512MB.

with 6 �les. It is interesting that Rangemerge redues to 594MB the maximum trans-

ferred amount per ompation bringing it very lose to 512MB periodially transferred

by Nomerge. Thus Rangemerge makes ompations less I/O aggressive with respet to

onurrent gets (Figure 7.1a).

7.3 Insertion Time

Next we study the umulative lateny to insert data items one-by-one into the storage

server. Insertion inludes some proessing to sort the data in memory, but mainly involves

I/O to ush data and apply ompations over the disk �les. In order to ensure the

generality of our results, we measured the total insertion time at di�erent sales of dataset

size and memory limit. In Figure 7.4a and Figure 7.4b the umulative insertion time of

Geometri, SMA and Rangemerge forms a similar urve as long as the ratio of dataset

size over memory limit is onstant (e.g., 5GB/256MB=40GB/2GB=20). We on�rmed

this behavior aross several parameter sales that we examined.

In Figure 7.5a (with log y axis) we examine the time required to insert a dataset using

di�erent ompation methods. We already displayed the number of maintained �les for

di�erent methods in Figure 7.2b. Nomerge takes 9.3min to reate 20 �les on disk, and

85



 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80  90  100
 0

 20

 40

 60

 80

 100

 120

 140

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 5
G

B
)

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 4
0

G
B

)

Data inserted (%) - Geometric (r=2)

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

(a) Geom (r=2)

 0

 2

 4

 6

 8

 0  10  20  30  40  50  60  70  80  90  100
 0

 10

 20

 30

 40

 50

 60

 70

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 5
G

B
)

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 4
0

G
B

)

Data inserted (%) - SMA (k=4)

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

 0

 5

 10

 15

 20

 25

 0  10  20  30  40  50  60  70  80  90  100
 0

 50

 100

 150

 200

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 5
G

B
)

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 4
0

G
B

)

Data inserted (%) - Rangemerge

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

(b) SMA (k=4), Rangemerge

Figure 7.4: Saling on�guration parameters. The insertion progress is similar between

the on�guration of M=256MB with 5GB dataset (left y-axis) and M=2GB with 40GB

(right y-axis) for Geometri (r=2), SMA (k=4) and Rangemerge.

SMA (k=4) spends 16.2min for 8 �les. Geometri takes 31.7min with r=2, 32.4min with

r=3, and 38.0min with p=2 (≤ 2 �les). Remerge requires 92.5min to maintain a single �le

on disk, and Rangemerge takes 47.8min. As expeted, the smaller the number of disk �les

maintained, the longer it takes to insert the dataset. One exeption is Rangemerge that

requires about half the insertion time of Remerge to e�etively store eah key at a single

disk loation. Geometri redues the insertion time of Rangemerge by 20.5%{33.6%,

but requires 2-4 random I/Os on disk to handle a query (Figure 7.2b) and has greater

variability in query lateny due to its I/O-intensive bakground ompations (Figure 7.1a).

In addition, under modest onurrent query load the insertion time of Rangemerge is lower

than Geometri (p=2) and similar to Geometri (r=3) (Setion 7.4).

In Figure 7.5b we repeat the above experiment using a dataset of 80GB withM=4GB

over a server with 6GB RAM. Nomerge takes 1.5hr and SMA (k=4) 2.9hr. Geometri

takes 5.8hr with r=2, 7.4hr with r=3, and 7.7hr with p=2. Remerge requires 13.9hr and

Rangemerge takes 6.4hr. Interestingly, the insertion time of Rangemerge is lower than

that of Geometri with p=2 and r=3, even though it stores eah disjoint range of keys on

a single �le on disk. We attribute this behavior to the more eÆient use of the available

memory by Rangemerge, further explored in Setion 7.5.

86



 1

 10

 100

 0  1  2  3  4  5  6  7  8  9  10

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Data inserted (GB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Insertion time (10GB dataset, M=512MB)

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Data inserted (GB)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)
Nomerge

(b) Insertion time (80GB dataset, M=4GB)

Figure 7.5: (a) The insertion time (log y axis) of Rangemerge is about half the insertion

time of Remerge and losely traks that of Geometri (p=2). (b) With M=4GB and

80GB dataset size Rangemerge has lower insertion time than Geometri (p=2) and (r=3)

while storing eah key at a single disk loation.

7.4 Sensitivity Study

We did an extensive sensitivity study with respet to the onurrent load. Spei�ally,

we examined how the get lateny and the total insertion time is a�eted when we vary

the put and get load of the system.

First we evaluate the impat of the put load to the query and insertion time. As we

vary the put load between 1000-20000req/s, the average lateny of onurrent gets is lowest

under Rangemerge (Figure 7.6a). Aording to the needs of Servie Level Agreements [40,

101, 104℄, we also onsider the 99th perentile of get lateny in Figure 7.6b. Rangemerge

and Remerge are the fastest two methods. Moreover, under onurrent puts and gets,

the insertion time of Rangemerge losely traks that of Geometri (r=3) and lies below

that of Remerge and Geometri (p=2) (Figure 7.6). We omit Nomerge beause it leads

to exessively long get lateny.

We also examine the sensitivity to the get size assuming gets of rate 20req/s onur-

rently served with puts of rate 2500req/s. In Figures 7.7a and 7.7b we use logarithmi y

axis to depit the lateny of get requests. Aross di�erent get sizes and espeially at the

larger ones (e.g., 10MB or 100MB), Rangemerge is distintly faster (up to twie or more)

than the other methods both in terms of average get lateny and the respetive 99th per-

87



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  5000  10000  15000  20000

G
e
t 
la

te
n
c
y
 (

m
s
)

Put load (req/s)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(a) Average get lateny

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5000  10000  15000  20000

G
e
t 
la

te
n
c
y
 (

m
s
)

Put load (req/s)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(b) 99th perentile of lateny

 0

 50

 100

 150

 200

 250

 0  5000  10000  15000  20000

In
s
e
rt

io
n
 t
im

e
 (

m
in

)

Put load (req/s)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)

() Cumulative insertion time

Figure 7.6: Performane sensitivity to put load assuming onurrent get requests at rate

20req/s and san size 10.

 1

 10

 100

 1000

 1  10  100  1000  10000  100000

G
e
t 
la

te
n
c
y
 (

m
s
)

Range get size (keys retrieved)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(a) Average get lateny

 1

 10

 100

 1000

 1  10  100  1000  10000  100000

G
e
t 
la

te
n
c
y
 (

m
s
)

Range get size (keys retrieved)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(b) 99th perentile of lateny

 50

 100

 150

 200

 250

 1  10  100  1000  10000  100000

In
s
e
rt

io
n
 t
im

e
 (

m
in

)

Range get size (keys retrieved)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)

() Cumulative insertion time

Figure 7.7: Sensitivity to range get size assuming onurrent load of 2500req/s put rate

and 20req/s get rate.

entile. From Figure 7.7 it also follows that the onurrent get load has an impat on the

insertion time. Remerge takes as high as 285min with larger get sizes, unlike Rangemerge

that remains between two instanes of the Geometri method (r=2 and p=2).

In Figure 7.8, as the load of onurrent gets varies up to 40req/s, the insertion time

of Rangemerge lies at the same level as Geometri and well below Remerge. Under

mixed workloads with both puts and gets, from Figures 7.6, 7.7 and 7.8 we onlude that

Rangemerge ahieves the get lateny of Remerge and the insertion time of Geometri.

88



 0

 50

 100

 150

 200

 0  5  10  15  20  25  30  35  40

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Get load (req/s)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)

Figure 7.8: Sensitivity of insertion time to

get rate of san size 10 with onurrent

put rate set at 2500req/s.

 1

 10

 100

 1000

128 256 512 1024 2048

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Memory limit (MB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

Figure 7.9: Impat ofM to insertion time.

With M=2GB, Rangemerge approahes

Nomerge and stays by at least 21% below

the other methods.

7.5 Memory Size

We also evaluate how insertion time depends on the memory limit M (Figure 7.9 with

logarithmi y axis). As we inrease M from our default value 512MB to 2GB, both

Remerge and Rangemerge proportionally redue the disk I/O time. This behavior is

onsistent with the respetive I/O omplexities in Table 2.1 and Setion 9.2. AtM=2GB,

Rangemerge lowers insertion time to 15.2min, whih approximates the 10.2min required

by Nomerge. The remaining methods require more time, e.g., 19.3min for Geometri

(r=2), 19.8min for SMA (k=4) and 30.9min for Remerge. From additional experiments

(not shown) we found that a higherM does not substantially redue the get lateny of the

remaining methods exept for the trivial ase that the entire dataset �ts in memory. We

onlude that the insertion time of Rangemerge approximates that of Nomerge at higher

ratio of memory over dataset size.

7.6 Key Distribution

There are many senarios where the distribution of keys inserted into the datastore is

skewed or the keys are already sorted. For example, datastores are ommonly used to

store timeseries (e.g., system events or user transations). In these ases the key is usually

89



 0

 20

 40

 60

 80

 100

 120

 0  10  20  30  40  50  60  70  80  90  100

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Percentage of keys ordered (%)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Ordered keys

 0

 20

 40

 60

 80

 100

 120

 0  0.5  1  1.5  2  2.5  3  3.5  4

In
s
e
rt

io
n
 t
im

e
 (

m
in

)

α parameter of Zipf distribution

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(b) Zip�an keys

Figure 7.10: Sensitivity of insertion time to key distribution, as we generate put requests

bak-to-bak with zero get load.

a timestamp so we expet the keys to be ordered |or mostly ordered, if items are olleted

from multiple soures.

In Figure 7.10a we investigate how insertion time is a�eted by the perentage of keys

inserted in sorted order. Rangemerge approahes Nomerge as the perentage of sorted

keys inreases from 0% (uniform distribution) to 100% (fully sorted). This behavior is

antiipated beause the sorted order transforms merges to sequential writes with fewer

reads.

In Figure 7.10b we draw the inserted keys from a Zip�an distribution and study the

impat of parameter � to the insertion time. The higher we set the parameter �, the

more items appear at the head (popular part) of the distribution. Rangemerge naturally

exploits the higher item popularity to again approximate Nomerge.

7.7 Solid-State Drives

Given the enormous tehnologial improvement of solid-state drives (SSD) over the last

deade, it is reasonable to onsider their behavior as part of the storage hierarhy in a

datastore server. Flash SSDs redue I/O lateny at the ost of hardware equipment and

system omplexity; the limited lifespan and the relatively poor random-write performane

90



 1

 10

 0  1  2  3  4  5  6  7  8  9  10

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Data inserted (GB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Cumulative insertion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  10  20  30  40  50

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

SMA (k=4)
Geometric (r=2)

Rangemerge

(b) Get lateny

Figure 7.11: (a) Over an SSD, the insertion time of Rangemerge lies halfway between

that of Nomerge and Remerge. (b) Rangemerge redues the variability of get lateny in

omparison to SMA (k = 4) and Geometri (r = 2).

have been reognized as problem for the wider deployment of SSDs [77℄. In our following

experiments we assume that an SSD fully replaes the hard disk drive (HDD) as medium

of persistent storage for the written key-value pairs. Our SSD is a SATA2 60GB solid-

state drive of max read throughput 285MB/s and max write throughput 275MB/s. In

Figure 7.11a we show the umulative insertion time over an SSD for a 10GB dataset

and memory limit 512MB. The ompation methods applied over the SSD redue by

28%-60% the insertion time measured over the HDD (Figure 7.9). However, the relative

performane between the methods remains similar aross the two devies. In partiular,

Rangemerge redues the insertion time of Remerge by 49% with SSD, and by 53% with

HDD.

Next we examine the query lateny over the SSD devie. From the previous paragraph,

the write data throughput of our SSD devie is about twie as high as that of the HDD.

Therefore we inrease the put rate of the bakground traÆ to 5000req/s for the SSD

from 2500req/s previously used for the HDD (Setion 7.2). In order to estimate the query

transation apaity of the two devies, we use a syntheti benhmark with eah request

involving a random seek followed by a read of 512B blok. Thus we found the read

performane of the HDD equal to 76req/s, and that of the SSD 4323req/s. First we tried

get load of the SSD at rate 1000req/s in analogy to 20req/s that we used for the HDD

91



(26% of 76req/s). However the SSD devie is saturated (dramati drop of throughput)

with onurrent workload of 5000req/s puts and 1000req/s gets. Thus we redued the get

load to 100req/s, so that we stay below the performane apaity of the SSD (and keep

lose to 1/100 the operation get/put ratio as with the HDD).

In Figure 7.11b we ompare the get latenies of SMA (k = 4), Geometri (r = 2) and

Rangemerge. We terminate the experiment after we insert 10GB into the system onur-

rently with the get load. In omparison to the get lateny over the HDD (Figure 7.1a),

the measured latenies of the SSD are about an order of magnitude lower. However the

urves of the three methods look similar aross the two devies. In fat the maximum

get lateny of Rangemerge reahes 4.5ms, while that of Geometri (r = 2) gets as high as

7.1ms and that of SMA (k = 4) 8.6ms. We onlude that the relative insertion and query

performane of the ompation methods remains similar aross the two di�erent types of

storage devies that we experimented with.

7.8 Disussion

In this setion, we disuss about pratial issues that we onsidered in our design and

potential limitations resulting from our assumptions.

7.8.1 Compation I/O Intensity

Motivated from the highly variable query lateny in several existing datastores, we propose

the Rangemerge method to redue the I/O intensity of �le merging in several ways: (i)

We only ush a single range from memory rather the entire bu�er spae, and keep the

amount of I/O during a ush independent of the memory limit. (ii) We ombine ushing

and ompation into a single operation to avoid extra disk reads during merging. (iii) We

keep the size of disk �les bounded in order to avoid I/O spikes during �le reation. The

on�gurable size of the range�le provides diret ontrol of the I/O involved in a range

ush.

In Table 7.1 we onsider loading 10GB to a datastore at unthrottled insertion rate.

From the transferred data and the ompation time we estimate every ompation to

require 32.7-36.2MB/s, whih is about half of the sequential disk bandwidth. If we redue

92



Table 7.1: Amount of ushed and totally transferred data per ompation, delay per

ompation, and total insertion time for di�erent range�le sizes of Rangemerge.

Delays and Transferred Data over a Hard Disk

Range�le Flushed Transferred Compation Insertion

(MB) (MB) (MB) Time (s) Total (min)

32 4.9 49.1 1.5 54.2

64 9.6 97.8 2.7 51.6

128 19.1 196.0 5.5 51.6

256 37.1 386.8 11.0 53.8

the range�le size from F=256MB to F=32MB, the average duration of a ompation drops

from 11.0s to 1.5s, but the respetive total insertion time varies in the range 51.6min to

54.2min. It is not surprising that M=32MB raises insertion time to 54.2min, beause

a smaller range�le auses more frequent and less eÆient data ushes. In pratie we

an on�gure the range�le size aording to the insertion and query requirements of the

appliation.

Previous researh has already explored ways to ontinue aepting insertions during

memory ushing. When the memory limit M is reahed, it is possible to alloate addi-

tional memory spae of size M to store new inserts, and let previously bu�ered data be

ushed to disk in the bakground [28℄. Alternatively, a low and high watermark an be

set for the used fration of memory spae. The system slows down appliation inserts

when the high watermark is exeeded, and it stops merges when the oupied memory

drops below the low watermark [93℄. Depending on the rate of inoming inserts, suh

approahes an defer the pause of inserts. However they do not eliminate the interferene

of ompation I/O with query requests that we fous on in our present study. Essen-

tially, the above approahes an be applied orthogonally to the Rangemerge ompation

mehanism that allows queries to graefully oexist with inserts.

7.8.2 Queries

Range queries are supported by most datastores that use range partitioning (e.g., Bigtable,

Cassandra) and are used by data serving and analytis appliations (Setion 6.2). We

do not onsider Bloom �lters beause they are not appliable to range queries, and their

93



e�etiveness in point queries has been extensively explored previously; in fat, support

for range queries an orthogonally oexist with Bloom �lters [28℄.

We reognize that query performane is hard to optimize for the following reasons: (i)

Servie-level objetives are usually spei�ed in terms of upper-perentile lateny [40, 104℄.

(ii) Query performane is orrelated with the number of �les at eah server [15, 81, 98℄. (iii)

The amortization of disk writes may lead to intense devie usage that auses intermittent

delay (or disruption) of normal operation [71, 69, 70, 101℄. (iv) The diversity of supported

appliations requires aeptable operation aross di�erent distributions of the input data

keys [33℄.

7.8.3 Updates

Inoming updates are inserted to the itemtable, and queries are direted to both the

itemtable and the range�les (Figure 6.4). Although the itemtable supports onurrent

updates at high rate, the rangeindex along with the range�les and their hunkindexes

remain immutable between range merges. Every few seonds that Rangemerge splits a

range and resizes the rangeindex, we protet the rangeindex with a oarse-grain lok.

We �nd this approah aeptable beause the rangeindex has relatively small size (in the

order of thousands entries) and only takes limited time to insert a new range.

The enormous amount of I/O in write-intensive workloads has led to data strutures

that involve infrequent but demanding sequential transfers [79, 63℄. Exessive onsump-

tion of disk bandwidth in maintenane tasks an limit interative performane. Deamor-

tization is a known way to enfore an upper bound to the amount of onseutive I/O

operations at the ost of extra omplexity to handle interrupted reorganizations [11℄. In-

stead, Rangemerge naturally avoids to monopolize disk I/O by applying ush operations

at granularity of a single range rather than the entire memory bu�er and on�guring the

range size through the range�le parameter F .

7.8.4 Availability and Reovery

Availability over multiple mahines is generally ahieved through data repliation by the

datastore itself or an underlying distributed �lesystem [28, 40, 32℄. Durability require-

ments depend on the semantis and performane harateristis of appliations, while data

94



onsisteny an be enfored with a quorum algorithm aross the available servers [40℄. We

onsider important the freshness of aessed data due to the typial semantis of online

data serving [30℄. For instane, a shopping art should be almost instantly updated in

eletroni ommere, and a message should be made aessible almost immediately after

it arrives in a mailbox.

At permanent server failure, a datastore reovers the lost state from redundant replias

at other servers. After transient failures, the server rebuilds index strutures in volatile

memory from the range�les and the write-ahead log. We normally log reords about

inoming updates and ranges that we ush to disk. Thus we reover the itemtable by

replaying the log reords and omitting items already ushed to range�les. Holding a opy

of the hunkindex in the respetive range�le makes it easy to reover hunkindexes from

disk. We also rebuild the rangeindex from the ontents of the itemtable and the range�les.

7.8.5 Cahing

It is possible to improve the query performane with data ahing applied at the level

of bloks read from disk or data items requested by users [28, 38℄. We urrently rely on

the default page ahing of the system without any sophistiation related to �le mapping

or item ahing. Prior researh suggested the signi�ane of data ompation regardless

of ahing [98℄. We leave for future work the study of multi-level ahing and dynami

memory alloation for the ompeting tasks of update bathing and query data reuse.

7.9 Summary

After onsideration of existing solutions in storage management of datastores, we point

out several weaknesses related to high query lateny, interferene between queries and

updates, and exessive reservation of storage spae. To address these issues, we propose

and analyze the simple yet eÆient Rangemerge method and Rangetable struture. We

implement our method in a prototype storage system and experimentally demonstrate

that Rangemerge minimizes range query time, keeps low its sensitivity to ompation

I/O, and removes the need for reserved unutilized storage spae. Furthermore, under

various moderate onditions Rangemerge exeeds the insertion performane of pratial

95



write-optimized methods, and naturally exploits the key skewness of the inserted dataset.

96



Chapter 8

Implementation of Rangemerge in a

Prodution System

8.1 LevelDB Implementation

8.2 Performane Evaluation

8.3 Summary

In this setion, we desribe the implementation of Rangemerge in a prodution system.

We present the design of our logging and reovery mehanisms, and go over the details of

implementing Rangemerge and other ompation methods in LevelDB. Finally, we eval-

uate the eÆieny of our logging approah and ompare the performane of Rangemerge

with those of related methods.

8.1 LevelDB Implementation

To study the appliability and the bene�ts of Rangemere on a prodution system, we

implemented Rangemerge in LevelDB [70, 93℄. LevelDB is a storage library written by

Google that provides an ordered mapping from string keys to string values. It has the

97



...

Level 0

Level 1

Level 2

Level 6

...

Memtable
Memory

Disk

0

1

2

3

4

5

6

4 files

10MB

100MB

1GB

10GB

100GB

1TB

4MB

2MB

2MB

2MB

2MB

2MB

2MB

yes

no

no

no

no

no

no

Merge

trigger

File

size

Files 

overlap

flush

merge

Level

Figure 8.1: Files are hierarhially organized in LevelDB. When memtable is full, it is

ushed into an SSTable at level 0. Thus, level-0 �les may ontain overlapping ranges of

keys. When the size of a level L exeeds its threshold, a single �le from level L (or all

level �les, if L = 0) along with all overlapping �les from level L+1 are merged and stored

as a number of 2MB �les at level L+ 1. The maximum size of a level is expressed either

as maximum number of �les (L = 0) or as maximum total size (L > 0).

same general design as the BigTable tablet stak (Setion 2.2.1). However, it was written

from srath in order to have no dependenies on internal Google libraries. It supports the

typial put(k,v), get(k), delete(k) key-value API to modify and query the database,

along with the forward and bakward iterators that provide a funtionality similar to

range queries. In omparison to our prototype, LevelDB inludes some additional useful

features suh as bath updates that are ommitted atomially, snapshots that provide

a onsistent read-only view of the database, logging and blok heksums for durability

and onsisteny, and ompression. It is urrently used as bakend database for the Riak

distributed datastore (Setion 2.2.1) and the Google Chrome browser, but it has also been

used as �le system bakend [88℄.

Inoming updates in the form of key-value pairs are inserted into a memory bu�er

alled memtable, whih is implemented as a skip list. When the memtable size reahes a

prede�ned threshold (4MB by default), the memory ontents are sorted, indexed and then

written to disk as an SSTable [28℄. An SSTable is an immutable �le storing a sequene

of key-value entries sorted by key. The set of SSTables is organized into a sequene of

levels (Figure 8.1). SSTables generated from the memtable are plaed into level 0. When

the number of �les in level 0 exeeds a ertain threshold (urrently 4), all level-0 �les are

98



merged together with all overlapping level-1 �les to produe a sequene of new level-1

�les (a new �le is reated for every 2MB of data). When the total size of �les at level L

(L > 0) exeeds 10L MB, one �le from level L and all of the overlapping �les from level

L+ 1 are merged to form a set of new �les for level L + 1.

In partiular, eah newly reeived update is �rst appended to a log �le on disk for

durability and then inserted into the memtable. When the memtable is full, the system: (i)

bloks inoming updates, (ii) makes the memtable read-only, (iii) reates a new memtable

and a new log �le for the new updates, and (iv) resumes updates. A bakground thread

is then sheduled to ompat the old memtable into a level-0 SSTable, free the memtable,

delete the old log �le (sine its entries have been suessfully persisted to disk), and

perform any �le merges required. If there is a system failure before a memtable is written

to disk, its log an be used to reover all its entries after a system restart.

We refatored the LevelDB ode so that the �le merging algorithm is pluggable, and

implemented the merging patterns of Nomerge, Stepped Merge Array, Geometri Parti-

tioning, Remerge and Rangemerge. Sine Rangemerge only partially ushes some items

from memory to disk, we had to modify aordingly the memory management, logging

and reovery subsystems of LevelDB.

8.1.1 Memory Management

Our implementation of Rangemerge in LevelDB maintains for eah range a memtable in

memory and an SSTable on disk. When the umulative size of all memtables exeeds

the memory threshold M , we selet for ushing the range with the largest memtable.

Updates are then temporarily bloked, until we mark the memtable as read-only and

reate a new memtable for this range, at whih point updates are resumed. A bakground

thread subsequently ushes the old memtable to an SSTable, frees the memory of the old

memtable, and �nally merges the new SSTable with the existing SSTable for that range.

8.1.2 Logging

For the logging of the updates in Rangemerge we had two options. The �rst one was

to keep a separate log for eah memtable, and delete it after we ush the memtable

to disk. This logging approah simpli�es log management, but auses a large number

99



87

w

88

j

75

a

6953

d f

80

k

7977

m o

81

s

7863

v x

refcnt: 3

Log-7 Log-6 Log-5Log-8 SST-3 SST-5 SST-2

refcnt: 1 refcnt: 1

put("j", ...)
7778

x m

7576

c a

8182

n s

7980

k o

8586

q p

8384

e t

refcnt: 2

Memory

Disk

8288

j n

85

p

(a – h) (i – p) (q – z)

reflist: 5,7

maxseq: 75

reflist: 6,7,8

maxseq: 80

reflist: 7,8

maxseq: 81

8476

c e

8386

q t

87

w

Ranges:

(a – h): SST-3, 75

( i – p): SST-5, 80

(q – z): SST-2, 81

Logs:   5, 6, 7, 8

Manifest

Figure 8.2: Rangemerge logging in LevelDB.

of disk seeks sine eah new update must be appended to the log �le of the respetive

memtable. The seond approah was to use a single log �le for all memtables. This

provides signi�ant performane bene�ts, as the updates an be handled at sequential

disk bandwidth. However, it ompliates log leaning and reovery as we have to keep

trak of whih log entries are valid (i.e., have not been written to an SSTable) at eah

time. Additionally, to keep the log size bounded, the system must periodially read the

log and remove any obsolete entries, a proess that an easily beome a performane

bottlenek [90℄.

To ombine the logging throughput of the single-log approah with the simpliity

of the per-range-log approah, and additionally avoid the osts assoiated with garbage

olletion, we ame up with a new logging strategy. Similar to the single-log ase, updates

for all memtables are append to a single �le on disk. When this �le reahes a prede�ned

size (8MB), it is sealed and a new log �le is reated. For eah log �le we keep a referene

ounter (refounter) that indiates the number of memtables whih have entries in it

(Figure 8.2). Additionally, for eah memtable we maintain a list of all logs into whih it

has entries (reist). When a new update is appended to log ` and added to a memtable

m, we hek the reist of m; if ` is not present, we append ` to the reist and inrease

the refounter of ` by 1. When a memtable is ushed, we derease by 1 the refounters

of all logs in its reist and lear the reist. When a refounter for a sealed log drops to

zero, we delete the log.

100



8.1.3 Reovery

Every time the disk state of the database hanges (e.g., a �le is added or deleted), LevelDB

atomially updates a speial Manifest �le to reet the new state. The Manifest �le lists

the set of SSTables that make up eah level, the log �le, and other important information.

During reovery the system reads the Manifest �le, deletes all �les not inluded in it, and

then reovers the memtable from the log �le. We also inlude in the Manifest �le the

ranges and the respetive SSTable for eah range.

As shown in Figure 8.2, the log �les ontain all entries that are aumulated in memta-

bles (live entries), as well as a number of entries that have already been stored in SSTables

(obsolete entries). Apparently, we need a mehanism to distinguish between live and ob-

solete entries during log reovery. A naive approah would �nd for eah 〈k; v〉 log entry

the range R that k belongs to, and then hek if the entry is stored in the SSTable of R.

Sine logs are not sorted by key, this approah would require at least one random I/O for

eah entry read, leading to unaeptably long reovery times. What we need is an eÆ-

ient mehanism that quikly heks whether a log entry is stored on an SSTable or not.

Additionally, the mehanism should have small memory footprint and low maintenane

overhead.

LevelDB assigns a monotonially inreasing sequene number to eah update inserted

in the system, whih is stored along with the entry. Every time we ush a range to an

SSTable on disk, we update a ounter that stores the maximum sequene number ushed

to disk for this range (max sequene). This information is also persisted in the Manifest

�le on every range ush (Figure 8.2). After a system restart, we �rst reover from the

Manifest �le the ranges and their max sequene numbers, and reate an empty memtable

for eah range. Then, for eah entry e that is read from a log �le, we �nd the range R

it belongs to, and we ompare its sequene number with the max sequene number of R.

If e:sequene ≤ R:max sequene then this entry was previously ushed to the SSTable

of R and an thus be safely disarded. Otherwise, the entry was part of the memtable

before the rash and is inserted into the memtable of R. When a range R is split into

a number of ranges (typially two), we initialize the max sequene for the memtables of

the new ranges to the max sequene of the memtable of the parent range R.

101



...

Level 0
size: (r-1)×M bytes

Memtable
size: M bytes

Level 1
size: (r-1)×r×M bytes

Level 2
size: (r-1)×r

2
×M bytes

Level L
size: (r-1)×r

L
×M bytes

Level 0

Memtable

Level 0

Memtable

...

Level 0
size: k files

Memtable
size: M bytes

...

Stepped Merge Array

...

Geometric Partitioning

Level 0

Memtable

Rangemerge

Nomerge

...

Remerge

Level 1
size: k files

Level 2
size: k files

Level L
size: k files

Figure 8.3: Various merging strategies, as we implemented them in LevelDB.

8.1.4 Other Merging Strategies

We have also implemented in LevelDB all the ompation managers of our prototype. All

methods keep a single memtable in memory for the aumulation of new updates, exept

for Rangemerge whih maintains a separate memtable for eah range. When the total

byte size of all items in memory exeeds the memory threshold M , Rangemerge ompats

only the largest memtable into an SSTable at level 0; all the other methods ompat

their single memtable. Depending on the method, the memtable ompation may ause

a asade of merges. In ase of Stepped Merge Array, if level ` has more than k �les then

all these �les are merged into a new �le at level `+1. In Geometri Partitioning, the new

�le is �rst merged with the existing level-0 �le. Then, if the �le at level ` has size greater

than (r − 1)rlM , it is merged with the respetive �le from level `+ 1 and stored at level

` + 1. Remerge always merges the new �le with the single �le at level 0, while Nomerge

just plaes the �le reated at level 0. Rangemerge merges the new level-0 �le with the

existing �le that orresponds to the same range, and splits the �le (and the range) if its

size beomes greater than F (Algorithm 6.3). In Figure 8.3, we present a high level view

of the various �le merging patterns that we implemented in LevelDB.

8.2 Performane Evaluation

In this setion, we experimentally evaluate the eÆieny of Rangemerge logging approah

and study how the various ompation managers ompare to eah other on a full-featured

102



prodution system. The experimental environment is idential to the one desribed in

Setion 7.1. All methods use a total of M = 512MB for the aumulation of items in

memory. We insert key-value pairs of 100 bytes keys and 1KB values, until a total of

10GB has been inserted into the system. For the experiments in whih we measure the

interferene between inserts and queries, we issue put requests at 2500req/s and get re-

quests at 20req/s, aording to the analysis in Setion 7.2. Depending on the experiment,

a get request is either a range query with san size of 10 entries, or a point query. Range

queries are implemented by initializing an iterator over the LevelDB database at a spei�

key and reading a number of subsequent entries. Point queries (i.e. get(k)) return the

value assoiated with a given key, or return \not found" if the key is not stored in the

system. All methods are implemented in LevelDB v1.9, in whih we disable ompression

for a more diret omparison to our prototype.

8.2.1 Logging Performane

As desribed in Setion 8.1.2, our log leaning approah behaves lazily, in the sense that it

splits the log in multiple 8MB-�les and waits until a �le ontains no valid entries (i.e., its

refounter drops to 0) before it deletes it. This means that even in the ase only a small

portion of a log �le orresponds to live entries, the �le will still remain in the system.

On the other hand, this lazy strategy enables updates to be logged at sequential disk

throughput, and it totally avoids fething log �les in memory for leaning. We now study

the eÆieny of our approah in terms of disk spae onsumed and logging throughput.

Sine all memory entries must be kept in the log for durability until they are ushed to

disk, the size of the log on disk is at least equal to the umulative sizeM of the memtables

in memory. From Figure 8.4a, the log �les maintained by Rangemerge on disk take up

roughly 2-3 times the memory sizeM , independently of the memory size. We believe that

dediating a few GB from a TB hard drive

1

for logging is a reasonable ompromise for

the performane we ahieve, studied next. Nonetheless, in ase the available disk spae

is sare, we ould prioritize the ushing of ranges that referene many logs or logs with

low refounters, in order to relaim spae more aggressively. We ould also inrease or

derease this priority depending on the size of the log on disk. We have not implemented

1

Today, someone an an buy a 3TB disk with $120 [74℄.

103



 0

 500

 1000

 1500

 2000

 2500

 0  10  20  30  40  50  60  70  80

L
o

g
 s

iz
e

 (
M

B
)

Time (min)

M = 500MB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  50  100  150  200  250  300  350

L
o

g
 s

iz
e

 (
M

B
)

Time (min)

M = 100MB

(a) Size of log on disk for Rangemerge

 0

 20

 40

 60

 80

 100

Without log cleaning With log cleaning

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

70

79

(b) Insertion time for Rangemerge

Figure 8.4: (a) We show the total disk spae onsumed by log �les in our Rangemerge

implementation within LevelDB. Log size is at least equal to the memory size M , and

normally between 2M and 3M . (b) There is a small overhead involved in traking the

log �les referened by eah range and deleting the unreferened ones.

this optimization.

Figure 8.4b shows the amount of time Rangemerge requires to index 10GB of data

in LevelDB. On the left bar (\Without log leaning"), Rangemerge simply appends eah

inoming update on an unbounded log �le, whih is never garbage olleted. On the right

bar (\With log leaning"), the system splits the disk log over multiple 8MB �les, keeps

trak of the number of memtables that referene eah �le, and deletes a �le when it is not

referened by any memtable. This inreases insertion time only by 12.8%.

Overall, our log maintenane strategy requires disk spae that is low onsidering the

apaities of hard disks today, and only adds a modest overhead on insertion time om-

pared to the ase of no log leaning at all.

8.2.2 Insertion Time

In Figure 8.5a we measure the amount of time eah method requires to ingest 10GB of data

in LevelDB. Nomerge requires 13min to ush the memory 20 times on disk into an equal

number of �les, and SMA with k = 4 takes 22min for 8 �les. Geometri (p = 2) ingests

the 10GB in 70min, storing eah key in at most 2 �les on disk during the experiment.

The insertion time an be redued by 12.8% with r = 3 and 35.7% with r = 2, at the

104



 0

 20

 40

 60

 80

 100

 120

 140

Nomerge

SMA (k=4)

Geom (r=2)

Geom (r=3)

Geom (p=2)

Rangemerge

Remerge

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

13

22

45

61

70

79

136

(a) LevelDB implementation

 0

 20

 40

 60

 80

 100

Nomerge

SMA (k=4)

Geom (r=2)

Geom (r=3)

Geom (p=2)

Rangemerge

Remerge

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

10

18

33
38

44

51

101

(b) Prototype storage framework

Figure 8.5: Comparison of the insertion time of various methods implemented in LevelDB

and in our prototype system.

ost of inreased get lateny and variability due to fragmentation of keys in multiple disk

�les (Figures 7.1b, 7.2). Compared to Geometri (p = 2), Rangemerge inreases insertion

time by only 12.8% (79min), but keeps eah key range stritly in 1 disk �le. To ahieve

the same storage ontiguity as Rangemerge, Remerge requires 136min, i.e., 72.5% more

time.

In Figure 8.5b we repeat the same experiment in our prototype storage framework.

From Figures 8.5a and 8.5b, we observe that the methods take longer to index the same

amount of data in LevelDB than the time that they need in our prototype. This is mainly

due to the fat that LevelDB involves a CPU-intensive task to ompute a heksum for

eah blok written to disk. Nevertheless, the relative di�erenes between the methods

remain similar aross the two systems. One exeption is Remerge, whih has a smaller

inrease in its insertion time on LevelDB ompared to the remaining methods. This is

explained by the fat that Remerge (and the rest methods) simply does not omplete its

last ompation, as LevelDB performs the ompations asynhronously: when the last

entry is inserted into the system and the memtable �lls for the last time, LevelDB marks

the memtable as read-only, reates a new memtable, shedules a new bakground thread

to ush the memtable, and returns. After this write returns, our benhmark immediately

exits. Consequently, the last ush of the 500MB-memtable and the merge of this �le with

the existing 9.5GB-�le in Remerge is never performed. If we wait |as our prototype

105



 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(a) SMA (k = 4)

 1

 10

 100

 1000

 0  20  40  60  80  100  120

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(b) Geom (r = 2)

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140  160

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

() Geom (r = 3)

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140  160

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(d) Geom (p = 2)

 1

 10

 100

 1000

 0  50  100  150  200

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(e) Remerge

 1

 10

 0  20  40  60  80  100  120

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(f) Rangemerge

Figure 8.6: Get lateny in various ompation methods implemented in LevelDB, assum-

ing a onurrent load of 2500put/s and 20get/s of san size 10. Bakground ompations

(gray bakground) severely a�et queries in all methods exept for Rangemerge.

does| for the ompletion of this last ompation, whih reads a total of 10GB and writes

a total 10.5GB, the insertion time of Remerge inreases to 148min.

8.2.3 Interferene of Queries and Inserts

We now measure the interferene between the bakground ompations that insertions

ause and the serving of the queries. Following the analysis of Setion 7.2, we issue put

requests at a rate of 2500req/s and range gets of san size 10 at 20req/s. Figure 8.6 illus-

trates the e�et that memtable ushes and �le merges performed in bakground have on

the lateny of queries. As shown, these system operations (depited as gray bakground)

seriously impat the performane of onurrent queries in all methods exept for Range-

merge, inreasing range get lateny to several hundred or even thousand milliseonds. In

ontrast, the frequent but less intensive ompations of Rangemerge allow the get lateny

to be kept below 50ms, improving query responsiveness by up to two orders of magnitude.

Interestingly, even though Remerge stores the entries on disk ontiguously in a single disk

�le to improve retrieval times (similar to Rangemerge), in the fae of onurrent om-

pations it ahieves no better query performane than the methods whih fragment the

106



 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(a) SMA (k = 4)

 5

 10

 15

 20

 0  20  40  60  80  100  120

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(b) Geom (r = 2)

 5

 10

 15

 20

 0  20  40  60  80  100  120  140  160

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

() Geom (r = 3)

 5

 10

 15

 20

 0  20  40  60  80  100  120  140  160

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(d) Geom (p = 2)

 5

 10

 15

 20

 0  50  100  150  200

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(e) Remerge

 5

 10

 15

 20

 0  20  40  60  80  100  120

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(f) Rangemerge

Figure 8.7: Get throughput in various ompation methods implemented in LevelDB, as-

suming a onurrent load of 2500put/s and 20get/s of san size 10. Rangemerge manages

to keep the rate at whih queries are served above 15req/s. In all remaining methods

the get throughput is seriously a�eted during the bakground ompations (gray bak-

ground).

entries on disk.

In Figure 8.7 we demonstrate the impat that bakground ompations have on the

query throughput. Similar to the Figure 8.6, there is an evident orrelation between these

operations and the rate at whih queries are served: besides Rangemerge, ompations

greatly a�et the query throughput in all the remaining methods, frequently yielding the

system ompletely unresponsive with respet to query serving. Instead, Rangemerge is

always responsive, keeping the query throughput above 15req/s.

To evaluate a range query, the system must reate an iterator over eah �le that may

ontain the �rst key of the range, and then merge the results from these iterators. This

means that the more �les with overlapping keys a method maintains on disk, the greater

the overhead per query will be. This is not true however for point queries, in whih bloom

�lters an eliminate (with high probability) the need to aess �les that do not ontain the

key searhed. In Figure 8.8 we use the same put and get load as in previous experiments,

but use point queries instead of range queries. This means that in the vast majority of

107



 1

 10

 100

 1000

 0  20  40  60  80  100

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(a) SMA (k = 4)

 1

 10

 100

 1000

 0  20  40  60  80  100  120  140

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

(b) Geom (r = 3)

 1

 10

 0  20  40  60  80  100  120

G
e

t 
la

te
n

c
y
 (

m
s
)

Time (min)

() Rangemerge

 5

 10

 15

 20

 0  20  40  60  80  100

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(d) SMA (k = 4)

 5

 10

 15

 20

 0  20  40  60  80  100  120  140

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(e) Geom (r = 3)

 5

 10

 15

 20

 0  20  40  60  80  100  120

G
e

t 
th

ro
u

g
h

p
u

t 
(r

e
q

/s
)

Time (min)

(f) Rangemerge

Figure 8.8: Get lateny (above) and throughput (below) for point queries in three meth-

ods, assuming puts at 2500req/s and point gets at 20req/s.

lookups we an avoid all �les exept from the one that ontains the key. Therefore, the

number of disk �les is irrelevant to the query performane. Nevertheless, the results are

similar to the ase of range queries: bakground ompations ause a great inrease in

lateny and a serious drop in throughput in all methods apart from Rangemerge.

The insertion times in Figure 8.6 are greater than those shown in Figures 8.5a mainly

beause in these experiments we throttle put requests at 2500req/s. Additionally, the

serving of queries auses a number of random I/Os that negatively a�et the onurrent

sequential I/O performed by the ompations. This leads to further inrease in data

ingestion times. Surprisingly, the insertion time of Rangemerge (122min) is similar to

Geometri with r = 2 (119min), and even lower than those of Geometri with r = 3 and

p = 2 (158min and 171min respetively), despite the fat that these methods store eah

key into multiple disk �les to improve write performane. This an be attributed to the

fat that Rangemerge stores the entries ontiguously on disk; as a result, Rangemerge

minimizes the random seeks required to serve eah range query and the impat of queries

to onurrent ompations.

108



8.3 Summary

To study both the engineering e�ort required to implement Rangemerge in a prodution

system and its performane bene�ts, we port Rangemerge and a number of representative

ompation methods in Google's LevelDB key-value store. We desribe the design and

implementation of our logging and reovery omponents and experimentally evaluate its

performane. We show that the implementation of Rangemerge over LevelDB is both

pratial and eÆient: we an ahieve logging at sequential disk bandwidth at the ost

of a modest inrease in data ingestion time and storage requirements. We then ompare

Rangemerge to related ompation methods that o�er di�erent tradeo�s in read and

write performane. We demonstrate that Rangemerge has low sensitivity to bakground

ompations, ahieves minimal query lateny, and maintains omparable or even better

insertion performane than other write-optimized methods.

109



Chapter 9

Theoretial Analysis

9.1 I/O Complexity of Uni�ed Range Flush

9.2 I/O Complexity of Rangemerge

9.3 Summary

In this setion, we study the asymptoti behavior of the Uni�ed Range Flush and

Rangemerge methods by analyzing their I/O ost. Sine these methods transfer data to

and from disk in large sequential I/Os and therefore their disk aess ost is negligible, we

are mainly interested in estimating the amount of bytes that they transfer in the worst

ase when ingesting a dataset of a given size.

9.1 I/O Complexity of Uni�ed Range Flush

For omplexity omparison with existing methods of index building, we estimate the

worst-ase asymptoti I/O ost of our approah. We fous on the URF method beause

the simple ushing of the largest ranges makes the analysis more tratable. For simpliity,

we assume that a termblok is not reloated when overown.

110



During index building, URF allows a term list to be split aross the in-plae and the

merge-based indies. This approah is also followed by the non-ontiguous methods of hy-

brid index maintenane [24℄. Aordingly, if the size of a short list during a merge exeeds

the threshold value T , B�utther et al. move the postings of the term that partiipate in

the merge to the in-plae index. They de�ne as L̂(N; T ) the number of postings aumu-

lated in the in-plae index, and P̂ (N; T ) the number of postings in the merge-based index

for a olletion of N postings. Next, they provide the following asymptoti estimates:

L̂(N; T ) = N −  · T (1−1=a) ·N1=a
;

P̂ (N; T ) =  · T (1−1=a) ·N1=a
;

 =
1

(a− 1)( + 1
a−1

)1=a
: (9.1)

The parameter  ≈ 0:577216 is the Euler-Masheroni onstant, while a is the parameter

of Zip�an distribution that models the frequeny of term ourrenes (e.g., a = 1.2).

In Equation 9.1, the ounts of short and long postings result from the terms distribu-

tion rather than the method used to maintain eah part of the index on disk. Therefore, if

we replae T with the append threshold T

a

, the above estimates also apply to the number

of postings stored in the rangebloks and termbloks of URF. In order to indiate the

intuition of URF in our analysis, we use the symbols P

append

(N) and P

merge

(N) instead

of the respetive L̂(N; T ) and P̂ (N; T ).

For a olletion of N postings, the total I/O ost C

total

to build the index with URF

is the sum of osts for appends, C

append

, and merges, C

merge

:

C

total

(N) = C

append

(N) + C

merge

(N)

= k

append

(N) · 
append

(N) + k

merge

(N) · 
merge

(N); (9.2)

where k

append

() and k

merge

() are the respetive numbers of appends and merges, while



append

() and 

merge

() are the respetive osts per append and merge.

If a list partiipates in a range merge and has size greater than T

a

, we append the

postings of the list to a termblok on disk. After N postings have been proessed, we

assume that eah append takes a �xed amount of time that only depends on the disk

geometry and the threshold T

a

:



append

(N) ≈ 

write

(T
a

) = 

append

; (9.3)

111



where 

write

() approximates the delay of a disk write. For a olletion of N postings, eah

append ushes at least T

a

postings to a termblok, so the total number of appends does

not exeed ⌊P
append

(N)=T
a

⌋:

k

append

(N) ≤

⌊

P

append

(N)

T

a

⌋

=

⌊

N ·
1

T

a

−N

1=a ·


T

1=a
a

⌋

∈ O(N): (9.4)

Instead, a range merge involves the following steps: (i) read the rangeblok to memory,

(ii) merge the disk postings with new postings in memory, and (iii) write the merged

postings bak to the rangeblok on disk. If the rangeblok overows, we split it into two

half-�lled rangebloks. Sine a rangeblok begins 50% �lled and splits when it is 100%

full, we assume that a rangeblok is 75% full on average. Thus, in a posting olletion of

size N , the ost of a range merge an be estimated as: 

read

(0:75B
r

) + 

merge

(0:75B
r

+

p) + 

write

(0:75B
r

+ p), where p is the number of new postings aumulated in memory

for the range. The 

merge

() refers to proessor ativity mainly for string omparisons and

memory opies; we do not onsider it further beause we fous on disk operations. From

the merged postings of amount 0:75B
r

+ p some will be moved to termbloks beause

they exeed the threshold T

a

. Sine additionally the number p of new postings is usually

small relatively to the amount of merged postings, we an also omit p and approximate



merge

(N) with a onstant:



merge

(N) ≈ 

read

(0:75B
r

) + 

write

(0:75B
r

) = 

merge

: (9.5)

To proess a olletion of N postings, we do ⌈N=M
f

⌉ ushes. During the i-th ush,

we perform m

i

range merge operations to ush a total of M

f

postings. We �rst estimate

an upper bound for m

i

, before we derive an upper bound for the total number of merge

operations k

merge

(N).

Suppose the posting memory is exhausted for i-th time, and we need to ush M

f

postings. The URF method ushes the minimum number of ranges m

i

needed to transfer

M

f

postings to disk. That is, it transfers the largest ranges until a total of M

f

postings

are ushed. In the worst-ase analysis, we aim to maximize m

i

. For M

p

postings and

R

i

ranges urrently in memory, m

i

is maximized if the postings in memory are equally

distributed aross all ranges. Then, before a range is ushed to disk, the respetive number

of new postings aumulated in memory for the range is p

i

= M

p

=R

i

. Aordingly, the

number of ranges m

i

ushed during the i-th ush operation is equal to: m

i

=
M

f

p

i

=
M

f

·R
i

M

p

:

112



Just before the i-th ush, a total of (i − 1)M
f

postings were written to disk. From

them, P

merge

((i − 1)M
f

) postings are stored over rangebloks. Sine eah rangeblok

stores an average of 0:75B
r

postings, the number of rangebloks on disk is P

merge

((i −

1)M
f

)=0:75B
r

. The number of ranges in the rangetable just before the i-th ush will be

equal to the number of rangebloks on disk, beause eah range is assoiated with exatly

one rangeblok on disk: R

i

=
P

merge

((i−1)·M
f

)

0:75B
r

:

Based on the above equations of m

i

and R

i

, for a olletion of N postings we an

derive an upper bound for the total number of range merges:

k

merge

(N) =

(# ushes)

∑

i=1

(# merges during i-th ush) =

⌈N=M
f

⌉
∑

i=1

m

i

=

⌈N=M
f

⌉
∑

i=1

(i− 1)1=a · T
(1−1=a)
a

·M
f

1+1=a · 

0:75 ·M
p

·B
r

≤
T

(1−1=a)
a

·M
f

1+1=a · 

0:75 ·M
p

· B
r

·

⌈N=M
f

⌉
∑

i=1

i

1=a
(9.6)

≤
T

(1−1=a)
a

·M
f

1+1=a · 

0:75 ·M
p

· B
r

·

⌈

N

M

f

⌉1+1=a

≈
T

(1−1=a)
a

· 

0:75 ·M
p

· B
r

·N1+1=a ∈ O(N1+1=a): (9.7)

Aording to Equations 9.2, 9.3, 9.4, 9.5 and 9.7, the total I/O ost of index building

has the following upper bound:

C

total

(N) ∈ O(N1+1=a): (9.8)

From Table 3.1, the upper-bound index building ost of Equation 9.8 makes URF asymp-

totially omparable to HIM [24℄. Additionally, the approah of URF to store the postings

of eah term aross up to two sub-indies makes onstant the I/O ost of term retrieval.

Speial Case To ross-validate our result, we use a speial ase of URF to emulate the

behavior of HIM [24℄. We set M

flush

= M

total

to fore a full ush when we run out of

memory. We also append to termbloks any list with more than T

a

postings, and hoose a

large B

r

value for URF to approximate the sequential merging of HIM. Eah range merge

transfers 0:75 · B
r

postings to disk. For olletion size N , the total amount of postings

113



written to disk aross k

merge

(N) merges follows from Equation 9.6:

P

merge written

(N) = k

merge

(N) · (0:75 · B
r

)

=
T

1−1=a
a

·M
p

1+1=a ·  · 0:75 ·B
r

0:75 ·M
p

· B
r

·

⌈N=M
p

⌉
∑

i=1

i

1=a

=

⌈N=M
p

⌉
∑

i=1

 · T 1−1=a
a

(i ·M
p

)1=a

≤  · T 1−1=a
a

·
N

1+1=a

M

p

: (9.9)

After we add the linear I/O ost from appends (Equations 9.3 and 9.4) and replae T

a

with T at the right part of inequality 9.9, we estimate the worst-ase ost of HIM to be

that of Equation (6) by B�utther et al. [24℄. Thus we asymptotially on�rm that the

behavior of HIM is approximated as speial ase of the URF method.

9.2 I/O Complexity of Rangemerge

We aim to estimate the total amount of bytes transferred between memory and disk

during the insertion of N items to the Rangetable with Rangemerge. For simpliity eah

item is assumed to oupy one byte. Sine the range�le size is roughly 0:5F after a split

and annot exeed F by design, on average it is equal to 0:75F . Aordingly eah merge

operation transfers on average a total of 

merge

= 1:5F bytes, as it reads a range�le,

updates it, and writes it bak to disk. For the insertion of N items, the total amount

of transferred bytes is equal to C

total

= K · 
merge

= K · 3F
2
, where K is the number of

merges. In order to estimate an upper bound on C

total

we assume an insertion workload

that maximizes K.

We all epoh a time period during whih no range split ours, leaving unmodi�ed

the number of ranges (and range�les). Let E be the number of epohs involved in the

insertion of N items, and k

i

be the number of merges during epoh e

i

, i = 1; :::; E. Then

the total number of merges beomes equal to K =
∑

E

i=1 ki.

When memory �lls up for the �rst time, there is a single range in memory and no

range�le on disk. The �rst merge operation transfers all memory items to r1 = M=0:5F

half-�lled range�les, where r

i

is the number of range�les (or ranges) during the ith epoh.

114



The next time memory �lls up, we pik to merge the largest range in memory. In order

to maximize the number of merges, we minimize the number of items in the largest range

through the assumption of uniformly distributed inoming data. Then the largest range

has size s1 = M=r1 items. During the ith epoh, it follows that eah merge transfers to

disk a range of size s

i

= M=r

i

items.

A split initiates a new epoh, therefore a new epoh inrements the number of range�les

by one: r

i

= r

i−1 + 1 = r1 + i− 1. Due to the uniform item distribution, a larger number

of ranges redues the amount s

i

of items transferred to disk per merge and inreases the

number k

i

of merges for N inserted items. If we shorten the duration of the epohs, then

the number of merges will inrease as a result of the higher number of range�les.

At a minimum, a half-�lled range�le needs to reeive 0:5F new items before it splits.

Therefore the minimum number of merges during the epoh e

i

is k

i

= 0:5F=s
i

. Sine an

epoh ushes 0:5F items to disk before a split ours, it takes E = N=0:5F epohs to

insert N items. From C

total

, K, E, s

i

, r

i

and r1 we �nd:

C

total

=
3F

2
·K =

3F

2
·

E

∑

i=1

k

i

=
3F 2

4
·

E

∑

i=1

1

s

i

=
3F 2

4M
·

E

∑

i=1

r

i

=
3F 2

4M

E

∑

i=1

(r1 + i− 1)

=
3F 2

4M

(

E · r1 +
1

2
E(E + 1)− E

)

= N

2 6

4M
+N

(

3−
3F

4M

)

∈ O(
N

2

M

)

If we divide O(N
2

M

) by the amount of inserted items N and the blok size B, the above

result beomes the O( N

MB

) per-item insertion I/O omplexity of the Remerge method

(Table 2.1).

The above analysis of Rangemerge estimates the number of I/O operations involved

in the worst ase during index building. However it does not aount for the ost of an

individual I/O operation or the interation of insertion I/O operations with onurrent

queries. Through extensive experimentation in Chapters 7 and 8 we show that Range-

merge ombines high performane in both queries and insertions beause it ahieves searh

lateny omparable to or below that of the read-optimized Remerge and insertion per-

formane omparable to that of the write-optimized methods (e.g., Geometri, Nomerge)

under various onditions.

115



9.3 Summary

To ompare the I/O omplexity of our methods with related methods from literature,

we estimate the worst-ase asymptoti I/O ost of URF and Rangemerge. We show

that the asymptoti ost of our methods mathes those of existing methods with similar

query performane, but as demonstrated in the previous hapters, in pratie URF and

Rangemerge outperform these methods.

116



Chapter 10

Conlusions and Future Work

10.1 Contributions

10.2 Future work

10.1 Conlusions

Motivated by the urrent needs of proessing enormous amounts of both strutured and

unstrutured data under stringent lateny and throughput requirements, we study the

related problems of text indexing and storage management at large sale. To ope with

the inreasing requirements in data ingestion throughput, urrent solutions tend to adopt

a write-optimized approah that sari�es query responsiveness for improved insertion

rates. It is our thesis that these systems an ahieve low query lateny while maintaining

high insertion throughput.

For the problem of inremental maintenane of the disk-based inverted index, we

propose a simple yet innovative disk organization whih groups the inverted lists on disk

into disjoint lexiographial ranges and subsequently stores them in separate bloks. The

lists are ategorized as short or long depending on their size, and a di�erent update

poliy is used for eah ategory. We introdue two new methods, the Seletive Range

Flush (SRF) and the Uni�ed Range Flush (URF), to eÆiently shedule the merges of

the new lists from memory with the lists on disk.

117



The Proteus is a prototype searh engine that we develop to examine the eÆieny and

performane of our methods. We also propose and implement a number of optimizations

for the disk and memory management. Using real-world datasets and query workloads,

we show that our methods o�er searh lateny that mathes or redues up to half the

lowest ahieved by existing disk-based methods and systems. In omparison to a related

method of similar searh lateny on the same system, our methods redue by a fator of

2.0{2.4 the I/O part of the indexing proess, and by 21{24% the total indexing time.

For the storage management of datastores, we survey existing solutions from various

researh �elds. We point out several weaknesses related to low query performane due

fragmentation of entries on disk, inreased variation in query lateny aused by bak-

ground ompations, and exessive reservation of storage spae. To address these issues,

we propose the Rangemerge method that replaes the periodi and intensive ompations

that existing methods inur with more frequent but less intensive ones, while maintaining

the storage ontiguity of entries on disk.

A number of related methods along with Rangemerge are implemented in a prototype

storage framework that we develop. To evaluate the pratiality of Rangemerge and the

generality of our results, the methods are also implemented in Google's LevelDB key-value

store. Our results from both storage systems demonstrate the superior performane of

Rangemerge: (i) it enables serving range queries with low lateny and high rate by storing

the entries ontiguously on disk, and minimizes their sensitivity to bakground I/O by

using less aggressive ompations; (ii) it maintains high insertion throughput, whih is

similar to or even better than those of other write-optimized methods, by seletively

ushing entries from memory to disk based on their merge eÆieny; (iii) it removes the

need for exessive storage reservation.

10.2 Future Work

Reent reports show that the size of the strutured and unstrutured data aumulated

inreases exponentially [54℄. This means that the problem of big data management that

we studied will remain relevant and important at least in the following years. Here we

disuss some interesting problems and researh diretions for future work.

118



Large-sale storage and indexing systems usually adopt a multi-tier arhiteture.

Nodes from the upper tiers reeive lient requests and forward them to the worker nodes

of the lower tiers for serving. As the performane of the worker servers is ritial for the

overall system performane, in this dissertation we mainly studied the eÆieny of the

storage management in the worker nodes. Nevertheless, orthogonal issues on the upper

layers suh as load balaning, repliation and ahing are equally important in large-sale

deployments and require further investigation.

Disk apaity today is both heap and large, so that many organizations a�ord to

keep multiple versions of their data. Even though most users are primarily interested

in the latest version the data, there are many ases where searh or aess over all or

some previous versions would also be of interest. Examples inlude the Internet Arhive

1

that ollets, stores and o�ers aess to historial versions of web pages from the last

ten years, and a large number of ompanies that arhive their data and analyze them to

extrat useful information and patterns. Designing and evaluating methods and systems

to handle multi-versioned data is an interesting problem that we plan to examine.

Text indexing primarily involves parsing douments into memory postings and merg-

ing these postings with existing inverted lists on disk. We demonstrated that our methods

ombined with a arefully optimized implementation an redue the merging ost of in-

dexing by a fator of 2.0{2.9 in omparison to other methods and systems. Furthermore,

inreasing the available memory leads to a proportional derease of the merging time.

Nevertheless, the proess of parsing does not bene�t from our approah or the extra

memory available on the system, as the time spent on it remains roughly the same. We

are interested in studying and improving the performane of doument parsing, using

eÆient methods that potentially exploit the multi-ore CPUs and the powerful graphis

proessing units (GPUs) ommonly found in systems today. We also plan to investi-

gate issues related to onurreny ontrol and handling of doument modi�ations and

deletions.

Flash SSDs have low-lateny random reads and provide high throughput for sequen-

tial reads and writes. Combined with low power onsumption and their delining ost,

they have drawn attention to various datastore designers and developers from both the

aademi ommunity and the industry. Sine storing the entire dataset on SSD is usually

1

https://arhive.org/

119



infeasible due to impratially large osts, SSDs are typially used as an intermediate

layer between RAM and HDD. We are interested in adapting the Rangemerge method

and the Rangetable struture into a multi-tier storage arhiteture where SSDs are used

omplementary to HDDs as either read or write ahes, and study the impliations of

suh a design.

120



Bibliography

[1℄ David G. Andersen, Jason Franklin, Mihael Kaminsky, Amar Phanishayee,

Lawrene Tan, and Vijay Vasudevan. FAWN: A fast array of wimpy nodes. In

ACM SOSP Symp., pages 1{14, Big Sky, MO, Otober 2009.

[2℄ Vo Ngo Anh and Alistair Mo�at. Pruned query evaluation using pre-omputed

impats. In ACM SIGIR Conferene, pages 372{379, Seattle, WA, August 2006.

[3℄ Arvind Arasu, Junghoo Cho, Hetor Garia-Molina, Andreas Paepke, and Sriram

Raghavan. Searhing the web. ACM Transations on Internet Tehnology, 1(1):2{

43, August 2001.

[4℄ Berk Atikoglu, Yuehai Xu, Eitan Frahtenberg, Song Jiang, and Mike Palezny.

Workload analysis of a large-sale key-value store. In ACM SIGMETRICS Conf.,

pages 53{64, London, UK, June 2012.

[5℄ Riardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Plahouras, and

Fabrizio Silvestri. Challenges on distributed web retrieval. In IEEE Intl Conf on

Data Engineering, pages 6{20, Instanbul, Turkey, April 2007.

[6℄ Riardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdok, Vassilis

Plahouras, and Fabrizio Silvestri. The impat of ahing on searh engines. In ACM

SIGIR Conferene, pages 183{190, Amsterdam, The Netherlands, 2007.

[7℄ Jason Baker, Chris Bond, James Corbett, J. J. Furman, Andrey Khorlin, James Lar-

son, Jean-Mihel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megas-

tore : Providing salable, highly available storage for interative servies. In CIDR

Conf., pages 223{234, Asilomar, CA, January 2011.

121



[8℄ Luiz Andre Barroso, Je�rey Dean, and Urs Holzle. Web searh for a planet: The

google luster arhiteture. IEEE Miro, 23(2):22{28, mar/apr 2003.

[9℄ Alexandros Batsakis and Randal Burns. Awol: An adaptive write optimizations

layer. In USENIX Conferene on File and Storage Tehnologies (FAST), pages

67{80, San Jose, CA, February 2008.

[10℄ Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. Finding

a needle in Haystak: Faebook's photo storage. In USENIX OSDI Symp., pages

47{60, Vanouver, Canada, Otober 2010.

[11℄ Mihael A. Bender, Martin Farah-Colton, Jeremy T. Fineman, Yonatan R. Fogel,

Bradley C. Kuszmaul, and Jelani Nelson. Cahe-oblivious streaming B-trees. In

ACM SPAA Symp., pages 81{92, San Diego, CA, June 2007.

[12℄ Jon Louis Bentley and James B. Saxe. Deomposable searhing problems i. stati-

to-dynami transformation. Journal of Algorithms, 1:301{358, 1980.

[13℄ Truls A. Bjorklund, Mihaela Gotz, and Johannes Gerhke. Searh in soial networks

with aess ontrol. In Intl Workshop on Keyword Searh on Strutured Data,

Indianapolis, IN, June 2010. ACM.

[14℄ Allan Borodin and Ran El-Yaniv. Online omputation and ompetitive analysis.

Cambridge University Press, Cambridge, UK, 1998.

[15℄ Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkarup-

pan, Niolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov,

Aravind Menon, Samuel Rash, Rodrigo Shmidt, and Amitanand Aiyer. Apahe

Hadoop goes realtime at faebook. In ACM SIGMOD Conf., pages 1071{1080,

Athens, Greee, June 2011.

[16℄ Eri A. Brewer. Combining systems and databases: A searh engine retrospetive.

In Joseph M. Hellerstein and Mihael Stonebraker, editor, Readings in Database

Systems, Cambridge, MA, 2005. MIT Press. Fourth Edition.

[17℄ Gerth St�lting Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iaono, Ste-

fan Langerman, and J. Ian Munro. Cahe-oblivious dynami ditionaries with up-

122



date/query tradeo�. In ACM-SIAM Symp. Disrete Algorithms, pages 1448{1456,

Austin, TX, January 2010.

[18℄ Andrei Z. Broder, David Carmel, Mihael Hersovii, Aya So�er, and Jason Zien.

EÆient query evaluation using a two-level retrieval proess. In ACM Conferene

on Information and Knowledge Management, pages 426{434, New Orleans, LA,

November 2003.

[19℄ Eri W. Brown, James P. Callan, and W. Brue Croft. Fast inremental indexing

for full-text information retrieval. In VLDB Conferene, pages 192{202, September

1994.

[20℄ Mihael Bush, Krishna Gade, Brian Larson, Patrik Lok, Samuel Lukenbill, and

Jimmy Lin. Earlybird: Real-time searh at twitter. In IEEE Intl Conferene on

Data Engineering, pages 1360{1369, Washington, D.C., April 2012.

[21℄ Stefan B�utther and Charles L. A. Clarke. Indexing time vs. query time: trade-

o�s in dynami information retrieval systems. In Pro. 14th ACM Intl. Conf. on

Information and Knowledge Management (CIKM, pages 317{318, 2005.

[22℄ Stefan B�utther and Charles L. A. Clarke. Hybrid index maintenane for ontiguous

inverted lists. Information Retrieval, 11:197{207, June 2008.

[23℄ Stefan B�utther, Charles L. A. Clarke, and Brad Lushman. A hybrid approah to

index maintenane in dynami text retrieval systems. In European Conferene on

IR Researh (ECIR), pages 229{240, London, UK, April 2006. BCS-IRSG.

[24℄ Stefan B�utther, Charles L. A. Clarke, and Brad Lushman. Hybrid index main-

tenane for growing text olletions. In ACM SIGIR Conferene, pages 356{363,

Seattle, WA, August 2006.

[25℄ Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, and Arild Skjolsvold et

al. Windows Azure Storage: a highly available loud storage servie with strong

onsisteny. In ACM SOSP Symp., pages 143{157, Casais, Portugal, Otober 2011.

[26℄ Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi, Hoang Tam

Vo, Sai Wu, and Quanqing Xu. ES

2
: A loud data storage system for supporting

123



both OLTP and OLAP. In IEEE ICDE, pages 291{302, Hannover, Germany, April

2011.

[27℄ Rik Cattell. Salable SQL and NoSQL data stores. ACM SIGMOD Reord,

39(4):12{27, Deember 2010.

[28℄ Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallah,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

distributed storage system for strutured data. In USENIX Symposium on Operating

Systems Design and Implementation, pages 205{218, Seattle, WA, November 2006.

[29℄ Tziker Chiueh and Lan Huang. EÆient real-time index updates in text retrieval

systems. Tehnial Report 66, ECSL, Stony Brook University, Stony Brook, NY,

April 1999.

[30℄ James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey III, Craig A. N.

Soules, and Alistair Veith. Lazybase: Trading freshness for performane in a sal-

able database. In ACM EuroSys Conf., pages 169{182, Bern, Switzherland, April

2012.

[31℄ The ClueWeb09 dataset, 2009. http://boston.lti.s.mu.edu/Data/lueweb09/.

[32℄ Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,

Philip Bohannon, Hans-Arno Jaobsen, Nik Puz, Daniel Weaver, and Ramana

Yerneni. PNUTS: Yahoo!'s hosted data serving platform. In VLDB Conf., pages

1277{1288, Aukland, New Zealand, August 2008.

[33℄ Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benhmarking loud serving systems with YCSB. In ACM SOCC Symp.,

pages 143{154, Indianapolis, IN, June 2010.

[34℄ Doug Cutting. Open soure searh. http://www.sribd.om/do/18004805/

Luene-Algorithm-Paper, 2005.

[35℄ Doug Cutting and Jan Pedersen. Optimizations for dynami inverted index main-

tenane. In ACM SIGIR, pages 405{411, Brussels, Belgium, September 1990.

124



[36℄ Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a salable data

store for transational multi key aess in the loud. In ACM SOCC Symp., pages

163{174, Indianapolis, Indiana, USA, June 2010.

[37℄ Savvio 10k.5 data sheet: The optimal balane of apaity, performane and power

in a 10k, 2.5 inh enterprise drive, 2012.

[38℄ Je�rey Dean and Luiz Andr�e Barroso. The tail at sale. Commun. ACM, 56(2):74{

80, February 2013.

[39℄ Je�rey Dean and Sanjay Ghemawat. MapRedue: Simpli�ed data proessing on

large lusters. Communiations of the ACM, 51(1):107{113, January 2008.

[40℄ Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilhin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon's highly available key-value store. In ACM

SOSP Symp., pages 205{220, Stevenson, WA, Otober 2007.

[41℄ Thibault Dory, Boris Mejias, Peter Van Roy, and Nam-Lu Tran. Measuring elas-

tiity for loud databases. In IARIA Intl Conf Cloud Computing, GRIDs, and

Virtualization, pages 154{160, Rome, Italy, September 2011.

[42℄ Bruno Dumon. Visualizing HBase ushes and ompations. http://www.ngdata.

om/site/blog/74-ng.html, February 2011.

[43℄ Jonathan Ellis. Leveled ompation in Apahe Cassandra. http://www.datastax.

om/dev/blog/, June 2011.

[44℄ Robert Esriva, Bernard Wong, and Emin G�un Sirer. HyperDex: A distributed,

searhable key-value store. In ACM SIGCOMM Conf., pages 25{36, Helsinki, Fin-

land, August 2012.

[45℄ Wanling Gao, Yuqing Zhu, Zhen Jia, Chunjie Luo, Lei Wang, Zhiguo Li, Jianfeng

Zhan, Yong Qi, Yongqiang He, Shiming Gong, et al. Bigdatabenh: a big data

benhmark suite from web searh engines. arXiv preprint arXiv:1307.0320, 2013.

[46℄ David Geer. Is it really time for real-time searh? Computer, pages 16{19, Marh

2010.

125



[47℄ Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Franois Raab, Meikel Poess, Alain

Crolotte, and Hans-Arno Jaobsen. Bigbenh: Towards an industry standard benh-

mark for big data analytis. In Proeedings of the 2013 international onferene on

Management of data, pages 1197{1208. ACM, 2013.

[48℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The Google �le system.

In ACM SOSP, pages 29{43, Bolton Landing, NY, Otober 2003.

[49℄ Ruijie Guo, Xueqi Cheng, Hongbo Xu, and Bin Wang. EÆient on-line index main-

tenane for dynami text olletions by using dynami balaning tree. In Conferene

on Information and Knowledge Management (CIKM), pages 751{759, Lisboa, Por-

tugal, November 2007.

[50℄ S. Gurajada and S. Sreenivasa Kumar. On-line index maintenane using horizontal

partitioning. In ACM Conferene on Information and Knowledge Management,

pages 435{444, Hong Kong, China, November 2009.

[51℄ Ste�en Heinz and Justin Zobel. EÆient single-pass index onstrution for text

databases. Journal of the Amerial Soiety for Information Siene and Tehnology,

54(8):713{729, 2003.

[52℄ Eben Hewitt. Cassandra: The De�nitive Guide. O'Reilly Media, In., Sebastopol,

CA, 2011.

[53℄ http://hypertable.org.

[54℄ IDC. 2011 digital universe study: Extrating value from haos, June

2011. http://www.em.om/ollateral/analyst-reports/id-extrating-value-from-

haos-ar.pdf.

[55℄ H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama Kanneganti.

Inremental organization for data reording and warehousing. In VLDB, pages 16{

25, Athens, Greee, August 1997.

[56℄ R. Jain. The Art of Computer Systems Performane Analysis. Wiley, New York,

NY, 1991.

126



[57℄ Christopher Jermaine, Edward Omieinski, and Wai Gen Yee. The partitioned

exponential �le for database storage management. The VLDB Journal, 16:417{437,

Otober 2007.

[58℄ Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative

arhitetures for transation proessing in the loud. In ACM SIGMOD Conf.,

pages 579{590, Indianapolis, IN, June 2010.

[59℄ Avinash Lakshman and Prashant Malik. Cassandra: a deentralized strutured

storage system. SIGOPS Operating Systems Review, 44:35{40, April 2010.

[60℄ Florian Leibert, Jake Mannix, Jimmy Lin, and Babak Hamadani. Automati man-

agement of partitioned, repliated searh servies. In ACM Symposium on Cloud

Computing, pages 27:1{27:8, Casais, Portugal, Otober 2011.

[61℄ Ronnu Lempel, Yosi Mass, Shila Ofek-Koifman, Yael Petrushka, Dafna Sheinwald,

and Ron Sivan. Just in time indexing for up to the seond searh. In Conferene on

Information and Knowledge Management (CIKM), pages 97{106, Lisboa, Portugal,

2007.

[62℄ Niholas Lester, Alistair Mo�at, and Justin Zobel. Fast on-line index onstrution by

geometri partitioning. In Conferene on Information and Knowledge Management

(CIKM), pages 776{783, Bremen, Germany, Otober 2005.

[63℄ Niholas Lester, Alistair Mo�at, and Justin Zobel. EÆient online index onstru-

tion for text databases. ACM Trans. Database Systems (TODS), 33(3):1{33, August

2008.

[64℄ Niholas Lester, Justin Zobel, and Hugh Williams. EÆient online index mainte-

nane for ontiguous inverted lists. Information Proessing Management, 42(4):916{

933, 2006.

[65℄ Niholas Lester, Justin Zobel, and Hugh E. Williams. In-plae versus re-build versus

re-merge: Index maintenane strategies for text retrieval systems. In Australasian

Computer Siene Conferene, pages 15{23, Dunedin, New Zeland, January 2004.

127



[66℄ Hyeontaek Lim, Bin Fan, David G. Andersen, and Mihael Kaminsky. SILT: A

memory-eÆient, high-performane key-value store. In ACM SOSP Symp., pages

1{13, Casais, Portugal, Otober 2011.

[67℄ Lipyeow Lim, Min Wang, Sriram Padmanabhan, Je�rey Sott Vitter, and Ramesh

Agarwal. Dynami maintenane of web indexes using landmarks. In World Wide

Web Conferene, pages 102{111, Budapest, Hungary, May 2003.

[68℄ Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C. Webb, and Keb

Youm. Stateful bulk proessing for inremental analytis. In ACM Symposium on

Cloud Computing, pages 51{62, Indianapolis, IN, June 2010.

[69℄ Rihard Low. Cassandra under heavy write load. http://www.aunu.om/blogs/

rihard-low/, Marh 2011.

[70℄ Leveldb: A fast and lightweight key/value database library by google. http://

ode.google.om/p/leveldb/, May 2011.

[71℄ Mike Mammarella, Shant Hovsepian, and Eddie Kohler. Modular data storage with

Anvil. In ACM Symposium on Operating Systems Priniples, pages 147{160, Big

Sky, MO, Otober 2009.

[72℄ Yandong Mao, Eddie Kohler, and Robert Morris. Cahe raftiness for fast multiore

key-value storage. In ACM EuroSys Conf., pages 183{196, April 2012.

[73℄ Giorgos Margaritis and Stergios V. Anastasiadis. Low-ost management of inverted

�les for online full-text searh. In ACM CIKM, pages 455{464, Hong Kong, China,

November 2009.

[74℄ Ali Jos�e Mashtizadeh, Andrea Bittau, Yifeng Frank Huang, and David Mazi�eres.

Repliation, history, and grafting in the ori �le system. In Proeedings of the Twenty-

Fourth ACM Symposium on Operating Systems Priniples, SOSP '13, pages 151{

166, New York, NY, USA, 2013. ACM.

[75℄ Mihael MCandless, Erik Hather, and Otis Gospodneti�. Luene in ation. Man-

ning Publiations Co., Stamford, CT, 2010.

128



[76℄ Sergey Melnik, Sriram Raghavan, Beverly Yang, and Hetor Garia-Molina. Build-

ing a distributed full-text index for the web. ACM Transations on Information

Systems, 19(3):217{241, July 2001.

[77℄ Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom.

SFS: random write onsidered harmful in solid state drives. In USENIX FAST

Conf., pages 139{154, San Jose, CA, February 2012.

[78℄ Alexandros Ntoulas and Junghoo Cho. Pruning poliies for two-tiered inverted index

with orretness guarantee. In ACM SIGIR Conferene, pages 191{198, Amsterdam,

Netherlands, July 2007.

[79℄ Patrik O'Neil, Edward Cheng, Dieter Gawlik, and Elizabeth O'Neil. The log-

strutured merge-tree (LSM-tree). Ata Informatia, 33:351{385, June 1996.

[80℄ Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel

Rosenblum. Fast rash reovery in RAMCloud. In ACM SOSP Symp., pages 29{41,

Casais, Portugal, Otober 2011.

[81℄ Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio L�opez,

Garth Gibson, Adam Fuhs, and Billie Rinaldi. YCSB++: benhmarking and

performane debugging advaned features in salable table stores. In ACM SOCC

Symp., pages 1{14, Casais, Portugal, 2011.

[82℄ R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim

Zelenka. Informed prefething and ahing. In ACM Symposium on Operating

Systems Priniples, pages 79{95, Copper Mountain Resort, CO, Deember 1995.

[83℄ Daniel Peng and Frank Dabek. Large-sale inremental proessing using distributed

transations and noti�ations. In USENIX Symposium on Operating Systems Design

and Implementation, Vanouver, Canada, Otober 2010.

[84℄ Pouria Pirzadeh, Junihi Tatemura, Oliver Po, and Hakan Haig�um�us. Performane

evaluation of range queries in key value stores. J. Grid Computing, 10(1):109{132,

2012.

[85℄ M.F. Porter. An algorithm for suÆx stripping. Program, 14(3):130{137, 1980.

129



[86℄ Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Jaobsen, Sergio Gom�ez-Villamor,

Vitor Munt�es-Mulero, and Serge Mankovskii. Solving big data hallenges for en-

terprise appliation performane management. In VLDB Conf., pages 1724{1735,

Instanbul, Turkey, August 2012.

[87℄ Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

MGraw-Hill, New York, NY, 3 edition, 2003.

[88℄ Kai Ren and Garth Gibson. Tablefs: Enhaning metadata eÆieny in the loal

�le system. In Proeedings of the 2013 USENIX Conferene on Annual Tehnial

Conferene, USENIX ATC'13, pages 145{156, Berkeley, CA, USA, 2013. USENIX

Assoiation.

[89℄ Berthier Ribeiro-Neto, Edleno S. Moura, Marden S. Neubert, and Nivio Ziviani.

EÆient distributed algorithms to build inverted �les. In ACM SIGIR, pages 105{

112, Berkeley, CA, August 1999.

[90℄ M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-

strutured �le system. ACM Trans. Computer Systems (TOCS), 10(1):26{52, Febru-

ary 1992.

[91℄ Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari. A survey of

large sale data management approahes in loud environments. IEEE Communi-

ations Surveys & Tutorials, 2011.

[92℄ Mohit Saxena, Mihael M. Swift, and Yiying Zhang. FlashTier: a lightweight,

onsistent and durable storage ahe. In ACM European Conferene on Computer

Systems, pages 267{280, Bern, Switzerland, April 2012.

[93℄ Russell Sears and Raghu Ramakrishnan. bLSM: a general purpose log strutured

merge tree. In ACM SIGMOD Conf., pages 217{228, Sottsdale, AZ, May 2012.

[94℄ Sam Shah, Craig A. N. Soules, Gregory R. Ganger, and Brian D. Noble. Using

provenane to aid in personal �le searh. In USENIX Annual Tehnial Conferene,

pages 171{184, Santa Clara, CA, June 2007.

130



[95℄ Konstantin Shvahko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed �le system. In Mass Storage Systems and Tehnologies (MSST),

2010 IEEE 26th Symposium on, pages 1{10. IEEE, 2010.

[96℄ Adam Silberstein, Brian F. Cooper, Utkarsh Srivastava, Erik Vee, Ramana Yerneni,

and Raghu Ramakrishnan. EÆient bulk insertion into a distributed ordered table.

In ACM SIGMOD Conf., pages 765{778, Vanouver, Canada, June 2008.

[97℄ Adam Silberstein, Russel Sears, Wenhao Zhou, and Brian Cooper. A bath of

pnuts: Experienes onneting loud bath and serving systems. In ACM SIGMOD

Conf., pages 1101{1112, Athens, Greee, June 2011.

[98℄ Rihard P. Spillane, Pradeep J. Shetty, Erez Zadok, Sagar Dixit, and Shrikar Ar-

hak. An eÆient multi-tier tablet server storage arhiteture. In ACM SOCC

Symp., pages 1{14, Casais, Portugal, Otober 2011.

[99℄ Mihael Stonebraker and Rik Cattell. 10 rules for salable performane in \simple

operation" datastores. Commun. ACM, 54(6):72{80, June 2011.

[100℄ Trevor Strohman and W. Brue Croft. EÆient doument retrieval in main memory.

In ACM SIGIR Conferene, pages 175{182, Amsterdam, Netherlands, July 2007.

[101℄ Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam

Shah. Serving large-sale bath omputed data with Projet Voldemort. In USENIX

FAST, pages 223{236, San Jose, CA, February 2012.

[102℄ Anthony Tomasi, Hetor Garia-Molina, and Kurt Shoens. Inremental updates of

inverted lists for text doument retrieval. In ACM SIGMOD Conf., pages 289{300,

Minneapolis, Minnesota, May 1994.

[103℄ TREC terabyte trak, 2006. National Institute of Standards and Tehnol-

ogy,http://tre.nist.gov/data/terabyte.html.

[104℄ Beth Trushkowsky, Peter Bodik, Armando Fox, Mihael J. Franklin, Mihael I.

Jordan, and David A. Patterson. The SCADS diretor: Saling a distributed storage

system under stringent performane requirements. In USENIX FAST Conf., pages

163{176, San Jose, CA, February 2011.

131



[105℄ Andy Twigg, Andrew Byde, Grzegorz Milos, Tim Moreton, John Wilkes, and Tom

Wilkie. Strati�ed B-trees and versioned ditionaries. In USENIX Hotstorage Work-

shop, Portland, OR, June 2011.

[106℄ David Ungar. Generation savenging: A non-disruptive high performane storage

relamation algorithm. ACM SIGPLAN Not., 19(5):157{167, April 1984.

[107℄ Peter J. Varman and Rakesh M. Verma. An eÆient multiversion aess struture.

IEEE Trans. Knowl. Data Eng., 9(3):391{409, may/jun 1997.

[108℄ Je�rey Sott Vitter. External memory algorithms and data strutures: dealing with

massive data. ACM Computing Surveys, 33(2):209{271, June 2001.

[109℄ Hoang Tam Vo, Chun Chen, and Beng Chin Ooi. Towards elasti transational

loud storage with range query support. In VLDB Conf, pages 506{514, Singapore,

September 2010.

[110℄ Zheng Wei and Joseph JaJa. An optimized high-throughput strategy for onstrut-

ing inverted �les. IEEE Transations on Parallel and Distributed Systems, 2012.

Digital Objet Identi�er 10.1109/TPDS.2012.43.

[111℄ The Wikipedia dataset, 2008. http://stati.wikipedia.org/downloads/2008-06/en/.

[112℄ Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase querying with om-

bined indexes. ACM Transations on Information Systems, 22(4):573{594, Otober

2004.

[113℄ Wumpus searh engine (nov 10th, 2011), November 2011. http://www.wumpus-

searh.org.

[114℄ Ke Yi. Dynami indexability and lower bounds for dynami one-dimensional range

query indexes. In ACM PODS Symp., pages 187{196, Providene, RI, July 2009.

[115℄ The Zettair searh engine, 2009. RMIT University,

http://www.seg.rmit.edu.au/zettair/.

[116℄ M. Zhu, S. Shi, N. Yu, and J. Wen. Can phrase indexing help to proess non-phrase

queries. In ACM Conferene on Information and Knowledge Management, pages

679{688, Napa Valley, CA, November 2008.

132



[117℄ Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analytis for enter-

prise lass hadoop and streaming data. MGraw-Hill Osborne Media, 2011.

[118℄ Justin Zobel and Alistair Mo�at. Inverted �les for text searh engines. ACM

Computing Surveys, 38(2), July 2006.

[119℄ Justin Zobel, Alistair Mo�at, and Ron Saks-Davis. Storage management for �les

of dynami reords. In Australian Database Conferene, pages 26{38, Brisbane,

Australia, 1993.



Author's Publiations

Related publiations:

1. Giorgos Margaritis, Stergios V. Anastasiadis, Inremental Text Indexing for Fast

Disk-Based Searh, ACM Transations on the Web (TWEB), Deember 2013 (to

appear).

2. Giorgos Margaritis, Stergios V. Anastasiadis, EÆient Range-Based Storage Man-

agement for Salable Datastores, IEEE Transations on Parallel and Distributed

Systems (TPDS), November 2013 (to appear).

3. Giorgos Margaritis, Stergios V. Anastasiadis, Low-ost Management of Inverted

Files for Online Full-text Searh, ACM Conferene on Information and Knowledge

Management (CIKM), pages 455-464, Hong Kong, China, November 2009.

Other publiations:

1. Eirini C. Miheli, Giorgos Margaritis, Stergios V. Anastasiadis, Lethe: Cluster-

based Indexing for Seure Multi-User Searh, IEEE International Congress on Big

Data (BigData), Anhorage, Alaska, USA, June 2014 (to appear).

2. Eirini C. Miheli, Giorgos Margaritis, Stergios V. Anastasiadis, EÆient Multi-

User Indexing for Seure Keyword Searh, International Workshop on Privay and

Anonymity in the Information Soiety (PAIS) (held in onjuntion with EDBT/ICDT),

Athens, Greee, Marh 2014.

3. Giorgos Margaritis, Andromahi Hatzieleftheriou, Stergios V. Anastasiadis, Nephele:

Salable Aess Control for Federated File Servies, Journal of Grid Computing, pub.

Springer, Volume 11, Issue 1, pp 83-102, Marh 2013.



Short Vita

Giorgos Margaritis was born in Thessaloniki, Greee, in 1983. He reeived the B.S in

Computer Siene in 2005 and the M.S. in Computer Siene (Computer Systems) in

2008, from the Department of Computer Siene, University of Ioannina, Greee. Sine

the end of 2008 he has been a Ph.D. andidate in the same Department under the supervi-

sion of Prof. Stergios Anastasiadis. He has been involved in two researh projets and has

published 3 papers in peer-review sienti� journals and 2 papers in refereed onferene

proeedings. His researh interests are in the areas of text retrieval and storage systems.


