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ABSTRACT 

Petros Karvelis, S. M. 

PhD, Department of Computer Science, University of Ioannina, Greece, 2012. 

Title: Multichannel Chromosome Image Analysis 

Supervisor: Prof. Aristidis Likas. 

 

The study of chromosomes is one of the major areas of study for modern genetics 

because the chromosomes are the carriers of all the genetic material (DNA) of an organism 

that are transferred from generation to generation by means of reproduction. The assignment 

of each chromosome to each class from a chromosome image takes time and demands great 

experience to avoid mistakes that can lead to misdiagnosis. For this reason there have been 

developed algorithms for image processing and automated analysis of chromosomes. 

There are several methods and techniques for the cultivation of chromosomes each of 

which leads to a different type of image. For example, if the chromosomes are cultured 

according to the protocol G-Banding the resulting image is a gray level image. In this thesis 

we deal with M-FISH protocol which leads to a multichannel image (6 channels). In this 

technique the biological experiment has been constructed so that each of the 24 chromosome 

types (1-22, X, Y) would be reflected in a different color. 

The purpose of this thesis is the identification and classification of human chromosomes 

from multichannel M-FISH images. Initially, we developed a method based on the Watershed 

transform for the region segmentation (grouping pixels with similar characteristics) of 

chromosomes. The Watershed transform requires a measure of separability between similar 

areas and for this reason we chose to calculate the multichannel gradient. In this way we 

achieve a clear separation between areas with different color corresponding to a different 

chromosome class. The segmentation results are quite satisfactory compared to other methods 

reported in the literature on the same M-FISH basis images. 
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After segmentation we perform region classification using a statistical classifier that 

employs the Bayes rule. This classifier is simple to develop and implement and provides 

satisfactory classification performance. Compared with existing approaches that use Pixel by 

Pixel classification the proposed region-based method showed better results. We also study 

the effectiveness image smoothing using Vector Median Filtering and its variants and provide 

comparative experimental results. 

One of the problems in the chromosome classification methodologies using multi-

channel M-FISH images is the fact that they demand a labeled training set to build the 

classifier. For example a Bayes classifier requires estimating the parameters such as mean and 

covariance for each of the 24 chromosomes classes. The existence of a methodology that does 

not require a labeled training set is therefore essential. Such an unsupervised methodology is 

presented in this thesis. First, we segment the M-FISH image using the Watershed transform 

to remove the background. Then we estimate which of the remaining pixels have been 

hybridized or not using the EM algorithm in each of the 5 channels of the image. Then we use 

a Gaussian Mixture Model to classify each pixel into one of the 24 classes of chromosomes. 

To build this model for the first time we exploit prior information about which chromosome 

class emits to each of the five channels. The adaptation of the parameters of Gaussian Mixture 

Model by using the Maximum a Posterior Expectation Maximization method (MAP EM) 

results in an increase in the rate of correct classification. It is noteworthy that the proposed 

unsupervised methodology achieves higher classification rates when compared to supervised 

classification methodologies. 

One of the problems for automatic chromosome segmentation methods is the problem 

of the occlusion of chromosomes. In particular, two important factors influencing the 

segmentation are the following: 

• Chromosomes that overlap with one another, 

• Chromosomes which adjoin one another. 

We have developed a method that addresses both these problems successfully. Initially 

we apply a recursive Watershed transform to get an initial assessment of areas of 

chromosomes. Then for each area of the Watershed transform we determine high curvature 

points around the perimeter of the chromosomal region. From these points will begin a 

gradient path which crosses the region and separates the chromosome region where two 

chromosomes are tangent to each other. If two or more chromosomes overlap each other, then 

the path splits the chromosomes into pieces. Then we form the Region Adjacency Graph and 
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categorize each area using a region Bayes classifier. If a pair of neighboring regions shares 

the same class then they are joined together. The method was tested on chromosome images 

and the success rate of the method was satisfactory. In addition we compared the method with 

other segmentation methodologies such as the pale paths and the results were much better, 

especially for the case of overlapping chromosomes. 
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Πέτρος Καρβέλης του Σταύρου και της Μαρίας. 

∆ιδακτορικό ∆ίπλωµα, Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, 2012. 

Τίτλος: Ανάλυση Πολυκαναλικών Εικόνων Χρωµοσωµάτων 

Επιβλέποντας: Αριστείδης Λύκας. 

 

Η µελέτη των χρωµοσωµάτων αποτελεί έναν από τους σηµαντικότερους τοµείς µελέτης 

για τη σύγχρονη Γενετική διότι τα χρωµοσώµατα αποτελούν τους φορείς όλου του γενετικού 

υλικού (DNA) ενός οργανισµού που µεταβιβάζονται από γενιά σε γενιά µε την βοήθεια της 

αναπαραγωγής. Τα χρωµοσώµατα ανήκουν σε κατηγορίες και η ανάθεση κάθε 

χρωµοσώµατος στην κατηγορία του από µια εικόνα χρωµοσωµάτων απαιτεί χρόνο αλλά και 

µεγάλη εµπειρία για την αποφυγή λαθών που µπορούν να οδηγήσουν σε εσφαλµένη 

διάγνωση. Για το λόγο αυτό αναπτύχθηκαν τεχνικές για την επεξεργασία και ανάλυση 

εικόνων χρωµοσωµάτων και τον αυτόµατο χαρακτηρισµό τους. 

Υπάρχουν αρκετοί τρόποι και τεχνικές για την καλλιέργεια των χρωµοσωµάτων η κάθε 

µια από τις οποίες οδηγεί και σε διαφορετικό τύπο εικόνας. Για παράδειγµα αν τα 

χρωµοσώµατα καλλιεργηθούν σύµφωνα µε το πρωτόκολλο G-Banding η εικόνα που 

προκύπτει είναι µια γκρι (grey-scale) εικόνα. Στην παρούσα διατριβή ασχολούµαστε µε το 

πρωτόκολλο M-FISH το οποίο οδηγεί σε µια πολυκαναλική εικόνα (6 καναλιών). Στην 

τεχνική αυτή το βιολογικό πείραµα έχει κατασκευαστεί έτσι ώστε η κάθε µια από τις  24 

κατηγορίες χρωµοσωµάτων (1-22,Χ,Υ) να αποτυπώνεται µε διαφορετικό χρώµα.  

Αντικείµενο της παρούσας διατριβής είναι η αναγνώριση και κατηγοριοποίηση των 

ανθρωπίνων χρωµοσωµάτων από πολυκαναλικές εικόνες M-FISH. Αρχικά αναπτύξαµε µια 

µέθοδο βασισµένη στον µετασχηµατισµό Watershed για την κατάτµηση (οµαδοποίηση 

εικονοστοιχείων µε παρόµοια χαρακτηριστικά) των χρωµοσωµάτων σε περιοχές. Ο 

µετασχηµατισµός Watershed απαιτεί ένα µέτρο διαχωρισηµότητας µεταξύ όµοιων περιοχών 

και γι’ αυτό το λόγο επιλέξαµε τον υπολογισµό της πολυκαναλικής παραγώγου. Με αυτό τον 
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τρόπο εξασφαλίζεται ο σαφής διαχωρισµός µεταξύ περιοχών µε διαφορετικό χρώµα και 

επιπλέον αφαιρούµε το υπόβαθρο (background). Τα αποτελέσµατα της κατάτµησης είναι 

αρκετά ικανοποιητικά συγκρινόµενα µε αυτά της βιβλιογραφίας για την ίδια βάση εικόνων 

M-FISH.  

Για την ταξινόµηση κάθε περιοχής χρησιµοποιήσαµε έναν στατιστικό ταξινοµητή 

βασισµένο στον κανόνα του Bayes. Ο ταξινοµητής αυτός είναι απλός στην υλοποίηση του και 

έχει χρησιµοποιηθεί και σε άλλες µελέτες. Σε σύγκριση µε ήδη υπάρχουσες µεθοδολογίες οι 

οποίες χρησιµοποιούν Pixel by Pixel κατηγοριοποίηση η µέθοδος µας (που βασίζεται σε 

ταξινόµηση περιοχών) εµφάνισε καλύτερα αποτελέσµατα. Τέλος, µελετούµε την 

αποτελεσµατικότητα των φίλτρων διανυσµατικού διαµέσου (Vector Median Filtering) και 

παραλλαγών του εάν εφαρµοστούν στην εικόνα πριν την ταξινόµηση. Η αποτελεσµατικότητα 

των φίλτρων ∆ιαµέσου εξετάζεται συγκρίνοντας το ποσοστό σωστής ταξινόµησης πριν και 

µετά την χρήση των φίλτρων αυτών. 

Ένα από τα προβλήµατα που εµφανίζουν όλες οι µεθοδολογίες κατηγοριοποίησης 

χρωµοσωµάτων από πολυκαναλικές εικόνες M-FISH είναι η προϋπόθεση ύπαρξης ενός 

συνόλου εκπαίδευσης για την εκπαίδευση του ταξινοµητή. Στην περίπτωση για παράδειγµα 

ενός ταξινοµητή Bayes απαιτείται η εκτίµηση των παραµέτρων όπως της µέσης τιµής και του 

πίνακα συµµεταβλητότητας για κάθε µια από τις 24 κατηγορίες χρωµοσωµάτων. Η ύπαρξη 

µιας µεθοδολογίας που θα είναι ανεξάρτητη από το σύνολο εκπαίδευσης που επιλέγουµε έχει 

σηµαντική αξία. Μια τέτοια µεθοδολογία παρουσιάζεται στην διατριβή αυτή. Αρχικά 

λαµβάνουµε µια κατάτµηση της εικόνας M-FISH µε την χρήση της µεθοδολογίας Watershed 

(αποµακρύνοντας το υπόβαθρο) και κατόπιν εκτιµούµε ποια από τα εικονοστοιχεία έχουν 

υβριδοποιηθεί ή όχι µε την χρήση του αλγορίθµου EM σε κάθε ένα από τα 5 κανάλια της 

εικόνας µας. Στην συνέχεια χρησιµοποιούµε ένα πολυκαναλικό Gaussian Mixture Model για 

την κατηγοριοποίηση κάθε εικονοστοιχείου σε µια από τις 24 κατηγορίες χρωµοσωµάτων. 

Στο µοντέλο αυτό χρησιµοποιείται για πρώτη φορά εκ των προτέρων πληροφορία σχετικά µε 

το σε ποιο κανάλι εκπέµπει κάθε κατηγορία χρωµοσώµατος. Η περαιτέρω εκπαίδευση των 

παραµέτρων του Gaussian Mixture Model από τον αλγόριθµο Maximum A Posterior 

Expectation Maximization (MAP EM) επιτρέπει την αύξηση του ποσοστού σωστής 

κατηγοριοποίησης. Η µεθοδολογία αυτή επιτυγχάνει ακόµη καλύτερα ποσοστά συγκρινόµενη 

ακόµη µε µεθοδολογίες ταξινόµησης µε επίβλεψη. 

∆ύο σηµαντικοί παράγοντες επηρεάζουν την κατάτµηση των εικόνων χρωµοσωµάτων 

και είναι οι εξής : 
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• Χρωµοσώµατα που επικαλύπτουν το ένα το άλλο, 

• Χρωµοσώµατα που εφάπτονται το ένα στο άλλο. 

Προτείνουµε µια µέθοδο που αντιµετωπίζει και τα δύο αυτά προβλήµατα µε επιτυχία. 

Αρχικά εφαρµόζουµε έναν επαναληπτικό µετασχηµατισµό Watershed ώστε να πάρουµε µια 

αρχική εκτίµηση των περιοχών των χρωµοσωµάτων. Στην συνέχεια εντοπίζουµε σηµεία 

υψηλής κύρτωσης πάνω στην περίµετρο της χρωµοσωµατικής περιοχής. Ξεκινώντας από τα 

σηµεία αυτά, θα δηµιουργούµε ένα µονοπάτι παραγώγου (Gradient Path) το οποίο διασχίζει 

την περιοχή χρωµοσώµατος και διαχωρίζει την περιοχή όταν δύο χρωµοσώµατα εφάπτονται 

το ένα στο άλλο. Αν δυο ή και περισσότερα χρωµοσώµατα επικαλύπτονται τότε το µονοπάτι 

διαχωρίζει σε δύο τµήµατα την περιοχή των χρωµοσωµάτων. Στην συνέχεια σχηµατίζουµε 

τον γράφο γειτνίασης περιοχών (Region Adjacency Graph) και κατηγοριοποιούµε κάθε 

περιοχή κάνοντας χρήση ενός ταξινοµητή περιοχών Bayes. Για κάθε ζεύγος γειτονικών 

περιοχών που έχουν την ίδια κατηγορία ενώνουµε τις δύο αυτές περιοχές. Συγκριτικά 

αποτελέσµατα µε άλλες µεθόδους δείχνουν την ανωτερότητα της µεθόδου ιδιαίτερα στην 

περίπτωση των επικαλυπτόµενων χρωµοσωµάτων.  
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CHAPTER 1:  

INTRODUCTION 

1.1 Multichannel Chromosome Images  

1.2 M-FISH Image Database 

1.3 M-FISH Image Segmentation and Classification 

1.4 Image Processing Algorithms 

1.5 Machine Learning Algorithms 

1.6 Thesis Objectives and Contribution 

1.1 Multichannel Chromosome Images 

Chromosomes are the structures in cells that contain genetic information [1]. The study of 

chromosomes is made possible by staining techniques since chromosomes are colorless. 

Usually, a dye is applied during cell division by a solution of colchicine. Thus the 

chromosomes are colored and can be captured by a microscope producing an image. The 

images of these chromosomes contain significant information about the health of an 

individual. Chromosome images are useful for diagnosing genetic disorders and for studying 

various diseases, such as cancer.  

Normally, the procedure of assigning each chromosome to a class (karyotyping) is 

based on the visual scanning of chromosome images by experts (biologists, cytogeneticists).  

This manual process of locating, classifying, and evaluating the chromosomes in these images 

could be lengthy and tedious. Thus a need for automated methods that could classify each 

chromosome to each class naturally arises.  

The whole process can be divided in two main stages:  
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a) Segmentation: grouping the pixels of the multichannel chromosome image into 

two different classes; the chromosomes and the background. This is not a trivial 

task since chromosomes are not always clearly visible in the chromosome image 

due a number of parameters of the biological experiment [2]. 

b) Classification: classifying each chromosome to 1-24 classes (1,…,22,X,Y). 

Usually such methods extract features for each chromosome of the image such 

as the length, color, geometry etc. and a classifier assigns them into one of the 

24 chromosome classes.  

However, if the classification method requires a training set (supervised 

classification) there is no guarantee that the set would be a representative one 

containing sufficient training pixels of each class [2].  

Furthermore, for the unsupervised type of classification, two main problems 

have to be overcome. First the number of classes ( 24K = ) is large and second 

how to define a proper initialization of the clusters which represent each 

chromosome class. 

Another major problem for chromosome images is the fact that chromosomes could 

overlap or at least partially occlude each other. Thus segmentation and classification in the 

overlap areas could fail unless a dedicated procedure for this type of problem is used.  

Next, we introduce the multichannel chromosome images and provide specific details 

for the procedure concerning the production these types of images. Different staining 

techniques allow analysis of different kinds of abnormalities. Table 1.1 presents the most 

popular chromosome imaging staining techniques. In the mid-1990’s, a new technique for 

staining chromosomes was introduced. It produced an image in which each chromosome type 

appears to have a distinct color [3], [4]. This multi-spectral staining technique made the 

analysis of chromosome images easier, not only for visual inspection, but also for computer 

analysis of the images. This multichannel staining technique is called M-FISH (Multiplex 

Fluorescence In-Situ Hybridization). M-FISH uses five color dyes that attach to various 

chromosomes differently to produce a multichannel image. Also a DNA stain called DAPI 

(4’, 6-Diamidino-2-phenylindole) attaches to DNA and thus labels all chromosomes. An 

example of an M-FISH image is shown in Figure 1.1. 
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Table 1.1: Different chromosome staining techniques. 

Researcher Method Year Types of Images 
Produced 

Arrighi et al. [5] C-banding 1971 Greyscale 
Sumner et al. [6] G-banding 1971 Greyscale 
Bauman et al. [7] FISH 1980 Multicolor 
Speicher et al. [3] M-FISH 1996 Multicolor 
Schröck et al. [4] SKY 1996 Multicolor 
 

The combinations of the five fluorophores that are used to label each class of 

chromosomes are shown in the Appendix A for three different M-FISH fluorophore sets. 

However, these tables are somewhat of an oversimplification because, in practice, fluorophore 

absorption is hardly binary. Table 1.2 shows the actual mean values of pixels of each class 

from a real set of M-FISH images.  

This new imaging technique introduces several advantages: 

• Chromosome classification is simplified [3], [8]. Only the spectral information from 

the multispectral image is used and no features such as length, centromere position 

and band pattern are used. 

• Subtle chromosomal aberrations are detected [9]. Traditional monochrome imaging 

techniques failed to detect rearrangements of genetic material such as the translocation 

of telemetric chromatin, because it is difficult to detect them with banding alone. M-

FISH (color karyotyping) is able to sufficiently depict these anomalies.  

• It can be used for the identification of small genetic markers that remain elusive after 

banding [10]. 

• Chromosome aberrations are more easily detected in M-FISH. For a normal cell, all 

the pixels in each chromosome should be represented with one identical color. 

However, for a cancerous cell, different colors might show up in a chromosome as a 

result of the chromosomal rearrangements or the exchange of DNA material between 

chromosomes. An example of two chromosome abnormalities using grayscale and M-

FISH technique is shown in Figure 1.2. One might be confused searching for the 

abnormality of the extra DNA material of chromosome 6 attached to chromosome 9 

Figure 1.2(a). In Figure 1.2(b) the extra DNA material of chromosome 9 attached to 
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chromosome 14 is shown with different colors on the M-FISH image. By looking at 

the M-FISH image, even a non-expert can easily determine the chromosome 

abnormalities by searching for chromosomes with two colors. 

 
Table 1.2: Average fluorophore magnitude for each class from a real set of M-FISH images. 

Bold denotes the classes to which each fluorophore is predicted to bind. 

Chromosome 
Class 

M-FISH  
Channels 

 
Spectrum 

Green 
 

Spectrum 
Orange 

Texas 
Red  Cy5 Cy5.5  

1 0.5483 0.2946 0.4928 0.5171 0.2554 
2 0.4681 0.3596 0.4117 0.4311 0.4978 
3 0.5059 0.4549 0.3350 0.5200 0.3434 
4 0.5852 0.3447 0.3882 0.5119 0.3041 
5 0.5372 0.4523 0.5299 0.3077 0.3114 
6 0.5390 0.2577 0.5019 0.4823 0.3469 
7 0.3244 0.2560 0.5794 0.6313 0.2453 
8 0.8027 0.2842 0.3140 0.3034 0.2304 
9 0.6379 0.4764 0.3160 0.2863 0.3796 
10 0.3563 0.2809 0.3219 0.6858 0.4257 
11 0.5913 0.4987 0.2877 0.4994 0.2066 
12 0.3127 0.2479 0.7338 0.3297 0.3945 
13 0.6590 0.5828 0.3083 0.2367 0.1849 
14 0.3266 0.2946 0.7695 0.3396 0.2279 
15 0.2590 0.5066 0.6101 0.4857 0.1936 
16 0.6752 0.2025  0.6194 0.2544 0.1698 
17 0.3739  0.2928 0.3339 0.7386 0.2823 
18 0.6085  0.5011 0.5353 0.2151 0.1576 
19 0.2917  0.6466 0.3369 0.5539 0.2019 
20 0.2746  0.8125 0.3551 0.2596 0.1988 
21 0.5994  0.3411 0.3636 0.3547 0.4403 
22 0.2603  0.4837 0.5860 0.4697 0.3041 
X 0.4014  0.5829 0.3966 0.3793 0.3913 
Y 0.6486  0.2267 0.2274 0.5492 0.3632 
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Suppose a binary image with a pixel p  having coordinates ( , )i j , its four neighbors are 

{ }4 ( 1, ), ( 1, ), ( , 1), ( , 1)pN i i i i i i i i= + − + − . The elementary dilation (Figure 1.8) of size 1 for the 

image f  is defined as: 

 { } { }(1)
4( ) | qf q q f p p Nδ = ∈ ∪ ∈ . (1.2) 

 

 
 
Figure 1.8: An example of the elementary dilation on a set of pixels of an image f . 
 

The geodesic dilation of size 1 of the marker image f  with respect to mask image g  is 

denoted by 1 ( )g fδ and is defined as the point-wise minimum between the mask image and the 

elementary dilation 1( )fδ of the marker image: 

 (1) (1)( ) ( ) ^g f f gδ δ= , (1.3) 

where the point-wise minimum ^  of two images f , g  is defined as: 

 [ ]( ^ )( ) min ( ), ( )f g p f p g p=  (1.4) 

An example of the application of the geodesic dilation to an image f  is shown below: 

 

 
 
Figure 1.9: Geodesic dilation of size 1 of the marker image f  with respect to mask image g  
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Thresholding creates binary images from grey-level ones by grouping all pixels below some 

threshold to class 0C  and all pixels above that threshold to class 1C . 

Otsu’s method is a thresholding method that separate objects from background. The 

threshold operation [15] at grey level l  partitions the pixel values of an image I  into two 

classes 0C  and 1C  (representing background and object respectively), i.e., { }0 1, 2, ,C l= …  

and { }1 1, 2, ,C l l L= + + … , where L  is the total number of grey levels in the image. Let 

2 ( )B lσ  be the between-class variance for the threshold value l : 

 ( ) ( )2 22
0 0 1 1w wB T Tσ µ µ µ µ= − + − , (1.6) 

 0 1 0 1 0
0 0 00 0

,  w 1 , ,  ,  , ,  
1

l l L
T l l i

i l i T i i
i i i

nw P w iP iP P
w w n

µ µ µµ µ µ µ
= = =

−
= = − = = = = =

−∑ ∑ ∑ , (1.7) 

where in  is the number of pixels with grey-level i , n  is the total number of pixels in a given 
image and iP  is the probability of the occurrence of grey level i .  

An optimal threshold *l  can be determined by minimizing the between class variance: 

 * 2arg min ( )B
l

l lσ= . (1.8) 

After the computation of the threshold *l  the binary image B  can be computed: 

 
*

*

0, ( , )
( , )

1, ( , )
if I x y l

B x y
if I x y l

⎧ ⎫≤
= ⎨ ⎬

>⎩ ⎭
. (1.9) 

1.4.4 The Watershed Transform 

The concept of watersheds in image processing is based on considering an image in the three 

dimensional space, with two spatial coordinates versus intensity. The value of the intensity 

(e.g. of the gradient image) is assumed to be the elevation information. Pixels having the 

highest gradient magnitude intensities correspond to watershed lines, which represent the 

region boundaries. Water ‘placed’ on any pixel enclosed by a common watershed line flows 

downhill to a common local intensity minimum. Pixels draining to a common minimum form 

a catch basin, which represents a region. The result of the watershed transform is a 

tessellation of the image into regions.  
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The purpose of the algorithm is to assign to each pixel p  a label [ ]lab p  this label 

represents the number of the catchment basin-region which belongs to.  

 

Initialization: All the image pixels get the label INIT  (e.g. -1).  

Sorting Step: Sort the image pixels based on their intensity. 

Flooding Step: In this step we increase the height from minh  to maxh  

For each step h  we assume that the flooding step has been completed and all the pixels have 

been assigned to a catchment basin (e.g. assigned the label of each catchment basin). 

Let’s assume that we process the pixels of intensity 1h+ . We initialize these pixels with label 

MASK (e.g. -2).  

Pixels that have a neighbor that has been assigned to a catchment basin are inserted to a queue 

and from these pixels the geodesic influence zones are expanded according to the following 

rules: 

If a neighbor pixel q of the pixel p has been assigned to a catchment basin then this 

pixel p is assigned to the same catchment basin. 

If a pixel p is has neighbors which belong to different catchment basins then this pixel is 

assigned to the watershed line and acquire a special label _WSHED LINE (e.g. 0). 

When the flooding step of pixels having intensity 1h +  has been completed, the pixels that 

have the label MASK  and have not been assigned to any catchment basin, are assigned to 

new catchment basins and they acquire new labels. 

1.5 Machine Learning Algorithms  

Machine learning is the area of artificial intelligence that attempts to provide machines with 

the ability to learn from examples [18]. More specifically, in machine learning problems we 

make use a set of observations (examples), which we call training set, in order to make 

predictions for unseen events. In the area of machine learning there are two major categories 

of problems; supervised learning and unsupervised learning. Unsupervised learning methods 

assume a training set that only consists of observed inputs in contrast to supervised learning 

where the input is also paired with a target (e.g. class label) that provides the desired output 

result. 
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1.5.1 K-means 

The K -means can be used to partition a set of data points { }1 2, , , NX x x x= …  , into K  

clusters; where each point belongs to d -dimensional space, , 1, ,d
ix i N∈ℜ = … . Each cluster 

jC  is parameterized by a vector , ( 1, , )jm j K= …  which is called its center.  

To start the K -means algorithm the, K  centers are initialized in some way, for example 

to randomly selected data points. K -means is then an iterative two-step algorithm. In the 

assignment step, each data point ix  is assigned to the nearest center according to the 

Euclidean distance. In the update step, the centers are adjusted to the sample means of the 

data assigned to the corresponding clusters. 

 

Initialization: Set K  clusters , 1, ,jm j K= …  to randomly selected data points from the initial 

set of data points. 

Assignment step: Assign ix  to cluster jC  when its distance to the center of this cluster is 

smaller than the distances to all other clusters centers: 

 , 1i j i ix m x m i K− ≤ − ≤ ≤  (1.13) 

Update step: The centers are adjusted to match the sample means of the data points that they 

are responsible for: 

 1

j i

i j
x Ci

m x
C ∈

= ∑ , (1.14) 

where iC  is the number of points belonging to cluster iC . 

1.5.2 Bayes Classifier 

Suppose we wish to classify N  objects { }1 2, , , NX x x x= …  
into K  different classes 

1 2, , , KC C C…  where each object belongs to d -dimensional space¸ d
ix ∈ℜ . Let ( )iP C  denote 

the probability that an object belongs to class iC , 1 i K≤ ≤  with 
1

( ) 1
K

i
i

P C
=

=∑
 
This is called 

the a priori class probability. Let ( | )ip x C  denote the class-conditional probability 

distribution function. It represents the probability distribution of objects of class iC . Let 

( | )iP C x  be the class conditional probability which is the probability that the object belongs 
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to class iC  given its feature vector x . Given ( )iP C  and ( | )ip x C , the class conditional 

probability for an object represented by the feature vector x  is given by the Bayes theorem 

[19]: 

 
( | ) ( )( | )

( )
i i

i
p x C P CP C x

p x
= , (1.15) 

where 
1

( ) ( | ) ( )
N

i i
i

p x p x C P C
=

=∑ .  

The Gaussian density function is often used to model the distribution of feature values 

of a particular class. The general multivariate Gaussian density function in d  dimensions is 

given by: 

 1
1/2/2

1 1( ) exp ( ) ( )
2(2 )

T
d

p x x xµ µ
π

−⎡ ⎤= − − Σ −⎢ ⎥⎣ ⎦Σ
, (1.16) 

where is x  a d  component feature vector, µ  is the d  component mean vector, Σ  is the 

d d× covariance matrix, Σ  and 1−Σ  are its determinant and inverse respectively. Also 

( )Tx µ−  denotes the transpose of ( )x µ− . During the training phase, the mean vector µ , and 

the d d×  covariance matrix Σ  are calculated for each class from the training data:  

 1 , 1, ,
j i

i j
x Ci

x i K
N

µ
∈

= =∑ … , (1.17) 

 ( ) ( )1 , 1, ,
1

j i

T

i j i j i
x Ci

x x i K
N

µ µ
∈

Σ = − ⋅ − =
− ∑ … , (1.18) 

where iN  the number of pixels of class iC . 

To classify an object described by the feature vector x , we calculate ( | )iP C x for each class i  

and then use the the Bayes Decision Rule: 
 ( | ) ( | ),i i jdecide C if P C x P C x j i> ∀ ≠ . (1.19) 

1.5.3 Gaussian Mixture Models and the EM Algorithm 

A Gaussian Mixture Model (GMM) is a parametric probability density function represented 

as a weighted sum of Gaussian component densities. GMMs are commonly used as a 

parametric model of the probability distribution of continuous measurements or features. Let 

x  denote a feature vector. GMMs [20] represent density functions as a convex combination 
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of K Gaussian component densities ( | ) ( | , )j
j jx N xϕ θ µ= Σ , (where jµ  is the mean and jΣ  

the covariance of the j th Gaussian), according to the equation: 

 
1

( | ) ( | )
K

j
j

j

p x xπ ϕ θ
=

Θ =∑ , (1.20) 

where the parameters 0 1jπ≤ ≤  represent the mixing weights satisfying that 
1

1
K

j
j

π
=

=∑ , while 

Θ  is the vector of all unknown parameters of the model,   i.e. [ ]1 2 1 2, , , , , , ,k kπ π π θ θ θΘ = … … , 

with ,j j jθ µ⎡ ⎤= Σ⎣ ⎦ . 
The EM (Expectation-Maximization) algorithm is used for training Gaussian mixtures 

given a training set of points { }1 2, , , NX x x x= … . It is an iterative algorithm that starts from 

some initial estimate of Θ , and then proceeds to iteratively update Θ  until convergence. Each 

iteration consists of an E-step and an M-step: 

E-Step: Let ( )tθ  denote the current parameter values. Compute the membership weights ( )t
ikw  

for all data points ix , 1 i N≤ ≤  and all mixture components k , (1 )k K≤ ≤ .  

 
( )

( )

( )

1

( | ) , 1 , 1
( | )

t
t i k k

ik K
t

i m m
m

xw i N k K
x

ϕ θ π

ϕ θ π
=

= ≤ ≤ ≤ ≤

∑
 (1.21) 

M-Step: Use the membership weights to update the parameter values ( 1)tθ + . Let 
( ) ( )

1

Nt t
k iki

N w
=

= ∑ , i.e., the sum of the membership weights for the k -th component. Then: 

 
( )

( 1) ,
t

t k
k

N
N

π + =  (1.22) 

 ( 1) ( )
( )

1

1 ,
N

t t
k ik it

ik

w x
N

µ +

=

= ∑  (1.23) 

 ( )( )( 1) ( 1) ( 1)
( )

1

1 N Tt t t
k i k i kt

ik

x x
N

µ µ+ + +

=

Σ = − −∑ . (1.24) 

 
Both K-means and EM depend highly in the initialization of the parameters. 

1.6 Thesis Objectives and Contribution 

Most of the already published methods which deal with automated segmentation and 

classification of M-FISH images either first segment the image and then classify the 
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segmented region or they directly classify all the pixels of the M-FISH image including a 

class for the background. The main disadvantages of the methods are the following: 

• Most of the methods that segment the M-FISH image include a class for the 

background and classify each pixel of the image into 1-24 chromosome classes 

including also one class for the background. This has the disadvantage that they do not 

take into account spatial information of neighborhood pixels. The segmentation 

method introduced in Chapter 2, is based on the multichannel watershed transform in 

order to define regions of similar spatial and spectral characteristics. Thus the goal is 

to develop an image segmentation technique that will segment the M-FISH image 

using all the channels of the M-FISH image. 

• Automated classification methods for the M-FISH images reported in the literature; 

classify pixels of the M-FISH image instead of classifying regions. This usually 

produces noisy results. The development of a method with high classification accuracy 

for all the chromosome classes will make the M-FISH technique widely used for the 

easily detection of chromosome anomalies. 

• Chromosome misclassification errors result from different factors such as uneven 

hybridization, spectral overlap among fluors, and biochemical noise. However, no 

filtering method has been proposed that will take into consideration the information 

from all the channels in order to filter these multichannel images. A method such as 

the Vector Median Filtering could be the choice for this type of images. 

• Most of the methods that classify an M-FISH image use a number of labeled training 

images in order to train a supervised classification method such as Bayes, SVM, and 

k-NN. One of the key factors limiting the pixel classification accuracy of these 

methods is the variations between M-FISH images. This is due to the fact that the M-

FISH imaging process is not always accomplished under the same conditions e.g. 

humidity, temperature, type of microscope, color spread [21,30] and these factors 

affects the quality of the produced M-FISH image. An unsupervised method that does 

not require a set of labeled training images is a necessity for the wide application of 

the M-FISH image technique. 

• It is common for an M-FISH image that the chromosomes do very often partially 

occlude each other; hence, their segmentation is not trivial and requires special 

treatment. Hence an automated method for the segmentation of touching and 



 

21 

 

overlapping groups of chromosomes in M-FISH images would be very helpful for 

cytogeneticists. 

 

The contribution of the thesis is fivefold: 

• First, we focus on the efficient region segmentation of M-FISH images. We 

propose a new algorithm for the segmentation of multichannel M-FISH images 

into chromosome regions. 

• Next, we propose a supervised method for the classification of the segmented 

regions of the M-FISH image based on the Bayes classifier. 

• We study the effect of the Vector Median Filtering on the classification accuracy 

of the M-FISH images 

• We propose an unsupervised method for labeling the chromosome regions.  

• We propose a method for the disentangling of touching and overlapping 

chromosomes. 

In Chapter 2, a method for the region segmentation of the multichannel M-FISH 

chromosome images [21], [22] is presented. The method uses the information from all the six 

channel M-FISH images in order to segment the M-FISH image. The main novelty of this 

method is that we segment effectively the M-FISH image into regions, without using training 

information, while until now all the methods tackle the segmentation problem as part of the 

classification problem considering the background as an extra class.  

In Chapter 3, we employ a supervised statistical approach to classify the obtained 

segmented regions [22]. The proposed region classification approach is empirically shown to 

outperform already proposed pixel-by-pixel classification approaches. We further examine the 

effect on the classification accuracy using a multichannel filtering technique, the Vector 

Median Filtering [23].  

In Chapter 4, we propose a fully automated unsupervised classification method for the 

classification of M-FISH images [24]. The method first uses the region segmentation method 

in order to segment the multichannel image. Then we employ the well-known Expectation 

Maximization algorithm in order to build single channel Gaussian Mixture Models (GMMs). 

Then we use those models to estimate the parameters of a multichannel Gaussian Mixture 

Model where each chromosome class is represented by a Gaussian component. More 

specifically, we build a single channel GMM for each channel of the M-FISH image 
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incorporating the emission information that is available. These singe channel GMMs are then 

used to estimate the multichannel Gaussian mixture that is used to train the parameters of the 

multichannel GMM using the MAP-EM algorithm. Finally, each region is classified using the 

multichannel GMM and the labeled regions are merged providing the final classification map. 

The main contribution of this method is that the whole procedure is unsupervised and does 

not require the specification of a labeled training set. Although unsupervised, the 

classification accuracy of this method seems to be superior compared to supervised ones. 

Chapter 5, presents a novel method for the disentangling of touching and overlapping 

chromosomes of the M-FISH image using the watershed transform and gradient paths [25]. 

An efficient way to “cut” these groups of chromosomes is to find a path of pixels that have a 

relative low grey level intensity and run between touching groups of chromosomes. We 

expand the idea of pale paths for M-FISH images by defining gradient paths where the “cut” 

runs through pixels of high intensity (gradient pixels). The method uses the multichannel 

gradient as a measure of separability of touching and overlapping chromosomes. By defining 

gradient paths we manage to deal not only with touching groups of chromosomes but also for 

overlapping groups. 

Finally, in Chapter 6 we provide a summary of the results of this thesis and suggest 

some interesting directions for further research. 
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CHAPTER 2:  

A MULTICHANNEL WATERSHED-BASED 

SEGMENTATION METHOD FOR 

MULTISPECTRAL CHROMOSOME IMAGES 

2.1 Introduction 

2.2 Automated Chromosome Segmentation of M-FISH Images - Literature Review 

2.3 Motivation – Goals 

2.4 Watershed Based M-FISH Image Segmentation 

2.5 Segmentation Results 

2.6 Conclusions 

2.1 Introduction 

Multiplex Fluorescent In Situ Hybridization (M-FISH) is a chromosome imaging technique 

where each chromosome class appears to have a distinct color. This technique not only 

facilitates the detection of subtle chromosomal aberrations but also makes the analysis of 

chromosome images easier; both for human inspection and computerized analysis. The 

proposed segmentation method is based on the multichannel watershed transform in order to 

define regions of similar spatial and spectral characteristics. The method consists of two steps: 

(a) computation of the gradient magnitude of the image, (b) application of the watershed 

transform to decompose the image into a set of homogenous regions.  
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2.2 Automated Chromosome Segmentation of M-FISH Images - Literature Review 

Since M-FISH technology has been introduced, many attempts have been reported which 

tackle the problem of segmenting chromosomes [3], [26], [27], [28], [29], [30], [31], [32], 

[21]. Semi-automated analysis of M-FISH images was first introduced in the mid 90’s [3]. 

The DAPI channel was used to create a binary mask. Then, for each pixel of the mask a 

threshold was applied in order to detect the presence or absence of a fluor in that pixel. Each 

pixel class was determined by comparing the response of the combined fluors to that of a 

labeling table. 

Region based classification approaches were also introduced [26], [27]. The method of 

Eils et al. [26], consisted of two stages: (i) spectral calibration and (ii) adaptive region 

classification. During the calibration stage a five-dimensional optimal vector called adaptive 

feature vector, representing each class, was found by minimizing an energy function. The 

region classification stage was based on a Voronoi image tessellation algorithm [33]. 

Neighboring regions were merged if they belong to the same class or alternatively, when their 

color distance was below a preset threshold. 

Saracoglu et al. [27], proposed a method consisting of three steps: image tessellation, 

clustering and classification. The image was tessellated into regions with similar properties 

using a region growing approach (tessellation step). Based on the “average” color information 

of the regions, clustering is performed. The region color vectors are grouped to form a known 

number of clusters (clustering step). Finally, each cluster is assigned to one of the color class 

vectors (classification step). 

Methods using pixel-by-pixel classification algorithms have been used in M-FISH 

analysis. These methods either classify each pixel of the M-FISH image [28], [29], or create a 

binary mask of the DAPI image using edge detection algorithms, and classify each pixel of 

the mask [30], [31]. A method for joint segmentation-classification of chromosome M-FISH 

images was presented in [32]. A probabilistic model of M-FISH chromosomes was introduced 

which allows for simultaneous segmentation and classification. The additional information 

provided by multiple spectra in chromosome images made it feasible to distinguish 

chromosomes that overlap and are in touch within clusters. 

Table 2.1, presents the advantages and limitations of related studies on chromosome 

segmentation appearing in the literature. Most of these methods [28], [29], [30], [31], [32] 

deal with the above problem using pixel-by-pixel classification techniques; without taking 

into account neighborhood information. On the other hand, only few region-based methods 
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[26], [27] have been proposed in the literature, that are based on a large number of parameters 

which are determined heuristically. 

 

Table 2.1: Advantages and limitations of methods presented in the literature. 
METHOD YEAR ADVANTAGES LIMITATIONS 

Speicher et al. 
 [3] 1996 

• First time use of M-FISH images. 
• Simple classification method. 

• Depends on optimal optical and 
experimental conditions. 

• Lack of classification results. 

Eils et al. 
 [26] 1998 

• Region based segmentation-
classification. 

• Lack of classification accuracy for 
various M-FISH sets. 

Saracoglu et al. 
[27] 1998 

• Region based segmentation-
classification. 

• Several threshold and parameters 
are heuristically set. 

Sampat et al.  
[28] 2002 

• Pixel-by-pixel classification 
methodology. 

• High classification rate. 

• Does not handle 
touching/overlapping 
chromosomes. 

• Small number of testing images. 

Choi et al.  
[29] 2004 

• Use of background correction, color 
compensation and filtering 
techniques as preprocessing step. 

• High classification rate. 

• Does not handle 
touching/overlapping 
chromosomes. 

• Small number of testing images. 

Sampat et al.  
[30] 2005 

• Employment of different 
classification methods (MLE, k-
NN). 

• Does not handle 
touching/overlapping 
chromosomes. 

• Small number of testing images. 
• Segmentation based on edge 

detection only on DAPI image. 

Wang et al.  
[31] 2005 

• Use of background correction, 
feature selection and image 
registration techniques as 
preprocessing step. 

• High classification rate. 

• Does not handle 
touching/overlapping 
chromosomes. 

• Small number of testing images. 
• Segmentation based on edge 

detection only on DAPI image. 

Schwartzkopf et 
al.  

[32] 
2005 

• Handle overlapping/touching 
chromosomes. 

• Use of large number and various 
cases of M-FISH images. 

• Complicated method. 
• Low pixel-by-pixel classification 

accuracy. 

2.3 Motivation – Goals 

As already noted the methods introduced for M-FISH image segmentation use a plethora of 

parameters and have been tested on a small number of M-FISH images. Furthermore the 

segmentation is based only on the greyscale DAPI image without using the information from 

the other five channels. Finally, the segmentation methodologies employ image classification 

techniques (e.g. pixel-by-pixel technique) for the image segmentation without taking into 
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consideration spatial information. Thus a segmentation method using all the M-FISH channels 

and taking into consideration spatial information is expected to be effective [22]. The 

approach uses the Watershed transform which is popular image segmentation used both for 

greyscale and color images. 

2.4 Watershed Based M-FISH Image Segmentation 

Segmentation of multispectral images using the watershed transform is performed in four 

steps (Figure 2.1). More specifically, the gradient magnitude of the multispectral image is 

computed combining the contrast information from the different spectral channels. Due to the 

high sensitivity of the watershed algorithm in the variations of the gradient an automatic 

selection of significant minima is realized in the next step, where the watershed transform is 

applied and a large number of homogenous regions is produced. A binary mask of the DAPI 

channel is computed and superimposed to the tessellation in order to further reduce regions 

that do not belong to chromosomes. 

 

 
Figure 2.1: Flowchart of the proposed method. 

2.4.1 Multichannel Gradient Computation 

To apply the watershed based segmentation algorithm to the multichannel data, the gradient 

of the multichannel image must be defined. The computation of a tensor gradient was 

introduced by DiZenzo et al. [34], instead of separately computing the scalar gradient for each 

channel [35]. Drewniok [36] extended this work to multispectral images. Assuming a 

Channel 1 Channel 2 … Channel 5

Gradient Computation

M-FISH IMAGE

Minima Selection

Watershed Transform

Binary Mask

1st Stage

Segmented Image

DAPI Channel
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multichannel image 2( , ) : mI i j →] ]  ( 5m = for M-FISH images), the direction n  is defined 

by the angle ϕ : 
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I x y
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, (2.2) 

where ( , ), 1iI x y i m≤ ≤  are the components (channels) of the M-FISH image. 

The directional derivative of the function ( , )I x y  consists of the directional derivatives 

of each component of ( , )I x y : 1 2, , ,
T

mII II
n n n n

∂∂ ∂∂ ⎡ ⎤= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
" . 

Projecting each directional derivative in the direction n , we have: 
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where : 1x y
i i iI I I i m⎡ ⎤∇ = ≤ ≤⎣ ⎦ , J  is the Jacobian matrix and x

iI  and y
iI  are the derivatives 

of the i -th component in the x  and y  direction, respectively. 

Next, the direction n  which corresponds to the maximum of the directional derivative 

( , )I x y is found, by maximizing the Euclidean norm: 
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 2 ( ) ( ) ( )T T TJ n J n J n n J J n⋅ = ⋅ ⋅ = . (2.5) 

The symmetric matrix TJ J can be written as: 
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The extrema of the quantity ( )T Tn J J n , are given by the eigenvalues of the matrix TJ J  [36]. 

Sobel operators [37] are used to compute the directional derivatives , :1x y
i iI I i m≤ ≤  in the x  

and y  directions, respectively.  

2.4.2 Minima Selection with the H-minima transform 

Direct application of the watershed algorithm to a gradient image usually leads to over 

segmentation due to noise and other local irregularities of the gradient. A practical solution to 

this problem is to limit the number of allowable regions by reducing the number of irrelevant 

minima. Several algorithms have been proposed for minima selection. The simplest is 

interactive selection by the user [38] or by using a priori knowledge for the image [39]. The 

dynamics approach [40], [41] orders all minima and selects only those below a threshold. 

We have used the dynamics approach [41] to reduce the number of unwanted minima, 

as it provides an intuitive selection scheme controlled by a single parameter ( h ) using the 

greyscale reconstruction. 

Image minima and maxima are important morphological features because they often 

mark relevant image objects: minima for dark objects and maxima for bright objects. In 

morphology, the term minimum is used in the sense of regional minimum, i.e., a minimum 

whose extent is not necessarily restricted to a unique pixel. A regional minimum M  of an 

image f  at elevation h  is a connected component of pixels with the value h  whose external 

boundary pixels have a value strictly greater than h . The h -minima transform of an image  

f , ( )hHMIN f  suppresses all minima whose depth is lower or equal to a given threshold 

level h . This is achieved by performing the reconstruction by dilation of f  from a new 

image cf h− , where cf  is the complement image of f , [37]: 

 ( ) ( )c

c
c

h f
HMIN f R f hδ⎡ ⎤= −⎣ ⎦ . (2.7) 

An example of the application of the h -minima transform for 1-D signal is shown 

below. 
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The main problem of over-segmentation can be usually overcome by the use of 

preprocessing or post-processing, producing a segmentation that better reflects the 

arrangement of objects within the image. Such preprocessing or post-processing methods 

include region merging [21], multiscale watershed [22], [23], marker-based watershed 

segmentation [24], [25], and watershed-based deformable models [26], [27]. 

We adopted an efficient implementation of the watershed transform [16]. The watershed 

computation algorithm used here is based on the Immersion Approach: imagine that a hole is 

drilled in each minimum of the surface, and water is flooded into different catchment basins 

from the holes. As a result, the water starts filling all catchment basins, which have minima 

under the water level. If two catchment basins would merge as a result of further immersion, a 

dam is built all the way to the highest surface altitude and the dam represents the watershed 

lines. This flooding process will eventually reach a stage when only the top of the dam is 

visible above the water line. 

The output of the watershed transform for an image I  is a tessellation IR  of the image 

into its different regions , 1i RR i C≤ ≤ , each one characterized by a unique label 

, 1 :
iR Rl i C≤ ≤  

 { }1 21 1 1( , ), ( , ), , ( , )
kI R R RR R l R l R l= … , (2.8) 

where RC  the number of regions produced by the watershed transform. 

Thus a new label image WL  is defined where each pixel is assigned the label of the 

region where it belongs to. Pixels belonging to the watershed lines are assigned the special 

label 0. 
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( , )
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iR i
W

l if the pixel i j R
L i j

if the pixel i j Watershed Line

∈⎧ ⎫⎪ ⎪= ⎨ ⎬∈⎪ ⎪⎩ ⎭
. (2.9) 

Also a new image LinesW  is defined as: 

 
0, ( , )

( , )
1,

W
Lines

if L i j Wateshed Line
W i j

otherwise
∈⎧ ⎫

= ⎨ ⎬
⎩ ⎭

. (2.10) 

Figure 2.3(a) illustrates the initial segmentation produced by the watershed transform. 

In Figure 2.3(b) all the watershed regions are represented by the average color of each region, 

which is valuable information for the cytogeneticist. 
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2.6 Conclusions 

In this chapter we have presented a new fully automated chromosome segmentation method 

for M-FISH images. The method utilizes a multichannel watershed segmentation algorithm. 

Initially, the chromosome image is decomposed into a set of homogeneous regions using the 

multichannel watershed algorithm. The method uses all the M-FISH channels and creates a 

chromosome mask from the DAPI channel to further eliminate artefacts as also to segment 

correctly the centromere areas of the chromosome. To evaluate the method we used the ADIR 

M-FISH database and evaluation results are very promising, resulting in overall accuracy 

82.5%. 

The proposed method uses a multichannel segmentation method to segment the M-FISH 

image into homogenous spectral regions which combines spectral information from different 

channels. This is advantageous since it is an effective way to incorporate spatial 

characteristics into the analysis, which leads to superior performance in terms of classification 

accuracy.  

The segmentation of each chromosome into regions emulates the procedure followed by 

an expert to identify chromosome rearrangements (anomalies). As we have already shown in 

Figure 2.8, regions with different colour information (translocations) are accurately defined 

by the proposed method. It is important to be mentioned that the segmentation by itself 

already gives the cytogeneticist an advantage in his/her medical assessment. On the other 

hand, the employment of the Otsu binarization method greatly simplifies the detection of 

chromosome regions that have not been hybridized (Figure 2.6), providing a more accurate 

segmentation of the M-FISH image.  

In [21] an analogous approach has been proposed having however significant 

differences with the proposed method. The most important is that the gradient computation 

was based only on the DAPI channel, not taking into consideration information from the other 

five channels. Thus, chromosome anomalies could not be effectively detected.  
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CHAPTER 3:  

SUPERVISED REGION CLASSIFICATION 

3.1 Introduction 

3.2 Region Bayes Classification 

3.4 Vector Median Filtering of M-FISH Images 

3.3 Region Merging 

3.5 Classification Results 

3.6 Conclusions 

3.1 Introduction 

Along with the emergence of M-FISH imaging, automated methods for the classification of 

this type of image were developed. Methods using pixel-by-pixel classification algorithms 

have been introduced in M-FISH analysis. These methods either classify each pixel of the M-

FISH image [28], [29] or create a binary mask of the DAPI image using edge detection 

algorithms, and classify each pixel of the mask [30], [31]. A method for joint segmentation-

classification of chromosome M-FISH images was presented [32] that build a probabilistic 

model of M-FISH chromosomes which allows for simultaneous segmentation and 

classification. The additional information provided by multiple spectra in chromosome 

images made it feasible to distinguish chromosomes that overlap and are in touch within 

clusters. 

Pixel by Pixel classification techniques were the first methods which introduced for 

classifying the pixels of the M-FISH image. These techniques do not take into account 

neighborhood information, and also consider the background as an additional class. The goal 

is to develop a region classification method which will take into account spatial information. 
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This spatial information has been already available from the region segmentation step which 

was described in the previous Chapter. The region classification could also aid the 

cytogeneticist, since he usually is interested in chromosome regions instead of pixels. 

3.2 Region Bayes Classification 

Assume that a segmented region, produced by the multispectral watershed segmentation, 

consists of N  pixels. Let R  is the set of N  feature vectors of the region in the image 

{ }1 2, , , NR x x x= … , where 5 , 1, ,ix i N∈ℜ = … . Let also ( | ) ( , )i i ip x C N µ= Σ  be the 

distribution for class iC . Then the class conditional likelihood ( | )ip R C  of region R  is 

computed as [46], [47]: 

 

( )

1 2
1

1
1/25/2

1

( | ) ( , , , | ) ( | )

1 1exp ( ) ( )
22

N

i i j i
j

N
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T
j i i j i

ji

p R C p x x x p x C

x x

ω

µ µ
π

=

−

=

= … = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ − − Σ −⎜ ⎟⎜ ⎟Σ ⎝ ⎠⎝ ⎠

∏

∑

A

, (3.1) 

 

The mean vectors and the covariance matrixes for each class are computed by a training 

phase, from an annotated set of M-FISH images as follows: 

 
1 , 1, ,

k i

i k
x Ci

x i K
N

µ
∈

= =∑ … , (3.2) 

 ( ) ( )1 , 1, ,
1

k i

T
i k i k i

x Ci

x x i K
N

µ µ
∈

Σ = − ⋅ − =
− ∑ … . (3.3) 

Working with the natural logarithm and dropping all terms that are the same for all 

classes, the Bayes decision rule assigns the set of region pixels R  to class iC  if: 

 , ( ) ( )i ji j DS R DS R∀ ≠ > , (3.4) 

where 

 1

1

1( ) ln ( ) ( ) ln ( )
2 2

N
T

i i j i i j i i
j

NDS R x x Pµ µ ω−

=

= − Σ − − Σ − +∑ . (3.5) 
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The a priori class probabilities for each class ( )iP ω , are computed using the training 

set, as the percentage of all chromosome pixels in the training data that belong to class iω : 

 24

1

(# )( )
(# )

i
i

k
k

pixels belong toclassP
pixelsbelong toclass

ωω
ω

=

=

∑
. (3.6) 

It is well known that the chromosome class reflects the size of each chromosome in 

descending order (i.e. chromosome 1 is the largest and chromosome 22 is the smallest). From 

Figure 3.1, it is obvious that as the chromosome size decreases its a priori probability also 

decreases. 

 

Figure 3.1: The a priori probabilities for the chromosome classes 1-22, X and Y. 

3.3 Region Merging 

After region classification there are still regions that could be merged resulting into a 

meaningful classification map based on the principle that adjacent regions of the same class 

could be merged to one region. Adjacency is a symmetric relationship which can be easily 

represented by the region adjacency graph (RAG), where two nodes (representing two distinct 
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3.4 Vector Median Filtering of M-FISH Images 

In multichannel image filtering, each image pixel can be considered as a vector of features 

associated with the intensities of the channels. In order to filter multichannel images, the 

vector filtering algorithms are preferred [48], [49], [50]. We have chosen to filter M-FISH 

images using the vector median filtering (VMF) approach since the noise in M-FISH images 

is due to the microscope [49] (impulsive noise). Vector median filtering is the most popular 

and appropriate filtering technique for the removal of this type of noise since the impulse 

response of the VMF is zero [49]. 

In general, component wise (marginal) approaches produce new vector samples, i.e. 

color artefacts, caused by the composition of reordered channel samples. Vector filters 

represent a natural approach to the noise removal in multichannel images, since these filters 

utilize the correlation between color channels. The output of these filters is defined as the 

lowest ranked vector according to a specific ordering technique. 

Suppose a square filter window with a set of input multichannel samples such that 

{ : 1, , }iX x i N= = … , where 5x∈ℜ  and N  is an odd integer which represents the size of the 

window. Let us consider an input sample :1ix i N≤ ≤ , associated with the distance measure 

iL  and the angle distance iA  defined as [51], [50]: 
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i i j
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where γ  characterizes the employed norm, and ⋅  is the magnitude of the vector. Note that 

the well-known Euclidean distance corresponds to 2γ =  [49]. The ordering criterion is 

expressed using products of iL  and iA  [51]: 

 1

1 1
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Then, the ordered set is given by, 1 2 .ΝΩ ≤Ω ≤ ≤Ω… The same ordering scheme applied 

to the input set results in the ordered sequence, 1 2 ( )( ) ( ) .x x x ΝΩΩ Ω≤ ≤ ≤…  The sample 1( )x Ω  

associated with 1Ω  represents the output of the directional distance filter (DDF). Let us 

assume the DDF with the power parameter p  so that the power 1 p−  is associated with the 



 

44 

 

sum of vector distances and the power [ ]0,1p∈  is associated with the sum of vector angles. 

Thus, Eq. (3.10) can be simply rewritten as: 
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If 0p = , the DDF operates as the vector median filter (VMF), whereas for 1p = , the 

DDF is equivalent to the basic vector directional filter (BVDF). The weighted vector median 

filter is defined through a set of weights. Assume a set of nonnegative integer weights 

1 2, , , Nw w w…  so that each weight , 1jw j N≤ ≤  is associated to each input sample jz . Then, it 

is possible to express the weighted vector distance iD  as: 
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i j i j
j

D w x x i N
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The sample { }1( )
1 2, , ,D

Nx x x x∈ …  associated with the minimal combined weighted 

distance 1D  is the sample which minimizes the sum of weighted vector distances and the 

output of the WVFM filter. The CWVMF [52], [53] framework is more adequate for adaptive 

filter design with validations of the smoothing levels in the filtering process. Consider that the 

weight vector is given by: 

 
2 2, ( 1) 2

1,j

N k j N
w

otherrwise
− + = +⎧ ⎫

= ⎨ ⎬
⎩ ⎭

, (3.13) 

where 1,...,( 1) 2k N= + .  

The above states that only the central weight ( 1) 2Nw +  associated with the central sample 

( 1) 2Nx +  can be changed, whereas other weights associated with the neighboring samples 

remain equal to one [52]. If the smoothing parameter k  is equal to one, then the CWVMF is 

equivalent to the identity operation and no smoothing is performed. In the case ( 1) 2k N= + , 

the maximum amount of smoothing is performed and the CWVMF filter is equivalent to the 

VMF. 
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3.5 Classification Results 

To compute the classification accuracy four images were chosen randomly three times from 

the dataset and the test was performed with the remaining images. Thus three different 

training subsets (Sub A, Sub B, Sub C) were created. The training dataset consists of all 

chromosome classes and no overlap between the training and testing data exists. Also pixels 

belonging to two or more chromosomes (chromosome overlaps) were not considered for 

training and testing. 

The proposed method was compared with a Bayes pixel-by-pixel classification 

technique [28], which is the main classification scheme for several related works in the 

literature. Pixel-by-pixel classification is performed for the pixels in the segmented regions of 

chromosomes. We have trained and evaluated both methods using the same training and 

testing set. The average chromosome classification accuracy obtained for each M-FISH 

training subset: Sub A, Sub B, and Sub C is shown in Table 3.1.  

 

Table 3.1: Chromosome classification accuracy using the proposed method and a pixel-by-
pixel classification method 

SUBSETS 
CLASSIFICATIONACCURACY 

REGIONBASED 
 

PIXEL-BY-PIXEL 
[7] 

SUB A 82.2%(± 14.9%) 70.8%(± 16.2%) 

SUB B 82.4%(± 14.8%) 70.6%(± 16.8%) 

SUB C 82.6%(± 14.4%) 70.4%(± 16.5%) 

OVERALL 82.4% 70.6% 

 

The relationship between segmentation accuracy and region classification accuracy is 

shown in Figure 3.3. It should be mentioned, that the segmentation and classification stages 

are two independent methods. Therefore an almost perfect segmentation result cannot ensure 

the best classification accuracy. 

 



 

46 

 

Segmentation Accuracy
(%)

100-90 90-80 80-70 70-60

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

(%
)

0

20

40

60

80

100

120

 
Figure 3.3: Region classification accuracy vs. segmentation accuracy. 
 

Figure 3.4 depicts the classification accuracy difference between the proposed and the 

one presented in [28] for each chromosome class. From Figure 3.4(b) we can conclude that 

with the proposed method high accuracy is obtained for small chromosomes where the 

difference in classification performance increases. 
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Figure 3.4: (a) Comparison of the classification accuracy of the two methods (Proposed vs. 
Pixel-by-Pixel) for each chromosome class. 
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3.5.3 Influence of the classification accuracy due to region size 

In order to describe the influence of the classification accuracy due to the region size several 

experiments were performed varying the tuneable parameter h  as we have describe in the 

previous chapter. The mean classification accuracy was computed varying the values of h  

from 0-250 (with step 10) and is presented in Figure 3.7. Additionally this figure presents the 

region size versus  h . The classification accuracy varies from 81% to 88%. Initially as h  

increases the classification accuracy increases but for values 125h >  it remains constant. This 

is due to the fact that when h  is large, the mean size of the regions increases since regions 

with same spatial and color characteristics are merged.  

 
Figure 3.7: Classification accuracy vs. h , and region size vs. h . 

3.6 Conclusions 

If a classification is performed on a pixel-by-pixel basis, the classification will be dominated 

by noisy painting in homogeneities. This is obvious by the misclassifications errors produced 
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classification avoids these types of errors since pixels with similar spectral information 

contribute in the classification. Moreover, region-based classification provides better 

classification accuracy than the maximum a posterior pixel-by-pixel classifier. The increased 

classification accuracy of the proposed method in cases of small chromosomes is an important 

feature in clinical cytogenetics [54]. Small chromosomes are often involved in simple or 

complex rearrangements, either in genetic disorders or in cancer. In this way genetic analysis 

becomes more reliable and may explain unidentified aberrations in clinical cases.  

Another important aspect is that the produced classification and segmentation map 

could be used as a decision support tool for cytogeneticists during their daily clinical practice. 

Figure 3.2(d), is an indicative example of the information that can be provided to the experts. 

It is noticeable that regions of the same class appear more than two times (e.g. regions of class 

“10”) in the map. This can be interpreted either as a possible translocation, and thus its 

identification is very important, or as a classification error of the method; the final decision is 

made by the cytogeneticist. 
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CHAPTER 4:  

FULLY UNSUPERVISED M-FISH CHROMOSOME 

IMAGE CLASSIFICATION 

4.1 Introduction 

4.2 Unsupervised M-FISH Image Classification – Literature Review 

4.3 Chromosome Mask & Region Segmentation 

4.4 Chromosome Distribution Estimation 

4.5 Region Classification & Merging 

4.6 Small Region Merging 

4.7 Results 

4.8 Conclusions 

4.1 Introduction 

Unsupervised classification could be considered very important for the characterization of the 

M-FISH images. This is because of the relative high number of clusters (24 chromosome 

classes: 1-22, X,Y) and of the initialization of these cluster centres which is not a trivial task. 

Furthermore, there are significant chromosomes variations among M-FISH images. This 

could be explained due to the nature of the chromosome imaging since it is a biological 

experiment depending on a large number of parameters such as temperature and humidity of 

the place of the experiment. The goal was to try to model the biological problem by using a 

Gaussian Mixture Model. We accomplished that by representing the distribution of the 

greyscale values of the chromosome pixels by two Gaussians; one for the hybridized pixels 

and one for the non-hybridized pixels. Furthermore, we initialize the cluster centers by using 
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the emission information of each chromosome for each channel. This information is always 

available prior to the M-FISH experiment. 

One of the key factors limiting the pixel classification accuracy is the variations 

between M-FISH images. This is due to the fact that the M-FISH imaging technique is not 

always accomplished under the same conditions e.g. humidity, temperature, type of 

microscope, color spread [2] and these factors affects the quality of the produced M-FISH 

image.  

As one can see, the strength of absorption is not binary and varies widely across the 

chart. Both class 20 and class 3 are predicted to absorb Spectrum Orange, but Spectrum 

Orange is almost twice as strong in class 20. Also in this particular image set, the Cy5.5 

fluorophore is weak; and its strength in classes that should absorb it is occasionally less than 

that of other dyes in classes that should not. Furthermore, the difference in magnitude of 

classes that should absorb Cy5.5 and classes that should not is not always great. The average 

magnitudes of Cy5.5 in classes 4 and 5 are nearly identical, although class 5 should bind 

Cy5.5, while class 4 should not. In addition, it is important to note that the characteristics in 

this table are valid only for this set of data, since fluorophore strength often varies by batch 

and by age of the fluorophore. 

Furthermore, according to the color map of Kit-A, chromosome 3, should be ideally 

observed only in the Channel 1, 2, 4, and 5 and should not be visible in other channels. Figure 

4.1 presents the color spread for two chromosomes of class 3 on two different M-FISH 

images (M-FISH1, M-FISH2). As one can observe the chromosome of Figure 4.1(a) presents a 

distribution of the fluor signal along the chromosome as the distribution described in the 

pattern of chromosome 3 (Figure 4.1(c)). However, Figure 4.1(b) presents the chromosome 

class 3 for a different M-FISH image where it is obvious that this chromosome class has 

failed to hybridize on channel 4 [2]. Specifically, the average fluor for chromosome 3 of the 

channel 4 has a similar distribution such as the one the channel 3 (Figure 4.1(b)). We can 

conclude that when the variation of the feature distribution across images is significant, which 

means the feature distribution of an unknown image is unpredictable, classification methods 

that rely on the estimation of class parameters (Supervised methods) will yield low accuracy 

[2]. 
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MAP-EM algorithm in order to adapt the parameters of the Multichannel GMM for each M-

FISH image. Having computed the class parameters, all chromosome regions are classified 

into 1-24 chromosome classes. The final stage (Region Merging) is used to merge the 

classified regions producing a final classification map for the cytogeneticist. 

 

 
Figure 4.2: Flowchart of the proposed method 
 

The main contribution is the proposal of a new fully unsupervised classification method 

for the M-FISH images. The unsupervised scheme is based on a multichannel Gaussian 

Mixture Model (GMM) with 24 components, one for each chromosome class. In order to 

overcome the problem of the initialization of the parameters of each GMM component, the 

first choice would be to randomly select parameter values or perform an initial clustering of 

the dataset. However, this would not incorporate the emission information of each 
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the parameters of a single Gaussian Mixture Model via the Expectation Maximization (EM) 

algorithm. Combining the parameters of the single channel GMMs and the emission 

information of each chromosome class an effective initial estimation of the multichannel 

GMM can be derived. 

Although this initial GMM could accurately describe the chromosome distribution for 

an M-FISH image with high Signal to Noise Ratio (SNR), this does not hold for images of 

low SNR. Thus, a further adaptation of the parameters of the multichannel GMM is needed. 

One straightforward approach is to use the classical EM algorithm starting from the initial 

estimation computed in the previous step. However, the large number of chromosome classes 

and the emission overlap could affect the mapping between each mixture component and each 

chromosome class. To overcome this problem, some kind of constraints should be applied on 

the GMM parameters. These constraints are naturally imported in the MAP-EM algorithm, 

which was used in the method. The estimation of the parameters using the MAP-EM method 

proves to be more effective in terms of classification accuracy over the classical EM 

algorithm. Furthermore, apart from effectively using the GMMs, the proposed method uses 

the Watershed transform in order to segment the M-FISH image into regions. It has been 

already shown [21] that by classifying regions instead of pixels a significant increase in the 

classification accuracy is obtained. Finally, the proposed method presents high classification 

accuracy, without any user interaction, even when compared to reported results using 

supervised classification methods. 

4.2 Unsupervised M-FISH Image Classification – Literature Review 

Although the M-FISH imaging ease the process of karyotyping [55], [3] visual inspection of 

these images is a laborious and time-consuming process. Also the characterization of 

chromosome anomalies is difficult since small rearrangements of chromosome material are 

difficult to identify for untrained personnel. For this reason many attempts have been to 

automate the whole or all part of the classification of M-FISH images process [26], [27], [28], 

[56], [29], [30], [31], [32], [21], [57], [58], [21], [2], [59].  

The methods described in the literature either first segment the image and then they 

classify the pixels of the image or they directly classify all the pixels of the M-FISH image 

including a class for the background. In addition, these methods can be divided into two 

categories based on the use of images for training set: 
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As a result of this task the image pixels are classified as foreground pixels (called 

chromosome pixels) or background pixels. Suppose that the segmented image OtsuB  contains 

N  chromosome pixels and let X  be the set of these chromosome pixels { }1 2, , , NX x x x= … . 

Each chromosome pixel is associated with a five dimensional vector kx , 1, ,k N= …  

containing the corresponding intensities of each of the five M-FISH image channels 

( )1 2 3 4 5, , , ,
T

k k k k k kx x x x x x= . The intensities of the chromosome pixels are normalized using the 

standard method: 

 
1, , , 1, ,5

j j
j k

k j

xy

k N j

µ
σ
−

=

= … = …
, (4.1) 

where jµ , jσ  the mean and standard deviation of the chromosome pixels of the channel j . 

Thus the set { }1 2, , , NY y y y= …  is obtained (where 5, 1, ,ky k N∈ℜ = …  containing the 

corresponding normalized intensities of each of the five M-FISH image channels). 

The Watershed Transform (WT) is a widely image segmentation algorithm that 

originated from the field of mathematical morphology. The image is considered as a 

topographical relief, where the height of each pixel is related to its grey level. Imaginary rain 

falls on the terrain. The watersheds are the lines separating the catchment basins [16]. In order 

to be able to apply the WT in a multichannel image one has first to define the gradient. 

Instead of separately computing the scalar gradient from each channel of the image we 

computed the tensor gradient [35], [36]. 

The output of the watershed transform for an image I  is a tessellation IT  of the image 

into its different regions IR , 1 ii NR≤ ≤  each one characterized by a unique label il : 

 ( ) ( ) ( ){ }1 1 2 2, , , , , ,
I II NR NRT R l R l R l= … , (4.2) 

where INR  is the number of regions. 
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where iπ  is the mixing probability or the prior probability of the i -th chromosome class, 

( ; , )i iN y µ Σ  is a Gaussian distribution with 5
iµ ∈ℜ  the mean and iΣ  the 5 5×  covariance of 

the i -th chromosome class, 1, ,i K= … . A standard approach to learn the parameters of each 

chromosome class ( iπ , iµ , iΣ , 1, ,i K= … ) is the EM algorithm. However, a common problem 

of the aforementioned approach (EM algorithm) is the initialization of the parameters of each 

chromosome class. This is due to the fact that the EM algorithm converges to a local 

maximum of the likelihood that highly depends on the initial parameter values. Next, we 

describe a novel process for the initialization of the Multichannel GMM. 

4.4.1 Initial Chromosome Distribution Estimation 

At first we compute initial values ( iπ� , iµ� , iΣ� , 1, ,i K= … ) for the parameters of each 

chromosome class. The initialization step is composed of two procedures: 

A. Single channel GMM estimation: For each channel a two Gaussian Mixture Model 

(GMM) is estimated: the first component corresponds to pixels belonging to 

hybridized chromosomes (brighter in the image) and the second component 

corresponds to pixels belonging to non-hybridized chromosomes (darker in the 

image). 

B. Multichannel GMM initialization: Using the above single channel GMMs, we 

compute an initialization of the 24-component Multichannel GMM that models 

the distributions over the 5-D M-FISH image space. 

4.4.1.1 Single Channel GMM estimation 

Each channel j  of the M-FISH image (except the DAPI channel) contains chromosome 

pixels that either belong to hybridized chromosome or to non-hybridized chromosomes. Thus 

the distribution of the grey scale values j
ky  is modeled using a mixture of two Gaussians [2]: 

 ( ) ( | ) ( ) ( | ) ( )j j j j j j j
k k h h k nh nhp y p y C P C p y C P C= + , (4.4) 

where j
ky  is the intensity of a chromosome pixel k  in channel j , ( | )j j

k hp y C  is the 

probability of pixel k  to be hybridized in channel j , ( | )j j
k nhp y C  is the probability of pixel 

k  to be non-hybridized in channel j  and j
hC , j

nhC  are the hybridized and non-hybridized 
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classes, respectively. Also, 2( | ) ( , ( ) )j j j j
k h h hp y C N µ σ∼  and 2( | ) ( , ( ) )j j j j

k nh nh nhp y C N µ σ∼ , j
hµ , 

j
hσ  are the mean intensity and standard deviation of the hybridized pixels of channel j , 

respectively, whereas j
nhµ , j

nhσ  are the mean intensity and standard deviation of the non-

hybridized pixels of channel j , respectively. Finally, ( )j
hP C  and ( )j

nhP C  are the prior 

probabilities for the hybridized and non-hybridized classes, for channel j , respectively, that 

sum to 1. 

For the estimation of the parameters { }{ }, , , , ( ), ( ) , 1, 5j j j j j j
h h nh nh h nhP C P C jµ σ µ σ = …  of the 

GMMs we employed the well EM algorithm [60]. The EM algorithm is an iterative algorithm 

which at each iteration consists of two steps, the expectation (E-step) and the maximization 

step (M-step): 

E-step: Given the estimation of parameters at iteration t , denoted as

{ }{ }( ) ( ) ( ) ( ) ( ) ( )

, , , , ( ), ( ) , 1, 5
t t t t t tj j j j j j

h h nh nh h nhP C P C jµ σ µ σ = … , we define the sufficient statistics as: 

 
( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( | )( | )
( ) ( | ) ( ) ( | )

t j t j j
t j j h k h

h k t j t j j t j t j j
h k h nh k nh

P C p y CP C y
P C p y C P C p y C

⋅
=

⋅ + ⋅
, (4.5) 

 
( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( | )( | )
( ) ( | ) ( ) ( | )

t j t j j
t j j nh k nh

nh k t j t j j t j t j j
h k h nh k nh

P C p y CP C y
P C p y C P C p y C

⋅
=

⋅ + ⋅
. (4.6) 

 

M-step: Update the parameters using: 

 ( )

1
( | )

N
t j j

h h k
k

P C y
=

Λ =∑ , (4.7) 

 ( )

1
( | )

N
t j j

nhnh k
k

P C y
=

Λ =∑ , (4.8) 

 

 ( 1) ( )t j h
hP C

N
+ Λ

= , (4.9) 

 ( 1) ( )t j nh
nhP C

N
+ Λ

= , (4.10) 

 

 
( )

( )

1
( | )

t

N
t j j j

h k k
j k

h
h

P C y y
µ =

⋅
=

Λ

∑
, (4.11) 
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( )

( )

1
( | )

t

N
t j j j

nh k k
j k

nh
nh

P C y y
µ =

⋅
=

Λ

∑
, (4.12) 

 
 

 
( ) ( )( ) 2

1

1 ( | ) ( )
t t

N
j t j j j j

h h k k h
kh

P C y yσ µ
=

= ⋅ −
Λ ∑ , (4.13) 

 
( ) ( )( ) 2

1

1 ( | ) ( )
t t

N
j t j j j j

nh nh k k nh
knh

P C y yσ µ
=

= ⋅ −
Λ ∑ . (4.14) 

 
 

The EM algorithm is a local optimization algorithm, thus, it is sensitive to initial values 

of the parameters. In order to overcome this problem, we are going to exploit prior 

information about the problem. More specifically for the priors ( )j
hP C  and ( )j

nhP C  we exploit 

the emission information about the chromosome classes (Appendix A). It is well known that 

the chromosome class index reflects the size of each chromosome in descending order (i.e., 

chromosome 1 is the largest and chromosome 22 is the smallest [22]). Thus, it is easy to 

estimate the proportion iA  of pixels belonging to chromosome class i  either from a small set 

of M-FISH images [22] or to define it using medical knowledge [8]. Consequently, we can 

define the initial prior ( 0) ( )t j
hP C=  as the proportion of the pixels that belong to the hybridized 

pixels for channel j  as: 

 ( 0) 1

1

( )

K

ij i
t j i

h K

i
i

A
P C

A

= =

=

Φ
=
∑

∑
, (4.15) 

where the matrix Φ  is defined as (Appendix A): 

 
1,
0,ij

if chromosomeclass i emmits onchannel j
otherwise

⎧ ⎫
Φ = ⎨ ⎬

⎩ ⎭
, (4.16) 

and ( 0) ( 0)( ) 1 ( )t j t j
nh hP C P C= == − . 

Since the data have been normalized (Eq. (2)) the initial values for mean and standard 

deviation for the components of non-hybridized pixels are set to -1 and 1 respectively, and the 

mean and standard deviation for the components of the hybridized pixels are set to 1: 
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The initial values for mean and standard deviation of non-hybridized pixels are -1 and 1 

respectively and the mean and standard deviation of the hybridized pixels are 1 and 1 

respectively: 

 
( 0) ( 0)

1, 1
t tj j

h hµ σ
= =

= = , (4.17) 

 
( 0) ( 0)

1, 1
t tj j

nh nhµ σ
= =

= − = . (4.18) 

4.4.1.2 Multichannel GMM estimation 

The goal of this step is to compute an initial estimation of the chromosome class parameters (

iπ� , iµ� , iΣ� , 1, ,i K= … ) of the multichannel GMM using the emission information that we are 

going to exploit for each chromosome class. 

First, we have to take into consideration some key points about the emission 

information of each chromosome class. If a chromosome of class iC  emits in channel j  then 

the probability of a pixel k  belonging to that chromosome would be equal to the probability 

( | )j j
k hp y C  of that pixel to be hybridized in this channel. Vice versa, if a chromosome of class 

iC  does not emit in channel j  then the probability of a pixel which has been computed from 

the single channel GMM belonging to that chromosome would be equal to the probability of 

that pixel to be non-hybridized ( | )j j
k nhp y C  in channel j . Based on the above, we can define 

the probability ( | )j
k ip y C�  of a chromosome pixel j

ky  in channel j  belonging to chromosome 

class iC  using the emission matrix Φ  as: 

 ( | ) ( | ) (1 ) ( | )j j j j j
k i ij k h ij k nhp y C p y C p y C= Φ + −Φ� , (4.19) 

where iC , 1 i K≤ ≤  are the 24 chromosome classes and 1 5j≤ ≤ . 

For example the probability that a chromosome pixel of channel 4j =  belonging to 

chromosome 1C  is: 

 4 4 4 4 4
1 14 14( | ) ( | ) (1 ) ( | )k k h k nhp y C p y C p y C= Φ + −Φ� . (4.20) 

Using the emission matrix Φ  (from appendix A, we can see that chromosome 1 emits in 

channel 4 thus 14 1Φ = ) and substituting in Eq. (24) we get: 

 4 4
1 1( | ) ( | )k kp y C p y C=� . (4.21) 
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Using this assumption we are going to derive initial estimation for the prior, mean and 

covariance parameters of each class distribution ( iπ� , iµ� , iΣ� , 1, ,i K= … ). The initial mean 

( )1 2 3 4 5, , , ,i i i i i iµ µ µ µ µ µ=� � � � � �  of each chromosome distribution, 1 i K≤ ≤  is computed by 

estimating each ,1 5j
i jµ ≤ ≤�  using Eq. (23): 

 (1 ) , 1, ,5.j j j
i ij h ij nh jµ µ µ= Φ + −Φ =� … . (4.22) 

 Furthermore the initial covariance iΣ�  of each chromosome’s distribution, 1 i K≤ ≤ , is 

computed using Eq. (4.23) as: 

 ( ) ( ) ( ) ( ) ( )( )2 2 2 2 21 2 3 4 5, , , ,i i i i i idiag σ σ σ σ σΣ =�  (4.24) 

where ( ) ( ) ( ) ( ) ( )2 2 22 2
1j j j

i ij h ij nhσ σ σ= Φ + −Φ , 1, ,5j = … . 

Finally, the prior probability is the expected proportion of pixels belonging to a specific 

chromosome [22]: 

 , 1, ,iA i Kιπ = =� … . (4.25) 

  

4.4.2 Chromosome Distribution Adaptation 

Having estimated the initial parameters for the multichannel GMM, the goal is to allow the 

parameters to be further adapted. Instead of estimating the GMM parameters via the EM 

algorithm, we employ Maximum A Posteriori (MAP) for parameter estimation, since we 

already have incorporated prior knowledge (such as the emission information) to the initial 

model. More specifically we have used the MAP-EM algorithm [61] which exploits prior 

information. Like the EM algorithm, the MAP estimation is a two-step estimation process. 

The first step is identical to the “Expectation” step of the EM algorithm. Unlike the M-step of 

the EM algorithm, in the M-step of MAP-EM, parameters are obtained by taking into account 

the initial model. 

The parameters { }( ) ( ) ( ) ( ) ( ) ( )
1 1 1, , , , , ,t t t t t t

K K Kπ µ π µΣ Σ…  are initialized using the values from the 

previous step e.g.: 

 

( 0)

( 0)

( 0)

,1

t
i i

t
i i
t

i i

i K
π π
µ µ

=

=

=

⎫=
⎪= ≤ ≤⎬
⎪Σ = Σ ⎭

�
�
�

. (4.26) 
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The MAP-EM estimation of the GMM parameters is described below: 

E-step: In the E-step similarly to the previous case, we calculate the sufficient statistics, which 

given the estimation of parameters at iteration t { }( ) ( ) ( ) ( ) ( ) ( )
1 1 1, , , , , ,t t t t t t

K K Kπ µ π µΣ Σ… , they are 

calculated as: 

 ( ) 1

1 1

( | )
( )

( | )

N

k i
t k

i k K N

k j
j k

p y C
v y

p y C

=

= =

=
∑

∑∑
, (4.27) 

 ( ) 1

1

( | )
( )

( | )

N

k k i
t k

i k N

k i
k

y p y C
E y

p y C

=

=

=
∑

∑
, (4.28) 

 ( ) 1

1

( | )
( )

( | )

N
T

k k k i
t T k

i k k N

k i
k

y y p y C
E y y

p y C

=

=

=
∑

∑
, (4.29) 

M-step: The M-step is described by the following update equations: 

 ( 1) ( )(1 ) ( )t t
i k ia v yιπ απ+ = − + � , (4.30) 

 ( 1) ( )(1 ) ( ) ,t t
i i k iE yµ β βµ+ = − + � , (4.31) 

 ( 1) ( ) ( 1) ( 1)(1 ) ( )
Tt t T t t

i i k k i i i iE y y ιγ γ µ µ µ µ+ Τ + +⎡ ⎤ ⎡ ⎤Σ = − + Σ + − ⎣ ⎦⎣ ⎦
� � � , (4.32) 

where the parameters a , β  and γ  are the learning rates which define how confident we are 

about the prior values iπ� , iµ� , iΣ� , 1, ,i K= … . 

Note that in the M-step the updates of the parameters Eqs. (4.33)-(4.34) are made using 

a combination of the updates suggested by the typical EM (first term of the sum) and the 

initial model we have computed in the initialization phase (4.4 Chromosome Distribution 

Estimation). 

4.5 Region Classification & Merging 

Having estimated the parameters ( , , ,1i i i i Kπ µ Σ ≤ ≤ ) of each chromosome class we could 

classify a pixel 5y∈ℜ  to a chromosome class iC , 1 i K≤ ≤  using the posterior probability 

( | )iP C y  using the Region Bayes classifier described in previous chapter. 
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4.7.1 Parameter Estimation 

In order to estimate the learning rates α , β , and γ we conducted the following experiment. 

We varied the values of the learning rates as followed [ ]0,0.05,0.1,...,1α = , 

[ ]0,0.05,0.1,...,1β = , [ ]0,0.05,0.1,...,1γ =  and computed the classification accuracy for these 

values. Figure 4.7, presents the accuracy of the method using these values for the ADIR M-

FISH image database. 

 

 
Figure 4.7: Classification accuracy using for different values of the learning rates α , β , and 

γ . 

4.7.2 Classification Accuracy 

The best overall classification accuracy for all the M-FISH images was found to be 89.95% 

for learning rates equal to 0.9α = , 0.2β γ= = . The learning rates are computed for the 

ADIR M-FISH image dataset. However, this database contains 3 different M-FISH datasets 

produced by 3 different kits. Thus, the estimation is not required for a new kit. However, note 

that when the learning rates are set to 0.0α β γ= = = , thus the MAP-EM algorithm 

degenerates to the classical EM estimation, the classification accuracy reduces to 83.62%. 

This proves the effectiveness of the MAP-EM algorithm over the classical EM algorithm. 
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Figure 4.8 presents the class classification accuracy for the best parameters values mentioned 

above. 

 

 
(a) 

Figure 4.8: (a) Class classification accuracy for each of the chromosome classes 
(1,2,..,22,X,Y). 
 

Finally, Figure 4.9 presents an example of the application of the method to an M-FISH 

image.  
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4.8 Conclusions 

The method first uses a watershed based algorithm to segment the M-FISH image into 

regions. Next, the goal is to partition the chromosome pixels by a Gaussian Mixture Model 

with 24K =  components, one for each chromosome class. However two main problems had 

to be overcome: 

A. The initialization of the multichannel Gaussian Mixture Model: We first estimate 

five, two component Single Channel GMMs where the first component 

corresponds to the hybridized class and the second to the non-hybridized class. We 

then combine those GMMs in order to estimate an initial multichannel Gaussian 

Mixture Model. Furthermore, we incorporate to this model the emission 

information that we had from the M-FISH experiment (presented in Appendix A). 

B. The adaptation of the parameters of the multichannel GMM: Although we could 

adapt this multichannel Gaussian model using the EM algorithm we chose to 

employ the MAP-EM method which uses the initial model build in the previous 

step. This proves to be more efficient in terms of classification accuracy from the 

classical application of the EM algorithm. More specifically the MAP-EM method 

(89.95%) attains an increase 6.33%, over the application of the classical EM 

(83.62%). 

Having estimated the multichannel Gaussian mixture model we then classify each 

region of the MFISH image. Finally a region merging step is utilized in order to produce a 

final classification map to the cytogeneticist. 

Several methods have been proposed in the literature for the M-FISH chromosome 

image classification. Most of these methods are supervised requiring a small number of 

images to train the classifier. Supervised classification methods, such as the Bayes classifier 

and k-nearest neighbor require training data [14]. However, collecting and labeling a large set 

of samples can be extremely costly. Additionally significant variations have been observed 

between the M-FISH images. These variations are often due to a lot of factors such as long 

exposure times, humidity, temperature, type of microscope, color spread [2]. When a 

supervised classification method is used, the classification accuracy will be high when the 

sample distributions of both training and testing data are the same. However, this is often not 

the case making the need for a fully unsupervised M-FISH image classification method a 

necessity. The method requires only the knowledge of the emission matrixes (Appendix A) 
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which is available upon the purchase of the kit thus, making the M-FISH technique attractive 

for use when ground truth does not exist. 

 

Table 4.1: Comparison of the proposed method and other methods reported in the literature in 
terms of chromosome classification accuracy 

Method Year Type of Classification Database 
Used* 

Average 
Chromosome 

Pixel 
Classification 

Accuracy 
(%) 

Sampat et al. [28] 2002 
Pixel-by- 

Pixel 
Supervised A 91.4 

Choi et al. [29] 2004 
Pixel-by- 

Pixel 
Supervised A 97.1 

Sampat et al. [30] 2005 
Pixel-by- 

Pixel 
Supervised A 90.5 

Wang et al. [31] 2005 
Pixel-by- 

Pixel 
Supervised A 87.5 

Schwartzkopf et 

al. [32] 
2005 

Pixel-by- 

Pixel 
Supervised C 68.0 

Karvelis et al. 

[21] 
2006 

Region  

Based 
Supervised A 89.0 

Karvelis et al. 

[22] 
2008 

Region  

Based 
Supervised C 82.5 

Choi et al. [2] 2008  Unsupervised B 77.8 

This method  2012 

Region  

Based 
Unsupervised B 89.95 

Region  

Based 
Unsupervised C 83.62 

K-means  2012 
Pixel-by-

Pixel 
Unsupervised B 72.48 

*A: Part of the database 
  B: The whole ADIR database minus the Bad Images 
  C: The whole ADIR database 
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Table 4.1, presents a comparison of several different classification algorithms presented 

in the literature. Most of the methods employ pixel-by-pixel classification schemes and use 

the whole or part of the ADIR M-FISH dataset. Supervised based methods were the first 

methods [28] that have been introduced for the classification of M-FISH images. The 

classification accuracy for the whole ADIR M-FISH database is 82.5%. Unsupervised based 

methods already have been tested for the whole database and their reported accuracy is 77.8% 

[2]. We have also tested the K-means algorithm for the ADIR M-FISH database, where we 

have used the emission information for each chromosome class in order to initialize the 

cluster centers [24]. The classification accuracy was 72.48%. The method is superior to both 

unsupervised and supervised methods as shown in Table 4.1. 

Translocation is the most significant rearrangement. It involves two non-homologous 

chromosomes which result from a break in each of the chromosomes, and subsequent reunion 

[62]. A change in the color of a chromosome tip may be due to noise, staining, or an actual 

translocation. Figure 4.10, presents two translocations between chromosome classes 9 and 4. 

As it can be observed for this example, the method segments and classifies correctly the 

translocated areas. If a fragment of a chromosome belonging to a translocation is smaller than 

the smallest chromosome this will be probably merged to the neighbor chromosome. This is a 

drawback of the method. However, there is a tradeoff between reducing misclassifications and 

detecting translocations. 

Fluorescent in Situ Hybridization (FISH) technology has been widely recognized as a 

promising molecular and biomedical optical imaging tool to screen and diagnose different 

types of chromosome anomalies that could be evolved in different types of cancer (e.g. 

trisomy of chromosomes 3, 7, X has a significant impact on cervical cancer development and 

prognosis [63]). One of the advantages of the method could be the application using different 

types of multichannel FISH images in order to correctly segment and classify not only 

chromosomes but also chromosome spots in general [63]. Furthermore, the method is 

independent of the number of channels used by the FISH technology (e.g. a 2 image channel 

image is used by Wang et al. [63] to detect cervical cancer). 
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CHAPTER 5:  

IDENTIFYING TOUCHING AND OVERLAPPING 

CHROMOSOMES USING THE WATERSHED 

TRANSFORM AND GRADIENT PATHS 

5.1 Introduction 

5.2 Automated Disentangling of Chromosomes – Literature Review 

5.3 Recursive Watershed Segmentation 

5.4 Gradient Path Computation 

5.5 Region Merging 

5.6 Results 

5.7 Conclusions 

5.1 Introduction 

Automation of chromosome analysis has long been considered as a difficult task. However, 

chromosomes in an M-FISH image do very often partially occlude each other; hence, their 

segmentation is not trivial and requires the application of a dedicated procedure. In this 

chapter a method is presented for the segmentation of touching and overlapping groups of 

chromosomes in M-FISH images.  

Currently there is no method for disentangling touching and overlapping group of 

chromosomes for the M-FISH images. This created the necessity to develop such kind of 

method. However, the goal was to combine geometrical features and already developed 

methods for greyscale chromosome images. This was feasible by recursively applying the 

watershed transform to each watershed area and incorporating the idea of gradient paths for 
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disentangling overlapping groups of chromosome.  

5.2 Automated Disentangling of Chromosomes – Literature Review 

Many attempts have been made to automate parts of the chromosome M-FISH image analysis 

procedure. However, chromosome images are inherent with the partial occlusion and touching 

of chromosomes, as shown in Figure 5.1. This is one of the major factors hindering automatic 

analysis. Spectrum based methods use a pixel-by-pixel classifier to classify each pixel of the 

M-FISH image and this information may be sufficient to segment touching and overlapping 

chromosomes [32]. However the measured fluorescence at a pixel may be the combination of 

fluorescence in a neighbouring region leading many times to misclassification errors. These 

factors make the pixel spectral information of touching or overlapping chromosomes 

unreliable. Hence the spectral information alone cannot separate the touching and overlapping 

chromosomes efficiently. 

On the other hand there is a variety of geometric separation based methods proposed in 

the literature for greyscale chromosome images [64], [65], [5], [66]. The main idea of these 

methods is that they split the chromosome groups into segments and then they try to combine 

these segments into chromosomes. Valley searching techniques [64], [65] attempt to find a 

“pale path” of grey values corresponding to a separation between touching-overlapping 

groups of chromosomes. Initially, all high concavity points (cut-points) are detected along the 

boundary of chromosomes. Next, a heuristic search is performed to detect the minimum 

density path between touching chromosomes. The chromosome group is split by the pale path 

and the segments are combined to form separate chromosomes. Agam et al. [5] used concave 

points to construct all the possible separation lines. In their work, they determined potential 

chromosomes using rectangle hypothesis testing. However this hypothesis does not always 

hold because of the existence of bended chromosomes that are touching or overlapping to 

each other and thus a straight line cannot split exactly the chromosomes.  

We can conclude that when only the spectral information is used, the segmentation 

accuracy relies on the pixel-by-pixel classification accuracy. On the contrary, the geometry 

based methods assume that chromosome shape alone is sufficient for the purpose of 

separation. Thus both, geometry and spectral information, has to be merged in order to 

achieve better segmentation results for M-FISH chromosome images. 
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touching/overlapping groups of objects from images [39], [16], [67], [68]. In our case we 

propose the recursive application of the watershed transform to each watershed region. 

However there exist difficult cases of touching as also of overlapping groups of chromosomes 

that need separation. For this reason we use a geometry method such as the “gradient paths” 

to split each group of touching-overlapping chromosomes. However we do not compute the 

gradient paths using the intensity of pixels of the DAPI image, but we propose the 

computation of paths in the M-FISH image using pixels with high multichannel gradient 

magnitude values. This computation proves to be more efficient than the computation of the 

gradient path on the DAPI image since there are cases of touching or overlapping groups of 

chromosomes where the gradient path on the DAPI image is difficult to compute since the 

chromosomes are difficult to disentangle. Finally, after path computation, a region adjacency 

graph is computed and a region merging algorithm is used to merge all regions.  

5.3 Recursive Watershed Segmentation 

The proposed method consists of three stages as it is shown in Figure 5.2: (a) the recursive 

watershed transform computation, (b) the computation of each gradient path and (c) the 

region merging process. The first stage consists of a number of steps. The first step is the 

conversion of the initial DAPI chromosome image to binary. In the second step, the Euclidean 

distance transform of the binary image is computed. The watershed transform is applied in the 

next step and an initial estimation of the segmented chromosome areas is obtained. The 

watershed transform is further applied separately to every segmented area until no more new 

areas are created. The first step of the second stage is the computation of the high concavity 

points along the boundary of each chromosome area. Next, all gradient paths are computed 

and the binary chromosome area is split along the gradient path. All gradient paths are 

computed using the multichannel gradient magnitude. In the final stage a recursive region 

merging procedure is applied as follows. A region adjacency graph is computed and also each 

region is classified independently using a region Bayes classifier. Then we merge all 

neighbouring regions that share the same class. The identification of the overlapping 

chromosomes takes place in the final step. 
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Figure 5.2: Flowchart of the method. 
 

In the first step, the DAPI chromosome image is converted to binary using a well 

known automated threshold selection process [15]. Using the DAPI channel an initial 

estimation of the regions of the M-FISH image is produced. The threshold operation at grey 

level l partitions the pixel values of an image into two classes 0K  and 1K  (representing 

background and object respectively), i.e., { }0 1, 2, ,K l= … and { }1 1, 2, ,K l l L= + + … , where 
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distance to the nearest off-pixel ( 2p ) (with coordinates 2 2( , )x y ). The distance metric used is 

the Euclidean distance ( ) ( )2 2
1 2 1 2D x x y y= − + − . 

The distance transform provides important information for the application of the 

watershed algorithm [69]. The number of regional minima of the negative distance transform 

constitutes indication of the number of areas that will be segmented by the WT. However a 

common problem is that the distance transform contains a large number of such minima 

leading the WT to over segment the initial image. On the other hand the greyscale 

reconstruction [14] of the negative distance transform suppresses all minima whose depth are 

lower than or equal to a threshold h∈ℜ . Thus we apply this procedure in order to alleviate 

the over segmentation problem. An alternative for the elimination of the over-segmentation 

effect could be the Gaussian blur of the gradient image [70], however the choice of the width 

of the Gaussian kernel is a key parameter for these approaches. 

The next step is the application of the WT. The watershed transform is a popular 

segmentation method originated in the field of mathematical morphology. The image is 

considered as a topographical relief, where the height of each point is related to its grey level. 

Imaginary rain falls on the terrain and water begins to rise filling the different catchment 

basins. The watersheds are the lines separating the catchment basins that form. 

In our case we apply the watershed method using the negative distance transform. The 

watershed algorithm produces a tessellation of the image into regions; these regions are called 

watershed regions and depicted in Figure 5.4(a)-(b). Whereas several methods start with an 

over-segmentation of the image and iteratively merge regions based on some measures of 

similarity [71], the method introduces a new region splitting technique based on the watershed 

transform. All the steps of the method –which do not require any a-priori knowledge–, are 

recursively applied to every watershed area until no more new areas are produced. The result 

of the recursive watershed transform is shown Figure 5.4(c)-(f). 
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It is based on two assumptions: (a) where chromosomes touch the cluster boundary tends to 

form an acute angle and (b) at points where chromosomes touch, the optical density is 

relatively low. The detection of the paths is computed via a search algorithm. The search 

begins at a cut-point and proceeds in the direction of the normal vector. A cut-point is a 

boundary point at which the boundary is highly concave. It then proceeds until another 

boundary point is found as follows: At the current point a list of candidates is found as it is 

shown in Figure 5.5(a). A new trace point is found by choosing the candidate with the 

smallest intensity value. Finally, the searching direction is updated every d  points to allow 

the path to follow the shape of its trace points, as it is shown in Figure 5.5 (b). The path that 

starts from the cut-point and ends to a boundary point was called a pale path. 

 

 
(a) 

 
(b) 

Figure 5.5: Pale path computation: (a) Candidates for the next path point, and (b) update of 
path’s direction after 3d =  points. 
 

The pale paths were used to cut only touching groups of chromosomes without 

addressing the case of overlapping chromosomes. Moreover, these studies computed the pale 

paths only for greyscale images. Using a low intensity path the separation of touching 

chromosomes is feasible, but fails particularly in overlapping cases. Indeed as it is shown in 

Figure 5.6(a) a pale path does not exist for the case of the overlapping group of chromosomes 

since the intensity of the overlapping region is homogenous and relatively high. 
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We propose a modification of the pale path approach in order to achieve separation of 

touching and overlapping chromosome groups in coloured M-FISH images. This modification 

uses the multichannel gradient of the M-FISH image [22], [36]. The basic idea is the 

following: instead of leading the path to follow low intensities pixels, the path now follows 

pixels of high multichannel gradient magnitude values. The computation of the multichannel 

gradient magnitude is based on the five channel coloured M-FISH image. This gives the 

advantage that the paths follow high gradient magnitude pixel values and these high values 

occur when chromosomes touch or overlap. The path that begins from a cut-point and follows 

pixels of high gradient magnitude values of the M-FISH image until it reaches a boundary 

point is now called a gradient path. 

To compute the cut-points we first extract the boundary from the binary image B . 

Suppose that the pixels of the boundary of a segmented region define the set ( )1 2, , , PBc c c…  

where 1,i ic c +  are successive points of the boundary and PB  the number of pixels of the 

region boundary. In order to compute the cut-points we compute the curvature of the 

boundary [65], [64], [66] since local maxima of the curvature indicate candidate positions of 

the cut-points. For each point of the boundary ( ): 1, ,ic i PB= …  we consider the triangle that 

is defined from the three points , ,i k i i kc c c− +  ( 3k = ) and compute the angle ( )a i  defined by the 

triangle: 

 ( ) ( ) ( )( ) arccos sgn deti i k i k i
i i k i k i

i i k i k i

c c c c
a i c c c c

c c c c
− +

− +
− +

⎛ ⎞− ⋅ −
= ⋅ − −⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟− ⋅ −⎝ ⎠

 (5.3) 

In Figure 5.6, we demonstrate the steps for the computation of the cut-points in a 

group of touching and overlapping chromosomes. After the binarization of the chromosome 

group (Figure 5.6(a)-(b)) the curvature of the boundary points (Figure 5.6(c)) is computed and 

is illustrated in Figure 5.6(d). All the cut-points are automatically computed by choosing the 

boundary points that exceed an angle threshold: ( ) 210 , 1,...,oa i i PB≥ = . The red points in 

Figure 5.6(d) and Figure 5.6(e) illustrate the cut-points that exceed this angle threshold. As 

we observe in Figure 5.6(e), several candidate cut-points are computed. To overcome this 

problem, the neighbouring candidate cut-points are automatically grouped and from each 
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5.6 Results 

5.6.1 Dataset 

To validate the method we used the ADIR M-FISH database. As a ground truth for the 

touching chromosomes, we used the binary image produced by the DAPI image to identify 

the cases of touching chromosomes in an M-FISH image. For each object produced by the 

binarization procedure we determined the cases of touching. Finally as a ground truth for the 

cases of overlapping we used the characterized karyotype image of the M-FISH database 

since an overlapping region is represented in that image by pixels having the value of -1. The 

number of touches and overlaps in the M-FISH database is shown in Table 5.1. 

 

Table 5.1: Number of touching and overlapping chromosomes in the M-FISH database. 
 Touching 

Chromosomes 
Overlapping 

Chromosomes 
Total Number 

1178 189 

5.6.2 Touching Chromosomes 

The separation accuracy for the touching group of chromosomes was measured by the 

method. A correct separation occurs when two or more touching chromosomes are segmented 

correctly. The results of the method for the touching groups of chromosomes are shown in 

Table 5.2. We have also compared the method with the method of Pale Paths [64] for the 

touching groups of chromosomes as the method of pale paths cannot handle overlapping 

cases. In order to compute the pale path we have used the DAPI image since the pale path 

uses a greyscale image. 

It is interesting to mention the robust behaviour of the method in the case of isolated 

bended chromosomes. It is common in the M-FISH chromosome database to find cases where 

isolated chromosomes bend, as shown in Figure 5.11. For these cases, cut-points are found 

and gradient paths begin to split the chromosome into two regions. However the region 

merging stage merges these regions to form one chromosome again. 
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5.6.3 Overlapping Chromosomes 

The separation accuracy for the overlapping group of chromosomes is also measured. The 

results of the method for the overlapping groups of chromosomes are shown in Table 5.2.  

Table 5.3: Comparison of our work with other works presented in the literature for the 
overlapping group of chromosomes. 

 
 SCHWARTZKOPF et 

al. [32] 

THE 
PROPOSED 
METHOD 

SEPARATION 
ACCURACY Accuracy 34% 80.4% 

DATASET 
DECRIPTION 

#Images 183 183 

#Overlaps 189 189 

5.7 Conclusions 

We have described a novel method for the separation of touching and overlapping 

groups of M-FISH chromosome images. The method is based on the recursive application of 

the watershed transform and the computation of gradient paths for each watershed area. A 

region merging stage is finally applied to merge regions that have been wrongly split by the 

gradient paths. The method is evaluated using an M-FISH chromosome image database and 

an overall separation accuracy of 90.6% and 80.4% for the touching and overlapping groups 

of chromosomes respectively has been found. 

In fact, only one method has been presented in the literature for the separation of M-

FISH images testing its ability to separate touching and overlapping groups of chromosomes 

for the whole M-FISH database [32]. The method uses the information from all the channels 

(the 5 channel M-FISH image including the DAPI image) whereas Schwartzkopf et al. [32] 

use only the information provided by the 5 channel M-FISH image. 

To best of our knowledge the pale paths were able to separate only touching groups of 

chromosomes without handling overlapping chromosomes [65] [64]. We expand the idea of 

the paths in order to address also the case of overlapping groups. More specifically we 

introduce the gradient paths which more effectively segment not only touching but also 

overlapping groups of chromosomes for the M-FISH images. The gradient path is superior to 

other proposed splitting techniques for two reasons: 

1. Unlike other methods [5], we do not assume that a path is a straight line between 
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different approaches employed by the two methods for the determination of touching groups 

of chromosomes. In our case we used the binary image produced by the DAPI image to 

identify the number of touching chromosomes in an M-FISH image whereas Schwartzkopf et 

al. [32] has manually chosen the number of touches. In general, it is difficult to compare the 

two methods directly since they are not handling the same number of touching chromosomes. 

However the method is employed in the same M-FISH database and the number of touches is 

higher than that reported in Schwartzkopf et al. [32]. 
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CHAPTER 6:  

CONCLUSIONS 

6.1 Concluding Remarks 

6.2 Directions for Future Research 

6.1 Concluding Remarks 

In this thesis we have proposed novel methods for multichannel chromosome image 

segmentation and classification. First, we introduced a region segmentation method for 

multichannel image segmentation. Then, a supervised region classification method employed 

for chromosome classification. A fully unsupervised classification method was also proposed 

More specifically, in order to perform image segmentation we proposed in Chapter 2, a 

multichannel watershed-based segmentation method for multispectral chromosome images 

[21], [22]. This way we were able to segment the M-FISH image into regions. These regions 

contained pixels with same color characteristics. The method was tested on the ADIR M-

FISH database and compared to another pixel-by-pixel classification method. Superior results 

were achieved. 

In Chapter 3, we introduced a supervised region classification method for M-FISH images 

[73], [22]. After the region segmentation stage the classification of the regions takes place. 

The method is also tested and compared to a pixel-by-pixel methodology on the same dataset 

and higher classification accuracy is achieved when using the method. Finally, we use the 

concept of the Vector Median Filtering in order to enhance the classification accuracy of 

chromosome M-FISH image classification. The Direction Distance Filter (DDF), Basic 

Vector Directional Filter (BVDF) and Weighted Vector Median Filtering (WVMF) were also 

tested and prove the enhancement in the classification accuracy when using the ADIR M-

FISH dataset. 
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In Chapter 4, an unsupervised classification method for M-FISH images was presented 

[74], [75]. The method incorporates prior information about the emission of each 

chromosome class to each M-FISH image channel. The classification accuracy of the method 

was higher when compared even to supervised methodologies. 

In Chapter 5, a method for the disentangling of touching and overlapping chromosomes 

[76] was presented. The method introduces for the first time the idea of gradient paths a split 

path that is used to cut merged chromosomes. The Region Adjacency Graph and a region 

classifier are used to merge the parts of chromosomes that have been cut previously by the 

gradient paths. The method has been tested on a large number of touched and overlapping 

chromosomes achieving a good separation ratio when compared to other available methods 

such as pale paths. 

6.2 Directions for Future Research 

It will be important to move one step ahead by detecting the different types of 

chromosome anomalies. Currently our algorithm is able to detect only arithmetic and 

translocations anomalies which are the most significant type of anomaly in chromosomes. 

However it may be possible by incorporating medical knowledge to the problem to detect 

further anomalies such as deletions, duplications and inversion rings. 

The combination of all the methods described in this thesis could result in the 

development of an integrated fully automated system for the analysis of M-FISH chromosome 

images, which would embody automated chromosome segmentation, separation of occluded 

chromosomes and finally classification. 

It would be very interesting to detect the centromere (the center of the two arms of the 

chromosome) of each chromosome. This type of information is valuable for the cytogeneticist 

since the centromere plays an important role for the identification of chromosome 

abnormalities. 

Fluorescent in Situ Hybridization (FISH) technology has been widely recognized as a 

promising molecular and biomedical optical imaging tool to screen and diagnose different 

types of chromosome anomalies that could be evolved in different types of cancer (e.g. 

trisomy of chromosomes 3, 7, X has a significant impact on cervical cancer development and 

prognosis [36]). One of the advantages of the method could be the application using different 

types of multichannel FISH images [77]. Furthermore, the unsupervised classification method 
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is independent of the number of channels used by the FISH technology (e.g. a 2 channel 

image is used by Wang et al. [77] to detect cervical cancer). 
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APPENDIX A 

M-FISH emission charts for each chromosome class. 
 
PSI-Kit 
 
Chromosome 

Class 
Channel 1  

 
Channel 2 

 
Channel 3  

 
Channel 4  

 
Channel 4  

 
1 1 0 1 1 0 
2 0 0 0 0 1 
3 1 1 0 1 1 
4 1 0 0 1 0 
5 1 1 1 0 1 
6 1 0 1 1 1 
7 0 0 1 1 0 
8 1 0 0 0 0 
9 1 1 0 0 1 
10 0 0 0 1 1 
11 1 1 0 1 0 
12 0 0 1 0 1 
13 1 1 0 0 0 
14 0 0 1 0 0 
15 0 1 1 1 0 
16 1 0 1 0 0 
17 0 0 0 1 0 
18 1 1 1 0 0 
19 0 1 0 1 0 
20 0 1 0 0 0 
21 1 0 0 0 1 
22 0 1 1 1 1 
X 0 1 0 0 1 
Y 1 0 0 1 1 
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PSI-Kit 
 
Chromosome 

Class 
Channel 1  

 
Channel 2 

 
Channel 3  

 
Channel 4  

 
Channel 4  

 
1 0 0 1 0 0 
2 0 0 0 1 0 
3 1 0 0 0 0 
4 0 1 0 1 0 
5 0 0 1 0 1 
6 0 1 0 0 0 
7 0 0 1 1 0 
8 0 0 0 1 1 
9 0 0 0 0 1 
10 1 0 1 0 1 
11 1 0 0 1 0 
12 0 1 1 0 0 
13 1 1 0 0 0 
14 0 1 1 1 0 
15 1 0 1 1 0 
16 0 1 0 0 1 
17 0 1 0 1 1 
18 0 0 1 1 1 
19 0 1 1 0 1 
20 1 0 0 1 1 
21 1 1 1 0 0 
22 1 1 0 1 0 
X 1 0 0 0 1 
Y 1 0 1 0 0 
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Vysis-Kit 
 
Chromosome 

Class 
Channel 1  

 
Channel 2 

 
Channel 3  

 
Channel 4  

 
Channel 4  

 
1 0 0 1 0 0 
2 0 0 0 1 0 
3 1 0 0 0 0 
4 0 1 0 1 0 
5 0 0 1 0 1 
6 0 1 0 0 0 
7 0 0 0 0 1 
8 0 0 0 1 1 
9 0 0 1 1 0 
10 1 0 1 0 0 
11 1 0 0 1 0 
12 0 1 1 0 0 
13 1 1 0 0 0 
14 0 1 1 1 0 
15 1 0 1 1 0 
16 0 1 0 0 1 
17 0 1 0 1 1 
18 0 0 1 1 1 
19 0 1 1 0 1 
20 1 0 0 1 1 
21 1 1 1 0 0 
22 1 1 0 1 0 
X 1 0 0 0 1 
Y 1 0 1 0 1 
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