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 ABSTRACT 

Eftychia Baikousi. 

PhD, Computer Science Department, University of Ioannina, Greece, January 2012. 

Title of Dissertation: Materialized Views for top-k queries: Query Processing, View 

Refreshment and Similarity. 

Supervisor: Panos Vassiliadis. 

 

Nowadays, there is a huge amount of data available to users. Due to the variety and 

great volume of data, retrieving the most important pieces of information, can become 

an overwhelming task. In the areas of Information Retrieval and Data Management, 

researchers have paid attention to the generic problem of retrieving the top-k similar 

objects from a repository according to a users preference query. In the field of Data 

Management, this problem is known as top-k querying problem. In the field of 

Information Retrieval, in applications such as multimedia retrieval, the problem is 

mainly addressed as finding the most similar objects to a given one according to a 

similarity metric. The goal of this thesis is to explore and investigate the answering of 

top-k queries through the exploitation of materialized top-k views. In addition, we 

study the problem of capturing the distance function that best complies with human 

perception for finding the similarity between two data collections of multidimensional 

points under the form of OLAP cubes.  

 

The top-k querying problem concerns the retrieval of the top-k results of a ranked 

query over a database. Specifically, given a relation R (tid, A1, A2,..., Am) and a query 

Q over R the desideratum is to retrieve the top-k tuples from R having the k highest 

values according to a scoring function f that accompanies Q. In an effort to improve 

the performance of the retrieval of top-k tuples from R, we study the problem by 

taking into consideration results from previously posed queries that are cached as 

materialized views. We study the problem by acquainting a geometric representation 

and we provide theoretical guarantees on whether a materialized view is able to 
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answer a top-k query. We proceed by proposing the SafArI algorithm for deciding the 

usability of a materialized view as well as the answer of the top-k query, in case the 

view is suitable for the query. 

 

In the presence of updates in the relation over which a set of views is defined, we 

provide a method for keeping the top-k materialized views up to date without needing 

to re-compute them and provide results in two directions. Firstly, we deal with the 

problem of maintaining top-k views in the presence of high deletion rates and provide 

a principled method that is independent of the statistical properties of the data and the 

characteristics of the update streams. Secondly, we assess the problem of efficiently 

maintaining multiple top-k views, where we provide theoretical guarantees for the 

nucleation of a view with respect to another view and the reflection of this property to 

the management of updates. Further on, we propose an algorithm that maintains a 

large number of views, via their appropriate structuring in hierarchies of views.  

 

Apart from finding top-k answers for data in the form of multidimensional points, we 

also assess the problem of finding how similar are two collections of data according to 

human perception. To put the question a little more precisely, given two sets of points 

in a multidimensional hierarchical space, what is the distance between these two 

collections? In applications such as multimedia information retrieval and digital 

libraries, where contemporary data lead to huge repositories of heterogeneous data 

stored in data warehouses, there is a need of similarity search that complements the 

traditional exact match search. We address the problem by (a) organizing alternative 

distance functions in a taxonomy of functions and (b) experimentally assessing the 

effectiveness of each distance function via a user study in order to discover which 

distance function is mostly preferred by the users. 
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ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ 

Ευτυχία Μπαϊκούση. 

PhD, Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Ιανουάριος 2012. 

Τίτος ∆ιατριβής:  

Επιβλέπων: Παναγιώτης Βασιλειάδης. 

 

Λόγω του µεγάλου όγκου δεδοµένων και της πληθώρας πληροφοριών που είναι 

διαθέσιµες στους χρήστες µέσω διαδικτύου και όχι µόνο, είναι αναγκαία η αποδοτική 

ανάκτηση των πιο ενδιαφερόντων και προτιµητέων πληροφοριών. Τόσο στην περιοχή 

της Ανάκτησης ∆εδοµένων όσο και στο χώρο των Βάσεων ∆εδοµένων, οι ερευνητές 

έχουν ασχοληθεί µε το γενικότερο πρόβληµα της ανάκτησης και εξόρυξης των κ πιο 

όµοιων αντικειµένων από ένα σύνολο αντικειµένων σύµφωνα µε τις προτιµήσεις που 

θέτουν οι χρήστες. Συγκεκριµένα, στο χώρο των Βάσεων ∆εδοµένων, το πρόβληµα 

διατυπώνεται ως η ανάκτηση της απάντησης κατατακτήριων ερωτήσεων µε άνω όριο 

αποτελεσµάτων. Στο χώρο της Ανάκτησης ∆εδοµένων, το πρόβληµα κυρίως 

απαντάται ως η εύρεση των πιο όµοιων αντικειµένων ως προς ένα δεδοµένο 

αντικείµενο, όπως, παραδείγµατος χάριν, σε εφαρµογές ανάκτησης δεδοµένων από 

βάσεις πολυµέσων. Ο στόχος της παρούσας διατριβής είναι η µελέτη και η έρευνα 

του προβλήµατος της ανάκτησης των αποτελεσµάτων κατατακτήριων ερωτήσεων µε 

άνω όριο αποτελεσµάτων µέσω της χρήσης υλοποιηµένων όψεων. Επιπρόσθετα, 

µελετάται το πρόβληµα του εντοπισµού της συνάρτησης απόστασης που µπορεί να 

χρησιµοποιηθεί ώστε να εκφράσει την ανθρώπινη αντίληψη για την εύρεση της 

οµοιότητας από δυο συλλογές δεδοµένων στο πολυδιάστατο χώρο.  

 

Το πρόβληµα της απάντησης κατατακτήριων ερωτήσεων µε άνω όριο 

αποτελεσµάτων αφορά την ανάκτηση των κ αποτελεσµάτων µε την υψηλότερη τιµή 

σύµφωνα µε µια κατατακτήρια ερώτηση που τίθεται σε µία βάση δεδοµένων. 

Συγκεκριµένα, δοθείσης µιας σχέσης R (tid, A1, A2,..., Am) και µιας ερώτησης Q πάνω 

στην R, ο στόχος είναι η ανάκτηση των κ πλειάδων από τη σχέση R τέτοιων ώστε να 



xiii 

 

 

έχουν τις κ υψηλότερες τιµές σύµφωνα µε µια συνάρτηση βαθµολόγησης που 

συνοδεύει την ερώτηση Q. Σε µια προσπάθεια να βελτιώσουµε την απόδοση της 

ανάκτησης των κ υψηλότερων, ως προς την τιµή, πλειάδων από τη σχέση R, µελετάµε 

το πρόβληµα κάνοντας χρήση των αποτελεσµάτων που ανακτήθηκαν από 

προηγούµενες ερωτήσεις και τα οποία έχουµε αποθηκεύσει µε την µορφή 

υλοποιηµένων όψεων. Μελετάµε το πρόβληµα υιοθετώντας µια γεωµετρική 

αναπαράσταση και παρέχουµε θεωρητικές εγγυήσεις για το κατά πόσο τα 

αποτελέσµατα της υλοποιηµένης όψης µπορούν να προβούν αρκετά ώστε να 

απαντηθεί η κατατακτήρια ερώτηση µε άνω όριο αποτελεσµάτων. Προτείνουµε τον 

SafArI αλγόριθµο για την απόφαση της χρησιµότητας της υλοποιηµένης όψης καθώς 

και για την απάντηση της κατατακτήριας ερώτησης µε άνω όριο αποτελεσµάτων όταν 

η χρήση της όψης είναι κατάλληλη για την δοθείσα ερώτηση. Ο αλγόριθµος 

στηρίζεται στην αποκαλούµενη ασφαλή περιοχή (safe area) µιας υλοποιηµένης όψης, 

η οποία ορίζεται αφενός από την όψη και αφετέρου από µία ερώτηση µε άνω όριο 

αποτελεσµάτων.  

 

Επιπλέον, προτείνουµε µια µέθοδο για την διατήρηση της ενηµερότητας των 

υλοποιηµένων όψεων µε άνω όριο αποτελεσµάτων χωρίς να χρειαστεί ο 

επανυπολογισµός τους, όταν προκύπτουν ενηµερώσεις σε µια σχέση πάνω στην οποία 

είναι ορισµένες οι όψεις. Το πρόβληµα µελετάται προς δύο κατευθύνσεις. Πρώτον, 

αντιµετωπίζουµε το πρόβληµα σε συνθήκες αυξηµένου ρυθµού διαγραφών και 

προτείνουµε µια καλά ορισµένη µέθοδο ανεξάρτητη των στατιστικών ιδιοτήτων που 

έχουν αφενός τα δεδοµένα και αφετέρου, οι ενηµερώσεις. ∆εύτερον, επιλύουµε το 

πρόβληµα της αποδοτικής ενηµέρωσης υλοποιηµένων όψεων µε άνω όριο 

αποτελεσµάτων, όπου προτείνουµε θεωρητικές εγγυήσεις για τον εγκλεισµό µιας 

όψης από µια άλλη όψη και το αντίκτυπο αυτής της ιδιότητας στην διαδικασία 

διατήρησης της ενηµερότητας πολλαπλών όψεων. Συγκεκριµένα, προτείνουµε 

αλγοριθµικές τεχνικές για την διατήρηση της ενηµερότητας πολλών όψεων 

κατασκευάζοντας και κάνοντας χρήση κατάλληλων ιεραρχικών δοµών των όψεων.  

 

Εκτός της απάντησης ερωτήσεων µε άνω όριο αποτελεσµάτων από δεδοµένα του 

πολυδιάστατου χώρου, επιλύουµε το πρόβληµα της εύρεσης της οµοιότητας δυο 

συλλογών δεδοµένων. Συγκεκριµένα, το πρόβληµα εντοπίζεται στην εύρεση της 
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κατάλληλης έκφρασης της οµοιότητας δυο συλλογών δεδοµένων σύµφωνα µε την 

ανθρώπινη αντίληψη. Με άλλα λόγια απαντάµε στο εξής ερώτηµα: ∆οθέντων δυο 

συνόλων που περιέχουν σηµεία του πολυδιάστατου ιεραρχικού χώρου, ποια είναι η 

απόσταση ανάµεσα στα δεδοµένα δύο σύνολα; Ειδικά σε εφαρµογές όπως η 

ανάκτηση πληροφοριών από βάσεις δεδοµένων υπό τη µορφή πολυµέσων καθώς και 

ψηφιακές βιβλιοθήκες, υπάρχει επιτακτικά η ανάγκη της εύρεσης οµοιότητας 

δεδοµένων που συµπληρώνει την παραδοσιακή εύρεση του απόλυτα ταιριαστού 

αντικειµένου ως προς ένα άλλο δεδοµένο. Ιδιαίτερα σε τέτοιου είδους εφαρµογές, η 

φύση των δεδοµένων οδηγεί σε τεράστιες συλλογές δεδοµένων διαφορετικού τύπου 

τα οποία αποθηκεύονται σε αποθήκες δεδοµένων. Μελετάµε το πρόβληµα σε δύο 

άξονες. Πρώτον, οργανώνουµε διάφορα είδη συναρτήσεων αποστάσεων σε µια 

ταξινοµία συναρτήσεων. ∆εύτερον, αποτιµούµε πειραµατικά την 

αποτελεσµατικότητα της κάθε συνάρτησης απόστασης µέσω µιας πειραµατικής 

µελέτης µε πραγµατικούς χρήστες ώστε να ανακαλύψουµε την συνάρτηση απόστασης 

που προτιµάται κατά κύριο λόγο από τους χρήστες. 
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CHAPTER 1.  INTRODUCTION 

1.1 Terminology and Contribution in a Nutshell 

1.2 Thesis Contribution & Outline 

 

 

Due to the vast amount of data and information available to users (especially via the 

Web), the problem of retrieving the most important pieces of information can become 

an overwhelming task. In the areas of Information Retrieval and Data Management, 

researchers have been attracted to the generic problem of retrieving the top-k similar 

objects from a repository according to a user’s preference query. In the field of Data 

Management, this problem is known as top-k querying problem. In the field of 

Information Retrieval (e.g., in applications such as multimedia retrieval), the problem 

is mainly addressed as finding the most similar objects to a given one according to a 

similarity metric. Consider for example, a database containing data about hotels, 

restaurants and attractive places to see in a designated area where travelers arrive at an 

airport. When airplanes arrive, several potential sightseers arrive with it, at the same 

time a massive number of travelers depart. Assume that travelers are equipped with 

wireless devices such as smart phones or tablets and can connect to the airport’s 

server. Assume a relation Traveler (t_id, t_age, t_maritalStatus, …) as well as 

relations about the traveler’s profile and travelling history. For a municipal employee 

who is assigned to advertise the interesting places to travelers, it is important to find 

the top-k attractions according to their profiles. In order to do so, the employee uses 

queries with scoring functions over the traveler’s characteristics. For instance, assume 

the employee wants to advertise the Christmas Village that the municipal built for the 

Christmas Holidays at present. Thus, the employee needs to create a profile for the 

new attraction. The profile includes a formula that assigns a score for potential 

sightseers according to similarity functions that match the characteristics of the 
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attraction to the characteristics of the traveler. To speed things up, it is reasonable to 

find the top-k travelers in order to send them the related advertisement. In other 

words, the employee’s task is reduced to finding the top-k travelers according to the 

employee’s scoring function. Due to the departures of the airplanes, the top-k list of 

travelers needs to be refreshed so that the remaining possible sightseers are notified. 

Therefore, the top-k list of travelers should be maintained when updates occur in the 

relation Travelers.  

1.1. Terminology and Contribution in a Nutshell 

The goal of this thesis is to explore and investigate the answering of top-k queries 

through the exploitation of materialized top-k views. To clarify the aforementioned 

statement for the non-expert reader, we have to provide informal explanations of the 

two terms that define its essence. 

• A top-k, or ranking query requests the k highest tuples of a relation R 

according to a scoring function over the attributes of the relation.  

• In the field of databases the term (relational) view comes in two flavors 

[Rous97]. The first category of views comes under the terms plain view, 

unmaterialized view, or simply view, and it is actually a query expression in 

the form of a macro with no extensional attachments which is executed at run-

time. In simple terms, we can register a query to the database management 

system as a view; then, subsequent queries can reuse this query as a data 

source. Note that the results of the query are not cached in the system and, 

thus, whenever used in another query, a plain view acts as a macro that is 

resolved to its original constituents, integrated in the new query and executed 

as part of it. If, on the other hand, we wish to speed up the execution of the 

subsequent queries, we can register a view as a materialized view. A 

materialized view caches the results of the query and therefore, it can acts as a 

typical relation in the execution of subsequent queries. At the same time, 

whenever updates occur to the relations that are used in the definition of the 

materialized view, the latter has to be refreshed with the new data. In both 

their families, views are characterized by the duality of coming with (a) a 

query expression that defines them (thus they are queries in a sense) and (b) a 
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set of tuples (the result of the query) that makes them appear as relations, too 

(either computed on the fly, or appropriately materialized in the background). 

In any case, views are a powerful mechanism, frequently used to make the life 

of the developer easier and the execution of the system faster. 

In this thesis, we refer to the notion materialized ranking view in order to describe a 

materialized view that contains the results of a top-k query. Apart from answering top-

k queries through materialized views, we also study the problem of maintaining top-k 

materialized views in the presence of updates in the relation such that the views can 

be up to date and useful for the answering of top-k queries. In addition, in order to 

express similarity between objects there is the need of discovering the distance 

functions that users prefer for computing the similarity of two data collections. In 

order to do so we resort to the simplest framework that can be given to a user to work 

with and that is OLAP Cubes. Thus, we provide a taxonomy of the distance functions 

used for collections of multidimensional data and conduct an extensive user study 

analysis in order to reveal the most preferred function by users.  

1.2. Thesis Contribution & Outline 

The technical contributions of this thesis are organized in three chapters, each solving 

one of the three aforementioned problems. In the sequel, we give an overview of the 

technical contributions of each chapter; in the final chapter of this thesis, we conclude 

our results and present insights for future work. 

 

Answering top-k Queries via Materialized Views  

In Chapter 2, we work on the problem of answering top-k queries by making use of 

materialized ranked views. We provide theoretical and algorithmic results for the 

above problem. Firstly, we adopt a geometric representation of the top-k query 

problem and then we conduct a theoretical analysis for providing theoretical 

guarantees for the suitability of a materialized view in order to answer a top-k query. 

Specifically, we provide theoretical guarantees for the adequacy of a view to answer a 

top-k query, along with algorithmic techniques to compute the query via a view when 

this is possible. Initially, we study the problem for a top-k query answering in the 

2-dimensional space. Following, we generalize the problem for the n dimensional 
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space. In addition, we explore the problem of answering a query via a combination of 

more than one view and show that despite the efficiency of using two views instead of 

one for the answering of a query as demonstrated in the related literature, it is 

impossible to improve our theoretical guarantees for the answering of a query via a 

combination of views. We also discuss the issue of providing partial results for a 

query via a materialized view by splitting the range of score into appropriate sub-

ranges. This way, different parts of the query answer can be obtained in parallel, by 

distributing their processing to different servers. We demonstrate the efficiency and 

effectiveness of our method over a set of extensive experiments over both synthetic 

and real datasets. The results of this chapter have previously been published in 

[BaVa09]. 

 

Maintaining Materialized top-k Views 

In Chapter 3, we study the problem of maintaining materialized top-k views and 

provide results in two directions. The first direction is towards maintaining top-k 

materialized views in the presence of high deletion rates. We propose a principled 

method that complements the inefficiency of the state of the art independently of the 

statistical properties of the data and the characteristics of the update streams. Our 

method consists of the following steps: (a) a computation of the rate that actually 

affects the materialized view, (b) a computation of the necessary extension to k in 

order to handle the augmented number of deletions that occur and (c) a fine tuning 

part that adjusts this value to take the fluctuation of the statistical properties of this 

value into consideration. Secondly, we deal with the problem maintaining multiple 

top-k views and their efficient maintenance in the presence of updates to their base 

relation. To this end, we provide theoretical guarantees for the establishment of the 

effect of updates to a certain view, whenever we know that another view has been 

updated. We introduce the notion of nucleation (i.e., dominance relationship) between 

views and based on this notion we propose a hierarchical structure of the materialized 

views. Through the appropriate hierarchical structuring of the views we provide 

algorithmic results towards the maintenance of a large number of views. Finally, we 

show that our method accurately sustains intervals with high deletion activity in the 

workload through our experiments. In addition, we show that our method outperforms 

the state-of-the-art, as the computation of the exact number of auxiliary view tuples is 
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faster than the computation of refill queries as proposed in the related literature. The 

results of this chapter have previously been published in [BaVa07], [BaVa10].  

 

Similarity Measures for Multidimensional Data 

As already mentioned, in Chapter 2 and 3 we deal with the problem of answering top-

k queries from data in the form of points in the multidimensional space. Each top-k 

view or query is a collection of such points, ranked according to a scoring function. 

However, although we have answered the question “Given a query, can we use a view 

to answer it?” we have not answered the question “Given a query and a set of views, 

can we find the one that is most similar to it?”. We believe that in the heart of this 

problem of view similarity is the answer to the question “How similar are two data 

collections?”. In Chapter 4 we study the problem of discovering the distance functions 

for computing the similarity of two data collections, according to what real users 

actually think. In order to do so, we resort to the simplest framework that can be given 

to a user to work with and that is OLAP Cubes and hierarchical multidimensional 

spaces. OLAP is preferred for simplicity as it organizes data in dimensions and 

measures that are most intuitive to users. We model a collection of data in the form of 

a multi-dimensional array called Cube. Specifically, we provide a taxonomy of 

distance functions that are applied between two OLAP cubes. We provide an 

extensive user study that reveals the distance functions that more close to human 

perception. In the first user study analysis we discover, which distance function 

between two values of a dimension is best with regard to the user needs. We show 

that our findings indicate that the distance function δLCA,P, which is expressed as the 

length of the path between two values and their common ancestor in the dimension’s 

hierarchy is the most preferred by users in our experiments. Moreover, two more 

functions are widely chosen by users. These are the highway functions δAnc that is 

expressed with regard to the ancestor xy and δH,Desc that is expressed by selecting the 

representative from a descendant. According to this findings, in the second user study 

we aim in discovering which distance function (the closest relative or the Hausdorff 

distance function) from the category of distance function between two data cubes, 

users prefer. Overall, the former function was preferred by the users than the latter; 

however the individual scores of the tests indicate that this advantage is rather narrow. 

The results of this chapter have previously been published in [BaRV11]. 
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CHAPTER 2. VIEW USABILITY FOR 

ANSWERING TOP-K QUERIES OVER 

MATERIALIZED VIEWS 

2.1 Background and Related Work 

2.2 Adequacy of a Materialized View to Answer a Query for the 2D Case 

2.3 Queries and Views with More than Two Scoring Attributes 

2.4 Working with More Than One Views 

2.5 Experiments 

2.6 Chapter Summary and Findings  

 

The first problem that we address in this thesis is finding an answer to the question on 

how we can decide on the suitability of a materialized ranking view to answer a 

ranking query. 

 

Before proceeding, we formally define a top-k or ranking query. 

Given  a relation R (tid, A1, A2, ... Am) and a query Q over R having the form of a 

score function ℜ→×× )A(dom...)A(dom:f m1 ,  

Retrieve  the top-k tuples from R  

Having  the k highest values according to the scoring function of Q. 

 

In this Chapter, we first describe the related literature and background. For reasons of 

presentation, we start our technical analysis in Section 2.2 with an analysis of the 

problem of answering a top-k query through the usage of materialized views for the 

2-dimensional case. Specifically, we provide theoretical guarantees for the suitability 

of a materialized view in the answering of the query and propose the adequate 

algorithm, the 2DSafArI algorithm. In Section 2.3 we generalize the problem and our 
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findings for the n dimensional case. Then, in Section 2.4 we deal with the problem of 

answering top-k queries through the usage of more than one materialized views. 

Firstly, we show that the usage of the union of the safe areas of two views do not add 

better guarantees for the answering of a query. Secondly, we exploit the problem of 

answering a top-k query by parallelizing its process and assigning different parts of 

the query’s answer to a different view and then uniting the results. In Section 2.5 we 

present the results of our experiments for our proposed methods. Finally, in Section 

2.6 we summarize our findings.  

2.1. Background and Related Work 

In this section, we give an overview of the basic algorithms that answer a top-k query 

over a relation R. Firstly we describe the algorithms that provide an answer to a top-k 

query. Secondly, we describe the algorithms that make use of materialized views in 

order to answer a top-k query. Although, we discuss the related work that pertains to 

the problems of this thesis in detail, it is possible that a reader is interested for a more 

extensive coverage of the area, outside the bounds of this thesis’ problems; in this 

case, we refer the interested reader to a comprehensive survey by Ilyas et. al [IlBS08] 

that covers the area of top-k query processing in a broad, yet structured perspective. 

2.1.1. Algorithms for top-k Queries over Relations 

In this section, we give an overview of the basic algorithms that answer a top-k query 

over a relation R.  

 

Fagin’s Algorithm (FA) [Fagi96], [Fagi98] 

In 1996, R. Fagin published his seminal paper [Fagi96] in PODS on the topic of 

combining fuzzy information from multimedia information systems. The problem that 

Fagin attacks is motivated by the area of multimedia databases where a multimedia 

information system integrates data that reside in different database systems and posed 

queries ask for the k highest objects according to a monotone function over the fuzzy 

sets that describe the multimedia object. The problem then is that a user wants to 

score the tuples of the relation according to a scoring function (e.g., rank high the 
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photos with high amounts of blue and low contrast) and keep a fixed amount of them 

e.g., the best (top) k tuples, according to their score. The main idea of the algorithm is 

that every relation is accompanied by several sorted lists, one for each attribute. For 

example, assume a relation R(id, x1, x2) from which we need to retrieve the top-k 

tuples under the scoring function Q: min(x1, x2) where for each attribute there is one 

sorted list (Figure 2.1). Then the goal of the proposed algorithm is to exploit the lists 

in order to speed up the identification of the top-k tuples. Formally, the problem 

addressed by Fagin is as follows. Given a relation R (tid, A1, A2,…, Am), from which a 

set of sorted lists L={(tid, Ai)|tid, Ai∈R} ∀Ai ∈R is formed and a query scoring 

function g(X) such that g(X) is a monotone aggregation function, Fagin’s algorithm 

FA retrieves the top-k tuples of R.  

 

Definition 2.1 (Monotone Aggregation Function). A scoring function g(X) is a 

monotone aggregation function if for any tuple t(x1, …,xm) the following hold  

1. g(t) is an aggregation function over the attribute values of the tuple t and  

2. if for every attribute value xi of tuple t and x’i of tuple t’ such that xi ≤ x’i , then 

g(t) ≤ g(t’) (monotone). 

 

R  Sorted X1 Sorted X2 

ID X1 X2 

a 0.9 0.85 

b 0.8 0.7 

c 0.72 0.2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

d 0.6 0.9 
 

 

 

Figure 2.1. Example of Sorted Lists of a Relation’s Attributes.  

The FA algorithm consists of a three-step process.  

(d, 0.9) 

(a, 0.85) 

(b, 0.7) 

(c, 0.2) 

. 

. 

. 

(a, 0.9) 

(b, 0.8) 

(c, 0.72) 

(d, 0.6) 

. 

. 

. 
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• First, do sorted access to each of the m sorted lists, until there are at least k tuples 

seen in each of the m lists.  

• Secondly, for each tuple X seen, do random accesses to each of the lists to find the 

i
th

 attribute of that tuple, which is xi.  

• Thirdly, for each X seen, compute its score g(X) =g(x1, x2… xm). The output is the 

ordered set {(X, g(X) |X ∈Y} where Y contains the k tuples with the highest scores.  

 

FA is correct when g is a monotone aggregation function. The properties for function 

g are important in the sense that they assure that all tuples not seen under sorted 

access do not participate in the top-k tuples.  

 

Threshold algorithm (TA) [FaLN01] [GüBK00] [NeRa99] 

FA is optimal in high probability sense whereas, the threshold algorithm is instance 

optimal. Similarly to FA, TA can be applied over a relation having m attributes. TA is 

expressed through a three-step process: First do sorted access in parallel to each of the 

m sorted lists. For each tuple X seen under a list, do random accesses to all the other 

lists to find the scores xi
 
of X. Compute the score g(X) =g(x1, x2… xm) of the tuple X 

and remember X and its score if it is one of the k highest. Secondly, define the 

threshold value τ as g(x1, x2… xm) where xi is the score of the last tuple seen under 

sorted access to each of the lists. Halt when at least k tuples have been seen with score 

at least equal toτ. The output is then the ordered set {(X, g(X)| X∈Y} where Y contains 

the k tuples that have been seen with the highest grades. TA is correct when g is a 

monotone aggregation function.  

 

TA is correct when g is a monotone aggregation function. In addition, [FaLN01] have 

proved that TA is instance optimal. An algorithm B is instance optimal over a class of 

algorithms A and a class of legal inputs D to the algorithms when B∈A and if for 

every A∈A and for every D∈D, we have cost (B, D) =O (cost (A, D)), where cost (B, 

D) is the middleware cost incurring by running the algorithm B over database D.  
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Variations of the Threshold Algorithm 

Apart from TA algorithm, there were a number of variations proposed by researchers. 

The NRA algorithm proposed by [FaLN01] and the LARA algorithm proposed by 

[MCYC06] finds the top-k tuples by conducting only sorted accesses and without 

supporting random accesses over the relation R. The top-k tuples are retrieved but 

their actual scores may not be reported, since the algorithm retrieves the tuples based 

on bounds of their scores. Moreover, [FaLN01] describe the TAz algorithm that is a 

variation the TA algorithm in case sorted accesses are prohibited to all of the sorted 

lists. In addition, [FaLN01] describe the TA-θ algorithm that is an approximation of 

the TA algorithm. Specifically, TA-θ finds a θ approximation of top-k tuples in the 

sense that the algorithm’s stopping condition is reached when at least k tuples with 

score at least equal to τ / θ are retrieved. Finally, [FaLN01] also describe the CA 

(Combined Algorithm) algorithm that allows random accesses but takes into 

consideration the cost of a random access relatively to the cost of a sorted access.  

2.1.2. Algorithms for top-k Queries over a Relation and Materialized Views 

FA and TA are two well-known algorithms that solve the problem of answering top-k 

queries over a database with a quite good performance. The research community was 

quick to provide additional means for the computation of the top-k tuples of such a 

query via the exploitation of indices or/and materialized views. In the setting of 

materialized views, results of previous top-k queries are stored in the form of 

materialized views. Then, a new top-k query may be answered through materialized 

views resulting in better performance than making use only of the base relation from 

the database.  

 

The Onion Technique: Indexing for Linear Optimization Queries [CBC++00] 

The onion technique [CBC+00] consists of the so called onion indices that involve 

layered convex hulls. Specifically, assuming that each tuple is represented as a point 

in the N dimensional space, with a dimension representing the values of an attribute, 

the onion indices are a set of layered convex hulls of these points (Figure 2.2). These 

convex hulls can be used in order to retrieve in a consecutive way the top-1 tuple, top-

2 tuple and so on until all top-k tuples are retrieved. The top-1 tuple is retrieved by 
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exploiting the outmost convex hull, the top-2 tuple is retrieved by exploiting the 

remaining points of the outmost convex hull along with the points of the next layered 

convex hull and so on, and until all top-k points are retrieved. Since this method 

consists of an indexing technique, it provides performance gains. Nevertheless the 

main drawback of this technique is the fact that it cannot be used when the top-k 

query involves constraints such as predicates on attribute values. Also, the 

construction of the convex hulls is time consuming and thus it is not suitable 

especially in the presence of updates in the relation.  

 

 

Figure 2.2. Convex Hulls in 2 Dimensional Space. 

Rank Join Indices [TPK++03] 

Apart from the Onion indices, the Rank-join indices [TPK+03] is another type of 

indices for the retrieval of top-k results. Tsaparas et al. ([TPK+03]) solve the problem 

of top-k query answering under the following setting:  

 

Given Two relations R(A1, A2, … An), S(B1, B2, …Bm) with A1 and B1 being rank 

attributes, from which a new relation R ⊳⊲θ S (A1, B1) is obtained by joining 

R and S over the attributes A2, …An and B2, … Bm.,  

Find the top-k tuples from R ⊳⊲θ S according to a linear scoring function over the 

attributes A1 and B1. 

 



13 

 

 

The problem addressed consists of two sub-problems. The first sub-problem is to 

prune unnecessary tuples that will not be part of the top-k answer prior to the join 

result. The second sub-problem is to index and materialize the remaining tuples in 

order to answer any top-k linear query. In order to retrieve the top-k tuples from the 

join results there is no need to join all tuples from R with all tuples of S. Thus, the first 

sub-problem is to prune the join results. Given a relation R of size n (i.e., |R| = n) and 

a relation S, in order to find the top-K tuples of the joined results, we can join each 

tuple in R only with the top-K tuples of S. Thus, in the worst case, the join result will 

produce n·K tuples instead of |R|×|S|. In addition, if a tuple in the joined result is 

dominated by at least K tuples then this tuple can be excluded from the joined (n·K) 

tuples since this tuple will never be part of any top-k answer with k ≤ K. For a tuple t 

(s1, s2) in the 2-D space, t is dominated by t’ (s’1, s’2) if and only if s1≤s’1 and s2≤s’2. 

In order to retrieve the top-K tuples from R ⊳⊲θ S, the two initial steps are:  

a. Find n·K joined tuples, denoted as C and  

b. Exclude from C the dominated tuples, i.e., exclude all tuples that are 

dominated by at least K tuples from C, this new set is denoted as DK. 

 

 

Figure 2.3. Vector Representation of Scoring Function and Rank Attributes.  

For any linear function f and a value k≤K, the top-k tuples of R ⊳⊲θ S in regards to f 

can be retrieved by only taking into consideration tuples in the set DK. So, the second 

sub-problem is to manage to index-materialize DK in order to answer any top-k linear 
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query (with k≤K). Assume that any tuple from DK, is represented as a point in the 2-D 

space whose dimensions are the two rank attributes A1 and B1. Any linear scoring 

function f = w1·x +w2·y is represented as a vector beginning from the origin of the axes 

and ending at the point (w1, w2). The score of a tuple t in regards to a scoring function 

f is found by computing the length of the projection of tuple t over the vector f as 

shown in Figure 2.3. 

 

The ordering of the tuples in regards to the scoring function of f can be found by 

ranking the length of the projections of the tuples over f. The problem is to determine 

how the ordering of tuples alters when the scoring function f sweeps the 2-D space. 

The 2-D space is swept by using a vector of increasing angle in order to represent any 

possible linear scoring function by changing the weight factors of f. Thus, the scores 

of a tuple t in regards to any linear scoring function f can be materialized. The 

ordering of the tuples from Dk in regards to a scoring function f can be found by 

ranking the length of the projections of the tuples over f. The problem is to determine 

how the ordering of tuples alters when the scoring function f sweeps the 2-D space.  

 

 

Figure 2.4.Possible Orderings of Tuples t1 and t2. (a) 

Assume two tuples t1 and t2 with t1t2 being the line segment of the two tuples. In case 

the slope of t1t2 is positive (Figure 2.4a), then the ordering between t1 and t2 is the 

same for all possible scoring functions. In case the slope of t1t2 is negative (Figure 

2.4b), then the ordering between t1 and t2 is reversed depending on the position of the 
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vector f. For a vector f being positioned “lower” from the perpendicular line to t1t2 and 

a vector f’ being “upper” from the perpendicular line to t1t2 the ordering of the two 

tuples t1 and t2 is reversed for these two vectors.  

 

For each pair of tuples, the separating vector is constructed. The separating vector of 

two tuples t1 and t2 is the vector which is perpendicular to the line segment t1t2. The 

set of all separating vectors for the tuples from the set DK is denoted as V. In addition, 

the separating vectors in V are sorted in descending order in regards to the angle of the 

separating vector with the X-axis. The scoring function f sweeps the 2-D plane staring 

from the X-axis towards the Y-axis. When f meets a separating vector the new 

ordering of tuples is computed and materialized. Thus, if there are M separating 

vectors, the space is partitioned into M+1 regions. For each region the ordering of 

tuples is pre-computed and materialized. Therefore, when a top-k query with a linear 

scoring function arises, it is only needed to find the position of f in regards to the 

separating sector of the M+1 sectors of space. By determining the separating region, 

the answer of the top-k query is already pre-computed. In order to efficiently 

determine the separating region in which a new posed top-k query belongs, the 

authors propose an index structure. The index structure consists of B-tree index that 

contains all M separating vectors along with their top-k set, ordered according to the 

vector’s angle in regards to the X-axis. Thus, when a new top-k query arises, the angle 

of the scoring function’s vector is used and searched over the B-tree index, where 

then the corresponding top-k set is returned.  

 

Prefer [HrKP01], [HrPa04] 

The PREFER system introduced in [HrKP01], [HrPa04] answers preference queries 

through the usage of materialized views in a pipelined way. PREFER consists of a 

pre-processing step, the ViewSelection algorithm and the core algorithm 

PipelineResults. In the pre-processing part, PREFER decides which views should be 

materialized according to the system’s performance requirements and a given relation. 

Thus, firstly PREFER executes the ViewSelection algorithm. Given a 

multidimensional space of k dimensions, each normalized in the interval [0, 1] and a 

set of views V over this multidimensional space, the ViewSelection algorithm 

computes a set of views V’, VV ⊆′ that maximizes the number of points covered in 
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[0, 1]
k
 . Each view contains all tuples from the relation ordered according to each 

scoring function. In order to answer a new posed top-k query, the PREFER system 

selects the materialized view that best matches the new top-k query. Since every 

materialized view contains all tuples of the relation, any one of them could be used 

and would definitely provide the answer to the new top-k query. The materialized 

view that best matches the new query is the one that will access the less number of 

tuples in order to provide the new answer.  

 

The answer of the new query q is retrieved in a pipelined way through the tuples of 

the materialized view v. The goal of the PipelineResults algorithm is to rank the tuples 

of a relation R(A1, ...,Am) of m attributes, according to a query q. The query q is 

characterized by a preference vector. A preference vector is of the form (w1, w2, 

…wm) where each coordinate wi denotes the preferred weight of the i-th attribute. 

Therefore, the scoring function of q becomes ∑ = ⋅m
i ii Aw1 . Algorithm PipelineResults 

employs a views Rv(tid, scorev) that contains the tuples of R, ranked by another 

preference vector v. Assume that the first set of tuples seen from the view v contains l 

tuples. In case l ≥ k the answer of the top-k query q can be computed. In case l < k, the 

next set of tuples from v are scanned. This procedure is repeated until k tuples have 

been seen. For each set of tuples from v, the number of tuples seen is based on the 

following property. Assume a top-k query q over a relation R with a scoring function 

Fq and a materialized view v with the scoring function Fv that orders the tuples of R. 

The l
th

 tuple from the first set of tuples seen from v is the maximum value of T q,v
1  

such that for every t in R : Fv(t) < T q,v
1

⇒  Fq(t) < Fq ( tv
1 ) where tv

1 is the top tuple in 

v. For any next iteration, tuple t v
1  is replaced with the tuple that has the highest score 

in v and has not been seen yet. The maximum value 1
q,vT is called the watermark 

value. The watermark value is a score with respect to the ranking function of the 

materialized view that determines how deep in the ranked materialized view we 

should go in order to output the top result tuple of the query This way, the PREFER 

system can answer a top-k query by making use of one materialized view from a set of 

views that rank the entire relation R according to different linear scoring functions. 
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Linear Programming Adaptation of the Threshold Algorithm LPTA [DGKT06] 

The LPTA algorithm is an algorithm that combines the results from materialized 

ranking views in order to answer a top-k query. Informally, a materialized ranking 

view is the materialized results of the tuples of a previously posed top-k query 

according to a linear scoring function. In other words, the LPTA algorithm answers a 

top-k query by making use of the tuples stored in materialized views Therefore, for 

each top-k query LPTA needs to solve two sub-problems: (a) Find the most suitable 

materialized views in order to answer the query and (b) retrieve the answer of the 

query by exploiting the materialized views chosen from the previous sub-problem.  

 

LPTA is based on the TA algorithm and is applied on a set of materialized views in 

order to answer top-k queries. For a relation R containing an attribute Ai, a base view 

Vi is a materialized view of the form (id, Ai) ordered over all the tuples of relation R. 

In the sequel we assume a set of materialized views V=(V1, …Vr) that contain the base 

views. LPTA is implemented through a two-step procedure. 

 

The first procedure of LPTA is the SelectViews algorithm. Algorithm SelectViews(V, 

Q) determines the most efficient subset U⊆V over a set of materialized views V, in 

order to execute a given query Q. The set U is the most efficient subset of V in the 

sense that it produces the answer to the top-k query most efficiently among all 

possible subsets of V. The SelectViews algorithm is based on a simple greedy heuristic 

procedure that selects the subset U that has the cheapest cost.  

 

Secondly, the LPTA algorithm obtains an answer to Q combining all the information 

conveyed by the views in U. Each view V(tid, scorev) is a set of pairs of the form 

(tuple identifier, score of that tuple) using the view’s scoring function. LPTA starts 

with an empty top-k buffer and proceeds in the following four steps.  

1. It does sorted accesses in parallel to each of the views.  

2. For each tuple X read from a view, random accesses are done on relation R in 

order to find the scores xi
 
of X.  

3. The score t(X) =t(x1, x2… xm) of the tuple X in regards to the query Q is 

computed and the top-k buffer is updated.  

4. The stopping condition is checked.  
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In order to check the stopping condition, a linear program is solved. Assume that the 

last tuple read from each view Vi has score scorei in regards to its scoring function 

SFi. The objective function of the linear program is the query’s score function. The 

constraints for the linear program are the inequalities SFi≤ scorei. The stopping 

condition holds when the solution of the linear program is at least equal to the 

minimum value of the top-k buffer. In case the set of views U is equal to the set of 

base views then LPTA becomes the TA algorithm. 

 

The key intuition of the LPTA algorithm can be visualized through a geometric 

representation.  

 

Assume a relation R(id, X, Y) where without loss of generality the domains of X and Y 

are normalized over the interval [0, 1]. Apart from the base views Vx and Vy, assume 

two materialized views Vu(id, Score1) and Vd(id, Score2). Scores Score1 and Score2 are 

defined as linear functions over the attributes of the relation R. In addition, assume a 

query Q with a linear scoring function as well. The scoring functions of the views and 

the query can be depicted as lines. In particular, the line of a linear scoring function of 

the form w(a⋅x + y) = score is depicted as: y = a
-1

 ⋅x. Since the line is perpendicular to 

the scoring function the product of their slopes should be equal to -1. The linear 

scoring function is depicted as its perpendicular line for the reason that the score of a 

tuple t(id, x, y) in regards to the scoring function can be found by projecting that point 

over the corresponding line. In Figure 2.5a we depict a view Vu and a query Q via the 

corresponding lines. Assume that the tuple with the k-th largest score according to Q 

is denoted as M. In addition, AB denotes the line that passes through M and is 

perpendicular to the line Q. Then, the top-k tuples according to Q belong in the region 

of the triangle ABR. This is due to the fact that top-k tuples will have a score higher 

than the score of the k-th tuple. The only possible points that can have a higher score 

than the point M are contained in the triangle ABR. 

 

Assume now we want to answer the query Q by using the tuples stored in the 

materialized view V. LPTA performs sorted accesses over the tuples of V. This can be 

visualized as sweeping a line perpendicular to the vector of the view towards the point 

O(0, 0). The order of tuples read by LPTA through sorted accesses over V is identical 
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to the order of the points met by sweeping the line towards O. This means that the 

number of sorted accesses performed through the algorithm is the number of points 

that belong in the region of the triangle A1BR for view Vu and the number of points 

that belong in the region of the triangle AB2R for view Vd.  

 

In case only Vu is available, the stopping condition for the algorithm is reached when 

the sweeping line crosses position A1B. This occurs because, the view should 

encounter all tuples whose score in respect to Q are at least equal to the score of the 

point B. Remember that points M and B have the same score in regards to Q and 

therefore, the region below the line A1B does not contain any tuples with score greater 

than the score of M. Similarly, in case only view Vd is available, the stopping 

condition is reached when the sweeping line crosses position AB2. In case both views 

Vu and Vd are available, the stopping condition is reached when the sweeping lines 

intersect in a point that lies on the line AB where in Figure 2.5c is denoted as S. In the 

first case, where only Vu is used for answering Q, the number of sorted accesses 

performed through LPTA is the number of points that belong in the region of the 

triangle A1BR. Correspondingly, if only Vd is used, the number of points that belong in 

the region of the triangle AB2R is the number of sorted accesses LPTA will perform.  

 

So far, in the above we describe the intuition of the geometric representation of the 

LPTA algorithm in order to answer a top-k query through the usage of the tuples 

materialized in a view. In the following, we see how the LPTA algorithm chooses the 

most suitable materialized views to use in order to answer the top-k query. The best 

choice of the set of views that will answer Q depends upon the number of points that 

will be accessed, since the points accessed is identical to the number of sorted 

accesses LPTA will perform. Assume that the number of tuples visited when only Vu 

is used (i.e., the number of points that belong in the triangle A1BR) is T1. The number 

of tuples visited when only Vd is used (i.e., the number of points that belong in the 

triangle AB2R) is denoted as T2. The number of tuples visited when both views Vu and 

Vd are used (i.e., the number of points in the region A1SB2R which is the shaded area 

in Figure 2.5c) is denoted as T3. Then, Vu will be preferred in case T1 is less than T2 

and less than T3. Respectively, view Vd will be preferred when T2 is less than T1 and 

less than T3. Finally, both views would be preferred in case T3 is less than T1 and T2.  
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(a) The query is lower than the view (a) The query is higher than the view 

 

(c) Two views for the answering of a query 

Figure 2.5. Visual Demonstration of the LPTA Technique for Query Answering top-k 

via Views. 

2.1.3. Related Problems in Different Context 

Top-k queries have been extensively studied in research in centralized [ChGr99] 

systems and have proved very beneficial for applications such as multimedia retrieval 

and digital libraries. The growth of information available to users through internet has 

emerged researchers to support top-k queries in different contexts such as distributed 

systems and Peer to Peer systems. In addition, in an effort to improve performance 

issues researchers have studied the problem of answering top-k queries by making use 

of caching techniques.  
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Distributed Environments 

Top-k queries have been extensively studied in research in centralized [ChGr99], as 

well as distributed environments such as Peer to Peer systems. Due to the growth of 

information available and the increased number of users accessing them over the 

Web, distributed systems have been proved to be very popular. Therefore, there is an 

emergence demand of supporting top-k queries in distributed environments. Most 

research has focused on answering top-k queries over a distributed system where data 

are partitioned either vertically [MaBG04, ChGM04, GuBK00, MiTW05, CaWa04], 

or horizontally [BNST05, VDNV08]. However, the common factor is that the 

relational data are distributed over sources and a newly posed query accesses part of 

them in order to retrieve the answer. The focus of these works has been the 

optimization of response times and scalability. Some techniques use a centralized 

node that describes which source contains which partition of data [CaWa04] or 

employ indexing techniques of the distribution of the data [MiTW05]. Other 

techniques adopt a model that contains super-peers that cache results of their peers 

[VDNV08], or address a network topology such as HyperCup [BNST05]. 

 

Caching Techniques 

One way of overcoming problems such as network communication overhead and 

response times is through the usage of caching techniques. Caching previously posed 

queries and their results is an efficient method for dealing with issues of network 

overhead either in centralized systems [TrNY04] or in distributed systems such as 

P2P [SGAE04], where the latter support range queries. The exploitation of the result 

set of a previous query for the answering of a subsequent query is frequently 

encountered in the research literature (see for example [Koss00] and [Graef00]) under 

the name of query or view caching. Once a query is maintained in main memory for 

this purpose, it practically becomes a materialized view. Considering the case of top-k 

queries, in [ZhTZ07], the authors describe a system called BRANCA that answers 

top-k queries over an acyclic network of servers. The main idea of this system is 

based on the rationale of caching the results and information from previously posed 

top-k queries in order to make use of them for future ones. Specifically, each server 

contains a cache for each of its sub-graphs over the network. The cache retains results 

of previously posed top-k queries over the specific sub-graph. This technique results 
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in less communication cost over the network when a new top-k query arrives. 

[VDNV08] propose a system called SPEERTO that supports top-k query processing 

in a distributed environment making use of caching techniques through K-skybands. 

In this line of work, caching queries and their results is done through materialized 

views. The problem of answering queries using materialized views has been studied 

extensively for query optimizing, data integration, data warehousing and semantic 

data caching in client-server systems as well as top-k querying such as in [DGKT06] 

described earlier. 

2.1.4. Research Opportunities and Comparison to Related Work  

Related work has extensively dealt with the problem of answering top-k queries under 

various contexts [IlBS08]. To this end, previous efforts have provided various 

algorithms for efficiently answering such queries by making use of indexing 

techniques or taking into consideration results from previously materialized ranked 

views. In addition, top-k queries have been studied under the context of distributed 

databases and through caching techniques. However, there are still problems that 

remain open in the context of top-k query processing. Following, we highlight a set of 

interesting, fundamental problems that remain open in the context of query processing 

in the presence of materialized views for top-k queries.  

1) Surprisingly, a missing piece in the related literature concerns the 

establishment of theoretical guarantees for the suitability of a materialized top-

k view in order to answer a newly posed top-k query, regardless of probability 

estimations or statistical properties of the underlying dataset.  

2) In a similar vein, another absent piece of theoretical groundwork concerns the 

efficient answering of top-k queries from materialized top-k views solely, 

without accessing the base relation over which the views are defined.  

3) Finally, a theoretical analysis on the appropriate and needed number of 

materialized views for the answering of a top-k query is also missing from the 

current body of knowledge. 

 

In this Chapter, we study the problem of answering top-k queries by making use of 

materialized ranked views in order to provide better performance. To this end we 
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provide a theoretical analysis based on geometric representation of the problem of 

whether and when a materialized view can be proved useful for answering such 

queries, something that has been missing from related work.  

  

In the related work, the LPTA algorithm dealt with the problem of answering top-k 

queries through materialized ranked views. According to the estimation on the score 

of the last tuple of the query LPTA decides on the suitability of a materialized view in 

regards to the query. Specifically, [DGKT06] have provided the algorithm 

SelectViews that selects a suitable set of views according to the query. In order to do 

so, they estimate the score of the last tuple (denoted as topkmin) in regards to the query 

Q. The estimation is computed through the usage of histograms for the distribution of 

the data. The SelectViews algorithm is based on this estimation. Therefore, there is no 

theoretically established guarantee that the selected views will be able to answer the 

query. To overcome this problem we conduct a theoretical analysis and provide 

theoretical guarantees along with the appropriate theorems that state whether and 

when a materialized ranking view is suitable for the answering of a top-k query. 

 

In fact, [DGKT06] provide two variants of how the set of views are selected. In the 

first case, views contain all the tuples from relation R ranked according their scoring 

function. Since the views contain all the tuples, query Q will definitely be answered 

because there will not be any missed tuples that should be contained in the top-k 

answer of Q. However, an error in the estimation of topkmin, might lead to a selection 

of views that is not the best choice in regards to execution time. In the second case, 

views only contain a portion of the tuples from relation R. Actually, they contain the 

top-k’ tuples according to their scoring function. An error in the estimation of topkmin 

might cause the inability to answer Q. This is because, there might be tuples not 

included in the set of views selected, which however should be part of the top-k 

answer of Q. In order to overcome this problem, [DGKT06] have proposed the set of 

selected views to always contain the base views Vx and Vy. For a query Q over two 

attributes namely x and y, Vx is a materialized view of the form (id, x) ordered over all 

the tuples of relation R. Similarly, Vy is a materialized view of the form (id, y) ordered 

over all the tuples of relation R. Therefore, even if the selected views apart from Vx 

and Vy cannot provide an answer to the query Q, then the usage of the base views will 
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guarantee it. In contrast, we propose algorithms that according to the theoretical 

establishments we provide, we retrieve the answer to a top-k query from exclusively 

the results of a materialized view, when this is possible, without having to scan all the 

tuples of the relation R.  

 

Moreover, the LPTA algorithm selects the suitable views (usually more than one) in 

order to provide the answer to the top-k query. We theoretically prove that the 

theoretical guarantees of more than one views in regards to a top-k query do not offer 

further usefulness for answering the query compared to the guarantees of a single 

view. Specifically, through these deliberations we overcome the problems of the 

related work and provide answers to the remaining open problems.  

2.2. Adequacy of a Materialized View to Answer a Query for the 2D Case 

In this section, we provide theoretical and algorithmic results for answering top-k 

queries using materialized views. For reasons of perception and intuition we initially 

examine the problem of answering top-k queries of a relation in the 2-dimensional 

space. In the next sections we generalize the problem for the n-dimensional space as 

well. We start with our fundamental result and then proceed to investigate why our 

basic theorems could prove to be too strict. Finally, we present a simple algorithm for 

deciding the usability of a view for a top-k query.  

2.2.1. Problem Formulation  

Given  a relation R (id, X, Y) a materialized view V (id, X, Y, s) over R having the 

top-n tuples from R where s = w (a⋅x +y) and w, a being positive parameters 

and a query Q over R having the form of a score function sQ where sQ = wQ 

(aQ⋅x +y) and wQ, aQ being positive parameters,  

Retrieve  the top-k tuples from R  

Having  the k highest values according to the scoring function of Q. 

 

Assume a relation R(ID, X, Y) where, without loss of generality, the domains of X and 

Y are normalized over the interval [0, 1]. In addition, we assume that the weight 
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factors of the linear scoring function are positive. In case the weight factors are 

negative, we can always convert the equivalent scoring function to one with positive 

weight factors with suitable transformations. Thus, without loss of generality we 

assume the attribute values of a tuple being normalized into the interval [0,1] and the 

weight factors of the scoring functions of the query as well as the materialized view 

being positive parameters. This way, any tuple of the relation R can be represented as 

a point (Figure 2.6). The area that we are interested in is the area that contains all 

tuples from R, and we call this area the active area. The active area is formally 

defined from the following definition.  

 

Definition 2.2 (Active Area). The rectangle defined by the line segments OX, OY, 

XR, YR (where O(0,0) X(1,0), Y(0,1), R(1,1)) is the active area that contains all tuples 

of a relation a relation R(ID, X, Y) where without loss of generality the domains of X 

and Y are normalized over the interval [0, 1]. 

 

In addition, assume a top-n materialized view V(ID, X, Y, s), with the score s being 

defined as s = w (a⋅x +y) and w, a being positive parameters. Then, this equation is 

characterized by a line y = a
-1

⋅x. The score of any tuple in R in regards to the view V 

can be found by projecting the point that represents this tuple over the line that 

characterizes the view. We define as the border line LV of the view V, a perpendicular 

line over the line y = a
-1

⋅x that splits the active area into two sub-areas. Observe in 

Figure 2.6 the border line LV that splits the area into two sub-areas from which the one 

is actually the area that contains all tuples materialized in the view. Specifically, the 

sub-area above the border line LV contains all top-n tuples of the view and we call this 

sub-area the extent of V.  

 

Definition 2.3 (View Border Line LV). The border line LV, of a top-n materialized 

view V having the scoring function sV=wV(aV⋅x+y) and tn being the n
th

 tuple of V, is 

the line drawn perpendicular to the line that describes the scoring function of V (y = 

aV
-1

⋅x) and passing from the point sV(tn) (with xNV, yNV being the points where it meets 

the axes X, Y). 
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Definition 2.4 (Extent of V). The area defined above the line LV towards the point 

R(1,1) (within the active area) is the extent of the materialized view that contains the 

top-n tuples with respect to V. 

 

Assume also the query Q(ID, X, Y, sQ) with the score sQ being defined as 

sQ=wQ(aQ⋅x+y) and wQ, aQ being positive parameters. Again, this equation is 

characterized by a line y = aQ
-1⋅ x. Assume that the extent of V has n tuples and the 

query Q requests k ≤ n tuples. The question is whether it is possible to answer Q using 

only the tuples materialized in V. Similar to the border line LV we define the border 

line of the query, this time within the extent of V. Specifically, the border line LQ of 

the query, as shown in Figure 2.6, splits the active area into two sub-areas such that 

the sub-area above the border line LQ contains all those tuples of R with the higher 

scores in regards to the query that are also part of the view’s extent. In other words, 

the border line LQ depicts a border of the active area such that any point above LQ will 

e the query’s answer and simultaneously will be part of the view’s result.  

 

Definition 2.5 (Query Border Line LQ). The border line LQ, for a combination of a 

view V and a query Q, is the line drawn perpendicular to the line that describes the 

scoring function of the query Q (yQ = aQ
-1

⋅x) and meets the view’s border line LV in 

one point such that any point of LQ within the active area belongs to the extent of V. 

 

The sub-area above the border line LQ within the extent of V is the area that can be 

proved helpful in order to answer a top-k query by exploiting only the tuples 

materialized in V. This occurs from the fact that the points belonging above the border 

line LQ are all points from the relation that are contained in the materialized view and 

will definitely be part of the top-k query’s answer. We refer to this area as the safe 

area, shown in Figure 2.6 as the shaded area.  

 

Definition 2.6 (Safe Area). The area defined above the border line LQ towards the 

point R(1, 1) within the (active area) is called the safe area of the query Q with respect 

to the materialized view V. 
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Figure 2.6. Answering a Query Q via a View VU when the View is “Higher” than the 

Query. 

We will explore the problem of answering a top-k query Q through the tuples 

materialized in a view based on its diagrammatic representation and we will discern 

two cases: in the first case, the line of the view is higher than the one of the query, in 

the second case, the reverse holds.  

2.2.2. The Case when the View is “Higher” than the Query 

In this case (Figure. 2.6), we assume that aQ
-1
≤ a

-1
 (which means that V is drawn 

“higher” than Q in their graphical representation). We will employ the subscript U for 

the entire notation concerning view V and refer to it as VU(ID, X, Y, sU), with the score 

sU being defined as sU=wU(aU⋅x+y).  

 

Let tn be the n-th tuple materialized in VU. Assume that tn has a score s(tn). Let LU: 

xNUyNU be the border line of V passing from point s(tn) (with xNU, yNU being the points 

where it meets the axes X, Y). The area above the line LU contains the top-n tuples 

with respect to VU. Now, take the line LQ: xNUyQ, which is the border line of Q and 

starts at the point xNU. The safe area of Q with respect to V contains points that belong 

both to Q and VU.  
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Lemma 2.1. It is possible that VU contains more than k tuples but misses the answer 

to Q.  

 

Proof. Assume a tuple t of R (Figure 2.7, near the X-axis) that (a) does not belong to 

the extent of VU and (b) should be part of Q’s top-k answer set. In this case, since t 

does not belong to VU, it is lower than the line LU. Assume also tuples t1, t2 placed as 

depicted in Figure 2.7. The scores of these tuples are high enough so that they can be 

included in the top-n for view VU (remember that the score of a tuple with respect to a 

query/view involves projecting the tuple to the line of the query/view). Still, tuple t 

has a higher score than all of these tuples with respect to query Q (observe that the 

dotted line which starts from t and is perpendicular to Q produces a higher score than 

the respective line for t2). Observe that this situation includes the tuple tn which is the 

n-th tuple of VU. Therefore, VU is insufficient to answer Q. � 

 

Figure 2.7. Example of Why a View V is Not Always Reliable for Answering a Query 

Q. 

Theorem 2.1. VU can answer Q if the safe area of Q in regards to VU contains at least 

k points.  

 

Proof. We will prove the theorem by contradiction. Assume a tuple t of R (Figure 2.7) 

that (a) does not belong to VU and (b) should be part of Q’s top-k answer set. In this 

case, since t does not belong to VU, it is lower than the line LU. Still, LU is always 

lower than LQ, therefore, the projection of t over line Q will also be lower than LQ. If 
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the safe area has more than k points, these k points all have scores (projections to line 

Q) higher than t, with respect to Q, which cannot be true, since we assume that t 

belongs to the top-k answer set of Q. � 

 

It is interesting to observe that (a) the inverse of Theorem 2.1 does not always hold, 

and (b) how can we decide that a point belongs to the safe area. We discuss these two 

aspects in the following sub-sections.  

2.2.3. Strictness of the Suitability Theorem  

It is not possible to infer the inverse of Theorem 2.1. Even if the safe area does not 

contain k tuples it would still be possible to answer Q with tuples that belong to VU if 

a critical area below the line VU does not contain any tuples. For example, assume the 

case where tuple t was not present in R, no tuple belongs to the safe area and the 

query Q asked for top-3 tuples. Then tuples t1, t2, tn can answer Q since there are not 

other tuples below line LU. Still, the main problem is that we need to refer to R (or to 

some sketch of it) to find whether such tuples lying below LU exist or not. In fact, it is 

not even necessary to search the whole area below LU, but rather a specific subset of 

it. In our example, it is sufficient to check whether the area of the triangle (xNUx1p1) 

contains any tuples or not.  

 

Definition 2.7 (Critical Area). The area in the active region defined by the lines LV 

and the line that produces the lowest possible score for Q from the tuples in V is the 

critical area of Q in regards to V. 

 

The following theorem formalizes the conditions under which a view can answer a 

query even if it’s safe area is insufficient.  

 

Theorem 2.2. It is possible that VU can answer Q even if there are less than k tuples in 

the safe area. For this to hold, it is necessary that the critical area of Q with respect to 

VU is void of tuples.  
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Figure 2.8. At Least k Points in the Safe Area of a View V Make it Reliable for 

Answering a Query Q. 

Proof. The point x1 is the point that meets the X-axis and belongs to line L1 that 

corresponds to the tuple in VU with the lowest score with respect to Q (here, in the 

example of Figure 2.8, tuple t1). The point p1 is the point where this line meets LU. In 

other words, we need to find the line that produces the lowest score for Q, for all the 

tuples in VU. If the triangle defined by the X-axis, LU and L1 has no points, then the 

points within VU are the ones producing the lowest possible scores for Q. So, if VU 

contains more than k points, it can answer Q. � 

2.2.4. Computation of Offsets and Safe Areas 

A technical point has to do with whether a point belongs to the safe area or not. The 

line LQ is defined by the equation y= - aQ ⋅ x + aQ⋅
 
xNU (easy to check: being 

perpendicular to line Q, the product of line Q with the line LQ must be -1; then the 

offset can easily be computed by putting y = 0 for LQ). Assume a tuple tb(xb, yb). Tuple 

tb belongs to the safe area if yb ≥ -aQ⋅xb + aQ⋅xNU.  

 

Quite similar to the above point is the computation of the point xNU which is needed 

for the equation of the line LQ: assume we know the n-th tuple of VU, tn(xn, yn). Then, 

this belongs to the line LU that is perpendicular to VU, therefore with an equation of 
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the form y= -aU⋅x + offset. Since tn belongs to this line, offset = yn + aU
 
⋅ xn. For y = 0, 

we deal with the point xNU and then offset = aU ⋅
 
xNU, i.e., xNU = aU

-1
(yn + aU⋅

 
xn).  

 

If one does not want to go through the computation of Q’s score for all the tuples of 

VU, then another safe criterion would be to use xlast (Figure 2.8), which is the point of 

the X-axis that corresponds to the line that gives the score for yNU with respect to Q. In 

any case, this property can be used if one is interested in approximate results (in fact, 

the smaller the area of the triangle, the higher the possibility that VU can answer the 

query Q). Moreover, sketches of the data distribution in R can also help in deciding 

whether the area is empty or not (and to what extent).  

2.2.5. The Case when the View is “Lower” than the Query 

In this case, we assume that aQ
-1

 ≥ a
-1

 (which means that V is drawn “lower” than Q in 

their graphical representation). We will employ the subscript D for all the notation 

concerning view V and refer to it as VD(ID, X, Y, sD), with the score sD being defined 

as sD = wD ( aD⋅x +y). 

 

 

Figure 2.9. The Case where the View is “Under” the Query. 

Similarly to the previous case, we can prove that (a) it is possible for view VD to omit 

tuples that should belong to the extent of Q and (b) there is a safe area that can 

guarantee that Q can be answered solely by VD. Again, we will employ the line (xND 
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yND) that passes from the n-th point of VD and gives its score (i.e., it is perpendicular 

to the line of VD). We use point yND this time and take the line LQ: yND xQ that is 

perpendicular to the line Q. The line LQ is defined by the equation y = -aQ ⋅ x + yND 

and a tuple tb (xb, yb) belongs to the safe area above the line LQ if yb ≥ -aQ ⋅ xb + yND.  

2.2.6. Special Cases  

In the above we have assumed that the scoring functions of the views and the query 

are in the form of w(a ⋅ x + y)= s. However, the scoring function of a view or a query 

can be of the form score s = x or s = y. In this section, we describe these special cases.  

(i) Assume a view with a scoring function of the form sV = yV (i.e., the attribute x does 

not play any role in the computation of a tuple’s score). In such a case (Figure 2.10), 

line LV is of the form y = yn. In addition, assume a query Q with scoring function 

wQ(aQ ⋅ x + y)= sQ. Assume that the active domains of attributes X and Y are X∈[xmin, 

xmax] and Y∈ [ymin, ymax]. Then, the safe area is above line LQ as usual.  

 

Figure 2.10. Special Case where V is of the Form sV = y. 

An even more extreme case is when both the view and the query ignore attribute x in 

their scoring function (i.e., both aV = aQ = 0). In this case, both V and Q are found 

over axis Y. Then, V can answer Q when it contains more tuples than what Q requests. 

This is due to the fact that in such a case the scoring function of V is proportional to 

the scoring function of Q.  
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Figure 2.11. Special Case where V is of the Form sV = x. 

An intriguing situation arises when view V is found over the Y-axis and the query Q is 

found over axis X. In other words, the view score sV is defined as sV= y and the query 

score is defined as sQ = x. In this case, there is no guarantee that V can answer Q. 

Assume the case where there exist tuples with very high X values and very low Y 

values; then these tuples are the top-k tuples of the query; still due to their low Y 

values they are outside the safe area border and not part of the view. Therefore, it is 

obligatory to consider the full space as the safe area.  

(ii) Assume a view with a scoring function of the form sV = xV (Figure 2.11). In such a 

case, the line that is perpendicular to V and passes through the last tuple tn(xn, yn) 

materialized, is of the form LV : x = xn. In addition, assume a query Q with scoring 

function wQ(aQ ⋅ x + y)= sQ. Assume that the active domains of attributes X and Y are 

X∈[xmin, xmax] and Y∈ [ymin, ymax]. Then, the safe area is above line LQ. LQ is defined 

as the line that is perpendicular to Q and passes through the point p (xn, ymax). 

Similarly to the previous case, we can encounter two extreme sub cases. The first of 

these cases concerns the situation where the scoring function of the query has the 

same slope with the query. Then, V can answer Q when it contains more tuples than 

what Q requests for. This is because in such a case the scoring function of V is 

proportional to the scoring function of Q. The second of these cases, concerns the 

situation where the scoring function of the query has the parameter aQ = 0: again, 

there is no guarantee that V can answer Q.  
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2D SafArI Algorithm  

Input: A materialized view V(ID, X, Y, sU)
n, with its equation s 

= w (a ⋅ x + y) and its n tuples,  

A Q(ID, X, Y, sQ)
k, sQ = wQ (aQ ⋅ x + y), k ≤ n, 

Output: a decision on whether Q can be answered by V along with 

the population of V 

Variables: a counter to count how many tuples V has inside the safe 

area of Q 

 Begin. 

1. Let tn be the n-th tuple of V, tn(xn,yn)=V[n] 

2. If (αQ
-1 ≤ α-1){ 

3.  compute point xNU: xNU = a
-1 (yn + a⋅xn) 

4.  define line LQ as y = -αQ⋅x + αQ⋅xNU 

5. } 

6. else{ 

7.  compute point yND: yND = yn + a⋅xn 

8.  define line LQ as y = -αQ⋅x + yND 

9. } 

10. for all tuples of V {  

11.  compute sQ(V[i]) 

12.  if (sQ(V[i]) belongs above line LQ) counter++ ; 

13. } 

14. if (counter ≥ k ) return(true); 

15. else return(false);   

 End. 

Algorithm 2.1. 2D SafArI Algorithm  

2.2.7. Algorithmic Results  

Now, we are ready to give the 2D SafArI algorithm (2D Safe Area Illation algorithm) 

an algorithm for deciding view suitability in the 2D case (shown as Algorithm 2.1) 

that decides whether a 2D query Q can be answered by a 2D view V and populates Q 

if the test is positive. As Figure 2.12 indicates, the complexity of the algorithm 

depends on the number of tuples stored in the materialized view (i.e., the number of 

iterations for the for loop in Algorithm 2.1). 
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Figure 2.12. All the Safe Area Should Possibly be Exhausted for the Determination of 

the top-k Query Tuples. 

2.3. Queries and Views with More than Two Scoring Attributes  

The results of the previous sections can be generalized for an N-dimensional space. In 

this section, we will discuss the suitability of views to answer queries when an 

arbitrary number of scoring attributes is involved, explore special cases and provide a 

simple algorithm to check the suitability of a view to answer a query. 

2.3.1. Fundamental Results for the n-Dimensional Case 

Assume a relation R(ID, X1, X2,…, XN) where without loss of generality the attributes 

Xi are within the interval [0,1]. All tuples of R can be represented as points over an 

N-dimensional space.  

 

Definition 2.7 (Active Region). The hyper-cube that contains all points of the form 

(x1, ..xN) with 0≤xi≤1 is the active region and contains all tuples of a relation a relation 

R(ID, X1, X2,…, XN). 

 

In addition, assume a materialized view of the form V (ID, X1, X2,…, XN, s) with score 

s being defined as s = w (a1
 
⋅ x1 + a2 ⋅ x2 +… + xN). In an N-dimensional space, V can 

be represented as a line with equations LV:
Nx

a

x

a

x
=== ...

2

2

1

1 . The score of any point t 
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from R can be found by projecting this point t over the line LV. Assume that the extent 

of V has n tuples. Let tn be the n-th tuple in V with score sv(tn).  

 

Definition 2.8 (HyperPlane PV). The hyper plane PV, with respect to a top-n 

materialized view V having the scoring function sV = w (a1
 
⋅ x1 + a2 ⋅ x2 +… + xN) and 

tn being the n
th

 tuple of V, is the hyper plane drawn perpendicular to the line that 

describes the scoring function of V (LV:
Nx

a

x

a

x
=== ...

2

2

1

1 ) and passing from the point 

sV(tn) (with x1V, x2V, …, xNV being the points where it meets the axes X1, X2, …XN 

respectively). 

 

Then, the hyper plane PV defined by the equation s = w (a1 ⋅
 
x1 + a2 ⋅

 
x2 + …+ xN) 

which is perpendicular to line LV and contains tn, separates the space into two sub-

regions. Let one sub-region denoted as SRlow be the one defined from the hyperplane 

PV and towards infinity, whereas the other sub-region SRhigh is the one defined from 

the hyperplane PV and in the opposite direction towards the beginning of the axes.  

 

Definition 2.9 (Extent of V SRlow). The area defined above the hyper plane PV 

towards the point R(1,…,1) (within the active region) is the extent of the materialized 

view that contains the top-n tuples with respect to V, denoted as SRlow. 

 

Figure 2.13 depicts the plane PV in a three-dimensional space and the two sub-regions 

that it defines. Observe that the plane PV is denoted as a triangle. This illustrates the 

visible part of a plane intersecting all three axes when it is observed from the positive 

sub-axes.  

Assume also the query Q (ID, X1, X2,…, XN, sQ) with the score sQ being defined as sQ 

= wQ (a1Q
 
⋅
 
x1 + a2Q ⋅

 
x2 +… + xN). Similarly, Q can be represented as a line with 

equations LQ N

QQ

x
a

x

a

x
=== ...

2

2

1

1 . In addition, assume that Q requests k ≤ n tuples. The 

question is whether it is possible to answer Q using only the tuples materialized in V.  

 

Definition 2.10 (HyperPlane PQ). The hyper plane PQ, with respect to a materialized 

view V and a query Q, is the hyper plane perpendicular to the line that describes the 
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scoring function of the query Q (LQ N

QQ

x
a

x

a

x
=== ...

2

2

1

1 ) and meets PV in one point such 

that any point of PQ within the active region belongs in the sub region SRlow. 

 

Definition 2.11 (Safe Area). The area defined above hyper plane PQ towards the 

point R(1,…,1) within the active region is called the safe area of the query Q with 

respect to the materialized view V. 

 

 

Figure 2.13. The Two Sub-Regions Defined by PV. 

Lemma 2.2. It is possible that V contains more than k tuples but misses the answer to 

Q.  

 

Proof. Assume tk is the k-th tuple of Q with score sQ(tk). Assume also a tuple t1 of R 

that (a) does not belong to V and (b) should be part of Q’s top-k answer. Then, the 

following inequalities hold for t1: sv(t1) ≤ sv(tn) and sQ(t1) ≥ sQ(tk). Assume also a tuple 

t2 that belongs in the sub-region defined between the two hyperplanes PQ and PV. 

Therefore the following inequalities hold for t2: sv(t2) ≥ sv(tn) and sQ(t2) ≤ sQ(tk) since 

hyperplane PQ lies above the hyperplane PV. By combining the four inequalities we 

get the following: sv(t1) ≤ sv(tn) ≤ sv(t2) and sQ(t2) ≤ sQ(tk) ≤ sQ(t1). This indicates that 

the view contains more than k tuples but there are still other tuples (i.e., t2) not 

belonging to the view that are in the top-k tuples of Q. � 
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Theorem 2.3. V can answer Q if the safe area contains at least k points.  

 

Proof. By contradiction. Assume a tuple t of R that (a) does not belong in V and (b) t 

should be part of Q’s top-k answer set. Similarly with Theorem 2.1, since t does not 

belong in V, it lies in the sub-region SRhigh. However, the hyperplane PV is always 

below the hyperplane PQ, therefore, the projection of t over line Q will also be lower 

than PQ. If the safe area has more than k points, these k points all have scores 

(projections to line LQ) higher than t, with respect to Q, which cannot be true, since 

we assume that t belongs to the top-k answer set of Q. � 

 

Much like the case of two dimensions, it is not possible to infer the inverse of the 

theorem. Even if the safe area does not contain k tuples it would still be possible to 

answer Q with tuples that belong to V if a critical area below the hyperplane PV does 

not contain any tuples.  

 

Definition 2.12 (Critical Area). The area in the active region defined by the hyper 

planes PV and the hyper plane that is perpendicular to LQ and passes from the point 

belonging in V and producing the lowest possible score in regards to the query Q, is 

the critical area of Q in regards to V. 

 

Theorem 2.4. It is possible that V can answer Q even if there are less than k tuples in 

the safe area. For this to hold, it is necessary that the critical area of Q in regards to  

V is void of tuples. 

 

Proof. Assume t1 be a tuple in V and sQ(t1) is its score in regards to Q. In addition let 

this tuple be the one that has the lowest score in regards to Q among all the tuples 

from V. Assume PQ1 is the hyperplane that is perpendicular to LQ and passes through 

point t1. If the critical area has no points, then all points within V are the ones 

producing the lowest possible scores for Q. As a result, if V contains more than k 

points, it can answer Q. � 
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Figure 2.14. Example of Why a View V is Not Always Reliable for Answering a 

Query Q.  

2.3.2. Discussion 

Similarly to the two dimensional case, a couple of observations can be made at this 

point:  

• In order to avoid the computation of Q’s score for all the tuples of V, a safe 

criterion would be to use tlast. tlast denotes a virtual point (which means that it does 

not necessarily belongs in V or R) of hyperplane PV that produces the lowest score 

in respect to Q. 

• The above criterion can be used if one is interested in approximate results (in fact, 

the smaller the critical region, the higher is the possibility that V can answer the 

query Q). In addition, sketches of the data distribution in R can also be helpful in 

deciding whether the region is empty or not and to what extent. 

A second technical point has to do with testing whether a point belongs to the safe 

area or not. Assume the last tuple in V is tn with score sv(tn) in regards to V. Then the 

hyperplane PV is described from the equation w(a1 ⋅
 
x1 + a2 ⋅

 
x2 + … + xN )= sv(tn). 

Without loss of generality assume that the hyperplanes PQ and PV intersect with the Xi 

axis, where i ∈ {1,…, N}, in point xiV (0, …, xiV,…,0). Since xiV belongs in PV its 

coordinates are xiV (0,…, sv(tn)⋅
 
(w⋅ai)

-1
,…0) where all are equal to zero except the i-th 

coordinate. Similarly, it could be any other axis Xi. The hyperplane PQ is defined by 

the equation wQ (a1Q ⋅
 
x1 + a2Q ⋅

 
x2 +… + xN) = sQ. Consequently, sQ can be computed 

by taking into consideration that xiV belongs in PQ as well. Thus, sQ is equal to wQ ⋅
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sv(tn) ⋅(w⋅ai)
-1

 and the hyperplane PQ is defined from the equation a1Q ⋅
 
x1 + a2Q ⋅

 
x2 + … 

+ xN = sv(tn) (w⋅ai)
-1

. Assume a tuple tb (x1b, x2b, … , xNb). Tuple tb belongs to the safe 

area if xNb ≥ -a1Q ⋅
 
 x1b - a2Q ⋅

 
 x2b - …+ sv(tn) ⋅

 
⋅(w⋅ai)

-1
. 

2.3.3. Algorithmic Results 

Now, we are ready to give the SafArI algorithm (Algorithm 2.2) that decides whether 

Q can be answered by V and populates Q if the test is positive. 

The computation of where the hyperplanes PQ and PV first meet on one of the n axis 

and thus the safe area for n-dimensions is computed by solving a linear problem with 

the usage of the simplex method. Therefore, the value sQ that determines the 

hyperplane PQ is computed through the solution of the following linear problem: The 

objective function is to maximize wQ (a1Q ⋅
 
x1 + a2Q ⋅

 
x2 +… + xN) under the constraints 

 s.t. w(a1 ⋅
 
x1 + a2 ⋅

 
x2 + … + xN ) ≤ sv(tn)  

        0 ≤ xi ≤ 1, for all i ∈ {1,…, N} 

Again, remember that we assume that the materialized view is memory resident, so 

we do not need to resort to unnecessary I/O’s. 

2.4. Working with More Than One Views 

In this section we deal with the problem of answering top-k queries through the usage 

of more than one materialized views. Firstly, we show that the usage of two 

materialized views and specifically the union of the safe areas of two views do not 

add better guarantees for the answering of a query. Secondly, we exploit the problem 

of answering a top-k query by parallelizing its process and assigning different parts of 

the query’s answer to a different view and then uniting the results.  

2.4.1. Safe Area Containment with More than One Views 

 [DGKT06] have proved that a query can be answered either by a single view, or by a 

combination of two views whose lines lie on different sides of the query’s line. 

Assume now that for a given query Q, we do not have a single view that can answer 

the query, but, there exist two views VU and VD that lie on different sides of the 
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query’s line. Is it possible to use these two views to answer Q without referring to the 

relation R? 

 

SafArI Algorithm 

Input: A materialized view V (ID, X1, X2,…, XN, s)n, with its 

equation s = w (a1 ⋅ x1 + a2 ⋅ x2 + … + xN) and its n tuples, 

A Q (ID, X1, X2,…, XN, sQ)
k, sQ = wQ (a1Q ⋅ x1 + a2Q ⋅ x2 + … + 

xN), k ≤ n, 

Output: A decision on whether Q can be answered by V along with 

the population of V 

Variables: a counter to count how many tuples V has inside the safe 

area of Q 

 Begin 

1. Let tn be the n-th tuple of V, tn(x1,x2,…,xN)=V[n]. 

2. Define hyper-plane PQ  

 Solve linear problem: 

 max sQ 

 s.t. sV ≤ sV(tn) 

3. for all tuples of V {  

4.  Compute sQ(V[i]) 

5.  if (sQ(V[i]) belongs above hyper-plane PQ) counter++ ; 

6. } 

7. if (counter ≥ k ) return(true); 

8. Else return(false);   

 End 

Algorithm 2.2 SafArI Algorithm 

A query Q is encompassed by two preexisting, materialized views V1 and V2. LV1 and 

LV2 denote the lines that represent the two views. In addition, assume P1 and P2 

denote the hyperplanes that are perpendicular to LV1 and LV2 and pass from the last 

point contained in V1 and V2 respectively. The hyperplanes PQ1 and PQ2 are 

perpendicular to the line LQ of the query and assume that PQ1 meets P1 in Xi axis 

whereas PQ2 meets P2 in Xj axis, with i≠j. The sub-region above PQ1 towards infinity 

characterizes the safe area for V1. Similarly, the sub-region above PQ2 towards infinity 

characterizes the safe area for V2. For reasons of intuition we illustrate in Figure 2.15 
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a query Q encompassed by two materialized views in the 2D space. A query Q is 

encompassed by two preexisting, materialized views VU and VD, the first on the upper 

and the second on the lower side of Q. Figure 2.15 also depicts the lines LU and LD, 

which are perpendicular to the respective views and signify their last stored tuple. 

These lines are also used to draw the lines LQU and LQD which are perpendicular to Q 

and characterize the safe areas for VU and VD respectively. 

 

Theorem 2.5. Assume two views encompassing a query Q, none of which is safe to 

be used for answering the query by itself. It is impossible to safely guarantee the 

answering of the query by the combined usage of the two safe areas of the views.  

 

Proof. Since the border lines LQU and LQD are both perpendicular to Q, the safe area of 

one view is encompassed in the safe area of the other view. Since neither view is safe 

for the answering of the query, it follows that the union of their safe areas is 

insufficient, too. � 

 

Figure 2.15. A Query Q with One View on Either of its Sides, VU for the Upper Side 

and VD for the Lower Side. 

2.4.2. Working with More than One Views in Parallel 

The above negative result produces an interesting useful side effect. Assume the case 

where several materialized views are available; still, instead of being centrally stored, 

the different views are distributed among different servers. A mediator receives 

queries and it is responsible for assigning queries to views (or R) to be answered. It is 
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reasonable to assume that the mediator has some global knowledge for each view’s 

equation, number of materialized tuples and value of the last tuple. We will also 

assume that the maximum and minimum values of the active domain of attributes X 

and Y of relation R are known to the mediator, too. Assume now that a query arrives 

and we want to parallelize its processing. Is it possible to assign a different part of the 

query to a different view and then unite the results? 

 

In this section, we will first show that it is feasible to assign a subset of the query 

answer to a certain view. Since we have knowledge of the active domains of attributes 

X and Y, we can estimate the maximum and minimum scores with respect to the query 

Q. We will show that it is possible to split the range of values for the score and assign 

a sub-range of scores to specific views. 

Y

XO(0,0)

Q

VU

R(1,1)

Line LQ

Line LU

Line Ll

Line Lh

slow

shigh

vhigh
vlow

 

Figure 2.16. The Active Zone for the Range slow, high of Query Q within its Safe Area 

over View VU. 

Theorem 2.6. Assume a materialized view V (with a line VU : y = aU
-1

 ⋅ x) and a query 

Q (with a line Q : y = aQ
-1

 ⋅ x) over the same relation R. Assume also that V is safe to 

answer Q and we are interested in computing only a subset of Q, say Q’, that includes 

the tuples whose score falls within the range [slow, shigh] (with slow ≤ shigh and slow and 

shigh the distances of the respective points from the beginning of the axis, with both 

these points found in the safe area and belonging to line Q). Q’ can be computed 

solely from V, by including in its result set all the tuples that belong to the area 
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surrounded by the lines Ll and Lh, which we call search area, and is defined as 

follows: Ll : y = -aQ ⋅ x + slow ⋅ 12 +Qa , Lh : y = -aQ ⋅ x + shigh ⋅ 12 +Qa .  

 

Proof. Clearly, all tuples belonging to the above area also belong to the safe area of Q 

over R. To compute the lines Ll and Lh we need to locate the coordinates of the points 

with distance slow and shigh from the beginning of the axes. For point ph (xh, yh) 

corresponding to shigh, we know that (i) yh = aQ
-1

 ⋅ xh and (ii) xh
2
 + yh

2
 = sh

2
. This way 

we can compute the coordinates for the point ph (xh, yh) and respectively, for the point 

pl (xl, yl). Then, we need to compute the equations for lines Ll and Lh. The equation of 

both lines is of the form y = -aQ ⋅ x + offset, with offset being unknown (remember that 

the two lines are parallel to the line LQ that bounds the safe area). To compute the 

offset for each line, we need to place the appropriate point in the equation (e.g., for 

point ph (xh, yh) we have yh = -aQ ⋅ xh + offset) and solve the system of equations that 

also comprises the equation of line Q. The solution gives the equations of the 

theorem. � 

 

Observe that it is indifferent whether V is on the upper or lower side of Q, since we 

have carefully selected the scores slow and shigh to be within the safe area. 

 

Having proved the bounds of the search area, we are ready to come up with an 

algorithm for identifying the tuples of V that belong to the search area. Observe 

Figure 2.16. We need to identify tuples that have a score with respect to V’s scoring 

function within the range [vlow, vhigh]. Unfortunately, we cannot solely rely on the 

score bounds of vlow, vhigh for this purpose, since it is possible that V contains tuples 

outside the safe area of Q whose score (with respect to V) falls within the range [vlow, 

vhigh].  

 

Lemma 2.3. Given the values slow, shigh for the scores of the query Q, the range of 

scores for tuples belonging to V, that are candidate for being part of Q’s extent too, 

are: 

vlow = slow ⋅
UQ

Q

aa

a

⋅+

+

1

12

⋅ 12 +Ua , vhigh = shigh ⋅
UQ

Q

aa

a

⋅+

+

1

1
2

⋅ 12 +Ua  
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Algorithm Compute Query Extent 

Input:  

 

A materialized view V(ID,X,Y,sU)
n, with its equation s = 

w(α⋅x+y) and its n tuples (sorted over sU), a Q(ID,X,Y,sQ)
k, 

sQ = wQ(αQ⋅x+y), k ≤ n, 

Output: the computation of Q via the tuples of V 

 Begin 

1. Compute vlow and vhigh 

2. Locate the first(last) tuple with score vlow(vhigh) via binary 

search 

3. do{ 

4.     Get the next tuple t 

5.     Test the conditions  

    st ∈ [vlow, vhigh], 

    yt ≥ -aQ ⋅ xt +slow ⋅ 12 +Qa , 

    yt ≥ -aQ ⋅ xt +shigh ⋅ 12 +Qa   

6.     If t passes all tests 

7.         Compute t’s score for Q 

8.         Add t (sorted over sQ) to Q’s extent 

9. } until the last (first) tuple with score vhigh (vlow) is found 

 End. 

Algorithm 2.3. Algorithm Compute Query Extent  

Proof. The point ph (xh, yh) falls on the intersection of two lines, VU and Lh. Also xh
2
 + 

yh
2
 = vh

2
. By solving the system of three equations we can compute the score vhigh. We 

can compute vlow similarly. � 

 

Theorem 2.7. A tuple pt (xt, yt) that belongs to V with score st (with respect to V), 

qualifies for an answer to Q (with a score aQ ⋅ xt + yt) if it fulfils the following three 

conditions: 

st ∈ [vlow, vhigh] with this range computed via the above lemma, 

yt ≥ -aQ ⋅ xt +slow ⋅ 12 +Qa , 

yt ≥ -aQ ⋅ xt +shigh ⋅ 12 +Qa   
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Proof. Obvious. � 

If V is not sorted over the score of its tuples, then there is no alternative than scanning 

all its tuples and testing the above conditions. If V is sorted on its score, nevertheless, 

the algorithm for computing the answer to Q by using the tuples of V is 

straightforward. 

2.5. Experiments 

In this section, we report on the experimental assessment of the usage of materialized 

views to answer top-k queries.  We have conducted two sets of experiments. The first 

set focuses on the algorithm for the 2 dimensional space, whereas the second set of 

experiments involves the n dimensional space. 

Our experimental study has been conducted towards assuring the following two goals:  

1. Effectiveness. The first desideratum of the experimental study has been the 

verification of the hypothesis that the proposed theoretical results can actually 

be used for answering a newly posed top-k query through the exclusive usage 

of a materialized view.  

2. Efficiency. The second desideratum of the experimental study has been the 

testing of the hypothesis that the answering of top-k queries via materialized 

views can indeed improve the performance of query answering at a significant 

factor. 

We have implemented our view usability method and use the only method that can 

guarantee view usability correctness (i.e., TA) as an opponent. We do not use 

auxiliary structures in our experiments (e.g., sketches of the non-covered area of a 

materialized view, or any other indexes). 

2.5.1. Experimental Method for 2D 

In this set of experiments, all tests involve a relation R(tid,X,Y). All the queries were 

fully answered and then used as materialized views for the subsequent queries.  
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Figure 2.17. Percentage of Views Used for 100 Queries. 

We have generated random data sets of different sizes. We generate a sequence of 

queries with random coefficients and result size (k). Each query’s result is cached as a 

materialized view; so, every query tests all its previous queries as candidates. The 

important parameters that we have experimented with are: (a) the relation size |R|, (b) 

the number of queries asked |Q| (practically testing how the method works as time 

passes and more views get to be materialized) and, (c) the range of the requested 

tuples k as compared to the underlying database size |R|/k. The values that we have 

worked are listed in Table 2.1.  

 

For this set of experiments we have used a server with 1GB memory and a Core 2 

CPU at 2.13 GHz. All the implementations were made using BerkeleyDB and its C 

API.  

Table 2.1. Experimental Parameters for 2D. 

 Size of source table R (tuples) |R|  1x10
4
, 5x10

4
, 1x10

5
 

 Size of mat. view (tuples) k  10, 50, 100, 500, 1000 

 Number of queries asked |Q|  100, 1000 
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Figure 2.18. Percentage of Views Used for Different Time Spans (Numbers of Posed 

Queries). 

Effectiveness 

The effectiveness of the method is depicted in Figure 2.17 and 2.18. Figure 2.17 

shows that the effectiveness of the method is quite stable and ranges around 30%-35% 

for different data sizes. It is also interesting to observe Figure 2.18, where we use 

different time spans and different ranges for k to observe the behavior of our method. 

This is practically achieved by issuing a larger number of queries (i.e., 1000 instead of 

100 queries).  

 

The first observation when comparing the two figures concerns the difference in 

efficiency as we vary the maximum value of k that the queries can take. Observe the 

dark bars of the two figures, both depicting what happens when 100 queries were 

issued (so, the only difference is the R/k factor). In Figure 2.17, the queries are large 

in size and can request up to 1% of the relation as a result. Frequently, it was the case 

that a large view that was materialized early in the query series would serve as the 

answering source for subsequent queries. A second observation from Figure 2.18, 

concerns the effectiveness of the method over time. So, in Figure 2.18, we see what 

happens as time passes (1000 queries), and we can observe that the effectiveness of 

the method rises significantly after a while (again to the height of 35%-40%), even for 

small k’s.  
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Figure 2.19. Time Savings from the Usage of Queries for Different Database Sizes 

and Requested Results. 

R k D/k % views 

used 

Total time 

without views 

(sec’s) 

Total 

time via 

views 

Total 

opponent 

time 

% 

improved

10000 100 100 35 0.35 0.006 0.09 24.28 

10000 10 1000 7 0.07 0.00001 0.0007 0.99 

50000 500 100 32 4.32 0.39 1.06 15.39 

50000 50 1000 10 1.06 0.0001 0.07 6.82 

100000 1000 100 31 12.03 4.59 2.45 -17.79 

100000 100 1000 11 2.68 0.003 0.26 9.66 

Figure 2.20. Detailed Information for the Efficiency of the Method in Time Savings. 

Efficiency 

The efficiency of the method over random data is depicted in Figure 2.19. We vary 

two parameters, the relation size, and the maximum possible number that k can take, 

and we assess the improvement in time when comparing our method with the 

opponent. The detailed numbers (including total query times) are shown in Figure 

2.20.  
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Interestingly, the time savings present a conflicting case. As the number of stored 

results rises (dark bars, concerning large k’s, up to 1% of the relation size) the savings 

drop from a 25% improvement to a decrease of 18%. This is clearly due to the size of 

used memory. As more results are collected in main memory there are two problems: 

(a) memory allocation becomes slow (in fact, we frequently brought our gnu compiler 

to its limits) and (ii) it is possible that a certain view will be able to answer several 

queries due to a very large k and a usable slope. Exhausting the safe area for this view 

might prove too slow for queries with a large k (remember that we can be ascertained 

for the correct result only once we have reached the safe area border). Thus, a caching 

problem has to be solved based on the grounds of this observation. In any case, if one 

considers realistic BI scenarios, a top-k query returning 1% is extremely too large; so 

this is a case in the limit of this technology. On the other hand, the efficiency 

increases consistently for more reasonable k’s of size 0.1%. As the memory allocation 

is not a problem for this setting, the improvements start from a negligible 1% for 

small relations and rise up to 24% for a large relation. This is clearly due to the fact 

that views with appropriate slopes can significantly speed-up the whole process as 

compared to their full evaluation.  

2.5.2. Experimental Method for n-D 

The second set of experiments involves the testing of the algorithm for the n 

dimensional space. In this set of experiments we have made use of synthetic as well as 

real data sets. All synthetic experiments involve a relation R( tid, X1, … Xn) of various 

distributions and dimensionality. For this set of experiments we have used a Core 2 

CPU at 2.53 GHz with 3.12GB memory. All the implementations were made using 

BerkeleyDB and its C API. 

Table 2.2 Experimental Parameters for Synthetic N-D. 

Data Distribution  Distr  Random, Correlated, Anticorrelated 

Data dimensionality  D  2, 3, 4, 5, 6, 7, 8 

Max size of top-k tuples Max_k  25, 100 
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Synthetic Data Sets 

The synthetic datasets are of three optional distributions: Random, Correlated and 

Anticorrelated. Random datasets are generated such that the attributes of the tuples 

are independent of each other following a uniform distribution. The Correlated and 

Anticorrelated datasets are generated as described in [BoKS01]. In the correlated 

datasets the attribute values of the tuples are positive correlated, whereas in the 

anticorrelated datasets, one attribute value is large and the remaining attribute values 

are small. The datasets are of dimensionality d that varies from 2 to 8. We generate 

views and queries with random coefficients and result size (k). The weights of the 

scoring function of the views and the queries all add to 1. The important parameters 

that we have experimented with are: (a) the distribution of the relation (Distr), (b) the 

dimensionality d of the relation and, (c) the maximum number of the requested tuples 

(max_k). The size of the relation is 1 million records, the number of views 

materialized is set to be 100 and the queries requested are 1000. The parameters for 

this set of experiments are listed in Table 2.2.  

 

The effectiveness of the method is depicted in Figures 2.21, 2.22 and 2.23. In these 

figures we present the percentage of queries that were answered by our method over 

the set of 100 prematerialized views. For all the figures the (a) part depicts the 

percentage of queries answered when both views and queries request top-k tuples, 

where k is randomly generated with maximum value 100, and the (b) part depicts the 

percentage of queries answered by our method when views and queries request top-k 

tuples with maximum value of k being 25. For the random and anticorrelated dataset 

we observe that the percentage of queries answered decreases as the dimensionality of 

the dataset increases. In the correlated dataset the percentage of queries answered by 

our method seems rather constant and independent of the dimensionality and almost 

100%. In addition, when comparing figures (a) and (b) in each distribution dataset we 

observe that the percentage of queries answered when the dimensionality increases is 

similar and rather regardless of the max_ k value.   
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(a)Percentage of queries answered with max_k 100 
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(b) Percentage of queries answered with max_k 25 

Figure 2.21. Percentage of Queries Answered for Random Data. 

The efficiency of the method is depicted in Figures 2.24, 2.25, 2.26. We vary again 

the distribution, the dimensionality and the maximum possible number that k can take, 

and we assess the improvement in time when comparing our method with the 

opponent. Specifically, we measure the percentage time improvements of our method 

when compared to the opponent. The detailed numbers (including total query times) 

are depicted in Tables 2.3, 2.4 and 2.5 for the distributions Random, Correlated and 

Anticorrelated respectively. By observing Figure 2.24 and 2.26 we can see that the 

time savings for these datasets decrease while the dimensionality increases. On the 

contrary, in Figure 2.25 we can observe that the time savings of our method seem to 

increase when the dimensionality increases. However, in Figure 2.25 (b) the time 

savings for 2, 3, and 4 dimensions when max k is 25 are negative showing that the 
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opponent outperforms our method. In conjunction with Table 2.4 we can observe that 

for the correlated data the opponent as well as our method needs a small amount of 

time to compute the results. For the same parameters ( i.e., d, max_k) but for random 

and anticorrelated data the time needed by the opponent (see Table 2.3 and 2.5) in 

comparison to the correlated data is much greater.  
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(a) Percentage of queries answered with max_k 100 
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(b) Percentage of queries answered with max_k 25 

Figure 2.22. Percentage of Queries Answered for Correlated Data. 
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(a) Percentage of queries answered with max_k 100 
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(b) Percentage of queries answered with max_k 25 

Figure 2.23. Percentage of Queries Answered for Anticorrelated Data.  
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(a) Time savings from the usage of views with max_k 100 
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(b) Time savings from the usage of views with max_k 25 

Figure 2.24. Time Savings from the Usage of Views for Random Data. 

 



56 

 

 

0

10

20

30

40

50

60

70

80

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

 

(a) Time savings from the usage of views with max_k 100 
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(b) Time savings from the usage of views with max_k 25 

Figure 2.25. Time Savings from the Usage of Views for Correlated Data. 
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(a) Time savings from the usage of views with max_k 100 
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(b) Time savings from the usage of views with max_k 25 

Figure 2.26. Time Savings from the Usage of Views for Anticorrelated Data.  
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Table 2.3 Absolute Times and Time Savings for Random Data.  

d Max_k % Q 

answ

ered 

Total 

opponent 

time 

(sec’s) 

Total time 

of our 

method 

(sec’s) 

Total 

opponent time 

for queries 

answered via 

views 

Total time of 

our method 

for queries 

answered via 

views 

% 

improved 

2 100 77.8 109.31 40.47 79.78 5.77 62.97 

2 25 73.4 59.62 25.01 41.98 3.17 58.03 

3 100 51.3 674.93 397.52 304.63 5.13 41.10 

3 25 51.2 393.97 235.62 177.98 3.62 40.19 

4 100 28 1872.74 1453.43 456.89 3.97 22.39 

4 25 24.7 1337.10 1095.07 285.36 4.06 18.10 

5 100 12.2 3630.21 3319.41 360.97 2.75 8.56 

5 25 11 2822.67 2620.57 254.23 2.94 7.15 

6 100 9.5 5364.30 5013.96 405.73 1.52 6.53 

6 25 6 4108.59 3994.96 168.48 2.01 2.76 

7 100 2.4 9121.94 9052.71 128.86 0.96 0.75 

7 25 4.3 7444.47 7457.33 56.11 2.35 -0.17 

8 100 1.4 12610.82 12569.41 101.83 0.65 0.32 

8 25 4.1 10353.91 10407.03 8.93 2.68 -0.51 
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Table 2.4 Absolute Times and Time Savings for Correlated Data.  

d Max_k % Q 

answe

red 

Total 

opponent 

time 

(sec’s) 

Total 

time of 

our 

method 

(sec’s) 

Total 

opponent time 

for queries 

answered via 

views 

Total time of 

our method 

for queries 

answered via 

views 

% 

improved 

2 100 97.8 1.73 1.68 1.65 1.60 2.96 

2 25 100 0.47 1.15 0.47 1.15 -140.73 

3 100 97.7 2.45 1.96 2.33 1.71 19.88 

3 25 100 0.69 1.22 0.69 1.22 -74.76 

4 100 94.8 3.01 2.36 2.69 1.67 21.64 

4 25 100 0.81 1.25 0.81 1.25 -52.86 

5 100 99.2 3.83 1.88 3.77 1.78 50.92 

5 25 100 1.26 1.25 1.26 1.25 0.48 

6 100 87.8 4.66 4.29 3.56 1.63 7.91 

6 25 100 1.36 1.31 1.36 1.31 3.48 

7 100 96.1 5.29 2.68 4.87 1.82 49.16 

7 25 100 1.64 1.34 1.64 1.34 18.42 

8 100 99.9 6.56 2.03 6.55 2.01 69.01 

8 25 100 2.53 1.40 2.53 1.40 44.67 
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Table 2.5 Absolute Times and Time Savings for Anticorrelated Data.  

d max_k % Q 

answe

red 

Total 

opponent 

time (sec’s) 

Total time 

of our 

method 

(sec’s) 

Total 

opponent time 

for queries 

answered via 

views 

Total time of 

our method 

for queries 

answered via 

views 

% improved 

2 100 85.5 7056.78 1518.47 5545.90 3.82 78.48 

2 25 90.2 6823.17 1161.88 5672.06 7.33 82.97 

3 25 66.1 12532.81 6580.70 5974.25 8.27 47.49 

4 25 42.7 15939.83 11366.84 4608.92 5.84 28.68 

5 100 32.5 18807.73 14632.41 4217.97 5.02 22.20 

5 25 29.2 18299.33 14907.86 3437.27 6.73 18.53 

6 100 24.7 22298.06 19158.12 3184.52 4.30 14.08 

6 25 32.7 21914.17 17612.97 4344.64 6.08 19.62 

7 100 22.2 26247.56 23073.72 3218.96 5.24 12.09 

7 25 20.4 26138.95 23645.24 2545.39 5.22 9.54 

8 100 85.5 7056.78 1518.47 5545.90 3.82 78.48 

8 25 90.2 6823.17 1161.88 5672.06 7.33 82.97 

.Table 2.6 Experimental Parameters for Synthetic N-D. 

Number of mat. Views  |V| 100, 500 

Number of queries |Q| 100, 1000 

Max size of top-k tuples max_k  25, 50, 100 

 

Real Data Sets 

To demonstrate the usefulness of our methods, we ran our algorithm on a real data set, 

Household data set, which is publicly available from the ipums (http:// 

www.ipums.org) and has been frequently used in the related literature. This dataset 

contains about 4 million tuples with 5 attributes. Again, we generate views and 

queries with random coefficients and result size (k) where weight factors all add to 1. 

The important parameters that we have experimented with are: (a) the number of 

materialized views |V|, (b) the number of queries asked |Q|, (c) the maximum number 
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of the requested tuples max_k. The parameters for this set of experiments are listed in 

Table 2.6 

 

In Figure 2.27 we can see the percentage of queries answered by our method for (a) 

1000 queries over 100 views, (b) 100 queries over 100 views and (c) 1000 queries 

over 500 views. We can observe that in all three sets the percentage of queries 

answered are above 35%. In addition, in Figures 2.27 (a) and (b) which demonstrate 

the percentage of queries over 100 views, we see that the percentages of queries 

answered are similar for each max_k. In the third figure, where the number of views is 

greater (i.e., 500) we see that the percentage of queries answered are higher and above 

60%, something reasonable due to the greater possibility of a query being answered 

from a greater set of possible views.  

 

In Figure 2.28 we observe the time savings of our method over the opponent for the 

three sets of experiments: (a) 1000 queries over 100 views, (b) 100 queries over 100 

views and (c) 1000 queries over 500 views. Again, Figure 2.28 presents the time 

savings for the three max_k values for the real dataset. We can observe that the time 

savings mainly are around 20%. The time savings of the third figure are quite smaller 

something that can be explained due to the greater number of possible views. This is 

reasonable since there are more views that should be checked until we can conclude 

whether a query can be answered by a view. 
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(a) Percentage of 1000 queries answered over 100 views 
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(b) Percentage of 100 queries answered over 100 views 
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(c) Percentage of 1000 queries answered over 500 views 

Figure 2.27 Percentage of Queries Answered for Real Dataset. 
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(a) Time savings for 1000 queries over 100 views 
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(b) Time savings for 100 queries over 100 views 
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(c) Time savings for 1000 queries over 500 views 

Figure 2.28 Time Savings of Our Method for Real Dataset. 
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2.6. Chapter Summary and Findings 

In this Chapter we have provided theoretical guarantees of the suitability of a 

materialized ranked view for the answering of a top-k query. To this end, we have 

introduced the notion of safe area of a query in regards to a view and provided the 

respective suitability theorem. In addition, we have proved that the theorem is strict in 

the sense that it cannot be inversed. In other words, we have proved that even if the 

safe area is not eligible for answering a top–k query, still the view may be suitable for 

answering a query and described this through the notion of the critical area. 

According to these theoretical establishments for the case of 2-D spaces as well as for 

the case of multidimensional spaces, we have provided algorithmic results for the 

answering of a top-k query through the usage of a materialized view, namely the 2D 

SafAri algorithm and the SafArI algorithm. Moreover, we have theoretically proved 

that the safe areas of a query in regards to more than one views do not offer further 

usefulness for answering the query compared to the safe area of a single view. We 

have also discussed the issue of providing partial results for a query via a materialized 

view by splitting the range of score into appropriate sub-ranges and provided the 

Compute Query Extent Algorithm. This way, different parts of the query answer can 

be obtained in parallel, by distributing their processing to different servers. 

 

We have tested our methods for their efficiency and effectiveness through a set of 

experiments over synthetic as well as real datasets. The first set of experiments 

concerned the 2D SafArI Algorithm, where the effectiveness of the method proved to 

be quite stable and ranged around 30-35%. The efficiency of our method is shown to 

increase consistently for reasonable k’s of size 0.1% of the dataset size and rise up to 

24% for large relations. The second set of experiments concerned the N-D case. The 

effectiveness of our method was counted as the percentage of queries answered from 

a set of materialized views. For the synthetic datasets, the effectiveness of the method 

seemed to be affected by the dimensionality for the random and anticorrelated 

datasets whereas for the correlated datasets the effectiveness was rather constant 

around 100%. The effectiveness of our method was also tested over a real dataset and 

proved to be above 35% in all scenarios and increased significantly when the number 

of materialized views increased. The efficiency of our method showed again an 

influence from the dimensionality, where for the random and anticorrelated datasets 
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the efficiency decreased while the dimensionality was increased. However, for the 

correlated datasets the efficiency increased when the dimensionality was increased. 

As for the efficiency of our method over the real dataset, this appeared to be around 

20% in terms of time savings over the state of the art.  
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CHAPTER 3.  MAINTENANCE OF TOP-K 

MATERIALIZED VIEWS 

3.1 Efficient Maintenance of Materialized top-k Views [YYY+03]  

3.2 Fine-Tuning of Views to Sustain High Update Rates 

3.3 Generalization of the Problem  

3.4 Multiple View Updates 

3.5 Updating Multiple Nucleated Views 

3.6 Experiments  

3.7 Chapter Summary and Findings 

 

 

View materialization is typically used for increasing the efficiency of query 

answering. However, this speed-up comes at a price. Remember that in our view 

maintenance setting, results of previous top-k queries are stored in the form of 

materialized views. Then, a new top-k query may be answered through materialized 

views resulting in better performance than making use only of the base relation from 

the database. As typically happens with materialized views, though, when the source 

relation is updated, we need to refresh the contents of all the materialized views in 

order to reflect the most recent data.  

 

Before proceeding, we present a motivating example to contextualize our discussion. 

Consider a database containing data about stores, products and customers visiting a 

shopping center near the metro station. When a train arrives, several potential 

customers arrive with it, at the same time though, there is a massive departure of 

existing potential customers due to the train’s departure. We assume a pervasive 

environment, where customers are equipped with wireless devices and connect to the 
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shopping center’s server as they enter the building. Assume a relation Customer (c_id, 

c_name, c_age, c_income) as well as accompanying relations with the customer’s 

profile, sales history, etc. For a salesman that needs to send the appropriate 

advertisements, it is important to know which customers are the top-k ones according 

to their characteristics. To achieve this, salesmen use queries that have scoring 

functions over customer data. For example, assume a salesman wants to advertise a 

new gadget about mobile phones. The salesman needs to create a profile for the new 

product, or register the product in an existing profile. The profile includes a formula 

that assigns a score for a potential customer according to several distance functions 

and matching of the gadget’s and the customer’s characteristics. To speed up things, it 

is reasonable to search for the top-k customers in order to send them the 

advertisement. When a train departs, many customers leave the shopping center; still, 

the top-k list of candidates per product must be maintained so that the remaining 

possibly interested clients are notified. Consequently, the top-k customer lists should 

be maintained when updates occur in the relation of customers. 

 

The two main problems that pertain to the maintenance of materialized views are (a) 

the correct and efficient maintenance of a single view when updates occur to the base 

relation, and (b) the generalization of the maintenance problem for a large number of 

materialized views. Remember that, given a relation R (tid, A1, A2,..., Am) and a query 

Q over R retrieve the top-k tuples from R having the k highest values according to a 

scoring function f that accompanies Q. Typically, f is a monotone ranking function of 

the form: f : dom(A1) ×…× dom(Am) →ℜ. 

 

Maintaining a single top-k materialized view. Concerning the problem of 

maintaining a single view, the first –and only- attempt that we are aware of is 

[YYY+03]. To sustain the update rate at the source relation without having to fully re-

compute the materialized views, [YYY+03] maintain kmax tuples (instead of the 

necessary k) and perform refill queries whenever the contents of the materialized 

views fall below the threshold of k tuples. Yet, the approach of [YYY+03] suffers 

from the following problems: (a) the method is theoretically guaranteed to work well 

only when insertions and deletions are of the same probability (in fact, the authors 

deal with updates in their experiments), (b) there is no quality-of-service guarantee 
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when deletions are more probable than insertions. In this chapter, we compensate for 

these shortcomings by providing a method that is able to provide quality guarantees 

when the deletion rate is higher than the insertion rate. The case is not so rare if one 

considers that the number of persons logged in a web server or a portal presents 

anticipated high peaks and valleys at specific time points or dates. The first 

contribution of our work is to deal with these phenomena efficiently. The solution to 

the problem is not obvious for the following reasons. First, even if the value 

distributions of the attributes that participate in the computation of the score are 

known individually, it is not possible to compute the distribution of their linear 

combination, i.e., the score (unless they are stable probabilities – e.g., Normal, 

Cauchy). Second, even if we extend k with extra tuples to sustain the incoming stream 

of updates that eventually affects the top-k materialized view, the extra tuples increase 

the possibility that an incoming source update might affect the view, thus resulting in 

the need to recursively compute this extension. Finally, we need to accommodate 

statistical fluctuations from the expected values. To resolve all the above, we provide 

a principled method that operates independently of the statistical properties of the data 

and the characteristics of the update streams. The method comprises the following 

steps: (a) a computation of the rate that actually affects the materialized view, (b) a 

computation of the necessary extension to k in order to handle the augmented number 

of deletions that occur and (c) a fine tuning part that adjusts this value to take the 

fluctuation of the statistical properties of this value into consideration. 

 

Maintaining a set of top-k materialized views. The problem of maintaining multiple 

materialized views is quite important. Its most prominent occurrence has to do with 

the situation where incoming queries are cached and treated as materialized views to 

efficiently support the answering of subsequent queries. The problem is hard if we 

assume that we need all the materialized views to be refreshed every time the source 

relation undergoes a change. A first workaround concerns the typical warehouse 

solution of collecting individual updates to larger batches that can be processed much 

more efficiently than treating each update one tuple at a time. Still, even in this 

setting, we would like to avoid visiting every view for every tuple. Two extra 

problems that occur are (a) it is not sufficient to simply include the appropriate tuples 

in the extent of a materialized view, but we need to compute their score and position 
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them appropriately in this extent (so, the sharing of tuples between views does not 

relieve us a lot from the overheads) and (b) we cannot solve the problem by sorting 

the tuples by their value over a single attribute, since the scoring function takes 

several attributes into consideration. A possibility that opens is to be able to prune 

data from the batch when we can infer that they need not be checked against a certain 

view. So, we develop mathematical guarantees that can decide whenever the current 

contents of a view need to be updated from a certain batch of modifications, when we 

know that another view has been affected by this same batch. We assume that the 

tuples in the extent of our views include (a) the tuple identifier of the tuple in the base 

relation, (b) the scoring attributes (needed for the management of updates) and (c) its 

score in the view. In our method, we introduce the idea of nucleation between views, 

which is quite similar to inclusion: a view V2 nucleates another view V1, whenever all 

tuples of the former belong to the extent of the latter, with the exception of their 

scores. The decision for this kind of inclusion is not straightforward; to avoid 

checking all the extents of two views we employ a geometric representation of the 

score function and the tuples of the two views and decide on the nucleation on the 

basis of this representation. Then, we structure views in a set of hierarchies, where 

each ancestor view nucleates its descendants. Updates can be pruned from a 

hierarchy, or a part of it, when a certain view in the hierarchy is unaffected from a 

modification; in this case, all its ancestor views avoid the test, too. At the same time, 

nucleation hierarchies come with a price: they are instance dependent and thus they 

need to be rechecked after the modifications of the view extents take place.  

 

Chapter Roadmap. In this Chapter we address the problem of efficiently maintaining 

top-k materialized views. In Section 3.1 we describe the state-of-the-art work. In 

Section 3.2 we propose a method for the fine-tuning of a materialized view for the 2 

dimensional case. In Section 3.3 we generalize the problem for the n dimensional 

space and for non-linear scoring functions. In Section 3.4 we describe the problem of 

updating multiple views and insert the notion of nucleation relationships between 

views. In Section 3.5 we provide an algorithm that updates multiple views by 

constructing a hierarchy structure based on the nucleation relationships of the views. 

In Section 3.6 we report on the experimental assessment of the estimation of the 



71 

 

 

essential view size in order to sustain a high rate of updates. Finally, in Section 3.7 we 

summarize our findings.  

3.1. Efficient Maintenance of Materialized top-k Views [YYY+03] 

[YYY+03] deal with the following problem: Given a base table R (id, val) where val 

is the score of the tuple according to a scoring function and a materialized view V (id, 

val) containing the top-k tuples from R according to their values, compute a kmax that 

is adjusted at runtime such that a refill query, that re-computes the view V from 

scratch for the missing part, is rarely needed. Assume an update of the form <id, val> 

occurs and let valk’ the tuple with the lowest value in V. Then the update can be 

classified as ignorable, neutral, good or bad. Ignorable is an update when its id is not 

in V and val<valk’ and thus there is no effect in V. A neutral update occurs when its id 

is in V and val>valk’. Then the tuple id is updated with value val. An update is 

categorized as good update when its id is not in V and val>valk’. Then this tuple is 

inserted in V and k’ is increased by one. If k’ exceeds kmax then the lowest tuple in V is 

deleted. A bad update describes an update whose id is in V and val<valk’. The tuple id 

is then deleted from V and k’ is decreased by one. If k’ drops below k, a refill 

operation is performed. A refill operation queries the base table R and returns all 

tuples ranked between k and kmax. [YYY+03] formulated the problem through a 

random walk model. The values of k’ between two refill operations are represented 

through a 1- dimensional random walk model. The points are represented as {0, …, n} 

where 0 denotes the starting point (kmax)and n (kmax – k +1) the absorbing point at 

which a refill operation is needed. Assume that the random walk is currently in 

position i and a bad update moves the random walk to position i+1 with probability pi, 

whereas a good update moves the random walk to position i-1 with probability qi. In 

any other case the update is ignorable or neutral with probability 1 - pi - qi. The 

problem is focused on analyzing the number of steps needed for the random walk 

model to go from 0 to n. In other words the analysis is conducted in order to find the 

probabilistic properties of the refill interval Z.  

 

According to the assumptions that each step is independent of all previous choices 

and the probabilities of bad and good updates remain constant as updates occur in the 
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view (p0=p1=…=pn-1=p and q0=q1=…=qn-1=q) the following occur. When p=q then 

if 
ε+

= 2

1

Nn the refill integral Z is greater than N with high probability 

being 2
2

41 /Ne]NZPr[
ε

−−≥> , for any positive constantε. When p<q, if 

Nlncn = the refill integral Z is greater than N with high probability 

being )(o]NZPr[ 11−>> , for constant c big enough depending only on p and q. 

When p>q, then, if n = N the refill integral Z is on the order of n. An adaptive 

algorithm chooses kmax at runtime without need to know the probabilities of good and 

bad updates. The algorithm is trying to keep the refill interval Z around the value 

Z0=Crefill/ Cupdate (where Crefill is the observed cost of a refill query and Cupdate is the 

observed cost of a base table update). The algorithm counts the number of base table 

updates occurred from the last refill operation. If the updates are less than Z0 /a then 

kmax is increased whereas if the number of updates is greater than aZ0 then kmax is 

decreased, where a is a constant parameter. 

3.2. Fine-Tuning of Views to Sustain High Update Rates 

In this section we present our method for the fine tuning of materialized views defined 

over a relation that goes through updates in high rates. First, we formally define the 

problem. Second, we sketch our method and then, we move on to further detail the 

individual steps of the method. 

3.2.1. Formal Definition of the Problem  

The formal definition of the problem is:  

Given a base relation R (ID, X, Y) that originally contains N tuples, a 

materialized view V that contains top-k tuples of the form (id, val) where 

val is the score according to a function f(x, y)= a⋅x + b⋅y and a, b are 

constant parameters, the update ratios Λins, Λdel and Λupd for insertions, 

deletions and updates respectively over the base relation R,,  

Compute  kcomp  that is of the form kcomp = k +∆k  

Such that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a 

period T. 
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Assume a base relation R (ID, X, Y), that contains N tuples a materialized view V that 

contains top-k tuples of the form (id, val) where val is the score according to a 

function f(x, y)= a⋅x + b⋅y and a, b are constant parameters. Assume that the last tuple 

in the view has value valk. Given the aforementioned update rates, insertions, 

deletions and updates occur in the base relation R with probabilities PINS, PDEL and 

PUPD respectively. These probabilities are expressed as: 
UPDDELINS

INS

INSP
Λ+Λ+Λ

Λ
= , 

UPDDELINS

DEL
DELP

Λ+Λ+Λ

Λ
= and 

UPDDELINS

UPD

UPD
P

Λ+Λ+Λ

Λ
=  

In the rest of our deliberations, updates are treated as combinations of deletions and 

insertions. This is a quite reasonable treatment, since we are mainly interested in the 

statistical properties of the rates of these actions and not in their hidden semantics. A 

simple method for the conversion of the involved rates is given in Section 3.2.2.  

 

Our problem is to find a kcomp that will guarantee that the view will be maintained 

when insertions and deletions will occur in R. In order to do so, we must estimate the 

number of insertions and deletions that might affect the view. In other words, we need 

to compute the probability of the view being affected by a tuple inserted in R or 

deleted from R.  

 

Assume that a new tuple z (id, x, y) is inserted in R. The probability of this tuple 

affecting the view is p (z > valk). Hence, the probability of a new tuple to be inserted 

in R and affect the view V is 
aff
insp  which is expressed as: 

aff
insp  = p (z > valk) ⋅ pins. The 

probability of a tuple to be deleted from R and affect the view V is 
aff
delp  which occurs 

as
aff
delp  = p (z > valk) ⋅ pdel.  

 

A problem that occurs with the maintenance of kcomp tuples at the view side is that 

kcomp incurs extra maintenance overheads, since the tuples of ∆k can suffer updates 

too. Thus, we need to compute 
aff
insp and 

aff
delp for the case where kcomp tuples are 

maintained. Therefore, the view V will contain kcomp tuples instead of k. Assume that 
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the last tuple of the view containing kcomp tuples is valkcomp. Consequently, the 

probability of a new tuple z to affect the view V is p(z>valkcomp) whereas the 

probability of a new tuple to be inserted in R and affect the view occurs as: 
aff
insp = 

p(z>valkcomp) ⋅ pins. Respectively the probability of a tuple z to be deleted from R and 

affect the view V can be expressed as: 
aff
delp  = p(z>valkcomp) ⋅ pdel. 

3.2.2. Sketch of the Method 

The proposed method is focused around three main steps: first, we compute the 

percentage of the incoming source updates that affect a top-k materialized view; 

second, we compute a safe value for the additional view tuples that we need in order 

to sustain high deletion rates; third, we fine tune this value with a safety range of 

values. Specifically, the three main steps are:  

 

1. Given ΛINS, ΛDEL and ΛUPD, we can compute λins and λdel, pins and pdel, and 

finally, 
aff
insp and

aff
delp as well as 

aff
insλ and

aff
delλ .  

ΛINS, ΛDEL and ΛUPD denote the ratios of insertions deletions and updates that 

occur in the base table R. pins and pdel denote the probabilities of an insertion 

and deletion occurring on the base table R respectively. 
aff
insp and

aff
delp denote 

the probabilities of insertions and deletions that affect the view V respectively. 

These probabilities are expressed as a function of kcomp. 
aff
insλ and 

aff
delλ denote 

the ratios of insertions and deletions occurring in the view V in the period of 

operations T. Updates are treated as a combination of deletions and insertions 

thus λins and λdel denote the ratios of insertions and deletions including those 

occurring from updates. 

2. Compute kcomp as a function of 
aff
insλ , 

aff
delλ . 

kcomp denotes the number of tuples that the view V should initially contain, 

such that after a period of operations T, V will contain at least k tuples. 

3. Fine-tune kcomp by using the variance of the probability that a deletion and 

insertion action affects the materialized view.  



75 

 

 

3.2.3. Handling of Updates 

Given ΛINS, ΛDEL and ΛUPD and treating updates as a combination of deletions and 

insertions, the ratios λins and λdel can be computed through the following equations: 

λins = number of insertions including those from updates / T 

λdel = number of deletions including those from updates / T 

ΛINS = number of insertions / T 

ΛDEL = number of deletions /T 

ΛUPD = number of updates /T  

Therefore, λins=ΛINS+ΛUPD , λdel=ΛDEL+ΛUPD. In addition, pins and pdel can be 

expressed through the usage of ratios as 
delins

ins
insp

λλ

λ

+
=  and 

delins

del
delp

λλ

λ

+
= respectively. 

3.2.4. Computation of the Actual Rates that Affect V 

The problem now is to compute the probabilities 
aff
insp  and

aff
delp that affect the view V. 

These probabilities can be computed as 
aff
insp = pins⋅ p (z > valkcomp) and 

aff
delp = pdel ⋅ 

p(z> valkcomp) respectively. Actually, 
aff
insp  is the number of insertions affecting the 

view V divided by the number of insertions and deletions occurring on the base table 

R and
aff
delp is the number of deletions affecting the view V divided by the number of 

insertions and deletions occurring on the base table R. Now the problem is focused 

upon finding the probability p(z>valk).  

 

In order to compute the above probability we will use the Empirical Cumulative 

Distribution Function Fn(x) (ECDF). Instead of using of a particular parametric 

cumulative distribution function, we will use ECDF which is a non parametric 

cumulative distribution function that adapts itself to the data. ECDF returns the values 

of a function F(x) such that Fn(x) represents the proportion of observations in a 

sample less than or equal to x. Fn(x) assigns the probability 1/n to each of n 
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observations in the sample. In other words Fn(x) estimates the true population 

proportion F(x). ECDF is formally defined as follows [Triv02]:  

Let X1, X2, …, Xn be independent, identically distributed random variables and let 

x1<x2<…<xn denote the values of the order statistics of the sample. Then the empirical 

distribution function Fn(x) is defined by the following formula: 

 

Fn(x) =  

0, x<x1 

n

i
, xi ≤ x<xi+1 

1, xn≤ x. 

 

The alternative definition of Fn(x) is: 

n

x_are_that_sample_the_in_values_of_number ≤
=(x)Fn  

Assume that the base relation R contains N tuples and the view V should contain kcomp 

tuples. If we order these tuples according to their values then there are N-kcomp tuples 

in R with value less than the value of kcomp. The following theorem implies that when 

the sample size n is large, Fn(x) is quite likely to be close to F(x) over the entire real 

line.  

 

Theorem 3.1 Glivenko-Cantelli Theorem [DeSc02]: 

Let F(x) denote the density function of the distribution from which the random sample 

X1, X2,…, Xn was drawn. For each given number x (-∞<x<∞) the probability that any 

particular observation Xi will be less than or equal to x is F(x). Therefore, it follows 

from the law of large numbers that as ∞→n , the proportion Fn(x) of observations in 

the sample that are less than or equal to x will converge to F(x) uniformly over all 

values of x. Let |)x(F)x(F|supD n
x

n −=
∞<<∞−

, the Glivenko-Cantelli theorem states 

that 0→
p

nD . � 

 

Therefore, the probability of a tuple z affecting the view V can be expressed as:  
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p(z>valkcomp)= 1- p(z≤valkcomp)=1-FN(kcomp) 

p(z>valkcomp)=1-
N

k

N

kN compcomp
=

−
 

 

Eq 3.1 

 

As a more general example, consider a base relation R where the score of its tuples 

according to a function follow an exponential distribution in the interval [0, 2] and 

that a view V requires the top-k tuples of R according to their score value. In Figure 

3.1 the probability distribution function of an exponential distribution is illustrated. In 

addition, assume that the top-k tuples are the 20% of the relation R and thus the 

vertical line top-k shown in Figure 3.1 denotes the values of the tuples that participate 

in the top-k view. Thus, the values in the view are greater or equal to 0.3. Assume a 

new tuple t following the same exponential distribution being inserted in R. For the 

new tuple t the probability of its value participating in the top-k ones is again 20%.  

 

Figure 3.1. Exponential Probability Distribution. 

 

Again, consider a similar situation where a view contains the top-k tuples from a base 

relation R according to a scoring function. Assume that the score values of R this time 

follow a beta distribution in the interval [0, 1] with parameters given as 5 and 2. 

Figure 3.2 illustrates the probability distribution function of such a distribution. 

Similar to the previous example, the vertical line illustrated as top-k in Figure 3.2 

denotes that the view contains 20% of R’s tuples where the values participating in the 

view are greater or equal to 1.7. Assume a new tuple denoted as t being inserted in R. 
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The new tuple t will again follow the same beta distribution and the probability of t 

having a value greater than 0.8 is 20%.  

 

Figure 3.2. Beta Probability Distribution. 

Therefore, 
aff
insλ and aff

delλ  are computed through the following equations:  

aff
ins

aff
ins p=λ ⋅(λins + λdel) and aff

del
aff
del p=λ ⋅(λins + λdel). 

According to equation 3.1, 
aff
insλ and 

aff
delλ can be expressed as: 

aff
insλ = pins ⋅ p(z > valkcomp) ⋅(λins + λdel) 

aff
insλ  = pins ⋅

N

kcomp
 ⋅(λins + λdel) 

 

 

Eq 3.2 

 and  

aff
delλ  = pdel ⋅ p(z > valkcomp) ⋅(λins + λdel) 

aff
delλ  = pdel ⋅

N

kcomp
 ⋅(λins + λdel) 

 

 

Eq 3.3 

3.2.5. Computation of kcomp 

The last step of the method is to compute kcomp, such that it will guarantee that the 

view will contain at least k tuples, k ≤ kcomp, with probability p, after a period of 

operation T. In other words compute a kcomp that is of the form kcomp = k + ∆k. In 

general, when the ratio of insertions λins is greater than that of deletions λdel it is clear 

that V will be maintained. The problem arises when the opposite occurs, i.e., when the 
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ratio of deletions is greater than that of insertions. In such a case it is vital to compute 

a value for kcomp that can guarantee that V will contain at least k tuples after a period 

of operations. 

 

Let us denote the frequency of deletions that affect the view V as aff
delλ . In a period of 

time T, in order to keep the view maintained the following inequality should 

hold: kk
aff
del

T
comp ≥Τ⋅− λ .  

 

Thus, in case both insertions and deletions occur in a period of time T, in order to 

keep the view maintained for kcomp the following inequality should hold kcomp ≥ k + 

)( aff
ins

aff
del λλ − ⋅T. Clearly, to minimize memory consumption, we need to take the 

minimum possible kcomp and thus treat the above inequality as the equation kcomp = k + 

)( aff
ins

aff
del λλ − ⋅T.  

 

Therefore, by replacing 
aff
insλ and 

aff
delλ from equations 3.2 and 3.3 the following 

equality occurs: 

 

kcomp= k + (pdel – pins) ⋅(λins + λdel) ⋅ 
N

kcomp
⋅ T ⇒ 

kcomp= k + (λdel – λins) ⋅ 
N

kcomp
⋅ T 

 

 

Eq 3.4 

Thus, by solving the above equation according to kcomp we obtain: 

kcomp = k ⋅
T*)(N

N

delins λλ −+
 

Eq 3.5 

 

Equation 3.5 has a meaning when N + (λins – λdel) ⋅ T> 0. This states that the size of 

the base relation R will not fall below 0, after updates occur in a period of operations 

T. At the same time, when λins – λdel < 0 (i.e., the case we are particularly interested 

in), then the fraction is greater than 1 and thus, kcomp > k. 
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3.2.6. Fine-Tuning of kcomp 

Although we now have a formula to compute the value of kcomp, we have expressed 

the probability of a new tuple z(id, x, y) affecting the top-kcomp tuples of the view as 

p(z>valkcomp). Assume that a new tuple z is inserted in R. The probability of this tuple 

to affect the view is p(z>valkcomp) whereas, the probability of this tuple not to affect 

the view is 1- p(z>valkcomp). The above can be expressed as a Bernoulli experiment 

with two possible events. These are (a) the new tuple being inserted in V with 

probability of success p(z>valkcomp) and, (b) the exact opposite where the new tuple is 

not inserted in V with probability 1- p(z>valkcomp). When the ratio of insertions 

occurring in the base relation R are λins, a Bernoulli experiment is occurring λins times 

where the probability of success is p(z>valkcomp) and the number of successes follow a 

Binomial distribution. The probability of having Yins affected insertions in the view 

follow a Binomial distribution of the form Binomial (λins, p(z>valkcomp)). The variance 

of the above distribution can be expressed as:  

Var(Yins) = λins⋅ p(z>valkcomp) ⋅ (1- p(z>valkcomp)).  

The above formula indicates that insertions expected to affect the view may vary by 

Var(Yins). Correspondingly, if there are λdel deletions occurring in the base relation R, 

then the variance of these deletions expected to affect the view is  

Var(Ydel) = λdel ⋅ p(z>valkcomp) ⋅ (1- p(z>valkcomp)). This occurs as the variance of the 

Binomial distribution B(λdel, p(z>valkcomp)), which is similar to the one used for 

insertions.  

 

Therefore in the worst case, in order to guarantee that the view will contain at least k 

tuples with confidence 95%, where k ≤ kcomp, equation 3.4 becomes as stated below: 

kcomp = k + (λdel – λins) ⋅ 
N

kcomp
 ⋅T + 2 ⋅ Var(Ydel) + 2 Var(Yins) Eq 3.6 

 

The confidence rate of 95% occurs from statistical properties concerning the variance 

factor appearing in equation 3.6. In case another confidence percentage is needed, 

equation 3.6 can be adjusted according to typical statistical methods [DeSc02].  
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3.2.7. Discussion 

The problem of maintaining a view when updates occur in a base relation R, mainly 

lies in the problem of estimating the number of updates that will affect the view. 

Statisticians have contributed in this by providing equations that compute the value of 

a probability of the form p(z>valkcomp). However, the equation of such a probability 

depends on the distribution that the variable z follows. In our context, the variable z is 

a linear combination of the form a⋅x + b⋅y where x and y are values from the attributes 

X and Y of the base relation. Even if the distributions that X and Y follow are known, 

the distribution of the score Z cannot be computed unless X and Y follow a stable 

distribution. A stable distribution (e.g., Normal, Cauchy) has the property of stability. 

This property states that if a number of independent identically distributed (iid) 

random variables have a stable distribution, then a linear combination of these 

variables will have the same distribution. Therefore, the distribution of the variable Z 

can only be known in few cases. However, even if the distribution of the score was 

known, the probability p(z>valkcomp) could be computed only with respect to the valk 

instead of the value valkcomp. This is because the valkcomp could not been know in 

advance. Therefore, an iterative procedure would be needed. This occurs from the fact 

that we could compute the effect top-k tuples could have but not the effect the extra 

tuples would arise. Thus, a recursive procedure would be required.  

3.2.8. Example 

As an example, consider the base relation R (ID, X, Y) initially containing N tuples 

with N=20 where attributes X and Y follow a uniform distribution over the interval [0, 

100]. In addition, consider a materialized view V that contains the top-3 tuples (k=3) 

of the form (id, val) where val=3⋅x+7⋅y is the score according to a function f(x, y)=a⋅x 

+ b⋅y and a=3, b=7. The base relation R and the initial state of V are shown in Figure 

3.3. Finally, the update ratios are Λins=5, Λdel=15 and Λupd=0. We will compute kcomp 

such that the view would contain kcomp tuples instead of k in order to be kept 

maintained when insertions, deletions and updates will occur in the base relation R. 

Moreover, let the period of operations occurring set as T=1. 
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According to the method of Section 3.2.3, the ratios λins and λdel are 5 and 15 

respectively. Therefore, pins=0.25 and pdel=0.75. The probability p(z≥ valkcomp) can be 

calculated according to the following:  

p(z≤valkcomp) = FN (valkcomp) 

p(z≤valkcomp) = (number of elements in score sample≤ valkcomp) / N 

p(z>valkcomp) = kcomp / 20   

In consequence, the probabilities 
aff
insp and

aff
delp can be calculated as:  

aff
insp = pins ⋅p(z≥valkcomp) = 0.25 ⋅

20

compk
and 

aff
delp = pdel ⋅p(z≥valkcomp) = 0.75 ⋅

20

compk
. 

 

R  V 

id X Y id Z 

1 56 41 10 929 

2 58 62 15 847 

3 15 97 4 836 

4 78 86   

5 69 10  

6 96 60 

7 12 43 

8 74 76 

9 26 71 

10 95 92 

11 34 51 

12 27 36 

13 19 25 

14 68 81 

15 91 82 

16 84 65 

17 41 59 

18 37 37 

19 23 17 

20 47 27 

Figure 3.3. Base Relation R. 

 

Given the previous probabilities, the effective update ratios for the view V are then:  

aff
insλ =

aff
insp ⋅(λins + λdel) = 0.25 ⋅

20

compk
⋅(5 + 15)  
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aff
delλ =

aff
delp ⋅(λins + λdel) = 0.75 ⋅

20

compk
⋅(5 + 15)  

 

The above equations state that if 5 insertions will occur in the base relation R, 

aff
insλ will affect the view and if 15 deletions occur then 

aff
delλ will affect the view 

respectively. To be more specific the ceiling function is applied on 
aff
insλ and

aff
delλ . 

Therefore, for kcomp the following inequality holds:  

kcomp ≥ k + )
aff
ins

aff
del( λλ − ⋅T ⇒ kcomp ≥ 6  

where actually kcomp = 6. Thus, kcomp should be 6 in order to keep the view maintained 

after insertions, deletions and updates will occur in the base relation R. Suppose that 

insertions and deletions, shown in Figure 3.4, occur in the base relation R. The view V 

contains initially top-6 tuples and after updates the view will contain top-3 tuples. 

These are shown in Figure 3.5 where the dark shading denotes the initial top-3 tuples 

of V whereas the light shading denotes the extra top-3 tuples in order to have top-kcomp 

tuples.  

insertions deletions 

Id X Y id X Y 

21 25 33 1 56 41 

22 18 64 2 58 62 

23 97 83 3 15 97 

24 31 50 4 78 86 

25 53 82 5 69 10 

 

7 12 43 

8 74 76 

10 95 92 

11 34 51 

12 27 36 

13 19 25 

15 91 82 

16 84 65 

17 41 59 

20 47 27 

Figure 3.4. Insertions and Deletions Occurring in Base Relation R. 
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V    V  

id Z id Z 

10 929 Deleted 23 872 

23 872 Inserted 14 771 

15 847 Deleted 25 733 

4 836 Deleted  

14 771  

8 754 Deleted 

25 733 Inserted 

3 724 Deleted 

Figure 3.5. The View V Prior and Subsequent to Updates. 

3.3. Generalization of the Problem  

In this section we provide two generalization of the above problem. The first 

generalization concerns a relation R that contains more than two attributes and the 

scoring function is of linear form whereas the second generalization concerns the 

problem when the scoring function is not obligatory linear but is a monotone function. 

Assume that the relation is of the form R (ID, X1, X2, …, Xn) and the scoring function 

of the view includes all the attributes Xi or a number of them. The problem then can 

be generalized as:  

3.3.1. Formal Definition of the Problem Generalized for More than Two Attributes 

Given a base relation R (ID, X1, X2, …, Xn) that originally contains N tuples, a 

materialized view V that contains top-k tuples of the form (id, val) where 

val is the score according to a function f(x1, x2, …,xn)=a1⋅x1 + 

a2⋅x2+…+an⋅xn and a1, a2, …an are constant parameters, the update ratios 

Λins, Λdel and Λupd for insertions, deletions and updates respectively over 

the base relation R,  

Compute  kcomp that is of the form kcomp = k +∆k  

Such that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a 

period T. 

 

The solution to the problem is similar to the previous three-step method which leads 

to the computation of equation 3.5. This is because the computation of kcomp from 
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equation 3.5 is independent of the attributes that participate in the scoring function of 

V. 

3.3.2. Formal Definition of the Problem Generalized for Non-Linear Monotonic 

Functions 

Given a base relation R (ID, X1, X2, …, Xn) that originally contains N tuples, a 

materialized view V that contains top-k tuples of the form (id, val) where 

val is the score according to a monotone function f(x1, x2, …,xn), the 

update ratios Λins, Λdel and Λupd for insertions, deletions and updates 

respectively over the base relation R,  

Compute  kcomp  that is of the form kcomp = k +∆k  

Such that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a 

period T. 

 

In general, the scoring function of the view can be any monotonic function and not 

compulsory a linear function. The monotonic property is important in order to make 

use of the ECDF distribution function. Remember that ECDF returns the values of a 

function F(x) such that Fn(x) represents the proportion of observations in a sample 

less than or equal to x. Therefore, it is necessary that the values among a sample have 

an order. In other words, for the setting of our problem, the values of the sample are 

the tuples and their score according to the scoring function of V. 

3.4. Multiple View Updates  

So far, our deliberations have been focused on the fine tuning of the size of a 

materialized view in order to sustain high update rates. The next step in our 

investigation of the field of top-k materialized view refreshment is to consider the 

case where more than one views need to be materialized. We will split the overall 

problem in two parts: 

 

The first problem that we consider concerns the dominance of a view over another 

and how this reflects to the view refreshment problem. In other words, we investigate 
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whether we can efficiently infer when the updates over a view directly affect the 

materialized contents of another view. Formally, assume a relation R(ID, X, Y,…) and 

two materialized views V1(ID, X, Y, s1) and V2(ID, X, Y, s2) that contain k1 and k2 

tuples respectively. The score s1 of V1 is defined as s1= a1⋅x +b1⋅y and the score s2 of 

V2 is defined as s2=a2⋅x + b2⋅y and a1, a2, b1, b2 are positive parameters. Assume that 

updates occur at the relation R, and one of the views is affected by them (i.e., its 

extent has to be updated). Then, the question that arises is whether it is possible to 

know a-priori if the impact of these updates deterministically results in the necessity 

to update the other view too. We provide guarantees for this case via a geometrical 

representation of the views and their scoring equations and we can safely determine 

the effect of an update on a view on the basis of its effect on another view. 

 

The second problem that we consider involves the design of an efficient structure for 

a large set of top-k materialized views in order to speed up their maintenance. The 

constructed structure is based on the abovementioned dominance relationship among 

the views. We introduce hierarchies for the views and test batches of updates over the 

bottom of the hierarchies. If the updates affect the bottom view, its immediate 

ancestors are candidates for being affected by the updates; otherwise, we can surely 

alleviate them from the burden of being tested against the update under examination. 

Obviously, the same pattern recursively propagates throughout all the hierarchy as 

long as a member of the hierarchy is affected.  

 

The structure of this section is as follows. First, we start with preliminary ideas 

coming from the related literature and subsequently, we expand these results to 

discuss the case of view dominance. The third part of the section involves the 

discussion of view maintenance for large sets of views.  

3.4.1. View Nucleation 

Assume a relation R(ID, X, Y,…) and a materialized view V (ID, X, Y, s1) that contains 

k tuples, scored via s which is defined as s = wx⋅x +wy⋅y = w⋅ (a⋅x + y). Both a1, and b1 

are positive numbers). To simplify notation, we will often denote the view as V(a, k). 

Assume now a relation R(ID, X, Y,…) and two materialized views V1(ID, X, Y, s1) and 
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V2(ID, X, Y, s2) that contain k1 and k2 tuples respectively, with the score s1 of V1 

defined as s1= a1⋅x +b1⋅y and the score s2 of V2 defined as s2=a2⋅x + b2⋅y. All a1, a2, b1, 

b2 are positive numbers. Assume now that updates occur to the base relation and they 

must be propagated to the views. In a typical relational situation with SPJ queries, we 

would say that a view V1 is contained within view V2, if the extent (i.e., the 

materialized tuples) of view V1 is always a subset of the extent of view V2. In our 

case, due to the fact that the scores of the materialized tuples are different, we slightly 

tweak the terminology and instead of the ‘containment’ terms we employ a 

terminology around the notion of ‘nucleus’. 

 

Definition 3.1 (Nucleation Relationship of two Views). Assume a relation R(ID, X, 

Y,…) and two materialized views V1(a 1, k1) and V2(a2, k2). A view V2 nucleates a 

view V1 if for each tuple t(t.id,t.x,t.y,…) ∈ R that belongs to the extent of V2 as a tuple 

t2(t.id,t.x,t.y,s2(t)) ∈ V2 (i.e., with a score s2(t)), a respective tuple t1(t.id,t.x,t.y,s1(t)) 

obligatorily belongs to the extent of V1. We denote this nucleation as V2 ⊆ V1. 

 

Definition 3.2 (Nucleus equivalent Views). Two views V1(a 1, k1) and V2(a2, k2) are 

nucleus equivalent if both V2 nucleates V1 and V1 nucleates V2. 

 

Clearly, the main idea behind nucleation is that despite the difference in scores, the 

‘nucleus’ of a tuple (i.e., the tuple identifier and the scoring attributes) are the same in 

the respective materialized tuples. 

3.4.2. Updates for Nucleated Views 

Can we efficiently decide when a view V1 is nucleated by another view V2? In this 

subsection, we will deal with this problem based on an analysis conducted via a 

geometric representation. Specifically, assume the views V1 and V2 defined as V1(ID, 

X, Y, s1) and V2(ID, X, Y, s2) that contain k1 and k2 tuples respectively, with the score 

s1 of V1 defined as s1= a1⋅x +b1⋅y and the score s2 of V2 defined as s2=a2⋅x + b2⋅y. 

These two views are characterized by the lines y=b1⋅a1
-1

⋅x and y= b2⋅a2
-1

⋅x 

respectively. There are two cases depending on the scoring functions of V1 and V2 

and, consequently, on the slopes of their characteristic lines. The first case is trivial in 
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the sense that the two views are practically characterized by the same line. The second 

case concerns the typical situation when the lines of the two views are different. In the 

sequel, we discuss these cases in more detail. 

 

Case 1: 
2

2

1

1

b

a

b

a
=   

In this situation, the equation of V1 is proportional to the equation of V2. Without loss 

of generality assume that the equation of V1 is s1= a1⋅x +b1⋅y and the equation of V2 is 

s2= λ (a1⋅x +b1⋅y) where  λ∈ℜ
+
. Then, the line that characterizes both views is y= 

b1⋅a1
-1

⋅x. There are two sub-cases in this situation. 

  

Case 1.1: k1=k2. In addition, assume that both views contain the same number of 

tuples, i.e., k1=k2. In this case, any update affecting V1 will definitely affect V2 and 

vice versa. The only difference between the results of the two views will be the score 

of their tuples. Obviously, if V1 contains a tuple t with score s1(t) then the same tuple 

will belong in V2 but with score s2(t)= λ⋅ s1(t).  

 

Lemma 3.1. If the equation of a view V1 is proportional to the equation of a view V2 

with the same extent size k of materialized tuples, then they both contain the exact 

same tuples (i.e., they are nucleus equivalent) with the same ordering.  

 

Proof. Assume that the equation of V1 is s1= a1⋅x +b1⋅y and the equation of V2 is s2= λ 

(a1⋅x +b1⋅y) where λ∈ℜ
+
. In addition, assume tk(xk, yk) is the last tuple in V1. Then for 

any tuple t(xt, yt) from V1, obviously by definition s1(t) ≥ s1(tk). In other words, a1⋅xt 

+b1⋅yt ≥ a1⋅xtk +b1⋅ytk. Multiplying this inequality with the proportion λ, we get λ (a1⋅xt 

+b1⋅yt) ≥ λ (a1⋅xtk +b1⋅ytk). This states that s2(t) ≥ s2(tk) for every tuple t from V1. 

However, the last inequality is the definition of the top-k tuples of V2. Therefore, any 

tuple in V1 will be in V2 as well. In addition, if for two tuples t1 and t2 from V1 we 

know that s1(t1) ≥ s1(t2) then by multiplying the inequality with the parameter λ we get 

s2(t1) ≥ s2(t2). This proves that tuples t1 and t2 appear with the same ordering in V2 as 

well. � 

 



89 

 

 

Corollary 3.1. If the equation of a view V1 is proportional to the equation of a view 

V2 with the same extent size k of materialized tuples, whenever V1 is affected by an 

update, V2 will be affected as well and vice versa.  

 

Proof. Assume a tuple t(xt, yt) being updated (inserted or deleted) in R and t affects V1 

with score s1(t). This means that s1(t) = a1⋅xt +b1⋅yt and s1(t) ≥ s1(tk), where tk is the last 

tuple materialized in V1. Multiplying the above inequality by the parameter λ we get 

λ⋅s1(t) ≥ λ⋅s1(tk) which can be written as s2(t) ≥ s2(tk). From the above lemma tk is also 

the last materialized tuple in V2. Therefore, tuple t has a higher score than tk for V2 as 

well. Therefore, tuple will also affect V2. � 

 

 

Figure 3.6. Both Views Are of Proportional Equations. 

Case 1.2: k1< k2. Consider now the case where the equations of the two views V1 and 

V2 are still proportional, but k1< k2 (which means that V1 contains less tuples than V2). 

In this case, V1 nucleates V2 and any update affecting V1 will definitely affect V2 as 

well.  

 

Corollary 3.2. If the equation of a view V1(a, k1) is proportional to the equation of a 

view V2(a, k2) and k1< k2, V1 nucleates V2. 
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Proof. According to the above lemma as shown in Figure 3.6, the top-k1 tuples are 

exactly the same for both views. The inverse however, does not always hold. This is 

because an update occurring in V2 might be affecting the tuples that are ranked below 

k1 and thus, the k1 tuples of V1 will not suffer any change. Obviously, if an update 

occurring in V2 affects the top-k1 tuples then it will affect V1 as well. � 

 

Case 2: 
2

2

1

1

b

a

b

a
≠  

In this situation, the equations of the two views are completely different. In this case, 

since the equations of the two views are not proportional, the only piece of 

information that can be used in order to conduct a conclusion with respect to the 

nucleation of the two views is the position of the last tuple of each view. Again, 

assume two views V1(ID, X, Y, s1) and V2(ID, X, Y, s2) with k1 and k2 tuples 

respectively where score s1 is defined as s1= a1⋅x +b1⋅y and s2 is defined as s2=a2⋅x + 

b2⋅y. The lines that characterize the two views are V1: y=b1⋅a1
-1

⋅x and V2: y= b2⋅a2
-1

⋅x 

respectively (see Figure 3.7 or Figure 3.8). Let tk1 be the last tuple materialized in V1 

with score s1(tk1) and L1 be the line which is vertical to the line of V1 and passes from 

point tk1. The area above the line L1 contains the top-k1 tuples with respect to V1. Now, 

take the line L2, which is vertical to V2 and passes through the point tk2, where tk2 is 

the last tuple materialized in V2. The area above line L2 contains points that belong to 

V2. In addition, let I denote the point where L1 and L2 intersect.  

 

The position of the intersection point I is critical in regards to the knowledge of 

whether updates affecting one view will affect the other view or not. Assume that the 

active domains of attributes X and Y are X∈[xmin, xmax] and Y∈ [ymin, ymax]. We will 

employ the term active area to refer to the region in which any tuple from relation R 

belongs. This is constrained within a rectangle defined by the points (xmin, ymin) and 

(xmax, ymax). Checking whether point I lies inside the active area or not can be easily 

done when the last tuple of each view is known. Line L1 is expressed as: a1⋅x 

+b1⋅y=s1(tk1). Similarly, line L2 is expressed as: a2⋅x +b2⋅y=s2(tk2). Therefore, the 

coordinates of point I(xI, yI) can be found by solving the linear system of L1 and L2. 

Specifically,  
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xI = (a1⋅b2 – a2⋅b1)
-1 

⋅ (b2 ⋅ s1(tk1) - b1⋅s2(tk2)) and  

yI = (a1⋅b2 – a2⋅b1)
-1 

⋅ (a1⋅s2(tk2) - a2⋅s1(tk1)).  

Depending on the position of where point I lies we have the following cases:  

 

Case 2.1: point I intersects outside of the active area. Point I lies outside of the 

active area if at least one of its coordinates xI, yI does not belong in the active domains 

of X and Y respectively. In fact, in case point I lies outside the active area (see Figure 

3.7), then all tuples materialized in one view are also materialized in the other view as 

well. This situation indicates that whenever an update occurs in V2, this will definitely 

affect V1 as well. The inverse however is not always true.  

 

In Figure 3.7, tuples of V2 also belong in V1 and V2 nucleates V1. In other words, V2 is 

a subset of V1 in the sense that any tuple in V2 will be part of V1 but with a different 

ranking and score.  

 

Figure 3.7. Intersection of Two Views Outside the Active Area. 

Case 2.2: Point I intersects inside the active area. Point I lies inside the active area 

if both of its coordinates xI, yI belong in the active domains of X and Y respectively. In 

case point I lies within the active area, there is no clear guarantee of the way the views 

are affected when updates occur. However, there is a sub-area which we refer to as 

safe area, where both views will be affected in the same way. Observe Figure 3.8, 

where the safe area is the convex defined by the points y2, I, x1, R. This area contains 
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points that both belong in V1 and V2. If an update occurs within this safe area then if 

one view is affected then obviously the other view will be affected.  

 

Figure 3.8. Intersection of Two Views Inside the Active Area. 

 

On the other hand, there are two critical areas where an update might occur and affect 

one view but not the other. These two critical areas are the two triangles tr1: y1y2I and 

tr2: x1x2I. Assume the relation R is updated with a tuple t that falls within the triangle 

tr1. This means that either t is inserted in R and its representation lies within tr1, or t 

belonging in tr1 is deleted from R. Then, t will affect V1, but will leave V2 unaffected. 

Similarly, if tuple t falls within the triangle tr2, then V2 will suffer changes whereas V1 

will remain unchanged.  

 

Case 2.3: Special Case. Assume two views V1(a1, k1) and V2(a2, k2) as the ones 

depicted in Figure 3.8, where point I is within the active area. The safe area of these 

two views is the convex defined by the points: y2, I, x1, R. The main observation that 

can be made is that the tuples in the safe area are common and therefore, the two 

views share the same set of top-k tuples, k ≤ k1,k2 (although, possibly with different 

ordering for each view, since each point in the safe area has a different score for each 

of the two views). The areas outside the safe area contain k1-k and k2-k tuples for each 

view, respectively. 
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In addition, assume now that both (i) k1=k2 and (ii) the two critical regions tr1: y1y2I 

and tr2: x1x2I are void of tuples. In such a case when an update occurs, a conclusion 

can be conducted depending on the type of the update (i.e., insertion or deletion):  

If the update is a deletion and affects one of the views, then it will definitely affect the 

other view.  

 

However, if an insertion occurs and affects one of the views, then depending on the 

position of the insertion the other view might be or not affected. This depends on 

whether the insertion lies within the safe area or in one of the non-common triangles. 

3.4.3. Discussion & Summary 

It is important to stress that the nucleation relationship of the two views is typically 

dependent on the specific instances (expect for special cases) and has to be re-

evaluated each time that updates occur. 

 

Whenever an update occurs that affects at least one of the views, the position of its 

respective line (L1 and/or L2) is altered. In fact, when an insertion occurs in at least 

one of the views, the position of its respective line is moved towards the upper right 

part of the active area (or, infinity, if one chooses to think without active areas). 

Similarly, when a deletion occurs in a view, its respective line is moved towards the 

beginning of the axes. Therefore, lines L1 and/or L2 should be recomputed after every 

update affects at least one of the views. Consequently, point I should be recomputed. 

This might also cause the change from the situation where I is outside the active area 

to the situation where I is inside the active area and vice versa. 

 

Combining the above cases the following theorem occurs (the proof is obvious by 

referring to the lemmas and discussions of this section).  

 

Theorem3.2. Assume two views V1 (ID, X, Y, s1) and V2 (ID, X, Y, s2) that contain k1 

and k2 tuples and have their scores defined as s1 = a1 ⋅
  
x + b1 ⋅

 
y and s2 = a2 ⋅

 
x + b2 ⋅

 
y, 

respectively. In addition, without loss of generality, assume for the slopes of the lines 



94 

 

 

L1 and L2 that 
2

2

1

1

b

a

b

a
≤ . When updates occur in the relation R and the view V1 is 

affected, then, the view V2 will be affected if one of the following holds:  

The scoring function of V1 is proportional to the scoring function of V2 and k1≤k2 

The intersection point I of L1 and L2 lies outside the active area, and L2 is above L1 

The intersection point I lies inside the active area, critical areas tr1 and tr2 are void of 

tuples and updates are only deletions. 

The intersection point I lies inside the active area, critical areas tr1 and tr2 are void of 

tuples and insertions occur only within the safe area. � 

3.5. Updating Multiple Nucleated Views 

Assume a relation R(ID, X, Y,…) containing initially n tuples. In addition, assume that 

our user requirements allow us to structure the updates that occur in R in a batch way, 

with ∆R
+
, ∆R

-
 denoting the insertions and deletions of a batch respectively. Assume a 

set of m materialized views V = {Vi(ID, X, Y, si) | 1 ≤ i ≤ m} where each view Vi 

contains ki tuples with score si defined as si= ai⋅x +bi⋅y. When updates occur in R, the 

set of views V should be maintained appropriately. In a naïve manner, ∆R
+
 and ∆R

-
 

would be checked over each view of the set V. However, if there are nucleation 

relationships among them, the update process can be done more efficiently. In this 

section we describe an algorithm that updates a set of views by taking advantage of 

the nucleation relationships among them.  

3.5.1. Representation of Nucleation Relationships as Hierarchy Paths 

Assume that there exist several nucleation relationships among the set of views V. 

Taking into consideration the nucleation between views, we can construct a number 

of hierarchy paths among them. Each hierarchy path will contain the views that are 

related-connected by nucleation relationships. As a simple example, assume that V1 

nucleates V2 and V2 nucleates V3. This can be depicted as a hierarchy shown in Figure 

3.9 where the nucleation relationship is represented as an ancestor-descendant 

relationship (i.e., the fact that V1 nucleates V2 is depicted as V1 being the ancestor of 

V2). In other words, when a view Vi is an ancestor of a view Vj in a hierarchy path, all 
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tuple ids of Vi are also contained in the materialized tuples of Vj at this specific point 

in time (i.e., for the current extents of the two views). Following the same example, 

the hierarchy path H1 from Figure 3.9 indicates that all the tuples materialized in V1 

are also materialized in V2 and all tuples materialized in V2 are materialized in V3. 

Since, tuples materialized in V1 are also in V2 and all tuples from V2 are materialized 

in V3, by induction, all tuples in V1 are also part of the materialized tuples in V3 as 

well. Therefore, when an update affects a view that is part of a hierarchy path, then all 

its descendants will be affected by this update. On the other hand, if an update is not 

affecting the lowest view from a hierarchy path, then it will definitely not affect any 

of its ancestors. According to this, we propose a procedure for updating a number of 

views based on their nucleation. We need to stress that the relationships are instance-

dependent, i.e., they depend on the contents of the views at any time point and they 

need to be re-evaluated after each update occurs. Also, this explains why we 

structure our discussion around batches of updates (as opposed to individual 

modifications). From the theoretical point of view, individual modifications are a 

special case of batch updates; at the same, tuple-at-a-time updates can be an overkill 

when compared to the processing of batches.  

 

 

Figure 3.9. Hierarchies for Efficient View Updates. 

Before proceeding to the algorithms that update the views of a set V we need to 

construct the algorithm that creates the hierarchy paths. Firstly, we describe the 

algorithm that constructs the hierarchy paths among the views from set V.    
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Algorithm Create Hierarchy Paths  

Input: A set of views V= {Vi(ID, X, Y, si) | 1 ≤ i ≤ m},   

Output: a set of hierarchy paths H = {Hj |  1 ≤ j ≤ l} 

Begin 

1. H = {Hj | Hj=Vi} //every view forms a hierarchy path 

2. For every Hj of H { 

3.     Begin from root Vj of Hj { 

4.         For every Hl ≠ Hj of H { 

5.             Begin from root Vl of Hl { 

6.                 CI=CheckInerstectionPointI(Vj,Vl) 

7.                 if (CI = true){ 

8.                     Remove Hj, Hl from H 

9.                     Hj = Merge { Hj, Hl } 

10.                     Add Hj in H 

11.                 } 

12.                 Vl = Vl-1 //move a level down the path Hl 

13.             } until CI = true 

14.         } 

15.         Vj = Vj-1 //move a level down the path Hj 

16.     } until CI = true 

17. } 

18. Return(H) 

End. 

Algorithm 3.1 Algorithm Create Hierarchy Paths  

Algorithms. How can we create a number of hierarchy paths according to the 

nucleation relationships for a set of m views V? Let the set of hierarchy paths be 

denoted as HHHH = {Hj |  1 ≤ j ≤ l} where l ≤ m. Each hierarchy path Hj is a partial order 

(denoted as p ) among the views. Consider the hierarchy path H1 denoted in Figure 

3.9. Then, for views V1, V2, and V3, partial orders are defined as: V1 p V2 p V3. The 

algorithm Create Hierarchy paths initially treats each view of the set V as a hierarchy 

path of its own. Then, in an iterative manner it checks among views of hierarchy paths 

nucleation relationships exist. In case there is a partial order between a view of a 

hierarchy path and a view of another hierarchy path, the two hierarchy paths are 

merged into a new hierarchy path. The algorithm proceeds until all nucleation 
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relationships are considered. For each two hierarchy paths, the algorithm iteratively 

checks the views from one hierarchy path with the views of the other hierarchy path 

starting from the root and proceeding top-down until it finds a nucleation relationship.  

 

Now, once the hierarchy paths have been constructed, we can update the views by 

taking into consideration the fact that any update not affecting a lower view in a 

hierarchy path will not affect any of its ancestors. In fact, the algorithm works in a 

bottom up way for every hierarchy path constructed. Initially, we check if the updated 

tuples ∆R
+
 and ∆R

-
 of R, affect the lowest views from each hierarchy path. Then, the 

set of ∆R
+
 tuples are split into two sets: (i) Ignorable set and (ii) Affected set. The 

Ignorable set contains all the tuples from ∆R
+
 that do not affect the view, where the 

Affected set contains all the rest. In the next step, the algorithm proceeds by checking 

which updates affect the immediate ancestor of the previous view. However, there is 

no need to check every update from set ∆R
+
. Instead, only updates contained in the 

Affected set are checked. Similarly to the previous step, the Affected set is now split 

into two new sets (i) Ignorable and (ii) Affected. The same procedure is conducted for 

the set ∆R
-
, where in each step the set of possible updates are split into (i) Ignorable 

set and (ii) Affected set. This procedure is repeated for every hierarchy path, until the 

root of the path is reached. In addition, every time a view V is checked and the sets of 

Ignorable and Affected tuples are created, V is updated in regards to the Affected set of 

tuples.  

 

Notice that in the Create Hierarchy Paths algorithm, if a view does not participate in 

any hierarchy path, then it creates a hierarchy path of its own. Therefore, there will 

not be any views not updated. In other words, in the worst case where no view 

nucleates another one, the algorithm is simplified to the naïve algorithm where every 

view is checked and maintained.  



98 

 

 

Algorithm Maintain View Updates 

Input: Hierarchy paths H ,∆R+ tuples inserted in R and ∆R- tuples 

deleted from R, 

Output: maintain views 

 Begin 

1. Let Vl be the lowest view in a hierarchy path 

2. For all hierarchy paths Hj { 

3.    For all Vl in Hj{ 

4.       V = Vl 

5.       Aff+ = ∆R+ 

6.       Aff- = ∆R- 

7.       Ign+ = {} 

8.       Ign- = {}  

9.       do{ 

10.          For all tuples t+ in Aff+ { 

11.             if (t+ not affects V){ 

12.                Ign+ = Ign+ ∪ {t+} 

13.             } 

14.          } 

15.          For all tuples t- in Aff- { 

16.             if (t- not affects V){ 

17.                Ign- = Ign- ∪ {t-} 

18.             } 

19.          } 

20.          Aff+ = Aff+ - Ign+ 

21.          Aff- = Aff- - Ign- 

22.          Update V with tuples in Aff+ and Aff- 

23.          V = parent(V) //set the view V to be its immediate ancestor from hierarchy 

path  

24.       } until the root of the hierarchy path is reached 

25.    } 

26. } 

 End. 

Algorithm 3.2. Algorithm Maintain View Updates 
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After each batch of updates has been checked and performed over the views, the 

hierarchy paths must be reconstructed. This is due to the fact that when updates occur 

in views then their relative positions and therefore, nucleation relationships are 

altered. In other words, before a new batch of updates is processed, the hierarchy 

paths should be appropriately reconstructed. To this end, we execute algorithm Create 

Hierarchy Paths. 

 

Algorithm Check Intersection Point I  

Input: Two materialized views V1(ID, X, Y, s1)
k1, with s1 = a1 ⋅ x 

+ b1 ⋅ y and V2(ID, X, Y, s2)
k2, with s2 = a2 ⋅ x + b2 ⋅ y and 

maximum and minimum values of attributes X and Y in R, 

Output: the position of the intersection point of V1 and V2 

 Begin 

1. Let tk1 be the last tuple of V1, tk1(xk1,yk1)=s1(tk1) 

2. Let tk2 be the last tuple of V2, tk2(xk2,yk2)=s2(tk1) 

3. xI=(a1⋅b2-a2⋅b1)
-1⋅(b2⋅s1(tk1)–b1⋅s2(tk2))  

4. yI=(a1⋅b2-a2⋅b1)
-1⋅(a1⋅s2(tk2)-a2⋅s1(tk1)) //compute coordinates for point I 

5. if (Xmin ≤ XI ≤ Xmax and Ymin ≤ YI ≤ Ymax){  

6.     return(false); 

7. }  

8. else { 

9.    d1 = dist(O(0,0), V1); 

10.    d2 = dist(O(0,0), V2); 

11.    if ( d1 < d2){  

12.        return( V1 nucleates V2); 

13.    } 

14.    else { 

15.        return( V2 nucleates V1); 

16.    } 

17.    return(true); 

18. } 

 End 

Algorithm 3.3. Algorithm Check Intersection Point I  
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3.6. Experiments 

In this section, we report on the experimental assessment of (a) the estimation of the 

essential view size in order to sustain a high rate of updates and (b) updating multiple 

views by making use of the nucleation relationship among them. We start with 

presenting the experimental methodology and discuss our findings over the first set of 

experiments and then continue by describing the experimental methodology and 

results over the second set of experiments  

3.6.1. Experimental Study of Sustaining High Rate of Deletions 

Throughout this section we describe the experimental methodology and conclusions 

over the proposed method of sustaining a materialized view in the presence of high 

deletion rates. Our experimental study has been conducted towards assuring the 

following two goals: 

− Effectiveness. The first desideratum of the experimental study has been the 

verification of the fact that the proposed method can accurately sustain 

intervals with high deletion activity in the workload. In other words, the 

experimental goal was to verify that a top-k materialized view contains at least 

k items, in at least 95% of the cases.  

− Efficiency. The second desideratum of the experimental study has been the 

establishment of the fact that the computation of the exact number of auxiliary 

view tuples is faster than the computation of refill queries as proposed in the 

related literature. As well as the number of auxiliary view tuples is less than 

the number proposed in [YYY+03].  

 

To achieve the first goal we have estimated kcomp via two methods: (a) without the fine 

tuning that uses the rates’ variances (i.e., through equation 3.5) and (b) with this fine 

tuning (i.e., through equation 3.6). For both methods, we have computed the number 

of tuples that were deleted from the view, below the threshold of k.  

 

In the context of the second goal, we have measured three metrics: (a) the memory 

overhead for kcomp and kcomp with tuning, measured as the number of extra tuples that 

we need to keep in the view, (b) the time overhead for computing kcomp and kcomp with 
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tuning as compared to the necessary time to compute the refill queries of [YYY+03] 

and (c) the time needed to compute the equation for kcomp. Again, we have evaluated 

these metrics using both the aforementioned methods.  

 

In all our experiments we have used one relation R(RID, X, Y) and one view V(RID, 

score) with a formula score = 3X+7Y. The parameters that we have tested for their 

effect over the aforementioned measures are: (a) the number of relation tuples, (b) the 

number of materialized top-k results, (c) the fraction of the delete rate, over the 

insertion rate and (d) the percentage of the update stream over the relation size. We 

have not altered the time window T in our experiments; nevertheless, this is 

equivalent to varying the last parameter (denoted as λ), which measures the amount of 

modifications that take place as a percentage of the size of R. In other words, it is 

equivalent to increase the modifications number instead of reducing the window size. 

We have tested the method over data whose attributes X and Y followed the Gaussian 

(with mean µ=50 and variance σ=10 for both X, Y), negative exponential (with a=1.5 

for X and a=2.0 for Y) and Zipf distributions (with a=2.1 for both X, Y). The notation 

for the parameters and the specific values that we have used are listed in Table 3.1. 

All the experiments were conducted on a 2.8 GHz Pentium4 PC with 1 GB of 

memory 

Table 3.1. Experimental Parameters. 

 Size of source table R (tuples) |R|  1x10
5
, 5x10

5
, 1x10

6
, 2x10

6
 

 Size of mat. view (tuples) k  5, 10, 100, 1000 

 Size of update stream  

(pct over |R|) 

λ  1/1000, 1/100 

 Deletion rate over insertion rate (ratio) D/I  1.0, 1.5, 2.0 

 

Effectiveness of the Method 

The effectiveness of the method is demonstrated in Figure 3.10 and Figure 3.11. We 

present results organized by the data distribution of the attributes and compare two 

methods for computing kcomp, (a) the method including the fine-tuning part and (b) the 
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method simply based on equation 3.5. We have conducted the full range of 

combinations of the values listed in Table 3.1. 

 

In Figure 3.10, we fix D/I to 1.5 and k to 1000 (the largest possible value) and vary 

the size of R (in the X-axis) and the update stream size (in different lines in the 

Figure). Each experiment has been conducted 5 times. We measure both the average 

and the maximum number of misses. In Figure 3.11 we report only the maximum 

number of misses, as it appears to be in analogy with the average in almost all the 

cases, and we vary k and D/I, while keeping R fixed to 1M rows and λ to 1%. The 

findings are as follows: 

 

The fine tuning method gives 0 losses, and thus describes the bold line lying on top of 

the X-axis in Figure 3.10 and 3.11. 

 

If the fine tuning was not included, misses would have been encountered. In cases 

where insertions are close to deletions, the underestimation of the value of kcomp 

would lead to potentially important errors (in the Zipf case, errors have come up to 9 

misses which is almost 1% of the top-k view size). 

 

It is also interesting how the distribution of data affects the stability of the error 

(Gaussian seems to converge, as expected, whereas the Zipf drops when the 

percentage of k is small over R, as the hot values are rather fixed).  
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Figure 3.10. Maximum and Average Misses as a Function of |R| and λ. 
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Figure 3.11. Maximum Misses as a Function of k and D/I. 

Our experimental study has also explored the case of larger workloads of updates that 

may occur in the base relation. Specifically, the experiments were conducted by 
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making use of three different scenarios of possible update workloads. All the 

scenarios were applied over a database of 1 million records with attributes x and y 

following the Gaussian distribution (in any case, the distribution of data does not have 

an effect to the effectiveness of the method as our aforementioned experiments have 

demonstrated). Every experiment was conducted 100 times in order to eliminate cases 

where the actual values of the tuples inserted or the tuples deleted contribute 

significantly to the experimental results. All three workloads contain 91 thousand 

updates occurring in the base relation and in all three of them the insertions and 

deletions do not occur uniformly. There are peaks and valleys of high insertion and 

deletion rates throughout all three scenarios. The first workload (denoted as W1), 

depicted in Figure 3.12, contains updates where insertions and deletions are of the 

same size (specifically, 45500 insertions and 45500 deletions). The two other 

workloads are constructed in order to test the method to extreme cases. In the second 

workload (denoted as W2), shown in Figure 3.13, deletions are approximately twice as 

many as the insertions (specifically, 60700 deletions and 30300 insertions). The third 

workload (denoted as W3), shown in Figure 3.14, is the inverse of workload W2. 

Specifically, W3 occurred by replacing in workload W2 deletions with insertions and 

vice versa. Thus, W3 constitutes of 60700 insertions and 30300 deletions, having a 

ratio of deletion rate over insertion rate approximately equal to 0.5. 

 

Ιn order to assure that a large number of updates will affect the top-k view results, we 

have set the parameter k to 1000 tuples. The resulting numbers of tuples that are either 

inserted or deleted in the extent of the top-k view are depicted in Figure 3.15 for all 

the workloads. 

 

For all these three workloads, we have counted the number of misses that occurred (as 

a measure of how often we would have to run refill queries) as well as the memory 

overhead for kcomp and kcomp with tuning, measured as the number of extra tuples that 

we need to keep in the view. Our findings are as follows: 
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Figure 3.12. Size of Relation R (|R|) over Time as Insertions and Deletions Take Place 

for Workload W1 Having a Ratio of Deletion Rate over Insertion Rate D/I =1.0. 

 

Figure 3.13. Size of Relation R (|R|) over Time as Insertions and Deletions Take Place 

for Workload W2 Having a Ratio of Deletion Rate over Insertion Rate D/I ≈ 2.0. 

 

Figure 3.14. Size of Relation R (|R|) over Time as Insertions and Deletions Take Place 

for Workload W3 Having a Ratio of Deletion Rate over Insertion Rate D/I ≈ 0.5. 
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− Concerning the number of misses, the number of missed tuples was exactly 

zero for all the three workloads and in each one of the 100 runs of every 

workload.  

− Concerning the memory overheads, the extra tuples that we had to store for the 

top-1000 view of our experiments was quite low. The results for kcomp and 

kcomp with tuning are shown in Figure 3.16 for all three workloads. Observe 

that in all three scenarios the number of extra tuples materialized over 1000 

tuples, due to the extra tuning (i.e., the difference of k and kcomp with tuning) 

does not exceed 188 tuples. Specifically, the mixed workload W1 requires 137 

extra tuples (i.e., a 13.7% increase over k). Workload W2 that is heavy on 

deletions (and therefore requires a provision for a larger kcomp, in order to 

sustain the high deletion rate) requires an increase of 18.8% (although the 

deletion rate is twice as high as the insertion rate). Workload W3 which is 

heavy on insertions only requires an increase of 0.89% over k. In particular, in 

workload W3, equation 3.5 gives for kcomp the value of 971 tuples instead of 

1000 tuples, due to the high insertion rate in regards to the deletion rate. 

However, in the experimental setup we have used as kcomp the maximum value 

between k and the computed value of kcomp from equation 3.5. 

 

Efficiency of the Method 

We compared the values of kcomp without the fine tuning (i.e., through equation 3.5) 

and kcomp tuning with this fine tuning. The comparison of the above values was 

conducted for all three distributions as well as for all parameters listed in Table 3.1. 

Due to the fact that our equation is independent of the distribution the tuples follow 

we only present some indicative results. In Figure 3.17 we compare kcomp and kcomp 

tuning (a) as a function of k, where the size of R is 100000 tuples and (b) as a function 

of the size of R where we have fixed k=1000. For both of them and for all possible 

values of D/I the size of the update stream λ is 1% and the distribution is the Negative 

exponential. In Figure 3.17 (a) the Y-axis denotes the percentage of extra tuples. From 

both graphs in Figure 3.17 we observe that kcomp is slightly greater than k and kcomp 

tuning is slightly greater than kcomp in all cases. The number of the auxiliary tuples in 

the view (i.e., kcomp and kcomp tuning) in the maximum case is approximately 1% and 
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6% respectively. Thus, the number of the auxiliary tuples does not cause a great extra 

memory cost. 

 

Figure 3.15. Average Number of Insertions and Deletions that Affect the Top-k 

Tuples in the View. 

 

Figure 3.16. Memory Overhead Expressed as the Number of Tuples Stored in the 

View. 
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(b) Number of extra tuples as a function of R and D/I 

Figure 3.17. Comparison of k, kcomp, and kcomp with Tuning. 

In Figure 3.18, we compare the value of kcomp tuning with the one proposed by 

[YYY+03]. Again, we compare the above (a) as a function of k where the size of R is 

set to 2M (the largest possible value) and (b) as a function of R where k is fixed to 

100. In both graphs the distribution is the negative exponential. The parameter D/I=1, 

since it is the only value that can be compared with the proposed method in 

[YYY+03]. We notice that the number of tuples proposed by [YYY+03] is 

significantly larger than the one proposed in our method. Thus the memory cost in our 

method is considerably less. 
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(a) Number of extra tuples as a function of R 

 

(b) Number of extra tuples as a function of k 

Figure 3.18. Comparison of kcomp with Tuning and [YYY+03]. 

The second part of our experimental results had to do with the comparison of the time 

needed to compute the value of kcomp as compared to the time needed to re-compute 

the view as part of a refill query. Figure 3.19 measures the computation time needed 

for the view computation for a value of k in microseconds. On the contrary, the time 

necessary to perform the computation of kcomp has consistently been negligible 

(practically 0 in all occasions). 
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N K Gauss Negative exponential Zipf 

100K 5 328000 348500 242000 

100K 10 333000 345667 239667 

100K 100 335500 343000 239667 

100K 1000 395333 406000 299500 

500K 5 1650667 1715500 1216333 

500K 10 1650667 1713000 1208333 

500K 100 1653167 1710500 1205667 

500K 1000 1736667 1796167 1291833 

1M 5 3298667 3429000 2427167 

1M 10 3301333 3426667 2429667 

1M 100 3304000 3439500 2422167 

1M 1000 3403167 3520500 2606667 

2M 5 6650667 6900500 5406333 

2M 10 6653167 6900833 4909000 

2M 100 6747167 6906000 4906500 

2M 1000 6895500 7082833 4992167 

Figure 3.19. Time to Build the Top-k View (microseconds). 

3.6.2. Experimental Study for Multiple Views Updates 

In this section we describe the experimental study and findings of maintaining 

multiple views by making use of the nucleation relationship among them. The 

experimental study has focused on proving the correctness and efficiency of the 

proposed method. We have implemented the algorithms described in section 5.4 and 

compared them with a base method which we refer to as naïve method. The naïve 

method checks a batch of updates over each view independently and applies them 

appropriately. In order to test the correctness of the proposed nucleation method we 

have compared the results of the updated views with the results of applying the 

updates over each view independently and the outcome has been absolute identical. 

Having secured the correctness of our algorithms’ implementation the rest of the 

experimental study focused on proving the efficiency of the proposed method in terms 

of the time needed to apply updates over multiple views. Our experiments have 
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demonstrated that, indeed when batches of updates are applied to a multitude of top-k 

views, using the nucleation relationships is faster than the naïve method. Under the 

context of proving the efficiency of the nucleation method, we have measured the 

time needed to maintain multiple views in the presence of updates over the base 

relation, for both the nucleation and naïve method.  

 

In all our experiments we have used a relation R(RID, X, Y)  where the attribute values 

of X and Y were generated randomly from the interval [0, 10000]. All the views 

needed to be maintained are of the form V(RID, X, Y, score) where score is a 

weighted sum over the attributes X and Y. Particularly, the scoring function of the 

views is of the form score = wx·X + wy·Y, with the parameters wx and wy being 

randomly generated from the interval [0, 1]. The parameters that we have tested for 

their effect on the efficiency of the view refreshment are: (a) the number of relation 

tuples, (b) the maximum number of materialized top-k results within a set of views 

expressed as a percentage over the relation size, (c) the number of materialized views 

needed to be maintained and (d) the percentage of the insertion stream over the 

relation size. We have kept the fraction of the delete rate, over the insertion rate 

constant and equal to 0.5.  

 

The notation for the parameters and the specific values that we have used are listed in 

Table 3.2. All of the experiments were conducted on a 2.53GHz Core Duo PC with 

3.12 GB of memory. 

Table 3.2. Experimental Parameters. 

 Size of source table R (tuples) |R|  2x10
5
, 3x10

5
, 4x10

5
 

 Max size of mat. tuples (pct over |R|) max_k  1/100, 1/1000 

 Number of views  M  100, 1000 

Size of insertion stream  

(pct over |R|) 

λ 1/10, 1/100, 1/1000 

 

In all the experiments the measure for time is expressed as number of seconds. The 

comparison of the time needed for the two methods has been conducted for all 
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possible combinations of the above parameters listed in Table 3.2. We run every 

experiment five times and the results presented here are the average time. In all charts 

of Figure 3.20 the Y-axis indicates the time needed for the two methods to apply the 

updates. The X-axis shows (a) the size of the source table R and (b) the size of the 

insertion stream. Specifically, for each possible value of |R| (i.e., 200, 300 and 400 

thousand tuples) X-axis also indicates the stream of insertions for all three possible 

values (i.e., 1/10, 1/100 and 1/1000 percentage of |R|). Since, the fraction of the 

deletion rate over the insertion rate is set to be 0.5 the number of updates occurring 

can be calculated as 1.5 times the value of parameter λ, times the value of parameter 

|R|. The naïve method is denoted with the darker grey color, whereas the nucleation 

method is presented with the lighter grey color. In all charts we can notice that the 

nucleation method is faster than the naïve. The title of each chart also clarifies the 

fixed value of the parameters M and max_k. 

 

Graphs (a) and (b) in Figure 3.20 demonstrate the time needed for applying updates 

over a set of 100 views. In these two graphs the maximum number of tuples 

materialized in each view expressed as a rate over |R| is 0.1 % and 1% respectively. In 

graph (a) of Figure 3.20 the ratio time between the two methods is not that significant 

but still the nucleation method is faster than the naïve method. In graph (b) of Figure 

3.20 we observe that time needed for nucleation method is approximately half the 

time needed for the naïve method. This is due to the fact that the number of views is 

100 and in each view the maximum number of tuples materialized is only 200, 300 

and 400 respectively for each size of R. In other words, the larger the extent of the 

views (due to the size of k), the larger the benefits from the nucleation method are.  

 

In graphs (c) and (d) of Figure 3.20 we see the time needed for the two methods over 

a set of 1000 views (as opposed to 100 views for the cases of (a) and (b)). The 

maximum value of tuples materialized in each view is set to 0.1 % and 1% 

respectively. In graph (c) the ratio time between the two methods ranges 

approximately between 2 and 4. In graph (d), the time needed for the nucleation 

method is approximately 4 times faster than the naïve method. Again, nucleation 

scales up much better than the naïve method. Moreover, if one reads Figure 3.20 

vertically, one can observe that the scaling capabilities involve both the extend of the 
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view and the number of materialized views; in fact, the improvements in cases (c) and 

(d) where a larger number of views is maintained are significantly higher than the 

improvements of cases (a) and (b) where a smaller number of views is maintained.  

 

 

(a) (b) 

 

(c) (d) 

Figure 3.20. Comparison between Naive and Nucleation Method. All Graphs Show 

the Time of Applying Updates as a Function of Insertion Size and |R|. 

In all the graphs of Figure 3.20 we can observe that the time needed for the naïve 

method scales up linearly with respect to the number of updates occurring in the base 

relation. Considering the nucleation method the time scales up almost linearly as well. 
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3.7. Chapter Summary and Findings 

In this Chapter we have handled the problem of maintaining materialized top-k views 

and provided results in two directions. The first problem we have been concerned 

with has to do with the maintenance of top-k views in the presence of high deletion 

rates. We have provided a principled method that complements the inefficiency of the 

state of the art independently of the statistical properties of the data and the 

characteristics of the update streams. The method comprises the following steps: (a) a 

computation of the rate that actually affects the materialized view, (b) a computation 

of the necessary extension to k in order to handle the augmented number of deletions 

that occur and (c) a fine tuning part that adjusts this value to take the fluctuation of the 

statistical properties of this value into consideration. The second problem we have 

been concerned with concerns the case of multiple top-k views and their efficient 

maintenance in the presence of updates to their base relation. We have provided 

theoretical guarantees for the establishment of the effect of updates to a certain view, 

whenever we know that another view has been updated. We have also provided 

algorithmic results towards the maintenance of a large number of views, via their 

appropriate structuring in a hierarchy of views. Our experiments have shown that our 

method accurately sustains intervals with high deletion activity in the workload and 

specifically in at least 95% of the cases there were top-k materialized views that 

contained at least k items. The experiments indicate that our method outperforms the 

state-of-the-art in terms of efficiency as the computation of the exact number of 

auxiliary view tuples has shown to be faster than the computation of refill queries as 

proposed in the related literature. At the same time, the number of auxiliary view 

tuples has been less than the number proposed in [YYY+03]. Moreover, the fine 

tuning method we proposed, gave zero losses. The experiments for updating multiple 

views revealed that the time needed through the nucleation method outperforms the 

naïve method.  
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CHAPTER 4. SIMILARITY MEASURES FOR 

MULTIDIMENSIONAL DATA 

4.1 Distance Families  

4.2 Cell Mapping and Categories of Distance Functions according to it 

4.3 Experiments  

4.4 Chapter Summary and Findings 

 

 

In our deliberations so far, we have dealt with our data as points in the 

multidimensional space. Each top-k view or query is a collection of such points, 

ranked according to a scoring function. So far, we have been interested on the 

suitability of a view to answer a query as well as the refreshment of such views. Still, 

inherent to the problem of view management is the answer to the question “How 

similar are two data collections?”. If a query is given to us and we have to suggest 

similar views to the user to explore, or we have to decide the most similar views in 

order to answer a query, which ones would we use? To answer the question we need a 

fundamental insight on the question “which is the best distance function for two data 

collections?” We are interested in discovering what users prefer and not which 

function is more efficiently computed or has the nicest properties.  

 

In order to achieve an answer to this question we resort to the simplest framework that 

can be given to a user to work with and that is OLAP Cubes and hierarchical 

multidimensional spaces. OLAP is preferred for simplicity as it organizes data in 

dimensions and measures that are most intuitive to users. We model a collection of 

data in the form of a multi-dimensional array called Cube. Each cell of the cube 

contains data that are called measures of the cell. The cell is uniquely defined by its 



118 

 

 

coordinates as values of the dimensions of the cube. A dimension D is a lattice of a 

finite subset of levels and a partial order defined among the levels. Formally, the 

notions of dimension and Cube are defined as follows.   

 

Definition 4.1 (dimension) [VaSk00]. A dimension D is a lattice (L, p ) such that: 

L= (L1, ..., Ln, ALL) is a finite subset of levels and p is a partial order defined among 

the levels of L, such that L1 p Li p ALL for every 1<i≤n. We require that the upper 

bound of the lattice is always the level ALL, so that we can group all the values of the 

dimension into the single value ‘all’. The lower bound of the lattice is called the 

detailed level of the dimension.  

 

Definition 4.2 (Cube) [VaSk00]. A cube c over the schema [L1, …Ln, M1, …,Mm], is 

an expression of the form: c= (DS
0
, φ, [L1, …Ln, M1, …Mm], [agg1(M1

0
, …, 

aggm(Mm
0
)]), where DS

0
 is a detailed data set over the schema S= [L1

0
, …Ln

0
, M1

0
, 

…Mm
0
], m≤k, φ is a detailed selection condition, M1

0
, …Mm

0
 are detailed measures, 

M1, …,Mm are aggregated measures, Li
0
 and Li are levels such that Li

0
p  Li, 1<i≤n 

and aggi, 1<i≤m are aggregated functions from the set {sum, min, max, count}.  

 

Then the research question is rephrased: given two sets of points in a 

multidimensional hierarchical space, what is the distance between these two 

collections? The above research problem is generic and has several applications in 

domains such as multimedia information retrieval, statistical data analysis, scientific 

databases and digital libraries [ZADB06]. In such applications, where contemporary 

data lead to huge repositories of heterogeneous data stored in data warehouses, there 

is a need of similarity search that complements the traditional exact match search. For 

example, one might easily envision a context where a user of an OLAP tool is 

proactively informed on reports that are similar to the one she is currently browsing.  

 

In this chapter, we address the problem by (a) organizing alternative distance 

functions in a taxonomy of functions and (b) experimentally assessing the 

effectiveness of each distance function via a user study. The novelty of our work is 

not in the suggestion of new distance functions, but rather, it lies (a) in the adjustment 

of existing distance functions in the OLAP setting and (b) in their evaluation –via two 
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user studies- in order to discover which distance function is mostly preferred by the 

users. 

 

In the related literature there are a number of papers that have pointed out the 

necessity of having appropriate similarity measures in order to discover objects that 

are similar to each other and measure in a quantitative way the distance among them. 

Most of them examine similarity measures used between objects that are described 

from various features such as in image retrieval or data that are stored in a 

hierarchical taxonomy. Notably, [SaJa95] and [SaJa99] describe how similarity 

measures used by human perception and computer science follow different properties. 

The authors provide a collection of references where the metric axioms have been 

refuted. Computer scientists in the areas of data mining and information retrieval have 

also considered the problem of introducing appropriate similarity measures. Few 

papers have associated the areas of mathematics and computer science and have 

introduced similarity measures for lattices by mapping them with semantic hierarchies 

[Josl04]. 

 

So far, related work have dealt with similar problems in different ways; however, this 

particular problem has not been dealt per se. Specifically, Sarawagi in [Sara99] and 

[Sara01] has dealt with the problem of discovering interesting patterns and differences 

within two instances of an OLAP cube. The DIFF and RELAX operators summarize 

the difference between two sub-cubes in order to discover the reason of abnormalities 

within the measures of two given cells. The only common element of this work with 

ours is the usage of the Manhattan distance in the process of discovering 

abnormalities. Our work addresses the problem of finding the appropriate distance 

function among a great variety of functions in order to compute the similarity between 

two given OLAP cubes. Giacometti et al. [GMNS09] propose a recommendation 

system for OLAP queries by evaluating distances between multidimensional queries. 

This work involves the distance between queries whereas our work involves distance 

functions between the data of multidimensional queries. Li et al. in [LiBM03] 

describe the semantic similarity between ontologies. In contrast to our work, they 

consider a limited set of functions whereas we have a wider range of distance 

functions and our work focuses on distances between data of an OLAP cube.  
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The main findings of our approach are due to two user studies that have been 

conducted to assess which distance functions appear to work better for the users 

(Section 4.3). The first experiment involved 15 users of various backgrounds and the 

Adult real dataset [FuWY05]. Each user was given 14 scenarios that contained a 

reference cube as well as a set o variant cubes, each associated with a distance 

function. The task of the user was to select a cube from the set of variant cubes that 

seemed more similar to the reference cube. The diversity of users and data types 

contained in the experiment was taken into consideration in order to discover which 

distance function between two values of a dimension is preferred depending on the 

user group or the type of data. The first user study showed that all distance functions 

under test were used at least once, but there were a couple of distance functions that 

were most preferred among the others. In particular, the users seemed to prefer 

distance functions that express the similarity between two cubes based either on the 

hierarchical shortest path, or with regard to ancestor values.  

 

The second user study involved 39 users and the results of the first user study were 

taken into account. Each user was given 14 scenarios that contained a reference cube 

and three variant cubes. The purpose of this second user study concerns the most 

preferred distance function between two data cubes. Two distance functions have 

been in the center of attention in this study: the Hausdorff distance function and the 

closest relative function that sums the individual distances of cells of the two cubes. 

The latter has been selected by users at a remarkably higher percentage of occasions 

than the former (57% vs. 38%); however, if one considers the winner per scenario the 

result is only 6 vs. 5 in favor of closest relatives. Thus, we conclude that although the 

closest relative has an advantage over Hausdorff, this cannot be overemphasized. 

 

Roadmap. We start by (Section 4.1) providing a taxonomy of distance functions for 

cubes based on a detailed study of the characteristics of dimension hierarchies, levels 

and members. At first, we organize our families of functions as follows: Initially we 

describe functions that can be applied between two specific values that belong to the 

same dimension (Section 4.1.1). Following, we describe distance functions that are 

applied between two cells of a cube (Section 4.1.2) and then distance functions 
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between two OLAP cubes (Section 4.1.3). In Section 4.2 we introduce the method 

that is used in order to map the cells of one cube to the cells of another cube. We refer 

to this method as Cell Mapping. Section 4.3 presents the user study experiments along 

with the results of the most preferred distance functions. All the results and the user 

study experiments can be found in the web page [Baik11]: 

http://www.cs.uoi.gr/~ebaikou/publications/2011_ICDE/ that includes questionnaires 

and findings, too. Finally, in Section 4.4 we summarize our findings.  

4.1. Distance Families 

In this section, we organize the distance functions that can be used to measure the 

distance between two cubes in a taxonomy. The formal foundations of modeling 

multidimensional spaces and cubes are based on an existing model in the related 

literature [VaSk00]. We build our taxonomy of distances progressively: In Section 

4.1.1, we describe the functions that can be applied between two values for a given 

dimension. In Section 4.1.2 we provide a taxonomy for distance functions between 

two cells of cubes and in Section 4.1.3 a taxonomy for distance functions between two 

OLAP cubes. The distance functions described are all normalized within the interval 

[0, 1] and in many cases, such as in the weighted sum distance function, weight 

factors may be used. The normalization and usage of weight factors in the distance 

functions is not obligatory. Throughout all our deliberations we will refer to two 

reference dimensions, Time and Location. The hierarchies of these dimensions are 

shown in Figure 4.1. In more detail, the Time dimension hierarchy consists of 5 levels. 

The levels of Time are Day(L1), Week(L2) and Month(L2), Year(L3) and All(L4). The 

dimension Location consists of four levels of hierarchy which are City(L1), 

Country(L2), Continent(L3) and All(L4). Figure 4.2 illustrates the lattice of the 

dimension Location at the instance level.  

4.1.1. Distance Functions between two Values 

In this section, we specify the distance functions that can be applied over two specific 

values of a dimension. In order to clarify things, distance functions described in this 
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section apply only between two dimension values and not between measure values of 

a cube.  

 

Assume a dimension D, its lattice of level hierarchies L1pL2p…pALL, and two 

specific values x and y from levels of hierarchy Lx and Ly respectively. We classify the 

distance functions in the following categories: (1) locally computable and (2) 

hierarchical computable distance functions. 

 

 

Figure 4.1. The hierarchy of levels for dimensions Time and Location 

 

 

Figure 4.2. Values of the Location Dimension. 
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Locally Computable Distance Functions. The first category of locally computable 

distance functions can be divided into three subcategories: (a) Distance functions with 

explicit assignment of values, (b) Distance functions based on attribute values and (c) 

Distance functions based on the values of x and y.  

 

Distance Functions with Explicit Assignment of Values. The functions of this category 

explicitly define n
2
 distances for the n values of the dom (Li) (the compared values 

must belong to the same level of the hierarchy). This requires dom(Li) to be a finite 

set. For example, the distance between two cities can be explicitly defined via a 

distance table.  

 

Distance Functions based on Attribute Values. Assume a level whose instances are 

accompanied with a set of attributes. Then, every level instance can be described as a 

tuple of attribute values. In this case, the distance between the two values x and y can 

possibly be expressed with respect to their attribute values via simple distance 

function applicable to the attributes’ domains (e.g., simple subtraction for arithmetic 

values). For instance, assume a dimension Products accompanied with an attribute 

Weight which describes the weight of the products and assume a level of hierarchy of 

the dimension named Drinks. In addition, assume two specific values x = ‘milk’ and y 

= ‘orange juice’ where their weight attributes are x.weight = 500 and y.weight = 330 

respectively. Then, the distance between these two values can be expressed according 

to their weight attribute by making use, for instance, of the Minkowski distance 

function which is described in the following subsection. Thus, the distance between 

the values x and y can be defined as |x.weight – y.weight| = 170. 

 

Distance Functions based on the Values x and y. In this subcategory, the distance 

between two values may be expressed through a function of their actual values 

whenever this is possible. This function is applicable for all type values even for 

nominal values. A first option is to use of the simple identity function, resulting in a 

value from the set {0, 1}, where dist(x, y) = 0 if x=y, or dist(x, y) = 1 if x≠y. 

 

Another option is to make use of the Minkowski family distance functions especially 

when the values are of interval type. Minkowski family distance functions can be 
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applied between two ordinal type values under the condition that the ordinal values 

have been mapped to the set of integer numbers. In this section, since the distance 

function is applied for two specific values, all types of Minkowski distances reduce to 

the Manhattan distance which is |x-y|. In order to normalize this function within the 

interval [0, 1], we can divide the distance value by the difference between the 

maximum and minimum values of the level where x and y belong to. 

 

Hierarchical Computable Distance Functions 

The second category of hierarchical computable distance functions can be divided 

into four subcategories: (a) Distance functions with respect to an aggregation 

function, (b) Distance functions with respect to hierarchy path, (c) Percentage 

distance functions and (d) Highway distance functions. 

 

Distance functions with respect to an Aggregation Function. The distance for two 

values that do not belong to the detailed level L1 can be expressed with respect to an 

aggregation function (e.g., count, max) applied over the descendants of the two values 

in a lower level of hierarchy. 

 

Assume an instance x from level Li and )(i

L
xdesc

L

L
the set of its descendants, where LL 

is any lower level of Li. The result of applying an aggregation function over the set 

)(i

L
xdesc

L

L
is denoted as ))(( i

Laggraggr xdescfx
L

L
= . Assume two values x and y with 

))(( i

L
aggraggr xdescfx

L

L
=  and ))(( j

Laggraggr ydescfy
L

L
= , where LL could be any lower level 

of Li and Lj, x∈Li, y∈Lj and faggr denotes an aggregation function such as count, min, 

max, avg or sum. The distance between the values x and y can now be expressed 

according to the following formula: ),()( aggraggr yxgy,xdist = , where the function g 

can be computed from the locally computable functions. The normalized form of this 

function, within the interval [0, 1], can be expressed as 

)},(

),(
)(

aggraggr

aggraggr

bagmax{

yxg
y,xdist = , where a and b are any possible values from the same 

level of hierarchy as x and y, i.e., a, b∈ Li . 
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Distance Functions with respect to Hierarchy Path. The distance between two values 

x and y can be expressed according to the length of the path in the hierarchy that 

connects them. Several distance functions and combinations falling into this 

subcategory were described by Li, Bandar and McLean in [LiBM03]. Here, we 

describe the distance functions that can be applied between two values x and y from a 

hierarchy, (a) with respect to the length of the path in the hierarchy, and, (b) with 

respect to the depth in the hierarchy path. Assume two values x and y such that x ∈ Lx 

and y ∈ Ly. We denote the Lowest Common Ancestor of x and y as lca(x,y). 

The lowest common ancestor lca(x,y), of two values x and y --where x ∈ Lx and y ∈ 

Ly, lca(x,y) ∈ Lz and Lz is any non lower level of Lx and Ly, Lz f Lx, Ly -- is a value 

such that: 

lca(x,y)={z|z = ∧)x(anc z

x

L

L
z = ∧)y(anc z

y

L

L
 (� z’ | z’= ∧)x(anc z

x

L

L
 z’= ∧)y(anc z

y

L

L
 

Lz’ p Lz } 

 

The distance between the values x and y can be expressed with one of the following 

formulas: 

dpath(x,y)=

 |)(|)*w(w

 |) (y, | *w|) (x, | *w

1yx

yx

L,ALLpath

lcapathlcapath

+

+

 
 

ddepth (x, y) = 
|)(|

 |) ( | 

1

1

L,ALLpath

L,lcapath

  

 

 

The first formula indicates that the distance is expressed as the weighted sum of the 

length of the path from the values x and y to their lowest common ancestor lca. The 

second formula indicates that the distance of the values is expressed as the length of 

the path of the lowest common ancestor lca from the detailed level L1 of the 

hierarchy. These two functions are normalized in the interval [0, 1] by making use of 

the height of the hierarchy. Specifically, the first formula is divided by 

|)L,ALLpathww 1yx (|)*( +  whereas the second formula is divided by 

|)(| 1L,ALLpath . As an example, assume two values x=‘NY’ and y=‘Canada’ from 

the hierarchy Location denoted in Figure 4.2 where their lowest common ancestor is 

the value lca = ‘America’ from the level Continent. For simplicity, assume the 
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weighted factors wx and wy are set to 1. Therefore, the functions become: dpath= (|path 

(x, lca)| + |path (y, lca)|)/ 2*|path(ALL, L1)| and ddepth= |path (lca, L1)|/ |path(ALL, L1)|. 

The distance between x and y occurs to be dpath= (2+1)/2*3 =0.5 and ddepth=2/3. 

 

Percentage Distance Functions. According to this subcategory, the distance between 

two values x and y, where y is an ancestor of x, may be expressed according to a 

percentage of occurrences over the values of the hierarchy. In other words, the 

similarity of two values is expressed as the similarity of the number of descendants 

this two values have. Assume the lattice of level hierarchies be denoted as 

L1p…pLLp Lxp LypAll where L1 denotes the most detailed level. The distance of a 

value x in a level Lx with regard to its ancestor y in level Ly may be calculated 

according to the function: 

|)(|

|)(|
),(

y

i

x

i

ydesc

xdesc
yxdist

L

L

L

L
= , where Li is one of Lx, LL and L1. 

 

The above formula expresses the distance between a value x and one of its ancestors y 

as a percentage via three ways. In case Li is Lx, then the distance is expressed as a 

percentage with regard to the occurrences of all the other values from Lx whose 

ancestor is y. In case Li is LL(or L1), the distance is expressed as a percentage of 

occurrences of the descendants of x in a lower level of hierarchy LL(or L1) with regard 

to the descendants of y in the same lower level LL(or L1). As an example, assume the 

dimension Location where its lattice can be visualized in Figure 4.1 and the values of 

this dimension are visualized in Figure 4.2. Assume the values x=‘USA’ and 

y=‘America’. Then, with regard to the above formula the distance between these two 

values can be computed as: 

2

1

|)America'('|

1
)America'',USA'(' ==

Continent
Countrydesc

dist  where Li is chosen to be the 

level Lx, i.e., Lcountry 

5

3

|)America'('|

|)USA'('|
)America'',USA'(' ==

Continent
City

Country
City

desc

desc
dist  where Li is chosen to be the 

detailed level L1, i.e., Lcity 

 



127 

 

 

In this example the third case coincides with the second since the lower and detailed 

level, i.e. City, are identical. 

 

Highway Distance Functions. Assume that every level of hierarchy L is grouped into 

k groups and every group has its own representative rk. Then, the distance between 

two representatives can be thought of as a highway [SaSc05]. We denote with r(x) 

and r(y) the representatives of the groups where x and y belong to respectively. 

Therefore, the distance between the values x and y can be expressed with the 

following formula:  

dist (x, y) = dist (x, r(x)) + dist (r(x), r(y)) + dist (y, r(y))  

 

The partial distances between a value and its representative and the distance between 

the two representatives, r(x) and r(y), depends on the way the representative is 

selected. In most cases, the representatives are selected so that they belong to the 

same level of hierarchy and thus their distance can be computed from the locally 

computable functions, the path functions or the aggregated functions (in case the two 

representatives belong to different levels their distance may be computed by applying 

any distance function from the path section or the aggregated distance function 

section). The main categories of selecting the representative apart from an explicit 

assignment are with regard to (a) an ancestor and (b) a descendant. For the following, 

dist(a, b) denotes the distance of any two values a, b. Without loss of generality 

assume Lx pLy (see Figure 4.3). In addition, assume the ancestor of x in level Ly is 

)(y

xy xancx
L

L
=  and a representative of y in the level of hierarchy Lx denoted 

as ))(( y

xx ydescfy
L

L
= . The function f applied over the descendants of y can result either 

to an explicitly assigned descendant or to the result of an aggregation function (e.g., 

min, max) over the set of descendants. In the following, we describe the partial 

distances of the previous formula depending on the way the representative is selected. 

 

a) The representative of a group is an ancestor. The representative of each value x and 

y could be )()( U

x
xancxr

L

L
=  and )()( V

y
yancyr

L

L
= where LU and LV is any upper level of 

Lx and Ly respectively. LU and LV are not obligatory different. In general, the distance 



128 

 

 

between a value x and its representative may be computed through any distance 

function from the path, the percentage or the aggregated functions. For example, 

assume two values x=‘UK’ and y=‘USA’ from the level Country of the hierarchy 

Location denoted in Figure 4.2. Assume the representative r(x)=‘Europe’ and the 

representative r(y)=‘America’. The distance of the values x and y is by summing the 

distances dist(‘UK’, ‘Europe’), dist(‘Europe’, ‘America’) and dist(‘America’, ‘USA’). 

In this category there are two special cases: 

 

 

Figure 4.3. Partial Distances Between Two Values in Different Levels of Hierarchy.  

The representatives r(x) and r(y) coincide in being the lowest common ancestor lca, 

where the formula is simplified as: dist (x, y) = dist (x, lca) + dist (y, lca).  

The representative r(y) is identical to the actual value of y. In this case the distance is 

expressed as a summation of dist(x, xy) and dist(xy, y), as shown in Figure 4.3, where 

xy is the representative of x from the level Ly. Therefore, the distance dist(y, r(y)) = 0. 

Formally this is expressed as:  yxdist = ) ,(  

)),(())( ) ,( ) ,( y

x

y

xyy yxancdistx(anc,xdistyxdistxxdist
L

L

L

L
++ =  

 

In case the representative xy of x and y coincides, the distance is simplified as dist(x, 

x)= dist(x, xy). Since dist(x, xy) and dist(xy, y) are within the interval [0, 1], the 

normalized form of dist(x, y) occurs by dividing it by 2. For example, assume two 

values x = ‘USA’ and y = ‘Europe’ from the dimension Location as seen in Figure 4.2. 
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The ancestor xy of x is America'')( =xanc
Continent
Country

. Assume dist(x, xy) is computed from 

the percentage family functions. dist(xy, y) is computed through the first formula from 

the path family functions where the weighted factors wx and wy are set to 1. The 

distance between x and y becomes dist(‘USA’, ‘Europe’)= (dist(x, xy) + dist(xy, y))/2 = 

(dist(‘USA’, ‘America’) + dist(‘America’, ‘Europe’))/2 = (1/2 + 2/3)/2 = 7/12. 

 

b) The representative of a group is a descendant. The representative of a group can be 

selected with respect to the descendants of the group where x belongs. For example, 

consider countries whose representatives can be selected among their cities, based for 

instance on the major airport or the highest population. In case the representative r(x) 

is a value from the domain of LL (i.e., r(x) picked explicitly by applying a min or max 

aggregation over the set )(L

x
xdesc

L

L
), the distance between x and r(x) can be any 

function from the families of path, percentage or aggregated functions. In case r(x) is 

an arithmetic type value (i.e., a sum or count aggregation function over the 

set )(L

x
xdesc

L

L
), the distance between x and r(x) can be any simple arithmetic function 

such as the Minkowski. There is a special case where the representative r(x) is 

identical to the actual value of x. Thus, the distance is expressed as a summation of 

dist(y, yx) and dist(yx, x), where yx is the representative of y from the level Lx as shown 

in Figure 4.3. Therefore, the distance dist(x, r(x))=0. Formally this is expressed as: 

=
+

=
2
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 ),( xx xydistyydist

yxdist  
2
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y

x
xydescfdistydescfydist

L

L
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L
+

, 

where the denominator is set to 2 for normalization reasons. For example, assume two 

values from the hierarchy Location, x=‘USA’ and y=‘Europe’, where the descendant 

of y is selected as 'ydescf
L

L
UK'))(( y

x
= . Assume the distance between y and its 

descendant yx is computed through the formula 
|)(|

|)(|
),(

y

x

x

x x

x

ydesc

ydesc
yydist

L

L

L

L
=  from the 

percentage family functions. The distance between x and yx is computed through the 

first formula from the path family functions with wx and wy set to 1. Then, the 

distance between x and y becomes 
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In the special case where x is a descendant of y the above formula is simplified 

as: )()( xy, ydistx,ydist = . 

4.1.2. Distance Functions between two Cells of Cubes 

In this section, we describe the distance functions that can possibly be applied in order 

to measure the distance between two cells from a cube. Assume an OLAP cube C 

defined over the detailed schema C= [L1
0
, L2

0
, …, Ln

0
, M1

0
, M2

0
, …,Mm

0
], where Li

0
 is 

a detailed level and Mj
0
 is a detailed measure. In addition, assume two cells from this 

cube, c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) and c2 = (l1

2
, l2

2
, …, ln

2
, m1

2
, m2

2
, …, 

mm
2
), where li

1
, li

2
 ∈ dom(Li

0
) and mj

1
, mj

2
 denote the values of the corresponding 

measure Mj
0
. The distance between two cells c1 and c2 can be expressed with regard to 

(a) their level coordinates di(Li
1
, Li

2
) and (b) their measure values dj(Mj

1
, Mj

2
). In other 

words, dist(c1, c2)= f (di(Li
1
, Li

2
), dj(Mi

1
, Mi

2
)). The function f can possibly be (a) a 

weighted sum, (b) Minkowski, (c) min or (d) proportion of common coordinates.  

 

Distance functions between two Cells of a Cube Expressed as a Weighted Sum. 

In this category the distance between two cells c1, c2 where c1, c2 ∈ C can be 

expressed through the formula 

∑

∑

∑

∑

=

=

=
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)l,l(dw

1
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21

1

1

21

 , where wi and 

jw′ are parameters that assign a weight for the level Li and the measure Mj 

respectively, di(li
1
, li

2
) denotes the partial distance between two values from 

dimension Di and dj(mj
1
, mj

2
) denotes the partial distance between two instances of the 

measure Mj
0
. Regarding the distance di(li

1
, li

2
), this can be expressed through the 

various distance functions (Section 4.1.1) between two values from the same 

dimension. The distance dj(mj
1
, mj

2
) between two instances of a measure can be 

calculated through the Minkowski family distance when mj
1
, mj

2
 are of arithmetic 
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type, or through the simple identity function in case mj
1
, mj

2
 are of character type. The 

above formula is a general expression of the distance between two cells. 

Simplifications of this can be applied. For instance, the distance of two cells can be 

calculated only with respect to the coordinates that define each cell and without taking 

into consideration the measure values of each cell, i.e., by omitting from the above 

formula the second fraction. Moreover, in case the partial distances are normalized in 

the interval [0, 1] then, the distance between two cells is normalized in the same 

interval [0, 1]. For example, assume we want to compute the distance between cells 

c1, c2 as shown in Figure 4.4. Both cells consist of two dimensions (Time, Location), 

with the hierarchy levels of Figure 4.1, and contain one measure (Sales). In the above 

formula we set all the weight factors to 0.5 --both for dimensions (w) and measures 

(w’). The distance between dimensions is computed according to the function dpath 

that takes into account the length of the path of the hierarchy. The distance between 

the measures is computed through the normalized Manhattan distance function. In 

addition, assume that the overall maximum and minimum values of the measure sales 

are 10 and 1 respectively. Then, d(c1,c2)= 

+
+

+

ww

)Country,Country(d*w)Month,Month(d*w cccc 2121  

=
′

′

w

)Sales,Sales(d*w cc 21

50

1103450

5050

31503150

.

|)|/|(|*.

..

/*./*. −−
+

+

+
=4/9 

To compute the distances )Month,Month(d cc 21
 and )Country,Country(d cc 21

 we refer 

the reader to Figure 4.5 and 4.6.  

 

 

Figure 4.4. Instances of Cells c1 and c2. 

In Figure 4.5 we see that the length of the path between the nodes a and lca is 1, and 

the length of the path between the nodes b and lca is 1 again. According to the 
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function dpath, )Month,Month(d cc 21
=

6

11+
=

3

1
. In a similar manner, by using the 

information that derives from Figure 4.6 )Country,Country(d cc 21
=

6

11+
=

3

1
. 

 

 

Figure 4.5. Lattice of the Dimension TIME for the Values of Cells of Figure 4.4. 

 

Figure 4.6. Lattice of the Dimension LOCATION for the Values of Cells of Figure 

4.4. 

Distance functions between two Cells of a Cube Expressed with regard to the 

Minkowski Family Distances.  

In this section, we describe the possible distance functions between two cells of a 

cube by using the Minkowski family distances. In general, the Minkowski distance is 

defined via the formula p
n

i

p
iiinnp )y,x(d)]y,...,y(),x,...,x[(L ∑

=

=
1

11 , where di(xi, yi) 

denotes the distance between the two coordinates xi and yi of two given points x and y. 
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Assume two cells c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) and c2 = (l1

2
, l2

2
, …, ln

2
, m1

2
, 

m2
2
, …, mm

2
), where li

1
, li

2
 ∈ dom(Li) and mj

1
, mj

2
 denote the values of the 

corresponding measure Mj. The Minkowski distance can be applied in this category, 

by substituting point coordinates xi and yi with cell coordinates, thus li
1
 and li

2
. In 

general, in the Minkowski family distances the partial distances are defined as di(xi, 

yi)=|xi - yi|. When applying the Minkowski distance over cell coordinates, then the 

partial distances di(li
1
, li

2
) can be expressed as the distance between two values from 

the same dimension (Section 4.1.1).  

 

So far, the distance between two cells is described only with regard to their level 

coordinates. However, the distance between two cells can also be expressed by taking 

into consideration their measure values, too. The Minkowski family distances can be 

applied, as well, with regard to the partial distances dj(mj
1
, mj

2
). Therefore, the 

distance between two cells can be expressed by adding the equivalent two formulas. 

Depending on the value of p (1, 2, .., ∞) the Minkowski distance is defined as:  

p
m

j

p
jjj

p
n

i

p
iiip ))m,m(d())l,l(d(L ∑∑

==

+=
1

21

1

21 . 

 

Distance Functions between two Cells of a Cube Expressed as the Minimum Partial 

Distance.  

In this category, the distance between two cells c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) 

and c2 = (l1
2
, l2

2
, …, ln

2
, m1

2
, m2

2
, …, mm

2
) can be expressed as: 

=+ )},({min)},({min
2121
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d

iii
d

mmdlld
ji

   

 { }),(),...,,(),,(min
212

2
1

22
2

1
1

11 nnn lldlldlld   

 { })m,m(d),...,m,m(d),m,m(dmin mmm

212
2

1
22

2
1

1
11+ .  

Therefore, the distance between two points is expressed as the minimum distance of 

their level coordinates plus the minimum distance of their measure values.  
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Distance Functions between two Cells of a Cube Expressed as a Proportion of 

Common Coordinates. 

In this category the distance between two cells can be expressed as a proportion of 

their common values of their level coordinates and their measure values. Therefore, 

the distance between two cells c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) and c2 = (l1

2
, l2

2
, 

…,ln
2
, m1

2
, m2

2
, …, mm

2
) can be expressed through the formula f:  

m

mjmmcount

n

nillcount }){1,2,...,(}){1,2,...,(
2

j
1
j

2
i

1
i

∈∀=
+

∈∀=

 

The above formula defines the distance between two cells as a summation of two 

fractions. The first fraction is the number of level values that are same for both cells, 

divided by the number of all level values that describe a cell. The second fraction 

expresses the number of measures that have the same value for both cells divided by 

the number of all possible measures in a cell. 

4.1.3. Distance Functions between two OLAP Cubes 

Assume two OLAP cubes C and C
’
 defined over the same detailed schema [L1

0
, L2

0
, 

…, Ln
0
, M1

0
, M2

0
, …,Mm

0
], where Li

0
 is a detailed level and Mj

0
 is a detailed measure. 

In addition, assume that cube C consists of l cells of the form c = (l1, l2, …, ln, m1, m2, 

…, mm) and cube C’ consists of k cells of the form c’ = (l1
’
, l2

’
, …, ln

’
, m1

’
, m2

’
, …, 

mm
’
), where li, li

’
 ∈ dom(Li

0
) and mj, mj

’
 denote the values of the corresponding 

measure Mj
0
. In general, the two cubes can be of different cardinality, i.e., l ≠ k. 

Assume dist(c, c’) where c ∈ C and c’ ∈ C’ denotes the distance between two specific 

cells according to the various categories of Section 4.1.2. The distance between the 

two cubes can be expressed as a synthesis of the partial distances dist(c, c’). In other 

words, dist(C, C’)= f (dist(c, c’)) is a function of the partial distances dist(c, c’). The 

function f can possibly belong to one of the following families: (a) closest relative, (b) 

Hausdorff distance, (c) a weighted sum, (d) Minkowski distance, and (e) Jaccard’s 

coefficient. For example, assume we want to compute the distance between the two 

cubes CUBE1 and CUBE2 as shown in Figure 4.7. CUBE1 consists of three cells 

whereas CUBE2 consists of 5 cells. Each cell in both cubes consists of two 

dimensions in different levels of hierarchy and the measure Sales. Specifically, each 

cell of CUBE1 is of the form c = (Day, City, Sales) and each cell of CUBE2 is of the 
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form c’ = (Year, Country, Sales). The distance between the two cubes can be 

expressed by applying a function f over the partial distances dist(c, c’) of the cells of 

the two cubes. 

4.2. Cell Mapping and Categories of Distance Functions according to it 

The aforementioned function f can be computed either (i) over the full space of cell 

combinations of cells from the two cubes (families (a), (b) and (e)), or, (ii) over a 

specific subset of this space that is defined via a specific mapping of the cubes’ cells 

(families (c) and (d)). In this section, we introduce the method that is used in order to 

map the cells of one cube to the cells of another cube. We refer to this method as Cell 

Mapping. For two cubes C1 and C2, the simple mapping of their cells includes the 

connection of every cell of the cube C1 with one cell of the cube C2. Intuitively, the 

mapping of a cell in cube C1 tries to capture the discovery of the “closest possible 

representative” of this cell in cube C2. The “closest representative” is the cell of the 

cube C2 with the less distance among the dimension values with the cell of the cube 

C1. In principle, the Cell Mapping method can be thought of as a relation that 

connects the cells of a cube to the cells of another cube (i.e., one can consider several 

candidate “representatives” of a cell). However, in our setting, this relation is reduced 

to a function, since we are interested in mapping each cell from the first cube to only 

one cell from the second cube. This is done for reasons of simplicity and allows the 

elegant definition of cube distances (see next). We impose the restriction that the 

function is total, i.e., each and every cell from the first cube is mapped to a cell of the 

second cube. We do not require that the mapping is 1:1 and onto; thus, in the second 

cube there might be a cell in which more than one cells from the first cube, or, no 

cells at all, are mapped to it. 

 

As an example assume the cubes that are presented in the Figure 4.7. The cells c1, c2, 

c3 of CUBE1 are mapped to the cells c7, c5, c5 of CUBE2 respectively. Moreover, in 

the same figure the cells c4, c6, c8 of CUBE2 are not mapped with any cell of CUBE1. 

We can also observe that the cell c5 of CUBE2 is mapped with two cells of CUBE1. 
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The cell mapping method needs to compute the distances between the dimensions of 

each cell of the first cube with the dimensions of every cell of the second cube and 

ignores the distance between the measures. So, if the distance between two cells c1, c2 

is expressed as f (di(Li
1
, Li

2
), di(Mj

1
, Mj

2
)), then the mapping method considers only 

the di(Li
1
, Li

2
). Thus, each cell of the first cube is mapped to the cell of the second 

cube with the lowest di(Li
1
, Li

2
) distance.  

 

 

Figure 4.7. Instances of Two Cubes and the Mapping of their Cells. 

In our taxonomy, two distance functions between cubes use the cell mapping method. 

These are (a) distance functions expressed with regard to the Closest Relative and (b) 

the distance function expressed by Hausdorff distance. After the mapping has been 

accomplished, the distances between the mapped cells are computed. Finally, the 

computation of the distance between the two cubes is performed on the basis of the 

distances among the mapped cells. 

 

 The distance functions that can be used in order to compute the distance between two 

OLAP cubes can be divided into two categories. The first category involves distance 

functions that include the cell mapping method. The second category contains 

distance functions that do not include the cell mapping method. Following, we 

describe each distance function and formally define it. The distance functions of the 

first category are the Closest Relative and the Hausdorff Distance (Section 4.1.3) that 

include the cell mapping method. Then, the category of families that do not consider 

the cell mapping method in their definition, include the Weighted Sum function, the 

Minkowski family of distance functions, the Jaccard’s Coefficient and the minimum of 

distances function. 
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4.2.1. Distance Functions that Include Mappings  

This subsection contains the description of the distance functions that involve the Cell 

Mapping method. These distance functions are the Closest Relative and the Hausdorff 

and are described as follows. 

 

Distance Function between Two Cubes Expressed with regard to the Closest Relative. 

In this category the distance between two cubes C and C’ is expressed as the 

summation of distances between every cell of a cube with the most similar cell of 

another cube through the formula: 

 )},(min{),(
k

k

1i 'ccdist'ccdist|c

))c,c(dist(

idimidim

i

=′∀

′∑
=   

where distdim denotes the distance of two cells excluding the distance of their 

measures. In the above formula, ),( 'ccdist|c idim
′∀ )},(min{ 'ccdist idim=  reveals the 

cell mapping. Each one of the k cells from cube C is mapped to the cell of the cube 

'C  that has the minimum distdim from it. 

 

As an example, we will detail the computation of the distance between the cubes 

CUBE1 and CUBE2 shown in Figure 4.7. The first step is to map the cells of the cube 

CUBE1 to the appropriate cells of the cube CUBE2. In order to simplify the example, 

the computational part of the cell mapping method is not described here, but the cell 

mapping is denoted in Figure 4.7 through arrows between the cells of the two cubes. 

The distance function used in this example for the purpose of computing the distance 

between the cells of the two cubes is the weighted sum. The weight that was used is 

0.5, equal for both the dimensions and measures. In addition, the distance function 

used to measure the distance between the dimensions is the dpath function. The cells c1, 

c2, c3, are mapped to the cells c7, c5, and c5 respectively. According to this mapping, in 

order to compute the distance between the two cubes, the needed distances between 

cells are: 

 d(c1, c7) = 
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1105550

5050
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.

|)|/|(|*.
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= 1/6 

 d(c2, c5)= 
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 d(c3, c5)= 
50

1107650

5050

61506150

.

|)|/|(|*.

..

/*./*. −−
+

+

+
=5/18 

 

For the above computations we refer the reader to Figures 4.5 and 4.6 where the 

hierarchies of the dimensions TIME and LOCATION are presented. With the above 

distances, we can now compute the full distance between the cubes CUBE1 and 

CUBE2 through the first formula of the closest relative family functions: 

d(CUBE1,CUBE2)=
54

11

3

),(,(),( 535271 =
++ cc d)cc dccd

 

 

Distance functions between two cubes expressed by Hausdorff distance. In this 

category, the distance between two cubes can be expressed by using the Hausdorff 

distance [HuKR93]. The Hausdorff distance between two cubes can be defined as 

H(C,C’) = max(h(C,C’), h(C’,C)) where h(C,C’) = )}},({{
Cc'Cc

'ccdistminmax
'∈∈

 and dist (c, 

c’) is the distance between two cells c and c’ from the cubes C and C’ respectively. 

Function h(C, C’) is called the directed Hausdorff distance from C to C’ and the 

distance measured is the maximum distance of a cube C to the “nearest” cell of the 

other cube C’. The Hausdorff distance is the maximum of h(C, C’) and h(C’, C).  

 

 

Figure 4.8. Instances of Cubes CUBE1 and CUBE2 and the Mapping of the Cells of 

the Cube CUBE2 to the Cells of the Cube CUBE1. 

In the Hausdorff distance function, the cell mapping method is bidirectional. That 

means that except from the mapping that we have examined in the closest relative 

function, we also need the extra mapping from the cells of cube C’ to the cells of cube 

C.  
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When the bidirectional mapping is completed, we obtain two sets of mapped cells. In 

each set, for every pair of mapped cells, we compute their distance considering their 

measures as well. Thus, we have two sets of minimum distances between cells, the set 

of minimum distances from the cells of cube C to the cells of cube C’ and the set of 

minimum distances between from the cells of cube C’ to the cells of cube C. From 

each of the two sets we pick the greatest distance and finally from these two distances 

we pick the greater one.  

 

To make things more clear, an example follows. Assume again cubes CUBE1 and 

CUBE2 as shown in Figure 4.8. In Figure 4.8, we can observe the mapping from the 

cells of CUBE2 to the cells of CUBE1. According to this bidirectional mapping the 

two resulting sets of minimum distances are: 

S1 )},(,(),( 535271 ccd,)ccd,ccd{   

S2 )},(),(),(),(),( 3817263534 ccd,ccd,ccd,ccd,ccd{ . 

 

The distances of the set S1 are already computed on a previous example, so here we 

only need to compute the distances of set S2. The distances d(c5,c3), d(c7,c1) coincide 

with the distances d(c3,c5), d(c1,c7) respectively. The computations below use the 

same distance functions between values and cells and also the same weight factors, as 

in the previous example. 

d(c4, c3)= 
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d(c6, c2)= 
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d(c8, c3)= 
18
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Now, the Hausdorff distance between the cubes CUBE1 and CUBE2 is equal to the 

next formula: 

d(CUBE1,CUBE2)=max{max{S1},max{S2}}= 

max{max{1/6,1/6,5/18}, max{11/18,5/18, 1/6,10/18,7/18}}= 

max{5/18,11/18}=11/18. 
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4.2.2. Distance Functions that do not Include Mappings 

This subsection includes the distance functions that do not include mappings. These 

functions are the Weighted Sum function, the Minkowski family of distance functions, 

the Jaccard’s Coefficient and the minimum of distances function. The Weighted Sum 

function is expressed through the formula:

∑∑

∑∑

= =

= =

′

l

1i

k

1j
ij

l

1i

k

1j

)(

w

c,cdistw jiij

, where )( ji c,cdist ′ is the 

distance between a cell from cube C to a cell from cube C’ and wij denotes the weight 

factors assigned to each distance.  

 

The distance functions of the Minkowski family --depending on the values of the 

parameter p (1, 2, ..., ∞)-- can be expressed as: p
l

1i

k

1j

p
p )(∑∑

= =

′= ji c,cdistL , where 

)( ji c,cdist ′ is the distance between a cell from cube C to a cell from cube C’. 

The distance between two cubes can be expressed with regard to the Jaccard’s 

coefficient [ZADB06]. The Jaccard’s coefficient is defined as: 

|'CC|

|'CC|
)'C,C(dist

∪

∩
−= 1 and it expresses the ratio between the cardinalities of 

intersection and union of the cubes C and C’. 

 

The Minimum of distances function expresses the distance between two cubes as the 

minimum distance among all possible distances between the cells of the compared 

cubes. Therefore, the distance between C and C’ is expressed as: dist(C, C’) = min{ 

dist(c, c’) | c∈C, c’∈C’}, where dist(c, c’) is the distance between a cell from cube C 

to a cell from cube C’. In case the two cubes are disjoint i.e., C∩C’= 0/ , then dist(C, 

C’) is a positive number, whereas if the two cubes have common cells i.e., C∩C’≠ 0/ , 

then dist(C, C’) is zero.  

 

As a simple example, assume the two cubes from Figure 4.7. and ignore the arrows 

that denote the cell mapping. According to the minimum of distances function, the 

distance between the two cubes is computed through the following formula where j 

denotes any cell from CUBE2: d(CUBE1,CUBE2)=   
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}{4,5,...,8)},,(,(),( 321 ∈∀jccd,)ccd,ccd{min jjj
j

 =1/6. 

4.3. Experiments 

4.3.1. User Study for Distances between two Values of Dimensions 

In this section, we describe a user study we conducted for discovering which distance 

functions between two values of a dimension seem to be more suitable for user needs. 

The experiment involved 15 users out of which 10 are graduate students in Computer 

Science and 5 that are of other backgrounds. In the rest of the section we refer to the 

set of users with computer science background as Users_cs, the set of users with other 

background as Users_non and the set of all users independently of their background 

as Users_all.  

 

In the experiments we used the “Adult” real data set according to the dimension 

hierarchies as described in [FuWY05]. This dataset contains the fact table Adult and 8 

dimension tables which are described in Table 4.1.  

 

The purpose of the experiment is to assess which distance function between two 

values is best with regard to the user preferences. Each user was given 14 case 

scenarios. Each scenario contained a reference cube and a set of cubes, which we call 

variant cubes, that occurred by slightly altering the reference cube. The 14 scenarios 

included different kinds of cubes with regard to the value types and the different 

levels of granularity. For each reference cube which was randomly selected, the 

variant cubes were generated from the fact table by altering the granularity level for 

one dimension, or by altering the value range of the reference cube. For instance, 

assume a reference cube containing the dimension levels Age_level1, Education_level2 

under the age interval [17, 21]. According to the first type of modification, a variant 

cube could be generated by changing the dimension level to Age_level2 or Age_level0, 

or changing the level of the Education Dimension. According to the second type of 

modification, another variant cube could be generated by changing the age interval to 

[22, 26] or to [17, 26]. Among all possible variations of the reference cube we 
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manually chose the set of variant cubes such that each of them was most similar to the 

reference cube according to a distance function. In order to observe which distance 

function is preferred by users depending on the type of data of the cubes, we have 

organized the 14 scenarios into 3 sets. The first set consists of cubes containing only 

arithmetic type values (5 scenarios). The second set consists of cubes containing only 

categorical type values (2 scenarios). The third set consists of cubes containing a 

combination of both categorical and arithmetic type values (7 scenarios). All the 

scenarios used for this user study can be found in [Baik11]. 

Table 4.1. Adult Dataset Tables.  

 Value Type Tuples Dim. Levels 

Adult fact Table  30418 - 

Age Dim. Numeric 72 5 

Education Dim. Categorical 16 5 

Gender Dim.  Categorical 2 2 

Marital Status Dim. Categorical 7 4 

Native Country Dim. Categorical 41 4 

Occupation Dim. Categorical 14 3 

Race Dim. Categorical 5 3 

Work Class Dim. Categorical 7 4 

 

In each scenario, the users were asked to select the variant cube that seemed more 

similar to the reference cube based on their personal criteria. The distance functions 

that have been used in the experiment are shown in Table 4.2, where the first column 

shows the family in which each distance function belongs to according to Section 

4.1.1. In the second column there is an abbreviated name for each function. To 

compute the distance between two cubes, the Closest Relative distance function is 

used (Section 4.1.3). The distance between two cells of cubes is the weighted sum of 

the partial distances of the two values, one from each cell, with all weights set to 1 

(Section 4.1.2). 
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Table 4.2. Notation of Distance Functions Used in the Experiment. 

Family Abbr. Distance function name 

Local δM Manhattan  

Aggregation δLow,c With respect to a lower level of hierarchy where faggr =count 

δLow,m With respect to a lower level of hierarchy where faggr = max 

Hierarchical 

Path 

δLCA,P Lowest common ancestor through dpath 

δLCA,D Lowest common ancestor through ddepth 

Percentage δ% Applying percentage function 

Highway δAnc With respect to an ancestor xy 

δDesc With respect to a descendant yx 

δH,Desc Highway, selecting the representative from a descendant 

δH,Anc Highway, selecting the representative from an ancestor  

 

The analysis of the collected data provides several findings. The first finding concerns 

the top three most preferred distance functions measured over the detailed data for all 

scenarios and all users. It is remarkable that the top three distance functions for each 

of the user groups were the same and with the same ordering and specifically, these 

are the δLCA,P, the δAnc and the δH,Desc. The frequencies for each one of the top three 

distance functions in each group of users is shown in Table 4.3. 

Table 4.3. Top Three Most Frequent Distance Functions for Each User Group. 

 Users_all Users_cs  Users_non 

δLCA,P  40.47% 38.57% 44.28% 

δAnc 18.09% 20.00% 14.28% 

δH,Desc 9.52% 10.71% 7.14% 

 

The second finding concerns the most preferred function by users depending on the 

type of data the cubes contained. Table 4.4 summarizes the result of the most frequent 

distance function for each set of scenarios and each set of users. We observe that for 

the categorical type of cubes, all user groups prefer the δLCA,P distance function, 

whereas for the arithmetic and the arithmetic & categorical sets, the functions that 
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users mainly prefer are the δLCA,P and δAnc. More than one distance functions appear as 

winners in Table 4.4 due to ties in the frequency of occurrences for each function. 

 

The third finding concerns the winner distance function per scenario. For every 

scenario, we take into account the 15 occurrences by all users and see which distance 

function is the most frequent. We call this function the winner function of the 

scenario. The most frequent winner function was δLCA,P with a 35.71% percentage for 

both the Users_all and the Users_cs group (5 of the 14 scenarios), and 57.14% for the 

Users_non group (8 of the 14 scenarios). The most frequent function for 14 of the 15 

users was the δLCA,P function. For one user from the Users_cs group the most frequent 

function was the δLCA,D. 

Table 4.4 The Most Frequent Distance Function for Each Set of Scenarios. 

 Users_all Users_cs Users_non 

Arithmetic δAnc δLCA,P, δH,Desc, δAnc δLCA,P 

Categorical δLCA,P δLCA,P δLCA,P 

Arithmetic & Categorical δAnc δAnc δLCA,P, δAnc 

 

The fourth finding concerns the diversity and spread of user choices. There are two 

major findings: (a) All functions were picked by some user, and, (b) there are certain 

functions that appeared as user choices for all users of a user group. Specifically, 

functions δLCA,P, δH,Desc and δAnc were selected at least once by users of group 

Users_cs. Similarly, functions δLCA,P, δLow,m and δAnc were selected at least once by 

Users_non.  

The fifth finding concerns the most preferred family of functions. Table 4.5 depicts 

the absolute number of appearances of each distance function family per user group. 

The most preferred family of distance functions is the Hierarchy Path family, which 

also contains the top one most preferred distance function δLCA,P. Moreover, we 

observe that the ranking of the distance function families was exactly the same for 

each user group.  
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Table 4.5. Frequencies of Preferred Distances within Each User Group for Each 

Distance Family.  

 Local Aggregation Hierarchy Path Percentage High-way 

Users_cs 1 9 69 9 52 

Users_non 2 5 34 5 24 

Users_all 3 14 103 14 76 

 

The selection stability of users (i.e., discrepancies in users’ answers at the same 

questions) was the sixth issue. The selection stability was determined by setting the 

13
th

 and the 14
th

 scenario to be replicas of the 3
rd 

and 10
th

 scenario respectively. 4 out 

of 5 users from the set of Users_non, 6 out of 10 users from the set of Users_cs 

(consequently, 10 users from Users_all set) selected the same function for both of the 

two similar scenarios. The rest of the users selected the same function for only one out 

of the two repeated scenarios.  

 

Summary. Overall, the findings indicate that the most preferred distance function is 

the δLCA,P, which is expressed with respect to the shortest path of a hierarchy 

dimension. A null hypothesis stating that the fact that 40.47% of the times δLCA,P was 

chosen as a winner is due to a random phenomenon, has a p-value of 6.6×10
-5

. Apart 

from the δLCA,P, the distance functions δAnc and δH,Desc were also popular with the 

users. In addition, the most preferred distance function family is the Hierarchy Path 

family. 

4.3.2. User Study for Distances between two Cubes 

In the previous user study, the overall observation was that the users prefer the δLCA,P 

distance function between two values of the same dimension. Based on this result, and 

also by setting the weighted sum function as the distance function between cells, we 

set up the second user study in order to examine which distance function between two 

cubes is preferred by the users. Specifically, we try to find out which distance 

function among the two functions that include the cell mapping method (Section 

4.1.3) is most closely related to the human perception. These two distance functions 
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are namely the closest relative and the Hausdorff distance function. Table 4.6 shows 

the distance functions that were used in this user study. 

 

The user study contained 14 new scenarios. Each scenario included 4 cubes named A, 

B, C and D. The cube A in every scenario was the reference cube. The users were 

asked to order the rest of the three cubes from the most similar to the less similar 

when compared to the cube A. The cubes B, C and D were chosen such that one of 

them was the closest to the cube A according to the closest relative function and 

another was the closest to cube A according to the Hausdorff distance function. The 

remaining cube was chosen to be the most distant from cube A for both distance 

functions. All the scenarios used for this user study can be found in [Rogk10] and 

[Baik11]. 

 

All scenarios were uploaded as jpeg pictures in an html page where users were asked 

to complete an answer sheet and send it back to us via email. The URL of this page 

was sent to the email-list of the graduate students of the Computer Science 

Department of the University of Ioannina.  

Table 4.6. The Distance Functions Used in the Second User Study. 

between two cubes 
Hausdorff 

Closest relative 

between two cells of cubes weighted sum 

between two values of a dimension δLCA,P 

between two measures Manhattan 

 

In order to test a user’s answer reliability, in the 6
th

 scenario, the cube B was identical 

with the cube A. Moreover, in order to measure the users’ stability, the 13
th

 and 14
th

 

scenarios were replicas of the 5
th

 and 9
th

 scenarios respectively with a reordering on 

the columns of the cubes.  
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Table 4.7. Frequency of Chosen as First Distance Function Among All the Answers. 

 Frequency Percentage 

Hausdorff 154 38% 

Closest relative 232 57% 

Most distant cube 21 5% 

 

The 12
 
first scenarios can be divided into three groups according to the weights in the 

distance function between cells. The first 4 scenarios consist of cubes that do not 

include measures. We refer to this group as the no_measures group. The next 4 

scenarios consist of cubes that include measures where the weight factors on measures 

and dimensions in the function between cells are not equal. Specifically, assuming 

that cubes consist of k dimensions and l measures, the weight factors were set to 

k/(l+k) for the dimensions and l/(l+k) for the measures. We refer to this group as the 

not_equal group. Finally, the last four scenarios consist of cubes that include 

measures and the weight factors on the measures and on the dimensions in the 

between cells distance function are equal and set to 0.5. We refer to this group as the 

equal group. 

Table 4.8 User Stability. 

 User_OK User_Half_OK User_Stable 

scenario Freq. Perc. Freq. Perc. Freq. Perc. 

13
th

  28 75% 5 13% 24 65% 

14
th

  19 51% 8 21% 24 65% 

 

The number of users that responded with an answer sheet was 39. Two of the 39 users 

did not choose the cube B in the sixth scenario as the most similar to the cube A. For 

that reason their answers were not taken into consideration. We refer to the remaining 

37 users as valid_users. 

 

The first finding of this user study concerns the most frequent distance function that 

was chosen from the users as their first choice. Among all the 11 (scenarios) * 37 

(users) = 407 answers (the sixth scenario is excluded), 232 times ( ≈ 57%) the users 
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gave as their first choice the cube that represents the closest relative distance function. 

The cube that represents the Hausdorff distance function was chosen 154 times 

( ≈ 38%) as the first choice of the users. Only 21 times ( ≈ 5%) the users chose the 

most distant cube as their first choice. The summarization of the above results is 

shown in the Table 4.7.  

Table 4.9 The Winning Functions and the Winner Functions.  

Scenario 

Group 

Scenario Winner function 

per scenario 

Group Winner  

no_measures Scen.1 Closest relative 29/37 

Closest relative 
Scen.2 Closest relative 30/37 

Scen.3 Closest relative 31/37 

Scen.4 Hausdorff 25/37 

not_equal Scen.5 Hausdorff 28/37 

Hausdorff Scen.7 Closest relative 26/37 

Scen.8 Hausdorff 27/37 

equal Scen.9 Hausdorff 19/37 

- 
Scen.10 Hausdorff 21/37 

Scen.11 Closest relative 32/37 

Scen.12 Closest relative 22/37 

 

The second finding of the user study concerns the stability of the user choices. As we 

mentioned before, the 13
th

 and 14
th

 scenario were replicas of the 5
th

 and 9
th

 scenario 

respectively. In each of these two scenarios a user that orders the cubes in the same 

way as in the original scenario is denoted as user_OK. A user that gave the same 

answer for the most similar cube but the order of the other cubes was not the same is 

denoted as user_Half_OK. Finally, a user that was denoted as user_OK for both 

replicas scenarios or denoted as user_OK for the one replica scenario and 

user_Half_OK for the other replica scenario is denoted as user_ Stable. According to 

the answers of the valid 37 users of this user study, in the 13
th

 scenario there were 28 

user_OK users and 5 user_Half_OK users. In the 14
th

 scenario there were 19 user_OK 

users and 8 user_Half_OK users. The 24 of the 37 ( ≈ 65%) users were user_Stable 
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users. We believe that a 65% is a safe number that can ensure the stability and 

reliability of their answers. The Table 4.8 summarizes the above results and 

percentages.  

 

The third observation concerns the scenario winner function. The term scenario 

winner function refers to the function that was mostly selected as the first choice from 

the users in a specific scenario. Our findings cannot ensure that one of the two 

functions is more preferred than the other: The closest relative function was the 

scenario winner function for 6 scenarios and the Hausdorff function was the scenario 

winner function for the rest 5 scenarios (Table 4.9). Observe that the findings of Table 

4.7 give a 19% difference between the two prevailing functions --a finding that is not 

demonstrated in Table 4.9. This is explained by the fact that when the closest relative 

function is a winner, it wins with an overwhelming majority; on the contrary, when 

the Hausdorff function is a winner, the numbers are lower. The 4
th

 column in Table 

4.9 shows how many times the winner function was chosen as a first choice among 

the 37 valid users.  

 

The fourth observation concerns the (scenario) group winner function (Table 4.9). For 

a group of scenarios, its group winner is the function that appeared as scenario winner 

in the majority of the scenarios of the group. For the no_measures group the group 

winner function was the closest relative function, as it was the winner function for the 

3 out of the 4 scenarios. For the not_equal group the group winner function was the 

Hausdorff, as it was the winner function for the 2 out of the 3 scenarios. Finally, for 

the group equal, we have a draw: in two scenarios the winner function was the closest 

relative function and in two scenarios the winner function was the Hausdorff function. 

The above results reveal a user preference in the closest relative function for scenarios 

that do not include measures. On the other hand for the other types of scenarios the 

results are not clear.  

4.3.3. Reliability and Validity Considerations 

Test Reliability. A possible threat to the test’s reliability is the inability of users to 

understand what was asked from them to perform, or did not handle the test with 
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seriousness and mental concentration. In the 1
st
 user study, the users took the 

experiment in our presence so we can ensure there were no ambiguous situations or 

possible misunderstandings. In the 2
nd

 user study, users completed the questionnaire 

via the web. However, there was a clear description of the setting of the experiment 

along with an example, so we believe there were not any misunderstandings of what 

the users should answer. Moreover, we excluded users that failed giving the 

straightforward answer (in scenario 6 of the 2
nd

 experiment). Finally, in both user 

studies, we tested the stability of users via replica scenarios. 

 

Test Validity. Possible threats to tests’ external validity are the size and the mix of 

the corpus of users. Naturally, the size of users can always be increased; however we 

deem that the corpuses we have used are not negligible. Concerning the mix of users, 

in the 1
st
 experiment we choose to include a group of users with a diversity of 

backgrounds as well as a clearly distinct group of users with background of computer 

science (and thus, higher affinity to the notion of comparing two data cubes). An 

interesting observation is the fact that there are differences of opinions between the 

Users_cs and Users_non (Table 4.3 and Table 4.5), however these are small and do 

not change the overall ranking of the preferred functions. Thus, we were able to 

proceed to a web-based questionnaire in the 2
nd

 study. In addition, the possible 

scenarios were selected in a way that includes a variety of data types (arithmetic, 

categorical) and various levels of granularity over the data.  

4.4. Chapter Summary and Findings 

This Chapter presented a variety of distance functions that can be used in order to 

compute the similarity between two OLAP cubes. The functions were described with 

respect to the properties of the dimension hierarchies and based on these they were 

grouped into functions that can be applied (a) between two values from a dimension 

of a multidimensional space, (b) between two points of a multidimensional space and 

(c) between two sets of points of a multidimensional space.  

 

In order to assess which distance functions are more close to human perception, we 

conducted two user study analysis. The first user study analysis was conducted in 
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order to discover, which distance function between two values of a dimension is best 

with regard to the user needs. Our findings indicate that the distance function δLCA,P, 

which is expressed as the length of the path between two values and their common 

ancestor in the dimension’s hierarchy was the most preferred by users in our 

experiments. Two more functions were widely chosen by users. These were the 

highway functions δAnc that is expressed with regard to the ancestor xy and δH,Desc that 

is expressed by selecting the representative from a descendant.  

 

The second user study we conducted, took into account the results of the first user 

study analysis. Specifically, the second user study analysis aimed in discovering 

which distance function (the closest relative or the Hausdorff distance function) from 

the category of distance function between two data cubes, users prefer. Overall, the 

former function was preferred by the users than the latter; however the individual 

scores of the tests indicate that this advantage is rather narrow. 
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CHAPTER 5.  CONCLUSIONS 

5.1 Summary of Contributions 

5.2 Open Problems and Insights for Future Work 

 

 

The goal of this thesis was to explore and investigate the answering of top-k queries 

through the exploitation of materialized top-k views. Apart from answering top-k 

queries through materialized views, we have also studied the problem of maintaining 

top-k materialized views in the presence of updates in the relation such that the views 

can be up to date and useful for the answering of top-k queries. Moreover, we 

explored the problem of expressing the similarity between two data collections. In 

order to express similarity between objects we have worked on discovering the 

distance functions that users prefer for computing the similarity of two data 

collections. To this end, we resorted to the simplest framework that can be given to 

users to work with and that has been OLAP Cubes.  

5.1. Summary of Contributions 

In this section we summarize the main research challenges and findings of this thesis. 

 

Answering top-k Queries via Materialized Views  

We have provided theoretical and algorithmic results for the answering of top-k 

queries through the usage of materialized top-k views. By adopting a geometric 

representation of the top-k query problem we have conducted a theoretical analysis for 

providing theoretical guarantees for the suitability of a materialized view in order to 

answer a top-k query. Specifically, we illustrated this through the notion of safe area 

of a query in regards to a view and provided the suitability theorem. Moreover, we 
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have proved that the theorem is strict in the sense that it cannot be inversed. Thus, we 

have proved that even if the safe area is not eligible for answering a top–k query, still 

the view may be suitable for answering a query and we have described this through 

the notion of the critical area. In addition, according to the theoretical establishments 

we have provided two algorithms for the answering of top-k queries through the usage 

of materialized views without accessing the tuples of the relation. We have provided 

the 2D SafArI Algorithm for the 2D case, and the SafArI Algoroithm for the n-D 

case. Furthermore, we have theoretically proved that the safe areas of a query in 

regards to more than one views do not offer further usefulness for answering the 

query compared to the safe area of a single view. We have also discussed the issue of 

providing partial results for a query via a materialized view by splitting the range of 

scores into appropriate sub-ranges and provided the Compute Query Extent 

Algorithm. We have proved the efficiency and effectiveness of our method through an 

extensive set of experiments. The experiments that concerned the 2D SafArI 

Algorithm, revealed that the effectiveness of the method has been rather stable and 

around 30-35%. The efficiency of our method showed a consistent increase for 

reasonable sizes of k that rose up to 24%. The second set of experiments concerned 

the N-D case. The effectiveness as well as the efficiency of our method revealed that 

for random and anticorrelated datasets there was an influence on the results in regards 

to the dimensionality. However, for the correlated datasets the effectiveness was 

unaffected by dimensionality almost 100%. The real dataset experiments revealed and 

effectiveness above 35% in all scenarios and increased significantly when the number 

of materialized views increased.  

 

Maintaining Materialized top-k Views 

Considering the problem of maintaining top-k materialized views, we have provided 

results in two directions. As for the first direction we have provided a principled 

method that complements the inefficiency of the state of the art independently of the 

statistical properties of the data and the characteristics of the update streams for the 

maintenance of materialized views. Specifically, the method we have provided 

consists of three steps: (a) computes the rate that actually affects the materialized 

view, (b) computes the necessary extension to k in order to handle the augmented 

number of deletions that occur, and (c) fine tunes by adjusting this value to take the 
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fluctuation of the statistical properties of this value into consideration. The second 

direction concerned the case of multiple top-k views and their efficient maintenance in 

the presence of updates to their base relation. We have provided theoretical 

guarantees for the establishment of the effect of updates to a certain view, whenever 

we know that another view has been updated. We have also provided algorithmic 

results towards the maintenance of a large number of views, via their appropriate 

structuring in a hierarchy of views. Our experiments have shown that our method 

accurately sustains intervals with high deletion activity in the workload and 

specifically in at least 95% of the cases there were top-k materialized views that 

contained at least k items. The experiments indicate that our method outperforms the 

state-of-the-art [YYY+03] in terms of efficiency as the computation of the exact 

number of auxiliary view tuples has shown to be faster than the computation of refill 

queries as proposed in the related literature. At the same time, the number of auxiliary 

view tuples has been less than the number proposed in [YYY+03]. Moreover, the fine 

tuning method we proposed, gave zero losses.  

 

Similarity Measures for Multidimensional Data 

The contribution towards the problem of discovering the distance functions for 

computing the similarity of two data collections, according to what real users actually 

think was again into two directions. We firstly presented a variety of distance 

functions that can be used in order to compute the similarity between two OLAP 

cubes and were described with respect to the properties of the dimension hierarchies. 

Thus, they were grouped into functions that can be applied (a) between two values 

from a dimension of a multidimensional space, (b) between two points of a 

multidimensional space and (c) between two sets of points of a multidimensional 

space. Following, we assessed which distance functions are more close to human 

perception, where we have conducted two user study analysis. The first user study 

analysis was conducted in order to discover, which distance function between two 

values of a dimension is best with regard to the user needs. Our findings indicated that 

the distance function δLCA,P, which is expressed as the length of the path between two 

values and their common ancestor in the dimension’s hierarchy was the most 

preferred by users in our experiments. Two more functions were widely chosen by 

users. These were the highway functions δAnc that is expressed with regard to the 
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ancestor xy and δH,Desc that is expressed by selecting the representative from a 

descendant. The second user study we conducted, took into account the results of the 

first user study analysis. Specifically, the second user study analysis aimed in 

discovering which distance function (the closest relative or the Hausdorff distance 

function) from the category of distance function between two data cubes, users prefer. 

Overall, the former function was preferred by the users than the latter; however the 

individual scores of the tests indicate that this advantage is rather narrow. 

5.2. Open Problems and Insights for Future Work 

In this section we provide directions for future research on issues that are still open 

and can be based on the results of this thesis.  

5.2.1. View selection and caching  

The problem of answering top-k queries through the usage of materialized ranking 

views raises the problem of selecting the appropriate views in order to process 

efficiently and effectively the posed queries. The view selection problem has been 

addressed by both PREFER and LPTA algorithms. However, these works either 

assume that the materialized views contain all tuples of the underlying relation ranked 

according to the view’s scoring function, or, they select the most suitable ranked view 

based on an estimation of the score of the last tuple of the top-k query. Thus, in the 

second case there is no theoretically established guarantee that the selected views will 

be able to answer the query. In any case, the estimation of the last tuple in the query 

might lead to selecting a view that is not the most appropriate either in the sense that 

it cannot provide an answer to the query or in the sense that is not the most efficient 

one. Given, the theoretical established guarantees we have proved, it would be 

interesting to study the problem of selecting the appropriate materialized view in 

order to answer the top-k query in terms of efficiency. Thus, by adopting a cost 

formula for each materialized view that safely guarantees the answer to the top-k 

query, it could be possible to select the most appropriate view for answering the 

query. The cost formula can express the cost of the usage of a given materialized view 
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in order to provide the answer to the top-k query through the number of tuples that 

should be fetched, or, as the area of the materialized view in terms of surface units.  

5.2.2. View caching  

Similar to the view selection problem, another open issue involves the view caching 

problem. In particular, in the context of distributed settings, where each underlying 

server contains some local data, it is interesting to decide appropriately which 

materialized views would be cached and which servers contain which cached results. 

In general, the view caching problem is closely related to the view selection problem 

since the overall idea is to identify the most promising set of views for the upcoming 

queries. In other words, the caching problem is addressed as selecting the most useful 

views in terms of the ability to provide an answer for a top-k query as well as 

efficiency in the presence of resource constraints. On one hand, a view should be 

contained in the set of cached results if it is likely enough to provide an answer for 

most of the top-k queries. This could be achieved by caching a set of materialized 

views that capture most of the space of the relation, so that there would always be a 

materialized view that could provide the answer to any possible top-k query. 

However, another idea would be to cache those materialized views that are most 

likely to be used for the majority of the top-k queries leaving out the outlier top-k 

queries. In order to decide the most appropriate set of materialized views, the above 

two ideas should be taken into consideration and balanced in a way that the best 

combination would provide the less cost for the answering of the new top-k queries. 

Similarly to the view selection problem, a cost formula that expresses the cost of 

providing the answer of a top-k query from a specific materialized view should be 

constructed. In addition, since the views are materialized, the cost formula should also 

contain in its expression the cost of maintaining a view in the presence of updates. 

This cost formula would help in eliminating from the cached views those that provide 

the answer to top-k queries with high costs when compared to all the rest views. 
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5.2.3. Combining indexing techniques with materialized views for query processing of 

top-k queries in multi dimensional space 

The usage of materialized views as well as indexing techniques has been used in 

query processing mainly in terms of performance. Materialized views are used in 

order to provide an answer to a query that is pre-computed. Indices could prove 

helpful when they index the views and thus the later are selected and obtained faster. 

An initial attempt of indexing materialized views for the answering of top-k queries 

has been proposed by Tsaparas et. al. in Ranked Joined Indices. However, RJI solve 

the problem only for the 2 dimensional case. It would be interesting to see how an 

index for materialized views could be constructed and proved helpful for the 

answering of top-k queries in multidimensional space. Two main characteristics of the 

materialized ranked views play significant role in the answering of a top-k query. The 

first is the depth of the view, i.e., the number of tuples that are materialized in the 

view. The second is the closeness of the view to the top-k query. Specifically, the 

second factor is the closeness of the line that characterizes a view to the line that 

characterizes the query. An interesting idea would be to efficiently structure the 

collection of materialized views in main memory where indices could be used for this 

purpose. The depth of the view could be expressed either as the number of tuples 

contained in the view, or the actual score of the last tuple materialized in the view. As 

for the second characteristic, it is more complicated due to the fact that the scoring 

function of the query is not obligatory know a-priori. Therefore, it would be 

interesting to find a way to describe the position of the line that characterizes the view 

in the space regardless of the query line. For a line in N dimensional space, N-1 

angles are needed in order to position the slope of the line in space. N-1 angles 

however are not so efficiently indexed, in general. This could possibly be solved by 

adopting spherical coordinates.  
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