Αποτελεσματικές Τεχνικές Συγχρονισμού για Συστήματα Διαμοιραζόμενης Μνήμης

Η ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή

από τον

Νιχόλαο Καλλιμάνη

ως μέρος των Υποχρεώσεων για τη λήψη του

ΔΙΔΑΚΤΟΡΙΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Πανεπιστήμιο Ιωαννίνων Μάιος 2013

Τριμελής Συμβουλευτική Επιτροπή (αλφαβητικά)

- Βασίλειος Δημακόπουλος, Αναπληρωτής Καθηγητής του Τμήματος Πληροφορικής του Πανεπιστημίου Ιωαννίνων
- Λεωνίδας Παληός, Αναπληρωτής Καθηγητής του Τμήματος Πληροφορικής του Πανεπιστημίου Ιωαννίνων
- Παναγιώτα Φατούρου, Επίκουρη Καθηγήτρια του Τμήματος Επιστήμης Υπολογιστών του Πανεπιστημίου Κρήτης

Επταμελής Εξεταστική Επιτροπή (αλφαβητικά)

- Βασίλειος Δημακόπουλος, Αναπληρωτής Καθηγητής του Τμήματος Πληροφορικής του Πανεπιστημίου Ιωαννίνων
- Απόστολος Ζάρρας, Επίκουρος Καθηγητής του Τμήματος Πληροφορικής του Πανεπιστημίου Ιωαννίνων
- **Κωνσταντίνος Μαγκούτης**, Ερευνητής Γ΄ του Ινστιτούτου Πληροφορικής, Τουμα Τεχνολογίας και Έρευνας
- Δημήτριος Νικολόπουλος, Καθηγητής της Σχολής Electronics Engineering and Computer Science του Πανεπιστημίου Queens University of Belfast
- Λεωνίδας Παληός, Αναπληρωτής Καθηγητής του Τμήματος Πληροφορικής του Πανεπιστημίου Ιωαννίνων
- Ευαγγελία Πιτουρά, Καθηγήτρια του Τμήματος Πληροφορικής του Πανεπιστημίου Ιωαννίνων
- Παναγιώτα Φατούρου, Επίκουρη Καθηγήτρια του Τμήματος Επιστήμης Υπολογιστών του Πανεπιστημίου Κρήτης

DEDICATION

This dissertation is dedicated to my family.

ACKNOWLEDGMENTS

First, I would like to sincerely thank my supervisor Panagiota Fatourou for motivating and encouraging me during the entire period that I was conducting my PhD. I would also like to thank the members of my advisory committee, Vassilios Dimakopoulos and Leonidas Palios for their support. Many thanks to Dimitris Nikolopoulos for arranging the provision of access to some of the multi-core machines of the Department of Computer Science at Virginia Tech where I ran some of the experiments of this dissertation, and to Michael Scott for providing me access to the Rochester's Niagara 2 machine. I would also like to thank the rest of the members of my examination committee, Kostas Magoutis, Evaggelia Pitoura, and Apostolos Zarras.

Special thanks go to my friends Spiros Agathos, Eytychia Datsika, Vasilis Kagias, Kostas Lillis, Thanos Mpiliris, Odysseas Petrocheilos, and Kostas Ramantas for supporting and encouraging me.

Finally, I would like to thank Empirikion Foundation for the moral and financial support.

Contents

1	Intr	oducti	on	2
2	Rela	ated W	Vork	14
3	Mo	del		22
	3.1	Genera	al	22
	3.2	Pseude	ocode conventions	26
4	Ada	aptive	Wait-Free Synchronization Algorithms	28
	4.1	The F	-RedBlue algorithm	28
		4.1.1	Algorithm description	29
		4.1.2	Correctness proof	34
	4.2	Modifi	ied version of F-RedBlue that uses small base objects	51
	4.3	Adapt	ive synchronization algorithms for large objects	54
5	Pra	ctical '	Wait-Free Synchronization Algorithms	60
	5.1	The Si	im algorithm	61
		5.1.1	Algorithm description	61
		5.1.2	Correctness proof	63
		5.1.3	An efficient implementation of COLLECT	69
		5.1.4	Space and step complexity	70
		5.1.5	Derived lower bounds	70
	5.2	P-Sim:	A practical version of Sim	71
		5.2.1	Algorithm description	71
		5.2.2	Correctness proof	74
		5.2.3	Space and step complexity	78

		5.2.4	${\rm Making}\ {\sf P\text{-}Sim}\ {\rm adaptive}\ \dots$	78
	5.3			
	5.4	L-Sim:	A synchronization algorithm for large objects	89
		5.4.1	Algorithm description	89
		5.4.2	Correctness proof	93
	5.5	SimSta	ack: A wait-free implementation of a shared stack	104
		5.5.1	Algorithm description	104
		5.5.2	Performance Evaluation	105
	5.6	SimQu	eue: A wait-free implementation of a shared queue	107
		5.6.1	Algorithm description	107
		5.6.2	Correctness proof	110
		5.6.3	Performance evaluation	119
6	Hig	hly-Eff	icient Blocking Synchronization Algorithms	121
	6.1	CC-Syr	nch: An efficient synchronization algorithm for the CC model	121
		6.1.1	Algorithm description	122
		6.1.2	Time and space complexity	124
		6.1.3	Required memory barriers	124
		6.1.4	Correctness proof	125
 6.2 H-Synch: A hierarchical synchronization algorithm based on CC-Synch 6.3 DSM-Synch: An efficient synchronization algorithm for the DSM model 		ch: A hierarchical synchronization algorithm based on CC-Synch	140	
		Synch: An efficient synchronization algorithm for the DSM model $$	142	
		6.3.1	Algorithm description	142
		6.3.2	Time and Space complexity	143
		6.3.3	Required memory barriers	143
		6.3.4	Correctness proof	145
	6.4	Perform	mance evaluation of CC-Synch, DSM-Synch and H-Synch	156
	6.5	Highly	-efficient blocking data structures	163
7	Con	nclusion	as and Future Work	167

List of Figures

4.1	The red and the blue tree of F-RedBlue for $n=8$	30
4.2	An example of an execution of F-RedBlue, where thread p_4 applies an op-	
	eration to the simulated object	33
4.3	An example of an execution of F-RedBlue	40
5.1	An example execution of the Sim algorithm	65
5.2	Performance of P-Sim	81
5.3	Average combining degree of P-Sim and flat-combining for different num-	
	bers of threads	82
5.4	Average number of failed CAS instructions per request for different numbers	
	of threads	83
5.5	Average number of atomic instructions (excluding Read and Write opera-	
	tions) per request performed by $P\text{-}Sim$ for different numbers of threads	83
5.6	Performance of P-Sim for different values of random work	86
5.7	Performance of P-Sim for large numbers of threads	87
5.8	Performance of P-Sim when a large number of threads are initiated but	
	only 10% are active	87
5.9	Performance of SimActSet	88
5.10	An example of an execution of L-Sim	96
5.11	Performance of SimStack	106
5.12	Performance of SimQueue	119
6.1	Average throughput of CC-Synch and DSM-Synch on the Magny Cours	
	machine while simulating a Fetch&Multiply object	157
6.2	Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara	
	2 machine while simulating a Fetch&Multiply object	159

6.3	Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2	
	machine for $n>128$ (over-subscribing) while simulating a Fetch&Multiply	
	object	160
6.4	Average degree of combining of CC-Synch, DSM-Synch and H-Synch while	
	simulating a Fetch&Multiply object	161
6.5	Average number of atomic instructions (CAS, Swap and Add) that CC-Synch,	
	DSM-Synch and H-Synch execute on the Niagara 2 machine while simulating	
	a Fetch&Multiply object	162
6.6	Average throughput of CC-Synch, DSM-Synch and H-Synch for different	
	values of random work	163
6.7	Average throughput of CC-Stack and DSM-Stack on the Magny Cours ma-	
	chine	164
6.8	Average throughput of $CC ext{-}Stack,\ DSM ext{-}Stack$ and $H ext{-}Stack$ the Niagara 2	
	machine	165
6.9	Average throughput of CC-Queue and DSM-Queue on the Magny Cours	
	machine	165
6.10	Average throughput of CC-Queue, DSM-Queue and H-Queue on the Niagara	
	2 machine	166

LIST OF TABLES

1.1	Algorithms and their properties proposed in this dissertation
2.1	Wait-free universal algorithms and their complexities
5.1	Notation used in the proof of Sim
5.2	Notation used in the proof of P-Sim
5.3	Average cpu cycles spent in cpu stalls per request for P-Sim and flat-
	combining for $n = 16$
5.4	Sensitivity of P-Sim to the backoff upper bound parameter
5.5	Notation used in the proof of L-Sim
6.1	Notation used in the proof of CC-Synch
6.2	Notation used in the proof of DSM-Synch
6.3	Cache misses and memory stalls per operation for $n=16$ of CC-Synch,
	P-Sim and flat-combining

List of Algorithms

1	Pseudocode for F-RedBlue
2	Pseudocode for Calculate and Propagate of F-RedBlue
3	Pseudocode for S-RedBlue
4	Pseudocode for Propagate and Calculate of S-RedBlue
5	Pseudocode for LS-RedBlue
6	Pseudocode for BLS-RedBlue
7	Pseudocode for Calculate of BLS-RedBlue 58
8	Pseudocode for Sim
9	Data structures used in P-Sim
10	Pseudocode of P-Sim
11	Data structures used in L-Sim and pseudocode for LSIMAPPLYOP 91
12	Pseudocode for L-Sim
13	Implementation of Pop and Push for SimStack
14	Data structures for SimQueue, the implementation of ENQUEUE and DE-
	QUEUE in SimQueue, and the implementations (enqueue and dequeue) of
	the sequential versions of enqueue and dequeue
15	Pseudocode for the Attempt in SimQueue
16	Pseudocode for EnqLinkQueue and DeqLinkQueue in SimQueue 110
17	Pseudocode for CC-Synch
18	Pseudocode for H-Synch
19	Pseudocode for DSM-Synch

Abstract

Nikolaos D. Kallimanis.

Highly-Efficient Synchronization Techniques in Shared-Memory Distributed Systems.

PhD, Department of Computer Science, University of Ioannina, Greece.

May, 2013.

Thesis Supervisor: Vassilios Dimakopoulos.

Overcoming the difficulty of concurrent programming has never become more urgent due to the proliferation of multicore machines and the imperative necessity of exploiting their computational power. One way to achieve this is by designing efficient concurrent data structures; common structures, like stacks and queues, are the most widely used interthread communication mechanisms. Additionally, synchronization techniques are required to efficiently execute, in a concurrent environment, those parts of modern applications that require significant synchronization. Although the efficient parallelization of these parts is not an easy task, Amdhal's law implies that achieving this is necessary in order to avoid significant reductions in speed-up.

In this dissertation three families of highly efficient synchronization algorithms, called RedBlue, Sim and Synch are presented for executing concurrently blocks of code that have originally been programmed to be executed sequentially in asynchronous shared-memory distributed systems.

We start by presenting the RedBlue family of adaptive synchronization algorithms that use common base objects (LL/SC or CAS and Read-Write) provided by the majority of the real-world machines. The first of these algorithms achieves better time complexity than all previously presented algorithms and it matches a lower bound presented by Jayanti in PODC 1998. This algorithm uses large LL/SC base objects and it comprises the keystone for the design of the other RedBlue algorithms that use smaller base objects. Specifically,

the second algorithm significantly reduces the size of the required base objects. The last two algorithms have been designed for large objects improving previously presented work for large objects.

In the Sim family of synchronization algorithms, we aim at (1) getting better time complexity by using base objects other than LL/SC and read-write (i.e. Swap, Add, etc) and (2) competing in terms of performance with the state-of-the-art synchronization algorithms (i.e. high performance spin-locks, etc), while having the nice theoretical properties that RedBlue algorithms have. Sim algorithms achieve these goals.

Sim is a simple synchronization algorithm with constant step complexity using an Add additional to an LL/SC object. Sim answers the open problem that was mentioned by Jayanti in PODC 1998: "If shared-memory supports all of Read, Write, LL/SC, Swap, CAS, Move, Add, Fetch&Multiply, would the $\Omega(logn)$ lower bound still hold?". Sim has been implemented for a real shared-memory machine architecture. Its practical version, called P-Sim, outperforms several state-of-the-art lock-based and lock-free synchronization algorithms, while being wait-free, i.e. satisfying a stronger progress condition than all the algorithms that it outperforms.

The Sim and RedBlue families of synchronization algorithms can be considered as efficient wait-free implementations of the combining technique in which, one thread (the combiner) in addition to its own operation, serves the operations of other active threads. The RedBlue synchronization algorithms are adaptive and employ LL/SC (or CAS) and read-write base objects, whereas Sim are much simpler algorithms that are highly-efficient in practice and require Add base objects.

We further study blocking implementations of the combining technique with the goal of discovering where their real performance power resides and whether or how performance is impacted by ensuring some desired properties (e.g. fairness in serving requests). This is accomplished by presenting two new blocking implementations of the combining technique; the first (CC-Synch) is highly-efficient in systems that support coherent caches, whereas the second (DSM-Synch) works better in cache-less NUMA machines. In comparison to previous blocking implementations, the new implementations (1) provide bounds on the number of remote memory references (RMRs) that they perform, (2) support a stronger notion of fairness, and (3) use simpler and fewer base objects. CC-Synch and DSM-Synch achieve better performance than P-Sim as well as any other algorithm pro-

vided in the past. The experimental analysis sheds light to the questions that were aimed to be answered.

Several modern multicore systems organize the cores into clusters and provide fast communication within the same cluster and much slower communication across clusters. A hierarchical version of CC-Synch, called H-Synch, is presented, which exploits the hierarchical communication nature of such systems to achieve better performance. Experiments show that H-Synch significantly outperforms previous state-of-the-art hierarchical approaches.

Based on P-Sim, CC-Synch, DSM-Synch, and H-Synch, we provide very efficient implementations of common shared data structures like stacks and queues. Specifically, the implementations SimStack and SimQueue that are based on P-Sim are wait-free, whereas those based on CC-Synch, DSM-Synch and H-Synch are blocking but achieve better performance than SimStack and SimQueue as well as any other algorithm provided in the past. SimStack and SimQueue are the first stack and queue implementations that satisfy both wait-freedom and high performance.

The results of this dissertation have been published in the following conferences/journals: ACM PPoPP 2012, ACM SPAA 2011, DISC 2009 and Theory of Computing Systems Special Issue on SPAA 2011.

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Νικόλαος Καλλιμάνης του Δημητρίου και της Νικολέττας.

PhD, Τμήμα Πληροφορικής, Πανεπιστήμιο Ιωαννίνων.

Μάιος, 2013.

Αποτελεσματικές Τεχνικές Συγχρονισμού για Συστήματα Διαμοιραζόμενης Μνήμης.

Επιβλέπων: Βασίλειος Δημακόπουλος.

Η εξάπλωση των πολυπύρηνων επεξεργαστών τα τελευταία χρόνια έχει καταστήσει εξαιρετικά αναγκαία την εκμετάλλευση της υπολογιστικής ισχύος τους. Ένας τρόπος για την αποδοτική χρήση συστημάτων που βασίζονται σε πολυπύρηνους επεξεργαστές είναι ο σχεδιασμός αποδοτικών διαμοιραζόμενων (παράλληλα προσπελάσιμων από πολλά νήματα) δομών δεδομένων (π.χ. στοιβών και ουρών), οι οποίες χρησιμοποιούνται ως ένας θεμελιώδης μηχανισμός επικοινωνίας και συγχρονισμού μεταξύ των νημάτων του συστήματος. Η αποτελεσματική παράλληλη εκτέλεση πολλών εφαρμογών επιβάλει την ανάπτυξη αποδοτικών αλγορίθμων συγχρονισμού που θα συγχρονίζουν αποτελεσματικά τα τμήματα των εφαρμογών που εκτελούνται σε διαφορετικά επεξεργαστικά στοιχεία. Ο νόμος του Amdhal υποδεικνύει ότι η χρήση αποδοτικών τεχνικών συγχρονισμού είναι απαραίτητη για την επίτευξη της μέγιστης δυνατής ταχύτητας υπολογισμών.

Σε αυτή τη διατριβή παρουσιάζονται τρεις οικογένειες νέων αλγορίθμων συγχρονισμού εξαιρετικά υψηλής απόδοσης, οι οποίες ονομάζονται RedBlue, Sim και Synch. Οι εν λόγω αλγόριθμοι συγχρονισμού χρησιμοποιούνται για την παράλληλη εκτέλεση κώδικα που έχει προγραμματιστεί να εκτελείται σειριακά.

Αρχικά παρουσιάζονται οι προσαρμοστικοί αλγόριθμοι συγχρονισμού RedBlue (οι προσαρμοστικοί αλγόριθμοι έχουν χρονική πολυπλοκότητα ανάλογη του αριθμού των ενεργών νημάτων), οι οποίοι πληρούν την ιδιότητα ελεύθερη-αναμονής (wait-free) και είναι κατάλληλοι

για ασύγχρονα συστήματα διαμοιραζόμενης μνήμης. Ο πρώτος από αυτούς τους αλγορίθμους, ο οποίος ονομάζεται F-RedBlue, επιτυγχάνει την καλύτερη χρονική πολυπλοκότητα από τους αλγορίθμους που είχαν παρουσιαστεί παλιότερα και είναι χρονικά βέλτιστος αφού επιτυγχάνει το κάτω όριο χρονικής πολυπλοκότητας που παρουσιάστηκε από τον Jayanti στο PODC 1998. Ο δεύτερος αλγόριθμος της οικογένειας RedBlue χρησιμοποιεί βασικά αντικείμενα μικρότερου μεγέθους από ότι ο F-RedBlue ενώ οι δύο τελευταίοι αλγόριθμοι της οικογένειας RedBlue βελτιώνουν τεχνικές που είχαν παρουσιαστεί παλιότερα.

Κατά την ανάπτυξη των Sim αλγορίθμων συγχρονισμού, στόχος ήταν (1) η περαιτέρω μείωση της χρονικής πολυπλοκότητας χρησιμοποιώντας βασικά αντικείμενα διαφορετικά των LL/SC και Read-Write (όπως Swap και Add βασικά αντικείμενα) και (2) η βελτίωση της απόδοσής τους, ώστε οι επιδόσεις τους να είναι τέτοιες που να ανταγωνίζονται ή και να ξεπερνούν τις επιδόσεις των γρηγορότερων αλγορίθμων συγχρονισμού (κλειδώματα, κτλ) έχοντας παράλληλα όλα τα καλά θεωρητικά χαρακτηριστικά των RedBlue αλγορίθμων. Η οικογένεια των Sim αλγορίθμων επιτυγγάνει όλους αυτούς τους στόχους.

Ο αλγόριθμος συγχρονισμού Sim χρησιμοποιεί ένα Add και ένα LL/SC βασικό αντικείμενο και επιτυγχάνει O(1) χρονική πολυπλοκότητα. Ο Sim αλγόριθμος απαντά στο ανοιχτό πρόβλημα που τέθηκε από τον Jayanti στο PODC 1998, για το αν το κάτω όριο $\Omega(log(n))$ ισχύει στην περίπτωση που η διαμοιραζόμενη μνήμη υποστηρίζει όλα τους τύπους βασικών αντικειμένων Read, Write, LL/SC, Swap, CAS, Move, Add και Fetch&Multiply. H χρονική πολυπλοκότητα του Sim είναι σταθερή, και επομένως η απάντηση στο ερώτημα αυτό είναι αρνητική. H πρακτική έκδοση του Sim αλγορίθμου, που ονομάζεται P-Sim, ξεπερνά σε επιδόσεις τους γρηγορότερους αλγορίθμους συγχρονισμού, ενώ ταυτόχρονα πληροί την ισχυρότερη συνθήκη τερματισμού (ελεύθερη αναμονής).

Οι οιχογένειες των RedBlue και Sim αλγορίθμων συγχρονισμού είναι ουσιαστικά αποδοτικές υλοποιήσεις της συνεργατικής τεχνικής (combining technique), στην οποία ένα νήμα είναι δυνατό να εφαρμόζει λειτουργίες και άλλων νημάτων βοηθώντας τα να τελειώσουν την εκτέλεσή τους. Οι RedBlue αλγόριθμοι είναι προσαρμοστικοί και χρησιμοποιούν LL/SC (ή CAS) βασικά αντικείμενα, ενώ οι Sim αλγόριθμοι είναι απλούστεροι αλγόριθμοι που στην πράξη επιτυγχάνουν πολύ υψηλές επιδόσεις, αλλά χρησιμοποιούν Add βασικά αντικείμενα.

Σε αυτή τη διατριβή μελετήθηκε σε βάθος η συνεργατική τεχνική με στόχο την ανάπτυξη εμποδιστικών (blocking) αλγορίθμων συγχρονισμού με βελτιωμένη απόδοση και με χαρακτηριστικά δικαιότερης εξυπηρέτησης. Αναπτύχθηκαν δύο νέοι εμποδιστικοί αλγόριθ-

μοι συγχρονισμού που ανήκουν στην οικογένεια Synch. Ο πρώτος ονομάζεται CC-Synch και είναι κατάλληλος για μηχανές που υποστηρίζουν συνεπείς κρυφές μνήμες (coherent NUMA machines), ενώ ο δεύτερος ονομάζεται DSM-Synch και είναι κατάλληλος για πολυεπεξεργαστές χωρίς κρυφές μνήμες (cache-less NUMA machines). Σε αντίθεση με παλαιότερους εμποδιστικούς συνεργατικούς αλγορίθμους, οι παραπάνω αλγόριθμοι (1) προσφέρουν άνω όρια στον αριθμό των απομακρυσμένων αναφορών στη μνήμη, (2) προσφέρουν περισσότερη δικαιοσύνη κατά την προσπέλαση στο κοινόχρηστο αντικείμενο, και (3) χρησιμοποιούν απλούστερα βασικά αντικείμενα. Ο CC-Synch και ο DSM-Synch επιτυγχάνουν καλύτερη απόδοση από τον P-Sim, αλλά και όλους τους παλαιότερους αλγόριθμους συγχρονισμού.

Πολλά πολυπύρηνα συστήματα οργανώνουν τα επεξεργαστικά στοιχεία σε ομάδες και παρέχουν γρήγορη επικοινωνία μεταξύ των επεξεργαστικών στοιχείων που βρίσκονται στην ίδια ομάδα, ενώ παρέχουν αργή επικοινωνία μεταξύ των επεξεργαστικών στοιχείων διαφορετικών ομάδων. Σε αυτή τη διατριβή παρουσιάζεται μια ιεραρχική έκδοση του CC-Synch που ονομάζεται Η-Synch. Ο H-Synch εκμεταλλεύεται την ιεραρχική φύση της επικοινωνίας τέτοιων συστημάτων και η πειραματική του μελέτη έδειξε ότι ξεπερνά κατά πολύ σε απόδοση όλες τους παλαιότερους ιεραρχικούς και μη αλγόριθμους συγχρονισμού.

Σε αυτή τη διατριβή παρουσιάζονται υλοποιήσεις διαμοιραζόμενων ουρών και στοιβών πολύ υψηλών επιδόσεων που βασίζονται στους P-Sim, CC-Synch, DSM-Synch και H-Synch. Ειδικότερα, οι υλοποιήσεις SimStack και SimQueue που βασίζονται στον P-Sim ικανοποιούν τη συνθήκη τερματισμού ελεύθερη-αναμονής, ενώ εκείνες που βασίζονται στους CC-Synch, DSM-Synch και H-Synch είναι εμποδιστικές αλλά επιτυγχάνουν καλύτερες επιδόσεις από τον SimStack και SimQueue αλλά και όλες τις παλαιότερες υλοποιήσεις. Οι SimStack και SimQueue είναι οι πρώτες υλοποιήσεις κοινόχρηστων στοιβών και ουρών που πληρούν την ιδιότητα ελεύθερη-αναμονής και ταυτόχρονα επιτυγχάνουν υψηλή απόδοση.

Τα ερευνητικά αποτελέσματα αυτής της διατριβής έχουν παρουσιασθεί στα διεθνή συνέδρια/περιοδικά: ACM PPoPP 2012, ACM SPAA 2011, DISC 2009 και Theory of Computing Systems Special Issue on SPAA 2011.

Chapter 1

Introduction

The last decade, the computer industry has made a significant turn towards developing multicore systems which nowadays, are used in any computing device (from smartphones to large scale multiprocessor machines). A wide variety of low cost commercial computing devices are equipped with processors containing a dozen or more processing cores. Even smartphones are equipped with multicore processors. In all of these devices, increased performance can be achieved by exploiting parallelism; thus, harnessing the difficulty of concurrent programming is currently very important.

Multicore systems are typical examples of distributed systems. A distributed system consists of a set of computing entities (threads), which have the ability to communicate. Distributed systems are distinguished in two main types depending on how the threads communicate. The first type consists of systems where threads communicate through a shared memory (shared memory systems), while the second type consists of systems that their threads communicate by exchanging messages (message passing systems). In recent years, a lot of research is conducted in shared memory systems due to the proliferation of the multicore systems. A multicore system is usually a shared memory system, since it consists of many tightly connected processing cores that communicate through shared memory.

Several applications that could be parallelized contain parts whose parallelization requires significant synchronization and coordination. Amdhal's law [9] implies that failing

in parallelizing these parts may result in a significant limitation on the speed-up that could be achieved. However, these parts usually require accesses to shared data and thus, parallelizing them demands the design of low-overhead synchronization mechanisms; without such efficient mechanisms the synchronization cost may overshadow any performance gain that could result from the parallelization of these parts.

In a shared memory system, threads use shared atomic objects (or briefly atomic objects) as main communication mechanism. Every atomic object stores some information, which is accessible to system's threads via atomic operations. Intuitively, an atomic operation is an operation that seems to be executed instantly at some point in time. Some objects, called base objects, are provided by the hardware and therefore the hardware guarantees that the supported operations are executed atomically.

The most common type of base objects are the Read-Write ones. A Read-Write base object supports two operations for accessing and modifying the stored data: a) Read(O), which returns the stored data of O without modifying it, and b) Write(O, v), which stores value v in O and returns an acknowledgment.

Other types of base objects are CAS, LL/SC, Add, Swap, etc. Specifically, a CAS base object O supports two operations: a) Read(O) that returns the stored value in O without modifying it and b) CAS(O, v_{old} , v_{new}). CAS(O, v_{old} , v_{new}) compares the current value of O with v_{old} and if they are equal it stores the value v_{new} in O and returns true. Otherwise, the contents of O remain unchanged and false is returned. An Add object supports, in addition to Read, the operation Add(O, x) that atomically adds some (positive or negative) value x to object O. A Swap object O supports in addition to Read, the operation Swap(O, v) which (atomically) writes in O the value v and returns the previous value of O. An LL/SC object O supports the atomic operations a) LL(O) which returns the current value of O, and b) SC(O, v) whose execution by a thread p_i must follow the execution of LL(O) by p_i and changes the value of O to v if no other SC (by some other thread) has changed the value of O since the execution of p_i 's latest LL on O. If the value of O changes to v by SC(O, v), true is returned; otherwise, the value of O does not change and false is returned.

Apparently, common base objects as those described above offer very simple operations for accessing stored data. The design of more complex atomic objects significantly simplifies the parallel programming of most modern applications. Thus, the design and implementation of such complex objects in software using simpler objects provided by the hardware is of high importance.

Any atomic object can be easily implemented using locks. A thread that wishes to perform an operation to the shared object, acquires the lock that is associated to the shared object, executes the sequential code of the operation and releases the lock. This methodology has been widely used in several real-world applications systems (e.g. data base applications, etc). However, this technique has a serious drawback; a thread may fail (i.e. stops its execution due to a software or hardware failure) while holding the lock leading the system to a total failure. Properties that guarantee system's progress are desirable, since it is very important for a system to be fault tolerant. A property that guarantees high tolerance in thread failures is wait-freedom [12, 16]. Wait-freedom ensures that each thread finishes the execution of the code block it wants to execute within a finite number of its own steps independently of the speed or the state of the other threads.

Atomic objects are arguably useful; however they are practical only in the case that they are implemented efficiently. From a theory perspective, the main complexity measures are the step complexity of an implementation, and the number and size of the base objects it employs. The *step complexity* of an operation is the maximum number of shared memory accesses that any thread executes in order to complete the operation. Some desirable properties when designing atomic objects in software are the following:

- The step complexity of every operation of the object should be as low as possible.
- The used base objects should support as fewer complex operations as possible.
- The needed base objects should have size equivalent to the size of hardware base objects (usually less or equal to 128 bits).
- The implementation should be fault tolerant, thus wait-freedom property should be satisfied.

A universal synchronization algorithm is a generic mechanism to implement any shared object; it supports an operation, called APPLYOP, that takes as a parameter the sequential implementation of any operation of the simulated object, and simulates its execution in a concurrent environment. A universal algorithm provides the implementation of any shared

object for free. So, if efficient implementations of universal algorithms are provided then the programming effort is highly reduced and high performance is achieved.

In the first part of this dissertation, a family of wait-free universal synchronization algorithms, called RedBlue, is presented. In shared memory systems it is often the case that the total number of threads n taking part in a computation is much larger than the actual number of threads that concurrently access the shared object. For this reason, a flurry of research [2, 3, 13, 14, 38] has been devoted to the design of adaptive algorithms whose time complexity depends on k, the maximum number of threads that concurrently access the shared object. All RedBlue algorithms are adaptive.

All RedBlue algorithms use two perfect binary trees of $\lceil \log_2 n \rceil + 1$ levels each. The first tree (red tree) is employed for the estimation of any encountered contention, while the second tree (blue tree) is used for the synchronization with other threads when applying an operation. In each of these trees, a thread is assigned a leaf node (and therefore also a path from this leaf to the root node, or vice versa). A thread that wants to apply an operation to the simulated object, traverses first its path in the red tree from the root downwards looking for an unoccupied node in this path. Once it manages to occupy such a node, it starts traversing the blue tree upwards from the isomorphic blue node to the occupied red node, transferring information about its operation (as well as about other active operations) towards the tree's root. In this way, each operation traverses at most $O(\min\{k, \log n\})$ nodes in each of the two trees. Once information about the operation reaches the root, the operation is applied to the simulated object.

The first algorithm of the RedBlue family, which is called F-RedBlue, has time complexity $O(\min\{k, \log n\})$ which is better than any previously presented algorithm using LL/SC and read-write base objects. However, F-RedBlue uses big LL/SC base objects; thus it is mainly of theoretical interest. A lower bound of $\Omega(\log n)$ on the time complexity of wait-free universal synchronizations algorithms that use LL/SC base objects is presented in [42]. It holds even if an infinite number of unbounded-size base objects is employed. Therefore, F-RedBlue is optimal in terms of time complexity.

The second algorithm (S-RedBlue) of the RedBlue family is a slightly modified version of F-RedBlue that uses smaller base objects and it is therefore practical in many cases. S-RedBlue uses O(n) LL/SC base objects, one for each of the trees' nodes and n+1 singlewriter base objects per thread. Each base object of the red tree has size $\lceil \log_2 n \rceil + 1$. Each

base object of the blue tree stores n bits, one for each thread. One of the base objects (the base object corresponding to the blue root) is big. This base object is implemented by single-word LL/SC objects using the technique presented in [44]. In current systems where base objects of 128 bits are available, S-RedBlue works with single-word LL/SC objects for up to 128 threads. In fact, even if n/128 = c > 1, where c is any constant, the algorithm can be implemented by single-word LL/SC base objects with the same time complexity (increased by a constant factor) using the implementation of multi-word LL/SC from single-word LL/SC of [44].

Most of the universal algorithms presented in the past, as well as F-RedBlue and S-RedBlue, copy the entire state of the object each time an update is to be performed on it by some thread. This is not practical for large objects whose states may require a large amount of storage to maintain. Anderson and Moir [11] presented a lock-free and a wait-free synchronization algorithm that is practical for large objects. Their algorithms assume that the object state is represented as a continuous array which requires B data blocks of size S each for its storage. Each operation can modify at most T blocks and each thread can help at most $M \geq 2T$ other threads. We combine some of the techniques introduced in [11] with the techniques employed by the RedBlue algorithms in order to design two simple wait-free synchronization algorithms which have the nice properties of the constructions in [11] while achieving better time complexity and being adaptive. The time complexity of the first algorithm is better than the synchronization algorithm presented in [11] but it does not assume an upper bound on the number of threads a thread may help as the wait-free construction in [11] does. BLS-RedBlue exhibits all the properties of the wait-free construction in [11] and still achieves better time complexity. In particular, its time complexity is similar to the time complexity of the wait-free algorithm in [11] but with k replacing n and thus the algorithm is adaptive. The space complexity of the algorithm is the same as that of the wait-free algorithm in [11]. RedBlue algorithms are much simpler than the constructions presented in [11], and they improve on time complexity upon these algorithms. Table 1.1 provides the exact time complexities and the space overheads of all of the algorithms presented in this dissertation.

In the Sim family of synchronization algorithms, we aim at (1) getting better time complexity by using base objects other than LL/SC and read-write (i.e. Swap, Add, etc) and (2) competing in terms of performance with the state of the art synchronization algorithms

Algorithm	Base objects	Progress property	Published in	
Synchronization Algorithms				
F-RedBlue	CAS, rw	wait-free	DISC '09	
S-RedBlue	CAS, rw	wait-free	DISC '09	
LS-RedBlue	CAS, rw	wait-free	DISC '09	
BLS-RedBlue	CAS, rw	wait-free	DISC '09	
Sim	Add, CAS, rw	wait-free	SPAA '11	
P-Sim	Add, CAS, rw	wait-free	SPAA '11	
L-Sim	Add, CAS, rw	wait-free	unpublished	
CC-Synch	Swap, rw	blocking	PPoPP '12	
DSM-Synch	Swap, CAS, rw	blocking	PPoPP '12	
H-Synch	Swap, rw	blocking	PPoPP '12	
Shared Stacks				
SimStack	Add, CAS, rw	wait-free	SPAA '11	
CC-Stack	Swap, rw	blocking	PPoPP '12	
DSM-Stack	Swap, CAS, rw	blocking	PPoPP '12	
H-Stack	Swap, rw	blocking	PPoPP '12	
Shared Queues				
SimQueue	Add, CAS, rw	wait-free	SPAA '11	
CC-Queue	Swap, rw	blocking	PPoPP '12	
DSM-Queue	Swap, CAS, rw	blocking	PPoPP '12	
H-Queue	Swap, rw	blocking	PPoPP '12	

Table 1.1: Algorithms and their properties proposed in this dissertation.

(i.e. high performance spin-locks, etc), while having the nice theoretical properties that RedBlue algorithms have. The family of Sim synchronization algorithms achieve these goals.

The Sim synchronization algorithm follows the simple idea presented by Herlihy in [37]: a thread p starts by recording the request that it wants to execute in a shared struct that it owns. This struct additionally contains a toggle bit. A set of toggle bits, one for each thread, are also stored as part of the simulated state. Based on the values of the toggle bits, p finds out which other requests are active and serves them by executing their code on a local copy of the simulated state. Finally, p tries to change a shared reference, stored in an LL/SC object, to point to this local struct. Process p may have to apply these steps twice to ensure that its request has been served. An array containing p response values is also stored as part of the simulated state. Once p ensures that its request has been served, it finds its response value in the LL/SC object.

We start with Sim, a simplified version of this technique that allows us to derive some theoretical results. In Sim, the announcement of the requests and the discovery of the active requests by each thread have been abstracted using a collect object. A collect object consists of n components $A_1, ..., A_n$, one for each thread, where each component stores a value from some set and supports two operations $\operatorname{UPDATE}(v)$ and $\operatorname{COLLECT}$. When executed by thread p_i , $1 \leq i \leq n$, $\operatorname{UPDATE}(v)$ stores the value v in A_i ; $\operatorname{COLLECT}$ returns a vector of n values, one for each component. It is remarkable that a collect object is not atomic (see Section 3 for a description of the correctness condition that needs to be ensured by an implementation of a collect object). A snapshot object is an atomic version of a collect object.

We describe simple implementations of collect and snapshot objects using a single atomic Add (or XOR) object. An Add (XOR) object supports the operation Add (XOR) in addition to Read; Add(O, x) adds some (positive or negative) value x to object O (XOR(O, x) computes O XOR v and stores it into O). These implementations exhibit constant step complexity (under the standard theoretical model of shared memory computation where even if the size of the Add object is large, an Add can be executed atomically as a single step). Using these simple implementations, one could get improved performance for several previously presented algorithms [7, 15, 40, 57].

By plugging in to Sim the implementation of collect discussed above, the step complexity of Sim becomes constant as well. Jayanti [42] has proved a lower bound of $\Omega(\log n)$ on the step complexity of any oblivious universal synchronization algorithm using LL/SC objects; an *oblivious* universal synchronization algorithm does not exploit the semantics of the object being simulated. This lower bound holds even if the size of the base objects used by the universal synchronization algorithm is unbounded. One of the open problems mentioned in [42] is the following: "If shared-memory supports all of Read, Write, LL/SC, Swap, CAS, Move, Fetch&Add, would the $\Omega(\log n)$ lower bound still hold?" Sim has constant step complexity and it uses a single Add (or XOR) object in addition to an LL/SC object, thus proving that the lower bound in [42] can be beaten if we use just a single Add (or XOR) object in addition to an LL/SC object. So, an $\Omega(\log n)$ lower bound can be derived for the step complexity of any implementation of an Add, XOR, collect, or a snapshot object, from LL/SC objects.

Sim is an efficient wait-free implementation of the well-known combining technique [29, 34, 37, 52, 54, 56, 60]. Most of the previous implementations of this technique, including the algorithm presented in [52] (which we will call OyamaAlg from now on) and flat-combining [34], employ locks and therefore they are *blocking* (i.e. threads may have to wait for actions performed by other threads in order to make progress). Specifically, in those algorithms, a thread, called the *combiner*, holding a coarse-grain lock, serves, in addition to its own request, active requests announced by other threads while they are waiting by performing local spinning (and possibly periodical checking of the lock status).

We present a practical version of Sim, called P-Sim, which we have implemented and experimentally tested on a real shared memory machine. We provide a detailed experimental analysis illustrating that P-Sim is highly-efficient in practice. Specifically, our experiments show that P-Sim outperforms several state-of-the-art synchronization algorithms, both lock-based (like local spinning) and lock-free (Figures 5.2-5.12). Moreover, the performance of P-Sim is as good as that of the best-known implementations [34, 52] of the combining technique, and in some cases even better than them. More specifically, we experimentally compare P-Sim with OyamaAlg [52], flat-combining [34], CLH spin locks [23, 47], and a simple lock free algorithm. Our experiments (Figure 5.2) show that P-Sim outperforms all these algorithms in several cases. Besides that, P-Sim is wait-free whereas all other algorithms ensure only weaker progress properties. P-Sim proves that the common belief that ensuring wait-freedom is too expensive to be practical is in many cases wrong.

We have used P-Sim to design new highly-efficient wait-free implementations of common concurrent data structures like queues and stacks. We experimentally prove that our stack implementation, called SimStack, outperforms most well-known previous shared stack algorithms, like the lock-free stack implementation of Treiber [58], the elimination back-off stack [35], a stack implementation based on a CLH spin lock [23, 47], and a linked stack implementation based on flat-combining [34]. Similarly, our queue implementation, called SimQueue significantly outperforms the following previous queue implementations: a lock-based algorithm [50] which uses two CLH locks [23, 47], the lock-free algorithm presented in [50], and the implementation using flat-combining provided by Hendler et. al [34].

In this dissertation, a further investigation of the combining technique is provided aiming at discovering where its real performance power resides, understanding the performance implications of using different primitives when implementing it, and investigating whether and how ensuring some desired properties (e.g., fairness in serving requests) would impact performance. We do so by presenting two new blocking implementations of this technique. The first, called CC-Synch, is suitable for cache coherent (CC) shared memory systems where accesses to shared objects are performed via cached copies of them; an access to a shared object is a remote memory reference (RMR) if the cached copy of this object is invalid, so the access causes a cache miss*. The vast majority of modern parallel architectures follow the CC shared memory model. The second implementation, called DSM-Synch, is better suited for the cache-less NUMA shared memory systems, where a part of the shared memory is associated with each processor; so, each shared object is allocated (and resides) in the part of the shared memory that is associated to a specific processor. Processors do not have access to local caches, so a thread p performs a remote memory reference (RMR) if it accesses a shared object residing in the shared memory part of some processor other than that where p is being executed. Since an RMR is significantly more costly than a local memory reference [49], it is highly desirable to design algorithms that perform as few RMRs as possible; CC-Synch and DSM-Synch perform a bounded number of RMRs.

CC-Synch and DSM-Synch use a single FIFO queue to both implement the lock and store the active synchronization requests. Therefore, the synchronization needed for implementing the list of active requests comes for free. Specifically, each newly activated thread adds a node to the tail of the queue to announce its request and participate to the implementation of the lock. Thus, each active thread is assigned one of the nodes of the queue. The active thread q that owns the first node of the queue becomes the combiner and undertakes the responsibility of applying some (or all) of the requests listed in the queue. Each active thread whose node is not first in the queue performs local spinning.

The experimental analysis (Section 6.4) reveals that the use of a highly-efficient queuelike lock which, in addition to its low synchronization overhead, provides the implementation of the list of announced requests for free, significantly reduces the synchronization required to implement the combining technique. Moreover, the new implementations are simpler to program than previous combining-based synchronization approaches [34, 52].

^{*} Once the cache miss is served and as long as the data item is not updated by threads that are being executed on other processors, future accesses to the data item by threads that are being executed on this processor are local.

These result in a performance benefit in comparison to P-Sim as well as to any other algorithm provided in the past. Additionally, the new implementations exhibit several nice properties, not ensured by previous blocking combining implementations [34, 52]. First, they provide stronger fairness guarantees in serving the requests. Second, they provide bounds on the number of remote memory references that are executed. Specifically, in CC-Synch, the combiner thread performs O(h+t) RMRs, where h is an upper bound on the number of synchronization requests that the combiner may serve, and t is the size of the shared data that should be accessed in order to execute these h requests; we remark that h is a parameter that can be determined by the user and it can be chosen to be constant. The combiner in DSM-Synch performs O(dh) RMRs, where d is the average number of RMRs required to serve a single request. In both algorithms, all threads, other than the combiner, perform local spinning and cause only a constant number of RMRs. Thus, the amortized number of performed RMRs is O(d). Moreover, no thread may ever starve. Finally, the new implementations do not employ any form of backoff and they need minimal tuning to achieve the best performance.

CC-Synch uses a Swap object in addition to Read-Write base objects. DSM-Synch uses an object that supports CAS and Swap in addition to Read-Write base objects; a CAS(O, u, v) (atomically) checks if the current value of O is u and if this is so, it changes the value of O to v and returns true, otherwise the value of O remains unchanged and false is returned. CC-Synch and DSM-Synch use just one primitive stronger than Read-Write base objects and in CC-Synch this is a Swap object which is weaker than CAS. In CC-Synch, each thread maintains a single node to insert in the list, and therefore the total space overhead of CC-Synch is O(n), where n is the number of threads; this is no more than that of previous combining-based synchronization approaches. The total space overhead for DSM-Synch is also O(n).

We experimentally compare CC-Synch and DSM-Synch with several state-of-the-art synchronization approaches, like P-Sim, flat-combining [34], CLH spin locks [23, 47], and a simple lock free algorithm. The experiments (Figures 6.1-6.10) show that CC-Synch outperforms all these approaches in most cases. DSM-Synch outperforms all algorithms other than CC-Synch. DSM-Synch has the advantage over CC-Synch that it is designed to be efficient even in machines that support the DSM model; so, it can be executed efficiently by architecture unaware applications.

The experimental analysis reveals that the number of cache misses incurred per request is smaller in the new implementations than in previous algorithms and the same is true for the cycles invested in memory stalls. Based on experiments, we conclude that the algorithm of repeatedly performing CAS until it succeeds, even if it comes together with an appropriately-tuned back-off scheme, causes more cache misses and more branch mispredictions than employing Swap or other non-comparison primitives. Experiments also show that the average number of requests served by a combiner in CC-Synch and DSM-Synch is larger than in other algorithms, so the synchronization overhead paid to serve an amount of requests in these implementations is closer to the ideal than in previous approaches. So, the achieved combining degree has a significant impact on the performance of combining implementations.

We used CC-Synch and DSM-Synch to implement shared stacks and queues (Section 6.5). The stack implementation (CC-Stack) based on CC-Synch, outperforms all state-of-the-art shared stack implementations like SimStack, the linked stack implementation based on flat-combining [34] where elimination has also been applied [35], and the stack implementation based on CLH spin locks [23, 47]. The stack implementation (DSM-Stack) based on DSM-Synch, outperforms all implementations other than CC-Stack. We also use CC-Synch and DSM-Synch to get two highly efficient shared queue implementations, called CC-Queue and DSM-Queue. More specifically, these implementations are derived by simply replacing the ordinary locks in the two-locks queue implementation presented by Michael and Scott in [50] with two instances of either CC-Synch or DSM-Synch. These implementations were experimentally compared to SimQueue, the two-locks implementation [50], and the queue implementation based on flat-combining presented in [34]. CC-Queue performs up to 2.5 times faster than the queue implementation of [34] and outperforms SimQueue by a factor of up to 1.5.

For modern multi-core systems that organize the cores into clusters and provide fast communication (via shared caches) to the threads running in the same cluster and much slower communication across clusters, we present an hierarchical version of CC-Synch, called H-Synch, which exploits the hierarchical communication nature of such systems to achieve better performance. Experiments show that in such systems, H-Synch significantly outperforms CC-Synch and DSM-Synch as well as the state-of-the-art flat-combining NUMA locks recently presented by Dice et. al in [24]. H-Synch is used to design highly

efficient implementations of stacks and queues for such machines. These implementations outperform by far, in such machines, CC-Stack, DSM-Stack, CC-Queue and DSM-Queue, respectively, as well as all other concurrent stack and queue implementations with which these implementations have been compared.

Many hardware manufactures have been influenced by the universality result [36], and they have equipped their machines with strong atomic primitives (like CAS and LL/SC). Sim shows that machines that additionally support Add instructions, have important performance advantages, and can ensure wait-freedom. CC-Synch and DSM-Synch show that machines that support Swap objects have even better performance benefits. We believe that the results of this dissertation provide some motivation for seeing primitives such as Add provided in the instruction set of more architectures in the future.

Note that CC-Synch, similarly to Sim and flat-combining [34], cannot be trivially applied in an efficient way for designing data structures such as search trees, where m lookups can be executed in parallel performing just a logarithmic number of shared memory accesses each. In such cases, it is expected that CC-Synch will perform well, only if several instances of it are employed. It is an interesting open problem to find efficient ways to synchronize these instances. It is also not obvious how to use the combining technique to implement data structures, like shared linked lists, if several instances of the combining implementation should be employed to achieve good speed-up.

The synchronization algorithms of the RedBlue synchronization algorithms have been presented in DISC '09 [27], synchronization algorithms based on Sim have been presented in SPAA 2011 [28] and an extended version will appear to Theory of Computing Systems Special Issue on SPAA 2011, while the Synch synchronization algorithms are presented in PPoPP [29].

This dissertation is organized as follows. The related work is discussed in Chapter 2. The model of the system is described in Chapter 3. In Chapter 4, the family of RedBlue algorithms is presented. The family of Sim algorithms is provided in Chapter 5. Finally, the family of Synch algorithms is presented in Chapter 6.

Chapter 2

Related Work

In [36], Herlihy provides the first wait-free universal synchronization algorithm using Read-Write base objects and consensus objects. This universal algorithm can be used to simulate any other shared object in a system of n threads. Herlihy's algorithm uses $O(n^2)$ Read-Write base objects and $O(n^2)$ consensus objects of size s, where s is the size of the state of the simulated object. The consensus objects can be easily implemented by using CAS or LL/SC base objects [36]. The step complexity of Herlihy's synchronization algorithm is O(n).

Afek, Dauber and Touitou [4] have presented algorithm GroupUpdate which also uses a tree technique to keep track of the list of active threads. They then combine this tree construction with Herlihy's universal algorithm [36, 37] to get a universal construction with time complexity $O(k \log k + W + kD)$, where W is the size (in words) of the simulated object state and D is the time required for performing a sequential request on it. F-RedBlue retains the basic structure of GroupUpdate but achieves better time complexity $(O(\min\{k, \log n\}))$ by employing a faster mechanism to discover the encountered contention and by using large LL/SC base objects. S-RedBlue addresses the problem of using large base objects still achieving better time complexity than GroupUpdate.

Although the first of the RedBlue algorithms shares a lot of ideas with GroupUpdate, it also exhibits several differences: (1) it employs two complete binary trees each of which has one more level than the single tree employed by GroupUpdate; in each of these trees, each

thread is assigned its own leaf node which identifies a unique path (from the root to this leaf) in the tree for the thread; (2) threads traverse the red tree first in order to occupy a node and this procedure is faster than a corresponding procedure in GroupUpdate. More specifically, GroupUpdate performs a BFS traversal of its employed tree in order for a thread to occupy a node of the tree, while each thread in any of the RedBlue algorithms always traverses appropriate portions of its unique path. This results in reduced time complexity for some of the RedBlue algorithms.

Afek, Dauber and Touitou [4] present a technique that employs indirection to reduce the size of the base objects used by GroupUpdate (each tree base object stores a thread id and a pointer to a list of ids of currently active threads). A similar technique can be applied to the RedBlue algorithms in case n is too large to have n bits stored in a constant number of LL/SC base objects. The resulting algorithms will have just a pointer stored in each of the blue nodes (thus using smaller base objects than GroupUpdate which additionally stores a thread id in each of its LL/SC base objects). However, employing this technique would cause an increase to the step complexity of our algorithms by an $O(k \log n)$ additive term.

Afek, Dauber and Touitou present in [4] a second universal construction, called IndividualUpdate, that has time complexity O(k(W+D)). IndividualUpdate stores sequence numbers in base objects and therefore it requires unbounded size base objects or base objects that support the VL request in addition to LL and SC. The first two RedBlue algorithms achieve better time complexity than IndividualUpdate. Some of our algorithms use single-word base objects (however, they also employ LL/VL/SC objects).

Afek, Dauber and Touitou [4] discuss a method similar to that presented in [17] to avoid copying the entire object's state in IndividualUpdate. The resulting algorithm has time complexity $O(kD \log D)$. The work of Anderson and Moir on universal constructions for large objects [11] follows this work. Our last two algorithms improve in terms of time complexity upon the constructions presented in [11]. They achieve this using single-word base objects (and the last algorithm with the same space complexity as the wait-free construction in [11]).

Jayanti [43] presented f-arrays, a generalized version of a snapshot object which allows the execution of any aggregation function f on the m elements of an array of m memory cells that can be updated concurrently. As F-RedBlue, f-arrays has time com-

Algorithm	Primitives	Shared Memory Accesses	Required Space		
Wait-free synchronization algorithms presented in this dissertation					
F-RedBlue	LL/SC	$O(\min\{k, \log n\})$	$O(n^2+s)$		
S-RedBlue	LL/VL/SC, r/w regs	O(k+s)	$O(n^2 + ns)$		
LS-RedBlue	LL/VL/SC, r/w regs	O(B + k(w + TL))	$O(n^2 + n(B + kTL))$		
BLS-RedBlue	LL/VL/SC, r/w regs	$O((k/\min\{k, M/T\}) (B + ML + k + \min\{k, M/T\}w))$	$O(n^2 + n(B + ML))$		
Sim	LL/SC or CAS, FAD	O(1)	O(n+s)		
P-Sim	LL/SC or CAS, Fetch&Add	O(n+s)	$O(n^2 + ns)$		
Related Work					
Herlihy [36]	consensus objects, r/w regs	O(n)	$O(n^3s)$		
Herlihy [37]	LL/VL/SCor CAS, r/w regs	O(n+s)	O(ns)		
GroupUpdate [4]	LL/SC r/w regs, consensus objects	$O(\min\{n, k \log k\})$	$O(n^2 s \log n)$		
IndividualUpdate [4]	LL/VL/SC	$O(kw \log w)$	O(nw+s)		
Anderson & Moir [10]	LL/VL/SC	$O((n/\min\{k, M/T\}) (B + ML + nw))$	$O(n^2 + n(B + ML))$		
Chuong, et. al [20]	CAS, r/w regs	O(nw)	O(n+s)		

Table 2.1: Wait-free universal algorithms and their complexities.

plexity $O(\min\{k, \log n\})$; the algorithm uses a tree structure similar to that employed by GroupUpdate and our algorithm. F-RedBlue is universal, thus achieving wider functionality than f-arrays. Constructions for other restricted classes of objects with polylogarithmic complexity are presented in [19].

Afek et al. [5, 6] and Anderson and Moir [10] have presented universal algorithms for multi-object requests that support access to multiple objects atomically. The main difficulty encountered under this setting is to ensure good parallelism in cases where different requests perform updates in different parts of the object's state. In Table 2.1, a comparison between the wait-free algorithms proposed in this dissertation and previous work is displayed. Notice that w is the maximum number of different memory words accessed by an operation on the sequential data structure. In [10, 27], B is the number of blocks, each of size L, required to store the object's state, and each thread is allowed to modify at most T blocks and help at most M/T other threads, where $M \geq 2T$ is some integer.

P-Sim uses an efficient implementation of the Add-based collect object. This allows a thread to read only the announcement records of those requests that are active improving upon the technique described in [37] where threads read all n such records. Furthermore, in P-Sim each thread uses its own pool of structs to store the simulated state. In the recycling technique of [37] threads share the same pool which leads to a significantly higher

number of cache misses. P-Sim validates not only whether the copied state is consistent (as does the validation mechanism in [37]), but also if the reference to the shared state has changed in the meantime. If the validation fails, P-Sim avoids performing unnecessary work. Moreover, P-Sim uses a simple backoff scheme to guarantee that a thread executing a request will help a large number of other active threads; in [37], the employed backoff scheme aims at reducing the contention in updating the LL/SC object.

Herlihy [37] starts by presenting a lock-free version of the universal synchronization algorithm where each thread does not help requests initiated by other threads. It rather performs LL on the reference to the simulated state, copy the state locally and apply its SC; these actions are applied repeatedly until the SC succeeds. Experiments presented in [37] show that Herlihy's wait-free implementation does not perform well in comparison to this lock-free version and a Test-And-Test-And-Set spin lock (with backoff).

The combining technique is old. It was first been introduced by Gottlieb et. al on network switches [31] that connect processors to memory; messages with the same destination were merged to reduce memory traffic and contention. Software combining was first realized in combining trees [30, 60], at which requests to modify a concurrent data structure are transferred from the leaves of the tree towards the root applying combining at every internal node. However, each thread applies $\Theta(\log n)$ CAS operations per access and therefore the synchronization overhead is high. To reduce this overhead a lot of research work has focused on designing adaptive versions of combining trees [32, 49] (e.g., for implementing barriers) or decentralized algorithms for dynamically changing tree size [55, 56]. For some of these algorithms [32, 49], it is not clear how they can be used to design general concurrent data structures, others [55] satisfy weaker consistency conditions than linearizability, and for others, experiments [34] have shown that the synchronization overhead they introduce is still high.

Oyama, Taura and Yonezawa present in [52] a different approach for implementing the combining technique. Their algorithm uses a coarse-grain lock implemented with a CAS object O, and a list of announced requests implemented as a stack. Each thread has a record that it uses to announce its request by pushing it in the stack. The CAS object may store the values free, locked, or a pointer to some of the threads' records. A thread with a newly-activated request first performs a CAS in an effort to change the value of O from free to locked. If this CAS succeeds, the thread becomes the combiner and starts

executing its request. Otherwise, the thread tries to announce its request by inserting its record in the stack; this is done by repeatedly performing CAS on O to change its value from locked to a pointer to its record. If this succeeds, the thread performs local spinning on its record until the combiner thread notifies it that its request has been served. When the combiner finishes the execution of its own request, it tries to change the value of O from locked to free by performing a CAS. If this CAS is successful, the stack is empty, i.e. no other thread has an active request, so the work of the combiner is done and the combiner can return. On the opposite case, the combiner performs a Swap to store in O the value locked and get a pointer to the stack of announced requests. Then, it serves all the requests listed in the stack. After this, it tries again to change the value of O from locked to free using CAS. In the meantime, other newly-activated threads may have created a new stack pointed to by O. So, the combiner thread must apply the procedure described above again until it manages to change the value of O from locked to free which would mean that there are no more active requests in the system.

OyamaAlg [52] has several drawbacks. First, the list of announced requests is treated in a LIFO way, so requests are not served in the order they enter it. CC-Synch and DSM-Synch provide a stronger notion of fairness since they serve requests in FIFO order of entering the list. Moreover, in OyamaAlg, the combiner may starve since there may always be newly-activated requests, so the combiner may never manage to change the value of O from locked to free; other threads may also starve when they repeatedly try to insert their record in the list. In our algorithms, the combiner can choose how many requests it will serve and no thread ever starves. Finally, the algorithm in [52] has significant performance overheads in comparison to CC-Synch and DSM-Synch for the following reasons. First, threads need to succeed on a CAS in order to have their requests announced; this causes a lot of contention and leads to a significant performance degradation. Second, the number of RMRs performed by any thread is unbounded since threads may starve as described above.

Flat-combining has been presented by Hendler et. al in [34]. As in OyamaAlg, flat-combining employs a global lock that protects the shared data and a list of announced requests; the global lock is again implemented using a CAS object O. There are however two main differences between flat-combining and OyamaAlg. First, the list of announced requests usually contains one record for each thread independently of whether it has a

currently active request; this reduces the number of insertions in the list. However, it increases the work of the combiner which should now traverse a longer list than necessary. To avoid this extra overhead, the combiner cleanups the list periodically keeping in it only records of threads that have recently initiated a request. A thread that initiates a request starts by checking if its record is in the list; if not, it first tries to insert it (as the first record of the list). Second, the CAS object O is not used to manipulate the head of the list as in OyamaAlg. This results in less overhead since the combiner does not interfere with threads that are trying to insert their records in the list.

Dice, Marathe and Shavit [24] have recently presented an hierarchical spin-lock implementation, called flat-combining NUMA lock; this hierarchical lock is based on flat-combining and exploits the cache hierarchies in order to provide good performance. As it is shown in [24], this lock implementation greatly outperforms the previous (hierarchical and non-hierarchical) spin-lock implementations presented in [23, 46, 47, 49, 53]. H-Synch exhibits a significant performance improvement over the flat-combining NUMA locks [24], since it (1) is simpler, (2) employs combining to serve the thread requests in each cluster, whereas this is not the case in the hierarchical lock presented in [24], and (3) is based on CC-Synch which performs better than flat combining. Our experiments show that not only H-Synch, but also CC-Synch outperforms flat-combining NUMA locks, CC-Synch by a factor of up to 1.65 (Figure 6.2) and H-Synch outperform the stack and queue implementations based on flat-combining NUMA locks by similar factors.

CC-Synch implements a combining-friendly version of the CLH queue lock [23, 47]; in contrast to the CLH implementation where the maintained queue is implicit, the queue maintained by CC-Synch is explicit so that the combiner can traverse it. DSM-Synch implements a combining-friendly version of the MCS spin lock [49].

CC-Synch and DSM-Synch provide a stronger notion of fairness than flat-combining since in flat-combining requests, that have been inserted in the list later than other requests, may be served first. In flat combining, the combiner cannot starve but this does not come without an extra performance overhead; specifically, the combiner may choose to return without serving all the active requests in the list, but this makes it necessary to have each active thread checking regularly whether the coarse-grain lock has been released by the combiner and if yes, trying to become a combiner itself instead of performing just

local spinning. Finally, flat combining experiences performance overheads in comparison to CC-Synch and DSM-Synch. First, in CC-Synch and DSM-Synch no extra cost is paid for maintaining the list of active requests since this list is provided for free by the implementation of the lock. Second, the cost paid by the combiner is larger in flat combining since the combiner usually has to traverse a longer list than necessary. Finally, threads in flat combining may perform an unbounded number of RMRs when trying to insert their records in the list.

Treiber has presented a lock-free shared stack implementation in [58]. Treiber's shared stack is implemented as a linked list and there is a CAS base object that points to the top-most element. Each thread that wants to Push/Pop an element to the stack repeatedly performs CAS instructions to the CAS object trying to Push/Pop a node to the top of the linked list. The performance of Treiber's stack is significantly enhanced by employing a simple adaptive backoff scheme.

Hendler, Shavit and Yerushalmi [35] use an elimination layer on top of Treiber's lock-free stack. The elimination layer offers the ability to eliminate concurrent Push/Pop operations instead of competing to modify the CAS object that points to the topmost element of the stack. In cases of high contention, this results to a better scaling compared to Treiber's lock-free implementation.

Hendler et. al in [34], use an instance of flat-combining in order to implement a scalable blocking shared stack. This results to better performance comparing to the lock-free stack implementation presented in [58] and the elimination scheme presented in [35]. SimStack achieves much better performance than the lock-free stack implementation presented in [58], the elimination algorithm algorithm of [35] and the shared stack based on flat-combining [34] (see Section 5.3). Furthermore, SimStack ensures stronger notion of progress, since it is wait-free. CC-Stack, DSM-Stack and H-Stack offer even better performance but they are blocking.

Michael and Scott [50] present a lock-free implementation of shared queue that is implemented using a linked-list. There are two CAS base objects; the first object points to the head of the queue, while the second one points to the tail of the queue. Threads that want to Enqueue/Dequeue elements to the shared queue repeatedly perform CAS instructions to these CAS objects. In the same paper, Michael and Scott present a blocking alternative of the lock-free queue. Similarly to the lock-free queue, the blocking queue

is implemented using a linked-list. Two ordinary locks are used, the first one protects the head of the list and the second protects the tail of the list. This gives the ability to enqueuers and dequeuers to run independently.

Hendler et. al [34], uses an instance of flat-combining in order to implement a scalable blocking shared queue implementation, which is called FCQueue. In the experiments presented in [34], it is shown that FCQueue outperforms prior work (i.e the lock-free queue implementation of [50], a queue implementation based on OyamaAlg, etc). SimQueue achieves much better performance than the lock-free queue implementation presented in [50] and the shared queue based on flat-combining [34] (see Section 5.3). Furthermore, SimQueue ensures stronger notion of progress, since it is wait-free. CC-Queue, DSM-Queue and H-Queue offer even better performance but they are blocking.

Chapter 3

Model

- 3.1 General
- 3.2 Pseudocode conventions

3.1 General

We consider an asynchronous system of n threads, p_1, \ldots, p_n , each of which may fail by crashing. In case of thread failure, the thread simply stops executing its algorithm, i.e. it stops taking steps. Threads communicate by accessing shared base objects. Each shared base object stores some information and provides operations to threads to read and modify the stored information; these operations may be executed by threads concurrently.

The most basic shared object is a Read-Write base object R which stores a value and supports two atomic operations: Read(R) which returns the current value of R and leaves its content unchanged, and Write(R, v) which writes the value v into R and returns an acknowledgment. A base object is multi-writer if all threads can change its content; on the contrary, a single-writer base object can be modified only by one thread. A base object is unbounded if the set of values that can be stored in it is unbounded; otherwise, the base object is bounded.

An Add object O supports two atomic operations Read(O) and Add(O, v). Operation Add(O, v) adds the (positive or negative) value v to the value of O and returns an acknowledgment, while operation Read(O) returns the value stored in O.

An LL/SC object O supports the atomic operations LL and SC. LL(O) returns the current value of O; the execution of SC(O, v) by a thread p must follow the execution of LL(O) by p, and changes the contents of O if O has not changed since the execution of p's latest LL on O. If SC(O, v) changes the value of O to v, true is returned and we say that the SC is successful; otherwise, the value of O does not change, false is returned and we say that the SC is not successful or it is failed. Some LL/SC base objects support the operation VL in addition to LL and SC; when executing by some thread p, VL returns true if no thread has performed a successful SC on O since the execution of p's latest LL on O, and false otherwise.

A CAS object O supports in addition to operation Read(O), the atomic operation $CAS(O, v_{old}, v_{new})$ which stores v_{new} to O if the current value of O is equal to v_{old} and returns true; otherwise the contents of O remain unchanged and false is returned. A Swap object stores a value from a set V and in addition to Read(O), it supports the atomic operation Swap(O, v), which stores v to O and returns the current value of O.

An active set is a shared object that identifies the set of threads that participate in some computation; it supports the operations (1) JOIN which is called by a thread to identify its participation to the computation, (2) LEAVE to request removal from the set of participating threads, and (3) GETSET which returns the set of the currently participating threads.

A collect object consists of n components $A_1, ..., A_n$, one for each thread, where each component stores a value from some set; it supports the operations (1) UPDATE(v) which, when executed by p_i , it stores the value v in A_i , and (2) COLLECT which returns a vector of n values, one for each component.

A universal object simulates any other shared object. It supports an operation, called APPLYOP($operation\ op$), which simulates the execution of operation op on the simulated object; APPLYOP returns the return value of operation op.

An *implementation* of a (high-level) object from base objects provides, for each operation of the simulated object and for each thread, an algorithm that uses the base objects

to implement the operation. An implementation of a universal object is called *oblivious* if it does not exploit the semantics of the type of the simulated object.

A configuration consists of a vector of n+r values, where r is the number of base objects in the system; the first n attributes of this vector describe the state of the threads, and the last r attributes are the values of the r base objects of the system. Thus, a configuration C describes the system at some point in time. At an initial configuration, the base objects contain initial values and each thread is in an initial state. A thread completes the execution of a step each time it executes an operation on a shared object (i.e. a step consists of a single operation on a base object and possibly some local computation). An execution α is a sequence of steps executed by threads. An execution fragment of α is a part of α consisting of any number of consecutive steps. A thread starts the execution of a (simulated) operation by invoking its algorithm and finishes it when it gets back a response; thus, for each instance of an operation that is executed in α , there is an invocation and a response. A thread is active at some configuration C, if it has invoked an operation op at C but it has not yet issued a response for op; in this case, we also say that op is active at C. The execution interval of op is the part of the execution that starts with op's invocation and ends with op's response.

An implementation is *blocking* if a thread may have to wait for some event caused by another thread. An implementation is *wait-free* [36] if in each execution, *each* thread finishes the execution of every operation it initiates within a finite number of steps independently of the speed or the failure of other threads. Wait-freedom is the strongest non-blocking progress property. A weaker such property is *lock-freedom*, which ensures that *some* thread finishes the execution of an operation within a finite number of steps.

For the sake of studying the performance of blocking algorithms, we consider that the system's shared memory is divided into memory chunks. Each memory chunk stores a number of base objects and is associated with some processor. We consider two shared memory models. In cache-less NUMA machines (this model is also known as DSM), a thread p performs a remote memory reference (RMR) if it accesses a base object residing in the memory chunk associated with some processor other than p; all other memory accesses by p are called local. In cache-coherent (CC) machines, accesses in shared memory are performed on cached copies of the base objects. In this case, if the cached copy of the base object is invalid, the memory reference is called remote. Then, a cache miss occurs

and a valid copy of the base object should first be fetched in the local cache before it can be accessed. It is worth pointing out however that once this occurs and as long as the base object is not updated by other processors, all future accesses to the base object by the processor are local. This is not the case in the DSM model, where every access to a base object that resides in a remote memory is *remote*. We remark that since an RMR is significantly more costly than a local memory reference, our goal when designing blocking algorithms, is have them to perform as few RMR as possible.

For the sake of studying the performance of non-blocking algorithms, we define the *step* complexity of an operation, to be the maximum number of steps that a thread performs to complete such an operation in any execution. The *step complexity* of an implementation is the maximum between the step complexities of the operations of the simulated object.

The interval contention of an instance of an operation in an execution α is the maximum number of threads that are active in the execution interval of this instance. The interval contention of an operation in an execution α is the maximum number of threads that are active in the execution interval of any instance of the operation in α . The total contention of an execution α is the total number of threads that have taken steps in α . If the step complexity of an implementation depends on the interval (or the total) contention of the simulated operations in each execution, and not on the total number of threads n, then the implementation is called adaptive.

Let α be any execution. Linearizability [39] ensures that, for each operation op on the simulated object in α , there is some point, called linearization point, within the execution interval of op, such that op appears as if it has executed instantaneously (or as so called atomically) at this point; more specifically, the response returned by op in α should be the same as the response op would return if all operations in α were executing sequentially in the order determined by their linearization points. When this holds, we say that the response of op is consistent. An implementation is linearizable if all its executions are linearizable.

We remark that an implementation of a collect object does not have to be linearizable. In such an implementation, the vector returned by each COLLECT Col must contain, for each component A_i , the value written by the last UPDATE U on A_i by p_i that has finished its execution before the invocation of Col (or the initial value if such an UPDATE does not exist), given that p_i has not started the execution of a new UPDATE U' in the interval

between the end of U and the end of Col. If p_i has started the execution of a new update U', then Col may return either the value of U' or that of U (or the initial value, if U does not exist) for A_i . Moreover, an instance of COLLECT G which has started its execution after the response of some other instance of COLLECT G', must return, for each component A_i , either the same value v with that returned by G or some value v' that has been written in A_i by an update U' which has started its execution after the response of the update U that writes into A_i the value v read by G. A similar correctness property must be ensured by any implementation of an active set. A snapshot object is a linearizable version of a collect object (we then use the term SCAN instead of COLLECT). A snapshot implementation is single-writer, if each component can be updated only by a specific thread, so it is only this thread that can apply update operations to the component. In multi-writer snapshots, each thread can execute update operations to any component.

3.2 Pseudocode conventions

The code description (pseudocode) of an algorithm for shared memory machines provides pseudocode for every thread. The pseudocode of an algorithm for shared memory machines is similar to the pseudocode of serial algorithms. The pseudocode includes accesses to local variables (thread's local variables consist thread's state) and accesses to shared base objects. Shared base objects are similar to local variables, but the keyword *shared* is inserted in the beginning of their declaration (e.g. the declaration *shared int X*; means that base object X is a shared base object of type int, on the contrary $int\ x$; declares a local variable). The first character of shared base object's name is usually capitalized.

For simplicity, instead of using Read and Write instructions in the pseudocode, the following conventions are used: (i) a reference to the shared base object at the left of an assignment means that a Write instruction is executed on the base object, (ii) and a reference to the shared base object at the right of an assignment means that a Read instruction is executed on the base object. For example, if X and Y are shared base objects, then the X = Y expression means that the value of Y is read and its value is written to base object X. A simple expression of the pseudocode may contain a lot of references to shared base objects. In such a case, the Read instructions to shared base

objects that are placed at the right of the expression are executed from left to right, the returned values from the Read instructions are stored to temporary local variables, the calculation of the expression is executed on the local variables and the result is written to the base object appearing to the left part of the expression. For example, if X, Y and Z are shared base objects, then X = Y + Z means that initially the value of Y is read and its value is stored into a temporary local variable, after that Z is read and its value is stored to a local variable, and finally the sum of local variables is written to base object X. Comments in the pseudocode start with //.

CHAPTER 4

ADAPTIVE WAIT-FREE SYNCHRONIZATION ALGORITHMS

- 4.1 The F-RedBlue algorithm
- 4.2 Modified version of F-RedBlue that uses small base objects
- 4.3 Adaptive synchronization algorithms for large objects

In this chapter, the family of RedBlue synchronization algorithms is presented. In Section 4.1, we present F-RedBlue. In Section 4.2, we present S-RedBlue, which is a modified version of F-RedBlue that uses small base objects. Section 4.3 presents two algorithms, LS-RedBlue and BLS-RedBlue. These algorithms combine techniques presented in [11] and the techniques employed by S-RedBlue algorithms in order to achieve the nice properties of the algorithms presented in [11] with better time complexity.

4.1 The F-RedBlue algorithm

In this section, we present the first algorithm of the RedBlue family, which is called F-RedBlue. F-RedBlue has time complexity $O(\min\{k, \log n\})$, uses LL/SC and read-write base objects, and is optimal in terms of time complexity.

4.1.1 Algorithm description

We first describe a relatively simple wait-free algorithm that F-RedBlue is based on. This simple algorithm uses a perfect binary tree (called the *blue tree*) of $\lceil \lg n \rceil + 1$ levels, each node of which is a LL/SC object. We assume that the root node is placed at level $\lceil \lg n \rceil + 1$ and that the leaf nodes are placed at level 1. Each thread p owns one of the tree leaves and it is the only thread capable of modifying this leaf. Thus, there is a unique path pt(p) (called *blue path* for p) from the leaf node assigned to p up to the root. The LL/SC object of each node stores an array of n request types (and their parameters), one for each thread to identify the request that the thread is currently executing. The root node additionally stores the state of the simulated object and the return value for the last request applied to the simulated object by each thread. We denote by \hat{s} , the initial value of the state field.

Whenever thread p wants to apply a request req to the object, it moves up its path until it reaches the root node and ensures that its request req is recorded in all nodes of the path by executing two LL/SC on each of them. If any of the LL/SC that p executes on some node succeeds, req is successfully recorded in it; otherwise, the algorithm guarantees that req is recorded for p in the node by some other thread before the execution of the second of the two SC instructions executed by p. In this way, req is propagated towards the root where req is applied to the object. Besides that, p records in each node the requests that are being executed by other active threads in an effort to help them finish their executions. Successful SC instructions that are executed at the root node may result the application of several requests to the simulated object. In this way, the algorithm guarantees wait-freedom.

Once p ensures that req has been applied, it traverses its path from its leaf up to the root once more to eliminate any evidence of its last request by overwriting req with the special value \bot . This allows p to execute additional requests later on the simulated object. A new request req' by p, is applied to the simulated object only if req' is propagated to the root node and the thread p thats stores it, finds that the previous value for p is \bot .

This relatively simple algorithm requires $O(\log n)$ steps to execute. In order to make it adaptive, F-RedBlue uses one more tree (the *red tree*), isomorphic to the blue tree (Figure 4.1). Each thread p is assigned a leaf node of the red tree which identifies a

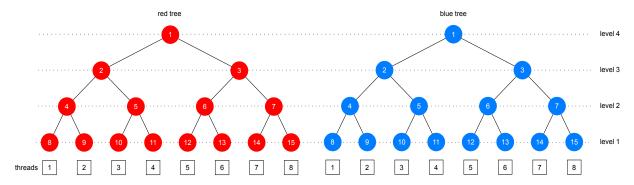


Figure 4.1: The red and the blue tree of F-RedBlue for n = 8.

unique path from the root to this leaf ($red\ path\ for\ p$). The red tree allows threads to obtain information about the encountered contention which is then used to shorten the paths that threads traverse in the blue tree (i.e. a thread starts its traversal of its blue path possibly from some internal node of blue the tree (instead of starting from its assigned leaf) which is at a level that depends on the encountered contention).

Each node of the red tree stores information about the request req of a single (active) thread. We then say that p "occupies" the node. More specifically, each thread p first tries to occupy a node of the red tree and then starts traversing (part of) its blue path. In order to occupy a red node, p traverses its red path downwards starting from the root, until it finds a $clean \ node$ (i.e. a currently unoccupied node, such a node stores the value $< \bot, -1 >$) and manages to occupy it by recording its request type and its id in it. We prove that each red node is occupied by at most one thread at any point in time. An occupied node identifies a thread that is currently active, so as long as p reaches occupied nodes, it encounters more contention. We prove that p will eventually reach an unoccupied node and record the appropriate information there. In the worst case, p will occupy its leaf node. Once p occupies some red node with id z_r , it performs two traversals of its blue path from the node of the blue tree that corresponds to z_r up to the root. By employing the red tree, threads traverse shorter paths in the blue tree. This improves the time complexity of the algorithm to $O(\min\{k, \log n\})$, where k is the interval contention of req.

We continue to provide a more technical description of F-RedBlue (Algorithm 1). Since the blue (red) tree is perfect and there is only one such tree with $\lceil \lg n \rceil + 1$ levels, we implement it using an array bn(rn) of 2n-1 elements. The nodes of the tree are numbered so that node z is stored in bn[z] (rn[z], respectively). The root node is numbered with 1,

```
struct RedNode{
       request req;
       int pid;
    };
    struct BlueNode{
                                                  // this field is used only at the root node
       state st;
       RetVal rvals[n];
                                                  // this field is used only at the root node
       request regs[n];
    };
    shared RedNode rn[1..2n-1] = \{\langle \bot, -1 \rangle, ..., \langle \bot, -1 \rangle\};
    shared BlueNode bn[1..2n-1]=\{\langle \hat{s}, \langle 0, ..., 0 \rangle, \langle \bot, ..., \bot \rangle\};
                                                 // pseudocode for thread p
    RetVal F-RedBlue(request req){
       int direction = n/2, levels = lg(n) + 1;
       int z = 1, l, j;
       RetVals rv;
                                                 // traversal of red path from the root node
       for (l=levels; l \geq 1; l--) {
1
         LL(rn[z]);
2
3
         if(rn[z] == < \bot, -1 >)
4
            if(SC(rn[z], \langle req, p \rangle)) break;
5
         if (p \le direction) {
                                                 // find the next node in the path
            direction = direction - 2^{l-3}:
6
            z = 2 * z;
7
                                                  // move to the left child of z
8
9
            direction = direction + 2^{l-3};
10
            z = 2 * z + 1;
                                                 // move to the right child of z
11
       Propagate(z, p);
                                                  // first traversal of blue path: propagating the request
12
       rv = bn[1].vals[p];
13
       LL(rn[z]);
       SC(rn[z], < \perp, p>);
                                                  // the request occupying rn[z] starts its deletion phase
14
15
       Propagate(z, p);
                                                 // second traversal of blue path: propagating \perp
       LL(rn[z]);
16
17
       SC(rn[z], < \bot, -1>);
                                                  // re-initialize the occupied red node to \perp
18
       return rv;
                                                  // return the appropriate value
```

Algorithm 1: Pseudocode for F-RedBlue.

and the left and right children of any node z are nodes 2z and 2z + 1, respectively. Red and blue trees for n = 8 are illustrated in Figure 4.1. Thread p, $1 \le p \le n$, is assigned to the leaf node numbered n + p - 1. We remark that traversing up the path from any node z to the root can be implemented in a straightforward manner: the next node of z in the path is node numbered $\lfloor z/2 \rfloor$. However, the downward traversal of the path requires some more calculations which are accomplished by the lines 5 - 10 of the pseudocode.

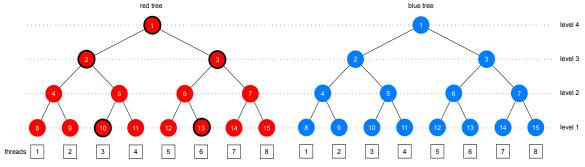
When a thread p wants to execute a request req, it first traverses its red path (lines 1-10). For each node z of this path, it checks if the node is unoccupied (line 3) and if this is so, it applies an SC instruction to it in an effort to occupy it (line 4). If the SC is

```
void Propagate(int z){
       BlueNode bt;
                                                  // traversal of the blue path
19
       while (z!=0)
20
                                                  // two efforts to store appropriate information at each node
          for (j=1 \text{ to } 2) \text{ do}
21
             LL(bn[z]);
22
             bt=Calculate(z);
23
             SC(z, bt);
24
          z = \lfloor z/2 \rfloor;
    BlueNode Calculate(int z) {
       BlueNode tmp=< \bot, < 0, ..., 0 >, < \bot, ..., \bot >>;
       BlueNode blue=bn[z], lc, rc;
       RedNode red = rn[z];
       int q, range;
25
       if (2*z+1 < 2n) {
                                                  // in case that z is not a leaf node
26
          lc = bn[2*z];
                                                  // read the contents of the left child in the blue tree
           \begin{aligned} &\text{rc} &= \text{bn}[2^*\text{z}{+}1]; \\ &\text{range} &= 2^{\lg(n) - \lceil \lg(z) \rceil}; \end{aligned} 
27
                                                  // read the contents of the right child in the blue tree
28
                                                  // compute the number of leaves that each subtree has
          // copy the requests placed on the left subtree
          tmp.reqs[2q-range..2q] = lc.reqs[2q-range..2q];
29
          // copy the requests placed on the right subtree
30
          tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
31
       if (red.pid \neq -1) tmp.regs[red.pid]=red.reg; // if thread q occupies a red node
32
33
          tmp.rvals[1..n] = blue.rvals[1..n]; // copy the return values
34
          tmp.st = blue.st;
                                                  // copy object's state
35
          for q=1 to n do
                                                  // local loop
             // apply any pending request
             if (\text{tmp.reqs}[q] \neq \bot \text{ AND tmp.reqs}[q] \neq \text{blue.reqs}[q])
36
37
                apply tmp.reqs[q] to tmp.st and store into tmp.rvals[q] the return value;
                                                  // a blue node is returned
38
       return tmp;
```

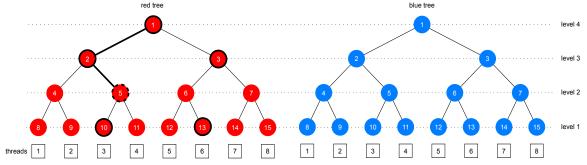
Algorithm 2: Pseudocode for Calculate and Propagate of F-RedBlue.

successful, the traversal of the red path ends (line 4). Otherwise, the next node in the path is calculated (lines 5-10) and one more iteration of the loop is performed.

Once a red node z_r has been occupied, req performs two traversals of (a part of) its blue path starting from the node in the blue tree corresponding ro z_r , up to the root. This is accomplished by the two calls to Propagate (lines 11 and 15). Each of these traversals propagates the request type written into z_r to the root node. Notice that p records \bot , as its request type, into z_r (lines 13-14) before it starts its second traversal (we remark that



(a) Nodes with ids 1, 2, 3, 10 and 13 are occupied by active threads, all other nodes are unoccupied.



(b) Thread p_4 follows the path from node 1 to node 11 and occupies the first unoccupied node, which is 5.

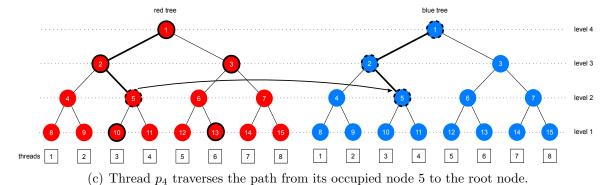


Figure 4.2: An example of an execution of F-RedBlue, where thread p_4 applies an operation to the simulated object.

this occurs by performing one more LL/SC since we assume that an LL/SC base object supports only Read, LL, and SC and not Write).

On each node z of the traversed path, Propagate performs twice the following: (1) an LL instruction on z (line 21); (2) calculates the appropriate information to write into z by calling function Calculate (line 22); (3) an SC to store the result of Calculate into z (line 23). Finally, it moves up to the next node of the blue path (line 24). Thread p re-initializes its occupied red node by writing in it the value $(\bot, -1)$ (lines 16 - 17) just before it returns.

Figure 4.2 shows an example of the application of some operation by thread p_4 in a system of 8 threads. Assume that p_4 wants to apply some operation op and assume that some nodes of the red tree are already occupied. More specifically, red nodes with black circles are occupied by active threads (see Figure 4.2(a)). At first, p_4 traverses the path from the root node to its leaf until it occupies a red node (see Figure 4.2(b)). The first unoccupied node from the root node to the leaf of p_4 , is node 5. After occupying this node, p_4 continues its execution with the traversal of the blue path. Now, p_4 traverses the path from the occupied node, which is 5, to the root node upwards (see Figure 4.2(c)). In each node of this path, p tries to store the values read in both child-nodes and also the value that is stored to the isomorphic red node.

We finally discuss the details of function Calculate. Function Calculate applies a (potentially new) request for each thread q (lines 35-37) as described below. If q occupies node with id z (line 31), then q's new request is the one which is recorded into the red node. Otherwise, the request for q is found in the previous node of that with id z in q's blue path. In case z is the root node (z=1) and the calculated request for q is not already written in z and it is different than \bot (line 36), then the request of q is a new one and should be applied to the simulated object (line 37). This is simulated by calling function apply.

4.1.2 Correctness proof

In this section we prove the correctness of F-RedBlue and analyze its time and space complexity. In order to prove that F-RedBlue is correct, we first study the execution fragment of a request req executed by thread p, where p traverses the red tree. Intuitively, we prove that req manages to occupy exactly one red node, and as long as req is executed, no other request succeeds in occupying this red node. After this point and once req finishes its execution, it stores into this red node its initial value in order to allow its re-occupation by some other request. We then study the properties of the execution fragment of req that traverses the blue tree. We prove that if req occupies a red node with id z_r , req will be recorded into all nodes of the path starting from the blue node with id z_r up to the blue root. Therefore, req eventually reaches the root node and it is applied to the

object. We also prove that the application of each request occurs only once and that the calculated response values are correct.

We first study the properties of the execution fragment of an F-RedBlue request req that traverses the red tree. Intuitively, we prove that req manages to occupy a red node (Lemma 4.1) from that point and as long as req is executed, no other request succeeds in updating this red node (Lemmas 4.2 and 4.4). Once req finishes its execution, it stores into its red node its initial value in order to allow its re-occupation by some other request.

Call the SC instructions of line 4 SC of type 1, the SC instructions of line 14 SC of type 2, and the SC instructions of line 17 SC of type 3. Let p be any thread. By the pseudocode, only p executes SC instructions on rn[n-1+p], the red leaf associated to p. Thus, all these instructions succeed. Therefore, the condition of line 3 of the pseudocode is evaluated to true when executed on rn[n-1+p] and, by the pseudocode, the sequence of SC executed on rn[n-1+p] alternates between SC of type 1, SC of type 2, and SC of type 3.

Observation 4.1. Let p be any thread. Then,

- 1. only thread p executes SC instructions on base object rn[n-1+p];
- 2. the condition of line 3, when executed on rn[n-1+p], is evaluated to true;
- 3. all SC on rn[n-1+p] succeed;
- 4. the sequence of SC executed on rn[n-1+p] alternates between SC of type 1, SC of type 2, and SC of type 3.

Based on Observation 4.1, it is easy to prove that any request req, executed by some thread p, performs a successful SC of type 1 at some node of the red tree, since, in the worst case, this will occur at p's red leaf, the last node of p's red path.

Lemma 4.1. Any instance req of APPLYOP executes a successful SC instruction of type 1 at some node of the red tree.

Proof. Let p be the thread that executes req. Assume, by the way of contradiction, that req does not execute a successful SC of type 1 on any node of the red tree. Then, by the pseudocode (lines 1-10), req executes an SC instruction of type 1 on any node of the red

path of p. Since the last node in this path is rn[n-1+p], it follows that the SC executed by p on rn[n-1+p] is not successful, which contradicts Observation 4.1 (Claim 3).

Let $z, 1 \leq z \leq 2n-1$, be the id of a node of the red tree. For any $j \geq 1$, denote by $SC_1^j(z)$ the j-th successful SC of type 1 executed on z (i.e. on the node with id z), and let $req_j(z)$ be the request that executes $SC_1^j(z)$. We often abuse notation and omit z, whenever it is clear from the context. Notice that, by definition, there are no successful SC instructions of type 1 between SC_1^j and SC_1^{j+1} .

We say that a red node with id z is occupied by a thread p at some configuration C, if it holds that rn[z].pid = p at C. If p is executing request req at C, we also say that z is occupied by req at C. We continue to prove that each red node, occupied by some request req, should first be released by req before it can be occupied again by some other request.

Lemma 4.2. For each $j \ge 1$, req_j executes a successful SC instruction of type 3, which we denote by SC_3^j , on rn[z] between SC_1^j and SC_1^{j+1} .

Proof. First, we prove that at least one successful SC of type 3 is executed on rn[z] between SC_1^j and SC_1^{j+1} . We let SC_3^j be the first of these successful SC instructions. Then, we prove, by induction on j, that SC_3^j is executed by req_j (i.e. the same request that executes SC_1^j).

1. Assume, by the way of contradiction, that no successful SC of type 3 is executed on rn[z] between SC_1^j and SC_1^{j+1} . Recall that req_j is the request that executes SC_1^j and req_{j+1} is the request that executes SC_1^{j+1} .

First, we prove that the read of rn[z] (line 3) by req_{j+1} follows SC_1^j . Assume, by the way of contradiction, that this read occurs before SC_1^j . The execution of the LL of line 2 by req_{j+1} precedes this read, so the execution of this LL occurs before SC_1^j . Since the corresponding SC to this LL is SC_1^{j+1} , and occurs after the successful SC_1^j instruction, SC_1^{j+1} cannot be successful, which is a contradiction. Therefore, the read at line 3 by req_{j+1} follows the execution of SC_1^j .

Since req_{j+1} executes SC_1^{j+1} , by the pseudocode (lines 3-4), it follows that req_{j+1} has read -1 into rn[z].pid (line 3). Let SC_x be the last successful SC on rn[z] preceding SC_1^{j+1} . Recall that we have assumed that no successful SC of type 3 is

executed on rn[z] between SC_1^j and SC_1^{j+1} . Moreover, by definition of SC_1^j and SC_1^{j+1} , no successful SC of type 1 occurs between SC_1^j and SC_1^{j+1} . Thus, SC_x must be either SC_1^j or some successful SC of type 2. In either case, it follows by the pseudocode (lines 4, 14), that SC_x writes a value different than -1 into rn[z].pid, which is a contradiction. Thus, there is at least one successful SC of type 3 executed on rn[z] between SC_1^j and SC_1^{j+1} .

Let SC_3^j be the first successful SC of type 3 executed on rn[z] between SC_1^j and SC_1^{j+1} .

2. We prove, by induction on j, that SC_3^j is executed by req_j . Fix any $j \geq 1$ and assume that the claim holds for any $j', 1 \leq j' < j$.

We prove that the claim also holds for j. Assume, by the way of contradiction, that SC_3^j is executed by some request $req \neq req_j$. By the pseudocode (lines 4, 14) and by Lemma 4.1, req executes a successful SC instruction of type 1 on some node of the red tree before SC_3^j ; let SC_1 be this SC instruction. By the pseudocode (lines 4, 17), SC_1 and SC_3^j are executed on the same node, namely on node z.

By the definitions of SC_1^j and SC_1^{j+1} , no other successful SC of type 1 is executed on z between SC_1^j and SC_1^{j+1} . Moreover, $SC_1^j \neq SC_1$ since SC_1^j is executed by $req_j \neq req$. Thus, SC_1 is executed before SC_1^j .

If j=1, this is a contradiction, since, by definition, SC_1^j is the first successful SC of type 1 on rn[z]. If j>1, let SC_1' be the first successful SC of type 1 on rn[z] following SC_1 . Notice that SC_1' is either SC_1^j or some earlier successful SC of type 1 on z. As proved above (item 1), there is at least one successful SC of type 3 executed on rn[z] between SC_1 and SC_1' . Let SC_3 be the first such SC; obviously, SC_3 precedes SC_3^j . Then, by the induction hypothesis, SC_3 is executed by req. By the pseudocode, req executes only one SC of type 3, which contradicts the fact that req executes both SC_3 and SC_3^j .

We continue to prove that the SC instructions executed on rn[z] by any request $req \neq req_j$ between SC_1^j and SC_1^{j+1} fail.

Lemma 4.3. Let $req \neq req_j$ be any request. Then, no successful SC is executed by req on rn[z] between SC_1^j and SC_1^{j+1} .

Proof. By definition, no successful SC of type 1 is executed between SC_1^j and SC_1^{j+1} . Assume, by the way of contradiction, that req executes a successful SC of type 2 or 3 on rn[z] between SC_1^j and SC_1^{j+1} . Let SC_h be the first of these successful SC instructions.

Lemma 4.1 implies that req executes a successful SC of type 1 on some node of the red tree before SC'; let SC_1 be this instruction. By the pseudocode (lines 4, 17), SC_1 is executed on the same node as SC_h , namely on node rn[z]. Since $req \neq req_j$ and SC_1^j is executed by req_j , $SC_1 \neq SC_1^j$. Since no successful SC of type 1 is executed between SC_1^j and SC_1^{j+1} , it follows that SC_1 is executed before SC_1^j .

If j=1, this is a contradiction since, by definition, SC_1^j is the first successful SC of type 1 on rn[z]. If j>1, let SC_1' be the first successful SC of type 1 on rn[z] following SC_1 . Then, SC_1' is either SC_1^j or some earlier successful SC of type 1 on rn[z]. Lemma 4.2 implies that req executes a successful SC of type 3 on rn[z] between SC_1 and SC_1' ; denote by SC_3 this SC instruction. Then, SC_3 precedes SC_h , so $SC_3 \neq SC_h$. By the pseudocode, SC_3 is the only SC of type 3 executed by req. Moreover, by the pseudocode, req executes only one SC of type 2 and it does so between SC_1 and SC_3 ; let SC_2 be this SC instruction. Then, $SC_2 \neq SC_h$. It follows that SC_h cannot be an SC of the type 2 or of type 3 executed by req. This contradicts our assumption. \blacksquare

Recall that, by the pseudocode, *req* executes exactly one SC of type 3. Thus, Lemmas 4.2 and 4.3 immediately imply the following observation.

Observation 4.2. For each $j \geq 1$, SC_3^j , executed by req_j , is the only successful SC of type 3 executed on rn[z] between SC_1^j and SC_1^{j+1} .

It is now easy to prove that between any successful SC of type 1 and the following successful SC of type 3 on rn[z], there is exactly one successful SC of type 2 on rn[z] executed by the same thread.

Lemma 4.4. For each $j \geq 1$, there is exactly one successful SC of type 2, namely SC_2^j , on the red node with id z between SC_1^j and SC_1^{j+1} , and SC_2^j is executed by req_j between SC_1^j and SC_3^j .

Proof. By Observation 4.2, SC_3^j is executed by req_j . By the pseudocode (line 14), req_j executes exactly one SC of type 2, namely SC_2^j , and this happens between SC_1^j and SC_3^j . Moreover, the only SC of type 3 executed by req_j is SC_3^j . Let LL_2^j be the matching LL

instruction to SC_2^j . By the pseudocode (lines 4, 13, 14), it follows that LL_2^j is executed after SC_1^j . Lemma 4.3 implies that no successful SC is executed on rn[z] by any request $req \neq req_j$ between SC_1^j and SC_1^{j+1} . It follows that SC_2^j succeeds and it is the only successful SC of type 2 executed on rn[z] between SC_1^j and SC_1^{j+1} . Since in addition SC_2^j is executed by req_j between SC_1^j and SC_3^j , the claim follows.

Lemmas 4.2 and 4.4 and the pseudocode (line 4) imply that each request req occupies exactly one red node during its execution. We denote by $z_r(req)$ the id of this red node; whenever req is clear from the context, we abuse notation and use z_r instead of $z_r(req)$.

Observation 4.3. The following claims hold: (1) Assume that C is some configuration at which a thread p, performing some request req at C, has executed the type 1 SC instruction of req but it has not yet executed its type 3 SC instruction. Then, there exists exactly one integer z_r , $1 \le z_r \le 2 * n - 1$, such that p occupies the red node with id z_r at C. (2) Assume that C is some configuration at which a thread p does not execute any request. Then, for each integer z, $1 \le z \le 2 * n - 1$, p does not occupy the red node with id z at C.

We continue to study the properties of the execution fragment of a request req executed by thread p, where p traverses the blue tree. Intuitively, we prove that for each request req that occupies a red node with id z_r ; req will be recorded into all nodes of the path starting from the blue node with id z_r up to the blue root (Lemma 4.5). Therefore, req is eventually recorded into the root node of the blue tree.

Consider any integer z, $1 \le z \le 2n-1$, and let $level(z) = lg(n) - \lfloor lg(z) \rfloor + 1$, i.e. level(z) is the level of the node with id z in any of the trees. For the rest of this section, let req be any instance of ApplyOp executed by some thread p. By Lemma 4.1, req executes a successful SC of type 1 on some node with id $z_r(req)$ of the red tree. By the pseudocode (line 4), this is the only SC of type 1 executed by req. Let pt(req) be the path of the blue tree from the node with id z_r to the root. For each h, $level(z_r) \le h \le lg(n) + 1$, denote by z_h the id of the node of pt(req) at level h; notice that when $h = level(z_r)$, $z_h = z_r$. The following observation is an immediate consequence of the pseudocode (lines 20, 23).

Observation 4.4. Let π be the execution of any instance of Propagate by req. Then, π executes two SC instructions on every node of pt(req).

Let $\pi_1(req)$ and $\pi_2(req)$ be the two instances of function Propagate executed by req, in order. By Observation 4.4, for each $i \in \{1, 2\}$, $\pi_i(req)$ executes two SC instructions

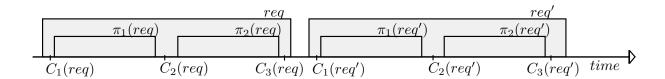


Figure 4.3: An example of an execution of F-RedBlue.

on each node of pt(req). For each h, $level(z_r) \leq h \leq \log n + 1$, denote by $C'_{i,h}(req)$ the configuration immediately following the execution of the second of these SC instructions (line 23) on node $bn[z_h]$ by $\pi_i(req)$. Let reqt[1] = req and $reqt[2] = \bot$. Denote by $C_1(req)$ the configuration just after the successful SC of type 1 by req (that writes the pair < req, p > into $rn[z_r]$), let $C_2(req)$ be the configuration just after the successful SC of type 3 by req (that writes the pair $< \bot, p >$ into $rn[z_r]$) and let $C_3(req)$ be the configuration just after the successful SC of type 3 by req (that writes the pair $< \bot, -1 >$ into $rn[z_r]$). In case $h = level(z_r)$, let $C_{1,h-1}(req) = C_1(req)$ and $C_{2,h-1}(req) = C_2(req)$. For simplicity of presentation, we sometimes omit req from the above notation if it is clear from the context. An example of the above notation is shown on Figure 4.3.

Lemma 4.5. For each $i \in \{1, 2\}$, and for each h, $level(z_r) \le h \le \log n + 1$, there is a configuration $C_{i,h}(req)$ such that:

- 1. $C_{1,h}(req)$ is the first configuration at which req is contained in $bn[z_h].reqs[p]$;
- 2. $C_{2,h}(req)$ is the first configuration following $C_{2,h-1}(req)$ at which \perp is returned;
- 3. $C_{i,h}(req)$ follows $C_{i,h-1}(req)$ and comes before or at $C'_{i,h}(req)$;
- 4. at each configuration between $C_{1,h}(req)$ and $C_{2,h}(req)$, $bn[z_h].reqs[p]$ contains req;
- 5. at each configuration between $C_{2,h}(req)$ and $C_3(req)$, $bn[z_h].reqs[p] = \bot$.

Proof. The proof is by induction on h. Fix any integer h, $level(z_r) \leq h \leq \log n + 1$ and assume that the claim holds for each h', $level(z_r) \leq h' < h$. We prove that the claims hold for h.

Fix any $i \in \{1, 2\}$. Recall that p is the thread executing req. By Observation 4.4, π_i executes two SC instructions on the blue node with id z_h . Let $SC_{i,1}$, $SC_{i,2}$ be these two SC instructions and let $LL_{i,1}$, $LL_{i,2}$ be the matching LL instructions, respectively. By the pseudocode, π_i reads $rn[z_h]$ and $bn[z_{h-1}]$ during the execution of any of the instances

of its Calculate. We prove that req calculates the value reqt[i] as the new value of $bn[z_h].reqs[p]$.

Assume first that $h = level(z_r)$. By definitions of z_r and $C_{i,h-1}$ (when $h = level(z_r)$), and by the pseudocode (lines 4, 14), the pair (reqt[i], p) was written into $rn[z_r]$ at $C_{i,h-1}$, and therefore before the execution of $LL_{i,1}$ and $LL_{i,2}$. By the pseudocode, and by Lemmas 4.2 and 4.4, it follows that $rn[z_r]$ contains the pair (reqt[i], p) until the execution by req of the SC of type (i + 1) which comes after the final configuration of π_i . Therefore, each of the reads of $rn[z_r]$ by π_i following $LL_{i,1}$ and $LL_{i,2}$ returns reqt[i] for thread p and, by the pseudocode (lines 27 - 28), Calculate writes reqt[i] for p in the new set of request types it calculates.

Assume now that $h > level(z_r)$, so $z_h \neq z_r$. Then, Observation 4.3 (Claim 1) implies that $rn[z_h].pid \neq p$. By the pseudocode (lines 29-30), it follows that Calculate will consider, as the new request type for p, the value read for p in $bn[z_{h-1}]$. By the induction hypothesis, there is a configuration $C_{i,h-1}(req)$ in which reqt[i] is written in $bn[z_{h-1}].reqs[p]$, and $C_{i,h-1}(req)$ precedes $C'_{i,h-1}$. We argue that request reqt[i] is contained into $bn[z_{h-1}].reqs[p]$ from $C_{i,h-1}(req)$ until the execution of the SC instruction of type (i+1) by req (which occurs after the final configuration of π_i). If i=1, this is implied by the induction hypothesis (Claim 2) and because $C_{2,h-1}(req) = C_2(req)$ when $h = level(z_r)$. If i=2 this is immediate from the induction hypothesis (Claim 3). By the definition of $C'_{i,h-1}$, and by the pseudocode, it follows that $LL_{i,1}$ and $LL_{i,2}$ occur between $C'_{i,h-1}$ and the final configuration of π_i . Thus, when $bn[z_{h-1}]$ is read between $LL_{i,1}$ and $SC_{i,1}$ (or $LL_{i,2}$ and $SC_{i,2}$), reqt[i] is found in $bn[z_{h-1}].reqs[p]$.

If any of the $SC_{i,1}$ or $SC_{i,2}$ is successful, then reqt[i] is recorded into $bn[z_h].reqs[p]$ by this successful SC.

Assume now that both $SC_{i,1}$ and $SC_{i,2}$ fail. Since $SC_{i,2}$ fails, it must be that, between $LL_{i,2}$ and $SC_{i,2}$ there is at least one successful SC instruction on $bn[z_h]$. Let $SC'_{i,2}$ be the first of these instructions, and let $req'_i \neq req$ be the request that executes $SC'_{i,2}$. Let $LL'_{i,2}$ be the matching LL instruction to $SC'_{i,2}$. Since $SC_{i,1}$ fails, it must be that between $LL_{i,1}$ and $SC_{i,1}$, there is at least one successful SC instruction on $bn[z_h]$; let $SC'_{i,1}$ be any of them. $LL'_{i,2}$ follows $LL_{i,1}$, since otherwise $SC'_{i,1}$, which follows $LL_{i,1}$, would cause $SC'_{i,2}$ to fail.

The pseudocode implies that req'_i reads $rn[z_h]$ and $bn[z_{h-1}]$ during the execution of its Calculate between $LL'_{i,2}$ and $SC'_{i,2}$. Recall that req occupies z_r . We prove that request req'_i calculates the value reqt[i] as the new value of $bn[z_h].reqs[p]$.

Assume first that $h = level(z_r)$, so $z_h = z_r$. Recall that the pair (reqt[i], p) was written into $rn[z_r]$ before the execution of $LL_{i,1}$ and $LL_{i,2}$; moreover, $rn[z_r]$ contains the pair (reqt[i], p) until the execution of the SC instruction of type (i+1) by req which comes after the final configuration of π_i . By the pseudocode (line 20), req'_i reads $rn[z_r]$ after $LL'_{i,2}$ (which follows $LL_{i,1}$) and before $SC'_{i,2}$ (which precedes $SC_{i,2}$ and the final configuration of π_i). Thus, req'_i reads the pair (reqt[i], p) in $rn[z_r]$. So, by the pseudocode (lines 27 - 28), the instance of Calculate executed by req'_i between $LL'_{i,2}$ and $SC'_{i,2}$, stores reqt[i] for p in the new set of request types it calculates and req'_i writes reqt[i] into $bn[z_h].reqs[p]$ when it executes $SC'_{i,2}$.

Assume now that $h > level(z_r)$, so $z_h \neq z_r$. Then, Observation 4.3 (claim 1) implies that $rn[z_h].pid \neq p$. By the pseudocode (lines 28-30), it follows that the instance of Calculate executed by req'_i between $LL'_{i,2}$ and $SC'_{i,2}$, will consider as the new request type of p the value read in $bn[z_{h-1}].reqs[p]$. By the induction hypothesis, there is a configuration $C_{i,h-1}$ in which reqt[i] is written into $bn[z_{h-1}].reqs[p]$, and $C_{i,h-1}$ precedes $C'_{i,h-1}$; moreover, reqt[1] is contained in $bn[z_{h-1}]$ from $C_{1,h-1}$ until $C_{2,h-1}$ (which follows the final configuration of π_1), and reqt[2] is contained in $bn[z_{h-1}]$ from $C_{2,h-1}$ until the execution of the SC instruction of type (i+1) by req (which follows the final configuration of π_2). Thus, in either case reqt[i] is contained in $bn[z_{h-1}].reqs[p]$ from $C_{i,h-1}$ until the final configuration of π_i . By the definition of $C'_{i,h-1}$, and by the pseudocode, it follows that $LL_{i,1}$ and $SC_{i,2}$ occur between $C'_{i,h-1}$ and the final configuration of π_i . Thus, when $bn[z_{h-1}]$ is read between $LL'_{i,2}$ (which follows $LL_{i,1}$) and $SC'_{i,2}$ (which precedes $SC_{i,2}$), reqt[i] is found in $bn[z_{h-1}].reqs[p]$. So, by the pseudocode (lines 27-28), reqt[i] i stored for p in the new set of request types calculated by req'_i and is written into $bn[z_h].reqs[p]$ by $SC'_{i,2}$.

In both cases, we conclude that there is at least one configuration between $SC_{i,1}$ and $SC_{i,2}$ at which the value reqt[i] is written into $bn[z_h].reqs[p]$.

Let $SC_{i,h}(req)$ be the first successful SC that writes reqt[i] into $bn[z_h].reqs[p]$ and follows $C_{i,h-1}(req)$; let $C_{i,h}(req)$ be the configuration immediately following the execution of $SC_{i,h}(req)$. Therefore, it follows that $SC_{i,h}(req)$ precedes $SC_{i,2}$. (We remark that

 $SC_{i,h}(req)$ may also precede $SC_{i,1}$.) Since, by definition, $C'_{i,h}$ follows $SC_{i,2}$, $SC_{i,h}(req)$ precedes $C'_{i,h}$. Thus, $C_{i,h}(req)$ comes before or at $C'_{i,h}$. By definition, $SC_{i,h}(req)$ follows $C_{i,h-1}(req)$, so $C_{i,h}(req)$ follows $C_{i,h-1}(req)$. This concludes the proof of Claim 3.

We continue to prove Claim 1. We argue that the first time that reqt[1] appears in $bn[z_{h-1}].reqs[p]$ is at $C_{i,h-1}$. If $h = lever(z_r)$, this is implied by the pseudocode and by the fact that $C_{1,h-1}(req) = C_1(req)$ in this case. If $h > level(z_r)$, this is implied by the induction hypothesis (Claim 1); moreover, in this case, Observation 4.3 implies that $rn[z_h].pid \neq p$ at all configurations starting from $C_1(req)$ until $C_3(req)$ (which comes after $C_{i,h-1}(req)$). Thus, by the pseudocode, it follows that no SC can write reqt[1] into $bn[z_h].reqs[p]$ before $C_{i,h-1}(req)$. Since (by definition) $SC_{1,h}(req)$ is the first successful SC that writes reqt[1] into $bn[z_h].reqs[p]$ after $C_{i,h-1}(req)$, $C_{1,h}(req)$ is the first configuration at which reqt[1] is contained in $bn[z_h].reqs[p]$.

By Claim 3 proved above, $C_{1,h}$ precedes the final configuration of π_1 ; moreover, $C_{2,h}$ follows $C_2(req)$ which comes after the final configuration of π_1 . Thus, $C_{2,h}$ follows $C_{1,h}$.

Assume, by the way of contradiction, that there is a configuration C_l between $C_{1,h}$ and $C_{2,h}$, such that $bn[z_h].reqs[p]$ contains a value $x \neq reqt[1]$ at C_l . By definition of C_l , there is at least a successful SC instruction that writes x into $bn[z_h].reqs[p]$ and occurs between $C_{1,h}$ and the configuration that precedes $C_{2,h}$. Let SC'_1 be the first of these instructions, let it be executed by request $req''_1 \neq req$ and let LL'_1 be its matching LL instruction. Recall that $SC_{1,h}$ is the successful SC instruction executed just before $C_{1,h}$. Since SC'_1 is a successful SC instruction, LL'_1 must follow $SC_{1,h}$. By the pseudocode, req''_1 reads $rn[z_h]$ and $bn[z_{h-1}]$ during the instance of Calculate executed between LL'_1 and SC'_1 . Recall that p occupies z_r .

Assume first that $h = level(z_r)$. Then, the pseudocode (lines 4 or 14), and Lemmas 4.2 and 4.4 imply that req_1'' reads either the pair (reqt[1], p) or the pair (reqt[2], p) into $rn[z_r]$ (depending on whether the read happens between $C_{1,h}$ and $C_{2,h-1}$ or between $C_{2,h-1}$ and the configuration that precedes $C_{2,h}$, respectively) when executing Calculate between LL'_1 and SC'_1 . Assume now that $h > level(z_r)$, so $z_h \neq z_r$. Then, Observation 4.3 (Claim 1) implies that $rn[z_h].pid \neq p$. By the pseudocode (lines 28 - 30), it follows that req''_1 will consider as the new request type for p, the value read in $bn[z_{h-1}].reqs[p]$ when executing Calculate between LL'_1 and SC'_1 . By the induction hypothesis (Claim 5), req is contained in $bn[z_{h-1}].reqs[p]$ at all configurations between $C_{1,h-1}(req)$ and $C_{2,h-1}(req)$.

Thus, req_1'' reads either the pair (reqt[1], p) or the pair (reqt[2], p) (depending on whether the read happens between $C_{1,h}$ and $C_{2,h-1}$ or between $C_{2,h-1}$ and the configuration that precedes $C_{2,h}$, respectively) in $bn[z_h]$ when executing Calculate between LL_1' and SC_1' . We conclude that this is so in either case.

If req_1'' reads the pair (reqt[1], p), by the pseudocode, it follows that req' writes the value reqt[1] into $bn[z_h].reqs[p]$ when it executes SC_1' . This is a contradiction to our assumption that SC_1' writes $x \neq reqt[1]$ into $bn[z_h].reqs[p]$. Thus, assume that req_1'' reads the pair (\bot, p) . Then, by the pseudocode, it follows that req_1'' writes \bot into $bn[z_h].reqs[p]$ when it executes SC_1' . Recall that, in this case, the read by req_1'' that occurs between LL_1' and SC_1' must take place after $C_{2,h-1}(req)$. Therefore, SC_1' occurs after $C_{2,h-1}(req)$ and before $SC_{2,h}(req)$. Then, it is SC_1' (and not $SC_{2,h}(req)$) the first SC after $C_{2,h-1}(req)$ that writes \bot into $bn[z_h].reqs[p]$, which contradicts the definition of $SC_{2,h}(req)$.

We continue to prove Claim 5. By definition of $C_{2,h}$, \perp is contained in $bn[z_h].reqs[p]$ at $C_{2,h}$. So, we continue to prove that \perp is contained in $bn[z_h].reqs[p]$ at each configuration between $C_{2,h}$ and $C_3(req)$.

By the definitions of $C'_{2,h}$ and $C_3(req)$, and by the Claim 3 that is proved above, $C_3(req)$ follows $C_{2,h}$. Assume, by the way of contradiction, that there is a configuration C_l between $C_{2,h}$ and $C_3(req)$, such that $bn[z_h].reqs[p]$ contains a value $x \neq \bot$ at C_l .

By definition of C_l , there is at least a successful SC that writes x into $bn[z_h].reqs[p]$ and occurs between $C_{2,h}$ and the configuration that precedes $C_3(req)$. Let SC'_2 be the first of these instructions, let it be executed by request $req''_2 \neq req$ and let LL'_2 be its matching LL instruction. Recall that $SC_{2,h}$ is the successful SC instruction executed just before $C_{2,h}$. Since SC'_2 is a successful SC instruction, LL'_2 follows $SC_{2,h}$.

If $h = level(z_r)$, Lemmas 4.2 and 4.4 imply that the read of $rn[z_h]$ by req_1'' , which occurs between LL_2' and SC_2' (at the beginning of the execution of its Calculate) returns (\perp, p) . Thus, by the pseudocode, req_2'' writes $\perp \neq x$ into $bn[z_h].reqs[p]$ by executing SC_2' , which is a contradiction.

Assume now that $h > level(z_r)$. Observation 4.3 (Claim 1) implies that $rn[z_h].pid \neq p$. By the pseudocode (lines 28-30), it follows that the instance of Calculate executed by req_2'' between LL_2' and SC_2' , will consider as the new request type of p the value read in $bn[z_{h-1}].reqs[p]$. By the induction hypothesis, there is a configuration $C_{2,h-1}$ at which \bot is written into $bn[z_{h-1}].reqs[p]$, and $C_{2,h-1}$ precedes $C_{2,h-1}'$; moreover, \bot is contained in

 $bn[z_{h-1}].reqs[p]$ from $C_{2,h-1}(req)$ until $C_3(req)$. Thus, the read of $bn[z_h]$ by req_2'' , which occurs between LL_2' and SC_2' returns the value \bot for p. Thus, by the pseudocode, req_2'' writes $\bot \neq x$ into $bn[z_h].reqs[p]$ by executing SC_2' , which is a contradiction.

We remark that information about req (namely, req and the id p of the thread that executes it) is recorded for the first time into one of the base objects when req occupies its red node z_r . Lemma 4.5 implies that it is then transferred to the blue node with id z_r (by req or some other request); moreover, only when it is written there, it can be forwarded to the next node of the blue path of req. This transfer continues up to each node of req's blue path until the request type of req eventually reaches the root. Recall that for each h, $level(z_r) \leq h \leq \log n + 1$, req is written into node z_h at level h of pt(req) by $SC_{1,h}(req)$ just before $C_{1,h}(req)$, and \bot is written into $bn[z_h]$ by $SC_{2,h}(req)$ just before $C_{2,h}(req)$.

The following claim is an immediate consequence of Lemma 4.5 when $h = \log n + 1$.

Corollary 4.1. The request type of any request req is successfully recorded in the blue root by $SC_{1,\log n+1}(req)$.

We continue to prove that the value \bot is contained for some thread p in a blue node z from the time that a request by p writes \bot into z until the time that the subsequent request by p (for which z is contained in its path) writes its request type into z (or until the final configuration if such a request does not exist).

Lemma 4.6. Consider any request req executed by some thread p. For each $z_h \in pt(p)$, let $C_h = C_{1,h}(req_{m_h})$ if p executes a subsequent request req_{m_h} such that $z_h \in pt(req_{m_h})$; let C_h be the final configuration if such a request does not exist. Then, $bn[z_h].reqs[p] = \bot$ at each configuration between $C_3(req)$ and C_h .

Proof. Assume, by the way of contradiction, that the claim does not hold and let C be the first configuration at which the claim is violated. Let req be the request (let it be executed by some thread p) and $z_h \in pt(p)$ be the node that causes this violation. More specifically, if req_{m_h} is the first request executed by p after req for which $z_h \in pt(req_{m_h})$, then C is between $C_3(req)$ and $C_{1,h}(req_{m_h})$ and $bn[z_h].reqs[p] = x \neq \bot$ at C (if such a request does not exist, then C is between $C_3(req)$ and the final configuration). Assume that SC' is the SC instruction executed just before C which writes the value x in $bn[z_h].reqs[p]$ and let

req' be the request that executes SC'. Denote by LL' the corresponding LL instruction to SC'.

Assume first that req' reads x in $rn[z_h].req$. Notice that req' performs this read (let it be r') at some configuration C' that precedes C. By the pseudocode, it follows that $rn[z_h].pid = p$ and $rn[z_h].req = x$ at C'. Thus, p is active executing some request req'' at C' such that z_h is the first node in pt(req'').

If $z_h \in pt(req)$, let $req_{b_h} = req$; otherwise, let req_{b_h} be the last request by p preceding req such that $z_h \in pt(req_{b_h})$. (Since $z_h \in pt(req'')$, req_{b_h} is well-defined.) By the pseudocode, LL' happens before r'. If C' precedes $C_{2,h}(req_{b_h})$, then LL' precedes $C_{2,h}(req_{b_h})$. Since, by Lemma 4.5, $SC_{2,h}(req_{b_h})$ happens just before configuration $C_{2,h}(req_{b_h})$ and it is a successful SC on $bn[z_h]$, SC' cannot be successful. This is a contradiction. Thus, C' follows $C_{2,h}(req_{b_h})$. Lemmas 4.2 and 4.4 imply that $rn[z_h] = (\bot, p)$ at $C_{2,h}(req_{b_h})$. By definition of req_{b_h} , no other request following req_{b_h} and containing z_h in its path is executed by p before req_{m_h} . It follows that, at each configuration between $C_{2,h}(req_{b_h})$ and C', $rn[z_h] \neq (x, p)$. This is a contradiction (since we have assumed that req' reads (x, p) in $rn[z_h]$ at C').

Assume now that req' reads x in $bn[z_{h-1}].reqs[p]$ (where z_{h-1} is the node preceding z_h in pt(p)); let r'' be this read. Notice that r'' results in some configuration C'' which precedes C. Let $req_{m_{h-1}}$ be the first request executed by p after req such that $z_{h-1} \in pt(req_{m_{h-1}})$. If $z_{h-1} \in pt(req)$, let $req_{b_{h-1}} = req$; otherwise, let $req_{b_{h-1}}$ be the last request by p preceding req such that $z_{h-1} \in pt(req_{b_{h-1}})$. In case $req_{b_{h-1}}$ does not exist, denote by $C_{2,h-1}(req_{b_{h-1}})$ the initial configuration. Similarly, in case req_{b_h} does not exist, let $C_{2,h}(req_{b_h})$ be the initial configuration. If $req_{m_{h-1}}$ does not exist, denote by $C_{1,h-1}(req_{m_{h-1}})$ the final configuration. Similarly, in case req_{m_h} does not exist, let $C_{1,h}(req_{m_h})$ be the final configuration.

Since z_h is an ancestor of z_{h-1} in the blue tree, it follows that $z_h \in pt(req_{m_{h-1}})$ and $z_h \in pt(req_{b_{h-1}})$. Thus, either $req_{b_{h-1}} = req_{b_h}$ or $req_{b_{h-1}}$ precedes req_{b_h} . Similarly, either $req_{m_{h-1}} = req_{m_h}$ or $req_{m_{h-1}}$ follows req_{m_h} .

Assume first that $req_{m_{h-1}}$ follows req_{m_h} , so that C precedes $C_{1,h-1}(req_{m_{h-1}})$. By the pseudocode, LL' happens before r''. Obviously, C'' follows the initial configuration. If C'' precedes $C_{2,h}(req_{b_h})$, then LL' precedes $C_{2,h}(req_{b_h})$. Since, by Lemma 4.5, $SC_{2,h}(req_{b_h})$ happens just before $C_{2,h}(req_{b_h})$ and it is a successful SC on $bn[z_h]$, SC' cannot be successful. This is a contradiction. Thus, C'' follows $C_{2,h}(req_{b_h})$.

We now prove that, at each configuration between $C_{2,h}(req_{b_h})$ and $C_{1,h-1}(req_{m_h})$, $bn[z_{h-1}].reqs[p] = \bot$. In case that $req_{b_{h-1}} = req_{b_h}$, Lemma 4.5 implies that $C_{2,h-1}(req_{b_h})$ precedes $C_{2,h}(req_{b_h})$, and at each configuration between $C_{2,h-1}(req_{b_h})$ and $C_3(req_{b_h})$, it holds that $bn[z_{h-1}].reqs[p] = \bot$. Otherwise, recall that $req_{b_{h-1}}$ precedes req_{b_h} and they are both executed by p, so $C_3(req_{b_{h-1}})$ precedes $C_{2,h}(req_{b_h})$. Since C is the first configuration at which the claim of the lemma is violated, it must be that, at each configuration between $C_3(req_{b_{h-1}})$ and $C_{1,h-1}(req_{m_{h-1}})$, $bn[z_{h-1}].reqs[p] = \bot$.

Assume that C precedes $C_{1,h-1}(req_{m_{h-1}})$. It follows that at each configuration between $C_3(req_{b_{h-1}})$ and C, it holds that $bn[z_{h-1}].reqs[p] = \bot$. It follows that r'' reads $\bot \neq x$ in $bn[z_{h-1}].reqs[p]$ and writes $\bot \neq x$ in $bn[z_h].reqs[p]$, which is a contradiction.

Assume now that C follows $C_{1,h-1}(req_{m_{h-1}})$. In case that request $req_{m_{h-1}}$ follows request req_{m_h} , it holds that configuration C precedes $C_{1,h-1}(req_{m_{h-1}})$, so it must be that $req_{m_{h-1}} = req_{m_h}$. Since (1) it holds that $bn[z_{h-1}].reqs[p] = \bot$ at each configuration between $C_{2,h}(req_{b_h})$ and $C_{1,h-1}(req_{m_{h-1}}) = C_{1,h-1}(req_{m_h})$, (2) r'' occurs after $C_{2,h}(req_{b_h})$, and (3) r'' returns $x \neq \bot$, it must be that r'' occurs after $C_{1,h-1}(req_{m_h})$. Thus, r'' occurs between $C_{1,h-1}(req_{m_h})$ and $C_{1,h}(req_{m_h})$. Lemma 4.5 implies that, at all configurations between $C_{1,h-1}(req_{m_h})$ and $C_{1,h}(req_{m_h})$, it holds that $bn[z_{h-1}].reqs[p] = req_{m_h}$. Thus, r'' reads req_{m_h} in $bn[z_{h-1}].reqs[p]$ and writes the same value in $bn[z_h].reqs[p]$ by executing SC''. However, Lemma 4.5 implies that the first configuration after $C_{1,h-1}(req_{m_h})$ at which req_{m_h} is written into $bn[z_h].reqs[p]$ is $C_{1,h}(req_{m_h})$. Since we have assumed that C precedes $C_{1,h}(req_{m_h})$, this is a contradiction. \blacksquare

We are now ready to assign linearization points to the requests of F-RedBlue. By Observation 4.1, there is at least one successful SC that records the request type of req in the blue root node. Recall that $SC_{1,\log n+1}(req)$ is the first of these SC instructions. We place the linearization point of req at $SC_{1,\log n+1}(req)$; ties are broken by the order that thread identifiers impose.

Lemma 4.7. For each request req, the linearization point of req is placed in its execution interval.

Proof. By Lemma 4.5, the request type of req is recorded in the root node by some SC instruction and this occurs before the execution of the type 2 SC instruction by req (line 14). Thus, the linearization point of req precedes the end of its execution interval.

Let SC(req) be the first successful SC that records the request type of req in the blue root node. Notice that req is invisible to all threads until it performs its first store request, writing its information into the red node that it occupies. Thus, SC(req) must follow the beginning of the execution interval of req.

We say that a request req is applied on the simulated object if (1) procedure Calculate executed by some request req' (that might be req or another request), reads in the appropriate child node of the blue root or in the red root node, a value equal to req (i.e. the request type written there for req) and records it as the new request type for p, (2) Calculate by req' applies this request type with its parameters, and (3) the execution of the SC of line 23 (let it be SC_r) on bn[1] by req' succeeds (thus writing there the value req for p). When these conditions are satisfied, we sometimes also say that req' applies req on the simulated object or that SC_r applies req on the simulated object. We next prove that each request req is applied on the simulated object exactly once.

Lemma 4.8. Each request req is applied on the simulated shared object exactly once by $SC_{1,\log n+1}(req)$.

Proof. Assume that req is executed by thread p. We first prove that req is applied on the simulated object at least once. Lemma 4.5 implies that req is successfully recorded in the root node of the blue tree at least once and that $SC_{1,\log n+1}$ is the first SC instruction that stores req into bn[1].reqs[p]. Let req' be the request that executes $SC_{1,\log n+1}$.

In case p executes a request before req, let $C_{b_h} = C_{2,\log n+1}(req_{b_h})$, where req_{b_h} is the last preceding to req request executed by p; otherwise, let C_{b_h} be the initial configuration of the algorithm. If req' performs the read of bn[1] that precedes $SC_{1,\log n+1}$ before C_{b_h} , then $SC_{1,\log n+1}$ fails. This is so because, by the pseudocode, the corresponding LL to $SC_{1,\log n+1}$ precedes this read, and, by the definition of C_{b_h} and Lemma 4.5, a successful SC on bn[1] (namely $SC_{2,\log n+1}(req_{b_h})$) occurs at C_{b_h} , thus causing the failure of $SC_{1,\log n+1}$. This is a contradiction.

Thus, req' performs its read after C_{b_h} . Lemmas 4.5 and 4.6, imply that, at each configuration between C_{b_h} and $C_{1,\log n+1}(req)$, $bn[1].reqs[p] = \bot$. It follows that req' reads \bot into bn[1].reqs[p] during the execution of Calculate that precedes $SC_{1,\log n+1}(req)$. Since $req \ne \bot$, req' evaluates the condition of the if statement of line 31 to true. We conclude that req' applies req.

We now prove that req is applied at most once on the simulated object. Assume, by the way of contradiction, that req is applied at least twice, and let SC' be the first SC after $SC_{1,\log n+1}(req)$ that applies req. Let req'' be the request that executes SC' and let r' be the last read of sc bn[1] executed by sc bn[1] before sc bn[1] executed by sc bn[1] be sc bn[1] executed by sc bn[1] executed by sc bn[1] executed by sc bn[1] be sc bn[1] executed by sc bn[1] exe

If r' occurs before $SC_{1,\log n+1}(req)$, then the corresponding LL to SC', which precedes r', precedes also $SC_{1,\log n+1}(req)$. Thus, $SC_{1,\log n+1}(req)$ causes SC' instruction to fail, which is a contradiction. Therefore, r' follows $SC_{1,\log n+1}(req)$.

If r' occurs between configurations $C_{1,\log n+1}(req)$ and $C_{2,\log n+1}(req)$, then Lemmas 4.5 and 4.6 imply that r' reads the value req in bn[1]. Since req'' apply req, it must be that tmp.reqs[p] = req when req'' executes line 31 of the instance of Calculate that precedes SC'. Thus, by the pseudocode (line 31), it follows that the condition of the if statement of line 31 is evaluated to false. Thus, req' does not call ApplyOp which contradicts the fact that req' applies req.

Assume finally that r' follows $C_{2,\log n+1}(req)$. Lemma 4.4 and Observation 4.3 imply that $rn[1] \neq req$ at all configurations after the configuration at which req executes its type 2 SC instruction. Moreover, if any of the root children belongs to pt(req), then Lemma 4.5 imply that $C_{2,\log n}(req)$ precedes $C_{2,\log n+1}(req)$, and $bn[\log n].reqs[p] \neq req$ after $C_{2,\log n}(req)$. By the pseudocode, it therefore follows that procedure Calculate executed by req'' before SC', calculates as the new value of bn[1].reqs[p] a value other than req and therefore it does not apply req, which is a contradiction. \blacksquare

In order to prove consistency, we use the following notation. Denote by SC_m , m > 0, the mth successful SC instruction on b[1], which is the root node of the blue tree, and let LL_m be its matching LL. Obviously, between SC_m and SC_{m+1} , b[1] is not modified.

Denote by α_m , the prefix of α which ends at SC_m and let C_m be the first configuration following SC_m . Let α_0 be the empty execution. Denote by L_m the order defined by the linearization points, assigned as described above, of the requests in α_m . We remark that b[1].st stores a copy of the simulated state at each point in time. Moreover, each thread applies requests on its local copy of the simulated state sequentially, the one after the other. We say that b[1].st is consistent at C_m if it is the same as the state that results if the requests of α_m are executed sequentially in the order specified by L_m .

Lemma 4.9. For each $m \ge 0$, (1) b[1].st is consistent at C_m , and (2) L_m is a linearization order for α_m .

Proof. We prove the claim by induction on m.

Base case (m=0): The claims hold trivially: by the initialization of b[1], b[1].st contains \hat{s} , which is the initial state of the simulated object, and α_0 is empty.

Induction hypothesis: Fix any m > 0 and assume that the claims hold for m - 1.

Induction step: We prove that the claim holds for m. By the induction hypothesis, it holds that: (1) b[1].st is consistent at C_{m-1} , and (2) L_{m-1} is a linearization order for α_{m-1} . Let req be the request that executes SC_m . Assume that req applies j > 0 requests on the simulated object. Denote by $req_1, ..., req_j$ the sequence of these requests ordered in increasing order of the identifiers of the threads that initiate them.

Notice that req performs LL_m after C_{m-1} since otherwise SC_m would not be successful. By the induction hypothesis, b[1].st is consistent at C_{m-1} . Thus, the local copy of b[1] that is last stored by req in tmp, represents a consistent state of the simulated object. Lemma 4.8 implies that req_1, \ldots, req_j are applied only once. This is realized when SC_m is executed. Thus, none of these requests have been applied in the past.

Given that the application of $req_1, ..., req_j$ is simulated by the thread executing req sequentially, in the order mentioned above, starting from the state stored in tmp, it is a straightforward induction to prove that (1) for each f, $0 \le f \le j$, a consistent response is calculated for req_f , and the new state of the simulated object is calculated in a correct way in the local variable tmp of the Calculate executed by req. Therefore, b[1].st is consistent after the execution of req's successful SC. Notice that, by the way linearization points are assigned, $L_m = L_{m-1}, req_1, ..., req_j$. It follows that L_m is a linearization order for α_m .

Pseudocode (lines 1 and 19-24) implies that an operation op takes as many steps as the path length it traverses in the red and blue tree. Lemma 4.1 and the pseudocode (lines 4 and 17) imply that when a process occupies some red node, then the interval contention is at least equal with the depth of the occupied node. Since the maximum path length of the red and blue trees is $\lg n + 1$, the time complexity of F-RedBlue is $O(\min\{k, \lg n\})$, where k is the point contention. Thus, the following theorem holds.

Theorem 4.1. F-RedBlue is a linearizable, wait-free implementation of a universal object that uses 2n-2 LL/SC objects. Its step complexity is $O(\min\{k, \lg n\})$.

4.2 Modified version of F-RedBlue that uses small base objects

In this section, we present S-RedBlue, a modified version of F-RedBlue that uses small base objects. Now, each red node stores $\lceil \log n \rceil + 1$ bits. A blue node other than the root stores n bits. The blue root stores n bits, a thread id and the state of the object. This LL/SC base object is implemented by single-word LL/SC base objects using the implementation presented in [44].

In S-RedBlue, a thread p uses a single-writer base object to record its current request (line 1). As in F-RedBlue, the thread starts the execution of any of its requests by traversing the red tree. However, to occupy a red node, the thread just records its id and sets the bit of the node to true.

Similarly, each thread, moving up the path to the root of the blue true, just sets a bit in each node of the path to identify that it is currently executing a request. Thus, the bit array of the root identifies all threads that are currently active.

To avoid storing the return values in the root node, each thread p maintains an array of n single-writer base objects, one for each thread. When p reaches the root (during the application of one of its requests), it first records the responses for the currently active threads in its appropriate single-writer base objects (lines 25-26). Then, it tries to store the new state of the object in the blue root together with its id and the set (bit vector) of active threads. A thread finds the response for its current request in the appropriate single-writer base object of the thread whose id is recorded in the root node.

The state is updated only at the root node and only when the bit value for a thread changes from false to true in the blue root's bit array (line 23). This guarantees that the request of each thread is applied only once to the simulated object. However, all threads reaching the root, record responses for each currently active thread p in their single-writer base objects, independently of whether they also apply p's request to the simulated object. This is necessary, since the request of p may be applied to the object by some thread q and later on (and before p reads the root node for finding its response) another thread q'

```
struct RedNode{
       boolean req;
       int pid;
    };
    struct BlueNode{
       state st;
                                                       // this field is used only at the root node
       RetVal rvals[n];
                                                       // this field is used only at the root node
       boolean reqs[n];
    };
    shared RedNode rn[1..2n-1] = \{\langle F, -1 \rangle, ..., \langle F, -1 \rangle\};
    shared BlueNode bn[1..2n-1]=\{\langle F, \langle 0, ..., 0 \rangle, \langle F, ..., F \rangle \rangle, ..., \langle \bot, \langle 0, ..., 0 \rangle, \langle \bot, ..., \bot \rangle \};
    shared RetVal rvals[1..n][1..n] = \{\{\bot, ..., \bot\}, ..., \{\bot, ..., \bot\}\};
    share request Announce[1..n];
    RetVal ApplyOp(Request req){
                                                       // pseudocode for thread p
       int direction = n/2, z = 1, levels = lg(n) + 1, l, j;
       RetVals rv;
       announce[i] = req;
                                                       //p announces its request
1
2
       for(l=levels;l\geq 1;l--)
                                                        // traversal of red path
3
          LL(rn[z]);
4
          if(rn[z] == \langle F, -1 \rangle)
             if(SC(rn[z], \langle req, p \rangle)) break;
5
                                                       // find the next node in the path
6
          if(p<direction){
             direction = direction - 2^{l-3};
7
             z = 2 * z;
8
                                                       // move to the left child of z
9
           } else{
             direction = direction + 2^{l-3};
10
             z = 2 * z + 1;
                                                       // move to the right child of z
11
           }
12
       Propagate(z);
                                                       // first traversal of blue path: propagating the request
       rv = bn[1].rvals[p];
13
14
       LL(rn[z]);
15
       SC(rn[z], \langle F, p \rangle);
                                                       // the request occupying rn[z] starts its deletion phase
16
                                                       // second traversal of blue path: propagating \perp
       Propagate(z);
17
       LL(rn[z]);
18
       SC(rn[z],\, {<}F,\, {\text{-}}1{>}\;);
                                                       // re-initialize the occupied red node to \perp
19
       return rv;
                                                        // return the appropriate value
```

Algorithm 3: Pseudocode for S-RedBlue.

may overwrite the root contents. thread q' will include p in its calculated active set but it will not re-apply p's request to the object, since it will see that p's bit in the active set of the root node is already set. Still q' should record a response for p in its single-writer base objects since p may read q' and not q in bn[1].pid when seeking for its response.

The proof that S-RedBlue is correct closely follows the correctness proof of F-RedBlue. The main difference of the two algorithms is on the way that response values are calculated. If q is the thread that applies some request req, the response for req is originally stored

```
void Propagate(int z){
                                                     // pseudocode for thread p
20
       while (z!=0)
                                                     // traversal of the blue path
21
         for (j=1 \text{ to } 2) \text{ do}
                                                     // two efforts to store the appropriate information
22
            LL(bn[z]);
23
            bt = Calculate(z, i);
24
            SC(z, bt);
25
         z = \lfloor z/2 \rfloor;
    BlueNode Calculate(int z) {
       BlueNode tmp=< \bot, < 0, ..., 0 >, < \bot, ..., \bot >>;
       BlueNode blue=bn[z], lc, rc;
       RedNode red = rn[z];
       int q, range;
      if (2*z+1 < 2n) {
26
27
         lc = bn[2*z];
28
         rc = bn[2*z+1];
                                                     // if z is an internal node
      range = 2^{\lg(n) - \lceil \lg(z) \rceil}:
                                                     // compute the number of leaves of each subtree
29
       // copy the requests placed on the left subtree
30
      tmp.reqs[2q-range..2q] = lc.reqs[2q-range..2q];
       // copy the requests placed on the right subtree
31
      tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
32
      if (red.pid \neq -1) tmp.reqs[red.pid]=red.req; // if thread q occupies node red
33
      if (z == 1) {
34
         tmp.rvals[1..n] = blue.rvals[1..n];
                                                     // copy the return values
35
         tmp.st = blue.st;
                                                     // copy object's state
36
         for q=1 to n do
                                                     // local loop
37
            if (tmp.reqs[q]==T AND blue.reqs[q]==F) // apply any pending request
38
               apply tmp.reqs[q] to tmp.st and store into tmp.rvals[q] the return value;
            else\ if(tmp.reqs[q]{=}{=}T)
39
                                                     // store the return value for pending request q
               rvals[p][q]=rvals[b.pid][q];
40
41
      return tmp;
```

Algorithm 4: Pseudocode for Propagate and Calculate of S-RedBlue.

in rvals[q][p] and the id of q is written into the root node. The next thread to update the root node will find the id of q in the root node and (as long as req has not yet read its response by executing line 8), it will see that tmp.reqs[p] = T. Therefore, it will copy the response for req from rvals[q][p] (line 26) to its appropriate single-writer base object. So, when p seeks for the response of req it will find the correct answer in the single-writer base object of the thread recorded at the root node.

S-RedBlue uses O(n) multi-writer LL/SC objects and $O(n^2)$ single-writer read/write base objects. One of the multi-writer base objects is large and it is implemented using the

implementation of a W-word LL/SC object from single-word LL/VL/SC objects presented in [44]. This implementation achieves time complexity O(W) for both LL and SC and has space complexity O(nW). Thus, the number of base objects used by S-RedBlue is $O(n^2 + nW)$. In common cases where n bits fit in a constant number of single-word base objects, the time complexity of S-RedBlue is O(k + W) since Calculate pays O(k) to record k response values in the single-writer base objects and O(W) for reading and modifying the root node.

Theorem 4.2. S-RedBlue is a linearizable, wait-free implementation of a universal object that uses $O(n^2 + nW)$ base objects and its step complexity is O(k + W).

4.3 Adaptive synchronization algorithms for large objects

In the universal constructions for large objects presented by Anderson and Moir in [11] the object is treated as if it were stored in a contiguous array. Moreover, the user is supposed to provide sequential implementations of the object's requests which call appropriate Read and Write procedures (described in [11]) to perform read or write requests in the contiguous array (see [11, Section 4] for more information on what the user code should look like and a example). The universal constructions partition the contiguous array into B blocks of size S each, and during the application of a request to the object, only the block(s) that should be modified are copied locally (and not the entire object's state). The authors assume that each request modifies at most T blocks.

S-RedBlue can easily employ the simple technique of the lock-free construction presented in [11] in order to provide a simple, adaptive, wait-free algorithm (called LS-RedBlue) for large objects. As illustrated in Algorithm 5, only routine Propagate requires some modifications. Also, data structures are similar to those of [11] are needed for storing the array blocks, having threads making "local" copies of them and storing back the changed versions of these blocks. More specifically, array BLK stores the B blocks of the object's state, as well as a set of copy blocks used by the threads for performing their updates without any interference by other threads. Since each request modifies at most T blocks, a thread reaching the blue root, requires at most kT copy blocks in order to make copies of the kT state blocks that it should possibly modify. So, BLK contains nkT + B

blocks; initially, the object's state is stored in $BLK[nkT + 1], \ldots, BLK[nkT + B]$ (the blocks storing the state of the object at some point in time are called *active*). The blue root node stores an array named BANK of B indices; the ith entry of this array is the pointer (i.e. the index in BLK) of the ith active block. Each thread p has a private variable $ptrs_p$, which it is used to making a local copy of the BANK array (line 9).

The application of an active request to the object is now done by calling (in Calculate) the appropriate sequential code provided by the user. The codes of the Read and Write routines (used by the user code) are also presented in Algorithm 5 (although they are the same as those in [11]). These routines take an index addr in the contiguous array as a parameter. From this index, the block number $blkidx_p$ that should be accessed is calculated as $blkidx_p = addr$ div S, and the offset in this block as addr mod S. The actual index in BLK of the $blkidx_p$ -th block can be found through the BANK array. However, the thread uses its local copy $ptrs_p$ of BANK for doing so. Thus, line 15 simply access the appropriate word of BLK. If the execution of the VL instruction of line 16 by some thread p does not succeed, the SC instruction of line 11 by p will also not succeed. So, we use the goto to terminate the execution of its Calculate .

The first time that thread p executes a Write to the $blkidx_p$ -th block, it copies it to one of its copy blocks (line 21). Array $dirty_p$ is used to identify whether a block is written for the first time by p. In this case, the appropriate block is copied into the appropriate copy block of p (line 21). Indices to the kT copy blocks of p are stored in p's private array $copy_p$. The dirty bit for this block is set to true (line 22). Counter $dcnt_p$ counts the number of different blocks written by p thus far in the execution of its current request (line 25). The appropriate entry of $ptrs_p$ changes to identify that the $blkidx_p$ -th block is now one of the copy blocks of p (line 23). The write is performed in the copy block at line 27. A thread p uses its copy blocks to make copies of the blocks that it will modify. If later p's SC at line 11 is successful, some of p's copy blocks become active blocks (substituting those that have been modified by p). These old active blocks (that have been substituted) consist the new copy blocks of p which it will use to perform its next request. This is accomplished with the code of line 12.

LS-RedBlue is a wait-free algorithm; it has space overhead $\Theta(n^2 + n(B + kTS))$ and its time complexity is $\Theta(B + k(D + TS))$. The wait-free universal construction presented in [11] assumes that each thread has enough copy blocks to perform at most M/T other

```
type INDEX \{1, \ldots, nkT + B\};
    struct BlueNode {
       INDEX BANK[B];
       int pid;
       boolean reqs[n]
    };
    shared word BLK[1..B + kN * T][1..S];
    INDEX copy_p[1..kT], oldlst_p[1..kT], dcnt_p, blkidx_p;
    pointer ptrs_p[1..B];
    boolean dirty_p[1..B];
    word v_p;
    void Propagate(int z) {
                                                      // pseudocode for thread p
       BlueNode b;
1
       while (z \neq 0) {
2
         for(int i=1 to 2) do {
3
            if(z == 1)  {
4
               for(int j=1 to B) do
5
                  dirty_p[j] = false;
6
                  dcnt_p = 0;
7
            b=LL(bn[z]);
            if (z == 1) ptrs_p = b.BANK;
8
            bt = {\tt Calculate}(z);
9
            if (SC(bn[z], bt) AND z==1)
10
11
               for (int l=1 to dcnt_p) do
12
                  copy_p[l] = oldlst_p[l];
         z = \lfloor z/2 \rfloor;
13
    }
    wordtype Read(int addr) {
14
       v_p = BLK[ptrs_p[addr div S]][addr mod S];
      if (VL(BANK) = false)
15
         goto line 41 of Calculate (Algorithm 4);
16
17
       else return v_p;
    }
    void Write(int addr, wordtype val) {
18
       blkidx_p = addr div S;
19
      if (dirty_p[blkidx_p] == false) {
20
         memcpy(BLK[copy_p[dcnt_p]], BLK[ptrs_p[blkidx_p]], sizeof(blktype));
21
         dirty_p[blkidx_p]=true;
22
         oldlst_p[dcnt_p] = ptrs_p[blkidx_p];
23
         ptrs_p[blkidx_p] = copy_p[dcnt_p];
24
         dcnt_p = dcnt_p + 1;
       BLK[ptrs_p[blkidx_p]][addr mod S]=val;
25
```

Algorithm 5: Pseudocode for LS-RedBlue.

```
struct BlueNode{
       int BANK[B];
                                                     // this field used only at root
                                                     // this field used only at root
       PINDEX pid;
       PINDEX help;
                                                     // this field used only at root
       boolean reqs[n];
    };
    void Propagate(int z){
                                                     // pseudocode for thread p
       BlueNode b;
       while(z!=1)
1
2
         for (int d=1 to 2) do {
3
            b=LL(bn[z]);
4
            bt=Calculate (z);
5
            SC(bn[z], bt);
6
         z = \lfloor z/2 \rfloor;
7
       b=LL(bn[1]);
                                                     // requests to perform at root
8
       while (b.regs[p] == false) {
9
         for (int j=1 to B) do
            dirty_p[j] = false;
10
11
         dcnt_p = 0;
         b=LL(bn[1]);
12
13
         ptrs_p = b.BANK;
14
         bt = Calculate (1);
15
         if (SC(bn[1], bt))
16
            for (l=1 to dcnt_p) do
17
               copy_p[i] = oldlst_p[i];
       }
    }
```

Algorithm 6: Pseudocode for BLS-RedBlue.

requests in addition to its own where $M \geq 2T$ is any fixed integer. The algorithm uses a quite complicated helping mechanism with return values written into return blocks which should then be recycled in order to keep the memory requirements low. This universal construction has time complexity $O((n/min\{n, M/T\})(B+nD+MS))$. LS-RedBlue achieves much better time complexity $(\Theta(B+k(D+TS)))$ and is adaptive. However, it assumes that threads have enough copy blocks to help any number of other active threads.

LS-RedBlue can be slightly modified to disallow a thread to help more than M/T other threads. The resulting algorithm (BLS-RedBlue) is much simpler than the wait-free construction of [11] since it does not require the complicated mechanisms of [11] for returning values and verifying the application of a request. These tasks are performed in BLS-RedBlue in the same way as in S-RedBlue.

The BLS-RedBlue algorithm is presented in Algorithm 6. Propagate executes the same code as in S-RedBlue for all nodes other than the root. The code executed by a thread p

```
BlueNode Calculate(int z) {
                                                    // pseudocode for thread p
      BlueNode tmp=< \bot, < 0, ..., 0 >, < \bot, ..., \bot >>;
      BlueNode blue=bn[z], lc, rc;
      RedNode red = rn[z];
      int q, range, d, help = 0;
18
      if (2*z+1 < 2n) {
         lc = bn[2*z];
19
20
         rc = bn[2*z+1];
                                                    // if z is an internal node
      range = 2^{\lg(n) - \lceil \lg(z) \rceil}:
                                                    // compute the number of leaves of each subtree
21
      // copy the requests placed on the left subtree
22
      tmp.reqs[2q-range..2q]=lc.reqs[2q-range..2q];
      // copy the requests placed on the right subtree
23
      tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
24
      if (red.pid \neq -1) tmp.reqs[red.pid]=red.req; // if thread q occupies node red
25
                                                    // in case z is the root node
      if (z == 1) {
                                                    // start helping form thread q
26
         q = blue.help;
                                                    // set thread's id
27
         tmp.pid = p;
         tmp.rvals[1..n] = blue.rvals[1..n];
                                                    // copy the return values
28
29
         tmp.st = blue.st;
                                                    // copy object's state
30
         for d=1 to n do {
                                                    // local loop
                                                                         // apply any pending request
31
            if (tmp.reqs[q] == true \text{ AND blue.reqs}[q] == false)
                                                    // help at most M/T requests
32
               if (help < M/T) {
33
                 apply tmp.reqs[q] to tmp.st and store into tmp.rvals[q] the return value;
                                                    // increase the number of helped requests
34
                 help = help + 1;
35
               ext{less tmp.reqs}[q] = false;
                                                    // mark that thread q has an unapplied request
            else tmp.reqs[q] = true
36
                                                    // store the return value for pending request q
               rvals[p][q]=rvals[b.pid][q];
37
38
      return tmp;
```

Algorithm 7: Pseudocode for Calculate of BLS-RedBlue.

when it reaches the blue root (lines 18-37) is similar to the one of LS-RedBlue. However, lines 31-34 may have to execute more times in order to ensure that p's request has been applied to the object. Only when this has occurred, p's Propagate returns. To speed up this thread, we store one more field, called help, in the blue root node. Each thread, applying a successful SC on the root node, writes there the index of the last active thread it has helped, and next time threads start their helping effort from the next to this thread. This has as a result, the body of the while loop (line 8) to execute at most $\min\{k, 2M/T\}$ times. Each time that the loop is executed twice, M/T more active threads are helped. Therefore, after $2k/(\min\{k, M/T\})$ iterations, the request of p will have been applied to the object.

Each iteration of the loop requires O(B) time to execute lines 9-10 and 13. Each execution of Calculate applies at most $\min\{k, M/T\}$ requests. The cost of applying these requests is $O(MS + \min\{k, M/T\}D)$. Finally, the cost of calculating the return values at each execution of Calculate is O(k). So, the cost of executing the while loop is $O(k/(\min\{k, M/T\})(B + MS + k + \min\{k, M/T\}D))$. Given that each thread requires only $O(\log k)$ steps to reach the root node, it follows that the time complexity of BLS-RedBlue algorithm is $O((k/\min\{k, M/T\})(B + MS + k + \min\{k, M/T\}D))$. Obviously, BLS-RedBlue achieves better time complexity than the wait-free construction of [11] and it is adaptive. This is achieved without any increase to the required space overhead which is $O(n^2 + n(MS + B))$ for both algorithms.

In case a return value has size larger than a single word, i.e. it is at most R words, our algorithms can still work with single-word base objects by substituting the array of single-writer base objects held by each thread with a bi-dimensional array of nR words. Then, the time complexity of BLS-RedBlue becomes $O((k/\min\{k,M/T\}))$ $(B+MS+kR+\min\{k,M/T\}D)$. The wait-free universal construction of [11] has time complexity $O(n/\min\{n M/T\}(B+nR+nD+MS))$ under this assumption.

If n is very large, a technique like the one used by $\mathsf{GroupUpdate}\ [4]$ can be employed to store a single pointer instead of the bit vector in each blue node. Then, the time complexity of $\mathsf{BLS}\text{-RedBlue}\ \mathsf{becomes}\ O(k\log k + (k/\min\{k,M/T\})(B + MS + kR + \min\{k,M/T\}D)).$ We expect that $k\log k \in O((k/\min\{k,M/T\}))(B + MS + kR + \min\{k,M/T\}D))$ for large objects in most cases.

Chapter 5

PRACTICAL WAIT-FREE SYNCHRONIZATION ALGORITHMS

- 5.1 The Sim algorithm
- 5.2 P-Sim: A practical version of Sim
- 5.3 Performance evaluation of P-Sim
- 5.4 L-Sim: A synchronization algorithm for large objects
- 5.5 SimStack: A wait-free implementation of a shared stack
- 5.6 SimQueue: A wait-free implementation of a shared queue

In this chapter, the family of Sim synchronization algorithms is presented. Specifically, in Section 5.1, we present the Sim wait-free synchronization algorithm based on the simple algorithm presented in [37]. In Section 5.2, a practical and efficient implementation of P-Sim is discussed, while its performance is evaluated in Section 5.3. In Section 5.4, we present the L-Sim synchronization algorithm, which is suitable for simulating objects with large state. Section 5.5 presents a wait-free stack implementation based on P-Sim, while Section 5.6 presents a wait-free shared queue implementation also based on P-Sim.

5.1 The Sim algorithm

In this section, we present the Sim algorithm. Sim is a wait-free synchronization algorithm with O(1) step complexity using an Add and an LL/SC object.

5.1.1 Algorithm description

Sim (Algorithm 8) uses an LL/SC object S and a collect object Col. The LL/SC object stores the simulated state st, a vector, called applied, of n bits with initial value 0, and an array rvals of n elements containing the return values. We remark that the size of S could be reduced to a single pointer using indirection (see Section 5.2 which describes how to build a practical version of Sim).

Each thread maintains a persistent local variable $toggle_i$, initially 0, which it toggles each time it performs a new request. The collect object consists of n components, one for each thread. The ith component of Col stores the last request req_i initiated by p_i (or \bot if no such request exists) and a toggle bit toggle which stores the value contained in $toggle_i$ at the time that req_i was initiated (or 0 if no such request exists). Whenever p_i wants to perform some request req_i , it first announces req_i by updating component i of Col with the value $\langle req_i, toggle_i \rangle$ (line 1). It then toggles $toggle_i$. Finally, p_i executes a routine (line 3), called Attempt, to ensure that its request has been executed.

A request by p_i is applied only if the toggle field of the ith component of Col differs from the ith bit of S.applied (lines 13, 15). In more detail, when p_i wants to execute its first request req_1 , it writes in the toggle field of the ith component of Col the value 1 (line 3). Each thread q that sees the value 1 in Col[i].toggle and 0 in S.applied[i], will apply req_1 on the copy of the simulated state that it works on. However, only one of them will succeed in updating S on line 18. This update changes S.applied[i] to 1 which identifies that req_1 has been applied. When p_i initiates its second request, it changes the toggle field of the ith component of Col to 0, thus storing in it a different value than that of S.applied[i]; this indicates that a new request by p_i has been announced.

When a thread p_i executes Attempt, it first creates a copy of S (line 6) which contains the state of the simulated object. Then, it discovers which requests are currently active (line 7) by executing COLLECT, and performs locally, one after the other, those of them that have not been applied yet (lines 8 - 11) by using its local copy ls of S. By doing so,

```
typedef struct {
       State st;
       boolean applied[1..n];
       RetVal rvals[1..n];
    } StRec;
    typedef struct {
       Request req;
       boolean toggle;
    } CollectRec;
    // \hat{s} is the initial state of the simulated object
    shared StRec S = \langle \hat{s}, \langle 0, \dots, 0 \rangle, \langle \bot, \dots, \bot \rangle \rangle;
    // Col is a collect object that stores n structs of type CollectRec
    shared CollectRec Col(n) = << \bot, 0>, \ldots, < \bot, 0>>;
    Boolean toggle_i = 1;
                                                          // Persistent variable of thread p_i
    RetVal SimApplyOp(Request req, ThreadId i){
       UPDATE(Col, i, \langle req, toggle_i \rangle);
1
                                                          // Announce req
2
       toggle_i = 1 - toggle_i;
3
                                                          // Call Attempt to perform req
       Attempt(i);
4
       return S.rvals[i];
                                                          // Code for Attempt
    void Attempt(ThreadId i) {
       StRec ls;
       CollectRec \mathbf{v}[n];
                                                          // v stores a copy of the collect object
       for j=1 to 2 do{
5
          ls = LL(S);
6
                                                          // create a local copy of S in ls
7
          \mathbf{v} = \text{COLLECT(Col)};
                                                          // discover the active requests
8
          for l=1 to n do {
9
             if(\mathbf{v}[l].toggle \neq ls.applied[l]) {
                                                         // if p_l has a request not applied yet
10
                apply \mathbf{v}[l].req on ls.st and store the return value into ls.rvals[l];
11
             ls.applied[l] = v[l].toggle;
          SC(S, ls);
12
                                                          // Try to change the contents of S
    }
```

Algorithm 8: Pseudocode for Sim.

it calculates a new state for the simulated object and a return value for each of the active requests (line 10); finally, Attempt attempts to write the value of ls into S by executing an SC (line 12). If, in the mean time, some other thread managed to replace S with its local copy of the simulated state, then p_i 's SC will not succeed and the actions it performed during the execution of the current loop of for (of line 8) will be discarded.

Recall that thread p_i computes the return values (line 8) for the requests that it attempts to perform and stores them in ls.rvals (line 8). We remark that ls.rvals contains return values for all active requests (and not only for those that p_i attempts to perform) since all return values recorded in S are copied in ls by executing the LL of line 6.

The instance of Attempt executed by p_i performs the above steps twice (lines 6-12) to ensure that its currently active request req_i has been applied to the simulated object before the instance of SIMAPPLYOP that is currently executed by p_i responds. We remark that executing lines 6-12 just once is not enough. This is so since, if this was the case, there could be another request req_j executed by some thread p_j whose COLLECT on line 7 occurred before the execution of the UPDATE with parameter $\langle req_i, toggle_i \rangle$ (line 1) and so it did not return req_i for the *i*th component*. If the SC instruction, let it be SC_1 , that was executed by req_j on S was successful, it may have caused req_i 's SC on S to fail. In this case, p_i would return without ensuring that its request has been served.

We finally explain why this problem is overcome if the instance of Attempt executed by p_i performs lines 6-12 twice. Let SC_2 be the first successful SC instruction on S executed after SC_1 . Notice that SC_2 is either the second SC executed by p_i or SC_1 is executed before this SC. Then, the thread p which executes SC_2 sees req_i and performs it, if this has not already been done. This is so since the matching LL of SC_2 (and the COLLECT that follows it) are executed by p after SC_1 and req_i is announced before SC_1 .

5.1.2 Correctness proof

In this section, we prove that Sim is linearizable. We start by introducing some useful notation. Fix any execution α of Sim. Assume that some thread p_i , $i \in \{1, ..., n\}$, executes $m_i > 0$ requests in α . Let req_j^i be the argument[†] of the jth invocation of SIMAPPLYOP by p_i and let π_j^i be the instance of Attempt executed by req_j^i . Let U_j^i be the last UPDATE executed by p_i before π_j^i and let Q_j^i be the configuration just before the first step of U_j^i ; let Q_0^i be the initial configuration C_0 and let v_j^i be the value written by U_j^i . The notation of this proof is summarized in Table 5.1.

^{*} For simplicity we sometimes say that a request req by a thread p_i executes Attempt (or any other line of the pseudocode) meaning that the instance of SimapplyOp that is called by p_i for req executes Attempt (or any code line in reference). Moreover, when we refer to the execution interval of some request req, we mean the execution interval of the instance of SimapplyOp that is invoked with parameter req.

Notation	Description					
α	Any execution of Sim					
C	Any configuration in α					
C_0	The initial configuration of α					
p_i	The thread which its id is equal to $i, i \in \{1,, n\}$					
m_i	Thread p_i executes m_i requests in α					
req_j^i	The argument of the jth invocation of SimapplyOp					
π_i^i	The instance of Attempt executed by reg_j^i					
U_i^i	The last update executed by p_i before π_i^i					
$\begin{bmatrix} \pi_j^i \\ U_j^i \\ Q_j^i \\ Q_0^i \\ v_j^i \end{bmatrix}$	The configuration just before the first step of U_i^i					
Q_0^i	The initial configuration C_0					
v_j^i	The value written by U_i^i					
C_1^i	The first configuration between C_0 and the end of π_1^i at					
	which $S.applied[i]$ is equal to 1					
C^i	The first configuration between the end of π_{j-1}^i and the					
C_j^i	end of π_j^i such that $S.applied[i]$ is equal to $j \mod 2$					
SC_i^i	The SC instruction executed just before C_j^i					
LL_{i}^{i}	The matching LL instruction of C_i^i					
SC_m	The mth successful SC instruction on S in α					
LL_m	The matching LL of SC_m					
C_m	The configuration just after the execution of SC_m					
α_m	The prefix of α which ends at SC_m					
α_0	The empty execution					

Table 5.1: Notation used in the proof of Sim.

We first present the following lemma which is an immediate consequence of the pseudocode (lines 5, 6 and 12) and of the semantics of the LL/SC operation.

Lemma 5.1. Consider any j, $0 < j \le m_i$. There are at least two successful SC instructions in the execution interval of π_j^i .

The next lemma also follows from the pseudocode (lines 1 and 2). It states that U_j^i updates the *i*th component of Col with the value $\langle req_j^i, j \mod 2 \rangle$ and this value does not change until the next UPDATE on the *i*th component starts its execution.

Lemma 5.2. For each j, $0 \le j \le m_i$, the following claims hold:

- 1. $v_j^i = \langle req_j^i, j \mod 2 \rangle;$
- 2. no update occurs on the ith component of Col between the end of U_{j-1}^i and Q_j^i .

We next prove that, at the end of the execution of π_j^i , it holds that S.applied[i] is equal to $j \mod 2$.

Lemma 5.3. Consider any j, $0 < j \le m_i$. It holds that S.applied[i] is equal to $j \mod 2$ at the end of the execution of π_j^i .

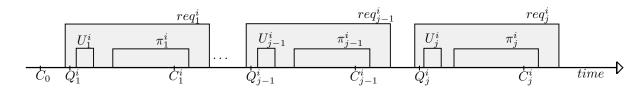


Figure 5.1: An example execution of the Sim algorithm.

Proof. Assume, by way of contradiction, that $S.applied[i] = 1 - (j \mod 2)$ at the end of π_j^i . By Lemma 5.1, there are at least two successful SC instructions in the execution interval of π_j^i . It follows that the last successful SC instruction that is executed in π_j^i writes $1 - (j \mod 2)$ into S.applied[i]. Let SC_x be this SC instruction, let LL_x be the matching LL instruction of SC_x , let p_x be the thread that executes LL_x and SC_x , and let G_x be the instance of COLLECT executed by p_x between LL_x and SC_x . Since the execution interval of π_j^i contains at least two successful SC instructions and SC_x is the last one and it is successful, it follows that LL_x follows the beginning of π_j^i .

By the pseudocode (lines 1, 6 and 7), it follows that G_x begins its execution after the end of the execution interval of U_j^i . Thus, Lemma 5.2 implies that G_x returns $j \mod 2$ for the toggle field of the ith component of Col. By the pseudocode (line 11), SC_x writes the value $j \mod 2$ into S.applied[i] which is a contradiction.

At C_0 , S.applied[i] is equal to 0. If $m_i > 0$, Lemma 5.3 implies that at the end of π_1^i , S.applied[i] is equal to 1. Let C_1^i be the first configuration between C_0 and the end of π_1^i at which S.applied[i] is equal to 1. Consider any integer $1 < j \le m_i$. Lemma 5.3 implies that at the end of π_{j-1}^i , S.applied[i] is equal to (j-1) mod 2, whereas at the end of π_j^i , S.applied[i] is equal to j mod 2. Let C_j^i be the first configuration between the end of π_{j-1}^i and the end of π_j^i such that S.applied[i] is equal to j mod 2; let $C_0^i = C_0$. Obviously, C_j^i precedes the end of π_j^i . Figure 5.1 illustrates the above notation.

By the definition of C_j^i , it follows that just before C_j^i a successful SC on S is executed. Let SC_j^i be this SC instruction and let LL_j^i be its matching LL instruction. Denote by G_j^i the instance of COLLECT that is executed between LL_j^i and SC_j^i by the same thread (line 7).

We continue to prove that G_j^i returns the value v_j^i written by U_j^i for thread p_i . Moreover, we prove that SC_j^i is executed after Q_j^i (i.e. after the execution of the first step of U_j^i).

Lemma 5.4. Consider any j, $0 < j \le m_i$. It holds that: (1) SC_j^i is executed after Q_j^i , and (2) G_j^i returns v_j^i for the ith component.

Proof. Assume first that j = 1. Then, SC_1^i writes 1 to S.applied[i]; the code (lines 7, 11 and 12) implies that, in this case, G_1^i returns the value 1 for the toggle field of the ith component of Col. However, since the initial value of this field is 0, and U_1^i is the only UPDATE that is executed on the ith component between C_0 and the end of π_1^i , it follows that G_1^i returns the value written to the ith component by U_1^i . Thus, the execution of G_1^i ends after the beginning of U_1^i , i.e. after Q_1^i , and G_1^i returns v_1^i .

Consider now any j > 1. Suppose first that G_j^i starts executing before the beginning of π_{j-1}^i . By the pseudocode, it follows that LL_j^i is executed before G_j^i and, by its definition, SC_j^i is executed after the end of π_{j-1}^i . By Lemma 5.1, at least two successful SC instructions are executed in the execution interval of π_{j-1}^i . It follows that SC_j^i is not successful, which is a contradiction. Thus, G_j^i starts its execution after the beginning of π_{j-1}^i .

We continue to prove that the value v returned by G_j^i for the toggle field of the ith component of Col is not equal to $v_{j-1}^i.toggle$. By definition, SC_j^i writes $j \mod 2$ to S.applied[i]. Then, by the code (lines 7, 11 and 12), it follows that G_j^i returns the value $v=j \mod 2$ for the toggle field of the ith component. By Lemma 5.2, $v_{j-1}^i.toggle = (j-1) \mod 2$. Thus, $v \neq v_{j-1}^i$.

By the code (lines 1-4), no UPDATE other than U_j^i is executed on the *i*th component between the end of U_{j-1}^i and the end of π_j^i . Since G_j^i starts after the beginning of π_{j-1}^i (and therefore after the end of U_{j-1}^i), ends before the end of π_j^i , and returns a value not equal to v_{j-1}^i , it follows that G_j^i must return the value v_j^i written by U_j^i . Therefore, the execution of G_j^i ends after the beginning of the execution of U_j^i , and the same is true for SC_j^i which is executed right after G_j^i .

We next prove that the value of S.applied[i] remains the same between SC_{j-1}^i and SC_j^i .

Lemma 5.5. Consider any j, $0 < j \le m_i$. At each configuration C following C_{j-1}^i and preceding C_j^i , it holds that $S.applied[i] = (j-1) \mod 2$.

Proof. By definition of C_j^i , no successful SC writes the value $j \mod 2$ to S.applied[i] between the end of π_{j-1}^i and C_j^i . Assume, by way of contradiction, that there is some configuration between C_{j-1}^i and the end of π_{j-1}^i such that S.applied[i] is equal to $j \mod 2$.

Let C_x be the first of these configurations. Since only SC instructions change the value of S, there is a successful SC instruction, SC_x , which occurs just before C_x and writes the value $j \mod 2$ to S.applied[i]. Let LL_x be the matching LL instruction to SC_x , let π_x be the instance of Attempt that executes SC_x , and let G_x be the instance of COLLECT executed by p_x between LL_x and SC_x .

We continue to prove that the value v returned by G_x for the toggle field of the ith component of Col is not equal to v_{j-1}^i . By definition of SC_x , SC_x writes the value $j \mod 2$ into S.applied[i]. Then, by the code (lines 7, 11 and 12), it follows that G_x returns a value $v = j \mod 2$ for the toggle field of the ith component. By Lemma 5.2, $v_{j-1}^i.toggle = (j-1) \mod 2$. Thus, $v \neq v_{j-1}^i$.

Since SC_x is successful, LL_x must have occurred after C^i_{j-1} . Since G_x occurs between LL_x and SC_x , and U^i_{j-1} is executed before π^i_{j-1} , G_x occurs after the end of the execution of U^i_{j-1} . Since no other UPDATE occurs on component i between the end U^i_{j-1} and the end of π^i_{j-1} , it follows that G_x returns v^i_{j-1} for the ith component, which contradicts our argument above that G_x returns $v \neq v^i_{j-1}$.

We say that a request req_j^i is applied on the simulated state if there is some request req' (that might be req_j^i or not) for which all the following conditions hold: (1) the last COLLECT that is executed by req' returns $\langle req_j^i, toggle \rangle$ as the value of the *i*th component of Col, where toggle is a value different from the value returned by the last Read on S.applied[i] (line 6) that is executed by the Attempt of req' (so that line 10 is executed), and (2) the execution of the last SC of line 12 on S by req' succeeds. When these conditions are satisfied, we sometimes also say that req' applies req_j^i .

We continue to prove that req_j^i is applied on the simulated object exactly once and this occurs just before C_i^i .

Lemma 5.6. For each j, $0 < j \le m_i$, req_j^i is applied exactly once.

Proof. By the pseudocode (lines 7, 8, 9, and 11) and by definition, it follows that when some request req initiated by p_i is applied, there is some successful SC on S which toggles the value of S.applied[i]. Lemmas 5.3 and 5.5 imply that there should be at least one m > 0 such that this SC is SC_m^i . Since the requests initiated by p_i are distinct, Lemmas 5.2 and 5.4 imply that req_j^i is applied if m = j. Thus, req_j^i is applied exactly once.

We are now ready to assign linearization points. For each $i \in \{1, ..., n\}$ and $0 < j \le m_i$, we place the linearization point of req_j^i at C_j^i ; ties are broken by the order imposed by threads' identifiers.

Lemma 5.7. Each request req_j^i , $0 < j \le m_i$, is linearized within its execution interval.

Proof. Lemma 5.4 implies that SC_j^i follows Q_j^i . By its definition, SC_j^i occurs before the end of π_j^i . Thus, C_j^i is in the execution interval of req_j^i , as needed.

In order to prove consistency, we use the following notation. Denote by SC_m , m > 0, the mth successful SC instruction on S and let LL_m be its matching LL. Obviously, between SC_m and SC_{m+1} , S is not modified.

Denote by α_m , the prefix of α which ends at SC_m and let C_m be the first configuration following SC_m . Let α_0 be the empty execution. Denote by L_m the order defined by the linearization points, assigned as described above, of the requests in α_m . We remark that S.st stores a copy of the simulated state at each point in time. Moreover, each thread applies requests on its local copy of the simulated state sequentially, one after the other. We say that S.st is consistent at C_m if it equals the state resulting from executing the requests of α_m sequentially in the order specified by L_m .

Lemma 5.8. For each $m \ge 0$, (1) S.st is consistent at C_m , and (2) L_m is a linearization order for α_m .

Proof. We prove the claim by induction on m.

Base case (m=0): The claims hold trivially: by the initialization of S, S.st contains \hat{s} , which is the initial state of the simulated object, and α_0 is empty.

Induction hypothesis: Fix any m > 0 and assume that the claims hold for m - 1.

Induction step: We prove that the claim holds for m. By the induction hypothesis, it holds that: (1) S.st is consistent at C_{m-1} , and (2) L_{m-1} is a linearization order for α_{m-1} . Let req be the request that executes SC_m . Assume that req applies j > 0 requests on the simulated object. Denote by $req_1, ..., req_j$ the sequence of these requests ordered in increasing order of the identifiers of the threads that initiate them.

Notice that req performs LL_m after C_{m-1} since otherwise SC_m would not be successful. By the induction hypothesis, S.st is consistent at C_{m-1} . Thus, the local copy of S that is last stored by req in ls, represents a consistent state of the simulated object. Lemma 5.6 implies that req_1, \ldots, req_j are applied only once. This is realized when SC_m is executed. Thus, none of these requests have been applied previously.

Given that the application of $req_1, ..., req_j$ is simulated by the thread executing req sequentially, in the order mentioned above, starting from the state stored in ls, it is a straightforward induction to prove that (1) for each f, $0 \le f \le j$, a consistent response is calculated for req_f , and the new state of the simulated object is calculated in a correct way in the local variable ls of the Attempt executed by req. Therefore, S.st is consistent after the execution of req's successful SC. Notice that, by the way linearization points are assigned, $L_m = L_{m-1}, req_1, ..., req_j$. It follows that L_m is a linearization order for α_m .

Theorem 5.1. Sim is a linearizable implementation of a universal object.

5.1.3 An efficient implementation of COLLECT

We present an implementation of a collect object, called SimCollect, which uses a single Add object and has step complexity O(1). However, the size of the Add object it employs is large. In Section 5.2, we describe a practical version of SimCollect which has been used by P-Sim to achieve high performance and scalability.

Recall that a collect object consists of n components. Suppose that each of the components stores a value from some set D. Suppose that d is the number of bits that are needed for the representation of any value in D. SimCollect uses an Add object O of nd bits. O is partitioned into n chunks of d bits each, one for each thread. Thread p_i owns the ith chunk of d bits, and stores there the value of the component that has been assigned to it. An update U with value v by p_i first performs an Add to ensure that v is written into the ith chunk of O, and then keeps a copy of v into a local variable; this copy is maintained by p_i to discover the appropriate value that should be added to the ith chunk of O during its next update (which will be the new value minus v). Whenever p_i executes a collect, it simply reads the value stored in O and returns for each component the value stored in the corresponding chunk. It is apparent that the number of shared memory accesses performed by SimCollect is 1.

If the size b of an Add object is less than nd bits, then we can employ $\lceil nd/b \rceil$ Add objects, $O_1, \ldots, O_{\lceil nd/b \rceil}$. In this case, the value last written by p_i is represented by the

 $(i \cdot d \mod b)$ th chunk of $O_{\lceil i \cdot d/b \rceil}^{\ddagger}$. An update by p_i adds an appropriate value to $O_{\lceil i \cdot d/b \rceil}$, and collect reads every Add object once and returns the set of values written in the chunks. This version of the algorithm has step complexity 1 for update, and O(nd/b) for collect. Notice that this version is not linearizable (but recall that linearizability is not necessary for implementations of collect objects). In case $b \geq nd$, the implementation is linearizable; in this case, SimCollect can serve as a single-writer snapshot implementation.

We remark that the same techniques, as in SimCollect, can be used to get an implementation of an active set, called SimActSet, by using an Add object of n bits (one for each thread); this implementation has step complexity 1 if b < n, and $\lceil n/b \rceil$ if b > n.

It is apparent that similar implementations of collect, snapshot and active set can be derived if a XOR object is used instead of an Add object.

5.1.4 Space and step complexity

The step complexity of Sim is O(sc), where sc is the step complexity of the implementation of the collect object it employs. If this implementation is SimCollect, Sim exhibits constant step complexity. In this case, it uses an Add object of nd bits and an LL/SC object of size O(n+s), where s is the size of the simulated state.

Theorem 5.2. By using SimCollect, the step complexity of Sim is O(1) and Sim uses one Add object of nd bits and one LL/SC object of size O(n+s).

5.1.5 Derived lower bounds

Jayanti [42] has proved that any oblivious implementation of a universal object from LL/SC objects has step complexity $\Omega(\log n)$. This lower bound holds even if the size of the LL/SC objects is unbounded. Sim is oblivious. So, the lower bound can be beaten if just one Add object (or a collect object) is used in addition to an LL/SC object. Thus, the following theorem holds:

Theorem 5.3. A lower bound of $\Omega(\log n)$ holds on the step complexity of any implementation of (1) a single-writer snapshot object, (2) a collect object, (3) a XOR object, and (4) an Add object, from LL/SC objects.

 $^{^{\}ddagger}$ For simplicity, we assume that d is a divisor of b, so that the d bits allocated to each thread are not split across two Add objects.

5.2 P-Sim: A practical version of Sim

In this section, we present a practical version of Sim, which is called P-Sim. P-Sim uses O(n/b) Add objects of size b bits each, one LL/SC object storing a single pointer, and O(n) Read-Write structs each of size O(n+s). The step complexity of P-Sim is O(n+s).

5.2.1 Algorithm description

First, we discuss the techniques applied to Sim in order to port it to a real-world machine architecture, like x86_64. Applying these techniques leads to a practical version of Sim, called P-Sim. In P-Sim, the information stored in struct StRec is now maintained using indirection; we employ recycling to reduce the space requirements. Each thread p_i maintains a pool of two structs of type StRec. These pools are implemented by allocating an array Pool of type StRec which consists of n+1 rows of two elements each. Thread p_i 's pool is comprised by the ith row of Pool. Variable S is now a pointer to one of the elements of Pool, initially pointing to Pool[n+1][1] (where the (n+1)st row is used for initialization).

The collect object is implemented by a set of n single-writer Read-Write structs of type Request, called Announce, and a shared bit vector Toggles of n bits, one for each thread. A struct of type Request contains two fields, a pointer func which points to a function containing the code of the simulated operation, and an argument. Toggles is implemented using Add in a way similar to SimCollect. Specifically, when a thread p_i initiates a new request, it toggles Toggles[i] by performing an atomic Add (lines 3-4). More specifically, Toggles is implemented as an integer (or as an array of $\lceil n/b \rceil$ integers, if n is larger than the size b of an integer); to toggle bit i, p_i atomically adds 2^i or -2^i to this integer (or $2^{i \mod b}$ or $-2^{i \mod b}$ to $Toggles[\lceil i/b \rceil]$, respectively). Initially, all bits of Toggles are equal to 0.

When p_i wants to execute a request req, it announces it by writing req (and its parameters) in Announce[i] (line 2). Thread p_i discovers the requests that other active threads want to perform by reading the appropriate entries of Announce (lines 14-16)

 $[\]S$ We remark that in the real code we use a pool of nC+1 structs, where C>1 is a small constant, for performance reasons. However, using a pool of just 2n+1 structs is enough to prove correctness. For code simplicity, Algorithm 9 uses 2n+2 such structs.

[¶] In the real code, Pool is implemented as a one-dimensional array, and S is an index indicating one of its elements.

```
typedef\ struct\ \{
   void *func;
                                                   // Function pointer to push or pop
   ArgVal arg;
} Request;
typedef struct {
   State st:
   boolean applied[1..n];
                                                   // applied is implemented as an integer
   RetVal rvals[1..n];
} StRec;
shared Integer Toggles = 0;
                                                   // Toggles implements a vector of n bits
shared StRec Pool[1..n+1][1..2];
                                                   // Initially, Pool[n+1][1] = \langle \bot, 0, \langle \bot, ..., \bot \rangle \rangle
shared StRec S = \&Pool[n+1][1];
                                                   // Initially, S points to Pool[n+1][1]
shared Request Announce[1..n];
```

Algorithm 9: Data structures used in P-Sim.

based on the information Read in Toggles and in the struct pointed to by S. This increases the step complexity of P-Sim but it decreases the size of the Add object which now stores n bits instead of nd bits that are used in SimCollect. A simplified version of P-Sim is shown in Algorithms 9-10.

The VL instruction of line 11 guarantees that the copied state (line 10) is consistent. A slow thread p_j may read the state of the simulated object form some struct r while thread p_i , which owns r, reuses this struct. This will have as a result p_j reading an inconsistent state. Notice that, in this case, the SC instruction of p_j on line 18 will fail. Still, p_j may simulate locally the application of several requests, while executing lines 14-17, using an inconsistent state. Successful execution of the VL of line 11 guarantees that r has not yet been reused, so the state that was read is consistent. Additionally, the existence of the VL enhances the performance of P-Sim. Making a local copy of the state (line 10) is slow, since it usually causes one or more cache misses. In the mean time, another thread may have successfully updated the state of the simulated object. In this case, having p_j executing lines 14-17 is useless and may cause cache misses due to the Read operations that are performed on the *Announce* array. The use of the VL ensures that this unnecessary overhead is avoided.

The majority of the commercially available shared memory machines support CAS rather than LL/SC. P-Sim simulates an LL on S with a Read(S). VL is implemented by reading S and checking whether its timestamp has changed since the most recent previous

```
// Private local variables for thread p_i
    Integer toggle_i = 2^i;
    Integer index_i = 0;
    RetVal PSIMAPPLYOP(Request req, ThreadId i) \{ // \text{ Code for thread } p_i \}
2
       Announce[i] = req;
                                                     // Announce req
3
       FAD(Toggles, toggle_i);
                                                     // toggle p_i's bit in Toggles
4
       toggle_i = -toggle_i;
5
      Backoff();
6
       Attempt(i);
       return S.rvals[i];
                                                     // Code for Attempt
    void Attempt(ThreadId i) {
       boolean ltoggles[1..n];
                                                     // ltoggles is implemented as an integer
       StRec *ls_ptr;
       for j=1 to 2 do {
8
                                                     // read the pointer stored in S
9
         ls_ptr = LL(S);
10
         Pool[i][index_i] = *ls_ptr;
                                                     // Create a copy of current state
11
         if (VL(S) == 0)
12
            continue;
13
         ltoggles = Toggles;
                                                     // Read the vector of toggles
14
         for l=1 to n do {
            // If p_i has a request that is not applied yet
15
            if(ltoggles[l] \neq Pool[i][index_i].applied[l]) {
               // Apply the request and compute return value
16
               apply Announce[l] on Pool[i][index_i].st
               and store the return value into Pool[i][index_i].rvals[l];
            Pool[i][index_i].applied[l] = ltoggles[l];
17
18
         if(SC(S, \&Pool[i][index_i]))
                                                     // Try to change the contents of S
19
            index_i = (index_i + 1) \mod 2;
                                                     // If success, p_i uses the next struct
20
         BackoffCalculate();
    }
```

Algorithm 10: Pseudocode of P-Sim.

LL executed by the same thread. Finally, an SC is simulated with a CAS on a timestamped version of S to avoid the ABA problem. In the real code S stores just an index to Pool (and not a full 64 bit pointer), so there are enough bits (in our experiments 48) in a word to store the timestamp. In systems with more threads, we could use 128 bit words; we remark that $x86_64$ machines support 128 bit words.

This problem occurs when a thread p reads some value A from a shared variable and then some other thread p' modifies the variable to the value B and back to A; when p begins execution again, it sees that the variable has not changed and continues executing normally which might be incorrect.

We remark that the performance of P-Sim becomes better when a combining thread manages to help a large number of other threads while performing its request. For exploiting this property, we use an adaptive backoff scheme. A thread p_i backoffs, after it has announced its request (line 5) and has indicated in Act that it is active. P-Sim does not use backoff for reducing the contention on accessing a shared CAS object, as it is usually the case in previous algorithms [37, 50]. It rather employs backoff in an effort to achieve a better combining degree. The backoff scheme of P-Sim is simple: it uses a single parameter which is a backoff upper bound (by default, the backoff lower bound is set to 1). During backoff, a thread executes t noop instructions (where t is initialized to 1). Each time a new request is initiated t is re-calculated as follows. If the SC instruction (line 18) of this request succeeds, t is doubled (until it reaches its upper bound); otherwise t is halved until it reaches its lower bound. In Section 5.3, we discuss the impact of backoff in the performance of P-Sim.

The full source code of P-Sim is provided at http://code.google.com/p/sim-universal-construction/.

5.2.2 Correctness proof

The correctness proof of P-Sim is similar to that of Sim presented in Section 5.1.2. We follow the same notation as in Section 5.1.2 where we consider as U_j^i the jth Add executed by p_i (line 3) and as the analog of the COLLECT executed on line 7 of Sim, the Read of Toggles on line 13 of P-Sim. Let v_j^i be equal to 1 if the argument of the jth Add by p_i is positive and 0 otherwise. It is easy to see that, in this way, v_j^i plays the same role as v_j^i .toggle in the proof of Sim. The notation of this proof is summarized in Table 5.2.

We focus on those parts of the proof of Sim that are different than those of the proof of P-Sim. We start with Lemma 5.1 whose proof is now simpler.

Lemma 5.9. Consider any j, $0 < j \le m_i$. There are at least two successful SC instructions in the execution interval of π_i^i .

Proof. We prove that during the execution of each iteration of the for loop of lines 8-17, at least one successful SC instruction is performed. If the iteration is completed on line 12 of the pseudocode, the VL instruction (line 11) returns 0. This implies that at least one successful SC instruction occurred between the LL of line 9 and the execution of

Notation	Description				
α	Any execution of P-Sim				
C	Any configuration in α				
C_0	The initial configuration of α				
p_i	The thread which its id is equal to $i, i \in \{1,, n\}$				
m_i	Thread p_i executes m_i requests in α				
req_j^i	The argument of the j th invocation of PSimApplyOp				
π_i^i	The instance of Attempt executed by reg_j^i				
U_i^i	The j th Add executed by p_i				
Q_j^i	The configuration just before U_j^i				
Q_0^i	The initial configuration C_0				
$\begin{bmatrix} \pi^i_j \\ U^i_j \\ Q^i_j \\ Q^i_0 \\ v^i_j \end{bmatrix}$	The value written by U_j^i				
C_1^i	The first configuration between C_0 and the end of π_1^i at				
	which $S.applied[i]$ is equal to 1				
C^i_j	The first configuration between the end of π_{j-1}^i and the				
	end of π_j^i such that $S.applied[i]$ is equal to $j \mod 2$				
SC_j^i	The SC instruction executed just before C_j^i				
$\frac{SC_j^i}{LL_j^i}$	The matching LL instruction of C_j^i				
r_j^i	The Read of $Toggles$ that is executed between LL_j^i and				
	$\mid SC_{i}^{i} \mid$				
SC_m	The mth successful SC instruction on S in α				
LL_m	The matching LL of SC_m				
C_m	The configuration just after the execution of SC_m				
α_m	The prefix of α which ends at SC_m				
α_0	The empty execution				

Table 5.2: Notation used in the proof of P-Sim.

VL on line 11. Suppose that the iteration executes the SC instruction on line 18. If this SC is successful, the claim follows. Otherwise, at least one successful SC instruction was performed between the execution of line 9 and line 18. ■

We next present the analog of Lemma 5.2 of Sim. Its proof is a straightforward induction on j.

Lemma 5.10. For each j, $0 \le j \le m_i$, the following claims hold:

- 1. $v_j^i = j \mod 2$ (i.e. $Toggles[i] = j \mod 2$ after the execution of U_j^i);
- 2. no Add instruction executed between the end of U_{j-1}^i and Q_j^i changes the ith bit of Toggles.

It is easy to prove a lemma similar to Lemma 5.3 for P-Sim. Its proof follows the same arguments as those in the proof of Lemma 5.3.

Lemma 5.11. Consider any j, $0 < j \le m_i$. It holds that $S \to applied[i]$ is equal to $j \mod 2$ at the end of π_j^i .

As in the proof of Sim, we let C_1^i denote the first configuration between C_0 and the end of π_1^i at which $S \to applied[i]$ is equal to 1, and we let C_j^i to be the first configuration between the end of π_{j-1}^i and the end of π_j^i such that $S \to applied[i]$ is equal to $j \mod 2$; let $C_0^i = C_0$.

We continue to prove that no field of the structure pointed to by S may change its value as long as S points to it. Thus, $S \to applied[i]$ takes different values only by executing successful SC instructions on S. It follows that recycling does not cause any implication to the proof.

Lemma 5.12. Let SC_1 and SC_2 be two successful SC instructions on S such that no successful SC on S is executed between SC_1 and SC_2 . Let v_1 be the value of the structure pointed to by S after SC_1 . Then, the value of the structure pointed to by S is always v_1 between SC_1 and SC_2 .

Proof. Let C_1 and C_2 be the configurations resulting from the application of SC_1 and SC_2 , respectively. Let p_i be the thread that executes SC_1 . By the pseudocode (lines 10, 18), it follows that S points to Pool[i][l], for some $l \in \{1, 2\}$ at C_1 , so $Pool[i][l] = v_1$.

Assume, by way of contradiction, that there is a configuration C_x between SC_1 and SC_2 at which $Pool[i][l] \neq v_1$. By the pseudocode (lines 17 and 18), it follows that only p_i can write to Pool[i][l]. Since p_i 's pool contains two structures and p_i uses a different structure each time it performs a successful SC on S, it follows that p_i can use Pool[i][l] again only if it performs a successful SC instruction between SC_1 and C_x . However, this would contradict our assumption that no successful SC instruction is executed on S between SC_1 and SC_2 .

Lemma 5.12 implies that $S \to applied[i]$ takes different values only when successful SC instructions are executed on S. It follows that just before C^i_j a successful SC on S is executed. Let SC^i_j be this SC instruction and let LL^i_j be its matching LL instruction. Let r^i_j be the Read of Toggles that is executed between LL^i_j and SC^i_j by the same thread (line 13) for the ith bit. The following two lemmas are the analogs of Lemmas 5.4 and 5.5 of Sim. Their proofs follow similar arguments as those of these lemmas.

Lemma 5.13. Consider any j, $0 < j \le m_i$. It holds that r_j^i is executed after Q_j^i and reads $j \mod 2$ in Toggles[i].

Lemma 5.14. Consider any j, $0 < j \le m_i$. At each configuration C following C_{j-1}^i and preceding C_j^i , it holds that $S \to applied[i] = (j-1) \mod 2$.

We say that a request req_j^i is applied if there is some request req' (that might be req_j^i or some other request) for which all the following conditions hold: (1) the last Read on Toggles that is executed by req' returns a value for its ith bit which is different from the value returned by the last Read on S.applied[i] (line 6) executed by the Attempt of req', (2) the Read on Announce[i] (line 16) by req' returns req_j^i , and (3) the execution of the SC of line 12 on S by req' succeeds. If these conditions hold, we sometimes say that req_j^i is applied when the SC of line 12 on S by req' is executed.

Following similar arguments as those in the proof of Lemma 5.6, we can prove that req_i^i is applied on the simulated object exactly once and this occurs just before C_i^i .

Lemma 5.15. For each j, $0 < j \le m_i$ reqⁱ_j is applied to the simulated object only once and this occurs just before C_j^i .

Proof. By the pseudocode (lines 13, 14, 15, and 17) and by definition, it follows that when some request req initiated by p_i is applied, there is some successful SC on S which toggles the value of S.applied[i]. Lemmas 5.11 and 5.14 imply that there should be at least one integer m > 0 such that this SC is SC_m^i . We argue that req_j^i is applied when SC_j^i is executed. By Lemma 5.13, r_j^i is executed after Q_j^i . By definition of C_j^i and by the pseudocode (lines 13 and 18), it follows that r_j^i is executed before the end of π_j^i . By the pseudocode, it follows that the read of Announce[i] on line 16 by the instance of Attempt that executes SC_j^i occurs between Q_j^i and C_j^i . Since req_j^i is active between Q_j^i and C_j^i , this read returns req_j^i . Thus, req_j^i is applied at least once when SC_j^i is executed. Since the requests initiated by p_i are distinct, req_j^i is not applied any other time.

We assign linearization points for P-Sim in the same way as we do for Sim. We can then argue, as in Sim, that P-Sim is linearizable. Thus, the following theorem holds for P-Sim.

Theorem 5.4. P-Sim is a linearizable implementation of a universal object.

5.2.3 Space and step complexity

P-Sim performs O(n+s) shared memory accesses. More specifically, the Read of the structure of type State which is performed on line 10, results in reading the array rvals of n return values, the bit vector applied which is stored in O(n/b) memory words, and the entire state of the object, i.e. s memory words. Moreover, the Read of Toggles on line 13 requires O(n/b) additional shared memory accesses. The algorithm performs O(k) memory accesses to read the appropriate elements of Announce. Thus, the shared memory accesses performed by P-Sim is O(n+s). P-Sim uses a pool of O(n) structures of type State, each of size O(n+s). The algorithm also employs a bit vector of size n and an array of n values. Thus, the space complexity of P-Sim is $O(n^2 + ns)$.

Theorem 5.5. P-Sim uses O(n/b) Add objects of size b bits each, one LL/SC object storing a single pointer, and O(n) Read-Write structures each of size O(n+s). The step complexity of P-Sim is O(n+s).

5.2.4 Making P-Sim adaptive

In this section, we discuss how we could modify P-Sim in order to get an adaptive version of it in terms of both space and step complexity. The step complexity of P-Sim is determined based on the following: (1) Toggles is a vector of n bits, so a Read on it (line 13) causes O(n/b) shared memory accesses, (2) each struct of type State contains the simulated state and a vector of n return values, so a Read on it (line 10) causes O(n+s) shared memory accesses, and (3) Pool contains O(n) structs. Below, we discuss how we can redesign each of these data structures to get an adaptive version of P-Sim in terms of both space and step complexity.

Herlihy, Luchangco and Moir present in [38, Algorithm 1], an adaptive implementation of a collect object. The step complexity of this implementation is O(k) for COLLECT and O(1) for UPDATE, where k is the total contention. Its space complexity is O(k).

To avoid maintaining a vector of n bits, we can replace Toggles with the collect implementation of [38, Algorithm 1]. Whenever a thread p wants to perform a request, it calls UPDATE to write to its component the value of its bit and its request instead of recording its request on Announce and executing an Add on Toggles to update the value of its assigned bit (line 3). The Read of the bit vector performed on line 13 is replaced

with a COLLECT on the collect object. This COLLECT returns the set of bits and the requests of all active threads.

Instead of storing an array of n return values, a set of structs (one for each thread that has taken steps thus far) is maintained. Each of these structs contain a return value, a thread identifier, and a toggle bit which is used to identify if a new request has been initiated by this thread. Whenever a thread executes a request for the first time, the set is updated with a struct containing the thread's id. The set can be trivially implemented as a linked list given that each thread works on its own copy of this list. By applying these techniques the size of struct State is reduced to O(k + s) and making a copy of it costs O(k + s).

By applying the two techniques discussed above, the step complexity of P-Sim becomes O(k+s). However, the space complexity is still a function of n since Pool still contains n+1 structs. Instead of allocating Pool statically at the beginning of the execution, each thread dynamically allocates its two structs when it executes its first request. Instead of storing an array of n return values, each struct stores a pointer which will point to the first element of the list of return values. Thus, the number of such structs that are allocated is 2k+1, each of size O(s). S is a pointer to one of the elements of Pool. When a thread makes a local copy of a struct pointed by S, it should also make a local copy of the current list of return values which is pointed to by the appropriate field of S. Thus, the memory overhead for each thread is O(k+s). Therefore, by applying these techniques the space complexity becomes O(k(k+s)).

The collect implementation presented in [38, Algorithm 1] has the disadvantage that its step and space complexity is a function of the total contention since it cannot free the memory that is not used any more. The collect implementation presented in [38, Algorithm 2] could be used instead, the step and space complexity of which adapt to operation's complexity. However, the last implementation uses primitives that are not supported by real machines. In case primitives are simulated using CAS instructions, the resulting algorithm would not satisfy the wait-freedom property.

5.3 Performance evaluation of P-Sim

We run our experiments on a 32-core machine consisting of four AMD Opteron 6134 processors (Magny Cours). Each processor consists of two dies and each of them contains four processing cores and an L3 cache shared by its cores. Dies and thus processors are connected to each other with Hyper Transport Links creating a topology with an average diameter of 1.25 hops [21]. For the experiments presented here, we used the latest version of the code of P-Sim (version 1.2) [45]. All codes were compiled with gcc 4.3.4, and the Hoard memory allocator [18] was used to eliminate any bottlenecks in memory allocation. The operating system was Linux with kernel 2.6.18. Thread binding was used in order to get more reliable performance results; the i-th thread was bound to the i-th core of the machine. In this way, we exploited first multi-core, then multi-chip and then multi-socket configuration.

We first focus on a micro-benchmark which shows the performance advantages of P-Sim over well-known synchronization algorithms. We have chosen to simulate a simple Fetch&Multiply operation as a case study; each algorithm has simulated the execution of 10^7 Fetch&Multiply requests for different values of n, where each thread initiated $10^7/n$ such requests. We measured the average throughput (i.e. the number of Fetch&Multiply simulated per second) that each algorithm has exhibited. Specifically, the horizontal axis of Figures 5.2-5.12 represents the number of threads n, and the vertical axis represents the throughput (in millions of requests executed per second) that each synchronization algorithm has performed. For each value of n, the experiment has been performed 10 times and averages have been calculated. Between two Fetch&Multiply requests by the same thread, we have inserted a random number (up to 512) of dummy loop iterations in order to simulate a random work load large enough to avoid unrealistically low cache miss ratios and long runs; we remark that this load is not big enough to reduce contention. A similar technique is employed by Michael and Scott in [50] for the same reasons. The performance behavior of our algorithms for different values of random work (Figure 5.6) will be discussed later.

We have performed this experiment to measure the performance of the following algorithms: CLH spin locks** [23, 47], a simple lock-free algorithm with exponential backoff,

^{**}We experimentally saw that MCS spin locks [49] have similar performance to CLH spin locks, so we present our results only for CLH locks.

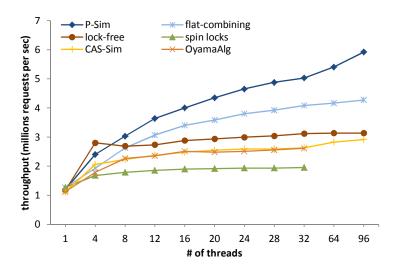


Figure 5.2: Performance of P-Sim.

flat-combining [33, 34], and OyamaAlg [52]. The simple lock-free algorithm uses a single CAS object O, and executes CAS on O repeatedly until it successfully stores the new value into it; the algorithm employs an exponential backoff scheme to reduce contention. We also implemented a version of P-Sim, called CAS-Sim, where Add is simulated in a lock-free way using a CAS object, as in the simple lock-free algorithm discussed above.

We carefully optimized these algorithms in our computing environment; for those that use backoff schemes, we performed a large number of experiments to select the best backoff parameters in each case. CLH spin locks and OyamaAlg have been evaluated for only up to 32 threads (so that each thread runs on a distinct core), since otherwise they result in poor performance. We used the flat-combining implementation provided by its inventors [33, 34] and we applied similar optimizations on its code as for that of P-Sim; we also carefully chose its parameters (i.e. polling level, number of combining rounds) to optimize its performance in our computing environment.

Figure 5.2 shows the results of our experiment. P-Sim has been proved to be up to 2.5 times faster than spin-locks, and up to 1.7 times faster than the simple lock-free algorithm. We remark that both P-Sim and flat-combining implement the combining technique, so we expect both of them to enjoy the performance benefits of this technique. However, flat-combining is blocking whereas P-Sim is wait-free. Since wait-freedom is expected to come with some overhead, our first goal was to design a wait-free implementation of the combining technique that performs the same well as flat-combining (which is however blocking). Figure 5.2 shows that P-Sim achieves this goal and even performs slightly better

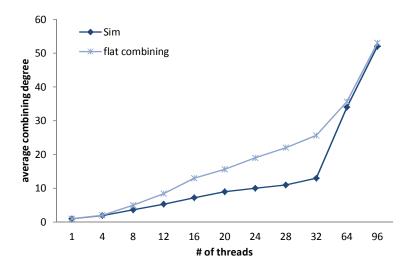


Figure 5.3: Average combining degree of P-Sim and flat-combining for different numbers of threads.

than flat-combining; it exhibits up to 1.20 times better throughput than flat-combining. Finally, P-Sim outperforms OyamaAlg by a factor of up to 1.9.

As illustrated in Figure 5.2, when n > 4, the simple lock-free algorithm causes a lot of contention and exhibits performance much worse than P-Sim or flat-combining. However, it behaves well for up to 4 threads since then all the communication occurs within the same die, which is much faster than achieving intra-communication between dies. As expected for queue-locks, the performance of CLH remains almost the same as n increases. For up to some number of threads, the performance of P-Sim and flat-combining is getting better as the number of n increases. This is so, since the average degree of combining that is achieved increases with the number of active requests in the system. We remark that this enhancement in performance is noticed even for values of n > 32 where the processing cores are over-subscribed. In contrast, OyamaAlg achieves lower throughput. This is so since in OyamaAlg threads need to succeed on a CAS in order to have their requests announced; this causes a lot of contention and leads to a significant performance degradation. It is worth pointing out that P-Sim is at least 2 times faster than CAS-Sim which, not surprisingly, exhibits similar performance to OyamaAlg; in CAS-Sim, as in OyamaAlg, a thread repeatedly executes CAS to announce a request and therefore CAS-Sim faces a similar performance penalty for the announcement of the requests as OyamaAlg.

Figure 5.3 shows the average number of requests, called average *combining degree*, that are executed by the combiners in P-Sim and flat-combining. Specifically, to calculate

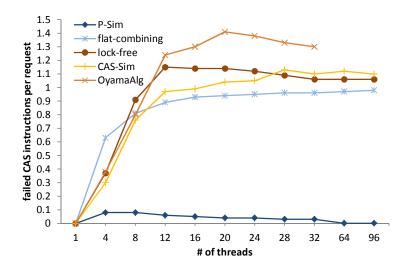


Figure 5.4: Average number of failed CAS instructions per request for different numbers of threads.

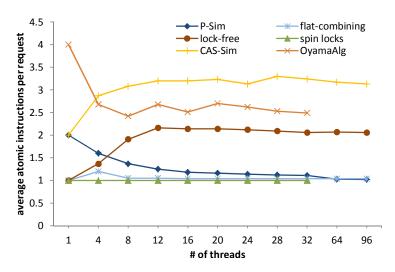


Figure 5.5: Average number of atomic instructions (excluding Read and Write operations) per request performed by P-Sim for different numbers of threads.

the average combining degree of Sim, we add the number of requests that are applied each time a successful CAS on S is executed and we divide this sum by the total number of successful CAS instructions. As shown in Figure 5.3, flat-combining achieves better combining degree in some cases. This is expected since no more than n requests (one per thread) can be applied in P-Sim, each time a CAS on S succeeds. In contrast, in flat-combining, a combiner may apply several requests of the same thread; this may happen, if the thread initiates a new request before the combiner processes all other requests of the request list. Because of this, it is reasonable to expect that flat-combining avoids moving cache lines between the processing cores which is good in terms of performance. However,

the performance of flat-combining is not better than that of Sim, since the advantage in the achieved combining degree of flat-combining is counterbalanced by other performance factors that are discussed below. Moreover, as shown in Figure 5.3, when the processing cores are lightly over-subscribed, the combining degree of P-Sim matches the combining degree of flat-combining. As shown in Figure 5.2, this results in better performance for P-Sim.

Figure 5.4 shows the average number of failed CAS instructions executed per request. Notice that a large number of requests in P-Sim do not execute any unsuccessful CAS instructions; this is mainly due to the validation that is performed on line 11. So, the average number of unsuccessful CAS per request in P-Sim is very small. In contrast, this number is close to one (or larger) for all other algorithms. The large number of unsuccessful CAS instructions executed in flat-combining occur during the acquisition of the global lock. This results in a performance degradation. We remark that our efforts to overcome this problem by increasing the number of combining rounds^{††} (which reduces the number of times the global lock is acquired) did not result in better performance. This was so because after the first few combing rounds, flat-combining spent a lot of time reading records of threads with no announced requests. On the contrary, P-Sim does not perform non-useful Read operations.

Figure 5.5 shows the average number of atomic instructions (other than Read and Write operations) per request that each algorithm executes. For large values of n, P-Sim and flat-combining execute almost the same number of atomic instructions per request on average. For smaller values of n, flat-combining executes slightly less atomic instructions per request on average than P-Sim. However, all the atomic instructions executed in flat-combining are CAS instructions on a single shared variable that implements the global lock. In contrast, the atomic instructions that are executed by any request in P-Sim are not applied on the same base object (one of them is an Add and if there is any other it is a CAS on S). Moreover, the release of the global lock in flat-combining have not been taken into consideration in the diagram of Figure 5.5 (since it is implemented with a Write). However, these Write instructions cause more contention on the global lock and additional cache misses.

^{††}The number of combining rounds determines how many times the combiner (in flat-combining) traverses the request list before it gives up serving other requests.

Algorithm	average cpu cycles spent in cpu stalls per request
P-Sim	6121
flat-combining	6810

Table 5.3: Average cpu cycles spent in cpu stalls per request for P-Sim and flat-combining for n = 16.

It is worth pointing out that the failed CAS instructions may cause branch miss-predictions which are expensive since modern microprocessors usually have deep pipelines. Table 5.3 shows that flat-combining pays more (in cpu cycles) for stalls due to cache misses and branch miss-predictions.

In the experiment illustrated in Figure 5.6, we study the behavior of the evaluated algorithms for different amounts of random work, i.e. for different numbers of dummy loop iterations inserted between the executions of two Fetch&Multiply by the same thread. We fix the number of threads to 32 and we perform the experiment for several different random work values (0-8192). Figure 5.6 shows that, for a wide range of values (64-2048), there are no big differences on the throughput exhibited by the evaluated algorithms. The reason for this is that for all these values the synchronization cost is the dominant performance factor. For small values of random work (0-64), the simple lock-free algorithm achieves unrealistically high throughput. The reason for this is that a thread can uninterruptedly perform thousands of Fetch&Multiply. This phenomenon is known as a long run; as discussed in previous work [50], such runs are unrealistic workloads. A similar behavior, but in smaller scale, is observed in flat-combining. In cases that the random work is too high (greater than 4096), the throughput of all algorithms degrades and the performance differences among them become minimal since the amount of random work becomes then the dominant performance factor.

Table 5.4 studies the throughput of P-Sim for different values of the backoff upper bound. The performed experiment is the same Fetch&Multiply experiment studied in Figure 5.2, where n=32 and for a maximum workload of 512. The first row of Table 5.4, shows the throughput achieved by P-Sim for different values of the backoff upper bound as well. Notice that the best throughput is achieved when the backoff upper bound is equal to 1000 dummy loop iterations. The second row of this table The third row shows how much each of these values diverge from the optimal backoff upper bound value (of 1000) and line 4 shows the performance degradation in each case. Notice that the performance

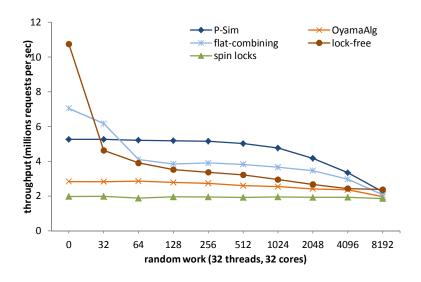


Figure 5.6: Performance of P-Sim for different values of random work.

of P-Sim is very tolerant to overestimated values for the backoff upper bound. More specifically, even a value greater by 120% than the optimal backoff upper bound cause a performance drop of just 12.5%. However, P-Sim is less tolerant to smaller backoff values. Notice that a value for the backoff upper bound smaller by 40% than the optimal causes a 22.7% performance drop. Thus, if the amount of workload cannot be determined precisely, overestimated backoff upper bounds is the preferable choice.

Our next experiment, illustrated in Figure 5.7, studies the performance of P-Sim and flat-combining (the best two algorithms in terms of performance) when n takes values larger than 96, i.e. when a large number of threads are active and the system is heavily over-subscribed. The active threads execute 10^7 Fetch&Multiply in total, as in the previous experiments. Figure 5.7 shows that both P-Sim and flat-combining scale well up to thousands of threads.

Figure 5.8 illustrates how P-Sim performs in cases where an application initiates a large number of threads from which only a small percentage are active, at any given point in time. Specifically, we consider systems where the total number of threads ranges from

backoff upper bound (in hundreds of dummy loop iterations)	6	8	10	12	14	18	22
throughput	4.10	5.00	5.03	5.02	4.95	4.70	4.47
% divergence from backoff upper bound	-40%	-20%	0%	+20%	+40%	+80%	+120%
% performance drop	22.7%	$\approx 0\%$	0%	$\approx 0\%$	1.6%	7%	12.5%

Table 5.4: Sensitivity of P-Sim to the backoff upper bound parameter.

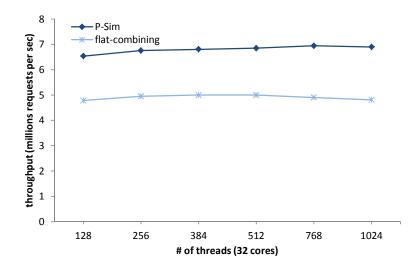


Figure 5.7: Performance of P-Sim for large numbers of threads.

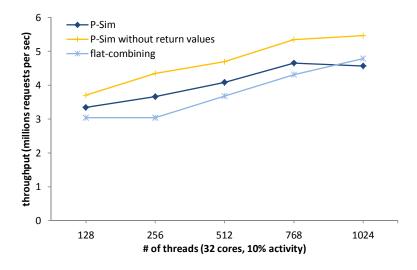


Figure 5.8: Performance of P-Sim when a large number of threads are initiated but only 10% are active.

128 to 1024 and only 10% of them are active at each point in time. The active threads execute 10^7 Fetch&Multiply in total, as previously. We remark that this experiment is in favor of flat-combining: P-Sim requires to read all n bits of the Add object and copy locally n return values independently of how many of the threads are active, whereas in flat-combining inactive threads cause no overhead. Figure 5.8 shows there is indeed a small performance advantage (by a factor of 1.05) of flat-combining in this case. In order to discover the main overheads of P-Sim in this case, we have implemented an additional version of it where no return values are calculated. Figure 5.8 shows that the calculation of the return values is indeed an expensive part of the computation performed by P-Sim. This shows that the overhead of having each thread performing an Add per request does



Figure 5.9: Performance of SimActSet.

not cause any significant overhead even for large values of n. We remark that in the implementation of several shared objects some of the simulated operations do not have a return value. For instance, a push on a stack or an enqueue on a queue, etc., do not require the calculation of a return value. We remark that in cases where the percentage of active threads is larger than 10%, P-Sim achieves much better performance than that shown in Figure 5.8.

We next explore in more detail the performance characteristics for the Add instruction. We compare the performance of SimActSet (discussed in Section 5.1.3) to that of a simple lock-free active set implementation that uses CAS objects to store a set of n bits, one for each thread. Specifically, as in SimActSet, the algorithm uses n/b CAS objects. Whenever a thread wants to apply a JOIN (LEAVE), it repeatedly executes CAS on the appropriate object until it succeeds to change its bit to 1 (0, respectively). GETSET simply reads the CAS objects. An exponential backoff scheme is used to increase the performance of the lock-free implementation.

We executed 10^7 Join and Leave requests, and 10^7 GetSet requests in total; each thread executed $10^7/n$ Join or Leave requests and $10^7/n$ GetSet requests. We measured the average throughput exhibited by each technique. To study the scalability of our technique, we consider systems where the total number of threads is large, i.e. it ranges from 128 to 1024. Again, a random number of (up to 512) dummy loop iterations are executed between the execution of two requests by the same thread. Figure 5.9 illustrates that SimActSet outperforms the active set based on CAS by a factor of up to 1.7. This

is due to the fact that GETSET causes a small number of cache misses in SimActSet, whereas the repeated execution of a CAS results in a larger number of cache misses.

Several modern shared memory machines (e.g. those that employ the x86_64 architecture) include an atomic Add (CAS) instruction on up to 64 bit words in their instruction set. In order to cope with more than 64 threads efficiently, we have implemented the multi-word bit vector of Add (and CAS, for the lock-free algorithm) by storing its words to the minimum possible number of cache lines. In this way, GETSET causes a minimum number of cache misses. Notice that the size of a typical cache line is usually 64 bytes; thus, a single cache line can store one bit for each of up to 512 threads. So, GETSET causes more than one cache miss only if the number of threads is more than 512.

As illustrated in Figure 5.9, the throughput of both algorithms does not change for values of n greater than 16 and smaller than 512, whereas it improves for values larger than 512. This is because all toggle bits that comprise the active set fit in one cache-line in case that n < 512. Thus, all processing cores access the same cache line in this case which results in a lot of contention. On the other hand, when n > 512, the processing cores work on two different cache-lines which reduces the contention (but increases the number of cache misses). Figure 5.9 shows that in this experiment the contention is the dominant performance factor.

5.4 L-Sim: A synchronization algorithm for large objects

In this section, we present a variation of Sim, called L-Sim, which avoids copying the entire state and it can be used to handle objects with large (or even unbounded) state.

5.4.1 Algorithm description

Similarly to P-Sim, L-Sim (Algorithms 11 and 12) employs a shared vector Toggles of n bits (one bit for each thread) and during its jth request, j > 0, thread p_i adds 2^i or -2^i to Toggles depending on whether $j \mod 2 = 1$ or not. L-Sim also employs a set of n single-writer base objects (Announce array on Algorithm 11), one base object for each thread. Each thread starts the execution of a request reg by announcing reg in its

single-writer base object on Announce array (line 1) and by adding 2^i or -2^i to Toggles (line 3).

The main difficulty in designing L-Sim was to ensure that at each point in time, all "up-to-date" threads (i.e. those that have read the current version of State) that are active and execute some request will help the same set of requests. This is achieved by storing in State (S) two versions of the applied bit vector (the first one is called applied, while the second one is called *papplied*). Each time an instance A of Attempt is executed, papplied is updated to store the values found in applied at the beginning of A (line 15); applied is updated based on the values recorded in Toggles (line 16). Whether a request by a thread p_i should be applied or not is determined based on the values read in the *i*-th entry of the arrays applied and papplied of S; if the i-th entry of applied is different than the ith entry of papplied (i.e. $applied[i] \neq papplied[i]$) then the request of thread p_i has not been applied yet and it should be simulated (line 18); otherwise, the request (if any) has already been applied. In the initial value of S, both applied and papplied contain false in all their entries. Thus, the first application of a successful Attempt will result in the simulation of no requests. However, the execution of a successful Attempt stores in Sinformation about the requests that should be simulated by the threads that will read the new value of S. Therefore, all these threads will try to simulate the same set of requests.

In contrast to Sim and P-Sim, the state of the simulated data structure is now shared and it can be updated directly by any thread. For each data item x, L-Sim maintains a struct of type ItemSV. This struct stores the old and the current value of the data, a toggle bit that identifies the position in the val array of the struct where the current data for x should be read from, and a sequence number. Consider that two threads p and q simulate the same request req. It may happen that p is at some earlier point of its execution (e.g., just before executing line 29), whereas q has finished the simulation of req (lines 39-43) and has started updating the shared data structure. Then, it could happen that p reads the updated version for a data item although it should have read the old version. For this reason, q stores the old value (additionally to the current value) in one of the entries of val array and uses the toggle bit appropriately to indicate the updated version. If p discovers that this bad scenario has occurred (line 33), it reads the old value of the data item found in the 1 - toggle entry of its val array. Notice that p should continue executing req to ensure wait-freedom (i.e. to help q in case it fails

```
// list of newly allocated variables
    struct NewVar {
       ItemSV *var:
                                                      // points to the actual struct of the variable
       NewVar *next;
                                                      // points to the next element of the list
    };
    struct NewList {
                                                      // a stack object
       ItemSV *first;
    struct State {
                                                      // this struct is stored in a single base object
       boolean applied[1..n], papplied[1..n];
      int seq;
       NewList *var_list;
                                                      // indirection to a shared stack
       RetVal RVals[1..n];
                                                      // return values
    };
    struct DirectoryNode {
                                                      // variable name
       Name name;
       ItemSV *sv;
                                                      // data item
       Value val;
                                                      // new value of the data item
    };
    struct ItemSV {
                                                      // old and new values of data item
       Value val[0..1];
      int toggle;
                                                      // toggle shows which of val[0..1] is the current value
       int seq;
    };
    shared Integer Toggles = <0,...,0>; // Toggles is implemented as an integer of n bits
    shared State S = \langle F, ..., F \rangle, \langle F, ..., F \rangle, 0, \langle \bot \rangle, \langle \bot, ..., \bot \rangle;
    shared OpType Announce[1..n] = \{\bot, ..., \bot\};
    // Private local variables for thread p_i
    Integer toggle_i = 2^i;
    RetVal ApplyOp(request req){
                                                     // Pseudocode for thread p_i
1
       Announce[i] = req;
                                                      // Announce request req
2
       toggle_i = -toggle_i;
                                                     // 2^i is added to toggle p_i's bit
3
       Add(Toggles, toggle_i);
4
       Attempt();
5
       Attempt();
                                                      // call Attempt to perform req
6
       return S.rvals[i];
                                                      // p_i returns
```

Algorithm 11: Data structures used in L-Sim and pseudocode for LSIMAPPLYOP.

without having performed all the required updates). The seq field is used to discover whether a helper is already obsolete. 'For each set of simulated requests "listed" in S, the required updates are first performed by each thread p_i in local copies of the data items accessed (lines 19-37), and only later they are applied to the shared data structure (lines 39-43). To implement this, each thread p_i uses a local directory D containing structs of type DirectoryNode, where it stores information about each item it accesses during the execution of its current instance of Attempt (lines 33, 34), and performs all its updates first on these copies (line 36). Only after it has finished the simulation of the

```
void Attempt()(request req){
                                                                      // pseudocode for thread p_i
         Pindex q, j;
         State ls, tmp;
         Set lact;
         DirectoryNode D;
         NewVar *pvar = new NewVar(), *ltop;
         ItemSV sv, *psv = new ItemSV();
7
         psv\rightarrow (val, toggle, seq ) = << \bot, \bot >, 0, 0 >;
8
         pvar \rightarrow \langle var, next, \rangle = \langle psv, null \rangle;
9
         for j=1 to 2 do {
10
            D = \emptyset;
                                                                      // initialize directry D
11
            ls = LL(S);
                                                                      // read State struct
                                                                      // read active set
12
            lact = Toggles;
13
            ltop = ls.var\_list \rightarrow first;
                                                                      // read pointer to the current variable list
            tmp.seq = ls.seq + 1;
14
15
            tmp.papplied[1..n] = ls.applied[1..n];
                                                                      // p will attempt to update S with tmp
16
            tmp.applied[1..n] = lact[1..n];
                                                                      // local loop
17
            for a=1 to n do \{
18
                if (ls.applied[q] \neq ls.papplied[q]) {
                                                                     // apply request of thread q
19
                    foreach access of a variable x while applying request Announce[q]{
                       if (x \text{ is a newly allocated variable}) {
20
21
                           if(CAS(ltop \rightarrow next, null, pvar))
22
                               psv = new ItemSV();
23
                               psv \rightarrow \langle val, toggle, seq \rangle = \langle \langle \bot, \bot \rangle, 0, 0 \rangle;
24
                               pvar = new NewVar();
25
                               pvar \rightarrow \langle var, next, \rangle = \langle psv, null \rangle;
26
                                                                      // in any case, use ltop \rightarrow next as the new variable's metadata
                           ltop = ltop \rightarrow next;
                                                                                                  // add variable to local dictionary
                           add < x, ltop \rightarrow var, ltop \rightarrow var.val[0] > to D;
27
28
                                                                                                  // x is not a newly allocated variable
29
                           let svp be a pointer to the ItemSV struct for x;
30
                           if (this access is a read instruction) {
31
                               if (x exists in D) read x from D; // perform the request on the local copy of x (if any)
                               else \{sv = LL(*svp);
32
33
                                  if (tmp.seq == sv.seq) add \langle x, svp, sv.val[1-sv.toggle] \rangle to D;
34
                                  else if (tmp.seq > sv.seq) add \langle x, svp, sv.val[sv.toggle] \rangle to D;
                                                                     // the State read by p is obsolete, start from scratch
35
                                  else goto Line 38:
36
                           } else if (this access is a write instruction) update x in D; // perform request on local copy
                    store into tmp.rvals[q] the return value;
37
            if (!VL(S)) continue;
38
                                                                      // the State read by p is obsolete, start from scratch
39
            for
each record \langle x, svp, v \rangle in D {
                if(svp \rightarrow seq > tmp.seq) break;
40
                                                                     // if all requests have been applied, return
                                                                                                  // if the variable is modified, continue
41
                else if(svp \rightarrow seq == tmp.seq) continue;
                else if(\text{svp} \rightarrow \text{toggle} == 0) SC(*\text{svp}, <<\text{svp} \rightarrow \text{val}[0], \text{v}>, 1, tmp.seq>);// make update visible
42
                else SC(*svp, << v, svp \rightarrow val[1]>, 0, tmp.seq>);
                                                                                                  // make update visible
43
44
            tmp.var_list = new List(); tmp.var_list \rightarrow first = null;
                                                                                                  // re-initiate tmp.var_list
45
                                                                                                  // try to modify S
            SC(S, tmp);
     }
```

Algorithm 12: Pseudocode for L-Sim.

set of requests described in *Announce*, it applies the changes listed in the elements of its directory to the shared data structure (lines 39-43).

Some additional synchronization that should be achieved between different helpers of the same set of requests is when new data items are allocated by these requests; Then, all helpers should use the same allocated ItemSV struct for each of these data items. To solve this problem, S stores a pointer (called var_list) to a list of newly created data

items shared by all threads that read this instance of S. Each time a thread p_i needs to allocate the k-th, $k \geq 1$, such data item, it tries to add a struct of type NewVar as the k-th element of the list (line 21). If it does not succeed, some other thread has already done so, so p uses this struct (by moving pointer ltop to this element on line 13, and by inserting $ltop \rightarrow var$ in its dictionary on line 27).

5.4.2 Correctness proof

In this section, we present the correctness proof of L-Sim. We start by introducing a similar notation to that of Section 5.2.2. Let α be any execution of L-Sim and assume that some thread p_i , $i \in \{1, ..., n\}$, executes $m_i > 0$ requests in α . Let req_j^i be the argument of the jth call of L-Sim by p_i and let π_j^i be the jth instance of Attempt executed by p_i in α (see Figure 5.10). Define as Q_i^j Add instruction of line 3; let $Q_0^i = C_0$. We use Toggles[i], $i \in \{1, ..., n\}$, to denote the i-th bit of Toggles. We denote by $toggle_j^i$ the value of p_i 's persistent local variable $toggle_i$ at the end of req_j^i . The notation of this proof is summarized in Table 5.5.

Lemma 5.16. Consider any j, $0 < j \le m_i$. There are at least two successful SC instructions in the execution interval of π_i^i .

Proof. We prove that during the execution of each iteration of the for loop of line 9, at least one successful SC instruction is performed. If the iteration is completed on line 38 of the pseudocode, the VL instruction returns false. This implies that at least one successful SC instruction occurred between the LL of line 11 and the execution of VL on line 38. Now, suppose that the iteration executes the SC instruction on line 45. If this SC is successful, the claim follows. Otherwise, at least one successful SC instruction was performed between the execution of line 11 and line 45. ■

The following observation is an immediate consequence of the pseudocode (line 2).

Observation 5.1. Consider any j, $0 \le j \le m_i$. The following claims hold:

- 1. if $j \mod 2 = 0$, $toggle_j^i = 2^i$;
- 2. if $j \mod 2 = 1$, $toggle_j^i = -2^i$.

Notation	Description
α	Any execution of L-Sim
C	Any configuration in α
C_0	The initial configuration of α
p_i	The thread which its id is equal to $i, i \in \{1,, n\}$
m_i	Thread p_i executes m_i requests in α
req_j^i	The argument of the j th invocation of LSimApplyOp
$\begin{array}{c} \pi^i_j \\ Q^i_j \\ Q^i_0 \end{array}$	The jth instance of Attempt executed by p_i in α
Q_j^i	The Add instruction of line 3
Q_0^i	The initial configuration C_0
Toggles[i]	The <i>i</i> -th bit of <i>Toggles</i>
$toggle^i_j$	The value of p_i 's persistent local variable $toggle_i$ at the end
	of req_j^i
C_l	The configuration just after the execution of the l th Add in α
C_1^i	The first configuration between C_0 and the end of π_1^i at which
	S.applied[i] is equal to 1
C^i_j	The first configuration between the end of π_{2j-2}^i and the end
	of π_{2j-1}^i such that $S.applied[i]$ is equal to $j \mod 2$
SC_j^i	The SC instruction executed just before C_j^i
LL_j^i	The matching LL instruction of C_j^i
T_j^i	The Read on $Toggles[i]$ executed between LL_j^i and SC_j^i by
	the same thread that executes LL_i^i and SC_i^i
$ ilde{C}^i_j$	The first configuration after C_i^i such that a successful SC in-
	struction is executed
SC_l	The l th successful SC instruction on S in α
LL_l	The matching LL of SC_l
C_l	The configuration just after SC_l
α_l	The prefix of α which ends at SC_l
α_0	The empty execution

Table 5.5: Notation used in the proof of L-Sim.

For each l > 0, let C_l be the configuration resulting after the execution of the lth Add instruction in α .

Lemma 5.17. For each $l \ge 0$, and for each $i \in \{1, ..., n\}$, if p_i has executed $j_i^l \ge 0$ Add instructions by C_l , it holds that $Toggles[i] = j_i^l \mod 2$ at C_l .

Proof. We prove the claim by a (straightforward) induction on l.

Base case (l = 0). Fix any $i \in \{1, ..., n\}$. By the way Toggles is initialized, it follows that Toggles[i] = 0 at C_0 . Since p_i has not performed any request at C_0 , it follows that $j_i^0 = 0$ at C_0 , so that $j_i^0 \mod 2 = 0$ and the claim follows.

Induction hypothesis. Fix any l > 0 and assume that the claim holds for C_{l-1} .

Induction step. We prove that the claim holds for C_l . Assume that the lth Add is executed by some thread p_i and let j_i^l be the number of Add that has been executed by

 p_i until C_l . At C_{l-1} , p_i has executed $j_i^{l-1} = j_i^l - 1$ Add. By the induction hypothesis, $Toggles[i] = j_i^{l-1} \mod 2 = (j_i^l - 1) \mod 2$ at C_{l-1} .

Assume first that $j_i^l \mod 2 = 1$. In such a case, it follows that $j_i^l - 1 \mod 2 = 0$. Induction hypothesis implies that Toggles[i] = 0 at C_{l-1} . By Observation 5.1, it follows that $toggle_{j_l^l-1}^i = 2^i$. During the lth Add instruction, $toggle_{j_l^l-1}^i$ is added to Toggles. Notice that Toggles is updated only by executing Add (line 3). Thus, Toggles remains unchanged between C_{l-1} and the lth Add. It follows that Toggles[i] = 0 just before the execution of the lth Add. Thus, the only change that the lth Add causes on Toggles is to set the ith bit to 1; all other bits remain unchanged.

Fix any $k \neq i$, $k \in \{1, ..., n\}$. Since the lth Add is executed by p_i , it follows that $j_k^l = j_k^{l-1}$. By the induction hypothesis, $Toggles[k] = j_k^{l-1} \mod 2 = j_k^l \mod 2$, as needed. The case where $j_i^l \mod 2 = 0$ is symmetric. \blacksquare

The following is an immediate consequence of Lemma 5.17.

Corollary 5.1. For each j, $0 \le j \le m_i$, the following claims hold:

- 1. $Toggles[i] = j \mod 2$ at Q_i^i ;
- 2. Toggles[i] has the same value between Q_{j-1}^i and Q_j^i .

Lemma 5.18. Consider any execution π_j^i , j > 0, of function Attempt by some thread p_i . S.applied[i] is equal to $v = \lceil j/2 \rceil \mod 2$ just after the end of π_j^i .

Proof. Assume, by the way of contradiction, that $S.applied[i] \neq v$ at the end of π^i_j . Since S.applied[i] is a binary variable, it follows that S.applied[i] = 1 - v at the end of π^i_j . By Lemma 5.16, there are at least two successful SC instructions in the execution interval of π^i_j . It follows that the last successful SC instruction executed in π^i_j writes 1 - v into S.applied[i]. Let SC_x be this SC instruction, let LL_x be its matching LL instruction, let p_x be the thread that executes LL_x and SC_x , and let T_x be the read instruction of line 12 executed by p_x between LL_x and SC_x . Lemma 5.16 implies that there are at least two successful SC instructions in the execution interval of π^i_j . Since SC_x is a successful SC instruction, it follows that all LL_x , T_x and SC_x are executed in the execution interval of π^i_j . By the definition of π^i_j , it follows that π^i_j is executed by the request $req^i_{\lceil j/2 \rceil}$. Corollary 5.1, implies that $Toggles[i] = \lceil j/2 \rceil$ mod 2 between $Q^i_{\lceil j/2 \rceil}$ and before the end

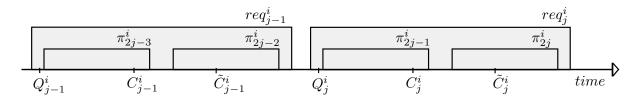


Figure 5.10: An example of an execution of L-Sim.

of π_j^i . Since T_x is executed after $Q^i_{\lceil j/2 \rceil}$ and before the end of π_j^i , it follows that T_x returns $v = \lceil j/2 \rceil \mod 2$ for the *i*th component. The pseudocode (lines 12 and 45) implies that SC_x writes $v = \lceil j/2 \rceil \mod 2 \neq 1 - v$ at S.applied[i], which is a contradiction.

For the rest of the proof we introduce the following notation. Let C_0 be the initial configuration. At C_0 , S.applied[i] is equal to false. Lemma 5.18 implies that just after π_1^i , S.applied[i] is equal to true. Let C_1^i be the first configuration between C_0 and the end of π_1^i at which S.applied[i] is equal to true. Lemma 5.18 implies that just after the end of π_3^i , S.applied[i] is equal to false. Let C_2^i be the first configuration after C_1^i such that S.applied[i] is equal to false. Obviously, C_2^i precedes the end of π_3^i . Consider any request req_j^i , j > 1. Lemma 5.18 implies that just after π_{2j-2}^i , S.applied[i] is equal to $\lceil (j-2)/2 \rceil \mod 2 = (j-1) \mod 2$, while just after π_{2j-1}^i , S.applied[i] is equal to $\lceil (2j-1)/2 \rceil \mod 2 = j \mod 2 \neq (j-1) \mod 2$. Let C_j^i be the first configuration between the end of π_{2j-2}^i and the end of π_{2j-1}^i such that S.applied[i] is equal to $j \mod 2$. Lemma 5.18 implies that just after π_{2j-2}^i , S.applied[i] is equal to $j \mod 2$. Let C_j^i be the first configuration after the end of π_{2j-2}^i such that S.applied[i] is equal to $j \mod 2$. Obviously, C_j^i precedes the end of π_{2j-1}^i . Figure 5.10 illustrates the above notation.

Since the value of S.applied[i] can change only by the execution of SC instructions on S, it follows that just before C_{j-1}^i a successful SC on S is executed. Let SC_j^i be this SC instruction and let LL_j^i be its matching LL instruction. Let T_j^i be the read of Toggles that is executed between LL_j^i and SC_j^i by the same thread.

Lemma 5.19. Consider any j, $0 < j \le m_i$, it holds that T_j^i is executed after Q_j^i and reads $j \mod 2$ in Toggles[i].

Proof. Assume, by the way of contradiction, that T_j^i is executed before Q_j^i . Let π_x be the Attempt that executes T_j^i .

Assume first that j=1. Then, by its definition, SC_1^i (which is executed by π_x after T_1^i) writes to $S \to applied[i]$ a value equal to $\lceil j/2 \rceil \mod 2$; the code (lines 12, 16) implies

that, in this case, T_1^i reads 1 in Toggles[i]. Corollary 5.1 implies that Toggles[i] = 0 between C_0 and Q_1^i . Thus, T_1^i could not read 1 in Toggles[i], which is a contradiction.

Assume now that j > 1. By our assumption that T_j^i is executed before Q_j^i , it follows that LL_j^i , which is executed before T_j^i , precedes Q_j^i . In case that T_j^i follows Q_{j-1}^i , Corollary 5.1 implies that T_j^i reads $(j-1) \mod 2 \neq j \mod 2$ in Toggles[i]. By the pseudocode (lines 12, 16 and 45), it follows that π_x writes the value $(j-1) \mod 2$ into S.applied[i]. By its definition, SC_j^i stores $j \mod 2$ into S.applied[i], which is a contradiction. Thus, T_j^i is executed before Q_{j-1}^i . By its definition, π_{2j-3}^i starts its execution after Q_{j-1}^i and finishes its execution before C_j^i . Lemma 5.16 implies that at least two successful SC instructions are executed in the execution interval of π_{2j-3}^i . Recall that LL_j^i precedes T_j^i and therefore also the beginning of π_{2j-3}^i , while by definition SC_j^i follows the end of π_{2j-3}^i . It follows that SC_j^i is not a successful SC instruction, which is a contraction. \blacksquare

We next prove that the value of S.applied[i] remains the same between SC_{j-1}^i and SC_j^i .

Lemma 5.20. Consider any j, $0 < j \le m_i$. At each configuration C between C_{j-1}^i and C_j^i , it holds that $S.applied[i] = (j-1) \mod 2$.

Proof. Assume, by the way of contradiction, that there is at least one configuration between C^i_{j-1} and C^i_j such that $S \to applied[i]$ is equal to some value $v_x \neq (j-1) \mod 2$. Let C_x be the first of these configurations. Since only SC instructions of line 45 write on base object S, it follows that there is a successful SC instruction, let it be SC_x , executed just before C_x that stores v_x at S.applied[i]. Let π_x be the Attempt that executes SC_x and let T_x be the read instruction that π_x executes on line 12 of the pseudocode. By the definition of C^i_{j-1} and Q^i_{j-1} , it is implied that C^i_{j-1} follows Q^i_{j-1} and precedes Q^i_j . Corollary 5.1 implies that $Toggles[i] = (j-1) \mod 2 \neq v_x$ in any configuration between Q^i_{j-1} and Q^i_j . Since SC_x writes v_x into S.applied[i], the pseudocode (lines 12 and 45) imply that T_x precedes Q^i_{j-1} . It follows that LL_x precedes Q_{j-1} , since LL_x precedes T_x . Therefore LL_x precedes C_{j-1} . This implies that there is a successful SC instruction, which is SC^i_{j-1} , between LL_x and SC_x . Thus, SC_x is a failed SC instruction, which is a contradiction.

By Lemma 5.20 and the pseudocode (line 15), it follows that $S.papplied[i] = 1 - (j \mod 2)$ at C_j^i . Denote by \tilde{C}_j^i be the first configuration after C_j^i such that a successful SC instruction is executed.

Lemma 5.21. \tilde{C}_{j-1}^i precedes C_j^i and follows C_{j-1}^i .

Proof. By the definition of \tilde{C}^i_{j-1} , it is implied that \tilde{C}^i_{j-1} follows C^i_{j-1} . Lemma 5.19 implies that C^i_j follows Q^i_j . By its definition, Q^i_j follows π_{2j-2} . By Lemma 5.18, it follows that C^i_{j-1} precedes the end of π_{2j-3} . Thus, π^i_{2j-2} begins its execution after C^i_{j-1} and ends its execution before C^i_j . By Lemma 5.16, there are at least two successful SC instructions in the execution interval of π^i_{2j-2} . Since, \tilde{C}^i_{j-1} is the first successful SC just after C^i_{j-1} , it follows that \tilde{C}^i_{j-1} precedes the end of π^i_{2j-2} . Therefore, \tilde{C}^i_{j-1} precedes C^i_j .

Lemma 5.22. S.papplied[i] = S.applied[i] in any configuration between \tilde{C}_{j-1}^i and C_j^i (C_j^i is not included).

Proof. By Lemma 5.20, it follows that $S.applied[i] = (j-1) \mod 2$ between C^i_{j-1} and C^i_j . Assume by the way of contradiction that there at least one configuration between \tilde{C}^i_{j-1} and C^i_j such that $S.papplied[i] \neq (j-1) \mod 2$ and let C_x be the first of them. Let SC_x be the SC instruction executed just before C_x and let LL_x be its matching LL instruction. Since, SC_x is a successful SC instruction, LL_x follows \tilde{C}^i_{j-1} . By Lemma 5.20, it follows that $S.applied[i] = (j-1) \mod 2$ between C^i_{j-1} and C^i_j . Thus, LL_x reads $(j-1) \mod 2$ in S.applied[i]. The pseudocode (lines 11 and 15) implies that the SC instruction at \tilde{C}^i_j stores a value equal to $(j-1) \mod 2$ into S.papplied[i], which is a contradiction.

By Lemma 5.22, and by the pseudocode (line 15), the following observation is derived.

Observation 5.2. S.papplied[i] = 1 - S.applied[i] at C_i^i .

The following observation is an immediate derivation of the definition of \tilde{C}^i_j and Observation 5.2.

Observation 5.3. S.papplied[i] = 1 - S.applied[i] in any configuration between C_j^i and \tilde{C}_j^i , \tilde{C}_j^i is not included.

We say that an request req by some thread p_i is applied on the simulated object if (1) the Read instruction on Toggles (line 12), executed by some request req' (that might be req or any other request), includes p_i in the set of threads it returns, (2) procedure Attempt, executed by req' reads in Announce[i], the request type written there by p_i for req and considers it as the new request type for p_i , (3) Attempt by req' calls apply for

req (lines 19 - 37), and the execution of the SC at line 45 (let it be SC_r) on S succeeds. When these conditions are satisfied, we sometimes also say that req' applies req on the simulated object or that SC_r applies req on the simulated object. We next prove that each request req is applied on the simulated object exactly once.

Lemma 5.23. Request req_j^i is applied to the simulated object at configuration C_{3j-1}^i .

Proof. Let p_h be the Attempt that executes the successful SC instruction (let it be SC_h this SC instruction) just before \tilde{C}^i_j . Let LL_h be the matching LL of SC_h . Since, SC_h is a successful SC instruction, it is implied that LL_h follows C^i_j . Observation 5.3 implies that LL_h reads for S.applied[i] a value different from that stored in S.papplied[i]. Therefore, the if statement of line 18 returns true. Thus, a request for thread p_i is applied at \tilde{C}^i_j . Let req' be this request and assume, by the way of contradiction, that $req' \neq req^i_j$. Lemma 5.19 implies that π_h executes its read T_h on Toggles after Q^i_j . By the pseudocode (lines 12, 19), π_h reads Announce[i] after T_h , thus the reading of Announce[i] by π_h is executed between Q^i_j and \tilde{C}^i_j . Since req^i_j writes its request to Announce[i] before Q^i_j , the reading of Announce[i] by π_h returns req^i_j . Thus, π_h applies req^i_j as the request of p_i in the simulated object. \blacksquare

The following corollary is an immediate consequence of Lemma 5.22, Observation 5.3, Lemma 5.23, and of the definition of \tilde{C}_{i}^{i} .

Corollary 5.2. Each request req is applied exactly once.

We are now ready to assign linearization points. Let a be any execution. For each $i \in \{1, ..., n\}$ and $j \ge 1$, we place the linearization point of req_j^i at \tilde{C}_j^i ; ties are broken by the order imposed by identifiers of threads.

Lemma 5.24. Each request req_j^i is linearized within its execution interval.

Proof. Lemma 5.19 implies that Q^i_j precedes C^i_j . Thus Q^i_j precedes \tilde{C}^i_j . Since \tilde{C}^i_j is the first successfull SC on S after C^i_j and (by its definition and by Lemma 5.18) C^i_j precedes the end of π^i_{2j-1} , \tilde{C}^i_j precedes the end of π^i_{2j} . Thus, \tilde{C}^i_j is in the execution interval of req^i_j . Thus, req^i_j is executed in its execution interval.

In order to prove consistency, we introduce the following notation. Denote by SC_l the l-th successful SC instruction on base object S. Obviously, between SC_{l-1} and SC_l ,

l > 1 base object S is not modified. Let it_i be some iteration of for loop of line 9 executed by some thread p_i . Let $SV_r(it_i)$ be the sequence of base objects read by the LL instructions of line 32 by it_i . Denote by $|SV_r(it_i)|$ the number of elements of $SV_r(it_i)$. For each $1 \leq j \leq |SV_r(it_i)|$, denote by $SV_r^j(it_i)$ the prefix of $SV_r(it_i)$ containing the j first elements of $SV_r(it_i)$, i.e. $SV_r^j(it_i) = \langle sv_r^1(it_i), \dots, sv_r^j(it_i) \rangle$, where $sv_r^j(it_i)$ is the jth LL instruction performed by it_i on some base object r. Let $SV_r^0(it_i) = \lambda$ be the empty sequence. Let $V_r(it_i)$ be the sequence of insertions in directory D (lines 33-34) by it_i . Denote by $|V_r(it_i)|$ the number of elements of $V_r(it_i)$. Obviously, it holds that $|SV_r(it_i)| = |V_r(it_i)|$. For each $1 \le j \le |V_r(it_i)|$, denote by $v_r^i(it_i)$ the prefix of $V_r(it_i)$ containing j first elements of $V_r(it_i)$, i.e. $V_r^j(it_i) = \langle v_r^1(it_i), \dots, v_r^j(it_i) \rangle$, where $v_j(it_i)$ is the jth value inserted to directory D. Let $V_r^0(it_i) = \lambda$ be the empty sequence. Let $SV_w(it_i)$ be the sequence of shared base objects accessed by it_i while executing lines 41-42. Denote by $|SV_w(it_i)|$ the number of elements of $SV_w(it_i)$. For each $1 \leq j \leq |SV_w(it_i)|$, denote by $SV_w^j(it_i)$ the prefix of $SV_w(it_i)$ that contains the j last elements of $SV_w(it_i)$, i.e. $SV_w^j(it_i) = \langle svw_1(it_i), \dots, svw_j(it_i) \rangle$, where $svw_j(it_i)$ is the jth operation (lines 41-42) by it_i . Let $SV_w^0(it_i) = \lambda$ be the empty sequence. Let $SV_a(it_i)$ be the sequence of shared base objects allocations during it_i iteration (lines 20-26). Denote by $|SV_a(it_i)|$ the number of elements of $SV_a(it_i)$. For each $1 \leq j \leq |SV_a(it_i)|$, denote by $SV_a^j(it_i)$ the prefix of $SV_a(it_i)$ that contains the j first elements of $SV_a(it_i)$, i.e. $SV_a^j(it_i) = \langle sva_1(it_i), \dots, sva_j(it_i) \rangle$, where $sva_i(it_i)$ is the jth base object allocation by it_i .

Let $SV_{arw}(it_i)$ be the sequence of allocations/reads/writes that it_i performs of base objects in lines 20-43 of the pseudocode. Denote by $|SV_{arw}(it_i)|$ the number of elements of $SV_{arw}(it_i)$. Obviously, it holds that $|SV_{arw}(it_i)| = |SV_a(it_i)| + |SV_r(it_i)| + |SV_w(it_i)|$. For each $1 \leq j \leq |SV_{arw}(it_i)|$, denote by $SV_{arw}^j(it_i)$ the prefix of $SV_{arw}(it_i)$ that contains the j first elements of sequence $SV_{arw}(it_i)$ (i.e. $SV_{arw}^j(it_i) = \langle svarw_1(it_i), \ldots, svarw_j(it_i) \rangle$) where $svarw_j(it_i)$ is the jth base object allocations/reads/writes of base objects performed by it_i .

Lemma 5.25. Let l > 0 be any integer such that $S.applied[i] \neq S.papplied[i]$ at configuration C_{l-1} . Let req_j^i be the value of Announce[i] at C_{l-1} . In any configuration between C_{l-1} and C_l , it holds that $Announce[i] = req_j^i$.

Proof. Assume, by the way of contradiction, that there is at least one configuration between C_{l-1} and C_l , such that $Announce[i] = req_{j'}^i \neq req_j^i$. Let C be the first of these configurations. The pseudocode (line 1) implies that p_i is the only thread that modifies base object Announce[i]. Thus, p_i starts the execution of a new request $req_{j'}^i$ at C, and it holds that j' = j + 1. Since the write on Announce[i] by p_i is executed between C_{l-1} and C_l , it is implied that either $C_{j+1}^i = C_l$ or C_{j+1}^i follows C_l . Since the end of req_j^i precedes C, it follows that either $\tilde{C}_j^i = C_{l-1}$ or \tilde{C}_j^i precedes C_{l-1} . Lemma 5.22 implies that S.applied[i] = S.papplied in any configuration between \tilde{C}_j^i and C_{j+1}^i (C_{j+1}^i is excluded). Thus, it holds that $S.applied[i] = S.papplied[i] \neq S.papplied[i]$ at C_{l-1} .

By the pseudocode (lines 9, 38 and 45) the following observation holds.

Observation 5.4. For each j > 0, it holds that S.seq = j - 1 in every configuration between C_{j-1} and C_j .

By lines 32, 39-42 and 45 of the pseudocode the following observation is derived.

Observation 5.5. Let it_i be an iteration executed by p_i such that the execution of the SC instruction SC_j on line 45 is successful. Let r be the base object accessed by $svw_j(it_i)$, $1 \le j \le |SV_w(it_i)|$. There is at least one successful SC on r instruction between SC_{j-1} and SC_j .

Lemma 5.26. Let r be any shared base object other than S. For any l > 0, the following claims are true:

- 1. At most one successful SC instruction is executed on r between C_{l-1} and C_l .
- 2. In case that a successful SC instruction SC_w is executed on r, it holds that r.seq < l just before SC_w and r.seq = l just after SC_w .
- 3. Let it_i be some iteration of the loop of line 9 executed by a thread p_i that executes at least one successful SC instruction SC_r on r. If LL_r is the LL instruction of line 11 executed by it_i , then LL_r is executed after C_{l-1} .
- 4. Let it_i , $it_{i'}$ be two iterations of the for loop of line 9 executed by threads p_i and $p_{i'}$ respectively, such that that both it_i , $it_{i'}$ execute their LL instructions of line 11

somewhere between C_{l-1} and C_l , l > 0, and $|SV_{arw}(it_i)| \ge |SV_{arw}(it_{i'})|$. If both it_i , $it_{i'}$ execute line 39, just before C_l it holds that $SV_{arw}(it_i) = SV_{arw}(it_{i'})$.

Proof. We prove the claims by induction on l.

Induction hypothesis. Fix any $l \ge 1$ and assume that the claims hold for l

Induction step. We prove that the claims hold for l+1. We first prove Claim 1. Let SC' be the first of the successful SC instruction on r between C_{l-1} and C_l . We prove that r.seq = l just after the execution of SC'. Assume by the way of contradiction that $r.seq = l' \neq j$. Let it_h be the iteration of line 11 executed by some thread p_h that executes SC'. Let LL' be the matching LL instruction of SC'. Since it_i executes successfully line 42 of the pseudocode, the pseudocode (lines 38 and 42) implies that the VL instruction of line 38 returns true. Since LL' is executed by it_i before this VL instruction, it follows that LL' precedes $SC_{j'}$. Thus, the VL instruction of line 38 is executed before $SC_{j'}$. Let $it_{i'}$ be the iteration of the loop of line 11 at which $SC_{j'}$ is executed and let $p_{i'}$ be the thread that executes $SC_{j'}$. Obviously, $LL_{j'}$ has been executed between $C_{l'-1}$ and $C_{l'}$. Since LL' is also executed between $C_{l'-1}$ and $C_{l'}$, the induction hypothesis (Claim 2.ii) implies that $SV_w(it_h) = SV_w(it_q)$. Thus, it_q has also executed an SC instruction on r. By Observation 5.5, there is a successful SC instruction on r between $SC_{l'-1}$ and $SC_{l'}$. Let SC_r be this instruction. By induction hypothesis (claim 1), it follows that r.seq = j' just after the execution of SC_r . Since SC' is a successful SC instruction, LL' follows SC_r . By the pseudocode (lines 41-42), it follows that SC' is not executed, which is a contradiction. Therefore r.seq = j just after the execution of SC_r . We now prove that there is no other successful SC instruction between SC' and C_l on r. Assume by the way of contradiction that at least one successful SC instruction takes place between SC' and C_l . Let SC'' be the first of these instructions. Since, SC'' is a successful SC instruction, it follows that its matching LL instruction LL'' follows SC'. By the pseudocode (lines 41-42), it follows that SC'' is not executed since r.seq = S.seq, which is a contradiction.

Claim 2 is proved by following similar arguments to those of Claim 1.

We now prove Claim 3. Assume by the way of contradiction that LL_p is executed between $SC_{j'-1}$ and $SC_{j'}$, j' < j. Let p_i be the thread that executes $SC_{j'}$ on some iteration it_i . By Claim 1 and by Claim 2, it follows that $r.seq \leq j'$ just before $SC_{j'}$. Thus SC_r is not executed, which is a contradiction. Thus, Claim 3 holds. We now prove Claim 4. It is enough to prove that $svarw_{l'}(it_i) = svarw_{l'}(it_{i'})$, for any $l' \leq |SV_{arw}(it_i)|$, we prove this claim by induction on the number $l' \leq |SV_{arw}|$ of elements of $SV_{arw}(it_i)$. Induction hypothesis. Fix any $l' \geq 1$ and assume that the claims hold for l' - 1.

Induction step. We prove that the claim holds for l'. Distinguish the following cases.

- 1. In case that $svarw_{l'}(it_i) = sva_j(it_i), j \leq |SV_a(it_i)|$, the induction hypothesis, the fact that both it_i and $it_{i'}$ simulate the same deterministic object and the pseudocode (lines 20-27) imply this.
- 2. In case that $svarw_{l'}(it_i) = svw_j(it_i), j \leq |SV_w(it_i)|$, the claim is an immediate implication of the induction hypothesis and the fact that both it_i and $it_{i'}$ simulate the same deterministic object.
- 3. In case that $svarw_{l'}(it_i) = svr_j(it_i), j \leq |SV_r(it_i)|$, the induction hypothesis and the fact that both it_i and $it_{i'}$ simulate the same deterministic object imply that $svarw_{l'}(it_i) = svr_j(it_i) = svr_j(it_{i'}) = svarw_{l'}(it_{i'})$. Claims 1 and 2 and the pseudocode (lines 39-43) imply that $V_r^{l'}(it_i) = V_r^{l'}(it_{i'})$. Thus, the claim holds.

Let α be any execution of the algorithm. Denote by α_i , the prefix of α which ends at SC_i and let C_i be the first configuration following SC_i . Let α_0 be the empty execution. Denote by l_i the linearization order of the requests in α_i .

Lemma 5.27. For each $i \geq 0$, (1) object's state is consistent at C_i , and (2) α_i is consistent.

Proof. We prove the claim by induction on i.

Base case (i=0): The claim holds trivially; we remark that α_i is empty in this case.

Induction hypothesis: Fix any i > 0 and assume that the claim holds for i - 1.

Induction step: We prove that the claim holds for i. By the induction hypothesis, it holds that: (1) object's state is consistent at C_{i-1} , and (2) α_{i-1} is consistent with linearization l_{i-1} . Let req be the request that executes SC_i . If req applies no request on the simulated object, the claim holds by induction hypothesis. Thus, assume that req applies j > 0 requests on the simulated object. Denote by $req_1, ..., req_j$ the sequence of these requests ordered with respect to the identifiers of the threads that initiate them.

Notice that req performs LL_i after C_{i-1} since otherwise SC_i would not be successful. By the induction hypothesis, object's is consistent at C_{i-1} . Lemma 5.26 and Corollary 5.2 imply that all threads that are trying to apply a set of requests between C_{i-1} and C_i do the following (1) apply the same set of requests with the same order, (2) all read the same consistent state of the object, (3) write the same set of base objects with the same values (although only one write succeeds), and (4) none of req_1, \ldots, req_j have been applied in the past.

Given that $req_1, ..., req_j$ are executed by req sequentially, the one after the other in the order mentioned above, it is a straightforward induction to prove that (1) for each $f, 0 \le f \le j$, request req_f returns a consistent response; moreover, $S \to st$ is consistent and once line 14 has been executed by req for all these requests. Therefore, $S \to st$ is consistent after the execution of req's successful SC. This concludes the proof of the claim.

Theorem 5.6. L-Sim is a linearizable, wait-free implementation of a universal object. The number of shared memory accesses performed by L-Sim is O(kW).

5.5 SimStack: A wait-free implementation of a shared stack

In this section, we present a wait-free implementation of a stack based on P-Sim, which is called SimStack (Algorithm 13). Performance evaluation of SimStack, is also provided.

5.5.1 Algorithm description

In SimStack, the stack is implemented as a linked list of nodes; a pointer *top* points to the topmost element of this list. P-Sim is employed to atomically manipulate *top*. Thus, the state *st* of the simulated object stores just this pointer and not the entire stack state. This is accomplished by defining State to be a pointer to a struct of type node (line 2).

When a thread initiates a Push or a Pop request, it allocates a struct of type Request, initiates it appropriately, and simply calls P-Sim with this struct as a parameter. The pseudo-code for the sequential operations, push and pop, is also presented in Algorithm 13.

Theorem 5.7. SimStack is a linearizable wait-free implementation of a concurrent stack.

5.5.2 Performance Evaluation

We compare the experimental performance of SimStack with that of state-of-the-art concurrent stack implementations, like the lock free stack implementation presented by Treiber in [58], the elimination back-off stack [35], a stack implementation based on CLH spin lock [23, 47], and a linked stack implementation based on flat-combining [33, 34]. We remark that the implementation based on flat-combining uses the same pseudo-code for Push and Pop, i.e. that presented in Algorithm 13.

Our experiment is of the same nature as that performed by Michael and Scott for queues in [50]. More specifically, 10⁷ pairs of a Push and a Pop, in total, were executed

```
typedef struct {
       Data data;
       Node *next;
    } Node;
   typedef struct {
       Node *top;
    } State;
    void Push(ArgVal arg, ThreadId i){
                                                        // Code for Push
       PSIMAPPLYOP(<push, arg>, i);
    Node *Pop(ThreadId i){
                                                        // Code for Pop
       Node *ret;
       ret = PSIMAPPLYOP(<pop, \bot>, i);
5
       return ret;
    void push(State *pst, ArgVal arg){
                                                        // Allocate a new node
6
       nd = allocate a new node;
                                                        // Write node's information
7
       nd \rightarrow data = arg;
8
       nd \rightarrow next = pst \rightarrow top;
                                                        // top→next points to the top of stack
9
       pst \rightarrow top = nd;
    Node *pop(State *pst){
       Node *ret;
10
                                                        // Compute the return value for thread p_i
       ret = pst \rightarrow top;
11
       if (pst \rightarrow top \neq \bot)
                                                        // Pop a node from the list
12
          pst \rightarrow top = pst \rightarrow top \rightarrow next;
13
       return ret;
    }
```

Algorithm 13: Implementation of Pop and Push for SimStack.

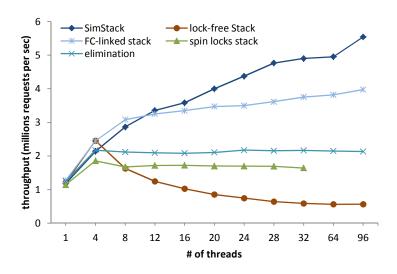


Figure 5.11: Performance of SimStack.

as the number of threads n increases. The average throughput was measured; the results are illustrated in Figure 5.11. Again, for each value of n, the experiments have been performed 10 times and averages have been taken. As in previous experiments for P-Sim, we have simulated a random workload by executing a random number of (at most 512) iterations of a dummy loop after the completion of each request. To reduce the overheads for the memory allocation of the stack nodes, we use the Hoard memory allocator [18] to allocate an entire pool of nodes (instead of allocating one node each time); when all the elements of a pool have been used, we ask for the allocation of a new pool of nodes.

As shown in Figure 5.11, all algorithms scale well up to 4 threads but SimStack outperforms all other implementations for n > 12. More specifically, SimStack is up to 2.94 times faster than the lock-free stack, up to 2.58 times faster than the spin-lock based stack, up to 2.57 times faster than the elimination back-off stack, and up to 1.35 times faster than flat-combining.

Similarly to the experiment of the Fetch&Multiply object (Figure 5.2), CLH spin locks achieve almost constant throughput for different values of n. The lock-free implementation suffers from increased contention, so its performance degrades as n increases. As expected, the elimination backoff stack achieves much better performance than the lock-free implementation and the spin-lock based implementations in most cases. Sim-Stack and flat-combining significantly outperform the other stack implementations. For small numbers of n, flat-combining performs a little better than SimStack, but for n > 12,

SimStack exhibits better performance than flat-combining (for similar reasons to those presented in Section 5.3).

5.6 SimQueue: A wait-free implementation of a shared queue

In this section, we present a wait-free implementation of a queue based on P-Sim, which is called SimQueue (Algorithms 14 and 15). Performance evaluation of SimQueue, is also provided.

5.6.1 Algorithm description

Designing a queue implementation using P-Sim is not as simple as implementing a stack, basically because an efficient such implementation should allow the enqueuers and the dequeuers to run independently. To achieve this, we employ two instances of a slightly modified version of P-Sim (Algorithms 14-16), one for the enqueuers, called Enq-PSim, and one for the dequeuers, called Deq-PSim. The queue is linked using a next pointer field in each node. We denote by EnqS and DeqS the variable S in each of the instances of P-Sim for the enqueuers and the dequeuers, respectively (lines 3-4). Pointer $DeqS \rightarrow st.head$ points to the first element of the simulated queue. The queue initially contains a dummy node; the dummy node is always the first node of the queue. This allows the dequeuers to work independently of the enqueuers. Specifically, the dequeuers manipulate the head of the queue which is never updated by any enqueuer. Thus, DeqState is a struct which contains just a pointer to the head of the queue.

Whenever a thread p performs an enqueue request, it helps only other active enqueuers (ignoring currently active dequeuers). Thread p creates a local queue of nodes, one for each enqueuer it helps. If the SC of line 35 by p is successful, a pointer to the first element of p's local queue and a pointer to its last element are stored in $EnqS \to st$. These pointers are $EnqS \to st.first$ and $EnqS \to st.last$. Moreover, the previous value of $EnqS \to st.last$ is stored in $EnqS \to st.tail$. Thus, EnqState is a struct containing these three pointers.

We remark that at configuration C resulting from the execution of the successful SC by p, the simulated queue is supposed to contain not only the elements of the list

```
typedef struct {
       Data data;
       Node *next:
    } Node;
   typedef struct {
                                           // Implementation of State for enqueuers
       Node *tail:
                                           // pointer to previous value of queue's tail
       Node *first:
                                           // pointer to the first element of the newly enqueued nodes
       Node *last;
                                           // pointer to the last element of the newly enqueued nodes
    } EngState;
   typedef struct {
                                           // Implementation of State for dequeuers
       Node *head;
                                           // pointer to the head of the queue
    } DegState;
    // Initially, EngS points to a struct with value \langle \langle nd_0, \bot, \bot \rangle, 0, \langle \bot, \ldots, \bot \rangle \rangle,
    // where nd_0 is the dummy node that is initially placed in the queue
    shared StRec *EngS;
    // Initially, DegS points to a struct with value \langle \langle nd_0, \perp, \perp \rangle, 0, \langle \perp, \ldots, \perp \rangle \rangle
    shared StRec *DeqS;
    void Enqueue(ArgVal arg, ThreadId i){
                                                          // Code for ENQUEUE
       Enq-PSim(<enqueue, arg>, i);
                                                          // Call an instance of P-Sim for enqueuers
    Node *Dequeue(ThreadId i){
                                                          // Code for Dequeue
       Node *ret = Deq-PSim(< dequeue, \perp >, i); // Call an instance of P-Sim for dequeuers
       return ret;
    void enqueue(EnqState *pst, ArgVal arg) {
       Node *new_node;
8
       new_node = allocate a new struct Node;
9
       new\_node \rightarrow data = arg;
10
       \text{new\_node} \rightarrow \text{next} = \bot;
       if (pst \rightarrow first == \bot) pst \rightarrow first = new\_node;
11
12
       else pst\rightarrowlast\rightarrownext = new_node;
13
       pst \rightarrow last = new\_node;
    Node *dequeue(DeqState *pst) {
       Node *ret = \perp;
14
       ret = pst \rightarrow head \rightarrow next;
15
       if (ret != \bot)
16
          pst \rightarrow head = ret;
17
       return ret;
```

Algorithm 14: Data structures for SimQueue, the implementation of ENQUEUE and DE-QUEUE in SimQueue, and the implementations (enqueue and dequeue) of the sequential versions of enqueue and dequeue.

```
void Attempt(ThreadId i) {
                                                    // Code for Attempt
      boolean ltoggles[1..n];
                                                    // ltoggles is implemented as an integer
      StRec *ls_ptr;
      boolean dFlag;
18
      for j=1 to 2 do{
19
         ls_ptr = LL(S);
                                                    // read the pointer stored in S
20
         Pool[i][index_i] = *ls_ptr;
                                                    // Create a copy of current state
21
         if (VL(S) == 0)
22
            continue;
23
         ltoggles = Toggles;
                                                    // Read the vector of toggles
24
         if (Announce[i].func==enqueue) EnqLinkQueue(&Pool[i][index<sub>i</sub>].st);
25
         dFlag = true;
26
         for l=1 to n do {
            // If p_i has a request that is not applied vet
            if(ltoggles[l] \neq Pool[i][index_i].applied[l]) {
27
28
               if (Announce[i].func== dequeue) {
29
                 if (dFlag == true) dFlag = DeqLinkQueue(Pool[i][index_i].st);
                 if (dFlag == true) {
30
                    // Apply the request and compute return value
31
                    apply Announce[l] on Pool[i][index_i].st
                    and store the return value into Pool[i][index_i].rvals[l];
32
                 } else store \perp to Pool[i][index<sub>i</sub>].rvals[l];
               } else {
                 // Apply the request and compute return value
33
                 apply Announce[l] on Pool[i][index_i].st
                 and store the return value into Pool[i][index_i].rvals[1];
              Pool[i][index_i].applied[l] = ltoggles[l];
34
         if(SC(S, \&Pool[i][index_i]))
                                                    // Try to change the contents of S
35
36
            index_i = (index_i + 1) \mod 2;
                                                    // If success, p_i uses the next struct
37
         BackoffCalculate():
    }
```

Algorithm 15: Pseudocode for the Attempt in SimQueue.

addressed by $DeqS \to st.head$, but also the elements that are stored in p's local queue (addressed by $EnqS \to st.first$), in the order they are met in these two lists with the first element being that pointed to by $DeqS \to st.head$. This is so, despite the fact that at C, $EnqS \to st.tail \to next$ does not point to the node pointed to by $EnqS \to st.start$. However, an update on $EnqS \to st.tail \to next$ to point to this node must occur before the application of the next set of simulated requests. To achieve this, the enqueuers call EnqLinkQueue, where they try to update (with the CAS of line 39) the next field of the node pointed to by $EnqS \to st.tail$ to point to $EnqS \to st.start$ (connecting in this way the two parts that store the state of the simulated queue).

```
void EnqLinkQueue(State *pst) {
38
        if (pst \rightarrow first \neq \bot) {
39
            CAS(pst \rightarrow tail \rightarrow next, \perp, pst \rightarrow first);
40
            pst \rightarrow tail = pst \rightarrow last;
41
            pst \rightarrow first = \bot;
42
            pst \rightarrow last = \bot;
         }
     }
     boolean DeqLinkQueue(State *pst) {
         StRec *tmpS;
         Node *first, *tail;
43
        if (pst \rightarrow head \rightarrow next == \bot) {
            tmpS = LL(EnqS); // EnqS is the variable S of P-Sim's instance for enqueuers
44
45
            tail = tmpS \rightarrow st.tail;
            first = tmpS \rightarrow st.first;
46
            if (VL(EnqS))
47
                if (first \neq \bot) CAS(tail\rightarrownext, \bot, first);
48
49
        if (pst \rightarrow head \rightarrow next == \perp) return false;
50
         else return true;
```

Algorithm 16: Pseudocode for EnqLinkQueue and DeqLinkQueue in SimQueue.

A dequeue helps only active dequeuers. To ensure consistency, each dequeue request also executes a CAS (line 48 of DeqLinkQueue) to link the two parts of the simulated queue in a way similar to what enqueue requests do (line 39). The pseudocode for SimQueue appears in Algorithms 14-16. Notice that ENQUEUE simply calls Enq-PSim with parameters a pointer to enqueue, which is a function containing the enqueue sequential implementation, its argument, and the thread id. Similarly, Dequeue calls Deq-PSim with parameters a pointer to dequeue, which is a function containing the dequeue sequential implementation, and the thread id.

5.6.2 Correctness proof

Let α be any execution of SimQueue. Denote by SC_m , $m \geq 0$, the mth successful SC instruction on EnqS executed in α , denote by LL_m its matching LL, let p_{i_m} be the thread that executes SC_m , and let ls_{i_m} be the element of Pool used by p_{i_m} during the instance of Attempt that executes SC_m . Denote by C_m the configuration that results from the execution of SC_m . Let $tail_m$, $first_m$, and $last_m$ be the values of $EnqS \rightarrow st.tail$, $EnqS \rightarrow st.first$, and $EnqS \rightarrow st.last$, respectively, at C_m . Let $tail_0$ be a pointer to the dummy

node nd_0 that is initially placed in the queue, and let $first_0$ and $last_0$ be \bot . Obviously, between SC_m and SC_{m+1} , EnqS is not modified. Denote by CAS_m the mth successful CAS executed in α .

We remark that the proof of P-Sim up to Lemma 5.15 which states that each request is applied exactly once, does not depend on the state of the object. Since EnqLinkQueue does not access Toggles or the applied field of EnqS, it follows that each ENQUEUE request req in α is applied exactly once. Let req' be the ENQUEUE request that applies req. By definition and by the pseudocode (line 33), it follows that req' calls enqueue for req. We call node allocated for req in α the node that is allocated by this instance of enqueue.

As in the correctness proof of P-Sim, we linearize each ENQUEUE at the point that the successful SC of the Attempt of the request that applies the ENQUEUE is executed; ties are broken by the order imposed by threads' identifiers.

Denote by α_m the prefix of α which ends at SC_m . Let α_0 be the empty execution. Denote by E_m the sequence of the ENQUEUE requests applied up until C_m , in the order defined by their linearization points; let $E_0 = \lambda$, i.e. E_0 is the empty sequence. Denote by $E_m - E_{m-1}$ the suffix of E_m that does not contain any of the instances of ENQUEUE in E_{m-1} .

Lemma 5.28. No thread executes lines 39-42 and lines 44-48 of the code between C_0 and C_1 .

Proof. Fix any request req (ENQUEUE or DEQUEUE) that is initiated between C_0 and C_1 and let req' be the request that applies req; denote by p_i the thread that initiates req'. Let ls_i be the Pool element used by p_i during the execution of the Attempt of req'. By initialization, $ls_i \to st.tail$ stores a pointer to the dummy node at C_0 ; moreover, $ls_i \to st.first = \bot$ and $ls_i \to st.last = \bot$ at C_0 .

Assume first that req is an ENQUEUE request. By the pseudocode, thread p_i calls EnqLinkQueue before executing the for loop of line 26. Since $ls_i \to first$ can change only if p_i calls enqueue and this occurs only in the body of the for loop of line 26, it follows that the condition of line 38 of EnqLinkQueue is evaluated by p_i to false. Therefore, p_i does not execute lines 39-42 between C_0 and C_1 .

Assume now that req is a DEQUEUE request. By initialization, $ls_i \to st.head$ stores a pointer to the dummy node at C_0 ; moreover, the next field of this dummy node is equal to \bot . Since head changes only by executing line 16, it is a straightforward induction to show that each time the if statement of line 15 is executed between C_0 and C_1 , its condition is evaluated to false. It follows that the condition of line 48 of DeqLinkQueue is evaluated to false. Therefore, lines 44-48 of DeqLinkQueue are not executed by p_i between C_0 and C_1 . \blacksquare

Lemma 5.29. Fix any index m > 0. The following claims hold for C_m :

- 1. If m > 1, CAS_{m-1} is the only successful CAS executed between SC_{m-1} and SC_m ; CAS_{m-1} is performed on $tail_{m-1} \to next$ and writes the value $first_{m-1}$ there.
- 2. Let nd_0, \ldots, nd_{q_m} be the nodes that are traversed, in order, if, at C_m , the next pointers are followed starting from node nd_0 . Then, for each $j, 1 \leq j \leq q_m$, nd_j is the node allocated in α for the Enqueue that corresponds to the jth Enqueue in E_{m-1} ; moreover, tail_m points to nd_{q_m} at C_m .
- 3. Let nd'_1, \ldots, nd'_{f_m} be the nodes that are traversed, in order, if, at C_m , the next pointers are followed starting from the node pointed to by $first_m$. Then, $f_m > 0$ and for each j, $1 \le j \le f_m$, nd'_j is the node allocated in α for the Enqueue that corresponds to the jth Enqueue in $E_m E_{m-1}$, and nd'_{f_m} is the node pointed to by $last_m$.

Proof. We prove the claim by induction on m.

Induction Base (m = 1). Claim (1) holds trivially. We continue to prove claim (2). By the pseudocode and by Lemma 5.28, it follows that the value of $ls_{i_1} \to st.tail$ does not change until SC_1 . Recall that, initially, $ls_{i_1} \to st.tail$ points to the dummy node. Since each thread works on distinct elements of the *Pool* array, it follows that $ls_{i_1} \to st.tail$ points to the dummy node at C_1 . So, $tail_1$ points to nd_0 at C_1 . Moreover, Lemma 5.28 and the pseudocode (lines 8-10, 39, and 48) imply that the next field of the dummy node points to \bot at C_1 , thus $q_1 = 0$. This concludes the proof of claim (2).

We finally prove claim (3). Recall that $ls_{i_1} \to st.first = \bot$ and $ls_{i_1} \to st.last = \bot$ at C_0 . Lemma 5.28 implies that the values of $ls_{i_1} \to st.first$ and $ls_{i_1} \to st.last$ do not

change by executing lines 41 and 42 of EnqLinkQueue. Thus, claim (3) is implied by the correctness of P-Sim.

Induction hypothesis. Fix any index m > 1 and assume that the claim holds for every 0 < m' < m.

Induction step. We prove the claim for m.

We start by proving claim (1). We first prove that p_{im} executes the CAS of line 39 during the execution of EnqLinkQueue. By induction hypothesis (claim (3)), $f_{m-1} > 0$, so $first_{m-1} \neq \bot$ at C_{m-1} . By the definition of C_{m-1} and C_m , EnqS is not modified between C_{m-1} and C_m . Since SC_m is a successful SC instruction, it follows that p_{im} executes LL_m between C_{m-1} and C_m . By the pseudocode (lines 19 and 20), it follows that at the configuration C that results from the execution of line 21 by p_{im} , it holds that $ls_{im} \to st.first = first_{m-1}$, $ls_{im} \to st.tail = tail_{m-1}$ and $ls_{im} \to st.last = last_{m-1}$; moreover, the value of $ls_{im} \to st.first$ does not change between C and the execution of line 38 of EnqLinkQueue by p_{im} . Thus, the condition of the if statement of line 38 is evaluated to true and p_{im} executes the CAS of line 39 (which we denote by CAS' in the rest of the proof).

We next argue that CAS' is executed on $tail_{m-1} \to next$. Recall that $ls_{i_m} \to tail = tail_{m-1}$ at C. By the pseudocode, it follows that between C and the execution of line 39 of EnqLinkQueue by p_{i_m} , the value of $ls_{i_m} \to st.tail$ does not change. Thus, by the pseudocode (lines 19), it follows that CAS' is executed on $tail_{m-1} \to next$.

By the induction hypothesis (claim (2)), it follows that $tail_{m-1} \to next = \bot$ at C_{m-1} . If CAS' fails, it follows that at least one successful CAS is executed on $tail_{m-1} \to next$ between C_{m-1} and the execution of CAS'; let CAS_x be the first such CAS.

We next argue that $CAS_x = CAS_{m-1}$ by proving that each CAS on any variable other than $tail_{m-1} \to next$ which is executed between C_{m-1} and the execution of CAS_x fails. Let $CAS_y \neq CAS_x$ be any CAS that is executed between C_{m-1} and the execution of CAS_x . By the pseudocode (lines 19-21, and 44-47), it follows that CAS_y is executed on $tail_j$ for some $j, 1 \leq j < m$. Notice that once the next field of a node changes to a value which is not \bot , then it never becomes \bot again (since the structures of type Node are not recycled). This, and induction hypothesis (claims (1), (2), and (3)) imply that for each $j, 1 \leq j < m$, $tail_j$ points to a distinct node; moreover, if j < m - 1, $tail_j \to next \neq \bot$ after C_{j+1} . So, for each $j, 1 \leq j < m - 1$, $tail_j \to next \neq \bot$ after C_{m-1} . It follows that CAS_y is not

successful. Thus, $CAS_x = CAS_{m-1}$. Therefore, CAS_{m-1} is executed on $tail_{m-1} \to next$ and writes the value $first_{m-1}$ there. Once $tail_{m-1} \to next$ changes to a non- \bot value, no other CAS on it can succeed. Recall that the same is true for all other CAS instructions that are executed on variables other than $tail_{m-1} \to next$. This concludes the proof of claim (1).

We continue to prove claim (2). Recall that p_{i_m} executes the CAS of line 39 of EnqLinkQueue, and therefore it also executes lines 40-42 of EnqLinkQueue. Let C' be the configuration that results when p_{i_m} finishes the execution of EnqLinkQueue. Since ls_{i_m} points to one of the Pool elements owned by p_{i_m} (so no other thread can change ls_{i_m}), the pseudocode (lines 19-20) implies that $ls_{i_m} \to st.tail = last_{m-1}$, $ls_{i_m} \to st.first = \bot$, and $ls_{i_m} \to st.last = \bot$, at C'; moreover, the value of $ls_{i_m} \to st.tail$ does not change from C' to C_m . By the pseudocode (lines 39, 48) it follows that $last_{m-1} \to next$ does not change from C_{m-1} to C_m . Thus, $ls_{i_m} \to st.tail \to next = \bot$ at C_m . Notice that $tail_m = ls_{i_m} \to st.tail$ at C_m . Claim (2) now follows by induction hypothesis (claims (1), (2), and (3)) and by the way linearization points are assigned to the Enqueue

We finally prove (3). Recall that $ls_{i_m} \to st.first = \bot$, and $ls_{i_m} \to st.last = \bot$, at C'. By definition, C' precedes the execution of the for loop of line 26 by p_{i_m} . It follows that claim (3) can be derived by the correctness of P-Sim and by the way linearization points are assigned to Enqueue requests. \blacksquare

We continue to study the behavior of the dequeuers. We first describe how to assign linearization points to each instance of Dequeue executed in α .

Recall that $DeqS \to st.head$ initially points to nd_0 , i.e. to the initial dummy node. Lemma 5.29 implies that, for each m, at C_m , the nodes which can be reached by following next pointers, starting from the initial dummy node, contain the same values, in order, as those of the queue that would result if the Enqueue requests in E_{m-1} were applied sequentially to a queue that initially contains only a dummy node initialized in the same way as nd_0 . Moreover, the pseudocode of Attempt is different than that of P-Sim in the following: (1) for each Dequeue that is simulated locally by any thread, DeqLinkQueue may be called, and (2) if for some Dequeue request req, the execution of DeqLinkQueue returns false, then the response value for it and for all Dequeue requests that are simulated by the same Attempt after req are set to \bot .

We say that a dequeue request req initiated by some thread p_i is applied if there is some request req' (that might be req or some other request) for which all the following conditions hold: (1) the last Read on Toggles that is executed by req' returns a value for its ith bit which is different from the value returned by the last Read on $DeqS \to applied[i]$ (line 20) executed by the Attempt of req', (2) req is recorded in Announce[i] when the last read of Toggles is executed by the Attempt of req', and (3) the execution of the SC of line 35 on DeqS by the Attempt of req' succeeds. When these conditions hold, we sometimes say that req' applies req.

Since the new version of Attempt handles Toggles and the applied field of DeqS in the same way as the Attempt of P-Sim, it can be proved, by using the same arguments as those presented for P-Sim up until Lemma 5.15, that each instance of Dequeue in α is applied exactly once.

Fix any request req' such that req' applies a bunch of DEQUEUE requests all of which return values different from \bot . We linearize the bunch of requests applied by req' at the point that the successful SC (line 35) is executed by req'; ties are broken by the order imposed by threads' identifiers.

Fix any request req' such that req' applies a set Δ of Dequeue requests that return \bot and possibly some other Dequeue requests that have a non \bot response. Let req be the Dequeue request from Δ that has been initiated by the thread with the smallest identifier; let p_i be this thread. Denote by DLQ the instance of DeqLinkQueue that is executed during the ith iteration of the last execution of the for loop of line 26 performed by the instance of Attempt executed by req'; the definition of req and the pseudocode imply that DeqLinkQueue is indeed called during the ith iteration of this for loop, so DLQ is well-defined. We linearize all the Dequeue requests applied by req' (independently of whether they return a value equal to \bot or not) at the point that line 43 of DLQ is executed by req'; ties are broken by the order imposed by threads' identifiers.

In order to prove consistency, we introduce the following notation. Denote by SC'_m , m > 0, the mth successful SC instruction in α and let LL'_m be its matching LL; notice that SC'_m may be an SC on either EnqS or on DeqS. Obviously, between SC'_m and SC'_{m+1} , neither EnqS nor DeqS is modified. Denote by α_m , the prefix of α which ends at SC'_m and let C'_m be the configuration that results from the execution of SC'_m ; let $C'_0 = C_0$. Let

 α_0 be the empty execution. Denote by L_m the sequence of the requests in α_m in the order defined by their linearization points; let $L_0 = \lambda$, i.e. L_0 is the empty sequence.

Let $EnqS_m$ and $DeqS_m$ be the values of variables EnqS and DeqS, respectively, at C_m . Let $H'_m = nd_1 \dots nd_{q_m}$ be the sequence of nodes that are traversed, in order, if, at C_m , we follow the next pointers, starting from the node pointed to by $DeqS_m \to st.head$, up until we reach a node whose next field is equal to NULL; nodes nd_1, \dots, nd_{q_m} are the reachable nodes from the node pointed to by $DeqS_m \to st.head$ at C_m . Let $H''_m = nd'_1 \dots nd'_{f_m}$ be the sequence of nodes that are traversed, in order, if, at C_m , we follow the next pointers starting from the node pointed to by $first_m$ up until we reach a node whose next field is equal to NULL; nodes nd'_1, \dots, nd'_{f_m} are the reachable nodes from the node pointed to by $first_m$ at C_m . If at C_m , $EnqS_m \to st.tail \to next$ points to $EnqS_m \to st.first$, then let H_m be the sequence of values, in order, contained in the nodes in H'_m (notice that in this case H''_m is a suffix of H'_m); otherwise, let H_m be the sequence of values, in order, contained in the nodes in H'_m (notice that in contained in the nodes in $H'_m \cdot H''_m$.

Let Q_m be the queue that is created if the requests in L_m are applied sequentially on a queue that initially contains a dummy node initialized in the same way as the initial dummy node in α . Let S_m be the sequence of values, in order, contained in the nodes of Q_m . Let H_0 and S_0 be sequences containing only one value each, that of the initial dummy node.

Lemma 5.30. For each $m \geq 0$, the following claims hold: (1) $H_m = S_m$, and L_m is a linearization order for α_m .

Proof. By induction on m.

Base Case. The claims hold trivially for m=0.

Induction Hypothesis. Let m > 0, and assume that the claims hold for m - 1.

Induction Step. We prove that the claims hold for m. Suppose that $L_{m-1}-L_m$ contains ENQUEUE requests only. Then, SC'_m is a successful SC on EnqS. In this case, the claims hold by induction hypothesis, Lemma 5.29, and the fact that ENQUEUE returns ack.

Assume next that $L_{m-1} - L_m$ contains a set D of DEQUEUE requests. Let SC'_d be the first successful SC on DeqS after C'_{m-1} . Notice that $d \geq m$. Let req_d be the DEQUEUE request that executes SC'_d , let p_d be the thread that initiated req_d , and let ls_d be the element of Pool used by p_d during the instance of Attempt that executes SC'_d .

Assume first that all Dequeue requests in D return a value other than \bot . Then, by the way linearization points are assigned, it follows that d = m. In this case, the induction hypothesis, Lemma 5.29, and the correctness of P-Sim, imply that the claims hold.

Assume finally that some requests applied by req_d return \bot . We first argue that all DEQUEUE requests in D are applied by req_d . Assume, by contradiction, that there is at least one DEQUEUE request $req_{d'} \neq req_d$ that applies some of the DEQUEUE requests in D. By definition of SC'_d , $req_{d'}$ applies its SC which we denote by $SC'_{d'}$, after SC'_d . However, by the pseudocode (lines 19, 29, and 35) and by the way that linearization points are assigned, it follows that $req_{d'}$ executes the LL that matches $SC'_{d'}$ before SC'_m and therefore before SC'_d . Thus, $SC'_{d'}$ cannot be successful. This contradicts the assumption that $req_{d'}$ applies some of the DEQUEUE requests in D. Therefore, all DEQUEUE requests in D are applied by req_d .

Let req be the Dequeue request among those that return \bot in D that has been initiated by the thread with the smallest identifier; let p_i be this thread. Denote by DLQ the instance of DeqLinkQueue that has been executed during the ith iteration of the last execution of the for loop of line 26 performed by the instance of Attempt of req_d ; the definition of i and the pseudocode imply that DeqLinkQueue is indeed called during the ith iteration of this for loop, so DLQ is well-defined. Let C, C', and C'' be the configurations just before the execution of lines 43, 48, and 49, respectively, of DLQ by req_d . By the way linearization points are assigned, C precedes the execution of SC'_m .

Denote by h_i the value of $ls_d.st.head$ after the (i-1)st iteration of the for loop of line 26 has been executed by req_d . The induction hypothesis, Lemma 5.29, the correctness of P-Sim, and the pseudocode, imply that after the execution of the first (i-1) iterations of the for loop of line 26 by req_d (i.e. after those iterations that cope with DEQUEUE requests that return a value not equal to \bot), the claims hold. Since the request that is processed during the ith iteration is req which returns \bot , the pseudocode (lines 43-49, and 14-16) implies that $ls_d.st.head$ is equal to h_i at C.

Let SC_e be the last successful SC on EnqS preceding SC'_m . If there is no such SC, then all Dequeue requests in D return \bot and are linearized before the first Enqueue request is linearized. This and the induction hypothesis imply that the claims hold.

So, assume that SC_e is well defined. Suppose that SC_e writes the value $EnqS_e$ in EnqS. Since C occurs between SC'_{m-1} and SC'_m , it follows that SC_e precedes C. We

first argue that at least one successful CAS is executed between SC_e and C'. Assume, by contradiction, that this is not the case. Since the response value for req is \bot , the pseudocode (lines 43, 49, 25, 28-30, and 14-16) implies that DLQ returns false. Since p_d is the only thread updating ls_d and $ls_d.st.head \to next = \bot$ at C'', the pseudocode implies that $ls_d.st.head \to next = \bot$ at C. Thus, DLQ evaluates the condition of the if statement of line 43 to true. Since no successful CAS is executed after SC_e , Lemma 5.29 implies that $EnqS \to st.tail \to next = \bot$ and $EnqS \to st.first \neq \bot$ at each configuration between SC_e and C'. Since the LL of line 44 comes after C, DLQ reads the value for EnqS written by SC_d . Thus, the condition of the if statement of line 48 is evaluated to true and the CAS of line 48 is executed by DLQ and it is successful. This contradicts our assumption that no successful CAS is executed on between the execution of SC_e and C'. Thus, there is at least one successful CAS that is executed between the execution of SC_e and C'. We remark that this CAS is executed on $EnqS_e \to st.tail \to next$. Notice that once a successful CAS is executed on $EnqS_e \to st.tail \to next$, no other CAS on it can succeed. Thus, there is exactly one successful CAS on it between SC_e and C'. Denote by CAS_e this successful CAS.

We argue that CAS_e is executed before C. Assume, by contradiction, that CAS_e is executed between C and C'. Recall that the condition of the if statement of line 43 executed by DLQ is evaluated to true. Recall that $ls_d.st.head$ is equal to h_i at C. Lemma 5.29 implies that only $EnqS_e \to st.tail \to next$ and $EnqS_e \to st.last \to next$ can be equal to \bot at C. Since CAS_e occurs after C, the induction hypothesis, the pseudocode, and Lemma 5.29 imply that $ls_d.st.head \neq EnqS_e \to st.last$ at C. Therefore, $ls_d.st.head = EnqS_e \to st.tail$ at C. Lemma 5.29 implies that CAS_e changes $EnqS_e \to st.tail \to next$ to point to $EnqS_e \to st.first$. Recall that $EnqS_e \to st.first \neq \bot$. Thus, in all configurations between the execution of CAS_e and C'', it holds that $ls_d.st.head \to next \neq \bot$. It follows that the condition of the if statement of line 49 is evaluated to ls_e by ls_e or ls_e is executed before the execution of line 43 by ls_e . Then, Lemma 5.29 imply that $ls_d.st.head = EnqS_e \to st.last$ at C. Recall that we argued that the claims hold until C.

We conclude that the sequential queue which is formed by applying sequentially all the requests in L_{m-1} , in order, as well as those requests applied by req_d up until req (excluding req), in the order of thread ids, is empty (i.e. contains only the dummy node).

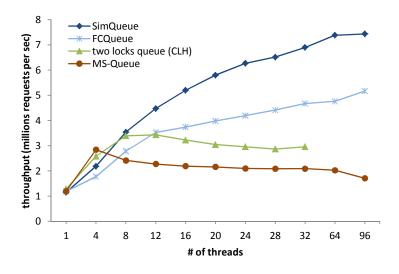


Figure 5.12: Performance of SimQueue.

Thus, linearizing req and all other requests applied by req_d after req at C does not violate the claims.

We remark that if there are ENQUEUE requests in $L_m - L_{m-1}$ as well, they are all linearized after the DEQUEUE requests in D because of the way that linearization points are assigned. Given that the DEQUEUE requests in D return a consistent response, the induction hypothesis, Lemma 5.29, and the fact that ENQUEUE returns ack imply that the consideration of these ENQUEUE requests does not violate the claims.

This concludes the proof of the induction step and thus also the proof of the lemma.

Theorem 5.8. SimQueue is a linearizable wait-free implementation of a concurrent queue.

5.6.3 Performance evaluation

We now experimentally compare the performance of SimQueue with that of state-of-theart concurrent queue implementations, like the lock-based implementation using two CLH locks by Michael and Scott [50], the lock-free algorithm (MSQueue) presented in [50], and the queue implementation using flat-combining (FCQueue) presented in [33, 34]. Similarly to the experiment performed in [50], 10^7 pairs of an enqueue and a dequeue were executed as the number of threads n increases. The average throughput of each algorithm was measured and the results are illustrated in Figure 5.12. As in previous experiments, we simulate a random workload after the completion of each request. As shown in Figure 5.12, SimQueue significantly outperforms all other implementations for n > 4. More specifically, SimQueue is up to 3.6 times faster than the lock-free implementation, up to 2.25 times faster than the spin-lock based implementation, and up to 1.5 times faster than flat-combining.

Similarly to the experiment of Figure 5.11, the queue implementation based on CLH spin locks outperforms the lock-free algorithm. We remark that the queue implementation based on CLH locks performs much better than the CLH lock-based stack implementation, since in the queue implementation there are two CLH locks (one handling enqueues and one handling dequeues) that are employed; this leads to increased parallelism. Flat-combining outperforms all queue implementations other than SimQueue. However, SimQueue achieves much better performance than flat-combining for almost any number of threads. In addition to the points discussed for the performance of P-Sim and flat-combining in Section 5.3, this is due to the fact that SimQueue uses two instances of P-Sim, thus achieving increased parallelism by having enqueuers and dequeuers run concurrently.

Chapter 6

HIGHLY-EFFICIENT BLOCKING SYNCHRONIZATION ALGORITHMS

- 6.1 CC-Synch: An efficient synchronization algorithm for the CC model
- 6.2 H-Synch: A hierarchical synchronization approach based on CC-Synch
- 6.3 DSM-Synch: An efficient synchronization algorithm for the DSM model
- 6.4 Performance evaluation of CC-Synch, DSM-Synch and H-Synch
- 6.5 Highly-efficient blocking data structures

6.1 CC-Synch: An efficient synchronization algorithm for the CC model

In this section, we present the CC-Synch synchronization algorithm. The time complexity of CC-Synch is O(h+t) RMRs, where h is an upper bound of the requests that a combiner may serve and t is the size of the shared memory data that the combiner should access in order to serve these h requests. The amortized time complexity is O(d), where d is the average number of RMRs required to serve a single request. The space overhead of CC-Synch is O(n).

6.1.1 Algorithm description

CC-Synch (Algorithm 17) maintains a list which contains, in addition to a dummy node which is always the last node of the list, one node for each thread that has initiated an active request. Each thread first announces its request by recording it in the last node of the list (i.e. in the current dummy node) and by inserting a new node as the last node of the list (which will comprise the new dummy node). We say that a node is assigned to the thread that has written the request recorded in it; i.e. each thread is assigned the previous node to the node that it inserts.

The thread that is assigned the head node of the list plays the role of the combiner, so it is the only thread that is allowed to access the shared data. The combiner starts by serving its own request. Other threads that have announced requests perform spinning on the *locked* field of their assigned node. The combiner does not give up the lock when it completes the execution of its request; it rather continues accessing the next elements of the list, it serves the requests announced in these nodes, and sets the *locked* field of these nodes to *false* to stop the threads that have been assigned these nodes from spinning. It also changes their *completed* field to *true* to identify that their requests have been completed.

The combiner completes its execution when it serves either all requests in the list or a pre-specified number h of such requests. In the later case, the combiner identifies the thread, which owns the next to the last node that the combiner helps, as the new combiner; this is done by changing the *locked* field of this node to *false* while leaving its *completed* field equal to *false*.

We now give a more detailed description of CC-Synch. Pointer Tail is a Swap object which initially points to a dummy node. Whenever thread p_i wants to announce a request req, it executes a Swap operation to Tail (line 5) in order to read the pointer to the dummy node pointed to by Tail and update Tail to point to its node (i.e. to the node pointed to by p_i 's local variable $next_i$). Once this has been performed, p_i has been assigned the node that was previously pointed to by Tail, so it announces its request by recording req in the req field of this node (line 6) and then it sets the next field of this node to point to the new dummy node (line 7). After that, p_i starts spinning on field locked of its assigned node until this field becomes false. When p_i reads false in locked, either its request has

```
struct Node {
       Request req;
       RetVal ret;
       boolean wait;
       boolean completed;
       Node *next;
     };
    // Tail initially points to a dummy node
    // with value \langle \perp, \perp, false, false, null \rangle
    shared Node *Tail;
    // The following variable is private to each thread p_i; it is a pointer to a
    // struct of type Node; it initially points to a struct with
    // initial value \langle \perp, \perp, true, true, null \rangle
    private Node *node_i;
    RetVal CC-Synch(Request req) {
                                                        // Pseudocode for thread p_i
       Node *nextNode, *tmpNode, *tmpNodeNext;
       int counter = 0;
       node_i \rightarrow wait = true;
1
2
       node_i \rightarrow next = null;
3
       node_i \rightarrow completed = false;
       nextNode = node_i;
4
       node_i = Swap(Tail, node_i);
5
                                                        // curNode is assigned to p_i
6
       node_i \rightarrow req = req;
                                                        // p_i announces its request
       node_i \rightarrow next = nextNode;
7
8
       while (node_i \rightarrow wait == true)
                                                        // p_i spins until it is unlocked
9
       if (node_i \rightarrow completed = = true)
                                                        // if p_i's req is already applied
10
         return node_i \rightarrow ret;
                                                        //p_i returns its return value
                                                        // otherwise p_i is the combiner
11
       tmpNode = node_i;
       while (tmpNode \rightarrow next \neq null AND counter < h){
12
13
          counter = counter + 1;
14
          tmpNodeNext=tmpNode \rightarrow next;
15
          apply tmpNode\rightarrowreq to object's state
           and store the return value to tmpNode→ret;
                                                        // tmpNode's req is applied
16
          tmpNode \rightarrow completed = true;
17
          tmpNode \rightarrow wait = false;
                                                        // unlock the spinning thread
18
         tmpNode = tmpNodeNext;
                                                        // and proceed to the next node
       tmpNode \rightarrow wait = false;
19
                                                        // unlock next node's owner
       return node_i \rightarrow ret;
```

Algorithm 17: Pseudocode for CC-Synch.

been executed by the combiner or p_i 's record is the first in the list and therefore it owns the lock. In the former case, p_i simply returns (line 10), whereas in the later, p_i becomes the combiner.

We remark that the list could grow forever while the combiner thread p traverses it since a thread may add a node at the end of the list more than once after its request has been served by p. In order to prevent p from traversing a continuously growing list, an upper bound h (lines 12 and 13) on the number of requests that p may serve is employed; once p serves h requests, it identifies the thread that has been assigned the next node of the list as the new combiner, and returns. Our experiments show that the choice of h does not significantly impact the performance of the algorithm. Specifically, setting h to a value equal to cn, where c > 0 is a small constant, is a good choice in terms of performance.

6.1.2 Time and space complexity

By the pseudocode (Algorithm 17), it follows that each thread returns either on line 10 or on line 20. In case that p_i returns on line 10, it follows that p_i executes a constant number of RMRs. Assume now that p_i returns on line 20. By the pseudocode (lines 12 and 13), p_i executes at most h iterations of the while loop (lines 13-18). Lines 14-18 contribute just a constant number of RMRs, and line 14 is a local request. Thus, p_i executes O(h+t) RMRs, where t is the size of the shared memory data that they should be accessed in order to serve these h requests, where we have assumed that the cache size of p_i 's processor is greater than t. Notice that the amortized time complexity is O(d), where d is the average number of RMRs required to serve a single request. We remark that in most cases, d equals a small constant. The space overhead of CC-Synch is O(n), since each thread maintains a struct of type Node.

6.1.3 Required memory barriers

When implementing CC-Synch, memory barriers may need to be inserted in the code to ensure its correct execution. In architectures that implement either the TSO (Total Store Order) or the PO (Process Order) consistency model, we need to insert just one store memory barrier. These memory consistency models are very common and they are used in

many contemporary multiprocessors, among which those that we used for our experiments. The first model is implemented on SPARC machines of version v8 and newer [59], while the second is implemented on AMD64 [1] and on Intel64 [22] architectures. SPARC processors support weaker consistency memory models as well, but they are rarely used, and the TSO model is the default option for the Solaris operating system [48]. Both of these consistency models do not reorder two read operations, and the same holds for two store operations [48]. However, a read can be reordered with an older store only in case that the read and the store instructions access different memory locations [48]. Thus, for the correct execution of lines 6-7 and lines 17-18, no store barrier is needed. Similarly, no load barrier is needed for lines 9 and 10. A store memory barrier is inserted just before the return instruction of line 21. In cases where a weaker memory model is considered, additional memory barriers may have to be inserted; however, this is not the case in the architectures we employed for our experiments.

6.1.4 Correctness proof

In this section, we present the correctness proof of CC-Synch. Let α be any execution. Consider any configuration C in α . Let Tail(C) be the value of Tail at C. For each $i, 1 \leq i \leq n$, denote by $node_i(C)$ the value of variable $node_i$ at C. Denote by C^- the configuration just preceding C and let C_0 be the initial configuration. The notation of this proof is summarized in Table 6.1.

We start by proving the following lemma which states that at each configuration C, $node_i$ points to a distinct node other than Tail(C).

Lemma 6.1. For any configuration C, the following claims hold:

- 1. for each i, $Tail(C) \neq node_i(C)$;
- 2. for each $i, j, i \neq j, node_i(C) \neq node_j(C)$.

Proof. We prove the lemma by induction on C.

Base case $(C = C_0)$. Recall that $Tail(C_0)$ points to a dummy node. Also, for each $i, 1 \le i \le n$, $node_i(C_0)$ points to a distinct node (allocated for thread p_i) other than that pointed to by $Tail(C_0)$. Thus, the claim holds.

Induction hypothesis. Let $C \neq C_0$ be any configuration in α and assume that the claim holds at configuration C^- .

Induction step. We now prove that the claim holds for C. Denote by s the step taken at C^- (that results in C) and let p_j be the thread that executes s. If s is not the execution of a Swap operation (line 5), the claim holds at C by the induction hypothesis since neither Tail no any of the $node_i$ variables, $1 \le i \le n$, change their values from C^- to C. Thus, assume that s is the execution of a Swap operation (line 5).

Then, by the pseudocode we get the following: (1) $node_j(C) = Tail(C^-)$ and (2) $Tail(C) = node_j(C^-)$.

By the induction hypothesis, for each $i, 1 \leq i \leq n$, (1) $Tail(C^-) \neq node_i(C^-)$ and (2) for each $l, 1 \leq l \leq n$, $l \neq i$, $node_i(C^-) \neq node_l(C^-)$. Since s is a step of thread p_j , $node_i(C) = node_i(C^-)$, for each $i, 1 \leq i \leq n$, $i \neq j$.

From the above, we get that (1) $Tail(C) = node_j(C^-) \neq node_i(C^-) = node_i(C)$, for each $i, 1 \leq i \leq n, i \neq j$; also, $Tail(C) = node_j(C^-) \neq Tail(C^-) = node_j(C)$. Thus, for each $i, 1 \leq i \leq n, Tail(C) \neq node_i(C)$, as needed by Claim 1.

By the induction hypothesis, for each $i, l, 1 \leq i, l \leq n, i \neq l$ and $i, l \neq j$, it holds that $node_i(C) = node_i(C^-) \neq node_l(C^-) = node_l(C)$. Moreover, $node_j(C) = Tail(C^-) \neq node_i(C^-) = node_i(C)$, for each $i, 1 \leq i \leq n, i \neq j$. This concludes the proof of Claim 2.

We next prove that as long as a thread p_i is executing an instance of CC-Synch, no other thread can write the next field of the node pointed to by $node_i$; notice that $node_i$ may not point to the same node during the course of the execution of an instance of CC-Synch by p_i .

Lemma 6.2. Consider any instance A of CC-Synch executed by some thread p_i . Let C_f and C_l be the first and the last configurations, respectively, of the execution of A. Then, for each configuration C, $C_f < C < C_l$, no thread p_j , $1 \le j \le n$, $j \ne i$, writes into $node_i(C) \rightarrow next$.

Proof. Assume that there is a configuration C_w between C_f and C_l at which a thread p_j , $j \neq i$, changes $node_i \rightarrow next$. By the pseudocode, it follows that p_j executes either line 2 or line 7 at C_w and therefore p_j writes $node_j(C_w)$ at C_w . Lemma 6.1 implies that

Notation	Description
α	Any execution of CC-Synch
C	Any configuration in α
C_0	The initial configuration of α
C^-	The configuration just preceding C
Tail(C)	The value of $Tail$ at configuration C
p_i	The thread which its id is equal to $i, i \in \{1,, n\}$
$node_i(C)$	The value of $node_i$ at configuration C
m	The number of Swap operations executed in α
S_l	The l th Swap in execution α
A_l	The instance of CC-Synch that executes S_l
p_{i_l}	The thread that executes S_l
C_l	The configuration just after S_l
nd_l	The value returned by S_l

Table 6.1: Notation used in the proof of CC-Synch.

 $node_j(C_w) \neq node_i(C_w)$. Thus, p_j does not change $node_i$ at C_w , which is a contradiction.

We next prove that the *next* field of variable Tail is always equal to \bot .

Lemma 6.3. In any configuration C of α , it holds that $Tail(C) \rightarrow next = \bot$.

Proof. Assume, by the way of contradiction, that there is a configuration at which the next field of Tail is not equal to \bot . Denote by C_w the first such configuration. By the pseudocode, it follows that the step applied at C_w^- must be the execution of one of the lines 2, 5, or 7. Lemma 6.1 implies that for each i, $1 \le i \le n$, $Tail(C_w^-) \ne node_i(C_w^-)$. Thus, s cannot be the execution of line 2 or line 7. So, it must be that s is the execution of a Swap of line 5; let p_j be the thread that executes this Swap. By the pseudocode (lines 2 and 5), $Tail(C_w) = node_j(C_w^-)$ and p_j sets the next field of $node_j$ to \bot by executing line 2 of its current instance of CC-Synch. By Lemma 6.1 and the pseudocode (lines 2-5), it follows that $node_j \to next$ does not change after it is set to \bot and until C_w^- . Thus, $Tail(C_w) \to next = node_j(C_w^-) \to next = \bot$, which contradicts our assumption that $Tail(C_w) \to next = \bot$.

Let $m \geq 0$, be the number of Swap operations that are executed in α^* . Denote by S_l , $0 \leq l \leq m$, the lth Swap operation executed in α , let A_l be the instance of CC-Synch that executes S_l , let p_{i_l} be the thread that executes A_l , and denote by nd_l the return value of S_l . Let C_l be the configuration just after the execution of S_l and let $Q_0 = C_0$ be the initial configuration.

^{*}We remark that m may be ∞ if α is an infinite execution.

Lemma 6.4. The following claims hold:

- 1. for each l, $0 \le l < m$, and for each configuration C such that C follows C_l and A_l is active at C, it holds that either $nd_l \to next = \bot$ or $nd_l \to next = nd_{l+1}$ at C;
- 2. if m is finite, at each configuration C following C_m , it holds that either $nd_m \to next = \bot$ or $nd_m \to next = Tail(C)$.

Proof. Fix any $l > \geq 1$. If m is finite, l is chosen so that $l \leq m$. By the pseudocode (line 5), it follows that $nd_l = Tail(C_l^-)$. By Lemma 6.3, $Tail(C_l^-) \to next = \bot$; since it is a Swap that is executed at C_l^- and $nd_l = Tail(C_l^-)$, it follows that $nd_l \to next = \bot$ at C_l .

By the pseudocode (line 5), if follows that $nd_l = node_{i_l}(C_l) = node_{i_l}(C)$; it also follows that $Tail(C_l) = node_{i_l}(C_l^-)$. Lemma 6.2 implies that no thread other than p_{i_l} can change $node_{i_l} \to next$ between C_l and C. By the pseudocode, it is only through the execution of line 7 that p_{i_l} changes $node_{i_l} \to next$. Thus, if p_{i_l} has not executed line 7, it holds that $nd_l \to next = \bot$ at C (and the claim follows). Assume now that p_{i_l} executed line 7 in A_l at some configuration C'. By the pseudocode (lines 14-18), $node_{i_l} \to next$ is set to be equal to $node_{i_l}(C_l^-) = Tail(C_l)$ at C'.

By the pseudocode, it follows that $nd_{l+1} = Tail(C_l)$. Thus, if l < m, $node_{i_l} \to next = Tail(C_l) = nd_{l+1}$ at C'. Lemma 6.2 implies that no thread can change $node_{i_l} \to next$ between C' and C. Thus, $nd_l \to next = nd_{l+1}$ at C, as needed by Claim 1.

We continue to consider the case that l=m. Recall that $node_{i_m} \to next$ is set to be equal to $Tail(C_m)$ at C'. Since no Swap operation is executed from C_m to C, $Tail(C) = Tail(C_m)$. Thus, at C, $node_{i_m} \to next = Tail(C)$, as needed by Claim 2.

Consider a thread p_i that executes an instance A of CC-Synch at some configuration C. We say that p_i is the combiner at C if there is a configuration C' in A such that: (1) C' precedes C, and (2) it holds that $node_i(C') \rightarrow wait = false$ and $node_i(C') \rightarrow completed = false$. Let C_f be the first such configuration in A. We also say that p_i is a combiner from C_f until (and including) the execution of line 19 in A (we show below that a combiner always returns on line 20).

We say that an instance A of CC-Synch visits a node nd, if A executes line 11 or 18 and sets its tmpNode variable to point to nd; if A is executed by thread p_i , we sometimes say

that p_i visits nd (if A visits nd). If A visits a node nd, then there is an execution fragment starting from the configuration at which A executes line 11 (or 18) to set tmpNode to point to nd until the configuration that A executes line 18 for the next time (or until A executes line 19 if this was the last time that line 18 was executed by A or if line 18 was not executed by A).

Lemma 6.5. In each configuration C,

- 1. exactly one of the following conditions (i or ii) holds:
 - (i) Tail(C) points to a node nd such that nd → completed = false and nd → wait = false, there is no combiner at C and there is no thread poised to execute any of lines 11-19.
 - (ii) Tail(C) points to a node nd such that nd → completed = false and nd → wait = true, there is exactly one combiner at C and only the combiner is poised to execute any of lines 11-19.
- 2. if there is a combiner p_i at C, the following claims hold:
 - (i) p_i is poised to execute one of the lines 6-19 at C and it is not poised to execute line 10 at C;
 - (ii) no thread other than p_i executes lines 11-19 at C;
 - (iii) suppose that p_i is poised to execute one of the lines 11-19 at C, let k be the number of nodes that have been visited by p_i until C, denote by nd'_l , $1 \le l \le k$, the lth such node, and let β_l be the execution fragment at which p_i is visiting nd'_l ; then, for each l, $1 \le l \le k$ and for each configuration C' in β_l , if $nd'_l \ne Tail(C')$ there is one active thread p_l such that $node_l(C') = nd'_l$, and either $p_l = p_i$ or p_l executes one of the lines 6-10 at C';
 - (iv) if C is the configuration just after p_i has executed line 19 of the pseudocode and k is the number of nodes that have been visited by p_i until C, then the following hold: if nd'_k ≠ Tail(C⁻), then p_k is the unique combiner in the system at C, otherwise there is no combiner in the system at C.

3. if lines 16-17 have been executed m times in total until C, then for each $l, 1 \le l \le m$, lines 15-17 for the lth time were executed by a combiner that had its tmpNode variable equal to nd_l .

Proof. We prove the claim by induction on C.

Base Case $(C = C_0)$. No node is active at C_0 so there is no combiner at C_0 . Moreover, $Tail(C_0)$ points to a dummy node which has its *completed* and *wait* fields equal to *false*, since no Swap operation has been executed at C_0 . Thus, Claim 1 holds. Claim 2 trivially holds, since there is no combiner ar C_0 . Furthermore, Claim 3 holds, since no thread has executed lines 15-17.

Induction Hypothesis. Let C be any reachable configuration and assume that the claim holds in all configurations that precede C.

Induction Step. We prove that the claim holds at C. The induction step is proved by a case analysis on the step s that is applied from C^- to get C. Let p_j be the thread that executes s.

1. s is the execution of any of the lines 1, 2 and 4.

In case s is the execution of line 1, Lemma 6.1 implies that $node_j(C^-) \neq Tail(C^-)$. Thus, Claim 1.i holds by induction hypothesis. The rest of the claims also hold by the induction hypothesis.

In case s is the execution of either line 2 or line 4, the claims hold by the induction hypothesis.

2. s is the execution of line 3.

Lemma 6.1 implies that $node_j(C) \neq Tail(C)$. Thus, Claim 1 holds by the induction hypothesis. To prove Claim 2, it suffices to argue that p_j does not become the combiner by executing s. Let C_1 be the configuration at which p_j executes line 1 of the pseudocode. Assume by the way of contradiction that $node_j(C) \rightarrow wait = false$ in some configuration C_w between C_1 and C. By the pseudocode (lines 1 and 2), $node_j$ does not change value between C_1 and C by p_j . Since $node_j(C) \rightarrow wait = false$, there must be a thread that writes $node_j \rightarrow wait = false$ between C_1 and C. Let p_m be a thread that does so. By the pseudocode, it follows that p_m must execute

either line 17 or line 19 at C_w . Since p_m is active at C_w , Claim 1.i does not hold at C_w and by the induction hypothesis (for C_w) it follows that Claim 1.ii must hold at C_w . Moreover, the induction hypothesis (Claim 2.ii) implies that p_m must be the combiner at C_w . However then, the induction hypothesis (Claim 2.iii) implies that p_j should be a thread executing lines 6-10 at C_w . This is a contradiction since p_j executes line 3 at C_w . We conclude that p_j is not a combiner at C_w , which is a contradiction.

3. s is the execution of line 5.

By the pseudocode (line 5), it follows that $node_i(C) = Tail(C^-)$ and Tail(C) = $node_i(C^-)$. Let C_1 be the configuration at which p_i executes line 1. By the pseudocode, it follows that the value of the $node_i$ variable does not change from the configuration C_1 until C^- by thread p_j . We start by proving that no thread other than p_j can change the fields $node_j \to wait$ and $node_j \to completed$ from C_1 to C^- . Assume, by the way of contradiction, that there is some configuration C_w following C_1 and preceding C^- at which some thread $p_m \neq p_j$ changes one of the next or completed fields of the node pointed to by $node_i$. Lemma 6.1 and the pseudocode imply that this may happen only if p_m executes any of lines 16, 17, or 19 at C_w (with its tmpNode variable equal to $node_j$); since p_m is active at C_w , Claim 1.i does not hold at C_w . Thus, by the induction hypothesis (for C_w) it follows that Claim 1.ii must hold at C_w . Thus, there is a combiner at C_w . The induction hypothesis (Claim 2.ii) implies that p_m must be the combiner at C_w . However then, the induction hypothesis (Claim 2.iii) implies that p_i should be a thread executing lines 6-10 at C_w . This is a contradiction since p_j is poised to execute line 5 at C_w . Thus, no thread other than p_j writes $node_j(C^-) \to wait$ and $node_j(C^-) \to completed$ from C_1 to C^- , so $node_j(C^-) \to wait = true$ and $node_j(C^-) \to completed = false$.

We now prove that Claim 1 holds. By the induction hypothesis (Claim 1), one of the following conditions hold at C^- : (Claim 1.i) $Tail(C^-)$ points to a node nd such that $nd \to completed = false$ and $nd \to wait = false$, there is no combiner at C^- , and no active thread is executing any of the lines 6-19 at C^- , or (Claim 1.ii) $Tail(C^-)$ points to a node nd such that $nd \to completed = false$ and $nd \to wait = true$, and there is exactly one combiner at C^- .

- Assume first that (1.i) is true at C⁻. Since Tail(C⁻) → completed = false, Tail(C⁻) → wait = false, and node_j(C) = Tail(C⁻), it follows that p_j is a combiner at C. Recall that there was no combiner at C⁻, so p_j is the only combiner in the system at C. Moreover, p_j is poised to execute line 6 at C (as needed by 2.i). Recall that no active thread is executing any of the lines 11-19 at C⁻, so no thread other than the combiner is executing these lines at C (as needed by 2.ii). Recall that node_j(C⁻) → wait = true and node_j(C⁻) → completed = false. Since Tail(C) = node_j(C⁻), it follows that Tail(C) → wait = true and Tail(C) → completed = false (as needed by 1).
- Assume now that condition (1.ii) is true at C^- . Since $Tail(C^-)$ points to a node nd such that $nd \to completed = false$ and $nd \to wait = true$, and $node_j(C) = Tail(C^-)$, it follows that p_j is not a combiner at C; notice that p_j could not be a combiner at C^- since by induction hypothesis (Claim 2.i), the combiner is poised to execute one of the lines 6- 18 at C^- (whereas p_j is poised to execute line 5 at C^-).

Recall that $node_j(C^-) \to wait = true$ and $node_j(C^-) \to completed = false$. Since $Tail(C) = node_j(C^-)$, it follows that $Tail(C) \to wait = true$ and $Tail(C) \to completed = false$. This completes the proof of Claim 1.

The rest of the claims in each case, hold by the induction hypothesis.

- 4. If s is the execution of any of the lines 6-8, the claim holds trivially by induction hypothesis and Lemma 6.1.
- 5. If s is the execution of line 9. We distinguish the following two cases.
 - Assume first that p_j is the combiner at C^- . It suffices to argue that p_j is not poised to execute line 10 at C (as needed by Claim 2.i). By definition, there is some configuration C'' that precedes C (and occurs during the course of the execution of the current instance of CC-Synch by p_j) at which $node_j(C'') \rightarrow wait = false$ and $node_j(C'') \rightarrow completed = false$. By the pseudocode, the wait or completed field of $node_j$ can change only if some thread p_m executes one of the lines 1, 3, 16, 17, or 19 after C''. Lemma 6.1 implies that the wait or completed field of $node_j$ cannot change by threads other than p_j that execute

line 1 or line 3. Moreover, the induction hypothesis (Claims 1 and 2.ii) implies that no thread other than p_j can change the wait or completed fields of $node_j$ by executing lines 16, 17, or 19. Thus, no thread other than p_j can change these fields of $node_j$ from C'' to C^- . It follows that p_j evaluates the condition of line 9 to false and therefore, it is not poised to execute line 10 at C (as needed by 2.i).

• Assume now that p_j is not a combiner at C^- . Let C_5 be the configuration at which p_i executed its Swap instruction of line 5. Obviously, C_5 precedes C^- . This and the fact that p_j is not a combiner at C^- implies that p_j was not a combiner at configuration C_5 . Since $node_j(C_5) = Tail(C_5^-)$, it follows that one of the wait, completed fields pointed to by $Tail(C_5^-)$ was equal to true. Since C_5 precedes C, the induction hypothesis (Claim 1) implies that $Tail(C_5^-) \rightarrow$ $wait = true \text{ and } Tail(C_5^-) \rightarrow completed = false. Thus, node_j(C_5) \rightarrow wait =$ true. Since p_j executes line 9 at C^- , it must be that there is some configuration C_8 preceding C^- at which p_j evaluates the condition of the while statement of line 8 to true. It follows that there must be a configuration between C_5 and C_8 , at which $node_j \rightarrow wait$ becomes equal to false. By the pseudocode and by Lemma 6.1, it follows that the only way for this to happen, is if a thread executes line 17 just before that configuration (with its tmpNode variable equal to $node_i$). By the induction hypothesis (Claims 1 and 2.ii), this thread (let it be $p_m \neq p_j$) should be a combiner. By the pseudocode, it follows that p_m executes line 16 just before executing line 17; let C''' be the configuration at which this occurs. The execution of line 16 by p_m results in changing $node_j \rightarrow completed$ to true. By the induction hypothesis (Claim 2.iii), p_j should execute one of the lines 6-10 at C''. By the pseudocode, it follows that p_j does not change $node_j \rightarrow completed$ to false from C'' to C^- . Also, Lemma 6.1 imply that no thread other than p_j may change $node_j \rightarrow completed$ to false between C'' and C^- by executing line 3. Thus, $node_j \rightarrow completed = true$ at C^- . Therefore, p_j evaluates the condition of the if statement of line 9 to true and is poised to execute line 10 (and return) at its next step.

The rest of the claims in each case, hold by the induction hypothesis.

6. s is the execution of line 11.

By the induction hypothesis (Claims 1 and 2), it follows that it is only the combiner p_i that can be poised to execute line 11 at C^- ; thus, $p_j = p_i$ and p_j has not executed any iteration of the while loop (lines 12-18) yet. By the pseudocode (line 11) it follows that the node assigned to tmpNode is equal to $node_j$. Thus, Claim 2.iii holds. The rest of the claims hold by the induction hypothesis.

- 7. s is the execution of one of the lines 12-15. In this case the claim holds by induction hypothesis.
- 8. s is the execution of line 16. It is enough to prove that Claim 3 holds at C. Suppose that this is the kth time, $k \geq 1$, that p_i executes line 16 during A_i and assume that line 16 has been executed m times in total until C. By the induction hypothesis (Claim 2.iii) there is a thread p_k such that $node_k(C^-) = nd'_k$, and either $p_k = p_i$ or p_k is executing one of the lines 6-10 at C^- .
 - Assume first that k = 1. Let C_5 be the configuration resulted when p_i executes line 5. By the induction hypothesis (Claim 2.i), p_i cannot be a combiner before C_5 .
 - Assume first that p_i is not a combiner at C_5 . Since p_i is active at all configurations between C_5 and C, by the induction hypothesis (Claim 1), it follows that there is always some combiner in the system between C_5^- and C. Assume that p_i became the combiner at some configuration C' preceding C, and let p_j be the thread that was the combiner at C'^- ; let A_j be the instance of CC-Synch executed by p_j at C'^- . Since p_i becomes the combiner after p_j and p_i is executing line 16 for the last time at C, it follows that the (m-1)st time that lines 15-17 were executed was the last time that p_j executed those lines during A_j . Suppose that p_j visits $k', k' \geq 1$ nodes. Let $nd'_{k'}$ be the last node visited by A_j . The induction hypothesis (Claim 2.iv) implies that $nd'_{k'} = node_i(C')$ (since p_i is the unique combiner in the system right after p_j). The pseudocode (lines 11-14) imply that $nd'_1 = node_j(C'^-) \neq node_i(C'^-)$; thus, k' > 1. By the pseudocode, p_i becomes a combiner

when p_j executes line 19 (i.e. at configuration C'). By the pseudocode, $node_i(C') = nd'_{k'} = nd'_{k'-1} \rightarrow next$. We distinguish the following two cases. In case that $p_{k'-1} = p_j$, the induction hypothesis (Claim 3), implies that $nd'_{k'-1} = nd_{m-1}$. Pseudocode (lines 14, 18 and 19) implies that $nd'_{k'} = nd'_{k'-1} \rightarrow next = nd_{m-1} \rightarrow next$ and $nd'_{k'} = node_i(C) \neq \bot$, it follows that $nd_{m-1} \rightarrow next \neq \bot$. Thus, Lemma 6.4 implies that $node_i(C) = nd'_1 = nd_{m-1} \rightarrow next = nd_m$, as needed (by Claim 3). In case that $p_{k'-1} \neq p_j$, by the induction hypothesis (Claims 2.iii), there is some thread $p_{k'-1}$ such that at each configuration \tilde{C} in $\beta_{k'-1}$, $p_{k'-1}$ was executing one of the lines 6-10 at \tilde{C} and $node_{k'-1}(\tilde{C}) = nd'_{k'-1}$; specifically, $p_{k'-1}$ was active at configuration C_{14} at which line 14 was executed by p_j during $\beta_{k'-1}$. Also, by the induction hypothesis (Claim 3), it follows that $nd'_{k'-1} = nd_{m-1}$. Since $nd'_{k'} = nd'_{k'-1} \rightarrow next = nd_{m-1} \rightarrow next$ and $nd'_{k'} = node_i \neq \bot$, it follows that $nd_{m-1} \rightarrow next \neq \bot$. Thus, Lemma 6.4 implies that $node_i(C) = nd'_1 = nd_{m-1} \rightarrow next = nd_m$, as needed (by Claim 3).

- Assume now that p_i is a combiner at C_5 . Thus, $node_i(C_5) \rightarrow wait =$ false and $node_i(C_5) \to completed = false$. Since $node_i(C_5) = Tail(C_5^-)$, it follows that $Tail(C_5^-) \to wait = false$ and $Tail(C_5^-) \to completed = false$. By the induction hypothesis (Claim 1), it follows that there is no combiner at C_5^- and no active thread is executing any of the lines 11-19 at C_5^- . Let C' be the last configuration preceding C_5^- at which there was a combiner p_c in the system; let A_c be the instance of CC-Synch executed by p_c at C'. Notice that p_c has executed line 19 in A_c just before configuration C'. By the induction hypothesis (Claim 2.iv), it follows that there is no combiner in the system at C'. By definition of p_c , there is no combiner in the system between C' and C_5^- . We first prove that there no Swap operation is executed between C' and C_5^- . Assume by the way of contradiction that at least one Swap is executed between C' and C_5^- . Let s be the first such Swap and let C'' be the configuration just after the execution of s. Assume that s is executed by some thread p_s . Since there is no combiner between C' and C_5^- , induction hypothesis (Claim 1.i) implies that $Tail(C'^-) \rightarrow$ $completed = false \text{ and } Tail(C'^-) \rightarrow wait = false.$ The pseudocode (line 5)

and the definition of combiner implies that $node_s(C') \to completed = false$ and $node_s(C') \to wait = false$. Therefore, p_s is a combiner at C'', which is a contradiction. Thus, the Swap instruction executed by p_i at C_5^- is the first Swap instruction executed between C' and C_5^- . Assume that p_c visited k' nodes in A_c ; and denote by $nd'_{k'-1}$ and $nd'_{k'}$ the last two nodes visited by p_c in A_c . Induction hypothesis (Claim 3) implies that $nd'_{k'-1} = nd_{m-1}$. It is enough to prove that $nd'_{k'} = Tail(C'_5) = nd'_1 = nd'_m$. Induction hypothesis (Claim 1.i) implies that $Tail(C''^-) \to completed = false$ and $Tail(C''^-) \to wait = true$. Induction hypothesis (Claim 1.ii) also implies that $Tail(C') \to completed = false$ and $Tail(C') \to wait = false$. Since p_c executes line 19 at node $nd'_{k'}$ at C', it follows that $nd'_{k'} = Tail(C')$. Since there is no Swap executed between C' and C_5 other than that of p_i at C_5 , it follows that $Tail(C') = Tail(C_5)$. Lemma 6.1 implies that $Tail(C_5) = nd'_1$. Thus, $nd'_{k'} = Tail(C_5) = nd'_1 = nd_m$, as needed.

• Assume now that k > 1. By the pseudocode, $nd'_{k-1} \to next$ (in A_i instance) cannot be equal to \bot since otherwise the kth (and the (k-1)th) iteration of the while loop would not be executed by p_i . By the induction hypothesis (Claims 2.iii), either $p_{k-1} = p_i$ or there is some thread $p_{k-1} \neq p_i$ such that at each configuration C' in β_{k-1} , p_{k-1} was executing one of the lines 6-10 at C'. By the induction hypothesis (Claim 3), it follows that $nd'_{k-1} = nd_{m-1}$. By the pseudocode, it follows that $nd'_k = nd'_{k-1} \to next = nd_{m-1} \to next$. Since $nd'_k \neq \bot$, it follows that $nd_{m-1} \to next \neq \bot$. Thus, Lemma 6.4 implies that $nd'_k = nd_{m-1} \to next = nd_m$, as needed (by Claim 3).

9. s is the execution of line 17.

Assume that line 17 is executed for the kth time, $k \geq 1$. Recall that it is only the combiner that can be poised to execute line 16 at C^- . By the induction hypothesis (Claim 2.iii) there is a thread p_k such that $node_k(C^-) = nd'_k$, and either $p_k = p_i$ or p_k is executing one of the lines 6-10 at C^- . Lemma 6.1 implies that $Tail(C^-) \neq node_k(C^-)$. Since $Tail(C) = Tail(C^-)$ and $node_k(C) = node_k(C^-)$, it follows that $Tail(C) \neq node_k(C^-)$. Since s changes either the wait field of $node_k(C^-)$, Claim 1 holds by induction hypothesis. The rest of the claims hold by induction hypothesis.

10. s is the execution of line 18.

It is enough to argue that Claim 2.iii holds after the execution of s. The rest of claims hold by induction hypothesis. Assume that the execution of s by p_i identifies the kth node visited by p_i , k > 1 (notice that the first node visited by p_i is identified by executing line 11 and not line 18; thus, k > 1). If $nd'_k = Tail(C)$, Claim 2.iii holds (by induction hypothesis for each l < k). Thus, assume that $nd'_k \neq Tail(C)$. Denote by S_1 the Swap operation executed by p_i in req and denote by S_k the Swap operation executed by p_k . We first prove that S_1 precedes S_k . By the pseudocode, $nd'_{k-1} \rightarrow next = nd'_k$ cannot be equal to \perp since otherwise the (k-1)th iteration of the while, where the kth node to be visited by p_i is identified (this occurs when p_i executes line 18 of that iteration), would not be executed. By the induction hypothesis (Claim 2.iii), either $p_{k-1} = p_i$ or there is some thread p_{k-1} such that at each configuration C' in β_{k-1} , p_{k-1} was executing one of the lines 6-10 at C' and $node_{k-1}(C') = nd_{k-1}$. In case that $p_{k-1} = p_i$, the pseudocode implies that $nd'_1 \rightarrow next = nd'_k$. Lemma 6.4 implies that the Swap operation S_1 executed by p_i precedes the execution of the Swap operation S_k by p_k . In case that $p_{k-1} \neq p_i$, (Claim 2.iii) implies that p_{k-1} was active at configuration C_{14} at which line 14 was executed by p_i during β_{k-1} . The pseudocode implies that $nd'_{k-1} \to next = node_{k-1}(C_{14}) \to next$. Since we have assumed that $nd'_k \neq Tail(C)$, it follows that $node_{k-1}(C_{14}) \to next \neq \bot$. Thus, Lemma 6.4 implies that there is a thread p_k that has executed line 5 before C_{14} such that $node_k(C) = nd'_k$; moreover, Lemma 6.4 implies that the Swap operation S_{k-1} executed by p_{k-1} precedes the execution of the Swap operation S_k by p_k . By the pseudocode, p_i executes lines 15-17 for itself during the first iteration of the while loop of lines 12-18, i.e. before executing it for p_{k-1} . Since p_i executes lines 15-17 later on for p_{k-1} , the induction hypothesis (Claims 2.iii and 3) implies that S_1 has occurred before S_{k-1} . It follows that S_1 has occurred before S_k .

We continue to prove that p_k is active at C^- . Assume, by the way of contradiction, that the instance A_k of CC-Synch executed by p_k is not active at C^- . Recall that p_k executed S_k after S_1 . Thus, p_i was active while executing one of the lines 6-18 when S_k was executed; let C_k be the configuration just after the execution of S_k .

Apparently, C_k precedes C. Since p_i is active between C_1 and C, by the induction hypothesis (Claim 1), it follows that there is always some combiner in the system in all configurations between C_1 (which results by applying S_1) and C. Thus, there is some combiner in all configurations between C_k^- and C. By induction hypothesis (Claim 1.ii), $Tail(C_k^-) \to wait = true$ and $Tail(C_k^-) \to completed = false$. By the pseudocode, $node_k(C_k) = Tail(C_k^-)$, so $node_k(C_k) \rightarrow completed = false$. By the pseudocode, the *completed* field of $node_k$ must be equal to true when p_k terminates. By the pseudocode, this can happen only if there is some thread p_h that executes lines 15-17 with $tmpNode = node_k$ at some configuration before C. Suppose that lines 15-17 have been executed h' times in total until the configuration that p_h executed line 17 with $tmpNode = node_k$. Since S_1 is performed before S_k , the induction hypothesis (Claim 3) implies that lines 17-19 have been executed for p_i before being executed for p_k (assume that this has happened the h"th time that lines 15-17 were executed). By the induction hypothesis (Claim 3), $node_i = nd_{h''}$. However, by the pseudocode, it follows that lines 15-17 are executed for $node_i$ by p_i during the execution of the first iteration of the while loop of lines 12-18; let this be the hth time that lines 15-17 are executed. Since p_i has not visited $node_k$ before C, it follows that h > h'', which contradicts the induction hypothesis (Claim 3).

Thus, p_k is still active at C^- . By the induction hypothesis (Claim 2.ii), no thread other than the combiner p_i executes lines 11-20 at C^- . Thus, p_i executes one of the lines 6-10 at C^- . Since it is thread p_i that executes s, p_k executes one of the lines 6-10 at C. This completes the proof of Claim 2.iii.

- 11. s is the execution of line 19. Recall that it is only the combiner that can be poised to execute this line at C^- . Assume that p_i visits k nodes during the execution of A_i .
 - If $nd'_k \neq Tail(C^-)$, the induction hypothesis (Claim 2.iii) implies that $nd'_k = node_k(C^-)$ for some thread p_k that is poised to execute one of the lines 6-10 at C^- . By the induction hypothesis (Claim 3), $node_k$ is visited for the first time since A_k was initialized. This and Lemma 6.1 imply that $node_k(C^-) \rightarrow completed = false$. Since s changes $node_k(C^-) \rightarrow wait$ to false it follows that p_k is a combiner at C. Since p_i was the unique combiner in the system at C^-

and by definition, it is not a combiner anymore after the execution of line 19, it follows that the unique combiner in the system at C is p_k , as needed by Claim 2.iv. Moreover, Lemma 6.1 implies that $Tail(C^-) \neq node_k(C^-)$, so $Tail(C) = Tail(C^-)$. Since p_i is a combiner at C^- , the induction hypothesis (Claim 1) implies that $Tail(C^-) \rightarrow wait = true$ and $Tail(C^-) \rightarrow completed = false$. Thus, $Tail(C) \rightarrow wait = true$ and $Tail(C) \rightarrow completed = false$. So, Claim 1 follows. The rest of claims hold by induction hypothesis.

• We first prove that $Tail(C) \rightarrow completed = false$ and $Tail(C) \rightarrow completed =$ false. Assume now that $nd'_k = Tail(C^-)$. By the induction hypothesis (Claim 3), $node_k$ is visited for the first time since A_k was initialized. This and Lemma 6.1 imply that $node_k(C^-) \rightarrow completed = Tail(C^-) \rightarrow completed =$ false. The pseudocode (line 19) implies that $tmpNode_k \rightarrow wait = nd'_k \rightarrow wait$ $wait = Tail(C^{-}) \rightarrow wait = false$ at C. We now prove that no thread is poised to execute any of lines 11-19 at C. Induction hypothesis (Claim 1.i), there is no thread other than p_i poised to execute any of lines 11-19 at C^- . Since p_i executes line 19 just before C, it follows that no thread is poised to execute any of lines 11-19 at C. We finally prove that there is no combiner at C. Assume, by the way of contradiction that there is a combiner p_c at C that executes some instance A_c of CC-Synch. By combiner's definition, it follows that there is a configuration C' preceding C such that $node_c(C') \to wait = false$ and $node_c(C') \rightarrow completed = false.$ Lemma 6.1 implies that $node_c(C) \neq Tail(C)$. It follows that C' precedes C^- . Thus, p_c is also a combiner at C^- . Induction hypothesis (Claim 1.ii) implies that the only combiner at C^- is p_i , which is a contradiction. So, Claim 1 follows.

The rest of the claims in each case hold by the induction hypothesis.

Let nd_i be the node of the list that is assigned to p_i for req_i . Thread p_i completes the execution of CC-Synch for req_i either on line 10 or on line 20. Assume first, that p_i returns on line 10. Lemma 6.5 (Claim 2.iii) implies that a combiner thread p_j has served req_i before the execution of line 10 by p_i . Therefore, p_j has executed line 15 for nd_i at some iteration l > 1 of its while loop (lines 12-18). Request req_i is linearized just before the execution of this instance of line 15 by p_j . Assume now that p_i returns on line 20.

Lemma 6.5 (Claim 2.iii) implies that p_i serves its request on its own when it executes line 15 at the first iteration of its while loop (lines 12-18). In this case, req_i is linearized just before the execution of line 15 of the first iteration of p_i 'As while loop. Obviously, in both cases the linearization point of req_i is within its execution interval. Consistency is immediately implied by Claims 2.iii and 3 of Lemma 6.5. Thus, the following theorem holds.

Theorem 6.1. CC-Synch is a linearizable synchronization algorithm.

6.2 H-Synch: A hierarchical synchronization algorithm based on CC-Synch

We now discuss how we can modify CC-Synch to get an hierarchical approach of it, called H-Synch. We consider a system of m processors which are partitioned into C clusters; each cluster consists of m/C processors. In such a system, communication among the processors of the same cluster is performed much faster than among processors residing in different clusters. A characteristic example of such a system is the Niagara 2 machine, in which we have executed some of the experiments in Section 6.4.

In H-Synch, the threads use C instances of CC-Synch one per cluster (Algorithm 18). Each instance of CC-Synch is used, as described in Section 6.1, to identify at each point in time, the combiner thread of each cluster and the list of announced requests of the threads that are executed at processors of the cluster. In addition to the C instances of CC-Synch, a queue lock L [23, 47] is used; L is accessed only by the combiner threads of the clusters. The CLH lock [23, 47] is a good choice for implementing L in systems where the intra-cluster communication is achieved with a cache coherent (CC) protocol, whereas the MCS lock [49] is expected to be a better choice in other systems.

Whenever a thread q has a newly activated request, it calls H-Synch. If q does not become the combiner of its cluster, it waits until its request has been served by a combiner of the cluster. Otherwise, before q starts serving requests, it executes an acquire operation on L (line 13) in order to ensure that it is the only combiner (among those of the different clusters) that has access to the shared data. A combiner q serves only

requests initiated by threads that are running on its local cluster. By doing so, intracluster communication is kept low. After finishing its work as a combiner, q releases L (line 21), so that a combiner of some other cluster can acquire L and have access to the shared data. In cases that the communication between clusters is performed through a more complex interconnection network (for instance, one that has an hierarchical structure), H-Synch can be easily modified to exploit the characteristics of the communication hierarchy by using more levels of queue locks (one queue lock per communication level).

```
// Assume that thread p_i runs at some processor of cluster c_i
    shared Node *Tail[1..C] = { \langle \perp, \perp, false, false, null \rangle };
    // L is a CLH [23, 47] or MCS [49] queue lock
    shared QueueLock L;
    // The following variable is private to each thread p_i; it is a pointer to a
    // struct of type Node with initial value \langle \perp, \perp, false, false, null \rangle
    private Node *node<sub>i</sub> = {\langle null, \bot, \bot, false, false \rangle};
    RetVal H-Synch(Request req) {
                                                            //Pseudocode for thread p_i
        Node *nd, *cur, *next_node, *ndnext;
       int counter = 0;
                                                            // p_i uses a (possibly recycled) node
1
        next\_node = node_i;
2
        next\_node \rightarrow next = \bot;
                                                            // p_i initializes the fields of this node
3
       next\_node \rightarrow locked = true;
       next\_node \rightarrow completed = false;
4
       \operatorname{cur} = \operatorname{Swap}(\operatorname{Tail}[c_i], \operatorname{next\_node});
5
6
       cur \rightarrow req = req;
                                                            // p_i announces its request
7
       cur \rightarrow next = next\_node;
8
        node_i = cur;
                                                            // reuse this node in future request
                                                            // p_i spins until its request
9
        while (cur \rightarrow locked == true)
                                                            // is applied or until is unlocked
          nop:
10
       if (cur \rightarrow completed == true)
                                                            // if p_i's request is already applied
11
          return cur \rightarrow ret;
                                                            // p_i returns its return value
12
       nd = cur;
13
       lock(L);
                                                            // acquire the lock
       while (nd \rightarrow next \neq null AND counter < h) {
14
15
          counter = counter + 1;
16
          ndnext = nd \rightarrow next;
17
          apply nd→req to object's state and store the return value to nd→ret;
          nd \rightarrow completed = true
                                                            // nd's request is applied
18
                                                            // p_i unlocks the spinning thread
19
          nd \rightarrow locked = false;
20
          nd = ndnext;
                                                            // and proceeds to the next node
                                                            // release the lock
21
       unlock(L);
22
        nd \rightarrow locked = false;
                                                            // unlocks the next node's owner
                                                            // thread returns
        return cur \rightarrow ret;
```

Algorithm 18: Pseudocode for H-Synch.

H-Synch ensures that requests initiated by threads of the same cluster are served in FIFO order and that the combiners acquire the global lock in FIFO order but, apparently, it does not globally ensure the FIFO property.

6.3 DSM-Synch: An efficient synchronization algorithm for the DSM model

In this section, we present DSM-Synch (Algorithm 19) which performs O(hd) RMRs in the DSM model, where h is an upper bound on the number of requests that a combiner may serve and d is the maximum number of RMRs required to serve a single request. The space overhead of DSM-Synch is O(n).

6.3.1 Algorithm description

DSM-Synch maintains a list of announced requests which is updated in a manner similar to that of CC-Synch (and which also implements the lock). In contrast to CC-Synch, the list is initially empty and its last node is a valid (not dummy) node. Each thread p maintains two list nodes; p announces each request it wants to perform in one of these nodes, it inserts this node at the end of the list by using Swap, and if its record is not the first in the list, it performs spinning on the wait field of its node. If p's node is the first in the list, p becomes the combiner and serves up to p requests of the list in FIFO order. A thread that appends a node in the list updates the next field of the previous node to point to the inserted node. The combiner serves requests recorded in list nodes up to the second last element of the list (see condition of the if statement of line 19). It does so to avoid arriving to a node where its next field has not yet been updated although this node is not the last node in the list any more. Thus, a combiner will execute lines 22-25 only if its node is the only node in the list. In this way, a combiner performs a bounded number of RMRs (whereas spinning on the last node of the list on line 25 would cause an unbounded number of RMRs).

We explain now why it is not enough to have each thread p_i using just one node. Let's assume that p_i has a single node that it reuses each time it initiates a new request. Let

q be a combiner thread that serves p_i 's request. Assume that there is a thread p_j whose assigned node is the next node of p_i 's node in the list. Assume also that there is no other active request and thus p_j 's node is the last node in the list. After serving p_i 's request, q sees that less than two nodes are left in the list and stops the execution of its while loop (lines 19-20). Suppose that q stalls before executing line 26 of the pseudocode (pointer nd points to the node assigned to p_i). Assume now that p_i wants to immediately apply a new operation. Thus, p_i initializes its node again and inserts it at the end of the list by executing a Swap instruction on Tail. Then, q continues by executing line 26 of the pseudocode and makes an invalid memory reference.

6.3.2 Time and Space complexity

DSM-Synch performs O(hd) RMRs when executing the while loop of line 14. The only extra piece of code that may cause DSM-Synch to perform more RMRs is that consisting of lines 22-25. However, as explained above a thread p executes these code lines only when the node it inserts is the single node of the list. So, if these lines are executed, p's local variable called nd is equal to $node_i$, and therefore spinning on $p \to next$ on line 25 is local. The space overhead of DSM-Synch is O(n).

6.3.3 Required memory barriers

Similarly to CC-Synch, memory barriers may need to be inserted in the code of DSM-Synch to ensure its correct execution in architectures that implement either the TSO (Total Store Order) or the PO (Process Order) consistency model. Remind that both of TSO an PO consistency models do not reorder two read operations, and the same holds for two store operations [48]. Remind also that a read can be reordered with an older store only in case that the read and the store instructions access different memory locations [48]. Thus, for the correct execution of lines 3-6 and lines 17-18, no store barrier is needed. Similarly, no load barrier is needed for lines 9 and 10. A store memory barrier is inserted just before the return instruction of line 12.

```
struct LockNode {
           Request req;
           RetVal ret;
          boolean wait, completed;
          LockNode *next;
       };
       shared LockNode *Tail = null;
       // The following variables are private to each thread p_i
       private LockNode MyNodes_i[0..1] = \{\langle \bot, \bot, false, false, null \rangle\};
       private int toggle_i = 0;
       RetVal DSM-Synch(Request req) {
                                                            // pseudocode for thread p_i
           LockNode *nd, *node_i, *MyPred;
          int counter = 0:
1
          toggle_i = 1 - toggle_i;
                                                            // p_i toggles its toggle variable
2
          node_i = MyNodes_i[toggle_i];
                                                            // p_i chooses to use one of its nodes
3
          node_i \rightarrow wait = true;
                                                           // p_i initializes the node
          node_i \rightarrow completed = false;
4
          node_i \rightarrow next = null;
5
6
          node_i \rightarrow req = req:
                                                            // p_i announces its request
7
           MyPred = Swap(Tail, node_i);
                                                            // p_i inserts node_i in the list
8
                                                            // if a node already exists in the list
          if (MyPred \neq null) {
9
                                                           // fix next of previous node
             MyPred \rightarrow next = node_i;
10
              while(node_i \rightarrow wait == true)
                                                           // perform spinning
11
             if(node_i \rightarrow completed == true)
                                                           // if combiner has applied p_i's req
12
                 return node_i \rightarrow ret;
13
          nd = node_i;
                                                           // p_i is the combiner
14
          while(true) {
15
             counter++;
16
             apply nd \rightarrow req and store the return value to nd \rightarrow ret;
17
             nd \rightarrow completed = true;
                                                           // announce that nd \rightarrow req is applied
             nd \rightarrow wait = false;
                                                            // unlock the spinning thread
18
19
             if (nd \rightarrow next == null \text{ or } nd \rightarrow next \rightarrow next == null \text{ or counter } \geq h)
                                                           // p_i helped h threads or fewer than 2 nodes are in list
20
                 break:
21
             nd = nd \rightarrow next;
                                                            // proceed to the next node
                                                           // p_i's req is the single record in list
22
          if (nd \rightarrow next == null) {
             if(CAS(Tail, nd, null) == true)
                                                           // try to set Tail to null
23
24
                 return node_i \rightarrow ret;
25
             while (nd \rightarrow next == null)
                                                            // some thread is appending a node
                                                            // wait until it finishes its operation
                 nop;
26
          nd \rightarrow next \rightarrow wait = false;
                                                            // A new combiner is identified
27
          return node_i \rightarrow ret;
```

Algorithm 19: Pseudocode for DSM-Synch.

Notation	Description	
α	Any execution of DSM-Synch	
C	Any configuration in α	
C_0	The initial configuration of α	
C^-	The configuration just preceding C	
Tail(C)	The value of base object $Tail$ at configuration C	
p_i	The thread which its id is equal to $i, i \in \{1,, n\}$	
$node_i(C)$	The value of $node_i$ at configuration C	
m	The number of Swap operations executed in α	
S_l	The l th Swap in execution α	
A_l	The instance of DSM-Synch that executes S_l	
p_{i_l}	The thread that executes S_l operation	
C_l	The configuration just after S_l	
nd_l	The value returned by S_l	

Table 6.2: Notation used in the proof of DSM-Synch.

6.3.4 Correctness proof

In this section, we present the correctness proof of DSM-Synch. Let α be any execution. Consider any configuration C in α . Let Tail(C) be the value of Tail at C. For each $i, 1 \leq i \leq n$, denote by $node_i(C)$ the value of variable $node_i$ at C. Denote by C^- the configuration just preceding C and let C_0 be the initial configuration. The notation of this proof is summarized in Table 6.2.

Let $m \geq 0$, be the number of Swap operations that are executed in α^{\dagger} . Denote by S_l , $0 \leq l \leq m$, the lth Swap operation executed in α , let A_l be the instance of DSM-Synch that executes S_l , let p_{i_l} be the thread that executes A_l , and denote by nd_l the return value of S_l . Let C_l be the configuration just after the execution of S_l and let $Q_0 = C_0$ be the initial configuration.

Consider a thread p_i that executes an instance A of DSM-Synch at some configuration C. In case that the Swap instruction of line 7 in A returns \bot , denote by C_f the first configuration just after the execution of line 7; in case that there is at least one configuration C' in A such that either $node_i(C') \to wait = false$ and $node_i(C') \to completed = false$, denote by C_f the first of these configurations. We say that p_i is a combiner at C if C_f is well defined and C follows C_f ; p_i is a combiner from C_f until it executes either line 24 or line 27 in A (we show below that a combiner always returns either on line 24 or line 27).

We say that an instance A of DSM-Synch visits a node nd, if A executes line 13 or 21 and sets its tmpNode variable to point to nd; if A is executed by thread p_i , we

[†]We remark that m may be ∞ if α is an infinite execution.

sometimes say that p_i visits nd (if A visits nd). If A visits a node nd, then there is an execution fragment starting from the configuration at which A executes line 13 (or 21) to set tmpNode to point to nd until the configuration that A executes line 21 for the next time (or until A executes line 26 if this was the last time that line 21 was executed by A or if line 21 was not executed by A).

The following observation is an immediate consequence of the pseudocode (lines 7,8 and 9).

Observation 6.1. Let A_j be any instance of CC-Synch executed by some thread p_j and S_l , l > 1 be the Swap instruction executed by A_j . Let node_j be the value written by A_j on some base object $node_x \to next$ while executing line 9 of the pseudocode. S_{l-1} is executed by some thread $p_{j'}$ that writes $node_x$ to Tail.

The pseudocode (lines 1, 2 and 7) implies the following observation.

Observation 6.2. Let A_j and A'_j be two consecutive instances executed by some thread p_j ; let $node_j$ and $node'_j$ be the values written while line 7 is executed by A_j and A'_j respectively. It holds that $node_j \neq node'_j$.

Lemma 6.6. In each configuration C,

- 1. exactly one of the following conditions (i or ii) holds:
 - (i) $Tail(C) = \bot$, there is no combiner at C and there is no thread poised to execute any of lines 13-23 and 25-26.
 - (ii) $Tail(C) \neq \bot$ and there is exactly one combiner at C.
- 2. if there is a combiner p_i at C, the following claims hold:
 - (i) p_i is poised to execute one of the lines 8-23 or one of the lines 25-26 at C and it is not poised to execute line 12 at C.
 - (ii) No thread other than p_i executes lines 13-23 and lines 25-26 at C.
 - (iii) Suppose that p_i is poised to execute one of the lines 13-26 at C, let k be the number of nodes that have been visited by p_i until C, denote by nd'_l , $1 \le l \le k$, the lth such node, and let β_l be the execution fragment at which p_i is visiting nd'_l ; then, for each l, $1 \le l \le k$ and for each configuration C' in β_l , if $nd'_l \ne Tail(C')$

- there is one active thread p_l such that $node_l(C') = nd'_l$, and either $p_l = p_i$ or p_l executes one of the lines 8-12.
- (iv) assume that C is the configuration just after p_i has executed line 26 of the pseudocode; if $nd'_k \neq Tail(C^-)$, then p_k is the unique combiner in the system at C otherwise there is no combiner in the system at C.
- 3. if lines 17-18 have been executed m times in total until C, then for each l, 1 ≤ l ≤ m, lines 16-18 for the lth time were executed by a combiner that had its tmpNode variable equal to nd₁.
- 4. let p_j be the thread that executes the S_m , m > 0 instruction; for each l, $0 \le l < m$, and for each configuration C such that C follows C_l and A_l is active at C, it holds that either $nd_l \to next = \bot$ or $nd_l \to next = nd_{l+1}$ at C; if m is finite, at each configuration C following C_m , it holds that either $nd_m \to next = \bot$ or $nd_m \to next = Tail(C)$.

Proof. We prove the claim by induction on C.

Base Case $(C = C_0)$. No thread is active at C_0 so there is no combiner at C_0 . Moreover, $Tail = \bot$ at C_0 . Thus, the Claim 1 holds. Claim 2 obviously holds, since there is not any combiner at C_0 . Furthermore, Claim 3 holds, since no thread has executed lines 16-18.

Induction Hypothesis. Let C be any reachable configuration and assume that the claim holds in all configurations that precede C.

Induction Step. We prove that the claim holds for C. This is proved by a case analysis on the step s that is applied from C^- to get C, let p_j be the thread that executes s.

- 1. In case that s is the execution of any of s is the execution any of lines 1-3 and 5-6, the claims hold by the induction hypothesis.
- 2. s is the execution of line 4.

It suffices to argue that p_j does not become the combiner by executing s. Let C_4 be the configuration at which p_j executes line 4 of the pseudocode. Assume by the way of contradiction that $node_j(C) \to wait = false$ in some configuration C_w between C_3 and C. By the pseudocode (lines 3 and 4), $node_j \to wait$ does not change value between C_3 and C by p_j . Since $node_j(C) \to wait = true$, there must be a

thread that writes $node_j \to wait = false$ between C_3 and C. Let p_m be a thread that does so. By the pseudocode, it follows that p_m must execute either line 18 or line 26 at C_w . Since p_m is active at C_w , Claim 1.i does not hold at C_w and by the induction hypothesis (for C_w) it follows that Claim 1.ii must hold at C_w . Moreover, the induction hypothesis (Claim 2.ii) implies that p_m must be the combiner at C_w . However then, the induction hypothesis (Claim 2.iii) implies that p_j should be a thread executing lines 8-12 at C_w . This is a contradiction since p_j executes any of line 4 at C_w . We conclude that p_j is not a combiner at C, which is a contradiction.

3. s is the execution of line 7.

We first prove that Claim 1 holds. By the induction hypothesis (Claim 1), one of the following conditions hold at C^- : (Claim 1.i) $Tail(C) = \bot$, there is no combiner at C^- and there is no thread poised to execute any of lines 13-23 and 25-26 or (Claim 1.ii) $Tail(C^-)$ points to a node $nd \neq \bot$ and there is exactly one combiner at C^- .

- Assume first that (1.i) is true at C^- . Since $Tail(C^-) = \bot$, the Swap instruction of line 7 returns a value equal to \bot and thus, it follows that p_j is a combiner at C. Since condition (1.i) guarantees that there was no combiner at C^- , p_j is the only combiner in the system at C.
- Assume now that condition (1.ii) is true at C^- . Since $Tail(C^-) \neq \bot$ and $node_j(C) = Tail(C^-)$, it follows that p_j is not a combiner at C; notice that p_j could not be a combiner at C^- since the combiner is poised to execute some of the lines 8-26 at C^- (whereas p_j is poised to execute line 7 at C^-).

The rest of the claims in each case, hold by the induction hypothesis.

- 4. If s is the execution of any of the lines 8 or 10, the claim holds by induction hypothesis.
- 5. s is the execution of line 9.

It suffices to prove that Claim 4 holds. Let $node_x$ be the value of MyPred of p_j at C. Observation 6.1 implies that there is some thread $p_{j'}$ that executes the S_{l-1} instruction and uses $node_x$ as parameter in S_{l-1} . Assume that $p_{j'}$ executes its S_{l-1} instruction in some instance A_x of CC-Synch. The pseudocode (line 9) implies that

 p_j writes a value equal to $node_j$ at $node_x \to next$ at C. Let C_5 be the configuration after the execution of line 5 by $p_{j'}$. We first prove that $p_{j'}$ executes at most one Swap instruction between S_{l-1} and C. Assume by the way of contradiction that $p_{j'}$ executes two or more Swap instructions between S_{l-1} and C. Let S_{w1} (S_{w2}) be the first (second) of these Swap instructions. Assume that S_{w1} is executed by some A_{w1} instance of CC-Synch. By the definition of A_{w1} , it follows that finishes its operation before the execution of S_{w2} and thus before configuration C^- . Furthermore, the definitions of A_{w1} , A_{w2} and A_j imply that A_j executes its Swap instruction before S_{w1} and a combiner executes lines 16-18 for servicing A_j after the execution of lines 16-18 for servicing A_{w1} . This contradicts the induction hypothesis (Claim 3). Thus, at most one Swap instruction is executed between S_{l-1} and C by $p_{j'}$.

In case that $node_x(C^-) \to next = \bot$, the claim holds trivially since p_j writes $node_j = nd_l$ to $node_x \to next = nd_{l-1} \to next$. The claim also trivially holds in case that $node_x \to next = node_j$ at C^- . We now prove that at configuration C^- , it holds that either $node_x \to next = \bot$ or $node_x \to next = node_j$. Assume, by the way of contradiction, that at configuration C^- , it holds that $node_x \to next = node_w$, where $node_w \ne node_j$ and $node_w \ne \bot$. Let p_w be the thread that writes $node_w$ into $node_x \to next$ at some configuration C_w between C_5 and C^- . Let S_h be the Swap instruction of line 7 executed by p_w . Observation 6.1 implies that $p_{j'}$ executes the S_{h-1} instruction that writes $node_x$ at Tail. Since, $p_w \ne p_j$, it follows that $S_{h-1} \ne S_{j-1}$. Observation 6.2 and the fact that at most one Swap instruction is executed between C_{l-1} and C^- by $p_{j'}$, imply that S_{h-1} precedes S_{j-1} . Therefore, S_h is executed between S_{h-1} and S_{j-1} .

- 6. If s is the execution of line 11, we distinguish the following two cases.
 - Assume first that p_j is the combiner at C⁻. It suffices to argue that p_j is not poised to execute line 12 at C (as needed by Claim 2.i). By definition, there is some configuration C" that precedes C (and occurs during the course of the execution of the current instance of DSM-Synch by p_j) at which either node_j(C") → wait = false and node_j(C") → completed = false or the Swap instruction (notice that p_j is not the combiner due to a returned ⊥ of line 7, since in a such a case the line 11 could not be executed). By the pseudocode,

the wait or completed field of $node_j$ can change if a thread p_m executes one of the lines 3, 4, 17, 18, or 26 after C''. Pseudocode (lines 1-3) implies that the wait or completed field of $node_j$ cannot change when threads other than p_j execute any of the lines 3 or 4. Moreover, the induction hypothesis (Claims 1 and 2.ii) implies that no thread other than p_j can change the wait or completed fields of $node_j$ by executing lines 17, 18, or 26. Thus, no thread other than p_j can change these fields of $node_j$ from C'' to C^- . It follows that p_j evaluates the condition of line 11 to false and therefore, it is not poised to execute line 12 at C (as needed by 2.i).

• Assume now that p_j is not a combiner at C⁻. It suffices to argue that p_j is poised to execute line 12 at C (as needed by Claim 2.i). Assume by the way of contradiction that p_j is not poised to execute line 12. Since p_j executes line 11 at C⁻, it must be that there is some configuration C₁₀ preceding C⁻ at which p_j evaluates the condition of the while statement of line 10 to true. Since p_j is not the combiner, it follows that node_i() → completed = true at C₁₀. Since p_j evaluates the if condition of line 11 to false, it follows that there is a configuration, let it be C_w, between C₁₀ and C at which node_i(C_w) → complete = false. The pseudocode (lines 4 and 17) implies that only p_j writes a value equal to false on node_i → completed by executing line 4 of the pseudocode. The pseudocode (lines 10-11) implies that p_j does not perform any Write operation at C_w. Thus, p_j evaluates the if condition of line 11 to true, which is a contradiction.

The rest of the claims in each case, hold by the induction hypothesis.

7. s is the execution of line 13.

By induction hypothesis (Claims 1 and 2), it follows that only the combiner p_i can be poised to execute line 13 at C^- ; thus, $p_j = p_i$, and p_j has not executed any iteration of the while loop (lines 14-21) yet. By the pseudocode (line 13) it follows that the node assigned to nd is equal to $node_j$. Thus, Claim 2.iii holds. The rest of the claims hold by the induction hypothesis.

- 8. In case that s is the execution of any of the lines 14-16, the claims hold by induction hypothesis.
- 9. s is the execution of line 17. Suppose that this is the kth time, $k \geq 1$, that p_i executes line 17 during A_i and assume that line 17 has been executed m times in total until C. By the induction hypothesis (Claim 2.iii) there is a thread p_k such that $node_k(C^-) = nd_k$, and either $p_k = p_i$ or p_k is executing one of the lines 6-12 at C^- .
 - Assume first that k = 1. Let C_7 be the configuration resulted when p_i executes line 7. By the induction hypothesis (Claim 2.i), p_i cannot be a combiner before C_7 .
 - Assume first that p_i is not the combiner at C_7 . Since p_i is active at all configurations between C_7 and C, by the induction hypothesis (Claim 1), it follows that there is always some combiner in the system between C_7^- and C. Assume that p_i became the combiner at some configuration C' preceding C, and let p_j be the thread that was the combiner at C'^- ; let A_j be the instance of DSM-Synch executed by p_j at C'^{-} . Since p_i becomes the combiner after p_j and p_i is executing line 17 for the last time at C, it follows that the (m-1)st time that lines 16-18 were executed was the last time that p_j executed those lines during A_j . Suppose that p_j visits $k', k' \geq 1$ nodes. Let $nd'_{k'}$ be the last node visited by A_j . The induction hypothesis (Claim 2.iv) implies that $nd'_{k'} = node_i(C')$ (since p_i is the unique combiner in the system right after p_j). The pseudocode (lines 13-21) imply that $nd'_1 = node_j(C'^-) \neq node_i(C'^-)$; thus, k' > 1. By the pseudocode, p_i becomes a combiner when p_j executes line 26 (i.e. at configuration C'). By the pseudocode, $node_i(C') = nd'_{k'} = nd'_{k'-1} \rightarrow$ next. We distinguish the following two cases. In case that $p_{k'-1} = p_j$, the induction hypothesis (Claim 3), implies that $nd'_{k'-1} = nd_{m-1}$. Pseudocode (lines 21 and 26) implies that $nd'_{k'} = nd'_{k'-1} \rightarrow next = nd_{m-1} \rightarrow next$ and $nd'_{k'} = node_i(C) \neq \bot$, it follows that $nd_{m-1} \rightarrow next \neq \bot$. Thus, Claim 4 implies that $node_i(C) = nd'_1 = nd_{m-1} \rightarrow next = nd_m$, as needed (by Claim 3). In case that $p_{k'-1} \neq p_j$, by the induction hypothesis (Claims

- 2.iii), there is some thread $p_{k'-1}$ such that at each configuration \tilde{C} in $\beta_{k'-1}$, $p_{k'-1}$ was executing one of the lines 8-12 at \tilde{C} and $node_{k'-1}(\tilde{C}) = nd'_{k'-1}$; specifically, $p_{k'-1}$ was active at configuration C_{21} at which line 21 was executed by p_j during $\beta_{k'-1}$. Also, by the induction hypothesis (Claim 3), it follows that $nd'_{k'-1} = nd_{m-1}$. Since $nd'_{k'} = nd'_{k'-1} \to next = nd_{m-1} \to next$ and $nd'_{k'} = node_i \neq \bot$, it follows that $nd_{m-1} \to next \neq \bot$. Thus, Claim 4 implies that $node_i(C) = nd'_1 = nd_{m-1} \to next = nd_m$, as needed (by Claim 3).
- Assume now that p_i is a combiner at C_7 . It follows that the Swap instruction of line 7 returns \perp to p_i . By the induction hypothesis (Claim 1), it follows that there is no combiner at C_7^- and no active thread is executing any of the lines 8-27 at C_7^- . Let C' be the last configuration preceding $C_7^$ at which there was a combiner p_c in the system; let A_c be the instance of DSM-Synch executed by p_c at C'. Notice that p_c has executed line 26 in A_c just before configuration C'. By the induction hypothesis (Claim 2.iv), it follows that there is no combiner in the system at C'. By definition of p_c , there is no combiner in the system between C' and C_7^- . By the induction hypothesis (Claim 2.iv), it follows that there is no combiner in the system at C'. By definition of p_c , there is no combiner in the system between C'and C_7^- . We first prove that there no Swap operation is executed between C' and C_7^- . Assume by the way of contradiction that at least one Swap is executed between C' and C_7^- . Let s be the first such Swap and let C'' be the configuration just after the execution of s. Assume that s is executed by some thread p_s . Since there is no combiner between C' and C_7^- , induction hypothesis (Claim 1.i) implies that $Tail(C'') \neq \bot$. Therefore, there is a combiner at C''. This contradicts our assumption that there is no combiner between C' and C_7^- . Thus, the Swap instruction executed by p_i at C_7^- is the first Swap instruction executed between C' and C_7^- . Assume that p_c visited k' nodes in A_c ; and denote by $nd'_{k'}$ the last node visited by p_c in A_c . By the pseudocode (lines 19-20), it follows that $nd_{k'} \neq \bot$; Obviously, the (m-1)th time that lines 17-18 were executed was for node $nd_{k'}$. By the induction hypothesis (Claim 3), $nd_{k'} = nd_{m-1}$, as needed.

• Assume now that k > 1. By the pseudocode, nd_k (in A_i instance) cannot be equal to \bot since otherwise the kth iteration of the while loop would not be executed by p_i (see lines 19-20 of pseudocode). By the induction hypothesis (Claims 2.iii), either $p_{k-1} = p_i$ or there is some thread $p_{k-1} \neq p_i$ such that at each configuration C' in β_{k-1} , p_{k-1} was executing one of the lines 6-12 at C'. By the induction hypothesis (Claim 3), it follows that $nd'_{k-1} = nd_{m-1}$. By the pseudocode, it follows that $nd'_k = nd'_{k-1} \to next = nd_{m-1} \to next$. Since $nd'_k \neq \bot$, it follows that $nd_{m-1} \to next \neq \bot$. Thus, Claim 4 implies that $nd'_k = nd_{m-1} \to next = nd_m$, as needed (by Claim 3).

10. s is the execution either of line 18.

Assume that either line 18 is executed for the kth time, $k \geq 1$. Remind that it is only the combiner that can be poised to execute this line of code at C^- . By the induction hypothesis (Claim 2.iii) there is a thread p_k such that $node_k(C^-) = nd_k$, and either $p_k = p_i$ or p_k is executing one of the lines 8-12 at C^- . Since s changes either the *completed* or the *wait* field of $node_k(C^-)$, Claim 1 holds by induction hypothesis. The rest of the claims hold by induction hypothesis.

- 11. In case that s is the execution either of line 19 or line 20, the claims hold trivially.
- 12. s is the execution of line 21.

It is enough to argue that Claim 2.iii holds after the execution of s. The rest of claims hold by induction hypothesis. Assume that the execution of s by p_i identifies the kth node visited by p_i , k > 1 (notice that the first node visited by p_i is identified by executing line 13 and not line 21; thus, k > 1). If $nd'_k = \bot$, Claim 2.iii holds (by induction hypothesis for each l < k). Thus, assume that $nd'_k \neq \bot$. Denote by S_1 the Swap operation executed by p_i in req and denote by S_k the Swap operation executed by p_k . We first prove that S_1 precedes S_k . By the pseudocode, $nd'_{k-1} \to next = nd'_k$ cannot be equal to \bot since otherwise the (k-1)th iteration of the while, where the kth node to be visited by p_i is identified (this occurs when p_i executes line 21 of that iteration), would not be executed. By the induction hypothesis (Claim 2.iii), either $p_{k-1} = p_i$ or there is some thread p_{k-1} such that at each configuration C' in β_{k-1} , p_{k-1} was executing one of the lines 6-12 at C' and $node_{k-1}(C') = nd_{k-1}$. In case that

 $p_{k-1} = p_i$, the pseudocode implies that $nd'_1 \to next = nd'_k$. Claim 4 implies that the Swap operation S_1 executed by p_i precedes the execution of the Swap operation S_k by p_k . In case that $p_{k-1} \neq p_i$, (Claim 2.iii) implies that p_{k-1} was active at configuration C_{21} at which line 21 was executed by p_i during β_{k-1} . The pseudocode implies that $nd'_{k-1} \to next = node_{k-1}(C_{21}) \to next$. Since we have assumed that $nd'_k \neq \bot$, it follows that $node_{k-1}(C_{21}) \to next \neq \bot$. Thus, Claim 4 implies that there is a thread p_k that has executed line 7 before C_{21} such that $node_k(C) = nd'_k$; moreover, Claim 4 implies that the Swap operation S_{k-1} executed by p_{k-1} precedes the execution of the Swap operation S_k by p_k . By the pseudocode, p_i executes lines 16-18 for itself during the first iteration of the while loop of lines 14-21, i.e. before executing it for p_{k-1} . Since p_i executes lines 16-18 later on for p_{k-1} , the induction hypothesis (Claims 2.iii and 3) implies that S_1 has occurred before S_k .

We continue to prove that p_k is active at C^- . Assume, by the way of contradiction, that the instance A_k of CC-Synch executed by p_k is not active at C^- . Recall that p_k executed S_k after S_1 . Thus, p_i was active while executing one of the lines 6-21 when S_k was executed; let C_k be the configuration just after the execution of S_k . Apparently, C_k precedes C. Since p_i is active between C_1 and C, by the induction hypothesis (Claim 1), it follows that there is always some combiner in the system in all configurations between C_1 (which results by applying S_1) and C. Thus, there is some combiner in all configurations between C_k^- and C. By the pseudocode, the completed field of $node_k$ must be equal to true when p_k terminates. By the pseudocode, this can happen only if there is some thread p_h that executes lines 16-18 with $tmpNode = node_k$ at some configuration before C. Suppose that lines 16-18 have been executed h' times in total until the configuration that p_h executed line 18 with $tmpNode = node_k$. Since S_1 is performed before S_k , the induction hypothesis (Claim 3) implies that lines 18-26 have been executed for p_i before being executed for p_k (assume that this has happened the h''th time that lines 16-18 were executed). By the induction hypothesis (Claim 3), $node_i = nd_{h''}$. However, by the pseudocode, it follows that lines 16-18 are executed for $node_i$ by p_i during the execution of the first iteration of the while loop of lines 14-21; let this be the hth time that lines 16-18 are executed. Since p_i has not visited $node_k$ before C, it follows that h > h'', which contradicts the induction hypothesis (Claim 3).

Thus, p_k is still active at C^- . By the induction hypothesis (Claim 2.ii), no thread other than the combiner p_i executes lines 13-27 at C^- . Thus, p_i executes one of the lines 6-12 at C^- . Since it is thread p_i that executes s, p_k executes one of the lines 6-12 at C. This completes the proof of Claim 2.iii.

- 13. In case that s is the execution of line 22 claims hold trivially.
- 14. s is the execution of line 23.

In case that the CAS instruction of line 23 fails, $Tail(C) \neq \bot$ and line 24 is not executed by p_i . Thus, Claim 1.i holds. In case that the CAS instruction of line 23 succeeds, a value equal to \bot is set and p_i , which is the unique combiner, is poised to execute line 24. Thus, Claim 1 holds.

- 15. In case that s is the execution of line 25 claims hold trivially.
- 16. s is the execution of line 26. Recall that it is only the combiner that can be poised to execute this line of code at C^- . Assume that p_i visits the (k-1)th node at the execution of line 22. The pseudocode (lines 22-25) implies that $nd'_k = nd'_{k-1} \rightarrow next \neq \bot$ at C. Induction hypothesis (Claim 2.iii) implies that $nd'_k = node_k(C^-)$ for some thread p_k that is poised to execute one of the lines 8-12 at C^- . By the induction hypothesis (Claim 3), $node_k$ is visited for the first time since A_k was initialized. This implies that $node_k(C^-) \rightarrow completed = false$. Since s changes $node_k(C^-) \rightarrow wait$ to s false it follows that s is a combiner at s. Since s is the unique combiner in the system at s is not a combiner anymore after the execution of line 26, it follows that the unique combiner in the system at s is needed by Claim 2.iv. Moreover, induction hypothesis implies that s induction hypothesis.

Let nd_i be the node of the list that is assigned to p_i for req_i . Thread p_i completes the execution of DSM-Synch for req_i in any of lines 12, 24 and line 27. Assume first, that p_i returns on line 12. Lemma 6.6 (Claim 2.iii) implies that a combiner thread p_j has served req_i before the execution of line 12 by p_i . Therefore, p_j has executed line 16 for nd_i at some iteration l > 1 of its while loop (lines 14-21). Request req_i is linearized just before the execution of this instance of line 16 by p_j . Assume now that p_i returns either on line 27 or on line 24. Lemma 6.6 (Claim 2.iii) implies that p_i serves its request on its own when it executes line 16 at the first iteration of its while loop (lines 14-21). In this case, req_i is linearized just before the execution of line 16 of the first iteration of p_i 'As while loop. Obviously, in both cases the linearization point of req_i is within its execution interval. Consistency is immediately implied by Claims 2.iii and 3 of Lemma 6.6. Thus, the following theorem holds.

Theorem 6.2. DSM-Synch is a linearizable synchronization algorithm.

6.4 Performance evaluation of CC-Synch, DSM-Synch and H-Synch

We evaluated CC-Synch and DSM-Synch in two different multiprocessor machine architectures. The first is a 32-core machine consisting of four AMD Opteron 6134 processors (Magny Cours). Each processor consists of 2 dies and each die contains 4 processing cores. Communication among the cores of the same die is achieved with a fast L3 cache. Dies communicate with Hyper-Transport links which create a complex topology that resembles a hypercube [21]. The second machine is a 128-way Sun consisting of 2 UltraSPARC-T2 processors (Niagara 2). Each processor consists of 8 processing cores, each of which is able to handle 8 threads. Communication among the cores of the same processor is achieved with a fast L2 cache. All experiments on the Magny Cours machine were performed using the gcc 4.3.4 compiler, while experiments on the Niagara 2 machine were performed using gcc 4.5.1. In order to avoid bottlenecks in memory allocation, the Hoard memory allocator [18] was used. The operating system running on the Magny Cours machine was Linux with kernel 2.6.18, while the operating system running on the Niagara 2 machine was Solaris 10.

Thread binding is employed for the following reason. Assume that the number of threads is smaller than the number of cores and suppose that two threads are running. The scheduler may decide to run them either on different processors (chips) or within the same chip. In the first case the communication cost is an order of magnitude more

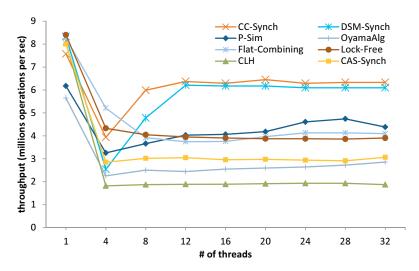


Figure 6.1: Average throughput of CC-Synch and DSM-Synch on the Magny Cours machine while simulating a Fetch&Multiply object.

than in the second. Thus, if thread binding is not used, a significant uncertainty factor is introduced which may lead to an unreliable experiment. We observed that this was a usual phenomenon. So, on the Magny Cours machine, the i-th thread was bound to the i-th core of the machine; we first exploited multi-core, then multi-chip and then multi-socket configuration. On the Niagara 2 machine, we follow a slightly different scheduling similar to that used in [24] in order to better explore the performance properties of hierarchical algorithms. More specifically, we split threads into two groups, one for each socket.

In order to evaluate CC-Synch and DSM-Synch, we compare their performance with that of state-of-the-art synchronization algorithms. Specifically, they are compared with P-Sim (the wait-free universal construction presented in [28]), flat-combining [33, 34], the CLH spin-lock [23, 47][‡], OyamaAlg [52], and a simple lock-free implementation. The lock-free implementation was implemented using a CAS object. Specifically, whenever a thread wants to apply a Fetch&Multiply, it repeatedly executes CAS until it succeeds; a backoff scheme is employed to increase the scalability of this implementation. Since the Niagara 2 machine does not support Add which is employed by P-Sim and is necessary, as shown in [28], for its good performance, no experiment was performed for P-Sim on the Niagara 2 machine. We also evaluated a variation of CC-Synch (called CAS-Synch), in which Swap is simulated with a CAS object in a lock-free manner. This allows us to explore the performance advantages of Swap over CAS.

 $^{^{\}ddagger}$ As expected for cache-coherent NUMA architectures, we experimentally saw that MCS [49] spin locks have slightly worse performance than CLH locks in both machines, so we present experimental results for CLH locks.

On the Niagara 2 machine, H-Synch, the hierarchical NUMA lock (called FCMCS below) presented in [24], and the hierarchical lock called C-BO-MCS presented in [25] were also evaluated. On the Magny Cours machine, experiments show no performance benefit when using any of the hierarchical algorithms. This is rational to the fact that the machine consists of many but very small clusters of cores. Thus, we have not included any performance measurements for the hierarchical algorithms on the Magny Cours machine. All algorithms were carefully optimized and for those that use backoff schemes, we performed a large number of experiments in order to choose the best backoff parameters. We used the flat-combining implementation that was provided by its inventors [33, 34] and we choose its parameters very carefully in order to achieve the best performance. We further optimized the code of flat-combining to run faster than its original version [33, 34] on the Magny Cours machine. We used the latest version of P-Sim code (version 0.8) [45, 28]. The source code of our implementations is provided at http://code.google.com/p/sim-universal-construction/.

The first experiment we performed is a synthetic benchmark (Figures 6.1, 6.2), where a simple Fetch&Multiply object is simulated. We measure the average throughput (Fetch&Multiply per second) that each synchronization algorithm achieves when it executes 10^7 Fetch&Multiply operations (i.e. always the same amount of work), for different values of n; each thread executes $10^7/n$ Fetch&Multiply. Specifically, the horizontal axis of Figures 6.1, 6.2 represents the number of threads n, while the vertical axis displays the throughput (in millions of operations per second) that each synchronization algorithm has performed. For each value of n, the experiment has been performed 10 times and averages have been calculated. A random number of dummy loop iterations (up to 64) have been inserted between the execution of two Fetch&Multiply by the same thread; specifically, in each iteration a volatile counter is increased. In this way, we simulate a random work load large enough to avoid unrealistically low cache miss ratios and long runs (but not too big to reduce contention). Figure 6.6 studies the performance behavior of our algorithms for different values of the random work.

In the experiments performed on the Magny Cours machine (Figure 6.1), CC-Synch outperforms all other synchronization algorithms. Specifically, CC-Synch achieves up to 1.54 higher throughput than flat-combining and outperforms P-Sim by a factor of up to 1.52. The lock free implementation of Fetch&Multiply is slightly slower than P-Sim and

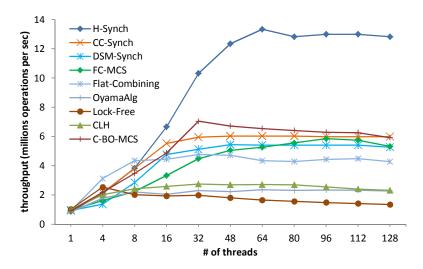


Figure 6.2: Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2 machine while simulating a Fetch&Multiply object.

flat-combining. Also, CC-Synch is up to 2.7 times faster than OyamaAlg [52]. DSM-Synch performs also very well; its performance is close to that of CC-Synch, despite the fact that it is designed for machines following the DSM model. Figure 6.1 also shows that simulating Swap using CAS (in a lock-free way) induces a serious performance penalty; specifically, CAS-Synch is two times slower than CC-Synch.

Similarly to the experiments performed on the Magny Cours machine, CC-Synch outperforms all algorithms other than H-Synch and C-BO-MCS on the Niagara 2 machine (Figure 6.2). More specifically, CC-Synch outperforms flat-combining by a factor of up to 1.4. It is noticeable that even CC-Synch itself (not its hierarchical version) outperforms FCMCS [24] by a factor of up to 1.65, despite the fact that FCMCS exploits the hierarchical characteristics of communication in the machine. In contrast to FCMCS, C-BO-MCS slightly outperforms CC-Synch in case of 32-112 threads, exploiting its hierarchical characteristics in the Niagara 2 machine. However, C-BO-MCS is vastly outperformed by H-Synch. The relatively small performance gap between flat-combing and FCMCS may seem surprising at first; however, this result is rational to the fact that FCMCS causes more cache misses when accessing the shared data. Specifically, in FCMCS, combining is not used in applying the requests, so each request may be applied by a different thread; thus, each time a thread accesses the shared data cache misses may occur. This is avoided when combining is employed in serving the requests, as done by the other studied combiningbased synchronization algorithms. DSM-Synch exposes almost the same performance to CC-Synch on the Niagara 2 machine. H-Synch which is the hierarchical version of CC-

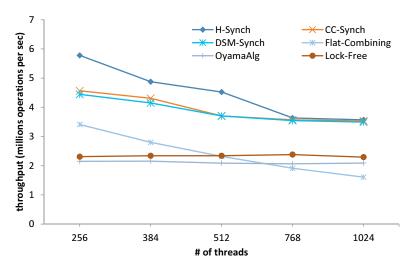


Figure 6.3: Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2 machine for n > 128 (over-subscribing) while simulating a Fetch&Multiply object.

Synch outperforms FCMCS by a factor of up to 2.65 and flat-combining itself by a factor of up to 3.0. CC-Synch is up to 2.55 times faster than OyamaAlg [52], while H-Synch is more than 6 times faster. The performance of CAS-Synch is not illustrated in Figure 6.2 since CAS-Synch results in very poor performance on the Niagara 2 machine.

As shown in Figure 6.1, on the Magny Cours machine, all algorithms perform faster in case n=1 than for larger values of n. On the contrary, Figure 6.2 shows that, on the Niagara 2 machine, the performance of all algorithms is always better for larger values of n. The Magny Cours machine implements atomic instructions (CAS, Swap, etc.) in the private L1 cache which is very fast. This and the fact that the local workload is small (up to 64) are the reasons for the very high performance that the Magny Cours machine achieves in case of n=1. In contrast, a Niagara 2 processor implements atomic instructions in the shared L2 cache which is slower (Niagara 2 processor is optimized for contented workloads, i.e. in case of n>1).

In Figure 6.3, we study the performance of each implementation on the Niagara 2 machine for n > 128, i.e. when n is larger than the number of threads that the machine is able to handle simultaneously; thus, the machine is over-subscribed. We do not include any measurement from FCMCS and CLH locks since in this experiment they do not achieve good performance. As illustrated in Figure 6.3, H-Synch, CC-Synch and DSM-Synch achieve better performance than any other synchronization algorithm for any value of n.

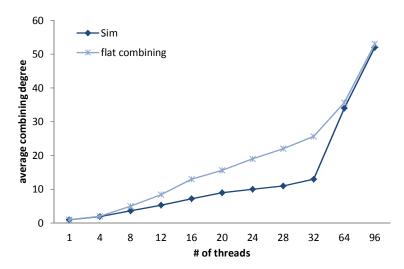


Figure 6.4: Average degree of combining of CC-Synch, DSM-Synch and H-Synch while simulating a Fetch&Multiply object.

Figures 6.4 - 6.5 aim at investigating the reasons for the good performance of CC-Synch and DSM-Synch. More specifically, from Figure 6.5, it follows that on the Magny Cours machine, P-Sim and flat-combining execute slightly more (up to 10% more) atomic instructions than CC-Synch and OyamaAlg [52]. The experiments showed that to achieve the best performance for the lock-free algorithm, the back-off should not be too high. By appropriately choosing the back-off to get the best performance, it turned out that the average number of CAS performed by each instance of the algorithm is two which is bigger than the average number of atomic instructions executed by each instance of CC-Synch and DSM-Synch. Thus, the lock-free algorithm has a performance disadvantage compared to these algorithms.

Figure 6.4 displays the average degree of combining, i.e. the average number of requests that are executed by a combiner. It shows that CC-Synch and DSM-Synch achieve better degree of combining which is almost 3 times more than that of P-Sim and flat-combining \S . Our efforts to increase the average degree of combining for flat-combining by carefully tuning its parameters (i.e. by increasing the combining rounds or by changing the polling level), revealed that when the combining degree was increased the average throughput was decreased. On the contrary, P-Sim operates in a way that it can help as much threads as the system's point contention (i.e. as the maximum number of threads that can be simultaneously active at any point in time which might be equal to n).

[§]In Figure 6.4, we have not included results for OyamaAlg since the variance of the combining degree in this algorithm was too high to get a realistic view. This is due to the fact that a combiner thread in this algorithm may be enforced to help an unbounded number of operations.

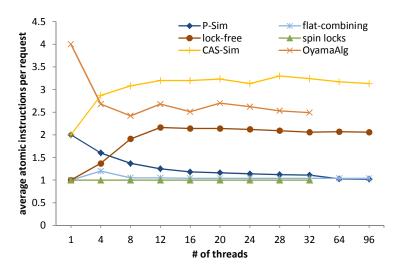


Figure 6.5: Average number of atomic instructions (CAS, Swap and Add) that CC-Synch, DSM-Synch and H-Synch execute on the Niagara 2 machine while simulating a Fetch&Multiply object.

In the experiment of Figure 6.6, we studied the behavior of the competing algorithms for different amounts of random work. This experiment was executed on the Magny Cours machine; the number of threads was fixed to 32. Figure 6.6 shows that for a wide range of values for random work (64 - 2048), most algorithms have a small difference in the exhibited throughput. This shows that the communication cost is the dominant factor, whereas the time invested to execute the local random work does not play any significant role. An exception is the lock-free algorithm, which, in case the random work is equal to zero, has unrealistically high performance. This is due to the fact that, in this case, a thread could uninterruptedly execute thousands of Fetch&Multiply before some other thread starts its execution. This phenomenon (called long runs) has been also discussed in [28, 50] as an unrealistic workload. Figure 6.6 shows that by slightly increasing the random work, the performance of the lock-free algorithm rapidly decreases. The same phenomenon, although in a smaller scale, was also noticed for flat-combining. Similarly to the lock-free implementation, flat-combining has high throughput for very small amounts of random work, although its performance vastly decreases when the random work is slightly increased. In cases that the number of iterations is 2048 or more, the time needed to execute this loop becomes the dominant performance factor, i.e. executing the loop becomes more expensive than executing the algorithm for applying a FetchAndMultiply instruction. Thus, the performance of all algorithms starts to decrease

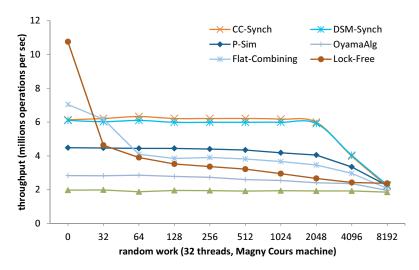


Figure 6.6: Average throughput of CC-Synch, DSM-Synch and H-Synch for different values of random work.

Algorithm	cache misses	cpu cycles spent in memory stalls
CC-Synch	4.1	2747
Sim	4.9	6328
flat-combining	5.8	6501

Table 6.3: Cache misses and memory stalls per operation for n = 16 of CC-Synch, P-Sim and flat-combining.

and the performance gap between them becomes insignificant. We remark that the scale of the horizontal axis of Figure 6.6 is logarithmic.

Table 6.3 shows some measurements from performance counters. We observed that the extra cache misses incurred by P-Sim and flat-combining was caused due to the number of failed CAS instructions; this number becomes worse if these algorithms are not properly tuned. Since failed CAS instructions cause cache misses and branch mispredictions, we conclude that a combining algorithm that avoids them has a serious performance advantage.

6.5 Highly-efficient blocking data structures

We further investigate the performance of CC-Synch, DSM-Synch and H-Synch by implementing common concurrent data structures (i.e. shared stacks and queues). We compare the performance of these implementations with state-of-the-art shared stack and queue implementations. Specifically, the shared stack implementation based on CC-Synch, called

CC-Stack, was evaluated against SimStack [28], the lock-free stack implementation presented by Treiber in [58], a stack implementation based on CLH spin locks [23, 47], and a linked stack implementation based on flat-combining [33, 34] (called FCStack). Both CC-Stack and FCStack eliminate pairs of push and pop whenever possible; the performance of elimination [35] has been studied in [28] and [34] where experiments show that elimination is outperformed by SimStack and FCStack. We also implemented a shared stack based on H-Synch and FCMCS [24] and evaluated their performance on the Niagara 2 machine.

The experiment we perform is similar to that performed by Michael and Scott for queues in [50]. We measure the average throughput (operations per second) that each algorithm achieves (every thread executes $10^7/n$ pairs of ENQUEUE and DEQUEUE operations) for different values of n. Again, the experiments have been performed several times and averages have been taken; we have simulated a random workload by executing a random number of iterations (up to 64) of a dummy loop after each operation.

As it is shown in Figure 6.7, on the Magny Cours machine, CC-Stack performs up to 1.68 times faster than FCStack, and up to 1.59 times faster than SimStack. The stack implementation based on the CLH spin lock had much lower performance. The stack implementation based on DSM-Synch, called DSM-Stack, performs slightly worse than CC-Synch but it is much better than all other algorithms. On the Niagara 2 machine, the shared stack based on CC-Synch performs 1.4 times faster than FCStack (Figure 6.8). The stack implementation based on DSM-Synch performs worse than CC-Stack but it is again better than all other algorithms. It is noticeable that the stack implementations based

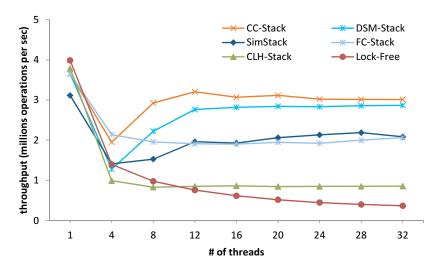


Figure 6.7: Average throughput of CC-Stack and DSM-Stack on the Magny Cours machine.

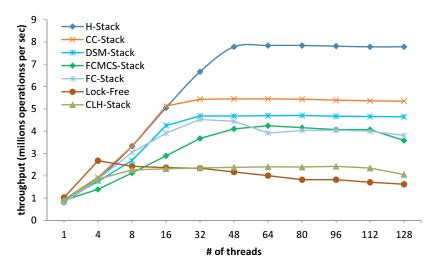


Figure 6.8: Average throughput of CC-Stack, DSM-Stack and H-Stack the Niagara 2 machine.

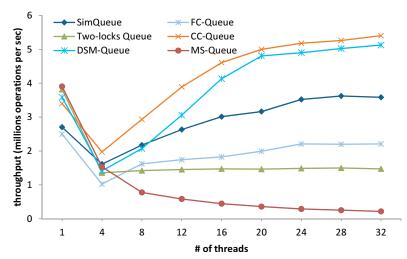


Figure 6.9: Average throughput of CC-Queue and DSM-Queue on the Magny Cours machine.

on CC-Synch and DSM-Synch outperform by a factor of up to 1.49 the shared stack based on FCMCS of [24]. The stack implementation based on H-Synch significantly outperforms all other implementations, being up to 2.0 times faster than FCStack and up to 2.1 times faster than the stack based on FCMCS [24].

We also implement and experimentally analyze shared queues based on CC-Synch, DSM-Synch and H-Synch, which are called CC-Queue, DSM-Queue and H-Queue, respectively. Specifically, the two-locks queue implementation presented in [50] is enhanced by replacing the ordinary locks with instances of CC-Synch, DSM-Synch and H-Synch, respectively. These implementations are compared (Figures 6.9-6.10) with SimQueue [28], the lock free queue implementation and the two-locks implementation presented in [50], and the queue implementation based on flat-combining [33, 34] (called FCQueue). On the

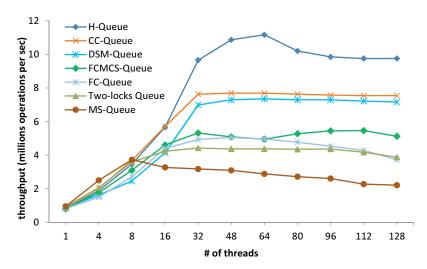


Figure 6.10: Average throughput of CC-Queue, DSM-Queue and H-Queue on the Niagara 2 machine.

Niagara 2 machine, we additionally implemented and evaluated a two-locks queue variant using FCMCS [24]. The queue experiment was similar to that for stacks.

As illustrated in Figure 6.9, on the Magny Cours machine, SimQueue exhibits better performance than any algorithm other than CC-Queue and DSM-Queue, as expected based on results in [28]. CC-Queue performs up to 2.53 times faster than FCQueue (Figure 6.9) and 2.1 times faster than SimQueue. DSM-Queue performs slightly worse than CC-Queue but better than all other algorithms. On the Niagara 2 machine (Figure 6.10), FCQueue performs better than all algorithms other than CC-Queue, DSM-Queue and H-Queue (recall that SimQueue has not been implemented in this machine since Add instructions are not included in its instruction set). CC-Queue performs up to 1.8 times faster than FCQueue and up to 1.55 times faster than the queue based on [24]. The queue implementation based on H-Synch greatly outperforms all other candidates by being up to 2.25 times faster than the queue implementation based on FCMCS [24]. It is also noticeable that the performance gap between FCQueue and the two-locks queue is smaller on the Niagara 2 machine. This is due to the fact that the CLH locks perform very well in this machine and the parallel use of two different locks (one for enqueues and one for dequeues) gives a performance boost in the two-locks algorithm. Again, DSM-Queue performs slightly worse than CC-Queue but better than all other algorithms except from H-Queue on the Niagara 2 machine.

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation the RedBlue, Sim and Synch families of synchronization algorithms are presented.

The RedBlue algorithms are adaptive synchronization algorithms using Read/Write and LL/SC base objects. The RedBlue synchronization algorithms achieve better step complexity than all previously presented algorithms. F-RedBlue which is the first algorithm of the RedBlue synchronization algorithms, matches the $\Omega(\log n)$ lower bound presented by Jaynati in [41].

The Sim synchronization algorithms achieve better step complexity by using other base objects than LL/SC or CAS. More specifically, Sim achieves constant step complexity by using Add additionally to LL/SC and Read/Write base objects. It is noticeable that P-Sim, which is a practical version of Sim outperforms the state-of-the-art synchronization algorithms and ensures stronger progress guarantees. P-Sim also shows that the architectures that support Add base objects have significant performance benefits.

The Synch synchronization algorithms are blocking implementations of the combining technique. Synch synchronization algorithms achieve much better performance than all other synchronization algorithms, while having nice complexity features. H-Synch is an hierarchical version of CC-Synch that provides improved performance in hierarchical systems.

The universal synchronization algorithm presented by Chuong, Ellen and Ramachandran in [20], is transaction friendly. Making a transaction-friendly version of L-Sim is left

as future work; however, we believe that this can be easily achieved by applying similar techniques to those in [20]. The experimental analysis of L-Sim is also left as future work.

Since one of the goals of Sim is wait-freedom, each active thread executes all pending requests; this might be inefficient in terms of energy consumption. In contrast, in CC-Synch and in flat-combining, threads perform spinning until their requests have been executed (which seems to be less expensive in terms of resource usage). Measuring energy consumption is an interesting but not an easy task since several parameters (e.g., the time required to perform the computation, the resource usage, the way the thread library is implemented, etc.) should be considered. So, we leave this as future work.

In [8], Agathos, Kallimanis and Dimakopoulos present a highly efficient implementation of OpenMP tasks [51] for the OMPi OpenMP/C compiler [26]. This OpenMP tasking environment uses a work-stealing queue implementation based on CC-Synch. In synthetic benchmarks, OMPi achieves up to a 5 times better performance than other OpenMP task implementations, while for task-based real-world applications it achieves up to 87% better performance comparing to other OpenMP compilers [8]. We expect that the synchronization algorithms of the Synch and Sim families will be used in other practical applications as well.

Similarly to flat-combining [34], Sim and Synch synchronization algorithms have the same applicability limitations. Efficient implementations of data structures like search trees, where m lookups can be executed in parallel by performing just a logarithmic number of shared memory accesses each, are expected to outperform Sim/Synch(since these synchronization algorithms perform each request sequentially like most previous universal constructions [20, 27, 34, 36, 37]). This limitation could be overcome by using multiple instances of them, as it is done in our queue implementation of Section 5.6 and the queue implementation of Section 6.5. For more complicated data structures, this will be part of our future work.

BIBLIOGRAPHY

- [1] Advanced Micro Devices. AMD64 Architecture Programmer's Manual Volume 2: System Programming, June 2010.
- [2] Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived renaming made adaptive. In *Proceedings of the 18th ACM Symposium on Principles of Distributed Computing*, pages 91–103, 1990.
- [3] Yehuda Afek, Pazi Boxer, and Dan Touitou. Bounds on the shared memory requirements for long-lived & adaptive objects. In *Proceedings of the 19th ACM Symposium on Principles of Distributed Computing*, pages 81–89, 2000.
- [4] Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In *Proceedings* of the 27th ACM Symposium on Theory of Computing, pages 538–547, 1995.
- [5] Yehuda Afek, Michael Merritt, and Gadi Taubenfeld. The power of multi-objects. Information and Computation, 153:213–222, 1999.
- [6] Yehuda Afek, Michael Merritt, Gadi Taubenfeld, and Dan Touitou. Disentangling Multi-object Operations. In Proceedings of the 16th ACM Symposium on Principles of Distributed Computing, pages 262–272, 1997.
- [7] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived Adaptive Collect with Applications. In *Proceedings of the 40th Symposium on Foundations of Computer Science*, pages 262–272, 1999.
- [8] Spiros N. Agathos, Nikolaos D. Kallimanis, and Vassilios V. Dimakopoulos. Speeding up OpenMP tasking. In Euro-Par 2012 Parallel Processing, pages 650–661. Springer, 2012.

- [9] Gene Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. In AFIPS Conference Proceedings, pages 483–485, 1967.
- [10] James H. Anderson and Mark Moir. Universal constructions for multi-object operations. In Proceedings of the 14th ACM Symposium on Principles of Distributed Computing, pages 184–193, 1995.
- [11] James H. Anderson and Mark Moir. Universal Constructions for Large Objects. *IEEE Transactions on Parallel and Distributed Systems*, 10(12):1317–1332, dec 1999.
- [12] James Aspnes and Maurice Herlihy. Fast, Randomized Consensus Using Shared Memory. 11(2):441–461, September 1990.
- [13] Hagit Attiya and Arie Fouren. Adaptive and Efficient Wait-Free Algorithms for Lattice Agreement and Renaming. SIAM Journal on Computing, 31(2):642–664, 2001.
- [14] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. *Journal of the ACM (JACM)*, 50:444–468, July 2003.
- [15] Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 336–343, 2008.
- [16] Hagit Attiya, Nancy Lynch, and Nir Shavit. Are Wait-free Algorithms Fast? *Journal of the ACM (JACM)*, 41(4):725–763, July 1994.
- [17] Greg Barnes. A method for implementing lock-free shared data structures. In Proceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures, pages 261–270, 1993.
- [18] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: A Scalable Memory Allocator for Multithreaded Applications. In Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems, pages 117–128, 2000.

- [19] Tushar Deepak Chandra, Prasad Jayanti, and King Tan. A polylog time wait-free construction for closed objects. In *Proceedings of the 17th ACM Symposium on Principles of Distributed Computing*, pages 287–296, 1998.
- [20] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal construction for wait-free transaction friendly data structures. In *Proceedings of the 22nd Annual ACM Symposium on Parallel Algorithms and Architectures*, pages 335–344, 2010.
- [21] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill Hughes. Blade Computing with the AMD Opteron Processor (Magny-Cours). Hot chips 21, August 2009.
- [22] Intel Corporation. Intel(R) 64 and IA-32 Architectures Software Developer's Manual Volume 3A: System Programming Guide, Part1, January 2011.
- [23] Travis S. Craig. Building FIFO and priority-queueing spin locks from atomic swap. Technical Report TR 93-02-02, Department of Computer Science, University of Washington, February 1993.
- [24] Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-Combining NUMA Locks. In Proceedings of the 23nd Annual ACM Symposium on Parallel Algorithms and Architectures, pages 65–74, 2011.
- [25] Dave Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Technique for Designing NUMA Locks. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2012.
- [26] Vassilios V Dimakopoulos, Elias Leontiadis, and George Tzoumas. A portable c compiler for openmp v. 2.0. In Proceedings of the European Workshop on OpenMP (EWOMP'A03), Aachen, Germany, 2003.
- [27] Panagiota Fatourou and Nikolaos D. Kallimanis. The RedBlue Adaptive Universal Constructions. In Proceedings of the 23rd International Symposium on Distributed Computing, pages 127–141, 2009.

- [28] Panagiota Fatourou and Nikolaos D. Kallimanis. A Highly-Efficient Wait-Free Universal Construction. In *Proceedings of the 23nd Annual ACM Symposium on Parallel Algorithms and Architectures*, pages 325–334, 2011.
- [29] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the Combining Synchronization Technique. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2012.
- [30] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization primitives for large-scale cache-coherent multiprocessors. In *Proceedings of the Third International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)*, pages 64–75, April 1989.
- [31] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and Marc Snir. The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Computer. *IEEE Trans. Computers*, 32(2):175–189, 1983.
- [32] Rajiv Gupta and Charles R. Hill. A scalable implementation of barrier synchronization using an adaptive combining tree. In *Proceedings of the Third International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS III)*, pages 54–63, 1989.
- [33] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. The Code for Flat-Combining. http://github.com/mit-carbon/Flat-Combining.
- [34] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the synchronization-parallelism tradeoff. In *Proceedings of the 22nd Annual ACM Symposium on Parallel Algorithms and Architectures*, pages 355–364, 2010.
- [35] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In Proceedings of the 16th ACM Symposium on Parallel Algorithms and Architectures, pages 206–215, 2004.
- [36] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems (TOPLAS), 13:124–149, jan 1991.

- [37] Maurice Herlihy. A methodology for implementing highly concurrent data objects.

 ACM Transactions on Programming Languages and Systems (TOPLAS), 15(5):745–770, nov 1993.
- [38] Maurice Herlihy, Victor Luchangco, and Mark Moir. Space and Time Adaptive Non-blocking Algorithms. *Electronic Notes in Theoretical Computer Science*, 78, 2003.
- [39] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12:463–492, 1990.
- [40] Damien Imbs and Michel Raynal. Help When Needed, But No More: Efficient Read/Write Partial Snapshot. In Proceedings of the 23rd International Symposium on Distributed Computing, pages 142–156. Springer, 2009.
- [41] Prasad Jayanti. A lower bound on the local time complexity of universal constructions. In *Proceedings of the 17th ACM Symposium on Principles of Distributed Computing*, pages 183–192, 1998.
- [42] Prasad Jayanti. A time complexity lower bound for randomized implementations of some shared objects. In Proceedings of the 17th ACM Symposium on Principles of Distributed Computing, pages 201–210, 1998.
- [43] Prasad Jayanti. F-arrays: implementation and applications. In *Proceedings of the* 21th ACM Symposium on Principles of Distributed Computing, pages 270–279, 2002.
- [44] Prasad Jayanti and Srdjan Petrovic. Efficient Wait-Free Implementation of Multiword LL/SC Variables. In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems, pages 59–68, 2005.
- [45] Nikolaos D. Kallimanis and Panagiota Fatourou. The Code for Sim Universal Construction. http://code.google.com/p/sim-universal-construction/.
- [46] Victor Luchangco, Daniel Nussbaum, and Nir Shavit. A Hierarchical CLH Queue Lock. In Proceedings of the 12th International Euro-Par Conference, pages 801–810, 2006.

- [47] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache Coherent Multiprocessors. In Proceedings of the 8th International Parallel Processing Symposium, pages 165–171, 1994.
- [48] Paul E. McKenney. Memory Barriers: a Hardware View for Software Hackers, June 2010.
- [49] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization on Shared-Memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65, 1991.
- [50] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms. In Proceedings of the 15th ACM Symposium on Principles of Distributed Computing, pages 267–275, 1996.
- [51] ARB OpenMP. Openmp application program interface, v. 3.1, 2008.
- [52] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Executing parallel programs with synchronization bottlenecks efficiently. In *Proceedings of International Workshop on Parallel and Distributed Computing for Symbolic and Irregular Applications (PDSIA '99)*, pages 182–204, 1999.
- [53] Zoran Radovic and Erik Hagersten. Hierarchical Backoff Locks for Nonuniform Communication Architectures. In Proceedings of the 9th IEEE International Symposium on High-Performance Computer Architecture, pages 241–252, 2003.
- [54] Ori Shalev and Nir Shavit. Predictive log-synchronization. In *EuroSys*, pages 305–315, 2006.
- [55] Nir Shavit and Asaph Zemach. Diffracting Trees. ACM Transactions on Computer Systems, 14(4):385–428, 1996.
- [56] Nir Shavit and Asaph Zemach. Combining Funnels: A Dynamic Approach to Software Combining. *Journal of Parallel and Distributed Computing*, 60(11):1355–1387, 2000.
- [57] Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming. Prentice Hall, Inc., Upper Saddle River, NJ, USA, 2006.

- [58] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report RJ 5118, IBM Almaden Research Center, April 1986.
- [59] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Version 9, 1994.
- [60] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-Spot Addressing in Large-Scale Multiprocessors. *IEEE Transactions on Computers*, 36(4):388–395, 1987.

AUTHOR'S PUBLICATIONS

- Panagiota Fatourou and Nikolaos D. Kallimanis, "A Highly-Effcient Wait-Free Implementation of a Universal Object", Theory of Computing Systems (TOCS). Special issue of SPAA 2011. In press.
- Spiros N. Agathos. Nikolaos D. Kallimanis and Vassilios V. Dimakopoulos, "Speeding Up OpenMP Tasking", In proceedings of the International European Conference on Parallel and Distributed Computing (Euro-Par 2012), pp. 650-661, Rhodes, Greece, August 2012.
- Panagiota Fatourou and Nikolaos D. Kallimanis, "Revisiting the Combining Synchronization Technique", In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 2012), pp. 257-266, New Orleans, LA, USA, February, 2012.
- 4. Panagiota Fatourou and Nikolaos D. Kallimanis, "A Highly-Efficient Wait-Free Universal Construction", In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2011), pp. 325-334, San Jose, California, USA, June 2011. Invited to Theory of Computing Systems as special issue of SPAA 2011.
- Panagiota Fatourou and Nikolaos D. Kallimanis, "The RedBlue Adaptive Universal Constructions", In Proceedings of the 23rd International Symposium on Distributed Computing (DISC 2009), pp. 127-141, Elche/Elx, Spain, September 2009.
- 6. Panagiota Fatourou and Nikolaos D. Kallimanis, "Time-Optimal, Space-Efficient Single-Scanner Snapshots & Efficient Multi-Scanner Snapshots using CAS", In Proceedings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing (PODC 2007), pp. 33-42, Portland, Oregon, USA, August 2007.

7. Panagiota Fatourou and Nikolaos D. Kallimanis, Single-Scanner Multi-Writer Snapshot Implementations are Fast!", In Proceedings of the 25th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2006), pp. 228-237, Denver, Colorado, USA, July 2006.

SHORT VITA

Nikolaos Kallimanis was born in Amalias, Greece in 1983. He received his PhD in 2013 from the Department of Computer Science at the University of Ioannina. He entered with the 3rd best grade (after participating in the national exams) among the students that entered at the Department of Computer Science of University of Ioannina in 2001 and he obtained his Degree in 2005. He also obtained his MSc in 2007 from the same department. During his undergraduate and postgraduate studies he received scholarships and awards. Specifically, he received a scholarship and the best student award during the 3rd year of his undergraduate studies from Greek State Scholarship Foundation (IKY). His PhD studies were supported by a scholarship from Empirikion Foundation.

His research interests focus on theoretical and practical aspects on parallel and distributed computing, with emphasis in the design and analysis of concurrent data structures. He has published papers in top tier conferences in the domain of distributed and parallel computing, such as ACM PODC, ACM SPAA, ACM PPoPP and DISC.