
Áðïäï�éêÞ Äåéê�ïäü�çóç ÁðïèÞêåõóçò ãéá ÄïìçìÝíá êáé

Áäüìç�á ÄåäïìÝíá

Ç ÄÉÄÁÊÔÏÑÉÊÇ ÄÉÁÔÑÉÂÇ

õðïâÜëëå�áé ó�çí

ïñéóèåßóá áðü �çí �åíéêÞ ÓõíÝëåõóç ÅéäéêÞò Óýíèåóçò

ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé �ëçñïöïñéêÞò

Åîå�áó�éêÞ Åðé�ñïðÞ

áðü �ïí

�åþñãéï Ìáñãáñß�ç

ùò ìÝñïò �ùí Õðï÷ñåþóåùí ãéá �ç ëÞøç �ïõ

ÄÉÄÁÊÔÏÑÉÊÏÕ ÄÉ�ËÙÌÁÔÏÓ ÓÔÇÍ �ËÇÑÏÖÏÑÉÊÇ

Áðñßëéïò 2014

ÔñéìåëÞò Óõìâïõëåõ�éêÞ Åðé�ñïðÞ

• Ó�Ýñãéïò Áíáó�áóéÜäçò, Åðßêïõñïò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• Ëåùíßäáò �áëçüò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• �áíáãéþ�çò ÂáóéëåéÜäçò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ

êáé �ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

Åð�áìåëÞò Åîå�áó�éêÞ Åðé�ñïðÞ

• Ó�Ýñãéïò Áíáó�áóéÜäçò, Åðßêïõñïò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• Ëåùíßäáò �áëçüò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé

�ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• �áíáãéþ�çò ÂáóéëåéÜäçò, Áíáðëçñù�Þò Êáèçãç�Þò �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ

êáé �ëçñïöïñéêÞò �ïõ �áíåðéó�çìßïõ Éùáííßíùí

• Åõáããåëßá �é�ïõñÜ, ÊáèçãÞ�ñéá �ïõ ÔìÞìá�ïò Ìç÷áíéêþí Ç/Õ êáé �ëçñïöïñéêÞò

�ïõ �áíåðéó�çìßïõ Éùáííßíùí

• ÁëÝîçò ÄåëÞò, Êáèçãç�Þò �ïõ ÔìÞìá�ïò �ëçñïöïñéêÞò êáé Ôçëåðéêïéíùíéþí �ïõ

Åèíéêïý êáé Êáðïäéó�ñéáêïý �áíåðéó�çìßïõ Áèçíþí

• �áíáãéþ�çò Ôñéáí�áöýëëïõ, Êáèçãç�Þò �ïõ S
hool of Computer S
ien
e, University

of Glasgow, UK

• Íéêüëáïò Êïýäáò, Êáèçãç�Þò �ïõ Department of Computer S
ien
e, University of

Toronto, Canada

Dedi
ation

To my family.

To the giants on whose shoulders we stand to see further.

Ó�çí ïéêïãÝíåéÜ ìïõ.

Ó�ïõò ãßãáí�åò ó�ùí ïðïßùí �ïõò þìïõò ó�åêüìáó�å ãéá íá äïýìå ðéï ìáêñõÜ.

A
knowledgements

First and foremost, I would like to thank my supervisor Professor Stergios Anastasiadis

for his help and resear
h guidan
e, his full support and invaluable input, both theoreti
al

and te
hni
al. He taught me to set high standards and provided the support required to

meet those standards. I learned a great deal from him.

I would also like to thank the rest members of the examination
ommittee, Prof.

Leonidas Palios, Prof. Panos Vassiliadis, Prof. Evaggelia Pitoura, Prof. Peter Trianta�l-

lou, Prof. Alex Delis, and Prof. Ni
k Koudas for their kind
omments and healthy

riti
ism.

I am very grateful to my parents for their
ontinuous psy
hologi
al (and e
onomi
al)

support, for their en
ouragement and their patien
e during my resear
h. This dissertation

would de�nitely not be possible without their help, espe
ially on these tough times.

Charles Bukowski

1

on
e said: \Some people never go
razy. What truly horrible lives

they must lead". My last years were truly amazing, so I would like to thank the following

for sharing their
raziness and time with me: Konstantinos Karras, for all the laughs,

beers, and hangovers we had; Evaggelia Liggouri, for sharing with me 10 wonderful years;

Argyris Kalogeratos and Andreas Vasilakis, for the
ountless hours we spent brainstorm-

ing about the killer app that would make us ri
h without e�ort (I'm sure our book of \Epi

Ideas" will someday be published); Androma
hi Hatzieleftheriou

2

, for her extraordinary

tasty meals, pies,
akes and
ookies; Giorgos Kappes, Eirini Mi
heli, Vasilis Papadopou-

los and Christos Theodorakis, all members of the Systems Resear
h Group, for all the

interesting s
ienti�
 and not{so{s
ienti�
 talks we had within these four walls; and Nikos

Papanikos, for reminding me that I o

asionally needed to take a break from resear
h

1

Charles Bukowski (1920 { 1994) was a German-born Ameri
an poet, novelist and short story writer.

2

It took me about 10 se
onds to write this name, and I also had to double-
he
k it for
orre
t spelling.

(
oin
identally, this happened every time he needed to smoke). Last but de�nitely not

least, many thanks to Vassillis Delis and Stathis Moraitidis, for saving me
ountless times

from zombies in Left 4 Dead 2; I owe you my life guys.

I would also like to thank Antonis Mpalasas and Fotis Pindis, ever-lasting friends from

high-s
hool, and Kostas Karabelas, Nikos Giotis, Maria Panagiotidou, Maria Goutra and

Pavlos Xouplidis, all friends from Ioannina with whom I enjoyed many hours of surrealisti

and non-sense dis
ussions about the universe and everything. Spe
ial thanks goes also to

Maria Alexiou, the living en
y
lopedia of beer, Mitsos Papageorgiadis, the living legend

of drinking beer, and Eleni Marmaridou, the sweet \
at lady" that tries to make me a

vegan (you know its futile, right?), with all of whom I share more than just a strong

friendship.

Finally, the last 13 years I spent in Ioannina would
ertainly not have been the same

without the Takis and Sakis restaurant (I owe about 5Kg of my weight to their deli
ious

food and tsipouro), and the bars \Berlin", \Lemon" and \Parenthesis" where I pra
ti
ed

for hours {and perfe
ted{ my air-guitaring te
hniques. I would also like to personally

thank the anonymous inventor of tsipouro, whi
h I
onsider the third most important

invention after the wheel and Super Nintendo.

This resear
h was partially funded by the Bodossaki Foundation, to whi
h I am very

thankful. It has also been
o-�nan
ed by the European Union (European So
ial Fund -

ESF) and Greek national funds through the Operational Program \Edu
ation and Lifelong

Learning" of the National Strategi
 Referen
e Framework (NSRF) - Resear
h Funding

Program: Thales. Investing in knowledge so
iety through the European So
ial Fund.

6

Table of Contents

1 Introdu
tion 1

1.1 Motivation . 1

1.2 Text Sear
h . 4

1.3 S
alable Datastores . 5

1.4 Thesis Contribution . 6

1.5 Thesis Organization . 8

2 Ba
kground and Related Resear
h 10

2.1 Full-Text Sear
h . 10

2.1.1 Preliminaries . 11

2.1.2 Online Index Maintentan
e . 14

2.1.3 Real-Time Sear
h . 18

2.2 Large-S
ale Data Management . 19

2.2.1 S
alable Datastores . 19

2.2.2 Storage Organization . 22

2.2.3 Related Issues . 25

3 In
remental Text Indexing for Fast Disk-Based Sear
h 28

3.1 Introdu
tion . 28

3.2 Ba
kground . 31

3.3 Motivation . 34

3.3.1 The Sear
h Cost of Storage Fragmentation 34

4 Sele
tive Range Flush and Uni�ed Range Flush Methods 37

4.1 Problem De�nition . 38

i

4.2 System Ar
hite
ture . 39

4.3 The Sele
tive Range Flush Method . 40

4.4 Evaluation of Sele
tive Range Flush . 43

4.5 Sensitivity of Sele
tive Range Flush . 45

4.6 The Uni�ed Range Flush Method . 46

4.7 Prototype Implementation . 49

4.7.1 Memory Management and I/O . 51

5 Performan
e Evaluation of In
remental Text Indexing 53

5.1 Experimentation Environment . 54

5.2 Building the Inverted File . 55

5.3 Query Handling . 57

5.4 Sensitivity of Uni�ed Range Flush . 59

5.5 Storage and Memory Management . 61

5.6 S
alability a
ross Di�erent Datasets . 63

5.7 Summary . 65

6 Range-Based Storage Management for S
alable Datastores 67

6.1 Introdu
tion . 67

6.2 Motivation . 69

6.3 System Assumptions . 72

6.4 Design and Ar
hite
ture . 73

6.4.1 The Rangetable Stru
ture . 73

6.4.2 The Rangemerge Method . 75

6.5 Prototype Implementation . 77

6.6 Summary . 79

7 Performan
e Evaluation of Rangemerge 80

7.1 Experimentation Environment . 81

7.2 Query Laten
y and Disk Files . 82

7.3 Insertion Time . 85

7.4 Sensitivity Study . 87

7.5 Memory Size . 89

ii

7.6 Key Distribution . 89

7.7 Solid-State Drives . 90

7.8 Dis
ussion . 92

7.8.1 Compa
tion I/O Intensity . 92

7.8.2 Queries . 93

7.8.3 Updates . 94

7.8.4 Availability and Re
overy . 94

7.8.5 Ca
hing . 95

7.9 Summary . 95

8 Implementation of Rangemerge in a Produ
tion System 97

8.1 LevelDB Implementation . 97

8.1.1 Memory Management . 99

8.1.2 Logging . 99

8.1.3 Re
overy . 101

8.1.4 Other Merging Strategies . 102

8.2 Performan
e Evaluation . 102

8.2.1 Logging Performan
e . 103

8.2.2 Insertion Time . 104

8.2.3 Interferen
e of Queries and Inserts 106

8.3 Summary . 109

9 Theoreti
al Analysis 110

9.1 I/O Complexity of Uni�ed Range Flush . 110

9.2 I/O Complexity of Rangemerge . 114

9.3 Summary . 116

10 Con
lusions and Future Work 117

10.1 Con
lusions . 117

10.2 Future Work . 118

iii

List of Figures

2.1 (a) A simple text
olle
tion of six do
uments. (b) The lexi
on and the

inverted lists for the spe
i�
 do
ument
olle
tion. 12

2.2 Merges and �les produ
ed after the �rst 10 memory
ushes for the (a)

Immediate Merge or Remerge, and (b) Nomerge methods. Numbers within

nodes represent size. 15

2.3 Merge sequen
e of Geometri
 Partitioning with r = 3, for the �rst 10

memory
ushes. Numbers within nodes represent size. 16

2.4 Index maintenan
e approa
h for the (a) Logarithmi
 Merge and (b) Hybrid

Immediate Merge methods. 17

2.5 (a) Ea
h table is partitioned into a number of tablets for load balan
ing,

whi
h are subsequently assigned to servers. (b) A master node keeps the

mapping between tablets and servers. Clients must �rst
onta
t the master

node to store or a

ess data. 19

2.6 Dynamo de
entralized ar
hite
ture. Any node on the ring
an
oordinate

a request from a
lient. We assume the ring spa
e is (0,400) and nodes A,

B, C, D are assigned values 100, 200, 300 and 400 respe
tively. 20

3.1 Hybrid Immediate Merge only applies partial
ushing to long (frequent)

terms, while Sele
tive Range Flush (SRF) and Uni�ed Range Flush (URF)

partially
ush both short (infrequent) and long terms. Unlike SRF, URF

organizes all postings in memory as ranges, allows a term to span both the

in-pla
e and merge-based indi
es, and transfers postings of a term from the

merge-based to the in-pla
e index every time they rea
h a size threshold

T

a

(see also Se
tion 4.6). 32

iv

4.1 We index 426GB using Wumpus with 1GB memory. The x axis refers to

the time instan
es at whi
h memory
ontents are
ushed to disk. (a) HSM

maintains up to 2 merge-based runs on disk, and (b) HLM periodi
ally

merges the runs
reated on disk so that their number is logarithmi
 in the

urrent size of the on-disk index. 43

4.2 We break down the index building time into do
ument parsing and postings

ushing parts a
ross di�erent maintenan
e poli
ies. Parsing in
ludes the

time required to
lean dirty pages from page
a
he to free spa
e for newly

read do
uments. Proteus parsing performan
e is pessimisti
 as it uses an

unoptimized implementation (Se
tion 5.1). We also in
lude the number

of merge-based runs ea
h method maintains. SRF has lower time than

HIM and HSM, and only 12% higher build time than HLM, even though

it maintains
ontiguously all lists on disk. 44

4.3 (a) The prototype implementation of Proteus. (b)We maintain the hashtable

in memory to keep tra
k of the postings that we have not yet
ushed to

disk. 49

4.4 (a) Ea
h entry of the rangetable
orresponds to a term range, and points

to the sear
h bu
ket, whi
h serves as partial index of the
orresponding

rangeblo
k. (b) Ea
h entry of the termtable
orresponds to a term and

points to the blo
klist that keeps tra
k of the asso
iated termblo
ks on disk. 50

5.1 We
onsider the index building time for di�erent indexing methods a
ross

Wumpus and Proteus, both with full stemming. Over Wumpus, we exam-

ine Nomerge (Nomerge

W

), Hybrid Logarithmi
 Merge (HLM

W

), Hybrid

Square Root Merge (HSM

W

) and Hybrid Immediate Merge (HIM

W

). Over

Proteus, we in
lude Hybrid Immediate Merge (HIM

P

), Sele
tive Range

Flush (SRF

P

) and Uni�ed Range Flush (URF

P

). URF

P

takes 421min to

pro
ess the 426GB of GOV2 a
hieving roughly 1GB/min indexing through-

put (see also Figure 5.7 for other datasets). 55

v

5.2 We
onsider Hybrid Immediate Merge over Wumpus (HIM

W

) or Proteus

(HIM

P

), along with Sele
tive Range Flush (SRF

P

) and Uni�ed Range

Flush (URF

P

) over Proteus. (a) We measure the average query time with

alternatively disabled and enabled the system bu�er
a
he a
ross di�er-

ent queries in the two systems with full stemming. (b) We look at the

distribution of query time over the two systems with enabled the bu�er

a
he. 58

5.3 (a) Setting the rangeblo
k size B

r

below 32MB or above 64MB raises the

build time of Uni�ed Range Flush. In
reasing the B

r

tends to (b) de
rease

the number of
ushes, and (
) in
rease the data amount transferred during

merges. We use Proteus with light stemming. 59

5.4 (a) Flushing more than few tens of megabytes (M

f

) leads to longer build

time for Uni�ed Range Flush (URF). This results from the more intense I/O

a
tivity a
ross term and range
ushes. (b) Setting the append threshold

to T

a

= 256KB minimizes the total I/O time of range and term
ushes.

(
) The build time of range merge in URF de
reases approximately in

proportion to the in
reasing size of posting memory (M

p

). The Proteus

system with light stemming is used. 60

5.5 We examine the behavior of Uni�ed Range Flush over Proteus with the

following storage allo
ation methods (i)
ontiguous (CNT), (ii) doubling

(DBL), and (iii) fragmented (FRG) with termblo
k sizes 1MB, 2MB, 8MB

and 32MB. (a) CNT a
hieves the lowest query time on average
losely

followed by DBL. We keep enabled the system bu�er
a
he a
ross the

di�erent queries. (b) Build time a
ross the di�erent allo
ation methods

varies within 5.7% of 386min (FRG/1MB and DBL). (
) Unlike CNT and

DBL, FRG tends to in
rease the index size espe
ially for larger termblo
k. 62

5.6 We
onsider three methods of memory allo
ation during index building by

Uni�ed Range Flush: (i) default (D), (ii) single-
all (S), and (iii)
hunksta
k

(C). The sensitivity of build time to memory management is higher (up to

8.6% de
rease with C) for larger values of M

p

. We use Proteus with light

stemming. 63

vi

5.7 We show the s
aling of build time with Sele
tive Range Flush (SRF) and

Uni�ed Range Flush (URF). We use the ClueWeb09 (�rst TB), GOV2

(426GB) and Wikipedia (200GB) datasets over Proteus with light stem-

ming. URF takes 53.5min (7%) less time for ClueWeb09, about the same

for Wikipedia, and 16.4min (4%) more for GOV2 in
omparison to SRF. . 65

6.1 The query laten
y at the Cassandra
lient varies a

ording to a quasi-

periodi
 pattern. The total throughput of queries and inserts also varies

signi�
antly. 70

6.2 Assumed datastore ar
hite
ture. 72

6.3 The organization of the Rangetable stru
ture, and
ontrol
ow of a handled

range query. For presentation
larity we use alphabeti

hara
ters as item

keys. 74

6.4 Prototype framework with several
ompa
tion methods as plugins. 77

6.5 We observe similar
ompa
tion a
tivity between Cassandra and our pro-

totype implementation of SMA (k=4). The height (y-axis value) of ea
h

mark denotes the transfer size of the respe
tive
ompa
tion. 78

7.1 During
on
urrent inserts and queries, (a) the get laten
y of Geometri

(r=2) and SMA (k=4) has substantially higher variability and average

value than Rangemerge, and (b) the get throughput of Geometri
 (r=2)

drops as low as 15.5req/s during
ompa
tions (grey ba
kground). 83

7.2 (a) At the insertion of 10GB withM=512MB using Geometri
 partitioning

(r=2), get laten
y (at load 10req/s) is
losely
orrelated to the number of

�les
reated. (b) We show the number of �les maintained per key range for

six methods. 84

7.3 I/O intensity of
ompa
tions. The disk traÆ
 of
ompa
tions in Range-

merge is
omparable to that of Nomerge with M=512MB. 85

7.4 S
aling
on�guration parameters. The insertion progress is similar be-

tween the
on�guration of M=256MB with 5GB dataset (left y-axis) and

M=2GB with 40GB (right y-axis) for Geometri
 (r=2), SMA (k=4) and

Rangemerge. 86

vii

7.5 (a) The insertion time (log y axis) of Rangemerge is about half the insertion

time of Remerge and
losely tra
ks that of Geometri
 (p=2). (b) With

M=4GB and 80GB dataset size Rangemerge has lower insertion time than

Geometri
 (p=2) and (r=3) while storing ea
h key at a single disk lo
ation. 87

7.6 Performan
e sensitivity to put load assuming
on
urrent get requests at

rate 20req/s and s
an size 10. 88

7.7 Sensitivity to range get size assuming
on
urrent load of 2500req/s put rate

and 20req/s get rate. 88

7.8 Sensitivity of insertion time to get rate of s
an size 10 with
on
urrent put

rate set at 2500req/s. 89

7.9 Impa
t of M to insertion time. With M=2GB, Rangemerge approa
hes

Nomerge and stays by at least 21% below the other methods. 89

7.10 Sensitivity of insertion time to key distribution, as we generate put requests

ba
k-to-ba
k with zero get load. 90

7.11 (a) Over an SSD, the insertion time of Rangemerge lies halfway between

that of Nomerge and Remerge. (b) Rangemerge redu
es the variability of

get laten
y in
omparison to SMA (k = 4) and Geometri
 (r = 2). 91

8.1 Files are hierar
hi
ally organized in LevelDB. When memtable is full, it is

ushed into an SSTable at level 0. Thus, level-0 �les may
ontain overlap-

ping ranges of keys. When the size of a level L ex
eeds its threshold, a

single �le from level L (or all level �les, if L = 0) along with all overlapping

�les from level L + 1 are merged and stored as a number of 2MB �les at

level L + 1. The maximum size of a level is expressed either as maximum

number of �les (L = 0) or as maximum total size (L > 0). 98

8.2 Rangemerge logging in LevelDB. 100

8.3 Various merging strategies, as we implemented them in LevelDB. 102

8.4 (a) We show the total disk spa
e
onsumed by log �les in our Rangemerge

implementation within LevelDB. Log size is at least equal to the memory

size M , and normally between 2M and 3M . (b) There is a small overhead

involved in tra
king the log �les referen
ed by ea
h range and deleting the

unreferen
ed ones. 104

viii

8.5 Comparison of the insertion time of various methods implemented in Lev-

elDB and in our prototype system. 105

8.6 Get laten
y in various
ompa
tion methods implemented in LevelDB, as-

suming a
on
urrent load of 2500put/s and 20get/s of s
an size 10. Ba
k-

ground
ompa
tions (gray ba
kground) severely a�e
t queries in all meth-

ods ex
ept for Rangemerge. 106

8.7 Get throughput in various
ompa
tion methods implemented in LevelDB,

assuming a
on
urrent load of 2500put/s and 20get/s of s
an size 10.

Rangemerge manages to keep the rate at whi
h queries are served above

15req/s. In all remaining methods the get throughput is seriously a�e
ted

during the ba
kground
ompa
tions (gray ba
kground). 107

8.8 Get laten
y (above) and throughput (below) for point queries in three

methods, assuming puts at 2500req/s and point gets at 20req/s. 108

ix

List of Tables

2.1 Summary of storage stru
tures typi
ally used in datastores. We in
lude

their I/O
omplexities for insertion and range query in one-dimensional

sear
h over single-key items. 25

3.1 Summary of the asymptoti

ost (in I/O operations) required to in
re-

mentally build inverted �les and retrieve terms for query handling. N is

the number of indexed postings and M is the amount of memory used for

postings gathering. The parameter a (e.g., a = 1.2) refers to the Zip�an

distribution (Se
tion 9.1). 31

3.2 Main fun
tional di�eren
es among existing and our new methods of in
re-

mental text indexing. 33

3.3 Average sear
h laten
y (ms) and the fra
tion of it spent on I/O, using the

GOV2 dataset over the Zettair sear
h engine. 35

3.4 Average, median and 99th per
entile of sear
h laten
y (ms) when di�er-

ent numbers of stop words are applied with and without page
a
hing in

GOV2/Zettair. 35

4.1 Sensitivity to intera
tions between rangeblo
k size B

r

and preferen
e fa
-

tor F

p

. We underline the lowest measurement on ea
h row. The highest

measured time is 62.18min, i.e., 53.8% higher than the lowest 40.43min. . 45

4.2 Parameters of Sele
tive Range Flush (SRF) and Uni�ed Range Flush (URF).

In the last
olumn we in
lude their default values used in our prototype. . 47

5.1 We examine the e�e
t of alternative optimizations to the query and build

time of Uni�ed Range Flush. Preallo
ation redu
es the average query time,

while prefet
hing and
hunksta
k redu
e the build time. 64

x

6.1 Storage management on the server o

upies more than 80% of the average

query laten
y measured at the
lient. 71

7.1 Amount of
ushed and totally transferred data per
ompa
tion, delay per

ompa
tion, and total insertion time for di�erent range�le sizes of Range-

merge. 93

xi

List of Algorithms

4.1 Pseudo
ode of Sele
tive Range Flush 41

4.2 Pseudo
ode of Unified Range Flush . 48

6.3 Pseudo
ode of Rangemerge . 76

xii

Glossary

HIM Hybrid Immediate Merge

HLM Hybrid Logarithmi
 Merge

HSM Hybrid Square Root Merge

SRF Sele
tive Range Flush

SMA Stepped Merge Array

URF Uni�ed Range Flush

B

r

Rangeblo
k

B

t

Termblo
k

F

p

Preferen
e Fa
tor

M

f

Flush Memory

M

p

Posting Memory

T

a

Append Threshold

T

t

Term Threshold

xiii

Abstra
t

Margaritis, Giorgos, D.

Phd, Department of Computer S
ien
e and Engineering, University of Ioannina, Gree
e.

April, 2014.

EÆ
ient Storage Indexing of Stru
tured and Unstru
tured Data.

Thesis Supervisor: Stergios V. Anastasiadis.

Commer
ial and publi
 organizations
urrently strive to manage massive amounts

of stru
tured and unstru
tured data in all �elds of so
iety. The data
olle
ted a
ross

di�erent lo
al and online servi
es, su
h as news websites, so
ial media, mail servers and �le

systems, is inherently semi-stru
tured or unstru
tured. Therefore, e�e
tive text indexing

and sear
h is
ru
ial for data usability and exploration. Moreover, the exploding amount of

stru
tured data that needs to be managed and the demanding workloads that in
lude both

throughput-oriented bat
h jobs and laten
y-sensitive data serving drive the development

of horizontally-expandable, distributed storage systems,
alled s
alable datastores. In this

thesis, we study the analysis, design, and implementation of storage systems to eÆ
iently

store, a

ess, and sear
h both stru
tured and unstru
tured data.

Real-time text sear
h requires to in
rementally ingest
ontent updates and make them

sear
hable almost immediately, but also serve sear
h queries at low laten
y. Re
ent meth-

ods for in
remental index maintenan
e substantially in
rease sear
h laten
y with the index

fragmented a
ross multiple disk lo
ations. For the support of fast indexing and sear
h

over disk-based storage, we introdu
e a method
alled Sele
tive Range Flush (SRF). We

organize the disk index over blo
ks, whi
h allow to sele
tively update only the parts of

the index that
an be eÆ
iently updated based on SRF. We show that SRF redu
es the

indexing time, but requires substantial experimental e�ort to tune spe
i�
 parameters for

performan
e eÆ
ien
y. Subsequently, we propose the Uni�ed Range Flush (URF) method,

xiv

whi
h is
on
eptually simpler than SRF, a
hieves similar or better performan
e with fewer

parameters and less tuning, and is amenable to I/O
omplexity analysis. We implement

the two methods in the Zettair open-sour
e sear
h engine, using
arefully optimized stor-

age and memory management. Then, we do extensive experiments with three di�erent

web datasets of size up to 1TB. A
ross di�erent open-sour
e systems, we show that our

methods o�er sear
h laten
y that mat
hes or redu
es up to half the lowest a
hieved by

existing disk-based methods. In
omparison to an existing method of
omparable sear
h

laten
y on the same system, our methods redu
e by a fa
tor of 2.0{2.4 the I/O part of

build time, and by 21{24% the total build time.

S
alable datastores are required to manage enormous amounts of stru
tured data for

online serving and analyti
s appli
ations. A
ross di�erent workloads, they weaken the

relational and transa
tional assumptions of traditional databases to a
hieve horizontal

s
alability and availability, and meet demanding throughput and laten
y requirements.

EÆ
ien
y tradeo�s at ea
h storage server often lead to design de
isions that sa
ri�
e query

responsiveness for higher insertion throughput. In order to address this limitation, we in-

trodu
e the Rangetable storage stru
ture and Rangemerge method so that we eÆ
iently

manage stru
tured data in granularity of key ranges. We develop both a general proto-

type framework and a storage system based on Google's LevelDB open-sour
e key-value

store. In these two platforms, we implement several representative methods as plugins

to experimentally evaluate their performan
e under
ommon operating
onditions. We

on
lude that our approa
h in
urs range-query laten
y that is minimal and has low sensi-

tivity to
on
urrent insertions, while it a
hieves insertion performan
e that approximates

that of write-optimized methods under modest query load. Our method also redu
es

down to half the reserved disk spa
e, improves the write throughput proportionally to the

available main memory, and naturally exploits the key skewness of the inserted dataset.

xv

Åê�å�áìÝíç �åñßëçøç ó�á ÅëëçíéêÜ

�åþñãéïò Ìáñãáñß�çò �ïõ Äçìç�ñßïõ êáé �çò �áíáãéþ�áò.

PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ êáé �ëçñïöïñéêÞò, �áíåðéó�Þìéï Éùáííßíùí, Áðñßëéïò, 2014.

Áðïäï�éêÞ Äåéê�ïäü�çóç ÁðïèÞêåõóçò ãéá ÄïìçìÝíá êáé Áäüìç�á ÄåäïìÝíá.

ÅðéâëÝðïí�áò: Ó�Ýñãéïò Â. Áíáó�áóéÜäçò.

Äçìüóéïé ïñãáíéóìïß êáé éäéù�éêÝò åðé÷åéñÞóåéò áí�éìå�ùðßæïõí óÞìåñá �ï ðñüâëçìá

�çò äéá÷åßñéóçò ìåãÜëïõ üãêïõ äïìçìÝíùí êáé áäüìç�ùí äåäïìÝíùí. Ôá äåäïìÝíá áõ�Ü

óõ÷íÜ óõëëÝãïí�áé áðü Ýíá ðëÞèïò �ïðéêþí õðçñåóéþí Þ õðçñåóéþí �ïõ äéáäéê�ýïõ, üðùò

�á óõó�Þìá�á áñ÷åßùí, ïé éó�ïóåëßäåò åíçìÝñùóçò, �á êïéíùíéêÜ äßê�õá êáé ïé äéáêïìéó�Ýò

çëåê�ñïíéêïý �á÷õäñïìåßïõ, êáé åßíáé åããåíþò çìéäïìçìÝíá Þ áäüìç�á. �éá �ï ëüãï áõ�ü,

ç áðï�åëåóìá�éêÞ äåéê�ïäü�çóç êáé áíáæÞ�çóç êåéìÝíïõ åßíáé ìßá åîáéñå�éêÜ óçìáí�éêÞ

õðçñåóßá ãéá �çí áîéïðïßçóç êáé ÷ñÞóç �ùí äåäïìÝíùí áõ�þí. Åðéðñüóèå�á, �ï óõíå÷þò

áõîáíüìåíï ìÝãåèïò �ùí äïìçìÝíùí äåäïìÝíùí ðïõ ðñÝðåé íá äéá÷åéñéó�ïýí, êáèþò êáé ï

õøçëüò áëëÜ êáé ðïéêéëüìïñöïò öüñ�ïò åñãáóßáò, Ý÷ïõí ïäçãÞóåé ó�çí áíÜð�õîç ïñéæüí�éá-

åðåê�Üóéìùí êá�áíåìçìÝíùí óõó�Þìá�ùí �á ïðïßá êáëïýí�áé êëéìáêþóéìá óõó�Þìá�á

áðïèÞêåõóçò. Ó�ç äéá�ñéâÞ áõ�Þ ìåëå�ïýìå �çí áíÜëõóç, �ï ó÷åäéáóìü êáé �çí õëïðïßçóç

áðïäï�éêþí óõó�çìÜ�ùí áðïèÞêåõóçò êáé áíáæÞ�çóçò ãéá äïìçìÝíá êáé áäüìç�á äåäïìÝíá.

Ç áíáæÞ�çóç êåéìÝíïõ óå ðñáãìá�éêü ÷ñüíï ðñïûðïèÝ�åé �ç äõíá�ü�ç�á óõíå÷ïýò

åéóáãùãÞò íÝùí åíçìåñþóåùí ó�ï óýó�çìá êáé �çí ó÷åäüí Üìåóç äéÜèåóÞ �ïõò ðñïò

áíáæÞ�çóç, üðùò åðßóçò êáé �çí åîõðçñÝ�çóç åñù�çìÜ�ùí áíáæÞ�çóçò ìå ÷áìçëÞ êáèõ-

ó�Ýñçóç. �ñüóöá�åò ìÝèïäïé ãéá �çí áõîç�éêÞ åíçìÝñùóç �ïõ åõñå�çñßïõ áíáæÞ�çóçò

êá�áêåñìá�ßæïõí �ï åõñå�Þñéï ó�ï äßóêï, ìå áðï�Ýëåóìá �ç óçìáí�éêÞ áýîçóç �ùí ÷ñüíùí

áíáæÞ�çóçò. ¸÷ïí�áò ùò ó�ü÷ï �çí õðïó�Þñéîç ãñÞãïñçò äåéê�ïäü�çóçò êáé áíáæÞ�çóçò,

ðñï�åßíïõìå �ç ìÝèïäï Sele
tive Range Flush (SRF). ÅðéëÝãïõìå íá ïñãáíþóïõìå �ï

åõñå�Þñéï ó�ï äßóêï óå ìðëïê, �ï ïðïßï åðé�ñÝðåé �çí åðéëåê�éêÞ åíçìÝñùóç ìüíï �ùí

xvi

�ìçìÜ�ùí �ïõ åõñå�çñßïõ ðïõ ìðïñïýí íá åíçìåñùèïýí áðïäï�éêÜ âÜóåé �ïõ áëãïñßèìïõ

SRF. Äåß÷íïõìå ðùò ï SRF ðå�õ÷áßíåé ìåßùóç �ïõ ÷ñüíïõ äåéê�ïäü�çóçò, üìùò áðáé�åß

óçìáí�éêÞ ðåéñáìá�éêÞ ðñïóðÜèåéá ãéá �çí áðï�åëåóìá�éêÞ ðáñáìå�ñïðïßçóç �ïõ. Ó�ç

óõíÝ÷åéá ðñï�åßíïõìå �ïí áëãüñéèìï Uni�ed Range Flush (URF), ï ïðïßïò åßíáé êá�Ü

âÜóç áðëïýó�åñïò áðü �ïí SRF, ðå�õ÷áßíåé ðáñüìïéá Þ êáé êáëý�åñç áðüäïóç ìå ëéãü�åñåò

ðáñáìÝ�ñïõò êáé åõêïëü�åñç ñýèìéóÞ �ïõò, åíþ åðé�ñÝðåé �ç ìåëÝ�ç �çò áóõìð�ù�éêÞò �ïõ

ðïëõðëïêü�ç�áò. Áíáð�ýóóïõìå �éò äýï ðñï�åéíüìåíåò ìåèüäïõò ó�ç ìç÷áíÞ áíáæÞ�çóçò

áíïé÷�ïý êþäéêá Zettair, ÷ñçóéìïðïéþí�áò ðñïóåê�éêÜ õëïðïéçìÝíá õðïóõó�Þìá�á äéá÷åß-

ñéóçò ìíÞìçò êáé äßóêïõ. ¸ðåé�á, åê�åëïýìå åê�å�áìÝíá ðåéñÜìá�á ìå �ñåéò äéáöïñå�éêÝò

óõëëïãÝò äåäïìÝíùí ìåãÝèïõò ìÝ÷ñé 1TB. Ìå�áîý äéáöïñå�éêþí óõó�çìÜ�ùí áíïé÷�ïý

êþäéêá, äåß÷íïõìå ü�é ïé ìÝèïäïß ìáò ðáñÝ÷ïõí êáèõó�Ýñçóç áíáæÞ�çóçò ðïõ åßíáé ðáñüìïéá

Þ ìåéùìÝíç Ýùò êáé 50% óå ó÷Ýóç ìå �éò ÷áìçëü�åñåò êáèõó�åñÞóåéò ðïõ ðå�õ÷áßíïõí

õðÜñ÷ïõóåò ìÝèïäïé. Óõãêñé�éêÜ ìå ìßá ìÝèïäï áí�ßó�ïé÷çò êáèõó�Ýñçóçò áíáæÞ�çóçò, ïé

ìÝèïäïß ìáò ìåéþíïõí êá�Ü Ýíáí ðáñÜãïí�á 2.0{2.4 �ï êïììÜ�é �ïõ ÷ñüíïõ äåéê�ïäü�çóçò

ðïõ áöïñÜ �çí Å/Å, êáé êá�Ü 21%{24% �ï óõíïëéêü ÷ñüíï äåéê�ïäü�çóçò.

Ôá êëéìáêþóéìá óõó�Þìá�á áðïèÞêåõóçò åßíáé óÞìåñá áðáñáß�ç�á ãéá �ç äéá÷åßñéóç

�ïõ �åñÜó�éïõ üãêïõ äïìçìÝíùí äåäïìÝíùí ðïõ áðáé�ïýí ïé õðçñåóßåò äéáäéê�ýïõ êáé ïé

äéÜöïñåò åöáñìïãÝò áíÜëõóçò äåäïìÝíùí. Ìå óêïðü �çí åðß�åõîç ïñéæüí�éáò êëéìáêùóé-

ìü�ç�áò êáé äéáèåóéìü�ç�áò, êáèþò êáé �çí åîõðçñÝ�çóç áé�çìÜ�ùí ìå õøçëÞ ñõèìáðüäïóç

êáé ÷áìçëÞ êáèõó�Ýñçóç, �á óõó�Þìá�á áõ�Ü äåí õéïèå�ïýí �ï ó÷åóéáêü ìïí�Ýëï êáé �éò

ACID éäéü�ç�åò ðïõ ðáñÝ÷ïõí ïé ðáñáäïóéáêÝò âÜóåéò äåäïìÝíùí. ¸÷ïí�áò ùò êýñéï

ó�ü÷ï �çí ðáñï÷Þ õøçëÞò áðüäïóçò áðïèÞêåõóçò åããñáöþí, �á óõó�Þìá�á áõ�Ü óõíÞèùò

åðéëÝãïõí íá èõóéÜóïõí �çí áðüäïóç áíÜãíùóçò åããñáöþí. �éá íá áí�éìå�ùðßóïõìå �ïí

ðåñéïñéóìü áõ�ü ðñï�åßíïõìå �çí äïìÞ áðïèÞêåõóçò Rangetable êáé �ç ìÝèïäï Range-

merge, âÜóåé �ùí ïðïßùí ç äéá÷åßñéóç �ùí åããñáöþí ãßíå�áé áðïäï�éêÜ ïìáäïðïéþí�áò �éò

óå ëåîéêïãñáöéêÜ åýñç. Áíáð�ýóóïõìå �üóï ìßá ãåíéêÞ ðñü�õðç ðëá�öüñìá áðïèÞêåõóçò

üóï êáé Ýíá áðïèçêåõ�éêü óýó�çìá âáóéóìÝíï ó�ï LevelDB, Ýíá áíïé÷�ïý êþäéêá óýó�çìá

äéá÷åßñéóçò êëåéäéïý-�éìÞò áðü �ç Google. Õëïðïéïýìå Ýíá ðëÞèïò áðü áí�éðñïóùðåõ�éêÝò

ìåèüäïõò ó�á äýï áõ�Ü óõó�Þìá�á êáé ìåëå�ïýìå ðåéñáìá�éêÜ �çí áðüäïóÞ �ïõò. Äåß÷íïõìå

ðùò ç áðüäïóç �çò ðñïóÝããéóÞò ìáò åðé�õã÷Üíåé êáèõó�Ýñçóç áðÜí�çóçò óå åñù�Þìá�á

åýñïõò (range-queries) ðïõ åßíáé åëÜ÷éó�ç êáé Ý÷åé ÷áìçëÞ åõáéóèçóßá óå �áõ�ü÷ñïíåò

åéóáãùãÝò äåäïìÝíùí. �áñÜëëçëá, ç áðüäïóç åããñáöÞò �çò ìåèüäïõ ìáò ðñïóåããßæåé

xvii

áõ�Ýò �ùí ìåèüäùí ðïõ åßíáé ó÷åäéáóìÝíåò ãéá õøçëÞ áðüäïóç åããñáöÞò ü�áí �áõ�ü÷ñïíá

åîõðçñå�ïýí�áé êáé áé�Þìá�á áíÜãíùóçò. ÔÝëïò, ç ìÝèïäüò ìáò ìåéþíåé ó�ï ìéóü �ï

äåóìåõìÝíï áðïèçêåõ�éêü ÷þñï, âåë�éþíåé �çí ñõèìáðüäïóç åéóáãùãÞò äåäïìÝíùí áíáëïãéêÜ

ìå �ç äéáèÝóéìç ìíÞìç �ïõ óõó�Þìá�ïò, åíþ åêìå�áëëåýå�áé �çí áóõììå�ñßá �çò êá�áíïìÞò

�ùí êëåéäéþí ðïõ åéóÜãïí�áé.

xviii

Chapter 1

Introdu
tion

1.1 Motivation

1.2 Text Sear
h

1.3 S
alable Datastores

1.4 Thesis Contribution

1.5 Thesis Organization

1.1 Motivation

We live in the era of big data, where
ommer
ial and publi
 organizations strive to manage

massive amounts of both stru
tured and unstru
tured data in all �elds of so
iety. Even

though there is no
lear de�nition of big data, it is usually
hara
terized by the three

following properties: high volume, high velo
ity, and high variety [117℄. The data
olle
ted

a
ross di�erent lo
al and online servi
es, su
h as news websites, so
ial media, mail servers

and �le systems, is inherently semi-stru
tured or unstru
tured (high variety). Therefore,

e�e
tive text indexing and sear
h is very important for data usability and exploration.

Moreover, the exploding amount of stru
tured data that needs to be managed (high

volume) and the demanding workloads that in
lude both throughput-oriented bat
h jobs

1

and laten
y-sensitive data serving (high velo
ity) drive the development of horizontally-

expandable, distributed storage systems,
alled s
alable datastores. Not surprisingly, most

major web
ompanies su
h as Google, Yahoo!, Fa
ebook and Mi
rosoft deal with both the

problems of text sear
h and data management at large s
ale, and have developed their

own indexing and storage systems to meet the requirements of their workloads.

In this thesis, we study the problem of big data management from the aspe
t of

designing and implementing systems to eÆ
iently store, a

ess and sear
h both stru
tured

and unstru
tured data at large s
ale. Although quite di�erent in prin
ipal, the problems

of s
alable text sear
h and storage management share some fundamental
hara
teristi
s:

• System ar
hite
ture. The distributed systems designed for large-s
ale indexing or

storage usually follow a two-tier, shared-nothing ar
hite
ture, where a number of

front-end servers re
eive end-user requests and forward them to a number of worker

servers. Front-end and worker servers may be separate physi
al nodes or hosted on

the same ma
hine.

• Horizontal partitioning. In these systems, s
alability is usually a
hieved using a

te
hnique
alled horizontal partitioning (or sharding). The data is horizontally

partitioned into a number of disjoint partitions, whi
h are subsequently assigned to

worker servers. For example, a large do
ument
olle
tion may be partitioned into

disjoint sets of do
uments for text indexing, while a large table may be split into

groups of
onse
utive rows in
ase of datastores. Ea
h worker then lo
ally stores

and indexes the partition it has been assigned and serves requests for it.

• Data type and ingestion work
ow. The ingestion of new data at ea
h worker usu-

ally follows the approa
h of a

umulating in main memory items in the form of

〈key, value〉 pairs, until the memory is exhausted. When this happens, all memory

items are
ushed to disk and merged with the existing disk items. In the spe
i�

ase of text indexing the key is a term that appeared in the do
ument
olle
tion

and the value is a list of do
uments it appeared into. Similarly, items are expli
itly

inserted as 〈key, value〉 pairs in datastores.

• Storage fragmentation as read-write tradeo�. The
ontiguous disk storage of items

at the worker servers is
riti
al for low read laten
y. Nevertheless, the majority of

2

existing storage management methods at the workers keep the items fragmented on

disk to improve write or indexing throughput, at the
ost of redu
ed read or sear
h

performan
e.

In spite of these similarities, text indexing and storage management of datastores do

have some important di�eren
es:

• Data prepro
essing. Text indexing handles text do
uments, whi
h must �rst be

parsed into 〈do
ument-id, term〉 tuples before being a

umulated in memory and

grouped into 〈term, list-of-do
ument-ids〉 key-value pairs. On the other hand, items

inserted in datastores typi
ally do not need any kind of prepro
essing.

• Data update. During text indexing, when a new 〈do
ument-id, term〉 pair is inserted

in memory, the do
ument-id must be appended to the list of do
uments for term.

In
ontrast, a new 〈key, value〉 pair inserted in a datastore will repla
e any existing

value for key (or
reate a new version of it).

• Item size distribution. The sizes of the individual items pro
essed in text indexing

approximately follow a Zip�an distribution: a few popular terms (e.g., \the", \of",

\and") may have do
ument lists of several tens or hundreds of MB in size, while

the vast majority of terms appear infrequently in do
uments and have list sizes of a

few bytes. Datastores on the other hand handle items of similar sizes, typi
ally in

the range of a few tens or hundreds of KB.

• Workload types. New do
uments are sent periodi
ally to worker servers for index-

ing (for example, after a web
rawler has fet
hed a bat
h of web pages). This

means that most of the time the workers serve sear
h queries, and only o

asionally

need to index a
olle
tion of new do
uments. Unlike text sear
h servers, datas-

tores
onstantly serve both reads and writes. In fa
t, due to the nature of web

appli
ations, datastores frequently experien
e write-intensive workloads although

read-heavy workloads are also
ommon.

In general, horizontal s
alability enables these distributed systems to in
rease their

apa
ity by simply adding more servers. Additionally, to a large extent the system per-

forman
e is determined by the performan
e of the
onstituent worker servers. We therefore

3

fo
us on the eÆ
ien
y of storing and serving the assigned partitions at ea
h worker server.

Re
ent methods that manage the disk and memory on the workers usually follow a write-

optimized approa
h. As a
onsequen
e, reads are
onsiderably a�e
ted with respe
t to

the laten
y and the rate they are served. We thus shift our fo
us on improving the storage

layer on the workers by designing, analyzing and implementing eÆ
ient methods for the

management of items in memory and on disk. Our aim is to improve the read and sear
h

performan
e, while maintaining high the write and indexing throughput.

1.2 Text Sear
h

Real-time text sear
h requires to in
rementally ingest
ontent updates and almost imme-

diately make them sear
hable, while serving sear
h queries at low laten
y. To answer a

text query, a sear
h engine must �rst pro
ess a text dataset and
reate for ea
h term that

appears in the dataset an inverted list with pointers (postings) to all its o

urren
es. The

set of the inverted lists make up the inverted index of the dataset. As new do
uments

are added to the
olle
tion, inverted lists are a

ordingly updated by adding new post-

ings to them. To evaluate a text query, a sear
h engine typi
ally fet
hes in memory the

inverted list of ea
h query term and
ombines them to
al
ulate the set of do
uments that

are relevant to the query (e.g.,
ontain all query terms). Given that a substantial time

fra
tion of query handling is spent on fet
hing the lists from disk, list
ontiguity is
on-

sidered extremely important for fast query evaluation. Re
ent methods for in
remental

index maintenan
e improve indexing
ost by relaxing the list
ontiguity requirement, but

substantially in
rease sear
h laten
y due to the storage fragmentation of lists.

For the support of fast sear
h over disk-based storage, we take a fresh look at in
re-

mental text indexing in the
ontext of
urrent ar
hite
tural features. We advo
ate to

preserve the list
ontiguity but lower the indexing time,
onsidering eÆ
ient algorithms

and data stru
tures, as well as
arefully optimized storage-level and memory management

implementations. To this end, we introdu
e a method
alled Sele
tive Range Flush (SRF)

to
ontiguously organize the index over disk blo
ks and dynami
ally update it at low
ost.

Blo
k-based management simpli�es the maintenan
e of the inverted index be
ause it al-

lows us to sele
tively update only the parts of the index that
an be eÆ
iently updated.

4

We show that SRF redu
es the indexing time, but requires substantial experimental ef-

fort to tune spe
i�
 parameters for performan
e eÆ
ien
y. Subsequently, we propose the

Uni�ed Range Flush (URF) method, whi
h is
on
eptually simpler than SRF, a
hieves

similar or better performan
e with fewer parameters and less tuning, and is amenable

to I/O
omplexity analysis. We implement interesting variations of the two methods in

a prototype we developed using the Zettair open-sour
e sear
h engine, and do extensive

experiments with three di�erent web datasets of size up to 1TB. A
ross di�erent systems,

we show that our methods o�er sear
h laten
y that mat
hes or redu
es up to half the

lowest a
hieved by existing disk-based methods. In
omparison to an existing method of

omparable sear
h laten
y on the same system, our methods redu
e by a fa
tor of 2.0-2.4

the I/O part of build time, and by 21-24% the total build time.

1.3 S
alable Datastores

To meet the needs of write-heavy workloads that often emerge from appli
ations that
on-

stantly
reate large amounts of data, a number of s
alable datastores adopt an append-

only, write-optimized storage layer [33, 15℄. The majority of datastores, in
luding the

proprietary storage platforms of Google, Mi
rosoft and Fa
ebook [28, 25, 59℄ and their

popular open-sour
e alternatives [42, 81, 53℄, manage the data stored on disk using an

approa
h similar to the Log-Stru
tured Merge tree (LSM-tree) [79℄. Using an LSM-tree,

in
oming updates in the form of key-value pairs are simply appended to a log �le on disk

and a

umulated in memory, before
ontrol is returned to the
lient. When in
oming data

�lls up the available memory, all memory entries are
ushed to disk in a immutable, sorted

�le. Reads may need to merge entries from multiple disk �les, so �les are periodi
ally

merged in the ba
kground a

ording to spe
i�
 merge patterns. These merges (or
om-

pa
tions)
an be performed eÆ
iently sin
e �les are sorted. Nevertheless, they interfere

with
on
urrent queries leading to laten
y spikes and throughput de
rease, and they
an

last from several minutes to hours. Additionally, they require half of the available disk

apa
ity to be reserved for the
reation of new �les. Deferring these
ompa
tions is not

a viable solution, be
ause deferred
ompa
tions would leave the data fragmented on disk

for extended periods leading to low query performan
e.

5

To address all the above issues, the memory and storage management of write-optimized

datastores should be re
onsidered. The problem lies in the way the LSM-tree amortizes

the
ost of writes, deferring the
ush of memory entries to disk �les until memory is full

|in whi
h
ase all memory entries are written to a disk �le| and o

asionally merging

the �les produ
ed. We modify the fundamental stru
ture of data storage: instead of peri-

odi
ally performing a few intensive
ompa
tions that
ause performan
e drop, we propose

the use of smaller, more frequent, less aggressive but still eÆ
ient
ompa
tions. Our main

insight is to keep the data in memory and disk sorted and partitioned a
ross disjoint key

ranges, and store ea
h key range in a separate �le. When memory is exhausted, we only

ush to disk the range that o

upies the larger part of memory spa
e and merge it with

its disk �le. A range is split when needed to keep bounded the size of its �le and the

respe
tive merge
ost.

We develop both a general prototype framework and a storage system based on

Google's LevelDB open-sour
e key-value store. We show that the proposed method ef-

fe
tively redu
es the variation in query laten
y
aused by ba
kground
ushes and
om-

pa
tions, while it minimizes the query laten
y by keeping ea
h entry
ontiguously stored

on disk. At the same time, the write performan
e a
hieved approximates or even beats

those of other write-optimized stores under various moderate
onditions. Our method also

removes the need for ex
essive storage reservation, improves the ingest throughput pro-

portionally to the in
rease of the main memory, and naturally exploits the key skewness

of the inserted dataset.

1.4 Thesis Contribution

The work performed within this thesis
ontributes to two areas of
omputer s
ien
e: text

retrieval and storage management for stru
tured data. The main goals of this thesis are

as follows:

• to propose in
remental text indexing methods and implement a prototype sear
h

engine that
an serve sear
h queries with low laten
y and a
hieve high indexing

throughput;

6

• to design and develop an eÆ
ient storage layer for the nodes of s
alable datastores

in order to store and a

ess items fast and keep the interferen
e between ingesting

and serving data low.

The s
ienti�
 methodology for validating the proposed thesis in
ludes:

• design of eÆ
ient methods;

• development of fully fun
tional prototype systems;

• implementation of the proposed methods and related methods from the literature

in the same prototype system for fair
omparison;

• implementation of the methods evaluated in produ
tion systems to examine the

appli
ability of our algorithms and data stru
tures and the generality of our results;

• experimental evaluation using both real-world datasets and syntheti
 workloads;

• theoreti
al analysis of our methods.

The most important
ontributions of this thesis are the following:

• We introdu
e eÆ
ient text indexing methods to in
rementally update the index on

disk, and des
ribe memory and disk management optimizations that further improve

the indexing performan
e.

• We evaluate the proposed solution on a state-of-the-art open-sour
e sear
h engine

using three di�erent real-world web datasets. We demonstrate the feasibility of

building text sear
h engines that
an preserve index
ontiguity on disk for fast disk-

based sear
h while maintaining high indexing throughput.

• We provide a uni�ed
onsideration of known solutions for datastore storage man-

agement a
ross di�erent resear
h �elds. We identify several limitations in existing

systems, whi
h stem from the fundamental way memory and storage are managed

in most write-optimized systems. We introdu
e a new storage stru
ture and a new

data management method to address them.

7

• We implement the proposed storage management approa
h in both a general proto-

type framework and a produ
tion storage system, and
ondu
t extensive experimen-

tal evaluation using large syntheti
 workloads. We show that our method a
hieves

minimal range-query laten
y of low sensitivity to
on
urrent inserts, has write per-

forman
e that approximates or even beats those of other write-optimized methods,

and redu
es down to half the required reserved disk spa
e.

• We perform asymptoti
 analysis for the data ingestion I/O
ost of our methods.

The proposed methods are theoreti
ally shown to have similar asymptoti
 behavior

to some existing methods, but are experimentally demonstrated to have superior

performan
e.

1.5 Thesis Organization

The stru
ture of the rest of the thesis is organized as follows:

In Chapter 2, we provide the ba
kground required to understand the problems of

full-text sear
h and large-s
ale data management. We then pro
eed to an overview of the

related methods for in
remental index maintenan
e and in
lude a brief des
ription of the

ar
hite
tures of the most important s
alable datastores.

InChapter 3, we de�ne the problem of in
remental text indexing, review and
ompare

previous related resear
h, and motivate our work by experimentally showing the problems

aused by the storage fragmentation of index.

In Chapter 4, we introdu
e two new methods to eÆ
iently manage the index on disk,

des
ribe the design and ar
hite
ture of our prototype sear
h engine, and provide details

about our implementation.

InChapter 5, we spe
ify the
hara
teristi
s of our experimentation platform,
ompare

the index build and sear
h performan
e a
ross a representative
olle
tion of methods using

three di�erent datasets over two di�erent systems, and evaluate the e�e
t that important

parameters and engineering optimizations have on the performan
e of the system.

In Chapter 6, we present the problem of large-s
ale storage management and ex-

perimentally motivate our work. We then introdu
e a new method and des
ribe the

8

ar
hite
ture of our prototype storage framework.

In Chapter 7, we evaluate the performan
e of queries and insertions, as well as

their interferen
e, a
ross several methods implemented in our storage system. We also

examine the performan
e sensitivity to various workload parameters and storage devi
es,

and dis
uss about various issues and limitations of our design.

In Chapter 8, we des
ribe the implementation of our storage management method in

a produ
tion system. We provide details about the logging and re
overy
omponents, and

evaluate the eÆ
ien
y of these me
hanisms. We then
ompare our method to alternative

methods in terms of data ingestion throughput.

In Chapter 9, we analyze the asymptoti
 behavior of our methods by performing

omplexity analysis of their I/O
ost.

In Chapter 10, we provide an overall review of the results of our resear
h, summarize

the basi

on
lusions, and indi
ate open issues and interesting dire
tions for future work.

9

Chapter 2

Ba
kground and Related Resear
h

2.1 Full-Text Sear
h

2.2 Large-S
ale Data Management

2.1 Full-Text Sear
h

Full-text sear
h refers to the set of algorithms and data stru
tures that enable a user to

sear
h for a spe
i�
 do
ument in a text database. Today, it is an indispensable servi
e for

the automated retrieval of text do
uments, whether proprietary within an organization,

or publi
 a
ross the web. A do
ument may be a text �le stored in the lo
al �le system,

a page on the web, or a status update from a so
ial network. The user submits a query

into the system whi
h is typi
ally a set of words des
ribing the
ontents of the do
ument,

and the response is a list of do
uments, ea
h probably with di�erent degree of relevan
e

to the query. Full-text sear
h is distinguished from sear
h based on metadata, su
h as

do
ument title, author or date of publi
ation.

When the text database
onsists of a relatively small number of do
uments, the sear
h

engine
an dire
tly s
an the
ontents of the do
uments to �nd those relevant to ea
h query.

However, when dealing with a large number of do
uments or sear
h queries, the problem

of full-text sear
h is usually de
omposed into two stages: indexing and sear
hing. The

indexing stage takes as input the do
ument
olle
tion and builds an index, whi
h is then

10

used in the sear
hing stage to evaluate the sear
h queries. In the next se
tions, we provide

ba
kground information and related literature about index build and query evaluation in

full-text sear
h systems.

2.1.1 Preliminaries

The most eÆ
ient index stru
ture for text query evaluation is the inverted �le [118℄. An

inverted �le is an index that for ea
h term stores a list of pointers to all do
uments that

ontain the term. Ea
h pointer to a do
ument is usually
alled posting and ea
h list of

postings for a parti
ular term is
alled inverted list. In a word-level inverted list a posting

spe
i�es the exa
t position where a term o

urs in the do
ument, unlike a do
ument-level

inverted list that only indi
ates the appearan
e of a term in a do
ument. The lexi
on (or

vo
abulary) of the inverted �le asso
iates every term that appeared in the dataset to its

inverted list. For ea
h term t it stores a
ount f

t

of the do
uments
ontaining t and a

pointer to the start of the
orresponding inverted list on disk.

In a word-level index the inverted list for a term t
ontains pointers of the form:

〈d; f
d;t

; p1; p2; :::; pf
d;t

〉

where d is a do
ument identi�er, f

d;t

is the number of o

urren
es of t in d, and p1; :::; pf
d;t

are the positions within d where t appears. Word positions are valuable in text sear
h

be
ause they are used to identify the adja
en
y or proximity of terms, e.g., in phrase

queries [3, 112, 16, 118℄. A simple text
olle
tion along with the
orresponding word-level

inverted �le is illustrated in Figure 2.1.

Inverted List Organization. Modern sear
h engines typi
ally keep their inverted

lists
ompressed on disk in order to redu
e the spa
e o

upied by the inverted index

and the time required for query evaluation. Index
ompression adds extra
omputation

ost, but the gain of redu
ed data traÆ
 to and from disk is relatively higher [118, 64℄.

Ea
h new do
ument added to the
olle
tion is assigned a monotoni
ally in
reasing iden-

ti�er. Thus, an inverted list
onsists of do
ument identi�ers sorted in in
reasing order

(do
ument-ordered) and
an be represented as a sequen
e of di�eren
es between su

es-

sive do
ument identi�ers (d-gaps). For example, an inverted list
ontaining the do
uments

〈3; 5; 20; 21; 23; 76; 77; 78〉
an be represented as 〈3; 2; 15; 1; 2; 53; 1; 1〉. The di�eren
es are

11

d Document contents

The old night keeper keeps the keep in the town

In the big old house in the big old gown

The house in the town had the big old keep

Where the old night keeper never did sleep

The night keeper keeps the keep in the night

And keeps in the dark and sleeps in the light

1

2

3

4

5

6

(a) Do
ument
olle
tion

The old night keeper keeps the keep in the town

The night keeper keeps the keep in the night

big

dark

and

...

where

...

<6;2;1,6> <2;2;3,8> <3;1;8> <6;1;5> ... <4;1;1>

1

2

1

1

...

t ft

Lexicon

Posting lists

(b) Inverted �le

Figure 2.1: (a) A simple text
olle
tion of six do
uments. (b) The lexi
on and the inverted

lists for the spe
i�
 do
ument
olle
tion.

usually smaller than the initial identi�ers and
an be eÆ
iently en
oded using an inte-

ger
oding s
heme [118℄. The same te
hnique
an also be used to
ompress the sorted

sequen
e of term o

urren
es within ea
h do
ument.

Do
ument-ordered inverted lists are widely used for in
remental index maintenan
e

be
ause they are updated simply by appending new postings at their end [63℄. Depending

on the query type and the system performan
e, query evaluation may require to retrieve

in memory the entire do
ument-ordered inverted list of ea
h query term [64, 116, 50℄.

Alternatively, an inverted list
an be sorted a

ording to de
reasing frequen
y (frequen
y-

ordered) of term o

urren
e in a do
ument or de
reasing
ontribution (impa
t-ordered)

to the query-do
ument similarity s
ore [118℄. Su
h organizations allow inverted lists to

be retrieved in blo
ks rather than in their entirety, whi
h makes their
ontiguous storage

relevant for the individual blo
ks. However, in
omparison to a do
ument-ordered list,

the alternative organizations require additional
ost (e.g., for I/O) to handle
omplex

queries (e.g., term-proximity or Boolean queries) [118, 116℄. Furthermore, a list update

annot be performed eÆ
iently as it involves partial list reorganization with additional

en
oding or de
oding, and thus these s
hemes are not usually used in in
remental index

maintenan
e [100℄.

Query Evaluation. A query to a text sear
h engine is usually a list of terms (also

alled bag-of-words query), probably along with some
onstraints su
h as Boolean oper-

ators. The �rst step in evaluating a query is �nding all do
uments that
ontain some

12

or all of the query terms and satisfy the
onstraints. Ea
h do
ument is then assigned a

similarity s
ore that denotes the \
loseness" of the do
ument to the textual query [118℄.

The underlying prin
iple is that the higher the similarity s
ore awarded to a do
ument,

the greater the estimated likelihood that the user would
onsider it relevant to his or her

query. Finally, the do
uments are ranked based on their s
ores and the k highest-ranked

do
uments are returned to the user.

The similarity of the indexed do
uments to a query
an be
al
ulated by evaluating the

ontribution of ea
h query term to all do
ument s
ores (term-at-a-time), all query terms

to a single do
ument s
ore (do
ument-at-a-time), or the postings with highest impa
t

to do
ument s
ores (s
ore-at-a-time) [2℄. Traditionally, do
ument-at-a-time evaluation is

ommonly used in web sear
h be
ause it more eÆ
iently handles
ontext-sensitive queries

for whi
h the relation (e.g., proximity) among terms is
ru
ial [18℄. Given that a high

per
entage of users only examine a few tens of relevant do
uments, sear
h engines may

prune their index to
ompute fast the �rst bat
hes of results for popular do
uments and

keywords. Thus, a two-tier sear
h ar
hite
ture dire
ts all in
oming queries to a �rst-tier

pruned index, but dire
ts to a se
ond-tier full index the queries not suÆ
iently handled

by the �rst tier [78℄. In order to over
ome the bottlene
k of disk-based storage, pruning

of an impa
t-sorted index allows inverted lists to be stored in memory for signi�
antly

improved performan
e of s
ore-at-a-time query evaluation [100℄.

Index Build. Published literature on text indexing separates o�ine index
on-

stru
tion from online index maintenan
e [118, 89℄. O�ine indexing deals with handling

stati
 do
ument
olle
tions. In order to index stati
 datasets, the system needs to parse

do
uments into postings maintained in memory and periodi
ally
ush the a

umulated

postings to disk
reating a new partial index. Eventually, external sorting
an be used to

merge the multiple index �les into a single �le that handles queries for the entire dataset.

During the indexing pro
ess the queries are handled using an older index.

Online indexing on the other hand handles dynami
 do
ument
olle
tions. Do
uments

may be added to or deleted from the dataset at any time, and the index should re
e
t

these
hanges. The system must be able to pro
ess queries during index updates, and the

query results should in
lude newly added do
uments or ex
lude any do
uments deleted.

In
omparison to online maintenan
e, o�ine index
onstru
tion is simpler be
ause it does

not handle do
ument queries until its
ompletion, and has been addressed in the past

13

using eÆ
ient methods [51℄.

In the rest of this se
tion we fo
us on dynami
 datasets that allow insertions of new

do
uments over time and examine online indexing methods that maintain inverted �les

eÆ
iently on se
ondary storage. Index maintenan
e for the more general
ase of do
u-

ment updates and deletions is an interesting problem on its own that we won't
onsider

further [29, 21, 49℄. We assume word-level inverted lists that are sorted in do
ument

order.

2.1.2 Online Index Maintentan
e

Inserting a new do
ument into a do
ument
olle
tion involves in prin
iple the addition of

a new posting to every inverted list
orresponding to a term in the do
ument. If lists are

do
ument-ordered and new do
uments are assigned monotoni
ally in
reasing numbers,

new postings
an be added to a list by simply appending them at the end of it. A single

do
ument may have a few hundred distin
t terms, meaning that for every new do
ument

the system must update hundreds of inverted lists. In most
ases, a list update
an be

arried out with one blo
k read to fet
h the list and one blo
k write to store it ba
k to disk

after updating it. The
ost of updating the index using this naive s
heme is suÆ
iently

high that in this raw form is not likely to be useful. The only pra
ti
al solution is to

amortize the
ost of updating the lists over a bat
h of do
ument insertions [118℄.

Index building typi
ally involves parsing a bat
h of new do
uments into inverted lists

that are temporarily maintained in main memory for improved eÆ
ien
y [35℄. When

memory gets full, the system
ushes the inverted lists to disk updating the on-disk index.

During indexing, queries
an be evaluated
ombining the disk index with the new in-

memory inverted lists. Early work re
ognizes as main requirement in the above pro
ess the

ontiguous storage on disk of the postings belonging to ea
h term [102℄. Storage
ontiguity

improves a

ess eÆ
ien
y for both query pro
essing and index maintenan
e [118℄, but

introdu
es the need for
omplex dynami
 storage management and frequent or bulky

relo
ations of postings [65℄. On the other hand, if the system keeps the inverted lists

non-
ontiguously on disk, then it avoids relo
ations but may need multiple seeks during

query pro
essing to retrieve an inverted list.

In-pla
e methods build ea
h inverted list in
rementally as new do
uments are pro-

14

Mem

Disk

Immediate Merge or Remerge

1 1 1 1 1 1 1 1 1 1

1 2 4 5 7 8 103 6 9

(a)

Mem

Disk

Nomerge

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 11 1 1

(b)

Figure 2.2: Merges and �les produ
ed after the �rst 10 memory
ushes for the (a) Im-

mediate Merge or Remerge, and (b) Nomerge methods. Numbers within nodes represent

size.

essed. Do
uments are parsed into postings that are a

umulated in memory, until mem-

ory is exhausted. Then, for ea
h term that has postings in memory, the system fet
hes

its inverted list from disk, appends the new postings to it, and writes the updated list

ba
k to disk. In the end, the memory is freed and the next bat
h of do
uments
an be

pro
essed. The need for
ontiguity makes it ne
essary to relo
ate the lists when they run

out of empty spa
e at their end [102, 65, 64, 22℄. One
an amortize the
ost of relo
ation

by preallo
ating list spa
e for future appends using various
riteria [102℄. Note that, due

to the required list relo
ations, it is quite diÆ
ult {if not impossible{ to keep the lists on

disk sorted by term.

The merge-based methods merge the in-memory postings and the disk index into a

single �le on disk. The disk index stores all inverted lists in lexi
ographi
al order. When

memory gets full, the index is sequentially read from disk list-by-list. Ea
h list is then

merged with new postings from memory and appended to a new �le on disk,
reating

the new index. Finally, queries are redire
ted to the newly
reated index and the old

index is deleted. This index update strategy is
alled Immediate Merge or Remerge

(Figure 2.2a) [62, 21, 49℄. Even though in-pla
e index maintenan
e has linear asymptoti

disk
ost that is lower than the polynomial
ost of Remerge, Remerge uses sequential

disk transfers instead of random disk a

esses and is experimentally shown to outperform

in-pla
e methods [64℄. Nevertheless, ea
h memory
ush for
es the entire index to be

pro
essed.

A trivial form of merge-based update is the Nomerge method whi
h does not per-

form any merge operations (Figure 2.2b). Whenever the main memory is exhausted, the

inverted lists from the memory bu�erload are sorted and transferred to disk
reating a

15

Geometric Partitioning (r=3)

Mem

Disk

Partition

1

2

3

1 1 1 1 1 1 1 1 1 1

1 2

3

1 2

6

1 2 13 3 3

9

9

Figure 2.3: Merge sequen
e of Geometri
 Partitioning with r = 3, for the �rst 10 memory

ushes. Numbers within nodes represent size.

new sub-index. This sub-index (also
alled run)
orresponds to the latest bat
h of do
u-

ments pro
essed, and the set of all sub-indexes
omprise the on-disk index for the whole

do
ument
olle
tion. Retrieving an inverted list to evaluate a query requires fet
hing its

fragments from the multiple runs, whi
h
an easily be
ome the dominant
ost of query

evaluation. Overall, this strategy maximizes indexing performan
e but leads to very poor

query performan
e due to the ex
essive fragmentation of inverted lists.

Between the two extremes of Remerge and Nomerge there is a family of merge-based

methods that permit the
reation of multiple inverted �les on disk to amortize the in-

dexing
ost, but bound the query laten
y by periodi
ally merging them a

ording to

spe
i�
 patterns. Essentially, they tradeo� query performan
e with index maintenan
e

performan
e by having a
ontrolled merging of runs.

In Geometri
 Partitioning, the disk index is
omposed by a tightly
ontrolled number

of partitions [62, 63℄. Ea
h partition stores a single sub-index and has a maximum size.

The maximum sizes of the partitions form a geometri
 sequen
e with ratio r: the limit to

the number of postings for the k-th partition is r times the limit of the (k-1)-th partition.

In parti
ular, if the memory bu�erload has
apa
ity M then the i-th partition has a

maximum size of (r − 1)ri−1
M . When the memory bu�erload is full, it is merged with

the sub-index at partition 1 and stored at partition 1. If the size of the sub-index
reated

rea
hes the maximum size (r − 1)M of the partition, it is merged with the existing sub-

index at partition 2 and pla
ed there. In general, whenever the size of a sub-index
reated

at partition k is more than (r − 1)rk−1
M , it is merged with the sub-index at partition

k + 1 and stored there. Figure 2.3 illustrates the merge pattern produ
ed by 10 memory

ushes for Geometri
 Partitioning with r = 3. Alternatively, the method
an dynami
ally

16

Mem

Disk

Generation

0

1

Logarithmic Merge

2

3

1 1 1 1 1 1 1 1 1 1

1

2

1

2

1

2

1 1

2 2

4

8

4

1 1 1 1 1

Partition

(a)

Hybrid Immediate Merge

In-Place

Update

short lists long lists

long listsshort lists

Immediate

Merge

Mem

Disk

(b)

Figure 2.4: Index maintenan
e approa
h for the (a) Logarithmi
 Merge and (b) Hybrid

Immediate Merge methods.

adjust the parameter r to keep the number of disk sub-indexes at most p.

The Logarithmi
 Merge method introdu
es the
on
ept of index generation to de
ide

when to merge the sub-indi
es [21℄. The sub-index
reated from the memory bu�erload

is of generation 0. A sub-index is said to be of generation g+1 if it is
reated by merging

all sub-indi
es of generation g. A merge event is triggered whenever the
reation of a

new sub-index leads to a situation in whi
h there are more than one sub-indi
es of the

same generation g. All sub-indi
es of generation g are then merged to
reate a new disk

sub-index of generation g+1 (Figure 2.4a).

Hybrid methods separate terms into short and long. One early approa
h hashed short

terms a

umulated in memory into �xed-size disk regions
alled bu
kets. If a bu
ket

�lled up, the method
ategorized the term with the most postings as long and kept it at a

separate disk region from that point on [102℄. In several re
ent hybrid methods, the system

uses a merge-based approa
h for the short terms (e.g. Immediate Merge or Logarithmi

Merge) and in-pla
e updates for the long ones (Figure 2.4b) [24℄. They treat ea
h term as

short or long depending on the number of postings that have shown up in total until the

urrent moment, or
urrently parti
ipate in the merging pro
ess. A re
ent hybrid method

separates the terms into frequent and non-frequent a

ording to their appearan
e in query

logs, and maintains them in separate sub-indi
es of multiple partitions ea
h [50℄. Frequent

terms use a merge strategy designed for better query performan
e, while infrequent terms

rely on a merge strategy that attains better update performan
e.

17

2.1.3 Real-Time Sear
h

Given the high
ost of in
remental updates and their interferen
e with
on
urrent sear
h

queries, a main index
an be
ombined with a smaller index that is frequently rebuilt (e.g.

hourly) and a Just-in-Time Index (JiTI) [61℄. JiTI provides (nearly) instant retrieval for

ontent that arrives between rebuilds. Instead of dynami
ally updating the index on disk,

it
reates a small inverted �le for ea
h in
oming do
ument and
hains together the inverted

lists of the same term among the di�erent do
uments. Earlier work on web sear
h also

pointed out the need to update an inverted �le with do
ument insertions and deletions

in real time [29℄. Instead of a word-level index, the Codir system uses a single bit to

keep tra
k of multiple term o

urren
es in a do
ument blo
k (partial inverted index), and

pro
esses sear
h queries by
ombining a transient memory-based index of re
ent updates

with a permanent disk-based index.

Twitter
ommer
ially provided the �rst real-time sear
h engine, although other
ompa-

nies (e.g., Google, Fa
ebook) are also laun
hing real-time sear
h features [46℄. Real-time

sear
h at Twitter is re
ently supported by the Earlybird system that
onsists of inverted

indi
es maintained in the main memory of multiple ma
hines [20℄. Earlybird reuses query

evaluation
ode from the Lu
ene sear
h engine [75℄, but also implements the term vo
abu-

lary as an optimized hash table, and the inverted list as a
olle
tion of do
ument-ordered

segments with in
reasing size.

In
omparison to the bat
h s
heme used until re
ently, the in
remental update s
heme

of Per
olator from Google redu
es the average laten
y of do
ument pro
essing by a fa
tor

of 100, although it is still
onsidered insuÆ
ient for real-time sear
h [83, 20℄. Stateful in
re-

mental pro
essing has also been proposed as a general approa
h to improve the eÆ
ien
y

of web analyti
s over large-s
ale datasets running periodi
ally over MapRedu
e [39, 68℄.

A di�erent study shows that the throughput a
hieved by a method optimized for
on-

stru
tion of inverted �les a
ross a
luster of multi
ore ma
hines is substantially higher

than the best performan
e a
hieved by algorithms based on MapRedu
e [110℄. Earlier

work on bat
h index building proposed a software-pipeline organization to parallelize the

phases of loading the do
uments, pro
essing them into postings, and
ushing the sorted

postings to disk as a sorted �le [76℄.

18

B

A

C

B

key col1 ... coln

...

...

...

...

...

...

...

...

13

104

134

167

180

258

284

390

(a) Bigtable tablet partitioning

Client

(1) 230 ?

(2) C

(3) write(230,...)(4) OK

A

134
167

...

...

key ...

B

13
104
284
390

...

...

...

...

key ...

Master

(0 - 104) : B

(105 - 167) : A

(168 - 258) : C

(259 - 400) : B

C

180
258

...

...

key ...

(b) Bigtable
entralized ar
hite
ture

Figure 2.5: (a) Ea
h table is partitioned into a number of tablets for load balan
ing, whi
h

are subsequently assigned to servers. (b) A master node keeps the mapping between

tablets and servers. Clients must �rst
onta
t the master node to store or a

ess data.

2.2 Large-S
ale Data Management

S
alable datastores (also referred to as NoSQL stores [27, 91℄) are distributed storage

systems
apable of managing enormous amounts of stru
tured data for online serving

and analyti
s appli
ations. A
ross di�erent workloads, they weaken the relational and

transa
tional assumptions of traditional databases to a
hieve horizontal s
alability and

availability, and meet demanding throughput and laten
y requirements. In this se
tion,

we present previous resear
h a
tivity related to the ar
hite
ture and storage organization

of datastores.

2.2.1 S
alable Datastores

Bigtable is a
entralized stru
tured storage system that partitions data a
ross multiple

storage servers,
alled tablet servers [28℄. A tablet is simply a range of
onse
utive rows

within a table (Figure 2.5a). A master node is responsible for assigning tablets to tablet

servers, handling node joins and failures, and balan
ing tablet-server load. A
lient must

�rst
onta
t the master node to lo
ate the server responsible for a key, and then
om-

muni
ates dire
tly with the tablet server for reads and writes (Figure 2.5b). In
oming

data to a tablet server is �rst logged to disk and then kept in the memory. When the

o

upied memory rea
hes a threshold, a minor
ompa
tion transfers memory data to an

immutable disk �le (SSTable). Read operations might need to merge updates from an

19

(2) write(135,...)

(3) OK

(0 - 100) : A

(101 - 200) : B

(201 - 300) : C

(301 - 400) : D

Routing table

Client
(1) write(135,...)(4) OK

D B

A

C

Figure 2.6: Dynamo de
entralized ar
hite
ture. Any node on the ring
an
oordinate a

request from a
lient. We assume the ring spa
e is (0,400) and nodes A, B, C, D are

assigned values 100, 200, 300 and 400 respe
tively.

arbitrary number of SSTables. Periodi
 merging
ompa
tions performed in ba
kground

transform multiple �les into a single �le, while a major
ompa
tion regularly merges all

�les to a single �le free of deleted entries. Bloom �lters are used to skip unne
essary key

sear
hes over SSTables.

Azure is another s
alable datastore that partitions data by key range a
ross di�erent

servers [25℄. It provides storage in the form of blobs (user �les), tables (stru
tured stor-

age), or queues (message delivery). All these data types are internally stored into tables

whi
h are partitioned into RangePartitions similar to Bigtable tablets (Figure 2.5a). The

system keeps the data of ea
h partition over multiple
he
kpoint �les whose number is kept

under
ontrol through periodi
 merging. With an emphasis on data analyti
s, LazyBase

ombines update bat
hing with pipelining and allows per-read-query tradeo�s between

freshness and performan
e [30℄. The system redu
es query
ost through a tree-based

merging of sorted �les triggered by the number of leaves or a time period. HBase

1

, A

u-

mulo

2

and Hypertable

3

are open-sour
e variations of Bigtable [33, 81℄. Compa
tion tuning

ombined with spe
ial metadata �les
an improve the read performan
e of HBase [15℄.

Dynamo is a de
entralized storage system whi
h stores key-value pairs over a dis-

tributed hash table [40℄. Its partitioning s
heme relies on
onsistent hashing to distribute

the load a
ross multiple storage nodes. In
onsistent hashing, the output range of a hash

1

http://hbase.apa
he.org/

2

http://a

umulo.apa
he.org/

3

http://hypertable.
om/

20

fun
tion is treated as a �xed
ir
ular spa
e or \ring". Ea
h node in the system is as-

signed a random value within this spa
e whi
h represents its \position" on the ring, and

is responsible for the region between it and its prede
essor on the ring (Figure 2.6). Ea
h

data item identi�ed by a key is assigned to a node by hashing the data item's key to yield

its position on the ring. This hashing s
heme is termed \
onsistent" be
ause when the

number of nodes (i.e., hash slots)
hanges {and thus a number of keys must be rehashed{

only the nodes adja
ent to the nodes that joined or left the system are a�e
ted. Dynamo

a

epts di�erent pluggable persistent
omponents for lo
al storage of items. The system

an trade o� durability for performan
e by keeping in
oming data in memory and period-

i
ally transferring it to disk. It supports eventual
onsisten
y, whi
h allows for updates to

be propagated to all repli
as asyn
hronously. The Dynamo-inspired Proje
t Voldemort

4

is

an open-sour
e datastore that supports eÆ
ient bulk updates through a
ustom read-only

storage engine
ombined with a data deployment pipeline based on Hadoop [101℄. Riak

5

is another open-sour
e distributed datastore built upon the ideas and design de
isions of

Dynamo.

Cassandra

6

is an open-sour
e write-optimized datastore, designed and implemented

based on the data model of Bigtable and the ar
hite
ture of Dynamo [59℄. Similar to

Dynamo the
luster is
on�gured as a ring of nodes, and it uses asyn
hronous repli
ation

a
ross multiple nodes along with the hinted hando� te
hnique. There is no master node

and the nodes use a gossip me
hanism to propagate the
urrent state of the
luster. The

eventual
onsisten
y model is used, in whi
h
onsisten
y level
an be sele
ted by the
lient.

Similar to Bigtable, Cassandra uses a stru
ture of immutable �les on disk to support reads

without lo
king. Disk �les are
reated when the size of the data items a

umulated in

memory rea
hes a threshold and are periodi
ally merged.

RAM
loud uses a log-stru
tured approa
h to manage data on both memory and disk

for fast
rash re
overy [80℄. A
oordinator node assigns obje
ts to storage servers in units

of tablets. When a server re
eives a write request, it appends the new obje
t to its in-

memory log and forwards that log entry to several ba
kup servers. The ba
kups bu�er

this information in memory and return immediately. The master server returns to the

4

http://github.
om/voldemort/voldemort

5

http://basho.
om/riak/

6

http://
assandra.apa
he.org/

21

lient on
e all ba
kups have a
knowledged re
eipt of the log data. When a ba
kup's bu�er

�lls, it writes the a

umulated log data from other nodes to disk or
ash and deletes the

bu�ered data from memory.

For low power
onsumption, the FAWN key-value store uses a log �le on
ash storage

indexed by an in-memory hash table [1℄. Data is distributed a
ross storage nodes using

onsistent hashing. All write requests to a storage node are simply appended to a log on

ash storage. In order to satisfy reads with a single random a

ess, FAWN maintains a

DRAM hash table per node that maps its keys to an o�set in the append-only log. The

SILT key-value store
ombines
ash storage with spa
e-eÆ
ient indexing and �ltering

stru
tures in memory [66℄. When a key is inserted at a node, it is appended into a

write-optimized, log
alled LogStore, and a
orresponding in-memory index is updated.

The amount of memory required to index obje
ts on LogStore is drasti
ally redu
ed using

partial-key
u
koo hashing and entropy-
oded tries. On
e full, a LogStore is
onverted into

an immutable sorted hash table (HashStore) that does not require any in-memory index

to lo
ate entries. Periodi
ally, multiple HashStores are merged into a single extremely

ompa
t index representation
alled SortedStore, and all deleted or overwritten entries

are garbage
olle
ted.

Masstree is a shared-memory,
on
urrent-a

ess stru
ture for data that fully �ts in

memory [72℄. A
olle
tion of B

+
-trees organized as a trie is used as a highly
on
urrent

data stru
ture in memory. The tree is shared among all
ores and allows for eÆ
ient

implementation of inserts, lookups and range queries (traverse subsets of database in

sorted order by key). Lookups use no lo
ks, while updates a
quire lo
ks only on the

tree nodes involved. Similar to RAM
loud, all reads and writes are served from memory

and data is additionally logged and
he
kpointed for durability. Haysta
k is a persistent

storage system for photos that implements data volumes as large �les over an extent-based

�le system a
ross
lusters of ma
hines [10℄.

2.2.2 Storage Organization

In this se
tion, we outline representative known methods for the problem of write-optimized

data storage. We only
onsider external-memory data stru
tures that handle one-dimensional

range queries to report the points
ontained in a single-key interval, a type of query that

22

is
ommonly used by large-s
ale web appli
ations (Se
tion 6.2). Thus we do not exam-

ine spatial a

ess methods (e.g., R-tree, k-d-B-tree) that dire
tly store multidimensional

obje
ts (e.g., lines) or natively handle multidimensional queries (e.g., re
tangles). Spatial

stru
tures have not been typi
ally used in datastores until re
ently [44℄; also, at worst

ase, the lower-bound
ost of orthogonal sear
h in d dimensions (d > 1) is fra
tional-power

I/O for linear spa
e and logarithmi
 I/O for nonlinear storage spa
e [108℄.

A data stru
ture is stati
 if it remains sear
hable and immutable after it is built;

it is dynami
 if it supports both mutations and sear
hes throughout its lifetime. The

pro
essing
ost of a stati
 stru
ture refers to the total
omplexity to insert an entire

dataset, and the insertion
ost of a dynami
 stru
ture refers to the amortized
omplexity

to insert a single item [12℄. In a datastore, multiple stati
 stru
tures are often
ombined

to a
hieve persistent data storage be
ause �lesystems over disk or
ash devi
es are more

eÆ
ient with appends rather than in-pla
e writes [28, 80, 66℄.

Some datastores rely on the storage engine of a relational database at ea
h server. For

instan
e, PNUTS [32℄ uses the InnoDB storage engine of MySQL, and Dynamo [40℄ the

Berkeley DB Transa
tional Data Store. In a relational database, data is typi
ally stored

on a B-tree stru
ture. Let N be the total number of inserted items, B items the disk blo
k

size, andM items the memory size for
a
hing the top levels of the tree. We assume unary

ost for ea
h blo
k I/O transfer. One B-tree insertion
osts O(log
B

N

M

) and a range query

of output size Z items
osts O(log
B

N

M

+ Z

B

) [114℄. In
ontrast, the Log-stru
tured File

System (LFS) a

umulates in
oming writes into a memory-based bu�er [90℄. When the

bu�er �lls up, data is transferred to disk in a single large I/O and deleted from memory.

RAMCloud and FAWN use a logging approa
h for persistent data storage [1, 80℄.

Inspired from LFS, the Log-Stru
tured Merge-Tree (LSM-tree) is a multi-level disk-

based stru
ture optimized for high rate of inserts/deletes over an extended period [79℄.

In a
on�guration with `
omponents, the �rst
omponent is a memory-resident indexed

stru
ture (e.g., AVL tree), and the remaining
omponents are modi�ed B-trees that reside

on disk. Component size is the storage spa
e o

upied by the leaf level. The memory

and disk
ost is minimized if the maximum size of
onse
utive
omponents in
reases by

a �xed fa
tor r. When the size of a
omponent C

i

rea
hes a threshold, the leaves of C

i

and C

i+1 are merged into a new C

i+1
omponent. The LSM-tree a
hieves higher insertion

performan
e than a B-tree due to in
reased I/O eÆ
ien
y from bat
hing in
oming updates

23

into large bu�ers and sequential disk a

ess during merges. The insertion
ost of the

LSM-tree is O(r
B

log
r

N

M

), where ` = log
r

N

M

is the number of
omponents. However, a

range query generally requires to a

ess all the
omponents of an LSM-tree. Thus, a

range query
osts O(log
r

N

M

+ Z

B

) if sear
h is fa
ilitated by a general te
hnique
alled

fra
tional
as
ading [114℄. Bigtable and Azure rely on LSM-trees to manage persistent

data [25, 28, 98℄.

The Stepped-Merge Algorithm (SMA) is an optimization of the LSM-tree for update-

heavy workloads [55℄. SMA maintains ` + 1 levels, with up to k B-trees (
alled runs) at

ea
h level i = 0; : : : ; `− 1, and 1 run at level `. Whenever memory gets full, it is
ushed

to a new run on disk at level 0. When k runs a

umulate at level i on disk, they are

merged into a single run at level i + 1, i = 0; : : : ; ` − 1. SMA a
hieves insertion
ost

O(1
B

log
k

N

M

), and query
ost O(k log
k

N

M

+ Z

B

) under fra
tional
as
ading. A
ompa
tion

method based on SMA (with unlimited `) has alternatively been
alled Sorted Array

Merge Tree (SAMT) [98℄. If we dynami
ally set k = N

M

to SMA, we get the Nomerge

method, whi
h
reates new sorted �les on disk without merging them (Se
tion 2.1.2).

Although impra
ti
al for sear
hes, Nomerge is a baseline
ase for low index-building
ost.

A variation of SMA is applied with k = 10 by the Lu
ene sear
h engine [34℄, or k = 4 by

Cassandra and GTSSL [98℄.

Text indexing maps ea
h term to a list of do
ument lo
ations (postings) where the

term o

urs. Merge-based methods
ush postings from memory to a sorted �le on disk

and o

asionally merge multiple �les. Along a sequen
e of
reated �les, Geometri
 Par-

titioning introdu
es the parameter r to spe
ify an upper bound ((r − 1)ri−1
M) at the

size of the i-th �le, i = 1, 2, . . . , for memory size M (Se
tion 2.1.2). Hierar
hi
al merges

guarantee similar sizes among the merged �les and limit the total number of �les on

disk. The I/O
osts of insertion and sear
h in Geometri
 Partitioning are asymptoti-

ally equal to those of the LSM-tree [63, 114℄ and the Ca
he-Oblivious Lookahead Array

(COLA) [11℄. Geometri
 Partitioning
an dire
tly
onstrain the maximum number p of

�les with dynami
 adjustment of r. Setting p = 1 leads to the Remerge method, whi
h

always merges the full memory into a single �le on disk and requires one I/O to handle

a query. In the parti
ular
ase of p = 2, Geometri
 Partitioning is also known as Square

Root Merge [24℄. A variation of Geometri
 Partitioning with r = 2 is used by Anvil [71℄

and r = 3 by HBase [98℄; SILT uses a single immutable sorted �le (similar to p = 1) on

24

Table 2.1: Summary of storage stru
tures typi
ally used in datastores. We in
lude their

I/O
omplexities for insertion and range query in one-dimensional sear
h over single-key

items.

The I/O Complexity of Datastore Storage Stru
tures

Dynami
 Data Stru
ture Insertion Cost Query Cost System Example

B-tree O(log
B

N

M

) O(log
B

N

M

+ Z

B

)
PNUTS [32℄,

Dynamo [40℄

Log-stru
tured File System

(LFS)

O(1

B

) N/A

RAMCloud [80℄,

FAWN [1℄

Log-stru
tured Merge Tree

(LSM-tree), Geometri
, r-COLA

O(r
B

log
r

N

M

) O(log
r

N

M

+ Z

B

)

HBase [98℄, Anvil [71℄,

Azure [25℄, Bigtable [28℄,

bLSM [93℄

Geometri
 with p partitions,

O(1

B

p

√

N

M

)
O(p+ Z

B

) bottom layer of SILT [66℄

Remerge (spe
ial
ase p = 1)

Stepped-Merge Algorithm (SMA),

O(1

B

log
k

N

M

) O(k log
k

N

M

+ Z

B

)
Cassandra [52℄,

GTSSL [98℄, Lu
ene [34℄

Sorted Array Merge Tree (SAMT),

Nomerge (spe
ial
ase k = N=M)

ash storage [66℄.

We summarize the asymptoti
 insertion and range-query
osts of the above stru
tures

in Table 2.1. Log-based solutions a
hieve
onstant insertion
ost, but la
k eÆ
ient support

for range queries. SMA in
urs lower insertion
ost but higher query
ost than the LSM-

tree. Geometri
 Partitioning with p partitions takes
onstant time to answer a query, but

requires fra
tional-power
omplexity for insertion.

2.2.3 Related Issues

Transa
tional Support. An evaluation of transa
tional support in
ommer
ial
loud

database systems shows a diversity a
ross the business models of di�erent providers [58℄.

The PNUTS system applies a simple relational model to organize attribute re
ords into

tables of a geographi
ally-distributed database [32℄. For point or range queries, it uses

alternative physi
al layers, su
h as a �lesystem-based hash table or a MySQL/InnoDB

database. The primary bottlene
k of the system is the disk seek
apa
ity required for data

storage and messaging. PNUTS
an a
hieve higher throughput of bulk re
ord insertion

25

with a planning phase to minimize the sum of partition movement and insertion time [96℄.

Alternatively, snapshot text �les
an be
reated by Hadoop for dire
t data import into

the MySQL tables of PNUTS [97℄.

Per
olator extends Bigtable to support
ross-row,
ross-table transa
tions through ver-

sioning [83℄. Megastore organizes stru
tured data over a wide-area network as a
olle
tion

of small databases,
alled entity groups [7℄. Entities within an entity group are mutated

with ACID transa
tions, while operations a
ross entity groups typi
ally apply looser se-

manti
s through asyn
hronous messaging. G-Store allows the dynami

reation of key

groups over whi
h multi-key transa
tional a

ess is supported [36℄. Anvil is a modular,

extensible toolkit for database ba
kends [71℄. The system periodi
ally digests written data

into read-only tables, whi
h are merged through Geometri
 Partitioning (also similar to

generational garbage
olle
tion [106℄).

The e
Store realizes a s
alable range-partitioned storage system over a tree-based

stru
ture [109℄. The system automati
ally organizes histogram bu
kets to a

urately esti-

mate a

ess frequen
ies and repli
ate the most popular data ranges, while it bases trans-

a
tion management on versioning and optimisti

on
urren
y
ontrol. The ES

2
system

supports both verti
al and horizontal partitioning of relational data [26℄. It also provides

eÆ
ient bulk loading, small-range queries for transa
tion pro
essing and sequential s
ans

for bat
h analyti
al pro
essing.

Data Stru
tures. The indexed sequential a

ess method (ISAM) refers to a disk-based

tree used by database systems [87℄. Ea
h tree node has �xed size (e.g. 4KB), and the

data is sequentially stored key-sorted in the leaf nodes before the non-leaf nodes are

allo
ated. The ISAM stru
ture is stati
 after it is
reated, be
ause inserts and deletes

a�e
t only the
ontents of leaf pages. If subsequent inserts over
ow a leaf node, they

are stored at arrival order in additional
hained blo
ks allo
ated from an over
ow area.

For intense update loads and
on
urrent analyti
s queries, the Partitioned Exponential

�le (PE �le) dynami
ally partitions data into distin
t key ranges and manages separately

ea
h partition similarly to an LSM-tree [57℄. Over time, the size of a partition
hanges

by orders of magnitude, while it always has to fully �t in memory. Insertion
ost varies

signi�
antly due to the required storage reorganization and data merging within ea
h

partition. Similarly, sear
h
ost varies be
ause it involves all levels of a partition, uses

26

tree indexing at ea
h level, and interferes with
on
urrent insertions.

A di
tionary stores a mapping from keys to values. In the external memory model, a

two-level memory hierar
hy
onsists of internal memory and a disk with I/O blo
k size

B. The alternative
a
he-oblivious model is applied in multi-level memory hierar
hies

assuming that the blo
k size B is unavailable for tuning. Bender et al. introdu
e the
a
he-

oblivious lookahead array (g-COLA) as a multi-level stru
ture, where g is the fa
tor of

size growth between
onse
utive levels [11℄. Due to bu�ering and amortized I/O, g-COLA

a
hieves faster random inserts than a traditional B-tree, but slower sear
hes and sorted

inserts. Brodal et al. proposed the xDi
t dynami
 di
tionary for optimal,
on�gurable

tradeo� in spa
e, query and update
osts at the
a
he-oblivious model [17℄.

A versioned di
tionary is a di
tionary with an asso
iated version tree, whi
h supports

queries on any version, updates on leaf versions, and
loning on any version by adding

a
hild. A stru
ture is
alled fully-versioned if it supports arbitrary version trees, and

partially-versioned if it only supports a linked list as a (degenerate) version tree. As

a partially-versioned di
tionary, the multiversion a

ess stru
ture a
hieves logarithmi

update time, optimal spa
e and optimal query time for a key range at a spe
i�
 time and

a key in a spe
i�ed time range [107℄. In the
a
he-oblivious model, Byde et al. re
ently

proposed the strati�ed B-tree as a fully-versioned di
tionary, whi
h a
hieves optimal,

on�gurable tradeo� among query time, update time, and spa
e [105℄.

Ben
hmarking. The performan
e and s
alability of several data serving systems has

been studied under the ben
hmark framework
alled Yahoo! Cloud Serving Ben
hmark

(YCSB) [33℄. With measurements, it was found that Cassandra a
hieves higher perfor-

man
e at write-heavy workloads, PNUTS at read-heavy workloads, and HBase at range

queries. The YCSB++ adds extensions to YCSB for advan
ed features that in
lude bulk

data loading, server-side �ltering and �ne-granularity a

ess
ontrol [81℄. BigBen
h is an

end-to-end big data ben
hmark whose underlying business model is a produ
t retailer [47℄.

Wang et al. introdu
e BigDataBen
h, a ben
hmark
overing a broad range of appli
ation

s
enarios and real-world datasets, in
luding stru
tured, semi-stru
tured and unstru
tured

text data and graph datasets [45℄.

27

Chapter 3

In
remental Text Indexing for Fast

Disk-Based Sear
h

3.1 Introdu
tion

3.2 Ba
kground

3.3 Motivation

3.1 Introdu
tion

Digital data is a

umulated at exponential rate due to the low
ost of storage spa
e, and

the easy a

ess by individuals to appli
ations and web servi
es that support fast
ontent

reation and data ex
hange. Traditionally, web sear
h engines periodi
ally rebuild in

bat
h mode their entire index by ingesting tens of petabytes of data with the assistan
e

of
ustomized systems infrastru
ture and data pro
essing tools [16, 39, 38℄. This approa
h

is suÆ
ient for websites whose
ontent
hanges relatively infrequently, or their enormous

data volume makes infeasible their
ontinuous tra
king.

Today, users are routinely interested to sear
h the new text material that is frequently

added a
ross di�erent online servi
es, su
h as news websites, so
ial media, mail servers

and �le systems [61, 94, 22, 13, 46, 20℄. Indeed, the sour
es of frequently-
hanging
ontent

are highly popular web destinations that demand almost immediate sear
h visibility of

28

their latest additions [61, 63, 22, 83, 20℄. Real-time sear
h refers to the fast indexing

of fresh
ontent and the
on
urrent support of intera
tive sear
h (Se
tion 2.1.3); it is

in
reasingly deployed in produ
tion environments (e.g., Twitter, Fa
ebook) and a
tively

investigated with respe
t to the applied indexing organization and algorithms. Text-based

retrieval remains the primary method to identify the pages related to a web query, while

the inverted �le is the typi
al index stru
ture used for web sear
h (Se
tion 2.1.1).

A web-s
ale index applies a distributed text-indexing ar
hite
ture over multiple ma-

hines [3, 8, 16, 5, 60℄. S
alability is
ommonly a
hieved through an index organization

alled do
ument partitioning. The system partitions the do
ument
olle
tion into disjoint

sub-
olle
tions a
ross multiple ma
hines, and builds a separate inverted index (index

shard) on every ma
hine. A
lient submits a sear
h query to a single ma
hine (master

or broker). The master broad
asts the query to the ma
hines of the sear
h engine and

re
eives ba
k disjoint lists of do
uments that satisfy the sear
h
riteria. Subsequently, it

ollates the results and returns them in ranked order to the
lient. Thus, a standalone

sear
h engine running on a single ma
hine provides the basi
 building blo
k for the dis-

tributed ar
hite
tures that provide s
alable sear
h over massive do
ument
olle
tions.

When a fresh
olle
tion of do
uments is
rawled from the web, an o�ine indexing

method
an be used to rebuild the index from s
rat
h (Se
tion 2.1.1). Input do
uments

are parsed into postings, with the a

umulated postings periodi
ally
ushed from memory

into a new partial index on disk. Te
hniques similar to external sorting merge at the end

the multiple index �les into a single �le at ea
h ma
hine. Due to fragmentation of ea
h

inverted list a
ross multiple partial indi
es on a ma
hine, sear
h is supported by an older

index during the update. Instead, online indexing
ontinuously inserts the freshly
rawled

do
uments into the existing inverted lists and periodi
ally merges the generated partial

indi
es to dynami
ally maintain low sear
h laten
y (Se
tion 2.1.2).

Disk-based storage is known as a performan
e bottlene
k in sear
h. Thus, index-

pruning te
hniques have been developed to always keep in memory the inverted lists

of the most relevant keywords or do
uments, but lead to higher
omplexity in index

updating and
ontext-sensitive query handling [18, 118, 2, 78, 100℄. Although the laten
y

and throughput requirements of real-time sear
h are also
urrently met by distributing

the full index on the main memory of multiple ma
hines [20℄, the pur
hase
ost of DRAM

is two orders of magnitude higher than that of disk storage
apa
ity [92℄. Therefore, it is

29

ru
ial to develop disk-based data stru
tures, algorithmi
 methods and implementation

te
hniques for in
remental text indexing to intera
tively handle queries without the entire

index in memory.

In this
hapter, we examine the fundamental question of whether disk-based text

indexing
an eÆ
iently support in
remental maintenan
e at low sear
h laten
y. We fo
us

on in
remental methods that allow fast insertions of new do
uments and intera
tive sear
h

over the indexed
olle
tion. We introdu
e two new methods, the Sele
tive Range Flush

and Uni�ed Range Flush. In
oming queries are handled based on postings residing in

memory and the disk. Our key insight is to simplify index maintenan
e by partitioning

the inverted �le into disk blo
ks. A blo
k may
ontain postings of a single frequent term or

the inverted lists that belong to a range of several infrequent terms in lexi
ographi
 order.

We
hoose the right blo
k size to enable sequential disk a

esses for sear
h and update.

When memory gets full during index
onstru
tion, we only
ush to disk the postings of

those terms whose blo
ks
an be eÆ
iently updated. Due to the breadth of the examined

problem, we leave outside the study s
ope several orthogonal issues that
ertainly have to

be addressed in a produ
tion-grade system, su
h as
on
urren
y
ontrol [61℄, automati

failover [60℄, or the handling of do
ument modi�
ations and deletions [67, 49℄.

For
omparison purposes, we experiment with a software prototype that we developed,

but we also apply asymptoti
 analysis. In experiments with various datasets, we a
hieve

sear
h laten
y that depends on the number of retrieved postings rather than fragmentation

overhead, and index building time that is substantially lower than that of other methods

with similar sear
h laten
y. To the best of our knowledge, our indexing approa
h is the

�rst to group infrequent terms into lexi
ographi
 ranges, partially
ush both frequent and

infrequent terms to disk, and
ombine the above with blo
k-based storage management

on disk. Prior maintenan
e methods for inverted �les randomly distributed the infrequent

terms a
ross di�erent blo
ks [102℄, or handled ea
h term individually [119, 19℄. Alterna-

tively, they partially
ushed to disk only the frequent terms [23, 22℄, or used disk blo
ks

of a few kilobytes with limited bene�ts [19, 102℄.

30

Table 3.1: Summary of the asymptoti

ost (in I/O operations) required to in
rementally

build inverted �les and retrieve terms for query handling. N is the number of indexed

postings and M is the amount of memory used for postings gathering. The parameter a

(e.g., a = 1.2) refers to the Zip�an distribution (Se
tion 9.1).

Index Maintenan
e Method Build Cost Sear
h Cost

Nomerge [102, 63, 24, 51℄ Θ(N) N=M

Immediate Merge [63, 35, 22℄ Θ(N2
=M) 1

Logarithmi
 Merge [24℄

Θ(N · log(N=M)) log(N=M)
Geometri
 Partitioning [62, 63℄

Geometri
 Partitioning with ≤ p partitions [63℄ Θ(N · (N=M)1=p) p

Hybrid Immediate Merge [24, 22℄

Θ(N1+1=a
=M)

1 or 2 (a

ording to

Uni�ed Range Flush [Se
tion 9.1℄ the list threshold)

Hybrid Logarithmi
 Merge [24℄ Θ(N) log(N=M)

3.2 Ba
kground

In this se
tion, we summarize the
urrent general approa
hes of in
remental text indexing,

and fa
tor out the relative di�eren
es of existing methods with respe
t to the new methods

that we introdu
e.

As dis
ussed in Se
tion 2.1.2, merge-based methods maintain on disk a limited number

of �les that
ontain fragments of inverted lists in lexi
ographi
 order. During a merge, the

methods read sequentially the lists from disk, merge ea
h list with the new postings from

memory, and write the updated lists ba
k to a new �le on disk. The methods amortize

the I/O
ost if they
reate on disk multiple inverted �les and merge them in spe
i�

patterns. In-pla
e methods avoid to read the whole disk index, and in
rementally build

ea
h inverted list by appending new memory postings at the end of the list on disk.

Hybrid methods separate terms into short and long a

ording to the term popularity,

and use a merge-based approa
h for the short terms and in-pla
e appends for the long

ones. The system treats a term as short or long depending on the number of postings that

either have shown up in total until now (
ontiguous) [23℄, or parti
ipate in the
urrent

merging pro
ess (non-
ontiguous) [24℄. In the non-
ontiguous
ase, if a term
ontributes

more than T (e.g., T = 1MB) postings to the merging pro
ess, the method moves the

postings from the merge-based index to the in-pla
e index; this redu
es the build time,

31

Hybrid Immediate Merge Selective Range Flush Unified Range Flush

short lists long lists

Immediate

Merge

Mem

Disk

long listsshort lists

In-Place

Update

ranges long lists

Selective

Merge

long listsranges

In-Place

Update

ranges long lists

Selective

Merge

ranges

In-Place

Updatesize > Ta

Figure 3.1: Hybrid Immediate Merge only applies partial
ushing to long (frequent) terms,

while Sele
tive Range Flush (SRF) and Uni�ed Range Flush (URF) partially
ush both

short (infrequent) and long terms. Unlike SRF, URF organizes all postings in memory as

ranges, allows a term to span both the in-pla
e and merge-based indi
es, and transfers

postings of a term from the merge-based to the in-pla
e index every time they rea
h a

size threshold T

a

(see also Se
tion 4.6).

but may slightly in
rease the retrieval time of long terms due to their storage on both the

in-pla
e and merge-based indi
es.

As shown in Table 3.1 for representative methods, the asymptoti

omplexity of index

building is estimated by the number of I/O operations, expressed as fun
tion of the number

of indexed postings. We in
lude the sear
h
ost as the number of partial indi
es (or runs)

a
ross whi
h an inverted list is stored. The Nomerge method
ushes its postings to a new

run on disk every time memory gets full and provides a baseline for the minimum indexing

time. The Immediate Merge method repeatedly merges the postings in memory with the

entire inverted �le on disk every time memory gets full. The Geometri
 Partitioning and

Logarithmi
 Merge methods keep multiple runs on disk and use a hierar
hi
al pattern to

merge the postings of memory and the runs on disk. The Geometri
 Partitioning method

with ≤ p partitions adjusts
ontinuously the fan-out of the merging tree to keep the

number of runs on disk at most p. Hybrid versions of the above methods partition the

index into in-pla
e and merge-based indi
es.

Our methods, Sele
tive Range Flush and Uni�ed Range Flush, di�er from existing

ones, be
ause we organize the infrequent terms into ranges that �t into individual disk

blo
ks, and store ea
h frequent term into dedi
ated disk blo
ks (Figure 3.1). Additionally,

we only partially
ush frequent and infrequent terms from memory to preserve the disk

32

Table 3.2: Main fun
tional di�eren
es among existing and our new methods of in
remental

text indexing.

Index Maintenan
e Update Threshold Merging Partial Flushing Storage

Method S
heme Count Pattern Flushing Criterion Unit

Nomerge new run none none none full mem. runs

Immediate Merge merge none sequential none full mem. single run

Geometri
 Partition. merge none hierar
hi
al none full mem. partitions

Hybrid Log. Merge hybrid merge/total hierar
hi
al none full mem. segments

Hybrid Imm. Merge hybrid merge/total sequential in-pla
e list size segments

Sele
tive Range Flush hybrid total range-based both list ratio blo
ks

Uni�ed Range Flush hybrid merge range-based both range size blo
ks

I/O eÆ
ien
y. The two methods di�er from ea
h other with respe
t to the
riteria that

they apply to
ategorize the terms as short or long, and also to determine whi
h terms

should be
ushed from memory to disk. In Table 3.1 we in
lude the asymptoti

osts of

Uni�ed Range Flush as estimated in Se
tion 9.1.

A

ording to experimental resear
h, build time may additionally depend on system

stru
tures and parameters not always
aptured by asymptoti

ost estimates [64, 22℄.

Thus, although the Hybrid Immediate Merge and Uni�ed Range Flush have the same

asymptoti

omplexity as shown in Table 3.1, we experimentally �nd their measured

merge performan
e to substantially di�er by a fa
tor of 2. More generally, the potential

dis
repan
y between theoreti
al and empiri
al results is a known issue in literature. For

instan
e, online problems are the type of optimization problems that re
eive input and

produ
e output in online manner, but ea
h output a�e
ts the
ost of the overall solution.

Several paging algorithms are examples of online algorithms that theoreti
ally in
ur the

same relative
ost (
ompetitive ratio) to an optimal algorithm, but they
learly di�er from

ea
h other with respe
t to experimentally measured performan
e [14℄.

In Table 3.2, we fa
tor out the main fun
tional di�eren
es among the representative

methods that we
onsider. The index update varies from simple
reation of new runs, to

purely merge-based and hybrid s
hemes. In hybrid s
hemes, term postings are respe
tively

stored at the merge-based or in-pla
e index a

ording to their
ount in the entire index

(Total) or the index part
urrently being merged (Merge). The merging pattern varies

33

from sequential with a single run on disk, to hierar
hi
al that tightly
ontrols the number

of runs, and range-based that splits the index into non-overlapping intervals of sorted

terms. When the memory �lls up, most existing methods
ush the entire memory to disk

ex
ept for the Hybrid Immediate Merge that partially
ushes frequent terms; in
ontrast,

our methods apply partial
ushing to both frequent and infrequent terms (Figure 3.1).

The
riterion of partial memory
ushing alternatively
onsiders the posting
ount of

individual terms and term ranges or their ratio. Most methods allo
ate the spa
e of disk

storage as either one or multiple runs (alternatively
alled partitions or segments [24℄) of

overlapping sorted terms, while we use blo
ks of non-overlapping ranges.

3.3 Motivation

In this se
tion we present the motivation of our work. We experimentally highlight that

sear
h laten
y is primarily spent on disk I/O to retrieve inverted lists. A
ross di�erent

queries, laten
y
an be relatively high even when stop words are used or
a
hing is applied,

whi
h makes the eÆ
ien
y of storage a

ess highly relevant in fast disk-based sear
h [118,

6℄.

3.3.1 The Sear
h Cost of Storage Fragmentation

Early resear
h on disk-based indexing re
ognized as main requirement the
ontiguous stor-

age of ea
h inverted list [35, 102℄. Although storage
ontiguity improves a

ess eÆ
ien
y

in sear
h and update, it also leads to
omplex dynami
 storage management and frequent

or bulky relo
ations of postings. Re
ent methods tend to relax the
ontiguity of inverted

lists so that they lower the
ost of index building. One parti
ular study partitioned the

postings of ea
h term a
ross multiple index �les and stored the inverted list of ea
h long

term as a
hain of multiple non-
ontiguous segments on disk [24℄. Not surprisingly, it

has been experimentally shown a
ross di�erent systems that multiple disk a

esses (e.g.,

7 in GOV2) may be needed to retrieve a fragmented inverted list regardless of the list

length [63℄. List
ontiguity is parti
ularly important for infrequent terms be
ause they

dominate text datasets and are severely a�e
ted by list fragmentation. From the Zip�an

distribution of term frequen
y, the inverted �le of a 426GB text
olle
tion has more than

34

Table 3.3: Average sear
h laten
y

(ms) and the fra
tion of it spent

on I/O, using the GOV2 dataset

over the Zettair sear
h engine.

Queries Avg I/O

50% 105 67%

75% 255 58%

90% 680 58%

95% 1,053 61%

100% 1,726 64%

Table 3.4: Average, median and 99th per
entile of

sear
h laten
y (ms) when di�erent numbers of stop

words are applied with and without page
a
hing

in GOV2/Zettair.

stop

words

without
a
hing with
a
hing

avg med 99th avg med 99th

0 1,726 291 19,616 1,315 274 13,044

10 640 247 5,283 508 217 4,182

20 489 242 3,221 413 204 2,873

100 411 232 2,398 341 188 1,959

99% of inverted lists smaller than 10KB [35, 24℄. If a list of su
h size is fragmented into k

runs, the delay of head movement in a hard disk typi
ally in
reases the list retrieval time

by a fa
tor of k.

We examine the importan
e of query I/O eÆ
ien
y using the Zettair sear
h engine

with an indexing method that stores the inverted lists
ontiguously on disk [115℄. Using

the index of the GOV2 text
olle
tion (426GB), we evaluate 1,000 standard queries [103℄

in a server as spe
i�ed in Se
tion 5.1 with the bu�er
a
he disabled. Thus, we measure

the time to return the 20 most relevant do
uments per query along with the per
entage

of time spent on I/O. We sort the queries by in
reasing response time and
al
ulate the

average query time for the 50%, 75%, 90%, 95% and 100% fastest of them. A

ording

to the last row of Table 3.3, 64% of the average query time is spent on I/O for reading

inverted lists from disk. The per
entage be
omes 67% for the 50% fastest queries, whi
h

mostly
onsist of non-frequent terms with small inverted lists.

Ca
hing keeps in memory the postings of frequently queried terms, while stop words

are frequent terms usually ignored during query handling [118, 6℄. From Table 3.4 it

follows that enabling the page
a
he de
reases by 24% the average laten
y, 6% the me-

dian, and 34% the 99th per
entile. Ca
hing is generally known to redu
e the laten
y of

intera
tive servi
es, but it
annot dire
tly address the problem of variable responsiveness

in distributed systems, unless the entire working set resides in main memory [38℄. If we

additionally omit the 10, 20 or 100 most
ommon stop words during query handling, the

enabled bu�er
a
he still de
reases laten
y by about 18% on average. For instan
e, using

35

10 stop words
ombined with
a
hing lowers the average laten
y by 71% from 1.7s to

508ms. Nevertheless, 45% of the average query time is still spent on I/O.

Query laten
y is often evaluated using average measurements [24, 62℄, whi
h do not

onvey the high variations a
ross di�erent queries. In Table 3.3, the average query laten
y

is about 1726ms, even though the 50% fastest queries only take an average of 105ms. If

we presumably double the duration of the 50% fastest queries, the average laten
y a
ross

all the queries is only in
reased by 3%. Similarly, the dis
repan
y between the average

and median laten
y measurements in Table 3.4 further demonstrates the e�e
t from the

few long queries to the measured statisti
s. Therefore, the average statisti
 understates

the problem of list fragmentation.

Given the substantial time fra
tion of query handling spent on I/O and the signi�-

ant in
rease that list fragmentation
auses in I/O time, we advo
ate to preserve the list

ontiguity of frequent and infrequent terms through the design and storage-level imple-

mentation of the indexing method. Additionally, we aim to a
hieve low query laten
y

both on average and a
ross di�erent per
entiles.

36

Chapter 4

Sele
tive Range Flush and Unified

Range Flush Methods

4.1 Problem De�nition

4.2 System Ar
hite
ture

4.3 The Sele
tive Range Flush Method

4.4 Evaluation of Sele
tive Range Flush

4.5 Sensitivity of Sele
tive Range Flush

4.6 The Uni�ed Range Flush Method

4.7 Prototype Implementation

In this se
tion, we �rst des
ribe the studied problem along with our goals, and then

explain the data stru
tures and the Sele
tive Range Flush (SRF) method to solve it. Mo-

tivated by our long experimental e�ort to tune SRF, we then pro
eed to the des
ription

of the Uni�ed Range Flush (URF) method with simpler stru
ture but similar (or even

better sometimes) build and sear
h performan
e. Finally, we des
ribe the Proteus pro-

totype implementation that we developed using the Zettair open-sour
e sear
h engine to

evaluate the eÆ
ien
y of the proposed methods.

37

4.1 Problem De�nition

In this study we mainly fo
us on the in
remental maintenan
e of inverted �les for eÆ
ient

index building and sear
h. We do not examine the related problems of parsing input

do
uments to extra
t new postings, or the ranking of retrieved postings for query rele-

van
e. We primarily aim to minimize the I/O time required to retrieve the term postings

of a query and the total I/O time involved in index building. More formally we set the

following two goals:

query handling: minimize

∑

i

I/O time to read the postings of term

i

(4.1)

index building: minimize

∑

j

I/O time to
ush posting

j

; (4.2)

where i refers to the terms of a query, and j refers to the postings of the indexed do
ument

olle
tion. The I/O time of query handling depends on the data volume read from disk

along with the respe
tive a

ess overhead. Similarly, the total I/O time of index building

is determined by the volume of data transferred between memory and disk along with

the
orresponding overhead. A

ordingly, we aim to minimize the amount of read data

during query handling, the amount of read and written data during index building, and

the a

ess overheads in both
ases.

One
hallenge that we fa
e in index building is that we do not know in advan
e the

term o

urren
es of the in
oming do
uments. As a result, we
annot optimally plan whi
h

postings to
ush for maximum I/O eÆ
ien
y every time memory gets full. Ideally, for

eÆ
ient query handling we would store the postings of ea
h term
ontiguously on disk

in order to retrieve a requested term with a single I/O. Also, for eÆ
ient index building,

we would prefer to
ush new postings from memory to disk with a single write I/O and

without any involvement of reads.

In fa
t, the above goals are
on
i
ting be
ause the I/O eÆ
ien
y of query handling

depends on the organization of term postings by index building. In the extreme
ase

that we write new postings to disk without
are for storage
ontiguity, query handling

be
omes impra
ti
al due to the ex
essive a

ess overhead involved to read the fragmented

postings from disk. As a reasonable
ompromise, we only permit limited degree of storage

fragmentation in the postings of a term, and also ensure suÆ
ient
ontiguity to read a

term roughly sequentially during query handling. At the same time, we limit the volume

38

of data read during index building but with low penalty in the I/O sequentiality of disk

reads and writes. Next, we explain in detail how we a
hieve that.

4.2 System Ar
hite
ture

As we add new do
uments to a
olle
tion, we a

umulate their term postings in memory

and eventually transfer them to disk. We lexi
ographi
ally order the terms and group

them into ranges that �t into disk blo
ks (
alled rangeblo
ks) of �xed size B

r

. Rangeblo
ks

simplify the maintenan
e of inverted �les be
ause they allow us to sele
tively update parts

of the index. We
ush the postings of a range R from memory by merging them into the

respe
tive rangeblo
k on disk. If the merged postings over
ow the rangeblo
k, we equally

divide the postings {and their range{ a
ross the original rangeblo
k and any number of

additional rangeblo
ks that we allo
ate as needed. For several reasons, we do not store

all the lists in rangeblo
ks:

• First, the list of a frequent term may ex
eed the size of a single rangeblo
k.

• Se
ond, the fewer the postings in a rangeblo
k the lower the update
ost, be
ause

the merge operation transfers fewer bytes from disk to memory and ba
k.

• Third, we should defer the over
ow of a rangeblo
k, be
ause the ranges that emerge

after a split will a

umulate fewer postings than the original range, leading to higher

merging
ost.

• Finally, we experimentally
on�rm that merge-based management involves repetitive

reads and writes that are mostly eÆ
ient for
olle
tions of infrequent terms, while in-

pla
e management uses list appends that are preferable for terms with large number

of postings.

Consequently, we store the list of a frequent term on ex
lusively o

upied disk blo
ks that

we
all termblo
ks. We dynami
ally allo
ate new termblo
ks as existing termblo
ks run

out of empty spa
e. For eÆ
ien
y, we
hoose the size B

t

of the termblo
k to be di�erent

from the rangeblo
k B

r

(Se
tion 4.7). Where
larity permits, we
olle
tively
all posting

blo
ks the rangeblo
ks and termblo
ks.

39

The lexi
on is expe
ted to map ea
h term to the memory and disk lo
ations where

we keep the respe
tive postings. The B-tree provides an attra
tive mapping stru
ture,

be
ause it
on
isely supports ranges, and
exibly handles large numbers of indexed items.

However, when the size of the dataset is at the range of hundreds of GB, as the ones we

onsider, we experimentally noti
ed that the B-tree introdu
es multiple disk seeks during

lookups, whi
h substantially in
rease the laten
y of index sear
h and update. As an

alternative lexi
on stru
ture we
onsidered a simple sorted table (
alled indextable) that

fully resides in memory. For ea
h range or frequent term, the indextable uses an entry

to store the lo
ations of the postings a
ross the memory and disk. For terms within a

range, the indextable plays the role of a sparse stru
ture that only approximately spe
i�es

their position through the range lo
ation. For every terabyte of indexed dataset, the

indextable along with the auxiliary stru
tures o

upy memory spa
e in the order of few

tens of megabytes. Therefore, the memory
on�guration of a typi
al server makes the

indextable an a�ordable approa
h to build an eÆ
ient lexi
on. We explain in detail the

indextable stru
ture at Se
tion 4.7.

4.3 The Sele
tive Range Flush Method

We
all posting memory the spa
e of
apa
ity M

p

that we reserve in main memory to

temporarily a

umulate the postings from new do
uments. When it gets full, we need to

ush postings from memory to disk. We
onsider a term short or long, if it respe
tively

o

upies total spa
e up to or higher than the parameter term threshold T

t

. For
on
ise-

ness, we also use the name short or long to identify the postings and inverted lists of a

orresponding term.

Initially all terms are short, grouped into ranges, and transferred to disk via merg-

ing. Whenever during a range merge the posting spa
e of a term ex
eeds the threshold

T

t

, we permanently
ategorize the term as long and move all its postings into a new

termblo
k. Any subsequent
ushing of new postings for a long term is simply an append

to a termblo
k on disk (Se
tion 4.7). We still need to determine the parti
ular ranges

and long terms that we will
ush to disk when memory gets full. Long postings in
ur

an one-time
ushing
ost, while short ranges require repetitive disk reads and writes for

40

Algorithm 4.1 Pseudo
ode of Sele
tive Range Flush

1: Sort long terms by memory spa
e of postings

2: Sort ranges by memory spa
e of postings

3: while (
ushed memory spa
e < M

f

) do

4: T := long term of max memory spa
e

5: R := range of max memory spa
e

6: // Compare T and R by memory spa
e of postings

7: if (R.mem postings < F

p

× T .mem postings) then

8: // Append postings of T to on-disk index

9: if (append over
ows the last termblo
k of list) then

10: Allo
ate new termblo
ks (relo
ate the list if needed)

11: end if

12: Append memory postings to termblo
ks

13: Delete the postings of T from memory

14: else

15: // Merge postings of R with on-disk index

16: Read the lists from the rangeblo
k of R

17: Merge the lists with new memory postings

18: if (list size of term w > T

t

) then

19: Categorize term w as long

20: Move the inverted list of w to new ex
lusive termblo
k

21: end if

22: if (rangeblo
k over
ows) then

23: Allo
ate new rangeblo
ks

24: Split merged lists equally a
ross rangeblo
ks

25: else

26: Store merged lists on rangeblo
k

27: end if

28: Delete the postings of R from memory

29: end if

30: end while

ushing over time. From an I/O eÆ
ien
y point of view, we prefer to only perform a

few large in-pla
e appends and totally avoid merges or small appends. Although writes

appear to o

ur asyn
hronously and return almost instantly, they often in
ur in
reased

laten
y during subsequent disk reads due to the
leaning delays of dirty bu�ers [9℄.

For eÆ
ient memory
ushing, next we introdu
e the Sele
tive Range Flush method

(Algorithm 4.1). We maintain the long terms and the term ranges sorted by the spa
e

their postings o

upy in memory (Lines 1-2). We
ompare the memory spa
e (bytes) of

the largest long list against that of the largest range (Line 7). Subsequently, we
ush

41

the largest long list (Lines 8-13), unless its postings are F

p

times fewer than those of the

respe
tive range, in whi
h
ase we
ush the range (Lines 15-28). We repeat the above

pro
ess until
ushed memory (M

f

) bytes of postings are
ushed to disk. Our approa
h

generalizes a previous method of partial memory
ushing [22℄ in two ways:

(i) We avoid ineÆ
iently
ushing the entire posting memory be
ause we only move to

disk M

f

bytes per memory �ll-up.

(ii) In addition to long terms we also sele
tively
ush ranges, when their size be
omes

suÆ
iently large with respe
t to that of long terms.

The
onstant F

p

is a �xed
on�guration parameter that we
all preferen
e fa
tor. Its

hoi
e re
e
ts our preferen
e for the one-time
ushing
ost of a long list rather than the

repetitive transfers between memory and disk of a range. We
ush a range only when

the size of the largest long list be
omes F

p

times smaller. Then the
ushing overhead

of the long list takes too mu
h for the amount of data
ushed. We also prefer to keep

the short postings in memory and avoid their merging into disk. The parameter F

p

may depend on the performan
e
hara
teristi
s of the system ar
hite
ture, su
h as the

head-movement overhead, the sequential throughput of the disk, and the statisti
s of the

indexed do
ument
olle
tion, su
h as the frequen
y of terms a
ross the do
uments. We

summarize the parameters of SRF in Table 4.2.

The SRF method behaves greedily be
ause it only
onsiders the memory spa
e o
-

upied by a range or long term, and simply estimates the
ushing
ost of a range as F

p

times that of a long term. We extensively experimented with alternative or
omplemen-

tary
ushing rules, in
luding:

(i) dire
tly estimating the disk I/O throughput of ranges and long terms to prioritize

their
ushing,

(ii) aggressively
ushing the long terms with memory spa
e ex
eeding a minimum limit

to exploit the append I/O eÆ
ien
y,

(iii)
ushing the ranges with fewest postings
urrently on disk to redu
e the merging

ost,

(iv) periodi
ally
ushing the ranges or long terms with low rate of posting a

umulation.

42

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80

M
e

rg
e

-b
a

s
e

d
ru

n
s

 o
n

 d
is

k

Memory flush

(a) HSM

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80

M
e

rg
e

-b
a

s
e

d
ru

n
s

 o
n

 d
is

k

Memory flush

(b) HLM

Figure 4.1: We index 426GB using Wumpus with 1GB memory. The x axis refers to the

time instan
es at whi
h memory
ontents are
ushed to disk. (a) HSM maintains up to 2

merge-based runs on disk, and (b) HLM periodi
ally merges the runs
reated on disk so

that their number is logarithmi
 in the
urrent size of the on-disk index.

In the
ontext of the SRF algorithm, the approa
h of sele
tively
ushing a few tens of

megabytes from the largest terms or ranges in memory performed more robustly overall.

4.4 Evaluation of Sele
tive Range Flush

In this se
tion, we study the behavior of SRF as implemented in our prototype (Proteus)

against alternative
on�gurations of the Wumpus sear
h engine [113℄. We
onsider a

subset of hybrid merge-based index maintenan
e methods that are known to
over a wide

range of tradeo�s between index building and sear
h eÆ
ien
y (Table 3.1), and
ompare

them with SRF. We explain in detail the ar
hite
ture of our prototype in Se
tion 4.7, and

des
ribe the experimentation environment and the
on�guration used for Proteus and

Wumpus to ensure systems are fun
tionally
omparable in Se
tion 5.2. We use the full

426GB GOV2 text dataset [103℄ and give both systems 1GB of RAM for the gathering of

postings in memory. The parameters of SRF are set a

ording to Table 4.2.

As explained in Se
tion 3.2, hybrid methods separate terms into short and long a
-

ording to the size of their inverted list. They improve the indexing performan
e using a

merge-based method for the short terms and in-pla
e appends for the long ones. Hybrid

Immediate Merge (HIM) uses the Immediate Merge method des
ribed in Se
tion 2.1.2

for the short terms, storing the list of ea
h short term
ontiguously in 1 merge-based run

43

 0

 100

 200

 300

 400

 500

 600

HLMWumpus
 (up to 6 runs)

HSMWumpus
 (up to 2 runs)

HIMWumpus
 (1 run)

SRFProteus
 (1 run)

B
u

il
d

 t
im

e
 (

m
in

)

Flush
Parse

361

418

523

404

Figure 4.2: We break down the index building time into do
ument parsing and postings

ushing parts a
ross di�erent maintenan
e poli
ies. Parsing in
ludes the time required to

lean dirty pages from page
a
he to free spa
e for newly read do
uments. Proteus parsing

performan
e is pessimisti
 as it uses an unoptimized implementation (Se
tion 5.1). We

also in
lude the number of merge-based runs ea
h method maintains. SRF has lower time

than HIM and HSM, and only 12% higher build time than HLM, even though it maintains

ontiguously all lists on disk.

and the list of ea
h long term in 1 in-pla
e and 1 merge-based run

1

. Hybrid Square Root

Merge (HSM) maintains the merge-based index using the Square Root Merge method

dis
ussed in Se
tion 3.2, whi
h keeps ea
h short term in at most 2 merge-based runs and

ea
h long term in 1 in-pla
e and in at most 2 merge-based runs (Figure 4.1a). Similarly,

Hybrid Logarithmi
 Merge (HLM) uses the Logarithmi
 Merge approa
h explained in

Se
tion 2.1.2 for the merge-based part of the index. For the GOV2 dataset, it stores the

list of a short term in up to 6 runs and the list of a long term in 1 in-pla
e and up to 6

merge-based runs (Figure 4.1b).

We now study the build time of the methods mentioned above as implemented in

Wumpus, and
ompare them to SRF as implemented in Proteus. From Figure 4.2, as

expe
ted, the more runs a method maintains on disk the lower build time it a
hieves

from less frequent merges. On the other hand, the storage fragmentation introdu
ed
an

signi�
antly impa
t the list retrieval times. For example, having a short list fragmented in

k runs typi
ally
auses a k-fold in
rease on the time required to fet
h the list from disk due

to disk a

ess overhead. Given also that more than 99% of lists are short and that more

1

We use the non-
ontiguous variations of the hybrid methods in Wumpus, whi
h store ea
h long list

in both the in-pla
e index and the merge-based runs. This redu
es the indexing time, but may slightly

in
rease the retrieval time of long lists (Se
tion 3.2).

44

Table 4.1: Sensitivity to intera
tions between rangeblo
k size B

r

and preferen
e fa
tor

F

p

. We underline the lowest measurement on ea
h row. The highest measured time is

62.18min, i.e., 53.8% higher than the lowest 40.43min.

Index Building Time (min) of Sele
tive Range Flush

F

p

B

r

(MB) 5 10 20 40 80 160 max in

8 42.83 42.57 42.83 43.55 44.97 47.52 +11.6%

16 42.58 41.63 41.22 41.48 42.08 43.28 +5.0%

32 43.42 41.68 41.38 40.43 40.73 41.18 +7.4%

64 46.90 42.85 41.77 41.02 41.15 41.28 +14.3%

128 51.77 46.82 43.73 41.87 41.75 41.52 +24.7%

256 62.18 53.28 46.75 43.57 43.13 42.40 +46.7%

max in
 +46.0% +28.0% +13.4% +7.7% +10.4% +15.4%

than 60% of query laten
y is spent on list retrieval (Se
tion 3.3), it immediately follows

that fragmentation
an
ause a substantial in
rease in query laten
y. SRF
ontiguously

stores the postings of ea
h term in a single rangeblo
k or in a number of su

essive

termblo
ks

2

. Nevertheless, it has 23% lower build time and 65% lower
ush time than

HIM whi
h also keeps lists
ontiguous. It is worth pointing out that SRF has even lower

build time than HSM and only 12% higher than HLM, even though these methods may

need up to 2 and 6 disk a

esses respe
tively to fet
h a list from disk regardless of the list

length.

4.5 Sensitivity of Sele
tive Range Flush

SRF
ombines low indexing time with list
ontiguity on disk, but also has several short-

omings.

• First, if the statisti
s of a pro
essed dataset
hange over time, it is possible that a

term
ategorized as long reserves some memory spa
e but then stops a

umulating

new postings to trigger
ushing.

2

We use the CNT maintenan
e approa
h for the long lists that keeps them always
ontiguous (Se
-

tion 4.7)

45

• Se
ond, in order for SRF to behave eÆ
iently a
ross di�erent datasets, it requires

tuning of several parameters and their intera
tions for spe
i�
 datasets or sys-

tems [22℄. For example, the optimal preferen
e fa
tor F

p

and term threshold T

t

may vary a
ross di�erent term frequen
ies, or intera
t in
omplex ways with other

system parameters su
h as the rangeblo
k size B

r

.

• Third, as the dataset pro
essing progresses, the number of ranges in
reases due

to rangeblo
k over
ows;
onsequently, the number of memory postings per range

de
reases, leading to lower
ushing eÆ
ien
y.

In Table 4.1 we examine the variation of the SRF index building time a
ross all possible

ombinations of 7 values for B

r

and 6 for F

p

(42 pairs in total). Due to the large number

of experiments involved, we limit the indexing to the �rst 50GB of GOV2. The elements

in the last row and
olumn of the table report the largest in
rease of build time with

respe
t to the minimum measurement of the respe
tive
olumn and row. We noti
e that

as B

r

in
reases, e.g., due to restri
tions from the �lesystem [48, 95℄, we have to tune the

preferen
e fa
tor to retain low build time. Otherwise, the build time may in
rease as high

as 47% with respe
t to the lowest measurement for a spe
i�
 B

r

value.

3

The respe
tive

in
rease of the highest measured value to the lowest in the entire table is 53.8%. After

a large number of experiments a
ross di�erent
ombinations of parameters, we identi�ed

as default values for build and sear
h eÆ
ien
y those spe
i�ed in Table 4.2 (see also

Se
tions 4.5 and 5.4).

4.6 The Uni�ed Range Flush Method

In order to fa
ilitate the pra
ti
al appli
ation of SRF, we evolved it to a new method that

we
all Uni�ed Range Flush (URF). In this method, we assign ea
h memory posting to

the lexi
ographi
 range of the respe
tive term without the
ategorization as short or long.

Thus, we omit the term threshold T

t

and preferen
e fa
tor F

p

of SRF along with their

3

Note that large B

r

values su
h as 128MB and 256MB are not un
ommon in su
h systems. For

example, Hadoop [95℄ uses blo
k sizes of 128MB, while Bigtable [28℄ uses �les of 100-200 MB to store

its data (Se
tion 2.2.1). Moreover, even for B

r

=256MB, a proper tuning of F

p

an keep the build time

within 6% of the total lowest time (42.40min versus 40.43min).

46

Table 4.2: Parameters of Sele
tive Range Flush (SRF) and Uni�ed Range Flush (URF).

In the last
olumn we in
lude their default values used in our prototype.

Symbol Name Des
ription Value

B

r

Rangeblo
k Byte size of rangeblo
k on disk 32MB

B

t

Termblo
k Byte size of termblo
k on disk 2MB

M

p

Posting Memory Total memory for a

umulating postings 1GB

M

f

Flushed Memory Bytes
ushed to disk ea
h time memory gets full 20MB

F

p

Preferen
e Fa
tor Preferen
e to
ush short or long terms by SRF 20

T

t

Term Threshold Term
ategorization into short or long by SRF 1MB

T

a

Append Threshold Amount of postings
ushed to termblo
k by URF 256KB

intera
tions against other parameters. When the posting memory gets full, we always

pi
k the range with the most postings
urrently in memory and merge it to disk in
luding

the terms that SRF would normally handle as long. In order to redu
e the data volume

of merge, we introdu
e the append threshold (T

a

) parameter. If the postings of a term in

a merge o

upy memory spa
e more than T

a

, we move them (append postings) from the

rangeblo
k to an ex
lusive termblo
k. Subsequently, the range
ontinues to a

umulate

the new postings of the term in the rangeblo
k, until their amount rea
hes the number

T

a

again (Figure 3.1).

The pseudo
ode of URF is shown in Algorithm 4.2. In
omparison to SRF, it is quite

simpler be
ause we skip the distin
t handling of short and long terms. Algorithm 4.2

simply identi�es the range with the most postings in memory at line 3 and merges it with

the
orresponding rangeblo
k on disk at lines 5-6 and 14-20. If there are terms whose

amount of postings ex
eed the threshold T

a

, URF
ushes them to their
orresponding

termblo
ks at lines 7-13.

The term threshold T

t

of SRF permanently
ategorizes a term as long and prevents

it from merge-based
ushing, even at low amount of posting memory o

upied by the

term. Additonally, it depends on the
hara
teristi
s of the dataset and it intera
ts with

other system parameters su
h as the preferen
e fa
tor F

p

, sin
e it impli
itly
ontrols the

size of the long lists
ushed. The general approa
h of dynami
 threshold adjustment fol-

lowed by previous resear
h would only further
ompli
ate the method operation (e.g., in

Se
tion 5.2 we examine the automated threshold adjustment �

PF

= auto [22℄). Instead,

47

Algorithm 4.2 Pseudo
ode of Unified Range Flush

1: Sort ranges by total memory spa
e of postings

2: while (
ushed memory spa
e < M

f

) do

3: R := range of max memory spa
e

4: // Merge postings of R with on-disk index

5: Read the inverted lists from the rangeblo
k of R

6: Merge the lists with new memory postings

7: if (list size of term w > T

a

) then

8: // Move postings of w to ex
lusive termblo
k

9: if (w does not have termblo
k or append will over
ow last termblo
k) then

10: Allo
ate new termblo
ks (relo
ate list, if needed)

11: end if

12: Append memory postings to termblo
ks

13: end if

14: if (rangeblo
k over
ows) then

15: Allo
ate new rangeblo
ks

16: Split merged lists equally a
ross rangeblo
ks

17: else

18: Store merged lists on rangeblo
k

19: end if

20: Remove the postings of R from memory

21: end while

the parameter T

a

ontrols the disk eÆ
ien
y of the append operation and primarily de-

pends on performan
e
hara
teristi
s of the I/O subsystem, su
h as the geometry of the

disk. Thus, it
an be tuned independently of the dataset
hara
teristi
s and other system

parameters.

The des
ription of T

a

bears some similarity to the de�nition of long-term threshold T

introdu
ed previously [24℄. However, the URF algorithm has fundamental di�eren
es from

the hybrid approa
h of B�utt
her et al. First, every invo
ation of hybrid merge
ushes all

the postings
urrently gathered in memory. Instead, we only
ush the largest ranges with

total amount of postings in memory at least M

f

. Se
ond, the
hoi
e of T

a

only a�e
ts the

eÆ
ien
y of the index building pro
ess, be
ause we separately
ontrol the sear
h eÆ
ien
y

through the termblo
k size B

t

(Se
tions 4.7, 5.5). In
ontrast, T determines the storage

fragmentation of ea
h long list;
hoosing small T improves the update performan
e but

redu
es the eÆ
ien
y of query pro
essing. Indeed, we experimentally found that it is

possible to a
hieve lowest building time and sear
h laten
y for T

a

around 128KB{256KB,

48

Hashtable

Rangetable Termtable

Posting blocks

(a) Proteus ar
hite
ture

..
.

<130; 2; 56, 70> <148; 1; 13> <150; 2; 47, 50>

<130; 2; 56, 14> <18; 1; 13> <2; 2; 47, 3>d-gaps

original

lean be

tree can shy

(b) Hashtable

Figure 4.3: (a) The prototype implementation of Proteus. (b) We maintain the hashtable

in memory to keep tra
k of the postings that we have not yet
ushed to disk.

but su
h small values for T would signi�
antly lower query pro
essing performan
e due

to the ex
essive fragmentation in long lists.

We summarize the parameters of our ar
hite
ture in Table 4.2. In the following se
-

tions, we show that URF in
omparison to SRF (i) has fewer parameters and lower

sensitivity to their values, (ii) has similar index maintenan
e performan
e (or better over

a large dataset) and sear
h performan
e, and (iii) has more tra
table behavior that allows

us to do
omplexity analysis of index building in Se
tion 9.1.

4.7 Prototype Implementation

The Proteus system is a prototype implementation that we developed to investigate our

inverted-�le management (Figure 4.3a). We retained the parsing and sear
h
omponents

of the open-sour
e Zettair sear
h engine (v0.9.3) [115℄. Unlike the original implementation

of Zettair that builds a lexi
on for sear
h at the end of index building, we dynami
ally

maintain the lexi
on in Proteus throughout the building pro
ess. We store the post-

ings extra
ted from the parsed do
uments in a memory-based hash table that we
all

hashtable (Figure 4.3b). The inverted list of ea
h term
onsists of the do
ument iden-

ti�ers along with the
orresponding term lo
ations in as
ending order (Se
tion 2.1.1).

We store ea
h list as an initial do
ument identi�er followed by a list of gaps
ompressed

49

a cast full lost

a - lost lot - pass paste - zoo

term postings

Rangetable

Search

buckets

Posting

blocks

(a) Ranges and rangetable

and of the

postings postings postings

Termtable

Blocklist

Posting

blocks

(b) Long terms and termtable

Figure 4.4: (a) Ea
h entry of the rangetable
orresponds to a term range, and points

to the sear
h bu
ket, whi
h serves as partial index of the
orresponding rangeblo
k. (b)

Ea
h entry of the termtable
orresponds to a term and points to the blo
klist that keeps

tra
k of the asso
iated termblo
ks on disk.

with variable-length byte-aligned en
oding [118℄. The same
ompression s
heme is used

to store the lo
ations within ea
h do
ument. Compression redu
es
onsiderably the spa
e

requirements of postings a
ross memory and disk.

We keep tra
k of the term ranges in a memory-based sorted array that we
all

rangetable (Figure 4.4a). Ea
h entry
orresponds to the range of a single rangeblo
k

and
ontains the spa
e size of the disk postings along with the names of the �rst and last

term in the range. In a sparse index that we
all sear
h bu
ket we maintain the name and

lo
ation of the term that o

urs every 128KB along ea
h rangeblo
k. The sear
h bu
ket

allows us to only retrieve the exa
t 128KB that may
ontain a term instead of the entire

rangeblo
k. In our experien
e, any extra detail in rangeblo
k indexing tends to signi�-

antly in
rease the maintenan
e overhead and lookup time without
onsiderable bene�ts

in performan
e of query evaluation (Se
tion 5.3). We use a sorted array (termtable) to

keep tra
k of the termblo
ks that store the long terms of SRF or the append postings of

URF respe
tively (Figure 4.4b). We organize the termtable as an array of des
riptors.

Ea
h des
riptor
ontains the term name, a pointer to the memory postings, their size,

the amount of free spa
e at the last termblo
k on disk, and a linked list of nodes
alled

blo
klist. Ea
h node
ontains a pointer to a termblo
k on disk.

The rangetable along with the termtable together implement the indextable in our

50

system (Se
tion 4.2). The inverted lists in memory that belong to the same range are

onne
ted through a linked list. Initially, the termtable is empty and the rangetable

ontains a single range that
overs all possible terms. If the inverted lists after a merge

ex
eed the
apa
ity of the respe
tive rangeblo
k, we split the range into multiple half-

�lled rangeblo
ks. Similarly, if we ex
eed the
apa
ity of the last termblo
k, we allo
ate

new termblo
ks and �ll them up. After a
ush, we update the tables to a

urately re
e
t

the postings that they
urrently hold. When the
apa
ity of a termblo
k is ex
eeded, we

allo
ate a new termblo
k following one of three alternative approa
hes:

1. Fragmented (FRG): Allo
ate a new termblo
k of size B

t

to store the over
own

postings.

2. Doubling (DBL): Allo
ate a new termblo
k of twi
e the
urrent size to store the

new postings of the list.

3. Contiguous (CNT): Allo
ate a termblo
k of twi
e the
urrent size and relo
ate the

entire list to the new termblo
k to keep the list
ontiguous on disk. This is our

default setting.

For a term, the DBL allo
ation leads to number of termblo
ks that is logarithmi
 with

respe
t to the number of postings, while FRG makes it linear. In our evaluation, we

onsider the implementation of the above approa
hes over Proteus for both SRF and

URF (Se
tion 5.5).

4.7.1 Memory Management and I/O

For every inverted list in memory, the hashtable stores into a posting des
riptor infor-

mation about the inverted list along with pointers to the term string and the list itself

(Figure 4.3b). For the postings of the inverted list, we allo
ate a simple byte array whose

size is doubled every time it �lls up. When an inverted list is
ushed to disk, we free the

respe
tive posting des
riptor, term string and byte array. The eÆ
ien
y of these memory

(de-)allo
ations is
ru
ial for the system performan
e be
ause they are invoked extremely

often.

Initially, we relied on the standard lib
 library for the memory management of the

inverted lists. On allo
ation, the library traverses a list of free memory blo
ks (free list)

51

to �nd a large enough blo
k. On deallo
ation, the freed blo
k is put ba
k into the free

list and merged with adja
ent free blo
ks to redu
e external fragmentation. We refer to

this s
heme as default.

If a program runs for long time and uses a large amount of memory, the free list

be
omes long and the memory fragmented, in
reasing the management
ost. In order

to handle this issue, we use a single
all to allo
ate both the des
riptor and term, or

a

ordingly to deallo
ate them after an inverted list is
ushed to disk. The byte array is

not in
luded in the above optimization, be
ause we
annot sele
tively free or reallo
ate

portions of an allo
ated
hunk every time we double the array size. We refer to this

s
heme as single-
all.

We further redu
e the management
ost by using a single
all to get a memory
hunk

(typi
ally 4KB) and store there all the posting des
riptors and term strings of a range. In

a
hunk, we allo
ate obje
ts (strings and des
riptors) in a sta
k-like manner. Pro
essor

a
he lo
ality is also improved when we store together the obje
ts of ea
h range. If the

urrent
hunk has insuÆ
ient remaining spa
e, we allo
ate an obje
t from a new
hunk

that we link to the
urrent one. When we
ush a range to disk we traverse its
hunk list

and free all
hunks,
onsequently freeing all term strings and des
riptors of the range. We

refer to this s
heme as
hunksta
k.

In our prototype system, we store the disk-based index over the default �lesystem.

Hen
e, we
annot guarantee the physi
al
ontiguity of disk �les that are in
rementally

reated and extended over time. Disk blo
ks are allo
ated on demand as new data is

written to a storage volume leading to �le fragmentation a
ross the physi
al storage

spa
e. To prevent the �le fragmentation
aused by the system, we examined to use the

preallo
ation of index �les.

Index building in
ludes do
ument parsing, whi
h reads do
uments from disk to mem-

ory (I/O-intensive) and then pro
esses these do
uments into postings (CPU-intensive).

During the pro
essing of a part of the dataset, prefet
hing allows the system to fet
h in

advan
e the next part of the dataset {during the pro
essing of the
urrent part{ to prevent

the blo
king of subsequent reads to the disk [82℄. We evaluate all the above approa
hes

of memory management and I/O optimization in Se
tion 5.5.

52

Chapter 5

Performan
e Evaluation of

In
remental Text Indexing

5.1 Experimentation Environment

5.2 Building the Inverted File

5.3 Query Handling

5.4 Sensitivity of Uni�ed Range Flush

5.5 Storage and Memory Management

5.6 S
alability a
ross Di�erent Datasets

5.7 Summary

In this se
tion, we
ompare the index build and sear
h performan
e a
ross a rep-

resentative
olle
tion of methods (from Table 3.1) over Wumpus and Proteus. In our

experiments we in
lude the performan
e sensitivity of the URF method a
ross several

on�guration parameters, storage and memory allo
ation te
hniques, and other I/O opti-

mizations. We also explore the relative build performan
e of SRF and URF over di�erent

datasets.

53

5.1 Experimentation Environment

We exe
ute our experiments on servers running the Debian distribution of Linux kernel

(v2.6.18). Ea
h server is equipped with one quad-
ore x86 2.33GHz pro
essor, 3GB RAM

and two SATA disks. We store the generated index and the do
ument
olle
tion on two

di�erent disks over the Linux ext3 �lesystem. Di�erent repetitions of an experiment on

the same server lead to negligible measurement variations (<1%).

We mostly use the full 426GB GOV2 standard dataset from the TREC Terabyte

tra
k [103℄. Additionally, we examine the s
alability properties of our methods with the

200GB dataset from Wikipedia [111℄, and the �rst 1TB of the ClueWeb09 dataset from

CMU [31℄. We mainly use 7200RPM disks of 500GB
apa
ity, 16MB
a
he, 9-9.25ms

seek time, and 72-105MB/s sustained transfer rate. In some experiments (ClueWeb,

Se
tion 5.6), we store the data on a 7200RPM SATA disk of 2TB
apa
ity, 64MB
a
he,

and 138MB/s sustained transfer rate.

We use the latest publi

ode of Wumpus [113℄, and set the threshold T equal to

1MB, as suggested for a reasonable balan
e between update and query performan
e. We

measure the build performan
e of HIM in Wumpus with a
tivated partial
ushing and

automated threshold adjustment [22℄. In both systems we set M

p

= 1GB. In Proteus,

unless otherwise spe
i�ed, we set the parameter values B

t

= 2MB, B

r

= 32MB, M

f

=

20MB, F

p

= 20, T

t

= 1MB and T

a

= 256KB (Table 4.2, Se
tions 4.5, 5.4). The auxiliary

stru
tures of URF and SRF for GOV2 in Proteus o

upy less than 42MB in main memory.

In parti
ular, with URF (SRF) we found the hashtable to o

upy 4MB, the termtable

and rangetable together 0.5MB, the blo
klists 0.25MB (0.12MB), and the range bu
kets

31.2MB (36.5MB).

To keep Wumpus and Proteus fun
tionally
omparable, we a
tivate full stemming

a
ross both systems (Porter's option [85℄). Full stemming redu
es terms to their root

form through suÆx stripping. As a result, do
ument parsing generates smaller index and

takes longer time; also query pro
essing often takes more time due to the longer lists of

some terms, and mat
hes approximately the sear
hed terms over the indexed do
uments.

In Proteus we use an unoptimized version of Porter's algorithm as implemented in Zettair.

This makes the parsing performan
e of Proteus pessimisti
 and amenable to further op-

timizations. When we examine the performan
e sensitivity of Proteus to
on�guration

54

 0

 100

 200

 300

 400

 500

 600

Nomerge
W

HLM
W

HSM
W

HIM
W

HIM
P

SRF
P

URF
P

B
u

il
d

 t
im

e
 (

m
in

)

Flush
Parse

254

361

418

523 531

404
421

Figure 5.1: We
onsider the index building time for di�erent indexing methods a
ross

Wumpus and Proteus, both with full stemming. Over Wumpus, we examine Nomerge

(Nomerge

W

), Hybrid Logarithmi
 Merge (HLM

W

), Hybrid Square Root Merge (HSM

W

)

and Hybrid Immediate Merge (HIM

W

). Over Proteus, we in
lude Hybrid Immedi-

ate Merge (HIM

P

), Sele
tive Range Flush (SRF

P

) and Uni�ed Range Flush (URF

P

).

URF

P

takes 421min to pro
ess the 426GB of GOV2 a
hieving roughly 1GB/min indexing

throughput (see also Figure 5.7 for other datasets).

parameters, we use a less aggressive option
alled light stemming, whi
h is the default in

Zettair.

5.2 Building the Inverted File

First we examine the build time of several methods implemented over Wumpus and Pro-

teus. A

ording to Se
tion 4.4, after indexing the full GOV2 dataset Hybrid Immediate

Merge (HIM) keeps ea
h short term in 1 merge-based run, and ea
h long term in 1 in-

pla
e and 1 merge-based run. Hybrid Square Root Merge (HSM) keeps ea
h short term

in 2 merge-based runs, and ea
h long term in 1 in-pla
e and 2 merge-based runs. Hybrid

Logarithmi
 Merge (HLM) has ea
h short term over 4 merge-based runs, and ea
h long

term over 1 in-pla
e run and 4 merge-based runs. Nomerge fragments the postings a
ross

42 runs. SRF maintains the postings of ea
h term in a unique rangeblo
k or termblo
k,

while URF keeps ea
h infrequent term in 1 rangeblo
k and ea
h frequent term in up to 1

rangeblo
k and 1 termblo
k.

55

In Figure 5.1 we
onsider the build time of the methods Nomerge

W

, HLM

W

, HSM

W

and HIM

W

in Wumpus, and the methods HIM

P

, SRF

P

, and URF

P

as we implemented

them in Proteus. HIM

W

is the
ontiguous version of HIM (HIM

C

[22℄, Se
tion 3.2, Se
-

tion 9.1) with all the appli
able optimizations and the lowest build time among the

Wumpus variations of HIM as we experimentally veri�ed. A

ording to the Wumpus

implementation of
ontiguous and non-
ontiguous methods, the postings of a long term

are dynami
ally relo
ated to ensure storage on multiple segments of size up to 64MB

ea
h [113℄. In order to ensure a fair
omparison of di�erent methods on the same plat-

form, we also implemented HIM

C

in Proteus (HIM

P

) with the CNT storage allo
ation by

default. The index size varied from 69GB for URF

P

down to 60GB for SRF

P

and HIM

P

,

due to about 10GB di�eren
e in the empty spa
e within the respe
tive disk �les.

The Wumpus methods take between 254min (baseline Nomerge

W

) and 523min (HIM

W

).

HSM

W

and HLM

W

redu
e the time of HIM

W

by 20% and 31% respe
tively, but they frag-

ment the merge-based index a
ross 2 and 6 runs (Figure 4.1). This behavior is known to

substantially in
rease the I/O time of query pro
essing, and
onsequently we do not
on-

sider HSM

W

and HLM

W

any further [22, 73℄. The 531min of HIM

P

is
omparable to the

523min required by HIM

W

; in part, this observation validates our HIM implementation

over Proteus. Instead, SRF

P

and URF

P

take 404min and 421min, respe
tively, whi
h is

24% and 21% below HIM

P

. URF

P

takes 4.2% more than SRF

P

to in
rementally index

GOV2, although URF

P

is faster than SRF

P

in a di�erent dataset (Se
tion 5.6).

In Figure 5.1, we also break down the build time into parse, to read the datasets and

parse them into postings, and
ush, to gather the postings and transfer them to disk. The

implementation of HIM in Proteus (HIM

P

) redu
es the
ush time of the
orresponding

implementation in Wumpus (HIM

W

) from 303min to 253min, but HIM

P

has longer parse

time partly due to the unoptimized stemming. Instead, SRF

P

and URF

P

only take

105min and 129min for
ushing, respe
tively, thanks to their I/O eÆ
ien
y. Therefore,

our methods redu
e the
ush time of HIM

P

by a fa
tor of 2.0-2.4, and that of HIM

W

by

a fa
tor of 2.4-2.9.

Somewhat puzzled by the longer parse time of Proteus, we re
orded tra
es of disk

transfer a
tivity during index building. Every time we retrieved new do
uments for pro-

essing, we noti
ed substantial write a
tivity with tens of several megabytes transferred

to the index disk. Normally, parsing should only
reate read a
tivity to retrieve do
u-

56

ments and no write a
tivity at all. However, when we
ush index postings to disk, the

system temporarily
opies postings to the system bu�er
a
he. In order to a

ommodate

new do
uments in memory later during parsing, read requests
lean dirty bu�ers and free

memory spa
e. Overall, SRF

P

and URF

P

redu
e by about a fa
tor of 2-3 the
ush time of

HIM

P

and HIM

W

, and a
hieve a redu
tion of the respe
tive total build time by 20-24%.

5.3 Query Handling

Next we examine the query time a
ross di�erent indexing methods and systems. In our

experiments, we use the GOV2 dataset and the �rst 1,000 queries of the EÆ
ien
y Topi
s

query set in the TREC 2005 Terabyte Tra
k [103℄. We
onsider both the alternative
ases

of having the bu�er
a
he disabled and enabled during query handling. As representative

method of Wumpus we study the HIM

W

, while in Proteus we
onsider HIM

P

, SRF

P

and

URF

P

.

In the latest publi
ly available version of Wumpus (but also the older versions), we no-

ti
ed that the implemented
ontiguous variation (HIM

C

) of HIM was
onstantly
rashing

during sear
h at a broken assertion. For that reason, in our sear
h experiments we used

the non-
ontiguous variation instead (HIM

NC

[24℄). Although the above two Wumpus

variations of HIM di�er in their eÆ
ien
y of index building, they have similar design with

respe
t to query handling. They both store ea
h short term in 1 run; however, HIM

NC

allows a long term to be stored in 2 runs (1 in-pla
e and 1 merge-based), while HIM

C

always stores it in 1 run. Given the long transfer time involved in the retrieval I/O of long

terms, we do not expe
t the above di�eren
e by 1 disk positioning overhead to pra
ti
ally

a�e
t the query performan
e.

From Figure 5.2a,
a
hing a
tivation redu
es the query time of HIM

W

by 13%, and

by about 22-24% that of HIM

P

, SRF

P

and URF

P

. A
ross both the
a
hing s
enarios,

HIM

W

over Wumpus takes about twi
e the average query time of the Proteus methods.

Given that our HIM

P

implementation is based on the published des
ription of HIM

W

, we

attribute this dis
repan
y to issues orthogonal to the indexing method, su
h as the query

handling and storage management of the sear
h engine. In Proteus, the average query

times of HIM

P

, SRF

P

and URF

P

remain within 2% of ea
h other. Therefore, both SRF

P

57

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

HIMW HIMP SRFP URFP

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

m
s
)

without cache
with cache3371

1768 1768 1760

2930

1374 1346 1347

(a) Average Query Time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000

P
e
rc

e
n

ta
g

e
 o

f
q

u
e
ri

e
s
 (

%
)

Query time (ms)

SRFP
URFP
HIMP
HIMW

(b) Query Time Distribution

Figure 5.2: We
onsider Hybrid Immediate Merge over Wumpus (HIM

W

) or Proteus

(HIM

P

), along with Sele
tive Range Flush (SRF

P

) and Uni�ed Range Flush (URF

P

) over

Proteus. (a) We measure the average query time with alternatively disabled and enabled

the system bu�er
a
he a
ross di�erent queries in the two systems with full stemming. (b)

We look at the distribution of query time over the two systems with enabled the bu�er

a
he.

and URF

P

a
hieve the query performan
e of HIM

P

, even though they are
onsiderably

more eÆ
ient in index building (Se
tion 5.2).

We use measurement distributions to further
ompare the query time of the four

methods with enabled system
a
hing (Figure 5.2b). Although the median query time of

Proteus lies in the range 246-272ms, that of HIM

W

is 1.378s, i.e., a fa
tor of 5 higher. In

fa
t, HIM

W

requires about 1s to handle even the shortest queries. Also, the 99th per
entile

of HIM

W

is 68% higher than that of the Proteus methods. Instead, the 99th per
entiles

of the Proteus methods lie within 2% ea
h other, while the median measurements within

10%. We
on
lude that HIM

P

, URF

P

and SRF

P

are similar to ea
h other in query

performan
e, but they are faster by a fa
tor of 2 on average with respe
t to HIM

W

.

58

 0

 100

 200

 300

 400

 500

 600

8MB 16MB 32MB 64MB 256MB

B
u

il
d

 t
im

e
 (

m
in

)

Rangeblock size

Parse dataset
Flush terms

Flush ranges

435
413 408 406 418

(a) Index Building

 0

 20

 40

 60

 80

 100

 120

 140

8MB 16MB 32MB 64MB 256MB

R
a
n

g
e
s
 &

 t
e
rm

s
 f

lu
s
h

e
d

 (
x
1
0
0
0
)

Rangeblock size

Range flushes
Term appends

123

94

80
74

69

(b) Number of Flushes

 0

 100

 200

 300

 400

 500

 600

 700

 800

8MB 16MB 32MB 64MB 256MB

G
ig

a
b

y
te

s
 t

ra
n

s
fe

rr
e
d

Rangeblock size

Term relocations
Term appends

Range reads
Range writes

474 479 488 497 509

(
) I/O A
tivity

Figure 5.3: (a) Setting the rangeblo
k size B

r

below 32MB or above 64MB raises the

build time of Uni�ed Range Flush. In
reasing the B

r

tends to (b) de
rease the number

of
ushes, and (
) in
rease the data amount transferred during merges. We use Proteus

with light stemming.

5.4 Sensitivity of Uni�ed Range Flush

Subsequently, we
onsider the sensitivity of the URF build performan
e to the rangeblo
k

size B

r

,
ush memory M

f

, append threshold T

a

, and posting memory M

p

.

Rangeblo
k B

r

. The rangeblo
k size B

r

determines the posting
apa
ity of a range; it

dire
tly a�e
ts the data amount transferred during range
ushes and the I/O time spent

a
ross range and term
ushes. We observed the lowest build time for B

r

at 32-64MB

(Figure 5.3a). Setting B

r

less than 32MB generates more ranges, and raises the total

number of term and range
ushes (Figure 5.3b). On the
ontrary, setting B

r

higher than

64MB in
reases the amount of transferred data during range merges (Figure 5.3
) leading

to longer I/O. Our default value B

r

= 32MB balan
es the above two trends into build

time equal to 408min. For sensitivity
omparison with SRF, we also measured the URF

build time for the �rst 50GB of GOV2. With B

r

in the interval 8MB-256MB, we found

the maximum in
rease in build time equal to 9.1%, i.e., almost x6 times lower than the

respe
tive 53.8% of SRF (Table 4.1).

As we
ontinue to in
rease the rangeblo
k size, we partition the index into fewer

rangeblo
ks. Ea
h range merge thus
ushes more postings and updates a bigger part of

the index. A

ordingly, index updates be
ome less \sele
tive" and eventually approa
h the

59

 0

 100

 200

 300

 400

 500

 600

5MB 20MB 40MB 100MB

B
u

il
d

 t
im

e
 (

m
in

)

Flush Memory

Parse dataset
Flush terms

Flush ranges

438
408 418

464

(a) Sensitivity to M

f

 0

 100

 200

 300

 400

 500

 600

64KB 128KB 256KB 512KB 1MB

B
u

il
d

 t
im

e
 (

m
in

)

Append Threshold

Parse dataset
Flush terms

Flush ranges

433
414 408 414 425

(b) Sensitivity to T

a

 0

 500

 1000

 1500

 2000

128MB 256MB 512MB 1GB 2GB

B
u

il
d

 t
im

e
 (

m
in

)

Posting Memory

Parse dataset
Flush terms

Flush ranges
1976

991

564

408
342

(
) Sensitivity to M

p

Figure 5.4: (a) Flushing more than few tens of megabytes (M

f

) leads to longer build time

for Uni�ed Range Flush (URF). This results from the more intense I/O a
tivity a
ross

term and range
ushes. (b) Setting the append threshold to T

a

= 256KB minimizes the

total I/O time of range and term
ushes. (
) The build time of range merge in URF

de
reases approximately in proportion to the in
reasing size of posting memory (M

p

).

The Proteus system with light stemming is used.

HIM behavior, whi
h
ushes all short postings and merges the whole merge-based index

on ea
h memory
ush. Setting B

r

= ∞ would pra
ti
ally emulate the HIM method; for

example, with B

r

= 1GB (not shown) we measured 510min build time. This emphasizes

the bene�ts of the sele
tive index update approa
h followed by our methods.

Flush Memory M

f

. The parameter M

f

refers to the amount of bytes that we
ush to

disk every time posting memory gets full (Figure 5.4a). Build time is redu
ed to 408min

if we set M

f

= 20MB, i.e., 2% of the posting memory M

p

=1GB. Despite the Zip�an

distribution of postings [24℄, setting M

f

below 20MB leaves limited free spa
e to gather

new postings at parti
ular ranges (or terms) for eÆ
ient I/O. At M

f

mu
h higher than

20MB, we end up
ushing terms and ranges with small amounts of new postings leading

to frequent head movement in appends and heavy disk traÆ
 in merges. If we set M

f

=

M

p

(= 1GB) we a
tually dea
tivate partial
ushing, and build time be
omes 632min (not

shown).

Append Threshold T

a

. This parameter spe
i�es the minimum amount of a

umulated

postings required during a merge to
ush a term to the in-pla
e index. It a�e
ts dire
tly

the eÆ
ien
y of term appends, and indire
tly their relative frequen
y to range
ushes. In

60

Figure 5.4b we observe that T

a

= 256KB minimizes the URF build time. If we in
rease

T

a

to 1MB (=T

t

) we end up with build time higher by 6%. Unlike T

t

of SRF that

permanently
ategorizes a term as long, T

a

spe
i�es the minimum append size and tends

to
reate larger merged ranges by in
luding postings that SRF would permanently treat

as long instead. Overall, the URF performan
e shows little sensitivity a
ross reasonable

values of T

a

.

Posting Memory M

p

. The parameter M

p

spe
i�es the memory spa
e that we reserve

for temporary storage of postings. Smaller values of M

p

in
rease the
ost of range
ushes,

be
ause they enfor
e frequent range
ushes and limit the gathering of postings from

frequent terms in memory. As we in
rease M

p

from 128MB to 1GB in Figure 5.4
,

the time spent on range merges drops almost proportionally, resulting into substantial

de
rease of the total build time. Further in
rease of M

p

to 2GB only slightly redu
es the

build time, be
ause at M

p

= 1GB most time (59.3%) is already spent on parsing.

5.5 Storage and Memory Management

Next we examine the e�e
t of storage allo
ation to the build and query time of URF.

Based on the des
ription of Se
tion 4.7, we
onsider FRG with alternative termblo
k sizes

1MB, 2MB, 8MB and 32MB (respe
tively denoted as FRG/1MB, FRG/2MB, FRG/8MB,

FRG/32MB), and also the DBL and CNT allo
ation methods. In Figure 5.5a we show

the average CPU and I/O time of query pro
essing in a system with a
tivated bu�er

a
he. The average query time varies from 1649min with FRG/32MB to 1778min with

FRG/1MB, while it drops to 1424min by DBL and 1338min by CNT. Essentially, CNT

redu
es the query time of FRB/1MB by 25% and of DBL by 6%. The above variations

are mainly
aused by di�eren
es in I/O time given that the CPU time remains almost

onstant at 622min (<47% of total). Unlike query time, from Figure 5.5b we noti
e the

build time to only slightly vary from 386min for both FRG/1MB and DBL to 408min for

CNT (5.7% higher). In these measurements, the
ush time is about 40% of the total build

time. Due to di�eren
es in the empty spa
e of termblo
ks, the index size varies from 53GB

for FRG/1MB to 355GB for FRG/32MB, and 70GB for DBL and CNT (Figure 5.5
). We

on
lude that our CNT default setting is a reasonable
hoi
e be
ause it a
hieves improved

61

 0

 500

 1000

 1500

 2000

FRG/1MB

FRG/2MB

FRG/8MB

FRG/32MB

DBL
CNT

A
v
e
ra

g
e
 q

u
e
ry

 t
im

e
 (

m
s
)

Processing (CPU)
List retrieval (Disk I/O)

1778
1672 1695 1649

1424
1338

(a) Query Time

 0

 100

 200

 300

 400

 500

FRG/1MB

FRG/2MB

FRG/8MB

FRG/32MB

DBL
CNT

B
u

il
d

 t
im

e
 (

m
in

)

Parse
Flush

386 388 394 402
386

408

(b) Build Time

 0

 50

 100

 150

 200

 250

 300

 350

 400

FRG/1MB

FRG/2MB

FRG/8MB

FRG/32MB

DBL
CNT

In
d

e
x
 s

iz
e
 (

G
B

)

Used
Empty

53 61

115

355

70 70

(
) Index Size

Figure 5.5: We examine the behavior of Uni�ed Range Flush over Proteus with the

following storage allo
ation methods (i)
ontiguous (CNT), (ii) doubling (DBL), and (iii)

fragmented (FRG) with termblo
k sizes 1MB, 2MB, 8MB and 32MB. (a) CNT a
hieves

the lowest query time on average
losely followed by DBL. We keep enabled the system

bu�er
a
he a
ross the di�erent queries. (b) Build time a
ross the di�erent allo
ation

methods varies within 5.7% of 386min (FRG/1MB and DBL). (
) Unlike CNT and DBL,

FRG tends to in
rease the index size espe
ially for larger termblo
k.

query time at low added build time or index size.

In Se
tion 4.7.1 we mentioned three alternative approa
hes to manage the memory of

postings: (i) default (D), (ii) single-
all (S), and (iii)
hunksta
k (C). The methods di�er

in terms of fun
tion invo
ation frequen
y, memory fragmentation and bookkeeping spa
e

overhead. Memory allo
ation a�e
ts the time spent on dataset parsing when we add new

postings to memory, and the duration of term and range
ushes when we remove postings.

In Figure 5.6 we
onsider the three allo
ation methods with URF a
ross di�erent values of

posting memory. Memory management in
reasingly a�e
ts build time as posting memory

grows from 512MB to 2GB. More spe
i�
ally, the transition from the default poli
y to

hunksta
k redu
es build time by 3.4% for M

p

= 512MB, 4.7% for M

p

= 1GB, and 8.6%

for M

p

= 2GB. Therefore, larger amounts of memory spa
e require in
reased eÆ
ien
y in

memory management to a

elerate index building.

In Table 5.1 we
ompare the e�e
ts of several memory and I/O optimizations to

the build and sear
h time of SRF. File preallo
ation of the index lowers by 14-17% the

average query time as a result of redu
ed storage fragmentation at the �lesystem level.

62

 0

 100

 200

 300

 400

 500

 600

 700

D S C D S C D S C

B
u

il
d

 t
im

e
 (

m
in

)

Parse dataset
Flush terms

Flush ranges

584 574 564

428 417 408
374

355 342

512MB 1GB 2GB

Posting Memory

Figure 5.6: We
onsider three methods of memory allo
ation during index building by

Uni�ed Range Flush: (i) default (D), (ii) single-
all (S), and (iii)
hunksta
k (C). The

sensitivity of build time to memory management is higher (up to 8.6% de
rease with C)

for larger values of M

p

. We use Proteus with light stemming.

For aggressive prefet
hing, we in
rease the Linux readahead window to 1MB making it

equal to the size of the parsing bu�er. Thus, during the pro
essing of 1MB text, we fet
h

in the ba
kground the next 1MB from disk. As a result, parse time drops by 30% and the

total build time drops by 20% from 534min to 429min. When we a
tivate the
hunksta
k

method in memory management, build time further drops by 5% from 429min to 408min.

We have all these optimizations a
tivated throughout the experimentation with Proteus.

5.6 S
alability a
ross Di�erent Datasets

Finally, we measure the total build time of the CNT variants of SRF and URF for three

di�erent datasets: ClueWeb09 (�rst 1TB), GOV2 (426GB) and Wikipedia (200GB). In

our evaluation, we use the default parameter values shown in Table 4.2. In Figures 5.7a

and 5.7d we break down into parse and
ush time the SRF and URF build time for the

ClueWeb09 dataset. Even though SRF better balan
es the
ush time of ranges and terms

against ea
h other, URF a
tually redu
es the total build time of SRF by 7% from 815min

to 762min. This improvement is a

ompanied by a respe
tive redu
tion of the total
ush

time by 82min (23%) from 353min to 271min.

In Figures 5.7b and 5.7e we examine the s
aling of build time for the GOV2 dataset.

63

Table 5.1: We examine the e�e
t of alternative optimizations to the query and build time

of Uni�ed Range Flush. Preallo
ation redu
es the average query time, while prefet
hing

and
hunksta
k redu
e the build time.

Average Build and Query Time - Uni�ed Range Flush

Memory and I/O Optimizations

Total

Build

Parse

Time

Flush Time Query

Ranges Terms W/out W/Ca
he

(min) (min) (min) (min) (ms) (ms)

None 543 374 124 40 2082 1537

Preallo
ation 534 373 112 45 1728 1316

Preallo
ation+Prefet
hing 429 260 118 47 1724 1318

Preallo
ation+Prefet
hing+Chunksta
k 408 242 116 48 1726 1315

SRF redu
es the build time of URF by 16min (4%) from 420min to 404min. The total

number of indexed postings is 20.58bn in GOV2 (426GB) and 27.45bn in ClueWeb09

(1TB). However, GOV2 has about half the text size of ClueWeb09, and the index building

of GOV2 takes almost half the time spent for ClueWeb09. In fa
t, the parsing of GOV2

seems to take more than 70% of the total build time partly due to
leaning of pages written

during
ushing (Se
tion 5.2). In the Wikipedia dataset, parsing takes about 84-85% of

the total build time, but both URF and SRF require the same time (about 118.5min) to

build the index (Figures 5.7
 and 5.7f).

A
ross Figure 5.7, the total build time of URF and SRF (e.g., ClueWeb09 and GOV2)

demonstrates a nonlinearity mainly
aused by the range
ush time rather than the parsing

and term
ushing. We explored this issue by using the least-squares method to approxi-

mate the build time of GOV2 as fun
tion of the number of postings. In our regression, we

alternatively
onsider the linear fun
tion f(x) = a1 + b1 · x and the polynomial fun
tion

f(x) = a2 · x
b2
. Using the
oeÆ
ient of determination R

2
to quantify the goodness of

�t, we �nd that both the total build time and the time of range
ushing are a

urately

tra
ked by the polynomial fun
tion [56℄. Instead, the respe
tive times of parsing and term

ushing a
hieve good quality of �t with linear approximation.

64

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(a) SRF - ClueWeb09

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(b) SRF - GOV2

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(
) SRF - Wikipedia

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(d) URF - ClueWeb09

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(e) URF - GOV2

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6

B
u

il
d

 t
im

e
 (

m
in

)

Postings processed (billions)

Total Time
Parse Text

Flush Ranges
Flush Terms

(f) URF - Wikipedia

Figure 5.7: We show the s
aling of build time with Sele
tive Range Flush (SRF) and

Uni�ed Range Flush (URF). We use the ClueWeb09 (�rst TB), GOV2 (426GB) and

Wikipedia (200GB) datasets over Proteus with light stemming. URF takes 53.5min (7%)

less time for ClueWeb09, about the same for Wikipedia, and 16.4min (4%) more for GOV2

in
omparison to SRF.

5.7 Summary

We investigate the problem of in
remental maintenan
e of a disk-based inverted �le. Our

obje
tive is to improve both the sear
h laten
y and index building time at low resour
e

requirements. We propose a simple yet innovative disk organization of inverted �les

based on blo
ks, and introdu
e two new in
remental indexing methods, the Sele
tive

Range Flush (SRF) and Uni�ed Range Flush (URF). We implemented our two methods

in the Proteus prototype that we built. We extensively examine their eÆ
ien
y and

performan
e robustness using three di�erent datasets of size up to 1TB. SRF requires

onsiderable tuning e�ort a
ross di�erent parameter
ombinations to perform well. In

65

omparison to SRF, URF has similar or even better performan
e, while it is also simpler,

easier to tune and amenable to I/O
omplexity analysis (Se
tion 9.1).

Both in Proteus and the existing Wumpus system, we experimentally examine the

sear
h performan
e of the known Hybrid Immediate Merge (HIM) method with partial

ushing and automati
 threshold adjustment. Our two methods a
hieve the same sear
h

laten
y as HIM in Proteus, while they redu
e into half the sear
h laten
y of HIM in

Wumpus. Additionally, our methods redu
e by a fa
tor of 2-3 the I/O time of HIM

during index building, and lower the total build time by 20% or more.

66

Chapter 6

Range-Based Storage Management for

S
alable Datastores

6.1 Introdu
tion

6.2 Motivation

6.3 System Assumptions

6.4 Design and Ar
hite
ture

6.5 Prototype Implementation

6.6 Summary

6.1 Introdu
tion

S
alable datastores (or simply datastores) are distributed storage systems that s
ale to

thousands of
ommodity servers and manage petabytes of stru
tured data. Today, they

are routinely used by online serving, analyti
s and bulk pro
essing appli
ations, su
h as

web indexing, so
ial media, ele
troni

ommer
e, and s
ienti�
 analysis [28, 40, 32, 52,

33, 15, 101℄. Datastores di�er from traditional databases be
ause they: (i) Horizontally

67

partition and repli
ate the indexed data a
ross many servers, (ii) Provide weaker
on
ur-

ren
y model and simpler
all interfa
e, and (iii) Allow dynami
 expansion of re
ords with

new attributes. Depending on the appli
ation needs, they organize data as
olle
tions of

key-value pairs, multidimensional maps or relational tables.

System s
alability a
ross multiple servers is ne
essitated by the enormous amount

of handled data and the stringent quality-of-servi
e requirements [28, 40, 104℄. Pro-

du
tion systems keep the high per
entiles of serving laten
y within tens or hundreds of

millise
onds [40, 104℄. General-purpose datastores target good performan
e on both read-

intensive and write-intensive appli
ations [28, 32℄. Furthermore, appli
ations that ingest

and mine event logs a

elerate the shift from reads to writes [93℄.

The data is dynami
ally partitioned a
ross the available servers to handle failures

and limit the
onsumed resour
es. To a large extent, the a
tual
apa
ity, fun
tionality

and
omplexity of a datastore is determined by the ar
hite
ture and performan
e of the

onstituent servers [72, 99, 98℄. For instan
e, resour
e management eÆ
ien
y at ea
h

storage server translates into fewer hardware
omponents and lower maintenan
e
ost for

power
onsumption, redundan
y and administration time. Also, support of a missing

feature (e.g., range queries) in the storage server may require substantial reorganization

with overall e�e
tiveness that is potentially suboptimal [84, 30℄.

A storage layer at ea
h server manages the memory and disks to persistently maintain

the stored items [98℄. A
ross diverse bat
h and online appli
ations, the stored data is

typi
ally arranged on disk as a dynami

olle
tion of immutable, sorted �les (e.g., Bigtable,

HBase, Azure and Cassandra in Se
tion 2.2.1, Hypertable [53℄). Generally, a query should

rea
h all item �les to return the eligible entries (e.g., in a range). As the number of �les

on disk in
reases, it is ne
essary to merge them so that query time remains under
ontrol.

Datastores use a variety of �le merging methods but without rigorous justi�
ation. For

instan
e, Bigtable keeps bounded the number of �les on disk by periodi
ally merging

them through
ompa
tions [28℄ (also HBase, Cassandra, LazyBase in Se
tion 2.2.1, Anvil

in Se
tion 2.2.3). In the rest of the do
ument we inter
hangeably use the terms merging

and
ompa
tion.

Despite the prior indexing resear
h (e.g., in relational databases, text sear
h), data-

stores su�er from several weaknesses. Periodi

ompa
tions in the ba
kground may last

for hours and interfere with regular query handling leading to laten
y spikes [98, 71, 69,

68

70, 81℄. To avoid this problem, produ
tion environments s
hedule
ompa
tions on a daily

basis, thus leaving fragmented the data for several hours [98℄. This leads to redu
ed query

performan
e as the performan
e of these systems (e.g HBase) is sensitive to the number of

disk �les per key range [15℄. Frequent updates in distin
t
olumns of a table row further

fragment the data [43℄. When several �les on a server store data with overlapping key

ranges, query handling generally involves multiple I/Os to a

ess all �les that
ontain a

key. Bloom �lters
an defray this
ost, but are only appli
able to single-key (but not

range) queries, and have diminishing bene�t at large number of �les (e.g. 40) [98℄. Fi-

nally, several merge-based methods require roughly half of the storage spa
e to remain

free during merging for the
reation of new �les [98℄.

In this thesis we study the storage management of online datastores that
on
ur-

rently support both range queries and dynami
 updates. Over inexpensive hardware, we

redu
e the data serving laten
y through higher storage
ontiguity; improve the perfor-

man
e predi
tability with limited query-update interferen
e and
on�gurable
ompa
tion

intensity; and de
rease the storage spa
e required for �le maintenan
e through in
remen-

tal
ompa
tions. Our main insight is to keep the data of the memory and disk sorted

and partitioned a
ross disjoint key ranges. In
ontrast to existing methods (e.g., Se
-

tion 2.2.2), when in
oming data �lls up the available memory of the server, we only
ush

to disk the range that o

upies the most memory spa
e. We store the data of ea
h range

in a single �le on disk, and split a range to keep bounded the size of the respe
tive �le as

new data arrives at the server.

6.2 Motivation

Range queries are often used by data serving and analyti
s appli
ations [32, 33, 15, 53,

25, 30, 72℄, while time-range queries are applied on versioned data for transa
tional up-

dates [83℄. A

ordingly, typi
al ben
hmarks support range queries in addition to updates

and point queries as workload option [33, 81℄. In a distributed system, variability in the

laten
y distribution of individual
omponents is magni�ed at the servi
e level; e�e
tive

a
hing
annot dire
tly address tail laten
y unless the entire working set of an appli
ation

resides in the
a
he [38℄. In this se
tion, over a distributed datastore we experimentally

69

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

Q
u

e
ry

 l
a

te
n

c
y
 (

m
s
)

Time (min)

(a) Cassandra query laten
y

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300

T
o

ta
l
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(b) Cassandra total operations throughput

Figure 6.1: The query laten
y at the Cassandra
lient varies a

ording to a quasi-periodi

pattern. The total throughput of queries and inserts also varies signi�
antly.

demonstrate the range query laten
y to vary substantially over time with a high per
ent-

age of it to be spent in the storage layer.

We use a
luster of 9 ma
hines with the hardware
on�guration des
ribed in Se
tion 7.

We apply the Apa
he Cassandra version 1.1.0 as datastore with the default Size-Tiered

ompa
tion and the Yahoo! YCSB version 0.1.4 as workload generator [52, 33℄. An item

has 100B key length and 1KB value size. A range query requests a random number

of
onse
utive items that is drawn uniformly from the interval [1,100℄. Initially we run

Cassandra on a single node. On a di�erent ma
hine, we use YCSB with 8 threads to

generate a total of 500req/s out of whi
h 99% are inserts and 1% are range queries (see

Se
tion 7.2). We disregarded mu
h higher loads (e.g., 1000req/s) be
ause we found them

to saturate the server. The experiment terminates when a total of 10GB is inserted into

the server
on
urrently with the queries.

For average size of queried range at 50 items, the generated read load is 250items/s,

i.e., almost half the write load of 495items/s. An I/O on our hard disk takes on average

8.5-10ms for seek and 4.16ms for rotation. A

ordingly, the time to serve 5 range queries

is 67.2ms, while the time to sequentially write 495 items is 21.9ms. Although the read

time appears 3 times higher than that of the writes, the a
tual write load is pra
ti
ally

higher as a result of the
ompa
tions involved.

In Figure 6.1 we show the query laten
y measured every 5s and smoothed with a

window of size 12 for
larity. The query laten
y varies substantially over time following

70

Table 6.1: Storage management on the server o

upies more than 80% of the average

query laten
y measured at the
lient.

Laten
y (ms) of Range Queries on Cassandra

Servers

Client Server Storage Mgmt

Avg 90th 99th Avg 90th 99th

1 204.4 420 2282 178.8 382 1906

4 157.6 313 1601 130.8 269 1066

8 132.2 235 1166 111.7 218 802

some quasi-periodi
 pattern whi
h is independent of the random query size. In fa
t, the

laten
y variation approximates the periodi
ity at whi
h the server
ushes from memory

to disk the in
oming data and merges the
reated �les. In the same �gure, we additionally

show the measured throughput of queries and inserts to also vary
onsiderably over time,

and a
tually drop to zero for 90
onse
utive se
onds at minutes 157 and 295.

We repeat the above experiment with Cassandra over 1, 4 and 8 server ma
hines. We

linearly s
ale the generated request rate up to 4000req/s and the inserted dataset size up

to 80GB, while we �x to 8 the number of YCSB threads at the
lient. We instrument the

laten
y to handle the in
oming query requests at ea
h server. Table 6.1 shows the query

laten
y respe
tively measured at the YCSB
lient and the storage layer of all the Cas-

sandra servers. The di�eren
e mainly arises from time spent on network transfer, request

redire
tion among the servers, and RPC handling. As we in
rease the number of servers,

the query laten
y drops be
ause the
onstant (8) number of YCSB threads results into

redu
ed
on
urren
y (and
ontention) per server in the
luster. A
ross di�erent system

sizes, the storage management a

ounts for more than 80% of the average laten
y and the

90th per
entile, and more than 65% of the 99th per
entile. Overall,
ompa
tions
ause

substantial laten
y variations, and storage management is dominant in the online perfor-

man
e of Cassandra-like datastores (Se
tion 2.2.1). In the following se
tions we introdu
e

a new storage stru
ture and method to e�e
tively
ontrol the
ompa
tion impa
t, and

improve the datastore performan
e.

71

Request Router

Storage

Server

update query

...

Log Memory Disk

update query

Storage

Server
async flush

when mem

full

Figure 6.2: Assumed datastore ar
hite
ture.

6.3 System Assumptions

We mainly target intera
tive appli
ations of online data serving or analyti
s pro
essing.

The stored data is a
olle
tion of key-value pairs, where the key and the value are arbitrary

strings of variable size from a few bytes up to several kilobytes. The system supports the

operation of a point query as value retrieval of a single key, and a range query as retrieval

of the values in a spe
i�ed key range. Additionally, the system supports an update as

insertion or full overwrite of a single-key value. We do not examine the problems of query

handling over versioned data, or data loading in bulk.

A datastore uses a
entralized (Figure 2.5b) or distributed index (Figure 2.6) to lo
ate

the server of ea
h stored item. Data partitioning is based on interval mapping for eÆ-

ien
y in handling range queries (Se
tion 2.2.2). We fo
us on the storage fun
tionality of

individual servers rather than the higher datastore layers. All a

epted updates in a stor-

age server are made immediately durable through write-ahead logging and then inserted

in a memory sear
h stru
ture, before an a
knowledgment is sent to the
lient [28, 40℄.

When the memory stru
ture rea
hes a prede�ned threshold, its
ontents are sorted and

stored in an immutable �le on disk. The storage layer is implemented as a dynami

ol-

le
tion of sorted �les, and a query must typi
ally a

ess multiple �les. Thus, updates are

ommonly handled at sequential disk throughput, and queries involve syn
hronous ran-

dom I/O. Figure 6.2 illustrates the path of an update or query through the request router

and the storage servers, before returning the respe
tive response ba
k to the datastore

lient.

With data partitioning, ea
h storage server ends up lo
ally managing up to a few

terabytes. The data is indexed by a memory-based sparse index, i.e., a sorted array with

72

pairs of keys and pointers to disk lo
ations every few tens or hundreds of kilobytes. For

instan
e, Cassandra indexes 256KB blo
ks, while Bigtable, HBase and Hypertable index

64KB blo
ks [28, 52℄. With a 100B entry for every 256KB, we need 400MB of memory to

sparsely index 1TB. Compressed trees
an redu
e the o

upied memory spa
e by an order

of magnitude at the
ost of extra de
ompression pro
essing [66℄. We provide additional

details about our assumptions in Se
tion 7.8.

6.4 Design and Ar
hite
ture

In the present se
tion we propose a novel storage layer to eÆ
iently manage the memory

and disks of datastore servers. Our design sets the following primary goals:

(i) Provide sequential disk s
ans of sorted data to queries and updates.

(ii) Store the data of ea
h key range at a single disk lo
ation.

(iii) Sele
tively bat
h updates and free memory spa
e.

(iv) Avoid storage fragmentation or reorganization and minimize reserved storage spa
e.

Below, we des
ribe the proposed Rangetable stru
ture and the a

ompanying Rangemerge

method. Then we outline the prototype software that we developed to fairly
ompare our

approa
h with representative storage stru
tures of existing systems.

6.4.1 The Rangetable Stru
ture

The main insight of Rangetable is to keep the data on disk in key order, partitioned a
ross

large �les by key range. We store the data of a range at a single �le to avoid multiple

seeks for a point or range query. The disk blo
ks of a �le are
losely lo
ated in typi
al

�lesystems, with allo
ators based on blo
k groups or extents (e.g., ext3/4, Btrfs). If the

size of a data request ex
eeds a few MB, the disk geometry naturally limits the head

movement overhead to below 10%. For instan
e, if the average rotation and seek take

6.9ms in a 10KRPM SAS drive, the overhead o

upies 8.6% of the total time to a

ess

10MB [37℄. We do not need enormous �les to a
hieve sequential I/O, as long as ea
h �le

has size in the tens of megabytes. We avoid frequent I/O by gathering in
oming updates

73

: Search Diskstore5

2

6 : Scan & merge keys

a - h i - p q - z

2

3

6

Itemtable

Rangeindex

Chunkindices

Rangefiles

Diskstore

Memstore

Memory

Disk

i k m

6

q t wa c e

4

43

: Search Memstore

5

a - h i - p q - z

1

1

Get("last", "night")
Rangeindex

Figure 6.3: The organization of the Rangetable stru
ture, and
ontrol
ow of a handled

range query. For presentation
larity we use alphabeti

hara
ters as item keys.

in memory, and inexpensively preserve range
ontiguity on disk by only
ushing those

ranges that ensure I/O eÆ
ien
y.

New updates at a server are durably logged, but also temporarily a

umulated in

memory for subsequent bat
hed
ushing to a new �le on disk (Figure 6.2). For e�e
tive

I/O management, we partition the data of every server into key-sorted ranges using a

memory-based table,
alled rangeindex. Ea
h slot of the rangeindex maps a range to

the respe
tive items stored on disk and in memory (Figure 6.3). For fast key lookup

and range s
an we keep the data in memory sorted through a mapping stru
ture,
alled

itemtable. We use a
on
urrent balan
ed tree (spe
i�
ally, a red-bla
k tree) for ea
h range,

although a multi
ore-optimized stru
ture is preferable if the stored data fully resides in

memory [72℄.

New data are �rst inserted to the respe
tive tree in memory and later
ushed to

disk. We avoid external fragmentation and periodi
 reorganization on disk by managing

the spa
e in �les,
alled range�les, of maximum size F (e.g., 256MB). Ea
h range�le is

organized as a
ontiguous sequen
e of
hunks with �xed size C (e.g., 64KB). In order to

easily lo
ate the range�le
hunks, we maintain a memory-based sparse index per range�le,

alled
hunkindex, with entries the �rst key of ea
h
hunk and the o�set within the

range�le. From the steps shown in Figure 6.3, an in
oming range query (1) �nds the

respe
tive tree in memstore using the rangeindex and (2) sear
hes this tree. Then, the

74

query sear
hes (3) the rangeindex, (4) the
hunkindex and (5) the range�le of the diskstore.

Finally, (6) the requested items from both the itemtable and range�le are merged into a

single range by the server and returned.

6.4.2 The Rangemerge Method

In order to serve point and range queries with roughly one disk I/O, the Rangemerge

method merges items from memory and disk in range granularity. When we merge items,

we target to free as mu
h memory spa
e as possible at minimal
ushing
ost. The
hoi
e

of the
ushed range a�e
ts the system eÆ
ien
y in several ways: (i) Every time we
ush

a range, we in
ur the
ost of one range�le read and write. The more new items we
ush,

the higher I/O eÆ
ien
y we a
hieve. (ii) A
ushed range releases memory spa
e that is

vital for a

epting new updates. The more spa
e we release, the longer it will take to

repay the merging
ost. (iii) If a range frequently appears in queries or updates, then we

should skip
ushing it to avoid repetitive I/O.

Memory
ushing and �le merging are generally regarded as two distin
t operations.

When memory �lls up with new items, the server has to free memory spa
e qui
kly to

ontinue a

epting new updates. Existing systems sequentially transfer to disk the entire

memory o

upied by new items. Thus, they defer merging to avoid blo
king in
oming

updates for extended time period. This approa
h has the negative e�e
t of in
reasing

the �les and in
urring additional I/O traÆ
 to merge the new �le with existing ones [93℄.

To avoid this extra
ost, Rangemerge treats memory
ushing and �le merging as a single

operation rather than two. It also limits the duration of update blo
king be
ause a range

has
on�gurable maximum size, typi
ally a small fra
tion of the o

upied memory at the

server (Se
tion 7.8).

We greedily vi
timize the range with the largest amount of o

upied memory spa
e.

The intuition is to maximize the amount of released memory spa
e along with the I/O

eÆ
ien
y of the memory
ush. For simpli
ity, we take no a

ount of the
urrent range�le

size, although this parameter a�e
ts the merging
ost, and the probability of having

future I/O requests to a parti
ular range. Despite its simpli
ity, this vi
timization rule

has proved robust a
ross our extensive experimentation.

The pseudo
ode of Rangemerge appears in Algorithm 6.3. The server re
eives items

75

Algorithm 6.3 Pseudo
ode of Rangemerge

Input: Rangetable with memory size >= M

Output: Rangetable with memory size < M

1: // Vi
timize a range

2: R := range whose tree o

upy max total memory

3: // Flush memory items of R to its range�le

4: Merge range�le f

R

of R with its tree m

R

into empty bu�er b

5: if (sizeof(b) > F) then // If blo
k will over
ow

6: k := ⌈sizeof(b)=F ⌉

7: else

8: k := 1

9: end if

10: Allo
ate k new range�les f

1
R

; : : : ; f

k

R

on disk

11: Split b into k subranges R

1
; : : : ; R

k

of equal disk size

12: Transfer subranges to respe
tive f

1
R

; : : : ; f

k

R

13: Build
hunkindexes for f

1
R

; : : : ; f

k

R

14: Update rangeindex with entries for R

1
; : : : ; R

k

15: // Clean up memory and disk

16: Free tree m

R

17: Delete range�le f

R

and its
hunkindex

in the key interval assigned by the datastore index. We insert new items in their trees

until the o

upied memory spa
e rea
hes the memory limit M . At this point, we pi
k

as vi
tim R the range of maximum memory spa
e (line 2), read its range�le f

R

from

disk, merge it with the respe
tive tree m

R

in memory, and move the merged range ba
k

to disk (lines 4-13). The addition of new items may lead the size of range R to ex
eed

the range�le
apa
ity F (line 5). In this
ase, we equally split R into k (usually, k = 2)

subranges and move the data to k new range�les on disk (line 11). Finally, we free the

itemtable spa
e o

upied by R, and delete the old range�le from the disk (lines 16-17).

Pra
ti
ally,
ushing a single range is suÆ
ient to redu
e the o

upied memory below the

memory limit.

76

Diskstore

Memstore
put() get()

Compaction Manager

(Nomerge, SMA, Geometric, Rangemerge, Remerge)

...

Itemtable

File

Chunkindex

File

Chunkindex

File

Chunkindex

Figure 6.4: Prototype framework with several
ompa
tion methods as plugins.

6.5 Prototype Implementation

We developed a general storage framework to persistently manage key-value items over

lo
al disks. The interfa
e supports the put(k,v)
all to insert the pair (k,v), the get(k)

all to retrieve the value of key k, the get(k,n)
all to retrieve n
onse
utive re
ords from

key ≥ k, and the get(k1,k2)
all to retrieve the re
ords with keys in the range [k1; k2].

Our prototype adopts a multithreaded approa
h to support the
on
urrent exe
ution of

queries and updates, and it is designed to easily a

ept di�erent
ompa
tion methods as

pluggable modules. The implementation
onsists of three main
omponents, namely the

Memstore, the Diskstore, and the Compa
tion manager (Figure 6.4).

The Memstore uses a thread-safe red-bla
k tree in memory to maintain in
oming items

in sorted order (or multiple trees, in
ase of Rangemerge), and the Diskstore a

esses

ea
h sorted �le on disk through a sparse index maintained in memory. The Compa
tion

manager implements the �le merging sequen
es of the following methods: Nomerge, SMA,

Geometri
, Rangemerge and Remerge. We implemented the methods using C++ with

the standard template library for basi
 data stru
tures and 3900 un
ommented lines of

new
ode.

To validate the a

ura
y of our experimentation, we
ompared the
ompa
tion a
tivity

of our storage framework with that of Cassandra. From review of the published literature

and the sour
e
ode, we found that Cassandra implements a variation of the SMA (k=4)

algorithm [52℄. A

ordingly, the stored data is organized into levels of up to k=4 �les;

every time the threshold of k=4 �les is rea
hed at one level, the �les of this level are merged

77

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10

D
a

ta
 t

ra
n

s
fe

rr
e

d
 p

e
r

c
o

m
p

a
c
ti
o

n
 (

G
B

)

Data inserted (GB)

SMA (k=4)
Cassandra

 0.01

 0.1

 1

Figure 6.5: We observe similar
ompa
tion a
tivity between Cassandra and our prototype

implementation of SMA (k=4). The height (y-axis value) of ea
h mark denotes the

transfer size of the respe
tive
ompa
tion.

into a single �le of the next level (Se
tion 2.2.2). In our framework we set M=25MB

be
ause we found that Cassandra by default
ushes to disk 25MB of data every time

memory gets full. For
omparison fairness we disable data
ompression and insertion

throttling in Cassandra. We
reate the Cassandra workload using YCSB with 2
lients,

whi
h respe
tively generate puts at 500req/s and gets at 20req/s. The stored items are

key-value pairs with 100B key and 1KB value, while the size of the get range is drawn

uniformly from the interval [1,20℄. The experiment terminates when 10GB of data is

inserted. We generate a similar workload in our framework with two threads.

In Figure 6.5 we show the amount of transferred data as we insert new items into the

Cassandra and our prototype system respe
tively. The height of ea
h mark refers to the

total amount of transferred data during a
ompa
tion. A
ross the two systems we noti
e

quasi-periodi
 data transfers of exa
tly the same size. In the
ase that a merge at one level

as
ades into further merges at the higher levels, in our prototype we
omplete all the

required data transfers before we a

ept additional puts. Consequently, it is possible to

have multiple marks at the same x position. Instead Cassandra allows a limited number of

puts to be
ompleted between the
as
ading merges, whi
h often introdu
es a lag between

the
orresponding marks. Overall the two systems transfer equal amount of data using

the same
ompa
tion pattern during the dataset insertion.

78

6.6 Summary

To a
hieve fast ingestion of new data, s
alable datastores usually follow a write-optimized

approa
h. In
oming updates are simply logged to disk and a

umulated in memory,

before the system returns
ontrol to the
lient. When later on the available memory is

exhausted, a
ush operation will sort all memory updates and transfer them to a new

�le on disk. To improve query performan
e and re
laim spa
e from obsolete entries, the

system periodi
ally sele
ts and merges multiple disk �les into a single �le. These
ush

and merge operations are
olle
tively
alled
ompa
tions and are usually exe
uted in the

ba
kground.

This general approa
h of amortizing the insertion
ost over the periodi

ompa
tions is

adopted by most produ
tion datastores as it a
hieves high ingestion throughput. However,

it in
reases the laten
y of range queries as it fragments the data of ea
h key in several

disk �les,
ausing multiple random I/Os per query. Furthermore, even though ba
kground

ompa
tions are only periodi
ally exe
uted, they are very resour
e-intensive and have a

signi�
ant impa
t on the serving of
on
urrent queries. Finally, this approa
h requires

roughly half of the storage spa
e to be reserved for the
reation of new �les during merges.

To address these issues, we present the Rangetable storage layer and the Rangemerge

method to eÆ
iently manage the memory and disks of datastore servers. We also de-

s
ribe our prototype storage framework and provide details about the implementation.

Rangemerge improves query laten
y by keeping the entries
ontiguously stored on disk

and minimizes the interferen
e between
ompa
tions and queries by only partially
ush-

ing entries from memory to disk using lighter
ompa
tions. The indexing throughput is

maintained high by s
heduling the merges of memory and disk entries based on their I/O

eÆ
ien
y. Furthermore, Rangemerge impli
itly avoids the ex
essive storage reservation of

other methods.

79

Chapter 7

Performan
e Evaluation of Rangemerge

7.1 Experimentation Environment

7.2 Query Laten
y and Disk Files

7.3 Insertion Time

7.4 Sensitivity Study

7.5 Memory Size

7.6 Key Distribution

7.7 Solid-State Drives

7.8 Dis
ussion

7.9 Summary

In the present se
tion, we experimentally evaluate the query laten
y and insertion

time a
ross several
ompa
tion methods. We show that Rangemerge a
hieves minimal

query laten
y of low sensitivity to the I/O traÆ
 from
on
urrent
ompa
tions, and

approximates or even beats the insertion time of write-optimized methods under various

onditions. We also examine the performan
e sensitivity to various workload parameters

80

and storage devi
es. Although not expli
itly shown, Rangemerge also trivially avoids the

100% overhead in storage spa
e of other methods [98℄.

7.1 Experimentation Environment

We did our experiments over servers running Debian Linux 2.6.35.13. Ea
h ma
hine

is equipped with one quad-
ore 2.33GHz pro
essor (64-bit x86), one a
tivated gigabit

ethernet port, and two 7200RPM SATA2 disks. Unless otherwise spe
i�ed, we
on�gure

the server RAM equal to 3GB. Ea
h disk has 500GB
apa
ity, 16MB bu�er size, 8.5-10ms

average seek time, and 72MB/s sustained transfer rate. Similar hardware
on�guration

has been used in a re
ent related study [86℄. We store the data on one disk over the Linux

ext3 �lesystem. In Rangemerge, we use range�les of size F=256MB. We also examine

Remerge, Nomerge, Geometri
 (r=2, r=3, or p=2) and SMA (k=2 or k=4, with unlimited

`). In all methods, we use
hunks of size C=64KB. From Se
tion 2.2.2, variations of these

methods are used by Bigtable, HBase (Geometri
, r=3), Anvil and bLSM (Geometri
,

r=2), GTSSL (SMA, k=4), and Cassandra (SMA, k=4).

We use YCSB to generate key-value pairs of 100 bytes key and 1KB value. On a

single server, we insert a dataset of 9.6M items with total size 10GB. Similar dataset

sizes per server are typi
al in related resear
h (e.g., 1M [32℄, 9M [81℄, 10.5GB [86℄,

16GB [98℄, 20GB [33℄). The 10GB dataset size �lls up the server bu�er several times

(e.g., 20 for 512MB bu�er spa
e) and
reates interesting
ompa
tion a
tivity a
ross the

examined algorithms. With larger datasets, we experimentally found the server behavior

to remain qualitatively similar, while enormous datasets are typi
ally partitioned a
ross

multiple servers. For experimentation
exibility and due to la
k of publi
 tra
es [4℄, we

use syntheti
 datasets with keys that follow the uniform distribution (default), Zip�an

distribution, or are partially sorted [33℄. We take average measurements every 5s, and

smooth the output with window size 12 (1-min sliding window) for readability. Our

default range query reads 10
onse
utive items.

The memory limit M refers to the memory spa
e used to bu�er in
oming updates.

Large system installations use dynami
 assignment to a
hieve load balan
ing by having

a number of servi
e partitions (mi
ro-partitions) that is mu
h larger than the number

81

of available ma
hines [38℄. For instan
e, the Bigtable system stores data in tablets with

ea
h ma
hine managing 20 to 1,000 tablets. Consequently, the default bu�er spa
e per

tablet lies in the range 64-256MB [41℄. Other related resear
h
on�gures the memory

bu�er with size up to several GB [98, 33℄. As a
ompromise between these
hoi
es, we

set the default memory limit equal to M=512MB; thus we keep realisti
 (1/20) the ratio

of memory over the 10GB dataset size and ensure the o

urren
e of several
ompa
tions

throughout an experiment. In Se
tion 7.3 we examine memory limit and dataset size up

to 4GB and 80GB respe
tively. We further study the performan
e sensitivity to memory

limit M in Figure 7.9.

7.2 Query Laten
y and Disk Files

First we measure the query laten
y of a mixed workload with
on
urrent puts and gets.

An I/O over our disk takes on average 13.4ms allowing maximum rate about 74req/s

(
an be higher for stri
tly read workloads). We
on�gure the get load at 20req/s so that

part of the disk bandwidth
an be used by
on
urrent
ompa
tions. We also set the put

rate at 2500req/s, whi
h is about half of the maximum possible with 20get/s (shown in

Figure 7.6
). The above
ombined settings o

upy roughly two thirds of the total disk

bandwidth and
orrespond to a write-dominated workload (get/put ratio about 1/100 in

operations and 1/25 in items) [86℄. We examine other
ombinations of put and get loads

in Se
tion 7.4.

We assume that when memory �lls up, the put thread is blo
ked until we free up

memory spa
e. Although write pauses
an be
ontrolled through early initiation of mem-

ory
ushing [93℄, their a
tual e�e
t to insertion performan
e additionally depends on the

ushing granularity and duration (explored in Se
tion 7.8). In order to determine the

on
urren
y level of query handling in the server, we varied the number of get threads

between 1 and 20; then we a

ordingly adjusted the request rate per thread to generate

total get load 20req/s. The measured get laten
y in
reased with the number of threads,

but the relative performan
e di�eren
e between the methods remained the same. For

larity, we only illustrate measurements for one put and one get thread.

In Figure 7.1a we examine three representative methods: SMA (k=4), Geometri

82

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100 120

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

SMA (k=4)
Geometric (r=2)

Rangemerge

(a) Get laten
y in three methods

 0
 10
 20
 30
 40
 50
 60

G
e
t
la

te
n
c
y
 (

m
s
)

 0

 5

 10

 15

 20

 0 20 40 60 80 100G
e
t
th

ro
u
g
h
p
u
t
(r

e
q
/s

)

Time (min)

(b) Compa
tions in Geom (r=2)

Figure 7.1: During
on
urrent inserts and queries, (a) the get laten
y of Geometri
 (r=2)

and SMA (k=4) has substantially higher variability and average value than Rangemerge,

and (b) the get throughput of Geometri
 (r=2) drops as low as 15.5req/s during
om-

pa
tions (grey ba
kground).

(r=2), and Rangemerge. The experiment runs separately for ea
h method until loading

10GB. The get laten
y of Rangemerge (avg: 15.6ms, std: 8.2ms, max: 30.5ms) has

lower average value by 51-83% and standard deviation by 2.5-3 times than Geometri

(avg: 23.5ms, std: 20.5ms, max: 64.5ms) and SMA (avg: 28.6ms, std: 24.3ms, max:

93.3ms). Also Remerge (not shown) is less responsive and predi
table (avg: 21.1ms,

std: 10.6ms, max: 35.4ms) than Rangemerge. However, SMA redu
es the experiment

duration to 90min from 119min required by Rangemerge and 112min by Geometri
 (see

also Figure 7.9). In Figure 7.1b we illustrate the get performan
e of Geometri
, with

on
urrent
ompa
tions as verti
al grey lanes. Compa
tions in
rease laten
y by several

fa
tors and redu
e throughput by 22.5%, from 20req/s to 15.5req/s. The throughput

of SMA (not shown) also drops to 10.4req/s, unlike the Rangemerge throughput that

remains above 17.4req/s.

In Figure 7.2a we depi
t the number of �les (left y axis) and the average get laten
y

(right y axis) for Geometri
. After every
ompa
tion, we measure the get laten
y as

average over twenty random requests. From every �le, the get operation reads the items of

the requested key range (Figure 6.3). Assuming no
on
urrent
ompa
tions, the measured

laten
y varies between 11.9ms and 49.0ms, as the number of �les per key varies between 1

83

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5 6 7 8 9 10
 0

 10

 20

 30

 40

 50

 60
N

u
m

b
e
r

o
f
fi
le

s
 p

e
r

k
e
y
 r

a
n
g
e

G
e
t
la

te
n
c
y
 (

m
s
)

Data inserted (GB)

Get latency
Number of disk files

(a) Files and get laten
y in Geom (r=2)

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

Data inserted (GB)

Nomerge

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

Data inserted (GB)

Geom (p=2)

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

Data inserted (GB)

SMA (k=4)

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

Data inserted (GB)

Rangemerge

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

Data inserted (GB)

Geom (r=2)

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

Data inserted (GB)

Remerge

(b) Number of �les per key range

Figure 7.2: (a) At the insertion of 10GB with M=512MB using Geometri
 partitioning

(r=2), get laten
y (at load 10req/s) is
losely
orrelated to the number of �les
reated.

(b) We show the number of �les maintained per key range for six methods.

and 4. The evident
orrelation between get laten
y and the number of �les in Geometri

explains the variation of get performan
e in between
ompa
tions in Figure 7.1b.

We further explore this issue in Figure 7.2b, where we show the number of maintained

�les as fun
tion of the dataset size. Nomerge in
reases the number of sorted �les up to

20 (only limited by the dataset size), and SMA (k=4) in
reases the number of
reated

�les up to 8. Geometri
 with r=2 and p=2 varies the number of �les up to 4 and 2,

respe
tively. Instead, Remerge always maintains a single �le for the entire dataset, while

Rangemerge stri
tly stores on a single �le the items of a range�le range; both methods

lead to roughly one random I/O per get operation. Overall Rangemerge leads to more

responsive and predi
table get operations with
on
urrent puts.

We also examine the generated I/O a
tivity of
ompa
tions. In Figure 7.3 we illustrate

the data amount written to and read from disk for 10GB dataset and M=512MB. The

plots of the �gure are ordered a

ording to the de
reasing size of the maximum transferred

amount. Remerge merges data from memory to an unbounded disk �le with 10GB �nal

size. At the last
ompa
tion, the amount of transferred data be
omes 20.5GB. Geometri

redu
es the transferred amount down to 16.5GB for r=2. In SMA, k=4 limits the trans-

ferred amount to 4.5GB; k=2 (not shown) leads to 14.5GB maximum
ompa
tion transfer

84

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8 9 10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Remerge

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 1 2 3 4 5 6 7 8 9 10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

SMA (k=4)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 1 2 3 4 5 6 7 8 9 10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Geom (p=2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7 8 9 10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Rangemerge

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 1 2 3 4 5 6 7 8 9 10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Geom (r=2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5 6 7 8 9 10

D
a
ta

 t
ra

n
s
fe

rr
e
d
 (

G
B

)

Data inserted (GB)

Nomerge

Figure 7.3: I/O intensity of
ompa
tions. The disk traÆ
 of
ompa
tions in Rangemerge

is
omparable to that of Nomerge with M=512MB.

with 6 �les. It is interesting that Rangemerge redu
es to 594MB the maximum trans-

ferred amount per
ompa
tion bringing it very
lose to 512MB periodi
ally transferred

by Nomerge. Thus Rangemerge makes
ompa
tions less I/O aggressive with respe
t to

on
urrent gets (Figure 7.1a).

7.3 Insertion Time

Next we study the
umulative laten
y to insert data items one-by-one into the storage

server. Insertion in
ludes some pro
essing to sort the data in memory, but mainly involves

I/O to
ush data and apply
ompa
tions over the disk �les. In order to ensure the

generality of our results, we measured the total insertion time at di�erent s
ales of dataset

size and memory limit. In Figure 7.4a and Figure 7.4b the
umulative insertion time of

Geometri
, SMA and Rangemerge forms a similar
urve as long as the ratio of dataset

size over memory limit is
onstant (e.g., 5GB/256MB=40GB/2GB=20). We
on�rmed

this behavior a
ross several parameter s
ales that we examined.

In Figure 7.5a (with log y axis) we examine the time required to insert a dataset using

di�erent
ompa
tion methods. We already displayed the number of maintained �les for

di�erent methods in Figure 7.2b. Nomerge takes 9.3min to
reate 20 �les on disk, and

85

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100
 0

 20

 40

 60

 80

 100

 120

 140

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 5
G

B
)

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 4
0

G
B

)

Data inserted (%) - Geometric (r=2)

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

(a) Geom (r=2)

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100
 0

 10

 20

 30

 40

 50

 60

 70

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 5
G

B
)

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 4
0

G
B

)

Data inserted (%) - SMA (k=4)

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100
 0

 50

 100

 150

 200

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 5
G

B
)

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

(D
a

ta
 =

 4
0

G
B

)

Data inserted (%) - Rangemerge

M = 256MB, Data = 5GB
M = 2048MB, Data = 40GB

(b) SMA (k=4), Rangemerge

Figure 7.4: S
aling
on�guration parameters. The insertion progress is similar between

the
on�guration of M=256MB with 5GB dataset (left y-axis) and M=2GB with 40GB

(right y-axis) for Geometri
 (r=2), SMA (k=4) and Rangemerge.

SMA (k=4) spends 16.2min for 8 �les. Geometri
 takes 31.7min with r=2, 32.4min with

r=3, and 38.0min with p=2 (≤ 2 �les). Remerge requires 92.5min to maintain a single �le

on disk, and Rangemerge takes 47.8min. As expe
ted, the smaller the number of disk �les

maintained, the longer it takes to insert the dataset. One ex
eption is Rangemerge that

requires about half the insertion time of Remerge to e�e
tively store ea
h key at a single

disk lo
ation. Geometri
 redu
es the insertion time of Rangemerge by 20.5%{33.6%,

but requires 2-4 random I/Os on disk to handle a query (Figure 7.2b) and has greater

variability in query laten
y due to its I/O-intensive ba
kground
ompa
tions (Figure 7.1a).

In addition, under modest
on
urrent query load the insertion time of Rangemerge is lower

than Geometri
 (p=2) and similar to Geometri
 (r=3) (Se
tion 7.4).

In Figure 7.5b we repeat the above experiment using a dataset of 80GB withM=4GB

over a server with 6GB RAM. Nomerge takes 1.5hr and SMA (k=4) 2.9hr. Geometri

takes 5.8hr with r=2, 7.4hr with r=3, and 7.7hr with p=2. Remerge requires 13.9hr and

Rangemerge takes 6.4hr. Interestingly, the insertion time of Rangemerge is lower than

that of Geometri
 with p=2 and r=3, even though it stores ea
h disjoint range of keys on

a single �le on disk. We attribute this behavior to the more eÆ
ient use of the available

memory by Rangemerge, further explored in Se
tion 7.5.

86

 1

 10

 100

 0 1 2 3 4 5 6 7 8 9 10

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Data inserted (GB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Insertion time (10GB dataset, M=512MB)

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Data inserted (GB)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)
Nomerge

(b) Insertion time (80GB dataset, M=4GB)

Figure 7.5: (a) The insertion time (log y axis) of Rangemerge is about half the insertion

time of Remerge and
losely tra
ks that of Geometri
 (p=2). (b) With M=4GB and

80GB dataset size Rangemerge has lower insertion time than Geometri
 (p=2) and (r=3)

while storing ea
h key at a single disk lo
ation.

7.4 Sensitivity Study

We did an extensive sensitivity study with respe
t to the
on
urrent load. Spe
i�
ally,

we examined how the get laten
y and the total insertion time is a�e
ted when we vary

the put and get load of the system.

First we evaluate the impa
t of the put load to the query and insertion time. As we

vary the put load between 1000-20000req/s, the average laten
y of
on
urrent gets is lowest

under Rangemerge (Figure 7.6a). A

ording to the needs of Servi
e Level Agreements [40,

101, 104℄, we also
onsider the 99th per
entile of get laten
y in Figure 7.6b. Rangemerge

and Remerge are the fastest two methods. Moreover, under
on
urrent puts and gets,

the insertion time of Rangemerge
losely tra
ks that of Geometri
 (r=3) and lies below

that of Remerge and Geometri
 (p=2) (Figure 7.6
). We omit Nomerge be
ause it leads

to ex
essively long get laten
y.

We also examine the sensitivity to the get size assuming gets of rate 20req/s
on
ur-

rently served with puts of rate 2500req/s. In Figures 7.7a and 7.7b we use logarithmi
 y

axis to depi
t the laten
y of get requests. A
ross di�erent get sizes and espe
ially at the

larger ones (e.g., 10MB or 100MB), Rangemerge is distin
tly faster (up to twi
e or more)

than the other methods both in terms of average get laten
y and the respe
tive 99th per-

87

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5000 10000 15000 20000

G
e
t
la

te
n
c
y
 (

m
s
)

Put load (req/s)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(a) Average get laten
y

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000

G
e
t
la

te
n
c
y
 (

m
s
)

Put load (req/s)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(b) 99th per
entile of laten
y

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000

In
s
e
rt

io
n
 t
im

e
 (

m
in

)

Put load (req/s)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)

(
) Cumulative insertion time

Figure 7.6: Performan
e sensitivity to put load assuming
on
urrent get requests at rate

20req/s and s
an size 10.

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

G
e
t
la

te
n
c
y
 (

m
s
)

Range get size (keys retrieved)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(a) Average get laten
y

 1

 10

 100

 1000

 1 10 100 1000 10000 100000

G
e
t
la

te
n
c
y
 (

m
s
)

Range get size (keys retrieved)

SMA (k=4)
Geometric (r=2)
Geometric (r=3)
Geometric (p=2)

Remerge
Rangemerge

(b) 99th per
entile of laten
y

 50

 100

 150

 200

 250

 1 10 100 1000 10000 100000

In
s
e
rt

io
n
 t
im

e
 (

m
in

)

Range get size (keys retrieved)

Remerge
Geometric (p=2)
Geometric (r=3)

Rangemerge
Geometric (r=2)

SMA (k=4)

(
) Cumulative insertion time

Figure 7.7: Sensitivity to range get size assuming
on
urrent load of 2500req/s put rate

and 20req/s get rate.

entile. From Figure 7.7
 it also follows that the
on
urrent get load has an impa
t on the

insertion time. Remerge takes as high as 285min with larger get sizes, unlike Rangemerge

that remains between two instan
es of the Geometri
 method (r=2 and p=2).

In Figure 7.8, as the load of
on
urrent gets varies up to 40req/s, the insertion time

of Rangemerge lies at the same level as Geometri
 and well below Remerge. Under

mixed workloads with both puts and gets, from Figures 7.6, 7.7 and 7.8 we
on
lude that

Rangemerge a
hieves the get laten
y of Remerge and the insertion time of Geometri
.

88

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Get load (req/s)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)

Figure 7.8: Sensitivity of insertion time to

get rate of s
an size 10 with
on
urrent

put rate set at 2500req/s.

 1

 10

 100

 1000

128 256 512 1024 2048

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Memory limit (MB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

Figure 7.9: Impa
t ofM to insertion time.

With M=2GB, Rangemerge approa
hes

Nomerge and stays by at least 21% below

the other methods.

7.5 Memory Size

We also evaluate how insertion time depends on the memory limit M (Figure 7.9 with

logarithmi
 y axis). As we in
rease M from our default value 512MB to 2GB, both

Remerge and Rangemerge proportionally redu
e the disk I/O time. This behavior is

onsistent with the respe
tive I/O
omplexities in Table 2.1 and Se
tion 9.2. AtM=2GB,

Rangemerge lowers insertion time to 15.2min, whi
h approximates the 10.2min required

by Nomerge. The remaining methods require more time, e.g., 19.3min for Geometri

(r=2), 19.8min for SMA (k=4) and 30.9min for Remerge. From additional experiments

(not shown) we found that a higherM does not substantially redu
e the get laten
y of the

remaining methods ex
ept for the trivial
ase that the entire dataset �ts in memory. We

on
lude that the insertion time of Rangemerge approximates that of Nomerge at higher

ratio of memory over dataset size.

7.6 Key Distribution

There are many s
enarios where the distribution of keys inserted into the datastore is

skewed or the keys are already sorted. For example, datastores are
ommonly used to

store timeseries (e.g., system events or user transa
tions). In these
ases the key is usually

89

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80 90 100

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Percentage of keys ordered (%)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Ordered keys

 0

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2 2.5 3 3.5 4

In
s
e
rt

io
n
 t
im

e
 (

m
in

)

α parameter of Zipf distribution

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(b) Zip�an keys

Figure 7.10: Sensitivity of insertion time to key distribution, as we generate put requests

ba
k-to-ba
k with zero get load.

a timestamp so we expe
t the keys to be ordered |or mostly ordered, if items are
olle
ted

from multiple sour
es.

In Figure 7.10a we investigate how insertion time is a�e
ted by the per
entage of keys

inserted in sorted order. Rangemerge approa
hes Nomerge as the per
entage of sorted

keys in
reases from 0% (uniform distribution) to 100% (fully sorted). This behavior is

anti
ipated be
ause the sorted order transforms merges to sequential writes with fewer

reads.

In Figure 7.10b we draw the inserted keys from a Zip�an distribution and study the

impa
t of parameter � to the insertion time. The higher we set the parameter �, the

more items appear at the head (popular part) of the distribution. Rangemerge naturally

exploits the higher item popularity to again approximate Nomerge.

7.7 Solid-State Drives

Given the enormous te
hnologi
al improvement of solid-state drives (SSD) over the last

de
ade, it is reasonable to
onsider their behavior as part of the storage hierar
hy in a

datastore server. Flash SSDs redu
e I/O laten
y at the
ost of hardware equipment and

system
omplexity; the limited lifespan and the relatively poor random-write performan
e

90

 1

 10

 0 1 2 3 4 5 6 7 8 9 10

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

Data inserted (GB)

Remerge
Rangemerge

Geometric (p=2)
Geometric (r=3)
Geometric (r=2)

SMA (k=4)
Nomerge

(a) Cumulative insertion time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

SMA (k=4)
Geometric (r=2)

Rangemerge

(b) Get laten
y

Figure 7.11: (a) Over an SSD, the insertion time of Rangemerge lies halfway between

that of Nomerge and Remerge. (b) Rangemerge redu
es the variability of get laten
y in

omparison to SMA (k = 4) and Geometri
 (r = 2).

have been re
ognized as problem for the wider deployment of SSDs [77℄. In our following

experiments we assume that an SSD fully repla
es the hard disk drive (HDD) as medium

of persistent storage for the written key-value pairs. Our SSD is a SATA2 60GB solid-

state drive of max read throughput 285MB/s and max write throughput 275MB/s. In

Figure 7.11a we show the
umulative insertion time over an SSD for a 10GB dataset

and memory limit 512MB. The
ompa
tion methods applied over the SSD redu
e by

28%-60% the insertion time measured over the HDD (Figure 7.9). However, the relative

performan
e between the methods remains similar a
ross the two devi
es. In parti
ular,

Rangemerge redu
es the insertion time of Remerge by 49% with SSD, and by 53% with

HDD.

Next we examine the query laten
y over the SSD devi
e. From the previous paragraph,

the write data throughput of our SSD devi
e is about twi
e as high as that of the HDD.

Therefore we in
rease the put rate of the ba
kground traÆ
 to 5000req/s for the SSD

from 2500req/s previously used for the HDD (Se
tion 7.2). In order to estimate the query

transa
tion
apa
ity of the two devi
es, we use a syntheti
 ben
hmark with ea
h request

involving a random seek followed by a read of 512B blo
k. Thus we found the read

performan
e of the HDD equal to 76req/s, and that of the SSD 4323req/s. First we tried

get load of the SSD at rate 1000req/s in analogy to 20req/s that we used for the HDD

91

(26% of 76req/s). However the SSD devi
e is saturated (dramati
 drop of throughput)

with
on
urrent workload of 5000req/s puts and 1000req/s gets. Thus we redu
ed the get

load to 100req/s, so that we stay below the performan
e
apa
ity of the SSD (and keep

lose to 1/100 the operation get/put ratio as with the HDD).

In Figure 7.11b we
ompare the get laten
ies of SMA (k = 4), Geometri
 (r = 2) and

Rangemerge. We terminate the experiment after we insert 10GB into the system
on
ur-

rently with the get load. In
omparison to the get laten
y over the HDD (Figure 7.1a),

the measured laten
ies of the SSD are about an order of magnitude lower. However the

urves of the three methods look similar a
ross the two devi
es. In fa
t the maximum

get laten
y of Rangemerge rea
hes 4.5ms, while that of Geometri
 (r = 2) gets as high as

7.1ms and that of SMA (k = 4) 8.6ms. We
on
lude that the relative insertion and query

performan
e of the
ompa
tion methods remains similar a
ross the two di�erent types of

storage devi
es that we experimented with.

7.8 Dis
ussion

In this se
tion, we dis
uss about pra
ti
al issues that we
onsidered in our design and

potential limitations resulting from our assumptions.

7.8.1 Compa
tion I/O Intensity

Motivated from the highly variable query laten
y in several existing datastores, we propose

the Rangemerge method to redu
e the I/O intensity of �le merging in several ways: (i)

We only
ush a single range from memory rather the entire bu�er spa
e, and keep the

amount of I/O during a
ush independent of the memory limit. (ii) We
ombine
ushing

and
ompa
tion into a single operation to avoid extra disk reads during merging. (iii) We

keep the size of disk �les bounded in order to avoid I/O spikes during �le
reation. The

on�gurable size of the range�le provides dire
t
ontrol of the I/O involved in a range

ush.

In Table 7.1 we
onsider loading 10GB to a datastore at unthrottled insertion rate.

From the transferred data and the
ompa
tion time we estimate every
ompa
tion to

require 32.7-36.2MB/s, whi
h is about half of the sequential disk bandwidth. If we redu
e

92

Table 7.1: Amount of
ushed and totally transferred data per
ompa
tion, delay per

ompa
tion, and total insertion time for di�erent range�le sizes of Rangemerge.

Delays and Transferred Data over a Hard Disk

Range�le Flushed Transferred Compa
tion Insertion

(MB) (MB) (MB) Time (s) Total (min)

32 4.9 49.1 1.5 54.2

64 9.6 97.8 2.7 51.6

128 19.1 196.0 5.5 51.6

256 37.1 386.8 11.0 53.8

the range�le size from F=256MB to F=32MB, the average duration of a
ompa
tion drops

from 11.0s to 1.5s, but the respe
tive total insertion time varies in the range 51.6min to

54.2min. It is not surprising that M=32MB raises insertion time to 54.2min, be
ause

a smaller range�le
auses more frequent and less eÆ
ient data
ushes. In pra
ti
e we

an
on�gure the range�le size a

ording to the insertion and query requirements of the

appli
ation.

Previous resear
h has already explored ways to
ontinue a

epting insertions during

memory
ushing. When the memory limit M is rea
hed, it is possible to allo
ate addi-

tional memory spa
e of size M to store new inserts, and let previously bu�ered data be

ushed to disk in the ba
kground [28℄. Alternatively, a low and high watermark
an be

set for the used fra
tion of memory spa
e. The system slows down appli
ation inserts

when the high watermark is ex
eeded, and it stops merges when the o

upied memory

drops below the low watermark [93℄. Depending on the rate of in
oming inserts, su
h

approa
hes
an defer the pause of inserts. However they do not eliminate the interferen
e

of
ompa
tion I/O with query requests that we fo
us on in our present study. Essen-

tially, the above approa
hes
an be applied orthogonally to the Rangemerge
ompa
tion

me
hanism that allows queries to gra
efully
oexist with inserts.

7.8.2 Queries

Range queries are supported by most datastores that use range partitioning (e.g., Bigtable,

Cassandra) and are used by data serving and analyti
s appli
ations (Se
tion 6.2). We

do not
onsider Bloom �lters be
ause they are not appli
able to range queries, and their

93

e�e
tiveness in point queries has been extensively explored previously; in fa
t, support

for range queries
an orthogonally
oexist with Bloom �lters [28℄.

We re
ognize that query performan
e is hard to optimize for the following reasons: (i)

Servi
e-level obje
tives are usually spe
i�ed in terms of upper-per
entile laten
y [40, 104℄.

(ii) Query performan
e is
orrelated with the number of �les at ea
h server [15, 81, 98℄. (iii)

The amortization of disk writes may lead to intense devi
e usage that
auses intermittent

delay (or disruption) of normal operation [71, 69, 70, 101℄. (iv) The diversity of supported

appli
ations requires a

eptable operation a
ross di�erent distributions of the input data

keys [33℄.

7.8.3 Updates

In
oming updates are inserted to the itemtable, and queries are dire
ted to both the

itemtable and the range�les (Figure 6.4). Although the itemtable supports
on
urrent

updates at high rate, the rangeindex along with the range�les and their
hunkindexes

remain immutable between range merges. Every few se
onds that Rangemerge splits a

range and resizes the rangeindex, we prote
t the rangeindex with a
oarse-grain lo
k.

We �nd this approa
h a

eptable be
ause the rangeindex has relatively small size (in the

order of thousands entries) and only takes limited time to insert a new range.

The enormous amount of I/O in write-intensive workloads has led to data stru
tures

that involve infrequent but demanding sequential transfers [79, 63℄. Ex
essive
onsump-

tion of disk bandwidth in maintenan
e tasks
an limit intera
tive performan
e. Deamor-

tization is a known way to enfor
e an upper bound to the amount of
onse
utive I/O

operations at the
ost of extra
omplexity to handle interrupted reorganizations [11℄. In-

stead, Rangemerge naturally avoids to monopolize disk I/O by applying
ush operations

at granularity of a single range rather than the entire memory bu�er and
on�guring the

range size through the range�le parameter F .

7.8.4 Availability and Re
overy

Availability over multiple ma
hines is generally a
hieved through data repli
ation by the

datastore itself or an underlying distributed �lesystem [28, 40, 32℄. Durability require-

ments depend on the semanti
s and performan
e
hara
teristi
s of appli
ations, while data

94

onsisten
y
an be enfor
ed with a quorum algorithm a
ross the available servers [40℄. We

onsider important the freshness of a

essed data due to the typi
al semanti
s of online

data serving [30℄. For instan
e, a shopping
art should be almost instantly updated in

ele
troni

ommer
e, and a message should be made a

essible almost immediately after

it arrives in a mailbox.

At permanent server failure, a datastore re
overs the lost state from redundant repli
as

at other servers. After transient failures, the server rebuilds index stru
tures in volatile

memory from the range�les and the write-ahead log. We normally log re
ords about

in
oming updates and ranges that we
ush to disk. Thus we re
over the itemtable by

replaying the log re
ords and omitting items already
ushed to range�les. Holding a
opy

of the
hunkindex in the respe
tive range�le makes it easy to re
over
hunkindexes from

disk. We also rebuild the rangeindex from the
ontents of the itemtable and the range�les.

7.8.5 Ca
hing

It is possible to improve the query performan
e with data
a
hing applied at the level

of blo
ks read from disk or data items requested by users [28, 38℄. We
urrently rely on

the default page
a
hing of the system without any sophisti
ation related to �le mapping

or item
a
hing. Prior resear
h suggested the signi�
an
e of data
ompa
tion regardless

of
a
hing [98℄. We leave for future work the study of multi-level
a
hing and dynami

memory allo
ation for the
ompeting tasks of update bat
hing and query data reuse.

7.9 Summary

After
onsideration of existing solutions in storage management of datastores, we point

out several weaknesses related to high query laten
y, interferen
e between queries and

updates, and ex
essive reservation of storage spa
e. To address these issues, we propose

and analyze the simple yet eÆ
ient Rangemerge method and Rangetable stru
ture. We

implement our method in a prototype storage system and experimentally demonstrate

that Rangemerge minimizes range query time, keeps low its sensitivity to
ompa
tion

I/O, and removes the need for reserved unutilized storage spa
e. Furthermore, under

various moderate
onditions Rangemerge ex
eeds the insertion performan
e of pra
ti
al

95

write-optimized methods, and naturally exploits the key skewness of the inserted dataset.

96

Chapter 8

Implementation of Rangemerge in a

Produ
tion System

8.1 LevelDB Implementation

8.2 Performan
e Evaluation

8.3 Summary

In this se
tion, we des
ribe the implementation of Rangemerge in a produ
tion system.

We present the design of our logging and re
overy me
hanisms, and go over the details of

implementing Rangemerge and other
ompa
tion methods in LevelDB. Finally, we eval-

uate the eÆ
ien
y of our logging approa
h and
ompare the performan
e of Rangemerge

with those of related methods.

8.1 LevelDB Implementation

To study the appli
ability and the bene�ts of Rangemere on a produ
tion system, we

implemented Rangemerge in LevelDB [70, 93℄. LevelDB is a storage library written by

Google that provides an ordered mapping from string keys to string values. It has the

97

...

Level 0

Level 1

Level 2

Level 6

...

Memtable
Memory

Disk

0

1

2

3

4

5

6

4 files

10MB

100MB

1GB

10GB

100GB

1TB

4MB

2MB

2MB

2MB

2MB

2MB

2MB

yes

no

no

no

no

no

no

Merge

trigger

File

size

Files

overlap

flush

merge

Level

Figure 8.1: Files are hierar
hi
ally organized in LevelDB. When memtable is full, it is

ushed into an SSTable at level 0. Thus, level-0 �les may
ontain overlapping ranges of

keys. When the size of a level L ex
eeds its threshold, a single �le from level L (or all

level �les, if L = 0) along with all overlapping �les from level L+1 are merged and stored

as a number of 2MB �les at level L+ 1. The maximum size of a level is expressed either

as maximum number of �les (L = 0) or as maximum total size (L > 0).

same general design as the BigTable tablet sta
k (Se
tion 2.2.1). However, it was written

from s
rat
h in order to have no dependen
ies on internal Google libraries. It supports the

typi
al put(k,v), get(k), delete(k) key-value API to modify and query the database,

along with the forward and ba
kward iterators that provide a fun
tionality similar to

range queries. In
omparison to our prototype, LevelDB in
ludes some additional useful

features su
h as bat
h updates that are
ommitted atomi
ally, snapshots that provide

a
onsistent read-only view of the database, logging and blo
k
he
ksums for durability

and
onsisten
y, and
ompression. It is
urrently used as ba
kend database for the Riak

distributed datastore (Se
tion 2.2.1) and the Google Chrome browser, but it has also been

used as �le system ba
kend [88℄.

In
oming updates in the form of key-value pairs are inserted into a memory bu�er

alled memtable, whi
h is implemented as a skip list. When the memtable size rea
hes a

prede�ned threshold (4MB by default), the memory
ontents are sorted, indexed and then

written to disk as an SSTable [28℄. An SSTable is an immutable �le storing a sequen
e

of key-value entries sorted by key. The set of SSTables is organized into a sequen
e of

levels (Figure 8.1). SSTables generated from the memtable are pla
ed into level 0. When

the number of �les in level 0 ex
eeds a
ertain threshold (
urrently 4), all level-0 �les are

98

merged together with all overlapping level-1 �les to produ
e a sequen
e of new level-1

�les (a new �le is
reated for every 2MB of data). When the total size of �les at level L

(L > 0) ex
eeds 10L MB, one �le from level L and all of the overlapping �les from level

L+ 1 are merged to form a set of new �les for level L + 1.

In parti
ular, ea
h newly re
eived update is �rst appended to a log �le on disk for

durability and then inserted into the memtable. When the memtable is full, the system: (i)

blo
ks in
oming updates, (ii) makes the memtable read-only, (iii)
reates a new memtable

and a new log �le for the new updates, and (iv) resumes updates. A ba
kground thread

is then s
heduled to
ompa
t the old memtable into a level-0 SSTable, free the memtable,

delete the old log �le (sin
e its entries have been su

essfully persisted to disk), and

perform any �le merges required. If there is a system failure before a memtable is written

to disk, its log
an be used to re
over all its entries after a system restart.

We refa
tored the LevelDB
ode so that the �le merging algorithm is pluggable, and

implemented the merging patterns of Nomerge, Stepped Merge Array, Geometri
 Parti-

tioning, Remerge and Rangemerge. Sin
e Rangemerge only partially
ushes some items

from memory to disk, we had to modify a

ordingly the memory management, logging

and re
overy subsystems of LevelDB.

8.1.1 Memory Management

Our implementation of Rangemerge in LevelDB maintains for ea
h range a memtable in

memory and an SSTable on disk. When the
umulative size of all memtables ex
eeds

the memory threshold M , we sele
t for
ushing the range with the largest memtable.

Updates are then temporarily blo
ked, until we mark the memtable as read-only and

reate a new memtable for this range, at whi
h point updates are resumed. A ba
kground

thread subsequently
ushes the old memtable to an SSTable, frees the memory of the old

memtable, and �nally merges the new SSTable with the existing SSTable for that range.

8.1.2 Logging

For the logging of the updates in Rangemerge we had two options. The �rst one was

to keep a separate log for ea
h memtable, and delete it after we
ush the memtable

to disk. This logging approa
h simpli�es log management, but
auses a large number

99

87

w

88

j

75

a

6953

d f

80

k

7977

m o

81

s

7863

v x

refcnt: 3

Log-7 Log-6 Log-5Log-8 SST-3 SST-5 SST-2

refcnt: 1 refcnt: 1

put("j", ...)
7778

x m

7576

c a

8182

n s

7980

k o

8586

q p

8384

e t

refcnt: 2

Memory

Disk

8288

j n

85

p

(a – h) (i – p) (q – z)

reflist: 5,7

maxseq: 75

reflist: 6,7,8

maxseq: 80

reflist: 7,8

maxseq: 81

8476

c e

8386

q t

87

w

Ranges:

(a – h): SST-3, 75

(i – p): SST-5, 80

(q – z): SST-2, 81

Logs: 5, 6, 7, 8

Manifest

Figure 8.2: Rangemerge logging in LevelDB.

of disk seeks sin
e ea
h new update must be appended to the log �le of the respe
tive

memtable. The se
ond approa
h was to use a single log �le for all memtables. This

provides signi�
ant performan
e bene�ts, as the updates
an be handled at sequential

disk bandwidth. However, it
ompli
ates log
leaning and re
overy as we have to keep

tra
k of whi
h log entries are valid (i.e., have not been written to an SSTable) at ea
h

time. Additionally, to keep the log size bounded, the system must periodi
ally read the

log and remove any obsolete entries, a pro
ess that
an easily be
ome a performan
e

bottlene
k [90℄.

To
ombine the logging throughput of the single-log approa
h with the simpli
ity

of the per-range-log approa
h, and additionally avoid the
osts asso
iated with garbage

olle
tion, we
ame up with a new logging strategy. Similar to the single-log
ase, updates

for all memtables are append to a single �le on disk. When this �le rea
hes a prede�ned

size (8MB), it is sealed and a new log �le is
reated. For ea
h log �le we keep a referen
e

ounter (ref
ounter) that indi
ates the number of memtables whi
h have entries in it

(Figure 8.2). Additionally, for ea
h memtable we maintain a list of all logs into whi
h it

has entries (re
ist). When a new update is appended to log ` and added to a memtable

m, we
he
k the re
ist of m; if ` is not present, we append ` to the re
ist and in
rease

the ref
ounter of ` by 1. When a memtable is
ushed, we de
rease by 1 the ref
ounters

of all logs in its re
ist and
lear the re
ist. When a ref
ounter for a sealed log drops to

zero, we delete the log.

100

8.1.3 Re
overy

Every time the disk state of the database
hanges (e.g., a �le is added or deleted), LevelDB

atomi
ally updates a spe
ial Manifest �le to re
e
t the new state. The Manifest �le lists

the set of SSTables that make up ea
h level, the log �le, and other important information.

During re
overy the system reads the Manifest �le, deletes all �les not in
luded in it, and

then re
overs the memtable from the log �le. We also in
lude in the Manifest �le the

ranges and the respe
tive SSTable for ea
h range.

As shown in Figure 8.2, the log �les
ontain all entries that are a

umulated in memta-

bles (live entries), as well as a number of entries that have already been stored in SSTables

(obsolete entries). Apparently, we need a me
hanism to distinguish between live and ob-

solete entries during log re
overy. A naive approa
h would �nd for ea
h 〈k; v〉 log entry

the range R that k belongs to, and then
he
k if the entry is stored in the SSTable of R.

Sin
e logs are not sorted by key, this approa
h would require at least one random I/O for

ea
h entry read, leading to una

eptably long re
overy times. What we need is an eÆ-

ient me
hanism that qui
kly
he
ks whether a log entry is stored on an SSTable or not.

Additionally, the me
hanism should have small memory footprint and low maintenan
e

overhead.

LevelDB assigns a monotoni
ally in
reasing sequen
e number to ea
h update inserted

in the system, whi
h is stored along with the entry. Every time we
ush a range to an

SSTable on disk, we update a
ounter that stores the maximum sequen
e number
ushed

to disk for this range (max sequen
e). This information is also persisted in the Manifest

�le on every range
ush (Figure 8.2). After a system restart, we �rst re
over from the

Manifest �le the ranges and their max sequen
e numbers, and
reate an empty memtable

for ea
h range. Then, for ea
h entry e that is read from a log �le, we �nd the range R

it belongs to, and we
ompare its sequen
e number with the max sequen
e number of R.

If e:sequen
e ≤ R:max sequen
e then this entry was previously
ushed to the SSTable

of R and
an thus be safely dis
arded. Otherwise, the entry was part of the memtable

before the
rash and is inserted into the memtable of R. When a range R is split into

a number of ranges (typi
ally two), we initialize the max sequen
e for the memtables of

the new ranges to the max sequen
e of the memtable of the parent range R.

101

...

Level 0
size: (r-1)×M bytes

Memtable
size: M bytes

Level 1
size: (r-1)×r×M bytes

Level 2
size: (r-1)×r

2
×M bytes

Level L
size: (r-1)×r

L
×M bytes

Level 0

Memtable

Level 0

Memtable

...

Level 0
size: k files

Memtable
size: M bytes

...

Stepped Merge Array

...

Geometric Partitioning

Level 0

Memtable

Rangemerge

Nomerge

...

Remerge

Level 1
size: k files

Level 2
size: k files

Level L
size: k files

Figure 8.3: Various merging strategies, as we implemented them in LevelDB.

8.1.4 Other Merging Strategies

We have also implemented in LevelDB all the
ompa
tion managers of our prototype. All

methods keep a single memtable in memory for the a

umulation of new updates, ex
ept

for Rangemerge whi
h maintains a separate memtable for ea
h range. When the total

byte size of all items in memory ex
eeds the memory threshold M , Rangemerge
ompa
ts

only the largest memtable into an SSTable at level 0; all the other methods
ompa
t

their single memtable. Depending on the method, the memtable
ompa
tion may
ause

a
as
ade of merges. In
ase of Stepped Merge Array, if level ` has more than k �les then

all these �les are merged into a new �le at level `+1. In Geometri
 Partitioning, the new

�le is �rst merged with the existing level-0 �le. Then, if the �le at level ` has size greater

than (r − 1)rlM , it is merged with the respe
tive �le from level `+ 1 and stored at level

` + 1. Remerge always merges the new �le with the single �le at level 0, while Nomerge

just pla
es the �le
reated at level 0. Rangemerge merges the new level-0 �le with the

existing �le that
orresponds to the same range, and splits the �le (and the range) if its

size be
omes greater than F (Algorithm 6.3). In Figure 8.3, we present a high level view

of the various �le merging patterns that we implemented in LevelDB.

8.2 Performan
e Evaluation

In this se
tion, we experimentally evaluate the eÆ
ien
y of Rangemerge logging approa
h

and study how the various
ompa
tion managers
ompare to ea
h other on a full-featured

102

produ
tion system. The experimental environment is identi
al to the one des
ribed in

Se
tion 7.1. All methods use a total of M = 512MB for the a

umulation of items in

memory. We insert key-value pairs of 100 bytes keys and 1KB values, until a total of

10GB has been inserted into the system. For the experiments in whi
h we measure the

interferen
e between inserts and queries, we issue put requests at 2500req/s and get re-

quests at 20req/s, a

ording to the analysis in Se
tion 7.2. Depending on the experiment,

a get request is either a range query with s
an size of 10 entries, or a point query. Range

queries are implemented by initializing an iterator over the LevelDB database at a spe
i�

key and reading a number of subsequent entries. Point queries (i.e. get(k)) return the

value asso
iated with a given key, or return \not found" if the key is not stored in the

system. All methods are implemented in LevelDB v1.9, in whi
h we disable
ompression

for a more dire
t
omparison to our prototype.

8.2.1 Logging Performan
e

As des
ribed in Se
tion 8.1.2, our log
leaning approa
h behaves lazily, in the sense that it

splits the log in multiple 8MB-�les and waits until a �le
ontains no valid entries (i.e., its

ref
ounter drops to 0) before it deletes it. This means that even in the
ase only a small

portion of a log �le
orresponds to live entries, the �le will still remain in the system.

On the other hand, this lazy strategy enables updates to be logged at sequential disk

throughput, and it totally avoids fet
hing log �les in memory for
leaning. We now study

the eÆ
ien
y of our approa
h in terms of disk spa
e
onsumed and logging throughput.

Sin
e all memory entries must be kept in the log for durability until they are
ushed to

disk, the size of the log on disk is at least equal to the
umulative sizeM of the memtables

in memory. From Figure 8.4a, the log �les maintained by Rangemerge on disk take up

roughly 2-3 times the memory sizeM , independently of the memory size. We believe that

dedi
ating a few GB from a TB hard drive

1

for logging is a reasonable
ompromise for

the performan
e we a
hieve, studied next. Nonetheless, in
ase the available disk spa
e

is s
ar
e, we
ould prioritize the
ushing of ranges that referen
e many logs or logs with

low ref
ounters, in order to re
laim spa
e more aggressively. We
ould also in
rease or

de
rease this priority depending on the size of the log on disk. We have not implemented

1

Today, someone
an
an buy a 3TB disk with $120 [74℄.

103

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

L
o

g
 s

iz
e

 (
M

B
)

Time (min)

M = 500MB

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200 250 300 350

L
o

g
 s

iz
e

 (
M

B
)

Time (min)

M = 100MB

(a) Size of log on disk for Rangemerge

 0

 20

 40

 60

 80

 100

Without log cleaning With log cleaning

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

70

79

(b) Insertion time for Rangemerge

Figure 8.4: (a) We show the total disk spa
e
onsumed by log �les in our Rangemerge

implementation within LevelDB. Log size is at least equal to the memory size M , and

normally between 2M and 3M . (b) There is a small overhead involved in tra
king the

log �les referen
ed by ea
h range and deleting the unreferen
ed ones.

this optimization.

Figure 8.4b shows the amount of time Rangemerge requires to index 10GB of data

in LevelDB. On the left bar (\Without log
leaning"), Rangemerge simply appends ea
h

in
oming update on an unbounded log �le, whi
h is never garbage
olle
ted. On the right

bar (\With log
leaning"), the system splits the disk log over multiple 8MB �les, keeps

tra
k of the number of memtables that referen
e ea
h �le, and deletes a �le when it is not

referen
ed by any memtable. This in
reases insertion time only by 12.8%.

Overall, our log maintenan
e strategy requires disk spa
e that is low
onsidering the

apa
ities of hard disks today, and only adds a modest overhead on insertion time
om-

pared to the
ase of no log
leaning at all.

8.2.2 Insertion Time

In Figure 8.5a we measure the amount of time ea
h method requires to ingest 10GB of data

in LevelDB. Nomerge requires 13min to
ush the memory 20 times on disk into an equal

number of �les, and SMA with k = 4 takes 22min for 8 �les. Geometri
 (p = 2) ingests

the 10GB in 70min, storing ea
h key in at most 2 �les on disk during the experiment.

The insertion time
an be redu
ed by 12.8% with r = 3 and 35.7% with r = 2, at the

104

 0

 20

 40

 60

 80

 100

 120

 140

Nomerge

SMA (k=4)

Geom (r=2)

Geom (r=3)

Geom (p=2)

Rangemerge

Remerge

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

13

22

45

61

70

79

136

(a) LevelDB implementation

 0

 20

 40

 60

 80

 100

Nomerge

SMA (k=4)

Geom (r=2)

Geom (r=3)

Geom (p=2)

Rangemerge

Remerge

In
s
e

rt
io

n
 t

im
e

 (
m

in
)

10

18

33
38

44

51

101

(b) Prototype storage framework

Figure 8.5: Comparison of the insertion time of various methods implemented in LevelDB

and in our prototype system.

ost of in
reased get laten
y and variability due to fragmentation of keys in multiple disk

�les (Figures 7.1b, 7.2). Compared to Geometri
 (p = 2), Rangemerge in
reases insertion

time by only 12.8% (79min), but keeps ea
h key range stri
tly in 1 disk �le. To a
hieve

the same storage
ontiguity as Rangemerge, Remerge requires 136min, i.e., 72.5% more

time.

In Figure 8.5b we repeat the same experiment in our prototype storage framework.

From Figures 8.5a and 8.5b, we observe that the methods take longer to index the same

amount of data in LevelDB than the time that they need in our prototype. This is mainly

due to the fa
t that LevelDB involves a CPU-intensive task to
ompute a
he
ksum for

ea
h blo
k written to disk. Nevertheless, the relative di�eren
es between the methods

remain similar a
ross the two systems. One ex
eption is Remerge, whi
h has a smaller

in
rease in its insertion time on LevelDB
ompared to the remaining methods. This is

explained by the fa
t that Remerge (and the rest methods) simply does not
omplete its

last
ompa
tion, as LevelDB performs the
ompa
tions asyn
hronously: when the last

entry is inserted into the system and the memtable �lls for the last time, LevelDB marks

the memtable as read-only,
reates a new memtable, s
hedules a new ba
kground thread

to
ush the memtable, and returns. After this write returns, our ben
hmark immediately

exits. Consequently, the last
ush of the 500MB-memtable and the merge of this �le with

the existing 9.5GB-�le in Remerge is never performed. If we wait |as our prototype

105

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(a) SMA (k = 4)

 1

 10

 100

 1000

 0 20 40 60 80 100 120

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(b) Geom (r = 2)

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(
) Geom (r = 3)

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(d) Geom (p = 2)

 1

 10

 100

 1000

 0 50 100 150 200

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(e) Remerge

 1

 10

 0 20 40 60 80 100 120

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(f) Rangemerge

Figure 8.6: Get laten
y in various
ompa
tion methods implemented in LevelDB, assum-

ing a
on
urrent load of 2500put/s and 20get/s of s
an size 10. Ba
kground
ompa
tions

(gray ba
kground) severely a�e
t queries in all methods ex
ept for Rangemerge.

does| for the
ompletion of this last
ompa
tion, whi
h reads a total of 10GB and writes

a total 10.5GB, the insertion time of Remerge in
reases to 148min.

8.2.3 Interferen
e of Queries and Inserts

We now measure the interferen
e between the ba
kground
ompa
tions that insertions

ause and the serving of the queries. Following the analysis of Se
tion 7.2, we issue put

requests at a rate of 2500req/s and range gets of s
an size 10 at 20req/s. Figure 8.6 illus-

trates the e�e
t that memtable
ushes and �le merges performed in ba
kground have on

the laten
y of queries. As shown, these system operations (depi
ted as gray ba
kground)

seriously impa
t the performan
e of
on
urrent queries in all methods ex
ept for Range-

merge, in
reasing range get laten
y to several hundred or even thousand millise
onds. In

ontrast, the frequent but less intensive
ompa
tions of Rangemerge allow the get laten
y

to be kept below 50ms, improving query responsiveness by up to two orders of magnitude.

Interestingly, even though Remerge stores the entries on disk
ontiguously in a single disk

�le to improve retrieval times (similar to Rangemerge), in the fa
e of
on
urrent
om-

pa
tions it a
hieves no better query performan
e than the methods whi
h fragment the

106

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(a) SMA (k = 4)

 5

 10

 15

 20

 0 20 40 60 80 100 120

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(b) Geom (r = 2)

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(
) Geom (r = 3)

 5

 10

 15

 20

 0 20 40 60 80 100 120 140 160

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(d) Geom (p = 2)

 5

 10

 15

 20

 0 50 100 150 200

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(e) Remerge

 5

 10

 15

 20

 0 20 40 60 80 100 120

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(f) Rangemerge

Figure 8.7: Get throughput in various
ompa
tion methods implemented in LevelDB, as-

suming a
on
urrent load of 2500put/s and 20get/s of s
an size 10. Rangemerge manages

to keep the rate at whi
h queries are served above 15req/s. In all remaining methods

the get throughput is seriously a�e
ted during the ba
kground
ompa
tions (gray ba
k-

ground).

entries on disk.

In Figure 8.7 we demonstrate the impa
t that ba
kground
ompa
tions have on the

query throughput. Similar to the Figure 8.6, there is an evident
orrelation between these

operations and the rate at whi
h queries are served: besides Rangemerge,
ompa
tions

greatly a�e
t the query throughput in all the remaining methods, frequently yielding the

system
ompletely unresponsive with respe
t to query serving. Instead, Rangemerge is

always responsive, keeping the query throughput above 15req/s.

To evaluate a range query, the system must
reate an iterator over ea
h �le that may

ontain the �rst key of the range, and then merge the results from these iterators. This

means that the more �les with overlapping keys a method maintains on disk, the greater

the overhead per query will be. This is not true however for point queries, in whi
h bloom

�lters
an eliminate (with high probability) the need to a

ess �les that do not
ontain the

key sear
hed. In Figure 8.8 we use the same put and get load as in previous experiments,

but use point queries instead of range queries. This means that in the vast majority of

107

 1

 10

 100

 1000

 0 20 40 60 80 100

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(a) SMA (k = 4)

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(b) Geom (r = 3)

 1

 10

 0 20 40 60 80 100 120

G
e

t
la

te
n

c
y
 (

m
s
)

Time (min)

(
) Rangemerge

 5

 10

 15

 20

 0 20 40 60 80 100

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(d) SMA (k = 4)

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(e) Geom (r = 3)

 5

 10

 15

 20

 0 20 40 60 80 100 120

G
e

t
th

ro
u

g
h

p
u

t
(r

e
q

/s
)

Time (min)

(f) Rangemerge

Figure 8.8: Get laten
y (above) and throughput (below) for point queries in three meth-

ods, assuming puts at 2500req/s and point gets at 20req/s.

lookups we
an avoid all �les ex
ept from the one that
ontains the key. Therefore, the

number of disk �les is irrelevant to the query performan
e. Nevertheless, the results are

similar to the
ase of range queries: ba
kground
ompa
tions
ause a great in
rease in

laten
y and a serious drop in throughput in all methods apart from Rangemerge.

The insertion times in Figure 8.6 are greater than those shown in Figures 8.5a mainly

be
ause in these experiments we throttle put requests at 2500req/s. Additionally, the

serving of queries
auses a number of random I/Os that negatively a�e
t the
on
urrent

sequential I/O performed by the
ompa
tions. This leads to further in
rease in data

ingestion times. Surprisingly, the insertion time of Rangemerge (122min) is similar to

Geometri
 with r = 2 (119min), and even lower than those of Geometri
 with r = 3 and

p = 2 (158min and 171min respe
tively), despite the fa
t that these methods store ea
h

key into multiple disk �les to improve write performan
e. This
an be attributed to the

fa
t that Rangemerge stores the entries
ontiguously on disk; as a result, Rangemerge

minimizes the random seeks required to serve ea
h range query and the impa
t of queries

to
on
urrent
ompa
tions.

108

8.3 Summary

To study both the engineering e�ort required to implement Rangemerge in a produ
tion

system and its performan
e bene�ts, we port Rangemerge and a number of representative

ompa
tion methods in Google's LevelDB key-value store. We des
ribe the design and

implementation of our logging and re
overy
omponents and experimentally evaluate its

performan
e. We show that the implementation of Rangemerge over LevelDB is both

pra
ti
al and eÆ
ient: we
an a
hieve logging at sequential disk bandwidth at the
ost

of a modest in
rease in data ingestion time and storage requirements. We then
ompare

Rangemerge to related
ompa
tion methods that o�er di�erent tradeo�s in read and

write performan
e. We demonstrate that Rangemerge has low sensitivity to ba
kground

ompa
tions, a
hieves minimal query laten
y, and maintains
omparable or even better

insertion performan
e than other write-optimized methods.

109

Chapter 9

Theoreti
al Analysis

9.1 I/O Complexity of Uni�ed Range Flush

9.2 I/O Complexity of Rangemerge

9.3 Summary

In this se
tion, we study the asymptoti
 behavior of the Uni�ed Range Flush and

Rangemerge methods by analyzing their I/O
ost. Sin
e these methods transfer data to

and from disk in large sequential I/Os and therefore their disk a

ess
ost is negligible, we

are mainly interested in estimating the amount of bytes that they transfer in the worst

ase when ingesting a dataset of a given size.

9.1 I/O Complexity of Uni�ed Range Flush

For
omplexity
omparison with existing methods of index building, we estimate the

worst-
ase asymptoti
 I/O
ost of our approa
h. We fo
us on the URF method be
ause

the simple
ushing of the largest ranges makes the analysis more tra
table. For simpli
ity,

we assume that a termblo
k is not relo
ated when over
own.

110

During index building, URF allows a term list to be split a
ross the in-pla
e and the

merge-based indi
es. This approa
h is also followed by the non-
ontiguous methods of hy-

brid index maintenan
e [24℄. A

ordingly, if the size of a short list during a merge ex
eeds

the threshold value T , B�utt
her et al. move the postings of the term that parti
ipate in

the merge to the in-pla
e index. They de�ne as L̂(N; T) the number of postings a

umu-

lated in the in-pla
e index, and P̂ (N; T) the number of postings in the merge-based index

for a
olle
tion of N postings. Next, they provide the following asymptoti
 estimates:

L̂(N; T) = N −
 · T (1−1=a) ·N1=a
;

P̂ (N; T) =
 · T (1−1=a) ·N1=a
;

 =
1

(a− 1)(
 + 1
a−1

)1=a
: (9.1)

The parameter
 ≈ 0:577216 is the Euler-Mas
heroni
onstant, while a is the parameter

of Zip�an distribution that models the frequen
y of term o

urren
es (e.g., a = 1.2).

In Equation 9.1, the
ounts of short and long postings result from the terms distribu-

tion rather than the method used to maintain ea
h part of the index on disk. Therefore, if

we repla
e T with the append threshold T

a

, the above estimates also apply to the number

of postings stored in the rangeblo
ks and termblo
ks of URF. In order to indi
ate the

intuition of URF in our analysis, we use the symbols P

append

(N) and P

merge

(N) instead

of the respe
tive L̂(N; T) and P̂ (N; T).

For a
olle
tion of N postings, the total I/O
ost C

total

to build the index with URF

is the sum of
osts for appends, C

append

, and merges, C

merge

:

C

total

(N) = C

append

(N) + C

merge

(N)

= k

append

(N) ·

append

(N) + k

merge

(N) ·

merge

(N); (9.2)

where k

append

() and k

merge

() are the respe
tive numbers of appends and merges, while

append

() and

merge

() are the respe
tive
osts per append and merge.

If a list parti
ipates in a range merge and has size greater than T

a

, we append the

postings of the list to a termblo
k on disk. After N postings have been pro
essed, we

assume that ea
h append takes a �xed amount of time that only depends on the disk

geometry and the threshold T

a

:

append

(N) ≈

write

(T
a

) =

append

; (9.3)

111

where

write

() approximates the delay of a disk write. For a
olle
tion of N postings, ea
h

append
ushes at least T

a

postings to a termblo
k, so the total number of appends does

not ex
eed ⌊P
append

(N)=T
a

⌋:

k

append

(N) ≤

⌊

P

append

(N)

T

a

⌋

=

⌊

N ·
1

T

a

−N

1=a ·

T

1=a
a

⌋

∈ O(N): (9.4)

Instead, a range merge involves the following steps: (i) read the rangeblo
k to memory,

(ii) merge the disk postings with new postings in memory, and (iii) write the merged

postings ba
k to the rangeblo
k on disk. If the rangeblo
k over
ows, we split it into two

half-�lled rangeblo
ks. Sin
e a rangeblo
k begins 50% �lled and splits when it is 100%

full, we assume that a rangeblo
k is 75% full on average. Thus, in a posting
olle
tion of

size N , the
ost of a range merge
an be estimated as:

read

(0:75B
r

) +

merge

(0:75B
r

+

p) +

write

(0:75B
r

+ p), where p is the number of new postings a

umulated in memory

for the range. The

merge

() refers to pro
essor a
tivity mainly for string
omparisons and

memory
opies; we do not
onsider it further be
ause we fo
us on disk operations. From

the merged postings of amount 0:75B
r

+ p some will be moved to termblo
ks be
ause

they ex
eed the threshold T

a

. Sin
e additionally the number p of new postings is usually

small relatively to the amount of merged postings, we
an also omit p and approximate

merge

(N) with a
onstant:

merge

(N) ≈

read

(0:75B
r

) +

write

(0:75B
r

) =

merge

: (9.5)

To pro
ess a
olle
tion of N postings, we do ⌈N=M
f

⌉
ushes. During the i-th
ush,

we perform m

i

range merge operations to
ush a total of M

f

postings. We �rst estimate

an upper bound for m

i

, before we derive an upper bound for the total number of merge

operations k

merge

(N).

Suppose the posting memory is exhausted for i-th time, and we need to
ush M

f

postings. The URF method
ushes the minimum number of ranges m

i

needed to transfer

M

f

postings to disk. That is, it transfers the largest ranges until a total of M

f

postings

are
ushed. In the worst-
ase analysis, we aim to maximize m

i

. For M

p

postings and

R

i

ranges
urrently in memory, m

i

is maximized if the postings in memory are equally

distributed a
ross all ranges. Then, before a range is
ushed to disk, the respe
tive number

of new postings a

umulated in memory for the range is p

i

= M

p

=R

i

. A

ordingly, the

number of ranges m

i

ushed during the i-th
ush operation is equal to: m

i

=
M

f

p

i

=
M

f

·R
i

M

p

:

112

Just before the i-th
ush, a total of (i − 1)M
f

postings were written to disk. From

them, P

merge

((i − 1)M
f

) postings are stored over rangeblo
ks. Sin
e ea
h rangeblo
k

stores an average of 0:75B
r

postings, the number of rangeblo
ks on disk is P

merge

((i −

1)M
f

)=0:75B
r

. The number of ranges in the rangetable just before the i-th
ush will be

equal to the number of rangeblo
ks on disk, be
ause ea
h range is asso
iated with exa
tly

one rangeblo
k on disk: R

i

=
P

merge

((i−1)·M
f

)

0:75B
r

:

Based on the above equations of m

i

and R

i

, for a
olle
tion of N postings we
an

derive an upper bound for the total number of range merges:

k

merge

(N) =

(#
ushes)

∑

i=1

(# merges during i-th
ush) =

⌈N=M
f

⌉
∑

i=1

m

i

=

⌈N=M
f

⌉
∑

i=1

(i− 1)1=a · T
(1−1=a)
a

·M
f

1+1=a ·

0:75 ·M
p

·B
r

≤
T

(1−1=a)
a

·M
f

1+1=a ·

0:75 ·M
p

· B
r

·

⌈N=M
f

⌉
∑

i=1

i

1=a
(9.6)

≤
T

(1−1=a)
a

·M
f

1+1=a ·

0:75 ·M
p

· B
r

·

⌈

N

M

f

⌉1+1=a

≈
T

(1−1=a)
a

·

0:75 ·M
p

· B
r

·N1+1=a ∈ O(N1+1=a): (9.7)

A

ording to Equations 9.2, 9.3, 9.4, 9.5 and 9.7, the total I/O
ost of index building

has the following upper bound:

C

total

(N) ∈ O(N1+1=a): (9.8)

From Table 3.1, the upper-bound index building
ost of Equation 9.8 makes URF asymp-

toti
ally
omparable to HIM [24℄. Additionally, the approa
h of URF to store the postings

of ea
h term a
ross up to two sub-indi
es makes
onstant the I/O
ost of term retrieval.

Spe
ial Case To
ross-validate our result, we use a spe
ial
ase of URF to emulate the

behavior of HIM [24℄. We set M

flush

= M

total

to for
e a full
ush when we run out of

memory. We also append to termblo
ks any list with more than T

a

postings, and
hoose a

large B

r

value for URF to approximate the sequential merging of HIM. Ea
h range merge

transfers 0:75 · B
r

postings to disk. For
olle
tion size N , the total amount of postings

113

written to disk a
ross k

merge

(N) merges follows from Equation 9.6:

P

merge written

(N) = k

merge

(N) · (0:75 · B
r

)

=
T

1−1=a
a

·M
p

1+1=a ·
 · 0:75 ·B
r

0:75 ·M
p

· B
r

·

⌈N=M
p

⌉
∑

i=1

i

1=a

=

⌈N=M
p

⌉
∑

i=1

 · T 1−1=a
a

(i ·M
p

)1=a

≤
 · T 1−1=a
a

·
N

1+1=a

M

p

: (9.9)

After we add the linear I/O
ost from appends (Equations 9.3 and 9.4) and repla
e T

a

with T at the right part of inequality 9.9, we estimate the worst-
ase
ost of HIM to be

that of Equation (6) by B�utt
her et al. [24℄. Thus we asymptoti
ally
on�rm that the

behavior of HIM is approximated as spe
ial
ase of the URF method.

9.2 I/O Complexity of Rangemerge

We aim to estimate the total amount of bytes transferred between memory and disk

during the insertion of N items to the Rangetable with Rangemerge. For simpli
ity ea
h

item is assumed to o

upy one byte. Sin
e the range�le size is roughly 0:5F after a split

and
annot ex
eed F by design, on average it is equal to 0:75F . A

ordingly ea
h merge

operation transfers on average a total of

merge

= 1:5F bytes, as it reads a range�le,

updates it, and writes it ba
k to disk. For the insertion of N items, the total amount

of transferred bytes is equal to C

total

= K ·

merge

= K · 3F
2
, where K is the number of

merges. In order to estimate an upper bound on C

total

we assume an insertion workload

that maximizes K.

We
all epo
h a time period during whi
h no range split o

urs, leaving unmodi�ed

the number of ranges (and range�les). Let E be the number of epo
hs involved in the

insertion of N items, and k

i

be the number of merges during epo
h e

i

, i = 1; :::; E. Then

the total number of merges be
omes equal to K =
∑

E

i=1 ki.

When memory �lls up for the �rst time, there is a single range in memory and no

range�le on disk. The �rst merge operation transfers all memory items to r1 = M=0:5F

half-�lled range�les, where r

i

is the number of range�les (or ranges) during the ith epo
h.

114

The next time memory �lls up, we pi
k to merge the largest range in memory. In order

to maximize the number of merges, we minimize the number of items in the largest range

through the assumption of uniformly distributed in
oming data. Then the largest range

has size s1 = M=r1 items. During the ith epo
h, it follows that ea
h merge transfers to

disk a range of size s

i

= M=r

i

items.

A split initiates a new epo
h, therefore a new epo
h in
rements the number of range�les

by one: r

i

= r

i−1 + 1 = r1 + i− 1. Due to the uniform item distribution, a larger number

of ranges redu
es the amount s

i

of items transferred to disk per merge and in
reases the

number k

i

of merges for N inserted items. If we shorten the duration of the epo
hs, then

the number of merges will in
rease as a result of the higher number of range�les.

At a minimum, a half-�lled range�le needs to re
eive 0:5F new items before it splits.

Therefore the minimum number of merges during the epo
h e

i

is k

i

= 0:5F=s
i

. Sin
e an

epo
h
ushes 0:5F items to disk before a split o

urs, it takes E = N=0:5F epo
hs to

insert N items. From C

total

, K, E, s

i

, r

i

and r1 we �nd:

C

total

=
3F

2
·K =

3F

2
·

E

∑

i=1

k

i

=
3F 2

4
·

E

∑

i=1

1

s

i

=
3F 2

4M
·

E

∑

i=1

r

i

=
3F 2

4M

E

∑

i=1

(r1 + i− 1)

=
3F 2

4M

(

E · r1 +
1

2
E(E + 1)− E

)

= N

2 6

4M
+N

(

3−
3F

4M

)

∈ O(
N

2

M

)

If we divide O(N
2

M

) by the amount of inserted items N and the blo
k size B, the above

result be
omes the O(N

MB

) per-item insertion I/O
omplexity of the Remerge method

(Table 2.1).

The above analysis of Rangemerge estimates the number of I/O operations involved

in the worst
ase during index building. However it does not a

ount for the
ost of an

individual I/O operation or the intera
tion of insertion I/O operations with
on
urrent

queries. Through extensive experimentation in Chapters 7 and 8 we show that Range-

merge
ombines high performan
e in both queries and insertions be
ause it a
hieves sear
h

laten
y
omparable to or below that of the read-optimized Remerge and insertion per-

forman
e
omparable to that of the write-optimized methods (e.g., Geometri
, Nomerge)

under various
onditions.

115

9.3 Summary

To
ompare the I/O
omplexity of our methods with related methods from literature,

we estimate the worst-
ase asymptoti
 I/O
ost of URF and Rangemerge. We show

that the asymptoti

ost of our methods mat
hes those of existing methods with similar

query performan
e, but as demonstrated in the previous
hapters, in pra
ti
e URF and

Rangemerge outperform these methods.

116

Chapter 10

Con
lusions and Future Work

10.1 Contributions

10.2 Future work

10.1 Con
lusions

Motivated by the
urrent needs of pro
essing enormous amounts of both stru
tured and

unstru
tured data under stringent laten
y and throughput requirements, we study the

related problems of text indexing and storage management at large s
ale. To
ope with

the in
reasing requirements in data ingestion throughput,
urrent solutions tend to adopt

a write-optimized approa
h that sa
ri�
es query responsiveness for improved insertion

rates. It is our thesis that these systems
an a
hieve low query laten
y while maintaining

high insertion throughput.

For the problem of in
remental maintenan
e of the disk-based inverted index, we

propose a simple yet innovative disk organization whi
h groups the inverted lists on disk

into disjoint lexi
ographi
al ranges and subsequently stores them in separate blo
ks. The

lists are
ategorized as short or long depending on their size, and a di�erent update

poli
y is used for ea
h
ategory. We introdu
e two new methods, the Sele
tive Range

Flush (SRF) and the Uni�ed Range Flush (URF), to eÆ
iently s
hedule the merges of

the new lists from memory with the lists on disk.

117

The Proteus is a prototype sear
h engine that we develop to examine the eÆ
ien
y and

performan
e of our methods. We also propose and implement a number of optimizations

for the disk and memory management. Using real-world datasets and query workloads,

we show that our methods o�er sear
h laten
y that mat
hes or redu
es up to half the

lowest a
hieved by existing disk-based methods and systems. In
omparison to a related

method of similar sear
h laten
y on the same system, our methods redu
e by a fa
tor of

2.0{2.4 the I/O part of the indexing pro
ess, and by 21{24% the total indexing time.

For the storage management of datastores, we survey existing solutions from various

resear
h �elds. We point out several weaknesses related to low query performan
e due

fragmentation of entries on disk, in
reased variation in query laten
y
aused by ba
k-

ground
ompa
tions, and ex
essive reservation of storage spa
e. To address these issues,

we propose the Rangemerge method that repla
es the periodi
 and intensive
ompa
tions

that existing methods in
ur with more frequent but less intensive ones, while maintaining

the storage
ontiguity of entries on disk.

A number of related methods along with Rangemerge are implemented in a prototype

storage framework that we develop. To evaluate the pra
ti
ality of Rangemerge and the

generality of our results, the methods are also implemented in Google's LevelDB key-value

store. Our results from both storage systems demonstrate the superior performan
e of

Rangemerge: (i) it enables serving range queries with low laten
y and high rate by storing

the entries
ontiguously on disk, and minimizes their sensitivity to ba
kground I/O by

using less aggressive
ompa
tions; (ii) it maintains high insertion throughput, whi
h is

similar to or even better than those of other write-optimized methods, by sele
tively

ushing entries from memory to disk based on their merge eÆ
ien
y; (iii) it removes the

need for ex
essive storage reservation.

10.2 Future Work

Re
ent reports show that the size of the stru
tured and unstru
tured data a

umulated

in
reases exponentially [54℄. This means that the problem of big data management that

we studied will remain relevant and important at least in the following years. Here we

dis
uss some interesting problems and resear
h dire
tions for future work.

118

Large-s
ale storage and indexing systems usually adopt a multi-tier ar
hite
ture.

Nodes from the upper tiers re
eive
lient requests and forward them to the worker nodes

of the lower tiers for serving. As the performan
e of the worker servers is
riti
al for the

overall system performan
e, in this dissertation we mainly studied the eÆ
ien
y of the

storage management in the worker nodes. Nevertheless, orthogonal issues on the upper

layers su
h as load balan
ing, repli
ation and
a
hing are equally important in large-s
ale

deployments and require further investigation.

Disk
apa
ity today is both
heap and large, so that many organizations a�ord to

keep multiple versions of their data. Even though most users are primarily interested

in the latest version the data, there are many
ases where sear
h or a

ess over all or

some previous versions would also be of interest. Examples in
lude the Internet Ar
hive

1

that
olle
ts, stores and o�ers a

ess to histori
al versions of web pages from the last

ten years, and a large number of
ompanies that ar
hive their data and analyze them to

extra
t useful information and patterns. Designing and evaluating methods and systems

to handle multi-versioned data is an interesting problem that we plan to examine.

Text indexing primarily involves parsing do
uments into memory postings and merg-

ing these postings with existing inverted lists on disk. We demonstrated that our methods

ombined with a
arefully optimized implementation
an redu
e the merging
ost of in-

dexing by a fa
tor of 2.0{2.9 in
omparison to other methods and systems. Furthermore,

in
reasing the available memory leads to a proportional de
rease of the merging time.

Nevertheless, the pro
ess of parsing does not bene�t from our approa
h or the extra

memory available on the system, as the time spent on it remains roughly the same. We

are interested in studying and improving the performan
e of do
ument parsing, using

eÆ
ient methods that potentially exploit the multi-
ore CPUs and the powerful graphi
s

pro
essing units (GPUs)
ommonly found in systems today. We also plan to investi-

gate issues related to
on
urren
y
ontrol and handling of do
ument modi�
ations and

deletions.

Flash SSDs have low-laten
y random reads and provide high throughput for sequen-

tial reads and writes. Combined with low power
onsumption and their de
lining
ost,

they have drawn attention to various datastore designers and developers from both the

a
ademi

ommunity and the industry. Sin
e storing the entire dataset on SSD is usually

1

https://ar
hive.org/

119

infeasible due to impra
ti
ally large
osts, SSDs are typi
ally used as an intermediate

layer between RAM and HDD. We are interested in adapting the Rangemerge method

and the Rangetable stru
ture into a multi-tier storage ar
hite
ture where SSDs are used

omplementary to HDDs as either read or write
a
hes, and study the impli
ations of

su
h a design.

120

Bibliography

[1℄ David G. Andersen, Jason Franklin, Mi
hael Kaminsky, Amar Phanishayee,

Lawren
e Tan, and Vijay Vasudevan. FAWN: A fast array of wimpy nodes. In

ACM SOSP Symp., pages 1{14, Big Sky, MO, O
tober 2009.

[2℄ Vo Ngo
 Anh and Alistair Mo�at. Pruned query evaluation using pre-
omputed

impa
ts. In ACM SIGIR Conferen
e, pages 372{379, Seattle, WA, August 2006.

[3℄ Arvind Arasu, Junghoo Cho, He
tor Gar
ia-Molina, Andreas Paep
ke, and Sriram

Raghavan. Sear
hing the web. ACM Transa
tions on Internet Te
hnology, 1(1):2{

43, August 2001.

[4℄ Berk Atikoglu, Yuehai Xu, Eitan Fra
htenberg, Song Jiang, and Mike Pale
zny.

Workload analysis of a large-s
ale key-value store. In ACM SIGMETRICS Conf.,

pages 53{64, London, UK, June 2012.

[5℄ Ri
ardo Baeza-Yates, Carlos Castillo, Flavio Junqueira, Vassilis Pla
houras, and

Fabrizio Silvestri. Challenges on distributed web retrieval. In IEEE Intl Conf on

Data Engineering, pages 6{20, Instanbul, Turkey, April 2007.

[6℄ Ri
ardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vanessa Murdo
k, Vassilis

Pla
houras, and Fabrizio Silvestri. The impa
t of
a
hing on sear
h engines. In ACM

SIGIR Conferen
e, pages 183{190, Amsterdam, The Netherlands, 2007.

[7℄ Jason Baker, Chris Bond, James Corbett, J. J. Furman, Andrey Khorlin, James Lar-

son, Jean-Mi
hel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megas-

tore : Providing s
alable, highly available storage for intera
tive servi
es. In CIDR

Conf., pages 223{234, Asilomar, CA, January 2011.

121

[8℄ Luiz Andre Barroso, Je�rey Dean, and Urs Holzle. Web sear
h for a planet: The

google
luster ar
hite
ture. IEEE Mi
ro, 23(2):22{28, mar/apr 2003.

[9℄ Alexandros Batsakis and Randal Burns. Awol: An adaptive write optimizations

layer. In USENIX Conferen
e on File and Storage Te
hnologies (FAST), pages

67{80, San Jose, CA, February 2008.

[10℄ Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. Finding

a needle in Haysta
k: Fa
ebook's photo storage. In USENIX OSDI Symp., pages

47{60, Van
ouver, Canada, O
tober 2010.

[11℄ Mi
hael A. Bender, Martin Fara
h-Colton, Jeremy T. Fineman, Yonatan R. Fogel,

Bradley C. Kuszmaul, and Jelani Nelson. Ca
he-oblivious streaming B-trees. In

ACM SPAA Symp., pages 81{92, San Diego, CA, June 2007.

[12℄ Jon Louis Bentley and James B. Saxe. De
omposable sear
hing problems i. stati
-

to-dynami
 transformation. Journal of Algorithms, 1:301{358, 1980.

[13℄ Truls A. Bjorklund, Mi
haela Gotz, and Johannes Gerhke. Sear
h in so
ial networks

with a

ess
ontrol. In Intl Workshop on Keyword Sear
h on Stru
tured Data,

Indianapolis, IN, June 2010. ACM.

[14℄ Allan Borodin and Ran El-Yaniv. Online
omputation and
ompetitive analysis.

Cambridge University Press, Cambridge, UK, 1998.

[15℄ Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkarup-

pan, Ni
olas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov,

Aravind Menon, Samuel Rash, Rodrigo S
hmidt, and Amitanand Aiyer. Apa
he

Hadoop goes realtime at fa
ebook. In ACM SIGMOD Conf., pages 1071{1080,

Athens, Gree
e, June 2011.

[16℄ Eri
 A. Brewer. Combining systems and databases: A sear
h engine retrospe
tive.

In Joseph M. Hellerstein and Mi
hael Stonebraker, editor, Readings in Database

Systems, Cambridge, MA, 2005. MIT Press. Fourth Edition.

[17℄ Gerth St�lting Brodal, Erik D. Demaine, Jeremy T. Fineman, John Ia
ono, Ste-

fan Langerman, and J. Ian Munro. Ca
he-oblivious dynami
 di
tionaries with up-

122

date/query tradeo�. In ACM-SIAM Symp. Dis
rete Algorithms, pages 1448{1456,

Austin, TX, January 2010.

[18℄ Andrei Z. Broder, David Carmel, Mi
hael Hers
ovi
i, Aya So�er, and Jason Zien.

EÆ
ient query evaluation using a two-level retrieval pro
ess. In ACM Conferen
e

on Information and Knowledge Management, pages 426{434, New Orleans, LA,

November 2003.

[19℄ Eri
 W. Brown, James P. Callan, and W. Bru
e Croft. Fast in
remental indexing

for full-text information retrieval. In VLDB Conferen
e, pages 192{202, September

1994.

[20℄ Mi
hael Bus
h, Krishna Gade, Brian Larson, Patri
k Lok, Samuel Lu
kenbill, and

Jimmy Lin. Earlybird: Real-time sear
h at twitter. In IEEE Intl Conferen
e on

Data Engineering, pages 1360{1369, Washington, D.C., April 2012.

[21℄ Stefan B�utt
her and Charles L. A. Clarke. Indexing time vs. query time: trade-

o�s in dynami
 information retrieval systems. In Pro
. 14th ACM Intl. Conf. on

Information and Knowledge Management (CIKM, pages 317{318, 2005.

[22℄ Stefan B�utt
her and Charles L. A. Clarke. Hybrid index maintenan
e for
ontiguous

inverted lists. Information Retrieval, 11:197{207, June 2008.

[23℄ Stefan B�utt
her, Charles L. A. Clarke, and Brad Lushman. A hybrid approa
h to

index maintenan
e in dynami
 text retrieval systems. In European Conferen
e on

IR Resear
h (ECIR), pages 229{240, London, UK, April 2006. BCS-IRSG.

[24℄ Stefan B�utt
her, Charles L. A. Clarke, and Brad Lushman. Hybrid index main-

tenan
e for growing text
olle
tions. In ACM SIGIR Conferen
e, pages 356{363,

Seattle, WA, August 2006.

[25℄ Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, and Arild Skjolsvold et

al. Windows Azure Storage: a highly available
loud storage servi
e with strong

onsisten
y. In ACM SOSP Symp., pages 143{157, Cas
ais, Portugal, O
tober 2011.

[26℄ Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi, Hoang Tam

Vo, Sai Wu, and Quanqing Xu. ES

2
: A
loud data storage system for supporting

123

both OLTP and OLAP. In IEEE ICDE, pages 291{302, Hannover, Germany, April

2011.

[27℄ Ri
k Cattell. S
alable SQL and NoSQL data stores. ACM SIGMOD Re
ord,

39(4):12{27, De
ember 2010.

[28℄ Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Walla
h,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

distributed storage system for stru
tured data. In USENIX Symposium on Operating

Systems Design and Implementation, pages 205{218, Seattle, WA, November 2006.

[29℄ Tzi
ker Chiueh and Lan Huang. EÆ
ient real-time index updates in text retrieval

systems. Te
hni
al Report 66, ECSL, Stony Brook University, Stony Brook, NY,

April 1999.

[30℄ James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey III, Craig A. N.

Soules, and Alistair Veit
h. Lazybase: Trading freshness for performan
e in a s
al-

able database. In ACM EuroSys Conf., pages 169{182, Bern, Switzherland, April

2012.

[31℄ The ClueWeb09 dataset, 2009. http://boston.lti.
s.
mu.edu/Data/
lueweb09/.

[32℄ Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,

Philip Bohannon, Hans-Arno Ja
obsen, Ni
k Puz, Daniel Weaver, and Ramana

Yerneni. PNUTS: Yahoo!'s hosted data serving platform. In VLDB Conf., pages

1277{1288, Au
kland, New Zealand, August 2008.

[33℄ Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Ben
hmarking
loud serving systems with YCSB. In ACM SOCC Symp.,

pages 143{154, Indianapolis, IN, June 2010.

[34℄ Doug Cutting. Open sour
e sear
h. http://www.s
ribd.
om/do
/18004805/

Lu
ene-Algorithm-Paper, 2005.

[35℄ Doug Cutting and Jan Pedersen. Optimizations for dynami
 inverted index main-

tenan
e. In ACM SIGIR, pages 405{411, Brussels, Belgium, September 1990.

124

[36℄ Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a s
alable data

store for transa
tional multi key a

ess in the
loud. In ACM SOCC Symp., pages

163{174, Indianapolis, Indiana, USA, June 2010.

[37℄ Savvio 10k.5 data sheet: The optimal balan
e of
apa
ity, performan
e and power

in a 10k, 2.5 in
h enterprise drive, 2012.

[38℄ Je�rey Dean and Luiz Andr�e Barroso. The tail at s
ale. Commun. ACM, 56(2):74{

80, February 2013.

[39℄ Je�rey Dean and Sanjay Ghemawat. MapRedu
e: Simpli�ed data pro
essing on

large
lusters. Communi
ations of the ACM, 51(1):107{113, January 2008.

[40℄ Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pil
hin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon's highly available key-value store. In ACM

SOSP Symp., pages 205{220, Stevenson, WA, O
tober 2007.

[41℄ Thibault Dory, Boris Mejias, Peter Van Roy, and Nam-Lu
 Tran. Measuring elas-

ti
ity for
loud databases. In IARIA Intl Conf Cloud Computing, GRIDs, and

Virtualization, pages 154{160, Rome, Italy, September 2011.

[42℄ Bruno Dumon. Visualizing HBase
ushes and
ompa
tions. http://www.ngdata.

om/site/blog/74-ng.html, February 2011.

[43℄ Jonathan Ellis. Leveled
ompa
tion in Apa
he Cassandra. http://www.datastax.

om/dev/blog/, June 2011.

[44℄ Robert Es
riva, Bernard Wong, and Emin G�un Sirer. HyperDex: A distributed,

sear
hable key-value store. In ACM SIGCOMM Conf., pages 25{36, Helsinki, Fin-

land, August 2012.

[45℄ Wanling Gao, Yuqing Zhu, Zhen Jia, Chunjie Luo, Lei Wang, Zhiguo Li, Jianfeng

Zhan, Yong Qi, Yongqiang He, Shiming Gong, et al. Bigdataben
h: a big data

ben
hmark suite from web sear
h engines. arXiv preprint arXiv:1307.0320, 2013.

[46℄ David Geer. Is it really time for real-time sear
h? Computer, pages 16{19, Mar
h

2010.

125

[47℄ Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Fran
ois Raab, Meikel Poess, Alain

Crolotte, and Hans-Arno Ja
obsen. Bigben
h: Towards an industry standard ben
h-

mark for big data analyti
s. In Pro
eedings of the 2013 international
onferen
e on

Management of data, pages 1197{1208. ACM, 2013.

[48℄ Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. The Google �le system.

In ACM SOSP, pages 29{43, Bolton Landing, NY, O
tober 2003.

[49℄ Ruijie Guo, Xueqi Cheng, Hongbo Xu, and Bin Wang. EÆ
ient on-line index main-

tenan
e for dynami
 text
olle
tions by using dynami
 balan
ing tree. In Conferen
e

on Information and Knowledge Management (CIKM), pages 751{759, Lisboa, Por-

tugal, November 2007.

[50℄ S. Gurajada and S. Sreenivasa Kumar. On-line index maintenan
e using horizontal

partitioning. In ACM Conferen
e on Information and Knowledge Management,

pages 435{444, Hong Kong, China, November 2009.

[51℄ Ste�en Heinz and Justin Zobel. EÆ
ient single-pass index
onstru
tion for text

databases. Journal of the Ameri
al So
iety for Information S
ien
e and Te
hnology,

54(8):713{729, 2003.

[52℄ Eben Hewitt. Cassandra: The De�nitive Guide. O'Reilly Media, In
., Sebastopol,

CA, 2011.

[53℄ http://hypertable.org.

[54℄ IDC. 2011 digital universe study: Extra
ting value from
haos, June

2011. http://www.em
.
om/
ollateral/analyst-reports/id
-extra
ting-value-from-

haos-ar.pdf.

[55℄ H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama Kanneganti.

In
remental organization for data re
ording and warehousing. In VLDB, pages 16{

25, Athens, Gree
e, August 1997.

[56℄ R. Jain. The Art of Computer Systems Performan
e Analysis. Wiley, New York,

NY, 1991.

126

[57℄ Christopher Jermaine, Edward Omie
inski, and Wai Gen Yee. The partitioned

exponential �le for database storage management. The VLDB Journal, 16:417{437,

O
tober 2007.

[58℄ Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative

ar
hite
tures for transa
tion pro
essing in the
loud. In ACM SIGMOD Conf.,

pages 579{590, Indianapolis, IN, June 2010.

[59℄ Avinash Lakshman and Prashant Malik. Cassandra: a de
entralized stru
tured

storage system. SIGOPS Operating Systems Review, 44:35{40, April 2010.

[60℄ Florian Leibert, Jake Mannix, Jimmy Lin, and Babak Hamadani. Automati
 man-

agement of partitioned, repli
ated sear
h servi
es. In ACM Symposium on Cloud

Computing, pages 27:1{27:8, Cas
ais, Portugal, O
tober 2011.

[61℄ Ronnu Lempel, Yosi Mass, Shila Ofek-Koifman, Yael Petrus
hka, Dafna Sheinwald,

and Ron Sivan. Just in time indexing for up to the se
ond sear
h. In Conferen
e on

Information and Knowledge Management (CIKM), pages 97{106, Lisboa, Portugal,

2007.

[62℄ Ni
holas Lester, Alistair Mo�at, and Justin Zobel. Fast on-line index
onstru
tion by

geometri
 partitioning. In Conferen
e on Information and Knowledge Management

(CIKM), pages 776{783, Bremen, Germany, O
tober 2005.

[63℄ Ni
holas Lester, Alistair Mo�at, and Justin Zobel. EÆ
ient online index
onstru
-

tion for text databases. ACM Trans. Database Systems (TODS), 33(3):1{33, August

2008.

[64℄ Ni
holas Lester, Justin Zobel, and Hugh Williams. EÆ
ient online index mainte-

nan
e for
ontiguous inverted lists. Information Pro
essing Management, 42(4):916{

933, 2006.

[65℄ Ni
holas Lester, Justin Zobel, and Hugh E. Williams. In-pla
e versus re-build versus

re-merge: Index maintenan
e strategies for text retrieval systems. In Australasian

Computer S
ien
e Conferen
e, pages 15{23, Dunedin, New Zeland, January 2004.

127

[66℄ Hyeontaek Lim, Bin Fan, David G. Andersen, and Mi
hael Kaminsky. SILT: A

memory-eÆ
ient, high-performan
e key-value store. In ACM SOSP Symp., pages

1{13, Cas
ais, Portugal, O
tober 2011.

[67℄ Lipyeow Lim, Min Wang, Sriram Padmanabhan, Je�rey S
ott Vitter, and Ramesh

Agarwal. Dynami
 maintenan
e of web indexes using landmarks. In World Wide

Web Conferen
e, pages 102{111, Budapest, Hungary, May 2003.

[68℄ Dionysios Logothetis, Christopher Olston, Benjamin Reed, Kevin C. Webb, and Keb

Yo
um. Stateful bulk pro
essing for in
remental analyti
s. In ACM Symposium on

Cloud Computing, pages 51{62, Indianapolis, IN, June 2010.

[69℄ Ri
hard Low. Cassandra under heavy write load. http://www.a
unu.
om/blogs/

ri
hard-low/, Mar
h 2011.

[70℄ Leveldb: A fast and lightweight key/value database library by google. http://

ode.google.
om/p/leveldb/, May 2011.

[71℄ Mike Mammarella, Shant Hovsepian, and Eddie Kohler. Modular data storage with

Anvil. In ACM Symposium on Operating Systems Prin
iples, pages 147{160, Big

Sky, MO, O
tober 2009.

[72℄ Yandong Mao, Eddie Kohler, and Robert Morris. Ca
he
raftiness for fast multi
ore

key-value storage. In ACM EuroSys Conf., pages 183{196, April 2012.

[73℄ Giorgos Margaritis and Stergios V. Anastasiadis. Low-
ost management of inverted

�les for online full-text sear
h. In ACM CIKM, pages 455{464, Hong Kong, China,

November 2009.

[74℄ Ali Jos�e Mashtizadeh, Andrea Bittau, Yifeng Frank Huang, and David Mazi�eres.

Repli
ation, history, and grafting in the ori �le system. In Pro
eedings of the Twenty-

Fourth ACM Symposium on Operating Systems Prin
iples, SOSP '13, pages 151{

166, New York, NY, USA, 2013. ACM.

[75℄ Mi
hael M
Candless, Erik Hat
her, and Otis Gospodneti�
. Lu
ene in a
tion. Man-

ning Publi
ations Co., Stamford, CT, 2010.

128

[76℄ Sergey Melnik, Sriram Raghavan, Beverly Yang, and He
tor Gar
ia-Molina. Build-

ing a distributed full-text index for the web. ACM Transa
tions on Information

Systems, 19(3):217{241, July 2001.

[77℄ Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-Won Lee, and Young Ik Eom.

SFS: random write
onsidered harmful in solid state drives. In USENIX FAST

Conf., pages 139{154, San Jose, CA, February 2012.

[78℄ Alexandros Ntoulas and Junghoo Cho. Pruning poli
ies for two-tiered inverted index

with
orre
tness guarantee. In ACM SIGIR Conferen
e, pages 191{198, Amsterdam,

Netherlands, July 2007.

[79℄ Patri
k O'Neil, Edward Cheng, Dieter Gawli
k, and Elizabeth O'Neil. The log-

stru
tured merge-tree (LSM-tree). A
ta Informati
a, 33:351{385, June 1996.

[80℄ Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel

Rosenblum. Fast
rash re
overy in RAMCloud. In ACM SOSP Symp., pages 29{41,

Cas
ais, Portugal, O
tober 2011.

[81℄ Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio L�opez,

Garth Gibson, Adam Fu
hs, and Billie Rinaldi. YCSB++: ben
hmarking and

performan
e debugging advan
ed features in s
alable table stores. In ACM SOCC

Symp., pages 1{14, Cas
ais, Portugal, 2011.

[82℄ R. Hugo Patterson, Garth A. Gibson, Eka Ginting, Daniel Stodolsky, and Jim

Zelenka. Informed prefet
hing and
a
hing. In ACM Symposium on Operating

Systems Prin
iples, pages 79{95, Copper Mountain Resort, CO, De
ember 1995.

[83℄ Daniel Peng and Frank Dabek. Large-s
ale in
remental pro
essing using distributed

transa
tions and noti�
ations. In USENIX Symposium on Operating Systems Design

and Implementation, Van
ouver, Canada, O
tober 2010.

[84℄ Pouria Pirzadeh, Juni
hi Tatemura, Oliver Po, and Hakan Ha
ig�um�us. Performan
e

evaluation of range queries in key value stores. J. Grid Computing, 10(1):109{132,

2012.

[85℄ M.F. Porter. An algorithm for suÆx stripping. Program, 14(3):130{137, 1980.

129

[86℄ Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Ja
obsen, Sergio Gom�ez-Villamor,

Vi
tor Munt�es-Mulero, and Serge Mankovskii. Solving big data
hallenges for en-

terprise appli
ation performan
e management. In VLDB Conf., pages 1724{1735,

Instanbul, Turkey, August 2012.

[87℄ Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

M
Graw-Hill, New York, NY, 3 edition, 2003.

[88℄ Kai Ren and Garth Gibson. Tablefs: Enhan
ing metadata eÆ
ien
y in the lo
al

�le system. In Pro
eedings of the 2013 USENIX Conferen
e on Annual Te
hni
al

Conferen
e, USENIX ATC'13, pages 145{156, Berkeley, CA, USA, 2013. USENIX

Asso
iation.

[89℄ Berthier Ribeiro-Neto, Edleno S. Moura, Marden S. Neubert, and Nivio Ziviani.

EÆ
ient distributed algorithms to build inverted �les. In ACM SIGIR, pages 105{

112, Berkeley, CA, August 1999.

[90℄ M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-

stru
tured �le system. ACM Trans. Computer Systems (TOCS), 10(1):26{52, Febru-

ary 1992.

[91℄ Sherif Sakr, Anna Liu, Daniel M. Batista, and Mohammad Alomari. A survey of

large s
ale data management approa
hes in
loud environments. IEEE Communi-

ations Surveys & Tutorials, 2011.

[92℄ Mohit Saxena, Mi
hael M. Swift, and Yiying Zhang. FlashTier: a lightweight,

onsistent and durable storage
a
he. In ACM European Conferen
e on Computer

Systems, pages 267{280, Bern, Switzerland, April 2012.

[93℄ Russell Sears and Raghu Ramakrishnan. bLSM: a general purpose log stru
tured

merge tree. In ACM SIGMOD Conf., pages 217{228, S
ottsdale, AZ, May 2012.

[94℄ Sam Shah, Craig A. N. Soules, Gregory R. Ganger, and Brian D. Noble. Using

provenan
e to aid in personal �le sear
h. In USENIX Annual Te
hni
al Conferen
e,

pages 171{184, Santa Clara, CA, June 2007.

130

[95℄ Konstantin Shva
hko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed �le system. In Mass Storage Systems and Te
hnologies (MSST),

2010 IEEE 26th Symposium on, pages 1{10. IEEE, 2010.

[96℄ Adam Silberstein, Brian F. Cooper, Utkarsh Srivastava, Erik Vee, Ramana Yerneni,

and Raghu Ramakrishnan. EÆ
ient bulk insertion into a distributed ordered table.

In ACM SIGMOD Conf., pages 765{778, Van
ouver, Canada, June 2008.

[97℄ Adam Silberstein, Russel Sears, Wen
hao Zhou, and Brian Cooper. A bat
h of

pnuts: Experien
es
onne
ting
loud bat
h and serving systems. In ACM SIGMOD

Conf., pages 1101{1112, Athens, Gree
e, June 2011.

[98℄ Ri
hard P. Spillane, Pradeep J. Shetty, Erez Zadok, Sagar Dixit, and Shrikar Ar-

hak. An eÆ
ient multi-tier tablet server storage ar
hite
ture. In ACM SOCC

Symp., pages 1{14, Cas
ais, Portugal, O
tober 2011.

[99℄ Mi
hael Stonebraker and Ri
k Cattell. 10 rules for s
alable performan
e in \simple

operation" datastores. Commun. ACM, 54(6):72{80, June 2011.

[100℄ Trevor Strohman and W. Bru
e Croft. EÆ
ient do
ument retrieval in main memory.

In ACM SIGIR Conferen
e, pages 175{182, Amsterdam, Netherlands, July 2007.

[101℄ Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam

Shah. Serving large-s
ale bat
h
omputed data with Proje
t Voldemort. In USENIX

FAST, pages 223{236, San Jose, CA, February 2012.

[102℄ Anthony Tomasi
, He
tor Gar
ia-Molina, and Kurt Shoens. In
remental updates of

inverted lists for text do
ument retrieval. In ACM SIGMOD Conf., pages 289{300,

Minneapolis, Minnesota, May 1994.

[103℄ TREC terabyte tra
k, 2006. National Institute of Standards and Te
hnol-

ogy,http://tre
.nist.gov/data/terabyte.html.

[104℄ Beth Trushkowsky, Peter Bodik, Armando Fox, Mi
hael J. Franklin, Mi
hael I.

Jordan, and David A. Patterson. The SCADS dire
tor: S
aling a distributed storage

system under stringent performan
e requirements. In USENIX FAST Conf., pages

163{176, San Jose, CA, February 2011.

131

[105℄ Andy Twigg, Andrew Byde, Grzegorz Milos, Tim Moreton, John Wilkes, and Tom

Wilkie. Strati�ed B-trees and versioned di
tionaries. In USENIX Hotstorage Work-

shop, Portland, OR, June 2011.

[106℄ David Ungar. Generation s
avenging: A non-disruptive high performan
e storage

re
lamation algorithm. ACM SIGPLAN Not., 19(5):157{167, April 1984.

[107℄ Peter J. Varman and Rakesh M. Verma. An eÆ
ient multiversion a

ess stru
ture.

IEEE Trans. Knowl. Data Eng., 9(3):391{409, may/jun 1997.

[108℄ Je�rey S
ott Vitter. External memory algorithms and data stru
tures: dealing with

massive data. ACM Computing Surveys, 33(2):209{271, June 2001.

[109℄ Hoang Tam Vo, Chun Chen, and Beng Chin Ooi. Towards elasti
 transa
tional

loud storage with range query support. In VLDB Conf, pages 506{514, Singapore,

September 2010.

[110℄ Zheng Wei and Joseph JaJa. An optimized high-throughput strategy for
onstru
t-

ing inverted �les. IEEE Transa
tions on Parallel and Distributed Systems, 2012.

Digital Obje
t Identi�er 10.1109/TPDS.2012.43.

[111℄ The Wikipedia dataset, 2008. http://stati
.wikipedia.org/downloads/2008-06/en/.

[112℄ Hugh E. Williams, Justin Zobel, and Dirk Bahle. Fast phrase querying with
om-

bined indexes. ACM Transa
tions on Information Systems, 22(4):573{594, O
tober

2004.

[113℄ Wumpus sear
h engine (nov 10th, 2011), November 2011. http://www.wumpus-

sear
h.org.

[114℄ Ke Yi. Dynami
 indexability and lower bounds for dynami
 one-dimensional range

query indexes. In ACM PODS Symp., pages 187{196, Providen
e, RI, July 2009.

[115℄ The Zettair sear
h engine, 2009. RMIT University,

http://www.seg.rmit.edu.au/zettair/.

[116℄ M. Zhu, S. Shi, N. Yu, and J. Wen. Can phrase indexing help to pro
ess non-phrase

queries. In ACM Conferen
e on Information and Knowledge Management, pages

679{688, Napa Valley, CA, November 2008.

132

[117℄ Paul Zikopoulos, Chris Eaton, et al. Understanding big data: Analyti
s for enter-

prise
lass hadoop and streaming data. M
Graw-Hill Osborne Media, 2011.

[118℄ Justin Zobel and Alistair Mo�at. Inverted �les for text sear
h engines. ACM

Computing Surveys, 38(2), July 2006.

[119℄ Justin Zobel, Alistair Mo�at, and Ron Sa
ks-Davis. Storage management for �les

of dynami
 re
ords. In Australian Database Conferen
e, pages 26{38, Brisbane,

Australia, 1993.

Author's Publi
ations

Related publi
ations:

1. Giorgos Margaritis, Stergios V. Anastasiadis, In
remental Text Indexing for Fast

Disk-Based Sear
h, ACM Transa
tions on the Web (TWEB), De
ember 2013 (to

appear).

2. Giorgos Margaritis, Stergios V. Anastasiadis, EÆ
ient Range-Based Storage Man-

agement for S
alable Datastores, IEEE Transa
tions on Parallel and Distributed

Systems (TPDS), November 2013 (to appear).

3. Giorgos Margaritis, Stergios V. Anastasiadis, Low-
ost Management of Inverted

Files for Online Full-text Sear
h, ACM Conferen
e on Information and Knowledge

Management (CIKM), pages 455-464, Hong Kong, China, November 2009.

Other publi
ations:

1. Eirini C. Mi
heli, Giorgos Margaritis, Stergios V. Anastasiadis, Lethe: Cluster-

based Indexing for Se
ure Multi-User Sear
h, IEEE International Congress on Big

Data (BigData), An
horage, Alaska, USA, June 2014 (to appear).

2. Eirini C. Mi
heli, Giorgos Margaritis, Stergios V. Anastasiadis, EÆ
ient Multi-

User Indexing for Se
ure Keyword Sear
h, International Workshop on Priva
y and

Anonymity in the Information So
iety (PAIS) (held in
onjun
tion with EDBT/ICDT),

Athens, Gree
e, Mar
h 2014.

3. Giorgos Margaritis, Androma
hi Hatzieleftheriou, Stergios V. Anastasiadis, Nephele:

S
alable A

ess Control for Federated File Servi
es, Journal of Grid Computing, pub.

Springer, Volume 11, Issue 1, pp 83-102, Mar
h 2013.

Short Vita

Giorgos Margaritis was born in Thessaloniki, Gree
e, in 1983. He re
eived the B.S
 in

Computer S
ien
e in 2005 and the M.S
. in Computer S
ien
e (Computer Systems) in

2008, from the Department of Computer S
ien
e, University of Ioannina, Gree
e. Sin
e

the end of 2008 he has been a Ph.D.
andidate in the same Department under the supervi-

sion of Prof. Stergios Anastasiadis. He has been involved in two resear
h proje
ts and has

published 3 papers in peer-review s
ienti�
 journals and 2 papers in refereed
onferen
e

pro
eedings. His resear
h interests are in the areas of text retrieval and storage systems.

