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This thesis is focused on the development of image segmentation methods in combi-

nation with classi�cation and clustering techniques for e�ciently addressing the speci�c

problems presented in Pap smear microscopic images. The several steps that must be fol-

lowed for the the e�ective analysis of such images in an automated manner are described

in the chapters of this thesis. As these images present great complexity and particular

characteristics, the challenge for any automated methodology is to overcome the limi-

tations of the Pap smear images. Namely, the high degree of cell overlapping, the lack

of homogeneity in image intensity and the existence of many artifacts. The goal is to

achieve accurate identi�cation of the regions of interest, and as a result to obtain reliable

conclusions about the contents of the Pap smear.

The processing of Pap smear images is related with several aspects of the scienti�c �eld

of biomedical image processing, such as object detection, object delineation, separation

of partially occluded or overlapping objects and identi�cation of normal and abnormal

�gures of the object in images containing noise and artifacts. In the case of Pap smear

images the objects of interest are the nuclei of the cells, as these are the structural parts of

the cells which present signi�cant changes when the cell is a�ected by a disease. However,

the accurate detection and segmentation of the nuclei in Pap smear images is a di�cult

task for several reasons. First of all, in many cases the nuclei present similar characteristics

with background objects. Secondly, the nuclei usually lie in areas of cell clusters, which

present inhomogeneity in image intensity and the actual boundaries of each nucleus are

not easily recognized. Furthermore, in cell clusters, it is common to encounter overlapping

nuclei, where the borders of each nucleus are partially occluded. The correct segmentation

of the nuclei is very important, at it leads to the calculation of salient features, which

may contribute in the identi�cation of abnormalities in the shape or the structure of the

nucleus, in order to recognize normal or abnormal categories of the cells.

The �rst issue that we have successfully addressed in this thesis is the correct detection

of the locations of the nuclei in images containing both isolated cells and cell clusters. The

method we have developed combines global knowledge about the nucleus appearance, and

local characteristics of the area and the shape of the nucleus, in order to achieve a reliable

x



approximation of the nuclei locations in the image. In this scope, techniques based on

mathematical morphology are developed in order to detect the locations of the candidate

nuclei centroids in the image. The initial rough approximations of the nuclei locations are

then re�ned in a second step, which incorporates a priori knowledge about the expected

shape of the nucleus and it is accomplished by the determination of the circumference

of each nucleus. Finally, the elimination of the undesirable �ndings is achieved in two

steps: the application of a distance dependent rule on the resulted centroids and the

application of classi�cation algorithms, employing features of the neighborhood of the

candidate nuclei. We have examined the performance of classi�cation techniques based

on both supervised and unsupervised learning, and in all cases the e�ect of the re�nement

step improves the classi�cation, which indicates the importance of this step.

Furthermore, based on the detection of the locations of the nuclei centroids, we have

developed an automated method for the boundary determination of cells nuclei. The

segmentation of the nuclei boundaries is accomplished with the application of the wa-

tershed transform in the morphological color gradient image, using the nuclei markers

extracted in the detection step in order to avoid eventual oversegmentation generated by

the watershed transform. For the elimination of false positive �ndings, features charac-

terizing the shape, the texture and the image intensity are extracted from the candidate

nuclei regions, which are used as input in a classi�cation step, performed to determine

the true nuclei. These features are tested for their discriminative ability, and a rank of

the most powerful features is calculated through a feature selection scheme based on the

minimum-Redundancy - Maximum-Relevance criterion. The method was evaluated on a

large data set and comparisons with the segmentation results of a gradient vector ow

(GVF) deformable model and a region based active contour model (ACM) are performed,

which indicate that our method produces more accurate nuclei boundaries.

Concerning the separation of partially overlapped nuclei, we have developed an au-

tomated method which is based on training a physically based deformable model. More

speci�cally, an e�cient framework for the training of active shape models (ASM), based

on the representation of a shape by the vibrations of a spring-mass system is employed.

A deformable model whose behavior is driven by physical principles is trained on im-

ages containing single nuclei, and attributes of the shapes of the nuclei are expressed in

terms of modal analysis. Based on the estimated modal distribution and driven by the

image characteristics, we develop a framework, to detect and describe the unknown nuclei

boundaries in images containing two overlapping nuclei. The problem of the estimation

of an accurate nucleus boundary in the overlapping areas is successfully addressed with

the use of appropriate weight parameters that control the contribution of the image force

in the total energy of the deformable model. Comparisons with other segmentation meth-

ods, proposed especially for the separation of overlapped nuclei, indicate that our method

produces more accurate nuclei boundaries that are closer to the ground truth.

Moreover, we have investigated the case of the successful classi�cation of cells in

normal and abnormal categories. Thus, a framework for the e�cient classi�cation of

xi



cervical cells is introduced, based on features extracted exclusively from the nucleus area

and ignoring the contingent cytoplasm features. This task is of high importance, since the

nuclei are the only distinguishable areas in complex Pap smear images, as these images

present a high degree of cell overlapping and the exact borders of the cytoplasm areas

are ambiguous. We have used a database of presegmented cell images, containing both

cytoplasm and nuclei features for each cell. Based on these features, we examine the

ability of non-linear dimensionality reduction schemes to produce accurate representation

of the features manifold, along with the de�nition of an e�cient feature subset, and their

inuence on the classi�cation performance. Two unsupervised classi�ers were used and

the results indicate that we can achieve high classi�cation performance when only the

nuclei features are used.

The aspects, which are discussed in this thesis, provide an integrated context for the

e�cient analysis of Pap smear images. The speci�c limitations that these images exhibit

are successfully overcome and methodologies that address the restrictions in the �elds of

applied image analysis are described in detail. Finally, some directions for future research

are also provided in this thesis.
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ÅêôåôáìÝíç ðåñßëçøç óôá ÅëëçíéêÜ

Ìáñßíá Ðëçóßôç ôïõ ÅõáããÝëïõ êáé ôçò ÂáóéëéêÞò

ÄéäáêôïñéêÞ ÄéáôñéâÞ, ÔìÞìá ÐëçñïöïñéêÞò, ÐáíåðéóôÞìéï Éùáííßíùí, ÉáíïõÜñéïò, 2012.

Ôßôëïò: ÌÝèïäïé ÁíÜëõóçò Êõôôáñïëïãéêþí Åéêüíùí

ÅðéâëÝðïíôáò ÊáèçãçôÞò: ×ñéóôüöïñïò Íßêïõ

Ç ðáñïýóá äéáôñéâÞ åóôéÜæåôáé óôçí áíÜðôõîç áõôüìáôùí ìåèüäùí êáôÜôìçóçò êõôôáñï-

ëïãéêþí åéêüíùí, ïé ïðïßåò óå óõíäõáóìü ìå ôå÷íéêÝò êáôçãïñéïðïßçóçò êáé ïìáäïðïßçóçò,

áíôéìåôùðßæïõí äéåîïäéêÜ ôá åéäéêÜ ðñïâëÞìáôá ðïõ õðÜñ÷ïõí óôéò ìéêñïóêïðéêÝò åéêüíåò

áðü ôåóô Ðáð. ÁõôÝò ïé åéêüíåò ðáñïõóéÜæïõí ìåãÜëç ðïëõðëïêüôçôá êáé éäéáßôåñá ÷áñáêôç-

ñéóôéêÜ, üðùò ï ìåãÜëïò âáèìüò åðéêÜëõøçò ôùí êõôôÜñùí, ç Ýëëåéøç ïìïéïãÝíåéáò óôç

öùôåéíüôçôá ôçò åéêüíáò êáé ç ýðáñîç ðïëëþí áíåðéèýìçôùí áíôéêåéìÝíùí. ¸ôóé, ç åîáãùãÞ

áðïäåêôþí êáé áîéüðéóôùí áðïôåëåóìÜôùí áðïôåëåß ðñüêëçóç ãéá êÜèå áõôüìáôç ìåèïäïëï-

ãßá åðåîåñãáóßáò åéêüíùí áðü ôåóô Ðáð. ¢ëëùóôå, ï óôü÷ïò áõôþí ôùí ìåèïäïëïãéþí

åßíáé ç áêñéâÞò áíáãíþñéóç ôùí ðåñéï÷þí åíäéáöÝñïíôïò êáé ç ðáñáãùãÞ áîéüðéóôùí äéáãíù-

óôéêþí óõìðåñáóìÜôùí ãéá ôï åîåôáæüìåíï êõôôáñïëïãéêü äåßãìá.

Ç åðåîåñãáóßá ôùí åéêüíùí áðü ôåóô Ðáð åìðåñéÝ÷åé ðïëëÜ ðñïâëÞìáôá ðïõ ç åðßëõóÞ

ôïõò åßíáé áíôéêåßìåíï ôïõ ãåíéêüôåñïõ åñåõíçôéêïý ðåäßïõ ôçò åðåîåñãáóßáò âéïúáôñéêþí

åéêüíùí: ôçí áíß÷íåõóç, ôçí êáôÜôìçóç, ôïí äéá÷ùñéóìü ôùí ìåñéêþò åðéêáëõðôüìåíùí

áíôéêåéìÝíùí êáèþò êáé ôçí áíáãíþñéóç öõóéïëïãéêþí êáé ìç öõóéïëïãéêþí âéïëïãéêþí

ó÷çìáôéóìþí óå åéêüíåò ìå èüñõâï êáé ðëáóìáôéêÜ åõñÞìáôá. Óôçí ðåñßðôùóç ôùí åéêüíùí

áðü ôåóô Ðáð, ôá áíôéêåßìåíá åíäéáöÝñïíôïò åßíáé ïé ðõñÞíåò ôùí êõôôÜñùí, ïé ïðïßïé

áðïôåëïýí ôá äïìéêÜ óôïé÷åßá ôùí êõôôÜñùí ðïõ ðáñïõóéÜæïõí óçìáíôéêÝò áëëáãÝò üôáí

ôï êýôôáñï ðñïóâÜëëåôáé áðü ìéá áóèÝíåéá. Ùóôüóï, ç áêñéâÞò áíß÷íåõóç êáé êáôÜôìçóç

ôùí ðõñÞíùí óôéò êõôôáñïëïãéêÝò åéêüíåò áðü ôåóô Ðáð åßíáé ìéá äýóêïëç äéáäéêáóßá

ãéá ðïëëïýò ëüãïõò. Ðñþôá áð' üëá, óå áñêåôÝò ðåñéðôþóåéò, ïé ðõñÞíåò ðáñïõóéÜæïõí

ðáñüìïéá ÷áñáêôçñéóôéêÜ ìå áíôéêåßìåíá ôïõ õðïâÜèñïõ ôçò åéêüíáò. Åðßóçò, ôá êýôôáñá

óõíÞèùò âñßóêïíôáé óå óõóôÜäåò, ïé ïðïßåò ðáñïõóéÜæïõí áíïìïéïãÝíåéá óôç öùôåéíüôçôá

ôçò åéêüíáò êáé ôá ðñáãìáôéêÜ üñéá ôùí ðõñÞíùí äåí ðåñéãñÜöïíôáé ìå óáöÞíåéá. ÅðéðëÝïí,

óôéò óõóôÜäåò ôùí êõôôÜñùí, åßíáé óõ÷íü öáéíüìåíï ç åðéêÜëõøç ôùí ðõñÞíùí, ìå óõíÝðåéá

Ýíá ìÝñïò ôçò ðåñéï÷Þò ôùí ðõñÞíùí íá áðïêñýðôåôáé. Ç áêñéâÞò êáôÜôìçóç ôùí ðõñÞíùí

áðïôåëåß Ýíá èÝìá ìå éäéáßôåñç óçìáóßá, áöïý ïäçãåß óôïí õðïëïãéóìü óçìáíôéêþí ÷áñáêôç-

ñéóôéêþí ðïõ óõìâÜëëïõí óôçí áíáãíþñéóç áíùìáëéþí óôï ó÷Þìá êáé óôç äïìÞ ôùí

ðõñÞíùí, êáé óõíåðþò óôçí êáôçãïñéïðïßçóç ôùí êõôôÜñùí óå öõóéïëïãéêÜ êáé ìç öõóéïëï-

ãéêÜ.
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Ôï ðñþôï èÝìá ìå ôï ïðïßï áó÷ïëçèÞêáìå óôá ðëáßóéá ôçò äéáôñéâÞò åßíáé ç åðéôõ÷Þò

áíß÷íåõóç ôùí èÝóåùí ôùí ðõñÞíùí óå åéêüíåò ðïõ ðåñéÝ÷ïõí ìåìïíùìÝíá êýôôáñá êáé

óõóôÜäåò êõôôÜñùí. Ç ìÝèïäïò ðïõ áíáðôýîáìå óõíäõÜæåé ôç ãåíéêÞ ãíþóç ðïõ Ý÷ïõìå

ãéá ôçí áíáìåíüìåíç ìïñöÞ ôïõ ðõñÞíá, êáé ôá óôïé÷åßá ðïõ åîÜãïíôáé áðü ôá ôïðéêÜ

÷áñáêôçñéóôéêÜ ôçò ðåñéï÷Þò êáé ôïõ ó÷Þìáôïò ôïõ ðõñÞíá, ìå óêïðü ôïí õðïëïãéóìü

ìéáò áîéüðéóôçò ðñïóÝããéóçò ôùí èÝóåùí ôùí ðõñÞíùí óôçí åéêüíá. Ãé áõôü ôï óêïðü,

áíáðôý÷èçêáí ôå÷íéêÝò ðïõ âáóßæïíôáé óôç ìáèçìáôéêÞ ìïñöïëïãßá ïé ïðïßåò óôï÷åýïõí

óôçí áíß÷íåõóç ôùí ðéèáíþí èÝóåùí ôùí êÝíôñùí ôùí ðõñÞíùí óôçí åéêüíá. Ç áñ÷éêÞ

ðñïóåããéóôéêÞ åêôßìçóç ôùí èÝóåùí ôùí ðõñÞíùí ãßíåôáé óôç óõíÝ÷åéá ðéï áêñéâÞò ìå

Ýíá äåýôåñï âÞìá åêëÝðôõíóçò, ðïõ åíóùìáôþíåé ôéò ãíùóôÝò éäéüôçôåò ôïõ ó÷Þìáôïò

ôïõ ðõñÞíá, êáé ðñáãìáôïðïéåßôáé ìå ôïí êáèïñéóìü ôçò ðåñéìÝôñïõ êÜèå ðõñÞíá. Ôï

ôåëéêü óôÜäéï áöïñÜ óôçí åîÜëåéøç ìç åðéèõìçôþí åõñçìÜôùí êáé ðåñéëáìâÜíåé äýï âÞìáôá:

ôçí åöáñìïãÞ åíüò êáíüíá áðüóôáóçò óôá óçìåßá ðïõ áíé÷íåýèçêáí êáé ôçí åöáñìïãÞ

áëãïñßèìùí êáôçãïñéïðïßçóçò, ìå óêïðü ôçí êáôÜôáîç ôùí óçìåßùí óå äýï êáôçãïñßåò,

ôçí êáôçãïñßá ôùí ðñáãìáôéêþí êÝíôñùí ðõñÞíùí êáé ôçí êáôçãïñßá ðïõ ðåñéëáìâÜíåé

ôá óçìåßá ðïõ äåí áíôéóôïé÷ïýí óå ðñáãìáôéêÜ êÝíôñá ðõñÞíùí. Óå áõôü ôï óôÜäéï

åêìåôáëëåõôÞêáìå ôá ÷áñáêôçñéóôéêÜ ôçò ãåéôïíéÜò êÜèå ðéèáíïý êÝíôñïõ ðõñÞíá. Óôá

ðåéñÜìáôÜ ìáò, åîåôÜóáìå ôçí åðßäïóç ôå÷íéêþí êáôçãïñéïðïßçóçò ðïõ âáóßæïíôáé óå

åêðáßäåõóç ìå åðßâëåøç êáé åêðáßäåõóç ÷ùñßò åðßâëåøç. Óå üëåò ôéò ðåñéðôþóåéò, ôï âÞìá

åêëÝðôõíóçò áðïäåéêíýåôáé üôé Ý÷åé êáèïñéóôéêÞ óçìáóßá, áöïý âåëôéþíåé ôçí áðüäïóç ôçò

ôáîéíüìçóçò.

ÂáóéóìÝíïé óôçí áíß÷íåõóç ôùí êÝíôñùí ôùí ðõñÞíùí, áíáðôýîáìå ìéá áõôüìáôç ìåèïäï-

ëïãßá ãéá ôïí êáèïñéóìü ôïõ ðåñéãñÜììáôïò ôùí ðõñÞíùí ôùí êõôôÜñùí. Ç êáôÜôìçóç

ôïõ ðåñéãñÜììáôïò ôïõ ðõñÞíá ðñáãìáôïðïéåßôáé ìÝóù ôïõ áëãïñßèìïõ õäñïêñéôþí (wa-

tersheds) óôçí åéêüíá ìïñöïëïãéêÞò ÷ñùìáôéêÞò êëßóçò, ÷ñçóéìïðïéþíôáò ùò äåßêôåò ôùí

èÝóåùí ôùí ðõñÞíùí ôá óçìåßá ðïõ áíé÷íåýèçêáí óôï ðñïçãïýìåíï âÞìá, ìå óêïðü ôçí

áðïöõãÞ ôçò õðåñêáôÜôìçóçò ðïõ åíäå÷ïìÝíùò ìðïñåß íá ðñïêáëÝóåé ï ìåôáó÷çìáôéóìüò

õäñïêñéôþí. Ãéá ôçí åîÜëåéøç ôùí åõñçìÜôùí ðïõ åíôïðßóôçêáí ëáíèáóìÝíá, ãéá êÜèå

ðéèáíÞ ðåñéï÷Þ åîÜãïíôáé ÷áñáêôçñéóôéêÜ ðïõ áöïñïýí ôï ó÷Þìá, ôçí õöÞ êáé ôç öùôåéíüôç-

ôá, ôá ïðïßá óôç óõíÝ÷åéá ÷ñçóéìïðïéïýíôáé ùò åßóïäïé óå ôáîéíïìçôÝò, ãéá ôïí êáèïñéóìü

ôùí ðñáãìáôéêþí ðõñÞíùí. ÁõôÜ ôá ÷áñáêôçñéóôéêÜ, åîåôÜæïíôáé ùò ðñïò ôçí äéá÷ùñé-

óôéêÞ ôïõò éêáíüôçôá, êáé êáôáôÜóóïíôáé óå ìéá êëßìáêá ðïõ ðåñéÝ÷åé ôá ðéï éó÷õñÜ

÷áñáêôçñéóôéêÜ, ìÝóù ôïõ ó÷Þìáôïò åðéëïãÞò ÷áñáêôçñéóôéêþí ðïõ âáóßæåôáé óôï êñéôÞñéï

mRMR (minimum Redundancy - Maximum Relevance). Ç ìÝèïäïò åöáñìüóôçêå óå

Ýíá ìåãÜëï áñéèìü åéêüíùí êáé åîÞ÷èçóáí óõãêñéôéêÜ áðïôåëÝóìáôá óå ó÷Ýóç ìå Üëëåò

ìåèüäïõò êáôÜôìçóçò, ðïõ âáóßæïíôáé óå åíåñãÜ ðåñéãñÜììáôá. Ïé óõãêñßóåéò ðïõ Ýãéíáí

Ýäåéîáí üôé ôá áðïôåëÝóìáôá êáôÜôìçóçò ôçò ìåèüäïõ ìáò åßíáé ðéï áîéüðéóôá êáé áêñéâÞ.

¼óïí áöïñÜ óôï äéá÷ùñéóìü ôùí ìåñéêþò åðéêáëõðôüìåíùí ðõñÞíùí, áíáðôýîáìå ìéá

áõôüìáôç ìåèïäïëïãßá ç ïðïßá âáóßæåôáé óôçí åêðáßäåõóç åíüò öõóéêïý ðáñáìïñöþóéìïõ

ìïíôÝëïõ. Ðéï óõãêåêñéìÝíá, ðñïôåßíáìå Ýíá áðïäïôéêü ðëáßóéï åêðáßäåõóçò ôùí åíåñãþí

ðåñéãñáììÜôùí, ðïõ âáóßæåôáé óôçí áíáðáñÜóôáóç ôïõ ó÷Þìáôïò ìÝóù ôùí ôáëáíôþóåùí
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åíüò óõóôÞìáôïò \ìÜæåò-åëáôÞñéá". ¸íá ðáñáìïñöþóéìï ìïíôÝëï ðïõ ç óõìðåñéöïñÜ

ôïõ êáèïñßæåôáé áðü ôçí õðÝñèåóç ôùí åëåýèåñùí ôáëáíôþóåùí ôïõ óõóôÞìáôïò \ìÜæåò-

åëáôÞñéá", åêðáéäåýåôáé óå ìéá óåéñÜ áðü åéêüíåò ðïõ ðåñéÝ÷ïõí Ýíá ìüíï ðõñÞíá. Ìå

âÜóç ôçí åêðáßäåõóç ôùí ìïíôÝëùí êáé êáôåõèõíüìåíïé áðü ôá ÷áñáêôçñéóôéêÜ ôçò åéêüíáò,

áíáðôýîáìå Ýíá ðëáßóéï ãéá ôçí áíß÷íåõóç êáé ôçí ðåñéãñáöÞ ôïõ ðåñéãñÜììáôïò Üãíùóôùí

ðõñÞíùí, óå åéêüíåò ðïõ ðåñéÝ÷ïõí äýï åðéêáëõðôüìåíïõò ðõñÞíåò. Ôï ðñüâëçìá ôçò

áîéüðéóôçò åêôßìçóçò ôïõ ðåñéãñÜììáôïò ôïõ ðõñÞíá óôéò ðåñéï÷Ýò åðéêÜëõøçò åðéëýåôáé

ìå ôç ÷ñÞóç êáôÜëëçëùí âáñþí ðïõ åëÝã÷ïõí ôç óõììåôï÷Þ ôçò äýíáìçò ôçò åéêüíáò

óôç óõíïëéêÞ åíÝñãåéá ôïõ ðáñáìïñöþóéìïõ ìïíôÝëïõ. Ïé óõãêñßóåéò ìå Üëëåò ìåèüäïõò

êáôÜôìçóçò, ðïõ Ý÷ïõí ðñïôáèåß åéäéêÜ ãéá ôï äéá÷ùñéóìü ôùí åðéêáëõðôüìåíùí ðõñÞíùí,

äåß÷íïõí üôé ç ìÝèïäüò ìáò ðáñÜãåé ðéï áêñéâÞ ðåñéãñÜììáôá ðõñÞíùí ðïõ ðëçóéÜæïõí

ðåñéóóüôåñï ôï ðñáãìáôéêü üñéï.

ÔÝëïò, åñåõíÞóáìå ôçí êáôçãïñéïðïßçóç ôùí êõôôÜñùí óå öõóéïëïãéêÜ êáé ìç öõóéïëï-

ãéêÜ, âáóéæüìåíïé áðïêëåéóôéêÜ óå ÷áñáêôçñéóôéêÜ ðïõ åîÜãïíôáé áðü ôçí ðåñéï÷Þ ôïõ

ðõñÞíá êáé áãíïþíôáò ôá áíôßóôïé÷á ÷áñáêôçñéóôéêÜ ôïõ êõôôáñïðëÜóìáôïò. ÁõôÞ ç

äéáäéêáóßá Ý÷åé ìåãÜëç óçìáóßá, áöïý ìüíï ï ðõñÞíáò ôùí êõôôÜñùí ìðïñåß íá ðñïóäéïñéóôåß

óôéò ðïëýðëïêåò åéêüíåò áðü ôåóô Ðáð, ëüãù ôçò áóÜöåéáò óôïí ðñïóäéïñéóìü ôùí ðñáãìáôé-

êþí ïñßùí ôïõ êõôôáñïðëÜóìáôïò åîáéôßáò ôïõ ìåãÜëïõ âáèìïý åðéêÜëõøçò ôùí êõôôÜñùí.

Óôá ðåéñÜìáôÜ ìáò Ý÷ïõìå ÷ñçóéìïðïéÞóåé ìéá âÜóç äåäïìÝíùí áðü åéêüíåò êõôôÜñùí

ðïõ ç êáèåìßá ðåñéÝ÷åé ìüíï Ýíá êýôôáñï êáé ôá ÷áñáêôçñéóôéêÜ ôïõ êõôôáñïðëÜóìáôïò

êáé ôïõ ðõñÞíá ìðïñïýí íá åîá÷èïýí ìå áêñßâåéá. Ìå âÜóç áõôÜ ôá ÷áñáêôçñéóôéêÜ,

åîåôÜóáìå ôçí áðüäïóç ìç ãñáììéêþí ìåèüäùí ìåßùóçò ôçò äéÜóôáóçò ôùí äåäïìÝíùí, ãéá

ôçí ðáñáãùãÞ ìéáò áîéüðéóôçò áíáðáñÜóôáóçò ôïõ ðïëõðôýãìáôïò ôùí ÷áñáêôçñéóôéêþí

êáèþò êáé ôçí åðßäñáóÞ ôïõò óôçí åðßäïóç ôçò ôáîéíüìçóçò. Ôá áðïôåëÝóìáôá äåß÷íïõí

üôé ìðïñïýìå íá ðåôý÷ïõìå áðïôåëåóìáôéêÞ ôáîéíüìçóç ôùí êõôôÜñùí âáóéæüìåíïé ìüíï

óôá ÷áñáêôçñéóôéêÜ ôïõ ðõñÞíá.

Ôá èÝìáôá ðïõ áíáëýèçêáí óå áõôÞ ôç äéáôñéâÞ ðáñÝ÷ïõí Ýíá ïëïêëçñùìÝíï ðëáßóéï ãéá

ôçí áîéüðéóôç áíÜëõóç ôùí åéêüíùí áðü ôåóô Ðáð. Ïé éäéáßôåñïé ðåñéïñéóìïß ðïõ õðÜñ÷ïõí

óå áõôÝò ôéò åéêüíåò áíôéìåôùðßæïíôáé áðïôåëåóìáôéêÜ êáé ïé ìåèïäïëïãßåò ðïõ åðéëýïõí ôá

ðñïâëÞìáôá óôï ðåäßï ôçò åöáñìïóìÝíçò áíÜëõóçò åéêüíáò ðåñéãñÜöïíôáé ìå ëåðôïìÝñåéåò.
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Chapter 1

Introduction

Cervical smear screening is the most popular method used for the detection of cervical

cancer in its early stages. The most eminent screening test is the Pap smear, which

is based on the staining of cervical cells, using the technique that was �rst introduced

by George Papanicolaou [7]. This screening technique is used for over 60 years for the

prevention and diagnosis of cervical cancer. Precancerous conditions, abnormal changes

or infections in the endocervix and endometrium that may develop into cancer are early

recognized through this routine gynaecological examination. As a result, they are early

treated preventing the development of cervical cancer and the widespread use of this test

in developed countries has signi�cantly reduced the incidence and mortality of invasive

cervical cancer. A regular program of Pap smear screening, with appropriate follow-up,

can reduce cervical cancer incidence by up to 80% [8].

The basic steps of a conventional Pap test are depicted in (Fig. 1.1)1. The cervical

cells are sampled and then smeared onto a glass slide and the characterization of the slide

(as normal or abnormal) is accomplished through the careful microscopical examination

of the slide by an expert cytologist. It must be noted that unstained cells cannot be

seen with a light microscope and as a consequence they do not provide any information

about their status. On the other hand, the Papanicolaou technique provides a staining

procedure of cervical cells, which can be easily examined under an optical microscope.

Through this procedure, tinctorial dyes and acids are selectively retained by cells. Pa-

panicolaou chose stains that highlighted cytoplasmic keratinization in his experiments,

however the diagnostic conclusions obtained through a Pap test are highly based on the

nuclear features.

More speci�cally, normal and abnormal cells are identi�ed by evaluating changes in

the density and morphology of the structural parts of the cells, which are the nucleus

1The images were taken from:

http://www.reshealth.org/yourhealth/healthinfo/default.cfm?pageid=P00577,

http://redscrubs.com/2008/06/new-insight-into-cardiac-risks/,

http://www.brooksidepress.org/Products/ed2/Enhanced/Pap%20Smears/PapInterpretation.htm,

http://apps.pathology.jhu.edu/blogs/pathology/the-legacy-of-the-pap-smear-and-what-came-next
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and the cytoplasm. The nucleus is the structural part of the cell that presents signifcant

changes when the cell is a�ected by a disease. As an example, we can mention that the

nucleus border abnormalities are highly correlated with the infection of cells by the Human

Pappiloma Virus (HPV) [9] and the shape modi�cations of the nucleus are associated with

the existence of Cervical Intraepithelial Neoplasia (CIN) [10]. These changes are identi�ed

through visual interpretation of the slide by an expert.

However, this manual procedure can result in an erroneously characterization of a slide

as normal, while it is abnormal (False Negative). This is mainly due to the experience,

stress or fatigue of the observer. Nevertheless, abnormal �ndings (either valid or due to

technical error) usually result in considerable anxiety and in the last years many e�orts

have been made for computer-assisted screening and analysis of Pap smear slides. These

systems attempt to provide reliable conclusions about the contents of Pap smear slides,

in a fast, consistent and reproducible way.

(a) (b)

(c) (d)

Figure 1.1: The steps of the Pap test. (a) The sample of cells is collected from the

cervix using a small cone-shaped brush, (b) the material is transferred from sampling

instrument to the slide, (c) a typical Pap smear slide, (d) examination of the slide under

the microscope for the detection of abnormalities.

Thus, nowadays the e�cient analysis of Pap smear images is a research area of great

scienti�c interest. Automated methodologies are proposed by several researchers, aiming

at the accurate processing and classi�cation of Pap smear images. In this scope, this thesis

concerns novel techniques and sophisticated methods that have been developed and tested
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on a large number of Pap smear images, in order to overcome the special issues that arise

from the speci�c characteristics that these images exhibit. A detailed description of these

techniques is provided in the following chapters.

1.1 Thesis Contribution

This thesis is focused on the development of innovative and e�cient image segmentation

methods, which in combination with classi�cation and clustering techniques are able to

successfully address the speci�c problems presented in Pap smear microscopic images.

These images present great complexity and particular characteristics, namely, the high

degree of cell overlapping, the lack of homogeneity in image intensity and the existence of

many artifacts. The analysis of these images is related with several general aspects of the

scienti�c �eld of biomedical image processing, such as object detection, object delineation,

separation of partially occluded or overlapping objects and identi�cation of normal and

abnormal �gures of the object in images containing severe noise and artifacts. The goal is

to achieve accurate identi�cation of the regions of interest, which in the case of Pap smear

images are the nuclei of the cells, and as a result to obtain reliable conclusions about the

contents of the Pap smear. In this direction, automated methods for cell nuclei detection,

segmentation and overlapped nuclei separation along with classi�cation of the cells are

described and evaluated in the chapters of this thesis.

In Chapter 2, a detailed description of the characteristics of the Pap smear images

is provided. Furthermore, an extensive review of automated techniques for cervical cell

image analysis and classi�cation is included, in order to provide an integrated essay of

the state of the art methods in the speci�c scienti�c �eld. Special focus has been given

on two main concepts with great research interest: the cell image segmentation and the

classi�cation techniques proposed for the characterization Pap smear images. The special

features and the di�erent scienti�c approach for each reported method are presented in

detail in both cases. Moreover, the methods that present similarities are grouped under the

same heading, in order to provide a more compact description for the general techniques

that have been used in Pap smear images.

In Chapter 3, a method which successfully addresses the correct detection of the

locations of the nuclei in images is proposed. The method can be applied directly on

images captured from an optical microscope, as it is able to detect the candidate nuclei

positions in both isolated cells and cell clusters. Using the powerfull techniques that the

mathematical morphology provides and exploiting all the color channels of the image,

an initial rough approximation of the nuclei positions is calculated. In a second step,

these approximations of the nuclei locations are re�ned with the determination of the

circumference of each nucleus, incorporating a priori knowledge about the expected shape

of the nucleus. The undesirable �ndings are eliminated with a two steps procedure: the

application of a distance dependent rule on the resulted centroids and the application of

classi�cation algorithms, employing features of the neighborhood of the candidate nuclei.
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We have examined the performance of classi�cation techniques based on both supervised

and unsupervised learning, and in all cases the e�ect of the re�nement step improves the

classi�cation, which indicates the importance of this step. Furthermore, comparisons with

other techniques proposed in the literature for the detection of the cells centroids indicate

that the performance of our method is higher.

In chapter 4, we investigate the accurate segmentation of the cells nuclei in Pap smear

images. Based on the detection of the locations of the nuclei centroids, the boundaries of

each cell nucleus are determined automatically. The method is based on the marker based

watershed transform in the morphological color gradient image. The nuclei markers are

extracted in the detection step in order to avoid oversegmentation. In a second step, we

extend the segmentation of nuclei boundaries with the determination of meaningful fea-

tures of the detected areas, which contribute to the identi�cation of the true nuclei in Pap

smear images and the elimination of false positive �ndings. Thus, features characterizing

the shape, the texture and the image intensity are extracted from the candidate nuclei

regions, and they are tested for their discriminative ability through a feature selection

scheme based on the minimum-Redundancy - Maximum-Relevance criterion. Compar-

isons of the proposed method and the results of a gradient vector ow (GVF) deformable

model and a region based active contour model (ACM) indicate that the segmentation

results of our method are closer to the ground truth.

In chapter 5, we propose a method for the separation of partially overlapped nuclei.

The method is based on the combination of physically based deformable models, which

provide a compact representation of the shape of the nucleus, and active shape models,

which take advantage of the a priori knowledge of the expected shape. Thus, a deformable

model whose behavior is driven by physical principles is trained on images containing

single nuclei. The learning process deals with the attributes of the nuclei shapes, expressed

in terms of modal analysis. Based on the estimated modal distribution and driven by

the image characteristics, a framework for the detection and description of the unknown

nuclei boundaries in images containing two overlapping nuclei is developed. The nuclei

boundaries are extracted after the convergence of the deformable model. It must be

noted that the contribution of the image characteristics in the energy function of the

deformable model is de�ned by the locally adaptive image force, which is introduced in

order to extract reliable nuclei boundaries in the regions of overlap. Comparisons with

other segmentation methods, proposed especially for the separation of overlapped nuclei,

indicate that our method produces more accurate nuclei boundaries.

In chapter 6, the classi�cation of the cells in normal and abnormal categories is stud-

ied. As the automated detection and segmentation of the nuclei in such images has

been successfully addressed in the previous chapters, we have investigated the case of the

classi�cation of cells in normal and abnormal categories using features extracted exclu-

sively from the nucleus area and ignoring the contingent cytoplasm features. This task

is of high importance, since the nuclei are the only distinguishable areas in complex Pap

smear images, while the exact borders of the cytoplasm areas are ambiguous. Thus, non-
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linear dimensionality reduction schemes are tested for their ability to produce accurate

representation of the features manifold and to de�ne an e�cient feature subset. The ex-

periments showed that high classi�cation performance is obtained, when only the nuclei

features are used.

The several steps that must be followed for the the e�ective analysis of such images in

an automated manner are described in the chapters mentioned above. In the last chapter,

concluding remarks and some directions for future research and extension of the proposed

methods are also provided.
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Chapter 2

A review of cervical cell image analysis

methods

Microscopic cell image analysis is one of the most signi�cant application �elds of computer

vision. It concerns the analysis of images containing di�erent samples, such as tissue (his-

tological) or cells (cytological) images, and also images captured from di�erent types of

microscopes (optical, uorescence etc). From the large range of these di�erent kind of im-

ages, Pap smear images present special features, and their processing demands specialized

and sophisticated techniques. In the next paragraphs, an extensive description of their

characteristics and limitations is provided. Furthermore, the methods proposed in the

literature are also presented, categorized by the general image processing methodology

they are based on.

2.1 Pap smear images

Conventional Pap smears (Fig. 2.1) exhibit certain characteristics, such as variances

in illumination and dye concentration of the cells due to the staining procedure. Also,

there are numerous variables, such as air-drying, excessive blood, mucus, bacteria or

inammation which make the recognition of the suspicious cells a di�cult task. In terms

of screening tests, liquid-based cytology was developed as an alternative to conventional

cytology, which provides more homogeneous sampling of the cervical specimen [11], and

reduction in technical artifacts that limit conventional Pap test samples. However, recent

systematic reviews conclude that because of the lack of well-designed comparative studies,

convincing evidence to determine the superiority of the liquid based cytology for detecting

high-grade lesions does not exist [12, 13, 14, 15].

The variation in cell types each Pap smear image includes is another factor of com-

plexity of these images. There are generally three types of squamous cells seen on Pap

smear images (Fig. 2.2):
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Figure 2.1: A conventional Pap smear image.

1. the super�cial cells are the largest of the three types of cells and they have small py-

knotic (degenerative) nuclei and cytoplasm that generally stains eosinophilic (red),

2. the intermediate squamous cells, which are similar in appearance but are slightly

smaller in size and have larger, clearly structured, round nuclei with cytoplasm that

usually stains basophilic (blue) and

3. the parabasal cell type that is smaller, more rounded and immature cell type.

In addition, the large number of cells (50,000-300,000 cells for an average slide), which

must be reviewed by an expert, in order to characterize the smear as normal or abnormal is

another important factor of di�culty. For all these reasons, signi�cant e�orts and various

research approaches and algorithms have been introduced focusing on the automated

analysis of cytological Pap smear images.

The accurate detection of the nuclei is crucial because the nucleus is a very impor-

tant structure within the cell and it presents signi�cant characteristics. In pathological

situations, the nucleus may exhibit disproportionate enlargement, irregularity in form

and outline, hyperchromasia or irregular chromatin condensation. The identi�cation and

quanti�cation of these changes in the nucleus morphology and density contribute in the

discrimination of normal and abnormal cells in Pap smear images. Thus, the challenge

for any method proposed for the automated segmentation of cell nuclei is to overcome the

limitations of the Pap smear images such as the high degree of cell overlapping, the lack

of homogeneity in image intensity and the existence of many artifacts, in order to achieve

accurate identi�cation of the cells nuclei.

Through the segmentation of the area of the cell, several salient features can be ex-

tracted, which can contribute to the classi�cation of the cells and therefore the charac-

terization of the smear slide. The existence of automated classi�cation systems would

not only diminish the required time for the smear classi�cation, but it would also avoid

misclassi�cations due to human error. In the last years, several classi�cation methods

have been proposed for the Pap smear images, in order to identify abnormalities in the
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cells morphology. In general, these methods require that single cells in the slides are

automatically isolated and analyzed.

Figure 2.2: The several types of cells that are included in Pap smear images (see text

for details). In this image, the high degree of cell overlapping, the inhomogeneity in cells

intensity and the existence of many artifacts are clearly present.

In the next paragraphs, the segmentation and classi�cation methods proposed for the

cervical cell images are reported. The special features and the di�erent scienti�c approach

for each method are presented in detail in both cases. Furthermore, an attempt has been

made for the methods that present similarities to be grouped under the same heading, in

order to provide a more compact description for the general techniques that have been

used in Pap smear images.

2.2 Segmentation of Pap smear images

The prerequisite for any further processing of Pap smear images and the derivation of

conclusions for the characterization of their contents is the accurate determination of the

cell nuclei area. However, the exact nuclei locations in the image and the boundaries of

the nuclei areas are not clearly de�ned in many cases, mainly due to cell overlapping,

inconsistent staining and the existence of many artifacts. For this reason, there are two

open problems for every method proposed for the automated analysis of Pap smear images:

the exact detection of nuclei locations and the accurate determination of nuclei boundaries.

If a proposed method resolves the aforementioned restrictions, then it would be capable

for direct application in images obtained from an optical microscope. However, as these

images are very complicated, many segmentation methods are applied in presegmented

images containing a single cell or a part of the initial microscopic image (Fig. 2.3).

The detection of the nuclei and cytoplasm boundaries in such images has been the

subject of research for several scientists and many methodologies have been proposed.

These methods exhibit remarkable performance in the segmentation of the structural parts

of the cell. However the direct application of these methods in original Pap smear images,
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(a) (b)

Figure 2.3: (a) Original cell image and (b) the structural parts of the cell; the nucleus

and the cytoplasm.

which may contain a large number of cells, cell overlapping and image artifacts would

probably be doubtful, without an anterior step for the determination of the locations of

the cells in the image. Thus, more sophisticated approaches to the automated analysis

of Pap smear images are the methods which are applied on images containing a large

number of isolated cells and cell clusters, which are clearly more complicated. These

methods manage to exclude the background of the image and to recognize the locations

and the boundaries of the cells. It must be noted that clustering algorithms are used in

this scope for the rejection of false positive nuclei positions.

In the following paragraphs, the several detection and segmentation methods are cat-

egorized in terms of the general image processing method they are based on, for the

determination of the nuclei boundaries in Pap smear images. In chronological order, the

�rst approaches were quite simple and tested on a limited data, while the most recent

ones are more advanced and e�ective.

2.2.1 Thresholding

The �rst attempts to detect and segment cells in cervical microscopic images were based

on image thresholding techniques exploiting the intensity histogram characteristics of the

pixels [16, 17, 18]. The earliest works were proposed in the late '70s and this con�rms

the great scienti�c interest that these images attract. In general, the scope of these

methods was to automatically identify threshold values in order to separate the cell from

the background and the nucleus from the cytoplasm. A comparison of some threshold

selection methods is included in MacAulay and Palcic [19]. In Poulsen et al. [20], a

method for the detection of regions of interest in reduced resolution Pap smear images

is proposed. The segmentation problem is transformed into an optimisation process in

[21], where the determination of an optimal threshold value refers to a parametric image,

which is an approximation of the initial one. A thresholding technique was also proposed

in [22], for the binarization of the images and the determination of the nuclei locations,

which entails in the feature extraction and the classi�cation of the nuclei in normal or
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abnormal classes using a fuzzy Radial Basis Function (RBF) neural network. A multiscale

local adaptive threshold method based on shape stability was proposed in [23] for the

extraction of the nuclei region from the background, where the value of the threshold is

obtained by preserving the expected shape of the segmented objects in the image. Finally,

in [24], the detection of the nuclei is accomplished through the thresholding of the images

obtained after the application of mean �lters and rescaling of the gray level of the pixels.

A line-scan algorithm is also proposed for the detection of abnormal nuclei.

2.2.2 Edge Detection

Several methods developed for the segmentation of the nucleus and the cytoplasm are

based on edge detection, which does not require any prior knowledge of the objects of

interest in the image. Thus, in [25] a cytoplasm and nucleus contour (CNC) detector is

developed, which segments the structural parts of cervical cells in presegmented images.

The algorithm adopts the bi-group enhancer to suppress the noises and emphasize the

object contours. Then, the K-means algorithm is used to discern the cytoplasm from

the background and �nally, the maximal colour di�erence (MCD) method can precisely

determine the nucleus contour.

A similar semiautomatic method was proposed by Yang-Mao et al. [26], where an

edge enhancement nucleus and cytoplasm contour detector is presented and applied in

presegmented cervical images. In a preprocessing step, three techniques, namely the

trim-meaning �lter, the bi-group enhancer and the mean vector di�erence enhancer are

employed to eliminate the noise and enhance the contrast in cervical images. This results

in the construction of an image having a bi-modal like intensity histogram, from which

an optimal threshold can be obtained for the segmentation of the images. Finally, a

relative-distance-error measure is presented to evaluate the segmentation error.

In [27], a nuclei segmentation algorithm that uses anisotropic dilation for curve closing

is used. More speci�cally, the Canny edge detector followed by a series of morphological

processes result in the detection of re�ned and closed edges. Then, in the edge image,

a distance transform based on geodesic distances in the curved Riemmanian manifold

is calculated, and a binary image is constructed after thresholding, skeletonization and

morphological operations, resulting in the �nal segmentation of nuclei structures.

Another method based on edge detection for the segmentation of cervical images was

proposed in [28]. At �rst, a colour depth equalization method is used in order to improve

the contrast between the nucleus and the cytoplasm, and a Gaussian �lter for noise

removal. A two-group edge enhancement technique is then implemented based on the

coarseness of each pixel. Then the Sobel operator and the non-maximum suppression are

used for the extraction of the gradient image, which is binarized by setting an upper and

lower edge value limit. Finally, the two longest closed curves from all the detected edges

are selected to form the nucleus and the cytoplasm boundaries.

10



2.2.3 Mathematical morphology

The powerful techniques that the mathematical morphology provides for image segmen-

tation are exploited extensively in some published methods aiming at the analysis of Pap

smear images. In [29] a water immersion algorithm, similar in spirit with watersheds was

introduced for the detection of the location of isolated cells in a microscopic image. The

method is composed of three stages: the quadtree smoothing, the lowest level classi�ca-

tion and the boundary re-estimation. The outcome of this procedure is the determination

of the boundary of the isolated cells. It must be noted that this method does not provide

the detection of nuclei locations in cell clusters.

Methods based on watersheds for the analysis of Pap stained images have also been

proposed in the literature. In the method proposed by Jackway [30, 31], images containing

one single nucleus of a Pap stained squamus epithelial cell are oversegmented with the

multiscale gradient watershed transform for the extraction of texture features, in order to

characterize each cell as normal or abnormal. However, the problem of the detection of

the accurate nuclei boundaries is not resolved.

Several other methods based on mathematical morphology have also been proposed. In

[32], sequential fuzzy greyscale morphological operations are performed for the extraction

of the cell nucleus. The watershed transform has also been used in [33], where a hierarchi-

cal tree is implemented by performing multi-scale watershed segmentation on the image

and then a region selection step using a measure based on spectral homogeneity and cir-

cularity identi�es the regions occupied by cells in the image. In this method, a clustering

step is performed, in which the cytoplasm and the nucleus regions are determined using

an SVM. Finally, a method based on the watershed transform using multiscale morpho-

logical gradient and HSI colourspace was proposed in Nallaperumal et al.[34] , and this

method was also applied in macroscopic cancer images.

2.2.4 Pixel classi�cation

Another way of detecting the structural parts of the cells is based on pixel classi�cation

schemes. In [35], a pixel classi�cation method based on a multifractal algorithm is devel-

oped in a �rst step in order to classify the pixels of the image in background, cytoplasm

or nucleus. Then, an optimization step is added, by learning through genetic algorithms,

and the pixels are reclassi�ed in the above three categories. This optimization step in-

creases the precision of the borders of the detected areas, and in the same time decreases

the confusion between various classes.

As the watershed transform has been extensively used for the segmentation of the

nuclei boundaries in Pap smear images, salient markers of the nuclei locations were inves-

tigated. The method proposed by Lezoray and Cardot [1] is based on pixel classi�cation

techniques for the detection of the nuclei markers, in order to avoid the oversegmenta-

tion that the watershed algorithm may produce. For this purpose, the K-means and a

Bayesian classi�er were used for the detection of the nuclei and other pixels class. For
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the later algorithm, a training set of images containing the ground truth was used for the

estimation of the parameters of each Gaussian distribution.

Another approach that introduces a criterion function based on statistical structure

of the objects in the image was proposed by Bak et al. [36], which reects both local and

global characteristics of the image. A local spatial likelihood is de�ned and combined with

local spatial prior probabilities, producing the local spatial posterior, which is treated as a

criterion function. Initially, the pixels are clustered through the K-means algorithm, and

then the segmentation of the image is achieved through an iterative procedure, in which

each pixel is assigned at the most probable region (nucleus, cytoplasm or background)

using the prede�ned criterion function.

In [37], the areas of interest within the smears are detecting through fuzzy-based

techniques and pixel classi�cation. Then, the nuclei detection in images of higher mag-

ni�cation follows, which is also based on fuzzy rules. Moreover, in [38], a three-color

based algorithm that combines colour information, experts knowledge and fuzzy systems

is proposed, aiming at the improvement of the accuracy of the method proposed in [37]

for the detection and the segmentation of the nuclei in Pap smear images.

Finally, a modi�ed seed based region growing (MSBRG) algorithm for the automated

segmentation of cervical cells was proposed by Mustafa et al. [39]. The K-means clustering

algorithm classi�es the pixels of the image into three categories (cytoplasm, nucleus and

background) in a �rst step. Then from the extracted classi�cation and using moments

calculation, the location of seed pixels are determined and the MSBRG algorithm is

performed. The method provides a simultaneous segmentation of all cells in the image,

by identifying the pixels of the cytoplasm, the nucleus and the background.

2.2.5 Template matching

Since the nucleus in general presents an ellipse-like shape, some methods based on tem-

plate matching have been proposed, for the determination of the nuclei boundaries in Pap

smear images. A parametric �tting algorithm for the segmentation of cell images with

application to a cervical image was �rstly proposed by Wu et al. [40], which employs both

shape and regional image information. In this work, a parametric elliptical model for the

nucleus shape is introduced, and the parameters are adjusted to �t the nucleus shape by

minimizing a cost function. In order to �nd the optimal �tting, a coarse optimization

search followed by a �ne optimization procedure is performed. Thus, by incorporating

the shape information, the number of parameters is signi�cantly reduced and the method

results in the detection of the nucleus boundary.

Furthermore, in [41] a methodology based on a deformable template approach is de-

veloped. It consists of three steps: 1) initial estimation of the location of the cells in

the image, 2) calculation of an elliptical approximation of the nucleus boundary and 3)

re�nement of the nucleus boundary using locally deforming models. More speci�cally,

the detection of the location of the nuclei is obtained through a reformulation of the

generalized Hough transform. Then the initial shapes of the nuclei are estimated by the
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determination of an ellipse. The �nal solution is obtained using Grenander's deformable

template model [42], which converges in the correct nucleus boundary.

2.2.6 Deformable models

In general, the application of deformable models for the de�nition of the nuclei boundary

is constrained by the requirement for the initial approximation of the model, which is

essential to be close to the real boundary of the nuclei in the image. For this reason,

the proposed methods based on deformable models have to solve also the problem of

correct detection of the nucleus position in an image containing a large number of cells,

or otherwise, their application is limited in presegmented images including only one cell.

Thus, in [43], the boundary of the nuclei is determined on presegmented images with

the use of an active contour model, which is initialized through the construction of a

search space, consisting of two concentric cycles. In the limits of the prede�ned search

space, the most probable locations for the points of the nuclei boundaries are de�ned,

following a Viterbi search-based dual active contour algorithm.

In [44], a method for the localization of cells in low resolution combined with the

detection of the nucleus and cytoplasm boundaries in high resolution is proposed. The

geometric active contour without re-initialization (GACWR) method is used for the lo-

calization of the cervical cells in an image of low resolution, which are then classi�ed in

free-lying cells, connected cells and irrelevant objects. After the detection of the position

of each cell, the original image is partitioned into subimages containing the detected cells,

and on each subimage, a binary mask is generated, in which the unwanted objects elim-

ination and the selection of the objects of interest is achieved. In order to separate the

di�erent cells in the cell clusters, the cells are �rstly modelled by a circle, which serves as

the initial contour of a GACWR model. It must be noted that the GACWR is applied on

an image of higher resolution, and entails in the identi�cation of the cytoplasm. The same

procedure is followed for the delineation of the nuclei boundaries, which is also initially

approximated by a circle.

2.2.7 Segmentation of overlapping nuclei in cervical images

The �rst work concerning the recognition of overlapping cells nuclei in Pap smear images

was proposed by Bengtsson et al. [45]. The overlap detection algorithm was based on

information both from the nucleus contour and from the density pro�le. The method was

based on the detection of signi�cant concavities along the contour and the extraction of

a set of features for the classi�cation of the object of interest as single or overlapping. It

must be noted that the nucleus contour is extracted through a thresholding procedure.

In more recent studies, the distance transform in a binary image containing the regions

of the nuclei is calculated by Jung et al. [5] and the topographic surface generated by

the distance transform is considered as a Gaussian mixture. The EM algorithm is then

applied for the determination of the parameters of each nucleus cluster and the separation
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line of the overlapped nuclei is de�ned with the minimization of a criterion function. It

must be noted, that in this approach, the occluded area of each nucleus is reconstructed

with a constrained ellipse �tting technique.

In [4], the segmentation of clustered nuclei is treated as an optimization problem and

a marker extraction scheme based on the H-minima transform is introduced to obtain the

optimal segmentation result from the distance map.

2.3 Classi�cation of Pap smear Images

The examination of the Pap smear images by expert cytologists results in the characteri-

zation of the slide, and in many cases the speci�c disease of the cells can be recognized.

The classes that a smear slide can automatically be classi�ed by an expert system are

determined by a specialist physician. For the creation of a standardized framework for

laboratory reports, the Bethesda System [46] was developed. This system was �rstly in-

troduced in 1989 and updated in 2001 as a uniform system of terminology that would

provide clear guidance for clinical management. In this system, the smears are divided

in two categories: normal and abnormal. The abnormal category can be further divided

into four groups: atypical squamous cells (ASC), low grade squamous intraepithelial lesion

(LSIL), high grade squamous intraepithelial lesion (HSIL) and squamous cell carcinoma.

Furthermore, in [6] a Pap-smear benchmark database is presented. The database

consists of 917 samples distributed unevenly in 7 classes by the careful examination of

skilled cyto-technicians and expert cytologists. There are two main classes that a cell

may be classi�ed: normal and abnormal. Both of these classes can be further separated

into more categories. Thus, super�cial squamous epithelial, intermediate squamous ep-

ithelial and columnar epithelial cells constitute the normal class. On the other hand,

the characterization of the cells as mild squamous non-keratinizing dysplasia, moderate

squamous non-keratinizing dysplasia, severe squamous non-keratinizing dysplasia, and

squamous cell carcinoma in situ intermediate indicate the existence of abnormality in the

Pap smear slide.

The characterization of the slide is mainly feasible by the evaluation of salient fea-

tures of the nuclei of the cells, which, in general, is subjective to the experience of the

observer. In the last years, some e�orts have been made in order to obtain reproducible

and objective characterization of the Pap smear images through computer vision, reducing

the dependency to human experts. In this scope, several commercial interactive systems

have been developed, aiming at the automated classi�cation of the Pap smear images.

These systems, such as PAPNET [47], and AutoPap [48] are based on machine learning

algorithms in order to assist in cervical cytology screening.

Along with the commercial packages, the automated classi�cation of Pap smear images

has been an interesting �eld for the researchers and many methods have been proposed,

which involve both intelligent feature extraction techniques and machine learning algo-

rithms, in order to recognize abnormalities in these images. The basic steps of these
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methods are depicted in Fig. 2.4. In the following paragraphs, the features extracted

from Pap smear images and the proposed techniques for their classi�cation are described.

Figure 2.4: Schema of Pap smear microscopic image classi�cation process.

2.3.1 Features of cervical cells used for classi�cation

The published methods which deal with the classi�cation of Pap smear images are based

on the calculation of features extracted from the areas of the nucleus and the cytoplasm.

It must be noted that most of these methods use presegmented images which contain

only one cell, so the correct segmentation of the nucleus and the cytoplasm is feasible.

In images containing cell clusters, the detection of the cytoplasm boundary is a di�cult

problem and until now, there is not any method in the literature that results in the

automated delineation of cytoplasm in cell clusters.

The features used in these methods involve both intensity and shape characteristics

of the nucleus and the cytoplasm. The most commonly used shape features are the

area (size), the nucleus to cytoplasm area ratio, the shortest and longest diameter, the

perimeter, the elongation and the roundness (circularity). Furthermore, the positions of

the nucleus and cytoplasm centroids are used for the de�nition of the relative placement

of the nucleus inside the cytoplasm.

Concerning the intensity characteristics, the brightness, the mean grey level and in-

tensity disparity between the nucleus and the background are used by several techniques.

In many methods, more sophisticated features are calculated in Pap smear images. Thus,

in [49] a set of features extracted from the two dimensional Fourier transform of single

cell images is utilized, without the need of a segmentation step, which would result in the

detection of the cytoplasm and nuclei boundaries. The proposed features are based on the

mean, the variance and the entropy obtained from the frequency components along the

circle having as center the center of the spectrum and the frequency components along

the radial line having an angle è.

Feature vectors based on the wavelet transform were proposed in [50]. The statistical

wavelet analysis and the wavelet analysis in \Brute force" approach are combined for the

extraction of feature patterns. These features are then used as input in a neural network

classi�er for the �nal classi�cation of the image in normal or abnormal categories.

Several methods of automated feature selection have been proposed for the construc-

tion of subsets of features with high discriminative ability. Thus in [51], a technique
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based on a genetic algorithm is proposed for the selection of the best optimal performing

feature subset. The algorithmic scheme is combined with a number of nearest neighbour

based classi�ers, and a comparison with a tabu search based metaheuristic algorithm for

feature selection is presented. Furthermore, in [52], a method based on particle swarm op-

timization is proposed for the feature selection problem. In this work, nearest neighbour

techniques were also used for the calculation of the performance of the proposed algo-

rithm. The results were obtained for both the two-class problem (normal or abnormal)

and for the seven-class problem (as they were described in the previous section).

2.3.2 Classi�cation techniques

The extracted features are used for training classi�ers, in order to recognize and classify

a certain image/cell into the corresponding class. The �rst attempts to classify the cells

in Pap smear images were based on the Bayes rule. Thus, [53] a training set containing

normal and abnormal cells is used for the calculation of the parameters of the classi�er, and

two decision rules are combined for the classi�cation of each cell. In [54], the parametric

Bhattacharyya distance is used for the determination of a pair of textural features and

the Bayes classi�er is then applied for the classi�cation of the samples. The Bayesian

classi�er was also used in [49] and [55].

Another widespread technique used for the classi�cation of Pap smear images are

the arti�cial neural networks. In [56], a hierarchical hybrid multilayer perceptron net-

work (H2MLP) is illustrated for the classi�cation of cervical images into three categories:

normal, low-grade squamous intraepithelial lesion (LSIL) and high grade squamous in-

traepithelial lesion (HSIL). In this work, the input data are �rst classi�ed as normal and

abnormal by a hybrid multilayer perceptron (HMLP), and in the abnormal case, they are

further classi�ed by a second HMLP into the LSIL and HSIL categories. The performance

of the H2MLP neural network has been compared with RBF, MLP and HMLP arti�cial

neural networks with the number of hidden nodes varying from 1 to 50. The e�ectiveness

of the proposed diagnostic system has been demonstrated using 550 annotated Pap smear

images.

The Rank M-Type Radial Basis Function (RMRBF) neural network was implemented

in [57] for the classi�cation of microscopic Pap smear images. The Median M-Type (MM)

estimator was used in an RBF neural network for the estimation of the parameters of the

proposed network. The results presented in terms of the sensitivity and speci�city were

compared with the results of simple RBF and median RBF neural network.

Several other proposed methods are based on neural networks. A feed forward neural

network with a single hidden layer is used in [50] and the training method selected was

backpropagation with a variable learning rate. A multilayer sigmoid neural network along

with Levenberg-Marquardt backpropagation training algorithm was implemented in [58]

for the classi�cation of samples for which fuzzy based classi�cation is unclear.

Furthermore, some classi�cation techniques based on fuzzy logic have also been pro-

posed. Thus, in [22], the fuzzy RBF network is applied to classify and identify the normal
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and abnormal nuclei. In [32], the fuzzy Adaptive Resonance Theory (ART) algorithm is

used in order to classify and distinguish normal, abnormal and cancerous cells, based on

the standard categories of the Bethesda System.

Support Vector Machines (SVM) were also used for the classi�cation of Pap smear cells

into normal and abnormal categories [49], [59]. Moreover, a method for cervical cancer

detection using SVM based feature screening has also been proposed by Zhang and Liu

[60], and it concerns the reduction of the feature space dimension in multispectral Pap

smear images.

2.4 Conclusion

The task of the automated analysis and classi�cation of Pap smear images is one of the

most interesting and challenging issues in computer vision and arti�cial intelligence scien-

ti�c �elds. The identi�cation of cervical cell nuclei areas in conventional Pap smear images

is a di�cult problem, as these images present great complexity and certain limitations.

The accurate segmentation of the area of nucleus is a prerequisite for the derivation of

diagnostic conclusions and the characterization of the contents in Pap smear images. This

is feasible with the extraction of salient features which contribute in the discrimination

of the cells in normal and abnormal categories by the expert classi�ers.

As we can conclude, great e�ort has been made by several researchers in order to

present e�ective techniques concerning both the segmentation and the classi�cation of

Pap smear images. Although the proposed techniques present high performances, the au-

tomated processing of a Pap smear slide, which would result in the documented diagnosis

is not possible yet. In the future, the development of fully automated methods for the

Pap smear interpretation is expected.

In the following chapters we describe our contribution in this scope. The automated

methodologies that that we have proposed and developed for the e�cient addressing of

the nuclei detection, segmentation, classi�cation and overlapping nuclei separation are

analyzed in detail, providing qualitative and quantitative results and comparisons with

some of the state of the art methods mentioned above.
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Chapter 3

Automated Detection of Cell Nuclei

using Morphological Reconstruction

and Clustering

3.1 Introduction

The �rst attempts to detect and segment cells in cervical microscopic images were based

on image thresholding techniques exploiting the intensity histogram characteristics of the

pixels [16, 17, 18, 19, 21]. In addition, pixel classi�cation was also proposed for the

segmentation of cervical images [36]. Another class of methods concerns morphological

watersheds for the separation of the cytoplasm and the nucleus of each cell [29, 1]. The

boundaries of the structuring elements of the cells can be obtained employing methods

based on active contours [43], template �tting [40, 41], genetic algorithms [35], region

growing with moving K-means [61] and edge detectors [26, 28].

In Table 3.1, the methods that have appeared in the literature in the last �fteen

years for the segmentation of Pap smear images are presented in chronological order. For

every method, its advantages and limitations are also included. As it can be observed,

many methods do not take advantage of the color information of the cervical images by

converting the color image to its grayscale counterpart [40, 26, 28, 29, 35, 41, 43, 61],

and therefore missing the color information. Also, the problem of overlapping cells is not

considered in many methods, which are able to identify the borders of the nucleus and the

cytoplasm in cervical images which contain only one cell or isolated cells [26, 28, 29, 35, 43].

Moreover, as it will be described in the next sections, most of these methods con�ne in

presenting qualitative review for the segmentation results in several images, while their

performance is usually estimated using a limited number of test images.

Considering the general methods that these approaches are based on, we can conclude

that the powerful techniques that the mathematical morphology provides for the image

segmentation are not e�ciently exploited. Even in the case where morphological water-

sheds are used in [29] and [1], these methods seem to su�er from several limitations. The
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(a) (b)

(c)

Figure 3.1: (a) Initial cell image. (b) Mapping of the intensity values in the color space,

where high intensity values are represented by red color and small intensity values are

represented by blue color. Point A corresponds to the location of a true nucleus and

points B and C correspond to areas of cell overlapping. (c) Mapping of the initial image

in 3D space. The points A, B and C are lying in the same intensity level but only point

A corresponds to the location of a true nucleus. As it is observed, the local depth hA of

this point is more pronounced with respect to hB and hC .

method proposed by Bamford et al. [29] was applied in gray scale images of low resolution

and results in the identi�cation of the location of isolated cells in each image. However,

cell nuclei that are in cell clusters are not detected. Furthermore, the method proposed by

Lezoray et al. [1] is based on pixel classi�cation techniques for the detection of the nuclei

markers, in order to avoid the oversegmentation that the watershed algorithm may pro-

duce. In pixels classi�cation techniques, the choice of the number of the classes the pixels

belong plays a crucial role for the �nal segmentation result. Pap smear images exhibit

great complexity and the number of pixel classes is not obvious. The rough assumption

that all the pixels of the image are distributed into two classes, such as nuclei pixels and

other pixels would produce noisy results.

In this chapter, we propose a novel method for the detection of nuclei locations in
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conventional Pap stained cervical cell images, which may contain both isolated cells and

cell clusters. The method exploits the color information as it searches for possible nuclei

locations in all three channels of the color image. Furthermore, for the �nal determination

of the true nuclei set, local color nuclei characteristics are used in a classi�cation procedure.

The method is not a�ected by the existence of overlapping cells and it can be applied in

any cervical Pap smear image. This is con�rmed by the high performance of our method

in the experimental results from a large number of cervical images which contain in total

5617 cell nuclei.

Figure 3.2: Schema of the proposed method.

More speci�cally, the proposed method exploits the particular nuclei characteristics

through morphological image analysis, in order to obtain automatically their locations in

the image. In general, the cell nucleus is darker than the surrounding cytoplasm (Fig.

3.1(a)). However, its image intensity value exhibits extensive variation due to the staining

procedure or the type of the cell and sometimes it may coincide with other areas of the

image with cell overlapping (Fig. 3.1(b)). If we consider the mapping of the image in

the three dimensional space (Fig. 3.1(c)), we can see that the locations of the nuclei are

depicted as intensity valleys. Nevertheless, not all the intensity valleys of the same depth

correspond to the location of a nucleus. As we can see in Fig. 3.1(c), the points A, B
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and C belong to di�erent intensity valleys, which approximately have the same depth.

However, only point A belongs to the location of a true nucleus. For the determination of

the true nucleus location, the local depth of the intensity valley must be compared with

the corresponding local depth of its surrounding area. This �gure depicts clearly that the

local depth hA of point A has higher value than the local depths hB and hC of points B

and C respectively. Based on this fact, we propose a method that can distinguish the true

nuclei locations in Pap smear images.

Our work is summarized in Fig. 3.2. The proposed method consists of four phases: (a)

the preprocessing, (b) the detection of candidate cell nuclei centroids, (c) the re�nement of

candidate cell nuclei centroids and (d) the decision phase which includes the determination

of the �nal nuclei locations. In the preprocessing phase, the regions of interest in the

image occupied by the cells are de�ned. The outcome is a binary mask which indicates

the cell clusters in the initial image. In the second phase, the identi�cation of the probable

locations of the centroids of the cells nuclei takes place. A morphological-based image

process is proposed for the detection of the regional minima in the image, which indicate

the existence of candidate nuclei of cells. The third phase is a procedure that exploits the

spatial characteristics of the nuclei and the circumference of each nucleus is approximated,

which results in the re�nement of the nuclei centroids locations. In the fourth phase, a

decision process which extracts the true nuclei locations is proposed and it is based on

two steps. In the �rst step, an empirical rule which depends on the distance between

the centroids is applied, for the reduction of false positive occurrences. In the second

step, unsupervised (fuzzy C-means [62]) and supervised (Support Vector Machines [63])

classi�cation techniques are used in order to determine the �nal set of nuclei centroids. It

should be noted that in the last step, we have examined the inuence of the re�nement

of the nuclei centroids, with the construction of two data sets of patterns obtained from

the initial and the re�ned centroids of the cells nuclei. These data sets are used as input

in the classi�cation algorithms and the results reveal that the re�nement of the detected

nuclei centroids is necessary for the improvement of the performance of the method.

3.2 Methodology

3.2.1 Preprocessing

In conventional Pap smear images, it is often observed that the location of the cells

(isolated cells or cell clusters) is restricted in a limited space. Especially in images of low

magni�cation (such as those obtained with 10× magni�cation lens), it is common that the

major portion of the image is the background. However, due to a considerable amount

of noise that arises from the staining process, the background is not homogenous and

contains small cell particles that are not of interest. These particles must be eliminated,

because they may interfere with the automated detection of cell nuclei.

In general, the preprocessing phase is necessary for the extraction of the background

21



Table 3.1: Advantages and limitations of state of the art methods for Pap smear cell

nuclei determination.
METHOD ADVANTAGES LIMITATIONS

Bamford et al. [29] - Simple segmentation method for the - Does not handle overlapped cells

determination of the boundaries of the cells - Grayscale images

- Ensures closed boundaries - Lack of identi�cation of the nucleus

boundary

Bamford et al. [43] - Ensures closed boundaries for the nucleus and - Does not handle overlapped cells

the cytoplasm of isolated cells - Grayscale images

- High rate of accurate segmentation - Two captures (one of low and one of high

- Large number of test images magni�cation) of the cell image were used

Wu l et al. [40]∗ - Incorporates a priori knowledge about the - Grayscale images

shape of the cell - Many parameters to be tuned

- Investigates the case of overlapping breast

cells

Garrido et al. [41] - A reformulated Hough transform is - Grayscale images

introduced - The method is a�ected by the excess of

- A deformable template model is used for the

re�nement of the cells boundary

edge points or overlapped objects in com-

plex images

Lezoray et al. [1]∗∗ - Incorporates color information on the water-

shed segmentation

- A training set is needed for the achieve-

ment of best results

- High rate of accurate segmentation

Lassouaoui et al. [35] - Introduces an optimization step based on - Does not handle overlapped cells

genetic algorithms to increase the segmenta-

tion quality

- Grayscale images

Bak et al. [36] - A new criterion function based on statisti-

cal structure of the object in the cell image is

introduced

- Grayscale images

Mat Isa et al. [61] - Region growing based technique in which the

seed points locations and the threshold values

are determined automatically

- Grayscale images

Yang-Mao et al. [26] - A new edge enhancement nuclei and - Does not handle overlapped cells

cytoplast contour detector is used - Grayscale images

- A new error measurement method is intro-

duced

Lin et al. [28] - Ensures closed boundaries - Does not handle overlapped cells

- Grayscale images
∗Cervical specimen that was used for the acquisition of the test image was stained by the Crocker and Nar

staining technique.
∗∗The method was applied on images from serous cytology stained with the Pap technique.

and the de�nition of smooth and noise-free regions of interest, in order to reduce the

searching area in the image. In our work, this step aims at accomplishing two goals: a)

the de�nition of areas occupied by cells, and b) the rejection of areas in the image that are

not of interest. In order to de�ne the area of the cells we create a binary mask, containing

the locations of the cells in the image. This mask is obtained from the initial RGB image

after the application of three steps: image enhancement, global thresholding and small
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particles elimination in all three components of the initial color image.

In the �rst step, the contrast-limited adaptive histogram equalization [64] is performed

individually to each color component image, which results in contrast enhancement and

edge sharpening. Next, in each derived �ltered image, a global threshold is obtained using

the standard method proposed by Otsu [65] and with this threshold the intensity image

is converted into a binary one. Finally, in the third step, the binary mask which includes

the regions of interest of the image is extracted with the union of the three resulted binary

images obtained from the processing of the RGB components, that is:

BW = BW1 ∪BW2 ∪BW3; (3.1)

where BW1, BW2, BW3 are the binary masks in the red, green and blue channels of

the initial image obtained with the global thresholding. The �nal binary image contains

connected components that indicate the regions of the cells in the image. A morphological

dilation is then performed in order to expand the boundaries of the region of interest and

the binary mask is obtained with:

BW = BW ⊕X; (3.2)

where X is a 3× 3 at structuring element.

After this operation, the connected components with an area smaller than the area

of an isolated cell are undesired, because they were probably produced by the presence

of image artifacts. For this reason, we remove all connected components with an area

smaller than 500 pixels, which is a value smaller than the area of an isolated cell (which

in general varies in the range of 900 - 7000 pixels, determined empirically after careful

examination by a cytopathologist) and larger than the size of the small objects in the

image. In this way, small particles are eliminated. The resulted binary image (Fig. 3.3)

is used as a mask to indicate the regions that are covered by cell clusters in the initial

image. Notice that it is relatively easy to eliminate the small isolated dots by the area

thresholding. In these regions the detection algorithm is then applied.

3.2.2 Detection of candidate cell nuclei centroids

The areas of interest in the image obtained in the preprocessing step (Fig. 3.3(b)) contain

either isolated cells or cell clusters. In the �rst case, the detection of cell nucleus centroid

is a relatively easy procedure, as the area of the nucleus is darker than the cytoplasm. On

the other hand, in cell clusters, the high degree of cell overlap and the inhomogeneities in

the nuclei intensity make the detection of the nuclei a di�cult task.

Our approach to this problem is based on the gray-scale morphological reconstruction

[66] in combination with detection of regional minima [67] in the image. The regional

minima are connected components of image pixels, whose intensity value is the same and

less than the intensity value of the external boundary pixels. These minima indicate the

positions of the candidate cell nuclei.

23



(a)

(b)

Figure 3.3: (a) The initial Pap smear image, and (b) the binary mask which is obtained

after the preprocessing step.

Once we have found the regions of cell clusters, we search locally in each part of the

image in order to detect the nuclei. For the de�nition of the search area, we compute the

bounding box for each white area in the binary image and then we de�ne the corresponding

subimage in the color image. Considering that the nuclei are darker than the surrounding

cytoplasm, in each subimage, we search for intensity valleys in the red, green and blue

channels of the color image. These valleys consist of pixels with intensity value lower than

a speci�c threshold, and they are bounded by pixels whose intensity value is greater than

this threshold.

For the formation of homogenous minima valleys we apply the H-minima transform

in the original image, which is a gray scale morphological reconstruction [68]. In this

way, if the depth of each minimum is greater than or equal to a given threshold h, then

the minimum is treated as a marker, otherwise it is eliminated. Thus, shorter peaks are

removed, while higher peaks remain, even though they are not as signi�cant as before.
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The application of H-minima transform requires the construction of a marker image

G, whose peaks determine the location of the objects of interest in the original image. A

morphological reconstruction of the original image I from marker G is then performed.

For the construction of the marker image G, we subtract a threshold h from every pixel

of the complement I of the initial image of dimension DI :

G(p) = I(p)− h; p ∈ DI (3.3)

Following the de�nition in [66], the grayscale reconstruction is de�ned with regard to the

elementary geodesic dilation �
(1)
I (G) of grayscale image G ≤ I \under" I:

�
(1)
I (G) = (G⊕B) ∧ I; (3.4)

where (G⊕ B) is the dilation of G by a at structuring element B and ∧ stands for the

pointwise minimum. Thus, the grayscale geodesic dilation of size n ≥ 0 is obtained by

iterating n elementary geodesic dilations:

�
(n)
I (G) =�

(1)
I (�

(1)
I (�

(1)
I (:::�

(1)
I (G)))): (3.5)

In this equation, the output of an elementary geodesic dilation is used as input in a new

elementary geodesic dilation, and this is repeated n times. With the above de�nitions,

the grayscale reconstruction �I(G) of image I from marker G is obtained by iterating

grayscale geodesic dilations of G \under" I until stability is reached:

�I(G) = lim
n→+∞

�
(n)
I (G) (3.6)

The algorithm used for the construction of the �nal image is described in [66] as the

fast hybrid grayscale reconstruction algorithm. The �nal image is the complement of the

outcome image and it contains the regional minima, whose depth is less than h, suppressed

(Fig. 3.4(b)).

For the determination of these regional minima, we perform the non regional maxima

suppression [67] in the complement of the derived image. If we assume that f(x) is the

input grayscale image, F the domain of support for f and mval the minimum allowed

value of f(x), the output image g(x) is derived as follows:

1. g ← f

2. ∀x ∈ F

3. if g(x) ̸= mval

4. if ∃ y ∈ Nbr(x) : g(y) > f(x)

5. g(z)← mval;∀z ∈ Γx{w : g(w) = f(x)};
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(a) (b)

(c) (d)

Figure 3.4: (a) Initial image of a cell cluster with overlapped cells, (b) the resulted image

with the suppressed regional minima, (c) the areas of regional minima (notice that both

cell nuclei and non-cell nuclei are extracted at this step) and (d) the centroids of the areas

of regional minima.

where Nbr(x) is the neighborhood positions associated with the image position x and

Γx is the binary connected opening. This algorithm sets the minimum intensity value

to any pixel of the image that does not belong to a regional maximum. If a pixel has a

neighbor of higher intensity value, then all pixels connected to this pixel and having the

same intensity are set to the minimum allowed value (mval = 0).

The resulted image is a binary image with the areas of intensity valleys highlighted.

This procedure is applied independently in the three channels of the initial color image

obtained after the preprocessing step. The areas of valleys found in the three images

are joined using a logical OR operator. Following this procedure the boundaries of these

valleys are calculated and the candidate nuclei are considered to be enclosed in these

boundaries (Fig.3.4(c)). The location of each candidate nucleus is determined with the
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calculation of the centroid rc of each detected intensity valley and it is de�ned as:

rc = (x̄; ȳ) =
1

N

N∑
i=1

(xi; yi); (3.7)

where N is the number of pixels consisting the boundary of the valley, and xi; yi are the

coordinates of the pixel i of the boundary.

The list of image pixels found in this step (Fig. 3.4(d)) indicates the location of the

regional minima of the image, whose depth is less than h. In general, the cell nuclei

are darker than the surrounding cytoplasm and as a consequence the performance of this

method is very high as it will be described in the results section. However, the centroids of

these regional minima of the image do not coincide precisely with the true nuclei centroids.

This happens because these minima are rough approximations of the real nuclei boundary.

Moreover, as it can be seen in Fig. 3.4(d) some undesired points are detected during this

step. For the detection of more accurate nuclei centroids and the rejection of regional

minima centroids that do not correspond to the true nuclei locations, further processing

of the image is necessary, as it is described in the following steps.

3.2.3 Re�nement of candidate cell nuclei centroids

For the determination of the cell nuclei centroids we have used the global information

from the cell image. However, a priori knowledge about the nucleus appearance in these

images has not been incorporated. Most of the nuclei usually have ellipse-like boundaries,

from which we can observe that the intensity of the pixels inside these boundaries are

lower than those lying outside. As a result, we expect high gradient of the image across

the nuclei boundaries.

Nevertheless, the value of the gradient in nucleus/cytoplasm borders varies in di�erent

parts of the image, because of the inhomogeneities in dye concentration and the variances

in illumination. This is the reason why edge detectors based on the selection of a threshold

in the gradient value, are inappropriate for the determination of a more precise nuclei

boundary, because low thresholds would result in the detection of too many false edges,

while high values would result to the loss of some true nuclei boundaries.

In this approach, we propose the use of the morphological gradient calculated with an

alternative way, in order to obtain an estimation of the nuclei borders. More speci�cally,

from the initial color image I (Fig. 3.5(a)), we construct two di�erent images A and

B. The �rst image A (Fig. 3.5(b)) is constructed from the original image I after the

application of a grayscale erosion of the original image, that is:

A = I ⊖X; (3.8)

where X is a at disk shaped structuring element with radius 3. The use of a disk-shaped

structuring element for the construction of the eroded image, pronounce the objects of

the image in such a way that dark objects are enlarged radial. Thus, the nuclei become

smoother and more pronounced (their area is larger and darker).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: Illustration of the di�erent steps of the re�nement procedure. (a) Initial

image, (b) eroded image, (c) �ltered image, (d) di�erence of images in (b) and (c), (e)

contrast enhanced image, (f) construction of the search space, (g) determination of pixels

in the nucleus circumference by selecting the local maxima of the gradient amplitude, (h)

the resulted nucleus contour superimposed onto initial image and (i) the initial (black

cross) and the re�ned (white circle) centroid of the nucleus.
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The image B (Fig. 3.5(c)) is the outcome of the application of a 5× 5 averaging �lter

on the original image, given by:

B(x; y) =
1

n2

n∑
i=1

n∑
j=1

I(i; j); (3.9)

where n = 5 and I(i; j) is the intensity value of the image I at the pixel (i; j) and (x; y)

is the center pixel of the 5× 5 region of the image. Following this procedure, noise e�ects

and inhomogeneities in nuclei intensity are limited and a smoother image is extracted.

For the construction of the morphological gradient J of the image I, where the bound-

aries of the nuclei are accentuated, the subtraction of these two images is performed:

J(x; y) = |A(x; y)−B(x; y)|: (3.10)

During this stage, we are interested in the determination of high intensity di�erences,

which indicate the location of the boundaries of the nuclei, so we disregard the color

information and we obtain the corresponding grayscale image (Fig. 3.5(d)). For the

sharpening of nuclei borders we apply a contrast enhancement �lter in the �nal image,

which saturates 1% of data at low and 1% of data at high intensities of the original image

(Fig. 3.5(e)). Finally, in the resulting gradient image, we search locally in each derived

centroid for the selection of some points with high intensity values, which indicate the

existence of the nucleus border.

The pixel of the initial candidate nucleus centroid is used as the starting point for

the construction of a con�ned search space in the neighborhood of the speci�c regional

minimum of the image (Fig. 3.5(f)). The search area in which we expect to include the

boundary of each nucleus is determined using 8 radial pro�les in equal arc length intervals

consisted of 8 points each. After the search space is de�ned, in every radial pro�le we

choose the pixel with the highest intensity (non maximum suppression, Fig. 3.5(g)). This

procedure is repeated once for each candidate nucleus.

The �nal step is the rede�nition of the nuclei centroids based on the resulted boundary

pixels (Fig. 3.5(h)) using 3.7. The outcome of the entire procedure can be observed in Fig.

3.5(i). This example shows clearly that a more accurate nucleus centroid is determined.

3.2.4 Decision

The application of the method described above for the detection of nuclei centroids,

produces a number of false positive occurrences, as it can be observed in Fig. 3.6 and

the elimination of those points of the image that do not correspond to the true nuclei

locations is necessary. This can be accomplished following a decision process based on

two steps: the application of a distance dependent rule and the application of classi�cation

techniques, as it is described in the following paragraphs.
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Figure 3.6: The detection of regional minima of the image results in many candidate

points. This is also true for a single nucleus.

Application of the distance dependent rule

Before applying a more sophisticated classi�cation/clustering algorithm, we have �rstly

applied a distance dependent rule in the set of the resulted image points. It is observed

that a lot of extracted points are located in small distances between them. Even in the case

of one single nucleus, the existence of more than one candidate centroid is possible and

these centroids are generally spread into the nucleus circumference (Fig. 3.6). For this rea-

son, for all the obtained centroids we apply the following rule:

repeat

∀ p = (x; y) ∈ Rc

if ∃ q = {(xq; yq)|D(p; q) ≤ T} then
select r = {p; q|min{(I(p); I(q)}}
update Rc

until no change in Rc

where Rc is the set of all centroids, D the Euclidean distance between two points, T is

the threshold on the minimum distance and I(p) is the intensity of the image at point p.

The threshold for the minimum distance that we use is derived from the prior knowledge

we have about the true diameter of a nucleus. This is an empirical rule that is based on

the fact that the points, which belong to the area of a nucleus, are usually darker than

the surrounding points. By applying this rule, we have a signi�cant reduction of the total

number of the resulted centroids, while at the same time we have no loss of the true nuclei

(Fig 3.7(b)).

Application of classi�cation/clustering techniques

After the determination of the �nal candidate nuclei centroids, we proceed with the ap-

plication of classi�cation algorithms in order to separate the points that belong to the
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true nuclei and the points that belong to other regional minima, which do not indicate

the existence of a nucleus in the image. Furthermore, we have examined the inuence

of the selection of a feature data set that is obtained using the re�nement scheme of the

centroids.

We have tested our method using an unsupervised and a supervised classi�cation

algorithm, namely the fuzzy C-means (FCM) [62] and the support vector machine (SVM)

[63] respectively. Given the fact that the FCM algorithm does not require any training,

it is applied independently in each image. However, for the application of the SVM

classi�cation algorithm a training data set is constructed, with the random selection of 34

images from the entire data set, and the remaining 4 images are used as the test set. After

training, the performance of the SVM classi�er is calculated using the unknown images

of the test set. A brief description of FCM clustering and SVM classi�cation algorithms

are included in Appendix A. Representative results of the FCM clustering algorithm in

the real image are shown in Fig. 3.7(c)-(d).

Feature vectors

The nuclei centroids obtained with the application of the proposed method in the image

data set, have been detected by taking into account the general appearance and local

attributes of the nuclei. For the de�nition of the set of nuclei patterns containing more

representative features that will be used as input in the classi�cation algorithms, we have

used the intensity information which is comprised in the neighborhood of the image points

found in the previous step. The dimensions of the neighborhood of the image vary in our

experiments. More speci�cally, we have tested the performance of our method using four

pattern sets of di�erent sizes for the neighborhood, that is D1 with 3× 3× 3 pattern size,

D2 with 5×5×3 pattern size, D3 with 7×7×3 pattern size and D4 with 9×9×3 pattern

size (the third dimension corresponds to the color). Each pattern was centered at each

centroid, in the initial color image. We have constructed two data sets of patterns using

as the center pixel of each neighborhood the initial and the re�ned centroid respectively,

in order to compare the performance of the method.

3.3 Results

3.3.1 Study Group

The data set that is used in this work is composed by conventional Pap stained cervical

cell images, acquired through a CCD camera (Olympus DP71) adapted to an optical

microscope (Olympus BX51). We have used a 10× magni�cation lens and the acquired

images with size 1536 × 2048 were stored in JPEG format. We have collected 38 images

from 15 Pap smear slides and the total number of cell nuclei in the images is 5617. In

order to obtain the ground truth, the nuclei locations were manually identi�ed by two

expert cytopathologists.

31



3.3.2 Numerical evaluation

Our method is fully automated and the �nal detected nuclei are obtained even in areas

with high degree of cell overlapping such as the cell clusters in the image (Fig. 3.4),

without any user interference. For the evaluation of the performance of the method we

have to examine the performance of the di�erent steps of the method, starting from the

preprocessing step until the application of the classi�cation algorithms, in which we have

tested several di�erent parameters. Furthermore, as a measure of the computational

e�ciency of the segmentation method, we present in Table 3.2 the processing times of the

individual steps of the method developed in Matlab using a Pentium 2.0 GHz with 3GB

RAM.

The preprocessing is a fast procedure which results in the determination of the region

of interest in the image, since it excludes all the background and leaves, for further

processing, the parts of the image containing isolated cells or cell clusters. It misses 9 cell

nuclei in all images and it produces a reduction of true positives cell nuclei of 0.16% of

the total initial number of nuclei. For this reason, the number of cell nuclei which must

be detected in the following steps is decreased to 5608.

The detection step of the cell nuclei centroids has shown that the detected points have

successfully identi�ed the location of most of the nuclei in the image, as it is con�rmed

by the expert observer. During this step, 42 true nuclei centroids are missed and the true

nuclei detection rate is 99.25%.

The application of the distance dependent rule on the re�ned nuclei centroids yields

in the reduction of false positive �ndings at the rate of 14.13% while we have no loss of

true nuclei centroids. This rate could be higher if we select a distance threshold higher

than 8 pixels. However, with a selection of a higher value for this threshold, true nuclei

centroids are missed, as it can be observed in Fig. 3.10.

For the application of the classi�cation algorithms, we have used two data sets, as it is

already described. In FCM algorithm we have used the Euclidean and the diagonal norm

as the distance-dependent metric. The Euclidean norm is de�ned as:

DEuc
ij =

√√√√ c∑
j=1

(xik − vjk)2; 1 ≤ k ≤ p; 1 ≤ i ≤ N; (3.11)

where N is the number of the xk unlabeled column vectors in Rp; p is the number of fea-

tures in each vector xk; c is the number of di�erent clusters and {vi}ci=1 are the prototypes

of the clusters. Respectively, the diagonal norm is de�ned as:

DDiag
ij =

√
(xi − vj)TAD(xi − vj); 1 ≤ i ≤ N; 1 ≤ j ≤ c; (3.12)

where AD = diag( 1
�2
1
; 1
�2
2
; :::; 1

�2
p
) and �i is the standard deviation of each measured char-

acteristic. The results of the classi�cation are presented in Fig. 3.8.

Furthermore, we have trained the SVM classi�er with a training set of 34 randomly

selected images and the performance of the SVM classi�cation is calculated using the 4

32



remaining unknown images from our dataset. This experiment was repeated 20 times,

and the average performance was calculated. The results are summarized in Fig. 3.9.

For the comparison of the results we have calculated the number of true positive

(TP ), true negative (TN), false positive (FP ) and false negative (FN) �ndings of each

classi�cation technique. Then, two widely used statistical measures for the performance

of the classi�cation are calculated:

1. The Sensitivity, which measures the proportion of actual nuclei which are correctly

identi�ed as such and it is de�ned as:

Sensitivity =
TP

TP + FN
(3.13)

2. The Specificity which measures the proportion of candidate centroids that are not

nuclei and are correctly characterized as such by the classi�cation techniques, and

it is de�ned as:

Specificity =
TN

TN + FP
(3.14)

These measures were selected in order to evaluate the ability of the method to recognize

the true nuclei and the true artifacts from the total number of �ndings in the image.

As it is depicted in Fig. 3.8 and Fig. 3.9, the FCM algorithm has higher Sensitivity

than the SVM, which means that fewer true nuclei are missed by the algorithm classi�ca-

tion. However, the Specificity of FCM is low relatively to SVM, which means that FCM

includes a lot of false positive centroids in the �nal set of the points characterized as nuclei

centroids by the algorithm. On the contrary, the Sensitivity of the SVM classi�cation

is relatively low, namely it misses more true nuclei centroids during the classi�cation.

Nevertheless, it presents high Specificity rate which means that in the �nal set of points

characterized as nuclei, the false positive occurrences are limited.

An important fact that must be noted is that, as we can see in Fig. 3.8 and in Fig.

3.9, in both unsupervised (FCM) and supervised (SVM) classi�cation techniques, the

use of the re�ned centroid data set leads to a better classi�cation performance. This

indicates that with the re�nement step, the prior knowledge of the nucleus shape that is

incorporated leads to more accurate localization of the nucleus centroid. The contribution

of this step is crucial because the re�ned centroids are closer to the true nuclei centroids

and the datasets of patterns that are constructed contain more representative features of

the nuclei centroids neighborhood. This results in the improvement of the discrimination

ability of the classi�cation techniques, since the patterns of the true nuclei class are more

compact as they contain only pixels from the nucleus area and they do not include pixels

from the cytoplasm area.
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Table 3.2: Execution time for images of size 1536× 2048.
Step of the method Processing time in sec. (mean ± std)

Preprocessing 3:53± 0:22

Detection of candidate cell nuclei centroids 72:45± 39:55

Distance dependent rule 7:06± 13:00

3.4 Discussion

3.4.1 Evaluation of the proposed method

The proposed method is fully automated and its application was performed without any

observer interference. The method consists of four individual stages: the preprocessing,

the detection of candidate nuclei, the centroids location re�nement and the decision step,

which results in the �nal determination of the cell nuclei locations. As it is veri�ed by the

results, the method is suitable for the detection of cell nuclei in Pap smear images, even

when cell overlapping is present.

Table 3.3: Parameter Values.
Step of the method Parameter Value

Preprocessing Area threshold for the elimination of small particles 500

Detection of candidate cell nuclei centroids Intensity depth threshold (h) 15

Minimum allowed Image value (mval) 0

Re�nement of candidate nuclei centroids Number of radial pro�les 8

Length of radial pro�les 8

Distance Dependent Rule Minimum Distance threshold (T) 8

FCM Weighting component (m) 2

SVM Linear Kernel: C 0.001

RBF Kernel: C 1

RBF Kernel: ã 1

Concerning the parameters involved in the algorithm (Table 3.3), from the entire image

data set (38 images) we have used 19 randomly selected images which contain in total

3616 cells nuclei, in order to estimate the values of these parameters, which correspond to

the prior knowledge of the cells nuclei. After careful examination of these images from an

expert cytopathologist, the area threshold of 500 pixels was considered to be su�cient for

the small particles elimination in the image. Thus, connected components of area smaller

than 500 pixels are characterized as objects of no interest, while the isolated cells in the

image are preserved. Nevertheless, the loss at this step is due to the fact that some of the

cell cytoplasms are faintly stained, and they are not distinguishable from the background.

As a consequence, the nucleus is considered as an isolated object, and with the application

of this step, it is removed.

The selection of the threshold of the depth of the intensity valleys inuences the

number of true positives and false positives. For the choice of the threshold we have

performed several tests using di�erent values, and we chose the threshold value 15, which

34



produce the minimum loss of true positives centroids. As it is depicted in Fig. 3.11, with

this threshold value we obtain the maximum number of true nuclei centroids detected,

while the number of false positive centroids is kept at a low rate.

The outcome of this step is the detection of image regional minima, which may indicate

the locations of cell nuclei. As it is observed in many cases, the projection of these

centroids in the images does not coincide with the true nuclei centroids (Fig. 3.5(i)).

This occurs because the determination of the initial centroid is a coarse approximation of

the true nuclei centroid. With the exploitation of the a priori knowledge of the nucleus

shape characteristics in the re�nement step, we obtain more accurate nuclei centroids in

the image. We search for 8 points in the nucleus circumference and for the construction

of the search space we use radial pro�les of 8 pixel length, as this was estimated to be

the average size of the nuclei radius by the expert observer. By these means, we obtain a

smooth nucleus boundary, and based on this, we calculate a new re�ned nucleus centroid.

The result of this step is the extraction of nuclei markers in the image. However,

in some areas of the image it is observed that two or more markers are lying on the

same nucleus (Fig. 3.6). This is a consequence of the inhomogeneity in the nucleus

dye concentration. The elimination of these additional markers is necessary and may be

achieved by the application of the distance dependent rule. If we omit this step, then

there will be some centroids which belong to the same nucleus and they will introduce

interference in the clustering step. For instance, if they are classi�ed in the same class (e.g.

the nuclei class) we will not be able to compute the number of true detected nuclei, since

one single detected nucleus will be counted twice. On the other hand, if they are assigned

to di�erent classes (one centroid in the nuclei class and the other one in \other �ndings"

class) then one centroid will be counted as true positive and the other one as false negative.

This would be wrong, since they are both lying in the area of the same nucleus. For this

reason, the distance dependent rule is necessary, in order to overcome such con�gurations.

We calculate the Euclidean distance of each marker from its neighboring markers and the

threshold we use is 8 pixels, as it approximates the average nucleus radius in our images.

In this step, we achieve to maintain all the true nuclei locations. After the determination

of these values, the method was applied in all 38 images of our data set and the obtained

results indicate that the selection of these values corresponds to a reliable estimation of

the shape and the intensity characteristics of the cells nuclei.

In Table 3.2 the processing times of the individual steps of the method are provided.

As we can see, the execution time varies signi�cantly in the detection of regional minima

and in the application of the distance dependent rule. This is a consequence of several

factors. First of all, the number of the real cell nuclei that each image includes plays

a crucial role in the execution time of the detection of regional minima step. As the

number of the nuclei in our image data set varies from 26 to 522 nuclei, we expect high

variation in the execution time. Furthermore, the result of the preprocessing step and the

proportion of the image that is identi�ed as background is another factor that inuences

the execution time. In an image with smooth background and well stained cells, the
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region of the image that is excluded as background is large and the cells clusters were

successfully recognized. However, in an image with artifacts, severe noise and variation in

cell staining, the preprocessing step results in the selection of some regions of the image,

that do not correspond to the true location of the cell clusters. Even that in those areas

no cells are present, the regional minima detection step is also performed in those areas,

and this demands additional execution time. This also results in the detection of false

positive �ndings, which a�ects the execution time of the distance dependent rule step,

because more candidate points are processed. Finally, the variation of the execution time

of these steps is a�ected by the presence of outlying images which exhibit high di�erence

from the mean execution time and although are a few, their inuence in the total variation

is signi�cant. All of the above factors lead to a distribution of execution times having a

central concentrated blob around its mean value and several sparse cases with very high

execution times, thus leading to an increased standard deviation of the run time in the

set of the experiments.

The �nal step of the proposed method is the application of the clustering/classi�cation

techniques (FCM or SVM) for the extraction of the �nal set of true nuclei centroids. As

it is already mentioned, in FCM we used two clusters and the weighting exponent m is

set to 2. The values of the parameters in SVM are C = 0:001 for the linear kernel type,

and C = 1 and  = 1 the RBF kernel type. The training of the SVM classi�er leads to

the selection of some tens of support vectors, depending on the type of the kernel, the

data set and the dimensions of the patterns that we use.

Considering the classi�cation performances, the selection of one of the above classi�-

cation techniques (FCM or SVM) depends on the purpose of the detection of nuclei in a

speci�c Pap smear image. For instance, if the purpose is to �nd abnormal or malignant

cell nuclei, the FCM is preferable, as it produces lower loss of true nuclei and the prob-

ability of a missed abnormal nucleus is reduced. On the other hand, if the purpose is to

detect cells nuclei in order to calculate, for example, morphological characteristics, a pure

set of true nuclei would be desirable and the SVM classi�cation technique is suitable, as it

reduces the false positive occurrences in the �nal set. However, since the performance of

SVM depends on the selected values of the parameters, its use becomes more demanding,

especially when a limited number of images exist. On the other hand, the application of

the FCM algorithm can be performed directly in one single image. As a result and in

combination with the high performance it presents, the FCM algorithm is preferable for

the classi�cation step of our method.

3.4.2 Comparison of the proposed method with other methods

We have also compared our method with the detection methods proposed by the state of

the art technique of Lezoray et al. [1] which is based on pixel classi�cation schemes. More

speci�cally, the k-means clustering algorithm and a Bayesian pixel classi�cation scheme

were applied to our image data set following the principles in [1]. It must be noted that

these schemes were performed in the preprocessed images, with the background removed,
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and they classify each pixel as \nuclei" pixel or \cytoplasm" pixel. The application of the

k-means classi�cation algorithm does not need any training and it is applied directly in

every image of our data set. However, in Bayesian pixel classi�cation, some parameters

must be determined. Thus, the a priori probabilities of each class are considered as

equal and all the parameters of the mixture of Gaussian distributions were calculated

on a training set of color vectors, which were derived from randomly selected images of

our data set (50% of the images), as it is also proposed in [1]. More speci�cally, in each

preprocessed image, the pixels of the nuclei locations and the pixels of the cytoplasm

were used for the calculation of the mean and the covariance matrix of each Gaussian

distribution. Then, the Bayesian classi�er was used for the classi�cation of the pixels in

the remaining images. This experiment was repeated �ve times, each time with a di�erent

(randomly selected) training set.

The outcome of both the k-means algorithm and the Bayesian pixel classi�cation

schemes was the determination of some regions in the images that would probably be

occupied by the nuclei. These regions are considered as connected components and they

are compared with the connected components extracted from the detection of regional

minima of our method, in terms of how many true nuclei centroids were recognized.

Thus, the number of the true nuclei centroids that each connected component contains

was calculated, in order to compare the performance of each method. The expected results

would be the detection of one nucleus per connected component, since the existence of

more than one nucleus centroid in one connected component does not provide the correct

localization of the nuclei, as it leads to erroneous estimation of the nucleus centroid. Thus,

the desirable performance of each method is a high number of connected components

that contain only one nucleus. In Fig. 3.12, we can observe the average number of

the detected connected components, over the test sets of images, which were recognized

by the compared methods. As we can see, our method is superior compared to the

pixel classi�cation schemes, since it produces more single connected components which

contain only one nucleus, while the other methods may result in the detection of connected

components that contain even 10 true nuclei centroids. This is a major drawback of the

standard pixels classi�cation schemes, as they can not detect accurately a big number of

the true nuclei centroids of our image data set. Let us also notice that the vertical axis in

Fig. 3.12 has a logarithmic scale making the di�erences in performance more pronounced.

Beyond the comparison of our method with pixel classi�cation schemes, Table 3.4

shows a comparison of the proposed method and other methods appeared in the literature

for the segmentation of cell nuclei in cervical images. In general, it is di�cult to compare

the methods directly since many of the methods do not include quantitative results and the

performance criteria that they use vary extensively. Furthermore, some data parameters

are not clearly de�ned, such as the number of di�erent smear slides, the number of images

captured from the optical microscope, the size of the test images and the number of cells

that the images contain. These parameters are important for the evaluation of the general

behavior of each method, when it is applied in a large number of di�erent data resources.
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From Table 3.4 we can assert that the performance of our method is superior for several

reasons. First, the data set that was used includes images captured from di�erent Pap

smear slides taken from 15 individual patients, which evince that the data set contains a

big variety of di�erent cells and the obtained results describe more precisely the general

behavior of the method and the expected performance in a new image. Also, the proposed

method can be applied in images captured directly from an optical microscope with size

1536× 2048 and is able to successfully recognize the cells nuclei, even in cases where cell

overlapping is present. Thus, there is no need to presegment the individual cells of the

image in order to �nd the nuclei locations. Moreover, the average number of cells nuclei

in these images is 148, and they are clearly more complicated than those images that

contain only isolated cells, such as in methods [26, 28, 29, 35, 43].

In terms of the general image processing approach, the method exploits the color

information of the image, in contrary to the techniques in [40, 26, 28, 29, 35, 41, 43, 61].

This is advantageous, since the staining process of the smear has di�erent e�ects in the

three color components of the image and some nuclei are more distinguishable in a single

color channel. The use of three di�erent thresholds (one for each color channel) in the

Otsu's method in the preprocessing step is more e�ective than the use of one single

threshold in the grayscale image. Furthermore, the detection of the intensity valleys in

the three channels of a color image and the merge of the detected regions in a �nal image

results in the determination of more true nuclei locations, rather than the detection of the

intensity valleys in the grayscale image. To underpin these observations, in Fig. 3.13 we

depict the results of the steps of the proposed method, when it is performed in a color and

the corresponding grayscale image. As we can see, both the preprocessing step and the

regional minima step fail to recognize the same number of the true nuclei in the grayscale

image, as it is successfully achieved in the case of the application of the method in the

color image. The individual processing of each color component and the combination of

the results in all three components leads in no loss of information and in the determination

of more accurate nuclei centroids.

3.5 Conclusion

The task of identifying the cell nuclei in conventional Pap smear images is a challenging

issue, especially when it must be automated. From this point of view we propose a

robust and accurate method. Given the fact that our image data set derive from di�erent

Pap smear slides, we expect our method to give acceptable results and to present high

performance, when it is applied in a new Pap smear image. Moreover, the proposed

method can be used as the basis for further processing of cell images, which is a non

trivial and time consuming procedure for expert observers. The major advantage of the

proposed methodology is that it is fully automated and it is suitable for cell images with

high degree of cell overlapping, as it can detect not only the nuclei of isolated cells but
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Table 3.4: Comparison of the proposed method with the state of the art.

Method #Slides #Images Size Cells Performance Criteria Quantitative Results

Bamford et al. [43] - - 128×128 20130∗ Visual inspection 99.64% correctly segmented cells

Wu et al. [40] 1 1 80×100 1 Comparison with K-means and

Bayes classi�er in a synthetic

image

Misclassi�cation rate lower than

5%

Garrido et al. [41] - 3 - - Visual inspection Lack of quantitative results

Lezoray et al.[1] - 10 - 209 Vinet measure Mean Vinet measure of 2.24 for

Number of segmented regions RGB and 3.41 for HSL Mean dif-

ference of the segmented regions

and manually segmented regions

of 2.87% for RGB and 0.47% for

HSL

Lassouaoui et al. [35] - 2 256×256 - Visual inspection Lack of quantitative results

Bak et al. [36] - 2 - - Visual inspection Lack of quantitative results

Mat Isa et al. [61] - 3 - - Visual inspection Lack of quantitative results

Yang-Mao et al. [26] - - 64×64 124∗ Misclassi�cation error, edge

mismatch, relative foreground

area error, modi�ed Hausdor�

distance, region nonuniformity,

relative distance error

Average segmentation error of

0.1145

Lin et al. [28] - 10 - 10∗ Misclassi�cation error, relative

foreground area error, modi�ed

Hausdor� distance

Average segmentation error of

0.1323

This work 15 38 1536×20485617 Sensitivity (Se) Indicative mean values are

Speci�city (Sp) Se = 90.57%, Sp = 75.28% for

FCM and

Se = 69.86%, Sp = 92.02% for

SVM
∗These numbers correspond to presegmented individual cells (one cell/test image)

also the nuclei in cell clusters with high sensitivity.
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(a)

(b)

(c)

(d)

Figure 3.7: (a) The initial image with the centroids of regional minima depicted with an

\×". (b) The result of the application of the distance depended rule, (c) the result of the
application of the FCM, where the positive class (nuclei centroids) is depicted with a cross

and the negative class (other �ndings) is depicted with a circle. (d) Resulted centroids of

the positive class.
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(a)

(b)

Figure 3.8: Results of the application of the FCM clustering with respect to (a) Sensitivity

and (b) Speci�city (see text for the description of the pattern sets).
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(a)

(b)

Figure 3.9: Results of the application of the SVM classi�cation with respect to (a) Sen-

sitivity and (b) Speci�city (see text for the description of the pattern sets).
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Figure 3.10: ROC curve used for the selection of the distance threshold in the distance

dependent rule. Notice that for threshold values higher than 8, true nuclei centroids are

missed.

Figure 3.11: Rate of the true nuclei detected (true positives) and the false nuclei centroids

detected (false positive) for di�erent thresholds in regional minima depth. Notice that for

the threshold value of 15 we obtain the maximum number of true nuclei centroids.
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Figure 3.12: Comparative results of our method and the pixel classi�cation schemes

proposed in [1] in terms of correct nuclei localization. The index of performance is the

number of connected components and the number of true nuclei (true positives) they

contain. An algorithm performs well if each connected component it produces contains

only one nucleus. The vertical axis has a logarithmic scale.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.13: a) The initial image, (b) the result of the preprocessing step (denoted with

the black line) in the color image, (c) the result of the preprocessing step in the grayscale

image. The missed nuclei are marked with the arrows, (d) a part of the initial image, (e)

the result of the detection of regional minima step (denoted with white lines) in the color

image, (f) the result of the same step in the grayscale image. The missed nuclei of this

step are marked with the arrows.
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Chapter 4

Cell Nuclei Extraction by Combining

Shape, Texture and Intensity Features

4.1 Introduction

The correct characterization of Pap smear slides and the derivation of conclusions for the

contents of the Pap smear in a high degree depend on the general appearance of the cells

nuclei. Some of the methods proposed in the literature deal only with the segmentation

of the cell nucleus and cytoplasm boundaries (ignoring the detection of the nuclei position

in the image). The images that are used as test set, are presegmented from the original

Pap smear images and they contain only one cell and consequently one single nucleus.

Several image processing methods are proposed in this scope, such as active contours [43],

template �tting [40] and edge detectors [25, 26, 28]. These methods exhibit remarkable

performance in the segmentation of the structural parts of the cell. However the direct

application of these methods in original Pap smear images, which may contain a large

number of cells, cell overlapping and image artifacts is not appropriate, as they are focused

on the recognition of the boundaries of the nucleus and the cytoplasm in images which

contain only one single cell.

More sophisticated approaches to the automated analysis of Pap smear images are the

methods which are applied on images containing a large number of cells in cell clusters.

In these methods the background is excluded and the locations and the boundaries of

the cells are automatically recognized. Several approaches have been proposed, such as

deformable templates [41], genetic algorithms [35], region growing with moving K-means

[61] and pixel classi�cation schemes [36]. Although these methods present promising

results, their evaluation is restricted in a small data set of images and the performance

criterion that is used is visual inspection, from which no reliable results about the general

behavior of these methods can be obtained.

Methods based on watersheds for the analysis of Pap stained images have also been

proposed in the literature. In [31], images containing one single nucleus of a Pap stained

squamus epithelial cell are oversegmented with the watershed transform in order to de�ne
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the di�erently stained subareas of the nucleus. Furthermore, in [29] watersheds are used

for the detection of isolated cells in low resolution images. However, in both methods, the

problem of the detection of the accurate nuclei boundaries has not been resolved. Fur-

thermore, Lezoray et al. [1] proposed a method for the determination of nuclei boundaries

in Pap stained serous cytologies using color watersheds, which requires the cooperation

of pixel classi�cation schemes for the extraction of the nuclei markers.

In this chapter, we describe a two-stage fully automated method for the accurate

determination of the nuclei boundaries in Pap smear images, which may contain both

isolated cells and cell clusters. More speci�cally, in the �rst step, nuclei and cytoplasm

markers are detected using the technique described in the previous chapter. The centroids

of the areas of the regional minima are considered as markers in the watershed transform

for the extraction of the nuclei boundaries. The morphological color gradient image is

used for the ooding process, in order to retain the color information of the image.

In the second stage, we extend the segmentation of nuclei boundaries with the determi-

nation of meaningful features of the detected areas, which contribute to the identi�cation

of the true nuclei in Pap smear images. It must be noted that several methods [52, 2]

propose a number of cell features for the characterization of a cell as normal or abnormal.

However, they involve images containing one single cell. Since our images contain over-

lapped cells and cell clusters, our aim is to identify the nuclei areas and to separate the

results of the segmentation in two categories: the true nuclei and other �ndings. There-

fore, from the extracted boundaries, features describing the shape and the texture of each

segmented regions are calculated. In addition we have also integrate texture features

and intensity disparity features of the neighborhood of each detected area. The latter

evince to be some of the most discriminative features by a feature selection step based on

minimum-Redundancy - Maximum-Relevance (mRMR) criterion [69]. It must be noted

that in our experiments we have estimated the mRMR feature rank with two di�erent

approaches, namely using the entire image data set and the \leave-one out" strategy, as

it is explained in more details in the following paragraphs.

A classi�cation step is then performed for the reduction of unwanted �ndings. In this

framework, the performance of two unsupervised (K-means and the spectral clustering)

and one supervised (Support Vector Machine, SVM) classi�cation schemes were examined.

Our method was evaluated not only for the correct identi�cation of cells nuclei locations

but also for the accurate determination of nuclei boundaries with the boundaries obtained

using the Gradient Vector Flow (GVF) deformable model [70] and a region based active

contour model (ACM) [71] in terms of the Hausdor� distance from the ground truth. The

method was evaluated using a large data set of 90 Pap smear images containing 10248

recognized cell nuclei, and the results indicate that the proposed method demonstrates

high performance in both detection and segmentation of nuclei boundaries.
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4.2 Methodology

4.2.1 Detection of the nuclei and cytoplasm markers

The �rst step of the proposed method is the detection of the nuclei markers in each

image. This is accomplished following a two stage procedure, which includes the image

preprocessing and the estimation of candidate nuclei centroids. It must be noted that the

nuclei markers are obtained automatically in both isolated cells and cell clusters in the

image, as it was described in section 3.2. Furthermore, we perform the distance transform

in the binary mask obtained in the preprocessing step (section 3.2.1), in order to construct

the cytoplasm markers.

(a) (b)

(c) (d)

Figure 4.1: (a) Initial image of overlapped cells, (b) the detected nuclei markers, (c) the

corresponding color morphological gradient image, (d) the watershed segmentation.
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4.2.2 Morphological color gradient image

For the application of the watersheds, an image containing pronounced nuclei boundaries

is required. Given the fact that most of the nuclei usually have ellipse-like shape, with the

intensity of the pixels inside the nucleus area lower than those lying outside, high gradient

of the image across the nuclei boundaries is expected. However, the extensive variances in

nuclei intensity which are present due to the staining procedure result in gradient values

of nucleus/cytoplasm borders that uctuate in a wide range. For this reason, the use of

a threshold after the application of edge detectors in order to determine the nuclei edges

in the image would produce noisy results, because low thresholds would result in the

detection of too many false edges, while high values would result in the loss of some true

nuclei boundaries (Fig. 4.2). Therefore, we construct a gradient image using the color

morphological gradient [72], in order to exploit the color information of the image for the

estimation of the nuclei borders. In general, the morphological gradient of a grayscale

image is de�ned as:

∇f = �g(f)− "g(f); (4.1)

where �g(f) and "g(f) is the grayscale dilation and grayscale erosion for a structuring

element g respectively. Alternatively, the morphological gradient can be expressed as:

∇f(x) = max
x∈g
{f(x)} −min

x∈g
{f(x)}

= max {|f(x)− f(y)|} ; ∀ {x; y} ∈ g; (4.2)

which is the maximum absolute intensity di�erence between two pixels in the area of the

structuring element. For color images with pixels denoted as three dimensional vectors

the color morphological gradient (CMG) can be expressed as:

CMGg = max
i;j∈g
{∥xi − xj∥p} ; (4.3)

where xi; xj are pixels in the structuring element g. In our experiments we compute the

second norm (p = 2) and the structuring element that is used is a 3 × 3 at structuring

element. The color morphological gradient of a representative Pap smear image is de-

picted in Fig. 4.1(c). In this image, with the appropriate nuclei and cytoplasm markers

superimposed, the marker based watershed transform (Appendix B) is applied. The result

of the watershed transform in an image with nuclei markers is depicted in Fig. 4.1(d).

4.2.3 Clustering of the candidate nuclei

The determination of the watershed lines, usually results in the correct identi�cation of

the nuclei positions in the image. However, some false positive areas are also detected,

due to the existence of a regional minimum. This is a consequence of the detection of

the nuclei markers step, which produces some centroids of regional minima that do not

indicate the existence of nuclei (Fig. 4.3). Therefore, the elimination of these areas is

necessary and a clustering step is performed for the separation of the detected areas into
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(a) (b)

(c) (d)

Figure 4.2: (a) Initial image of overlapped cells and (b) the corresponding grayscale

image, in which we apply the Canny edge detector. Using a small threshold results in (c)

an image with many undesired edges, while using a high threshold results in (d) an image

with several signi�cant edges missing.

two classes: the true nuclei class and the rest of the �ndings. Thus, for every detected

area a vector of features is determined, which will be used as input to the clustering

algorithms.

Feature extraction

The e�cient separation of the true nuclei regions from the total segmented regions requires

the generation of meaningful features of very good discriminative ability. Having found

the areas of the nuclei enclosed by the detected boundaries, features concerning the shape,

the texture and the intensity of the detected regions can be easily determined. However,

the restriction of the calculation of these features only for the area enclosed by the detected

boundaries is not su�cient because regions of regional minima not corresponding to true

nuclei may also have similar features. In this step it is expedient to take advantage of

the fact that the nuclei are darker than the surrounding cytoplasm and the detected

nuclei regions would present signi�cant di�erences from their neighborhood. Moreover,
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Figure 4.3: The detected centroids of the regional minima in the image. The true nuclei

locations are represented by a yellow cross and the false positive �ndings are represented

by a black circle.

the detected regions that do not belong to nuclei were probably detected due to the

existence of shallow minima in the intensity of the area of the cytoplasm in the image,

and they are more likely to present similar features values from their neighborhood (Fig.

4.4).

For this reason, we propose the calculation of features also for the neighborhood of

the detected areas, which is de�ned in terms of the bounding box of these areas (Fig.

4.5). More speci�cally, for each detected area A, the bounding box B is calculated as

the maximum rectangle that contains the detected region, and the neighborhood Ngh

is determined as the complement Ac in B, that is Ngh = Ac ∩ B. In our work, for

the construction of the feature set, the pixels within the detected region, the pixels of the

neighborhood and the pixels of the bounding box are taken into account. Three categories

of features are developed: shape, textural and intensity disparity features.

Shape Features The detected boundaries for the nuclei are expected to present an

ellipse-like shape and several features to describe this characteristic are chosen. More

speci�cally, six features extracted from the shape of the detected region boundary

are calculated, that is the Circularity, the Eccentricity, the Major and the Minor

Axis Length, the Equivalent Diameter of a circle with the same area as the region,

and the Perimeter of the detected region. The Major Axis Length, the Minor Axis

Length and the Eccentricity are de�ned in terms of an ellipse that has the same

central second moments as the region. The shape features are presented in (Table

4.1).

Textural Features The texture analysis of the detected regions is based on the statis-

tical properties of the intensity histogram in the three color components and the
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(a) (b)

(c)

Figure 4.4: (a)-(b) The result of the watershed transform in parts of two di�erent cell

images. The regions R1 and R2 that are detected in both images with the watershed

transform are joined with a line for better visualization purposes. In (a), the detected

areas R1 and R2 correspond to the areas of true nuclei, while in (b), the detected area

R1 corresponds to a nucleus and the area R2 corresponds to a cytoplasm overlapping

area. The variation of the average color image intensity value along the line which joins

the areas R1 and R2 is depicted in (c). Notice that for the area R1 we observe sharp

reduction of the intensity value in both images. For the area R2, although the average

intensity value is similar in both images, sharper intensity reduction (in relation with its

neighborhood pixels) occurs only for the true nucleus in image (a). This indicates that

the use of the neighborhood of each detected area contributes in the recognition of the

true nuclei.
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(a)

(b) (c) (d)

Figure 4.5: The selected areas for the construction of the feature set. (a) A cell from the

initial image, (b) the detected nucleus boundary with the watershed transform and the

enclosed area A, (c) the area B of the bounding box of the detected boundary, (d) the

area of the neighborhood Ngh (Ac ∩B) of the detected nucleus.

(a) (b)

Figure 4.6: The topology of the neighborhood used for the calculation of the LBP [2, 3]:

(a) circle, (b) hyperbola.
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Table 4.1: Shape Features.

Minor Axis Length∗ K =
√

2(u20+u02−∆)
u11

Major Axis Length∗ L =
√

2(u20+u02+∆)
u11

Eccentricity E = 2

√
(L
2
)2−(K

2
)2

L

Equivalent Diameter ED = 4×Area
�

Perimeter P =number of boundary points

Circularity C = 4�×Area
P 2

∗The formulas for ∆ and the central moments upq of order p + q of

the region s(x; y) are de�ned as: ∆ =
√
4u211 + (u20 − u02)2 and upq =∑

x

∑
y

(x− x̄)p(y − ȳ)q, where x̄ and ȳ are the coordinates of the centroid of

the region.

calculation of some texture descriptors such as the local binary patterns (LBP, see

Appendix C) [2, 3]. Thus, for every segmented region we have calculated the Third

Moment, the Uniformity, the Entropy and the Smoothness of the intensity histogram

for the three prede�ned regions (A;B;Ngh). Moreover, the normalized uniform

rotation-invariant LBP occurrence histogram was calculated for the bounding box

(B) of the segmented regions, using LBP of two di�erent neighborhood topologies:

a circle (LBP riu2
c ) of unit radius and a hyperbola (LBP riu2

h ) with semi-major and

semi-minor axis lengths equal to one (Fig. 4.6). In both topologies, the number

of equally spaced pixels was P = 8 (see Appendix C for more details and [2] and

[3] for a more in depth explanation of these features). The mean and the standard

deviation of each histogram were used as features. All the textural features are

calculated for all three color channels and they are summarized in (Table 4.2).

Intensity Disparity Features The feature that characterizes the intensity of each re-

gion is the average of the intensity value of all the pixels of the region. However,

as it is observed, the average intensity of the nuclei varies in a wide range and may

coincide with regions of cell overlapping in the image. An equivalent intensity fea-

ture that pronounces the disparity of the detected region and its neighborhood is

the di�erence of the average intensity between those regions (Table 4.3). We ex-

pect high values for this feature when it refers to nuclei regions, as the nuclei area is

darker than the surrounding cytoplasm. Three values of this feature were calculated

independently for the red, green and blue component of the original image.

54



Table 4.2: Texture Features.

Third Moment∗ �3 =
L−1∑
i=1

(zi −m)3p(zi)

Uniformity U =
L−1∑
i=1

p2(zi)

Entropy e = −
L−1∑
i=1

p2(zi)log2p(zi)

Smoothness R = 1− 1
1+s2

, s =

√
L−1∑
i=1

(zi −m)2p(zi)

Mean LBP riu2
c See Appendix C

StDev LBP riu2
c See Appendix C

Mean LBP riu2
h See Appendix C

StDev LBP riu2
h See Appendix C

∗Given that zi is the intensity value i and p(z) is the histogram of the intensity levels in a

region with L possible intensity levels, then the average intensity of the region is calculated

as m =
L−1∑
i=0

zip(zi)

Table 4.3: Intensity Disparity Features.

Foreground-Background contrast in red∗ dR = mNgh
RED −mA

RED

Foreground-Background contrast in green dG = mNgh
GREEN −mA

GREEN

Foreground-Background contrast in blue dR = mNgh
BLUE −mA

BLUE

∗ m
region
color is the average intensity value of an image region in a speci�c color component. The

RGB color space is used in our experiments and the regions of the image that are considered

are the enclosed boundary area A and its neighborhood Ngh = Ac ∩ B, where B is the

bounding box of area A.

Feature selection

For each detected region we have calculated in total 57 features. More speci�cally, 6

features concerning the shape of the region, 3 features concerning the intensity disparity

of the detected areas and their neighborhood and �nally, for the three color components,

3×4 textural features for the enclosed area (A); 3×4 textural features for the neighborhood
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(Ngh); 3 × 8 textural features for the bounding box B were calculated. However, the

contribution of each feature is di�erent in the categorization of the data. For the selection

of the most discriminative features, a feature selection technique is employed which is

based on the Minimum-Redundancy-Maxium-Relevance (mRMR) criterion [69]. More

speci�cally, given a data set of N samples of M features X = {xji ; i = 1; ::;M; j =

1; ::; N}, and the target classi�cation variable c, the objective is to �nd from the M

dimensional space RM a subset of m features that characterizes c more e�ciently.

Figure 4.7: Representative histograms of some features of the watershed and the GVF

segmentation. Notice that their distribution consists of a single blob and this allows their

discretization into three states at the positions � ± �.

The mRMR criterion combines both Max-Relevance (maxD) and Min-Redundancy

criteria (minR), which are de�ned respectively as [69]:

max
S⊂X

D(S; c); D =
1

|S|
∑
xi∈S

I(xi; c); (4.4)

min
S⊂X

R(S); R =
1

|S|2
∑

xi;xj∈S

I(xi; xj); (4.5)

where S is the feature set and I(x; y) is the mutual information between two random vari-

ables, which is de�ned in terms of their marginal and joint probability density functions

p(x); p(y) and p(x; y) as:

I(x; y) =

∫ ∫
p(x; y)log

p(x; y)

p(x)p(y)
dxdy: (4.6)
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The mRMR criterion is then de�ned as:

max
S⊂X

(D(S; c)−R(S)) : (4.7)

The selection of features for the construction of the �nal set is obtained incrementally,

that is if m − 1 features are already selected in the Sm−1, then the mth selected feature

will be the one that satis�es eq. (4.7). The optimal size of the features set depends on

the speci�c classi�cation algorithm that will be used.

Thus the features were ranked in a range beginning from the most powerful discriminative

feature to the feature with the least discriminative power. It must be noted that for the

calculation of the mutual information, each feature variable was discretized into three

states at the positions � ± � (� is the mean value and � is the standard deviation of

the speci�c feature distribution). More speci�cally, it takes −1 if the feature value is less
than �− �, 1 if the feature value is larger than �+ � and 0 otherwise. This assumption

is reliable when our features follow a unimodal-like distribution. This was veri�ed by

the construction of the histograms of each feature and some representative examples are

depicted in Fig. 4.7. In Table 4.4 the �rst 16 most discriminative features for all the

segmentation techniques are presented.

Application of classi�cation/clustering algorithms

For comparison purposes, three clustering methods are employed for the separation of the

detected areas in the true nuclei class and the other �ndings class: the K-means [73], the

spectral clustering [74] (see Appendix A) and the Support Vector Machine (SVM) classi�er

with the radial basis function (RBF) kernel [63]. Given the fact that the K-means and the

spectral clustering algorithms do not require any training, they are applied independently

in each image. However, for the application of the SVM classi�cation algorithm a training

data set is constructed. In our experiments, we use the \leave one out" technique for the

evaluation of the performance of the classi�er. Thus, 21 slides were used as training set

and the remaining slide was used as test set. This experiment was repeated 22 times, each

time using a di�erent slide as test set. The performance of the classi�cation is calculated

using the trained SVM classi�er in the test set.

4.3 Results

4.3.1 Study group

We have collected 90 images from 22 di�erent Pap stained cervical cell slides, which were

acquired through a CCD camera adapted to an optical microscope. We have used a

10× magni�cation lens and the acquired images of size 1536×2048 were stored in JPEG

format. The total number of cell nuclei in the images, which were identi�ed by an expert

observer is 10248. In order to obtain the ground truth, the nuclei locations were manually

identi�ed.
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Table 4.4: mRMR rank of the 16 most discriminative features for the watershed, the

GVF and the ACM segmentation in decreasing order with respect to their discriminative

ability. The features highlighted in bold face are common for all segmentation methods.
Watersheds GVF ASM

1. Entropy of B in green Foreground-Background

contrast in green

Foreground-Background

contrast in red

2. Perimeter Minor Axis Length Minor Axis Length

3. Foreground-Background

contrast in red

Third moment of A in blue Uniformity of Ngh in green

4. StDev LBP riu2
h in green StDev LBP riu2

h in red StDev LBP riu2
h in red

5. Circularity Entropy of Ngh in red Smoothness of Ngh in green

6. Foreground-Background

contrast in green

Mean LBP riu2
c in green Eccentricity

7. Mean LBP riu2
c in blue Foreground-Background

contrast in blue

Foreground-Background

contrast in green

8. Entropy of B in red Eccentricity Mean LBP riu2
c in blue

9. Mean LBP riu2
h in blue Mean LBP riu2

h in blue Mean LBP riu2
h in blue

10. Smoothness of B in green Uniformity of B in green Third moment of A in red

11. StDev LBP riu2
c in red Foreground-Background

contrast in red

Circularity

12. Entropy of A in green StDev LBP riu2
c in red Foreground-Background

contrast in blue

13. Foreground-Background

contrast in blue

StDev LBP riu2
h in green StDev LBP riu2

h in green

14. StDev LBP riu2
h in red Circularity Entropy of Ngh in red

15. Smoothness of A in red Entropy of B in green Mean LBP riu2
c in red

16. Third moment of Ngh in blue Third moment of Ngh in red Third moment of A in blue

4.3.2 Numerical evaluation

The presented method was bilaterally evaluated in order to estimate the performances of

the clustering algorithms for the detection of the true nuclei in the images, and also the ac-
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curacy of the segmentation, in comparison with the ground truth (manually traced nuclei

boundaries). Furthermore the method performance was compared with the corresponding

performance of two di�erent segmentation techniques, namely the GVF deformable model

[70] and the ACM model [71] in terms of both classi�cation and segmentation results. In

the detected regions of both GVF and ACM segmentation techniques, the previously de-

scribed features were determined. For the classi�cation performance, we have calculated

the number of true positive (TP ), true negative (TN), false positive (FP ) and false neg-

ative (FN) �ndings in all images of our data set, and we have de�ned the Sensitivity

and the Speci�city statistical measures. In addition, the segmentation performance was

evaluated with the calculation of the Hausdor� Distance (DHausdorff ) between the man-

ual traced boundary M and the boundary Ψ obtained from the segmentation procedure

de�ned as:

DHausdorff = max
�∈M

{
min
b∈Ψ
{D(�; b)}

}
; (4.8)

where D is the Euclidean distance.

It must be noted that in the detection of the nuclei markers the method misses in total

147 true nuclei position which is a total loss rate of 1.01%. Thus in the following steps,

the total number of true nuclei is reduced to 10101.

Figure 4.8: The leave-one-out and global mRMR feature rank for the watershed transform.

For the leave-one-out mRMR feature rank the standard deviation is also depicted with

error bars.

Classi�cation

In our experiments we have tested several con�gurations of the classi�cation process

which involve both the calculation of the mRMR feature rank and the clustering algo-
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Figure 4.9: The leave-one-out and global mRMR feature rank for the ACM segmentation

algorithm. For the leave-one-out mRMR feature rank the standard deviation is also

depicted with error bars.

Figure 4.10: The leave-one-out and global mRMR feature rank for the GVF segmentation

algorithm. For the leave-one-out mRMR feature rank the standard deviation is also

depicted with error bars.

rithms (K-means, spectral clustering and SVM). For this reason we include the following

experiments, which were executed for all the data sets obtained from the three segmenta-

tion algorithms (watersheds, GVF, level sets). The estimation of mRMR rank of feature

was determined in two di�erent ways:

60



1. The estimation of mRMR rank of feature was determined in two di�erent ways:

• The whole data set of patterns was used as input to the mRMR criterion (global

mRMR) and a ranking was obtained which was then used in the classi�cation

algorithms.

• The set of patterns was separated into 22 folds (each fold corresponds to a single

slide). Then, 21 folds were used for training and the remaining fold was used

for testing. From the training set, we obtained the mRMR rank (leave-one-

out mRMR) of features and this rank was used in the classi�cation algorithms

applied to the image of the testing slide. This procedure was repeated 22 times,

each time using a di�erent slide as test set. By these means, we obtained 22

di�erent feature ranks, which were assigned in the 22 folds (slides).

Therefore, all of the classi�cation techniques (K-means, spectral clustering and

SVM) were executed twice, using the above mRMR rankings (global mRMR and

leave-one-out mRMR). For the selection of the ideal number of features, the perfor-

mance of the classi�cation techniques was estimated on the test set using a pattern

of increasing dimension varying from 2 to 57 features. Starting from a pattern

described by only 2 features, one feature was added incrementally until all of the

57 features are employed. In the second case described above, the selection of the

feature that is added in the pattern is di�erent for each test slide (and consequently

for the images belonging to this slide) and it was determined by the corresponding

mRMR rank (obtained using the other 21 slides as training set). In order to evaluate

the importance of each feature, the mean position and its standard deviation in a

feature histogram was calculated (Figures 4.8, 4.9, 4.10).

2. The estimation of the best value for parameter ó in spectral clustering was also

obtained using a leave-one-out strategy. The set of patterns was separated into 22

folds (each fold corresponds to a single slide), with 21 folds were used for training

and the remaining fold was used for testing. Several experiments with di�erent

values for ó were performed in the training set, using patterns containing all of the

features (the dimension of each pattern was 57). Then, we selected the value of ó

that exhibited the best performance in the training set. This value was used for the

application of spectral clustering in the images of the test set. This procedure was

repeated 22 times, each time using a di�erent training and test set.

3. The values of the parameters of the SVM classi�er ( and C for the RBF kernel)

were obtained by constructing two di�erent data sets, each one containing half of the

slides (11 slides were randomly selected for the training set and the remaining were

used as test set). We performed several experiments with di�erent pairs of values for

 and C, namely (C; ) ∈ {0:01; 0:125; 0:25; 0:5; 1; 2; 4; 8}, while the SVM classi�er

was trained with the training set of patterns containing 57 features. Afterwards the

performance of the classi�er was estimated with the test set. The values for  and
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C were selected as those which exhibit the best performance of the SVM classi�er in

the test set and they were  = 0:01 for all the segmentation methods and C = 2 for

the GVF segmentation and C = 4 for the watershed and the ACM segmentation.

The number of features that results in the best classi�cation performance depends on the

speci�c classi�cation algorithm. When a performance criterion is maximized for a speci�c

number of features, then this subset of features is selected. In our work, the performance

criterion that the clustering algorithm should maximize is the harmonic mean (HM) of

the Sensitivity and the Specificity de�ned as:

HM =
2× Sensitivity × Specificity

Sensitivity + Specificity
(4.9)

Recall that these quantities were de�ned in (3.13) and (3.14).

In Fig. 4.11, the values of HM criterion versus the number of features are depicted

for the ACM, GVF and the watershed segmentation for the K-means algorithm. Similar

experiments were performed for the de�nition of the best feature subset using the spectral

clustering algorithm (Fig. 4.12) and the SVM classi�er (Fig. 4.13). The performance

of the SVM classi�er for the watershed and the GVF segmentation increases as more

features are used, and reaches the maximum performance at 57 features. For the ACM

segmentation, the SVM classi�er reaches the maximum performance at 26 features. In

all cases as it can be observed, the HM measure for the watershed segmentation is higher

than the other two segmentation techniques. More speci�cally, the best results in terms of

the HM for all the segmentation schemes using the global and the leave-one-out mRMR

rank are presented in 4.5. As we can see, the best results were obtained with the K-

means clustering algorithm using patterns obtained from the watershed segmentation.

The SVM classi�er is preferable for the ACM and GVF segmentations, as it produced

higher performances than the K-means and the spectral clustering. Furthermore, in most

of the cases, the use of leave-one-out mRMR feature rank produces better results in

comparison with the use of the global mRMR rank. It must be noted that for comparison

purposes, the performance of the SVM classi�er was selected for 26 features for all the

segmentation techniques.

Table 4.5: Clustering Performance.
K-means Spectral clustering SVM

mRMR type Global Leave-one-out Global Leave-one-out Global Leave-one-out

Watersheds 84.09% 84.36% 82.64% 82.93% 82.46% 82.52%

ACM 80.09% 79.64% 76.84% 77.00% 81.87% 81.95%

GVF 77.83% 78.76% 77.20% 77.33% 80.20% 80.28%

Segmentation

In order to evaluate the performance of the segmentation method, the obtained nuclei

boundaries were compared with the corresponding resulted nuclei boundaries of the GVF
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(a)

(b)

Figure 4.11: Results in terms of the HM measure for the K-means clustering for ACM,

GVF and watershed segmentation for both (a) global and (b) leave-one-out mRMR rank.

The vertical line indicates the number of features where the HM measure takes its max-

imum value for the three segmentation methods. These values of HM are contained in

Table 4.5.

deformable model and the ACM model and also with the manually traced boundaries.

It must be noted that for the application of the GVF deformable models, an initial

approximation of every nucleus boundary is required. For this reason, we search for

some points in the neighborhood of each detected centroid, which are likely lying in

the nucleus circumference [75]. In the morphological color gradient image, having as

starting points the candidate nuclei centroids we construct a circular searching grid with
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(a)

(b)

Figure 4.12: Results in terms of the HM measure for spectral clustering for ACM, GVF

and watershed segmentation for both (a) global and (b) leave-one-out mRMR rank. The

vertical line indicates the number of features where the HM measure takes its maximum

value for the three segmentation methods. These values of HM are contained in Table

4.5.

8 radial pro�les consisted of 8 points each and centered at the location of each candidate

nucleus centroid. In each radial pro�le we choose the pixel with the highest intensity (non

maximum suppression) and the initial approximation of the nuclei boundaries is obtained

with the convex hull of the circumferential points found in the this step. The values for

the weighting parameters of the GVF deformable model are �xed for all the images and

they are set to be � = 0:9 for the tension, � = 1:5 for the rigidity and  = 3 for the image
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(a)

(b)

Figure 4.13: Results in terms of the HM measure for the SVM classi�cation for ACM,

GVF and watershed segmentation for both (a) global and (b) leave-one-out mRMR rank.

For comparison purposes, the indicative values for HM measure were evaluated using the

�rst 26 features. The values of HM are contained in Table 4.5.

force.

In a similar way, the ACM model was also applied to the same images. More speci�cally,

having found the nuclei markers, we apply the ACM model, as it is described in [71] in the

21× 21 image window centered at each marker. The model was initialized as a rectangle

in the middle of the selected neighborhood and it was applied in the morphological color

gradient image with � = 20, where � is the balloon force which controls the contour

shrinking or expanding.
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GVF ACM Watersheds Ground Truth

(a)

(b)

(c)

Figure 4.14: (a)-(c) Segmentation results for several detected nuclei.

Several examples of the segmentation results are depicted in Fig. 4.14. The Hausdor�

Distance for the ground truth and the watershed segmentation was estimated as 1.71

± 0.54 (� ± �). The corresponding distance for the GVF and ACM segmentation is

2:65 ± 3:23 and 2:48 ± 2:30 respectively. This implies that the watershed segmentation

is closer to the manually traced nuclei boundaries, and as a result it is more accurate

than GVF and the ACM segmentation. Furthermore, the ACM segmentation is more

performing than the GVF segmentation, as it exhibits lower Hausdor� Distance. In

the next paragraph, some reasons of failure for the GVF and ACM segmentations are

discussed.

4.4 Discussion

The proposed method for the segmentation of the cell nuclei in Pap smear images is

fully automated and it can be applied directly in any conventional Pap stained cervical

smear images, in order to produce accurate nuclei boundaries. It consists of �ve steps:

the preprocessing, the estimation of the candidate nuclei centroids, the application of

the watershed transform, the feature extraction and the classi�cation step. The method
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was developed in Matlab using a dual core PC with a 2.0 GHz processor and 3GB of

RAM. The execution time for each step of the method depends on several factors, such

as the proportion of the image characterized as background in the preprocessing step, the

number of the candidate nuclei centroids in each image, the classi�cation algorithm and

the number of features in each pattern. An indicative execution time for the segmentation

of the images (steps one to four of our method) is 2-5 min. The mean execution time of

K-means in an image using 16 features is less than a second, while the corresponding time

for the spectral clustering algorithm is 5-6 seconds. Finally, the mean execution time for

the training of the SVM classi�er using 21 slides and the evaluation of the performance

in the test set (one slide) varies from 2 to 4.5 minutes.

The parameters used in the several steps of the segmentation method were determined

after careful examination of the images by an expert cytopathologist in combination with

the results of several tests. For the detection of the nuclei markers, the same parameters

are used, as they are described in the previous chapter. However, as it was mentioned

before, this step misses some of the true nuclei positions. This is mainly due to the

faintly staining and the uneven layering of some cells. In the �rst case, the cells are

undistinguished from the background and as a consequence, the nuclei of these cells are

considered as isolated objects in the image background and they are rejected as image

artifacts. In the second case, the intensity of the nucleus does not well di�erentiate from

the cytoplasm intensity and no regional minimum is detected in the nucleus position.

The nuclei markers obtained in the previous step are used in the application of the

watershed transform. The importance of this step is crucial, as it prevents from the

oversegmentation that would be produced by the application of the watershed transform

in the images without markers. Hence, using the detected cytoplasm markers, the ooding

process starts from a position in the catchment basins of the nuclei area and �nally

converges to the actual boundaries of the true nuclei. Furthermore, the problem of the

detection of false positive detected centroids is e�ectively resolved in the classi�cation

step.

The feature selection using the mRMR criterion produces di�erent feature ranks for the

three segmentation techniques, as it can be observed in Table 4.4. This is a consequence

of the di�erences between the segmented regions provided by each method (ACM, GVF,

watersheds) necessitating di�erent features for its representation. As it can be observed

by the feature ranking, we can conclude that the discriminative ability of some features is

equally important for all the segmentation techniques, as seven of them were selected by

all of the segmentation techniques in the �rst 14 positions. These features are highlighted

in bold face fonts in Table 4.4. Furthermore, from �gures 4.8, 4.9, 4.10 we can observe that

in general, the standard deviation of the features selected by the leave-one-out mRMR is

rather insigni�cant for the �rst 10 and the last 20 positions in the mRMR rank, which

indicates that from the entire data set of features, the most discriminative and the least

discriminative features are the same for every fold (slide) of our image data set.

As it was veri�ed by the results, the watershed segmentation is more accurate than
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GVF ACM Watersheds Ground Truth

(a)

(b)

(c)

Figure 4.15: Representative cases of failure for ACM and GVF segmentation in images

with (a) weak gradient at the nucleus boundary, (b) the inhomogeneities of the nucleus

intensity and (c) the existence of high value of gradient in the neighborhood of the nucleus

boundary.

the GVF and the ACM segmentation. For both these segmentation techniques, the main

reason of failure is that their behavior highly depends on the values of their parameters.

Furthermore, the existence of a high gradient value in a small distance of the detected

nucleus and the inhomogeneities on the nuclei intensity a�ect the performance of these

techniques. Some examples of these cases are depicted in Fig. 4.15. In Fig. 4.15(a)

as the gradient in the border of the nucleus/cytoplasm is weak, the shape of the GVF

deformable model is mainly determined by its internal forces, which enforce it to be of a

relatively small length and smooth. Furthermore, in Fig. 4.15(b) the existence of intensity

variations in the area of the nucleus attracts the points of the GVF deformable model,

which converges to a position far from the actual nucleus boundary. For the same images,

the ACM model also fails to accurately determine the nucleus borders. Finally, in Fig.

4.15(c) both the GVF and ACM model are attracted by the points of high image gradient,

which do not correspond to the boundary of the detected nucleus. In all these cases the

GVF and ACM model do not succeed in detecting the accurate nucleus boundary. In

contrast, as it is observed, the watersheds overcome these limitations and produce nuclei
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boundaries that are closer to the ground truth.

The accurate determination of the nuclei boundaries leads to the calculation of more

accurate features, which improve the performance of the clustering algorithms. This

is the reason why the use of features extracted with the watershed segmentation present

better classi�cation performance than the corresponding features extracted from the GVF

and the ACM segmentation. Furthermore, for the determination of a feature set we

exploit the fact that the true nuclei area presents signi�cant variations with respect to its

neighborhood and the calculation of neighborhood features would result in the e�ective

discrimination of the true nuclei areas and the false positive areas. This is also con�rmed

by the use of mRMR criterion (Table 4.4), which indicates that for the feature set obtained

with all the segmentation techniques (Watersheds, GVF, ACM), at least 7 out of 10 most

discriminative features concern the outer area (bounding box B and neighborhood Ngh)

of the detected boundaries.

Traditionally, immediate �xation and staining of the cellular sample on the slide with

70% ethyl alcohol and Papanicolaou stain have been established as the professional stan-

dard. This �xation and staining combination results in a cellular sample, that, not only

has well-de�ned and tinted morphological features, but also its transparency allows for

microscopic visualization of nuclear and cytoplasmic boundaries through multiple layers

of epithelial cells. In our work, we use 90 conventionally stained Pap smear images, which

exhibit several di�erences in colorization (e.g. the blue color can vary from deep blue to

light blue). Although we have not included any process of color correction and detec-

tion of improper staining, the method provides accurate results when it is applied to the

images of our data set.

4.5 Conclusion

The identi�cation of the cervical cell nuclei areas is a prerequisite for the derivation of

diagnostic conclusions and the characterization of the contents in the Pap smear images.

The automated detection and segmentation of the nuclei boundaries in these images is

a challenging issue, as these images present several limitations. In this work, we have

e�ectively overcome the problem of the detection of the nuclei locations and we have

developed a fully automated method for the segmentation of cell nuclei in Pap smear

images. Moreover, we propose the determination of a meaningful feature set for the

detected areas, which results in the e�cient discrimination of the true nuclei class by the

clustering algorithms. As it is veri�ed by the results, the method produces more accurate

nuclei boundaries which are closer to the ground truth, compared to the GVF deformable

model and the ACM segmentation method. The main advantage of the proposed method

is that it can be applied directly in Pap smear images obtained by an optical microscope,

without any observer interference, for the accurate automated identi�cation of the cell

nuclei boundaries.
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Chapter 5

Overlapping Cell Nuclei Segmentation

Using A Spatially Adaptive Active

Physical Model

5.1 Introduction

One of the most interesting and challenging issues in the automated analysis of microscopic

images, is the delineation of the overlapped cells or cells nuclei. The cell overlapping

areas in the microscopic slides are very common phenomena, especially in the case of the

well-known Pap smear. The segmentation of these images has been studied by several

researchers [26, 43, 76, 77], as the nucleus is the structural part of the cell that presents

signi�cant changes when the cell is a�ected by a disease. Furthermore, features that are

based on the nuclei shape have been used by several researchers for the discrimination of

normal and abnormal nuclei [52, 55]. Thus, the accurate and detailed identi�cation of the

nucleus shape is important for the correct interpretation of the Pap smear.

Usually, the existence of the di�erent layers of the cervical specimen in the slide results

in areas, where the cells of an upper layer partially obscure the cells lying underneath. In

real time microscopic examination this problem is commonly solved in most cases with

the adjustment of the lens focus, and the cells of di�erent layers are clearly identi�ed.

However, in static images acquired through a digital camera adopted on a microscope,

this is not possible and for this reason e�orts have been made by several researchers in

order to contribute to the automated segmentation of the overlapped cells or overlapped

nuclei in many cytological images.

More speci�cally, in terms of the general segmentation techniques used for the separa-

tion of overlapped nuclei, the geometric active contours are used in [78]. In this approach,

each cell is represented by its own level-set function and a coupling constrain prevents

neighboring contours from overlapping each other and maintaining the separation of sim-

ilar cells in contact. Furthermore, the distance transform in a binary image containing

the regions of the nuclei is calculated in [5] and the topographic surface generated by
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the distance transform is considered as a Gaussian mixture. The EM algorithm is then

applied for the determination of the parameters of each nucleus cluster and the separation

line of the overlapped nuclei is de�ned with the minimization of a criterion function. It

must be noted, that in this approach, the occluded area of each nucleus is reconstructed

with a constrained ellipse �tting technique.

The segmentation technique that has been extensively used in many methods for the

separation of clustered cell nuclei is the watershed transform [79, 4, 80, 81]. The main

concern for these methods is to overcome the oversegmentation resulting by the water-

shed transform. For this purpose, special attention has been paid on the determination

of marking strategies and the selection of appropriate nuclei and background markers.

Thus, shape markers are extracted using an adaptive H-minima transform and a marking

function based on the outer distance transform is introduced in a watershed-like algo-

rithm in [79] for the separation of clustered nuclei. In [4], the segmentation of clustered

nuclei is treated as an optimization problem and a marker extraction scheme based on

the H-minima transform is introduced to obtain the optimal segmentation result from

the distance map. In order to optimize the selection of markers from which the ooding

process will start during the watershed-based segmentation, prior information about the

usual shape of cells nuclei, which is included in the determination of two templates for the

identi�cation of aggregating or overlapping nuclei, is employed in [80]. Finally, in [81],

the boundary of the overlapping nuclei is extracted through the marker based watershed

transform and the separation of touching cells is obtained by ellipse �tting.

The above methods were applied in di�erent cytological images such as uorescence in

situ hybridization (FISH) images [79, 80, 82] or microscopic images from several specimens

such as mammary invasive ductal carcinoma or cervical images [5, 4]. In the �rst case,

the separation line between the clustered nuclei is obtained through the application of

the watershed transform. However, these cases are very sensitive to the selection of

appropriate markers, in order to identify the correct location of each nucleus marker and

a marker for the overlapping area between the nuclei. Furthermore, in [4, 78, 81], the

partial nuclei boundaries lying in the areas of overlap are estimated with ellipse �tting

algorithms, exploiting the prior knowledge about the elliptical shape of the nuclei.

In this chapter, we present an alternative method for the separation of overlapping

nuclei which is based on the representation of the nucleus shape by the vibrations of a

spring-mass system [83] and the statistical learning of the vibration modes of the system

in the framework of Active Shape Models (ASM) [84]. More speci�cally, through physics-

based shape parameterization, the elastic 2-D boundary modeling can be achieved by

a closed chain topology of virtual masses on the contour. Each node of the model has

a mass and it is connected with two neighboring nodes through springs with the same

sti�ness and damping parameters. The physics-based equations of motion govern the

deformation of the model [83], which reaches the equilibrium when it is placed on the

object's boundary. Segmentation methods based on these models have been proposed for

multimodal brain image analysis [85], skeleton family generator [86] and reconstruction
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of serially acquired slices for the determination of volumes [87].

In addition, active shape models (ASM) [84] are well-known parametric deformable

models which are based on the construction of a statistical model of the global shape

variation from a training set of shapes. They have been extensively used for the recognition

and localization of objects that follow the same geometric form of a sample of well known

shapes, such as face detection [88], biomedical image segmentation [89] and handwritten

character recognition [90]. Image segmentation with ASM requires the representation of

the shape of the object of interest by a set of points. Based on this representation, a

deformable model is iteratively deformed to �t to an instance of the object of interest in

an unknown image. The model is constrained by the Point Distribution Model (PDM)

[84], in order to vary only in ways that are learnt in a training set of labeled examples.

Our work combines the segmentation of an image with ASM [84] and the representation

of an object using modal analysis [83]. Thus, a physical model is adopted in the training

phase, in which the parameters to be learnt are the variations of the modes of the model.

The attributes of the nuclei shapes are expressed in terms of modal analysis and in the

training phase the modal distribution is estimated. Therefore, a more compact description

of the shape model is obtained. Next, we develop a framework for the deformation of an

active physical model similar to ASM, for the detection of an unknown new nucleus in

images containing two overlapped nuclei.

It must be noted that the idea of combining the physically-based and the active shape

models was �rst proposed in [91]. However, no closed form solution for the deformation

of the model was provided, and only admissible deformations in the neighborhood of the

initial position of the model were acceptable, providing a heuristically obtained solution

for the deformation of the model. Furthermore, in [41] a method for the segmentation of

nuclei boundaries based on the elliptical approximation of the nucleus boundaries and a

deformable model, which can accommodate a certain degree of variability is presented.

However, in that work the motion of the deformable model is controlled by a probabilistic

framework and the parameters that control the variability of the shapes have been selected

experimentally.

As it will be explained in the following paragraphs, our method signi�cantly di�ers

from the aforementioned work in many perspectives. First of all, we provide a closed form

solution for the deformation of the model, which does not depend on trial and error based

admissible con�gurations in the shape of the model, but it is based on the dynamic change

of the generalized displacement, in order the model to be attracted from the signi�cant

characteristics of the image and also to be consistent with the learnt parameters. Thus, the

generalized displacements are updated through gradient based optimization. Furthermore,

the model converges to a position close to the desired boundary, as it always provides

admissible solutions. This is possible even in the case of the overlapping part of the nuclei

where no signi�cant edges are present, as the contribution of the external energy in the

model deformation is mutable.

The method proposed herein is motivated by [85]. The main di�erence is that in [85]
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the a priori knowledge was obtained for one anatomical structure (the skull) and then,

the other structures (e.g. the brain) are estimated by least squares. In our case, the a

priori knowledge concerns the occluded parts of the nuclei, whose estimation relies on an

iterative gradient descent method resulting naturally from the linear form of the model.

Moreover, there are two main di�erences of our method with respect to standard

ASM algorithm: �rst, the modal amplitudes of the learnt model are used instead of the

2D landmark points and second, the cost function to be minimized for the detection of

the nuclei boundaries is a�ected by the locally adaptive image force, which is introduced

in order to extract reliable nuclei boundaries in the regions of overlap. An important

characteristic of the proposed method is that it provides a smooth representation of the

nucleus boundary by the physical model, which entails in the reduction of the number

of parameters employed in the segmentation step. This is possible since the number of

the modal amplitudes that contain the most important information about the shape of

the model is small, due to the principal components analysis step. Furthermore, another

signi�cant characteristic is that the proposed model is exible and it converges fast in

the position of the desired boundary, due to the linear transformation adopted in the

deformation step. Finally, the method is evaluated using a test set of 50 cytological

images of conventional Pap smears, which contain two overlapped nuclei each and it

presents high performance, as it is veri�ed by the results.

5.2 Methodology

5.2.1 Training phase

In this phase, the physical model is constructed and it is applied on a training set of

images containing a single nucleus, in order to learn the modal distribution describing the

shape of the nuclei. The basic steps of the training phase are described in detail in the

following paragraphs.

Construction of the physical model

In order to obtain a compact representation of the shape of the nuclei boundary, we adopt

the physical deformable model proposed by Nastar and Ayache [83]. A physics based

deformable model is used, whose behaviour is controlled by the governing equations of

motion. More speci�cally, the physical model consists of N virtual masses located at

points X(t) = {x1(t);x2(t); ; :::;xN(t)}. The motion of the physical model towards the

border of the object of interest is expressed by a �nite element formulation and is estimated

by solving a 2N -dimensional di�erential matrix equation (for the horizontal and vertical

direction):

MÜx(t) +CU̇x(t) +KUx(t) = Fx(t)

MÜy(t) +CU̇y(t) +KUy(t) = Fy(t) (5.1)
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whereM, C andK are N×N matrices describing the mass, the damping and the sti�ness

of the model. Moreover, Fx and Fy are vectors containing the image force at the nodes

locations and Ux, U̇x, Üx and Uy, U̇y, Üy are the vectors of displacement, velocity and

acceleration of the model in the horizontal and vertical direction respectively.

The above equations describe the equilibrium between internal and external forces of

the system. The internal forces are expressed by the de�nition of the virtual masses of the

model and the interaction between them, while the external forces are usually de�ned as

the intensity or the gradient of the image at the pixels where the nodes of the model are

located. The system (5.1) can be solved by setting the initial values of displacement and

velocity equal to zero and then using an explicit Euler scheme. However, instead of solving

directly the equilibrium equation (5.1), we can use a frequency based technique called

modal analysis, which describes the motion of the model in terms of the free vibrations

of the system.

More speci�cally, at a �rst step the following change of basis is used [85]:

U = �Ũ (5.2)

where � is a square non-singular matrix and Ũ is the vector of the generalized displace-

ment. The columns of the matrix are selected to be the eigenvectors of the generalized

eigenproblem:

K�i = !2
iM�i (5.3)

where �i is the i-th mode and !i its frequency. This is an e�ective way for the expression

of the displacement vector U in terms of modal displacements, that is :

U = �Ũ =
N∑
i=1

ũi(t)�i (5.4)

where ũi is the amplitude of the i-th mode. It can be shown [43] that matrices K, M and

C are simultaneously diagonalized by

�TM� = I

�TK� = 
2 (5.5)

where I is the identity matrix and 
2 is the diagonal matrix whose elements are the

eigenvalues !i, i = 1; :::; N .

Premultiplying (5.1) by �T and substituting the displacement vector with its equiva-

lent form in (5.2) leads to:
¨̃U+ C̃ ˙̃U+ 
̃2Ũ = F̃ (5.6)

where C̃ = �TC� and F̃ = �TF. The above matrix-form equation can be decoupled for

each dimension into N scalar equations of the form:

¨̃ui(t) + c̃i ˙̃ui(t) + !̃2
i ũi(t) = f̃i(t): (5.7)
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The solution of these equations at time t leads to the calculation of the amplitudes ũi(t),

i = 1; :::; N and the deformation of the model is estimated using the modal superposition

equation (5.4). At each time step, the new positions of the nodes of the model X(t) are

given by

X(t) = X(t0) +U(t) (5.8)

where X(t0) is the vector containing the initial spatial positions of the model and U(t) is

the nodal displacement vector.

In practice, the nodal displacements U(t) are approximated by Û(t) using a fraction

of the modes of vibration, which present the highest amplitudes, that is:

Û(t) =
l∑

i=1

ũi(t)�i (5.9)

where l≪ N . For the choice of the number of modes l, the total energy is calculated by:

E =
N∑
i=1

ũ2i (5.10)

and we chose the �rst l amplitudes carrying a prede�ned percentage of the total energy.

An issue that must be clari�ed is the calculation of the eigenvectors and eigenvalues of

the generalized problem of (5.3). From the classical theory of vibration of a crystal lattice,

it can be proved that the relationship between spatial (k) and temporal (!) frequencies

is given by:

!2(p) =
4K

M
sin2

(
k(p)�

2

)
; (5.11)

where � is the distance between the points of a closed chain. In (5.11), due to the

periodicity of the closed chain:

k(p)� =
2�p

N
; p ∈ B(N ) (5.12)

where B(N ) is the Brillouin zone [84]:

B(N ) =

{ [
−N

2
+ 1; :::; N

2

]
; for N even[

−N−1
2
; :::; N−1

2

]
; for N odd

(5.13)

Combining (5.11) and (5.12) we can calculate the temporal frequencies !2
i , which corre-

spond to the eigenvalues of the problem in (5.3). The corresponding eigenvectors �(p) are

then given by:

�(p) =

[
:::; cos

2�p

N
; :::

]T
(5.14)

Thus, using (5.14), analytic forms for the eigenvectors are obtained and the motion of the

model can be easily expressed in terms of frequency modes as described in (5.9).
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Training the physical model

Instead of describing the object of interest by a set of n labeled landmark points as in the

standard ASM algorithm, we focus on the learning of the generalized displacements Ũ of

the model, in each image of the training set. This is an equivalent representation, since

the combination of (5.2) and (5.8) results in the spatial coordinates of the shape. In the

training phase, the nuclei boundaries were manually traced by an expert in all the images

of the training set. An issue that must be taken into account for the correct training of the

model is that the shapes in each image must be registered. Given the fact that the nuclei

generally follow an ellipse-like shape, we registered all the manually traced shapes with

a reference shape having its major axis horizontally oriented. Based on this boundary,

the distance transform was estimated for every image. On the resulted image, a physical

model was initialized and deformed until convergence, in order to detect the desired

boundary. As a result, an accurate nucleus boundary was obtained. This procedure is

depicted in �gure 5.1(b).

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Convergence of the physical model to the boundary of a cell nucleus in the

training phase. (a) The initial image, (b) the manually traced nucleus boundary, (c)

registration of the boundary to a reference shape oriented horizontally, (d) the distance

transform of (c), (e) the initial (red) and the �nal (white) position of the physical model,

(f) the detected nucleus boundary in the initial image rotated appropriately. The �gure

is better seen in colour.

From the �nal shape of the model, the generalized displacement vector Ũ was esti-
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mated and from the entire training set, the mean Ũ was calculated, which entails in the

representation of the mean shape of the nucleus boundary. More speci�cally, given a set

of L vectors Ũi , the mean is calculated as:

Ũ =
1

L

L∑
i=1

Ũi (5.15)

The covariance of the vectors is calculated by:

S =
1

L− 1

L∑
i=1

(
Ũi − Ũ

)(
Ũi − Ũ

)T
(5.16)

Using principal component analysis (PCA), the eigenvectors ai with the corresponding

eigenvalues �i of the covariance matrix S are used for an equivalent representation of the

shape, that is

Ũ = Ũ+Ab; (5.17)

where A is the matrix with columns the eigenvectors ai and b is a vector containing the

model coordinates in the basis of the eigenvectors:

b = AT
(
Ũ− Ũ

)
(5.18)

Taking into account the J eigenvectors which correspond to the J largest eigenvalues of

the covariance matrix, the shape can by approximated by:

Ũ ≃ Ũ+AJbJ = [a1 a2 ::: aJ ] [b1 b2 ::: bJ ]
T (5.19)

where AJ and bJ are derived from A and b by using only the J selected eigenvectors.

Figure 5.2 shows the modes of variation of the shape of the nuclei along four individual

eigenvectors aj, j = 1; :::; 4, extracted from the learning phase. Thus, using (5.15) and

(5.9), the mean shape of the nuclei is described and this will be used as an initial template,

in order to separate the overlapped nuclei in the images of the test set.

5.2.2 Segmentation of overlapping nuclei boundaries

This procedure includes the determination of the initial positions of the two models in the

image and the deformation process that the models follow until convergence. A graphical

description of this step is depicted in Figure 5.3 and the details are described in the

following paragraphs.

Initialization of the model

The most important prerequisite of our method in order to provide reliable results is

the accurate localization of the initial model. If the initial model is not close to the

real boundary, then the results would probably be highly erroneous, as the model would

converge in local minima of the image, which do not correspond to the real nucleus
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Figure 5.2: Modes of variation of the nuclei shape. Each row corresponds to the variations

of the shape of the model by approximating Ũ using only one eigenvector aj, j = 1; :::4

and setting the corresponded value of bj to the values in the last row, with all the values

of bk = 0, for k ̸= j in (5.19). In the middle column, the mean shape is depicted.

Figure 5.3: The basic steps of the segmentation of the overlapping nuclei (see text for

details).

boundary. The mean nuclei boundary that has been determined in the training phase

stands as the initial model of the nucleus boundary. As we are looking for two nuclei in
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the images of the test set, the initial positions of two models must be detected close to the

real nuclei boundaries. For this reason, each image is �rst preprocessed for the detection

of the strong nuclei edges, which will force the mean nuclei boundary to be located near

to the real one through chamfer matching [92].

More speci�cally, in the grayscale counterpart of the initial image, we �rst reduce the

noise by applying a Gaussian �lter. Then, using histogram equalization technique, the

contrast of the nuclei and the background is enhanced. In order to avoid the inhomo-

geneities inside the nuclei areas, which are commonly present due to uneven staining of

the smear, we proceed with the formation of homogenous minima intensity valleys. This

is feasible with the application of the H-minima transform in the original image, which is

a grayscale morphological reconstruction [68]. Thus a marker image is constructed by the

subtraction of a threshold value h from every pixel of the complement of the initial image.

Then through the grayscale reconstruction process, we obtain an image that contains the

regional minima, whose depth is less than h, suppressed. The result of this process is de-

picted in Figure 5.4(b), where a rough description of the positions of the two overlapped

nuclei is de�ned. In this image, the Canny edge detector is applied (Figure 5.4(c)), and

some strong boundary edges are detected. The distance transform g is then calculated

[93].

To obtain the distance potential force, a distance surface is �rst built, that is:

g(x; y) = min
(p;q)∈{(a;b):BW (a;b)=1}

[d(x; y; p; q)] (5.20)

where d(x; y; p; q) is the Euclidean distance between pixels (x; y) and (p; q) in the binary

image BW , which is obtained after the application of the Canny edge detector. It must

be noted that the location (p; q) corresponds to the location of a detected edge.

In the resulting image we search for the best two matching positions of the initial

model (Figure 5.4(d)). The measure of correspondence between the edges and the model

is the sum of the pixel values at which the model is located. A perfect match would

produce a zero value in this measure (as the model would perfectly match in the edges of

the image, in which the value of the distance transform is zero). However, as this is an

extremely rare case in real images, we search for the position of the model in the image

that minimizes this sum.

It must be noted that in each image the nuclei size and orientation may vary. Thus,

the initial model is rotated by a step of 1◦ angle and scaled by factors between 0.6 and

1.2 of its original position and size. In this way, more accurate initial approximations of

the nuclei boundaries are detected (Fig. 5.5). After the detection of the initial position

of the models, we proceed with the deformation of the models in order to converge to the

�nal nuclei boundaries.

Deformation of the models

Using the shape representation de�ned in (5.19), the algorithm �ts the desired model in

the image, driven by the image characteristics and the prior training. In each iteration,
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(a) (b)

(c) (d)

Figure 5.4: (a) The initial image, (b) image obtained after noise reduction, histogram

equalization and H-minima transform of the greyscale counterpart of the initial image,

(c) the result of the application of the Canny edge detector in (b), (d) initial placement

of the learnt model on each nucleus, after the chamfer matching. The �gure is better seen

in colour.

the changes in the generalized displacements should be consistent with the learnt param-

eters, and this is feasible by the minimization of a cost function f
(
Ũ
)
= g

(
X0 +�Ũ

)
,

where g is the distance transform of the image as it is de�ned in the initialization step

and its argument is the deformed shape with respect to (5.8) by omitting the temporal

dependency for simplicity. More speci�cally, in each step, the algorithm selects the new

generalized displacements by the following optimization schemes:

min
Ũ

f(Ũ) = min
bi; i=1:::;J

f
(
Ũ+ [a1 a2 ::: aJ ] [b1 b2 ::: bJ ]

T
)

(5.21)

The gradient descent scheme of (5.21) with the new variables bi is given by:

bnewi = boldi − �

(
aTi

df

dŨ

)
(5.22)

where � is the time step and:

df

dŨ
=

df

dX

dX

dŨ
=

df

dX
� (5.23)
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(a) (b)

(c) (d)

Figure 5.5: Initial positions of the models in several images. Notice that best initial

positions are obtained with the rotation and the scaling of the learnt model. The �gure

is better seen in colour.

The term
df

dX
= [∇g(x1; y1); :::;∇g(xN ; yN)]T (5.24)

is actually the gradient of the image force term, where g is again the distance transform

of the image as it is described above. In terms of the original variable Ũ, the update rule

(5.22) turns out to be

Ũnew = Ũold − �
J∑
i=1

(
aTi

df

dŨ

)
ai (5.25)

= Ũold − �
J∑
i=1

(
aTi

df

dX
�

)
ai

Notice that the initial value for Ũ is the mean shape obtained with the training of ASM.

Premultiplying (5.25) by � to the left we get

�Ũnew = �Ũold − ��
J∑
i=1

(
aTi

df

dX
�

)
ai (5.26)

81



Regarding (5.22), we have

Unew = Uold − ��
J∑
i=1

(
aTi

df

dX
�

)
ai: (5.27)

Finally, from (5.8), the local positions of the landmark points are calculated by:

Xnew = X0 +Unew; (5.28)

where X0 is the initial position of the mean shape of the model in the image. The models

deform until convergence, i.e. no signi�cant change is observed in the location of the

points consisting the models between two sequential steps.

Spatially adaptive image force

The image force is de�ned as the force due to the potential �eld created by the image

characteristics. The most common approach is to use the image gradient magnitude as

the external force, in order to guide the deformable model in the areas of the image where

high gradients are located (which usually imply the existence of strong edges of the objects

of interest). However, the limitation of the gradient image force becomes evident in parts

of the image with smooth intensity transitions, in which the gradient magnitude is very

low. In Pap smear images, the staining procedure introduces variances in illumination and

dye concentration. In some cases the nuclei borders may not be clearly distinguishable

from the background, and these locations present weak image gradient. If a deformable

model is initialized in such locations, it is not probable to guide it toward an edge. Thus,

the gradient-based force �eld has a limited capture range for the deformable model. The

distance potential force alleviates this issue for binary images.

As we can observe from (5.27) and (5.28), the deformation of the model is also con-

trolled by the image force term. The degree of the inuence of the image force term in the

motion of the deformable model can be modulated by setting appropriate weight values

w1; w2; :::; wn at each image point that belongs to the model, and the image force can be

de�ned as
df

dX
= [w1∇g(x1; y1); :::; wN∇g(xN ; yN)]T : (5.29)

Thus, if the weights of this term have large values, the model will deform mainly

according to the image characteristics. On the other hand, if the image force weight is

small, the model deformation would be driven by the learnt nuclei shape. In images of

overlapping nuclei, the edges of the isolated part of the nuclei boundary must be taken

into account, in order to attract the model for the detection of the true nuclei boundaries.

In those points, high value of the image force term is desirable. However, in the area of

overlap, there is no edge information and with the use of high weight values, the model

could be attracted from the boundary of the isolated part of the neighbor nucleus, resulting

in a high erroneous identi�cation of the real nucleus boundary. An immoderate example

of the inuence of the values of the image force weights in the deformation of the models
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is depicted in Figure 5.6, where we attempt to emphasize the inuence of di�erent weight

values in the �nal segmentation results. For this reason, we have used extreme weight

values and we let the deformable model move without any restrictions, using (5.26) and

(5.27). As we can observe, the segmentation results are highly erroneous.

(a) (b)

(c) (d)

Figure 5.6: (a) Initial image and, (b) initial position of the two models. Result obtained

using (c) small and (d) large weights values for the image force of one of the two nuclei.

Notice that in (c) there exist small di�erences from the initial position of the models.

However in (d), the model of one nucleus converges in a position of high gradient of the

image, resulting in the erroneous identi�cation of the boundary of the area containing

both of the nuclei. The �gure is better seen in colour.

In order to avoid such phenomena, we use di�erent values for the weights in the image

force term, depending on the position of the point in the boundary (Fig. 5.7). Thus,

in each step of the deformation of the two models, the area of overlap is determined,

and the points of the models lying in this area are associated with small weight values

compared with the weight values in the non overlapping area, as it is explained in the

next paragraphs. Therefore, the inuence of the image force in the deformation of this

part of the model is limited. However, in the rest of the points of the model, we use
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large values for the image term weights, and this results in the detection of the actual

nuclei boundaries in the non-overlapping area of each nucleus. The PCA coordinates ai
estimated by the non-overlapping part of the model yield a set of modal amplitudes which

determine the behavior of the rest of the points based on the learnt vibrations.

(a) (b)

(c) (d)

Figure 5.7: (a) Initial image, (b) initial position of the models, (c) calculation of the

overlapping area, (d) points lying in the area of overlap, denoted with yellow, have very

small weights with respect to the rest of the points. The �gure is better seen in colour.

5.3 Experimental results and discussion

5.3.1 Study group

In our experiments, we have used 46 images containing a single normal nucleus of conven-

tional Pap smear slides, in order to construct the training set used for the training of the

physically based model. The proposed method was tested in terms of the accurate de-

termination of the nuclei boundary on a test set of 50 images containing two overlapping

nuclei each (as in Figure 5.4), yielding 100 nuclei in total. Thus, the training and the test

set of images are independent. All of these images were acquired through a CCD camera

(Olympus DP71) adapted to an optical microscope (Olympus BX51). We have used a
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40× magni�cation lens and the acquired images were stored in JPEG format. The initial

images obtained by the optical microscope have size 3072 × 4080 pixels. These images

are then segmented manually in order to construct the database of images containing the

overlapped nuclei and a small portion of the neighboring background (such as in Figures

5.4, 5.6, 5.10 and 5.11). The average size of all the images in our database is 260 × 300

pixels.

5.3.2 Numerical evaluation

For the evaluation of the performance of the method, the boundaries of the nuclei in the

entire test set were estimated manually, after careful examination of an expert cytopathol-

ogist. The determination of the boundary of each nucleus in the overlapping area was

based on the exploitation of small variances in the intensity of this area, which an expert

could identify. However, in many cases, there was no existence of intensity variances, and

the boundary of each nucleus was manually drawn by the expert, following the expected

shape of the nucleus in the speci�c image. Based on the ground truth, we have calculated

the mean (�) and the standard deviation (�) for the area of overlap in our data set. The

overlapping area varies between 4:0% and 48:2% with 18:52± 11:77 (%) (�± �).

In order to evaluate the performance of the proposed method, the Euclidean and Haus-

dor� distance of the �nal position of the model and the ground truth was calculated in

each image. The presented method underwent a twofold evaluation: a) we have tested

the inuence of the use of di�erent weight values in the �nal segmentation compared

to the use of one single value and b) the results of the method were compared to the

results of di�erent segmentation methods, such as the standard ASM algorithm using

di�erent weight values in the area of overlap (as it is proposed in our method), the con-

ventional technique of the ellipse �tting in the overlapped nuclei boundary incorporated

in our method (instead of using di�erent image force weight values), the unsupervised

segmentation of overlapped nuclei using Bayesian classi�cation [5] and the H-minima

transform-based marker extraction and contour parameterization method for segmenting

overlapped nuclei [4]. It must be noted that the ellipse �tting technique is extensively

used from several researchers ([5, 4, 81]), in order to estimate the nucleus boundary in

the overlapping areas and it is based on the hypothesis that the nuclei shape is gener-

ally ellipse-like. Thus, in each step of the deformation of the model, the points of the

boundary of the nucleus of the non-overlapping area are used for the calculation of the

interpolated ellipse using the direct least squares �tting of ellipses [94]. Then, the part

of the boundary in the overlapping area is completed using the corresponding part of the

interpolated ellipse and the link points are smoothed (they are calculated as the average

of the previous and the next point of the model).

The choice of the weights in our work is performed with a two step procedure: First,

we use the same value for the weights of overlapping and non-overlapping areas, and

we test the method for several di�erent values for the weights. The Hausdor� distance

between the result of the proposed method and the ground truth using a single value for
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the image force term is depicted in 5.8. As we can see, the best results were obtained

for w1;:::;n = 0:1 and the Hausdor� distance for this weight is 24:29. However, with the

use of di�erent weight values, the corresponding Hausdor� distance is reduced, which

indicates that the use of di�erent weight values renders the method more performing.

Thus, in the next step, having found that the best segmentation was obtained with the

weight value 0:1 (Figure 5.8), we keep this value constant for the external weights in non

overlapping areas and we test multiple values for the weights in the overlapping areas.

This is described in Figure 5.9, which contains the segmentation results of the method

from several experiments, where we have used di�erent weight values for the overlapping

areas, while the weight value in non overlapping areas was �xed to 0:1. From this image,

we can observe that the best segmentation results were obtained for w1;:::;k = 0:001, where

k is the number of the points of the model lying in the overlapping areas.

Figure 5.8: The result of the proposed method using the same value for the image force

term, for all of the points of the model. Notice that best results are obtained using the

value of 0:1 and the corresponding Hausdor� distance is 24:29.

The comparative results of the proposed method and the other segmentation tech-

niques are included in Table 5.1. As we can see, our method exhibits better performance,

since both the Euclidean and Hausdro� distances are smaller compared with the other

methods, and it does not exhibit large variations, as the standard deviation is small.

This implies that the proposed model is closer to the manually traced nuclei boundaries,

and as a result it is more accurate than the other approaches. Furthermore, based on

the experimental results and the overlapping percentage of our image data set (as it was

described in the above paragraphs), we can conclude that our method can successfully

segment nuclei that present grade of overlap lower than 50%.

Several examples of the segmentation results of our method are depicted in Figure 5.10.

The segmentation results in images of 5.11. of our method and several methods proposed

in the literature are depicted in 5.12. As we can see, the use of the ellipse �tting algorithm
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Figure 5.9: The result of the proposed method using the same value wi = 0:1 for the image

force term in the points lying in the non-overlapping area of the nuclei, and multiple values

w1;2;:::;k for the k points of the model lying in the overlapping area. Notice that best results

are obtained using the value of 0:001 and the corresponding Hausdor� distance is 19:58.

Table 5.1: Results of overlapped nuclei segmentation methods in terms of Euclidean and

Hausdor� Distances (�± �)

.

Hausdor� Euclidean

Proposed method 19:58± 8:52 8:64± 3:77

Ellipse �tting 20:73± 10:38 8:73± 3:90

ASM 21:33± 11:48 9:78± 4:10

Bayesian classi�cation 24:18± 12:61 10:95± 4:79

H-minima 22:70± 11:90 10:71± 4:35

for the overlapped parts of the nuclei in our method produces some rugged points in the

nuclei boundaries, and the boundaries of the overlapping areas are not well detected, as

they do not follow an elliptical form in the overlapping areas. Furthermore, the standard

ASM algorithm produces noisy results and this indicates that the representation of the

shape of the nuclei by the vibrations of a spring-mass system instead of landmark points,

assures a smooth representation of the shape, and as a result more accurate boundaries

for the nuclei.

It must be noted that in our work, we have trained the ASM having as training shapes

the nuclei boundaries obtained with the convergence of the physical model in the training

set, and not with independently distributed points as it is the standard procedure. By

these means, the ASM method is unbiased with respect to the manual tracing of the nuclei

and the comparison of the two methods may be performed on the same basis. Besides,
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(a) (b)

Figure 5.10: Segmentation results of the method. (a) Ground truth, (b) nuclei boundaries

obtained with the convergence of the models. The �gure is better seen in colour.

these shapes can be considered as an accurate representation of the nuclei boundaries,

since the mean Euclidean distance of the �nal position of the physical model and the

ground truth is 1:76 pixels in the images of the training set. For this reason, the main

eigenvectors for the ASM model do not exhibit signi�cant di�erences from the main

eigenvectors of the physical model. However, the noisy results of the ASM method are

due to the minimization procedure, in which the ASM is more sensitive to the image

force. This can be observed in Figure 5.12(d), where the discontinuities in the detected

edges (Figure 5.11(b), second image, points A and B) produce rugged segments of points

in the convergence of ASM. Furthermore, the detected edges in the inner area of the

nucleus (Figure 5.11(b), �rst image, point A) seem to interfere to the convergence of the

model, which fails to identify the actual nuclei borders. The reason for this e�ect is that

in the standard ASM algorithm, the image force term df
dX

has a direct inuence on the

new variables (the projection of the points of the model on the eigenvector space), which

are then multiplied by the eigenvectors to obtain the new position of the model. On the

other hand, in our case, the new variables (the projection of the generalized displacements

on the eigenvector space) change according to df

dŨ
in (5.22), or equivalently according to

df
dX
� in (5.27). Thus, the new position of the model depends on the speci�c product,

which provides a smooth image force term. In this way, the model is not a�ected by the

potential noise contained in the image force.
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(a)

(b)

(c)

First Image Second Image

Figure 5.11: (a) Representative images containing overlapped nuclei. (b) Edge images

resulted after the application of the Canny edge detector (initialization step). The point

A in the �rst image indicates some falsely detected edges in the inner area of the nucleus.

The points A and B in the second image indicate the existence of discontinuities. (c) The

corresponding distance transform.

For the methods proposed in [5] and [4] the results are not quite accurate, and this is

a consequence of several reasons. In [4] the outcome is actually the ellipse obtained by the

detected nuclei boundary points produced by adaptive thresholding. As we can observe in

Figure 5.12(e), the estimated ellipses provide a rough approximation of the actual nuclei

boundaries and additional processing is required for the detection of more re�ned nuclei

borders. The method in [4] may be considered similar to the initialization step of our

algorithm; however, there are several di�erences with our method. More speci�cally, in

the initialization step, we use the H-minima transform for the construction of smooth

intensity valleys and the reduction of the noise in the image, in contrast with [4], in which

the H-minima transform is used in a marker extraction scheme. For this reason we have

used only one threshold value for h (Table 5.2) and we do not test many threshold values

as it is proposed in [4]. Furthermore, the edges of the image are detected with the Canny

edge detector, in order to obtain a binary image, without the use of global thresholding

or the watershed transform as in [4]. In the binary image we try all possible similarity

transformations, in order to achieve a reliable initial position of our model, which is known

through the training step.

Furthermore, in [5] the boundaries of the non-overlapping area of the nuclei are ob-
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(a)

(b)

(c)

(d)

(e)

(f)

First Image Second Image

Figure 5.12: Segmentation results. (a) The ground truth in the initial image, the seg-

mentation results for (b) the proposed method, (c) the ellipse �tting algorithm, (d) the

standard ASM algorithm, (e) H-minima marker extraction [4], (f) Bayesian [5].

tained after morphological operations and adaptive thresholding. Although this procedure

is fast, it does not always succeed in the detection of accurate boundaries. As we can
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Table 5.2: Parameter values used in the experiments.

Parameter Value

h (H-minima transform) 20

Sti�ness K 5

Mass M 1

Dumping c̃i, i = 1; :::; N 1

Radius of the initial model 85

Model points 120

Initial time step �0 0:001

Weights of image force (overlapping area) 0:001

Weights of image force (non overlapping area) 0:1

Number of modes ũi 14

Number of eigenvectors ai 4

see in Figure 5.12(f) ( �rst image, white traced nucleus), the nucleus boundary that was

erroneously detected in the bottom of the non-overlapping area, results in the estimation

of an ellipse for the overlapping area that does not correspond to the expected nuclei

boundaries. Furthermore, in Figure 5.12(f), (second image, white traced nucleus) we can

observe that the inhomogeneity in the image intensity results in the wrong detection of

the nucleus boundary in the non-overlapping area (near the bottom, right hand corner of

the image). Therefore, we may conclude that in images with noise and artifacts (like Pap

smear images), adaptive thresholding techniques do not provide accurate detection even

for the non-overlapping boundaries of the nuclei and further processing is required.

Moreover, as a measure of the computational e�ciency of the segmentation method,

we present in Table 5.3 the mean times for the processing of each image (including the

initialization and the deformation of the two models), developed in Matlab using a Pen-

tium 2.0 GHz with 3GB RAM. As we can observe, the computational burden that the

ellipse �tting algorithm introduces in each step of the deformation of the model, results in

an increase of the processing time of each image. Furthermore, the reduction of the learnt

parameters, as it is described in (5.19), renders our method superior to the standard ASM

algorithm. In the cases of non iterative procedures, in which an ellipse �tting algorithm

is implemented such as in [5] and [4] the required processing times are clearly shorter

than in the rest of the methods. In both of these methods, the estimation of a suitable

ellipse that �ts the points in the non overlapping area is calculated once, and no iteration

is performed. In contrast, the computational cost of the ellipse �tting algorithm in our

method is bigger, because the ellipse is calculated in every iteration of the algorithm. The

iterative procedure that we propose for the convergence of the model, although it requires

more computational time, is necessary for the re�nement of the nuclei borders in both

the overlapping and non-overlapping areas, which is not achieved by the non-iterative

methods. This can be easily veri�ed by the comparative results in Table 5.1, where we
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can observe that the non-iterative methods have lower performance than the proposed

method.

Table 5.3: Execution time (�± �).

Segmentation method Time (sec)

Proposed method 17:89± 0:79

Standard ASM 26:42± 2:90

Proposed method with ellipse �tting algorithm 46:21± 3:57

Bayesian classi�cation [5] 4:41± 1:26

H-minima [4] 2:86± 0:64

The parameters of the steps of the method were selected after several tests (Table 5.2).

Thus, the threshold h in the H-minima transform in the initialization of the models is set

to 20. For the calculation of modal vibrations in (5.11), we selected K = 5 and M = 1.

Furthermore, in (5.7), the value for all c̃i, i = 1; :::; N was set to 1. For the initialization

of the physical model, a circle of radius 85 pixels and 120 points in its circumference was

used centered at the centroid of the registered manually traced shape.

It must be noted that the change of the weight values for a large number of points in a

single step may lead to a large displacement of the deformable model, as the additive value

of the image force term in (5.27) would be large. In our implementation we have eliminated

this e�ect with a variable time step, which is calculated in each iteration. Thus, given an

initial time step �0 = 0:001, the time step in (5.27) is calculated as �t = �0(1 − OPR),

where OPR is the overlapping points ratio, which is de�ned as the percentage of the

points of the physical model lying in the overlapping area. By these means, a weighted

sum of the contribution of the points in the non-overlapping and in the overlapping area

is obtained which ensures the stability of the algorithm, as the deformation of the model

is smooth and it avoids abrupt changes.

From (5.9), we have calculated that the �rst 14 modes ũi contain more than 99% of

the total energy in each image of the training set. Thus, only 14 parameters (instead of

120 landmark points) are su�cient for the accurate representation of the desired shape.

Furthermore, after the application of PCA in these learnt parameters, only 4 eigenvectors

which correspond to the highest eigenvalues lead to an almost exact shape representa-

tion, as they represent the 99:9% of the total energy. This clari�es that the proposed

segmentation method provides a more compact shape representation which results in the

reduction of the parameters to be learnt.

It must be noted that our method could be extended to be able to segment three

overlapped nuclei as the main steps remain the same and the models deform independently.

The only di�erences would be in the initialization of the three models in the image and

the detection of the overlapping area. In the �rst case, the process which is described

in section 5.2.2 could be followed, but instead of two models, we search for three models

through the chamfer matching. In the second case, for each model, the area of overlap
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could be de�ned as the union of the areas of the two other models and the model under

consideration. Thus, the weights of the speci�c model would be de�ned accordingly. In

the case where the images contain unknown number of nuclei, then an initial step of

counting the existed nuclei is necessary, such as in [81].

5.3.3 Relation between the weight values and the overlapping per-

centage

In order to investigate the inuence of the selected weight values compared to the degree

of overlapping, we have performed an experiment on a synthetic image, constructed from

two individual images of the training set, each one containing a singe nucleus (Fig. 5.13).

In these images, we have selected the area of each nucleus based on the ground truth.

Then, in a new image, the areas of the nuclei were incrementally overlapped, and we

have compared the segmentation results of our method with respect to the degree of

overlapping of the nucleus area and the selected value weights. To this end, we have

calculated the Hausdor� distance of the obtained boundary of one nucleus of interest,

whose area overlapping was ranging from 10% to 90% (Figure 5.14). The gray level value

of the area of overlap of the examined nucleus is set to 95% of the initial gray level. The

rest of the nuclei areas contained the same intensity value as in the original images and

the background was set to the mean value of both images. It must be noted that, in

the synthetic image, we considered that the initialization step produced acceptable initial

positions for the models.

Figure 5.13: The original images of the training set used for the construction of the

synthetic image.

The method was applied in this image for the drawing of conclusions about the in-

uence of di�erent rates between the weight values of overlapping and non overlapping

areas, and how they a�ect the segmentation results with respect to the degree of overlap.

Thus, the weight value for the points lying in the non-overlapping area was �xed to 0:1 for

all the images. Then, the method was applied using di�erent values for the weights of the
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Figure 5.14: Construction of a synthetic image. The degree of area overlapping for the

upper left nucleus is 10%, and for the bottom right is 90%.

nodes belonging to the overlapping areas. These weights were set to 2, 5, 10, 20, 100, 200

and 1000 times lower than the value of the weights of the nodes in the non overlapping

areas. Furthermore an experiment with equal weight values of the overlapping and non-

overlapping areas (set to 0:1) was also performed. The degree of overlap of the nucleus of

interest in the synthetic images varied from 10% to 90%. As we can see from Figure 5.15,

the choice of equal value for the weights produces worse results for almost all the cases

of overlapping. Furthermore, values lower than 100 times of the non-overlapping weight

value have the same result in the Hausdor� distance. In general, we can conclude that for

overlapping percentage greater than 45% the best results were obtained using a weight

value for the overlapping areas which is half than the weight value for the non overlapping

areas. For smaller overlapping rates, the best results are obtained using a weight value of

overlapping areas which is at least �ve times smaller than the weight value for the non

overlapping areas. It must be noted, that the Hausdor� distance for this experiment is

generally small, as the image of overlapping nuclei is, in a way, ideal, since it does not

contain any noise or background artifacts.
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Figure 5.15: The Hausdor� distance in the synthetic image with respect to the nuclei

overlapping percentage. The curves correspond to the segmentation obtained using the

speci�c rates of the weight values of the non-overlapping areas to the weight values of the

overlapping areas.

5.4 Conclusion

We have developed a segmentation method combining the physically based model, which

provides a compact representation of the shape of the object of interest, and the active

shape model, which takes advantage of the a-priori knowledge of the expected shape. The

introduction of variable weights in the contribution of the image force in the deformation

of the model results in the correct identi�cation of the part of the nuclei boundary that

lies in the overlapping areas. The method has been tested in terms of the accurate

segmentation of the nuclei borders in images from Pap smear slides, and as it was veri�ed

by the results it presents a high performance. Thus, the method produces more accurate

nuclei boundaries which are closer to the ground truth, compared to the standard ASM

algorithm and the segmentation obtained by two methods proposed for the segmentation

of overlapped nuclei. The main advantage of the proposed method is that it provides a

exible way for the simultaneous recognition of the isolated and the overlapped nucleus

boundary. This avoids the development of an additional algorithm for the detection of

the nuclei boundaries in occluded areas, such as the ellipse �tting algorithm.
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Chapter 6

Cervical Cell Classification Based

Exclusively On Nucleus Features

6.1 Introduction

The interpretation of Pap smear images relies basically on the visual recognition of the

changes of the structural parts of the cells (nucleus and cytoplasm). However, this process

is a tedious, time-consuming and in many cases error-prone procedure due to the high

degree of complexity that these images exhibit. Several approaches have been proposed

(a) (b)

Figure 6.1: (a) An isolated cell and (b) overlapping cells. Notice that the cytoplasm area

is clearly recognized in (a) while in (b) its determination is very ambiguous for each cell.

for the classi�cation of cells in Pap smear images and they concern techniques such as

Bayesian classi�ers [55], arti�cial neural networks [56], support vector machines (SVM)

[59] and nearest neighbor based classi�ers [51]. It must be noted that most of these

methods use presegmented images which contain only one cell, so the correct segmentation

of the nucleus and the cytoplasm is feasible (Fig. 6.1(a)). In images containing cell clusters

(Fig. 6.1(b)), the detection of the cytoplasm boundary is a di�cult problem and until

now, there is not any method in the literature that results in the automated delineation of

the cytoplasm areas in cell clusters. However, the detection and segmentation of the nuclei

in images containing cell overlapping and cell clusters has been successfully addressed by

several studies [76, 77].
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The methods which deal with the classi�cation of Pap smear images are based on the

calculation of features extracted from the areas of the nucleus and the cytoplasm [51, 52].

These features are usually based on shape and intensity characteristics of the objects of

interest. However, the calculated features do not exhibit the same discriminative ability.

For the determination of the most e�cient feature set which will be used as input in a

classi�er, some feature selection schemes have been proposed, and they concern particle

swarm optimization [52] and genetic algorithms [51].

Based on the aforementioned facts, we can conclude that there are two open problems

in the automated classi�cation of a Pap smear image acquired directly from an optical

microscope: a) the limitation to use only the features extracted from the nuclei areas, as

these are the areas that can be automatically segmented, and b) the determination of the

most e�cient feature subset, which will provide the best discriminative ability.

In this chapter, we evaluate the classi�cation of cervical cells, based exclusively on

nucleus features and ignoring the features extracted from the cytoplasm area. This is a

crucial step for the correct characterization of Pap smear images acquired directly from

an optical microscope, where the cell overlapping is an often found phenomenon and the

delineation of the cytoplasm area can not be obtained automatically. In this direction, we

investigate the representation of the features in low dimensional spaces using non linear

dimensionality reduction methods. These techniques are advantageous in comparison

with their linear counterparts, because they can properly handle complex nonlinear data,

as they better describe the manifold where the data lie.

The low dimensional feature subsets serve as input in two unsupervised classi�ers

(spectral clustering [74] and fuzzy C-means [73]). As it was veri�ed by the results, the

non-linear dimensionality reduction techniques lead to a construction of nucleus-only fea-

ture subsets which can be used for the separation of normal and abnormal cells by the

classi�ers, presenting high performance.

(a) (b) (c) (d)

Figure 6.2: Types of cells included in the Pap smear benchmark [6]. (a)-(b) Abnormal

cells and (c)-(d) normal cells.
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6.2 Methodology

6.2.1 Study group

Our experiments are based on the Pap-smear benchmark database presented in [6] . The

database consists of 917 images containing a single cell each (Fig. 6.2), and the samples

are distributed unevenly in seven classes. Three of them are considered as normal and

four of them are considered as abnormal types of cell. The detailed description of the

database is depicted in Table 6.1.

Table 6.1: Distribution of cells in the Pap-smear benchmark database [6].

NORMAL #cells

Super�cial squamous epithelial 74

Intermediate squamous epithelial 70

Columnar epithelial 98

TOTAL 242

ABNORMAL #cells

Mild squamous non-keratinizing dysplasia 182

Moderate squamous non-keratinizing dysplasia 146

Severe squamous non-keratinizing dysplasia 197

Squamous cell carcinoma in situ intermediate 150

TOTAL 675

6.2.2 Feature generation and dimensionality reduction

The images of the database have been manually segmented by experts and the areas of

the nucleus and the cytoplasm are accurately de�ned. From these areas, twenty features

concerning the intensity and the shape characteristics of the speci�c area are determined

(Table 6.2). Nine out of twenty features concern the nucleus area and they can be calcu-

lated independently.

The techniques that we have used for the construction of the new feature sets con-

cern non-linear dimensionality reduction schemes. In our study we have investigated the

performance of four nonlinear techniques: Kernel-PCA [95], Isomap [96], Locally Linear

Embedding [97] and Laplacian Eigenmaps [98]. A brief description of these techniques is

presented in the following paragraphs.

Kernel Principal Component Analysis (K-PCA)

Kernel PCA [95] is actually an extension of the conventional PCA in a high-dimensional

space, which is obtained with the use of a kernel function. The main di�erence in com-

parison with the standard PCA is that the eigenproblem is solved for the \kernelized"
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Table 6.2: Features extracted from each image in the database [6].

Cytoplasm Features Nuclei Features

1. Area 1. Area

2. Brightness 2. Brightness

3. Short Diameter 3. Short Diameter

4. Longest Diameter 4. Longest Diameter

5. Elongation 5. Elongation

6. Roundness 6. Roundness

7. Perimeter 7. Perimeter

8. Maxima1 8. Maxima1

9. Minima1 9. Minima1

10. Nucleus Position

11. Nucleus/Cytoplasm (size)
1 The number of pixels with the maximum/minimum

intensity value in a 3× 3 neighborhood of the speci�c area.

covariance matrix. If X = {x1; x2; :::; xN} is the original data set, the elements of this

N ×N matrix are de�ned as kij = K(xi; xj), where K is the kernel function and xi; xj
are D-dimensional feature vectors of X. In our implementation, we have used the poly-

nomial and the Gaussian kernels. The kernel matrix is centered, in order the features in

the high dimensional space to be de�ned by a kernel function with zero mean and the

eigenvectors �i are then calculated. The projection of a datum yi in the low dimensional

space is de�ned as:

yi =

{
N∑
j=1

aj1K(xj; xi); :::;
N∑
j=1

ajdK(xj; xi)

}
; (6.1)

where aji denote the j-th component of the i-th vector and d < D is the number of the

retained eigenvectors.

Isomap

Isomap [96] is a variant of multidimensional scaling (MDS) [99], in which the distances

between the datapoints in the high dimensional space are also retained in the low di-

mensional space. In MDS, this is accomplished by the eigendecomposition of a pairwise

distance matrix (instead of the covariance matrix which is involved in PCA). In Isomap,

the Euclidean distance between the points is substituted by their geodesic distance. Thus,

the pairwise geodesic distance between the datapoints in the high dimensional space is

preserved in the low dimensional space, by the construction of a neighborhood graph G,

in which each datapoint is connected with its k nearest neighbors. The geodesic distance

of two points may be approximated with the shortest path in the graph G between these
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points, using, for instance, Dijkstra's algorithm [100]. Having estimated the geodesic dis-

tances for all the points in the data set, the representation of the datapoints in the low

dimensional space are computed by applying MDS on the resulting distance matrix.

Locally Linear Embedding (LLE)

This method is similar in spirit to Isomap, as it is also based on the construction of a

distance graphG. However, in LLE [97] each datapoint is described as a linear combination

of its k nearest neighbors, thereby assuming that the manifold is locally linear. The

weights wij describe the contribution of the j-th point to the reconstruction of the i-th

point and they are computed by minimizing the cost:

argmin
W

E(W ) =
N∑
i=1

||xi −
k∑

j=1

wijxij ||2; (6.2)

where xij is the j-th nearest neighbor of the i-th point. Thus, the weights wij that best

reconstruct each point xi from its neighbors are used to compute the corresponding points

yi in the low dimensional space by minimizing the following cost function with respect to

Y = (y1; y2; :::; yN)
T :

argmin
Y

'(Y ) =
N∑
i

||yi −
k∑

j=1

wijyij ||2: (6.3)

This minimization problem is equivalent to the calculation the eigenvectors corresponding

to the smallest eigenvalues of the matrix (I −W )T (I −W ), where I is the identity matrix

and W is a matrix with elements wij. The above minimization is performed in two steps

with the additional constraint
∑

j wij = 1 to make the representation translation invariant.

Laplacian Eigenmaps

The main philosophy of Laplacian Eigenmaps [98] is to calculate the low dimensional

representation of the data in such a way that the local neighborhood information is

optimally preserved. For this reason, the distance graph G is computed, in a way similar

with the methods described above. Each edge of the graph is associated with a weight,

which is a measure of closeness of the respective neighbors. The weights are attributed

by the Gaussian kernel function wij = e−
||xi−xj ||

2

2�2 , where � is the kernel width. Thus, the

weights exhibit high values for nearest neighbors and small values for distant datapoints.

Next, a diagonal matrix A is constructed, with elements Aii =
∑
j

wij; i = 1; ::; n and

the generalized eigendecomposition Lu = �Au is performed, where L = A − W . The

low dimensional representation is obtained using the d eigenvectors corresponding to the

smallest nonzero eigenvalues.
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6.3 Results and discussion

In order to investigate the e�ectiveness of the above dimensionality reduction schemes,

we have used two unsupervised classi�ers and two datasets of patterns. More speci�cally,

spectral clustering and fuzzy C-means are tested using patterns from two di�erent feature

sets (Table 6.1): one containing both cytoplasm and nucleus features (20 features) and

the other containing only nucleus features (9 features). Several experiments were per-

formed and the performance of the classi�cation techniques was measured using patterns

of increasing dimension varying from 1 to 20 features for the �rst subset and from 1 to

9 for the second subset. Furthermore, di�erent values for the kernel width of spectral

clustering have been tested (10−4; 10−3; 10−2; 10−1; 1; 2; 5). In Isomap, LLE and Lapla-

cian Eigenmaps, di�erent numbers of nearest neighbors ranging from 4 to 20 were also

tested for the construction of the distance graph G. The best results for each classi�er are

presented in this work.

For comparison purposes, PCA was also implemented. For the evaluation of the

classi�cation performance, the harmonic mean (HM) of the Sensitivity and the Speci�city

indices was calculated. The sensitivity measures the proportion of abnormal cells which

are correctly identi�ed as such by the classi�cation algorithm, and the speci�city measures

the proportion of the normal cells that are correctly characterized as such.

The classi�cation results of spectral clustering and fuzzy C-means are depicted in

Table 6.3. For each feature subset, the HM and the number of features retained by the

dimensionality reduction techniques are presented. As we can observe, the initial features

without the use of dimensionality reduction schemes, lead to the weakest classi�cation

performance. The use of either linear or non-linear dimensionality reduction schemes

results in a signi�cant improvement of the classi�cation.

More speci�cally, regarding the linear dimensionality reduction technique (PCA), we

can conclude that there is a small improvement in the classi�cation results, compared to

the case where no dimensional reduction technique is used. Furthermore, in fuzzy C-means

we observe a signi�cant reduction in the retained features. Only 3 out of 20 dimensions are

retained in �rst set of features and only 4 out of 9 for the nuclei feature subset. Finally, in

spectral clustering, better classi�cation results are produced when only the nuclei features

are used, in comparison with the use of both nuclei and cytoplasm features.

In non-linear dimensionality reduction schemes, we can notice that the performance

of the classi�ers is clearly better when they are based only on nuclei features (except in

the case of LLE with spectral clustering, where the results are approximately similar). In

spectral clustering, an improvement of 12.16% in the classi�cation is observed in Isomap,

where the best value of HM (88.77%) using only the nuclei features is reached. Fur-

thermore, in fuzzy C-means, the corresponding highest di�erence in classi�cation rates is

11.17% and it is observed using K-PCA with polynomial kernel. Nevertheless, the best

classi�cation result using only the nuclei features is 90.58% with K-PCA and the Gaussian

kernel. It must be noted that this result is obtained using only seven features, while for

di�erent number of features the HM value is smaller (Fig. 6.3).
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The obtained results clarify that the use of non-linear dimensionality reduction schemes,

not only improves the classi�cation performance of spectral clustering and fuzzy C-means,

but they also allow the successful separation of normal and abnormal cercival cells, based

exclusively on nuclei features.

Figure 6.3: Results obtained in terms of HM for Fuzzy C-means classi�cation. Notice

that the HM reaches its highest value for seven features.

Table 6.3: Performance of classi�cation in terms of HM and the number of retained

features.
Spectral Clustering Fuzzy C-means

All Features Nuclei Features All Features Nuclei Features

#feat HM(%) #feat HM(%) #feat HM(%) #feat HM(%)

No dimensionality reduction 20 74.21 9 73.59 20 72.89 9 71.98

PCA 6 74.25 7 83.38 3 74.23 4 71.99

K-PCA (polynomial) 2 85.78 9 88.53 3 74.24 3 85.41

K-PCA (Gaussian) 16 84.44 7 87.52 9 90.42 7 90.58

Isomap 1 76.61 9 88.77 1 75.02 3 75.08

LLE 17 86.97 9 86.45 15 81.69 6 87.17

Laplacian Eigenmaps 20 80.84 3 87.52 11 85.31 1 87.20

6.4 Conclusion

The correct characterization of the cell nuclei in Pap smear images is a prerequisite for

the derivation of accurate diagnostic decisions. Since in cell clusters presented in Pap
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smear images the automated cytoplasm segmentation is not feasible, in contrast to the

automated nuclei segmentation [76, 77], we have investigated the case of the successful

classi�cation of cells with exclusively nuclei features using two unsupervised classi�ers. In

this direction, non-linear dimensionality reduction techniques were also used, for the more

accurate representation of the features manifold. As it was veri�ed by our experiments,

the obtained results using only the nuclei features are better than the results obtained

using all the extracted features (from the areas of nucleus and the cytoplasm). This

implies that the characterization of a Pap smear image as normal or abnormal is feasible

with the use of the nuclei features alone.
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Chapter 7

Conclusions and Perspectives

In this thesis, we have studied in depth the special issues that Pap smear image pro-

cessing exhibits. The accurate processing of these images that would lead to correct

conclusions about the context of the examined slide is a di�cult task for several reasons.

The di�culties in the process of these images accrue from the noise and the artifacts

that they contain, in combination with the extended cell overlapping and the variances

in illumination and dye concentration of the cells. Thus, the e�ective process of such

images demand specialized approaches that are able to provide object detection, object

delineation, separation of partially occluded or overlapping objects and identi�cation of

normal and abnormal �gures of the object of interest, which in the case of Pap smear

images are the cells nuclei.

Our approach was mainly focused on the segmentation of the cells nuclei. This task is

of high importance, as the nuclei detection and area determination result in the evaluation

of salient nuclei features, which present great diagnostic value. Furthermore, we have

extended the cell nuclei segmentation with a classi�cation process for the detection of

normal and abnormal nuclei, using exclusively shape and intensity nuclei features. More

speci�cally, the techniques presented in this thesis concern the detection of the nuclei

positions, the de�nition of the actual nuclei boundaries, the separation of the overlapped

nuclei and �nally the classi�cation of normal and abnormal nuclei in Pap smear images.

These techniques overcome the limitations arising from the complexity of these images,

and they provide an e�ective framework for the reliable analysis of such images. This

is clearly veri�ed from the experimental results of the methods presented in this thesis.

We can conclude that the proposed methodologies achieve accurate identi�cation of the

regions of interest and they present high performance, compared with the state of the art

methods.

The method for the detection of the nuclei centroids described in Chapter 3 is based on

mathematical morphology and clustering techniques and it includes a priori knowledge

about the expected shape of the nuclei. This method results in the de�nition of the

positions of the cell nuclei in a Pap smear image that contain both isolated cells and

cell clusters. A rough estimation of the boundary of the nuclei was also calculated by
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the de�nition of the circumference of each nucleus, which resulted in the re�nement of

the detected centroid. This method can be directly applied to images captured from an

optical microscope without the need of the prede�nition of the region of interest. However,

an issue that must be solved in the future is the separation of clustered nuclei, since the

method in its current form indicates the existence of one nucleus in a speci�c location.

Thus, an interesting extension of this method could be the annexation of an additional

step, which would count the number of the overlapped nuclei in an eventual detected

nuclei cluster.

In Chapter 4 we presented a method for the automated nuclei boundaries determi-

nation, which is able to extract the accurate boundaries of non overlapping nuclei. This

method is accomplished with the application of the marker based watershed transform,

using the nuclei markers extracted in the detection step. In order to include information

from the three color channels of the image, the morphological color gradient image is cal-

culated, in which the watershed transform is applied. The features of the detected areas

concerning the shape, the texture and the image intensity are ranked through the mRMR

feature selection scheme, in order to estimate their discriminative ability for the de�nition

of the true nuclei set from the total �ndings. The features involving the neighborhood

of the nuclei present high discriminative ability, indicating that useful information is

contained not only inside the nucleus area but also in its neighborhood. The method

was tested in a large image data set and it presents higher performance compared with

segmentation methods based on deformable models (GVF, ACM). This method can be

extended in the future with the investigation of the ability of the detected features for

the recognition of normal and abnormal nuclei in Pap smear images.

Furthermore, a method for the boundary determination of overlapping nuclei is de-

scribed in Chapter 5. The method incorporates a priori knowledge about the nuclei

shape, and it is based on the training of a physically based deformable model in terms

of modal analysis. Based on the estimated modal distribution and driven by the image

characteristics the method succeeds in the determination of the nuclei boundaries in im-

ages containing two overlapping nuclei. The introduction of the locally adaptive image

force using appropriate weight parameters, controls the contribution of the image force in

the total energy of the deformable model. Thus, in the overlapping area, the deformation

of the model is mainly driven by the learnt parameters obtained through the training

procedure. Comparisons with other segmentation methods, proposed especially for the

separation of overlapped nuclei, indicate that our method produces more accurate nuclei

boundaries. In the future, the examination of the e�ciency of our method in the seg-

mentation of images containing three or more overlapped nuclei is an interesting research

issue. Furthermore, the method can be extended with the development of an anterior

step which would automatically determine the number of the overlapped nuclei.

In the above methods, the segmentation of cells nuclei in Pap smear images is e�-

ciently addressed. The nucleus is the part of the cell which presents signi�cant changes

in abnormal circumstances and in contrast to the cytoplasm its segmentation is feasible
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in an automated manner. Thus, in Chapter 6, we investigated the case of the successful

classi�cation of cells in normal and abnormal categories based on features extracted ex-

clusively from the nucleus area and ignoring the contingent cytoplasm features. We have

examined non-linear dimensionality reduction schemes, in order to produce accurate rep-

resentation of the features manifold and their inuence on the classi�cation performance

of two unsupervised classi�ers. The results indicate that high classi�cation performance

is achieved when only the nuclei features are used. In the future, experiments with super-

vised classi�ers using exclusively nuclei features lying in low dimensional manifolds may

provide an interesting extension of the proposed method.

The combination of all the methods described in this thesis could result in the develop-

ment of an integrated fully automated system for the analysis of Pap smear slides, which

would embody automated nuclei segmentation, nuclei feature extraction and �nally clas-

si�cation. The methods described in this thesis are general and suitable for the addressing

of the speci�c problems that Pap smear images processing presents. However, we can as-

sert that their application is not limited only to these images, as the nuclei segmentation

is the main �eld of research interest for the detection of the cancer in several cytological

images. In the �eld of biomedical image analysis, the processing of microscopic images

containing cells from several tissues, such as breast, lung or blood, occupies a large part of

the scienti�c community. Thus, the proposed methods in this thesis, with the appropriate

modi�cations, could be applied to a large range of microscopic images, resulting in the

accurate segmentation and classi�cation of the cells nuclei.
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Appendix A

A. Fuzzy C-means clustering

The standard fuzzy C-means [62] objective function for partitioning a set of N unlabeled

column vectors in Rp (where p is the number of features in each vector) Xk; 1 ≤ k ≤ N

into c clusters is given as:

Jm =
c∑

i=1

N∑
k=1

�mik∥xk − vi∥2; (A.1)

where {vi}ci=1 are the prototypes of the clusters. The parameter m is the weighting

exponent on each fuzzy membership, which determines the amount of fuzziness of the

resulting classi�cation. �ik represents the membership value of the feature vector xk in

cluster i. The following conditions must hold [62]:

0 ≤ �ik ≤ 1; i = 1; ::; C; k = 1; ::; N
c∑

i=1

�ik = 1; k = 1; ::; N (A.2)

0 ≤
N∑
k=1

�ik ≤ N; i = 1; ::; C

The set of values satisfying the above conditions can be arranged in a matrix of the

form U [c;N ]. The fuzzy C-means objective function is minimized when high membership

values are assigned to pixel data which are close to the centroid of its particular class.

Low membership values are assigned to pixel data located far from the centroid. For

the determination of crisp clusters, each column vector xk is assigned to a cluster with

maximum membership value.

B. Support Vector Machines

Given a training set D = {(xi; yi)|xi ∈ Rp; yi ∈ {−1; 1}}ni=1, where xi are the data and yi
is the label for each xi, the support vector machine (SVM) [63] determines the decision

hyperplane between the two classes y1 and y2, which is obtained by the solution of the
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following optimization problem:

min
w;b;�

{
1

2
wTw+ C

n∑
i=1

�i

}
subject to yi(w

T�(xi) + b) ≥ 1− �i; �i ≥ 0; i = 1::n (A.3)

where w is a normal vector perpendicular to the hyperplane, C is a positive constant that

reects the inuence of margin errors, b determines the o�set of the hyperplane from the

origin along the normal vector w and �i are slack variables, which measure the degree of

misclassi�cation of the datum xi. The function �(xi) maps the training vectors (xi) into

a higher dimensional space. If we consider the dual form of this problem, the decision

function is

sgn

(
n∑
i=1

(yiaiK(xi; x) + b

)
; (A.4)

where the terms ai; i = 1; ::; n constitute a dual representation for the weight vector in

terms of the training set, such as:

w =
∑
i

aiyixi: (A.5)

Furthermore, K(xi; xj) = �(xi)
T�(xj) is the kernel function. In our experiments we

have used the linear and the radial basis function (RBF) kernels, which are given by:

K(xi; xj) = xTi xj; (A.6)

and

K(xi; xj) = exp
(
−∥xi − xj∥2

)
;  > 0; (A.7)

respectively.

C. Spectral Clustering

Given a set of vectors (x1; x2; ::; xN); xk ∈ Rp and the number c of desired clusters to be

separated, the spectral clustering algorithm [74] performs the following steps:

1. De�ne the a�nity matrix AN×N as Ai;j = exp(−∥xi − xj∥2=2�2).

2. De�ne the diagonal matrix DN×N as Dii =
∑
i

Aij

3. De�ne the matrix L = D−1=2AD−1=2.

4. De�ne the c largest eigenvalues �i; i = 1; ::; c of L and the corresponding eigenvectors

yi; i = 1; ::; c.

5. Form the matrix Y which has as columns the eigenvectors yi.
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6. Normalize each row of Y to have unit length.

7. Treat each row of Y as a point in Rc and cluster them into c clusters via K-means.

8. Assign the original points xi to cluster j if and only if row i of the matrix Y was

assigned to cluster j.
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Appendix B

The watershed transform

The concept of watersheds [101] in image processing is based on considering an image

in three dimensional space, with two spatial coordinates versus intensity. The value of

the intensity is assumed to be the elevation information. In terms of this topographic

representation of the image, the pixels are divided into three categories: pixels of re-

gional minima, pixels of catchment basins and pixels of watershed lines, which sepa-

rate neighboring catchment basins and consequently they separate di�erent characteristic

parts of the image. For the detection of the watershed lines in an image I with regional

minima M1;M2; :::;MR a ooding process is performed in integer ood increments from

n0 = min(I) + 1 to nmax = max(I) + 1. Let C(Mi); i = 1; ::; R be the sets of points in the

catchment basin corresponding to the regional minimum Mi and let C[n] be the union

of the ooded catchment basins at stage n of the ooding process. The set of the image

points with intensity value lower than n is de�ned as T [n] = {p|I(p) < n}. The above

sets of points are initialized as C[min(I) + 1] = T [min(i) + 1]. In the next steps of the

algorithm, the set C[n] is sequentially derived from C[n− 1] as follows:

Let Q be the set of the connected components in T [n]. Then for each connected compo-

nent q ∈ Q the intersection � with the set C[n − 1] is calculated as � = q ∩ C[n − 1].

Depending on the value of � there are three possibilities:

1. If � is empty then a new minimum is present and the connected component q is

added into C[n− 1], thus C[n] = C[n− 1] ∪ q.

2. If � contains one connected component of C[n − 1] then q belongs to an existing

catchment basin of a regional minimum and consequently C[n] = C[n− 1] ∪ q.

3. If � contains more than one connected component of C[n − 1] this means that q

partially belongs to di�erent catchment basins and the next step of ooding would

cause the water level in these catchment basins to merge. For this reason, a wa-

tershed line must be constructed to prevent the overow between these catchment

basins.

The application of the watershed transform in this form usually results in oversegmenta-

tion of the image, because of the presence of artifacts and noise. To avoid this undesirable
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e�ect, the watersheds are applied in edge images with markers, which are connected com-

ponents belonging to speci�c regions of interest in the image and they are used as starting

points of the ooding process.
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Appendix C

Local Binary Patterns

According to [3], the texture T in a local neighborhood of a monochrome image is the

joint distribution of the gray levels of P (P > 1) image pixels:

T = t(gc; g0; ::; gP−1); (C.1)

where the gray value gc corresponds to the gray value of the center pixel of the neighbor-

hood and gp(p = 0; ::; P − 1) correspond to the gray values of P equally spaced pixels on

a loci of points (usually a circle with radius R(R > 0)). By subtracting the gray value of

the center pixel gc from the gray value of the neighborhood pixels, we obtain an equivalent

form of the texture, that is:

T = t(gc; g0 − gc; g1 − gc; ::; gP−1 − gc); (C.2)

If we assume that the di�erences gp− gc are independent of gc, (C.1) can be factorized as:

T ≈ t(gc)t(g0 − gc; g1 − gc; ::; gP−1 − gc); (C.3)

and since the distribution t(gc) describes the overall luminance of the image, it does not

provide useful information for texture analysis, leading to a simpli�ed form of (C.2)

T ≈ t(g0 − gc; g1 − gc; ::; gP−1 − gc); (C.4)

which is a highly discriminative texture operator, as it records the occurrences of various

patterns in the neighborhood of each pixel in a P -dimensional histogram. The invariance

with respect to the scaling of the gray scale is achieved by considering just the signs of

the di�erences gp − gc and not their exact value:

T ≈ t(s(g0 − gc); s(g1 − gc); ::; s(gP−1 − gc)); (C.5)

where

s(x) =

{
1; x ≥ 0

0; x < 0
;
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By assigning a binomial factor 2p for each sign s(gp − gc), (C.4) is transformed into a

unique LBPP;R number that characterizes the spatial structure of the local image texture:

LBPP;R =
P−1∑
p=0

s(gp − gc)2
p: (C.6)

It is observed that certain local binary patterns are fundamental properties of texture,

and they are characterized as \uniform". The uniformity measure U(pattern) corresponds

to the number of spatial transitions (bitwise 0=1 changes) in the pattern. In general, the

operator for grayscale texture description using rotation invariant uniform patterns intro-

duced by [3] is de�ned as:

LBP riu2
P;R =


P−1∑
p=0

s(gp − gc); if U(LBPP;R) ≤ 2

P + 1; otherwise

(C.7)

where U(LBPP;R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gP − gc)− s(gp−1 − gc)|.
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