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This thesis studies the problem of direct rendering skinned approximations of arbitrary

deformable objects which may also self-intersect on the graphics hardware, which is an im-

portant topic in computer animation and visualization. First, we provide efficient method-

ologies for editable segmentation and skinning representations of arbitrary animated mesh

sequences that exploit temporal coherence from a pose-to-pose perspective. Second, we

develop rendering algorithms for efficient detection and trimming of (self)-crossing sur-

faces in the image-space, realized through novel multi-fragment rasterization, without

computing any intersections. Since capturing multiple fragments efficiently on the GPU

is a challenging task in terms of time, memory and robustness, we study several aspects of

the multi-fragment rendering problem from various perspectives and present alternatives

for reducing fragment-contention, eliminating z-fighting and avoiding fragment-overflow.
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Η παρούσα διατριβή μελετά το πρόβλημα της άμεσης απόδοσης των προσεγγιστικών παρα-

μορφώσεων του (πιθανώς αυτο-τεμνούμενου) περιβλήματος αυθαίρετων αντικειμένων, που

είναι ένα πολύ σημαντικό θέμα στις περιοχές της προσομοίωσης κίνησης και της οπτι-

κοποίησης. Αρχικά, προσφέρουμε μεθόδους για την αποτελεσματική αναπαράσταση της

διαμέρισης και της προσεγγιστικής παραμόρφωσης μιας ακολουθίας στιγμιοτύπων ενός αντι-

κειμένου, στοχεύοντας στη διατήρηση της χρονικής συνάφειας, τη μείωση των σφαλμάτων και

την επεξεργασία αυθαίρετων στιγμιοτύπων της κίνησης. Στη συνέχεια, αντιμετωπίζουμε το

πρόβλημα απόδοσης αυτο-τεμνόμενων επιφανειών κατά την παραμόρφωση με χρήση σημασιο-

λογικών κανόνων και το πρόβλημα αποδοτικής και ακριβής αποθήκευσης όλων των επιπέδων

μιας παραγόμενης σχηνής με χρήση αλγορίθμων που χρησιμοποιούν την ενδιάμεση μνήνη

της καρτας γραφικών. Συγκεκριμένα, προτείνονται κανόνες για τον καθορισμό του εσωτε-

ρικού και εξωτερικού των χωρικών στοιχείων που σχηματίζονται από μία αυτο-τεμνόμενη

επιφάνεια μέσω μίας διαδικασίας συνεχούς παραμόρφωσης μίας απλής κλειστής επιφάνειας.

Επίσης, αναπτύσσουμε αποδοτικούς αλγορίθμους πραγματικού χρόνου που αποφεύγουν τα

προβλήματα συν-επιπεδότητας, υπερχείλισης και υψηλής συμφόρησης στη μνήμη της κάρτας

γραφικών, για την απόδοση του ορίου του στερεού που προκύπτει, αποφεύγοντας τον υπο-

λογισμό των καμπυλών που εκφράζουν τα σημεία αυτο-τομής της επιφάνειας.
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Chapter 1

Introduction

1.1 Computer Animation

1.1.1 Character Animation

1.1.2 Mesh Animation

1.1.3 Segmenting Mesh Animations

1.1.4 Skinning Mesh Animations

1.1.5 Self-intersected Mesh Animations

1.2 Multi-fragment Rendering

1.3 Related Work

1.3.1 Clustering Methods and Feature Space

1.3.2 Skinning and Editing Mesh Animations

1.3.3 Multi-fragment Rendering

1.4 Thesis Contribution

This thesis studies the problem of direct rendering skinned approximations of arbitrary

deformable objects (including self-intersecting ones) on the graphics hardware, which is

an important topic in computer animation and visualization. We consider two broad

categories of technical issues: (i) skinning approximation and (ii) interactive rendering

problems with respect to the corresponding programmable graphics rendering stage. Gen-

erally, vertex shaders typically transform vertex positions and perform animation, while

fragment shaders perform pixel-level lighting effects and customized operations.

Skeletal animation is the standard way to animate virtual characters or mechanical

objects for a prolonged period of time. It is commonly used by video games and movie
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industry, and can also be applied to mechanical objects or any other object made up of

rigid elements and joints. Skinning is a simple yet popular skeletal deformation technique,

implemented in almost all modern 3D engines, combining compact storage with efficient

hardware accelerated rendering by vertex shaders. The mesh movement of the character

is defined as the function of its underlying skeleton. The process where the specification

of the character animation skeletal structure is built and then attached to the character

surface, allowing skeletal motion data to animate the entire character model is mostly

driven by a shape decomposition method. In this dissertation, efficient deformation-

driven segmentation methods are studied and developed for guiding high-quality skinning

approximations of arbitrary mesh animations.

Self-intersecting or coplanar geometry may accidentally or intentionally occur when the

user is dynamically constructing the mesh animation via complex editing and constructive

solid geometry (CSG) operations. For example, when planning heart surgery, the surgeon

may wish to deform a 3D model of the patient’s anatomy to add a connection between

two nearby vessels or to create a hole in the wall that separates the two ventricles. While

in a static model, the user could be asked to select which manifold portions of the surface

should be removed by clicking on them, if we want to apply these topological changes to

an animated model, we cannot expect the user to perform these selections at each frame.

Visualizing the interior and hidden portions of solids is useful in many applications, from

accessing and visualizing inter-body human anatomy to rendering of interior architectural

spaces, however it is not supported for self-trimmed surfaces. To this end, we have focused

on the problem of accurate and interactive (interior) rendering, e.g. detecting, trimming

or combining via CSG, of self-crossing surfaces realized through novel multi-fragment

rasterization techniques.

1.1 Computer Animation

Computer animation is the process used for generating animated images by using com-

puter graphics [71]. The more general term computer-generated imagery encompasses

both static scenes and dynamic images, while computer animation only refers to moving

images. To create the illusion of movement, an image is displayed on the computer mon-

itor and repeatedly replaced by a new image that is similar to it, but advanced slightly

in time, usually at a rate of 24 or 30 frames per second (FPS).

Computer animation plays a major role in 3D visualization process by being used in

a broad spectrum of applications such as manufacturing, medicine, clothes and fashion,

and the entertainment industry (movies and games). More specifically in the context of

the latter, rapid realistic animation of articulated characters is a key issue in video games,

crowd simulations and computer generated imagery films [100].
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1.1.1 Character Animation

Character animation is a specialized area of the animation process, which involves bring-

ing animated characters to life [92]. Even though other approaches exist and are used

for certain applications, most character animation is created using key-frame systems.

Character animation usually comprises the following processes:

(i) Setting up the motion system: a process that usually involves determining and/or

adjusting a set of user-controlled kinematic handles.

(ii) Attaching the manipulation structure to a target surface skin.

(iii) Determining how the skin will behave (deform) under motion.

Processes (i) and (ii), often called rigging, are in charge of the motion, i.e. the kine-

matics effects. The final process (iii) determines the mesh deformation and is therefore

responsible for the final visual effects.

Deformation techniques that improve visual fidelity, computational efficiency and make

intuitive use of the character animation structure have been investigated extensively in

the literature [22]. Surface-based deformation methods [11, 164] advocate the use of differ-

ential coordinates, to produce aesthetically pleasing animations. From a user perspective,

surface-based techniques provide an intuitive deformation interface allowing direct posi-

tioning and manipulation of arbitrary handles. While it leads to detail-preserving defor-

mation output, a variational optimization method is involved that compromises real-time

performance, a fact that makes interactive animation editing infeasible. On the other

hand, space-based deformation techniques [38] indirectly reshape an object by warping

the surrounding space. In the context of character animation, a low-poly control mesh

(often called cage [62, 60, 86]) is defined that encloses the target model. In spite of its

modeling speed and simplicity as compared to surface-based techniques (by manipulating

the cage points, the deformation is propagated to the influenced encapsulated mesh por-

tion), constructing and controlling such structures is not a straightforward task. Finally,

Cohen-Or [24] explored the potential of combining the advantages of surface-based and

space-based deformation methods.

Alternatively, skeleton-based deformation is one of the most popular techniques in

computer animation because of the intuitive use of bones as deformation handles that

naturally capture the physical rigidity of the character parts. The appeal of using skeletons

is intuitively interpreted from the fact that most articulated creatures in the real world

(humans [22], quadrupeds [136] and others) are bound to move guided by their internal

endoskeleton kinematics. An animation skeleton has usually much simpler structure than

the original object and aims at simplifying the deformation process by avoiding the tedious

task of animating each vertex independently. Specifically, a skeletal representation model

consists of at least three main layers:

(a) a highly detailed 3D triangular surface mesh of the character (Figure 1.1(left)).
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(b) an underlying skeleton (rig) attached to the skin, defined as a hierarchical tree struc-

ture of joints connected with rigid links (bones) (Figure 1.1(center)).

(c) an additional layer to improve realism incorporating the physical properties of the

character’s musculature [81] at the cost of performance is optionally provided.

A process of extracting a skeleton from a static pose of the character (skeletonization)

or adapting a given animation skeleton to the character surface (skeleton embedding), is

initially employed, allowing direct manipulation, inverse kinematics [15] or skeletal motion

data [3] to animate the mesh accordingly.

The skinning framework is the predominant technique for real-time skeleton-driven

character animation in spite of its limitations [102]. The skeleton is rigged to the target

character mesh by assigning multiple blending weights for each influencing bone (Fig-

ure 1.1(right)). Then, each point on the surface of the character is transformed by a

weighted combination of the affine transformations of each influencing bone. Recently,

Jacobson et al.[54] have enhanced its scope by introducing besides skeletons, point and

cage deformation handles that are unified under the skinning setup. Matrix palette skin-

ning [93], mostly known as linear blend skinning (LBS), is the most widely used character

skinning technique due to its computational efficiency and straightforward implementation

in graphics hardware [9, 82]. Although LBS assumes the existence of some underlying

skeletal hierarchy, it can still be applied to highly deformable objects [68]. Highly de-

formable animations are used to describe objects that deform under no skeletal influence

(for example animations of cloth and soft body internal organs), independently or in

conjunction with skeletal animation (hybrid animation).

Skinning methods have been widely criticized for requiring trained artists to perform

a tedious and cumbersome process of manual weight painting to obtain satisfactory re-

sults [166, 147]. A multitude of research approaches on computing weight influences in

an automated manner from a target mesh have appeared at the literature in the past

few years. Unfortunately, there is no widely agreed criterion for weight selection which is

universally acceptable for all applications.

1.1.2 Mesh Animation

A 3D mesh animation (MA) consists of a sequence of key-frames (poses), representing

how a static 3D shape is evolving through time. While the production of such a sequence

can be done by advanced scanning machinery [3] or multiple video cameras [153, 137],

in most cases it is the result of strenuous labor from the part of artists, who create the

animation pose by pose. While specialized computer software provides several automated

techniques for the generation of deformations implementing several of the aforementioned

algorithms, adding fine details always requires human intervention. Note that since each

pose of the MA may be independently reconstructed, sequence of meshes with varying con-

nectivities as well as varying topology may result. These MAs are most commonly called

time-varying or temporal-incoherent (TIMA) [4]. On the other hand, if the connectivity
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Figure 1.1: Illustrating (left) the original character, (center) the underlying skeleton at-

tached to the skin and (right) the resulting influencing weights.

is constant over the whole sequence, then MA is called temporal-coherent (TCMA) [4].

A mesh that is animated using skeleton animation is called a skinning mesh. From a

different perspective, MAs can be roughly divided into two categories:

(i) off-line which consists of a fixed number of stored consecutive animated meshes

(ii) real-time which is either streamed from a shared distributed virtual environment or

dynamically generated from interactive manipulation of a deformable object.

1.1.3 Segmenting Mesh Animations

Segmentation of MAs, despite being a new research field when compared to static mesh

partitioning [130], has become a key issue in a number of computer graphics applications (a

brief collection is highlighted in Table 1.1). Animation compression [2], deformation

transfer [84], skinning mesh animations [55, 69, 80], skeleton extraction [126, 31, 48], are

representative applications, highly related to character animation, enabled by partitioning

a deforming mesh sequence.

While the output depends on the type of application, the main goal of segmentation is

to partition the animated mesh into regions with similar motion characteristics. Several

motion properties have been proposed for defining the feature space. Significant features,

which form a dense region in feature space, can be detected by one of the numerous

available clustering techniques. From now on, we denote such approaches as global seg-

mentation methods, because they work with average motion measures that represent the

degree of deformation during the entire animation sequence.

Regardless of the clustering criteria, current global segmentation methods focus on

detecting segments with mostly rigid behavior, failing in partitioning correctly highly-
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deformable objects. Moreover, these methods are rather limited in cases where the feature

vector space is

• flat : resulting at an inability to separate regions with similar feature values (zero-

variance)

• anisotropic: resulting at one or more features dominating the others due to higher

variation.

In addition, the segmentation output is highly dependent on a large set of parameters

that should be determined a priori. Last but not least, the entire process cannot be

carried out when the mesh sequence is modified [19] by:

• performing subjected editing operations or

• being augmented with additional poses that did not exist in the original MA.

Furthermore, it would be advantageous to have a tool for an automatic conversion

from a high segmentation resolution to a lower one. This would remove the cost of

reconstructing the entire segmentation for each resolution. Thus, one might ask whether

it is possible to design a segmentation algorithm with reasonable time complexity that

is not limited to work only on one type of MAs and avoids most of the aforementioned

artifacts.

1.1.4 Skinning Mesh Animations

Although pre-computed animations provide greater flexibility at the time of animation

creation than skeleton-based methods, they output more space-consuming dynamic scene

representations comprising of independent position data streams. The ramifications of

size manifest not only in terms of the space used on the disk but also in terms of time and

space required by an application to load the sequence on the graphics process unit (GPU).

Note that the amount of space and processing time increases dramatically considering that

a scene may contain more than one animation sequence.

To this end, skinning techniques have been explored to approximate arbitrary de-

formable MAs automatically specifying a relatively small number of virtual [55, 68, 69]

or hierarchical skeleton bones [126, 31] to act as control joints to derive the skin from the

initial rest-pose. Except of the context of data reduction, the fully-automatically trans-

form of MAs into compact and easily modified skeletal versions enables a full repertoire

of already existing skeletal animation tools. Some representative ones are easy post-

preprocessing, level of detail selection [113, 125], collision handling [49, 70] and efficient

hardware accelerated reproduction of the initial input sequence.

While recent methods perform well for a variety of input sequence classes, they

mainly focus on optimizing the skinning approximation. However, bone estimation and

weight definition are critical to several applications that need to maintain locality such as

deformation-driven compression, pose editing, animation transfer, collision detection and
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progressive animation. Current techniques cannot support the whole spectrum of these

applications.

1.1.5 Self-intersected Mesh Animations

Most steps in the geometry processing pipeline, like deformation, smoothing, subdivision

and decimation, may create self-intersections. The approximated skinned surface may

also result in a self-crossing surface. In the context of deformation, the designer may

for example use 3D input devices to grab, pull, and twist the 3D model in natural and

predictable ways to intendedly create self-intersecting surfaces. Space-based deformation

techniques [38] are a popular paradigm for designing 3D shapes. They afford an intuitive

direct manipulation and seem most appropriate for editing medical and artistic models or

animations. Unfortunately, these methods lack useful semantics of what happens when

the designer wishes to create a self-intersecting surface model. One may argue that in

a static model, the user could be asked to select which manifold portions of the surface

should be removed by clicking on them. More importantly, if we want to apply these

topological changes to an animated model, we cannot expect the user to perform these

selections at each frame. Figure 1.2 illustrates an initial manifold boundary that is not

self-crossing and a continuous process that deforms this surface creating non-manifold self-

intersection areas where the solid “passes through itself” while keeping it an immersed

sub-manifold.

�
Figure 1.2: Illustrating (left) the original manifold boundary, (center) a pose produced

by continuously deforming the first pose (we use pink to illustrate the part of the surface

that should be trimmed) and (right) the trimmed result.

We need semantics for defining the watertight solid that represents the boundary of

the regularized union of the interior components, which is a subset of the initial surface

and is called the trimmed boundary or simply the trim. In this context, two generic

problems have been identified and several rules have been devised to capture them:

Problem I: Given an SCS (Figure 1.2 (b)) determine the trim (Figure 1.2 (c)).

Problem II: Given an initial manifold boundary (Figure 1.2 (a)) and a continuous pro-

cess that deforms this surface to an SCS (Figure 1.2 (b)) determine the trim (Fig-

ure 1.2 (c)).
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Image-based techniques avoid the complexity of both creating and updating the polyg-

onal mesh at each time step. This classification and rendering process is accomplished in

real-time through a rasterization process by testing surfels (without computing any self-

intersection curve), and hence is suited to support animations of self-crossing surfaces.

The advantage is that the trimmed solid can be combined with other solids and with

half-spaces using boolean operations and hence may be capped (trimmed by a half-space)

or used as a primitive in direct CSG rendering. Surfels are represented by fragments of

the surface that arise from the intersection of the surface with a pixel ray originated at

the center of the corresponding pixel of the viewing plane (see Figure 1.3). Surfels are

compactly stored in several images (multiple-layers) to model the complete geometry seen

from one viewpoint.

Figure 1.3: Illustrating the fragment construction process (highlighted with red circles)

on a selected (green) pixel, when ray casting the teapot model.

1.2 Multi-fragment Rendering

Determining visibility when rasterizing objects in arbitrary order is a challenging task in

terms of time and space for a host of algorithms that simulate complex rendering effects

in real-time. Many image-based techniques produce visually realistic results at interactive

speeds in games (order-independent transparency [97], shadows [167], hair rendering [168])

and other graphics applications (volume rendering [14], collision detection [56], CSG [74,

170], trimming [44]) enabled by a family of GPU-accelerated methods that capture the

surface-intersections (fragments) when ray-casting from the viewer position through each

screen pixel.

Z-fighting is a phenomenon in three-dimensional rendering that occurs when two or

more primitives have the same or similar values in the Z-buffer [20] (see Figure 1.4).

Z-fighting may manifest itself through:

1. intersecting surfaces that result in intersecting primitives
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2. overlapping surfaces, surfaces containing one or more primitives that are coplanar

and overlap

3. non-convergent surfaces due to the fixed point round-off errors of perspective pro-

jection.

Traditional hardware-supported rendering techniques do not treat Z-fighting and ren-

der only one of the fragments that possess the same depth value. This results in dotted

or dashed lines or heavily speckled surface areas. In this context, Z-fighting cannot be

totally avoided and may be reduced by using a higher depth buffer resolution and inverse

mapping of depth values in the depth buffer [27] or using depth bias [52]. Multi-fragment

capturing techniques are even more susceptible to Z-fighting, because they need to exam-

ine all fragments (even those that are not visible) in a certain order (ascending, descending

or both) before deciding what to render. Thus, they may encounter multiple Z-fighting

triggered liabilities per pixel (see Figure 1.5).

(a) (b) 

Figure 1.4: Illustrating unpleasant effects when rendering (a) intersecting or (b) over-

lapping surfaces on popular modeling programs such as (a) Blender 2.5 and (b) Google

SketchUp 8.

Storing multiple fragments efficiently in a single geometry pass in terms of time and

space is a challenging task. A-buffer [17] was the first method to capture all fragments

per pixel based on variable-length lists during geometry rasterization, followed by a post-

sorting process that correctly reorders fragments by depth. An actual GPU-accelerated

implementation of the A-buffer based on atomic memory operations was introduced

in [167]. The algorithm scales well and runs in linear time on the number of gener-

ated fragments, but its performance degrades rapidly in cases where heavy access on the

GPU shared memory is necessary. If fragment overflow occurs, they propose to dynami-

cally reallocate memory and then re-render the scene. Otherwise, much of the allocated

memory goes unused. Moreover, FreePipe [90, 29] maintains multiple fragments using

constant-size per pixel vectors. Despite its high computation speed, it suffers from large

and potentially unnecessary memory consumption.

Several variants and optimizations [97] have been proposed recently to simulate the be-

havior of the A-buffer architecture with reduced memory requirements. k -buffer facilitates
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Figure 1.5: Illustrating the values of the popular winding number (used for in/out classi-

fications) when ray casting for (a) shadow volume computations and (b) CSG modeling.

Red-painted values highlight erroneous computations (in cases where only one of the two

coplanar fragments is successfully captured).

novel approaches to multi-fragment rendering by maintaining the k-nearest fragments on

the GPU. Various alternatives have been proposed to alleviate its memory hazards and to

avoid completely or partially the necessity of geometry pre-sorting. However, that comes

with the cost of excessive memory allocation and depth precision artifacts.

1.3 Related Work

This section presents a brief summary of prior art, focusing on the methods most closely

related to the methods covered in this thesis. Readers may refer to Chapter 2 for a

detailed mathematical and multi-layer rendering background.

1.3.1 Clustering Methods and Feature Space

Several approaches have recently adapted conventional static segmentation algorithms [130]

to work with 3D deforming meshes exploiting the analysis of the motion information.

While the output depends on the type of application, the main goal of segmentation is

to partition the animated mesh into regions with similar motion characteristics [83]. Ta-

ble 1.1 summarizes the global segmentation methods proposed in the last decade to assist

several applications. More specifically, it includes the feature space and the clustering

technique explored by each work.

More specifically, Du et al. [32] utilized a multi-source region growing algorithm based

on similarity of statistical variability characteristics to favor grouping between surface

regions. Similarly, Lee et al. [84] partitioned a mesh sequence into clusters with simi-

lar rigid motion growing feature clusters based on geodesic and deformation distances.
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Methods proposed by [68, 69] used uniform distribution and deformation gradients [138]

to initialize their skinning decomposition, respectively.

To this end, Le and Deng [80] replaced previous clustering methods with K-means

and used bone transformation matrices as assignment attribute. Amjoun and Straber [2]

further employed K-means based on the local similarity between the trajectories in a

cluster-defined coordinate system to assist their compression method. When the number

of resulting clusters is unknown a priori, mean-shift clustering was applied based on

rotation matrices [55] and geometric invariant feature vectors [85] to segment animated

objects into near-rigid components.

Works of [126] and [157] derived a bottom-up hierarchical clustering by merging (ini-

tially per facet assigned) clusters until one node remains based on rigid and affine trans-

formation metrics, respectively. Conversely, Gunther et al. [41] applied a top-down hierar-

chical approach to break mesh down into sub-meshes with similar affine motion. Starting

from one cluster which represents the entire object, a partition is created by segmenting it

into two or more components. On the other hand, Arcila et al. [4] proposed to incremen-

tally refine the final segmentation as a new pose arrives by splitting current components

into parts which present consistent rigid motion.

Research work by [142, 31] and [48, 4] exploited spectral clustering to segment a de-

formable mesh into approximately rigidly moving groups using euclidean distance and

rotation angle similarity metrics, respectively. Moreover, Feng et al. [37] used spectral

clustering for effective curvilinear feature detection and deformation discontinuity detec-

tion. Finally, Wuhrer and Brunton [162] produced a near-rigid segmentation for finding

the minimum spanning tree of the mesh’s dual graph weighted by dihedral angles of

neighbor faces.

Close to our method, co-segmentation techniques [133, 53] may be adjusted to consis-

tently partition a sequence of animated poses. However, their performance is relatively

slow and they are limited to work only on quasi-rigid animations with fixed frames and

not-editable poses.

1.3.2 Skinning and Editing Mesh Animations

Animation Compression

SMA (Skinning Mesh Animations) [55] was the first to address the problem of generat-

ing progressive skinning approximations from MAs. While their algorithm works well for

quasi-rigid input animations enabling hardware-accelerated rendering and efficient anima-

tion processing, suboptimal approximations have been observed when applied to highly

deformable regions because they lack the near-rigid structure for skinning. SAD (Skin-

ning Arbitrary Deformations) [68] presented optimal skinning approximations of highly

deformable animations exploiting dual quaternions advantages [67] with the cost of higher

preprocessing times and data storage due to the large number of required proxy-joints.

Moreover, their uniform mesh clustering often leads to unpleasant artifacts on articulated
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Prior Art Clustering Method Feature Application

[131] Region Growing Euclidean & Angular distances Metamorphosis

[124] Clustered PCA ⋆ Euclidean distance Compression

[155] Clustered PCA ⋆ Euclidean distance Editing

[32] Region Growing Variability characteristics PSDM †

[84] Region Growing Geodesic & Deformation Segmentation

[69] Region Growing Deformation gradients Skinning

[68] P-center Euclidean distance Skinning

[80] K-means Affine motion Skinning

[2] K-means Trajectories similarity Compression

[106] K-means Planarity Triangle Sorting

[55] Mean-shift Rotation matrices Skinning

[85] Mean-shift Geometric-invariant vectors Segmentation

[126] Hierarchical Rigid motion Skeletonization

[157] Hierarchical Affine motion Skinning

[41] Hierarchical Affine motion Ray Tracing

[4] Hier. + Spectral Rigid motion Segmentation

[142] Spectral Euclidean distance Animation Collage

[31] Spectral Euclidean distance Skeletonization

[48] Spectral Rotation angle Skeletonization

[37] Spectral Geodesic & Deformation Geometry Images

[162] MST ‡ Dihedral angle Segmentation

Table 1.1: Summary of the major global segmentation techniques. ⋆ : Principal component

analysis. † : Piecewise statistical deformable model. ‡ : Minimum spanning tree.

animations and highly detailed animated regions because it does not attempt to capture

important parts of the animation. Subsequently, Xian et al. [163] reduced the dimensions

of the SAD linear system substantially by representing animated meshes as progressive

decimated models. As a result, the fitting time is reduced at the expense of a signif-

icant increase of the fitting error. FESAM (Fast and Efficient Skinning of Animated

Meshes) [69] produced more accurate approximations of arbitrary deformations without

any corrective technique in a fraction of the time than previous methods. However, this

method supports spatial but not temporal correlation and cannot preserve locality since

it does not use spatially consistent clustering. Extensive research has investigated how to

convert MAs into skeletal-based animations [126, 31]. Extracting a skeleton and skinning

weights enables modifications using the full repertoire of already existing editing tools

for skeletal animation. However, these methods cannot support animations that lack any

apparent or inherent skeletal hierarchy.

Various animation compression techniques have been successfully applied to mesh se-

quences [111]. Different techniques have been presented offering significant animation

compression based on principal component analysis (PCA) [2], clustered PCA represen-
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tations [124], wavelet approaches [42, 109], prediction coding [64] and geometry image

coding techniques [37].

Although these methods deliver efficient compression and some of them provide fast

GPU reconstruction and rendering [124, 37], robust mesh segmentation [124, 2, 37] and

level of detail control [37], they mainly focus on optimal data reduction. Thus, such

representations cannot be combined with a real-time skinning system, disallowing further

hardware accelerated operations to be performed directly.

Animation Editing

Previous skinning mesh animation methods [55, 68, 69] do not focus on editing but rather

on limiting bandwidth requirements for fast GPU rendering. In particular, SMA and SAD

frameworks allow limited editing, either by manually modifying the bone transformations

for each frame, or by adding small changes at the rest-pose. However, these editing tools

cannot be applied in conjunction with skinning corrections, resulting at sub-optional

edited approximations. Similarly, FESAM cannot support editing operations due to the

rest-pose position optimization.

Jia et al. [58] proposed a fast method to transplant different sources of motion to

skinned meshes without extracting a hierarchical bone structure which makes it applicable

to arbitrary skeletal SMA. Based on the same idea, they also devised an SMA editing

tool which allows users to edit frames interactively. Editing can then be propagated

to all subsequent frames. Dutreve et al. [33] presented a method to add fine details,

such as wrinkles and bulges, on a virtual face animated by common skinning techniques.

However, it is limited to facial animations. Significant research has been conducted on

editing operations on dynamic meshes [73, 165, 139]. Despite the high visual quality of

the resulting edited animations, the main advantages of skinning (i.e. compact animation

representation combined with efficient GPU rendering) are not met.

1.3.3 Multi-fragment Rendering

Efficient capturing of global information of the scene is an important feature in many

graphics applications for simulating multi-fragment effects all of which require operations

on more than one fragment per projected pixel area. Fragment level techniques work

by sorting surfaces viewed through each sample position, avoiding the sorting drawbacks

that occur in object/primitive sorting techniques [123, 134] (for example geometry inter-

penetration, primitive splitting, support of dynamic scenes) or hybrid methods that order

the generated fragments by exploiting spatial coherency [160, 39, 18]. These algorithms

can be classified in two broad categories, those using depth peeling and those employ-

ing hardware implemented buffers, according to the approach taken to resolve visibility

ordering [97].
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Depth Peeling

Given the limited memory resources of graphics hardware, multi-pass rendering is often

required to carry out complex effects, often substantially limiting performance. Prob-

ably, the most well-known multi-pass peeling technique is front-to-back depth peeling

(F2B) [36], which works by rendering the geometry multiple times, peeling off a sin-

gle fragment layer per pass. Dual depth peeling (DUAL) [8] speeded up multi-fragment

rendering by capturing both the nearest and the furthest fragments in each pass. Finally,

bucket uniform depth peeling (BUN) [89] extended dual depth peeling by extracting two

fragments per uniform clustered bucket. To reduce collisions at scenes with highly non-

uniform distributions of fragments, they further proposed to adaptively subdivide depth

range (BAD) according to fragment occupation [135] at the expense of extra geometry

passes and larger memory overhead.

However, all currently proposed depth peeling techniques cannot deal with fragments

of equal depth, thus detecting only one of them and missing the others. A number of

solutions have been introduced to alleviate coplanarity issues in depth peeling. Cole and

Finkelstein [25] proposed id peeling, which addresses artifacts where lines obscure other

lines by allowing a line fragment to pass only if its index is lower than the highest index at

the corresponding pixel in the previous iteration. Despite its accurate behavior, it peels

only one fragment per peeling iteration and cannot support rendering of occluded edges.

Recently, Busking et al. [13] introduced coplanarity peeling extending F2B with in/out

classification masking. However, it can only distinguish coplanar fragments between dif-

ferent objects that do not self-intersect.

Hardware Buffers

On the other hand, buffer-based methods use GPU-accelerated structures to hold multi-

fragments (even coplanar) per pixel. Extending Z-buffer [20], where the closest-to-viewer

fragment is stored, A-buffer (AB) [17] was the first method to capture all fragments

per pixel in a single geometry pass using variable-length lists per pixel. Yang et al.

introduced an actual implementation of A-buffer on the GPU by performing concurrent

linked list construction (ABLL) [167]. However, its performance degrades rapidly due to

the heavy contention and the random memory accesses when constructing and assembling

the entire fragment list, respectively (see Figure 2.6 (b)). A memory-friendly variation of

this algorithm was described in [30], where paged per-pixel linked-lists (ABLL−P ) improve

caching and data bus occupancy.

There have been a few attempts to perform the entire rasterization process using a

software graphics pipeline [90, 108]. Liu et al. [90] introduced a complete CUDA-based

rasterization pipeline (FreePipe) maintaining multiple unbounded fragments per pixel in

real-time. To supersede pixel level parallelism, Patney et al. [108] extends the domain

of parallelization to individual fragments. However, both methods limit user to switch

from the traditional graphics pipeline to a software rasterizer. FreePipe has been realized

using modern OpenGL APIs (ABFP ) [29]. The major limitations of this class are first,
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the potentially large and possible wasted memory requirements due to their strategy to

allocate the same memory for each pixel (see Figure 2.6 (a)) and second, the necessity of

an additional full-screen post-processing pass to sort the captured fragments.

To avoid limitations of constant-size array and linked lists structures, several works

organized linearly memory into variable contiguous regions for each pixel as shown in

Figure 2.6 (c). However, the need of an additional rasterization step results in performance

downgrade when compared to ABFP . Peeper [110] computed buffer offsets for linearising

A-buffer storage based on the maintenance of a fragment counter pass and a subsequent

prefix sum on the fragment counter data. However, the order of this algorithm depends on

the active screen dimensions resulting in a performance downgrade even when rendering

sparse scenes in high resolutions. Closest to this thesis lies the l-buffer architecture [87]

that exploits the sparsity in the pixel space. However, a serialized process on the used

pixels is performed to compute the memory offsets for each pixel.

Regardless of the data structure, the aforementioned approaches suffer from (i) mem-

ory overflows resulting from the unbounded buffer needed to store all generated fragments,

and (ii) performance bottlenecks arising when the number of per-pixel fragments to be

post-sorted increases significantly. Various techniques have been proposed to simulate the

behavior of the A-buffer architecture with reduced memory requirements. F-buffer [95]

and R-buffer [161] replaced the linked list structure with a FIFO buffer to capture all in-

coming fragments. Z3-buffer [61] set an upper bound for the number of fragments stored

per pixel. k -buffer (KB) [14, 6] reduced memory requirements capturing the k -closest

to the viewer fragments in a single geometry rasterization. However, it is susceptible

to disturbing flickering artifacts caused from read-modify-write hazards (RMWH) dur-

ing fragment insertion updates. Liu et al. [88] extended this work to a multi-pass ap-

proach (KB-Multi) achieving robust rendering behavior with the trade-off of low frame

rates. Moreover, Bavoil and Mayers [105, 8] eliminated most of the memory conflicts by

performing stencil routing operations (KB-SR). This approach avoids RMWH but is in-

compatible with hardware supported multi-sample anti-aliasing (MSAA) and additional

stencil operations. Finally, Zhang [169] explored a memory-hazard-aware solution (KB-

MHA) based on a depth-error correction coding scheme. In practice however, they cannot

guarantee correct results in all cases. The image quality of this class of methods is highly

dependent on a coarse CPU-based pre-sorting in primitive-space which eliminates the ar-

rival of out-of-order fragments. Conversely, Wang and Xie [158] proposed to partitioning

the input scene into components with a few layers and then rendering them individually

in order to fit into the limited KB-SR buffer size. However, this comes with the limitation

of non-supporting animated scenes and having limited order-dependent applicability.

Multi depth test scheme (KB-MDT), developed in both CUDA [90] and OpenGL [96]

APIs, guarantees correct depth order results by capturing and sorting fragments on the fly

via 32-bit atomic integer comparisons. Since 64-bit atomic operations are not supported

by available APIs to update the depth and color buffers simultaneously, a costly additional

geometry pass is therefore suggested. Furthermore, noisy images may be generated due
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to the lost precision when converting floating depth values of close fragments. Recently,

Salvi [121] extended original k -buffer to avoid fragment racing by employing hardware-

aware pixel synchronization (KB-PS). However, this method is currently compatible only

with graphics cards based on the Haswell architecture.

Finally, Yu et al. [168] proposed two linked-list-aware solutions to accurately com-

pute the k -foremost fragments. The idea of the first one is to capture all fragments by

initially constructing ABLL, followed by a step that selects and sorts the k -nearest frag-

ments (KB-ABLL). On the other hand, the second approach directly computes depth-

ordered per-pixel linked lists avoiding the unnecessary A-buffer construction (KB-LL).

Despite the fact that the second approach requires less storage, fragments are sparsely

stored in graphics memory causing the additional allocation of contiguous blocks of mem-

ory.

Finally, readers may refer to a comprehensive survey [97] for a detailed description of

the pros and cons in terms of memory and performance of many of the aforementioned

alternatives.

Rendering Effects

Interior Visualization. Visualising the interior of solids has been attempted using clip-

ping, wireframe drawing, capping and volume and transparency rendering. Hidden edges

and silhouettes may be overlaid with a shaded rendering of the visible surfaces [119].

Wireframe rendering has been used prior to graphics hardware rasterization techniques.

Baerentzen et al. [5] presented an efficient approach to wireframe drawing combined with

antialising and hidden line removal. Surface transparency and depth ordering [8] may

be used to modulate the color based on the translucent surfaces seen through a pixel.

Volume rendering may be used to modulate color based on the thickness of solid layers

traversed by a ray from the viewpoint [159]. Clipping is commonly used for inspecting the

interior of solids (see Figure 1.6(c)). A portion of the boundary may be removed using

clipping planes or solids, exposing hidden surfaces and potentially back-facing portions of

the boundary. Because such images may appear confusing to the casual viewer depending

on the illumination and the complexity of the interior, capping [117] enables the user to

see portion of non self crossing manifold cross hatching the sliced (clipped) parts (see Fig-

ure 1.6(d)). Nooruddin and Turk [107] introduced a method for automatically classifying

and visualizing the interior of polygonal models. In this work, a polygon is characterized as

interior if it is not visible by any viewing directions started from a point outside the model.

Self-trimming. Static interior classification of self intersecting curves has been studied

extensively in 2D (see for example [50]). Suzuki et al. [141] presented a technique for cre-

ating “1-simple” interior surfaces from dual cycles containing at most a single pair of self

intersecting curves. This static technique treats an interesting albeit restricted class of sur-

faces. Samoilov and Elber [122] presented two techniques for eliminating self-intersections

in planar curves. The authors introduced sophisticated techniques for eliminating self-

16



intersections demonstrating the importance of having rendering alternatives other than

modifying the geometry to avoid self-intersections. Finally, this work offered a promising

higher dimension perspective for examining and classifying 2D curves. When the bound-

ing loops of several connected regions of the plane evolve over time and self-overlap, one

may wish to decide automatically which region should be visible at each pixel. The union

of the boundaries of these regions decomposes the union of the regions into cells. A valid

association of each cell with a unique region must satisfy constraints that ensure that the

arrangements can be realized by placing and interleaving physical cut-out regions on a

plane [98].

The problem becomes more complex when these regions are connected, and hence can

no longer be differentiated. In particular, several authors have addressed the problem of

defining the interior of self-crossing curves of a particular class, which may be character-

ized by stating that the curve is the boundary of a topological disk that does not contain

any fold-over (i.e. each portion of that disk is front facing). The issue of deciding whether

a self-crossing curve is in this class and whether it is the projection of the boundary of

a front-facing disk in 3D has been discussed by [34]. A simple approach that works well

in practice has also been proposed by [103]. Figure 1.6(b) illustrates the boundary that

should be trimmed away (painted in pink) of a self-crossing surface.

Direct CSG Rendering. A complex solid may often be designed as a Boolean combina-

tion of other solids. The design sequence may be captured as a CSG representation [114]

that defines a Boolean expression with union, intersection, and difference operators and

with primitive solids as operands. In early solid modeling systems [154] the primitives

were restricted to simple quadrics (block, sphere, cone, cylinder and torus). Computing

the boundary of solids defined in CSG with more general primitives (triangle meshes,

NURBS, subdivision surfaces) is computationally expensive and numerically delicate. To

address this problem, several screen-based techniques have been proposed for rendering

CSG models directly on the GPU by classifying surfels against each primitive. These

techniques consider, for each pixel, the set of candidate surfels (surface points) on the

boundary of each layer of each primitive that project onto the pixel. They use several

passes to generate layers of these candidate surfels. For each layer, they classify the surfels

by trimming them against each primitive and combine these trimming results to decide

which surfels are on the boundary of the CSG solid and which of these are visible.

Some approaches [35, 40, 57] use a disjunctive form (union of intersections) formulation

of the Boolean expression to simplify trimming. A surfel lies on a product if it is the

furthest of the front facing surfels at that pixel and if it lies in front of all back facing surfels

at that pixel [57]. Unfortunately, the number of intersections (products of a disjunctive

form) may grow exponentially with the number of primitives. To avoid this complexity

exposure, Constructive Solid Trimming (CST) [44] trims the boundary of each primitive

against the Blist [43] of its active zone [120], which defines the solid where the boundary

of the primitive contributes to the boundary of the solid. Recently, Rossignac showed that
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6 stencil bits per pixel suffice for rendering arbitrarily complex CSG models, by providing

a linear cost algorithm that swaps left and right operands of the Boolean expression of

n literals so that it may be evaluated using O(log log n) space [115]. The boundaries of

the CSG primitives may be defined as subdivision surfaces [59], which reduces the cost of

transferring detailed geometry to the GPU. Recently, Zhao et al. [170] introduced a fast

hardware assisted method for approximately reconstructing CSG results using rasterized

views. However, these methods are not capable of handling self-trimmed surfaces as these

shown in Figure 1.6(e,f).

(a) (b) (c) (d) (e) (f) 

Figure 1.6: (a) The initial non self crossing surface. (b) After applying a set of concurrent

disjoint deformations on (a), we use pink to illustrate boundary that should be trimmed

away. (c) Rendering the same self trimmed surface using clipping and (d) using capping.

(e and f) Rendering of Boolean combinations of (b) with an orthogonal parallelepiped.

1.4 Thesis Contributions

This dissertation deals with four significant problems: (i) segmentation and (ii) skin-

ning of animated meshes and (iii) real-time rendering and trimming of (self)-intersecting

deformable surfaces using (iv) multi-fragment rendering techniques.

Transforming an MA into a skinning representation is mostly guided by a deformation-

driven segmentation to distribute the skeletal joints and determine the influencing vertex

weights. However, current segmentation and skinning methods cannot adapt the final

result when the mesh sequence is being modified [19]. To this end, we investigate a pose-

to-pose scheme for segmentation and skinning MAs which enables the support of editing

operations at arbitrary animation frames.

Correct detection and trimming of (self)-intersecting animated surfaces in the geometry-

space is an extremely costly operation. Finding the intersection curves and comput-

ing the final trimmed mesh make it unsuitable to support real-time performance dur-

ing deformation animations or interactive editing operations. To this end, we investi-

gate classification rules to guide efficient collision detection and trimming in the image

space, realized through a multi-fragment rasterization framework, without computing

any geometry-interpenetrations between (individual) deformable objects. Since capturing

multiple fragments efficiently on the GPU is a challenging task in terms of time, space and

robustness [97], we study the multi-fragment rendering problem in various perspectives:
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• reduction of fragment-contention: performance of hardware-accelerated A-buffer [167]

degrades rapidly in cases where heavy access on the GPU shared memory is neces-

sary.

• elimination of z-fighting artifacts: multi-pass rendering methods [36, 8] are suscep-

tible to noisy rasterization when two or more fragments have identical depth values.

• avoidance of fragment-overflow : a class of A-buffer variants [90] utilize unbounded

data structures resulting in potentially large and possible wasted memory require-

ments.

The structure of the rest of the thesis is as follows. In Chapter 2, we provide the im-

portant preliminaries regarding the problems of segmenting and skinning MAs, and the

background of multi-fragment rendering frameworks. A brief discussion of the graphics

rendering pipeline is also offered. Finally, we include a detailed overview of the related

state-of-the-art approaches.

In Chapter 3, we present a generic framework for efficiently generating multi-resolution

segmentations that account for both articulated and highly-deformable MAs. Based on

the observation that only a limited part of the surface region is modified from frame

to frame, we built an over-segmentation by combining precomputed per-pose partition-

ings. The desired segmentation resolution is dynamically chosen by the user applying a

fast refinement process which aims at cleaning “noisy” segments created when successive

partitionings are merged. A temporally-coherent edge collapsing solution is offered to

refine the segmentation graph guided by an area-aware criterion. A smooth clustering

transition from frame to frame is further offered providing perceptual consistency be-

tween consecutive poses. Finally, we have included extensive comparative results with

respect to computation cost and skinning quality. This work, “Pose Partitioning for

Multi-resolution Segmentation of Arbitrary Mesh Animations”, has been accepted to be

presented at Eurographics 2014 [152].

In Chapter 4, we introduce a novel pose-to-pose skinning technique that aims at pre-

serving temporal coherence. This scheme results in reducing the approximation error and

further supporting arbitrary pose editing. Editing can then be smoothly propagated at

the subsequent frames generating new deforming mesh sequences without altering the

skinning representation. Although fitting is performed from pose to pose, a reproduc-

tion scheme from the rest pose to an arbitrary pose can be produced efficiently. Finally,

we present optimization techniques yielding results comparable to previous approaches

in terms of accuracy and performance. This work, titled “Pose-to-Pose Skinning of

Animated Meshes”, had been accepted as poster at SCA 2011 [145].

In Chapter 5, we introduce an efficient and memory-friendly GPU-accelerated A-buffer

architecture for multi-fragment rendering. S-buffer organises memory into variable con-

tiguous regions for each pixel by exploiting fragment distribution for precise allocation

of the needed storage and pixel sparsity for computing the memory offsets for each pixel

in a parallel fashion. An experimental comparative evaluation of the proposed technique
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over previous multi-fragment rendering approaches in terms of memory and performance

is provided. This work, “S-buffer: Sparsity-aware Multi-fragment Rendering”, had been

accepted as short presentation at Eurographics 2012 [149].

In Chapter 6, we introduce image-based coplanarity-aware algorithms for reducing

(may miss fragments but are usually faster), eliminating (guaranteed to extract all frag-

ments) and highlighting z-fighting flaws in scenes suffering from coplanar geometry. We

adapt previously presented single-pass and multi-pass rendering methods, providing alter-

natives for both commodity and modern graphics hardware. Inspired by occlusion culling,

an optimization is further introduced improving the performance when multi-pass render-

ing is performed on multiple deformable objects. We present quantitative and qualitative

results with respect to performance, space requirements, and robustness. Visual output is

further provided illustrating the effectiveness of our variants over the conventional meth-

ods for a number of Z-fighting sensitive applications. This work, titled “Depth-fighting

Aware Methods for Multifragment Rendering”, has been published in TVCG journal [150].

An early version of this research, titled “Z-fighting aware Depth Peeling”, had also been

accepted as poster at SIGGRAPH 2011 [148]

In Chapter 7, we introduce k+-buffer, an improved GPU-accelerated k-buffer frame-

work, which handles memory-hazards and depth precision conversion artifacts, and avoids

geometry pre-sorting and the requirement for unbounded memory. Two GPU-accelerated

data structures have been developed: the max-array and the max-heap. These bounded-

memory data structures maintain accurately the k-foremost fragments per pixel in a single

geometry pass avoiding memory-overflow. A consecutive geometry rendering may be ex-

ecuted to enable precise memory allocation. Extensive experimental comparison demon-

strates the superiority of our framework as compared to previous k-buffer alternatives with

respect to storage requirements, performance and image quality. This work, “k+-buffer:

Fragment Synchronized k-buffer”, has been accepted for presentation at I3D 2014 [151].

In Chapter 8, we present rendering algorithms for (self)-crossing surfaces and in par-

ticular we explore static and dynamic semantics utilized to perform efficiently trimming,

clipping, capping and boolean operations. Fast collision detection can further be real-

ized using this framework. This classification and rendering is accomplished in real-time

through a rasterization process without computing any self-intersection curve, and hence

is suited to support complex MAs. We further adapt several state of the art multi-

fragment techniques to achieve efficient rendering of self-trimmed surfaces and we provide

comparative results in terms of time and memory requirements. This work, titled “Direct

Rendering of Boolean Combinations of Self-Trimmed Surfaces”, has been published in

CAD journal [116].

Finally, Chapter 9 provides an overall review of the results of our research and indicates

limitations and interesting directions for future work.
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Chapter 2

Background Material and

State-of-the-art

2.1 (Self-intersecting) Mesh Geometry

2.1.1 Classification Rules

2.2 Mesh Segmentation

2.2.1 Deformation Gradient

2.3 Mesh Skinning

2.3.1 Rigid Skinning

2.3.2 Linear Blend Skinning

2.3.3 Dual Blend Skinning

2.3.4 Skinning Mesh Animations

2.4 Graphics Rendering Pipeline

2.4.1 Hardware Occlusion Queries

2.4.2 Multi-fragment Rendering Frameworks

The purpose of this chapter is twofold: first, we recapitulate the mathematical and graph-

ical tools that will be important in the following chapters. Second, we present a broader

body of related work, discussing also classification rules and alternative approaches to

skinning mesh animations and multi-fragment rendering.
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2.1 (Self-intersecting) Mesh Geometry

Let M be a three dimensional (3D) boundary surface mesh of fixed connectivity rep-

resented by a graph M = (V,E, F ), where V = {vi|vi ∈ R
3, 0 ≤ i < n} is the

set of vertices (|V | = n), E = {eij = (vi, vj)|vi, vj ∈ V, i 6= j} is the set of edges,

F = {fijk = (vi, vj, vk)|vi, vj, vk ∈ V, i 6= j, i 6= k, j 6= k} is the set of faces. A normal

vector ni at each vertex vi is computed as the normalized average of the surface normals

of the faces that contain that vertex. Each face in a mesh has a perpendicular normal

vector. A vertex in a closed surface is visible only if it is front-facing : the surface in this

vertex is oriented towards the observer. If cos(θ) > 0 the vertex is front-facing (otherwise

is back-facing), where θ equals to the angle between the normal vector ni and the vec-

tor representing the viewing direction. A scene is a collection of meshes compromising

everything that is included in the environment to be rendered.

Formally, a surface M is manifold when it is a compact and orientable two-manifold

without boundary. We say that M is self-crossing when its immersion contains non-

manifold self-intersection edges where M passes through itself, as shown in Figure 1.2.

Hence, two or more different points of M coincide at each point of a self-crossing curve

of the immersion. We say that M is a boundary when M is the boundary of some solid

(closed-regularized point set) that we denote I(M) and call the interior solid of M . For

a set of vertices V , the minimum bounding box refers to the 3D box with the smallest

measure volume within which all the points lie.

Consider an initial manifold boundaryM that is not self-crossing and a continuous pro-

cess Dt that deforms this surface while keeping it an immersed sub-manifold. If pt denote

the instance (pose) Dt(M) of the deformed surface at time t then A = (p0, p1, p2, . . . , pk)

denotes the animation sequence with k animation surface poses p1, p2, . . . , pk and a rest-

pose p0, and vtj denotes the j -th vertex of pose pt.

Definition 2.1. Let A = {pt = (Vt, Et, Ft), t = 1, . . . , k} be a mesh sequence: Vt is the set

of vertices of the Dt(M) deformed mesh of the sequence, Et its the set of edges and Ft its

set of faces. If the connectivity is constant over the whole sequence, that is to say if there

is an isomorphism between any Ei and Ej, 1 ≤ i, j ≤ k , then MA is called a temporally

coherent mesh sequence (TCMS). Otherwise, MS is called a temporally incoherent mesh

sequence (TIMS).

Assume that pt is self-crossing, then we say that pt is a Self-Crossing Surface (SCS),

i.e., a compact, immersed, and orientable surface with transverse self-intersections. Dif-

ferent semantics have been introduced for defining the solid that M represents, which

we call its interior I(pt), and hence also its trim T (pt), which is the subset of pt that is

the boundary of I(pt). We say that T (pt) is a Self-Trimmed Surface (STS). The interior

along with the STS define a manifold or a non-manifold object.

An SCS M partitions the 3D space W into open full dimensional components Ci (i.e.,

the maximally connected components of W −M), one of which is infinite (denoted here

by C0). Each component is classified as either interior (also denoted as in), i.e., part of
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the interior of the solid, or exterior (also denoted as out). The solid I(M) represented by

M is the closure of the union of all interior components. To obtain a bounded solid, C0

should not be included, and hence is classified as out. Other components may be classified

as in or out, depending on the chosen rule. The trim, T (M), is the boundary of I(M).

Hence, trimming amounts to discarding portions of M that separate either two interior

or two exterior components.

2.1.1 Classification Rules

Various rules (semantics) may be used to associate a solid I(M) with an SCS M . One

may conceive interesting rules that compute new bounding surfaces for solid I(M) (for

instance by using the convex hull of S or a visibility graph). Here, we focus on rules that

have the boundary diminishing property, which states that the boundary T (M) of I(M)

must be a subset of M . Note that this property is satisfied by Boolean and regularized

Boolean operations [143, 114].

In 2D, the index (also called winding number) w(p, C) of an oriented, closed-loop,

self-crossing curve C around a given point p that is not on C is an integer representing

the total number of times the curve travels counter-clockwise around the point. The

winding number depends on the orientation of the curve, and is by convention negative if

the curve travels around the point clockwise. All points in a given component (maximally

connected component of the complement of C have the same winding number. The

infinite component has a winding number of 0. One may easily keep track of the winding

number by propagating it from one component to an adjacent one. Crossing the curve

once increments or decrements the winding number, depending on the orientation of the

curve relative to the direction of the crossing.

In three dimensions, the index w(p,M) of a point p with respect to an SCS M may

be defined as follows: We assume that p is not on M . Consider any path P from infinity

to p. Let ki be the number of times that P enters M (i.e., crosses the boundary in a

direction opposite to the outward normal) and ko be the number of times that P exits

M (i.e., crosses the boundary in a direction confluent to the normal). Then, w(p,M) =

ki − ko. Figure 2.1 shows an SCS cross section (green self-crossing polyline) with the

triplet (ki, ko, w(p,M)) indicated for each area, where ki and ko were computed from

the left. Note that points of the same component may have different ki and ko (for

example when counting from the bottom) but they have the same index. Note that in

situations where P simultaneously crosses several neighborhoods of M , the crossing of

each neighborhood must be accounted for separately. For conciseness, we denote w(p,M)

by w(p) or by simply w. Heisserman [50] provides an equivalent definition of the index

(winding number) as the number of times the surface encloses a point.

The index is the signed generalization of the overlap count which is defined as the

unsigned count of the number of fragments (depth, color, and normal values of M asso-

ciated with points of T that project on a pixel center) that are generated by rendering

scenes where I(M) is capped [94, 117] and combined with other shapes through CSG

23



���

�����	�

�	�
�	� ���
��� ���	�	�

�	����	�
������
�

�	�	�
�

�
�	��	�

�	�	�
�

�����
�

�	�
�	�

�	�	�
�

���	�	�

���	�	� �����
�

���	�	�

�	�	�
�

�����
�

�����
�

�
�������������������

���������

�
��������������������
�����

�

�

�

�������� ���

��������
��������
��
��������!��������

�	�
�	�

�	�
�	�

�	�
�	�

�	�
�	�
�
�
�
� �����
�

�	�	�
��
�
�
�

Figure 2.1: (a) An SCS M . (b) A cross section of M on plane z = zc illustrated with

thick green transparent line with normal vector orientation marked. We indicate the

values of the triplets (ki, ko, w) using (−∞, y, zc) as point at infinity for determining the

characterization for a point p(x, y, zc). The horizontal dashed red rays originating from

the points at infinity along with the green polyline partition the plane into areas with

the same triplet value. Note that ki, ko depend on the selection of the point at infinity,

whereas the winding number is independent of this choice.
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operations [43, 44]. Capping returns the intersection of I(M) with a 3D region R that is

the intersection or the union of (usually) linear half-spaces and displays the caps, i.e., the

portions of the boundary of R in I(S). Note that the index is in general not equal to the

overlap count, which is defined at a point p as the number of times a specific ray from p

to infinity hits the surface. When the ray is aimed at the viewpoint, the overlap count

may be computed on the GPU for each pixel. Note that the parity of the overlap count is

independent of the direction of the ray, identical to the parity of the index, and constant

throughout a component.

We can view self-trimming classification rules as a generalization of Boolean opera-

tions. Consider the simple situation of Figure 2.2 (top) where an elongated initial zero-

genus shape I bounded by S is deformed to self-penetrate. One could split I into two

disjoint parts I1 and I2, deform one of them, and define the desired result as I = I1 ∪ I2
which has genus 1. Hence, in this case, the self-trimming, which takes the deformed S

and produces the boundary T of I is an extension of Boolean union. Now, consider the

example of Figure 2.2 (bottom) where the initial flattened zero-genus shape is deformed

so that S crosses itself. Here, one could decompose the complement of the initial shape

in two disjoint parts, deform them, union them, and take the complement to obtain I. De

Morgan’s laws state that !(!A∪!B) = A ∩ B. Hence, we suggest that this operation is an

extension of the Boolean intersection. It produces a set that also has genus one.

Decomposing the complement 

in two disjoint parts C1 and C2 

I1 I2 deformed I1 I2 deformed I1  I2 

C1 

¬ (deformed C1  C2) Original component 

C2 

deformed C1 

C2 

Figure 2.2: Self trimming as generalization of Boolean operations.

2.2 Mesh Segmentation

Using a subset of elements from the faces F , edges E or vertices V , an induced sub-

mesh M ′ ⊂ M can be created as follows. Let S be the set of mesh elements which is

either V , E or F . Let S ′ ⊂ S be a subset of mesh elements, and let V ′ be the set of all

vertices which are included in (or are) the elements in S ′. A sub-mesh M ′ is defined as

the mesh M ′ = {V ′, E ′, F ′}, where E ′ = {(vi, vj) ∈ E|vi, vj ∈ V ′} are all edges in which
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both vertices are a part of V ′, and F ′ = {(vi, vj, vk) ∈ F |vi, vj, vk ∈ V ′} are all faces in

which all vertices are a part of V ′. The basic definition of a static mesh segmentation is

therefore [130]:

Definition 2.2. Let M be a 3D mesh surface, and S the set of mesh elements which is

either V , E or F . A static segmentation (also named as partitioning or clustering) of

M is the set of sub-meshes C(M) = {C0, . . . , C l−1} induced by a partition of M into l

disjoint subsets (clusters).

As can be seen, S can either be the vertices V , edges E or faces F of the mesh M

and the partitioning of S induces a segmentation of M . Segmentation algorithms usually

partition the faces of the mesh (i.e. S = F ), some partition the vertices (S = V ), and few

the edges (S = E). Note that if S = V or S = E then some faces (that include vertices

from different parts of S) will not be part of any sub-mesh Cj , and must be joined to

one of the adjacent parts.

The key question in all mesh segmentation problems is how to partition the set S.

Obviously, this relies heavily on the application in mind. Shamir [130] poses the seg-

mentation problem as an optimization problem by defining a criterion function of the

partitioning of M,J : 2M → R for each application in the following manner:

Definition 2.3. Given a mesh M and the set of elements S ∈ {V,E, F}, find a disjoint

partitioning of S into C0, . . . , C l−1 such that the criterion function J = J(C0, . . . , C l−1)

be minimized (or maximized) under a set of constraints.

A number of geometric attributes and partitioning criteria are commonly used by

many segmentation techniques to define the optimization function. The decision which

attribute to use has a significant effect on the segmentation result and is strongly linked to

the segmentation aim. The main goal when segmenting a MA is to partition the animated

mesh into regions with similar vertex motion characteristics. A pose partitioning feature

is computed from an animation pose pt and a reference pose. While the rest (p0) or the

previous pose (pt−1) is commonly used as the reference, an alternative approach is to

use an averaged rest shape [48]. In this thesis, we have utilized rotation angle distance

extracted from deformation gradients as primary segmentation measure.

In contrast to single mesh segmentation that consists in grouping mesh vertices into

spatial regions, the segmentation of a MA can have various interpretations with respect

to time and space [4]:

Definition 2.4. A coherent segmentation is a set of partitionings (clusterings) Ct(M) =

{C0
t , . . . , C

lt−1
t } of each animate pose pt of 3D mesh M , such that:

• the number l of sub-meshes is the same for all segmentations: li = lj∀i, j ∈ [0, k].

• there is a one-to-one correspondence between sub-meshes of any two meshes.

• the connectivity of the segmentations is preserved over the sequence.
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Definition 2.5. A variable segmentation is a set of partitionings Ct(M) = {C0
t , . . . , C

lt−1
t }

of each animate pose pt of 3D mesh M which is not a coherent segmentation.

A coherent segmentation, or simple segmentation, of a mesh sequence can be thought

as a segmentation of some mesh of the sequence which is mapped to the other meshes. On

the other hand, a variable segmentation solves the problem of clustering data over time,

maintaining simultaneously two conflicting criteria: (a) remain faithful to the past-data

and (b) effectively altered when moving on to future data. This application is helpful to

detect motion changes at each time step.

2.2.1 Deformation Gradient

Deformation gradient is a quantity that encloses both shape and orientation of the de-

formation. The affine transformation Φf of the fijk triangle of mesh M that contains

vertices v ∈ {vi, vj, vk} is given by [140]:

Φf (v) = Xf · v + Tf

where Xf is a 3× 3 transformation matrix which contains the rotation, scaling and skew

components of the deformation and Tf the translation component. The deformation

gradient of the triangle between its status in a pose pt and a reference pose pr is enclosed

in the Jacobian matrix:

DpΦf (v) = Xf

Note that the three vertices of a triangle (e.g {v1, v2, v3}) are not enough to describe

the deformation towards the direction perpendicular to the triangle. To alleviate this,

a fourth vertex (v4) is introduced in the direction of the triangles normal vector, with

length proportional to the edges of the triangle [138]:

v4 = v1 +
(v2 − v1)× (v3 − v1)√
|(v2 − v1)× (v3 − v1)|

The affine transformation of each facet is then described by:

Xf · v
j
i + Tf = v0i , 1 ≤ i ≤ 4, 1 ≤ j ≤ k

and in matrix form it is given by:

Xf [v
j
2 − vj1 vj3 − vj1 vj4 − vj1] = [v02 − v01 v03 − v01 v04 − v01]⇔ (2.1)

Xf = [v02 − v01 v03 − v01 v04 − v01][v
j
2 − vj1 vj3 − vj1 vj4 − vj1]

−1 (2.2)

Both rotation and stretch information can be extracted from Xf by applying polar

decomposition [132]. Performing thin singular value decomposition (tSVD) upon Xf we

get:

Xf = UΣVT = (UVT)(VΣVT) = RfSf
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where where Rf ∈ R
3×3 is the orthogonal matrix representing the rotational component,

and Sf ∈ R
3×3 is a symmetric matrix that applies stretching to the triangle before the

rotation. If the Euler angle θf is not a multiple of π, the angle can be computed from the

elements of the rotation matrix Rf as follows:

θf = arccos

(
1

2
(Rf [1, 1] + Rf [2, 2] + Rf [3, 3]− 1)

)

Finally, the rotation angle per vertex θv is computed as the number average of the angles θf
of the surrounding facets. Figure 2.3 shows a segmentation example using as partitioning

criteria the average rotation angles from all poses for a highly-deformable flapping flag.

(a) (b) (c) 

Figure 2.3: (a) Highly deformable animation of a flag under the influence of wind, (b)

normalized rotation angles computed from the deformation gradients (c) resulted segmen-

tation (each segment is painted with different color).

2.3 Mesh Skinning

In general, skeletal animation could theoretically refer to any technique that computes

shape of the skin for a given skeletal posture. However, the term skeletal animation is usu-

ally used only when there exists a direct geometric relationship between the skeleton and

skin. In our case, the deformation structure, i.e., the parameters controlling the deforma-

tion, is simply a list of 3D transformations. Traditionally, these transformations describe

the actual position and orientation of the joints in the animated skeleton. However, as has

been pointed out [55], no skeleton is actually required in skinning, the transformations

alone are sufficient.

Following Kavan’s thesis [66], we use the term skinning to refer to a skin deformation

algorithm based on

1. a reference surface mesh M : any 3D object representing the rest-pose (undeformed)

model.

2. a list of B individual rigid or affine transformations M t
1, . . . ,M

t
B: represents the de-

formation from the rest-pose p0 to a new pose pt. Each transformationM t
j influences

a surface part of the mesh M .

3. two lists of vertex indices and weights that describe which transformations influence

which part of the mesh M : For each vertex vj we have two lists of length l ≤ B. The
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lists, i1,j , . . . , il,j ∈ [1, B], and w1,j, . . . , wl,j ∈ (0, 1], are sequences of transformation

indices and non-zero weights that influence vertex vj, respectively. Weight wb,j

describes the amount of influence of transformation Mib,j on vertex vj. Weights

w1,j, . . . , wl,j must be convex, i.e., besides non-negativity, they are required to satisfy∑l

b=1wb,j = 1. Practically, it has been proved that l = 4 influences per vertex are

adequate for a satisfactory result.

Describing the movement of highly deformable objects requires the use of affine trans-

formation matrices, to capture deformations other than rotation and translation. Rigid

body motion can be used but not without penalty in the quality of the approximation,

since there is no guarantee that the deformation of a vertex is purely rigid.

When skinning is used in conjunction with a hierarchy of transformations (e.g., a

skeleton), then M t
1, . . . ,M

t
B are rigid transformations corresponding to individual joints

(nodes of the skeletal tree). In this case, the rigid transformation M t
j represents rotation

and translation of joint j from the rest-pose to the current (animated) posture pt. The

indices 1, . . . , B of transformations M t
1, . . . ,M

t
B are often called bones or joints (proxy-

bones or proxy-joints if no actual skeleton is present). Note that both the rest-pose mesh

M , the number of joints B as well as the vertex binding (indices and weights) are constant;

only the individual transformations M t
1, . . . ,M

t
B vary during an animation A with k poses

(1 ≤ t ≤ k).

In the following sections, we describe the most widely used character skinning tech-

niques, (i) linear blend skinning and (ii) dual quaternion skinning, due to its computational

efficiency and straightforward implementation in graphics hardware [9, 82, 67]. A small

discussion is also offered for a simpler skinning model which is equipped only with rigid

skinning, which means that vertices are influenced by either 0 or 1 joints.

2.3.1 Rigid Skinning

In rigid skinning [45], every motion is transferred to the mesh by assigning to each vertex vj
one bone as driver (wl,j = 1, l ≤ 1). A skin vertex is pinned in the local coordinate system

of the corresponding bone, repeating whatever motion this bone experiences. Mathemati-

cally, its deformed position from rest-pose p0 to pose pt is computed as vtj = M t
1v

0
j . Despite

its simplicity and computational efficiency, rigid skinning makes it difficult to obtain suf-

ficiently smooth skin deformation in areas around the joints. Vasilakis and Fudos [146]

introduced novel blending patch construction techniques that approximately preserve the

initial volume of the joint and ensure mesh robustness. Briefly, this approach first removes

the skin vertices of the overlapping component parts and then adds new vertices to fill in

the gap. Finally, it constructs a blending mesh that produces a smooth surface using a

robust triangulation method. To achieve real-time performance they further developed a

full GPU realization of their entire skinning algorithm [147].
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2.3.2 Linear Blend Skinning

Linear Blend Skinning (LBS) was initially presented in the game development commu-

nity [78, 79]. With LBS, we assume that M t
1, . . . ,M

t
B are represented by homogeneous

matrices ∈ R
4×4: 



n00 n01 n02 t0
n10 n11 n12 t1
n20 n21 n22 t2
0 0 0 1




where the matrix N = {nij, 0 ≤ i, j ≤ 2} is the original linear transformation and T =

(t0, t1, t2)
T represents a translation vector. The deformed vertex position is determined by

a weighted combination of the transformed positions influenced by all its assigned bones.

Mathematically the LBS algorithm is expressed as the following equation:

vtj =
l∑

b=1

wb,jM
t
ib,j

v0j ⇔ (2.3)

vtj = (
B∑

b=1

wb,jM
t
b)v

0
j , j = 0, . . . , n− 1 (2.4)

This technique naturally suffers from inherent flaws caused by elongations and inter-

penetrations especially in areas around joints since linear blending of rigid transformations

does not result in rigid motion.

2.3.3 Dual Quaternion Skinning

Several alternatives have appeared modifying the standard skinning formula, aiming at

expanding the space of possible deformations. Numerous methods have replaced the lin-

ear blending domain of rigid transformations based on the observation that curved vertex

trajectories generate more natural deformations than straight lines. Quaternions and

dual quaternions offer an alternative representation for rotation and rigid body transfor-

mations, respectively. The restriction of representing translations on a compact skinning

framework with classical quaternions [51] solved by a novel algorithm based on dual

quaternions (DQS) [68] to describe the motion of rigid bones. Similar to the way that

rotations in 3D space can be represented by quaternions of unit length, rigid motions in

3D space can be represented by dual quaternions of unit length. A dual quaternion is an

ordered pair of quaternions Q̂ = (QA, QB) and therefore is constructed from eight real

parameters. A 3D vertex vj can be represented by a dual quaternion v̂j, where ·̂ denotes

a quantity expressed as a dual quaternion. If M̂ t
1, . . . , M̂

t
B denote the dual quaternions

that represent the transformations of joints 1, . . . , B, the dual quaternion vertex v̂0j in the

rest-pose p0 is deformed to a pose pt by multiplying it with the weighted dual quaternion
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result (
∑B

b=1 wb,iM̂
j
b ) from the right and with its conjugate inverse from the left:

v̂tj =
B∑

b=1

wb,jM̂
t
b · v̂

0
j ·




B∑

b=1

wb,jM̂ t
b




−1

, j = 0, . . . , n− 1 (2.5)

When compared to matrices, dual quaternions appear to be advantageous in terms of

required storage and in composition of transformations. However, they require consid-

erably more operations to apply the transformation. For complete quaternion and dual

quaternion tutorials readers are referred to [99, 47, 67].

2.3.4 Skinning Mesh Animations

Approximating an animation sequence carried out through linear and non-linear skinning

processes to produce a more succinct representation is common in both cases of articulated

and highly deformable meshes. In general, knowing the transformation that each bone

undergoes in each pose and the amount of influence of each bone to the vertices of the

mesh, we can approximate the whole animation sequence using only the rest pose. A

global formulation for the problem of skinning approximation supporting both skinning

methods can be stated as minimizing:

n−1∑

j=0

∥∥vt
j − vtj

∥∥2, t = 0, . . . , k − 1 (2.6)

where vt
j, j ∈ [0, . . . , n), t ∈ [0, . . . , k) correspond to the original n vertex positions of the

input animation sequence.

The ERMS error metric proposed by [69] is a widely used metric to measure the mean

skinning approximation error of the animation sequence:

ERMS = 1000 ·
‖A− A′‖F

3nk
(2.7)

where A and A′ are 3k × n matrices that contain the original ({vt
j, j ∈ [0, . . . , n), t ∈

[0, . . . , k)}) and skinned approximated ({vtj, j ∈ [0, . . . , n), t ∈ [0, . . . , k)}) coordinates of

each vertex throughout the animation sequence, respectively.

2.4 Graphics Rendering Pipeline

This section presents what is considered to be the core component of real-time graphics,

namely the graphics rendering pipeline [1]. The main function of this pipeline is to

generate (render) a 2D image given a virtual camera, 3D objects, light sources, textures

and more. The process of using this pipeline is depicted in Figure 2.4. The locations

and shapes of the objects in the generated image are determined by their geometry, the

characteristics of the environment, and the placement of the camera in that environment.
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Figure 2.4: In 3D graphics, objects are created on a 3-dimensional stage where the current

view is derived from the camera angle and light sources, similar to the real world. (Image

courtesy of Intergraph Computer Systems)

The appearance of the objects is affected by material properties, light sources, textures

and shading models.

A coarse division of the real-time rendering pipeline consists of three conceptual stages:

1. application stage: driven by the implemented application and is therefore developed

in software running on general-purpose CPUs. The developer has full control over

what happens in the application stage. At the end of this stage, the geometry to be

rendered is fed to the following stage. These are the rendering primitives (points,

lines, triangles) that might eventually end up on the screen.

2. geometry stage: responsible for the majority of the per-polygon and per-vertex

operations. This stage computes what is to be drawn, how it should be drawn,

and where it should be drawn. More specifically, it deals with the model and view

transformations, projections, clipping and screen mapping. The geometry stage is

typically performed on a GPU that contains many programmable cores as well as

fixed-operation hardware.

3. rasterizer stage: generates the final image by computing the colors for the pixels

covered by visible objects (given the transformed and projected vertices with their

associated shading data). This stage is processed completely on the GPU. Pixel

p is the smallest controllable element of a screen image with [sc.width,sc.height]

resolution size. From now on, we denote as p.xy the 2D position of pixel p. More

specifically, each pixel that has its center (or a sample) covered by the triangle is

checked and a fragment f generated for the part of the pixel that overlaps the trian-

gle (this process often called scan conversion). Each triangle’s fragment properties,

e.g. color (f.color), depth (f.z), normal and more, are generated using data interpo-

lated among the three triangle vertices. Colors are represented by four-element vec-
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tor, such as (R:red,G:green,B:blue,A:alpha), where each element has range ∈ [0, 1].

We denote as pixel density pd the percentage of the pixels at the entire screen size

that have f(p) > 0, where f(p) is the number of generated fragments at pixel p.

Per-pixel shading computations (e.g. texturing) are subsequently performed using

the interpolated shading data as input. In OpenGL this stage is controlled by fully-

programmable fragment shaders. The color(s) and depth information for each pixel

is respectively stored in one or more color buffers, named multiple render targets

(MRT), and a depth buffer, and then passed on to the next stage. Merging stage is

responsible for resolving visibility via Z-testing and performing optionally various

(blending, stencil test, etc.) per-fragment operations.

This structure is the engine of the rendering pipeline which is used in real-time com-

puter graphics applications. Each of these stages is usually a pipeline itself, which means

that is consists of several substages. It is the slowest of the (sub-)stages that determines

the rendering speed, the update rate of the images. This speed may be expressed in frames

per second (FPS), that is, the number of images rendered per second.

2.4.1 Hardware Occlusion Culling

Occlusion culling is a visibility determination algorithm that is used to identify those

objects that reside in the view volume but still aren’t visible on the screen due to occlusion.

That means they are hidden by objects that reside closer to the camera. For several

generations now GPUs allow hardware accelerated methods to perform occlusion culling

in the form of occlusion queries. OpenGL provides the functionality via the extension

ARB occlusion query. This extension defines a mechanism whereby an application can

query the number of pixels (or, more precisely, fragments - pixel samples) drawn by a

primitive or group of primitives. Typically, the application will render the major occluders

in the scene, then perform an occlusion query for the bounding box of each detail object

in the scene. Only if said bounding box is visible, i.e., if at least one fragment is drawn,

should the corresponding object be drawn.

2.4.2 Multi-fragment Rendering Frameworks

Several rendering effects in a large set of applications (from computer games to visualiza-

tions tools) require robust multi-fragment storage. Maule et al. [97] conclude that sorting

is the main topic of the overall research on multi-fragment rendering and used it as the

criterion to classify methods into the following categories:

• Geometry-sorting : sort geometry (meshes or primitives) before rasterization.

• Fragment-sorting : sort generated fragments before computing the desired effect,

using buffer-based or depth peeling.

• Hybrid-sorting : combine geometry-sorting with fragment-sorting.
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• Depth-sorting-independent : blend fragments without considering their depth order.

• Probabilistic: estimate visibility without sorting.

In this thesis, we analytically discuss the classes of fragment-sorting and hybrid-sorting

methods since they are the best option for applications (such as rendering of self-trimming

surfaces) where accurate fragment extraction is of utmost importance.

Multi-pass Depth Peeling

Depth peeling methods extract layers of visibility from a graphical model using multiple

geometry passes. Layers are captured in-depth order, which eliminates the need to sort

the resulting fragments.

Front-to-back Depth Peeling. The classic front-to-back method [36] proposed a so-

lution for sorting fragments by iteratively peeling off layers in depth order. Specifically,

the algorithm starts by rendering the scene normally with a depth test, which returns the

closest per-pixel fragment to the observer. In a second pass, previously extracted frag-

ments are eliminated based on the depth value extracted during the last iteration (pass)

returning the next nearest layer underneath. The iteration loop halts either if it reaches

the maximum number of iterations set by the user or if no more fragments are produced

via hardware occlusion queries. Figure 2.5 (top row, red painted boxes) illustrates the

consecutive color layers when depth peeling a duck model in a front-to-back direction.

2nd Iteration 3rd Iteration 4th Iteration 

1st Iteration 2nd Iteration 3rd Iteration 4th Iteration 5th Iteration 6th Iteration 

Front-to-back Peeling 

Dual Peeling 

1st Bucket 2nd Bucket 3rd Bucket 4th Bucket 5th Bucket 6th Bucket 7th Bucket 8th Bucket 

Uniform Bucket Peeling 

1st Iteration 

Figure 2.5: The color-buffer result of each extracted layer when depth peeling is performed

using (top row) F2B, DUAL and (bottom row) BUN.

Dual Depth Peeling. Dual depth peeling [8] increases performance by applying the

F2B method for the front-to-back and the back-to-front directions simultaneously. Due
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to the unavailable support of multiple depth buffers on the GPU, a custom min-max depth

buffer is introduced. In every iteration, the algorithm extracts the fragment information

which match the min-max depth values of the previous iteration and performs depth

peeling on the fragments inside this depth set. An additional rendering pass is needed

to initialize depth buffer to the closest and the further layers. Figure 2.5 (top row, blue

painted boxes) shows that the number of rendering iterations needed is reduced to half

when simultaneous bi-directional depth peeling is used.

Bucket Uniform Depth Peeling. Liu et al. [89] presents a multi-layer depth peeling

technique achieving partially correct depth ordering via bucket sort on the fragment level.

This algorithm can be regarded as a simultaneous application of the DUAL peeling al-

gorithm into uniformly consecutive subintervals of the depth range. To approximate the

depth range of each pixel location, a quick rendering pass of the scene’s bounding box is

initially employed. Figure 2.5 (bottom row, green painted boxes) illustrates the peeling

output for each bucket for a scene divided into eight uniform intervals.

Buffer-based Methods

Buffer-based methods use a buffer to store fragments while they are generated. After

rasterization, a sorting step computes the correct depth ordering. The A-buffer [17] was

the first method to capture all fragments per pixel during a single rendering. However

it suffers from fragment overflow due to their strategy to consume unbounded memory.

Several variants have been proposed to simulate the behavior of the A-buffer architecture

employing different data structures reducing more or less its memory hazards. The ad-

vantage of these methods is performance superiority when compared to the depth peeling

methods due to their constant rendering (one or two geometry passes) of the scene.

A-buffer using Fixed-size Arrays. Bounded buffer-based methods [90, 29] store frag-

ment data in a global memory array using a fixed-sized array per pixel. A per-pixel offset

counter indicates the next available address position for the incoming fragment. After a

complete insertion in the storage buffer, the counter is atomically incremented (see Fig-

ure 2.6 (a)). The fragments are stored in order of arrival rather than in sorted order. In

a post-processing phase, the fragments are finally sorted. The limitation of this class of

approaches is the large memory requirements because of the fixed-size buffer, as well as

loss of fragments when overflow occurs.

A-buffer using Linked Lists. Yang et al. [167] introduced a method to efficiently con-

struct highly concurrent per-pixel linked lists via atomic memory operations on modern

GPUs. The basic idea behind this algorithm is to use one buffer to store all linked-list

node data and another buffer to store head offsets that point the start of the linked lists

in the first buffer. A single shared counter (next) is atomically incremented to compute

the mapping of an incoming fragment, followed by an update of the head pointer buffer
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to reference the last rasterized fragment (see Figure 2.6 (b)). Shared counter needs to

be updated atomically, which represents a bottleneck, since all threads trying to store

a new fragment will be blocked here. The random memory accesses of the linked list

also degrades performance. A subsequent full-screen pass is finally employed to sort the

captured fragments by their depth values. The necessity of atomic operations for GPU

memory - available only in the state of the art graphics hardware and APIs - makes it

non-portable to other platforms such as mobile, game consoles etc.

A-buffer using Variable-length Arrays. Peeper [110] proposed an A-buffer archi-

tecture by extending hardware to efficiently store a variable amount of data for each

pixel (see Figure 2.6(c)). In operation, a pre-pass is performed to generate the counts of

the fragments per pixel in a count buffer, followed by a prefix sum pass on the generated

count buffer to calculate locations in a fragment buffer in which to store all the fragments

linearly. An index is generated for a given pixel in the prefix sum pass and stored in the

head buffer. Access to the pixel fragments is then accomplished using this offset. Linear

storage of the data allows for a fast rendering pass that stores all the fragments to a

memory buffer without needing to look at the contents of the fragments. This is then

followed by a resolve pass on the fragment buffer to generate the final image. Although

this solves the problem of memory efficiency, there is a performance penalty in computing

the prefix sum and rendering the scene twice.

(a) (b) (c) 

Head Pointers 

null 

Fragment Data 

Next Pointers 

null null 

Shared 

 Counter 

Head Pointers 

Fragment Data 

null 

Fragment Data 

Head Pointers 

Figure 2.6: A-Buffer realizations using per-pixel (a) fixed-size arrays, (b) linked-lists and

(c) variable sequential regions. (a) and (c) structures pack pixel fragments physically

close in the memory avoiding random memory accesses of (b) when accessing the entire

fragment list. However, (a) allocates the same number of entries per pixel resulting at

significant waste of storage and possible fragment overflows.
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Hybrid Depth Peeling

The core of hybrid-sorting techniques is the k -buffer [14, 6], a fixed-size fragment buffer

that holds up to k fragments per pixel. The main algorithm first uses an approximate

sorting in object space, which is not guaranteed to produce the correct ordering, but it

allows for fragments to be generated during rasterization in a nearly sorted fashion. This

important nearly sorted property allows the sorting to be concluded in image-space with

a k-buffer, which only needs to have as many entries as necessary to fix the ordering of

samples. Fragments are composited when the k-buffer becomes full, to make room for

other incoming samples, and after all fragments are generated (which requires the k-buffer

entries to be flushed). The k-buffer handles interpenetrating geometry, since fragment-

sorting is involved. The final image quality depends on how well object-sorting reduces the

number of out-of-order fragments. In situations resulting in poor fragment-sorting, the

number of entries in the k-buffer might be smaller than necessary, which might introduce

artifacts due to out-of-order blending. Also, in its proposition, the algorithm was prone

to artifacts caused by RMWH during k-buffer updates.

The k -buffer variation given by Myers and Bavoil [105, 7] uses the stencil buffer to

route fragments into a multi-sample buffer. The scene is first rasterized to capture up

to k fragments per pixel, where k is the maximum number of samples available in the

MSAA implementation. Each incoming fragment is routed to a sample of the MSAA

buffer. If there are more than k fragments per pixel, overflow occurs and additional

geometry passes are needed. Fragment routing uses a stencil mask that stores an incoming

fragment in the next free MSAA sample, building a vector of fragments per pixel. Once

all fragments are captured, a full-screen quadrilateral is rendered with a pixel shader that

reads all fragments of a given pixel; it sorts and blends them accordingly. This approach

avoids RMWH but is incompatible with hardware supported multi-sample anti-aliasing

and additional stencil operations.
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Mesh segmentation has become an important component in many applications in com-

puter graphics. In the last several years, many algorithms have been proposed in this

growing area (see Section 1.3.1), offering a diversity of methods and various evaluation

criteria. However, most of these segmentation techniques are limited to work well only on

off-line quasi-rigid animations. Moreover, they cannot produce variable or multi-resolution

segmentations. To this end, we investigate a complete solution to support all these ap-

plications. Section 2.2 provides the important preliminaries regarding the problem of

segmenting MAs.

3.1 Framework Overview

In this chapter, we introduce a generic framework for efficiently generating multi-resolution

segmentations that account for both articulated and highly-deformable TCMAs [152]. An

over-segmentation is first constructed by combining a set of individual partitionings cor-

responding to each input pose of the animation sequence (Section 3.1.1). Partitioning

of each pose is precomputed in parallel using any of the numerous available features

and clustering methods. The major advantages of the proposed method are efficiency

and suitability for off-line as well as streamed and dynamically created mesh animations

by exploiting different merging strategies (see Figure 3.1 (left)(a),(b)). A progressive

simplification is subsequently applied to generate a segmentation of different resolutions

(Section 3.1.2) that aims at removing noisy components created from joining successive

partitionings (see Figure 3.1 (right)). We propose a pose order-dependent edge-collapsing

strategy that refines the segmentation graph guided by a temporal-coherent area-aware

edge collapsing solution. Figure 3.2 shows an overall information flow diagram showing

the individual steps of our framework when segmenting a horse animation.

Despite the independent per pose partitioning, a variable segmentation sequence can

also be maintained over time by merging the partition of the current pose with that of

the following one (see Figure 3.1 (left),(c)). Thus, each segmentation is similar to the

one at the previous step and accurately reflects the new data arriving [21]. Finally, a

novel visualization scheme is introduced that provides perceptual consistency between

consecutive poses. An extensive evaluation of this method is finally provided showing

the improvement over the state of the art in terms of skinning quality under a variety of

skeletal and highly deformable mesh animations (Section 3.3).

3.1.1 Pose partitioning-aware over-segmentation

We begin this section with a few definitions and then we outline our over-segmentation

algorithm.

Definition 3.1. We define a clustering animation vector (CAV) for each vertex v ∈ V
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M[1,8]

M[1,2] M[1,3] M[1,4] M[1,5] M[1,6] M[1,7] M[1,8]

M[2,3] M[3,4] M[4,5] M[5,6] M[6,7] M[7,8]M[1,2]

p1 p2 p3 p4 p5 p6 p7 p8
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(a)

(b)

(c)

p0 pk-1 pk 

noisy 

 segments 

M[k-1,k] 

Figure 3.1: (left) Three different ways of joining a sequence of partitionings: (a) Off-

line, (b) real-time and (c) variable segmentations. (right) Illustrating the noisy segments

created when two consecutive pose partitionings are successfully merged. M[x, y] denotes

the over-segmentation result between [px, . . . , py] poses.

(1) Per Pose Normalized Feature Space (2) Pose Partitioning (3) Over-segmentation (4) Simplification

... ... ...

p1 p2 pk C1 C2 Ck

0 1

Figure 3.2: Diagram of our pose-partitioning aware segmentation pipeline.

such that cav(v) = (m1,m2, . . . ,mk), where cav(v)[j] = mj ∈ 1, . . . , |Cj(M)| is the cluster

index that v belongs to in pose pj. Similarly, cav(v)[i, j] is the vector of cluster indices

where v belongs to in poses pi, pi+1, . . . , pj.

Definition 3.2. Let NSi (neighbor similarity) for animation A be a binary relation

between vertices. We say that for two vertices u NSi v if and only if cav(v)[1, i] =

cav(u)[1, i] ∧ ((u, v) ∈ E ∨ u = v). Clearly, NSi is reflexive and symmetric for all

i ∈ [1, . . . , k]. By taking the transitive closure of NSi, denoted by TNSi we have an

equivalence relation. The equivalence relation partitions V in equivalence classes.

Definition 3.3. The over-segmentation OS(A) of A over Ci(M), i = 1, . . . , k is a parti-

tioning of V in equivalence classes called segments based on the transitive closure of the

binary relation NSk. Then, we denote by segment(v, i), the segment (equivalence class)

where v belongs based on the equivalence relation TNSi. For i = k, we obtain segments of

the final over-segmentation OS(A). For other i < k, we obtain the corresponding segment

that is produced by the over-segmentation of OS((p0, p1, . . . , pi)).

Property 3.1. segment(v, j) ⊆ segment(v, i), i ≤ j

Proof. For i = j, the two segments are identical, since we have equivalence classes. For

i < j, let vertex u ∈ segment(v, j), then there is a path between u and v, and for every

vertex w in the path it holds cav(w)[1, j] = cav(v)[1, j]. Then, for all vertices w in this

path from u and v, it holds cav(w)[1, i] = cav(v)[1, i]. So, u ∈ segment(v, i).
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Immediate from the property above is that segment(u1, i) = segment(u2, i), for all

vertices u1, u2 ∈ segment(v, j), i < j. Thus, we may denote this new segment by

segment(segment(v, j), i).

To algorithmically obtain the segments of the over-segmentation (equivalence classes

of OS(A)), we can easily prove that it is equivalent to detect for a vertex v the maximal

connected induced sub-graph of M where v belongs and all its vertices have the same

CAV. To compute the over-segmentation, we consider each vertex and perform a pruned

breadth-first-search to detect connected vertices with the same CAV. During this process,

we mark each edge so that we will not visit it again. This takes time O(|E|) which for

regular non-manifold objects is O(|V |) = O(n). The details of this algorithm are shown in

Algorithm 3.1, where cav(Sj) corresponds to the CAV of Sj cluster of the resulted over-

segmentation. Figure 3.3 illustrates the CAV generation for each segment Sj (vertices

belong to same segment have the same CAV) created from three pose partitionings.
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Figure 3.3: Illustrating the CAV for each vertex and segment created from joining three

pose clusterings C1, C2 and C3. The over-segmentation graph OS(A) is decimated only

at the edges {e01, e45, e02, e34} which satisfy the temporal-coherent reduction rule.

Algorithm 3.1 Over-segmentation(Mesh Animation A)
1: OS(A)← ⊘; V L← list of all vertices in V ;

2: kmax ← 0; ∀v ∈ V : v.segment← −1;

3: Mark all edges as not visited;

4: while V L 6= ⊘ do

5: v ← V L.next;

6: if v.segment == −1 then

7: Skmax
← {v}; v.segment← kmax;

8: k ← kmax; kmax ← kmax + 1;

9: else

10: k ← v.segment;

11: end if

12: for each not visited edge ei ← (v, vi) do

13: Mark edge ei as visited;

14: if cav(v) == cav(vi) then

15: Sk ← Sk ∪ {vi};

16: vi.segment← k;

17: end if

18: end for

19: Remove vertex v from list V L;

20: end while

21: OS(A) = {S0, S1, . . . , Skmax−1};
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3.1.2 Progressive decimation of over-segmentation

Following the generation of the over-segmentation, we perform a cleaning with parameter

h ∈ [0, 1] called p2p-cleaning (pose-to-pose cleaning) starting from pose pk, then for pose

pk−1 towards the first animation pose p1. Each cleaning operation Ri(h) on pose pi is

based on the following reduction rule:

Given a pose pi and a pair of segments (SA, SB), SB absorbs SA if and only if the

following holds for SA:

a(SA) ≤ h · a(C
cav(SA)[i]
i ) (3.1)

a(SA) ≤ h · a(segment(SA, i− 1)) (3.2)

and SB is a segment such that,

SB ∈ N(SA) ∧ cav(SA)[1, i− 1] = cav(SB)[1, i− 1] (3.3)

∧ cav(SA)[i] 6= cav(SB)[i]

a(SB) > a(SA) (3.4)

where N(SB) are all neighbor clusters of SB in the final over-segmentation and a(S) =∑
a(fijk) =

∑
(0.5 · |(vj − vi)× (vk− vi)|) is the area of segment S which consists of a set

of facets {fijk, i, j, k ∈ [0, n)}. Note that after the reduction, the area of the new cluster

is considered for the purposes of reductions in this pose to be this of the absorbing cluster

SB.

The conditions for SB (3 and 4) state that SB is the largest neighbor of SA (larger

than SA) in the over-segmentation and they belong to the same cluster in all poses from

p1 to pi−1 and to a different cluster in pose pi. This means that SA and SB were split

to represent separate segments in pose pi. Thus, we need to check whether one of them

was erroneously created due to small cluster border differences, and should therefore be

absorbed by the other. This is checked by the two conditions for SA. The first condition

ensures that SA is small as compared to the cluster that contains it in pose pi. thus it is

not a significant part of a segment at pose pi. The second condition state that SA is small

as compared to the superset of segment SB in pose pi−1 and they have been split into

two or more in pose pi. This corresponds to a segment of the over-segmentation of the

animation (p0, p1, . . . , pi−1) and at this phase is a candidate group of clusters (including

SA and SB) to become one (or more) independent meaningful segment(s) after cleaning.

This reduction rule exploits temporal coherency, which means that we can perform an

educated reverse pose-to-pose cleaning of non meaningful clusters preserving useful defor-

mation information. We have explored global rules (not per pose) and we have observed

that they tend to favor larger clusters without respecting other cluster characteristics.

This fact makes them inappropriate for mesh segmentation of animation sequences. Fig-

ure 3.3 illustrates the possible reduction steps applied to an over-segmentation graph

when our p2p-cleaning is employed. Note that from all potential collapsing edges, only

four satisfy our history-based condition.
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The details of this algorithms are shown in Algorithm 3.2. The initialization takes k

steps. At each step it takes O(n), n = |V | to initialize the areas, to build the graph of

adjacent segments and to reconstruct the partial over-segmentation. Then, with careful

updating of visited edges in the segment neighbor graph we are able to carry out each

step at time O(r), where r = |OS(A)|. Thus, the cleaning process takes time O(k(n+r)).

The following substantiates the correctness of the p2p-cleaning process.

Lemma 3.1. The p2p-cleaning process will have a unique result in a finite number of

steps.

Proof. Since we reduce the number of segments by one at each step, the p2p-cleaning

process may take at most |OS(A)| reduction steps overall for all poses. Next, we shall

prove that at each pose, we obtain a unique segmentation which is not affected by the

order in which we apply the reductions. We can think of the cleaning process as a rewrite

system, which will have a unique eventual result. More specifically, we will prove that

the reduction rules are compliant to the Church Rosser property. Thus, if at some step

of the cleaning process at pose pi, we have a partially cleaned over-segmentation L and

we have two candidates: a reduction Ri(SA, SB) yielding a new over-segmentation Q and

a reduction R′

i(S
′

A, S
′

B) yielding a new over-segmentation Q′, then it suffices to prove

that there is a sequence of reductions from Q and a sequence of reductions from Q′ so

that we obtain the same partially cleaned over-segmentation configuration U (see Figure

3.4 (top, left)). Figure 3.4 illustrates how a portion of the over-segmentation at pose pi is

build when the Ci (painter with red) breaks the existing segments of the over-segmentation

of the animation (p0, . . . , pi−1) (painted with green) into one or more components. Since

this is always a partitioning, we distinguish among the following cases:

1. SA, SB, S
′

A and S ′

B are four disjoint sets (for example SA = cc, SB = cd, S
′

A = cb
and S ′

B = ce), in which case we can always carry out the other reduction, and reach

the same U .

2. If we have two pairs of identical sets then this is the same reduction, since this is

only feasible when SA = S ′

A and SB = S ′

B.

3. There is just one pair of identical sets. Then, we cannot have SA = S ′

A since only

one of the two reduction would have been eligible. If we have SB = S ′

B (for example

SA = cb, SB = S ′

B = ce, S
′

A = ce), then if S ′

A is absorbed by S ′

B = SB then the

new cluster will also absorb SA and vice versa. It remain to consider the case were

SA = S ′

B (or S ′

A = SB). For example SB = ce, SA = S ′

B = cd and S ′

B = cc. If we

carry out first Ri(SA, SB), the new area of the merged cluster will be the one of SB

which by definition is larger than SA, thus the other reduction R′

i(S
′

A, S
′

B) will still

be eligible. If R′

i(S
′

A, S
′

B) is carried out first then the new merged cluster will have

the area of SB = S ′

A, therefore it will be still eligible to be absorbed by S ′

B.
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Algorithm 3.2 p2p-Cleaning(Over-segmentation OS(A), Float h)

1: for p← k, 1 do

2: OS(A).computeArea();

3: for each SA ∈ OS(A) do

4: if Clean(SA, C
cav(SA)[p]
p , h, p) then

5: maxArea← a(SA);

6: for SB ∈ N(SA) do

7: if maxArea < a(SB) and cav(SA)[1, p − 1] == cav(SB)[1, p − 1] and

cav(SA)[p] 6= cav(SB)[p] then

8: maxArea← a(SB);

9: end if

10: end for

11: if maxArea > a(SA) then

12: SB.Copy(SA); ⊲ neighbors,vertices,faces

13: comment: Leave a(SB) unchanged

14: OS(A).Remove(SA);

15: end if

16: end if

17: end for

18: end for

19: function Clean(Segment SA, Segment SP , Float h, Pose p)

20: if a(SA) > h · a(SP ) then

21: return false;

22: end if

23: SL = new List<Vertex>();

24: comment: The following is realized with a breadth

25: first search from SB (similar to Algorithm 3.1)

26: for each v ∈ segment(SA, p− 1) do

27: SL.Add(v);

28: end for

29: return a(SA) ≤ h · a(SL);

30: end function
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a(cb)<h·a(cB), a(cb)<h·a(cG)

a(cc)<h·a(cC), a(cc)<h·a(cG)

a(cd)<h·a(cD), a(cd)<h·a(cG)

a(cc)<a(cb), a(cd)<a(ce)

a(cc)<a(cd)

L
Q

Q’
U

cG

cB

cC

cF

cE

cf

cd

cD

cc

ce

cb

Figure 3.4: Illustrating the correctness proof: In this example, we close up at the reduction

that will restructure the green cluster cG, which belongs to the over-segmentation until

pose pi−1, when is decomposed by the red partitioning of pi. For small h, segment ce will

absorb cf and segment cd will absorb cc.

3.2 Applications

In this section, we offer several applications enabled by the idea of individual pose-

partitioning animated meshes.

3.2.1 Smooth Visualization of Cluster Transitions

Since clusters may vanish, shift or arise when moving through time, we introduce a per-

ceptually friendly visualization scheme to propagate as mush as possible the segment

colors between consecutive frames. A user should perceive the transition from one frame

to the next one avoiding if possible to encounter totally different coloring of clusters. We

follow a strategy that aims at covering a high distribution of the color space minimizing

the possibility of “close” colors be assigned to neighbor clusters. The algorithm starts

by initially painting the partitioning of the first pose, followed by a propagation of the

cluster colors from pose to pose.

Rest-pose coloring

A breadth-first traversal is applied by picking a random cluster as root node. At each

node visit, we set the next color from the palette shown in Figure 3.5 that does not

conflict with an assigned color from its neighborhood. A 2-ring neighborhood can also be

used to increase color distribution. The palette is an RGB color wheel with 12 divisions:

an illustrative organization of color hues around a circle that consists of the primary,

secondary and tertiary colors. Note that complementary colors lie opposite to each other

in the color sphere. In case of color overflow (chromatic number of the cluster graph

> 12), a larger ring of colors should be used.
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Violet(7) Azure(6)

Rose(8)

Orange(9) Chartreuse Green(10)

Spring Green(11)

Red(5)

Cyan(2)

Yellow(0) 

Green(1)

Magenta(4)

Blue(3)

Figure 3.5: RGB color wheel which consists of primary : {red, green, blue}, sec-

ondary: {cyan, yellow, magenta} and tertiary colors: {colors between primary and sec-

ondary ones}. Note that complementary colors lie opposite each other at the color sphere.

The order of each color is shown in brackets.

Pose-to-pose color propagation

A new future-cluster initially computes how much area covers from each of its overlapping

past-clusters in linear time. A breadth-first traversal is afterwards applied picking as root

the cluster with the largest covering area. Each future-cluster inherits the color of the

first of its past-clusters (sorted by the overlapping area) that is not covered by any of

the rest of the future-clusters. (For example, it is possible that the largest covered past-

cluster of a future-cluster is covered more from another future-cluster with not assigned

color.) Note that this color must not conflict with any previously assigned color from

its neighborhood. If a future-cluster covers only one past-cluster and cannot inherit any

color, we assign it the next available color from the palette. Otherwise, we use a mixed

color of its two largest covering past-clusters.

To avoid the following problems that arise when mixing neighbor cluster colors during

the color propagation phase: (a) producing a color slightly different from the existing ones

and (b) giving a neutral grey color, we propose (a) changing the cyclic traversal order of

colors and (b) assigning to a cluster a color that is non-complementary with respect to

the neighbor clusters.

Figures 3.10 (a), 3.6 (b), 3.9 (a), and 3.11 (a) illustrate the perceptual intuitiveness of

our color propagation scheme when moving throughout the sequence. The same algorithm

can also be used for any segmentation pair without the need of history context. Thus,

we have applied this approach to demonstrate the color transition results between (a)

the variable segments and (b) the variable resolution segments obtained by our method.

Finally, Table 3.1 shows its interactive nature when rendering several clustering sequences

(from the high-detail elephant gallop (188 FPS) to the low-detail hand animation (715

FPS)).
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3.2.2 Real-time Segmentation

Our framework can efficiently handle segmentations of streamed or dynamically created

mesh animations without the need of downloading the pre-processed animation frames

for off-line segmentation. This is a key feature that is not offered by previous approaches.

The idea is to merge the newly “arrived” pose partitioning with the segmentation resulted

from joining the partitionings of all previous poses (see Figure 3.1(left),(c)).

Figures 3.6 (a) and 3.9 (b),(c) provide thorough examples of incrementally merging a

number of pose-partitionings to generate the final segmentation of real-time mesh anima-

tions. Observe that the cluster-refinement is omitted at each frame in Figure 3.6 (a). On

the other hand, the intermediate segmentations are enhanced by the cleaning procedure

in Figure 3.9 (c).

3.2.3 Variable Segmentation

Despite clustering independence between individual successive poses, we offer users with

a smooth transition between pose-to-pose clusterings, by joining the optimal partitioning

of the current pose with that of the next pose (see Figure 3.1 (left),(c)). Due to the

small number of resulting clusters, cleaning can be avoided. Our method is highly effi-

cient when compared to previous variable segmentation methods (evolutionary versions of

classic clustering methods [21] and splitting/merging operation on the past-clustering [4])

and can achieve interactive performance when a fast per-pose clustering is employed (for

computation times see Table 3.1).

Figures 3.6 (c) and 3.11 (b) include variable segmentations of a cloth simulation and a

dance animation, respectively. Observe that the temporal consistency is better preserved

when the joined clustering sequence is used as compared to the individual pose clusterings.

(c) variable segmentation of mesh animation 

(d) our method {h} 

(b) pose partitioning of mesh animation (e) [KSO10] 

185 167 131 101 67 53 22 12 8 2 1 

(a) real-time segmentation of mesh animation 

(f) skinning error (ERMS) 

23 

9.88 

14.8 

(d) 

(e) 

23  

{0.05} 

Figure 3.6: Flowing cloth mesh animation: (a) Real-time segmentation construction pro-

cess. (b) Pose partitioning enhanced by our color propagation scheme. (c) Variable

segmentation. (d) A snapshot of our joint segmentation which consists of 23 components.

Our output is superior in the context of (f) skinning error when compared to (e) the one

derived from [69] (thumbnail of the normalized feature space is also provided).
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3.2.4 Multi-resolution Segmentation

Contrary to bottom-up and top-down hierarchical clustering methods which can only

merge or only split clusters to reach the desired segmentation solution, we provide users

with an interactive tool to adapt resolution of the final segmentation. As discussed

above, our approach aims at cleaning small-area clusters which usually correspond to

highly-deformable regions. Starting from a noisy over-segmentation, users can efficiently

simplify it by adjusting the h parameter. The more h is increased, the larger the parts

to be removed. However, they are upper-bounded by the resolution of the initial over-

segmentation. Figures 3.10 (c) and 3.11 (c) illustrate how the rigidity in the segmentation

is preserved when the level of detail is decreasing. Table 3.1 shows the performance ef-

ficiency of the p2p-cleaning process for various mesh animations. Note that this process

does not depend on mesh geometry size.

3.2.5 Combine Segmentations of Mesh Animations

Except from joining pose partitionings to derive a final segmentation, our framework can

easily combine global segmentations of one or more mesh animations. Note that our

approach can only work when a bijective vertex mapping between the animations has

been established.

Figure 3.2.5 (top) demonstrate how we can perform a global segmentation accounting

both velocity and acceleration features [12]. A unique global segmentation is computed

from each feature (using the numerical mean of the per-pose values). Afterwards, a final

segmentation is produced by joining the per-feature global segmentations. We observe

that the merged segmentation preserves better both features when compared to the global

segmentation created using a normalized feature vector space where final output is mostly

influenced by the velocity feature.

Figure 3.2.5 (bottom) illustrates the final segmentation result of joining two individual

mesh animations. This is very helpful since we can avoid the burdensome manual work

of animators to produce the intermediate result. The global segmentation of each mesh

animation produces a better partitioning of each movement leading at a superior final

segmentation when compared to the one derived from merging both animations. This

is due to the reduced multi-modal distribution of the feature space computed from the

motion of the merged animation.

3.2.6 Modifying Mesh Animations

Using our framework, we can avoid the segmentation re-computations when the user

performs editing or extending operations on the original animation sequence [19]. Since

the over-segmentation result does not depend on the joining order, we can simply join the

new partitioning (from the edited or the added pose) with the final segmentation of the

original animation.
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(a) velocity 

(b) acceleration 

(c) velocity + acceleration 

(g) 

(f) 

feature  [GFW 06] (g) our merged 

segmentation 

5 

5 

26 

(d) 

(e) 

(f) 

(h) skinning error (ERMS) 

26 

0.664 

2.531 

(g) 

(f) 

(g) our merged 

segmentation 

feature 

(a) 1st mesh animation 

(b) 2nd mesh animation 

(c) merged mesh animation 

 [GFW 06] 

(h) skinning error (ERMS) 

0.814 

1.174 

(g) 

(f) 

(d) 

(e) 

(f) 

15 

5 

20 

20 

Figure 3.7: Two representative examples of combining individual global segmentations

extracted from different tablecloth mesh animations. Global segmentations, illustrated at

both scenarios, are computed using [41]. (top) Merging (d),(e) two individual global seg-

mentations of a mesh animation extracted using (a),(b) two different features. Note that

(g) our merging output preserves better both features when compared with the (f) global

segmentation derived using (c) the normalized two-dimensional feature space. (bottom)

Merging (d),(e) the global segmentations of (a),(b) two individual mesh animations. (h)

We observe the skinning error superiority of (g) our merged segmentation when compared

with (f) the global segmentation of (c) the animation created by merging both animations.

Figure 3.8 illustrates how a segmentation, computed from merging clusterings of an

initial set of flamingo poses, is adjusted to reflect the motion of two newly added poses. On

the other hand, Figure 3.9 demonstrates how the final segmentation of a mesh animation is

efficiently altered when pose editing is performed. For clarity, we provide the intermediate

steps of the incremental merging strategy despite the fact that the same segmentation can

be produced by merging the partitioning of the edited poses with the final segmentation

of the original animation.

3.3 Experimental Study

We evaluate our proposed segmentation technique with respect to performance and quality

under a set of various testing inputs. These include rigid, highly-deformable and hybrid

mesh animations. Table 3.1 summarizes the geometry properties and clustering details

for each animation. The experiments were performed on a Intel Core i7 870 (8M Cache,

2.93 GHz, 8 threads) CPU using multi-threaded implementation.

A variation of a top-down hierarchical clustering technique [41] is used in our experi-

ments for primary pose-decomposition. Rotation angles, extracted from the deformation

gradients [138] computed with respect to the rest-pose, define the one-dimensional feature

space (see Section 2.2.1). We compare our segmentation results with the ones derived by
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(a) initial pose dataset (b) add pose (c) add pose 

Figure 3.8: Flamingo pose dataset : (a) Final segmentation constructed by joining 8 initial

pose partitionings. The segmentation is refined after adding (b) initially a new pose, (c)

followed by a second one. All pose partitionings consist of 5 components.

5 

(a) pose partitioning of mesh animation 

edited 

pose 

edited 

pose 

(b) real-time segmentation of mesh animation 

(c) real-time segmentation of edited mesh animation 

(d) our method (5) 

10 51 120 175 261 359 449 584 

10 16 26 28 30 32 35 38 

(f) [DATTS08] 

(h) skinning error (ERMS) 

18 

18 

0.497 
0.406 

0.568 
0.705 

0.459 

18 10 

(e) our method (10) 

{0.02} 

{0.08} 

Figure 3.9: Elephant gallop mesh animation: (a) Smooth visual transitions of the pose

partitionings with 5 and 10 components. Editing operations are highlighted from the

partitioning of the modified poses. Intermediate real-time segmentation steps (b) before

and (c) after editing is applied. (d),(e) Contrary to our refined segmentations, (f) output

of [31] results at wrongly decomposing non-animated areas. (h) Observe the insufficient

quality of (e) the final segmentation created by our method when a limited per-pose

clustering output is used.
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a variety of widely-accepted global segmentation methods using the same number of de-

sired segments. Without loss of generality, we have used uniform seeding and the same

number of iterations (5) for all clustering algorithms and 1% of the vertices are used as

initial input for spectral clustering [31]. Finally, K-means [80] and spectral clustering [31]

may result in segments with several disconnected components when segmenting non-rigid

animations making these results unable to support several graphics applications.

3.3.1 Performance Analysis

Table 3.1 presents a comparative performance overview of the intermediate steps em-

ployed by our framework to produce a final segmentation. The computation times for all

steps exhibit a linear behavior on the mesh geometry size, which is consistent with our

time complexity analysis. Furthermore, note how the over-segmentation and cleaning per-

formance scales linearly when the number of per-pose segments increases at the elephant

mesh animation. The efficiency of our framework is constrained by the individual pose

decompositions which take more that 90% of the total computation time. Finally, note

that we cannot support interactive performance for segmenting mesh animations when

the top-down hierarchical clustering is used. Moving to multi-source region growing [69]

as initial partitioning, we achieve 6 FPS when real-time segmenting the hand anima-

tion (Figure 3.10). A GPU-accelerated clustering may be explored as an alternative to

speed up performance.

Figure 3.11 (f) shows that our algorithm is better in terms of performance when

compared to a variety of global segmentations. This is due to the fact that segmenta-

tions that explore spectral clustering [31] or skinning transform matrices [41, 126, 80] as

motion characteristic suffer from high computation times. Mean-shift clustering aware

methods [55, 85] should also be avoided to produce fast global segmentations. On the

other hand, region-growing [69] is faster than our method in low resolutions. However,

this comes with the price of limited quality of the generated partitions. Contrary to other

methods, our method is only slightly affected when changing from one segmentation res-

olution to another.

Feature
Over-

segmentation

p2p-

Cleaning 

Mesh Animation Vertices Faces Poses Clusters Compute Compute
Propagate 

Colors
Compute

Propagate 

Colors

Compute 

(segments)

Compute 

(segments)

real-

time
off-line

Hand 7929 15855 22 12 0.116 1.603 0.0014 0.0046 0.00084 0.215 (379) 0.03 (24) 1.72 37.95

5 0.483 3.327 0.0053 0.012 0.0041 0.735 (743) 0.07 (18) 3.844 92.25

10 0.483 6.463 0.0053 0.012 0.0041 1.475 (1729) 0.09 (18) 7.281 174.7

Flowing Cloth 25921 51200 19 [2,5] 0.295 1.873 0.0028 0.0074 0.0025 0.698 (400) 0.02 (24) 2.205 41.91

Samba 9971 19938 24 5 0.158 0.734 0.0013 0.024 0.0009 0.78 (1016) 0.07 (12) 0.927 22.26

Variable 

Segmentation
Total

Per pose Mesh Animation

Elephant Gallop 42321 84638 24

Clustering

Table 3.1: Extensive performance comparison (in seconds) of the algorithmic steps of our

method to derive segmentations of various mesh animations.
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3.3.2 Quality Analysis

Contrary to static meshes where several definitions and metrics have been introduced to

define optimal segmentation depending on the application objective [23, 91], a framework

for the objective evaluation of segmentating mesh animations is missing.

In this work, we evaluate our method in a skinning context : how well the segmentation-

aware compressed animation reproduces the original animation when linear blend skinning

is used (see Section 2.3.2). A simple influence assignment method is initially employed to

set the per-vertex skinning weights [68], followed by a fitting process which computes the

transformation matrices that describe the transition from the rest-pose to the subsequent

poses. The ERMS metric [69] is finally used to measure the mean skinning approximation

error of the animation sequence (see Section 2.3.4).

Rigid Animations

When mesh movement is defined as a function of an underlying skeleton, the segmenta-

tion objective is to partition the surface into meaningful volumetric parts. Figure 3.10 (e)

shows the comparison of our method in terms of extracting rigid parts when segmenting

an animated hand. Low-resolution global segmentations [126] fail to accurately partition

most of the articulations (e.g middle finger). These segments are captured at higher-detail

representation with the cost of noise cluster creation. From the error table, we observe

that the behavior of our method starts to change when the number of the final segmen-

tation resolution is low. This is reasonable since high-resolution segmentations consist of

numerous noisy tiny clusters generated between consecutive partitionings. Increasing the

number of per-pose extracted segments will enhance the skinning approximation.

In Figure 3.9 pose partitionings of 5 and 10 components are merged to construct

multi-resolution segmentations of an elephant gallop animation. First, we observe that

the quality of the former is insufficient due to the low number of segments per pose. This

results in a significant loss of semantic part information such as the knee of the front-left

foot (red-colored). The segmentation quality is sufficiently improved when more per-pose

clusters are used. The accompanying table illustrates the superiority in terms of the error

measure of our method when compared with several methods on a 18-component final

segmentation.

Deformable Animations

Figures 3.6 and 3.2.5 describe objects that deform under no skeletal influence. In that

particular case, segmentation is targeted at decomposing the mesh into surface patches

with similar motion characteristics. Figure 3.6 shows a segmentation that consists of 23

components from a cloth simulation. Note that the number of per-pose clusters is not-

constant. Our segmentation preserves better spatial coherency without creating irregular

shapes when compared to the global segmentation [69] extracted from the illustrated

feature space.
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(c) our multi-resolution segmentation {h} (a) pose partitioning of mesh animation 

(b) initial color assignment (d) global segmentation [SY07] 

0 

2 

4 

6 

8 

10 

12 

14 

24 (0.01) 33 (0.003) 48 (0.002) 91 (0.001) 
# segments (h) 

Our [GFW*06] [SY07] 

[DATTS08] [KSO10] [LD12] 

e) skinning error (ERMS) 

379 91 48 33 24 

{0} {0.001} {0.002} {0.003} {0.01} 

Figure 3.10: Hand mesh animation: (a) A smooth view of pose-to-pose partitioning

transition is shown by propagating the cluster colors from the rest-pose to the subse-

quent ones. (b) Thumbnails illustrate the initial random painting of five representative

ones. (c) Five multi-resolution segmentations efficiently constructed by refining the over-

segmentation derived from the individual partitionings. Our segmentations are superior

in terms of (e) skinning error when compared to the ones derived from previous works ((d)

illustrated segmentations of [126]) in most of the testing resolutions. Skinning weights

computed from the smallest segmentation of our method is also shown.

Two representative examples of combining individual global segmentations [41] ex-

tracted from different tablecloth mesh animations are shown in Figure 3.2.5. Two individ-

ual global segmentations, computed based on the arithmetic mean of vertex velocity and

acceleration characteristics of the animation, are efficiently merged in Figure 3.2.5 (top).

Observe that our joined output preserves better both motion features when compared

with the global segmentation extracted using the normalized two-dimensional feature

space (mostly influenced by the mean velocity feature). Figure 3.2.5 (bottom) shows an

example of a segmentation transfer between different mesh animations. The global seg-

mentation of the first mesh animation is efficiently transferred to the second one. Mean

rotation angle was used to define the feature space. Note that the merged segmentation is

superior when compared to the global segmentation of the animation created by blending

both animations (e.g the highly-animated protrusion region was captured by only one

segment).

Hybrid Animations

Highly deformable objects can be used to model clothes in conjunction with skeletal ani-

mation. Figure 3.11 illustrates how our approach produces segmentations that accurately

partition the rigid parts (head, arms and legs of the dancer) from the highly-deformed

surfaces (the dress follows the motion of the dancer) of a samba dancing animation. On

the other hand, global segmentation [126] produces low-quality partitions. Despite the

sufficient rigidity captured at low-detail, the right leg is wrongly connected to the dress.

Moving to higher resolutions, we observe that rigid components (head and legs) are signif-

icantly being “pruned” creating meaningless parts. This leads to a decreasing consistency

of the overall segmentation. Similarly to the hand animation, we observe that moving from

a high-to-low dimension our method behaves better as compared to the rest of methods

when skinning error is used to approximate the initial mesh animation.
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(a) pose partitioning of mesh animation (c) our multi-resolution segmentation {h} 

(d) global segmentation [SY07] (b) variable segmentation of mesh animation 

(e) skinning error (ERMS) 

(f) performance (sec) 
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Figure 3.11: Samba mesh animation: (a) Propagating component colors through the an-

imation sequence. (b) Smooth transition between pose-to-pose partitionings via variable

segmentation. (c) Our multi-resolution segmentations accurately divide rigid parts from

non-rigid surfaces even in high resolutions as opposed to (d) the ones of [126]. (e) Observe

the superiority of our output in the context of skinning quality when compared with a

variety of state-of-art methods.

3.3.3 Limitations

On the other hand, our framework has some limitations that we will briefly discuss in

this section. Additional memory is required by our framework when compared to the

global segmentation methods in order to store the individual per-pose partitionings in the

case of segmenting off-line mesh animations. Furthermore, the final segmentation output

depends on the quality and the number of the individual partitionings extracted from each

pose. Merging partitionings that do not capture the desired information, would normally

lead to poor final segmentation (for example the segmentation quality of Figure 3.9 (d)

is limited when 5 clusters per pose are used). An efficient low-detail segmentation can

only be derived in case where the individual pose partitionings exhibit high similarity.

Moreover, it is not suitable for computing accurate high-resolution segmentations when

the number of per-pose segments is maintained at low levels.

3.4 Conclusions

In this chapter, we have proposed a novel approach for the multi-resolution segmentation

of mesh animations involving two main steps:

1. An over-segmentation is initially computed based on a precomputed set of initial

partitioning for each input pose.

2. A robust cleaning process is subsequently applied to refine the over-segmentation

from the wrongly-created segments generated at the partition union of successive

poses.

Contrary to prior global segmentation methods, our pipeline

• handles both off-line, real-time and editable mesh animations
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• supports rigid, highly-deformable and hybrid mesh animations.

• carries out interactive selection of the segmentation level of detail,

• offers smooth variable segmentations in real-time,

• achieves a consistent colorization of the segments throughout the animation,

• behaves better when skinning is used to approximate the initial mesh animation.
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Chapter 4

Pose to Pose Skinning of Animated

Meshes

4.1 Framework Overview

4.1.1 Pose-to-pose Fitting

4.1.2 Skin Corrections

4.1.3 Animation Editing

4.2 Experimental Study

4.3 Conclusions

In computer animation, key-frame compression is essential for the efficient storage and

processing of the animation sequence (see Section 1.3.2). Previous work has adjusted

efficient skinning techniques for data reduction (see Section 1.1.4) using affine or rigid

transformations to derive the skin from the rest pose using a relatively small number

of control points (mostly defined by a primary segmentation of the animated mesh).

However, these methods are not capable of preserving temporal coherence for skinning

and thus cannot support arbitrary pose editing and other applications. Readers may refer

to Section 2.3 for a detailed mathematical background of the state-of-the-art skinning

frameworks.

4.1 Framework Overview

In this chapter, we introduce p2p-skinning [145], a novel variation of the classic skinning

framework, which supports both linear and non-linear fitting for skinning approximations

and can be used for all types of object animation: skeletal, highly deformable and hybrid
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animations. The neat idea is that the transformations are applied so as a new pose is

derived by transforming the vertices of the previous pose (Section 4.1.1). Although fitting

is performed from pose to pose, a reproduction scheme from the rest pose to an arbitrary

pose can be produced efficiently. So, it enables the full spectrum of applications supported

by previous approaches in conjunction with a novel pose editing of arbitrary animation

frames, which can be smoothly propagated at the subsequent frames generating new

deforming mesh sequences without altering the skinning representation (Section 4.1.3).

Finally, we present refinement techniques (Section 4.1.2) that can improve the visual

fidelity of the approximation (Section 4.2) without increasing the storage requirements.

4.1.1 Pose-to-pose Fitting

The problem addressed in this section is how to compute the transformation matrices

that describe the bone movement throughout the animation. Describing the movement

of highly deformable objects requires the use of affine transformation matrices to capture

deformations other than rotation and translation. We assume that the bone distribu-

tion and influence (weight computation) have been established driven by a segmentation

method.

As discussed in Section 2.3.2, a linear blend skinned vertex position vtj for a pose pt is

computed using B number of weights per vertex [w1,j , w2,j , . . . , wB,j] and B transformation

matrices [M t
1,M

t
2, . . . ,M

t
B]:

vtj = T t
j · v

0
j , (4.1)

T t
j =

B∑

b=1

wb,jM
t
b (4.2)

where v0j is the position of vertex j at the rest pose p0. The vertex weights determine the

bones that influence a vertex and are normally considered to be convex:
∑B

b=1 wb,j = 1

and wb,j ≥ 0, ∀b ∈ [1, B].

Rigid body motion using dual quaternions [67] can also be used with a trade off that

consists of a reduction of the quality of the approximation, since there is no guarantee

that the deformation of a vertex is purely rigid (see Section 2.3.3). The dual quaternion

vertex v̂0j in the rest-pose p0 is deformed to a pose pt by

v̂tj = Ôt
j · v̂

0
j · Î

t
j , (4.3)

Ôt
j =

B∑

b=1

wb,jM̂
t
b , (4.4)

Î tj =
(
Ôt

j

)−1

(4.5)

where
[
M̂ t

1, M̂
t
2, . . . , M̂

t
B

]
are the rigid dual quaternion transformations. In this formula-

tion, we use the hat to denote a quantity expressed as a dual quaternion and the over-bar

to denote dual conjugation.
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As described at Section 2.3.4, a global formulation for the problem of skinning ap-

proximation supporting both skinning methods can be stated as minimizing:

n−1∑

j=0

∥∥vt
j − vtj

∥∥2, (4.6)

where vt
j, j ∈ [0, . . . , n), t ∈ [0, . . . , k) correspond to the original n vertex positions of the

input animation sequence consisting of k poses.

Previous approaches [55, 68, 69] compute the transformation matrices that describe the

transition from the rest-pose to an arbitrary pose of the animation sequence. While these

fitting techniques perform well for a variety of deformations, artifacts tend to be the more

persistent the farther a deformation deviates from the rest-pose shape. The problem is

that these methods cannot accurately capture extreme deformations from different poses

when transforming a specific rest-pose due to the insufficient degrees of freedom in the

skinning methods. One solution is to generate an averaged rest shape that is used as the

basis for all deformations [48]. This approach is appropriate for human shapes producing

sub-optimal averaged rest-poses but is not capable of handling arbitrary deformations.

Moreover, a pose-invariant representation based on the theory of multidimensional scal-

ing [28] can be explored. However, unnatural self-intersecting meshes may be generated.

Previous approaches optimized skinned approximations using rest-pose displacement cor-

rections [77], limiting users to perform efficient rest-pose editing. Thus, we exploit the

temporal coherence of the animation sequence by observing that only small deformation

variations will normally occur between sequential poses. We reformulate equations 4.1

and 4.3 to handle a pose-per-pose deformation scheme using the following formulas:

vtj =

(
B∑

b=1

wb,jQ
t
b

)
vt−1
j (4.7)

v̂tj =

(
B∑

b=1

wb,jQ̂
t
b

)
v̂t−1
j




B∑

b=1

wb,jQ̂t
b




−1

(4.8)

where Qt
b and Q̂t

b are the affine matrices and dual quaternions, respectively of the proxy

joint b that weighted derive a vertex of pose pt from pose pt−1. Note that transformations

Q1
b and Q̂1

b are used to derive the skin vertices of pose 1 from the rest pose (see Figure 4.1).

The fitting of pose-per-pose transformations can be performed in the same way as with

the rest-pose scheme for both skinning techniques.

Pose-per-pose matrices are transformed to the classical LBS representation by using

the following recursive formula for defining the T t
j matrix:

T t
j =

(
B∑

b=1

wb,jQ
t
b

)
T t−1
j , (4.9)

where T 0
j at the rest-pose corresponds to the 4× 4 identity matrix. Similarly for the dual
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quaternions scheme we have:

Ôt
j =

(
B∑

b=1

wb,jQ̂
t
b

)
Ôt−1

j (4.10)

Î tj = Î t−1
i




B∑

b=1

wb,jQ̂t
b




−1

(4.11)
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Figure 4.1: Illustrating the transformation matrices that describe the bone movement

between rest-pose (M j) and pose-to-pose (Qj) throughout the animation sequence. (top)

The original animation sequence. (bottom) After editing the second pose (Q̃2).

4.1.2 Skin Corrections

Inspired by a volume correction method which extends LBS [156], we introduce skin

correction techniques based on rest-pose vertex position and weight displacements. The

corrections are embedded in the resulted skinned mesh and need not be stored separately

as EigenSkin corrections [77]. We present closed-form solutions which are computed

directly and eliminate distortion artefacts produced by transformation fitting.

Rest-pose Corrections

Given the computed weight values and the transformation matrices from all poses, we

define a displacement field eV = [eV0 , . . . , e
V
n−1] ∈ R

4×n that if added to the vertex positions

of the rest pose, will correct skinned approximation. To ensure validity in terms of the

homogeneous coordinates, (i.e. after the correction is applied the rest-pose vertices lie on

the same plane in homogeneous coordinates w = 1), we set the w coordinates of eV to

zero. Formally, the problem can be stated as the minimization of

k−1∑

t=0

∥∥T t(v0j + eVj )− vt
j

∥∥2, j ∈ [0, . . . , n) (4.12)
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The solution of this problem is equivalent to finding the least squares solution of

T
t
eVj = etj where e

t
j = vt

j − vtj and an over-bar denotes: the 3D vector for a homogeneous

vector, the top left 3 × 3 sub-matrix for an affine matrix. The above system can be

rewritten as a linear system of the form Ax = b where A is a block vector of n blocks.

Each of these 3k × 3 blocks contains the weighted transformation matrices. Finally, b is

formed by stacking et0, . . . , e
t
n−1. The displacement field eV is then extracted from vector

x and further added to the rest-pose vertex positions.

Weight Corrections

Similarly, this technique can be adapted to handle vertex weight displacement corrections

eW = [eW1 , . . . , eWB ] ∈ R
1×B of the rest-pose.

The limitation with this correction is that we cannot directly use the pose-to-pose

approximated skinned vertices into the minimization system due to the sequential nature

of its fitting process. Logically, this will lead to a highly complex system of non-linear

equations. To solve this problem, we assume that the skinned vertices match the optimal

ones vtj = vt
j, ∀t ∈ [0, . . . , k). However, since there is a difference between them, the vertex

correction process must be performed after correcting the influence skinning weights. More

specifically, we would have to minimize

k−1∑

t=0

∥∥∥∥∥

B∑

b=1

(wb,j + eWb,j)Q
t
bv

t−1
j − vt

j

∥∥∥∥∥

2

, j ∈ [0, . . . , n) (4.13)

This is equivalent to the least squares of the linear system:

B∑

b=1

eWb,jQ
t
bv

t−1
j = vt

j −

B∑

b=1

wb,jQ
t
bv

t−1
j (4.14)

This is expressed as a system of linear equations of the form Ax = b where A is a vector

of 3P ×B blocks containing the transformed rest pose vertices for each of the influencing

proxy joints. The b vector is the same as in the vertex correction technique.

Direct solution of this system can result in weights with potentially large positive and

negative values. To avoid over-fitting, we constraint the weights to non-negativity and

convexity.

The convexity constraint is imposed by eliminating one weight variable from the equa-

tion
B∑

b=1

(wb,j + eWb,j) = 1⇔
B−1∑

b=1

eWb,j = −e
W
B,j, j ∈ [0, . . . , n) (4.15)

and can be added implicitly to the linear system by subtracting the last column of matrix

A from each of the rest. To handle the non-negativity of the corrected weights, we must

solve our linear system Ax = b subject to two constraints:

1. wb,j + eWb,j ≥ 0⇔ eWb,j ≥ −wb,j, b ∈ [1, . . . , B − 1]
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2. wB,j + eWB,j ≥ 0⇔
∑B−1

b=1 eWb,j ≤wB,j

Note that solving a constrained least squares linear system is considerably slower than

solving an unconstrained system.

Rigid Fitting

For brevity, we will only provide the minimization equations which must be solved to

support corrections with DQS. The minimization functions for the vertex position and

the weight corrections are given by:

k−1∑

t=0

∥∥∥Ôt
j(v̂j + êVj )Î

t
j − v̂t

j

∥∥∥
2

(4.16)

k−1∑

t=0

∥∥∥∥∥∥

(
B∑

b=1

(wb,j + eWb,j)Q̂
t
b

)
v̂t−1
j − v̂t

j




B∑

b=1

(wb,j + eWb,j)Q̂
t
b



∥∥∥∥∥∥

2

(4.17)

4.1.3 Applications

Using our system, we are able to recreate original input mesh sequences supporting all

classes of animations using hardware accelerated implementations of linear and non-linear

skinning methods. Efficient compression of the animation is also feasible due to the

compact skinning representations. Finally, rest and arbitrary pose animation editing

tools are also supported. Next section reports on how pose editing is supported by our

methods.

Animation Editing

Similar to displacement editing presented by [55, 68], geometry editing defined in the

rest pose is allowed to be automatically propagated at the subsequent poses. However,

previous methods further optimize skinned approximations using rest-pose displacement

corrections [77], limiting users to perform efficient editing on the original reference mesh.

However, our novel weight corrections could be applied to correct approximations without

modifying the rest-pose. On the other hand, our p2p-skinning scheme can handle efficient

editing of arbitrary key-frames with the extra cost of recomputing the transformation

fitting moving to the newly edited pose from its previous one.

Let pe be the edited pose and Q̃e
b the matrix that transforms pose pe−1 to the edited

one (see Figure 4.1). An LBS representation is computed for all poses after the edited

one using the following formula:

T t
j = T t,e−1

j

(
B∑

b=1

wb,jQ̃
e
b

)
T e−1,1
i , (4.18)

T t0,t1
j =

t1∏

t=t0

(
B∑

b=1

wb,jQ
t
b

)
(4.19)

61



Similarly, animation editing can also be supported using dual quaternions. However,

we omit this discussion since it does not introduce any novel techniques. Figure 4.2

demonstrates the use of our method for producing approximate skinning and then mod-

ifying the rest-pose. The result of arbitrary editing on a deforming skirt animation is

illustrated in Figure 4.3.

Figure 4.2: (top row) The original animation sequence. (middle row) The approximate

animation sequence using our p2p-skinning. (bottom row) The result of editing the ref-

erence pose and subsequently applying the pre-computed pose-to-pose transformations

derived previously.

4.2 Experimental Study

We evaluate our proposed skinning technique with respect to performance and quality

under a set of various testing inputs. These include rigid, highly-deformable and hybrid

mesh animations. Table 4.1 summarizes the geometry properties and proxy joints details

for each animation. The experiments were performed on a Intel Core i7 870 (8M Cache,

2.93 GHz, 8 threads) CPU using multi-threaded implementation.

4.2.1 Performance Analysis

Figure 4.4 offers a performance comparison between affine (LBS) and rigid (DQS) trans-

forms of an articulated (horse - 8431 vertices) and a highly-deformable (tablecloth - 4225

vertices) animation. While for small models the average fitting times are comparable, we

observe a considerable gain of the rigid approach when we move to a higher geometry
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Figure 4.3: (top row) The original animation sequence. (bottom row) The result of editing

the second pose and subsequently applying the pre-computed pose-to-pose transforma-

tions.
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Figure 4.4: Fitting times for the LBS and DQS variants of our p2p-skinnning method.

Table 4.1 demonstrates the computation time for solving the fitting system for SAD,

FESAM and p2p-skinning methods. We observe that our method is considerably faster

as compared to FESAM. On the other hand, SAD is superior than our method due to

the processing cost of vertex and weight corrections utilized by our framework.

4.2.2 Quality Analysis

For measuring the mean skinning approximation error, we use the translation invariant

ERMS metric (see Section 2.3.4). Table 4.1 demonstrates the superior skinned approxima-

tion results of p2p-skinning when compared to the SAD method. Conversely, p2p-skinning

is slightly worse than the optimal FESAM method. The testing scenario properties and

animations of Figure 4.4 is further used for quality experimental study in Figure 4.5. We
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Name Vertices Poses Proxy-Joints Error Time Error Time Error Time

Elephant 42321 48 25 13.3 368.1 1.39 778.9 2.2 420.1

Samba 9971 175 30 12.6 380 1.17 344.2 1.98 443.5

Skirt 5095 60 75 4.8 422.6 1.72 264.9 2.81 550.9

Facial Expression 23725 23 50 38.7 283.8 5.2 551.1 7.5 332.1

p2p-skinning
Source Data

SAD FESAM

Skinning Methods

Table 4.1: Performance (in seconds) and quality (in ERMS) comparison between SAD,

FESAM and p2p-skinning

observe that the DQS variant exhibits consistently an error increase by 15% to 25% as

compared to its affine counterpart.
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Figure 4.5: Illustrating the fitting error comparison of the LBS and the DQS versions of

the p2p-skinning method.

Figure 4.6 illustrates a visual comparison of the (left) SAD, (middle,left) FESAM

(middle) p2p-skinning, (middle,right) p2p-skinning with vertex and weight corrections

and (right) the original pose. We observe that our method with corrections exhibits visual

results comparable to FESAM. Finally, Figure 4.7 demonstrates the high quality result

of the p2p-skinning technique when both vertex and weight corrections are employed on

a highly-deformed facial expression.

4.3 Conclusions

We have introduced pose to pose approximate rigid and affine fitting schemes exploit-

ing coherence between frames and enabling arbitrary pose editing. Further, corrections
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Figure 4.6: (From left to right) An approximated pose using SAD, using FESAM, us-

ing p2p-skinning, using p2p-skinning with corrections and finally the original pose for

comparison purposes.

Figure 4.7: (left) An original facial expression pose from an animation sequence. (right)

The corresponding approximated pose using our technique with weight and vertex cor-

rections.

have been introduced that decrease significantly the approximation error with no addi-

tional storage requirements. Experiments have demonstrated the characteristics of this

system in terms of efficiency and accuracy. Finally, visual results have been presented to

demonstrate the editing capabilities provided by our novel scheme.
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Chapter 5

S-buffer: Sparsity-aware

Multi-fragment Rendering

5.1 Framework Overview

5.1.1 Fragment Count Pass

5.1.2 Memory Referencing Pass

5.1.3 Fragment Storing Pass - Resolve Pass

5.2 Experimental Study

5.3 Conclusions

A number of conventional methods exist that simulate complex rendering effects in many

graphics applications via an A-buffer variant (see Section 1.3.3). However, most use either

a fixed storage per pixel or a linked list approach. The major limitations of the latter is

the potentially large and possible wasted memory requirements due to their strategy to

allocate the same memory for each pixel. On the other hand, heavy fragment contention

and random memory accesses result in a performance bottleneck when linked-lists are

employed (see Section 2.4.1). Section 2.4 includes notations and background for fragment

generation and shading operations.

5.1 Framework Overview

In this section, we introduce S-buffer (SB) [149], an efficient and memory-friendly algo-

rithm built on the A-buffer architecture on the GPU without relying on linked-lists [167]

or fixed-array structures [90]. Inspired by [110, 87], we perform an additional fast ge-

ometry pass for accumulating the fragments which influence a pixel into a counter buffer
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which enables us to dynamically allocate the exact amount of memory that we shall

need (Section 5.1.1). To optimize caching and data bus occupancy, we organize storage

into variable contiguous regions (bins) for each pixel. A memory offset buffer computation

is initially performed aiming at packing fragments for each pixel in adjacent position of

memory (Section 5.1.2). Contrary to linear [87] and common parallel [110] prefix sum for

generating per-pixel memory indices, we employ a randomized prefix sum in parallel by

exploiting pixel sparsity (i.e. the fact that in many scenes there are many fragmentless

pixels). Then, a subsequent rasterization of the scene is performed to store the out-

of-order fragments per-pixel starting from the memory location captured at the address

buffer. Finally, a sorting mechanism is employed to reorder the fragments for each pixel

before generating the final image (Section 5.1.3). S-buffer successfully integrates into

the standard graphics pipeline and can take advantage of features such as multi-sample

rendering, GPU tessellation and instancing.

5.1.1 Fragment Count Pass

First, a geometry pass is employed to simultaneously extract the number of fragments

affecting each pixel and the total number of fragments generated for all pixels. More

specifically, the fragment accumulation can by implemented by turning off depth test

and performing for each rendered fragment per pixel either ADD blending one into a

32-bit floating pixel format texture (R 32F) or thread-safe increment operations on a 32-

bit unsigned integer buffer (R 32UI). Despite that the former solution is slightly faster

than the latter one, a full-screen pass is needed to transform the generated buffer from

a floating to an unsigned integer pixel format (additional memory consumption). The

total number of rasterized fragments is computed by hardware occlusion queries and used

to precisely estimate the size of the node buffer that will store the information for all

fragments (RG 32F, R: color, G: depth).

5.1.2 Memory Referencing

Prefix sums on the counter buffer have been used in [110] to generate the access location

of all pixels in the node buffer. To avoid overheads for pixels with zero fragments, [87]

perform a prefix sum only on the non-empty pixels in a linear fashion, regardless of the

order pixels are processed. This can be implemented using one shared counter (32 UI) in

the GPU memory which can be updated via atomic memory operations provided by the

recent APIs. For each pixel processed, the current shared counter value is written out

to the pixel local address buffer location, followed by an increment of the shared counter

value by the pixel fragment count. We can implement both operations simultaneously by

the atomicAdd() function (see equation 5.1) which is supported on the recent OpenGL

APIs.

To alleviate congestion from all pixels trying to update the same memory location,

we propose to apply S multiple GPU-accelerated shared counters: C = {C(0), . . . , C(S−

67



1)}. More specifically, non-empty pixels are decomposed into non-uniform groups using a

simple hash function: H(p) = (p.x + sc.width ∗ p.y)%S. We associate one shared counter

to each group and perform in parallel the linear prefix sums for all groups.

p.address = C(H(p));

C(H(p))+ = p.counter;

}
=⇒

p.address = atomicAdd(C(H(p)), p.counter); (5.1)

, where C(i) define the i -th shared counter and all shared counters are initially set to zero.

After the completion of this process, each group of pixels maps to its own memory space

by performing a prefix sum on the final values of the shared counters: Cpr(i) =
∑i−1

0 C(i),

where Cpr(i) is the i -th resulting memory reference value. An inverse mapping technique

is applied to boost by a factor of two the latter prefix sum process using information from

the total number of the rendered fragments. We accomplish that by splitting the shared

counters into two groups, G1 = {C(0), . . . , C(⌊S
2
⌋)} and G2 = {C(⌊S

2
⌋+1), . . . , C(S−1)}.

The key idea is to perform forward prefix sum for the G1 group and inverse prefix sum

for the G2 group. We define as inverse, the prefix sum that starts accumulating from the

end of the processing set towards the start. Then, the memory offset for each pixel p is

computed using the following equation,

p.offset =

{
A(p), if p ∈ G1

total fragments-1-A(p), otherwise

where A(p) = p.address + Cpr(H(p))

(5.2)

Figure 5.1 illustrates a simple example of creating memory offsets applying 3 shared coun-

ters with forward mapping ({C(0), C(1), C(2)} ∈ G1). A geometry pre-pass calculates

the per-pixel fragment counters. We illustrate pixels with the same hash value by paint-

ing them with the same color. A sequential prefix sum is applied for each pixel group

via atomically updating the associated shared counter using equation 5.1. Without loss

of generality, we assume that pixels are processed from the top row to the bottom row.

Forward prefix sums are performed to compute Cpr(i) mapping each group of pixels to its

own memory space. The head memory location for each pixel is finally computed using

equation 5.2.

5.1.3 Fragment Storing Pass - Resolve Pass

In this phase, we perform an additional geometry pass to store pixel fragment data to

each bin indicated by the location information generated in the previous phase. For each

rasterized fragment, we compute the start memory location for the covering pixel using

equation 5.2. The associated fragment information is then written out to the given buffer

index. The address buffer for the current pixel is then adjusted to the next free space.

The process halts when all fragments are stored to the node buffer.
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Figure 5.1: S-buffer workflow when rendering a red, a blue and a green triangle.

Finally, we use insertion sort to correct the ordering of the captured sample fragments

since it performs well when the number of generated fragments per pixel remains small

(see also [167]). A large repertoire of multi fragment effects can be supported after sorting.

Figure 5.2 illustrates transparency effects and CSG operations using S-buffer.

Figure 5.2: Example effects using the S-buffer for multi-fragment processing. (a) Trans-

parency rendering of the Stanford Bunny via accounting for the density between layers.

(b) The Dragon model is rendered with translucency attenuating contribution of each

fragment with Fresnel’s terms. (c) CSG result of applying intersection operations on the

Armadillo model.

5.2 Experimental Study

We present an experimental analysis of our S-buffer approach versus the other A-buffer

realizations. We have measured performance in terms of FPS and ms and memory re-

quirements in terms of MB for a set of different testing conditions. For the purposes of
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comparative time and space complexity evaluation, we have developed PreCalc OpenCL,

a faster variation of PreCalc [110] which handles memory offsetting using an OpenCL-

accelerated parallel prefix sum (provided by NVIDIA Corporation). Moreover, we have

implemented PreCalc Fixed, the fastest A-buffer which exploits a one-pass scheme by

adapting per-pixel fixed-size arrays based on [110]. This allows prefix sums to be effi-

ciently obtained using a full-screen pass (p.address = (p.x+ sc.width ∗ p.y) ∗ array size).

Finally, our variation that uses only one shared counter may be consider as an advanced

l -buffer implementation [87]. All methods were implemented using the OpenGL 4.2 API

and were tested on NVIDIA GTX 480 hardware (1.5 GB memory, 35 multiprocessors).

Figure 5.3 shows how the performance of the memory-friendly A-buffer variants scales

by moving from a sparse to a dense rendering of the Stanford Bunny positioned inside

a cube (69463 faces, 12 depth layers) under a 1024 × 1024 viewport. l-buffer exhibits

performance downgrade due to the linearisation of prefix sum which leads to O(n) time

complexity, where n is the number of the non-empty pixels. Performance is significantly

boosted by increasing the number of S-buffer shared counters. Even with two global

counters we match the PreCalc OpenCL performance when the pixel sparsity remains

high. Observe that our buffer exhibits its performance peak using about 30 counters.

Since, final memory mapping is obtained through a linear prefix sum on the shared coun-

ters, performance starts downgrading when the number increases out of proportion. The

Linked Lists technique, using only one geometry pass, has the worst behavior since it

suffers from an O(m) complexity, where m > n is the number of generated fragments.

Finally, an interesting observation is that the performance of PreCalc OpenCL converges

to S-buffer when the number of used pixels increases rapidly. Even when the rendering

scene covers all pixels, our buffer performance is slightly better (7% faster) than the full

parallel prefix sum solver of PreCalc OpenCL.
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Figure 5.3: Performance evaluation in FPS (log2 scale) for rendering Stanford Bunny

positioned inside a Cube at different clipping stages. S-buffer with 30 shared counters has

the best performance for sparse renderings and is comparable with PreCalc OpenCL in

low pixel sparsity.

Figure 5.4 illustrates the performance evaluation of all A-Buffer variants on rendering

the Minoan Palace of the Knossos model (109168 faces, 25 max depth layers, pd = 45%)

for a set of different screen resolutions. In general, we observe that fixed-size ABFP and
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PreCalc Fixed solutions outperform memory-aware variants. But this comes with the

cost of memory limitations which is discussed later on. KB and KBSR have the worst

behavior since they have to carry out multiple iterations for capturing the entire scene

information. PreCalc OpenCL appears to perform quite well despite the synchronization

penalties of OpenGL/OpenCL interoperability. S-buffer using 30 counters outperforms

the other memory-friendly A-buffer variants, rendering at a 85% to 90% of the optimal

frame rate (PreCalc Fixed). Note that inverse memory mapping boosts S-buffer perfor-

mance by (13%, 10%, 6%), where percentages in brackets denote of the acceleration for

each of three testing resolutions: 640× 480, 1024× 768, and 1600× 1200.
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Figure 5.4: Performance evaluation in FPS (log2 scale) for rendering the Knossos model

at different rendering dimensions (in brackets are shown the corresponding used pixels

and generated fragments). S-buffer with inverse mapping outperforms the other memory-

friendly A-buffer variants.

We further provide a time comparison of the memory referencing step for the buffers that

include this step. S-buffer with 30 counters needs (0.215ms, 0.425ms, 1.08ms) to compute

memory offsets which is≈ 10× slower than the fastest PreCalc Fixed (0.027ms, 0.05ms, 0.11ms).

Moving from inverse to forward mapping results at an extra 0.05ms cost for all resolu-

tions which explains why inverse mapping boost is decreasing when moving to higher

resolutions. PreCalc OpenCL takes (1.5ms, 2.45ms, 4.85ms) to compute the parallel pre-

fix sum regardless of the pixel sparsity, which is 5× to 7× slower than our method. Finally,

fragment-aware Linked Lists exhibits the worst performance by taking (4.66ms, 10.4ms, 21.98ms)

which corresponds to an average 20-24 times downgrade.

In the context of storage requirements for the latter scenario, Figure 5.5 shows that

ABFP and PreCalc Fixed lead to increased memory requirements (60.94MB, 159MB,

380.86MB) most of which is not actually used (88%) due to their strategy to allocate the

same memory for each pixel. K-Buffer (21.09MB, 54MB, 131.84MB) and KBSR (23.44MB,

60MB, 146.48MB) due to their nature, capture up to 8 fragments per pass and there-

fore need 30% less memory resources than previous bounded buffers. Conversely, Pre-

Calc OpenCL (8.02MB, 20.53 MB, 50.10MB) and S-buffer (6.99MB, 17.90 MB, 43.69MB)

allocate the exact amount of memory needed since the number of fragment insertions is

known apriori. ABLL needs slightly more memory resources for storing memory point-
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ers with an extra linked list (8.73MB, 22.35 MB, 51.7MB). However, in cases where the

number of fragments varies (camera or mesh animation) overflows may occur.
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Figure 5.5: Memory evaluation in Mbytes for rendering the Knossos model at different

rendering dimensions (in brackets are shown the corresponding used pixels and generated

fragments). S-buffer outperforms the rest A-buffer implementations.

5.3 Conclusions

We have presented S-buffer, a two-pass A-buffer implementation on the GPU designed

so as to take advantage of the fragment distribution and the sparsity of the pixel-space.

An inverse mapping strategy is also presented to slightly improve performance. S-buffer

exhibits improved combined memory usage and performance behavior even in low pixel

sparsity rasterizations. However, the need of an additional rasterization step results in

performance downgrade when compared to ABFP .
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Several approaches have been introduced that process for each pixel one or more frag-

ments per rendering pass, so as to produce a multi-fragment effect. However, multifrag-

ment rasterization, more specifically all currently proposed depth peeling techniques (see

Section 2.4.1), is susceptible to flickering artifacts when two or more visible fragments of

the scene have identical depth values. This phenomenon is called coplanarity or Z-fighting

and incurs various unpleasant and unintuitive results when rendering complex multilayer

scenes (see Section 1.2).

6.1 Correcting Multi-fragment Rendering Pipelines

In this section, we investigate two approaches to treat fragment coplanarity in image

space that can be applied to several depth peeling methods [150]. Both approaches can

be successfully integrated into the standard graphics pipeline and can take advantage of

features such as MSAA, GPU tessellation and geometry instancing.

First, we introduce an additional term to the depth comparison operator (Section 6.2).

Second, we present an efficient pipeline that can capture multiple coplanar fragments per

depth layer by exploiting the advantages of buffer-based techniques (Section 6.3). The

core methodology for these extensions is explained in detail by applying it to the F2B

depth peeling method. Then, a brief discussion is provided for applying it to the other

depth peeling techniques. We classify our algorithms based on the fragment hit ratio Rh,

also called robustness ratio (i.e., the total number of extracted fragments over the total

number of fragments). Robust algorithms succeed to capture all fragment information

of a scene regardless of the coplanarity complexity (i.e., Rh = 1). On the other hand,

approximate algorithms are not guaranteed to extract all fragments (i.e., Rh ≤ 1). The

main advantage of the latter is the superiority of the performance over the robust methods

at the expense of higher memory space requirements.

We describe features and trade-offs for each technique, pointing out GPU optimiza-

tions, portability, and limitations that can be used to guide the decision of which method

to use in a given setting.

6.2 Robust Algorithms

We introduce two robust solutions for peeling the entire scene through single-pass and

multi-pass rendering pipelines. The first one extracts a maximum of two coplanar frag-

ments per iteration, implemented with a constant video-memory budget. Each iteration

carries out one or more rendering passes depending on the algorithm. The second tech-

nique is able to capture at once all fragments that lie at the current depth layer before

moving to the next one using dynamic creation of per-pixel linked lists.
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6.2.1 Extending F2B

The classic F2B method [36] proposed a solution for sorting fragments by iteratively

peeling off layers in depth order (see Section 2.4.2). Unfortunately, fragments with depth

identical to the depth layer detected in the previous iteration are discarded and thus

not considered in the underlying application. We introduce a robust coplanarity aware

variation of F2B (F2B-2P) by adapting the F2B algorithm so as to peel all fragments

located at the current depth before moving to the next depth layer. The basic idea of this

technique is to use an extra rendering pass to count per pixel the (non-peeled) coplanar

fragments at a specific depth layer. To extract all coplanar fragments, we use the GPU

auto-generated primitive identifier (gl PrimitiveID [128]) that is unique per primitive

geometric element and is inherited downwards to fragments produced by this primitive.

To avoid artifacts from the first primitive processed by the drawing command which is

assigned the number zero, we increase all primitive identifiers by one. This approach is

compatible with GPU tessellation and geometry instancing by combining primitive and

instance identifiers (gl InstanceID [72]). To decide, at iteration i, which fragments among

the remaining coplanar ones to extract, we store the minimum and maximum identifiers

(denoted as idimin and idimax, respectively) of these fragments:

idimin = min{f.id}, idimax = max{f.id}, ∀ f.id ∈ (idi−1
min, id

i−1
max)

We define as non-peeled a fragment f that has a primitive identifier (denoted as f .id)

in the range of the identifiers determined during the previous step i − 1. This strategy

guarantees that all coplanar fragments will survive since:

id1min < id2min < · · · < id2max < id1max

Finally, a subsequent rendering pass extracts the fragment information of the cor-

responding identifier and decides whether the next depth layer underneath should be

processed by accessing the counter information. If the counter is larger than two, we have

to keep peeling at the current layer since there is at least one more fragment to be peeled.

We use one extra color texture (with internal pixel format RGBA 32F) to store the

min/max identifiers at the RG channels and the counter at the A channel. Querying and

counting for the identifier range and the counter may be performed in one rendering pass

using 32bit floating point blending operations. When computing the output color, two

blending operations are used: MAX for the RGB portion of the output color, and ADD

for the alpha value. To query the minimum identifier using maximum blending, we store

the negative identifier of the primitive.

To avoid storing the 32bit B component of this texture, modern graphics hardware

(via OpenGL 4.0+ API) provide the ability to set individual blend equations for each

color output. Thus, two textures can be used, one for the counter (R 32F) and one for

detected identifiers (RG 32F) and further operate on them using separate ADD and MAX

blending operations, respectively.
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A second rendering pass is employed to simultaneously extract the fragment attributes

and the next depth layer exploiting MRT. Depth testing is again disabled while the

blending operation is set to MAX for all components of the MRT. The custom (under-

blending) min depth test is implemented adapting the idea of the min/max depth buffer

of DUAL [8] with the use of a color texture (R 32F). If the counter is less or equal than

two, then we have extracted all information in this layer. We move on to the next one

by keeping (blending) the fragments with depth greater than the previously peeled layer.

Otherwise, we discard all fragments that do not match the processing depth. The min and

max color textures (RGBA 8) are initialized to zero and updated only by the fragments

that correspond to the captured identifiers. The algorithm guarantees that no fragment is

extracted twice. Initially, we render the scene so as to efficiently capture only the closest

depth layer before proceeding with the counter and identifier computation pass.

The details of this method are shown in Algorithm 6.3, where IN.xxx denote the input

texture fields (initialized to zero).

Algorithm 6.3 F2B-2P(Pixel p, Fragment f)

/* 1st Geometry Pass using MAX Blending */

1: if f .z < −IN.z then

2: discard;

3: end if

4: p.colormin := (−IN.idmin == f .id) ? f .color : 0.0 ;

5: p.colormax := ( IN.idmax == f .id) ? f .color : 0.0 ;

6: p.z ← (IN.counter > 2 or −IN.depth 6= f .z) ? − f .z : −1.0 ;

/* 2nd Geometry Pass using MAX and ADD Blending */

1: if (IN.counter ≤ 2 or f .id ∈ (−IN.idmin, IN.idmax)) and (−IN.z == f .z) then

2: p.idmin := −f .id ;

3: p.idmax := f .id ;

4: p.counter := 1.0 ;

5: else

6: discard;

7: end if

The drawback of this technique is the increase of the rasterization work as compared

to the original F2B algorithm by a factor of two. Moreover, the requirement for per-pixel

processing via blending may result to a rasterization bottleneck after multiple iterations.

Understanding the strengths and weaknesses of new generation graphics cards is im-

portant for achieving the best performance using this technology. Pre-Z pass [112] or lay

down depth first [26] is a general rendering technique for enhancing performance despite

the additional rendering of the scene. Specifically, a double-speed rendering pass is firstly

employed to fill the depth buffer with the scene depth values by depth testing and turning

off color writing. Shading the scene with depth write disabled, results on enabling early-Z

culling ; a component which automatically rejects fragments that do not pass the depth
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test. Therefore, no extra shading computations are required.

We introduce the F2B-3P technique, an F2B-2P variant which follows the above

pipeline. The idea is to carry out the first rendering pass of F2B-2P in two geometry

passes. A double-speed depth rendering pass is performed to compute the (next) closest

depth layer. Then, by exploiting early-Z culling, we perform counting and identifier

queries by enabling blending, turning off depth writing and changing depth comparison

direction to EQUAL. The difference from the second pass of Algorithm 6.3 is that depth

comparisons inside the shader are not needed, thus minimizing the number of texture

accesses. Shading is performed in a subsequent pass by matching the fragments of the

extracted identifier set without modifying pixel-processing modes (blending or Z-test) of

the previous pass. This modified GPU-accelerated version uses the same video memory

resources and performs slightly better than its predecessor in some cases despite the cost

of the extra rendering pass.

6.2.2 Extending DUAL

DUAL depth peeling [8] increases performance by applying the F2B method for the front-

to-back and the back-to-front directions simultaneously (see Section 2.4.2). To handle

coplanarity issues raised at both directions, we have developed a variation of DUAL

(DUAL-2P), which adapts the F2B-2P algorithm for working concurrently in both di-

rections. We omit the analytic description of this algorithm since it won’t offer any useful

contribution.

To implement the min depth for front layers and the max depth for back layers per pixel

by MAX blending effectively and simultaneously, [8] inverses the depth value and stores it

in a different component of a color texture (RG 32F - R: front, G: back). A separate color

texture (RGBA 32F) is required for storing the counter and identifier info for the back

layer. As compared to the F2B-2P implementation, we need to replace counter texture

with an RG 32F format than can capture both the front and back counter. Similarly, a

color texture (RGBA 32F) should be used to maintain up to 4 fragment identifiers (RG:

front min/max ids and BA: back min/max ids).

Developing manually a min-max depth buffer requires turning off the hardware depth

buffer. Thus, we cannot benefit from advanced extensions of the graphics hardware in the

DUAL workflow (such as the ones used for F2B-3P). DUAL-2P depth peeling as compared

to the F2B-2P and F2B-3P variations, reduces the rendering cost to half by extracting up

to four fragments simultaneously. The cost for providing this feature is that it requires

twice as much memory space.

6.2.3 Combining F2B and DUAL with ABLL

Yang et al. [167] introduced a method to efficiently construct highly concurrent per-pixel

linked lists via atomic memory operations on modern GPU (see Section 2.4.2). Although

fast enough for most real-time rendering applications, the creation of these lists may
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incur a significant cost on video memory requirements when the number of fragments to

be stored increases significantly. We propose two efficient multi-pass coplanarity-aware

depth peeling methods (F2B-LL andDUAL-LL) by combining F2B and DUAL with LL.

The idea is to store all fragments located at the extracted depth layer(s) using linked-list

structures. Coplanarity issues can be easily handled using this technique without wasting

any memory.

Two buffers are required that store: (a) linked-list fragment data RGBA 8 in the node

buffer and (b) reverse chained pointers R 32UI that reference the head of the linked lists

of the node buffer in the head buffer. The access to the node buffer is managed through

a global unsigned int address counter (next), which represents the location of the next

available space in the node buffer. Each pixel contains only the index(-ices) (F2B-LL:

R 32UI, DUAL-LL: RG 32UI) of the last node (head) it references. Unsigned integer

32-bit memory atomic operations are used for updating. The rendering workflow of F2B-

LL consists of two passes: Firstly, a double speed depth pass is carried out enabling

Z-buffering. Secondly, we construct linked lists of the fragments located at the captured

depth by changing depth comparison direction to EQUAL and turning off depth writing

(which results in early-culling optimizations).

The details of this method are shown in Algorithm 6.4, where ll.xxx denote the linked

list fields and IN.xxx the input texture fields (initialized to zero).

Algorithm 6.4 F2B-LL Depth Peeling (Linked List ll, Fragment f)

/* 1st Geometry Pass using LESS/EQUAL Z-test comparison */

1: if f .z <= IN.z then

2: discard ;

3: end if

/* 2nd Geometry Pass using EQUAL Z-test comparison */

1: ll.next ← ll.next+1 ; ⊲ where ← denotes an atomic store operation

2: ll.head[ll.next] := IN.head ;

3: ll.node[ll.next] := f .color ;

4: IN.head := ll.next ;

Construction of a min/max depth buffer for DUAL-LL disables depth testing which

results in an increase of the number of texture accesses and per pixel shader computations.

In the context of storage, one extra screen image is allocated for the head evaluation of

the back layer. To avoid a slight increase of contention due to the extensive attempts

of accessing the shared memory area from both front and back fragments, an additional

address counter variable for back layers is used (nextback). Conflicts between front and

back fragments are avoided by employing an inverse memory mapping strategy for the

fragments extracted in the back-to-front direction. Specifically, we route them starting

from the end of the node buffer towards the beginning.

The key advantage of these techniques over the rest of the robust methods introduced

in this thesis is that they can handle fragment coplanarity of arbitrary length per pixel in
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one iteration. This results in a significant decrease of the rendering workload. Practically,

contention from all threads trying to retrieve the next memory address for accessing the

corresponding data has been reduced since coplanarity occurs only for a small number of

cases as compared to the original ABLL algorithm.

Despite the fact that order of thread execution is not guaranteed, list sorting is not

necessary since all captured fragments are coplanar. Moreover, F2B-LL rendering pipeline

is boosted by hardware optimization components. All these lead to efficiently usage of

GPUmemory and performance increase. Conversely, random memory accesses and atomic

updating of next counter(s) from all fragment threads may lead to a critical rasterization

stall.

6.2.4 Combining BUN with ABLL

Despite the accurate depth-fighting feature of the above proposed extensions, their perfor-

mance is rather limited when the depth complexity is high due to their strategy to perform

multiple iterations. Furthermore, as mentioned above, ABLL may exhibit some serious

performance bottlenecks when (i) the total number of generated fragments (storing pro-

cess) or (ii) the number of per-pixel fragments (sorting process) increases significantly. To

alleviate the above limitations, we propose a single-pass coplanarity-aware depth peeling

architecture combining the features of BUN and ABLL. In this variation, we uniformly

split the depth range of each scene and assign each subdivision to one bucket. Then, we

concurrently (in parallel) store all fragment information in each bucket using linked lists.

A bounding box is initially rendered to approximate the depth range of each pixel.

Due to the current shader restrictions, we can divide the depth range into five uniformly

consecutive subintervals. A node buffer (RGBA 8) is used to store all linked-list fragment

data from all buckets. We explore a non-adaptive scheme where all buckets can handle the

same number of rasterized fragments. The location of the next available space in the node

buffer is managed through five global unsigned int address counters ([nextb0 , · · · , nextb4 ]).

Each pixel contains five head pointers (R 32UI), one for each bucket, containing the

last node ([headb0 , · · · , headb4 ]) it processed. Each incoming fragment is mapped to the

bucket corresponding to its depth value. The address counter of the corresponding bucket

is incremented to find the next available offset at the node buffer. The head pointer of the

bucket is lastly updated to point to the previously stored fragment. After the complete

storage of all fragments, a post-sorting mechanism is carried out in each bucket sorting

fragments by their depth.

The core advantage of BUN-LL is the superiority in terms of performance over the

rest of the proposed methods due to its single-pass nature. BUN-LL is faster than ABLL

and exhibits time complexity comparable to SB and ABFP . However, unused allocated

memory from empty buckets as well as fragment overflow from overloaded ones may arise

for scenes with non-uniform depth distribution.
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6.3 Approximate Algorithms

To alleviate the performance downgrade of multi-pass techniques we have explored fixed-

sized vectors [6, 29] for capturing a bounded number of coplanar fragments. The core

advantage of this class of methods is the superiority of performance in the expense of

excessive memory allocation and fragment overflow (see Section 2.4.2).

6.3.1 Combining F2B and DUAL with ABFP/KB

We introduce a solution for combining ABFP/KB with F2B and DUAL (F2B-B,DUAL-

B) to partially treat fragment coplanarity. The idea is to adapt the previously described

core methodology of linked lists by exploiting bounded buffer architectures for storage.

Similar to ABFP , constant length per-pixel vectors are allocated to capture the frag-

ment data. In the case of DUAL, we have to allocate two buffer arrays for front and back

peeling at the same time. Without loss of generality, we use the same length for both

buffers. Per-pixel counters (F2B-FP: R 32UI, DUAL-FP: RG 32UI) are used to indicate

the array position of the next incoming fragment (count). They are also used to store

the number of the total captured coplanar fragments. Atomic operations are only applied

for incrementing the counter variables. To support efficiently this approach in hardware,

we may employ a KB framework in place of ABFP . While KB is restricted by MRT to

peel a maximum of 8 fragments, data packing may be used to increase the output (and

reduce memory cost) by a factor of 4. Note that, there is no need for pre-sorting and

post-sorting, since we peel fragments placed at same memory space (RMWH-free).

The details of combing F2B with ABFP and KB are shown in Algorithm 6.5, where

A.xxx is used to define the fixed-size data array, IN.xxx the input textures (initialized to

zero) and TMP.xxx the fragment temporary variables. Only the second pass is provided

since the first one is the same as in Algortithm 6.4.

Algorithm 6.5 F2B-B(Array a, Pixel p,Fragment f)

/* using KB: F2B-KB */

1: for i = 0, a.length do

2: if a[i] == 0 then

3: a[i] := f .color; break ;

4: end if

5: end for

/* using ABFP : F2B-FP */

1: TMP.counter := IN.counter+1 ;

2: IN.counter ← (TMP.counter == a.length) ? 0 : TMP.counter ;

3: a[TMP.counter−1].color := f.color;

⊲ where ← denotes an atomic store operation

The major advantage of this idea is that by updating atomically only per-pixel counters
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no access of shared memory is attempted which results in significant performance upgrade.

Performance is degraded when KB is used due to concurrent updates, but this is a useful

option when advanced APIs are not available. KBSR is a promising option but in this

context it is ruled out since it cannot support MSAA, stencil and data packing operations.

Note that attribute packing except from extra memory requirements, requires additional

shader computations and imposes output precision limitations on fragment data (32bit).

A simplified example that illustrates the peeling behavior of the base-methods and our

proposed extensions is shown in Figure 6.1. The scene consists of three objects of different

color with the following rendering order: green, coral and blue resulting in the green having

the smallest and blue the largest primitive identifiers. A ray starting from an arbitrary

pixel hits the scene at three depth layers, where three and two fragments overlap at the

first and the third layer, respectively.

6.4 GPU Optimizations for Multi-pass Rendering

The previous sections introduced extensions of the multi-pass depth peeling algorithms

to cope with coplanar fragments. In this section, we propose an optimization making

use of various features of modern GPUs so as to improve the performance when multi-

pass rendering is performed on multiple objects. Inspired by the occlusion culling [129]

mechanism explained at Section 2.4.1 (where geometry is not rendered when it is hidden

by objects closer to the camera), we propose to avoid rendering objects that are completely

peeled from previous iterations. By skipping the entire rendering process for a completely

peeled object, we reduce the rendering load of the following rendering passes.

Similarly to occlusion culling, we substitute a geometrically complex object with its

bounding box. If the bounding box of the object ends up entirely behind the last captured

contents of depth buffer, we may cull this object at the geometry level (see Figure 6.2).

This is easily realized by hardware occlusion queries. Due to the observation that objects

that are culled during a specific iteration, will be always culled in the successive ones, we

reuse the results of the occlusion queries from previous iterations [10]. This leads to a

reduction of the number of issued queries eliminating CPU stalls and GPU starvation.

Finally, we avoid the synchronization cost between the CPU and GPU required to ob-

tain the occlusion query result, be using conditional rendering [128]. Note that conditional

rendering can also be used to automatically halt the iterative procedure of multi-pass ren-

dering methods.

6.5 Experimental Study

We present an experiment analysis of our extensions focusing on performance, robustness

and memory requirements under different testing scenarios. For the purposes of compari-
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Figure 6.1: Overview of peeling results for our proposed methods and their predecessors.

Z0, Z1 and Z2 indicate the depth layers captured by ray casting (black dashed line) and

B0, B1, · · · , B7 the uniformly distributed buckets. Each column shows the produced out-

put of each method for the corresponding iteration: extracted fragment(s) painted with

the color of an object and coplanarity counters. Squares painted with more than one color

demonstrate z-fighting artifacts (it is undefined which fragment might win the z-test). To

distinguish between fragments of the same object, we have included their depth value to

their associated square.
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Figure 6.2: A sphere is efficiently culled and thus does not need to be rendered for the

remaining iterations since its bounding box lies entirely behind the current depth buffer

(thick gray line strips).

son, we have developed F2B2; a two-pass variation of F2B that uses double speed Z-pass

and early Z-culling optimizations. Our methods successfully integrate into the standard

graphics pipeline and take advantage of features such as MSAA, GPU-based tessellation

and instancing. Methods that do not exploit the ABFP or the LL structures can be used

in older hardware. All methods are implemented using OpenGL 4.2 API and performed

on an NVIDIA GTX 480 (1.5 GB memory, 35 multiprocessors).

We have applied our coplanarity-aware peeling variants on several depth-sensitive ap-

plications (transparency effects, wireframe rendering, CSG operations, self-collision detec-

tion, coplanarity detection) demonstrating the importance of accurately handling scenes

with z-fighting (see Figures 6.8 and 6.9).

Table 6.1 presents a comparative overview of all multi-fragment raster-based methods

with respect to memory requirements, compatibility with commodity and state of the art

hardware, rendering complexity, coplanarity accuracy and other features.

6.5.1 Performance Analysis

We have performed an experimental performance evaluation of all our methods against

competing techniques using a collection of scenes under four different configurations. Ex-

cept from the first scene which is evaluated under different image resolutions, the rest of

the tests are rendered using a 1280× 720 (HD Ready) viewport.

Impact of Screen Resolution

Figure 6.3 shows how the performance scales by increasing the screen dimensions when

rendering a crank model (10K primitives) whose layers varies from 2 to 17 and no copla-

narity exist. In general, we observe that our variants perform slightly slower than their
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Acronym Description Total
Conditional 

rendering

Double 

speed     

z- pass

Early        

z-culling
Old API Modern API

Handles 

coplanarity 

Robustness 

ratio

on 

primitives

on 

fragments

F2B Front-to-back depth peeling 1 D x x x

F2B2 Two-pass F2B depth peeling 2D √ √

F2B-2P Two-pass Z-fighting free F2B C(Zall) x x

F2B-3P Three-pass Z-fighting free F2B 3 3C(Zall)/2

F2B-LL Z-fighting free F2B using Linked Lists C(Z) x 2C+4

F2B-B Z-fighting free F2B using  fixed-size Buffers K ; 4K K+3 ; 4K+3 K+4 ; 4K+4
∑{K/C(Zi)} ; 
4∑{K/C(Zi)}

DUAL Dual Depth Peeling 2 1 D/2+1 x x D/C(Zall)

DUAL-2P Two-pass Z-fighting free DUAL 4 C(Zall)/2+1 24 20

DUAL-LL Z-fighting free DUAL using Linked Lists C(Zf,Zb) x 2C(Zf,Zb)+6

DUAL-B Z-fighting free DUAL using fixed-size Buffers K ; 4K K+4 ; 4K+4 K+6 ; 4K+6
∑{K/C(Zi)} ; 
4∑{K/C(Zi)}

KB K-Buffer 1 1 to D/K

KB-Multi Multipass K-Buffer 1...K ; 2K 1 to K ; 1 to 2K x x

KBSR Stencil Routed K-Buffer K 1 1 to D/K √ K/C(Zall) to 1 x

BUN Bucket Uniform Peeling 2K ; 4K 1 D/(2K) to D/2 ; 1 x D/C(Zall) x

BUN-LL Z-fighting free BUN using Linked Lists all 1 1 x
3C(Zall)+8 

to 

15C(Zall)+8

overflow  to 1 √

BAD Bucket Adaptive Peeling 4K 4 4 x 4K/C(Zall) x

ABFP A-Buffer using fixed-size Arrays 2D+2

ABLL Linked-list based A-Buffer 3C(Zall)+3 

SB S-Buffer: Sparsity-aware A-Buffer 2 2 2C(Zall)+3 

√

x

1

K ; 2K

D/C(Zall)

3K+2

√

Per iteration 

√

√

√

√

1

2K+2 ; 4K+2

 In A ; B, A denotes the layers/memory/ratio/sorting for the basic method and B for the variation using attribute packing.

1 3 x

2

2

2

√

1

2

1

2D

D

K/C(Zall) to 1 

; 2K/C(Zall) to 

1

4K+2

x

D = max{depth}, C(Z) = [# of coplanar fragments at depth Z] , C(Zall) = ∑{C(Zi)}, C = max{C(Zi)}, where C(Z) ≥ 1 and C(Zall) ≥ D. overflow = 1 - (max_memory/needed_memory).

K = buffer size (max=8 for all except from ABFP), {color, depth} attribute of fragment = {32bit, 32bit}. Video-memory is measured in mb(=4 bytes). 

12 10

6

√

√ √

all

x x

x

√

√

x √ overflow to 1

6K+3 x

Table 6.1: Comprehensive comparison of multilayer rendering methods and our

coplanarity-aware variants.

predecessors due to the extra rendering passes (around 30% in average). Our dual vari-

ants perform faster at low-resolutions as compared to the corresponding front-to-back ones

since they need half the rendering passes. Similar performance behavior moving from low

to high screen dimensions is observed between F2B-2P and F2B-3P. GPU optimizations

becomes meritorious when image size is increasing rapidly.

ABFP and SB are highly efficient in this scenario due to the low rate of used pixels

that require heavy post-sorting of their captured fragments. DUAL-FP has the best

performance from all proposed multi-pass variants, which is slightly worst than DUAL

(from 6% (low resolution) to 18% (high resolution)). However, it achieves speed regression

by a factor of 2 to 4 as compared to the SB and FAB methods, respectively. This is

reasonable since we iteratively render the scene up to 18 times to extract all layers. We

further observe that DUAL-2P and DUAL-KB perform quite well in low screen resolution

but exhibit significant performance downgrade in the higher ones. Finally, rendering

bottlenecks appear in all LL-based methods when the resolution is increased due to higher

fragment serialization.

Impact of Coplanarity

Figure 6.4 illustrates performance for rendering overlapping instanced Fandisk objects (1.4K

primitives). We observe that F2B-3P outperforms F2B-2P and DUAL-2P, enhanced by

the full potential of GPU optimizations. Similar behavior is observed for F2B-FP as com-

pared to its corresponding dual variation. Conversely, DUAL-LL performs better than

F2B-LL alleviating the increased fragment contention at high instancing.

ABFP extensions exhibit improved performance as compared to constant-pass ones

despite of they have to carry out multiple rendering iterations. This is reasonable since
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Figure 6.3: Performance evaluation in FPS (log2 scale) on a scene where no fragment

coplanarity is present at different rendering dimensions. Our ABFP -based extensions

exhibit slightly worse performance than their base-methods (10% in average). Rendering

passes carried out for each method are shown in brackets.

these buffers have to sort the captured fragments resulting in a rendering stall. Finally,

BUN-LL is slightly superior than LL and SB, but again is not suitable for scenes with

high concentration of fragments in small depth intervals.

Impact of High Depth Complexity

Figure 6.5 illustrates performance comparison of the constant-pass accurate peeling so-

lutions when rendering three uniformly distributed scenes that consists of high depth

complexity: Sponza (279K primitives), Engine (203.3K primitives), Hairball (2.85M prim-

itives). We observe the superiority of our BUN-LL over the ABLL and SB methods re-

gardless of the number of generated fragments due to the reduced demands for per-pixel

post-sorting of the captured fragments. On the other hand, thread contention in the

BUN-LL storing process results at a performance downgrade as compared with ABFP

when the rasterized fragments are rapidly increased.

Impact of Geometry Culling

Figure 6.6 illustrates how the performance scales when our geometry-culling is exploited

at three representative front-to-back peeling methods under a set of increasing peeling

iterations (similar behavior is observed for the rest variations). The scene consists of

three non-overlapping, aligned at Z-axis, Dragon models (870K primitives, 10 depth com-

plexity). The scene is rendered from a viewport that the third dragon is occluded by the

second one which is similarly hidden by the first. We observe that all front-to-back testing
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Figure 6.4: Performance evaluation in FPS (log2 scale) on a scene with varying coplanarity

of fragments. ABFP extensions outperform other proposed alternatives and are slightly

affected by the number of overlapping fragments. Rendering passes performed for each

method are shown in brackets.
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Figure 6.5: Performance evaluation in FPS (log2 scale) on three uniformly distributed

scenes with varying number of fragments and high depth complexity (shown in brack-

ets, respectively). Our BUN-LL outperforms the other buffer-based methods when the

fragment capacity remains at low levels.
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methods are exponentially enhanced by the use of our early-z geometry culling process

when the number of completely peeled objects is increasing. Note that when we have not

completely peeled any Dragons, the additional cost of our culling process slightly affects

performance (0.01%).
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Figure 6.6: Performance evaluation in milliseconds after front-to-back layer peeling a scene

without and with enabling our geometry-culling mechanism. The number of completely

peeled Dragon models for each peeling iteration is shown in brackets.

6.5.2 Memory Allocation Analysis

Figure 6.7 illustrates evaluation in terms of storage consumption for a scene with varying

number of generated fragments (defined by the combination of screen resolution, depth

complexity and fragment coplanarity). An interesting observation is the high GPU mem-

ory requirements of ABFP due to its strategy to allocate the same memory per pixel.

BUN-LL, ABLL and SB require less storage resources by dynamically allocating storage

only for fragments that are actually there. However, it will lead at a serious overflow as

the number of the generated fragments to be stored increases rapidly.

On the other hand, our multi-pass depth peeling extensions outperform the unbounded

buffer-based methods even at high coplanarity scenes. We also observe that robust F2B-

2P and F2B-3P methods require slightly less storage than the approximate F2B-KB.

Video-memory consumption blasts off to high levels, when data packing is employed for

correct capturing high fragment coplanarity. Note that methods that exploit the front-to-

back strategy require less memory resources when compared to the dual-direction ones.

The same conclusions may be obtained from the formulations of Table 6.1.

87



3 

6 

12 

24 

48 

96 

192 

384 

768 

1536 

3072 

6144 

12288 

24576 

49152 

98304 

M
B

y
te

s 
F2B,F2B2 F2B-3P/2P F2B-LL F2B-KB F2B-KB+packing, BUN F2B-FP DUAL DUAL-2P DUAL-LL DUAL-KB DUAL-KB+packing DUAL-FP BUN-LL, AB-LL AB-FP SB 

1536

640x480 1280x720 1600x1200 

0.87 
0.65 

0.87 
0.65 

0.087 
0.065 

0.13 

0.29 
0.218 

0.435 
0.29 
0.218 

0.435 

0.029 
0.022 

0.045 

0.14 
0.104 

0.21 

0.013 

0.01 

0.019 

0.14 
0.104 

0.21 

Figure 6.7: Robustness comparison based on memory allocation/overflow (log2 scale) of a

scene with varying resolution and [depth, coplanarity] complexity. Our variants does not

consume more than the maximum storage of Nvidia GTX 480 graphics card (dashed line).

Note the low robustness ratio of the buffer-based solutions due to the memory overflow.

6.5.3 Robustness Analysis

Impact of Coplanarity

From Table 6.1, we observe that robust variations are able to accurately capture the

entire scene regardless of the depth and coplanarity complexity. F2B and DUAL peeling

reach their peak when no coplanarity is present. However, robustness is significantly

downgraded due to their inability to capture overlapping areas. Multi-pass bucket peeling

and its single-pass packed version present similar behavior. Approximate buffer-based

alternatives (maximum peeled fragments: without packing (K = 8) - with packing (K =

32)) are suitable to correctly handle up to 8 or 32 coplanar fragments. Peeling with KB,

KB-Multi and KBSR result at memory overflow (hardware restricted to 8 or 16 if attribute

packing is used) failing to capture more fragment information. If the scene is pre-sorted by

depth, multiple rendering with these buffers will improve robustness. Finally, BUN-LL,

ABFP , ABLL and SB perform robustly when fragment storage does not result in memory

overflow.

Impact of Memory Overflow

Figure 6.7 shows the needed storage allocated by the memory-unbounded buffer solutions

under a scene with varying number of generated fragments. Without loss of generality, we

assume that the percentage of pixels covered on the screen is 50% and all pixels have the

same depth complexity. Robustness ratio is closely related to memory allocation for these

methods (see also Table 6.1). To avoid memory overflow (illustrated by black markers),

we have to allocate less storage than we actually need leading at a significant fragment

information loss. BUN-LL, ABFP , ABLL and SB robustness is significantly downgraded

when the number of generated fragments exceeds a certain point. Conversely, we observe
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that our buffer-based extensions perform precisely, allocating less than the maximum

storage of the testing graphics card under all rendering scenarios.

6.5.4 Discussion

ABFP has the best performance in conjunction with robust peeling but comes with the

cost of extremely large memory requirements. SB alleviates most of the wasteful storage

resources running at high speeds, but cannot avoid the unbounded space requirement

drawback. Both methods necessitate per-pixel depth sorting resulting at comparable

frame rates with BUN-LL when the the number of stored fragments per pixel is high and

uniformly distributed.

Multi-pass peeling with primitive identifiers is the best option when accuracy and

memory are of utmost importance. ABFP extensions are shown to offer a significant speed

up over linked lists variations with satisfactory approximate (or precise when coplanarity

is maintained at low levels) results. However, memory limitations should be carefully

considered. When modern hardware is not available KB variations might be used to

approximate scenes with high coplanarity in the entire depth range.

It is preferred to use front-to-back extensions for handling scenes with low detail under

high resolutions. On the other hand, dual extensions performs better when rendering

highly tessellated scenes at low screen dimensions.

A 

B 

AUB 

A∩B 

A-B 

Figure 6.8: Illustrating the image superiority of our extensions over the base-methods in

several depth-sensitive applications. (left) (top) Order independent transparency on three

partially overlapping cubes with and without Z-fighting, (bottom) Wireframe rendering

of a translucent frog model with and without Z-fighting. (middle) CSG operations ren-

dering without and with coplanarity corrections. (right) Self-collided coplanar areas are

visualized with red color.

6.6 Conclusions

Fragment coplanarity is a phenomenon that occurs frequently, unexpectedly and causes

various unpleasant and unintuitive results in many applications (from visualization to

content creation tools) that are sensitive to robustness. Several (approximate or exact)

extensions to conventional multi-pass rendering methods have been introduced accounting

for coincident fragments. We have also included extensive comparative results with respect
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Figure 6.9: Image-based coplanarity detector. (left) Power plant (Rh = 0.98, Cp = 0.285),

(middle) rungholt (Rh = 0.9, Cp = 0.48) and (right) castle (Rh = 0.88, Cp = 0.81) scenes

are visualized based on the total per-pixel fragment coplanarity: gray=none, red=2,

blue=3, green=4, cyan =5, aquamarine=6, fuchsia=7, yellow=8, brown=9. Cp is the

average probability for a pixel p to suffer from fragment coplanarity when rendering with

the F2B.

to algorithm complexity, memory usage, performance, robustness, and portability. A

large spectrum of multi-fragment effects have been considered and used for illustrating

the detected differences. We expect that the suite of features and limitations offered for

each technique will provide a useful guide for effectively addressing coplanarity artifacts.
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Chapter 7

k+-buffer: Fragment Synchronized

k-buffer

7.1 Framework Overview

7.1.1 Spin-lock Strategy

7.1.2 Fragment Capturing

7.1.3 Precise Memory Allocation

7.1.4 Support of Z-buffer and A-buffer

7.2 Experimental Study

7.2.1 Performance Analysis

7.2.2 Memory Allocation Analysis

7.2.3 Image Quality Analysis

7.3 Conclusions

k-buffer facilitates novel approaches to multi-fragment rendering and visualization for

developing interactive applications on the GPU (see Section 2.4.1). Various alternatives

have been proposed to alleviate its memory hazards and to avoid completely or partially

the necessity of geometry pre-sorting (see Section 1.3.3). However, that came with the

cost of excessive memory allocation and depth precision artifacts.
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7.1 Framework Overview

In this chapter, we introduce k+-buffer (K+B) [151], an efficient k -buffer implementation

on the GPU which is free from: (i) geometry sorting prior rasterization, (ii) unbounded

memory necessity, (iii) RMW memory-hazards and (iv) depth precision conversion ar-

tifacts. Contrary to most of the prior k -buffer alternatives which store and sort the

generated fragments on the fly, we follow a faster strategy similar to the one used by the

A-buffer construction: The k -nearest fragments are captured in an unsorted sequence,

followed by a post-sorting step that reorders them by their depth.

Inspired by [30], we explore a GPU-accelerated spin-lock strategy via pixel semaphores

to ensure real-time synchronized construction of the unsorted k -front fragments (Sec-

tion 7.1.1). To alleviate contention (busy-waiting) of distant fragments, we concurrently

perform culling checks that efficiently discard fragments that are further from all cur-

rently maintained fragments (Section 7.1.2). Two array-based data structures are built

on the GPU to accurately store the closest per-pixel fragments:

• max-array, an array where the maximum element is always stored at the first entry

and

• max-heap, a complete binary tree in which the value of each internal node is greater

than or equal to the values of the children of that node.

Despite its linear complexity, the former performs faster than the latter when the

problem size is sufficiently small. For example, order-independent transparency presents

high approximation images even with a small core of captured layers (k ≤ 16). Conversely,

plausible photorealistic appearance of hair requires the contribution of a larger set of hair

strands (k > 16).

To avoid the wasteful pre-allocated storage requirements of pixels that contain less

than k fragments (k-fragmentless pixels, see Figure 7.1), we have extended our framework

by the S-buffer pipeline (Section 7.1.3). An additional geometry pass is performed for

counting fragments per pixel, enabling us to allocate the exact amount of memory that we

actually need. Memory is linearly organized into variable contiguous regions for each pixel,

making it feasible to implement both proposed data structures. To our knowledge, this

is the first k -buffer implementation with dynamic and precise allocation of the required

storage space.

k+-buffer can also be considered as an unified framework that successfully integrates

the functionalities of Z-buffer, k -buffer and A-buffer (Section 7.1.4). The overall frame-

work is described by offering shader-like pseudocode and the fragment processing pipeline.

We further highlight features and tradeoffs of our framework, pointing out implementa-

tion details and light-weight modifications that can be used to guide the decision of which

pipeline alternative to employ in a given setting.

Finally, an extensive experimental evaluation is provided demonstrating the advan-

tages of k+-buffer over all prior k -buffer variants in terms of memory usage, performance

cost and image quality (Section 7.2).
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Figure 7.1: Illustrating the construction process of a row of a 4-buffer (highlighted with

blue at the top-right thumbnail), when ray casting the dragon model.A significant amount

of memory space is wasted at pixels that consist of less than 4 fragments due to the pre-

allocation of the same buffer length per pixel.

7.1.1 Spin-lock Strategy

Per-pixel binary semaphores are utilized as a synchronization mechanism to ensure frag-

ment exclusive use of the critical storage section. Taking into account the possibility of

simultaneous access to the lock, which could cause race conditions, an implementation

of an atomic test-and-set operation is explored. The calling process obtains the lock if

the old value was 0. It spins writing 1 to the variable until this occurs. One way to

implement spin-lock strategy employing test-and-set into a pixel shader is shown in the

Algorithm 7.6.

Algorithm 7.6 MutualExclusion (Texture s, Pixel p)

1: while true do ⊲ spin until lock is free

2: if imageAtomicExchange(s, p, 1) == 0 then

3: {critical section} ⊲ exclusive use

4: imageStore(s, p, 0); ⊲ release lock when finished

5: discard; ⊲ exit shader

6: end if

7: end while

A 32-bit unsigned integer texture with internal pixel format R 32UI is allocated to

represent the per-pixel semaphores. At first, a full-screen rendering (clear pass) is ex-

ecuted to initialize texture with zeros. Our method is enhanced by the OpenGL’s im-

ageAtomicExchange(texture lock, ivec2 P, uint V) function which atomically replaces the

value V of the atomic object with the argument into texel at coordinate P and returns

its original value. Note that there is no need for an atomic operation to perform the lock
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release (since the running fragment has exited from the critical section) as opposed to the

implementation of [30] where an additional costly atomic exchange is used.

Pixel Synchronization (PS) is a graphics extension that Intel has implemented for 4th

Generation Intel Core processors with Iris and Iris Pro graphics based on Haswell archi-

tecture. PS provides a performance-wise inexpensive mechanism which avoids fragment

conflicts in the critical section and ensures that RMW memory operations are performed

in submission order [121]. Our framework can be enhanced by the use of PS without

remodeling the proposed pipeline. Implementation-wise, a simple call of beginFrag-

mentShaderOrderingINTEL() function is necessary to provide fragment serializability.

Thus, the per-pixel semaphore-based spin-lock strategy can be omitted (specifically, lines

18-19 and 25-28 in Algorithm 7.8). Avoiding the usage of per-pixel semaphores also results

in reduced memory demand. While DirectX11+ and OpenGL extensions are available for

Intel graphics cards, we expect that these will be supported in the near future by all

manufacturers.

7.1.2 Fragment Capturing

A geometry rendering (store pass) is initially carried out to capture the closest fragment

data per-pixel in a 64-bit floating point 3D array buffer with internal format of RG 32F,

(R for color and G for depth) and k length. Figure 7.1 illustrates a k+-buffer which can

hold up to 400 fragments (screen size: 10× 10, k = 4).

To alleviate the spinning of n generated fragments that do not belong to the closest

k, a fast culling mechanism is performed. The idea is to efficiently discard each incoming

fragment fi, ∀i ∈ {0, . . . , n − 1} that has equal or larger depth value (fi.z) from all

currently maintained fragments, before trying to acquire the semaphore. Note that i

determines the submission order. Let KBi[:] = {KBi[j], j = 0 . . . k − 1} denotes the

contents of the k-buffer when fragment fi has been processed. Initially, we don’t discard

any incoming fragment until the fragment storage buffer is full (∀i < k). Then, we

discard all fragments fi such that fi.z ≥ max{KBi−1[:].z}. On the other hand, a fragment

with fi.z < max{KBi−1[:].z} replaces the fragment of the KB with the largest depth

value. This strategy guarantees that the k -nearest fragments will always survive since:

max{KBn−1[:].z} ≤ · · · ≤ max{KBi−1[:].z} ≤ · · · ≤ max{KBk−1[:].z}.

Note that this process has no impact at the worst case scenario of fragments arriving

in descenting depth order. To achieve fragment culling without traversing the entire pixel

row for every incoming fragment, we have developed two array-based data structures on

the GPU that both store the maximum element at the first array position: (i) max-

array (K+B-Array) and (ii) max-heap (K+B-Heap). Thus, this operation is performed

in constant time. Figure 7.2 illustrates how two incoming fragments are successfully

discarded using this formula when the buffer is completely full.

Max-array can be considered as an array where the fragment with the largest depth

value is always stored at the first location and the rest are randomly positioned. When

an incoming fragment obtains a semaphore, it stores its information in the first empty
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Figure 7.2: Overview of the insertion process of an arbitrary sequence of out-of-order

fragments when (left) max-array and (right) max-heap data structures with k = 8 are

utilized. The incoming fragment in each step is highlighted with a glow effect. When the

array is full, fragments with value larger than the maximum captured fragment (yellow-

colored) are efficiently discarded (f8 = 25 and f10 = 18).

entry (O(1)). In this case, a per-pixel counter (32-bit unsigned integer texture with

internal pixel format R 32UI) is utilized as index and incremented after a successful

insertion. Per-pixel counters are initialized to zero during the clear full-screen rendering

pass. If the array is full (counter == k), it takes the place of the fragment with the

larger depth value. Note that since culling mechanism resides outside critical section,

an additional checking is mandatory to guarantee correct results. To keep max-array

consistent after an insertion on a completely filled array, we find the fragment with the

largest depth value (O(k)) and swap it with the newly added fragment (except the latter

is the largest one). This process is implemented without the use of any costly atomic

memory operations since fragment atomicity is guaranteed.

However when the problem size increases rapidly (k > 16), fragment data information

is maintained in a max-heap data structure. Max-heap is a complete binary tree (shape

property) in which all nodes are greater than or equal to each of its children (heap prop-

erty). Max-heap can be implemented using a simple k -sized array without allocating any

space for pointers: If the tree root is at index 0, then each element at index i ∈ [0, k)

has children at indices 2i + 1 and 2i + 2 and its parent is located at index ⌊ (i−1)
2
⌋. Since

the first node contains the largest element, the core pipeline followed by max-array is not

altered. Both inserting operations to an empty or a full heap modify the heap to conform

to the shape property first, by adding nodes from the end of the heap or replacing the

heap root (O(1)). Then, the heap property is restored by traversing up-heap or down-

heap (O(log2 k)). Pseudocode for both insertion functions is shown in Algorithm 7.7,

where P(f) defines the parent of a fragment f and L(f) and R(f) its left and right chil-

dren. Figure 7.2 illustrates how both data structures with k = 8 are constructed and

updated from a number of out-of-order fragment insertions. A representation comparison

between max-array and max-heap node pointers is also shown.

Finally, a sorting process is employed to reorder the fragments for each pixel before

generating the final image (resolve pass). Unsorted fragments are initially copied into

a local array before performing the depth sort, as it is relatively faster to perform read-

write operations in the register space rather in the global graphics memory. Based on the
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Algorithm 7.7 InsertToHeap (Heap h, Pixel p, Fragment f , Int k)

1: procedure up-heap(h, p, f, k)

2: i := 0;

3: h[p.counter] := f ; ⊲ Add f to the bottom level of h

4: while i++ < log2(k) do ⊲ Iterate until leaves are reached

5: if f.z > P(f).z then ⊲ Compare f with its parent

6: swap(f, P(f)); ⊲ Swap f with its parent

7: else

8: break; ⊲ Correct depth order, exit

9: end if

10: end while

11: end procedure

12: procedure down-heap(h, f, k)

13: i := 0;

14: h[0] := f ; ⊲ Replace root with f

15: while i++ < log2(k) do ⊲ Iterate until leaves are reached

16: C(f) := max{L(f),R(f)}; ⊲ Find f ’s largest child

17: if f.z < C(f).z then ⊲ Compare f with its largest child

18: swap(f, C(f)); ⊲ Swap f with its largest child

19: else

20: break; ⊲ Correct depth order, exit

21: end if

22: end while

23: end procedure
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number of captured fragments, a mechanism decides which sorting algorithm is applied

to the pixel. Despite its quadratic complexity, insertion sort is faster for sorting small

fragment sequences (k ≤ 16). When k increases, O(k log k) sorting algorithms, such as

shell sort, have better performance [75].

7.1.3 Precise Memory Allocation

Similar to all k -buffer alternatives where k is the same for all pixels, k+-buffer suffers from

potentially large unused memory space allocation of k -fragmentless pixels. For example,

Figure 7.1 illustrates the wastefully allocated storage of a 4-buffer for (top) a pixel that

consists of 2 fragments and (bottom) an empty-pixel. Note that the value of k is not

automatically adjusted based on the rasterized scene and must be carefully set a priori

by the user.

Inspired by our S-buffer (see Section 5), we introduce a memory-aware k+-buffer im-

plementation using two geometry passes (K+B-SB). A precise allocation of the required

memory space is achieved by performing an initial geometry rendering (count pass) which

sums up the number of fragments covering each pixel. Contrary to S-buffer where all frag-

ments contribute to the per-pixel aggregation, we bound the number of fragments that

affect a pixel by k when f(p) > k, where f(p) is the number of generated fragments at pixel

p. For each incoming fragment, the per-pixel counter is atomically incremented. When

the value of the counter reaches k, the subsequently arriving fragments are discarded. The

total size of the k+-buffer is estimated by accumulating the bounded per-pixel fragments

fk using hardware occlusion queries. Then, the memory offset lookup table (referencing

pass) is computed in parallel fashion exploiting sparsity in pixel space. Finally, per-pixel

counters are reinitialized to zero to guide the subsequent storing phase.

A geometry rasterization is employed to store the most significant fragments to a

hybrid buffer scheme starting from the memory offsets computed for each pixel. Knowing

its fragment cardinality a priori, each pixel can efficiently choose the fastest way of storing

its fragments in either a max-array or a max-heap storage. Note that this is feasible

since both data structures are implemented using fixed-arrays. Since max-array structure

inserts faster than max-heap when the capacity is not full and k stays small, we apply

the following strategy: if f(p) > k and k > 16 then we pick max-heap, otherwise we use

the max-array data structure as storage buffer (see also Section 7.2).

In terms of performance, accessing global memory for concurrently storing all frag-

ments becomes a significant bottleneck as opposed to the original single-pass k+-buffer

which benefits from the fast operations in the register memory space. Last but not least,

the need of an additional geometry rendering step also adds a tessellation-dependent

computation cost.

The complete k+-buffer framework, including the original and its memory-aware ver-

sion, is shown in Figure 7.3 and Algorithm 7.8, where p.xxx denotes a per-pixel variable,

a[i].xxx information located at i position in the buffer array, and f.xxx attributes of each

running fragment. insert empty() and insert full() are the abstract insertion functions.
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Algorithm 7.8 k+-buffer (Array a, Pixel p, Fragment f , Int k)

1: procedure clear(p) ⊲ full-screen pass

2: p.counter := 0;

3: p.semaphore := 0;

4: end procedure

5: procedure count(p, k) ⊲ geometry pass

6: if p.counter < k then

7: p.counter ← p.counter+1; ⊲ bounded fragment accumulation

8: else

9: discard;

10: end if

11: end procedure

12: procedure referencing(p) ⊲ full-screen pass

13: compute pixel offset(p.counter);

14: p.counter := 0;

15: end procedure

16: procedure store(a, p, f, k) ⊲ geometry pass

17: if p.counter < k or f.z < a[0].z then ⊲ fragment culling

18: while true do

19: if (p.semaphore և 1) == 0 then

20: if p.counter < k then ⊲ enter critical section

21: insert empty(p.counter++);

22: else if f.z < a[0].z then

23: insert full();

24: end if ⊲ exit critical section

25: p.semaphore := 0;

26: break;

27: end if

28: end while

29: end if

30: end procedure

31: procedure resolve(p) ⊲ full-screen pass

32: if p.counter ≤ 16 then

33: insertion sort(p.counter);

34: else

35: shell sort(p.counter);

36: end if

37: compute effect(p.counter);

38: end procedure

⊲ where {←, և} denote atomic {store, exchange} operations
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7.1.4 Support of Z-buffer and A-buffer

Without loss of generality, k+-buffer can also be considered as a unified framework that

successfully integrates the functionality of Z-buffer, k -buffer and A-buffer by simply ad-

justing the value of k. By allocating a single entry per pixel (k = 1), our method ensures

displaying the closest fragment to the viewer. However, this comes with the additional

expense of extra memory requirements and performance downgrade when compared to

the hardware depth buffering.

On the other hand, users have to set the value of k large enough to avoid any fragment-

overflow (k = maxp{f(p)}). More specifically, our framework can be considered as a

hybrid scheme that correctly simulates the behavior of ABFP (when K+B is used) or

S-buffer (when K+B-SB is used). Despite the fact that our framework is not restricted

from (i) multiple render targets and (ii) samples of the anti-aliasing buffer, a multi-pass

variation may be required to achieve a memory-bounded A-buffer functionality. In this

case, maxp{f(p)}/k rendering iterations have to be performed, resulting at a significant

workload increase. Performance-wise, max-array structure should naturally be chosen

as the fragment storage due to its constant insertion complexity when the array is not

full (∀p : f(p) ≤ k).

Figure 7.3: Diagram of the k+-buffer pipeline. Each box represents a shader program.

The blue boxes are executed per-pixel using a full-screen rendering pass, while the green

ones are executed for each geometry-rasterized fragment.

7.2 Experimental Study

We present an experimental analysis of our k+-buffer approach against a set of k -buffer

and A-buffer realizations focusing on performance, robustness, and memory requirements

under different testing conditions. We have measured performance in terms of FPS and

ms and memory requirements in terms of MB. For the purposes of comparison, we have

developed two variations of KB-ABLL, where instead of using per-pixel linked lists for

the A-buffer construction, we have applied either fixed-length (KB-ABFP ) or variable-

length (KB-ABSB) arrays for each pixel. All methods are implemented using OpenGL

4.3 API and performed on a NVIDIA GTX 480 graphics card (1.5 GB memory, 35 mul-

tiprocessors).

Figure 7.4 demonstrates the importance of accurately handling multi-fragments for

several applications (transparency effects [97], CSG operations [116], and collision detec-
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tion [56]). Table 7.1 presents a comparative overview of all k -buffer alternatives with

respect to memory requirements, rendering complexity, and other features.

A 

B AUB A-B A∩B 

(a) (b) (c) 

Figure 7.4: A large repertoire of multi-fragment effects can be supported from our frame-

work: (a) Illustrating order-independent transparency of an engine consisting of 195

random-painted components. (b) Rendering boolean operations between a head (A

model) and a clipped sphere (B model) surfaces. (c) Detecting collision (highlighted

with red color) between a twirl object moving towards a static clipped sphere.

Performance

Acronym Description Rendering Passes on primitives on fragments Max k 32bit Float Precision Per Pixel Allocation Fixed

KB Initial k -buffer implementation 1 √ √ 2k; 4k

KB-Multi Multi-pass k -buffer 1 to k √ √ 2k; 4k

KB-SR Stencil routed k -buffer 1 √ √ 32 3k

KB-PS k -buffer using pixel synchronization 1 x √ - 2k

K
+
B-Array k

+
-buffer using max-array 1 x √ - 2k + 2

K
+
B-Heap k

+
-buffer using max-heap 1 x √ - 2k + 2

KB-MDT Multi depth test scheme 2 x x - 2k

KB-MHA Memory-hazard-aware k -buffer 1 √ √ 8; 16 2k; 4k

KB-ABFP k -buffer based on A-buffer (fixed-size arrays) 1 x √ - 2n + 1 

KB-ABLL k -buffer based on A-buffer (dynamic linked lists) 1 x √ - 3f + 1

KB-LL k -buffer based on linked lists 1 x x - 3f + 6

KB-ABSB k -buffer based on S-buffer (variable-contigious regions) 2 x √ - 2f + 2

K
+
B-SB Memory-friendly variation of k

+
-buffer 2 x √ - 2fk + 3

Memory

x

√

Peeling AccuracySorting need

8; 16

√

√

x

Algorithm

In A ; B, A denotes the layers/memory for the basic 

method and B for the variation using attribute packing

f(p) = # fragments at pixel p

fk(p) = (f(p) < k) ? f(p) : k fk(p) ≤ k

n = maxx,y{f(p)}

Table 7.1: Comprehensive comparison of the prior k-buffer solutions and the introduced

k+-buffer methods.

7.2.1 Performance Analysis

We have performed an experimental performance evaluation of our methods against com-

peting techniques using a collection of scenes under several different configurations. In-

stead of rendering scenes under different image resolutions, we have used a 854 × 480

viewport and perform zooming operations defining the percentage of image being raster-

ized. For a fair comparison, all methods are tested under artificially generated scenes that

cover a percentage of screen size (or pixel density: pd) and produce n = r · k randomly

arrived fragments per pixel, where r ≥ 1.

k-buffer Comparison

Impact of k. Figure 7.5 shows how the computation time, for each rendering pass of a

set of k -buffer methods, scales by increasing the value of k = 4, . . . , 64 for a scene that
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consists of n = 128 fragments per-pixel. Except from KB-MDT which needs two passes

(namely, Store(Z) and Store), the other memory-bounded methods require to rasterize

the scene only once. We observe that our K+B-Array and K+B-Heap perform better than

the rest of the techniques for all k values. As expected, K+B-Heap performs better than

K+B-Array when moving from low to high k values. Note that the Resolve step is more

expensive for A-buffer-aware methods, since it has to locate the closest k fragments from

all captured ones before sorting. KB-LL and KB-MDT do not perform depth reordering

since they both store and sort fragments on the fly. Despite the good performance of KB-

MDT for small buffer sizes, the computation cost of storing and sorting depth fragments

exhibits a rapid increase for larger k values. This leads to an important conclusion:

a future single-pass KB-MDT, which will be enhanced by the expected 64-bit atomic

updates on the graphics memory, will present an insignificant performance gain. Note

that K+B is up to 25× faster than the current implementation of KB-MDT when k =

64. Finally, we observe that Count and Resolve passes of K+B-SB cost less in terms

of computations as compared to the ones of KB-ABSB due to the restricted operations

carried out by the former. However, slow fragment storing in global memory from K+B-

SB increases fragment spinning which subsequently results at a performance downgrade

when the rasterized fragments are significantly increased.

1 

5 

25 

125 

Count/Store(Z) Store Resolve 

k=32 k=64 k=16 k=4 k=8 

Figure 7.5: Performance evaluation in ms (log5 scale) of k-buffer variants with increasing

k on a scene with constant fragment complexity (128).

Impact of Sorting. Figure 7.6 illustrates performance comparison of our bounded K+B

against KB and KB-SR methods for varying k values. All methods are tested under two

scenarios where n = k, . . . , 1024 fragments are generated for the pd = {25%, 75%} of all

pixels. To accurately capture the closest fragments without RMWH from KB and KB-SR,

the scene is rasterized in depth order. K+B-Array performs slightly better than K+B-

Heap since the first k fragments need O(1) time (compared to O(log2 k)) to be inserted

in the array. Due to the sorted arrival fragment order, the remaining fragments do not

affect performance since they are successfully culled in both methods. A linear behavior is

observed when moving from less ({0.21M, . . . , 104.93M}) to more ({0.61M, . . . , 314.82M})

generated fragments. Our methods are superior when compared with KB for all scene

configurations. Similar performance conclusions can be made for the not-implemented

KB-PS and KB-MHA methods, since they are supposed to perform slightly worse than

KB. Despite its efficiency due to the hardware-implemented stencil routing, KB-SR speed
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is falling when k reaches higher values. An additional geometry pass must be employed

to successfully capture all fragments for KB (k > 16) and KB-SR (k > 32), resulting in a

significant performance downgrade.

1 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

2 8 32 128 512 1,024 4 8 32 128 512 1,024 8 32 128 512 1,024 16 32 128 512 1,024 32 128 512 1,024 64 128 512 1,024 

KB (75) KB-SR (75) K+B-Heap (75) K+B-Array (75) KB (25) KB-SR (25) K+B-Heap (25) K+B-Array (25) 

Figure 7.6: Performance evaluation in FPS (log2 scale) of our bounded K+B methods and

the sorting-aware k-buffer methods for a large set of k values. Pixel density is shown in

brackets.

Impact of Memory. Figure 7.7 illustrates the performance evaluation in terms of FPS

per MB for a testing k -buffer method set when performance and memory are of utmost

importance. To construct k -fragmentless pixels, we permit pixels to be influenced by up to

n = 10 ·k fragments. Thus, we define fp as the probability of a generated fragment to not

be discarded. We observe that K+B-SB is preferred to be used for handling scenes with

many empty pixels (pd = 25%) and small number of rasterized fragments (fp = 25%).

When pixel and fragment densities increase (pd = 75%, fp = 75%), K+B-SB performs

better than the rest memory-aware methods. However, K+B-SB behavior is normally

worst than the bounded methods since it theoretically performs slower (e.g. one extra

pass, storing data at global memory) in conjunction with the small unused memory of

the bounded methods. Despite the fast speed of KB-ABSB on sparse scenes, performance

is significantly reduced when generated fragments blast off to high levels. Finally, KB-

ABFP , KB-ABLL, KB-ABSB and KB-LL fail to work when fragment allocation results in

memory overflow (k = 64).
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Figure 7.7: Performance evaluation in FPS/MB (log2 scale) of all k-buffer variants when

moving from a scene with r = 10 from small number towards a large number of generated

fragments.

Impact of Tessellation. Figure 7.8 illustrates how the performance scales by moving

from a low (1 level) to a high (64 level) tessellated scene. A representative set of scenes are
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used to compare a number of k -buffer methods that aim at capturing 8 fragments. Three

scenes are generated where the same number of fragments are rasterized n = {16, 40, 80}

for pd = 50% of the pixels. Different configurations yield similar speed results. In all

tests, a small performance impact is observed from the SB-aware methods as opposed to

the linear behavior of the rest k -buffers. This is due the fact that the counting geometry

pass is not-tessellation dependent.
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Figure 7.8: Performance evaluation in FPS (log2 scale) of all k-buffer versions on a scene

with varying tessellation resolution [1, 64] and increasing per-pixel fragment complexity n :

r = {2, 5, 10}, k = 8.

A-buffer Comparison

Figure 7.9 illustrates performance comparison of our methods against the A-buffer alter-

natives for a scene with varying depth complexity. The same scene configurations with

Figure 7.7’s test have been used, with the difference that k is set to the fragment car-

dinality, so that K+B methods are able to capture all generated fragments. We initially

observe that both bounded K+B methods perform better from all memory-aware A-buffer

variants and slightly worse than ABFP , the fastest A-buffer implementation so far. The

unnecessary culling mechanism is responsible for this cost. Similar to previous tests,

K+B-Array outperforms K+B-Heap, enhanced by its constant-time insertion process. On

the other hand, K+B-SB despite its smaller computational cost as compared to LL is

worse than SB in all cases. Except from the culling cost, the additional condition for

each fragment at the count pass significantly affects performance. Finally, note that the

performance gap exhibited between K+B-SB and KB-ABSB is alleviated when the pixel

density is increased (resulting at more rasterized fragments, from {0.21M, . . . , 13.12M} to

{0.61M, . . . , 39.35M}).

7.2.2 Memory Allocation Analysis

Table 7.1 presents complexity in terms of memory consumption for all available methods

that more or less simulate the behavior of k -buffer. We initially observe that our K+B

methods require slightly more storage (8-byte) per-pixel than the rest of the memory
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Figure 7.9: Performance evaluation in FPS (log2 scale) of A-buffer alternatives on a scene

with varying maximum depth complexity.

bounded methods due to the additional allocation of the counter and semaphore textures.

When moving to extreme screen resolutions this cost is noticeable. However, these meth-

ods need more storage when data packing is explored (∀k > 1 : 4k > 2k+2). K+Bmethods

require less memory resources when compared to the KB-SR (∀k > 2 : 3k > 2k+2). Note

that semaphore texture allocation is further avoided when pixel synchronization exten-

sion is employed on Haswell hardware. On the other hand, video-memory consumption

blasts off to high levels when A-buffer is constructed. Observe the increased memory

requirements of KB-ABFP due to its strategy to allocate the maximum memory per pixel

p (n = maxp{f(p)} ≫ k). KB-ABLL, KB-LL, KB-ABSB require less storage resources by

dynamically allocating storage only for non-empty pixels (f(p) ∈ [1, n]). Our memory-

aware method K+B-SB requires equal (when f(p) ≤ k) or less (when f(p) > k) storage

than the unbounded A-buffer-based methods reducing the risk of a memory-overflow. Fi-

nally, an interesting observation is that K+B and K+B-SB when extended to capture all

fragments (k = n) require the same storage demands when compared with the ABFP and

SB methods, respectively.

7.2.3 Image Quality Analysis

Figure 7.10 shows the image differences of KB, KB-MDT and KB-ABFP methods when

compared with the ground truth on three different scenarios: (top) Z-buffer: A radial

engine CAD model is rendered using Gooch shading, (center) k -buffer: a transparent

hairball model is visualized with red strips, and (bottom) A-buffer: a transparent temple

model is completely rasterized. Noticeable quality downgrade is observed at the first

two image columns due to (center, left) RMW hazards of KB and (center, right) depth

conversion artifacts of KB-MDT. To avoid memory overflow of KB-ABFP , we have to

allocate less storage than we actually need leading at (right) a visually information loss

for a small set of pixels. Note that in the last example, K+B and KB-ABFP naturally

produce the same image.
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Figure 7.10: Color coded-differences between (left) the images generating using K+B

against the outputs of (center-left to right) KB, KB-MDT and KB-ABFP .
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7.3 Conclusions

We have introduced k+-buffer, an improved GPU-accelerated k-buffer framework, which

handles RMW memory-hazards and depth precision conversion artifacts, and avoids ge-

ometry pre-sorting and the requirement for unbounded memory. A consecutive geometry

rasterization may be executed to enable precise memory allocation. Implementation de-

tails and light-weight changes are offered to enable full support of our framework on Fermi

and Haswell GPU architectures. Furthermore, Z-buffer and A-buffer functionalities are

successfully integrated under the proposed framework. Extensive experimental compar-

ison demonstrated the superiority of our framework as compared to previous k -buffer

alternatives with regards to storage requirements, performance and image quality.
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Chapter 8

Direct Rendering of Self-Trimmed

Surfaces

8.1 Framework Overview

8.1.1 Revisiting Interior Exterior Classification Rules

8.1.1 Static Rules

8.1.1 Dynamic Rules

8.1.2 The Rendering Algorithms

8.1.2 Rendering with Static Rules

8.1.2 Rendering with Dynamic Rules

8.1.2 Capping and CSG

8.2 Experimental Study

8.3 Conclusions

Most steps in the geometry processing pipeline, like deformation, smoothing, subdivi-

sion and decimation, may create self-intersections. The approximated skinned surface

may also result in a self-crossing surface. Various rules have been introduced for the

interior/exterior classification of the connected components of the complement of a self-

crossing surface produced through a continuous deformation process of an initial em-

bedded manifold. However current semantics are not capable of performing trimming

operations automatically in a manner that is coherent over time and that is compliant

with the results that would be obtained through possible constructive solid geometry oper-

ations. Sections 2.1 and 2.4.1 provide the important preliminaries regarding the problems

of trimming self-intersecting surfaces and multi-fragment rendering, respectively.
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8.1 Framework Overview

In this section, we introduce a complete framework [116] for treating self-trimmed sur-

faces as first class citizens allowing us to use them as CSG primitives or to show their

cross-sections (intersections with a plane) using capping. In this work, we explore rules

that capture application semantics (Section 8.1.1) for the problems formally defined at

Section 1.1.5 and further provide efficient algorithms for efficiently rendering the resulting

trimmed boundary on the GPU (Section 8.1.2).

More specifically, we initially explore static rules that depend only on the SCS and

evaluate at least in simple cases how well the results they produce match what we consider

to be plausible intentions of the designer. The second problem corresponds to dynamic

rules that depend on the deformation history and the SCS. We are particularly interested

in formulations of T (St) that correspond to a designer’s intuitive expectation of the se-

quence of results that should be produced by a reasonable deformation Dt that creates

several self-crossings. In particular, we propose semantics that mimic locally the natural

behavior of incremental Boolean operations, where self-crossings are created in St one at

a time and each performs a local union or intersection of shapes defined partially by two

portions of the previous frame St−1.

We also introduce practical and efficient GPU-based trimming algorithms that ren-

der T (St) directly by scan-converting St and St−1 without the need for computing self-

intersection curves. We do this by testing the rasterized fragments (surfels), to establish

whether they lie on the boundary of I(St).

We claim three advantages of such a direct rendering and trimming approach. The

first advantage is the elimination of the cost of computing self-intersection curves and of

identifying the faces (connected components that are cut out by these curves). Such a cost

would otherwise make it impossible to render the trim during deformation animations or

perform interactive editing. The second advantage is the flexibility of being able to define

St as the result of a (possibly adaptive) subdivision process to be carried out on the GPU.

Finally, we can render the result of combining the interiors of two or more self-crossing

surfaces through CSG operations.

8.1.1 Revisiting Interior Exterior Classification Rules

Previously proposed rules for interior classification are static and sometimes depend on

the topology of the self-intersecting surface (for example index based classification). Such

rules do not capture the process of dynamically extending interior or exterior parts in

a consistent and intuitive manner (Problem II) but may yield useful classifications for

determining the interior of an SCS of unknown origin (Problem I). In this section, we

seek classification rules with predictable, consistent and intuitive behavior.
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Static Rules

Static rules are usually based on the point index with respect to the current SCS for clas-

sifying points as interior or exterior. We wish for the classification rules to be intrinsic,

i.e., independent of the choice of coordinate system. In some applications, it is useful to

support rules based on global topological or integral properties (such as the genus or vol-

ume of a component or its surface area) [104]. We will discuss possible extensions of our

work to support such global rules, but this section is primarily focused on local rules.

A rule is local if the classification is based on the intersections of S with a given ray that

does not intersect any curve derived by a self-crossing. In this section, we consider only

static rules that are based on the index w of the component that we wish to classify.

The popular parity (also called alternating interior) rule classifies a component as

interior when the index of its points is odd. This corresponds to switching the interior

status each time one traverses S. Note that the result is not altered by a global change

of the orientation of S. Hence, we say that the parity rule is orientation invariant.

Unfortunately, the parity rule will only trim (remove from S ) some of the two-dimensional

self-overlapping portions of S. Thus, if S is self-crossing, but does not have self-overlaps,

then T (S) = S. Although this is a useful rule, it does not allow the designer/user to

easily modify the genus of the interior closure of a manifold boundary S by warping S so

that it crosses itself. When S overlaps itself (along a full-dimensional portion instead of

cleanly self-crossing), the parity of the number of portions that overlap at a point p of S

defines whether p is in T(S).

Unfortunately, the alternating interior rule is rarely an acceptable option since

1. Usually it does not trim the surface at all, hence it yields solids with T (S) = S

(except in self overlapping parts).

2. It produces non-manifold solids where each self crossing-edge is a non-manifold edge.

Both facts are illustrated in 2D in Figure 8.5(b). The red blurred lines indicate the

trim (i.e. the STS which is the surface after trimming). In the simple case of Figure

8.7((left) all three manifold sub-parts are considered inside with the parity rule, even the

clearly negative volume in the middle. Finally, they are connected through shared curves

resulting in a non-manifold object.

Heisserman [50] has proposed the positive index rule (1-st unary intersection) that

classifies as in the components for which w is positive (the closure of the set of points

with winding number greater or equal to 1). Of course, w is normally 1 inside S and

0 outside when S is free from self-intersections. This rule is not orientation invariant.

This semantics is appropriate for applications that involve growing an initial set through

offsetting [118], sweeps and Minkowski sums [65]. For example, Figure 8.1 shows a green

loop with interior G, a red loop with interior R, and a self crossing blue loop defining an

interior B, which is the Minkowski average G⊕R
2

[65], where the interior is defined as the

set of points with strictly positive winding number.
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Figure 8.1: An example where the positive index rule works.

Defining the interior by w ≥ 1 works well for cases such as the ones shown in Figures

8.5(a) and 8.6 but does not yield intuitive results for the case of Figure 8.2. Also it

may improperly classify a region, such as component e in Figure 8.7. In the case of

Figure 8.5(a) if we change the surface orientation we derive an empty set as I(S). Finally,

to derive the complement of the solid under the positive index rule, we should both

change the orientation of the surface and adjust the index by adding a surrounding box

(i.e. assign index −w + 1).

w=1 w=1 w=1

w= -1 w= -1 w= -1 

w=0 w=0 

w=0 w=0

w= -1 w= -1 

w
=
1

w
=
1

Figure 8.2: The green self-crossing loop (left) defines two regions, one of which has negative

index and is discarded. Then, we grow the other region (which is the interior defined by

the self-crossing loop) by extruding a portion of its left border so that it overlaps the

discarded region. We expect the space conquered by this extrusion be part of the new

interior (center). The red line indicates the trim T (S) (the boundary of the interior).

Note that (right) using the positive index rule does not produce the expected result.

Here, we propose the alternating border rule where a point p is in if and only if⌈
w(p,S)

2

⌉
%2 = 1. In simple configurations, it is equivalent to the positive index rule as

shown in Figure 8.6. It has however two interesting and intuitive properties.

When the surface is free from self-overlaps, but crosses itself, then the classification

of S, as being part of the trim T of I(S) or not, alternates at each crossing edge. This is

illustrated in 2D in Figure 8.3, which shows that this simple rule makes it easy to design

and represent faces that are simply connected by using a single loop. In other words, the

union of the self-crossing curves decomposes S into faces. This is substantiated by the

following Theorem.

Theorem 8.1. Adjacent faces (those incident upon the same self-crossing edge) have

opposite classification with respect to the trim T (alternating border).

Proof. Consider a surface part s crossing a surface part s′ and let fi(s) and fi+1(s) be

the two adjacent faces. We shall prove that fi(s) is part of the trim if and only if fi+1(s)
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Figure 8.3: An example of creating a genus-1 object by deforming a single loop.

is not part of the trim (see Figure 8.4). For the purposes of the proof we will use an

equivalent definition of the alternating border rule: a point p is in if and only if w(p)%4

is 1 or 2. Equivalently, p is in if and only if there is an integer λ such that either

w(p) = 4λ+ 1 or w(p) = 4λ+ 2. Clearly, p is out if and only if there is an integer λ such

that w(p) = 4λ or w(p) = 4λ + 3. Assume fi(s) is part of the trim, then the adjacent

components Ui(s) and Di(s) will have classification in/out or out/in, respectively. Since

the components are adjacent to the face their index numbers will differ by one. Let Ui+1(s)

andDi+1(s) be the adjacent components to face fi+1(s). Without loss of generality assume

w(Dk(s)) = w(Uk(s)) + 1 for k ∈ {i, i + 1}. Then for every case of Ui(s)/Di(s) being

in/out or out/in Ui+1(s)/Di+1(s) have classification out/out or in/in (see Figure 8.4).

Therefore, fi+1(s) is not part of the trim. Vice versa, suppose fi(s) is not part of the

trim. Likewise, it follows that fi+1(S) is part of the trim.

Furthermore, the alternating border rule does not generate non-manifold edges unless

the surface crosses itself multiple times along the same intersection curve.

Lemma 8.1. The alternating border rule does not produce non-manifold solids with simple

self-crossings (see Figure 8.5(c))

Proof. Consider 4 portions of the surface incident upon any segment of a self-crossing in-

tersection curve C. Two of these are trimmed away, because our rule toggles trimmed/retained

classification when crossing C. Hence, the segment has two incident portions and is thus

manifold.

Finally, the alternating border rule has two more practical characteristics:

1. We may obtain the complement of a solid, simply by adding two bounding boxes

with the same surface orientation (index becomes w − 2 or w + 2). This follows

directly from the equivalent definition of the alternating border rule in the proof of

Theorem 1.

2. If we reverse the surface orientation we obtain the complement of the trim. This

follows immediately from Theorem 1.
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adjacent component

classification for face

fi(s). Components

Ui(s) / DLi(s)

index numbers

w( Ui(s)) / w( Di(s))

w( Ui(s))+1=w( Di(s))

Index numbers

w( Ui+1(s)) / w( Di+1(s))

case w increases by 1 or

case w decreases by 1

after crossing s’

adjacent component

classification for face

fi+1(s) ( after crossing

s’). Components

Ui+1(s) / DLi+1(s)

in/in 4 +1 / 4 +2 4 +2/4 +3 or 4 /4 +1 in/out or out/in

out/out 4( 1)+3 / 4 4 /4 +1 or

4( 1)+2/4( 1)+3

out/in or in/out

out/in 4 / 4 +1 4 +1/4 +2 or 4( 1)+3/4 in/in or out/out

in/out 4 +2 / 4 +3 4 +3/4( +1) or 4 +1/4 +2 out/out or in/in

s’
s

Di(s)

Ui(s)

Ui+1(s)

Di+1(s)

fi+1(s)

fi(s)

Figure 8.4: Establishing that under the alternating border rule, for adjacent faces it holds

that exactly one of them will be part of the trim. A face is part of the trim if the two

adjacent components have different interior/exterior characterization (in/out or out/in).

In particular the result of the alternating interior rule in Figure 8.5(c) is a single

manifold of maximal genus (genus-3) as derived by a static SCS (Problem I).

Dynamic Rules

Figure 8.7 illustrates the limitations of static rules with respect to Problem II. We use a

deformation of an initial self-crossing curve shown on the left that extends the bottom tip

upwards. The intuitively correct result is shown in the right. However, both the positive

index rule and the alternating boundary rule would classify area e as exterior since its

index is 0.

It has become apparent from the above discussion that we need to maintain some his-

tory throughout user-controlled deformations. Besides, it is useful for several applications

to render the result of a series of deformations combined with CSG and/or change of

LOD operations. We need rules that capture correctly continuous deforming operations

on surface parts (Problem II).

Thus, we propose more complex rules, which at each stage, compare the previous

and current indices of each region. More formally, we define a characterization of the

components C
′

i at some stage of the deformation process based on the current index of

the component, and the classification of the component and the index with respect to

the surface S at the previous stage of the deformation. Components C
′

i are formed by a
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(a) (b) (c)

Figure 8.5: Interior classification using (a) the positive index rule, (b) the alternating

interior rule and (c) the alternating border rule.

Figure 8.6: An example where the positive index number rule derives intuitive inte-

rior/exterior classification: (a) top tip wagging (b) bottom tip extending (c) dent creation

(d) bump creation.
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Figure 8.7: A deformation example where static rules fail to derive intuitive inte-

rior/exterior classification. The initial self-crossing curve (left) is modified (right) by

extending the tip of the bottom part upwards. This change creates a region e where

w = 0 and which is hence excluded by the static rules. Yet, intuitively, it should be

part of the interior, since it corresponds to Boolean union of the initial interior with the

extruded region.
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deformed surface S
′

that is derived by performing k disjoint concurrent deformations

on S, such that S
′

= f(S) = f(s1)∪f(s2)∪ . . .∪f(sk), where {s1, s2, . . . , sk} is a partition

of S and for all surfaces in {f(si) : f(si) 6= si} it holds that they do not cross, self-cross,

overlap or self-overlap. This restriction ensures that a boundary surface may cross a point

only once during each set of concurrent deformations. Determining the interior/exterior

is based on the classification and point index obtained for the reference surface S and the

new point index with respect to the current surface S
′

.

Properties Characterizing the Behavior of the Dynamic Rules. We will determine

whether the following properties hold for post-deformation interior/exterior classification

semantics:

Extension-normal confluence property. When deforming a surface by displacing it

locally in the direction of the outward pointing normal, the points crossed either

become interior or are not affected. When we deform the surface in the opposite

direction to the normal, the points crossed either become exterior or are not affected.

Points whose index increases are candidates to become interior points and points

whose index decreases are candidates to become exterior points. Points whose index

does not change preserve the status that they had before the deformation.

Complement symmetry property. If we apply the same deformations on the com-

plement we obtain the complement of the result.

Component homogeneity property. Each component contains only interior or only

exterior points. This is a very important property since otherwise the border of the

interior parts may not be a subset of the deformed initial surface. This is equivalent

to the aforementioned boundary diminishing property (see Section 2.1.1).

The following rules are based on the point index variation and the interior/exterior

classification of the reference surface S. We denote the previous and the current index at

a point p by w(p, S) and w(p, S
′

), where S and S
′

denote the surface before and after the

deformation, and the previous and the current interior/exterior classification by i(p, S)

and i(p, S
′

), respectively. Let i(p, S) be the classification of point p with respect to surface

S. Then, i(p, S) is 1 when p is in, 0 when p is out, and undefined when p is on T (S).

For the initial classification of the SCS surface S0 prior to any deformation, we use

the alternating border rule: i(p, S0) =
⌈
w(p,S0)

2

⌉
%2. However, another scheme, such as

the positive index rule, could be used if desired.

Constructive Rule. Here we define the constructive rule that emulates CSG behavior

among the original solid and the newly created volumes due to deformation. According

to CSG we employ additive (union), subtractive (difference) and intersection deformation

semantics for interior/exterior classification. After each step of the concurrent deforma-

tions, we determine the interior/exterior classification of a point p with respect to the
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(a) (b) (c)

(d) (e) (f)

s0,1 s0,2

s0,3

s1,1

Figure 8.8: Illustrating how the constructive and the confluent deformation rules work.

Interior parts are shown as shaded regions. The SCS is depicted by the green polyline. Red

blurred lines indicate the trim (i.e the border of the new solid). Dashed red lines indicate

parts of the trim that are not part of the SCS. (a) The original object and boundary,

(b) after applying a set of 3 concurrent disjoint deformations f on surface parts s0,1, s0,2
and s0,3 on (a) with subtractive semantics (constructive rule), (c) after applying a set

of one deformation g of s1,1 on (b) with additive semantics (constructive rule), (d) after

applying f on (a) with additive semantics (constructive rule), (e) after applying g on (d)

with subtractive semantics (constructive rule), and (f) after applying f on (a) and then g

using the confluent deformation rule. In cases (a)-(e) the boundary of the shaded regions

(trim) is not always a subset of the SCS.

deformed surface S
′

by performing a union, subtraction or intersection between the origi-

nal solid S and the newly created volumes. A point belongs to the newly created volume

if and only if its index has been modified:

i(p, S
′

) = i(p, S) op (w(p, S)! = w(p, S
′

))

where op depends on the type of deformation. For additive deformation AopB corre-

sponds to logical OR (A∨B), for intersection deformation it corresponds to logical AND

(A∧B) and finally the subtractive operation AopB is realized as A ∧ ¬B.

Additive deformation corresponds to adding a part to the interior (set union), sub-

tractive deformation corresponds to subtracting a part from the interior (set difference).

These semantics yield results that are symmetric to the complement if we replace each

additive with a subtractive deformation and vice versa.

We observe that although this rule captures design intent and has a constructive na-

ture, it does not preserve component homogeneity. Thus, in some cases this rule may yield

highly non intuitive results for users not familiar with the CSG process. For such users,
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results where the trim is not part of the initial surface S (see Figure 8.8) may look ill-

defined. To address this problem, we use the confluent deformation rule (see Figure 8.8(f)).

Confluent Deformation Rule. After each step of concurrent deformations, the interior

exterior classification is determined by the following formula:

i(p, S
′

) =

{
i(p, S), w(p, S) = w(p, S

′

)⌈
w(p,S

′

)−w(p,S)
2

⌉
%2, otherwise

which turns out to be equivalent to:

i(p, S
′

) =





i(p, S), w(p, S) = w(p, S
′

)

0, w(p, S) > w(p, S
′

)

1, w(p, S) < w(p, S
′

)

Note that, given that if w(p, S
′

) has changed then it differs from w(p, S) only by one.

Thus, i(p, S
′

) is 1 if and only if the point index is increased (extending the interior) and

0 if and only if the point index is decreased (extending the exterior). Figure 8.8(f) illus-

trates the result of applying two sets of concurrent disjoint transformations on the object

of Figure 8.8(a).

Homogeneous Confluent Deformation Rule. The confluent deformation rule can be

extended so as to enforce component homogeneity by imposing the following restriction:

A part sout of surface S that is not part of the border B cannot be deformed towards

the normal if sout is between two exterior components. Likewise a part sin of a surface S

that is not part of border B cannot be deformed in a direction opposite to its normal if sin
is between two interior components. This restriction improves the confluent deformation

rule semantics by enforcing component homogeneity.

To enforce the deformation restriction we need to detect trimmed off parts of the

surface, i.e. parts that do not belong to the border and the interior/exterior classifica-

tion of the adjacent components. To simplify user interaction, we suggest to prohibit

deformations of the surface parts that have been trimmed off.

Table 8.1 provides a comparative overview of the interior/exterior classification rules

presented in this section based on their principle, the efficiency of their implementa-

tion, their properties and their intuitiveness with respect to graphics and CAD designers.

Graphics designers expect continuity during deformation sequences and consistency as

far as viewing from outside is concerned. On the other hand, CAD designers expect

robustness, manifold objects and are better acquainted with solid modeling operations.

Implementing these rules efficiently in hardware is far from trivial. We need to detect

fragments that belong to the trim of the surface based on the current index, the reference

frame index and the interior/exterior classification. In all cases, we shall maintain in

the current scene the fragments of the reference frame as well. By doing so, we can

build efficient algorithms for realizing the confluent deformation rules with or without

component homogeneity.
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Rule based on
intutiveness for

CAD designers

intutiveness for

graphics designers
Properties

Implementation

efficiency

component

homogeneity

extension normal

confluence

complement

symmetry

direct

reversibility

order

invariance

Static rules index low low NA NA very efficient two pass

Constructive

index change and previous classification

(needs reference frame fragments)
high low

for additive and

subtractive

efficient multipass or

freepipe

Confluent

deformation

index change and previous classification

(needs reference frame fragments)
moderate moderate

efficient multipass or

freepipe

Homogeneous

confluent

deformation

index change, previous classification, and

current border information (needs reference

frame fragments for efficiency only)

moderate high
efficient multipass or

freepipe

Table 8.1: Comparative overview of the properties and characteristics of static and dy-

namic rules

8.1.2 The Rendering Algorithms

In this section, we present rendering algorithms for self-crossing manifolds and in partic-

ular we explain how to compute efficiently the point index, and how to perform efficiently

trimming, clipping, capping and CSG operations. We discuss how the static and the dy-

namic rules are realized in this context. For computing and rendering the trim, we have

employed multi-pass (sort-independent) and buffer-based peeling techniques. The basic

process underneath all these techniques is the same: process all fragments per pixel (in

addition to reference frame information for the dynamic rules) to determine the index and

the interior/exterior classification. Section 8.2 presents results using all these alternatives.

Rendering using Static Rules

For the purposes of performance analysis, we consider that rendering based on static rules

involves two processes:

1. compute the index p.index of a point that lies at depth p.z on a ray starting from

the corresponding pixel p. For static rules, this information is sufficient for directly

computing the interior/exterior classification p.class.

2. find the first fragment after the clipping depth that lies between two areas with

different interior/exterior classification. This step corresponds to trimming, i.e.

rendering only the trim.

We have realized this on the GPU using several algorithms. Below we describe these

implementation options, their details and their advantages and restrictions.

Point Index and Interior/Exterior Classification. One may use F2B for peeling

all front-facing and back-facing intersections of the ray with the SCS (see Figure 8.9).

This rendering method requires a buffer for counting front-faces and a separate buffer

for counting back-faces. We have employed the technique proposed at Chapter 6 that

correctly resolves the z-fighting limitations achieving correct rendering of cracks, thin

plates, and thin portions of the solid near sharp silhouette edges. Our objective is to

iteratively peel and count the layers until we find the first layer whose depth is greater

than the target depth p.depth. We use lock flags to avoid peeling at pixels that have
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retrieved the next layer after the target depth. The peeling iterations terminate when

we have reached our goal for all pixels. Finally, we classify the surfel to be rendered as

interior or exterior by static rule(Of − Ob), where Of and Ob are the total number of

extracted front and back facing fragments, respectively. Here, static rule(w) stands for

any static classification rule and depends only on the point index w using the static rules

explained in Section 8.1.1.

Instead of depth peeling one layer per pass, we apply the dual depth peeling method

for peeling a pair of a front facing and a back facing fragment in one geometry pass. The

reduction of the number of geometry passes results at a significant performance speed.

Clipping or capping plane
pixels

ray

F F

F

B

IN

IN

OUT

(OUT)

normal vector

C0

C2C1

C3

Figure 8.9: A self intersecting orientable surface that partitions space in four components:

C0 is the outside component, components C2 and C3 are interior and C1 is exterior ac-

cording to the alternating border rule. The boundary surfaces of C2 and C1 are shown

with green and yellow respectively, whereas the remaining boundary (part of the bound-

ary of C3) is illustrated in cyan. The green part of the boundary should be trimmed off

according to the alternating border rule.

Inspired by sort-independent methods [101, 8] for approximating efficiently trans-

parency rendering effects, we introduce a technique that determines the classification

in two geometry passes. The main advantage of this technique is that it does not require

sorting of the individual fragment layers of the model. At the first pass, we compute the

point index by turning off the hardware depth test and initializing the point index to zero

(in this algorithm there is no need for lock flags). Then, for each layer whose depth is less

than p.depth, we set its index count to 1 or −1 depending on whether it is front or back

facing, respectively. Using the atomic ADD blending operation, we accumulate the final

point index result. Then, by using a full screen pass we compute the interior/exterior clas-
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sification applying the static rule on the point index. A second geometry pass is needed

to retrieve the next layer after the target depth p.depth. Overall, the two pass technique

works in two steps:

1. IndexClassificationStatic - (Algorithm 8.9)

2. ClosestRender - (Algorithm 8.10)

Algorithm 8.9 IndexClassificationStatic(Pixel p, Fragment f)

/* compute point index using ADD blending */

1: p.index := 0;

2: for f .z ≤ p.depth do

3: p.index:= (f is front facing) ? 1 : −1;

4: end for

/* classify point as interior or exterior by applying the static rule on the point index */

1: p.class := static rule(p.index);

Algorithm 8.10 ClosestRender(Pixel p, Fragment f)

/* find the closest fragment after the p.depth using Z-Test */

1: if f .z ≤ p.depth then

2: discard;

3: else

4: p.color:= f .color;

5: end if

The same principle can be implemented by buffer-based peeling using the ABFP

or ABLL techniques by processing all stored fragments with f .z ≤ p.depth and adjusting

accordingly the signed sum of front and back facing fragments. This is accomplished by

performing a depth based presorting of all fragments per pixel.

Clipping and Trimming with Static Rules. For rendering the clipped STS, we

process fragments after the clipping plane until we find a fragment that has alternat-

ing interior/exterior characterization on its two adjacent sides (interior/exterior or exte-

rior/interior). This is the fragment that we shall render. To determine the classification of

the point index of the corresponding point of the clipping plane C , we use Algorithm 8.9

with respect to the depth of C (i.e. setting p.depth = C.z).

Rendering using Dynamic Rules

The point index computation is the same as in the case of static rules. The interior classi-

fication for a certain point is a slightly more complicated process. The trimming process
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for dynamic rules is considerably more complex and is outlined below.

Interior/Exterior Classification. In rendering with dynamic rules, we need to pass

over to the next animation frame the characterization (interior/exterior) and the index of

the corresponding clipping plane point. For this reason, we use one more texture with the

index of the previous frame and the interior/exterior characterization. In fact, we may use

the index and the interior exterior characterization of the point of the clipping plane that

corresponds to any of the previous frames of the current sequence of disjoint deformations.

For efficiency, we use the first frame of each such sequence (also called the reference frame).

The corresponding texture information (index and interior/exterior classification) will be

used in all frames of the current disjoint deformation sequence. The correctness of this

process is due to the fact that during each sequence of disjoint transformations the index

of each point may be altered only once. For this process, we use a variation of the static

methods. We present a dynamic classification rendering technique that determines the

point as interior or exterior by applying the dynamic rule on the point index. Note that

pc.index refers to the index of point in a pixel p in the current frame. Likewise, the pr.class

and pr.index refer to the interior classification and the index of p in the reference frame

and are modified only when we enter a new concurrent disjoint deformation sequence.

Note that the algorithm can only work if both reference and current frames are rendered

from the same viewport. The details are shown in Algorithm 8.11.

Algorithm 8.11 IndexClassificationDynamic(Pixel p)

/* classify point as interior/exterior by applying the dynamic rule on the point index */

1: pc.class:= dynamic rule(pc.index,pr.index,pr.class);

2: if current frame == reference frame then

3: pr.class := pc.class;

4: pr.index := pc.index;

5: end if

Clipping and Trimming with Dynamic Rules. For rendering the STS with dynamic

rules, we need to have available all previous interior/exterior characterizations and index

information from the reference frame. To do this, we need all interior/exterior information,

the location of all fragments (i.e. the corresponding depths), and the information to

compute the corresponding indices. It is prohibitive to maintain all this information per

pixel and pass it over from one shader to the next. A test implementation demonstrated

that this is feasible using all available texture memory for 128 layers of fragments but this

would also speed down considerably the rendering algorithm and would require powerful

state of the art graphics hardware.

We present an algorithm that maintains the geometry information of the reference

frame and uses coding for distinguishing whether a fragment has been derived from a

primitive of: (i) the reference frame, (ii) the current frame or (iii) both (has not been

deformed). This information is compiled through the geometry shaders using the value

120



of the frame.class parameter to store the frame classification of the primitive. This is

then conveyed to the corresponding fragments. If frame.class= 0 then this fragment has

originated from a primitive that is part of the reference frame only. If frame.class= 1

then the fragment has originated from a primitive that is part of the current frame only.

Finally, frame.class= 2 means that the fragment has originated from a primitive that

exists in both the current and the reference frames.

This is decided based on whether a primitive has moved as compared to its initial

(reference frame) position. Thus, for each pixel we have available all fragment information

from the current frame and the reference frame including depth information. We can also

compute the corresponding indices for each such fragment of the current or the reference

frame. In addition to this information we need a bit vector that will store the in/out

information per pixel that corresponds to the characterization of the partitioning of space

by the corresponding fragments. This needs to be computed only once for each reference

frame. The size used to store this information sets a bound for the number of layers that

we can peel. If we use a 4 × 32 bit vector we can account for 128 fragment layers per

frame, a trade off that is quit reasonable even for commodity graphics hardware.

The algorithm at a high level uses the following registers per pixel that are passed on

to the next step: the current depth of the fragment we are processing pc.depth (initialized

to the depth of the clipping plane C ); the final color of the first fragment that will not

be trimmed: p.color (initialized to 0, this variable is also used as a lock flag); the pc.index

that is the index initially at the clipping plane and then after each processed fragment

at the current frame; the pr.index that is the index in the context of the reference frame

initially at the clipping plane and then after each processed fragment; the bit vector

PCr (reference frame partitioning characterization vector) that stores the interior/exterior

characterization of the areas between fragments of the reference frame (computed for each

reference frame only); the pr.count is the fragment index for the fragment classification

bit vector of the reference frame and the local registers CLb, CLa that maintain the

characterization of the points before and after the fragments in the current frame. The

algorithm is carried out in two steps:

1. IndexClassificationDynamic - (Algorithm 8.12)

2. TrimRenderDynamic - (Algorithm 8.13)

IndexClassificationDynamic() is invoked only once and determines the indices of the clip-

ping plane at the reference and the current frames.

During TrimRenderDynamic, we process one layer at a time, until we find the first

fragment that should be rendered. Each step of the TrimRenderDynamic algorithm corre-

sponds to either a separate shader invocation (multi-pass peeling) or processing the next

fragment in the sorted fragment list.
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Algorithm 8.12 IndexClassificationDynamic (Pixel p, Fragment f)

/* compute indices using ADD blending on [cIndexP, rIndexP ] */

1: [pc.index,pr.index]:= [0, 0];

2: if f .z ≤ p.depth then

3: wf := (f is front facing) ? 1 : −1;

4: pc.index := (frame.class > 0) ? wf : 0 ;

5: pr.index := (frame.class 6= 1) ? wf : 0 ;

6: end if

/* classify point as interior/exterior by applying the dynamic rule on the point index */

1: pc.class := dynamic rule(pc.index,pr.index,pr.class);

2: if current frame == reference frame then

3: pr.class := pc.class;

4: pr.index := pc.index;

5: end if

Algorithm 8.13 TrimRenderDynamic(Pixel p, Fragment f)

/* continue until we find the first non trimmed boundary fragment */

1: pc.depth := C.z;

2: while p.color 6= 0 do

3: obtain the next fragment f : f .z> pc.depth

4: pc.depth := f .z;

5: wf := (f is front facing) ? 1 : −1

6: if frame.class 6= 1 then

7: pr.class := BCr[++pr.count];

8: pr.index := pr.index+wf ;

9: end if

10: if frame.class > 0 then

11: pc.index := pc.index +wf ;

12: CLb := cCharP ;

13: CLa := dynamic rule(pc.index,pr.index, pc.class);

14: pc.class := CLa;

15: if CLa 6= CLb then

16: p.color := f .color;

17: end if

18: end if

19: end while
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Capping and CSG Operations

We have implemented capping at no extra cost by subtracting a capping box from our

object (see CSG operations below) or by simulating the result of a front facing plane that

has extended the exterior towards the capping plane (see Section 8.2). This will clip and

cap the target object. We can render this using the algorithms described in the previous

sections by setting the clipping plane outside the object since no additional clipping needs

to be performed in this case.

Constructive solid geometry can be supported, allowing a modeler to create a com-

plex surface by using Boolean operators even between complicated self-crossing objects.

If BCr
A and BCr

B are the reference partitioning characterization bit vectors of manifolds

A and B respectively, then union, intersection and difference can be implemented by

simply performing bitwise operations on these vectors to compute the current point char-

acterization and fragment trimming of the resulting CSG object. In this case, index and

dynamic rule computations for each fragment of the current or the reference frame are

not needed, thus speeding up the trimming of the CSG operation result.

We may consider as deformed from the reference frame one of the two combined

surfaces, say without loss of generality surface B. We maintain the geometry information

of the reference frame and we use coding to distinguish the primitives of A and B. As

before, frame.class= 2 means that the fragment has originated from a primitive that is

common in both the current and the reference frames, so that it belongs to surface A.

Moreover, frame.class= 1 means the fragment has originated from a primitive that is

part of the current frame only, so it belongs to surface B. Finally, if frame.class= 0 then

this fragment has originated from a primitive that is part of the reference frame only, a

case that never occurs in our CSG setting.

The algorithm at a high level uses the following registers per pixel of the dynamic

trimming and the following registers that are passed on to the next step: the CountrA
and CountrB that are the fragment indices for the fragment classification bit vector of

the reference frames of A and B, the CountcAopB, that is the fragment index for the

fragment classification bit vector of the current frame of the result of the CSG operation,

the bit vectors PCr
A and PCr

B that store the interior/exterior characterization of the

space partitioning by the fragments of A and B at their reference frames, the bit vector

BCr
AopB that stores the interior/exterior characterization of the space partitioning by

the fragments of the resulting surface at the current frame (this becomes then the new

reference frame), and the local registers: p.color of the latest processed fragment and

finally the characterization of the points before and after the fragments in the current

frame CLb, CLa.

We use the bitwise operation LOGIC OP. Union, intersection and difference are com-

puted using the OR, AND and AND REVERSE modes of LOGIC OP, respectively. The

A−B is realized using the AND REVERSE operation, i.e. using the equivalent A∩¬B.

The algorithm is performed in two steps:

1. IndexClassificationDynamic - (Algorithm 8.12)
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2. RenderCSG- (Algorithm 8.14)

During RenderCSG(), we process one layer at a time, until we find the first fragment that

should be rendered.

Algorithm 8.14 RenderCSG(Pixel p, Fragment f)

/* continue until we find the first non trimmed boundary fragment */

1: pc.depth:= C.z;

2: while p.color 6= 0 do

3: obtain the next fragment f : f .z > pc.depth

4: pc.depth:= f .z;

5: if frame.class == 1 then

6: prB.class := BCr
B[++CountrB];

7: else if frame.class == 2 then

8: prA.class := BCr
A[++CountrA];

9: end if

10: CLb := BCr
AopB[CountcAopB++];

11: CLa := prA.class LOGIC OP prB.class;

12: BCr
AopB[CountcAopB] := CLa;

13: if CLa 6= CLb then

14: p.color:= f .color;

15: end if

16: end while

Figure 8.10 illustrates an example of CSG operations on two self-crossing manifolds A

and B. The top (reference) frame shows the A and B manifolds prior to the CSG operation.

The current frame is generated transforming B. The processed fragments from an arbi-

trary ray (yellow line) of the newly created self-crossing manifold surface are highlighted

with small circles. Using the bit vectors (middle) with the interior/exterior classification

of the areas between the fragments in the reference frame we provide the characterization

for both surfaces of A and B surfaces after combining them. The computed bit vectors for

union, intersection and difference operations are also shown. Finally, the resulting border

(highlighted in orange) is computed using the trim that consist of boundary with alter-

nating interior/exterior characterization on each side. Filled highlighted areas illustrate

the interior of the resulting manifold.

8.2 Experimental Study

To demonstrate our technique, we have applied the rendering algorithms to a user con-

trollable animation setting using both static and dynamic rules. We have used two types

of concurrent local deformation operations: local influence deformations in conjunction

with Laplacian smoothing and control point movement of NURB surfaces combined with
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A B A-BAUB

B 0 1 1 0 0 0 1 1 0

A 0 0 1 1 1 1 1 0 0

AUB 0 1 1 1 1 1 1 1 0

A B 0 0 1 0 0 0 1 0 0

A-B 0 0 0 1 1 1 0 0 0

AOPBA B

Reference Frame Current Frame

Figure 8.10: Trimming for CSG operations.

mesh subdivision. The animation starts with an orientable self-crossing manifold whose

areas are classified and trimmed using any static rule. At each step the user applies a

sequence of concurrent disjoint deformations. The user may select different rules for each

set of concurrent deformations. We have implemented a GPU-based linear space warp

deformation tool to offer users the capability of creating arbitrary animation sequences.

This tool works the same way a magnet does; it attracts many vertices at each frame

forcing the surface to deform smoothly. Vertices other than the selected vertices are af-

fected within a geodesic distance range. An angle-weighted estimation process computes

the attenuated deformation at each vertex. When working with non-dense geometry, it

can become difficult to apply extreme stretches to the vertices without causing nasty

lumps and creases on the model surface. To correct this effect, we have implemented iter-

ative Laplacian smoothing and weighted vertex normal recomputation as separate GPU

steps performed after the deformation process. Alternatively, for Bspline or NURB-based

meshes the user may edit the control polygon and adjust the subdivision to derive a set

of concurrent deformations.

Name

Vertices Faces Fragments Fps Passes Fps Passes Fps Passes MB Fps Passes Fps Passes Fps Passes MB Fps Passes MB Fps Passes MB Fps Passes MB Fps Passes MB Fps Passes

Homer 5103 10202 0.991M 510 212 7 121 16 490 203 5 113 9 940 575 90 111 20,34 895 1355

Sphere 7478 14952 0.897M 500 263 6 180 10 465 240 4 162 6 1055 620 54 123 19,26 990 1518

Deformed 

sphere
7478 14952 0.933M 515 219 7 135 14 485 194 5 125 8 965 608 78 115 19,67 905 1465

Deformed 

Nurbs
23807 47557 2.57M 330 149 7 88 14 300 120 5 76 8 520 312 78 47 38,4 494 824

Armadillo 172974 345944 0.8M 213 51 9 31 16 245 73 6 51 9 273 350 90 30 18,2 265 461

Dragon 437645 871414 1.3M 121 23 12 12 22 162 38 7 22 12 198 258 126 38 23,83 196 286

Average All

Dynamic 

2 passes

9,752

Static Rules

All

2 passes

7,5

Size

Model

Best Average Worst All

FreePipe Linked Lists

All

1

Resolution 1024x768

1

F2B

21,75

All

2 1

Standard 

2 1

WorstBest

Dual

31,5

 without 

Table 8.2: FPS, number of passes and memory needed using the static rule without

trimming.
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Figure 8.11: Rendering of the trim using clipping after applying several sets of deforma-

tions.

We have implemented interior/exterior point classification and rendering using the

algorithms presented in Section 8.1.2. The implementation is based on OpenGL 4.2

using framebuffer objects with high precision 8bit integer, 32bit floating internal texture

formats and 32bit floating point depth buffer precision. All experiments were carried

out on a commodity desktop with Intel Core i7-870 2.93GHz, 4GB DDR3 memory and

NVIDIA GeForce GTX 480 graphics hardware. The visual results demonstrated by the

figures use resolution of 1024 × 768 pixels which yields reasonably high quality results.

We have implemented classification, trimming and rendering in conjunction with clipping

and capping.

Figure 8.11 illustrates the result of rendering a self-trimmed surface that has undergone

a series of deformations. In this case, the result is the same using either the static

alternating border rule or the dynamic confluent deformation rule. Yellow visualizes

front facing geometry whereas blue visualizes back facing geometry. The snapshot in

the center uses clipping for inspecting the interior of this complex self-crossing manifold.

Figure 8.13 illustrates the result of applying several deformations on the NURB surface

(a) by moving the control points. The unintuitive hole and bump that are introduced

when rendering the trim using the static rule (d,f), are eliminated through the use of the

dynamic rule (e,g). The unintuitive hole is created due to the fact that the extended

positive surface meets a previously negative area that is not part of the trim before the

deformation. The unintuitive bump is created due to the fact that the extruded hole

meets a previously internal highly positive index area that is not part of the trim before

the deformation. For a better visual understanding of the unintuitive holes the reader is

referred to the supplementary material. Figure 8.14 illustrates the result of using capping

(c) for inspecting the interior of model (a). Here we use a striped texture for rendering

the capped part.

Figure 8.15 illustrates CSG operations between two copies of a highly deformed sphere.

Finally, Figure 8.12 demonstrates the combination of deformed horse (where the original

surface has been pushed through the object to create the SPM logo) with several other

objects to render a horse-armadillo with dinosaur tail. The resulting object has around

500k faces producing 2 million fragments and is being rendered at 20-100 fps depending

on the method used.

Table 8.2 presents a comparative performance evaluation of the proposed algorithms
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Armadillo

Cube

Dino

Cube

Horse

Cubes

Self trimming 

deformation

-

U

U

-

Figure 8.12: Rendering a deformed horse model combined with several other complex

object parts with CSG operations.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 8.13: (a) The original NURB surface. (b and c) After applying a set of disjoint

deformations. (d) Rendering the result of one more deformation with the static rule, where

the upper extrusion is deformed so as to cross an extended hole (observe the unintuitive

hole in the upper part) and (e) the same using the dynamic rule (no hole is present in the

upper part). (f) Rendering the trim with the static rule after one more hole is created

at the bottom, observe the unintuitive bump at the bottom and (g) the same with the

dynamic rule (no bump is present). (h) g with clipping.
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(a) (b) (c)

Figure 8.14: Rendering the deformed self-trimmed surface of (a) using (b) clipping and

(c) capping.

           (a)                                          (b)                                              (c)                                      (d)                                (e)

Figure 8.15: (a) Object A. (b) Object B. (c) Rendering A∪B, (d) A∩B and (e) B −A.

for in/out classification and index computation without trimming for models with different

characteristics. For all peeling methods, we provide the resulting frames per second and

the number of passes needed for point classification. Two geometry pass performs very

well as compared to all other methods including the ABFP and the ABLL. For the F2B and

DAUL peeling methods, we have provided results for minimum, average and maximum

number of rendering passes which depends on the location of the clipping/capping plane.

The performance of the rest of the techniques is not affected by the number of depth

layers of the model. This is verified by observing that the rendering frame rates are almost

identical for models with the same size and different number of depth layers such as the

sphere and a deformed self-crossing instance of it. Note that carrying out depth peeling

with either the F2B or the Dual technique on models with high level of detail such as the

Armadillo and the Dragon results in a significant performance downgrade. We observe

that the linked lists approach that creates linked lists of all fragments per pixel yields

poor results in terms of efficiency because of extensive memory access contention. Thus,

the ABLL implementation depends a lot on the number of the generated fragments. The

ABFP based technique achieves reasonably good performance in the expense of increased

memory requirements. Moreover, ABFP scales better that Linked-Lists with respect to

resolution increase.

Table 8.3 presents performance results for rendering the trim using our technique

with (a) multi-pass depth peeling (b) ABFP peeling and (c) peeling using ABLL on a
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NURB surface with three tessellation levels, a deformed self-crossing sphere and several

non self-crossing models.

In the Homer, Armadillo and Dragon models, static depth peeling stops after extract-

ing the first layer (using two geometry passes) since these are non self-crossing. On the

other hand, the multi-pass algorithm on self-trimmed models depends on their maximum

depth complexity since peeling is needed until all pixels find a fragment with alternating

in/out classification on its two sides. For the NURBS and the deformed sphere three to

five rendering passes are required. For the dynamic case, we choose the worst case scenario

using as current and reference model the same model, leading at poor performance due to

the large number of layers processed. The ABFP technique outperforms static multi-pass

peeling since only one geometry pass is needed to store the entire fragment array. Fur-

thermore, the overhead for the dynamic trimming is considerably smaller (around 50%)

as compared to the overhead for the multi-pass peeling (> 60%). Finally, the limitations

of the ABLL algorithm discussed in Table 8.2, hold for the trimming version as well.
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Trimming performance with static and dynamic rules 
static free pipe static linked lists static depth peeling dynamic free pipe dynamic linked lists dynamic depth peeling 

Facets/Fragments/ 

Layers(Static,Dynamic) 

Table 8.3: Performance results for rendering a self-trimmed surface using static and dy-

namic rules.

8.3 Conclusions

We have explored static and dynamic rules for classifying the interior of self-crossing

manifolds and have introduced algorithms for efficiently rendering the resulting trimmed

boundary on the GPU. Several well fitted applications, such as previewing the interior

of solids using capping or used as a primitive in direct rendering of CSG operations, are

further implemented. We have adapted several state of the art multi-fragment techniques

to achieve efficient rendering of self-trimmed surfaces and we have provided comparative

results in terms of time and memory requirements.
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Chapter 9

Conclusions and Future Work

9.1 Summary

9.2 Limitations and directions for future work

9.1 Summary

The contributions of this dissertation are twofold. First, the motivation of this thesis

has been to design efficient methodologies for editable segmentation and skinning rep-

resentations of arbitrary animated mesh collections that take into account the temporal

coherence from a pose-to-pose point of view. Second, we have focused on the problem

of accurate and interactive rendering (detecting and trimming) of self-crossing dynamic

objects realized through novel multi-fragment rasterization solutions.

More specifically, in Chapter 2 we have offered the required mathematical notation

and background regarding the aforementioned problems. We have further provided a

detailed overview of the graphics rendering pipeline. Finally, a comprehensive survey of

the related prior art is included.

In Chapter 3, we have presented a general approach to efficiently deriving a multi-

resolution segmentation of arbitrary deformations. An over-segmentation is initially built

by merging the individual partitionings computed for each animation pose based on a

deformation feature measured from a reference pose. The desired segmentation resolution

is dynamically chosen by the user applying a robust temporal-coherent reduction process

which aims at cleaning noisy segments created between successive partitionings. Contrary

to prior segmentation methods, our final result can accurately be adjusted when the

original mesh sequence is either modified or updated. A perceptually friendly visualization

scheme have also been introduced for propagating segment colors between consecutive

frames. Finally, we have included extensive comparative results showing the superiority
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of our segmentations in the context of skinning quality when compared with a variety of

state-of-art methods.

In Chapter 4, we have presented a novel pose-to-pose approach to skinning highly de-

formed animated meshes by observing that only small deformation variations will normally

occur between sequential poses. The idea is to perform the skinning transformations as

a new pose is derived by transforming the vertices of the previous pose. Although trans-

formation fitting is performed from pose to pose, a reproduction scheme from the rest

pose to an arbitrary pose may efficiently be computed. Several optimization solutions

are further given to significantly refining the skinning approximation. The experimental

study has shown that this scheme reduced the approximation skinning error and fur-

ther supported arbitrary propagated pose editing without increasing the storage or the

computation requirements.

In Chapter 6, we have considered a key problem in multi-fragment rendering: the

Z-fighting, a phenomenon that occurs frequently, unexpectedly and causes various un-

pleasant and unintuitive results when rendering scenes suffering from coplanar geome-

try. Approximate and exact extensions to conventional single and multi-pass rendering

methods have been introduced accounting for coincident fragments. A large spectrum of

rendering effects have been considered and used for illustrating the detected differences.

Finally, we expect that the suite of features and trade-offs offered for each technique,

pointing out GPU optimizations, portability, and limitations, will provide a useful guide

for effectively addressing coplanarity artifacts.

In Chapters 5 and 7, we have investigated efficient GPU-accelerated multi-fragment

rendering solutions that simulate the behavior of A-buffer and k-buffer architectures with

reduced memory demands, respectively. First of all, we have presented S-buffer, an ef-

ficient and memory-aware A-buffer implementation based on real-time concurrent con-

struction of per-pixel variable-length fragment bins on the GPU. S-buffer is designed so

as to take advantage of the fragment distribution and the sparsity of the pixel-space

using two geometry passes. Experimental analysis have demonstrated that S-buffer ex-

hibits improved combined memory usage and performance behavior even in low pixel

sparsity rasterizations. Finally, we have introduced k+-buffer to accurately maintain the

k-foremost fragments per pixel in a single geometry pass avoiding memory-overflow. k+-

buffer alleviates prior k-buffer limitations and bottlenecks by exploiting fragment culling

and pixel synchronization. A memory-friendly strategy has also been proposed, extend-

ing the proposed pipeline to dynamically lessen the potential wasteful memory allocation.

Without any software-redesign, the proposed scheme can be adapted to perform as a

Z-buffer or an A-buffer capturing a single or all generated fragments, respectively. Exten-

sive experimental comparison demonstrated the superiority of our framework as compared

to previous k-buffer alternatives with respect to storage requirements, performance and

image quality.

Finally, in Chapter 8, we have studied the problems of real-time (interior) visualiza-

tion of self-intersecting deformable solids. The motivation behind this work is to perform
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the trimming operation in the image space, eliminating the cost of computing the self-

intersection curves and identifying the new faces. The advantage is that self-trimming

of animated or interactive edited models can now be supported. To this end, static and

dynamic rules for the interior/exterior classification of the object’s parts in 3D have been

introduced, automatically deciding which region should be visible at each pixel. Based

on these semantics, we have introduced practical and efficient GPU-based trimming al-

gorithms by adjusting the classic single and multi-pass rendering frameworks. Being able

to render the trim in real time makes it possible to interactively adapt the tessellation of

the trim by using view-dependent levels-of-detail or adaptive subdivision. Except of the

context of self-trimming, another well-fitted application has been offered previewing the

interior of solids using clipping and capping operations prior to performing free form edit-

ing. Finally, the fast interior and boundary detection and rendering have been extended

to combining the interiors of two or more self-crossing surfaces through CSG operations.

9.2 Limitations and directions for future work

There are a number of research directions that could be explored further to improve our

techniques regarding segmentation and skinning of mesh animations. First, our segmenta-

tion may easily support time-varying meshes [4] by exploiting vertex mapping techniques

to establish pairwise parametrization between successive frames. Further directions may

be investigated for tackling the problem of the increased resolution of over-segmentation.

For example, we may reorganize similar poses into clusters and pick one of them thereby

reducing significantly the number of the merged partitionings. Except from improving

performance, this solution will also reduce the additional memory requirements of storing

the individual per-pose partitionings. It would be interesting to investigate the possibility

of employing a more sophisticated mesh clustering algorithm [130], rectifying the gener-

ated boundaries [63], or imposing a confidence criterion on the initial pose partitionings to

retain only important boundaries in order to increase the final segmentation quality. How-

ever, this will come with the cost of additional parameter tuning and extra computation

cost. Finally, visualization coherency is lost between “far-away” poses when there is no

mapping between segments of successive poses. An interesting alternative strategy could

be to increase the cluster mapping search in a larger time window. Another challenge is

to combat the high pre-processing overheads by making use of modern high-performance

parallel architectures architectures such as GPUs and multicore CPUs using CUDA or

OpenCL [46, 16, 76].

While switching to the pose-to-pose scheme reduces the approximation error and can

support editing tools with much more capabilities as compared to the rest-pose scheme,

there are some limitations that should be addressed. The proposed scheme cannot be

implemented in parallel and approximation flaws that occur in a single pose may be prop-

agated to all subsequent poses due to the sequential nature of the fitting process. Similarly

to segmentation, key-frames extraction methods of animation sequences can also be used
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to reduce the dimensions of the fitting optimization. Mesh simplification algorithms [163]

can also be used for the same reason. Finally, we believe that temporal coherence for

deforming objects deserves further investigation. For example, future research should be

conducted on adaptive proxy-joint distribution methods and automatically discovering

the smallest reasonable number of suitable clusters.

Considering completeness, further directions may be explored for combating with

multi-fragment rendering issues in rasterization architectures. Similarly to all previous

unbounded A-buffer implementations, GPU memory recourses may be exceeded and per-

pixel sorting may stall rendering when the number of generated fragments becomes too

high. To reduce bandwidth demand of the rendering operations and increase locality of

memory accesses, tiled rendering [144] may be explored.

Despite the low memory requirements of the proposed depth-fighting-free multi-pass

techniques, the rendering passes can be a bottleneck for scenes with high depth complexity.

Determining the set of elements that are not visible from a particular viewpoint, due to

being occluded by elements in front of them [10], may affect the performance of the

multi-pass peeling methods. Moreover, a hybrid technique [18] is an interesting option

that should further be investigated. To this end, one may seek a modified form of peeling

which efficiently captures a sequence of layers when coplanarity is not presented followed

by on demand peeling of overlapping fragments.

Regarding the S-buffer method, a direction for future work is to develop a more sophis-

ticated hash function that uniformly divide the non-empty pixels. So far, performance

complexity is bounded by the pixel group with the highest fragment capacity. Uniformly

distributing workload across individual pixels groups may result at a significant perfor-

mance gain.

The need of an additional accumulation step of S-buffer and k+-buffer may result

at a performance downgrade when compared to the fixed-size array buffers. A neat

idea is to perform the preliminary fragment counting pass rendering a lower-detailed

subdivision of the initial 3D scene by employing tessellation shaders. On the other hand,

temporal coherence solutions [127] may be exploited to improve performance based on

the observation that successive frames typically have the same or very similar number of

fragments located at the same screen pixel location.

A dynamic k-buffer technique, where k value is not the same for all pixels, is an

interesting problem that should be examined. In cases, where the number of fragments

varies when the camera or scene is animated, an interesting alternative is to capture the

k% of the generated fragments per-pixel. The memory-friendly variation of k+-buffer

could easily be adjusted to support this function by taking advantage of its first rendering

pass.

Concerning rendering of self-intersecting solids, it is possible to further extend the

proposed framework in order to realize fast collision detection in complex scenes. It is

worth noting that it is of great value to investigate ways to voxelize the interior and then

produce an actual mesh for the self-trimmed surface [170].
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